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Abstract

Automation Technologies and Labour Market Outcomes

Previous research has documented significant correlation between automation technologies and labour mar-

ket outcomes. Little work, however, has examined regional variations of technological unemployment.

This thesis made three strands of contributions. Firstly, it explores the heterogeneous effects across regions

from different income groups, based on various forms of automation technologies. Analysis on regional

variations of technological unemployment also complements a vast body of literature on Routine Biased

Technical Change (RBTC). Secondly, this thesis extends studies of the role of skill shares and industrial

structures on net job creation, causing heterogeneous employment effects from automation technologies.

Thirdly, this thesis sheds light on the fact that net employment effects are mainly caused by differentials in

productivity effects, and displacement effects are prevalent across regions.

This thesis is composed of five chapters. Chapter 1 introduces the research question of this thesis. The con-

ceptual framework highlights that the key determinant behind such heterogeneous effects is the percentage

of high skilled workers. With growing proportion of high skilled labour, productivity effects tend to become

more pronounced in high-income regions, implying that new job vacancies could complement job destruc-

tions from displacement effects. In contrast, such non-negative employment effects are less likely in regions

from low- and middle-income groups, due to strong displacement effects induced by lower percentage of

high skilled workers.

Based on the conceptual framework, Chapter 2 exploits variations across US states and commuting zones,

Chapter 3 explores differences across countries, and Chapter 4 analyses variations among UK workers.

Leveraging shift-share IV strategies and generalised model specifications, this thesis finds that the magni-

tudes of employment reductions are significant and sizeable in low and middle income areas, and rising

income levels could cause insignificant employment responses. Further evidence supports that these pat-

terns can be explained by a simple net job creation channel, as displacement effects outweigh productivity

effects in low income regions with lower proportion of skilled labour, and job creations are complementing

job destructions with growing income levels and higher skill shares. Such technical changes are biased

towards high skilled labour force, and are more pronounced in regions with manufacturing sectors.

Chapter 5 concludes, with a discussion of limitations and promising direction of future research, as well as

policy implications.

JEL classification: E24, J24; O14; O33.
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Chapter 1

Introduction

1.1 Motivation

In recent years, development economists have regarded automation technologies as a po-

tential driver of persistent economic growth (Aghion et al., 2017; PwC, 2018), and the

adoption of automation could yield positive employment effects. However, a substantial

body of research has expressed concerns about technological unemployment, defined as

job losses within industries due to the adoption of automation technologies (Autor, 2014,

2015; Brynjolfsson and Mitchell, 2017; Dauth et al., 2021; Graetz and Michaels, 2017;

Mitchell and Brynjolfsson, 2017; Sachs and Kotlikoff, 2012). This raises the question:

What are the labour market impacts of automation technologies? Therefore, understand-

ing the impacts of automation technologies on labour market outcomes at all levels of

analysis, including individual workers, skill groups, metropolitan areas, and countries, is

important.

Despite extensive research, the impacts of technological updating on labour market out-

comes continue to be a subject of debate (Aghion et al., 2017; Autor and Salomons,

2018; Machin and Reenen, 1998), and little is known about heterogeneous effects with

respect to the proportion of skilled workers, reflected by regions from different income
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groups. In this thesis, I leverage comprehensive macro and micro dataset across US com-

muting zones from 2000 to 2019, to explore the impacts of automation technologies on

employment rate, from the standpoint of advanced economies. Additionally, for further

discussions, generalisations to cross country evidence, along with individual level analy-

sis based on UK context, will be provided.

This thesis employs two complementary measures of automation technologies, namely

robotic density and ICT (Information and Communication Technologies) intensity, based

on datasets from International Federation of Robotics (2021), United Nations (2021) and

The Conference Board (2021). Automation technologies are defined as “any technol-

ogy that enables machines, algorithms, capital to perform tasks previously allocated to

humans” (Acemoglu and Restrepo, 2022). Generally speaking, they are comprised of

three components, including numerical controlled machinery, industrial robots, and spe-

cialised software. For industrial robots, they refer to “an automatically controlled, re-

programmable, and multipurpose machine” (International Federation of Robotics, 2021).

They could cover automation technologies that do not require human instructions and

can automatically operate based on programmed codes (Acemoglu and Restrepo, 2020).

While for ICT investments, they refer to “acquisition of equipment and computer soft-

ware that is used in production for more than one year” (OECD, 2020). In other words,

ICT investments include information technology equipment, communications equipment,

and software, which have substantial overlaps with automation technologies that still re-

quire human corporations. Furthermore, this research also utilises alternative measures of

automation technologies, including degree of automated equipments and computerisation

complexities, to document the susceptibility to replacement by automation technologies

for each UK labour force.
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1.2 Related Literature

A burgeoning trend of research is focusing on the relationship between technological

changes and labour market outcomes. In this section, I review the existing theoretical

works on the welfare effects of automation and other advanced technologies. In addition,

I present related empirical evidence, to offer an overview of how technological progress

affects labour markets, productivity and economic growth.

1.2.1 Theoretical Work

A vast literature seeks to explain the sources of declining labour share in national in-

come, and many researchers attribute this phenomenon to some forms of biased technical

change.

Previous articles adopted canonical approach (Acemoglu and Restrepo, 2018b; Kogan

et al., 2023), which directly posits a production function of the form Y = F (AKK,ALL).

This approach imposes that all technological change augments factors of production.

However, the definitions of capital-augmenting technological change or labour-augmenting

technological change suggest that facing technical changes, the relevant factor becomes

universally more productive across all tasks (Acemoglu and Restrepo, 2019a). In contrast,

the task-based approach focused on technologies that change task contents of production,

offering a more effective framework for understanding changes in labour demand and

productivity growth (Autor et al., 2003; Zeira, 1998).

According to task-based framework developed by Acemoglu and Autor (2011), robots and

other forms of automation technologies, are devices designed to execute complicated and

typically repetitive tasks. In other words, they directly substitute workforce previously

responsible for routine tasks in industrial assembly lines (Grossman and Oberfield, 2022).
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The task-based model clarifies that automation technologies operate by substituting capi-

tal for labour across an expanding array of tasks. In addition, it suggests that the welfare

implications of automation may differ among occupations with different task contents

(Restrepo, 2024). It is important to note that each occupation requires multiple types

of tasks, a concept supported by a body of existing research including Adachi (2021).

Whereas, a heterogeneous mix of tasks can be carried out by workforces from different

occupations. In other words, occupations with similar task intensities may overlap (Ace-

moglu and Restrepo, 2019a).

Following Acemoglu and Restrepo (2022), the key economic decision for each occupation

is how to perform these tasks to optimise the output

yx = ΣgAg · ψgx · lgx + Ak · ψkx · kx (1.1)

According to Equation 1.1, each occupation requires specific tasks x, which can be pro-

duced utilising a combination of labour and task specific capital. Workers are classified

into heterogeneous groups g ∈ {1, · · · , G}. The parameters ψgx and ψgx denote the pro-

ductivity of the inputs. The terms Ak and Ag terms represent standard factor-augmenting

technologies, which enhance the productivity of factors uniformly across all tasks. For

the task specific component, lgx is the quantity of labour required to perform task x, and

lx is the quantity of task specific capital.

In the remainder of this section, I will offer a brief review of this task-based framework,

and investigate the sources of negative employment effects from automation technologies,

alongside several countervailing forces.

Firstly, automation could replace labour, particularly in routine occupations where tasks

can be easily codified by computer programming (Acemoglu and Restrepo, 2020; Autor,

2013, 2015; Brynjolfsson and Mitchell, 2017; Mitchell and Brynjolfsson, 2017; Sachs
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et al., 2015). Compared with conventional labour force, automation technologies are rela-

tively cheaper than ordinary wages, thus firm owners prefer to use machines. The adoption

of new technologies could promote reallocation between capital and labour within sectors,

and accelerate the process where tasks previously conducted by labour are gradually taken

over by capital, known as displacement effects.

As indicated in Equation 1.1, task specific capital and workers are perfect substitutes. In

contrast to AI (Artificial Intelligence) and other forms of new task creation, in all instances

of automation technologies, machines or software can replace the labour force in narrowly

defined tasks (Restrepo, 2024).

To understand the displacement effects of automation technologies on labour market per-

formance, the theoretical approach by Acemoglu and Autor (2011) can be illustrated in a

simple diagram, as presented in Figure 1.1.

Figure 1.1: Displacement Effects from Automation Technologies

Notes:
The graph summarises the process of displacement effects from automation technologies (Acemoglu and Restrepo,
2019a).

In a single sector economy, the production process combines the output from a variety of

tasks, which can be accomplished utilising either capital or labour. Tasks are ranked by

wage percentile, and can be normalised to lie between N and N + 1. By definition, tasks

in the range [N,NL] are not automated, because workers’ reservation wages are relatively

lower than the cost of machines. Therefore, the introduction of automation technologies
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could replace labour in tasks [NL, NH ], thereby reducing production costs1. If we then

re-normalise the tasks into the range [N ∗, N∗+1], the tasks located in the middle of wage

percentile [N ∗
L, N

∗
H ] are considered vulnerable to being replaced by machines during the

next wave of technological advancement (Aghion et al., 2017).

Secondly, automation could also promote employment2, and generate several countervail-

ing forces (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018a; Autor, 2015). On

the one hand, the adoption of automation technologies could lower production costs where

tasks are easily automated, leading to overall economic expansion and thus rising labour

demand in all local sectors, particularly in non-automated local areas, known as produc-

tivity effects (Acemoglu and Restrepo, 2018a). According to Acemoglu and Restrepo

(2019a,b)

WageBill = V alueAdded× Labour Share (1.2)

As summarised in Equation 1.2, for firms adopting automation technologies, the growth

in value added will translate into changes in wage bill, thus raising labour demand in other

sectors, particularly in non-automated local areas (Acemoglu and Restrepo, 2018c). For

instance, smart machines are typically designed and improved by skilled workers (Sachs

and Kotlikoff, 2012), which can create a significant number of labour saving jobs, thus

boosting labour demand in other relevant sectors. Besides, with reduced production costs

due to the widespread adoption of automation technologies, firm owners are incentivised

to invest more in both labour and capital, thus raising demand for labour force.

In a multi-industry economy, the development of automation technologies could also af-

fect aggregate labour demand through composition effects, as improved efficiency in cer-
1It is observed that labour inputs have comparative advantages in non-routine tasks in the range of [NH , N+1], which cannot

be easily replaced by machines (Acemoglu and Restrepo, 2018c).
2Here I use ”promote employment” instead of complementary effects, as automation technologies could only replace labour

force rather than complement labours. What ”complementary effects” refers to is reinstatement effects, which will be illustrated
later in this section
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tain tasks may change the demand for downstream products (Agrawal et al., 2019; Jackson

and Kanik, 2019). Driven by general equilibrium effects, industries utilising complemen-

tary inputs and tasks in their production processes will also experience a rise in labour

demand (Dauth et al., 2021).

Taking input-output networks among firms into accounts, in sectors where high skilled

labour force can also perform simple tasks, those low skilled workers face risks of dis-

placement, often termed ripple effects (Acemoglu and Restrepo, 2022; Jackson and Kanik,

2019). In other words, they are likely to experience job losses, as an indirect consequence

of automation technologies.

On the other hand, technological advancement also generates new tasks where labour

maintains comparative advantages (Acemoglu and Restrepo, 2019b), and raises corre-

sponding labour demand through the rise of AI platforms, a phenomenon known as re-

instatement effects. For example, by minimising prediction uncertainties, artificial in-

telligence has the potential to reduce both search and production costs, hence increases

relative returns of decision tasks and boosts labour demand for those specialised in new

communication tasks (Agrawal et al., 2019; Brynjolfsson et al., 2019). It is important to

recognise that reinstatement effects are limited to the effects of AI, rather than automa-

tion technologies. This is because only artificial intelligence has the capacity to create

new jobs, and automation technologies can only promote employment through productiv-

ity effects.

In the case of generative AI, the capital deepening of automation technologies can also

occur (Acemoglu, 2024). For example, an already-automated IT security task may be

executed more effectively by generative AI. By raising the task complementarity, the pro-

ductivity of capital can also increase, while at the same time enabling workers to specialise

and raise their productivity in other aspects of their jobs (Acemoglu and Restrepo, 2019a).

Acemoglu et al. (2001) offer a theoretical notion for understanding how technological
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changes affect labour market performance through reinstatement effects. This framework

is illustrated in Figure 1.2.

Figure 1.2: Reinstatement Effects from Automation Technologies

Notes:
The graph presents the process of reinstatement effects from automation technologies (Acemoglu and Restrepo,
2019a).

Similar to the analysis of Figure 1.1, each product in Figure 1.2 requires the completion of

a sequence of tasks, which is achievable through the utilisation of capital or labour. These

tasks are ranked according to wage percentile, and can be normalised to lie between N

and N + 1. By definition, the creation of new tasks is not observable at the tasks with

lower wage level, due to relatively lower labour cost compared with price of machines.

Therefore, the introduction of new labour-intensive tasks or new capital-intensive tasks

corresponds to expansion of task range above N . Then if we re-normalise the tasks into

the range [N ∗∗, N∗∗ + 1], an increase in N ∗∗ + 1 translates to the introduction of new

tasks, triggered by AI platforms or other advanced technologies. The impacts on equilib-

rium wage are uncertain, and are potentially determined by trade-offs between productiv-

ity gains and reductions in labour inputs (Acemoglu and Restrepo, 2018b; Jackson and

Kanik, 2019).

In summary, the heterogeneous effects of automation adoption on labour market outcomes

are determined by net job creations, induced by displacement effects and other counter-

vailing forces.
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1.2.2 Empirical Work

Much of the public attention paid to technological updating concerns the effects on jobs.

Understanding these effects requires comprehending the capabilities of this technology.

This section begins by reviewing the sources of skill premium. Then I will offer some

empirical evidence on impacts from automation technologies, including job polarisation

across regions and occupations. In addition, I will summarise existing empirical studies

based on US evidence, cross country evidence, and UK evidence. Finally, I will highlight

some challenges, such as task contents and skill measures, as well as influences from

international trade.

Over the last two decades, shifts in skill demand, such as episodic events or changes in

labour force composition, have played an increasingly important role in wage structure

variations among different education groups (Autor et al., 2008; Beaudry et al., 2016;

Zimmerman, 2019). An analysis of wage structure based on US census in the late 20th

century indicates that firms strongly favoured college graduates and females (Carneiro

and Lee, 2011; Katz and Murphy, 1992). The findings by Zimmerman (2019) suggest

that education and peer ties formed at elite colleges could help students to reach top posi-

tions in the economy in the future, leading to rising wage levels for high skilled workers.

Moreover, increases in college enrolment may have contributed to a declining college pre-

mium throughout US history, due to lower average quality of college educated workers

(Carneiro and Lee, 2011).

Given exogenous relative supply of skilled workers, one of the key factors that could con-

tribute to changes in wage inequality, is skill-biased technical change (Card and DiNardo,

2002; Jones and Yang, 2016; Kaplan and Rauh, 2013). And studies using World Health

and Income database also described a Pareto distribution of skill alongside increasing skill

returns (Jones and Kim, 2018). Besides, a significant body of empirical research evalu-

ates the connection between wage gap and technical changes, measured by the adoption
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of “white-collar” tools (Krueger, 1993).

The results of this thesis also complement the theory of skill biased technical change, and

confirm that technological changes driven by automation technologies are biased towards

high skilled workers with advanced qualifications.

Regarding the influence of information technology on overall wage differentials between

college students and non-college students, the expansion of computer use could explain

approximately 60% of increasing education return (Krueger, 1993), and the effects could

vary across different fields of study (Moreno-Galbis and Wolff, 2011). Based on NCDS

data in UK, Dolton and Makepeace (2004) observed a significant premium associated

with computer use for some British people, and the coefficients differ across individu-

als. In addition, based on German data, people found statistically significant associations

between wage differentials and the use of other “white-collar” tools, such as calculators,

telephones and manual writing materials, and the magnitude of the correlations was sim-

ilar to that observed between computer use and wage gaps (DiNardo and Pischke, 1997).

With the development of automation technologies, such as robotic machines and comput-

erised equipments, their strong computing power could easily assist humans in performing

prediction tasks. This has greatly enhanced the efficiency of decision-making (Agrawal

et al., 2019), thereby improving productivity of work currently performed by labour. Si-

multaneously, these technologies are changing the task contents of productions, which

has significant effects on labour market outcomes (Acemoglu and Restrepo, 2019a).

As noted by Montobbio et al. (2024), previous research has primarily employed two alter-

native methodologies to appraise the implications of automation technologies on labour

markets, in terms of occupational level employments and wages. The first approach,

which was introduced by Frey and Osborne (2017), developed an index to represent the

likelihood of automation technologies, based on subjective evaluation of job displace-

ment vulnerability. This method has been widely adopted in recent papers that focused
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on artificial intelligence. Webb (2019) proposed a direct measure, leveraging machine

learning techniques to calculate the similarity between verb-noun pairs found in the titles

of AI patents and O*NET tasks. The second approach relies on the dataset of robotic

usage by International Federation of Robotics (2021), or other datasets about automation

technologies such as The Conference Board (2021). For instance, Acemoglu et al. (2023)

discovered that findings in the Netherlands closely aligned with the evidence in Germany

by Dauth et al. (2021). In contrast to the US analysis, robots did not lead to a significant

decrease in overall employment in Europe, but the proportion of low skilled workers in

the workforce declined over the study period, particularly in the manufacturing sector.

Table 1.1: Summary of Relevant Literature on Measures of Automation

Contribution Measure (Automation and AI) Level of analysis
Frey and Osborne (2017) Delphi method and machine-learning algorithm Occupations

to identify exposed occupations to automation Occupations
Acemoglu and Restrepo (2020) Share of robot adoption Industry
Felten et al. (2018) Questionnaire on 10 AI application Jobs
Webb (2019) Co-occurrence of verb-noun pairs in AI patents Jobs

and O*NET tasks
Kogan et al. (2023) Term frequency-inverse document frequency matrix Jobs

of the patent text and DOT
Montobbio et al. (2024) Term frequency-inverse document frequency matrix Jobs

of CPCs and O*NET
Notes:
This table presents a summary of relevant literature on measurement of automation technologies, with their method-
ologies and levels of analysis (Montobbio et al., 2024). Jobs refer to tasks aggregated at the occupational levels.

This research employs two complementary measures of automation technologies, namely

robotic density and ICT (Information and Communication Technologies) intensity, based

on datasets from International Federation of Robotics (2021); United Nations (2021);

The Conference Board (2021). Moreover, the study utilises alternative measures of au-

tomation technologies, including degree of automated equipments and computerisation

complexities, to determine the vulnerability of each segment of the UK labour force to

displacement by automation technologies..

Conventional economic models often formalise technological change as factor augmen-

tation. These models suggest that, in the face of exogenous technological shocks, both
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labour demand and equilibrium wage should rise, regardless of whether the technologi-

cal change is capital-augmenting or labour augmenting (Acemoglu and Restrepo, 2018b).

Combining such complementary effects with another distinctive feature named displace-

ment effects, an alternative task-based framework was developed by Acemoglu and Au-

tor (2011). Endogenising the direction of technological change, this framework uncovers

both productivity effects and displacement effects from automation technologies.

Technological unemployment and job polarisation have been widely examined in western

developed countries. A wealth body of case-study analysis draws upon US data sources

such as Current Population Survey (CPS) Census Integrated Public Use Micro Samples,

American Community Survey (ACS) and Dictionary of Occupational Titles (DOT) (An-

tonczyk et al., 2018; Autor et al., 2003; Autor and Dorn, 2009, 2013; Murphy and Welch,

1993). These studies illustrate a shift in labour inputs towards non-routine occupations

accompanied by skill upgrading in the 20th century. This shift is primarily attributed to

industry task changes driven by technological updating (Autor et al., 2003; Autor and

Dorn, 2009, 2013; Berman et al., 1994). Younger college-educated workers and new en-

trants are more likely to move to nonroutine jobs with high skill demand, while those

older workers with higher costs of occupational mobility are more likely to remain in

their existing roles or flow to low-skill nonroutine occupations, even when controlling

for occupation and demographic characteristics. Those patterns of shrinking workforce

in middle occupations have persisted across demographic, regional and industry groups

since late 1970s (Bluestone and Harrison, 1988). Using Natural Language Processing to

characterise high skilled occupations, Acemoglu et al. (2022b) found that these occupa-

tions have become more accommodating to the preferences of older workers. The results

are consistent with findings by Autor and Dorn (2009); Mohnen (2024), who observed

a concentration of older workers in high skilled jobs, noting that these occupations are

”getting old”.

A significant volume of the existing research on technological unemployment focused on
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US. Acemoglu and Restrepo (2020) provided evidence on large negative effects of robot

adoption on employment and wages in the US. Utilising textual analysis techniques, Ko-

gan et al. (2021) calculated the probability of automation adoptions, measured by sim-

ilarity between descriptions of automation patent innovations and occupation listed in

ONET. Their findings, based on NBER-CES manufacturing data, reveal positive associa-

tion between technological changes and labour productivity. For the patterns across dif-

ferent sectors, Acemoglu and Restrepo (2022) showed that negative employment effects

are mainly observed in manufacturing sectors with greater exposure to automation tech-

nologies, and those with higher adoptions of equipment and software (Hubmer, 2023).

Building on these US-focused studies, Chapter 2 will provide novel evidence on regional

variations of such technological unemployment, and explore potential mechanisms about

net job creations.

For cross country evidence, evidence of widespread job polarisation can also be observed

in other European countries. Studies utilising German social security records from IABS

dataset align with US findings, suggesting a technology-driven polarisation in the Euro-

pean labour market (Antonczyk et al., 2018; Goos et al., 2009). Because of the union-

isation rate, technology effects alone cannot fully account for the empirical findings in

European countries (Dauth et al., 2021). Taking labour market institutions into accounts,

Acemoglu et al. (2023) estimated the effects of robot adoption on firm level and worker

level outcomes in the Netherlands and other European countries. Their research indicates

that, despite the rigidity of the labour market and constraints on firms’ ability to adjust

both employment and wages, workers directly exposed to automation technologies ex-

perience lower earnings and employment rates. However, there is only limited evidence

regarding phenomenon of job polarisation and other forms of technological unemploy-

ment in emerging economies. Chapter 3 aims to address this gap in the literature.

Unlike previous occupational level analysis, this thesis offers original insights into RBTC

across regions, and highlights that the job displacement due to automation is likely to be
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more harmful in middle income regions compared with low income regions. This differ-

ence is attributed to the concentration of routine occupations in middle-income regions,

leading to relatively larger job losses.

UK evidence based on New Earnings Survey (NES) and Labour Force Survey (LFS) doc-

uments a U-shaped relationship between employment growth and initial log median wage

levels (Goos and Manning, 2007; Goos et al., 2009; Graetz and Michaels, 2017), imply-

ing a rapid increase at both extremes of the skill distribution, namely lovely jobs at the

top and lousy jobs at the bottom. Utilising R&D intensity as a directly observed measure

of technical change, analysis by Machin and Reenen (1998) uncovered significant asso-

ciation between skill upgrading and technical change, leading to rising relative demand

for high skilled workers. These results are consistent with Dolton and Makepeace (2004),

suggesting that technological updating could account for one third of the rise in wage

premium. In Chapter 4, I will provide individual level analysis based on UK context, and

further explore the heterogeneous effects from automation technologies across regions

and skill groups.

Research into the effects of technological changes on labour market outcome usually

confronts with substantial challenges, such as defining task contents and measuring skills

(Autor, 2013). Conventional identification strategies, using median wages paid to skill

group based on education or occupation, ignore the wage dispersion across groups and

individual heterogeneities (Autor, 2013; Berman et al., 1994; Goos and Manning, 2007;

Murphy and Welch, 1993). Therefore, Autor and Dorn (2013); Graetz and Michaels

(2018) instead implement estimations weighted by Census sampling weights and annual

working hours, to reflect industrial heterogeneities within given areas, which would be

easily affected by labour supply elasticities. Combining micro data and macro technology,

Oberfield and Raval (2021) utilised micro data on the cross-section of plants to assess the

relative importance of capital intensity, and found that skill biased technical change would

lead to declining share of labour income in the U.S. manufacturing sector.
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In addition, for open economies with trade interactions, the intensive use of automation

technologies could also trigger some variations in labour market outcomes through free

flow of production factors, such as labour force immigration (Acemoglu and Restrepo,

2020). Also, automation reshapes the relative labour costs, which are the determinants

of international competitiveness (Rodrik, 2018). Moreover, decisions about the adoption

of automation technologies may be correlated with capital intensity or ICT (Information

and Communication Technology) investment, which also have direct impacts on labour

participation (Graetz and Michaels, 2017, 2018).

As demonstrated, a vast body of literature seeks to study the association between au-

tomation technologies and labour market outcomes. In the following section, I will offer

conceptual framework for this thesis.

1.3 Conceptual Framework

In this section, I illustrate conceptual framework relating regional variations of produc-

tivity effects and displacement effects arising from automation technologies, and provide

guidance for interpreting empirical results.

Firstly, automation has the potential to substitute for labour, particularly in routine occu-

pations (Acemoglu and Restrepo, 2020; Autor, 2013, 2015; Brynjolfsson and Mitchell,

2017; Mitchell and Brynjolfsson, 2017; Sachs et al., 2015). Automation technologies of-

ten present a more cost-effective option than conventional labour force, making machines

preferable for firm owners. The process is known as displacement effects.

The replacement of jobs is widespread and occurs across regions with different income

levels3. In advanced economies, the positive association between educational attainment
3The uneven distribution of displacement effects are also documented in Autor et al. (1998); Acemoglu and Restrepo (2022);

Acemoglu and Loebbing (2022). Driven by declining price of capital goods, which can be treated as an exogenous factor, the
workers exposed to industries at the early stages of automation process would face larger risks of job replacement.
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and wage levels, could provide great opportunities for the adoption of automation tech-

nologies to replace high skilled labour force with advanced education (Acemoglu and

Restrepo, 2021)4. However, most skilled labour is engaged in analytical or interper-

sonal tasks, and such non-routine tasks are not easily codified by computer programming,

thus limiting the ability of machines to replace these workers (Acemoglu and Restrepo,

2020; Acemoglu et al., 2022a; Agrawal et al., 2019). In addition, when displacement

occurs, specific institutional settings may require these high skilled production workers

to spend significantly more time on transition to new jobs, potentially contributing to the

low growth of jobless recoveries in developed countries (Acemoglu and Restrepo, 2018a;

Graetz and Michaels, 2017). Therefore, such labour market frictions reduce the likelihood

of job losses for high skilled labour.

Alternatively, in emerging markets and developing economies, extensive use of cheap

labour suggests higher likelihood of enormous job losses for workers engaged in tasks

currently performed by humans, as such routine tasks could also be performed by other

computerised equipments (Agrawal et al., 2019). However, this is not the complete pic-

ture. Facing exposure to automation technologies, low skilled workers who are still pro-

ductive elsewhere could easily switch to other occupations with similar task requirements,

while those with limited labour alternative use are unable to conduct other tasks5. In order

to secure employment, this latter group may have to accept relatively lower reservation

wage (Jackson and Kanik, 2019). Compared with workers in high income areas, who are

endowed with alternative labour use, those in low-income regions have no choice but to

become ”re-employed” at lower wage levels6. This could present a barrier to the adoption
4Recent articles such as Acemoglu and Restrepo (2022) also examined widening wage inequalities driven by automation,

and highlighted that high skilled workers who are not susceptible of job replacement will enjoy wage gains. Therefore, the firm
owners would make further decisions based on rising wages for high skilled labour and relatively low price of machines.

5Previous literature identified the importance of task dissimilarity from the costs of occupational transition (Autor and Dorn,
2009; Cortes and Gallipoli, 2017; Cortes et al., 2020; Gathmann and Schonberg, 2010; Poletaev and Robinson, 2008; Yamaguchi,
2012). Facing susceptibilities of job replacement by automation technologies, experienced workers endowed with firm specific
human capital prefer to switch to other occupations within the same establishment which have similar task intensities, due to
low training costs, while other people may switch across occupation to avoid high transition costs. This is also consistent with
Autor and Dorn (2009), which observed that the degree of upward reallocation is strongly negatively correlated with age, as old
workers are more likely to accumulate firm specific human capital.

6Recent papers such as Braxton and Taska (2023) also discussed situations where those low skilled workers switch to other
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of automation technologies (Acemoglu and Restrepo, 2021), as economic cost remains a

key factor even when the technological feasibility could support automation of specific

tasks (Autor, 2013). As a consequence, the narrowing gap in job losses induced by more

substantial ”re-employed” workers in low income areas, results in more widespread dis-

placement effects across both high- and low-income regions.

Secondly, automation could also generate several countervailing forces, and have positive

employment effects7 (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018a; Au-

tor, 2015). On the one hand, automation adoptions could reduce production costs, leading

to overall economic expansion and thus rising labour demand across local sectors, partic-

ularly in areas relevant to non-automated tasks, known as productivity effects (Acemoglu

and Restrepo, 2018a, 2019b; Sachs and Kotlikoff, 2012). On the other hand, technologi-

cal updating creates new tasks where labour has comparative advantages (Acemoglu and

Restrepo, 2019b), This, along with the rise of AI platforms, increases labour demand, or

more formally known as reinstatement effects8.

Among those countervailing forces, this thesis primarily considers productivity effects,

namely rising high skilled labour demand in other sectors, particularly in industries that

exhibit gross complementarity in their production processes. This pattern of response is

expected to be more sizeable in high income economies. In these contexts, there is a rapid

take-off in labour demand for high skilled occupations9, triggered by rising consumer

demand for final products, and an expanding pool of skilled labour (Acemoglu et al.,

2022a; Akerman et al., 2015; Webb, 2019). In contrast, insufficient supply of such skilled

occupations. For labour forces with limited alternative uses, they are likely to suffer from earning losses after displacement.
7Here I use ”positive employment effects” instead of complementary effects, as automation technologies could only replace

labour force rather than complement labours. What ”complementary effects” refers to is reinstatement effects, which will be
illustrated later in this section

8It should be noted that reinstatement effects only refer to those by AI rather than automation technologies, as only artificial
intelligence could create new jobs, and automation technologies can only promote employment through productivity effects

9Another interpretation would be: facing depressed production costs triggered by widespread adoption of automation tech-
nologies, firm owners gain incentives to devote much inputs for both labour and capital into productions, thus raising demand for
labour force. However, it is hard to distinguish the characteristics of high skilled firms conducting technology intensive products.
Also, the difference between high income regions and low and middle income regions lay in consumer demand for high tech
products. For emerging market and developing economies, the firm owners may not have tendencies to expand economy even if
production costs are lower, as consumers do not have sufficient demand for those high quality products.
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labour force in less developed economies limits the capacity of automation technologies

to create similar job opportunities.

Figure 1.3: Evolution of Labour Force with Advanced Education, 2000-2019

Notes:
The graph presents proportion of skilled labour force, defined as those who received tertiary education, for countries
from different income groups - using data from World Bank (2021). Classification of high income countries and mid-
dle income countries are defined by World Bank (2021), and the sample economies of OECD countries are obtained
from OECD (2020).

Furthermore, as Figure 1.3 shows, the widening gap of skill shares across economies from

different income groups, measured by proportion of skilled workers with tertiary educa-

tion, reveals that equilibrium employment is likely to be lower in less developed regions.

In contrast, strong productivity effects in economically advanced areas may reduce the

likelihood of welfare deterioration.

In summary, this analysis indicates that the heterogeneous effects of automation adoption

on employment are determined by net job creations between displacement effects and

productivity effects. With growing proportion of high skilled labour, productivity effects

tend to become more pronounced and could contribute to job creations in high income

regions. This suggests that new job vacancies could complement job destructions from
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displacement effects. While such non-negative employment effects are less likely to occur

in regions from low- and middle-income groups, induced by strong displacement effects

by lower percentage of high skilled labours.

Based on the conceptual framework outlined above, this thesis proposes the research ques-

tions: What are the impacts of automation technologies on employment rate? And what

are the mechanisms behind heterogeneous effects across regions from different income

groups?

The hypotheses are as follows:

Hypothesis 1: In low and middle income economies, the impacts of automation technolo-

gies on employment rate are negative, as the job destructions induced by displacement

effects outweigh job creations driven by productivity effects.

Hypothesis 2: In high income economies, automation technologies tend to have positive

or non-negative effects on employment rate, as newly generated job vacancies induced by

productivity effects, could compensate for job losses driven by displacement effects.

Hypothesis 3: Overall automation technologies destroy more jobs than they create.

To verify the hypothesis, Chapter 2 draws upon comprehensive macro and micro dataset

across US states and commuting zones from 2000 to 2019. This analysis explores the

impacts of automation technologies on employment rate in advanced economies. Chapter

3 expands the scope to consist of cross-country evidence, and evaluates how the hetero-

geneous effects of automation technologies on employment rate vary across countries at

different stages of economic development. Finally, Chapter 4 presents individual level

analysis based on UK workers, to show that these findings hold true for this group as

well, and such technical changes are biased towards high skilled workers and those living

in manufacturing intensive regions.
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1.4 Contribution

Among existing works of literature, this research is related to several empirical studies on

the effects of technological adoption on labour market outcomes. It makes three strands

of contributions.

The first main contribution is the exploration of the heterogeneous effects across regions

from different income groups. Early works focusing on general measures of technological

updating such as TFP (total factor productivity) growth and patent awards across differ-

ent countries are closely related (Autor and Salomons, 2018; Autor et al., 2020). This

study utilises two complementary indicators, namely robotic density and ICT intensity.

Therefore, this approach allows for a more accurate differentiation between productivity

growth originating from automated and non-automated sectors.

In addition, the analysis on regional variations of technological unemployment also com-

plements a vast body of literature on RBTC (Routine Biased Technical Change). Studies

by Autor and Dorn (2013); Goos et al. (2014); Graetz and Michaels (2017) and others

discovered the phenomenon of job polarisation in western developed countries. They

demonstrated how automation could replace labour forces in occupations located at the

middle of skill percentiles with routine tasks, and cause positive employment and wage

effects in other occupations. Unlike previous occupational level analysis, this thesis offers

original insights into RBTC across regions. It highlights that the job displacement due to

automation is likely to be more harmful in middle income regions compared with low

income regions. The relatively large job losses in middle income regions are attributed to

concentration of routine occupations.

For the second main contribution, this thesis complements studies of the role of skill

shares, industrial structures, and net job creations, causing heterogeneous employment

effects from automation technologies. Recent work by Acemoglu and Restrepo (2021)
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estimated the impacts of educational upgrading on the adoption of automation, arguing

that a larger proportion of highly educated workers could result in scarcity of production

workers in blue collar jobs. The rising wages for manufacturing workers, along with

the declining participation rate, will finally provide great opportunities for automation.

This thesis differs from previous studies since, rather than focusing on workers with low

educational attainment, I show that the channel for high skilled labour force could be

different. With intensive growth of highly educated workers, supply effect appears to

generate stronger productivity effects, and act as the main driver of employment growth

in advanced economies, particularly in manufacturing industries.

For the third main contribution, this thesis sheds light on the fact that net employment ef-

fects are mainly caused by differentials in productivity effects measured by job creations.

And job destructions, a good proxy of displacement effects, are prevalent across differ-

ent regions. In terms of the mechanisms, this study supports the findings of Acemoglu

and Restrepo (2020, 2022); Bonfiglioli et al. (2021); Dauth et al. (2021). It confirms that

job creations10 often favour high skilled workers completing advanced education, while

the negative welfare consequences of unemployment disproportionately affect low skilled

workers.

1.5 Main Findings

The first result is that automation technologies could affect labour market differently, con-

ditional on regional income levels. For US evidence, employment rate did not experience

significant changes in high income CZs, and 1000 unit increase in robotic stocks per

worker will lead to a drop of 0.87 percentage points in employment rate for low income

commuting zones between 2000 and 2019. In general, a rise of 1 unit robot per thou-

sand labour force could generate job losses by 0.67 percentage points. This coefficient
10Here ”job creation” refers to rising job vacancies in incumbent occupations, rather than creation of new occupations or new

tasks, as the latter only applies to the field of artificial intelligence.
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is similar to the estimation of employment reductions about 0.45 by Acemoglu and Re-

strepo (2020)11. The findings remain consistent when employing alternative measures of

automation technologies using ICT and automation trade volumes, which align with other

evidence using automation patent data (Acemoglu and Restrepo, 2021).

For cross country analysis, it is discovered that one additional robot per thousand work-

ers tends to reduce employment rate by 1.42 percentage points, and growing GNI per

capita could lead to complementary effects of 0.07 percentage points. While for individ-

ual analysis based on UK data, 1 unit increase of importance of automated equipment is

associated with 2.29 hours increase of actual working time. Specifically, with each addi-

tional pound in gross earnings, the impacts of degree of automated equipments on actual

working time will be flattened by 0.36 hours. This result is consistent with EU evidence

by Graetz and Michaels (2018), which showed that one additional robot per thousand

labour force could reduce working time by 1.22 hours for high skilled workers, and 8.59

hours for low skilled workers12.

The second result is that 1000 unit increase in robotic stocks per worker will lead to a

drop of 1.37 percentage points in the employment rate in middle income US CZs, and

the magnitudes are larger than those in low income CZs. This difference arises because

routine occupations, whose tasks are easily codified by machines, are concentrated in

middle income regions. This is a significant extension, compared with Autor and Dorn

(2013); Goos and Manning (2007); Goos et al. (2014).

Regarding the third result, leveraging comprehensive data about job creations, I found that

the impacts of robotic adoptions and ICT trade volumes on job destructions are insignifi-

cant. The finding is consistent with the conceptual framework in Section 1.3. Therefore,

the heterogeneous employment effects are driven by differentials in job creations, as a rise
11The reason why the magnitudes of the coefficient in this thesis is larger than Acemoglu and Restrepo (2020), is that their

analysis is based on sample period of 1990-2007. It is uncovered that after the financial crisis in 2008-2009, the rate of techno-
logical replacement is accelerating (Sachs and Kotlikoff, 2012; Sachs et al., 2015; Brynjolfsson and Mitchell, 2017).

12As suggested in Chapter 4, the development of automation technologies in UK is lower than average value of automation
adoptions in Europe, therefore, the results of displacement effects for UK are slightly lower than those for European Union.

22



of robotic stocks per thousand workers could lower job creation rate by 1.35 percentage

points. The effects of ICT and automation trade volumes are similarly and significantly

negative. The growing income level could mitigate job losses by 0.15 percentage points

in net job creation rate.

Regarding the fourth result, further studies reveal that such technical changes are biased

against low skilled workers, and are more pronounced for manufacturing sectors. From

US evidence, automation technologies represented by robotic adoptions and ICT trade

volumes, are negatively associated with low skilled employment for workers without high

school degrees, and bring welfare improvements for high skilled workers with tertiary

and university education. And new occupations are mainly created for high skilled work-

ers. Heterogeneous analysis based on cross country evidence also confirms this finding,

indicating that the negative employment effects from automation adoptions are more pro-

nounced in OECD countries, characterised by a concentration of manufacturing activities.

Similarly, from individual level analysis based on UK context, the impacts of automation

technologies on labour supply are solely observable among college educated workers,

which is consistent with theory of SBTC (Skill Biased Technical Change). Considering

the contribution of manufacturing industry to GDP growth, such technical changes are

more pronounced within London.

1.6 Thesis Structure

The remainder of the paper is as follows.

Chapter 2 provides US evidence. Following descriptions of data sources and stylised

facts, I develop empirical models and econometric specifications, present preliminary re-

sults based on US state level data, along with baseline regression results in US commuting

zones. This chapter also explains potential identification challenges, and employs shift

share IV approach to address these identification concerns. Besides, US evidence using

23



both robotic adoptions and alternative measures of automation technologies will be pro-

vided. In the last section, I investigate the mechanisms through net job creations, driven

by differentials in job creations and job destructions.

Chapter 3 provides cross country evidence. Utilising different data sources, this chapter

presents stylised facts, alongside regression results for all sample countries. Employing

shift share IV approach, I construct different instrumental variables, and present IV esti-

mates across countries. In addition, this chapter examines heterogeneous effects across

OECD countries and non-OECD countries, highlighting the importance of manufacturing

sectors.

Chapter 4 provides individual level evidence. Based on UK context, this chapter extends

US and cross country analysis to worker level analysis, and conducts regressions using

static and dynamic panel data models. To address endogeneity concerns arising from un-

observed intrinsic abilities, I employ advanced econometric techniques such as Arellano-

Bond estimation method, and present IV estimates across UK workers. Moreover, hetero-

geneous analysis based on workers with varying educational backgrounds and those with

different living regions are also performed, confirming that such technical changes are

biased towards high skilled workers, and are more prominent in manufacturing sectors.

Chapter 5 concludes, and points out limitations and potential future extensions, along

with policy implications.
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Chapter 2

US Evidence

This chapter provides econometric analysis based on US context. Informed by the concep-

tual framework outlined in Chapter 1, the research question of this chapter is to explore the

impacts of automation technologies on employment rate, and to investigate mechanisms

behind heterogeneous effects across regions from different income groups.

2.1 Introduction

This section presents introduces the US analysis, with a focus on the motivation, hypoth-

esis, and contribution of this chapter.

2.1.1 Motivation

The reasons for choosing the US to perform empirical analysis are as follows.

Firstly, as discussed in Chapter 1, understanding the impacts of automation technologies

on labour market outcomes at all levels of analysis, including individual workers, skill

groups, metropolitan areas, and countries, is important. It is also necessary to investigate

mechanisms behind such technological unemployment in US, one of the leading global

economies in technological advancements. Accordingly, this chapter offers an analysis
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across US metropolitan areas, and focuses on state level data and commuting zone level

data.

Figure 2.1: Robot Adoption in US and European Countries, 1993-2019

Notes:
The data about operational stocks of robots are based on International Federation of Robotics (2021). Robot density
refers to refers to operational stock of robots per 10000 labour force. Labour force comprises people ages above 15
who supply labour for the production of goods and services during a specified period (United Nations, 2020), and the
data is from World Bank (2021).

Secondly, the United States is the most advanced economy all over the world.1 As Fig-

ure 2.1 shows, robotics technology the US and Western European countries progressed

significantly throughout the 1990s and 2000s. Among these countries, US and Germany

have relatively higher robotic densities, measured by robotic stocks per thousand workers,

reflecting their leading role in global automation techniques. In addition, people can get

access to high quality data across all US regions with no missing values, making it possi-
1According to World Bank (2021), the US GDP per capita in 2019, measured in current US dollars, is approximately $65548,

and the United States is the most advanced economy. To avoid the influence of COVID 19 on economic growth, here I use the
data in 2019.
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ble to investigate regional variations of technological unemployment2. Therefore, further

analysis in the US is interesting, and it proves valuable in understanding the mechanisms

in high income regions.

Thirdly, previous studies about automation technologies such as Acemoglu and Restrepo

(2020, 2021, 2022); Autor and Dorn (2013) primarily focused on US evidence. This

chapter offers a more accurate depiction of automation adoptions across US regions from

different income groups. In addition, the availability of unique data on job creations

makes it feasible to investigate the mechanisms. Therefore, empirical analysis based on

US context enables a clear comparison with previous research3.

2.1.2 Hypothesis

The hypotheses are as follows:

Hypothesis 1: Automation technologies tend to have negative impacts on employment

rate across all US regions.

Hypothesis 2: In low and middle income US regions, the magnitudes of negative employ-

ment effects from automation technologies are more substantial. While in high income

regions, automation technologies are likely to have positive or non-negative effects on

employment rate.

Hypothesis 3: The impacts of automation technologies on job destructions are insignifi-

cant across regions. In addition, automation technologies could have significantly nega-

tive impacts on job creation dynamics in all US regions.

Hypothesis 4: In high income US regions, new job creations induced by productivity

effects, could compensate job destructions driven by displacement effects. But in low and
2Details about regional variations of technological unemployment across US regions, will be provided in Section 2.3.
3Detailed information about the contributions to existing literature will be illustrated in Subsection 2.1.3.
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middle income regions, new job creations could not compensate job destructions.

To verify these hypotheses, this thesis leverages comprehensive macro and micro dataset

across US states and commuting zones from 2000 to 2019 in Chapter 2, to explore the

impacts of automation technologies on employment rate and job creations, from the per-

spective of advanced economies.

The next subsection will outline the contributions of this chapter, based on identified gaps

in the literature.

2.1.3 Contribution

This chapter offers three main contributions, including heterogeneous employment effects

from technical changes, regional variation of RBTC (Routine Biased Technical Change),

and mechanism analysis through channel of job creations.

For the first main contribution, this chapter explores the heterogeneous employment ef-

fects across regions from different income groups within a specific country. Previous

studies have employed measures such as TFP (total factor productivity) growth and patent

awards as broad indicators of technological updating across occupations (Autor and Sa-

lomons, 2018; Autor et al., 2020; Bloom et al., 2015). In contrast, this chapter utilises

two complementary indicators, namely robotic density calculated as robotic stocks per

thousand labour force, and ICT intensity measured by ICT trade volumes per thousand

workers. These specifications offer a more accurate depiction of automation adoptions

across US regions, allowing for a clearer distinction between job replacement and pro-

ductivity growth originating from automated and non-automated sectors.

For the second main contribution, this chapter also complements a sizeable recent litera-

ture on RBTC (Routine Biased Technical Change) across regions. Studies exploiting time

series or cross sector variation discovered the phenomenon of job polarisation in West-
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ern economies (Autor and Dorn, 2013; Goos et al., 2014; Graetz and Michaels, 2017),

but found little evidence about regional variations of technological unemployment. For

example, Autor et al. (2003); Autor and Dorn (2013) showed how automation could re-

place labour forces in occupations with high routine intensities, and those occupations are

mainly located in the middle of the skill distribution. Compared with those routine occu-

pations, positive employment and wage effects could be observed in other occupations.

Unlike previous occupational level analysis, this chapter builds upon these prior insights

to show RBTC across regions. Based on data from Autor and Dorn (2013), where the re-

searchers calculated Routine Task Intensity (RTI) index as an algebraic function of man-

ual intensities, routine intensities, and analytical intensities, this chapter points out that

compared with low income regions, job replacement is likely to be more harmful in mid-

dle income regions, where occupations with higher proportion of routine tasks are mainly

concentrated. This finding aligns with the conclusion in Acemoglu and Loebbing (2022)

that the negative employment effects from automation technologies are not dispropor-

tionately harmful to workers in low income regions, as machines have great comparative

advantage in terms of production cost in middle income regions.

For the third main contribution, this chapter sheds light on the fact that net employment

effects are primarily attributable to differentials in productivity effects measured by job

creations, and job destructions, a good proxy of displacement effects, are widespread

across regions. In terms of mechanisms, this chapter complements the work of Acemoglu

and Restrepo (2020, 2022); Bonfiglioli et al. (2021); Dauth et al. (2021), and confirms

that job creations4 typically benefits high skilled workers with advanced education, while

welfare deteriorations from unemployment primarily influence low skilled workers.

In particular, I attempt to complement literature that studies the role of skill shares and

structural changes on net job creation. Prior work by Acemoglu and Restrepo (2021) has
4Here ”job creation” refers to rising job vacancies in incumbent occupations, rather than creation of new occupations or new

tasks, as the latter only applies in the context of artificial intelligence.
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examined the relationship between ageing trends and adoption of automation technolo-

gies, and documented that growing educational attainment could lead to a shortage of

production workers in blue collar jobs. As manufacturing wages rise and participation

rates decline, opportunities for automation become increasingly attractive. This chapter

also contributes to the growing body of research on educational upgrading and automation

adoptions. Rather than focusing on workers with low educational attainment, this chapter

shows that the channel for high skilled labour force could be different. With intensive

growth of highly educated workers, supply effect appears to generate stronger productiv-

ity effects, and act as a main driver of employment growth in advanced economies.

2.2 Data

This section presents data sources in US, consisting labour market outcomes such as em-

ployment rate and demographic characteristics, and automation adoptions. Besides, this

thesis also leverages comprehensive firm level data in US to discover the mechanisms

driving net job creations.

2.2.1 Labour Market Outcomes

To relate automation technologies with employment and job creation across US local

labour markets, I follow Autor et al. (2013); Acemoglu and Restrepo (2020, 2021); Bon-

figlioli et al. (2021), and identify US local labour markets based on the concept of com-

muting zones (CZs), which could be regarded as aggregation of several counties. Intro-

duced by Tolbert and Sizer (1996), 722 commuting zones covering the US continental

territory5 could offer a more accurate representation of strong commuting ties within CZs

and weak commuting ties among them. This sample selection process for robotic pen-
5Usually detailed data from Alaska and Hawaii are not included in the research sample due to low population densities, and

estimation results are similar in directions and magnitudes for all US states. Besides, Washington DC, the US capital, became
the 51st state of US in 2021. In this thesis, I only use 49 states in continental US to conduct the quantitative analysis.
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etration is similar to that of Autor et al. (2013); Acemoglu and Restrepo (2020, 2021);

Bonfiglioli et al. (2021), except that the sample period for this thesis is 2000-2019, ex-

ceeding the duration covered in previous studies.

In the main analysis, I focus on socio-economic outcomes and collect county-level data

about employment rate and other demographic characteristics between 2000 and 2019

from Bureau of Economic Analysis (2021), and aggregate to CZ level6. The employment

rate is measured as the ratio of employed workers to whole population with the age of

15 and above. This age threshold is motivated by definition of working-age labour force

(Acemoglu and Restrepo, 2021). To further investigate the determinants of labour mar-

ket outcomes, I also leverage data on employment ratios categorised by education and

industry groups. Other demographic controls include total population, proportion of age,

gender, race, education, and Census Divisions7.

The detailed descriptions of control variables are as follows: I draw upon data from US

Bureau of Economic Analysis (2021), to calculate the proportion of labour force with

high school education and those who hold university diplomas. This information in-

forms my definition of the share of skilled labour. For comparisons of heterogeneous

effects between middle income regions and low income regions, I use the number of high

school educated workers to measure middle skilled labour force, and describe the distri-

bution of routine tasks performed by middle skilled workers. Meanwhile, the amount of

high skilled workers, who are believed to engage in non-routine tasks or abstract tasks in

high paid jobs, can be proxied by the number of university educated workers. Industry

groups are based on International Federation of Robotics (2021), and all economic activ-

ities are classified into six broad sectors, including manufacturing, agriculture, mining,

utility, construction, and R&D activities. To facilitate a more in-depth industry level anal-
6Because Bureau of Economic Analysis (2021) provides high quality data across counties over the sample period of 2000-

2019, we do not need to take the problem of missing values into accounts.
7Based on geographic locations, the US states are grouped into 4 regions (Northeast, Midwest, South, West) and 9 divisions

(New England Division, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Central, West
South Central, Mountain, Pacific).
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ysis, I add data about several sub-sectors under manufacturing industry, namely textiles,

wood and furniture, paper, pharmaceuticals and cosmetics, other chemical products, rub-

ber and plastic products (non-automotive), glass ceramics stone mineral products (non-

automotive), basic metals, metal products (non-automotive), electrical or electronics, in-

dustrial machinery, automotive, other vehicles, and all other manufacturing branches. De-

mographic data, including the proportion of old workers who are above 65 years old, fe-

male workers, Hispanic workers, are incorporated to account for other determinants of

employment status. For some variables which are only available at US state level, such

as proportion of females, share of old people, and percentage of Hispanic individuals, I

use state level data to proxy variables in each commuting zone. To avoid potential is-

sues of multi-collinearity, education levels are not taken into accounts when analysing the

employment effects of automation technologies across regions with varying skill shares.

Figure 2.2: Income Level Across Countries, 2000-2020

Notes:
The graph presents trends of GNI per capita for countries from different income groups, and advanced economies -
using data from World Bank (2021). The sample economies of OECD countries are obtained from OECD (2020).

For baseline regression, classification of regions into high, middle and low income groups
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is determined by personal income per capita, and is comparable to the income percentile

of OECD countries around the world. Figure 2.2 unpacks the overall trend in GNI per

capita across countries in different income groups, compared with data from the US and

OECD countries. Two main facts emerge from the aggregate trends. First, income growth

in advanced economies are substantially higher than that in developing countries, and the

gaps in growth rate remain relatively constant, thereby suggesting a lack of convergence.

Second, most of the OECD countries are located around the 80 percentile of the overall

income distribution across countries. Hence, I define CZs from high income group as

those which are above 80 percentile of the whole income distribution, and define low

income CZs as the bottom quintile by personal income per capita. The remaining areas

constitute the middle income regions.

Besides arbitrary classification of income groups, in a more general model, I also explore

the impacts of the interaction between automation technologies and income levels, aiming

to identify any gradual shifts in employment effects. This generalised approach serves an

additional purpose: to establish a comparative framework including US evidence, cross

country analysis, and individual context based on UK data, considering the challenges in

directly comparing diverse US commuting zones and different countries8. For mechanism

analysis, I will only focus on generalised version of econometric model.

To support the hypothesis that the heterogeneous impacts of automation technologies on

employment are determined by the channel through net job creations, I construct CZ-

level measures of job destruction rates and job creation rates. These measures are derived

from the Business Dynamics Statistics (US Census Bureau, 2021), and are employed to

compute the evolution of net job creations by mixing data of job destructions and job

creations. For each commuting zone, I observe job destructions, job creations9, number
8In other words, it is unclear whether the state with lowest income per capita in US is comparable to the country with lowest

GNI per capita all over the world or not, therefore, it tends to become less persuasive to generalise US evidence to countries from
low income groups. But using interaction term between automation technologies and income level helps to solve this problem
to some extent, as we only pay attention to employment effects of automation technologies with respect to rising income levels,
regardless of arbitrary classification of income groups.

9Job destruction is defined as number of jobs lost from contracting and closing establishments during the last 12 months;
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of firms and employees, and detailed industry codes.

In addition, recognising the US’s status as an open economy, trade links with other coun-

tries necessitate considerations. Following Bonfiglioli et al. (2021), I utilise trade data

from United Nations (2021), and obtain data about import volumes from China and Mex-

ico, as well as export volumes to Germany, Japan, and Korea. This inclusion aims to

account for macroeconomic effects arising from international trade.

2.2.2 Automation Technologies

To obtain a comprehensive picture of the relationship between automation technologies

and employment, I combine the labour market dataset with several sources of data on au-

tomation technologies, namely robotic usage and ICT intensity, during the sample period

of 2000-2019.

In this research, I employ two complementary measures of automation technologies,

namely robotic density and ICT (Information and Communication Technologies) inten-

sity, based on dataset from International Federation of Robotics (2021), United Nations

(2021) and The Conference Board (2021).

The primary data source on robotic usage is International Federation of Robotics (2021).

It contains counts of operational stocks and installations of robots covering six broad in-

dustrial sectors in 72 countries between 1993 and 2019, based on yearly surveys of global

robot manufacturers10. Those six broad sectors include manufacturing, agriculture, min-

ing, utility, construction and R&D activities. To facilitate a detailed industry level anal-

and job creation is defined as number of jobs created from expanding and opening establishments during the last 12 months. It
is noticed that job creations contain new jobs within existing occupations, and new vacancies for jobs created by AI. To better
disentangle those two components, I also collect data about job creations defined as number of jobs created from expanding and
opening establishments during the last 12 months, to better investigate variations of productivity effects. Regression results are
consistent with baseline estimates.

10According to Dauth et al. (2021), ”Single-purpose machines such as elevators or transportation bands are, by contrast, no
robots in this definition, as they cannot be re-programmed to perform other tasks, require a human operator, or both.” Hence, it
is assumed that robotic adoptions across countries which were documented by International Federation of Robotics (2021) share
no systematic differences, and all of them could replace routine tasks previous performed by production workers.
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ysis, I add data about several sub-sectors under manufacturing industry, namely textiles,

wood and furniture, paper, pharmaceuticals and cosmetics, other chemical products, rub-

ber and plastic products (non-automotive), glass ceramics stone mineral products (non-

automotive), basic metals, metal products (non-automotive), electrical or electronics, in-

dustrial machinery, automotive, other vehicles, and all other manufacturing branches. For

empirical analysis, the main explanatory variable is computed using operational stocks

of robots per thousand labour force. Robustness checks using installations of robots per

thousand labour force are qualitatively similar to the baseline results, suggesting that re-

gression results are insensitive to alternative measures of robotic usage.

Since International Federation of Robotics (IFR) does not report data on industry break-

downs regarding robot stocks until 2004 (Acemoglu and Restrepo, 2020), unclassified

components are re-allocated to each industry based on the proportion of robotic stocks.

The sample selection process regarding robotic penetration is similar to that of Acemoglu

and Restrepo (2020), except that the sample period for this thesis is 2000-2019, extending

beyond that of previous studies.

The second measure of automation technologies, namely ICT intensity, is motivated

by Acemoglu and Restrepo (2021); Graetz and Michaels (2017, 2018); Michaels et al.

(2014); Kim et al. (2021). These studies highlight the substitutability between ICT and

low skilled workers. Bearing this motivation in mind, I complement the IFR data with

US ICT import and export obtained from bilateral trade statistics of Comtrade database

(United Nations, 2021). Trade volumes of re-export are subtracted from final calculations.

To ensure the robustness of the findings, results based on overall import and export of au-

tomation technologies, as well as net export of ICT products and automation technologies

are also presented. Regression results do not exhibit significant differences when only

considering bilateral trade with China and Mexico.

Since IFR data on operational stocks of robots, and Comtrade data on trade volumes
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are only available at the country-by-industry level, this study adopts a shift-share design,

following Acemoglu and Restrepo (2020); Bonfiglioli et al. (2021); Dauth et al. (2021).

This approach allocates industry level robotic adoptions and ICT trade volumes to each

CZ based on their initial employment ratios (adjusted for overall expansions of each in-

dustry).

In certain analysis, the adoption of automation technologies is instrumented utilising Bar-

tik IV based on average robotic density in eight European countries with similar industrial

compositions and trade structures. Following Acemoglu and Restrepo (2020); Benm-

elech and Zator (2022); Bonfiglioli et al. (2021), eight European countries are comprised

of: Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland. Robustness

checks utilising alternative country combinations are also presented11.

2.3 Stylised Facts

Now I present a number of facts regarding technological changes and labour market out-

comes across US commuting zones throughout the study period.

When analysing regional variations of technological unemployment across commuting

zones, it is essential to account for measurement errors by time trend. This is because

the linear progression of both automation technologies and employment rate may lead to

pseudo correlations. Therefore, this study offers evidence about the relationship between

residuals of robotic densities, ICT usage, and employment rate, after controlling for macro

shocks and geographic specific factors, over the period of analysis. The main measure of

employment is obtained by first regressing employment on year dummies, region dum-

mies, and the interaction terms between time fixed effects and geographic fixed effects.
11Other country combinations contain various specifications, such as data from all European countries; or data from Denmark,

Finland, France, Italy, Sweden; or data from Denmark, Finland, France, Italy, Sweden, Germany, as Germany is know to have
great comparative advantage in manufacturing; or data from Spain, Finland, France, Italy, Norway, Sweden, UK; or data from
Denmark, Netherlands, Italy, Sweden, UK; or data from Austria, Denmark, Finland, France, Germany, Italy, Netherlands, Spain,
Sweden, Switzerland, UK.
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The residual outcome variables are then normalised to a scale of 0 to 100. The measure of

robotic adoptions is obtained through a similar process, first regressing robotic densities

on year dummies, region dummies, and the interaction terms between time fixed effects

and geographic fixed effects, then normalising residual outcome variables between 0 and

100. The measure of ICT usage is calculated similarly, utilising ICT exports as the base

variable.

Figure 2.3 turns to unpack the association for areas across different income groups, and

reflect different employment responses after technological shocks. For high income com-

muting zones, the relationship between robotic density and employment rate after ac-

counting for macro shocks is significantly positive. However, the magnitudes of the slope

between variations of ICT intensity and employment rate are slightly lower, suggesting

a somewhat weaker complementarity between ICT investments and labour inputs. This

indicates that expanding automation adoption might, to a certain degree, complement hu-

man labours, and does not necessarily lead to employment reductions.

In contrast, for regions from low and middle income groups exhibited in Panels B and D

of Figure 2.3, employment dynamics demonstrate a negative correlation with automation

technologies, with statistically significant coefficients. These findings align with the hy-

pothesis that job destructions have outweighed job creations in low and middle income

countries.
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2.4 Regression Model

In the panel data regression analysis, the main specification relating changes in automa-

tion technologies and dynamics of employment rate is constructed as below:

∆Employmentit = β0 + β1∆AutomationExposureit + δXi + αi + αt + εit (2.1)

Following Acemoglu and Restrepo (2020); Bonfiglioli et al. (2021); Dauth et al. (2021),

this analysis estimates Equation 2.1 by stacking five-year equivalent first differences

across four time periods12: 2000-2005, 2005-2010, 2010-2015, and 2015-2019. Here,

∆Employmentit is the changes in employment rate for CZ i over period t, measured by

the changes in ratio of employment to working age population. ∆AutomationExposureit

is some proxies of CZ-level exposure to automation technologies, as defined in Equation

2.2. Several specifications include CZ level control variables Xi, which are geographic

fixed effects represented by region dummies and Census Divisions, along with demo-

graphic characteristics such as total population, and the proportion of age, gender, race,

education. The parameter δ are K × 1 vectors, where K is the number of time-varying

variables capturing demographic characteristics displayed above. αi refers to CZ level ge-

ographic FE, and αt measured by year FE captures macro shocks such as business cycles.

Finally, εit is a heteroscedastic error term.

The detailed descriptions of the expected signs of control variables are as follows: I utilise

data on the proportion of labour force with high school education and those holding uni-

versity diplomas from US Bureau of Economic Analysis (2021), to define the share of

skilled labour. According to the theory of SBTC (Skill Biased Technical Change) (Au-
12One concern which may lead to measurement errors is that the length of period 2015-2019 is different from others. Hence I

also conduct sensitivity checks to display results containing different combination of time periods.
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tor et al., 2003; Autor and Dorn, 2013), a positive correlation is expected between the

estimated coefficients for proportion of high skilled workers and employment rate. In-

dustry groups are based on International Federation of Robotics (2021), and all economic

activities are classified into six broad sectors, including manufacturing, agriculture, min-

ing, utility, construction, and R&D activities. Demographic structure variables, including

the proportion of old workers who are above 65 years old, female workers, and His-

panic workers, control for other determinants of employment status. Since previous ev-

idence such as Keane and Rogerson (2015) indicated lower labour force participation

rates among female, Hispanic, and old individuals, negative correlations are expected for

these variables. Moreover, as regions exposed to import competitions from developing

countries are likely to experience decreasing employment rate (Autor et al., 2013), the es-

timated signs for variables of imports from China and Mexico are expected to be negative.

All the estimates reported in this article, unless noted otherwise, are weighted by the

amount of total labour force in 2000, the initial year covered in the sample data, to avoid

endogenous changes in employment13.

The parameter of primary interest is β1, which captures the link between dynamics of

automation technologies and employment rate. According to the hypothesis at Section

1.3 of Chapter 1, the correlation between automation technologies and employment rate

is expected to be negative in low and middle income regions, and positive or insignificant

in high income regions. In other words, β1 is predicted to be significantly negative for

low and middle income CZs, and significantly positive or at least insignificant for CZs in

high income group. Overall, the development of automation technologies corresponds to

declining employment to population ratio across US regions, with slightly lower magni-

tudes, as suggested in Figures 3.2 and 2.3.
13One of the endogenous factors is population growth, as the overall population could affect employment rate, and automation

exposure can also be influenced by population.
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2.4.1 Key Variable Construction

The main analysis centres on socio-economic outcomes. I collect county-level data about

employment rate and other demographic characteristics for the period 2000-2019 from

Bureau of Economic Analysis (2021), and aggregate to CZ level14. Employment rate

is measured as the ratio of employed workers to whole population with the age of 15

and above. This 15-year-old threshold is motivated by definition of working-age labour

force (Acemoglu and Restrepo, 2021). To further investigate the determinants of labour

market outcomes, I also leverage data on employment ratio by education and industry

groups. Other demographic controls include total population, proportion of age, gender,

race, education, and Census Divisions15.

This research utilises two complementary measures of automation technologies, namely

robotic density and ICT (Information and Communication Technologies) intensity, based

on dataset from International Federation of Robotics (2021), United Nations (2021) and

The Conference Board (2021).

Since IFR data on operational stocks of robots, and Comtrade data on trade volumes

are only available at the country-by-industry level, this research follows the approach of

Acemoglu and Restrepo (2020); Bonfiglioli et al. (2021); Dauth et al. (2021), by utilising

a shift share design. This approach allocates industry level robotic adoptions and ICT

trade volumes to each CZ based on their initial employment ratios (adjusted for overall

expansions of each industry). Exposure to automation is then constructed as follows.

∆AutomationExposureit = ΣJ
j

∆AutomationUS
jt

LabourUS
jt

× Employedit0
Employedt0

(2.2)

14Because Bureau of Economic Analysis (2021) provides high quality data across counties over the sample period of 2000-
2019, we do not need to take the problem of missing values into accounts.

15Based on geographic locations, the US states are grouped into 4 regions (Northeast, Midwest, South, West) and 9 divisions
(New England Division, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Central, West
South Central, Mountain, Pacific).
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The numerator of the term ∆AutomationUS
jt

LabourUS
jt

is five year equivalent changes in robotic den-

sity and ICT trade volume for US industry j over period t, and the denominator of the

term ∆AutomationUS
jt

LabourUS
jt

is five year equivalent changes in total working labour force for US

industry j over period t. The second term Employedit0
Employedt0

is share of industrial employment of

commuting zone i at year t016.

In some of the specifications, I instrument the adoption of automation technologies using

Bartik IV based on average robotic density in eight European countries with similar indus-

trial compositions and trade structures. Following Acemoglu and Restrepo (2020); Benm-

elech and Zator (2022); Bonfiglioli et al. (2021), eight European countries are comprised

of: Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland. Robustness

checks utilising alternative country combinations are also provided17. The instrument is

computed as follows:

∆AutomationIVit =
1

8
× ΣK

k Σ
J
j

∆Automationkjt
Labourkjt

×
EmployedUS

it0

EmployedUS
t0

(2.3)

Similarly, the numerator of the term ∆Automationk
jt

Labourkjt
is five year equivalent changes in robotic

density and ICT trade volume for industry j in European country k over period t, and

the denominator of the term ∆Automationk
jt

Labourkjt
is five year equivalent changes in total working

labour force for industry j in European country k over period t. Then I allocate summation

of predicted robotic usage in the sample European countries based on Employedit0
EmployedUS

t0

, which

is the share of industrial employment in CZ i at year t0. The identification of initial

sample year of IV is consistent with that of exposure to automation technologies defined

in Equation 2.2.
16t0 refers to initial year of shift share analysis. For US evidence, I perform this shift share allocation based on employment

ratio in year 2000. While for cross country analysis, the ”initial” year becomes 2019, so as to avoid problems of missing data.
17Other country combinations contain various specifications, such as data from all European countries; or data from Denmark,

Finland, France, Italy, Sweden; or data from Denmark, Finland, France, Italy, Sweden, Germany, as Germany is know to have
great comparative advantage in manufacturing; or data from Spain, Finland, France, Italy, Norway, Sweden, UK; or data from
Denmark, Netherlands, Italy, Sweden, UK; or data from Austria, Denmark, Finland, France, Germany, Italy, Netherlands, Spain,
Sweden, Switzerland, UK.
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To support the hypothesis that the heterogeneous impacts of automation technologies on

employment are driven by net job creations, this study constructs CZ-level measures

of job destruction rates and job creation rates, based on Business Dynamics Statistics

(US Census Bureau, 2021), and then calculate evolution of net job creations by mixing

data of job destructions and job creations. For each commuting zone, I observe job de-

structions, job creations18, number of firms and employees, and detailed industry codes.

The change of net job creation rate for CZ i over period t is then computed as follows:

∆Net JobCreationRateit =
∆JobCreationit −∆JobDestructionit

N(Employees)it
(2.4)

where N(Employees)it is number of employees for a given firm, aggregated to CZ i at

year t. Robustness checks based on number of establishments are insensitive to baseline

results.

2.4.2 Summary Statistics

This subsection provides summary statistics about variables, which will be exhibited in

the following regression model.

Figure 2.1 reports summary statistics on the main variables used in the regressions. All

results are calculated across commuting zones and periods of analysis. The first two rows

show an increase in automation adoption in our sample between 2000 and 2019. On aver-

age, the employment rate increased by 1% for every period, and the variation is similar to

the findings of Bonfiglioli et al. (2021). Table 2.1 also confirms an increase of automation

adoptions, with a rise of robotic penetration by 17%, and positive average number of ICT
18Job destruction is defined as number of jobs lost from contracting and closing establishments during the last 12 months;

and job creation is defined as number of jobs created from expanding and opening establishments during the last 12 months. It
is noticed that job creations contain new jobs within existing occupations, and new vacancies for jobs created by AI. To better
disentangle those two components, I also collect data about job creations defined as number of jobs created from expanding and
opening establishments during the last 12 months, to better investigate variations of productivity effects. Regression results are
consistent with baseline estimates.
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Table 2.1: Summary Statistics for US Evidence, 2000-2019

Variable Mean Std.Dev. Min Max Obs
Employment 0.010 0.039 -0.328 0.469 2888
Robot 0.170 0.074 0.052 1.736 2888
ICT Import 0.229 0.464 -0.674 7.321 2888
ICT Export 0.104 0.156 -0.192 2.527 2888
ICT Net -0.126 0.316 -4.793 0.482 2888
Auto Import 0.560 1.179 -3.041 17.757 2888
Auto Export 0.298 0.535 -1.193 8.336 2888
Auto Net -0.262 0.728 -9.421 3.106 2888
Population 417.720 1.140 0.911 18700 2888
High School 0.871 0.036 0.795 0.945 2888
Bachelor 0.274 0.048 0.164 0.450 2888
Old 0.223 0.055 0.058 0.456 2888
Female 0.502 0.015 0.325 0.542 2888
Hispanic 0.099 0.146 0.002 0.957 2888
Import 0.160 0.228 0.001 1.422 2888

Notes:
Statistics for variables in changes are computed across 722 commuting zones for four time periods, namely 2000-2005,
2005-2010, 2010-2015, 2015-2019, and those variables include changes in employment rate (Employment), robotic
density (Robot), ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net), automation import
(Auto Import), automation export (Auto Export), and automation net export (Auto Net). Other control variables in
levels include total population in thousands (Population), proportion of people who achieved high school degree (High
School) and bachelor’s degree (Bachelor), percentage of old people (Old), female people (Female), Hispanic people
(Hispanic), import volumes from China and Mexico (Import). And they are computed across 722 commuting zones
and four years: 2000, 2005, 2010, 2015.

import, ICT export, automation import, and automation export. Combined with stylised

facts displayed in Section 2.3, Table 2.1 demonstrates that automation technologies can

account for employment dynamics. The regression analysis in the following sections con-

firms these patterns and establishes their robustness.

For other control variables, there are also variations across commuting zones and time

periods, as suggested by the standard deviations reported in the table.

2.4.3 Preliminary Results

This subsection presents the preliminary results of the estimation based on Equation 2.1,

using state level data spanning US continental territory19. One issue requiring attention is
19Outcomes including Alaska and Hawaii over the sample period of 2000-2019 are consistent with baseline results.
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that, in contrast to commuting zones, the classification of these administrative state areas

depends on historical origins instead of worker flows and business activities. Therefore,

it ignores commuting ties within detailed geographical units in states.

Table 2.2 presents results for changes in robotic density. Columns 1-4 are regressions of

the full sample. Column 1 provides the most parsimonious specification, only including

year dummies to account for macro shocks. Column 2 adds baseline demographics Xi.

Column 3 also considers geographic dummies as covariates for regional specific charac-

teristics. Column 4 additionally controls the interactions between state FE and year FE,

to account for time varying policy changes across states. Columns 5-6 present heteroge-

neous effects in regions across different income groups. Due to limited data availability,

I take both middle income regions and low income regions together into accounts. I de-

fine states from high income group as those above 80 percentile of the whole income

distribution by personal income per capita, and define low income states as the rest. Base-

line results in Section 2.5 will extend to generalised versions, and disentangle the effects

from middle income regions and low income regions. Corresponding results for all other

measures of automation technologies, namely changes in ICT trade volumes (ICT import,

ICT export, and ICT net export), as well as automation trade volumes (automation import,

automation export, and automation net export), appear in Table 1 of Appendix.

Across all columns of Table 2.2, robotic adoption exhibits a negative correlation with

employment responses. All estimates are statistically significant and sizeable. For the

preferred specification in Column 4, the estimated coefficient in robotic density is -0.805,

indicating that one additional robot per thousand workers tends to reduce employment

rate by 0.81 percentage points. These findings imply that robots are likely to be associated

with employment reductions across US states.

In response to extensive adoption of automation technologies, Column 5 shows that em-

ployment rate experienced a significant increase in high income states. In these states, one
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Table 2.2: Preliminary Results for US State-Level Employment and Robotic Adoption, 2000-2019

High Low
Total Income Income

CZs CZs

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Employment Rate
Robot -0.694∗∗∗ -0.673∗∗∗ -0.673∗∗∗ -0.805∗∗∗ 0.710∗∗∗ -1.630∗∗∗

(0.068) (0.056) (0.056) (0.072) (0.141) (0.311)
Population 0.110∗∗∗ 0.110∗∗∗ 0.120∗∗∗ -0.138 0.031

(0.018) (0.018) (0.025) (0.343) (0.065)
Female -0.212∗∗∗ -0.212∗∗∗ -0.235∗∗∗ 0.252 -0.062

(0.034) (0.034) (0.049) (0.651) (0.125)
Hispanic -0.012∗∗∗ -0.012∗∗∗ -0.009∗∗ 0.006 -0.008

(0.003) (0.003) (0.003) (0.025) (0.006)
Old 0.039∗∗∗ 0.039∗∗∗ 0.043∗∗∗ 0.089 0.064∗

(0.013) (0.013) (0.012) (0.052) (0.033)
Bachelor 1.626∗∗∗ 1.626∗∗∗ 1.833∗∗∗ 0.459 1.626∗∗∗

(0.500) (0.500) (0.362) (0.591) (0.552)
Import 0.133∗∗ 0.133∗∗ 0.261∗∗∗ 0.103 0.284∗∗∗

(0.051) (0.051) (0.056) (0.164) (0.070)

R2 0.919 0.934 0.934 0.963 0.993 0.958
Year FE

√ √ √ √ √ √

Geographic×Year FE
√ √ √ √

N of CZs 48 48 48 48 10 38
N of Obs 960 960 960 960 200 760

Notes:
The table presents preliminary results about within group estimates of the effects of exposure of robotic penetration
on employment rate, based on US state level data. Explanatory variables are changes in robotic density. Other
demographics include total population (Population), proportion of old people (Old), female people (Female), Hispanic
people (Hispanic) and high skilled workers who achieved bachelor’s degree (Bachelor). Import volume from China
and Mexico (Import) are also controlled. Geographic FE refers to Census Divisions. The regressions are weighted
by total labour force in 2000. The classification of US states from high income group and low income group are
illustrated in Section 2.4.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

robot per thousand labour force could translate to 0.71 percentage increase in employment

rate. The evidence implies that new job creations are complementing employment losses,

thus lowering the probability of welfare deteriorations. Whereas, the estimates from low

income states indicate sizeable and robust negative impacts of robotic density on employ-

ment rate. The data demonstrates that 1000 unit increase in robotic stocks per worker will

lead to a drop of 1.63 percentage points in employment rate for low income states. These

magnitudes suggest that negative employment effects are mainly driven by displacement

forces in low income states.

46



The expected signs of control variables are consistent with Section 2.4. The population is

positively correlated with employment rate. Since previous evidence such as Keane and

Rogerson (2015) revealed that female people, Hispanic people, and old people are less

likely to participate in the workforce, the estimation results exhibit negative correlations

for these demographic variables. The proportion of high skilled workers, measured by

those with bachelor’s degree, shows a positive correlation with employment rate. This

finding can be partly attributed to the theory of SBTC (Skill Biased Technical Change)

(Autor et al., 2003; Autor and Dorn, 2013), which will be explored further in Section

2.6. Different from Autor et al. (2013), the estimation results for imports from China and

Mexico indicate a positive correlation between import competition and employment rate.

This difference may arise because state level analysis cannot fully reflect the relationship

between trade shocks and employment dynamics.

Corresponding results for all other measures of automation technologies, namely changes

in ICT trade volumes (ICT import, ICT export, and ICT net export), as well as automation

trade volumes (automation import, automation export, and automation net export), are

exhibited in Table 1 of Appendix. They are all consistent with estimation results regarding

robotic penetrations.

Drawing on the findings concerning ICT import volumes, Panel A of Table 1 demonstrates

a negative correlation between ICT import volumes and employment responses across all

columns. All estimates are statistically significant and sizeable. For the preferred speci-

fication in Column 4, the estimated coefficient in ICT import volume is -0.162, implying

that one thousand more dollars of ICT import per thousand workers tends to reduce em-

ployment rate by 0.16 percentage points. These findings suggest that other automation

technologies are also associated with employment declines across US states.

Column 5 illustrates that, in widespread automation technology adoption, high-income

states experienced a significant increase in employment rates. Specifically, $1000 ICT
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import per thousand labour force could translate to 0.22 percentage increase in employ-

ment rate. The evidence implies that new job creations are complementing employment

losses, thus lowering the probability of welfare deteriorations. The estimates from low

income states indicate sizeable and robust negative impacts of ICT import volumes on

employment rate. The data indicates that $1000 dollars increase in ICT import volumes

per worker will lead to a drop of 0.44 percentage points in employment rate for low in-

come states. These significant estimates suggest that displacement forces in low income

states are the primary drivers of negative employment effects.

In summary, automation technologies measured by robotic densities and alternative mea-

sures of automation such as ICT trade volumes (ICT import, ICT export, and ICT net

export), as well as automation trade volumes (automation import, automation export, and

automation net export), are negatively correlated the employment rate across US states.

In addition, the heterogeneous employment effects across areas from different income

groups are consistent with the hypotheses outlined in Chapter 1. However, these prelimi-

nary findings rely on US state level data, which failed in taking commuting ties and labour

force flows within administrative areas into account, and may be restricted by insufficient

data sample size. In addition, when using ICT trade volumes and automation trade vol-

umes as alternative measures of automation technologies, it is hard to disentangle the

impact of automation technologies from the import competitions of China and Mexico.

Therefore, the following section will conduct baseline regressions across US commuting

zones, and discuss identification issues.

2.5 Empirical Results in US

In this section, I establish the first empirical implication, and present econometric results

about heterogeneous effects of automation technologies on employment rate, across US

commuting zones from different income groups. Then I describe identification issues and
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IV approach, along with results from alternative automation technologies. Building on

this evidence, the following section will assess the critical role of net job creations as it

relates to displacement effects and productivity effects.

2.5.1 Baseline Results

This subsection presents results for robotic density, based on the estimation of Equation

2.1 in Section 2.4 using commuting zone level data spanning US continental territory. I

prefer to use within group estimation method, based on panel data model considering fixed

effects, as Durbin-Wu-Hausman test shows that within-group estimator is more efficient20.

Over the sample period of 2000-2019, Table 2.3 displays regression results based on panel

data structure using stacked difference model with fixed effects. Columns 1-4 are regres-

sions of full sample. Column 1 provides the most parsimonious specification, only includ-

ing year dummies to account for macro shocks. Column 2 adds baseline demographics

Xi. Column 3 also considers geographic dummies as covariates for regional specific char-

acteristics. Column 4 additionally controls the interactions between state FE and year FE,

to account for time varying policy changes across states. Heterogeneous effects in regions

across different income groups are presented in Columns 5-7.

Across all columns of Table 2.3, a negative correlation is observed between robotic adop-

tion and employment responses. All estimates are statistically significant and sizeable, ir-

respective of various combinations of control variables. For the preferred specification in

Column 4, the estimated coefficient in robotic density is -0.673. This suggests that one ad-

ditional robot per thousand workers tends to reduce employment rate by 0.67 percentage

points. This coefficient aligns with estimations of employment reductions about 0.45%
20Assuming within-group estimator is consistent, and GLS estimator is inconsistent but efficient, χ2(15) = 27.22, with p-

value of less than 0.00. So, we can reject the null hypothesis that both of them are consistent, implying that explanatory variables
can be regarded as correlated with unobserved heterogeneities. In order to obtain unbiased estimates, it would be better to use
within group estimator based on fixed effects model.
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Table 2.3: Regression of Employment Rate on Robotic Penetration for US, 2000-2019

High Middle Low
Total Income Income Income

CZs CZs CZs

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: ∆ Employment Rate
Robotic Penetration -0.522∗∗∗ -0.224∗∗ -0.205∗∗ -0.673∗∗∗ -0.036 -1.369∗∗∗ -0.869∗∗∗

(0.117) (0.096) (0.096) (0.208) (0.216) (0.153) (0.216)
Population 0.011∗∗ 0.012∗∗∗ 0.042∗∗∗ 0.065∗∗∗ 0.034∗∗∗ 0.179∗∗∗

(0.005) (0.004) (0.009) (0.008) (0.011) (0.050)
High School 0.121 0.125 7.627∗∗∗ 3.045∗∗ 7.799∗∗∗ 8.185

(0.119) (0.132) (2.549) (1.407) (1.876) (5.035)
Bachelor 0.055 0.072 2.914 5.052∗∗ 2.062∗∗∗ 5.441∗∗

(0.061) (0.058) (2.418) (2.452) (0.517) (2.285)
Old -0.193 -0.195 -0.310∗ -0.114 -0.286 -0.083

(0.145) (0.145) (0.163) (0.209) (0.219) (0.193)
Female -3.106∗∗∗ -3.069∗∗∗ -1.915∗∗∗ -1.470∗ -1.609∗∗∗ -0.338

(0.467) (0.466) (0.430) (0.745) (0.549) (0.509)
Hispanic -0.031 -0.044 0.334∗∗∗ 0.477∗∗∗ 0.296∗∗ 0.345∗

(0.100) (0.105) (0.093) (0.133) (0.139) (0.197)
Import -0.010 -0.018 -0.019 -0.033 -0.024 -0.387

(0.007) (0.014) (0.052) (0.063) (0.090) (0.305)

Year FE
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √

State × Year FE
√ √ √ √

R2 0.583 0.635 0.635 0.770 0.817 0.796 0.640

N of Commuting Zones 722 722 722 722 143 424 155

N of Observations 2890 2888 2888 2888 572 1696 620
Notes:
The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory
variable is changes in robotic density. Other control variables include total population (Population), proportion of
old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people
who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China
and Mexico (Import). Geographic FE refers to Census Divisions. The regressions are weighted by total labour force
in 2000. The classification of US states from high income group, middle income group, and low income group are
illustrated in Section 2.2.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

by Acemoglu and Restrepo (2020)21. and 0.16% decline by Bonfiglioli et al. (2021).

These findings support the evidence presented in Section 2.3, indicating that displace-
21The reason why the magnitudes of the coefficient in this thesis is larger than Acemoglu and Restrepo (2020), is because

their analysis is based on sample period of 1990-2007. It is uncovered that after the financial crisis in 2008-2009, the rate
of technological replacement is accelerating (Sachs and Kotlikoff, 2012; Sachs et al., 2015; Brynjolfsson and Mitchell, 2017).
(Because previous articles were published before, the data in those articles is only available before year of publication, and I can
also get access to the data after the publication year. That is why the sample period in my thesis is longer.)
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ment effects may outweigh productivity effects when considering all CZs. Because the

amounts of less developed CZs are substantially larger than those of high income areas,

new vacancies induced by rising high skilled labour demand in non-automated sectors in

advanced economies, cannot absorb displaced workers and new entrants across US CZs.

Columns 5-7 turn to results across different income groups. Following widespread adop-

tion of automation technologies, my findings indicate that employment rate in high in-

come CZs remained largely stable, implying that new job creations are complementing

employment losses, thus lowering the probability of welfare deteriorations. However, the

estimates from middle and low income CZs indicate sizeable and robust negative impacts

of robotic density on employment rate. Specifically, a 1000 unit increase in robotic stocks

per worker will lead to a drop of 1.37 percentage points in employment rate for middle

income CZs, and that in low income counterparts could generate a displacement effect

of 0.87 percentage points. The substantial magnitudes suggest that negative employment

effects are mainly driven by displacement forces in low and middle income CZs.

The control variables align with the expectations. The population is positively correlated

with employment rate. Since previous evidence such as Keane and Rogerson (2015) re-

vealed that female people, Hispanic people, and old people are less likely to be employed,

the estimation results show negative correlations for these variables. The estimation re-

sults for the proportion of high skilled workers, measured by those with bachelor’s degree,

are positively correlated with employment rate. This finding can be partly attributed to

the theory of SBTC (Skill Biased Technical Change) (Autor et al., 2003), which will be

explored further in Section 2.6. Different from Autor et al. (2013), the estimation re-

sults for imports from China and Mexico did not demonstrate a significant correlation

between import competition and employment rate, though the negative coefficients for

import competition reveal negative employment effects.

To ensure the robustness of the baseline results, several sensitivity checks were conducted.
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Firstly, as noted in Section 1.3, the productivity effects could arise both from automated

and non-automated sectors. To isolate the effects of automation from gross economic

growth, Table 2.4 exhibits results using adjusted penetration to robots, taking gross eco-

nomic expansion across all sectors into considerations. Following Acemoglu and Re-

strepo (2020), the amount of adjusted penetration of robots is computed as

∆AutomationExposureit =ΣJ
j (
∆Automationjt

Labourjt
− ηjt ×

Automationjt
Labourjt

)

× Employedit0
Employedt0

(2.5)

The term ∆Automationjt

Labourjt
is five year equivalent changes in robotic density and ICT trade

volume for US industry j over period t, and Employedit0
Employedt0

is share of employment of CZ i at

year 2000. ηit measures growth rate of overall value added22 in industry j over period t,

accounting for gross economic expansions.

Table 2.4: Regression of Employment Rate on Adjusted Robotic Penetration for US, 2000-2019

(1) (2) (3) (4)

Dependent Variable: ∆ Employment Rate
Adjusted Robotic Penetration -0.247∗∗∗ -0.212∗∗∗ -0.211∗∗∗ -0.195∗∗∗

(0.018) (0.018) (0.019) (0.017)

Year FE
√ √ √ √

Demographics
√ √ √

Geographic FE
√ √

State × Year FE
√

R2 0.689 0.689 0.691 0.758
N of Commuting Zones 722 722 722 722
N of Observations 2890 2888 2888 2888

Notes:
The table presents within group estimates of the effects of adjusted robotic penetration on employment rate. Ex-
planatory variable is changes in robotic density calculated as Equation 2.5. Other demographic controls which are
not displayed here, include total population (Population), proportion of old people (Old), female workers (Female),
Hispanic people (Hispanic), high skilled workers measured by people who received high school degree (High School)
and bachelor’s degree (Bachelor), and import volumes from China and Mexico (Import) are also controlled. Geo-
graphic FE refers to Census Divisions. The regressions are weighted by total labour force in 2000.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

22For simplicity, here I only present the outcomes where overall value added is measured using GDP constant dollars. Results
based on other calculations provides qualitatively same outcomes.
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In Table 2.4, I conduct panel data regressions using adjusted robotic penetration over the

sample period of 2000-2019. Columns 1-4 suggest significantly negative employment

effects from adjusted robotic exposure, irrespective of various combinations of control

variables. For the preferred specification in Column 4, one additional robot per thousand

labour force raises employment rate by 0.23%. The observed decrease in the magnitude of

the coefficients is expected, considering that the majority of job displacement variations

occur in sectors susceptible to automation technologies. The qualitative and quantitative

results are remarkably similar.

Secondly, the duration of period 2015-2019 is different from others. To accommodate

heterogeneous impacts of automation technologies across different stages of economic

development, Table 2 in the Appendix displays results containing different combination

of time periods. Column 1 shows higher job reductions at the initial period of robotic

adoptions, as 1000 unit increase in robotic stocks per worker will lead to a drop of 1.33

percentage points in employment rate. The long-term horizons suggest slightly lower

magnitudes. According to the preferred specification in Column 3, the estimated coeffi-

cient in robotic density is -0.861, implying that one additional robot per thousand workers

tends to reduce employment rate by 0.86 percentage points. The slightly lower magni-

tudes are also consistent with the previous interpretation that most of the variations of

job replacement were driven by productivity effects in automated sectors. Columns 4-6

repeat the specification by using adjusted robotic penetration as independent variable, and

again I find similar and significantly negative employment effects.

The employment effects observed in middle income regions are of significant interest23,

and evaluating this difference allows for understanding the mechanisms underpinning the

geographical disparities of technological job losses. To address this concern, I present

the proportion of routine occupations across US commuting zones from different income
23The t statistics of the difference in coefficients of robotic penetration between middle income CZs (-1.369) and low income

CZs (-0.869) in Table 2.3 is 1.889, with p value less than 0.000, implying that the employment reductions induced by robotic
adoptions in middle income regions are significantly larger than those in low income regions, under the confidence level of 0.000.

53



Figure 2.4: Routine Occupations Across Income Levels in 2000

Notes:
The proportion of routine occupations is from Autor and Dorn (2013), and income level measured by personal income
per capita are from Bureau of Economic Analysis (2021). The classification of regions from high income group,
middle income group, low income group is based on Figure 2.2.

groups in Figure 2.4. Based on data from Autor and Dorn (2013), where the researchers

calculated Routine Task Intensity (RTI) index as an algebraic combination of manual in-

tensities, routine intensities, and analytical intensities, and defined routine occupations as

those whose RTI index are above 66 percentile of skill distribution24, the Figure depicts a

near-linear increase in the share of routine occupations in low and middle income regions,

and a declining trend for high income regions. Overall, Figure 2.4 confirms that the rou-

tine jobs whose tasks can be easily codified by machines are concentrated in regions with

middle income levels, especially at the border of commuting zones from middle income

group and high income group. Consistent with other industry level evidence by Autor

and Dorn (2013); Goos et al. (2014), the clustering of occupations with a higher degree

of routine task intensity in middle-income regions can account for the more significant

employment reductions observed in these areas in response to automation.
24Autor and Dorn (2013) shows that results are qualitatively similar if we adopt different thresholds of distribution percentiles

to define routine occupations.
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As alternative measures of degree of routineness, I also investigate the skill distribution

across regions in the Appendix. Ranking US commuting zones according to their personal

income per capita in 2000, Figure 13 compares the regional variation of skill shares, de-

fined as the ratio of individuals with degrees of advanced education. Proxied by labour

force with university education, Figure 13a shows a near-monotonic increase in the pro-

portion of high skilled workers as we move up the income distribution. In contrast, the

share of middle skill workers, measured by those with high school education in Figure

13b, is considerably larger in middle income regions, relative to other areas. This illus-

trates an inverted-U shape of the proportion of middle skilled workers, primarily engaged

in routine tasks, against income levels.

Table 2.5: Proportion of Skilled Workers and Income Levels for US in 2000

(1) (2) (3) (4)
Dep Var %University Educated Workers %High School Educated Workers

Income 0.326∗∗∗ 0.579∗∗∗ 0.174∗∗∗ 1.027∗∗∗

(0.033) (0.187) (0.031) (0.139)

Income2 -0.005 -0.016∗∗∗

(0.004) (0.003)

R2 0.162 0.164 0.059 0.106
N of Obs 722 722 722 722

Notes:
The table presents OLS estimates of the effects of quadratic form of income level on proportion of skilled workers in
2000. Explanatory variables are proportion of university educated workers and percentage of high school educated
workers collected from Bureau of Economic Analysis (2021), and income level measured by personal income per
capita are also obtained from Bureau of Economic Analysis (2021).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Further evidence is provided by Table 2.5, which shows the OLS results for high and

middle skilled workers as the dependent variables, and quadratic form of personal income

per capita as explanatory variables25. Because this is cross sectional data, econometric

methods such as fixed effects estimation or random effects estimation are not employed.

Autor and Dorn (2013) only provides the proportion of routine occupations across US

commuting zones at year 2000. As additional robustness check for Figure 2.4, Table 2.5

only utilise data for 2000. Since this analysis aims to demonstrate correlation rather than
25I do not take other US commuting zone level characteristics as control variables, as the goal is to examine the quadratic

relationship based on cross sectional data in 2000 rather than causal effects.
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causation, it is not necessary to determine whether the Gauss-Markov assumptions are

met. In other words, Table 2.5 is presented to show the correlation between quadratic

form of income level, and proportion of skilled workers, rather than causal effects of

income level on skill shares.

The results at US commuting zone level are clear: income level is positively correlated

with proportion of university educated workers, with insignificant role of squared term.

This suggests that a $1000 rise of personal income per capita is associated with 0.326%

increase of share of university educated workers; while for high school educated labour

force, I find a positive and statistically significant coefficient on income levels, with a neg-

ative and statistically significant coefficient for the squared term. The results imply that

the share of middle skilled workers is expected to reach a maximum when the personal in-

come per capita is $4011.7. This figure roughly corresponds to the boundary, confirming

the fact that majority of middle skilled workers performing routine tasks are concentrated

in middle income regions. In addition, it confirms that the proportion of routine tasks is

comparatively lower in occupations located at the top and bottom of skill percentile.

Overall, robotic densities are negatively correlated with employment rate. It appears that

the employment rate is decreasing, alongside the widespread adoption of automation tech-

nologies across US. However, this is based on the assumption that all the OLS assump-

tions are satisfied, which is not feasible in reality. The following section will outline

several identification issues.

2.5.2 Identification Issues

The evidence presented so far strongly suggests that the adoption of automation technolo-

gies, represented by exposure to robotic usage, is negatively associated with the employ-

ment across US commuting zones, even after controlling for geographic variations and

macro shocks. Such effects are more pronounced in low and middle income CZs, and
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are insignificant in high income CZs. Nonetheless, it may not be sufficient to guaran-

tee that the main results are free from contamination by endogenous adjustments of local

labour force. In this part, I address identification threats, and then implement a quasi-

experimental shift share design to estimate the causal effects of automation technologies

on US labour market outcomes.

Several reasons explain why the development of automation technologies could be corre-

lated with error terms in Equation 2.1.

Firstly, a firm’s decision to adopt automation may also be driven by other local industry

specific changes, which could directly affect the labour demand. For example, consumers’

demand shock26 could motivate firm owners to invest more capital and labour inputs to

produce final goods, hence simultaneously rising automation and employment (Aghion

et al., 2017; Webb, 2019). In addition, common trade shocks from emerging markets

such as China and Mexico may drive the move towards automation (Bloom et al., 2015).

Confronted with upward pressure on labour costs in high income countries, firms from

labour intensive industries are inclined to use automation, as they are vulnerable to inter-

national competition due to comparative advantages in labour inputs for emerging market

and developing economies, and finally reduce manufacturing employment (Autor et al.,

2013). In other words, enterprises in developed countries prefer to raise the percentage of

capital input, as they are not able to compete with countries from emerging markets and

developing economies, resulting in extended adoption of automation technologies.

Secondly, any shocks from labour demand and market competition will affect industries’

decisions to locate in specific areas (Acemoglu and Restrepo, 2020), and individual work-

ers’ adjustments across occupations and regions (Dauth et al., 2021). On the one hand,

establishments from affected industries tend to re-allocate their production process. They

produce labour intensive goods at the places where labour costs are lower, and perform
26Consumer demand shocks sometimes are not endogenously driven by income growth and output expansions, such as dra-

matic increase of demand for masks during the time period of pandemic induced by COVID 19.
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capital intensive activities at the places where they lack comparative advantages in labour

costs. On the other hand, affected workers from industries with high exposure of automa-

tion technologies tend to switch tasks within original establishments, or move to other

firms, especially young workers27 or those with higher educational attainments (Dauth

et al., 2021). Therefore, such spillover effects will lead to downward biased estimation of

the quantitative magnitudes of both displacement effects and productivity effects.

Finally, reverse causality presents a concern. Industries with labour saving technolo-

gies and fast growing TFP (total factor productivity) tend to invest more on automation

technologies, particularly those facing intense competition and having a large number

of robotic suppliers (Beaudry et al., 2016; Graetz and Michaels, 2018). Such firms are

likely to experience further waves of labour substituting process, and ”ripple effects”

could cause displaced labour to replace workers at the lower skill ladder (Acemoglu and

Restrepo, 2022; Jackson and Kanik, 2019). Alternatively, characteristics such as ”path

dependence” may mean that higher robotic adoption is itself a consequence of lower em-

ployment growth (de Vries et al., 2020).

2.5.3 Shift Share IV Research Design

To alleviate potential endogeneity concerns, I undertake a shift share IV research design

as instruments for exposure to automation technologies. This leverages two components:

predetermined exposure shares and idiosyncratic shocks. This research design is moti-

vated by several important papers from Acemoglu and Restrepo (2020); Aghion et al.

(2017); Autor et al. (2013); Bartik (1991); Bonfiglioli et al. (2021); Bound and Holzer

(2000); Dauth et al. (2021), based on the fact that local labour markets differ markedly in
27There are two hypothesis about heterogeneous response to susceptibilities of automation technologies for old workers and

young workers. One is about institutional environment. Because the firing costs are higher for incumbent workers due to
institutional factors such as unionisation rate, enterprises prefer to use machine to replace young workers instead of old labour
force (Dauth et al., 2021; Rogerson and Wallenius, 2022). The other one is about task specific human capital. For old workers
endowed with task specific human capital, the skill bundle will be similar within occupation, so old workers prefer to switch
within occupation (skills are portable), while young worker prefer to switch across occupation (Autor and Dorn, 2009; Cortes
and Gallipoli, 2017; Gathmann and Schonberg, 2010; Poletaev and Robinson, 2008; Yamaguchi, 2012). In addition, firms prefer
to hire people with decision making skills (Deming, 2021), which require experience accumulations.
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their industry specialisations and employment concentrations, due to differential endow-

ments and comparative advantages.

Figure 2.5: Robotic Density Across Countries, 1998-2019

Notes:
The graph presents trends of robotic density for European countries and US - using data from International Federa-
tion of Robotics (2021) and World Bank (2021). Robot density refers to operational stock of robots per 10000 labour
force. The 8 European countries include Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland.

The shifts are obtained from the supply shocks of robotic usage in other European coun-

tries. These shocks can be considered as an exogenous driver of automation in US (Autor

et al., 2013; Bonfiglioli et al., 2021), as they are unlikely to be intervened by government

policies in the short run. As depicted in Figure 2.5, the robotic densities across eight

European countries are higher than those in US28, implying that European countries, par-

ticularly those specialising in manufacturing industries like Germany, are technologically

more advanced than US in robotics (Acemoglu and Restrepo, 2022). Therefore, European

robotic density could only affect US labour market exclusively through robotic adoption
28Overall, US is more technologically advanced in robotic usage than European countries, but for the sample countries I chose

to perform shift share analysis, they are all specialised in manufacturing industries, hence we can observe higher robotic density
in those European countries than that in US. Another possibility would be: there are innovation spillover effects from US to
Europe, but the flows of knowledge and technologies from the sample European countries to US, are far more than those from
US to the sample European countries.
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in US, due to similar industrial structures. Besides, as revealed by the parallel pre-trends

before 2000 (Borusyak et al., 2021; Goldsmith-Pinkham et al., 2020; Jaeger et al., 2018),

the macro shocks confronted by these European countries and US did not share system-

atic differences during the time period of 2000-2019. The parallel trends also support the

plausibility of valid Bartik IV29. The shift share design combines these sets of shocks with

variations in the CZ level employment shares, and the IV is constructed as Equation 2.3.

Such supply driven components are not liable to reverse casualty (Bound and Holzer,

2000; Graetz and Michaels, 2018). This is because the decisions of firm owners in Europe

to adopt robots and other automatic machines, are not largely determined by employment

rate in US. In other words, it shuts down unobserved changes in decision making by firms

and workers. It implies that the IV can only influence employment rate through a direct

channel without spillover effects. To address common trade shocks, I run regressions

of constructed IV on trade volumes and other country level demographics such as age,

gender and fertility rates, alongside geographic specific factors and year fixed effects.

Figure 14 in the Appendix displays the relationship between predicted robotic density and

total trade volumes regarding import, export, net import, net export situations30. The t-

statistics from both two regressions suggest insignificant association between constructed

IV and trade shocks. Therefore, this instrumental variable approach offers strong support

for the identification strategy.

Compared with other articles adopting shift share IV approach such as Acemoglu and Re-

strepo (2020); Autor et al. (2013), the IV method of this thesis is a little different. Firstly,

the selection of sample European countries for constructing the IV is different. In con-

trast to Acemoglu and Restrepo (2020), I exclude France, because the robotic density of
29It is observed that there is a widening gap between robotic density in US and Germany, and sensitivity checks excluding

Germany in Table 2.8 also show consistent results.
30Motivated by Autor et al. (2013); Bonfiglioli et al. (2021), I select China and Mexico as countries which have great import

competitions with US, and choose Germany, Japan and South Korea as economies which account for large proportion of US
export volumes. Regression results using all five countries including China, Mexico, Germany, Japan and South Korea do not
qualitatively alter the directions and significance.
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France fell below that of US after 201731. Secondly, for the IV results using ICT trade

volumes, previous articles used alternative IVs such as ICT patents (Acemoglu and Re-

strepo, 2021; Bloom et al., 2015). I continue to use ICT usage in European countries to

instrument US counterparts. Thirdly, the sample periods are different. The regression

analysis of this chapter covering 2000-2019, consists of a different period in the devel-

opment of automation technology, compared to those studied by Acemoglu and Restrepo

(2020); Autor et al. (2013).

Following Acemoglu et al. (2001, 2019); Aghion et al. (2017), I report the results of shift

share IV design for seven specifications with the same sets of controls Xi in Table 2.6.

The first specification repeats within group estimate for panel data regression with full

controls. The second specification constructs reduced form equation to examine the cor-

relation between the instrument and outcome variable. Specifically, it evaluates whether

predicted robotic exposure from European countries has any impact on employment rate

in US. The third specification verifies if the IV could satisfy the condition for relevance

through first stage regression. It also evaluates the explanatory power from European

robotic technologies on US automation adoptions, induced by regional and innovation

spillover effects. The final specification reports IV structural estimates based on two-

stage GMM (Generalised Method of Moments) techniques.

Table 2.6 contains IV results for the impacts of robotic penetration on employment. Col-

umn 2 displays reduced form outcomes of the effects of European robotic usage on US

employment rate. The significantly negative estimates show a dramatic reduction in US

employment status, triggered by spillover effects of European robotic technologies from

the supply side, with quantitatively large magnitudes. For each additional adoption of

robotic usage in Europe, the employment rate in US would decline by 6.78 percentage

points.
31Robustness checks including France will be presented in Table 2.8.
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Table 2.6: IV Regression of Employment Rate on Robotic Penetration for US, 2000-2019

(1) (2) (3) (4)
Within Group Reduced Form First Stage IV Structural Form

Dep Var ∆Employment ∆Employment ∆Robot ∆Employment

Robotic Penetration -0.610∗∗∗ -4.820∗∗∗

(0.180) (1.799)

Robotic Penetration (Europe) -6.780∗∗∗ 1.407∗∗∗

(1.192) (0.479)

Year FE
√ √ √ √

Demographics
√ √ √ √

Geographic FE
√ √ √ √

State × Year FE
√ √ √ √

First Stage F Statistics 126.37

N of Commuting Zones 722 722 722 722
N of Observations 2888 2888 2888 2888

Notes:
The table presents within group and IV estimates of the relationship between robotic penetration and employment rate
in US, where robotic penetration computed using operational stocks of robots from 8 European countries (Austria,
Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland) is used as the instrument. Dependent variable for
Columns 1, 2, and 4 is employment rate, and that for Column 3 is robotic penetration in US. The regressions are
weighted by total labour force in 2000. Other demographic controls which are not displayed here, include total
population (Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high
skilled workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor),
and import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Column 3 displays the results for first stage equation of the instrument on robotic den-

sity, which reveals substantial explanatory power of predicted automation exposure for

robotic density. The coefficient in Column 3 is -1.41, suggesting that 1000 unit increase

in operational stocks of robots per worker in those European counties corresponds to 1.41

unit increase in US robotic penetrations, with high F-statistics of 126.37 on the excluded

instrument, implying a low probability of occurrence of weak instrument problems. Ro-

bustness checks regarding the first stage regressions for all measures of automation tech-

nologies are presented in Table 4 of Appendix.

Moreover, I provide results for other diagnostic tests to prove the validity of the instru-

ments. Following Acemoglu and Restrepo (2021), I address this concern in two aspects32.

Firstly, I conduct under-identification test. The Kleibergen-Paap rk LM statistic is 53.52
32As Acemoglu and Restrepo (2021) examined the determinants of automation adoption, rather than employment effects of

automation, here I am not able to compare my results with this article.
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with p-value less than 0.00, implying that the model can be regarded as identified, and

the shift share IV is correlated with US robotic penetration. Secondly, I conduct week

identification test. The test reveals that Cragg-Donald Wald F statistic is 101.640 and

Kleibergen-Paap rk Wald F statistic is 72.913, and both of them are larger than Stock-

Yogo weak ID test critical values (the critical value under 10% maximal IV size is 16.38).

Therefore, the null hypothesis must be rejected, indicating no weak identification prob-

lem under confidence level of 10%. This signifies that the IV is not only correlated with

endogenous variable, but also a strong predictor of US robotic penetration. In addition, I

do not conduct over-identification test, as this issue only arises with multiple IVs, whereas

this chapter only utilises one.

Finally, Column 4 offers the structural IV estimates of the effects of robotic density on

employment. Instrumenting with predicted robotic penetration, the coefficient of -4.82

indicates that 1000 unit exogenous rise in robotic stocks per worker is predicted to reduce

overall employment by 4.82 percentage points. The relatively larger absolute magnitude

of the IV estimates is consistent with the presence of downward endogeneity bias (Ace-

moglu and Restrepo, 2020; Dauth et al., 2021), as reallocation forces by both industries

and workers in response to robotic usage could hamper the welfare changes of displace-

ment effects to some extent, causing downward biased estimation of previous OLS results.

2.5.4 Robots and Employment by Income Level

To account for smooth changes of the employment effects, this subsection also includes

interaction term between automation technologies and income level for IV estimation.

The structural form is then estimated as follows:
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∆Employmentit = β′
0 + β′

1∆ ̂AutomationExposureit

+ β′
2∆ ̂AutomationExposureit × Incomeit0

+ δXi + αi + αt + εit

(2.6)

where Incomeit0 is average value of personal income per capita in CZ i at year 2000, and

explanatory variable ∆ ̂AutomationExposureit is predicted based on first stage estima-

tion:

∆ ̂AutomationExposureit = π0 + π1∆AutomationIVit + δXi + αi + αt + εit (2.7)

Hence β′
1 from Equation 2.6 captures evolution of employment effects along with levels

of income. When adopting continuous income levels in the generalised model, the coeffi-

cient of automation technologies β′
1 is expected to be negative, implying that displacement

effects are dominating the process for least developed regions. With growing income lev-

els, the productivity effects become stronger, and could generate greater labour demand

to flatten job losses. Therefore, the coefficient for interaction term between automation

and income level, namely β′
2, is expected to be positive.

Table 2.7 presents within group estimates and IV estimates based on Equations 2.1 and

2.6. Compared with baseline results displayed in Column 1, Column 2 turns to results us-

ing interactions between robotic exposure and continuous levels of income. Specifically,

the positive coefficient estimate of interaction term reveals that rising income level could

slow down negative employment effects of robotic adoption. The coefficient in Column 2

is -1.708, suggesting that 1000 unit increase in operational stocks of robots per worker in

US corresponds to 1.71 unit increase in robotic penetrations. Meanwhile, the coefficient
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estimate of 0.242 for the interaction term between robotic penetration and income level

suggests that, a $1000 increase in personal income per capita will cause a decline of 0.24

percentage points of employment reductions, in response to extensive robotic penetra-

tions.
Table 2.7: Employment Effects of Robots and Income Level for US, 2000-2019

Within Group IV Structural Form

(1) (2) (3) (4) (5)

Dependent Variable: ∆ Employment Rate
Robotic Penetration -0.673∗∗∗ -1.708∗∗∗ -5.144∗∗ -8.426∗∗∗ -9.284∗∗∗

(0.208) (0.338) (2.524) (2.499) (3.483)

Robotic Penetration×Income 0.242∗∗∗ 1.234∗∗∗ 1.556∗

(0.052) (0.355) (0.901)

Year FE
√ √ √ √ √

Demographics
√ √ √ √ √

Geographic FE
√ √ √ √ √

State × Year FE
√ √ √ √ √

N of Commuting Zones 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888

Notes:
The table presents within group and IV estimates of the relationship between robotic penetration and employment rate
by income level in US, where robotic penetration from 8 European countries is used as the instrument. Endogenous
components in Columns 4-5 only refer to CZ level robotic penetration in US, while Column 6 treats both robotic
penetration and the interaction term with income level as endogenous variables. The regressions are weighted by total
labour force in 2000. Other demographic controls which are not displayed here, include total population (Population),
proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured
by people who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from
China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level is measured using
personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Instrumented with the shift share IV, Column 3 repeats the structural IV estimates of the

effects of robotic density on employment. The coefficient of -5.144 indicates that 1000

unit exogenous rise in robotic stocks per worker is predicted to reduce overall employment

by 5.14 percentage points. Treating both robotic penetration and the interaction term

with income levels as endogenous variables, Columns 5 indicates that one extra unit in

robotic stocks per thousand workers tends to reduce employment rate by 9.28 percentage

points. Moreover, the coefficient estimate for interaction term is 1.56, highlighting the

flattening effects of regional economic growth. This reveals that a $5000 increase in
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personal income per capita, approximating the gap between the threshold of high income

CZs ($30443) and low income CZs ($24868), will cause a decline of 0.78 percentage

points of employment reductions in response to extensive robotic penetrations in high

income CZs.

Considering that the income level is measured using personal income per capita in 2000,

the initial year of US analysis, it could be treated as an exogenous factor in US context.

However, utilising both predicted robotic exposure and the interaction term with income

level as IV has potential risks of weak instrumental variable problem. Therefore, Column

4 also presents IV results where only robotic penetration can be treated as an endogenous

variable. These do not qualitatively alter the results, and 1 extra unit in robotic stocks per

thousand workers tends to reduce employment rate by 8.43 percentage points. Further, the

coefficient estimate for interaction term is 1.234, again highlighting the moderating effects

of regional economic growth. This reveals that a $1000 increase in personal income

per capita, will cause a decline of 1.23 percentage points of employment reductions in

response to extensive robotic penetrations.

Taking the roles of economic corporations and sectoral compositions among western

countries into accounts, Table 2.8 presents sensitivity checks under different construc-

tions33, including specifications using all European countries, one using five European

countries34 (Acemoglu and Restrepo, 2020), and another incorporating Spain and UK35

(Bonfiglioli et al., 2021).

Table 2.8 displays the IV results for the impacts of robotic penetration on employment
33Column 1 is based on data from country sample of Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland;

Column 2 is based on data from country sample of all European countries; Column 3 is based on data from country sample of
Denmark, Finland, France, Italy, Sweden; Column 4 is based on data from country sample of Denmark, Finland, France, Italy,
Sweden, Germany; Column 5 is based on data from country sample of Spain, Finland, France, Italy, Norway, Sweden, UK;
Column 6 is based on data from country sample of Denmark, Netherlands, Italy, Sweden, UK; Column 7 is based on data from
country sample of Austria, Denmark, Finland, France, Germany, Italy, Netherlands, Spain, Sweden, Switzerland, UK.

34The five European countries are Denmark, Finland, France, Italy, Sweden. As robotic density is more pronounced in Ger-
many due to higher concentration of manufacturing industry, which acted as a leading country in manufacturing and robotic
usage (Dauth et al., 2021), so I exclude Germany.

35Taking trade structures into accounts, I also implement robustness checks based on Austria, Denmark, Finland, France,
Germany, Italy, Netherlands, Spain, Sweden, Switzerland, UK.
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Table 2.8: Employment Effects of Robots and Income Level using Alternative IV, 2000-2019

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: ∆ Employment Rate
Robotic Penetration -5.036∗∗∗ -3.705∗∗∗ -6.213∗∗ -6.242∗∗∗ -7.370∗∗ -3.815∗∗∗ -4.750∗∗∗

(1.411) (1.150) (2.822) (2.228) (3.616) (1.007) (1.267)

Robotic Penetration 0.904∗∗∗ 0.630∗ 1.266∗∗ 1.098∗∗∗ 1.233∗∗ 0.654∗∗ 0.850∗∗∗

× Income (0.303) (0.356) (0.546) (0.372) (0.484) (0.272) (0.300)

Year FE
√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the relationship between robotic penetration in US and employment rate, where
robotic penetration computed using operational stocks of robots from European countries is used as the instrument.
Column 1 is based on data from Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland; Column 2 is
based on data from all European countries; Column 3 is based on data from Denmark, Finland, France, Italy, Sweden;
Column 4 is based on data from Denmark, Finland, France, Italy, Sweden, Germany; Column 5 is based on data
from Spain, Finland, France, Italy, Norway, Sweden, UK; Column 6 is based on data from Denmark, Netherlands,
Italy, Sweden, UK; Column 7 is based on data from Austria, Denmark, Finland, France, Germany, Italy, Netherlands,
Spain, Sweden, Switzerland, UK. Other demographic controls which are not displayed here, include total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

rate, treating both robotic penetration and interaction term between predicted exposure

of robotic adoption and income level as endogenous variables. Utilising various com-

binations of IV constructions, the IV estimates range from -3.705 to -7.370, revealing

that the employment reductions caused by an additional robot per thousand labour force

would be below 7.37 percentage points, and above 3.70 percentage points. Accounting

for flattening effects of regional economic growth, a $1000 rise of personal income per

capita would mitigate employment losses by around 0.63 to 1.27 percentage points, and

relatively small robust standard errors reflect quite stable magnitudes.

Moreover, I conduct other robustness checks in Table 3 in the Appendix. In Panel A, I

do not consider the variation of income levels across different time periods, and only use

robotic penetration as an explanatory variable. In Panel B, I also add an interaction term
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between predicted robotic exposure and income level, but only treat robotic penetration

as an endogenous variable. Both are consistent with the results in Table 2.8.

Therefore, all these different model specifications do not qualitatively alter the results.

The IV estimates indicate sizeable and robust negative impacts of robotic exposure on

employment rate, and those negative employment reductions will gradually diminish,

alongside rising levels of income.

2.5.5 Alternative Automation Technologies

In this subsection, I continue to investigate how exposure to other automation technologies

has affected employment rate in CZs from different stages of economic growth. In order to

gauge the robustness of the results, I estimate Equation 2.6 with trade volumes of goods

containing ICT import, ICT export, and ICT net export. The dependent variables also

include overall automation technologies import, overall automation technologies export,

and overall automation technologies net export.

I present corresponding IV estimates of the impacts of ICT import and export under the

same specifications in Table 2.9, respectively. Detailed information about first stage re-

gressions is presented in Table 4 of Appendix. All the estimates are strong and signifi-

cant. The implications with regard to interactions between automation and income level

do not qualitatively alter the results. Consistent with Subsection 2.5.3, the estimates for

interaction terms between alternative measures of automation technologies exposure and

personal income per capita are significantly positive, confirming the flattening effects of

economic development. The estimated quantitative magnitudes for trade volumes of ICT

and the whole automated machines are similar to those exhibited so far.

Table 2.9 displays the IV results for the impacts of alternative automation technologies on

employment rate, treating both alternative automation technologies and interaction term

between their exposure and income level as endogenous variables. With various choices
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Table 2.9: Employment Effects of Other Automation and Income Level in US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Employment Rate
ICT Import -0.583∗∗∗

(0.185)
ICT Export -0.742∗∗∗

(0.253)
ICT Net Exp 1.992∗∗

(0.839)
Auto Import -1.210

(0.829)
Auto Export -0.231∗∗∗

(0.081)
Auto Net Exp -0.433∗∗∗

(0.103)
ICT Import × Income 0.102∗∗∗

(0.037)
ICT Export × Income 0.113∗∗

(0.054)
ICT Net Exp × Income 0.366∗∗

(0.165)
Auto Import × Income 0.225

(0.158)
Auto Export × Income 0.036∗∗

(0.017)
Auto Net Exp × Income 0.088∗∗∗

(0.020)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the relationship between ICT and automation trade volumes in US and employment
rate, where corresponding other automation computed using ICT and automation trade volumes from 8 European
countries (Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland) is used as the instrument. The
regressions are weighted by total labour force in 2000. Explanatory variables include ICT import (ICT Import),
ICT export (ICT Export), ICT net export (ICT Net Exp), automation import (Auto Import), automation export (Auto
Export), and automation net export (Auto Net Exp). Other demographic controls which are not displayed here,
include total population (Population), proportion of old people (Old), female workers (Female), Hispanic people
(Hispanic), high skilled workers measured by people who received high school degree (High School) and bachelor’s
degree (Bachelor), and import volumes from China and Mexico are also controlled. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of automation exposures, the IV estimates range from -0.231 to -1.992, revealing that the

employment reductions caused by additional $1000 ICT import per thousand labour force

would become 0.58 percentage points, those caused by additional $1000 ICT export per

thousand labour force would become 0.74 percentage points, those caused by additional
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$1000 net ICT export per thousand labour force would become 1.99 percentage points,

those caused by additional $1000 automation import per thousand labour force would

become 1.21 percentage points, those caused by additional $1000 automation export per

thousand labour force would become 0.23 percentage points, those caused by additional

$1000 automation net export per thousand labour force would become 0.43 percentage

points. Accounting for flattening effects of regional economic growth, a $1000 rise of

personal income per capita would mitigate employment losses. This effect is estimated

at approximately 0.10 percentage points from ICT import, 0.11 percentage points from

ICT export, 0.37 percentage points from ICT net export, 0.04 percentage points from au-

tomation export, 0.09 percentage points from automation net export, and relatively small

robust standard errors reflect quite stable magnitudes.

For further sensitivity tests, estimations excluding variations in personal income per capita

are presented in Panel A of Table 5 in Appendix. Moreover, I also add interaction term

between predicted robotic exposure and income level, treating only robotic penetration as

endogenous variable in Panel B of Table 5 in Appendix. These findings remain consistent

with the main results.

In summary, these findings are broadly consistent with the stylised facts in Section 2.3 of

Chapter 2, and support the empirical implications on the relationship between automation

technologies and employment status.

2.6 Mechanism

Having studied the heterogeneous effects of automation technologies on local labour mar-

ket outcomes, this research now turns to investigate the mechanisms behind the net em-

ployment effects of technological changes.

As outlined in the conceptual framework of Chapter 1, the phenomenon of job replace-
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ment is widespread across regions with different income levels. However, the welfare

improvements arising from productivity effects are more pronounced in high income re-

gions, and could complement job losses by displacement effects. Whereas, in low and

middle income regions, new job vacancies triggered by productivity effects are not as

strong as those in economically more advanced areas. Therefore, new job creations can-

not adequately compensate for job losses by displacement effects.

In other words, the hypotheses are as follows: the impacts of automation technologies

on job destructions are insignificant across regions, and automation could have negative

impacts on dynamics of job creations. Rising income levels could mitigate the slowdown

of job creations. These technological shifts are believed to be biased towards high skilled

labour force, and are more pronounced in manufacturing sectors.

In this section, I utilise the availability of comprehensive panel data across US commuting

zones, to explore the relationship between automation technologies and job creations,

job destructions, net job creations. This section also seeks to discover the types of jobs

susceptible to creation and replacement. Besides, industry heterogeneities will also be

examined in this Section. The following analysis will prioritise IV estimates.

2.6.1 Automation and Reduced Job Creation

As a starting point, this analysis presents evidence linking adoptions of automation tech-

nologies, with changes in job destruction rate, job creation creation rate and net job cre-

ation rate. This relationship is then evaluated utilising the equation presented below.

∆Jobit = γ0 + γ1∆AutomationExposureit

+ γ2∆AutomationExposureit × Incomeit0 + δXi + αi + αt + εit

(2.8)
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Contrary to Equation 2.6, the left hand side variable ∆Jobit in Equation 2.8 denotes

changes in job destruction rate, job creation rate and net job creation rate for CZ i over

period t, where the denominator is the overall number of employees in 2000, the initial

year of analysis. The remaining variables in this five-year stacked first difference model

are defined as outlined in Section 2.5.3. Specifically, I also add controls for interactions

between year fixed effects and firm quartiles, to account for evolution of establishments

affiliated with different firm sizes.

Table 2.10 reports results based on Equation 2.8, where exposure to automation technolo-

gies, represented by US robotic penetrations, is instrumented by their European counter-

parts. Conceptually, I distinguish between job destructions and job creations in Panel A

for all US commuting zones, and those in Panel D for middle income commuting zones,

and describe the consequences of both displacement effects and productivity effects. The

overall effects regarding net job creations for all US commuting zones are displayed in

Columns 5-6 of Panel A, and those for middle income CZs are displayed in Columns 5-6

of Panel B.

As displayed in Columns 1-2 of Panel A, the insignificant estimates for the impacts of

robotic density on changes of job destruction rate across US commuting zones reveal

that technological job losses are widespread across regions with different income lev-

els. These findings remain consistent across different specifications of control variables

displayed in Table 6 of Appendix. The insignificant coefficient estimates of interaction

term between robotic penetration and income level confirm that, automation technologies

could replace production workers irrespective of stages of economic growth, proxied by

personal income per capita.

Columns 3-4 of Panel A in Table 2.10 document the impacts of robotic adoptions on job

creations. The preferred point estimate for all CZs is statistically significant at 1 percent

with a coefficient of -1.354, after controlling for state specific macro shocks. This implies
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Table 2.10: Business Dynamics, Robotic Penetration and Income Level for US, 2000-2019

(1) (2) (3) (4) (5) (6)
Dep Var ∆ Job Destruction Rate ∆ Job Creation Rate ∆ Net Job Creation Rate

A. All Commuting Zones
Robot Penetration 0.059 -0.588 -1.354∗∗∗ -6.176∗∗∗ -1.413∗∗ -5.588∗

(0.462) (2.261) (0.516) (2.387) (0.602) (2.924)

Robot Penetration × Income 0.023 0.170∗∗ 0.147∗

(0.064) (0.068) (0.084)

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

B. Middle Income Commuting Zones
Robot Penetration 0.938 4.844 -1.296∗ -7.758∗ -2.233∗ -12.602∗

(0.795) (5.008) (0.749) (4.413) (1.178) (7.139)

Robot Penetration × Income -0.138 0.229∗ 0.367∗

(0.149) (0.131) (0.212)

N of Commuting Zones 424 424 424 424 424 424
N of Observations 1696 1696 1696 1696 1696 1696

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

Notes:
The table presents IV estimates of the effects of robotic penetration on changes of job destruction rate, job creation rate and net
job creation rate, where robotic penetration computed using operational stocks of robots from 8 European countries is used as the
instrument. Coefficients in Panel A are estimated based on all US commuting zones, and those in Panel B are based on middle
income commuting zones. Other demographic controls which are not displayed here, include total population (Population),
proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people
who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico
are also controlled. Geographic FE refers to Census Divisions.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

that a rise of robotic stocks per thousand workers could lower job creation rate by 1.35

percentage points. The positive coefficient for interaction with income level, displayed

in Column 4, suggests that new vacancies created by productivity effects could gradually

complement technological job losses, especially in economically advanced areas. These

results are insensitive to various specifications of control variables, displayed in Table 6

of Appendix.

Furthermore, the coefficients for net job creations in Columns 5-6 are substantially larger

in absolute magnitude36. This evidence supports the interpretation that displacement ef-
36The t statistics of the difference in coefficients of robotic penetration between Column 3 (-1.354) and Column 5 (-1.413)
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fects of automation technologies in low income CZs could act as key drivers for overall

decline of net job creation rate. Meanwhile, stronger productivity effects in high income

CZs cause slightly weaker power of job replacement. The preferred point estimate for all

CZs is statistically significant at 5 percent with a coefficient of -1.413 after controlling for

state specific macro shocks, implying that a rise of robotic stocks per thousand workers

could lower job creation rate by 1.41 percentage points. The positive coefficient for inter-

action with income level, displayed in Column 6, suggests that new vacancies created by

productivity effects could gradually complement technological job losses, especially in

economically advanced areas. These results hold across various specifications of control

variables displayed in Table 6 of Appendix.

To test the factors of routine intensities on business dynamics by automation technologies,

I also report results of Equation 2.8 in Panel B of Table 2.10. As displayed in Columns 1-2,

the insignificant estimates for the impacts of robotic density on changes of job destruction

rate across middle income CZs reveal that, technological job losses are widespread across

regions within middle income regions, where the majority of workers are performing rou-

tine tasks. These results hold across various specifications of control variables in Table 7

of Appendix. Insignificant coefficient estimates of interaction term between robotic pen-

etration and income level confirm that, automation technologies could replace production

workers regardless of stages of economic growth, proxied by personal income per capita.

And such effects can be reinforced by Routine Biased Technical Change (RBTC).

Columns 3-4 of Panel B document the impacts of robotic adoptions on job creations. The

preferred point estimate in middle income CZs is statistically significant at 10 percent

with a coefficient of -1.296, after controlling for state specific macro shocks. This implies

that a rise of robotic stocks per thousand workers could lower job creation rate by 1.30

percentage points. The positive coefficient for interaction with income level, displayed

in Panel A of Table 2.10 is 0.074, with p value larger than 0.1, implying that there is an insignificant gap between those two
coefficients.
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in Column 4, suggests that new vacancies created by productivity effects could sharply

complement technological job losses, especially in areas at stages with middle level of

economic growth. These results are insensitive to various specifications of control vari-

ables in Table 7 of Appendix.

In addition, the coefficients for net job creations in Columns 5-6 are substantially larger in

absolute magnitude37, suggesting that the displacement effects of automation technologies

in lower middle income CZs could act as key drivers for overall decline of net job creation

rate. Meanwhile, stronger productivity effects in upper middle income CZs cause slightly

weaker power of job replacement. The preferred point estimates in middle income CZs

are all insignificant, indicating relatively stronger displacement effects in middle income

regions. This is likely due to concentration of routine occupations in these areas, which

are not able to generate sufficient job vacancies for new entrants and displaced labour

force. These results hold across various specifications of control variables in Table 7 of

Appendix.

All columns in Table 2.11 turn to only focus on the changes of job destruction rate. This

table presents results for ICT import, export, and net export, and automation trade vol-

umes such as import, export, net export as alternative measures of automation technolo-

gies. Across all US commuting zones, all the estimates are statistically insignificant,

reflecting the fact that technological job losses are pervasive across regions with differ-

ent income levels, irrespective of their stages of economic growth, proxied by personal

income per capita. The outcomes where variations across personal income per capita are

not taken into accounts, and the outcomes when treating only robotic penetration as en-

dogenous variable across all US commuting zones, are exhibited in Table 8 of Appendix.

In addition, the outcomes are similar when considering only middle income regions with

a large proportion of routine tasks. Detailed results are displayed in Table 9 and Table 10
37The t statistics of the difference in coefficients of robotic penetration between Column 3 (-1.296) and Column 5 (-2.233)

in Panel B of Table 2.10 is 0.671, with p value larger than 0.1, implying that there is an insignificant gap between those two
coefficients.
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Table 2.11: Job Destructions, Other Automation Technologies and Income Level for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
ICT Import 0.447

(0.391)
ICT Export 0.687

(0.600)
ICT Net Exp -1.353

(1.203)
Auto Import 0.458

(0.446)
Auto Export 0.216

(0.188)
Auto Net Exp 0.291

(0.313)
ICT Import×Income -0.084

(0.073)
ICT Export×Income -0.133

(0.113)
ICT Net Exp×Income 0.252

(0.222)
Auto Import×Income -0.083

(0.080)
Auto Export×Income -0.042

(0.036)
Auto Net Exp×Income -0.048

(0.054)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job destruction rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the
instrument. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT
Net Exp), automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net
Exp). Other demographic controls which are not displayed here, include number of firms (Firms), total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of Appendix. These findings are all consistent with the analysis in Table 2.11.

In contrast with the situation of job destructions displayed in Table 2.11, the results listed

in Table 2.12 exhibit regression results regarding job creations.
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Table 2.12: Job Creations, Other Automation Technologies and Income Level for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.669∗∗∗

(0.221)
ICT Export -0.994∗∗∗

(0.267)
ICT Net Exp -2.063∗

(1.088)
Auto Import -0.699

(0.445)
Auto Export -0.311∗∗∗

(0.085)
Auto Net Exp -0.475∗∗∗

(0.168)
ICT Import×Income 0.123∗∗∗

(0.042)
ICT Export×Income 0.183∗∗∗

(0.053)
ICT Net Exp×Income 0.379∗

(0.202)
Auto Import×Income 0.058∗∗∗

(0.017)
Auto Export×Income 0.042

(0.036)
Auto Net Exp×Income 0.081∗∗∗

(0.029)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job creation rate, where
robotic penetration computed using operational stocks of robots from 8 European countries is used as the instrument.
Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net Exp),
automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Other
demographic controls which are not displayed here, include number of firms (Firms), total population (Population),
proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured
by people who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from
China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level is measured using
personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.12 displays the IV results for the impacts of alternative automation technolo-

gies on job creation rate across all US commuting zones. I add interaction term between

alternative exposure of automation trade volumes and income level, and treat both alterna-
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tive automation technologies and the interactions as endogenous variables. With various

choices of automation trade volumes, the IV estimates range from -0.311 to -2.063, reveal-

ing that the reductions of job creations caused by additional $1000 ICT import per thou-

sand labour force would become 0.67 percentage points, those caused by additional $1000

ICT export per thousand labour force would become 0.99 percentage points, those caused

by additional $1000 net ICT export per thousand labour force would become 2.06 per-

centage points, those caused by additional $1000 automation export per thousand labour

force would become 0.31 percentage points, those caused by additional $1000 automation

net export per thousand labour force would become 0.48 percentage points. Accounting

for flattening effects of regional economic growth, a $1000 rise of personal income per

capita would results mitigate job creation losses by around 0.12 percentage points from

ICT import, 0.18 percentage points from ICT export, 0.37 percentage points from ICT

net export, 0.06 percentage points from automation import, 0.08 percentage points from

automation net export. These relatively small robust standard errors indicate the stability

of these results.

The outcomes where variations across personal income per capita is not taken into ac-

counts, and the outcomes when I only treat robotic penetration as endogenous variable

across all US commuting zones, are exhibited in Table 11 in the Appendix. Similar re-

sults are obtained when considering only middle income regions with a large proportion

of routine tasks, and detailed results are displayed in Table 12 and Table 13 of Appendix.

These findings are all consistent with the analysis in Table 2.12.

In addition, I also present regression results listed in Table 2.13, which exhibits estimates

regarding net job creations.

Table 2.13 displays the IV results for the impacts of alternative automation technologies

on job creation rate across all US commuting zones. I add interaction term between alter-

native exposure of automation trade volumes and income level, and treat both alternative
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Table 2.13: Net Job Creations, Other Automation Technologies and Income Level for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -1.116∗∗∗

(0.409)
ICT Export -1.681∗∗∗

(0.590)
ICT Net Exp -3.416∗∗

(1.675)
Auto Import -1.156

(0.714)
Auto Export -0.528∗∗∗

(0.186)
Auto Net Exp -0.766∗∗

(0.389)
ICT Import×Income 0.207∗∗∗

(0.077)
ICT Export×Income 0.316∗∗∗

(0.112)
ICT Net Exp×Income 0.630∗∗

(0.312)
Auto Import×Income 1.156

(0.130)
Auto Export×Income 0.100∗∗∗

(0.035)
Auto Net Exp×Income 0.129∗

(0.067)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of net job creation rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the
instrument. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT
Net Exp), automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net
Exp). Other demographic controls which are not displayed here, include number of firms (Firms), total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

automation technologies and the interactions as endogenous variables. The analysis indi-

cates significant insights. The IV estimates range from -0.528 to -3.416, revealing that the

reductions of net job creation rate caused by additional $1000 ICT import per thousand
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labour force would become 1.12 percentage points, those caused by additional $1000 ICT

export per thousand labour force would become 1.68 percentage points, those caused by

additional $1000 net ICT export per thousand labour force would become 3.42 percent-

age points, those caused by additional $1000 automation export per thousand labour force

would become 0.53 percentage points, those caused by additional $1000 automation net

export per thousand labour force would become 0.77 percentage points. In addition, ac-

counting for the flattening effects of regional economic growth, a $1000 rise of personal

income per capita appears to mitigate net job creation losses by around 0.21 percentage

points from ICT import, 0.32 percentage points from ICT export, 0.63 percentage points

from ICT net export, 0.10 percentage points from automation export, 0.13 percentage

points from automation net export. The relatively small robust standard errors highlight

the stability of these magnitudes.

The outcomes where variations across personal income per capita are not taken into ac-

counts, and the outcomes when I only treat robotic penetration as endogenous variable

across all US commuting zones, are exhibited in Table 14 of Appendix. In addition, the

outcomes are similar when we only consider middle income regions with a large pro-

portion of routine tasks, and detailed results are displayed in Table 15 and Table 16 of

Appendix. These supplementary analysis yield results consistent with the those presented

in Table 2.13.

In summary, these findings suggest that the displacement effects due to automation are

widespread geographically. Final employment outcomes are determined by differentials

in productivity effects, proxied by job creations. The following section provides a detailed

investigation of other empirical implications concerning skill composition.
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2.6.2 Skill Upgrading and Net Job Creation

This chapter has documented the presence of net job creations behind the employment ef-

fects of automation technologies. In this subsection, I present further results, highlighting

what kind of jobs could be created (replaced) by automation technologies. This analysis

focuses on the impacts from robotic usage, together with regressions adopting alternative

measures such as ICT import, ICT export, ICT net export, and automation trade volumes.

Table 2.14 to Table 2.16 estimates the following regression model, where I interact expo-

sure of automation technologies with skill shares and personal income per capita:

∆Jobit = γ′0 + γ′1∆AutomationExposureit

+ γ′2∆AutomationExposureit × SkillShareit

+ γ′3∆AutomationExposureit × SkillShareit × Incomeit0

+ δXi + αi + αt + εit

(2.9)

where ∆AutomationExposureit is commuting zone level exposure to automation adop-

tion. I use SkillShareit, measured by the proportion of workers with university or high

school education, to describe geographic disparities of skill upgrading across US CZs.

Therefore, γ′2 can be interpreted as the mitigating effects of skill share, on the dynamics

of job destructions, job creations, and net job creations induced by exposure to automation

technologies. And γ′3 depicts the evolving forces of skill upgrading alongside economic

development.

The results regarding job destructions for both university and high school educated work-

ers are reported in Table 2.14. It includes the interaction of robotic usage, skill shares,

and income level. Results excluding estimation of income levels are exhibited in Table 17

of Appendix.
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Table 2.14: Job Destructions and Robots by Skill Share for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
Robotic Penetration 3.640 1.216 1.055 1.463 -0.170 -0.273

(5.076) (1.577) (1.416) (2.595) (6.560) (25.237)
Robotic Penetration -0.021 -0.083 0.011
× %High School Educated Worker (0.030) (0.105) (0.051)

Robotic Penetration -0.020 -0.089 0.145
× %University Educated Workers (0.027) (0.106) (3.153)

Robotic Penetration × Income 0.003 0.011 -0.002
× %High School Educated Workers (0.004) (0.014) (0.007)

Robotic Penetration × Income 0.003 0.014 -0.026
× %University Educated Workers (0.004) (0.016) (0.542)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on changes of job destruction rate, by skills share
and income level, where robotic penetration computed using operational stocks of robots from 8 European countries
is the instrument. Columns 1 to 2 only treat robotic penetration as endogenous variable; Columns 3 to 4 treat both
robotic penetration and the interaction term with education level as endogenous variables; Columns 5 to 6 treat all
variables including robotic penetration and the interaction term with education level and income level as endogenous
variables. Other demographic controls which are not displayed here, include number of firms (Firms), total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As exhibited in Table 2.14, the point estimates for interaction with the proportion of both

two types of skilled labour are statistically insignificant even at confidence level 10 per-

centage, implying that the impacts of robotic exposures on job destructions are prevalent

across regions with different skill shares. In addition, the job vacancies from both high

school and university educated workers could not mitigate decline of net job creation rate.

This evidence aligns with the hypothesis before, as productivity effects induced by high

skilled labour tend to become more powerful, and could potentially compensate for job

losses by displacement effects.

In contrast with the situation of job destructions displayed in Table 2.14, the results listed
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in Table 2.15 exhibit regression results regarding job creations. Results excluding estima-

tion of income levels are exhibited in Table 18 of Appendix.

Table 2.15: Job Creations and Robots by Skill Share for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
Robotic Penetration -8.300∗∗ -2.452∗∗ -1.581∗ -2.695 -4.560 -1.716

(3.665) (1.164) (0.957) (2.241) (5.350) (9.270)
Robotic Penetration 0.051∗∗ 0.118∗ 0.019
× %High School Educated Worker (0.022) (0.071) (0.040)

Robotic Penetration 0.048∗∗ 0.115 -0.016
× %University Educated Workers (0.021) (0.074) (1.152)

Robotic Penetration × Income -0.006∗∗ -0.015∗ -0.002
× %High School Educated Workers (0.003) (0.009) (0.006)

Robotic Penetration × Income -0.007∗∗ -0.018 0.005
× %University Educated Workers (0.003) (0.011) (0.198)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on changes of job creation rate, by skills share
and income level, where robotic penetration computed using operational stocks of robots from 8 European countries
is used as the instrument. Columns 1 to 2 only treat robotic penetration as endogenous variable; Columns 3 to 4 treat
both robotic penetration and the interaction term with education level as endogenous variables; Columns 5 to 6 treat all
variables including robotic penetration and the interaction term with education level and income level as endogenous
variables. Other demographic controls which are not displayed here, include number of firms (Firms), total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Following similar specifications in Table 2.14, and despite variations in endogenous vari-

able combinations, all the estimates are statistically significant. This suggests that skill

shares could moderate the employment reduction effects induced by robotic penetrations.

As showed in Columns 1-2, a rise of percentage of high school and university educated

workers could mitigate decline of job creation rate by 0.05 percentage points. Specif-

ically, the negative coefficients for interactions with both skill share and income level

exhibit that the importance of mitigation effects from skill shares are diminishing. This
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evidence aligns with the earlier hypothesis, as productivity effects induced by high skilled

labour tend to become more powerful, and could complement job losses by displacement

effects. Such mitigation effects tend to depreciate with growing income level, suggest-

ing that additional $1000 increase of personal income per capita would lower mitigation

effects of proportion of high school and university educated workers on technological un-

employment by 0.01 percentage points. This pattern is consistent with rule of diminishing

marginal returns. In economically more advanced areas, capabilities of learning by doing

and labour market experience could play a relatively more substantial role in high-skill

tasks, compared with human capital accumulation (Stinebrickner et al., 2019).

The results regarding net job creations for both university and high school educated work-

ers are reported in Table 2.16. Results excluding estimation of income levels are exhibited

in Table 19 of Appendix.

In accordance with the specifications in Table 2.14, and despite variations in the combina-

tions of endogenous variables, all the estimates demonstrate statistical significance. This

suggests that skill shares could flatten employment reduction effects arising from robotic

penetrations. As showed in Columns 1-2, a rise of percentage of high school educated

workers could mitigate decline of net job creation rate by 11.94 percentage points. Simi-

larly, a rise of percentage of university educated workers could mitigate decline of net job

creation rate by 3.67 percentage points. Specifically, the negative coefficients for interac-

tions with both skill share and income level suggest a reducing influence of skill shares.

This finding aligns with the previously stated hypothesis, as productivity effects induced

by high skilled labour tend to become more powerful, and could complement job losses

by displacement effects. In addition, such mitigation effects appear to weaken as income

level grows, reflecting that additional $1000 increase of personal income per capita would

lower mitigation effects of proportion of high school and university educated workers on

technological unemployment by 0.01 percentage points. This pattern is consistent with

principle of diminishing marginal returns, suggesting that in more economically devel-
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Table 2.16: Net Job Creations and Robots by Skill Share for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
Robotic Penetration -1.194∗ -3.668∗ -2.636 -4.158 -4.390 -1.443

(0.716) (2.121) (2.157) (4.419) (11.138) (34.301)
Robotic Penetration 0.072∗ 0.200 0.008
× %High School Educated Worker (0.042) (0.159) (0.086)

Robotic Penetration 0.069∗ 0.204 -0.162
× %University Educated Workers (0.037) (0.157) (4.287)

Robotic Penetration × Income -0.009∗ -0.026 0.001
× %High School Educated Workers (0.005) (0.021) (0.012)

Robotic Penetration × Income -0.009∗ -0.032 0.031
× %University Educated Workers (0.005) (0.024) (0.738)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on changes of net job creation rate, by skills share
and income level, where robotic penetration computed using operational stocks of robots from 8 European countries
is the instrument. Columns 1 to 2 only treat robotic penetration as endogenous variable; Columns 3 to 4 treat both
robotic penetration and the interaction term with education level as endogenous variables; Columns 5 to 6 treat all
variables including robotic penetration and the interaction term with education level and income level as endogenous
variables. Other demographic controls which are not displayed here, include number of firms (Firms), total population
(Population), proportion of old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled
workers measured by people who received high school degree (High School) and bachelor’s degree (Bachelor), and
import volumes from China and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level
is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

oped regions, factors such as learning by doing and labour market experience may play

a more significant role in high-skill tasks, compared with human capital accumulation

(Stinebrickner et al., 2019).

The findings reflect the fact that automation technologies represented by robotic adop-

tions, are killing low skilled employment for workers without high school qualifications,

and bring welfare improvements for high skilled workers with tertiary and university ed-

ucations. Further examination of the role of income level indicates that the slowdown

effects of net job creation reductions are more pronounced in CZs with high percentage

of university educated workers. This suggests that new occupations are primarily created
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for high skilled workers.

Table 2.17: US Job Destructions, ICT Trade and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Destruction Rate
ICT Import 0.801

(0.960)
ICT Export 1.640

(1.966)
ICT Net Exp -1.585

(1.923)
ICT Import -0.014
×%University Educated Workers (0.017)

ICT Export -0.028
×%University Educated Workers (0.035)

ICT Net Exp 0.027
×%University Educated Workers (0.034)

ICT Import×Income 0.002
×%University Educated Workers (0.002)

ICT Export×Income 0.003
×%University Educated Workers (0.005)

ICT Net Exp×Income -0.003
×%University Educated Workers (0.004)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job destruction
rate, by share of university education workers and income level, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import
(ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographic controls which are
not displayed here, include number of firms (Firms), total population (Population), proportion of old people (Old),
female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people who received high
school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also
controlled. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in
2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In addition, I also present regression results listed in Tables 2.17 to 2.19, which exhibits

estimates regarding changes on job destructions, job creations and net job creations, trig-

gered by ICT import, ICT export, and ICT net export as alternative measures of automa-

tion technologies. Interaction terms are included between these alternative measures of

automation technologies, proportion of university educated workers, and personal income
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per capita. Corresponding results regarding automation import, automation export, and

automation net export, along with their interactions with proportion of university educated

workers, are presented in Table 20 of Appendix. Robustness checks only including the

interaction terms between alternative measures of automation technologies and university

educated workers are displayed in Table 21 of Appendix. Sensitivity tests concerning ICT

import, ICT export, ICT net export, automation import, automation export, and automa-

tion net export, and their interactions with proportion of high school educated workers,

are presented in Table 22 and Table 23 of Appendix.

All the estimates listed in Table 2.17 are statistically insignificant. This reflects the fact

that technological job losses are widespread across regions with different income levels,

regardless of their stages of economic growth, proxied by personal income per capita.

These patterns remain consistent across alternative measures of automation technologies.

Robustness checks in Tables 20 to 23 reveal that the results are insensitive to different

specifications.

In contrast with the situation of job destructions displayed in Table 2.17, the results listed

in Table 2.18 exhibits regression results regarding job creations.

Table 2.18 displays the IV results for the impacts of alternative automation technologies

on job creation rate, and I also add interaction term between ICT trade volumes, skill

shares and income level. Across various choices of automation trade volumes, the IV

estimates in Panel D range from -2.728 to -3.817. These results reveal that the reductions

of job creation rate caused by additional $1000 ICT import per thousand labour force

would become 2.73 percentage points, and those caused by additional $1000 ICT export

per thousand labour force would become 3.82 percentage points. The inclusion of skill

shares indicates mitigation effects. One percent rise of proportion of university educated

workers would results mitigate job creation losses by around 0.01 percentage points from

ICT import, and 0.02 percentage points from ICT export, and relatively small robust stan-
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Table 2.18: US Job Creations, ICT Trade and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Creation Rate
ICT Import -2.728∗∗∗

(0.980)
ICT Export -3.817∗∗∗

(1.192)
ICT Net Exp 19.083

(24.713)
ICT Import 0.012∗∗∗

×%University Educated Workers (0.005)
ICT Export 0.018∗∗∗

×%University Educated Workers (0.006)
ICT Net Exp -0.082
×%University Educated Workers (0.108)

ICT Import×Income -0.001∗∗

×%University Educated Workers (0.000)
ICT Export×Income -0.002∗∗∗

×%University Educated Workers (0.001)
ICT Net Exp×Income 0.008
×%University Educated Workers (0.010)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job creation rate,
by share of university education workers and income level, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import
(ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographic controls which are
not displayed here, include number of firms (Firms), total population (Population), proportion of old people (Old),
female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people who received high
school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also
controlled. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in
2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

dard errors reflect quite stable magnitudes. Specifically, the diminishing marginal returns

of high school education across areas from different income groups are also notable, as

the reduction of mitigation effects by proportion of high school educated workers from

additional $1000 personal income per capita is 0.001 for ICT import, and 0.002 for ICT

export. The magnitudes are quite small compared with coefficients of alternative mea-

sures of automation technologies. Similar patterns are observed for automation trade
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volumes in Table 24 of Appendix, occasions where income levels are not considered in

Table 25 of Appendix, and high school educated workers in Table 26 and Table 27 of

Appendix.

Finally, I also present the results concerning regression outcomes of how alternative mea-

sures of automation technologies affect changes of net job creations in Table 2.19.

Table 2.19: US Net Job Creations, ICT Trade and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -4.093∗∗

(2.080)
ICT Export -5.475∗∗

(2.511)
ICT Net Exp 29.543

(40.247)
ICT Import 0.018∗

×%University Educated Workers (0.010)
ICT Export 0.025∗∗

×%University Educated Workers (0.012)
ICT Net Exp -0.127
×%University Educated Workers (0.176)

ICT Import×Income -0.002∗

×%University Educated Workers (0.001)
ICT Export×Income -0.003∗

×%University Educated Workers (0.001)
ICT Net Exp×Income 0.012
×%University Educated Workers (0.017)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of net job creation
rate, by share of university education workers and income level, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import
(ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographic controls which are
not displayed here, include number of firms (Firms), total population (Population), proportion of old people (Old),
female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people who received high
school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also
controlled. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in
2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.19 displays the IV results for the impacts of alternative automation technologies

on job creation rate, with the addition of an interaction term between ICT trade volumes,

skill shares and income level. While the IV estimates vary from -4.093 to -5.475 for

different automation trade volumes, they indicate that the reductions of net job creation

rate caused by additional $1000 ICT import per thousand labour force would become

4.09 percentage points, and those caused by additional $1000 ICT export per thousand

labour force would become 3.82 percentage points. Accounting for flattening effects of

skill shares, one percent rise of proportion of university educated workers would mitigate

net job creation losses by approximately 0.02 percentage points from ICT import, and

0.03 percentage points from ICT export. The relatively small robust standard errors re-

flect fairly stable magnitudes. The diminishing marginal returns of university education

across areas from different income groups are also notable, as the reduction of mitigation

effects by proportion of university educated workers from additional $1000 personal in-

come per capita is 0.002 for ICT import, and 0.003 for ICT export. These magnitudes are

relatively small compared with coefficients of alternative measures of automation tech-

nologies. Comparable trends are also observed for automation trade volumes in Table 28

of Appendix, in cases where income levels are not considered in Table 29 of Appendix,

and high school educated workers in Table 30 and Table 31 of Appendix.

In summary, the results above provide the evidence that technological changes represented

by automation technologies are biased towards high skilled labour force.

2.6.3 Structural Change and Net Job Creation

Lastly I go one step further, and discover various patterns of employment effects of au-

tomation technologies across 19 IFR sectors, including 6 broad sectors together with 13

manufacturing sub-sectors. In contrast to Equation 2.9, the econometric model is modi-

fied as follows:
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∆Jobit = γ′′0 + γ′′1∆AutomationExposureit

+ γ′′2∆AutomationExposureit × Industry Shareit

+ γ′′3∆AutomationExposureit × Industry Shareit × Incomeit0

+ δXi + αi + αt + εit

(2.10)

where Industry Shareit is defined as the ratio of value added for a given sector and over-

all GDP. Based on IFR classifications (International Federation of Robotics, 2021), these

six broad sectors include manufacturing, agriculture, mining, utility, construction, and

R&D activities. Following Acemoglu and Restrepo (2020), this study utilises a compre-

hensive dataset covering 13 sub-sectors within manufacturing industries, namely textiles;

wood and furniture; paper; pharmaceuticals and cosmetics; other chemical products; rub-

ber and plastic products (non-automotive); glass, ceramics, stone, mineral products (non-

automotive); basic metals; metal products (non-automotive); electrical or electronics; in-

dustrial machinery; automotive; and other vehicles. Combining six broad IFR sectors

with 13 dis-aggregated manufacturing sub-sectors, this section will explore the mecha-

nism through net job creations across 19 sectors. Estimation results regarding the impacts

of robotic usage on job destructions, job creations, and net job creations across six broad

IFR sectors are displayed in Table 2.20 to Table 2.22, and those regarding the impacts

of robotic usage on job destructions, job creations, and net job creations across 13 dis-

aggregated sub-sectors within manufacturing industries are displayed in Table 35 to Table

40.

The results regarding evolutionary effects on job destructions across six broad IFR sectors

are reported in Table 2.20. This study offers IV estimates of robotic exposure on job

destruction rate by different industries, and includes the interaction of robotic usage, GDP

share of each industry, and income level. Similarly, the IV results excluding the influence

of income level are reported in Table 32 of Appendix, and those regarding evolutionary
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Table 2.20: Job Destruction Dynamics and Robotic Penetration by Industry for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
Robot Penetration 0.981 1.582 1.455 1.128 18.509 1.793

(1.370) (1.988) (1.795) (1.578) (90.571) (2.200)
Robot Penetration 0.016
×%Manufacturing GDP (0.017)

Robot Penetration 0.008
×%Agriculture GDP (0.006)

Robot Penetration -0.004
×%Mining GDP (0.003)

Robot Penetration 0.021
×%Utility GDP (0.020)

Robot Penetration -0.365
×%Construction GDP (1.936)

Robot Penetration 0.036
×%R&D GDP (0.048)

Robot Penetration×Income -0.003
×%Manufacturing GDP (0.003)

Robot Penetration×Income -0.002
×%Agriculture GDP (0.001)

Robot Penetration×Income 0.000
×%Mining GDP (0.001)

Robot Penetration×Income -0.004
×%Utility GDP (0.004)

Robot Penetration×Income 0.094
×%Construction GDP (0.490)

Robot Penetration×Income -0.011
×%R&D GDP (0.009)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job destruction
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographic controls which are not displayed here, include
number of firms (Firms), total population (Population), proportion of old people (Old), female workers (Female),
Hispanic people (Hispanic), high skilled workers measured by people who received high school degree (High School)
and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also controlled. Geographic FE
refers to Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US
analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

effects on job destructions across other 13 sub-sectors within manufacturing industries

are reported in Table 35 and Table 36 of Appendix.
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As exhibited in Table 2.20, the point estimates for the interaction with GDP proportion of

all sectors are statistically insignificant even at confidence level of 10 percent38, implying

the impacts of robotic exposures on job destructions are widespread across regions with

different industrial comparative advantages. The estimated coefficients for other manufac-

turing sub-sectors in Table 35 and Table 36 of Appendix are also statistically insignificant,

which are consistent with those among the six broad IFR industries.

In contrast with the patterns of job destructions displayed in Table 2.20, the coefficients

listed in Table 2.21 exhibit regression results regarding job creations.

Following similar specifications in Table 2.20, Table 2.21 reveals different results. Treat-

ing all variables related to robotic penetration as endogenous variables, only the estimates

for manufacturing are statistically significant, reflecting the fact that the job creations

induced by productivity effects would be pronounced in the manufacturing sector. As

showed in Column 1, a rise of percentage of manufacturing GDP could reinforce decline

of job creation rate by 0.03 percentage points. Specifically, the positive coefficients for

interactions with both GDP share and income level exhibit that the importance of rein-

forcement effects from skill shares are diminishing. These strengthening effects tend to

depreciate with growing income level, suggesting that additional $1000 increase of per-

sonal income per capita would lower reinforcement effects of GDP proportion of man-

ufacturing on technological unemployment by 0.006 percentage points. This pattern is

consistent with the rule of diminishing marginal returns. Robustness checks excluding

influence of income levels are presented in Table 33 of Appendix, and the results are

insensitive to different specifications. Regression results in other 13 sub-sectors within

manufacturing industries, listed in Table 37 and Table 38 of Appendix, are consistent

with the previous evidence.

The results regarding dynamics of net job creations across six broad IFR sectors are re-
38The regression results for the interaction term between robotic penetration and percentage of value added in mining over

total GDP, listed in Table 32 of Appendix, is statistically significant under confidence interval of 5 percent, but the magnitudes
of the estimation coefficient is small, suggesting potentially zero effects.
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Table 2.21: Job Creation Dynamics and Robotic Penetration by Industry for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
Robot Penetration -2.238∗∗ -3.074∗ -2.780∗ -2.606∗∗ -27.660 -3.640∗

(1.039) (1.645) (1.500) (1.322) (135.736) (2.210)
Robot Penetration -0.028∗∗

×%Manufacturing GDP (0.011)
Robot Penetration -0.008
×%Agriculture GDP (0.010)

Robot Penetration 0.003
×%Mining GDP (0.004)

Robot Penetration -0.020
×%Utility GDP (0.020)

Robot Penetration 0.523
×%Construction GDP (2.892)

Robot Penetration -0.017
×%R&D GDP (0.089)

Robot Penetration× Income 0.006∗∗∗

×%Manufacturing GDP (0.002)
Robot Penetration×Income 0.002
×%Agriculture GDP (0.002)

Robot Penetration×Income -0.001
×%Mining GDP (0.001)

Robot Penetration×Income 0.004
×%Utility GDP (0.004)

Robot Penetration×Income -0.136
×%Construction GDP (0.731)

Robot Penetration×Income 0.013
×%R&D GDP (0.017)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job creation
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographic controls which are not displayed here, include
number of firms (Firms), total population (Population), proportion of old people (Old), female workers (Female),
Hispanic people (Hispanic), high skilled workers measured by people who received high school degree (High School)
and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also controlled. Geographic FE
refers to Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US
analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

ported in Table 2.22.

94



Table 2.22: Net Job Creation Dynamics and Robotic Penetration by Industry for US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
Robot Penetration -3.218∗ -4.655 -4.236∗ -3.733∗ -46.170 -5.434

(1.719) (2.836) (2.449) (2.172) (225.018) (3.318)
Robot Penetration -0.044∗∗

×%Manufacturing GDP (0.018)
Robot Penetration -0.016
×%Agriculture GDP (0.012)

Robot Penetration 0.007
×%Mining GDP (0.005)

Robot Penetration -0.041
×%Utility GDP (0.029)

Robot Penetration 0.889
×%Construction GDP (4.806)

Robot Penetration -0.053
×%R&D GDP (0.124)

Robot Penetration×Income 0.009∗∗

×%Manufacturing GDP (0.004)
Robot Penetration×Income 0.004
×%Agriculture GDP (0.003)

Robot Penetration×Income -0.001
×%Mining GDP (0.001)

Robot Penetration×Income 0.008
×%Utility GDP (0.006)

Robot Penetration×Income -0.230
×%Construction GDP (1.215)

Robot Penetration×Income 0.023
×%R&D GDP (0.021)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of net job creation
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographic controls which are not displayed here, include
number of firms (Firms), total population (Population), proportion of old people (Old), female workers (Female),
Hispanic people (Hispanic), high skilled workers measured by people who received high school degree (High School)
and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also controlled. Geographic FE
refers to Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US
analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Following similar specifications outlined in Table 2.20, Table 2.22 produces similar re-

sults. Treating all variables associated with robotic penetration as endogenous variables,
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only the estimates for manufacturing are statistically significant, reflecting the fact that

the job creations induced by productivity effects are particularly significant in the man-

ufacturing sector. As showed in Column 1, a rise of percentage of manufacturing GDP

could reinforce decline of net job creation rate by 3.22 percentage points. Strikingly,

the negative coefficients for interactions with both GDP share and income level exhibit

that the importance of mitigation effects from skill shares are diminishing. Such mitiga-

tion effects tend to depreciate with growing income level, reflecting that additional $1000

increase of personal income per capita would lower reinforcement effects of GDP propor-

tion of manufacturing on technological unemployment by 0.009 percentage points. This

evidence indicates that new vacancies created by productivity effects could absorb pro-

duction workers from manufacturing industries, and high income CZs with growing high

skilled task requirements would experience a slowdown of net job creations. Robustness

checks excluding influence of income levels are presented in Table 34 of Appendix, and

the results remain consistent across different specifications. Regression results in other

13 sub-sectors within manufacturing industries, detailed in Table 39 and Table 40 of Ap-

pendix, are consistent with the aforementioned findings.

In addition, I also present regression results listed in Tables 2.23 to 2.25, which exhibit

estimates regarding changes in job destructions, job creations and net job creations. These

changes are triggered by ICT import, ICT export, and ICT net export, as alternative mea-

sures of automation technologies. Since net job creation dynamics are primarily observed

in the manufacturing industry, the analysis will centre on the systematic difference be-

tween manufacturing sector and non-manufacturing sector, and consider the percentage of

manufacturing GDP. I then add interaction term between alternative exposure of automa-

tion technologies and proportion of manufacturing in overall GDP, as well as interaction

terms among alternative exposure of automation technologies, proportion of manufactur-

ing in overall GDP and personal income per capita. Results concerning automation trade

volumes such as import, export, net export are presented in Table 41 to Table 45 of Ap-
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Table 2.23: Job Destruction Dynamics and ICT Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Destruction Rate
ICT Import 0.028

(0.037)
ICT Export 0.066

(0.086)
ICT Net Exp -0.050

(0.064)
ICT Import 0.002
×%Manufacturing GDP (0.002)

ICT Export 0.004
×%Manufacturing GDP (0.004)

ICT Net Exp -0.003
×%Manufacturing GDP (0.004)

ICT Import×Income -0.000
×%Manufacturing GDP (0.000)

ICT Export×Income -0.001
×%Manufacturing GDP (0.001)

ICT Net Exp×Income 0.001
×%Manufacturing GDP (0.001)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of job destruction rate and proportion of GDP by industry, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import (ICT
Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Since net job creation dynamics are only
pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other demographic
controls which are not displayed here, include number of firms (Firms), total population (Population), proportion of
old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people
who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China
and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level is measured using personal
income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

pendix. Evidence excluding the impacts of income levels are displayed in Table 42 to

Table 46 of Appendix.

All the estimates listed in Table 2.23 lack statistical significance. This reflects the fact

that technological job losses are pervasive across regions with different income levels,

irrespective of their economic development, proxied by personal income per capita, and
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industrial specialisations, proxied by percentage manufacturing in overall GDP. These

trends remain consistent with alternative measures of automation technologies.

Table 2.24: Job Creation Dynamics and ICT Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.058∗∗∗

(0.021)
ICT Export -0.136∗∗∗

(0.041)
ICT Net Exp -0.101∗∗

(0.042)
ICT Import -0.003∗∗

×%Manufacturing GDP (0.001)
ICT Export -0.006∗∗∗

×%Manufacturing GDP (0.002)
ICT Net Exp 0.006∗∗

×%Manufacturing GDP (0.003)
ICT Import×Income 0.001∗∗

×%Manufacturing GDP (0.000)
ICT Export×Income 0.001∗∗∗

×%Manufacturing GDP (0.000)
ICT Net Exp×Income -0.001∗∗

×%Manufacturing GDP (0.001)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of job creation rate and proportion of GDP by industry, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import (ICT Import),
ICT export (ICT Export), and ICT net export (ICT Net Exp). Since net job creation dynamics are only pronounced
for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other demographic controls which
are not displayed here, include number of firms (Firms), total population (Population), proportion of old people (Old),
female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people who received high
school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also
controlled. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in
2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In contrast with the situation of job destructions displayed in Table 2.23, the evidence

listed in Table 2.24 exhibits regression results regarding job creations.

Table 2.24 introduces interaction terms between alternative exposure of ICT trade vol-
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umes and manufacturing GDP shares, and those between ICT trade volumes, manufactur-

ing GDP shares and income level. Depending on the automation trade volume measure

utilised, the IV estimates range from -0.058 to -0.136, revealing that the reductions of

job creation rate caused by additional $1000 ICT import per thousand labour force would

become 0.06 percentage points, those caused by additional $1000 ICT export per thou-

sand labour force would become 0.14 percentage points, and those caused by additional

$1000 ICT net export per thousand labour force would become 0.10 percentage points.

Accounting for heterogeneous effects of manufacturing GDP shares, one percent rise of

proportion of manufacturing in overall GDP would mitigate job creation losses by ap-

proximately 0.003 percentage points from ICT import, 0.006 percentage points from ICT

export, and 0.006 percentage points from ICT net export. The relatively small robust stan-

dard errors reflect quite stable magnitudes. The diminishing marginal returns of manufac-

turing power across areas from different income groups are not notable. This is evident in

the near-zero effects of rising income per capita on job creation losses from ICT import,

ICT export, ICT net export across manufacturing sector and non-manufacturing sector.

Robustness checks about automation trade volumes, including automation import, au-

tomation export, and automation net export, are exhibited in Table 43. Those excluding

influence of income levels are displayed in Table 44. They showed that the results are

insensitive to different specifications.

Finally, I also present the results concerning regression outcomes of alternative measures

of automation technologies on changes of net job creations in Table 2.25.

Table 2.25 includes interaction terms between alternative exposure of ICT trade volumes

and manufacturing GDP shares, as well as those between ICT trade volumes, manufac-

turing GDP shares and income level. Though with various choices of automation trade

volumes, the IV estimates range from -0.086 to -0.202, revealing that the reductions of

net job creation rate caused by additional $1000 ICT import per thousand labour force
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Table 2.25: Net Job Creation Dynamics and ICT Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -0.086∗∗

(0.043)
ICT Export -0.202∗∗

(0.096)
ICT Net Exp 0.151∗

(0.081)
ICT Import -0.005∗∗

×%Manufacturing GDP (0.002)
ICT Export -0.009∗∗

×%Manufacturing GDP (0.004)
ICT Net Exp 0.009∗∗

×%Manufacturing GDP (0.004)
ICT Import×Income 0.001∗∗

×%Manufacturing GDP (0.000)
ICT Export×Income 0.002∗∗

×%Manufacturing GDP (0.001)
ICT Net Exp×Income -0.002∗∗

×%Manufacturing GDP (0.001)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of net job creation rate and proportion of GDP by industry, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Explanatory variables include ICT import (ICT
Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Since net job creation dynamics are only
pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other demographic
controls which are not displayed here, include number of firms (Firms), total population (Population), proportion of
old people (Old), female workers (Female), Hispanic people (Hispanic), high skilled workers measured by people
who received high school degree (High School) and bachelor’s degree (Bachelor), and import volumes from China
and Mexico are also controlled. Geographic FE refers to Census Divisions. Income level is measured using personal
income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

would become 0.09 percentage points, those caused by additional $1000 ICT export per

thousand labour force would become 0.20 percentage points, and those caused by addi-

tional $1000 ICT net export per thousand labour force would become 0.15 percentage

points. Accounting for heterogeneous effects of manufacturing GDP shares, one percent

rise of proportion of manufacturing in overall GDP would mitigate net job creation losses
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by approximately 0.005 percentage points from ICT import, 0.009 percentage points from

ICT export, and 0.009 percentage points from ICT net export. The relatively small robust

standard errors reflect quite stable magnitudes. The diminishing marginal returns of man-

ufacturing power across areas from different income groups are not notable. The results

indicate that the rising income per capita would have almost significantly zero effects on

job creation losses from ICT import, ICT export, and ICT net export across manufacturing

sector and non-manufacturing sector.

Robustness checks about automation trade volumes, including automation import, au-

tomation export, and automation net export, are exhibited in Table 45. Those excluding

influence of income levels are displayed in Table 46. They showed that the results remain

consistent across different specifications.

To further support the role of structural change and business dynamics, the econometric

model is modified as follows:

∆Jobijt =γ
′′
0 + γ′′1∆RobotExposureijt + γ′′3∆RobotExposureijt × Incomeit0

+ δXi + αi + αt + εit

(2.11)

where j refers to 19 IFR sectors (International Federation of Robotics, 2021), including 6

broad industries and 13 sub-sectors within manufacturing industry.

Figure 2.6 provides a visual representation of IV estimates in Equation 2.11. Following

Oberfield and Raval (2021), each panel shows results for six broad industries, where the

horizontal bars represent 90% confidence intervals for the coefficient estimates. Panel

A documents that robots are slowing down the net job creations most strongly in manu-

facturing, with limited effects observed in other sectors. Likewise, Panel B also reveals

mitigation effects of rising income level across industries. This evidence suggests that

new job vacancies created by productivity effects could absorb production workers from
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Figure 2.6: Net Job Creation Effects of Robots by Industries, 2000-2019

Notes:
The graph presents IV estimates of the effects of robotic penetration on changes of net job creation rate for six broad IFR sectors
(International Federation of Robotics, 2021), where robotic penetration computed using operational stocks of robots from 8
European countries is used as the instrument. Panel A reports coefficient estimates for γ′′

1 in Equation 2.10 and 90% confidence
intervals for these estimates, and Panel B exhibits corresponding information for γ′′

2 in Equation 2.10. Other demographics
include number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions.

manufacturing industries, and high income CZs with growing high skilled task require-

ments would witness a slowdown of net job creations.

Turning to results within manufacturing, Figure 2.7 displays the IV estimates across 13

sub-sectors, where the outcome variable refers to net job creation rate in production sec-

tors. The cross industry variation appears to be substantial, as automation technologies

tend to affect employment across manufacturing sub-sectors in quantitatively and quali-

tatively different extents. Similar patterns in manufacturing net job creations are mainly

driven by robotic usage in glass, ceremics, stone, mineral products; and pharmaceuticals,

cosmetics, electrics. These findings lend further weight to a growing body of research,

suggesting that technological changes could induce shifts in employment composition

within sectors (Autor et al., 2015).
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Figure 2.7: Net Job Creation Effects of Robots Within Manufacturing, 2000-2019

Notes:
The graph presents IV estimates of the effects of robotic penetration on changes of net job creation rate for 13 IFR sub-sectors
within manufacturing (International Federation of Robotics, 2021), where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Panel A reports coefficient estimates for γ′′

1 in Equation 2.10 and
90% confidence intervals for these estimates, and Panel B exhibits corresponding information for γ′′

2 in Equation 2.10. Other
demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions.

In all instances, the results emphasise the crucial role of net job creations in heterogeneous

effects of automation technologies on labour market outcomes. Moreover, they highlight

that technical updating is biased against unskilled workers and those in manufacturing

industries.

2.7 Summary

Automation seems to influence employment differently depending on the income level

of a given country or region. Leveraging comprehensive US state level and commuting

zone level data between 2000 and 2019, this chapter provides empirical analysis regard-

ing the impacts of automation technologies on employment rate. It further evaluates the

mechanisms underpinning these impacts, focusing on the responses of workers with dif-
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ferent skill levels and from different industries, under forces of displacement effects and

productivity effects.

For baseline empirical results, I find that rising penetration of automation technologies, in-

cluding industrial robots, ICT trade volumes and automation trade volumes, corresponds

to the reductions in employment rate across all commuting zones. The magnitudes of neg-

ative employment responses are larger and more significant in low- and middle-income

areas, implying that displacement effects are dominant in the process of technological

updating. However, higher income levels may mitigate these effects, suggesting that pro-

ductivity effects can help counteract some of the welfare deteriorations by displacement

effects. Overall, the rise of 1 unit robot per thousand labour force could generate job

losses by 0.67 percentage points. This coefficient is similar to the estimated employment

reductions of approximately 0.45 by Acemoglu and Restrepo (2020)39. The results for al-

ternative measures of automation technologies using ICT and automation trade volumes,

are also consistent with other evidence using automation patent data (Acemoglu and Re-

strepo, 2021).

Besides the main hypotheses, this chapter also examines the mechanisms behind such

heterogeneous effects, using a simple net job creation channel. Following the adoption of

automation technologies, job displacement is observed across all regions. In high income

CZs, new vacancies are created in other non-automated sectors, where high skilled labour

forces are required in most cases. While relatively lower percentage of skilled workers

in low and middle CZs limits opportunities for such job creations, leading to substantial

employment losses. On average, a rise of robotic stocks per thousand workers could lower

the job creation rate by 1.35 percentage points, and the impacts are also significantly neg-

ative for ICT and automation trade volumes. The growing income levels could mitigate

job losses by 0.15 percentage points in the net job creation rate. As a consequence, grow-
39The reason why the magnitudes of the coefficient in this thesis is larger than Acemoglu and Restrepo (2020), is that their

analysis is based on sample period of 1990-2007. It is uncovered that after the financial crisis in 2008-2009, the rate of techno-
logical replacement is accelerating (Sachs and Kotlikoff, 2012; Sachs et al., 2015; Brynjolfsson and Mitchell, 2017).
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ing income levels could surpress the absolute magnitudes of negative employment effects,

and reduce the welfare deterioration to some extent. Interestingly, such technical changes

are biased towards high skilled workers, and more prevalent in manufacturing sectors.

In this part, I also point out some challenges and future directions for US analysis.

Firstly, there are still some caveats regarding identification threats presented before. This

chapter aligns with the majority of existing literature, and obtains exogenous shocks

based on automation adoptions in other European countries. It adopts shift share IV ap-

proach, assuming that European automation could only affect US employment exclusively

through US automation. Although the robotic densities of sample European countries are

all above US counterparts, the technological spillover from US to Europe remains a sig-

nificant confounding factor. Therefore, the following chapter will explore alternative ex-

ogenous shocks, based on advanced econometric methods, to address endogenous issues

such as spillover effects.

Secondly, utilising comprehensive datasets to select a suitable indicator of automation

technologies is challenging. Early works often focus on general measures of technolog-

ical updating such as TFP (total factor productivity) growth and patent awards across

various countries (Autor and Salomons, 2018; Autor et al., 2020). But they failed to dif-

ferentiate between productivity growth from automated and non-automated sectors. This

chapter follows recent literature such as Acemoglu and Restrepo (2020), which utilised

data from International Federation of Robotics (2021) to perform empirical analysis. It

contains counts of robotic stocks across 19 industrial sectors in the US from 2000 to 2019,

In addition, I adopt data about US ICT import and export from bilateral trade statistics

of Comtrade database (United Nations, 2020), to obtain a comprehensive picture of the

relationship between automation technologies and employment. However, this approach

may encounter difficulties in cross country comparisons, due to potential variations in

robot quality across different regions. Relying on novel datasets, patent awards about

105



automation technologies, as discussed by Autor et al. (2020); Bloom et al. (2015), could

represent a more reliable indicator for the development of automation technologies in

future research.

Overall, empirical analysis based on US contexts only shows that differential employ-

ment responses to automation technologies work in developed countries. Considering the

status of the US as a leading global economy, it is essential to examine whether these

findings can be generalised to other developed countries at similar stages of economic

development. Besides, whether the applications in developed countries also work in other

economies, especially low income countries, or regions with different institutional set-

tings, is under investigations. Therefore, the following chapter will employ a cross coun-

try dataset to perform further analysis.
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Chapter 3

Cross Country Analysis

So far, this thesis has examined the employment effects and net job creations related to au-

tomation technologies across US regions. In this stage of analysis, this thesis will discuss

implications for cross country evidence. Guided by the conceptual framework outlined in

Chapter 1, the research question is to explore the impacts of automation technologies on

employment rate. In addition, it evaluates the mechanisms behind heterogeneous effects

across regions from different income groups.

3.1 Introduction

This section introduces cross country analysis, with a focus on the motivation, hypothesis,

and contribution of this chapter.

3.1.1 Motivation

The reasons why I plan to perform cross country analysis are as follows.

Firstly, as established in Chapter 1, understanding the impacts of automation technolo-

gies on labour market outcomes at all levels of analysis, including individual workers,

skill groups, metropolitan areas, and entire countries, is important. Chapter 2 offered in-

107



sights based on evidence from US, the most advanced economy all over the world, and

focused on state level data and commuting zone level data. This chapter expands the scope

by presenting cross country evidence, and performs regression analysis across countries

from different income groups. Therefore, cross country analysis will shed light on the

heterogeneous effects of automation technologies on employment rate based on macro

level evidence.

Secondly, empirical analysis based on US contexts shows that the differential employ-

ment responses from automation technologies are relevant to advanced economies. As

suggested in Chapter 2, it is essential to examine whether US results can be generalised to

other economies, particularly low income countries with lower adoptions of automation

technologies, or regions with different institutional settings. Stylised facts in Section 3.3

reveal regional variations about the impacts from automation technologies on labour mar-

ket outcomes. Therefore, research exploiting technological unemployment across coun-

tries at different stages of economic development, is interesting.

Thirdly, evidence of heterogeneous employment effects from automation technologies

can be observed in European countries (Acemoglu et al., 2023; Antonczyk et al., 2018;

Goos et al., 2009). However, there is only limited empirical works regarding techno-

logical unemployment in emerging economies. This chapter aims to address this gap

in the literature1. In addition, the World Bank (2021) provides subjective classification

of economies from different income groups, and offers detailed information about the

thresholds between these income groups. This classification system facilitates the anal-

ysis of heterogeneous effects of automation technologies on employment across regions

from different income groups.
1Detailed information about the contributions to existing literature will be illustrated in Subsection 3.1.3.
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3.1.2 Hypothesis

The hypotheses are similar to those in Chapter 1.

Hypothesis 1: Across all the countries, the correlation between automation technologies

and employment rate tends to become negative.

Hypothesis 2: In high income countries with a large proportion of high skilled workers,

automation technologies are likely to have positive impacts on employment rate. While

in low and middle income economies with fewer high skilled workers, there is a negative

correlation between automation adoptions and employment responses.

Hypothesis 3: A key determinant behind heterogeneous employment effects is the skill

proportion. The percentage of high skilled labour force is higher in advanced economies,

and lower in low and middle income countries.

Hypothesis 4: Differential employment dynamics from automation technologies, as high-

lighted in Hypothesis 2, are more pronounced in countries at higher stage of economic

development such as OECD countries, due to concentration of manufacturing activities.

The following section outlines the contributions of this chapter in relation to existing gaps

in the literature.

3.1.3 Contribution

This chapter contributes to three branches of literature on technology, skills, and employ-

ment, including heterogeneous employment effects from technical changes, identification

strategies based on ageing society, and the regional variations of structural transforma-

tions.

For the first main contribution, this chapter connects with the vast literature on the het-
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erogeneous employment effects across countries from different income groups. Several

papers have sought to develop general measures of technological updating such as TFP

(total factor productivity) growth and patent awards with US regions or firms (Autor and

Salomons, 2018; Autor et al., 2020). However, there is only limited evidence on tech-

nological unemployment across countries from different income groups, due to lack of

unified measure of technical updating. This chapter aims to address this gap by employ-

ing two complementary indicators, namely robotic density calculated by robotic stocks

per thousand labour force, and ICT intensity measured by ICT expenditure per thousand

workers. Therefore, thesis thesis provides novel evidence by analysing the impacts of

automation technologies on job replacement and productivity growth originating from

automated sectors, based on cross country evidence.

For the second main contribution, this chapter contributes to a contemporary literature

about identification issues when exploring how automation technologies substitute for

existing work, adding to a developing body of literature. This research aligns with several

existing papers that use automation adoptions in other advanced economies as instrumen-

tal variables for dynamics of automation technologies in a specific country (Acemoglu

and Restrepo, 2020; Dauth et al., 2021; Giuntella et al., 2022), and those utilising event

studies based on patent policy shocks (Bloom et al., 2015). In contrast to these studies,

this chapter introduces a method to identify automation technologies across countries. I

extend the pioneering work by Acemoglu and Restrepo (2021), which estimated the rela-

tionship between ageing trends and adoption of automation. On the one hand, evolution

of demographic structures can solely be determined by birth and death rates, and cannot

be intervened by short-term government policies. On the other hand, rising wages for

manufacturing workers in ageing societies, along with decline of participation rate, will

finally provide great opportunities for automation. This approach enables us to better

identify the role of automation technologies in technological unemployment.

For the third main contribution, analysis on regional variations of technological unem-

110



ployment also complements a vast body of literature on technological updating and struc-

tural changes. Buera et al. (2021); Herrendorf et al. (2014) and others discovered that

the value added in manufacturing sectors is higher in advanced economies. Based on

heterogeneous analysis for OECD and non-OECD countries, this chapter attributes this

phenomenon to different GDP shares of manufacturing sectors.

Overall, following similar structure as Chapter 2, I plan to perform regression analysis

based on cross country data.

3.2 Data

This section presents data sources across countries, including labour market outcomes

such as employment rate and demographic characteristics, as well as automation adop-

tions.

3.2.1 Labour Market Outcomes

For cross country analysis, detailed information of macro economic indicators on 216

countries stems from World Bank (2021) for the period 1993-2019. The employment

rate is measured as the ratio of employed workers to total population with the age of

15 and above. This age threshold aligns with the definition of working-age labour force

(Acemoglu and Restrepo, 2021). To further investigate the determinants of labour market

outcomes, for each country, I observe employment rate alongside factors such as gender

and industry composition2, GDP per capita, total population, total labour force, proportion

of adults and female workers, and regions3.

Based on GNI per capita in current USD, the world’s main economies are categorised
2Since industry classifications vary across different economies, I only obtain employment and GDP based on three broad

sectors, namely agriculture, manufacturing, and service.
3Based on geographic locations, the sample countries are grouped into 7 groups, including East Asia & Pacific, Europe &

Central Asia, Latin America & Carribean, Middle East & North Africa, North America, South Asia, and Sub-Saharan Africa.
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into four income groups, including low income countries, lower middle income countries,

upper middle income countries, and high income countries4. This subjective classification

allows for an exploration of heterogeneous effects behind regions from different income

groups.

Besides arbitrary classification of income groups, in a more general model, I also ex-

plore the impacts of the interaction between automation technologies and income level,

to investigate gradual shifts in employment patterns. This generalised approach aims to

connect findings from US evidence, cross country analysis, and individual context based

on UK data, as direct comparisons between US commuting zones and different countries

are difficult to establish5.

Other demographic controls include total population, proportion of age, gender, GDP, and

regions. The detailed descriptions of control variables are as follows: For demographic

structures, I obtained proportion of old workers who are above 65 years old, female work-

ers, and total population, to control for other determinants of employment status. GDP

(Gross Domestic Products) is measured in current US dollars, to control for economic

growth. Since industry classifications vary across different economies, employment and

GDP data are based on three broad sectors, namely agriculture, manufacturing, and ser-

vice. To identify geographic regions, the sample countries are categorised into 7 groups,

including East Asia & Pacific, Europe & Central Asia, Latin America & Carribean, Mid-

dle East & North Africa, North America, South Asia, and Sub-Saharan Africa.

Among all the countries covered by International Federation of robots and the Total Econ-

omy Database, I exclude the data about Venezuela, as the employment information is not
4The calculation of GNI per capita is based on the World Bank Atlas method (World Bank, 2021). For instance, the GNI

per capita threshold for low and lower middle income economies in 2020 is $1,045, and the threshold between lower and upper
middle income economies is $4,095; economies with a GNI per capita above $12,696 are defined as high income economies.

5In other words, it is unclear whether the state with lowest income per capita in US is comparable to the country with lowest
GNI per capita all over the world or not, therefore, it tends to become less persuasive to generalise US evidence to countries from
low income groups. But using interaction term between automation technologies and income level helps to solve this problem
to some extent, as we only pay attention to employment effects of automation technologies with respect to rising income levels,
regardless of arbitrary classification of income groups.
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documented in World Bank (World Bank, 2021). In addition, data for countries estab-

lished after 2000, such as South Sudan and East Timor, were removed, as it is hard to

make the comparisons with the regression results in the 1990s.

In addition, I follow Acemoglu and Restrepo (2021), and take other factors into accounts

in data cleaning process. Firstly, I exclude the data from Japan and Russia, due to ob-

served adjustments in their classification system of robots6. Secondly, other countries

such as Belarus, Bosnia and Herzegovina, North Korea, Puerto Rico, and Uzbekistan

were removed due to the absence of key covariates. Because most of these countries are

classified as low and middle income regions in World Bank, the truncated data structure

would lead to biased estimation, and the results primarily reflect the performance of high

and middle income countries. Thirdly, oiled-rich economies like Iran, Kuwait, Oman,

Saudi Arabia, and United Arab Emirates were excluded. These countries are classified as

high income countries because of high capacity of natural resources, rather than advanced

technologies. Moreover, their demographic structures are heavily influenced by immigra-

tion, as the number of native workers is insufficient to satisfy the labour demand from

oil industry. Consequently, most of them do not have high adoption of automation tech-

nologies. Finally, the regression analysis is conducted using a sample of 108 economies7

during the period of 1993-2019.

For this chapter about cross country evidence, I will only focus on generalised version

of econometric model, and adopt interaction term between automation technologies and

GNI per capita. To facilitate cross country comparisons, all the variables are measured in

currency values of current US dollars.
6Acemoglu and Restrepo (2021) used the example from Japan to illustrate the problem of reclassification process. Before

year 2000, the IFR regarded dedicated machinery as part of operational stocks of robots, but they did not continue to do so after
2000, making the data about robotic adoptions not comparable over time.

7For analysis about ICT intensities, the number of economies is 108, while for analysis about robotic adoption, the number
of economies is 65, as the data about robotic usage is not recorded for some low income countries.
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3.2.2 Automation Technologies

To obtain a comprehensive picture of the relationship between automation technologies

and employment, this study integrates the labour market dataset with several sources of

data on automation technologies, namely robotic usage and ICT intensity, from 2000 to

2019.

In this research, I employ two complementary measures of automation technologies,

namely robotic density and ICT (Information and Communication Technologies) inten-

sity, based on the datasets from International Federation of Robotics (2021), United Na-

tions (2021) and The Conference Board (2021).

The primary data source on robotic usage is International Federation of Robotics (2021),

covering six broad industrial sectors over 72 countries between 1993 and 2019, based on

yearly surveys of global robot manufacturers8. Those six broad sectors include manu-

facturing, agriculture, mining, utility, construction, and R&D activities. For detailed in-

dustry level analysis, I add data about several sub-sectors under manufacturing industry.

These sub-sectors are textiles, wood and furniture, paper, pharmaceuticals and cosmetics,

other chemical products, rubber and plastic products (non-automotive), glass ceramics

stone mineral products (non-automotive), basic metals, metal products (non-automotive),

electrical or electronics, industrial machinery, automotive, other vehicles, and all other

manufacturing branches. For empirical analysis, the main explanatory variable is com-

puted using operational stocks of robots per thousand labour force. Robustness checks

using installations of robots per thousand labour force yield qualitatively similar results,

implying that regression results are insensitive to alternative measures of robotic usage.

Since International Federation of Robotics (IFR) does not report data on industry break-
8According to Dauth et al. (2021), ”Single-purpose machines such as elevators or transportation bands are, by contrast, no

robots in this definition, as they cannot be re-programmed to perform other tasks, require a human operator, or both.” Hence, it
is assumed that robotic adoptions across countries which were documented by International Federation of Robotics (2021) share
no systematic differences, and all of them could replace routine tasks previous performed by production workers.
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downs regarding robot stocks until 2004 (Acemoglu and Restrepo, 2020), it is necessary to

redistribute unclassified components to each industry according to share of robotic stocks.

However, this reallocation was not conducted for the cross country analysis for two pri-

mary reasons: First, this procedure would exceed my computational capacities, and the

results are expected to be qualitatively comparable, particularly for emerging market and

developing economies from low and middle income groups. Second, the majority of the

cross country analysis are based on the time period 2004-2019, and the unclassified com-

ponents have already been categorised into six IFR broad sectors or three industries in

World Bank (2021), namely agriculture, manufacturing, and services.

The second measure of automation technologies, namely ICT intensity, is motivated

by Acemoglu and Restrepo (2021); Graetz and Michaels (2017, 2018); Michaels et al.

(2014); Kim et al. (2021). These previous articles emphasise the substitutability between

ICT and low skilled workers. Bearing this motivation in mind, I complement the IFR data

with ICT capital data from Total Economy Database by The Conference Board (2021),

which could provide the share of ICT capital compensation in GDP over 125 countries

between 1993 and 2019. To attain data on actual amount of ICT capital, I multiply per-

centage of ICT capital compensation by GDP, measured in current US dollars. The ICT

intensity is then defined by ICT capital values per thousand total labour force.

Unless otherwise stated, all the estimates reported in this chapter, are weighted by a coun-

try’s total labour force in 2019, the final year covered in the IFR data. To further inves-

tigate the determinants of labour market outcomes, I also leverage data on employment

rate by gender and industry groups. In certain specifications, I instrument the adoption of

automation technologies using shift share analysis, based on robotic density and ICT in-

tensity by industry, along with the exogenous demographic shocks related to aging trends.

The shocks are defined as the ratio of the old workers and middle aged workers from

World Bank (2021).
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3.3 Stylised Facts

This section presents several facts regarding technological changes and labour market

outcomes across countries over the period of analysis9.

The relationship between adoption of automation technologies and employment for all

countries are presented in Figures 1 and 7, separately for robotic usage and ICT invest-

ment. It is clear that both robotic density and ICT intensity10 are economically significant

and negatively correlated with employment rate. This suggests that the growth of automa-

tion technologies tends to reduce the employment across countries. These results remain

consistent even when employing alternative measures of automation technologies, such

as operational stocks of robotic usage per ten thousand population, robotic installations

per ten thousand labour force, robotic installations per ten thousand population, and ICT

investments per ten thousand population. All these measures support the hypothesis of

technological unemployment across economies.

However, evidence from the sample of OECD countries displayed in Figures 2 and 8a

reveal positive correlation between automation technologies and employment rate. This

highlights the fact that the replacement of the labour force by automation technologies

does not appear to hold true in developed countries11, and those developing countries

located in upper middle income group. It seems that productivity effects are likely the

dominating factor in these wealthier countries.
9Since there are too many graphs in this section, I only put the most important two graphs (Figure 3.1 and Figure 3.2) at the

end of this section, and the rest can be found in the Appendix.
10Due to large magnitudes for country level robotic data, here the denominator of robotic density is ten thousand total labour

force, while for US evidence in Chapter 2, the denominator becomes one thousand working population. ICT intensity is computed
following the same procedure.

11According to polarisation evidence in the context of EU and US (Michaels et al., 2014), countries and industries with fast
ICT growth are likely to witness demand shifts from workers with intermediate education level to college educated workers,
and have no clear effects on the least educated groups, causing less job displacement. Moreover, ICT’s overall contribution to
productivity growth is higher relative to robots (Graetz and Michaels, 2018), implying less labour inputs required for the same
amount of output. In other words, adoption of conventional ICT appears to boost economy through rising TFP instead of job
creations. Driven by low levels of substitutability and complementarity, the graph for OECD countries reveals a less significant
relationship between ICT intensity and employment rate.
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These patterns observed in both the full sample of countries and economically advanced

economies, raise the interests about the potential for heterogeneous effects of automation

technologies on employment rate, across countries from different income groups.

Therefore, I switch my attention to examine the relationship between automation tech-

nologies and employment rate in economically advanced countries. Similarly, the pattern

of negative employment responses does not seem to hold true in countries from high in-

come group. As exhibited in Figures 3 and 8b, the relationship between robotic density

and employment rate in advanced economies are significantly positive. However, the

magnitudes of the slope between ICT intensity and employment rate are slightly lower,

implying less complementarity between ICT investments and labour inputs. Therefore,

expanding adoption of automation technologies may complement human labours to some

extent, and does not necessarily lead to employment reductions.

Figures 4 and 9a turn to unpack the association for low and lower middle income coun-

tries12. I find that the employment rate is negatively associated with automation technolo-

gies measured by robotic density and ICT intensity, and the coefficients are statistically

significant. These findings remain robust even under alternative measures of automation

technologies, such as operational stocks of robotic usage per ten thousand population,

robotic installations per ten thousand labour force, robotic installations per ten thou-

sand population, and ICT investments per ten thousand population. These all support

the hypothesis that technological unemployment is prevalent across countries from low

and middle income groups, with more substantial magnitudes of job losses induced by

displacement effects.

Negative and similar results are also observed in countries from upper middle income

group presented in Figures 5 and 9b, and those from middle income group presented in

Figures 6 and 10. These results are consistent with the hypothesis that job destructions
12I do not look at results only for low income countries, due to limited observations available for robotic usage and ICT

investments.
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driven by displacement effects have outweighed job creations from productivity effects.

This suggests that new job vacancies are not able to complement job losses in low and

middle income countries.

One concern which may lead to measurement errors is the presence of time trends. The

linear progression of automation technologies and employment rate may cause pseudo

correlations. Therefore, I also provide evidence about the relationship between the resid-

uals of robotic densities, ICT intensities, and employment rate, after controlling for macro

shocks and geographic specific factors, over the period of analysis. The main measure of

employment is derived through a two-step process. First, employment is regressed on

year dummies, region dummies, and the interaction terms between time fixed effects and

geographic fixed effects. Then, the resulting residual outcome variables are normalised

between 0 and 100. The measure of robotic adoptions is obtained through a similar pro-

cedure. Robotic densities are regressed on year dummies, region dummies, and the inter-

action terms between time fixed effects and geographic fixed effects. The residuals from

this regression are then normalised to a scale of 0 to 100. The measure of ICT usage fol-

lows a similar approach. ICT intensities are regressed on year dummies, region dummies,

and the interaction terms between time fixed effects and geographic fixed effects, with the

residuals normalised to a scale of 0 to 100.

The relationship between adoption of automation technologies and employment across

all countries is presented in Figure 3.1. It is clear that the developments of both robotic

density and ICT intensity are economically significant and negatively correlated with em-

ployment dynamics. This suggests that the growth of automation technologies may be as-

sociated with declining employment across countries. However, evidence from the sample

of OECD countries displayed in Panel B and Panel D reveals positive correlation between

variations of automation technologies and residual employment. This finding suggests

that, the notion of automation technologies displacing the labour force, may not hold true
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in developed countries13, and productivity effects appear to be the dominant effects in

these wealthier countries.

Shifting focus to different income groups, Figure 3.2 evaluates the association between

automation and employment across various economic contexts. In advanced economies,

the relationship between robotic density and employment rate after accounting for macro

shocks is significantly positive. Whereas, the magnitudes of the slope between varia-

tions of ICT intensity and employment rate are slightly lower, implying a weaker comple-

mentary relationship between ICT investments and labour inputs. Therefore, expanding

automation adoption may complement human labours to some extent, and does not nec-

essarily lead to employment reductions.

While for countries from low and middle income groups exhibited in Panels B and D of

Figure 3.2, I find that the employment dynamics is negatively associated with automation

technologies, and the coefficients are statistically significant. These results are consistent

with the hypothesis that job destructions have outweighed job creations in low and middle

income countries.

13According to polarisation evidence in the context of EU and US (Michaels et al., 2014), countries and industries with fast
ICT growth are likely to witness demand shifts from workers with intermediate education level to college educated workers,
and have no clear effects on the least educated groups, causing less job displacement. Moreover, ICT’s overall contribution to
productivity growth is higher relative to robots (Graetz and Michaels, 2018), implying less labour inputs required for the same
amount of output. In other words, adoption of conventional ICT appears to boost economy through rising TFP instead of job
creations. Driven by low levels of substitutability and complementarity, the graph for OECD countries reveals a less significant
relationship between ICT intensity and employment rate.
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Informal employment, particularly in low and middle income countries, is another factor

that may contribute to measurement errors. As suggested by Elgin et al. (2021), workers

in informal sectors constitute about 70 percent of total employment in emerging market

and developing economies. This is in stark contrast to developed countries, where ad-

vanced measurement tools and precise statistical methods result in a considerably smaller

informal employment sector. Therefore, I also present employment outcomes for formal

and informal sectors in Figures 11 through 12. The results demonstrate a slightly positive

relationship with respect to employment in formal sectors, which specialise in more capi-

tal intensive tasks. This suggests that the overall negative relationship in emerging market

and developing economies, is primarily driven by employment forces from informal sec-

tors, as the majority of labour force in countries from low and middle income group are

performing routine tasks associated with labour intensive products.

3.4 Econometric Model

In this Section, I establish the empirical implication using cross country data, and in-

vestigate heterogeneous effects based on countries from different income groups. The

specification relating automation technologies and employment rate is constructed as fol-

lows:

Employmentit = η0 + η1AutomationExposureit

+ η2AutomationExposureit × Incomeit

+ δXi + αi + αt + εit

(3.1)

In this study, Employmentit is employment rate for country i in year t, measured by the

ratio of employment to population who are above 15 years old. AutomationExposureit

is some proxies of exposures to automation technologies, including robotic density cal-
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culated by operational stocks of robots per thousand workforce, and ICT intensity calcu-

lated by ICT capital values per thousands of full time workers. Incomeit refers to GNI

per capita in country i at year 201914. Regressions are weighted by the amount of the

total labour force in 1993, the initial year of IFR dataset, to account for endogenous shifts

in employment15. Certain specifications include other covariates Xi, which capture ge-

ographic fixed effects represented by region dummies, and demographic characteristics

such as population and GDP. The parameter δ are K × 1 vectors, where K is the num-

ber of time-varying variables capturing the aforementioned demographic characteristics.

Finally, εit is a heteroscedastic error term.

Other demographic controls include total population, proportion of age, gender, GDP, and

regions. The detailed descriptions of control variables are as follows: For demographic

structures, I obtained proportion of old workers who are above 65 years old, female work-

ers, and total population, to control for other determinants of employment status. GDP

(Gross Domestic Products) is measured in current US dollars, to control for economic

growth. Since industry classifications vary across different economies, employment and

GDP data are based on three broad sectors, namely agriculture, manufacturing, and ser-

vice. To identify geographic regions, the sample countries are categorised into 7 groups,

including East Asia & Pacific, Europe & Central Asia, Latin America & Carribean, Mid-

dle East & North Africa, North America, South Asia, and Sub-Saharan Africa.

The parameter of primary interest is the coefficient η1, which captures the relationship

between automation technologies and employment rate. It is expected that η1 could be

significantly negative, implying strong displacement effects in low and middle income

countries. Whereas, η2 is expected to be significantly positive, reflecting positive em-

ployment effects in countries from high income group, as growing income level could
14I use GNI per capita in 2019 as there are missing values in previous years. Regression results based on income level in 1993

and other years are also consistent with Table 3.3. The reason why I fix GNI per capita in 2019 is to avoid interruptions of gross
economic expansions.

15One of the endogenous factors is population growth, as the overall population could affect employment rate, and automation
exposure can also be influenced by population.
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reinforce productivity effects and complement job losses with new job vacancies. Over-

all, the automation technologies are associated with declining employment to population

ratio, with slightly lower magnitudes, as suggested in Figure 1 and 7.

3.4.1 Key Variable Construction

In the main analysis, I focus on socio-economic outcomes, and collect country-level data

about employment rate and other demographic characteristics for the period 1993-2019

from World Bank (2021). The employment rate is measured as the ratio of employed

workers to whole population with the age of 15 and above. This cutoff age of 15 years

aligns with the definition of working-age labour force (Acemoglu and Restrepo, 2021).

To further investigate the determinants of labour market outcomes, for each country, I

observe employment rate along with gender and industry composition16.

This research utilises two complementary measures of automation technologies, namely

robotic density and ICT (Information and Communication Technologies) intensity, based

on dataset from International Federation of Robotics (2021), United Nations (2021) and

The Conference Board (2021).

For empirical analysis, the main explanatory variable is computed using operational stocks

of robots per thousand labour force. Robustness checks using installations of robots per

thousand labour force yield qualitatively similar results, implying that the regression re-

sults are insensitive to alternative measures of robotic usage.

The second measure of automation technologies, namely ICT intensity, is motivated

by Acemoglu and Restrepo (2021); Graetz and Michaels (2017, 2018); Michaels et al.

(2014); Kim et al. (2021). These previous articles emphasise the substitutability between

ICT and low skilled workers. To attain data on actual amount of ICT capital, I multiply
16Since industry classifications vary across different economies, I only obtain employment and GDP based on three broad

sectors, namely agriculture, manufacturing, and service.
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percentage of ICT capital compensation by GDP, measured in current US dollars. The

ICT intensity is defined by ICT capital values per thousand total labour force.

3.4.2 Summary Statistics

This subsection provides summary statistics (sample means, standard deviations, ranges,

and number of observations) for the variables employed in the following regression model.

Table 3.1: Summary Statistics for Cross Country Evidence, 1993-2019

Variable Mean Std.Dev. Min Max Obs

Employment 57.551 11.875 26.330 88.740 2866

Robot 0.491 1.061 0 11.353 1686

ICT 28.321 0.118 0.007 1588.173 2866

Population 30400 123 9.194 1400000 2866

GDP 13.076 21.374 0.054 190.513 2866

Old 7.462 5.188 0.686 28.002 2866

Female 50.063 2.830 23.289 54.565 2866

Notes:
Statistics for variables in changes are computed across 108 countries and regions for time periods 1993-2019, and
those variables include changes in employment rate (Employment), robotic density (Robot), and ICT intensity (ICT).
Other control variables in levels include total population in thousands (Population), GDP (Gross Domestic Product)
in current thousand US dollars (GDP), percentage of old people (Old) and female people (Female). And they are
computed across 108 countries and regions for time periods 1993-2019.

Figure 3.1 reports descriptive statistics for the main variables, in the baseline cross-

country sample. All results are calculated across countries and periods of analysis. The

first two rows show an increase in employment rate and automation adoptions in our sam-

ple between 1993 and 2019. On average, the employment rate has increased by 1% for

every period, a finding consistent with Bonfiglioli et al. (2021). Table 3.1 further corrob-

orates this upward trend, indicating a rise of robotic penetration by 0.04%, and positive

average number of ICT intensities. For other control variables, there are also variations

across countries and time periods, as suggested by the standard deviations reported in the

table.
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In conjunction with Section 3.3 in this chapter, Table 3.1 further shows that the rising

employment rate can be attributed, in part, to the growth in robotic density and ICT in-

tensity. The following regression analysis will confirm these patterns and establish their

robustness.

3.5 Regression Results

Table 3.2 presents main results for robotic density of full sample during the time period

of 1993-2019, under various specifications across different countries17. Columns 1 and

2 provide the most parsimonious specification without any covariates. Columns 3 and

4 only include year FE as covariates to account for macro shocks. Columns 5 and 6

add geographic dummies and interactions with time trends, to capture regional economic

dynamics. While Columns 7 and 8 additionally control baseline country characteristics

Xi to account for initial demographic characteristics. Robustness checks for the period

2004-2019 are presented in Table 47 of Appendix, and those for 2010-2019 are presented

in Table 48 of Appendix.

Across all eight columns of Table 3.2, it is observed that robotic density is negatively

correlated with employment rate. All estimates are statistically significant and sizeable.

Column 1 indicates this negative correlation: as one unit rise in robotic density could lead

to employment reduction by 0.90 percentage points. The coefficient estimate of robotic

density in Column 2 is -1.176, implying that one more robot per thousand workers tends

to reduce employment rate by 1.18 percentage points. While the coefficient for interac-

tion term with income level suggests that 1 extra dollar in GNI per capita could flatten

employment decrease by 0.04 percentage points, indicating that the negative employ-

ment responses induced by robotic adoptions are often more pronounced in low income

countries. With growing GNI per capita, employment rate in high income countries rises
17The information of robotic stocks are missing for 33 countries, so there are only 65 countries in the regression about em-

ployment rate and robotic densities across countries.
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Table 3.2: Employment Rate and Robotic Densities Across Countries, 1993-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Employment Rate
Robotic Density -0.897∗∗∗ -1.176∗∗∗ -0.718∗∗∗ -0.968∗∗∗ -1.514∗∗∗ -1.654∗∗∗ -0.454∗∗ -1.423∗∗∗

(0.266) (0.348) (0.226) (0.290) (0.195) (0.268) (0.210) (0.189)

Robotic Density 0.036∗∗∗ 0.033∗∗∗ 0.030∗∗∗ 0.068∗∗∗

×Income (0.008) (0.007) (0.009) (0.007)

Population 0.013∗∗∗ 0.014∗∗∗

(0.001) (0.000)

GDP 0.104∗∗∗ 0.168∗∗∗

(0.014) (0.013)

Female 0.773∗∗∗ 0.570∗∗∗

(0.156) (0.140)

Old -0.532∗∗∗ -0.525∗∗∗

(0.064) (0.061)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Obs 1686 1686 1686 1686 1686 1686 1686 1686
N of Countries 65 65 65 65 65 65 65 65
R2 0.011 0.015 0.023 0.030 0.453 0.520 0.673 0.789

Notes:
The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory
variable is changes in robotic density. The regressions are weighted by total labour force in 1993. Income levels
across countries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years.
Other demographic controls include country level demographics such as total population in thousands (Population),
GDP (Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female
people (Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

sharply in response to extensive adoption of automation technologies. Accounting for

geographic controls and macro shocks does not change the results qualitatively. For the

preferred specification in Column 8, one more robot per thousand workers tends to reduce

employment rate by 1.42 percentage points. While growing GNI per capita could lead to

complementary effects of 0.07 percentage points, and mitigate such job destructions.

One concern which may lead to measurement errors is truncated data structure, particu-

larly for emerging market and developing economies. As most of low and middle income

countries are in early stages of adoption of automation technologies, low penetration of
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robotic usage in the first few years of IFR report made it hard for survey conductors to

document the actual number of operational stock of robots. In other words, IFR data on

robotic usage in earlier periods may partially reflect situations in developed countries, and

robotic exposures in developing countries are difficult to observe. Therefore, I present the

regression results for the period 2004-2019 in Table 47 of Appendix. In addition, to avoid

the negative influence of global recession in 2008 and 2009, I also provide results for the

period 2010-2019 in Table 48 of Appendix.

The reason why I use year 2004 as a discontinuity in Panel B has already been illustrated

in Section 3.2. Since IFR does not report data on industry breakdowns regarding total

stock of industrial robots until 2004 (Acemoglu and Restrepo, 2020), I plan to examine

whether systematic changes are apparent when only using data after 2004. All estimates in

Table 47 of Appendix are statistically significant and sizeable, particularly after account-

ing for geographic factors and demographic controls. According to preferred specifica-

tions in Columns 7 and 8, robotic density is negatively correlated with employment rate,

as one unit rise in robotic density could lead to employment reduction by 0.44 percentage

points. The coefficient estimate of robotic density in Column 8 is -1.623, implying that

one more robot per thousand workers tends to reduce employment rate by 1.62 percentage

points, while growing GNI per capita could generate productivity effects and slow down

job destructions by 0.06 percentage points.

Concerning the employment effects from robotic adoption, I also conduct panel data re-

gressions for ten years from 2010 onwards, to take shocks from global recessions in

2008-2009 into accounts. As displayed in Table 48 of Appendix, all estimates are sta-

tistically significant and sizeable, especially after accounting for geographic factors and

demographic controls. According to preferred specifications in Columns 7 and 8, robotic

density is negatively correlated with employment rate, as one unit rise in robotic density

could lead to employment reduction by 0.30 percentage points. The coefficient estimate

of robotic density in Column 8 is -1.622, suggesting that one more robot per thousand
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workers tends to reduce employment rate by 1.62 percentage points, while growing GNI

per capita could generate productivity effects and slow down job destructions by 0.06

percentage points. The quantitative results are similar, reflecting stable dynamics of het-

erogeneous employment effects from automation technologies.

The expected signs of control variables are consistent with Section 3.4. The population

is positively correlated with employment rate. Since previous evidence such as Keane

and Rogerson (2015) revealed that female people, Hispanic people, and old people are

less likely to participate in jobs, the estimation results demonstrate negative correlations

for these variables. The estimation results for the proportion of high skilled workers,

measured by those with bachelor’s degrees, are positively correlated with employment

rate. This can be partly explained by the theory of SBTC (Skill Biased Technical Change)

(Autor et al., 2003), as examined in Section 2.6 of Chapter 2.

Regression results for ICT counterparts are also consistent with interpretations for robotic

densities. The estimates for ICT intensities displayed in Table 3.3 are similar to those for

robotic densities. Columns 1 and 2 provide the most parsimonious specification without

covariates. Columns 3 and 4 only include year FE as covariates to account for macro

shocks. Columns 5 and 6 add geographic dummies and interactions with time trends, to

capture regional economic dynamics. Meanwhile, Columns 7 and 8 additionally control

for baseline country characteristics Xi to account for initial demographic characteristics.

Robustness checks for period 2004-2019 are presented in Table 49 of Appendix, and those

for the period 2010-2019 are presented in Table 50 of Appendix.

Across all eight columns of Table 3.3, it is clear that ICT intensity is negatively correlated

with employment rate. All estimates are statistically significant and sizeable18. Column
18The reason of insignificant employment effects from ICT intensities are stated in footnotes of Section 3.3. According to

polarisation evidence in the context of EU and US (Michaels et al., 2014), countries and industries with fast ICT growth are
likely to witness demand shifts from workers with intermediate education level to college educated workers, and have no clear
effects on the least educated groups, causing less job displacement. Moreover, ICT’s overall contribution to productivity growth
is higher relative to robots (Graetz and Michaels, 2018), implying less labour inputs required for the same amount of output. In
other words, adoption of conventional ICT appears to boost economy through rising TFP instead of job creations. Driven by low
levels of substitutability and complementarity, the graph for OECD countries reveals a less significant relationship between ICT
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Table 3.3: Employment Rate and ICT Intensities Across Countries, 1993-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Employment Rate
ICT Intensity -0.036∗∗∗ -0.042∗∗∗ -0.033∗∗∗ -0.038∗∗∗ -0.036∗∗∗ -0.036∗∗∗ -0.007∗∗ 0.000

(0.008) (0.009) (0.007) (0.008) (0.005) (0.005) (0.003) (0.003)

ICT Intensity 0.001 -0.003 -0.004 0.030∗∗∗

×Income (0.010) (0.011) (0.008) (0.005)

Population 0.012∗∗∗ 0.013∗∗∗

(0.000) (0.000)

GDP 0.127∗∗∗ 0.166∗∗∗

(0.013) (0.012)

Female 1.689∗∗∗ 1.434∗∗∗

(0.163) (0.155)

Old -0.920∗∗∗ -0.946∗∗∗

(0.057) (0.053)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Obs 2866 2866 2866 2866 2866 2866 2866 2866
N of Countries 108 108 108 108 108 108 108 108
R2 0.002 0.003 0.017 0.021 0.332 0.380 0.487 0.575

Notes:
The table presents within group estimates of the effects of ICT adoption on employment rate. Explanatory variable
is changes in ICT intensity. The regressions are weighted by total labour force in 1993. Income levels across coun-
tries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years. Other
demographic controls include country level demographics such as total population in thousands (Population), GDP
(Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female people
(Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1 indicates that ICT intensity is negatively correlated with employment rate, as one unit

rise in ICT intensity could lead to employment reduction by 0.04 percentage points. The

coefficient estimate of ICT intensity in Column 2 is -0.04, implying that one more dollars

investment in ICT per thousand workers tends to reduce employment rate by 0.04 per-

centage points. Accounting for geographic controls and macro shocks does not change

the results qualitatively. For the preferred specification in Column 8, one additional dol-

lars investment in ICT per thousand workers tends to reduce employment rate by 0.01

percentage points. Growing GNI per capita could lead to complementary effects of 0.03

intensity and employment rate.
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percentage points, and mitigates such job destructions. This suggests that the negative

employment responses induced by ICT investments tend to be more pronounced in low

income countries. With growing GNI per capita, employment rate in high income coun-

tries rises sharply in response to extensive adoption of automation technologies.

In contrary to the results based on time period 1993-2019, Table 49 and Table 50 in

Appendix show a similar relationship between automation technologies and employment

using ICT investment19. These tables share the structure of those presented previously.

The OLS estimate in Column 7 of Table 49 in Appendix implies that, 1 unit increase in

ICT capital per thousand labour force leads to 0.007 percentage decline in employment

rate, which is comparable to the coefficient estimates for robotic densities.

To take shocks from global recessions in 2008-2009 into accounts, I also conduct panel

data regressions from 2010 onwards. Focusing on this shorter timeframe, Table 50 of

Appendix suggests that ICT capital has insignificant impacts on employment rate. More-

over, the mitigating effects of income level remain prominent, as growing GNI per capita

could lead to complementary effects of 0.03 percentage points. The larger magnitude of

coefficient in the period 2010-2019 indicates stronger productivity effects.

In summary, the fact that automation technologies are negatively correlated with the

employment rate, persists in cross country analysis. Productivity effects are more pro-

nounced in developed countries with high income levels. In contrast, negative employ-

ment effects are much stronger in low and middle income countries, as rising demand

of high skilled labour in other non-automated sectors cannot compensate for job losses

induced by automation technologies.
19The reason why I use year 2004 as discontinuity in Table 49 is to ensure the consistency with analysis regarding robotic

adoptions, which has already been illustrated in Section 3.2 of Chapter 3. Since IFR does not report data on industry break-
downs regarding total stock of industrial robots until 2004 (Acemoglu and Restrepo, 2020), I plan to examine whether there are
systematic changes when only using data after 2004.
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3.6 Shift Share IV Research Design

The evidence presented so far strongly suggests that the expansion of automation adop-

tions is negatively associated with the employment across countries, even after control-

ling for geographic variations and macro shocks. Rising GNI per capita could flatten such

technological unemployment. Nonetheless, it may not be sufficient to guarantee that the

main results can avoid contamination by endogenous adjustment of local labour force. In

this part, I address identification threats, and then implement a quasi-experimental shift

share design, to estimate the causal effects of automation technologies on labour market

outcomes across countries.

Several reasons explain why the development of automation technologies could be corre-

lated with error terms in Equation 3.1.

Firstly, a firm’s decision to adopt automation may also be driven by other local industry

specific changes, which could directly affect their labour demand. For example, con-

sumers’ demand shock20 could motivate firm owners to invest more capital and labour

inputs to produce final goods, hence simultaneously rising automation and employment

(Aghion et al., 2017; Webb, 2019). In addition, common trade shocks from emerging

markets such as China and Mexico may drive the move towards automation (Bloom et al.,

2015). Confronting with upward pressure of labour costs in high income countries, firms

in labour intensive industries are inclined to use automation, as they are vulnerable to

international competition due to comparative advantages in labour inputs for emerging

market and developing economies, and finally reduce manufacturing employment (Autor

et al., 2013). In other words, enterprises in developed countries prefer to raise the percent-

age of capital input, as they are not able to compete with countries from emerging market

and developing economies, resulting in extended adoption of automation technologies.
20Consumer demand shocks sometimes are not endogenously driven by income growth and output expansions, such as dra-

matic increase of demand for masks during the time period of pandemic induced by COVID 19.
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Secondly, any shocks from labour demand and market competition will affect industries’

decisions to locate in specific areas (Acemoglu and Restrepo, 2020), and individual work-

ers’ adjustments across occupations and regions (Dauth et al., 2021). On the one hand,

establishments from affected industries tend to re-allocate their production process. They

are likely to produce labour intensive goods at the places where labour costs are lower, and

perform capital intensive activities at the places where they lack comparative advantages

in labour costs. On the other hand, affected workers from industries with high exposure

of automation technologies tend to switch tasks within original establishments, or move

to other firms, This is especially true for young workers21 or those with higher education

attainments (Dauth et al., 2021). Therefore, such spillover effects will lead to downward

bias in the estimation of the quantitative magnitudes of both displacement effects and

productivity effects.

Finally, reverse causality presents a concern. Firms in industries with labour saving tech-

nologies and fast growing total factor productivity tend to invest more on automation

technologies, particularly those facing intense competition and substantial amounts of

robotic suppliers (Beaudry et al., 2016; Graetz and Michaels, 2018). Such firms are likely

to experience further waves of labour substitution, and ”ripple effects” could cause dis-

placed labour to replace workers at the lower skill ladder (Acemoglu and Restrepo, 2022;

Jackson and Kanik, 2019). In other words, following such characteristics like ”path de-

pendence”, higher robotic adoption is itself a consequence of lower employment growth

(de Vries et al., 2020).

To alleviate potential endogeneity concerns, I adopt an alternative shift share design as

instruments for robotic density and ICT intensities, which leverages two components:
21There are two hypothesis about heterogeneous response to susceptibilities of automation technologies for old workers and

young workers. One is about institutional environment. Because the firing costs are higher for incumbent workers due to
institutional factors such as unionisation rate, enterprises prefer to use machine to replace young workers instead of old labour
force (Dauth et al., 2021; Rogerson and Wallenius, 2022). The other one is about task specific human capital. For old workers
endowed with task specific human capital, the skill bundle will be similar within occupation, so old workers prefer to switch
within occupation (skills are portable), while young worker prefer to switch across occupation (Autor and Dorn, 2009; Cortes
and Gallipoli, 2017; Gathmann and Schonberg, 2010; Poletaev and Robinson, 2008; Yamaguchi, 2012). In addition, firms prefer
to hire people with decision making skills (Deming, 2021), which require experience accumulations.
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predetermined exposure shares and idiosyncratic shocks. This research design is moti-

vated by several important papers from Aghion et al. (2017); Autor et al. (2013); Bartik

(1991); Bound and Holzer (2000); Dauth et al. (2021), based on the fact that local labour

market differ markedly in their industrial compositions, due to differential employment

concentrations and industrial specialisations.

In contrast to the shift share IV in Chapter 2, which uses European automation adoption to

instrument US automation density, I utilise another unique shock as the exogenous ”shift”.

The shocks are derived from the growth of ageing societies, which can be regarded as an

exogenous driver of automation (Acemoglu and Restrepo, 2022). This is because the

evolution of demographic structures is solely determined by birth rate and death rate, and

cannot be intervened by government policies in the short-run. In rapidly ageing countries,

it is observed that the number of middle aged workers specialising in manual production

tasks are declining as a result of falling fertility rate. The shortage in middle aged workers

will lower the opportunity cost of developing automation technologies, and this effect is

more pronounced in industries with higher fractions of routine tasks. Therefore, in such

industries, firm owners tend to favour machines over production workers. The ageing

shocks can be computed as follows:

∆Ageingit =
Ageingit − Ageingi,t0

Ageingi,t0
× 1

t− t0
(3.2)

In this expression, the term Ageingit measures the degree of demographic changes22,

defined by the ratio of old workers ageing 55 to 65, and adults ageing between 20 to

55. Following Equation (3.2), the shocks are calculated as average annual growth rate of

ageing in country i from the start of the period t0.
22Since World Bank (2021) does not provide number of labour force for corresponding ages, instead, I use the ratio of overall

population ageing 55 to 65 and those with age of 22 to 55, to approximate the ageing trend. As reflected in Figure 15 in the
Appendix, the trends of percentage of labour force with respect to overall population were stable over time, both globally and for
countries from different income groups, with differences around 0.1 percent.
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The shift share design combines this set of shocks with variation in the initial level of

automation technologies. For robotic usage, the exposure share is measured as opera-

tional stocks of robots in each sector23. Due to measurement errors arising from various

industrial classifications across countries, only agriculture, manufacturing, and service

are utilised here to identify industry level variations. Since IFR does not report data

on industry breakdowns regarding total stock of industrial robots until 2004 (Acemoglu

and Restrepo, 2020), Section 3.5 suggests that systematic variations for regression results

could not be observed when only using data after 2004. Therefore, this analysis will only

present shift share IV results based on the time period 2004-2019, and regression results

based on the time period 2010-2019 are qualitatively the same.

Ideally, we would observe actual numbers of old workers and adults in each industry of

each country. However, the comprehensive World Bank data on population of different

age groups are available only at country level. Therefore, I follow Acemoglu and Re-

strepo (2020); Dauth et al. (2021), and approximate the exposure of ageing trends based

on shares of employment in each sector. The predicted shift share IV is constructed as

follows:

̂AutomationExposureit =
ΣJ

j [
Employmentjt
Employmentt

× (1 + ∆Ageingt)
t−t0 × Automationj,t0]

Labourit
(3.3)

The index is a weighted average of ageing trends, where weights represent the differ-

ent distributions of automation adoptions across sectors in each country. Such supply

driven components are not liable to reverse causality (Bound and Holzer, 2000; Graetz

and Michaels, 2018), as the ageing index is assumed to be determined only by birth rate

and death rate in recent years. Further, this ageing trend shuts down unobserved changes
23For robustness checks, I also construct alternative IV for ICT investment, and allocate country level exposure to sectors

according to shares of GDP value added. The regression results are insensitive to main IV estimates.
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in decision making by firms and workers, implying that it can only influence employ-

ment rate through the channel of automation adoptions, without interventions of spillover

effects. Therefore, this IV approach makes this identification highly plausible.

3.7 IV Estimates

This section presents IV estimates of the effects of automation technologies on employ-

ment rate across countries.

Following Acemoglu et al. (2001, 2019); Aghion et al. (2017); Autor et al. (2013), this

section reports the results of shift share IV design for four specifications, with the same

sets of controls Xi in Table 3.4. The first specification repeats OLS regression with full

controls, which performs within group estimation based on panel data structure. The

second specification constructs reduced form equation to examine exclusion restriction,

where instruments are directly treated as control variables. The third specification is to

check whether the instrumental variable satisfies the relevance condition through first

stage regression. Estimation results for predicted exposure of robotic density, and F

statistics for single instrument are displayed. The final specification reports IV estimates

utilising two-stage GMM procedure.

Panel A reports employment effects of robotic penetration on employment, instrumented

by predicted exposure of robots. Column 2 displays reduced form outcomes of the effect

of Bartik IV on employment. The significantly negative estimates show a dramatic re-

duction in employment, driven by evolution of demographic composition from the supply

side in an ageing society, with quantitatively large magnitudes.

Column 3 displays the results, based on the first stage equation of the instrument on

robotic density, which reveals substantial explanatory power of predicted automation ex-

posure for robotic density. The coefficient in Column 3 suggests that 1000 unit increase in
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Table 3.4: IV Regression of Employment on Automation Across Countries, 2004-2019

(1) (2) (3) (4)
Within Group Reduced Form First Stage IV Structural Form

Dep Var Employment Employment Robot Employment

A. Robotic Density

Robotic Penetration -0.444∗ -1.492∗∗∗

(0.228) (0.280)

Predicted Robotic Exposure -2.526∗∗∗ 1.692∗∗∗

(0.559) (0.159)

First Stage F Statistics 113.38
N of Observations 1136 1136 1136 1136

B. ICT Intensity

ICT Intensity -0.017∗∗∗ -0.479∗∗∗

(0.005) (0.106)

Predicted ICT Intensity -2.526∗∗∗ 5.482∗∗∗

(0.559) (0.910)

First Stage F Statistics 36.28
N of Observations 1088 1088 1088 1088

Year FE
√ √ √ √

Geographic FE
√ √ √ √

Geographic FE × Year FE
√ √ √ √

Demographics
√ √ √ √

Notes:
The table presents within group and IV estimates of the relationship between automation adoption and employment
rate across countries, where robotic penetration predicted using aging trend is used as the instrument. Independent
variables include robotic penetration and ICT intensities. The regressions are weighted by total labour force in 2004.
Other demographic controls include country level demographics such as total population in thousands (Population),
GDP (Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female
people (Female). Geographic FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

operational stocks of robots per worker induced by aging trends corresponds to 2.53 unit

increase in US robotic penetrations. This finding, coupled with high F-statistics on the ex-

cluded instrument, implies the absence of weak instrument issues. Robustness checks for

detailed information about first stage regressions are presented in Table 51 of Appendix.

To further verify the instruments, I conduct additional diagnostic tests. Following Ace-

moglu and Restrepo (2021), I address potential concerns in two aspects24. Firstly, I con-

duct under-identification test. For robotic usage, the Kleibergen-Paap rk LM statistic is
24As Acemoglu and Restrepo (2021) examined the determinants of automation adoption, rather than employment effects of

automation, here I am not able to compare my results with this article
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57.29 with p-value less than 0.00, while for ICT adoption, it is 40.33 with p-value less

than 0.00, implying that the model can be regarded as identified, and the shift share IV

is correlated with US robotic penetration. Secondly, I conduct week identification test.

The Cragg-Donald Wald F statistic is 868.26 and Kleibergen-Paap rk Wald F statistic is

113.38. Both values exceed the Stock-Yogo weak ID test critical values. So we need to

reject the null hypothesis, and it is believed that there is no weak identification problem

under confidence level of 10%. Therefore, the IV is not only correlated with endogenous

variable, but also a strong predictor of US automation penetration. In addition, I do not

conduct over-identification test, as this issue only arises with multiple IVs, whereas this

chapter utilises only one.

Further, Column 4 offers the IV estimates of the effects of robotic density on employ-

ment. The coefficient of -1.49 indicates that 1000 unit exogenous rise in robotic stocks

per worker is predicted to reduce overall employment by 1.49 percentage points. The

relatively larger absolute magnitude of IV estimates is consistent with the downward en-

dogeneity bias for US evidence.

On the contrary, the results for ICT intensities are displayed in Panel B of Table 3.4.

Similarly, reduced form estimation from Column 2 suggests that exclusion restriction can

be satisfied. Taking relevance condition into considerations, the first stage estimation from

Column 3 with high F-statistics on the excluded instrument, suggests no weak instrument

problems.

Lastly, Column 4 of Panel B in Table 3.4 presents the IV estimates of the effects of ICT

intensities on employment. The coefficient of -0.48 indicates that 1000 dollars exogenous

rise in ICT investments per worker is predicted to reduce overall employment by 0.48

percentage points. The relatively larger absolute magnitude on IV estimates is consis-

tent with downward endogeneity bias for US evidence and robotic usage counterparts,

suggesting potential generalisability of the US to other countries.
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Table 3.5: Employment Effects of Automation and Income Level Across Countries, 2004-2019

Within Group IV Structural Form

(1) (2) (3) (4)

Dependent Variable: Employment Rate
A. Robotic Density

Robotic Penetration -0.444∗ -1.623∗∗∗ -1.492∗∗∗ -1.790∗∗∗

(0.228) (0.265) (0.280) (0.268)

Robotic Penetration × Income 0.062∗∗∗ 0.067∗∗∗

(0.008) (0.015)

N of Observations 1024 1024 1024 1024

B. ICT Intensity

ICT Intensity -0.017∗∗∗ -0.015∗∗∗ -0.479∗∗∗ -0.507∗∗∗

(0.005) (0.005) (0.106) (0.103)

ICT Intensity × Income 0.027∗∗∗ 0.007
(0.007) (0.012)

N of Observations 976 976 976 976

Year FE
√ √ √ √

Geographic FE
√ √ √ √

Geographic FE × Year FE
√ √ √ √

Demographics
√ √ √ √

Notes:
The table presents within group and IV estimates of the relationship between automation adoption and employment
rate across countries, where robotic penetration predicted using aging trend is used as the instrument. Independent
variables include robotic penetration and ICT intensities. The regressions are weighted by total labour force in 2004.
Other demographic controls include country level demographics such as total population in thousands (Population),
GDP (Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female
people (Female). Geographic FE refers to region dummies. Income levels across countries are measured using GNI
per capita in 2019, to avoid the problems of missing values in previous years.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Following the logic established in Chapter 2, Table 3.5 combine the variations of GNI

per capita, augmenting with interaction term between exposure of automation technolo-

gies and income level. Table 3.5 presents both within group and IV estimates for robotic

usage in Panel A. In contrast with baseline results displayed Column 1, Columns 2 turns

to consider interactions between robotic exposure and continuous income levels. Specifi-

cally, the positive coefficient estimate of interaction term reveals that rising income level

could slow down employment destructions of robotic adoption. Instrumented with the

shift share IV, Columns 4 indicates that 1 extra unit of robotic stocks per thousand work-

ers tends to reduce employment rate by 1.79 percentage points. Further, the coefficient
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estimate for interaction term is 0.07, highlighting the flattening effects of regional eco-

nomic growth.

Similarly, Panel B displays ICT counterparts augmenting with GNI per capita. ICT in-

vestments appear to have negative impacts on employments, and the magnitudes are more

substantial when instrumented with ageing trends. Specifically, 1 extra dollar in ICT

expenditure per thousand workers tends to reduce employment rate by 0.48 percentage

points. The mitigating effects of income level lose significance, suggesting that the evolu-

tion of demographic structure might not be the primary factor influencing firms’ decisions

regarding automation technologies.

Broadly speaking, these findings align with US evidence. Nonetheless, the absence of

robust identification strategies is potentially puzzling, making it challenging to isolate

spillover effects and other endogenous factors. While ageing trends offer a potential av-

enue for addressing some of these endogeneity concerns, doubts remain about the intu-

itions of plausibly exogenous conditions, because the labour force participation rate is

found to be higher among young workers, and lower among old workers, particularly in

developed countries25. As revealed by Ahituv and Zeira (2010), old workers are less likely

to adopt new technologies and acquire technology specific human capital, due to shorter

career horizons compared with their younger counterparts. These erosion effects push

old workers to retire earlier, especially if we make comparisons across workers in a fixed

timeframe, leading to decreasing labour participation rate across age profiles. Therefore,

the effectiveness of employing IV estimation using demographic changes requires further

investigations. A more in-depth research uncovering exogenous variations of penetration

to automation technologies across countries, is a promising direction for future empirical

implications.
25That is also the reason why I did not use ageing trend as instrumental variable for US evidence.
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3.8 Heterogeneous Analysis

This section turns to investigate heterogeneous effects across regions at different stages of

economic development. Since missing values of robotic usage and ICT adoption mainly

concentrate in low and middle income countries, this analysis focuses solely on employ-

ment dynamics of automation technologies in OECD countries and non-OECD countries.

This question bears particular importance for several reasons. Firstly, as an organisation

comprising mostly developed countries, companies in OECD member countries benefit

from policy recommendations and evaluations conducted by experts in the organisation

(OECD, 2020), thereby cultivating trade and investment among these member countries.

Secondly, as noted in Section 3.2, this chapter explores the impacts of automation tech-

nologies on employment rate across countries from different income groups. Besides

arbitrary classification of income groups, in a more general model, I also explore the

impacts of the interaction between automation technologies and income level, to inves-

tigate the gradual changes of the employment effects. However, the mitigation effects

from income levels may vary across countries. Therefore, following He et al. (2023), I

investigate this possibility by separating the sample into OECD countries and non-OECD

countries, to conduct heterogeneous analysis. The regression results are estimated based

on Equation 3.1, and IV estimates using shift share IV are based on Equation 3.3.

Table 3.6 shows OLS estimation26 and IV estimation results, regarding the heterogeneous

effects of robotic adoption on employment rate, across OECD countries and non-OECD

countries. For OECD countries, Column 1 reveals that one robot per thousand labour

force is associated with 2.03 percentage decline of employment rate. Utilising shift share

IV, Column 2 reveals that adopting one additional robot per thousand workers reduces

the employment rate by 1.99 percentage point, and rising income level could mitigate
26For this section, I still utilise within group estimation to estimate fixed effects model, based on panel data structure. From

the perspective of econometric theory, we need to first do within group transformation based on panel data structure, and then
use OLS to estimate the coefficient, therefore, here I can also call them ”OLS results”.
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Table 3.6: Employment Effects of Robot and Income Across OECD and Non-OECD Countries, 2004-2019

OECD Countries Non-OECD Countries

OLS IV OLS IV

(1) (2) (3) (4)

Dependent Variable: Employment Rate
Robotic Penetration -2.029∗∗∗ -1.989∗∗∗ -1.005 1.373

(0.178) (0.171) (1.622) (2.415)

Robotic Penetration × Income 0.080∗∗∗ 0.125∗∗∗ 7.030∗∗∗ -5.725
(0.007) (0.012) (0.785) (4.556)

Year FE
√ √ √ √

Geographic FE
√ √ √ √

Geographic FE × Year FE
√ √ √ √

Demographics
√ √ √ √

N of Economies 35 35 30 30
N of Observations 560 560 464 464

Notes:
The table presents within group and IV estimates of the relationship between robotic usage and employment rate
across OECD countries and non-OECD countries, where robotic penetration predicted using aging trend is used as
the instrument. The regressions are weighted by total labour force in 2004. Other demographic controls include
country level demographics such as total population in thousands (Population), GDP (Gross Domestic Product) in
current thousand US dollars (GDP), percentage of old people (Old) and female people (Female). Geographic FE
refers to region dummies. Income levels across countries are measured using GNI per capita in 2019, to avoid the
problems of missing values in previous years.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

such employment decline by 0.13 percent. While for non-OECD countries, both OLS

estimation and IV approach produce insignificant results, implying that technological un-

employment induced by robotic usage and mitigation effects of income level are only

observed in high income economies. This phenomenon may be attributed to variations

in the GDP share of manufacturing, as Section 2.6 of Chapter 2 discovered that hetero-

geneous employment effects of robots are prevalent in manufacturing sectors. According

to Buera et al. (2021); Herrendorf et al. (2014), the value added for manufacturing sec-

tors is higher in advanced economies, potentially explaining the insignificant employment

responses of robotic adoptions in non-OECD countries.

For the employment effects from ICT intensities, I also find evidence that the heteroge-

neous effects of ICT adoptions on employment dynamics are indeed prevalent in OECD
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Table 3.7: Employment Effects of ICT and Income Across OECD and Non-OECD Countries, 2004-2019

OECD Countries Non-OECD Countries

OLS IV OLS IV

(1) (2) (3) (4)

Dependent Variable: Employment Rate
ICT Intensity -0.021∗∗∗ -0.447∗∗∗ -0.001 -0.618

(0.007) (0.060) (0.012) (5.585)

ICT Intensity × Income 0.055∗∗∗ 0.049∗∗∗ 0.009 0.172
(0.007) (0.011) (0.032) (0.160)

Year FE
√ √ √ √

Geographic FE
√ √ √ √

Geographic FE × Year FE
√ √ √ √

Demographics
√ √ √ √

N of Economies 36 36 72 72
N of Observations 325 325 651 651

Notes:
The table presents within group and IV estimates of the relationship between ICT usage and employment rate across
OECD countries and non-OECD countries, where ICT intensity predicted using aging trend is used as the instrument.
The regressions are weighted by total labour force in 2004. Other demographic controls include country level demo-
graphics such as total population in thousands (Population), GDP (Gross Domestic Product) in current thousand US
dollars (GDP), percentage of old people (Old) and female people (Female). Geographic FE refers to region dummies.
Income levels across countries are measured using GNI per capita in 2019, to avoid the problems of missing values in
previous years.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

countries. Table 3.7 shows OLS estimation27 and IV estimation results, regarding the

heterogeneous effects of ICT intensity on employment rate, across OECD countries and

non-OECD countries. Columns 1 and 2 indicate that statistically significant negative

effects of ICT intensities on employment rate are only observable in OECD countries.

For the preferred specification using ageing trends as shift share IV in Column 2, an in-

crease of 1000 US dollars in ICT investment per thousand labour force tends to reduce

employment rate by 0.45 percentage points, and rising income level could flatten such

employment declines. The results share qualitative similarities with their robotic coun-

terparts, and indicate that such technological unemployment may primarily affect high

income economies.
27For this section, I still utilise within group estimation to estimate fixed effects model, based on panel data structure. From

the perspective of econometric theory, we need to first do within group transformation based on panel data structure, and then
use OLS to estimate the coefficient, therefore, here I can also call them ”OLS results”.
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Overall, this section examines heterogeneity across various economic development stages

of different countries. This research indicates that technological unemployment driven by

robotic adoptions and ICT intensities, and mitigation effects from rising income levels,

are observable in OECD countries, with limited evidence in non-OECD countries. These

results are consistent with evidence from Machin and Reenen (1998).

3.9 Summary

It appears that automation’s influence on employment varies depending on a given coun-

try or region’s income level. Utilising country level data from 1993 to 2019, this chapter

provides empirical analysis regarding the impacts of automation technologies on employ-

ment rate across different economies, and investigates heterogeneous effects based on the

responses of regions at various economic development stages.

Regression results from cross country analysis point out the potential to generalise US

evidence in Chapter 2, to the implications for global economic growth. This study finds

that the rising penetration of automation technologies, including industrial robots and ICT

investments, corresponds to reductions in employment rate across all countries. Adopt-

ing novel shift share IV based on differential ageing trends, rising income levels could

mitigate such technological unemployment. It is discovered that one additional robot per

thousand workers tends to reduce employment rate by 1.42 percentage points, and grow-

ing GNI per capita could lead to complementary effects of 0.07 percentage points. These

findings are consistent with results from US evidence in Chapter 2, as rising income lev-

els suggest that productivity effects may flatten welfare deteriorations by displacement

effects.

Moreover, heterogeneous effects based on OECD countries and non-OECD countries re-

veal that differential employment dynamics induced by automation technologies, along-

side mitigation effects from income levels, are observable solely in advanced economies.
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This phenomenon may be attributed to variations in the GDP share of manufacturing, as

Section 2.6 of Chapter 2 discovered that heterogeneous employment effects of automation

technologies are particularly apparent in manufacturing sectors. According to Buera et al.

(2021); Herrendorf et al. (2014), the value added for manufacturing sectors is compara-

tively higher in advanced economies, and that could explain the insignificant employment

responses to automation adoptions in non-OECD countries.

In this section, I also point out some challenges and future directions for cross country

analysis.

Firstly, research about employment effects of automation technologies is frequently com-

plicated by endogenous factors, such as spillover effects and reverse causalities, which are

addressed in Section 3.6 of Chapter 3. Shift share IV approach based on ageing trends of-

fers a partial solution to such endogeneity concerns, but reservations remain regarding the

plausibility of exogenous conditions. According to Section 3.7 of Chapter 3, the labour

force participation rate is higher among young workers, and lower among old workers,

particularly in developed countries28. Therefore, the effectiveness of employing IV esti-

mation based on demographic changes requires further investigations. With novel datasets

and robust identification strategies, I believe empirical studies exploring heterogeneous

effects under different institutional settings, would therefore be a promising direction for

future research.

Secondly, an additional challenge is represented by obtaining comprehensive datasets, to

select an appropriate indicator of automation technologies. Previous studies, often cen-

tred around broad measures of technological updating such as TFP (total factor produc-

tivity) growth and patent awards across different countries (Autor and Salomons, 2018;

Autor et al., 2020). This chapter follows recent literature, such as Acemoglu and Restrepo

(2020), which utilised data from International Federation of Robotics (2021) to perform
28That is also the reason why I did not use ageing trend as instrumental variable for US evidence.
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empirical analysis. It contains counts of robotic stocks across 19 industrial sectors over

72 countries between 1993 and 2019. In addition, I adopt ICT capital data from Total

Economy Database of The Conference Board (2021), to obtain a comprehensive picture

of the relationship between automation technologies and employment. However, this

method presents challenges when generalising to cross country analysis, due to potential

variations in robot quality. Also, as noted in Section 3.8, missing values of robotic usage

and ICT adoption mainly concentrate in low and middle income countries. Therefore,

it is hard to identify such technological unemployment in emerging economies. Relying

on novel datasets, other indicators of ICT adoptions and patent awards about automation

technologies such as Autor et al. (2020); Bloom et al. (2015); Kim et al. (2021), may rep-

resent a more reliable indicator for the development of automation technologies in future

research.

In summary, empirical analysis based on cross country evidence demonstrates that dif-

ferential employment responses to automation technologies are evident across various

regions. However, the specific means in which individual workers respond to technolog-

ical changes remain under investigation. Therefore, in the following chapter, I plan to

adopt worker level dataset based UK context to perform further analysis.
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Chapter 4

Individual Level Analysis

For further discussions, this thesis will perform micro econometric analysis to comple-

ment US and cross country results. My focus lies in empirical evidence from the UK, due

to similar institutional background and economic environments to the US.

4.1 Introduction

This section presents introduction of individual level analysis based on UK context. It

focuses on motivation, hypothesis, and contribution of this chapter.

4.1.1 Motivation

The reasons for the selection of the UK to perform individual level analysis are as follows.

Firstly, as outlined in Chapter 1, understanding the impacts of automation technologies

on labour market outcomes at all levels of analysis, including individual workers, skill

groups, metropolitan areas, and countries, is important. In Chapter 2, I provide empirical

analysis based US evidence, and focus on state level data and commuting zone level

data. Then in Chapter 3, I provide cross country evidence to see whether the US results

could be generalised to other countries globally. This involves regression analysis across
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countries from different income groups. Up to now, this thesis has already covered the

macro level evidence. However, the specific means in which individual workers respond

to technological changes remain under investigations. In this Chapter, I plan to go one

step further, to investigate the micro level analysis. Therefore, individual level results are

now the focus.

Figure 4.1: Robot Adoption in UK, EU and US, 2000-2019

Notes:
The data about operational stocks of robots are based on International Federation of Robotics (2021). Robot density
refers to refers to operational stock of robots per 10000 labour force. Labour force comprises people ages above 15
who supply labour for the production of goods and services during a specified period (United Nations, 2020), and the
data is from World Bank (2021). EU countries in 2004 include Austria, Belgium, Republic of Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain and Sweden (European Union, 2023).

Secondly, the United Kingdom, as one of the most developed countries1, shares simi-

lar institutional background and economic environments to the US (Goos and Manning,

2007; Goos et al., 2009). However, the development of machines and other automation
1According to World Bank (2021), the UK GDP per capita in 2019, measured in current US dollars, is approximately $42663,

and the United Kingdom is one of the most developed countries. To avoid the influence of COVID 19 on economic growth, here
I use the data in 2019.
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technologies in the UK, is not as advanced as that in the US or some western countries.

As revealed in Figure 4.1, the robotic density in UK is around 0.4 between 2000 and

2019, which is lower than the average level of US and European Union countries. There-

fore, further analysis in the UK is interesting, and it proves valuable in understanding the

mechanisms behind regions with high economic growth and slow technological updating.

Thirdly, previous analysis by Dolton and Makepeace (2004); Machin and Reenen (1998)

uncovered significant association between skill upgrading and technical change, causing

growing demand of high skilled labour force. However, there is only limited evidence

on individual heterogeneities within one specific advanced economy. This chapter aims

to address this gap in the literature2. I will provide empirical analysis on individual be-

haviours in response to automation technologies, and explore the heterogeneous effects

across different UK regions, and among workers with different education attainments. In

addition, the choice of UK as the sample country, is also supported by the data availabil-

ity of the information about computerised and automated equipments. This information is

accessible through the Skills and Employment Survey conducted in 2006, 2012 and 2017.

The degree of automated equipment use refers to answers of ”whether job involves use of

computerised or automated equipment”. While for computerisation, the respondent had

to answer ”complexity of computer use in job”. As the University of Glasgow is located

in the third largest city of UK, it would be convenient to get access to detailed worker

level data.

4.1.2 Hypothesis

The hypotheses in this chapter are similar to those in Chapter 1.

Hypothesis 1: For all UK workers, the correlation between exposure to automation tech-

nologies and individual working hours tends to become negative.
2Detailed information about the contributions to existing literature will be illustrated in Subsection 4.1.3.
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Hypothesis 2: For high income workers with affluent human capital accumulations, expo-

sures to automation technologies are likely to have positive impacts on individual working

hours. While for low and middle income workers with fewer years of education, there is

a negative correlation between automation adoptions and labour supply.

Hypothesis 3: The heterogeneous employment effects from automation technologies, as

highlighted in Hypothesis 2, can only be observed for college educated workers, as tech-

nological updating are biased against low skilled workers.

Hypothesis 4: The differential employment responses from automation technologies, as

highlighted in Hypothesis 2, are expected to be more pronounced for workers living within

London, due to concentration of manufacturing activities.

In the next subsection, this thesis will describe the contributions of this chapter based on

existing literature gaps.

4.1.3 Contribution

This chapter synthesises various lines of research, including individual level analysis

about heterogeneous employment effects from technical changes, identification issues

based on advanced panel data econometric techniques, and regional variations of struc-

tural changes.

For the first main contribution, this chapter explores the heterogeneous employment ef-

fects from automation technologies across workers with different income levels within

one developed country. Numerous studies have examined the role of automation tech-

nologies as the determinant of employment dynamics, based on general measures of tech-

nological updating such as TFP (total factor productivity) growth and patent awards across

different countries (Autor and Salomons, 2018; Autor et al., 2020). However, there is lim-

ited evidence at the individual worker level (Autor, 2014), particularly in areas with high
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economic growth and slow technological updating. To address this gap, I introduce two

complementary indicators, namely degree of automated equipments and computerisation

complexities at the individual level. Therefore, this chapter provides novel evidence by

analysing the impact of exposure to machines on individual working hours, and examines

how workers respond to labour market shocks caused by automation technologies.

For the second main contribution, this chapter complements a handful of studies on iden-

tification issues when exploring how automation technologies replace existing jobs. This

work is closely related to several existing studies that use automation adoptions in other

advanced economies as instrumental variables for the dynamics of automation technolo-

gies in a specific country (Acemoglu and Restrepo, 2020; Dauth et al., 2021; Giuntella

et al., 2022), or those that conduct event studies based on patent policy shocks (Bloom

et al., 2015). Distinct from this literature, this thesis develops a method to address endoge-

nous issues from time varying components of intrinsic abilities. This chapter extends the

pioneering work by Arellano and Bond (1991), which adopted lagged differenced vari-

ables or lagged level variables to instrument the endogenous variables based on two-step

variants of system GMM. This approach helps to rule out spurious or coincidental ef-

fects that might affect labour supply trends. The results highlight the fact that automation

technologies have negative impacts on individual working hours, conditional on task in-

tensities.

For the third main contribution, this chapter also contributes to emerging literature on

technological updating and structural changes. Buera et al. (2021); Herrendorf et al.

(2014) adopted the theory of SBTC (Skill Biased Structural Change), and discovered

growing value added for manufacturing sectors in advanced economies. Based on het-

erogeneous analysis for workers living within London and outside London, this chapter

attribute this phenomenon to variations in the GDP shares of manufacturing sectors.

In line with the structure of Chapter 2 and Chapter 3, I plan to perform empirical analysis
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based on UK individual level data.

4.2 Data

As noted before, a key reason for selecting the UK as a case study to assess individual

behavioural responses to automation technologies, is the accessibility of data on the in-

formation about computerised and automated equipment. The data is offered by the Skills

and Employment Survey on 2006, 2012 and 2017. The degree of automated equipment

use is derived from responses to the survey question: ”whether job involves use of com-

puterised or automated equipment”. The annual average value of this job characteristics

reflects the likelihood of automated equipment use across different industries and occupa-

tions. While for the degree of computerisation, the respondent had to answer ”complexity

of computer use in job”, and ranked the frequencies of computer use on a scale of 1 to 4,

with 0 indicating no computer use.

To account for occupation-specific or industry-specific task intensities, this article will

calculate skill distribution according to job characteristics and working conditions, utilis-

ing data from UK Skills and Employment Survey (Office for National Statistics, 2018).

To ensure a representative sample of labour market outcomes, the sample is restricted to

adults in full-time and permanent employment, excluding retirees, unemployed individ-

uals, and self-employed individuals. The analysis centres around survey questions about

the types and importance of job activities, which respondents ranked on a scale of 1 to 4.

The average value of these scores every year represents a measure of job characteristics.

Following Bisello (2013), skill measures are categorised into three groups based on task

intensities, namely analytical skills, interpersonal skills, and manual skills. Detailed de-

scriptions of these categories are presented at Section .1 in the Appendix. Although this

survey relies on subjective evaluations, it offers valuable insights into the degree of repe-

tition and task intensities across different industries and occupations (Bisello, 2013; Goos
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and Manning, 2007). Missing data points in specific years, were linearly interpolated to

maintain consistent records3. Though the noise introduced by such aggregation would

lead to biased estimates, Acemoglu and Restrepo (2020) revealed that such measurement

errors can be considered uncorrelated with error terms. I matched the measures of task

intensities with individual characteristics from APS dataset (Annual Population Survey),

based on the four job classifications detailed later in this work.

All the data related to individual characteristics are from APS dataset (Annual Population

Survey), covering the period from 2011 to 2018 in the UK. The APS dataset comprises

key variables from the Labour Force Survey (LFS), offering comprehensive information

on employment and wage conditions for individuals across all regions within the United

Kingdom (Office for National Statistics, 2018). Variables such as working hours, gross

earning, and highest educational degree received by individuals and job classification, are

available in this dataset. Considering the focus on labour market outcomes, the analy-

sis centres around main jobs, with the sample limited to adults engaged in full-time and

permanent employment, excluding retirees, unemployed individuals, and self-employed

individuals. Finally the regression analysis is conducted based on 142852 individual ob-

servations.

To match individual characteristics with industry-level and occupation-level job task in-

formation, this survey also collected data on various job classifications. This research

utilises 1-digit level SIC2007 (Standard Industrial Classification)4, 1-digit SOC2010 (Stan-

dard Occupational Classification), 3-digit SOC2010 (Standard Occupational Classifica-

tion)5, and NS-SEC category (National Statistics Socio-Economic Classification based

on SOC2010).
3For example, if the score of one specific skill in 2012 is 1.1, and that in 2017 is 1.3, I can assign the scores in 2013-2016 to

be 1.14, 1.18, 1.22, 1.26. Fortunately, the variation of scores is not large across years.
4For those with missing value of SIC2007, I use SIC1992 as alternative measures, because these two kinds of classification

system have the some coding system
5For those with missing value of SOC2010, I use SOC2000 as alternative measures, because these two kinds of classification

system have the some coding system
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4.3 Stylised Facts

This section presents several key findings concerning technological changes and labour

market outcomes, among UK workers over the period of analysis.

Figure 4.2 discovers the association for workers across different income groups, high-

lighting differential labour supply responses following technological shocks. For high

income workers displayed in Panels A and C, the relationship between degree of auto-

mated equipments and working hours is significantly positive, suggesting a degree of

complementarity between exposure of automation and labour inputs. Therefore, growing

exposure of automation adoption may, to some extent, complement human labours.

Conversely, for low income workers exhibited in Panels B and D of Figure 4.2, labour sup-

ply, as measured by individual working hours, demonstrates a negative correlation with

automation exposure, with statistically significant coefficients. These results are consis-

tent with the hypothesis that low income workers are more susceptible to displacement

due to technological changes.

In addition, Figure 4.3 offers evidence of the relationship between computerisation com-

plexities and individual working hours. As an alternative measure of individual automa-

tion exposure, the magnitudes of negative employment responses by low income workers

are slightly larger than those for the degree of automated equipments, indicating strong

displacement effects. The results are consistent with analysis presented in Figure 4.2.
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4.4 Empirical Analysis

This section evaluates the overall UK sample, and investigates the labour market outcomes

facing technical change, conditional on task intensities and other demographic controls.

It also explores heterogeneous effects based on workers endowed with different income

levels.

The basic idea is as follows: All things equal, an increase in exposure of automation

technologies will decrease the actual and usual working hours. However, rising gross

earnings could mitigate such negative effects. Therefore, the main evidence supporting

this assumption lies in the expected negative coefficients of automation technologies, and

the expected positive coefficients of interactions between automation technologies and

gross earnings.

4.4.1 Summary Statistics

This subsection provides summary statistics about variables, which will be exhibited in

the following regression model.

Table 4.1 reports summary statistics for the main variables employed in the regressions.

All results are calculated for UK workers across all periods of analysis. On average,

the labour market outcome, measured by individual actual weekly total working hours,

is approximately 37.2 hours for every period. Whereas, the labour market performance

measured by individual usual weekly total working hours, is 42.7 hours. Table 4.1 further

confirms a high degree of automation adoptions, with an average rise in the degree of

automated equipments by 0.9, alongside a high level of computerisation complexities.

As indicated by the standard deviations reported in the table, other control variables also

exhibit variations across individual workers and time periods.
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Table 4.1: Summary Statistics for UK Evidence, 2011-2018

Variable Mean Std.Dev. Min Max Obs

Actual Hours 37.224 15.845 0 80 142582

Usual Hours 42.733 9.011 0 80 141910

Auto Equip 0.921 0.116 0.413 1 142582

Computer 2.487 0.201 1.548 5 142582

Income 9.100 1.644 0 10.621 142582

Male 0.514 0.500 0 1 142582

Age 52.123 18.449 16 99 142582

Marry 1.356 0.479 1 2 142582

Task Intensity:

Repeat 3.336 0.408 2.632 4 142582

Analytical 2.927 0.224 1.498 3.196 142582

Interpersonal 3.062 0.262 1.062 3.310 142582

Manual 1.715 0.648 0.659 3.288 142582

Education:

School (Full) 0.001 0.025 0 1 1250127

Sandwich 0.001 0.017 0 1 1250127

College (Full) 0.032 0.176 0 1 1250127

School (Part) 0.001 0.006 0 1 1250127

Nursing 0.001 0.031 0 1 1250127

College (Part) 0.015 0.122 0 1 1250127

Notes:
Statistics for variables in levels are computed across 142582 UK workers for time periods, namely 2011-2018, and
those variables include changes in actual working hours (Actual Hours), usual working hours (Usual Hours), degree of
automated equipments (Auto Equip), and computerised complexities (Computer). Other control variables regarding
task intensities in levels include degree of repetitiveness (Repeat), analytical skill score (Analytical), interpersonal
skill score (Interpersonal), and manual skill score (Manual). Those regarding education level include full time at
school (School Full), sandwich course (Sandwich), full time at university or college (College Full), part time at school
(School Part), training in nursing (Nursing), and part time at university or college (College Part). The rest of control
variables include whether female people (Female), age (Age), and marital status (Marry).

Among all the control variables, the statistics of task intensities are similar to the US

evidence documented by Autor (2013). The degree of repetitiveness is around 3.3, with

standard deviation of 0.4, implying that the task routineness has a large variation across

different occupations. While for the scores of analytical skill, interpersonal skill, and

manual skill, the distribution of these three dimensions is similar to those found in the

UK (Bisello, 2013).
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4.4.2 Baseline Results for Static Model

Drawing upon the worker level analysis from Dauth et al. (2021), this paper will employ a

static linear panel data model for individual hours worked, conditional on quadratic form

of different task intensities. Below is the specification of static panel data model based on

direct task measures.

Hourijt = η′0 + η′1Automationjt + η′2Automationjt × Incomeijt

+ η′3Taskjt + η′4Task
2
jt + δiXi + µi + µj + εijt

(4.1)

The explained variable Hourijt refers to the total actual working hours in main job by

individual i in industry j at year t. Total usual hours in main job will also be utilised to

conduct robustness checks. Actual hours measure an individual’s working time during

survey reference week, while usual hours reflect an individual’s typical work schedule

(Office for National Statistics, 2018; Borowczyk-Martins and Lale, 2019). Since skill

upgrading within industries contributes significantly to the variation of working hours

(Berman et al., 1994), the initial focus will be on people with full-time and permanent

jobs.

The main explanatory variables AutoEquipjt and Computerjt refer to automation tech-

nologies in a given industry or occupation. These include the importance of automated

equipment use (AutoEquipjt), and complexity of computer use in job (Computerjt). I

use these two proxies to measure Automationjt. Currently, a linear relationship is as-

sumed between automation technologies and individual working time, and lagged vari-

ables of AutoEquipjt and Computerjt would be taken into considerations in the follow-

ing subsection.

Taskjt refers to task intensities, including analytical skill, interpersonal skill, and manual
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skill, as detailed in Appendix .1. Occupation-level task intensities are based on 3-digit

SOC 2010 classification. For time-invariant variables, Xi denotes the individual’s per-

sonal characteristics, including age, sex, and marital status. The parameter δ are K × 1

vectors, where K is the number of time-varying variables capturing demographic char-

acteristics outlined above. Nation dummies6 are also included to control for systematic

variations across different regions (Dauth et al., 2021). To capture evolution of occupa-

tional demands (Beaudry et al., 2014), year dummies, industry dummies, and occupation

dummies could also be taken into considerations. This is because PwC (2018) has dis-

covered heterogeneities across countries, industry sectors, as well as individual genders,

ages, and education groups.

Among those factors concerning occupational structures, the proportion of women in the

labour force could account for small predicted rise in employment changes of lousy jobs

(Goos and Manning, 2007). Besides, educational attainment, along with age cohort ef-

fects, could explain variations in lovely jobs (Acemoglu et al., 2004; Autor and Dorn,

2009; Bluestone and Harrison, 1988; Goos and Manning, 2007; Sachs and Kotlikoff,

2012). Since Autor and Dorn (2009) has pointed out causal link between routine task in-

tensity and education-age profile, these heterogeneous effects will be tested as robustness

checks. Individual specific effects µi and idiosyncratic error εit constitute the unobserved

error term in this equation. Unless otherwise noted, all standard errors are robust against

heteroscedasticity.

6Nations inside UK in this article refer to England, Wales, Scotland, Scotland North of Caledonian Canal Northern Ireland.
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Table 4.2: Actual Weekly Working Time and Automation Technologies for UK Workers based on NS-SEC
2010, 2011-2018

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Actual Working Hours

Auto Equip -3.039∗∗∗ -3.456∗∗∗ -2.293∗∗∗ -1.482∗∗∗

(2.588) (2.670) (2.821) (3.631)

Computer -0.166 -0.311 -0.721 -0.748

(0.561) (0.574) (0.635) (0.751)

Auto Equip 0.362∗∗∗

×Income (0.035)

Computer 0.130∗∗∗

×Income (0.013)

Repeat -50.648∗∗∗ -39.220∗∗∗ -5.081 33.501∗∗∗ -26.313∗∗∗ -14.861∗∗∗ 8.091 44.447∗∗∗

(4.782) (5.642) (5.858) (8.223) (4.450) (5.640) (5.820) (7.480)

Analytical 69.124∗∗∗ 90.379∗∗∗ 80.213∗∗∗ 34.287∗∗∗ 106.361∗∗∗ 120.965∗∗∗ 99.391∗∗∗ 33.422∗∗∗

(7.184) (9.051) (9.089) (11.190) (7.891) (9.649) (9.644) (11.775)

Interpersonal -26.644∗∗∗ -24.372∗∗∗ 1.054 -1.281 -56.432∗∗∗ -56.290∗∗∗ -18.493∗∗∗ -10.286∗∗∗

(3.236) (3.263) (3.650) (4.116) (2.800) (2.807) (3.210) (3.640)

Manual -10.392∗∗∗ -16.672∗∗∗ -11.147∗∗∗ -8.056∗∗∗ -17.440∗∗∗ -22.557∗∗∗ -13.891∗∗∗ -8.269∗∗∗

(1.554) (2.111) (2.112) (2.375) (1.511) (2.151) (2.163) (2.457)

Male 4.601∗∗∗ 4.419∗∗∗ 4.601∗∗∗ 4.419∗∗∗

(0.098) (0.109) (0.098) (0.109)

Age -0.025∗∗∗ -0.027∗∗∗ -0.025∗∗∗ -0.027∗∗∗

(0.004) (0.004) (0.004) (0.004)

Marry 0.662∗∗∗ 0.815∗∗∗ 0.662∗∗∗ 0.817∗∗∗

(0.099) (0.110) (0.099) (0.110)

School (Full) -36.049∗∗∗ -34.742∗∗∗ -35.835∗∗∗ -34.501∗∗∗

(1.980) (2.170) (1.998) (2.179)

College (Full) -31.196∗∗∗ -29.545∗∗∗ -31.060∗∗∗ -29.309∗∗∗

(1.855) (2.148) (1.866) (2.153)

School (Part) -36.995∗∗∗ -36.479∗∗∗ -36.812∗∗∗ -36.247∗∗∗

(0.948) (1.083) (0.971) (1.096)

College (Part) -37.960∗∗∗ -36.980∗∗∗ -37.800∗∗∗ -36.778∗∗∗

(1.944) (2.169) (1.953) (2.175)

Year FE
√ √ √ √ √ √

Nation FE
√ √ √ √

Occupation FE
√ √ √ √

R2 0.014 0.015 0.051 0.050 0.013 0.014 0.051 0.050

N of Obs 142582 142582 142582 142582 142582 142582 142582 142582
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Notes:

The table presents within group estimates of the effects of automation technologies on individual working hours.

Dependent variable is actual weekly working hours. Explanatory variable are degree of automated equipments, and

computerisation complexities. Income levels across workers are measured using natural logarithm of gross pay last

time. The classification of occupation dummies are 3-digit level SOC 2010. Other control variables regarding task

intensities in levels are based on NS-SEC 2010, and they are quadratic form including degree of repetitiveness (Re-

peat), analytical skill (Analytical), interpersonal skill (Interpersonal), and manual skill (Manual). Those regarding

education level include full time at school (School Full), full time at university or college (College Full), part time

at school (School Part), and part time at university or college (College Part). The rest of control variables include

whether female people (Female), age (Age), and marital status (Marry). Geographic FE refers to nation dummies

(England, Wales, Scotland, Scotland North of Caledonian Canal Northern Ireland).

Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.2 provides estimation results of the effects on labour supply, measured by total

working hours in main job conditional on task intensities. These estimations are derived

from Equation 4.1 using static linear panel data model. I prefer to use GLS estimator, as

Durbin-Wu-Hausman test shows that both within-group estimator and GLS estimator are

consistent7.

Based on the classification of NS-SEC 2010 in Table 4.2, the degree of automated equip-

ments has significantly negative impacts on individual actual working hours, particu-

larly when accounting for occupation specific effects, geographic disparities, and macro

shocks. The preferred specification in Column 3, demonstrates that 1 unit increase of im-

portance of automated equipment is associated with 2.29 hours increase of actual working

time. Taking income level into accounts, there is less support for the roles played by au-

tomation technologies. This implies that, with 1 additional pound of gross earnings, the

impacts of the degree of automated equipments on actual working time will be flattened

by 0.36 hours, and the effects on usual working time will be flattened by 0.38 hours. The
7Assuming within-group estimator is consistent, and GLS estimator is inconsistent but efficient, for degree of automated

equipments on total actual hours χ2(9) = 5.19, with p-value of 0.8178; for degree of automated equipments on total usual hours
χ2(9) = 8.56, with p-value of 0.4784; for computerisation complexities on total actual hours χ2(9) = 2.28, with p-value of
0.9862; and for computerisation complexities on total usual hours χ2(9) = 7.39, with p-value of 0.5968. So, we cannot reject
the null hypothesis that both of them are consistent, implying that explanatory variables can be regarded as uncorrelated with
unobserved heterogeneities. In order to observe time invariant components, it would be better to use GLS estimator.
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estimates for computerisation complexities counterparts are almost statistically insignif-

icant. Evidence regarding the impacts on usual individual working hours are displayed

in Table 52 of Appendix, and it reveals that the results remain consistent across different

proxies of labour supply.

Based on the classification of 1 digit SIC 2007 in Panels A and B of Table 53 in Appendix,

the degree of automated equipments has significantly negative impacts on individual ac-

tual working hours and individual usual working hours, especially when occupation spe-

cific effects, geographic disparities, and macro shocks are taken into considerations. From

the preferred specification in Column 3, Panel A shows that 1 unit increase in the impor-

tance of automated equipments is associated with 4.70 hours increase of actual working

time. Whereas, Panel B indicates 1.54 hours decrease of usual working time. When in-

come is factored in, the effects of automation technologies appear to reduce. Specifically,

for every additional pound of gross earnings, the impacts of degree of automated equip-

ments on actual working time will be flattened by 0.42 hours, and the effects on usual

working time will be flattened by 0.39 hours. Similarly, the estimates for computerisation

complexities counterparts also display statistical significance at the confidence level of 1

percentage point. These findings suggest that the degree of computerisation complexities

have significantly negative impacts on both actual and usual individual working hours,

especially when occupation specific effects, geographic disparities, and macro shocks are

taken into considerations.

Based on the classification of 1 digit SOC 2010 in Panels A and B of Table 54 in Ap-

pendix, this analysis finds that the degree of automated equipments has significantly neg-

ative impacts on individual actual working hours and individual usual working hours,

particularly after controlling for occupation specific effects, geographic disparities, and

macro shocks. From the preferred specification in Column 3, Panel A shows that 1 unit

increase in the importance of automated equipment is associated with 1.74 hours increase

of actual working time, and Panel B exhibits 1.50 hours decrease of usual working time.
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When income level is factored in, the analysis suggests a reduced role for automation

technologies in influencing working hours. Specifically, for every additional pound of

gross earnings, the impacts of degree of automated equipments on actual working time

will be flattened by 0.41 hours decline, and the effects on usual working time will be

flattened by 0.39 hours decline. Similarly, the estimates for computerisation complexities

counterparts are also statistically significant at the confidence level of 5 percentage point.

The findings indicate that the degree of computerisation complexities has significantly

negative impacts on both actual and usual individual working hours, particularly after

controlling for occupation specific effects, geographic disparities, and macro shocks.

Therefore, conditional on task intensities, the individual labour supply, measured by ac-

tual weekly working time and usual weekly working time, would respond negatively fac-

ing susceptibilities of automation technologies. This negative response could be flattened

be rising income levels. This finding aligns with US analysis and cross country analysis.

4.4.3 Further Analysis for Dynamic Model

In a dynamic setting, labour supply responses vary across time (Keane and Rogerson,

2015). This section presents regression results based on dynamic panel data approach.

Considering the U-shape changes of individual working hours over skill percentile, I plan

to use lagged dependent variable Hourij,t−1, to account for pre-trend of individual work-

ing hours. Occupation-level task intensities are based on SOC 2010 classification. Below

is the specification of autoregressive dynamic panel data model of order one, based on

direct task measures.
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Hourijt = η′′0 + η′′1Hourij,t−1 + η′′2Automationjt + η′′3Automationjt × Incomeijt

+ η′′4Taskjt + η′′5Task
2
jt + δiXi + µi + µj + εijt

(4.2)

All the regressors are assumed to be weakly exogenous, implying that the idiosyncratic

error term εijt should be uncorrelated with individual specific effects µi, occupation spe-

cific effects µj, and all the current and past values of explanatory variables8, including

Hourij,t−1. This suggests that workers, when adjusting their working hours, solely con-

sider working time at the last term, which satisfies the true state dependence assumption.

This is consistent with macro level analysis by Borowczyk-Martins and Lale (2019) and

household-level analysis by Chang et al. (2011). For comparative purposes across differ-

ent estimation methods, the impacts from demographic controls and geographic dummies

are disregarded here. Only macro shocks are considered, as Table 4.2 reveals that the

panel data regression results remain consistent across different combinations of control

variables.

For estimation methods, I prefer to use within-group estimator, as Durbin-Wu-Hausman

test shows that within-group estimator is unbiased and consistent compared with GLS

estimator9.

Table 4.3 provides dynamic analysis of the impacts from automation technologies on in-

dividual total working hours in main job, conditional on task intensities. Columns 1 and

2 present regression results about the impacts from the degree of automated equipments
8Now εijt is assumed to be serially uncorrelated, and later this assumption will be relaxed.
9Assuming within-group estimator is consistent, and GLS estimator is inconsistent but efficient, for degree of automated

equipments on total actual hours χ2(10) = 370.69, with p-value less than 0.0000; for degree of automated equipments on total
usual hours χ2(10) = 267.86, with p-value less than 0.0000; for computerisation complexities on total actual hours χ2(10) =
370.30, with p-value less than 0.0000; and for computerisation complexities on total usual hours χ2(10) = 264.71, with p-value
less than 0.0000. So, we can reject the null hypothesis that both of them are consistent, implying that explanatory variables
cannot be regarded as uncorrelated with unobserved heterogeneities. In order to get more consistent and efficient estimators, it
would be better to use within-group estimation methods.
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Table 4.3: Dynamics about Actual Working Time and Automation based on NS-SEC 2010, 2011-2018

(1) (2) (3) (4)

Dependent Variable: Actual Working Hours
Hourt−1 -0.311∗∗∗ -0.305∗∗∗ -0.311∗∗∗ -0.305∗∗∗

(0.019) (0.023) (0.019) (0.023)

AutoEquipt -3.446∗ -5.208∗

(1.876) (2.659)

AutoEquipt × Incomet 0.407∗

(0.239)

Computert -5.604 -9.696
(5.391) (7.378)

Computert × Incomet 0.167∗

(0.087)

N of Observations 38718 38718 38718 38718
R2 0.014 0.015 0.028 0.028

Task Intensities
√ √ √ √

Year FE
√ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Coeffi-
cients are estimated based on Equation 4.2 with dependent variable of individual hours worked. Dependent variables
include actual weekly working hours measures individual’s working time during survey reference week. Explana-
tory variable are degree of automated equipments, and degree of computerisation complexities. Income levels across
workers are measured using natural logarithm of gross pay last time (Government scheme or employer). The degree
of automated equipments, computerisation complexities, and task intensities are occupation-level based on NS-SEC
2010. Other control variables regarding task intensities in levels are based on NS-SEC 2010, and they are quadratic
form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill (Interpersonal), and
manual skill (Manual). Those regarding education level include full time at school (School Full), full time at uni-
versity or college (College Full), part time at school (School Part), and part time at university or college (College
Part). The rest of control variables include whether female people (Female), age (Age), and marital status (Marry).
Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal Northern
Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

on total actual working hours. Specifically, the role of the degree of automated equip-

ments becomes significantly negative, indicating that 1 unit increase of the importance

of automated equipments is associated with 3.45 hours increase of actual working time.

Simultaneously, the negative responses of automated equipments on total actual working

hours are mitigated by gross earnings, implying that with 1 pound increase of personal

income, the impacts from the degree of automated equipments on actual working time

will be flattened by 0.41 hours.
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For Columns 3 and 4 in Table 4.3, I continue to examine the impacts from computerisation

complexities. The estimation results suggest that neither computerisation complexities,

nor their interaction with individual gross earnings, are statistically significant.

Overall, taking lagged effects into accounts, automation technologies have negative im-

pacts on individual actual total working hours conditional on task intensities. Besides,

rising individual income level could weaken the negative effects of automation technolo-

gies. These results are determined by various forces related to task intensities. However, a

series of previous literature reveals that regression results of static and dynamic progress

may be influenced by potential endogeneity issues. Therefore, I intend to address this

endogeneity problem by employing a panel data IV approach.

4.4.4 IV Results

Up to now, this chapter provides empirical analysis about the correlation between automa-

tion technologies and individual actual working hours, utilising both static and dynamic

panel data settings. However, previous research suggests that regression results of static

and dynamic models may be influenced by potential endogeneity issues.

Although within-group transformation could make the estimation free of unobserved in-

dividual heterogeneities such as intrinsic abilities, the time-varying attributes of skills

and abilities, which people acquired through on-the-job training and working experience,

could also affect Hourij,t−1 via mean deviation10. Put simply, the time-varying compo-

nents of intrinsic abilities could not only affect people’s decisions to adjust their working

time directly, but also interact with automation technologies through displacement ef-
10When conducting within-group transformation, we have to estimate this model by taking mean deviations of explained and

explanatory variables
(Hourijt −Hourij) = β′

1(Hourij,t−1 −Hourij) + κ+ (εijt − εij) (4.3)

And we can also write

(Hourij,t−1 −Hourij) = β′
1(Hourij,t−2 −Hourij) + κ+ (εij,t−1 − εij) (4.4)

Therefore, (εijt − εij) becomes an MA(1) process by construction. Then we can identify endogeneities in Equation 4.3 by
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fects and productivity effects. Therefore, I try to implement two-step variants of system

GMM, to address these endogeneities under small-sample correction procedure (Wind-

meijer, 2005), which utilises lagged differenced variables or lagged level variables to

instrument the endogenous variables.

Columns 1 and 2 of Panel A in Table 4.4 describe dynamic process of the impacts on total

working hours in main job, conditional on task intensities. Utilising lagged level vari-

ables as instruments, the Arellano-Bond estimation presents inconsistencies compared to

the previous analysis. Considering these ambiguous findings, further robust econometric

analysis is necessary.

Technically, only on the occasion with the absence of overidentification and serial cor-

relation, can we assure the validity of system GMM estimations (Arellano and Bond,

1991). However, autocorrelation analysis of working time based on Arellano-Bond test

shows that, the variation of individual working hours exhibits an AR(1) process11. This

temporal characteristic gives rise to the issue of weak instruments, which, as highlighted

by Chao and Swanson (2005), constitutes a primary factor contributing to inconsistent es-

timations, particularly when the number of instruments is limited. To address this, I also

implement Blundell-Bond method (also known as Arellano-Bover method) in Columns

3 and 4 of Table 4.4. This approach utilises lagged differenced variables to instrument

calculating

covariance = cov[(Hourij,t−1 −Hourij), (εijt − εij)]

= cov{[β′
1(Hourij,t−2 −Hourij) + κ+ (εij,t−1 − εij)], (εijt − εij)}

= σεij + others

(4.5)

Therefore, mean deviation of lagged dependent variable and mean deviation of idiosyncratic error are still correlated, which
violates the weak exogeneity assumption and will finally lead to inconsistent estimation of β′

1.
11For the impacts of degree of automated equipments on total actual working hours, the correlation coefficient between

Hourijt and Hourij,t−1 is -0.914 with p-value of 0.36, and the second order correlation is 0.220 with p-value of 0.0448;
for the impacts of computerisation complexities on total actual working hours, the correlation coefficient between Hourijt and
Hourij,t−1 is -0.934 with p-value of 0.350, and the second order correlation is 0.214 with p-value of 0.831; for the impacts of
the degree of automated equipments on total usual working hours, the correlation coefficient between Hourijt and Hourij,t−1 is
-2.224 with p-value of 0.026, and the second order correlation is -0.693 with p-value of 0.488; for the impacts of computerisation
complexities on total usual working hours, the correlation coefficient between Hourijt and Hourij,t−1 is -2.379 with p-value of
0.017, and the second order correlation is -0.621 with p-value of 0.535. In other words, (Hourijt−Hourij,t−1) is not likely to be
close to be a random walk, and weakly correlated with instrumental variable Hourij,t−2, which associated with weak instrument
problem. To ensure the robustness of estimation results under dynamic panel data model, I continue to perform this regression.
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Table 4.4: IV Estimates about Actual Working Time and Automation based on NS-SEC 2010, 2011-2018

(1) (2) (3) (4)

A. Total Actual Hours in Main Job and Automated Equipments

Hourt−1 -0.014 0.022 0.049 0.049
(0.092) (0.123) (0.049) (0.049)

AutoEquipt -4.498 -1.471 -1.351 -1.351
(13.547) (22.515) (22.069) (22.069)

AutoEquipt × Incomet 1.125 1.021 1.021
(0.835) (0.799) (0.799)

N of Observations 38718 38718 38718 38718
R2 0.051 0.050 0.051 0.050

B. Total Actual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.023 -0.026 -0.038 -0.038
(0.091) (0.125) (0.048) (0.048)

Computert -3.243 -2.032 -5.833 -5.833
(2.655) (1.496) (5.269) (5.269)

Computert × Incomet 0.469 0.392 0.392
(0.290) (0.279) (0.279)

N of Observations 38718 38718 38718 38718
R2 0.118 0.117 0.117 0.117

Task Intensities
√ √ √ √

Year FE
√ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents within group estimates of the dynamic effects
of automation technologies on individual working hours, accounting for lagged effects of explained variables. Based
on Equation 4.2 with dependent variable of individual hours worked, Columns 1 and 2 describe the results of system
GMM using Arellano–Bond method, and Columns 3 and 4 describe the results of system GMM using Blundell-
Bond method. First difference estimation of system GMM could result in missing numbers of observations, and
time-invariant variables including nation specific effects and industry factors would also be cancelled out. Dependent
variables include actual weekly working hours measures individual’s working time during survey reference week.
Explanatory variable are degree of automated equipments, and degree of computerisation complexities. Income levels
across workers are measured using natural logarithm of gross pay last time (Government scheme or employer). The
degree of automated equipments, computerisation complexities, and task intensities are occupation-level based on
NS-SEC 2010. Other control variables regarding task intensities in levels are based on NS-SEC 2010, and they are
quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill (Interper-
sonal), and manual skill (Manual). Those regarding education level include full time at school (School Full), full time
at university or college (College Full), part time at school (School Part), and part time at university or college (College
Part). The rest of control variables include whether female people (Female), age (Age), and marital status (Marry).
Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal Northern
Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

explanatory variables (Arellano and Bond, 1991; Blundell and Bond, 1998). To circum-

vent potential overfitting issues arising from instrument proliferation, the estimations of

Columns 3 and 4 in Panel A of Table 4.4 are conducted using only first order lagged
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explanatory variables, and collapse the instrument set (Roodman, 2009).

Columns 3 and 4 of Panel A in Table 4.4 further study the dynamic process of the impacts

on individual total actual working hours using Blundell-Bond method. The estimation

results are insignificant, implying little space for improvements using dynamic panel data

regressions.

For Panel B in Table 4.4, I continue to examine the impacts from computerisation com-

plexities. The estimation results suggest that neither computerisation complexities nor

their interaction with individual gross earnings are statistically significant.

For Panels A and B in Table 55 in Appendix, I further explore these impacts on total usual

working hours. Columns 1 and 2 of Panel A present regression results about the impacts

from the degree of automated equipments on total usual working hours. Specifically, the

insignificant negative responses of automated equipments on total usual working hours

are mitigated by gross earnings. This suggests that for every pound increase of personal

income, the impacts about the impacts from the automated equipments on usual work-

ing time will be flattened by 0.59 hours. Turning to Panel B regarding the effects from

computerisation complexities, similarly, only mitigating effects of gross earnings are sta-

tistically significant. This implies that, with 1 pound increase of personal income, the

impacts of computerisation complexities on usual working time will be flattened by 0.23

hours.

In summary, adopting advanced panel data econometric methods, it is observed that au-

tomation technologies have negative impacts on individual actual total working hours and

usual total working hours, conditional on task intensities. Besides, rising individual in-

come level appears to weaken the negative effects of automation technologies. The next

subsection will appraise the sensitivity of these results to alternative measures of task

intensities.
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4.4.5 Robustness Checks

Up to now, my analysis of individual level data from UK demonstrates that automation

technologies are reducing individual total working hours. With growing income levels,

such negative employment responses are likely to be mitigated. In this subsection, I in-

troduce robustness checks based on various specifications.

Adopting alternative measures of industry level task intensities, Table 4.5 provides dy-

namic analysis based on SIC 2007. This analysis explores the impacts from automation

technologies on individual total working hours in main job, conditional on task intensities.

Columns 1 and 2 of Panel A present regression results about the impacts from the degree

of automated equipments on total actual working hours. Specifically, the role played by

degree of automated equipments turns to become significantly negative, indicating that

1 unit increase of the importance of automated equipments is associated with 5.41 hours

decrease of actual working time. Simultaneously, the negative responses are mitigated by

gross earnings, implying that with 1 pound increase of personal income, the impacts of

automated equipments on actual working time will be flattened by 0.75 hours.

Considering intrinsic endogeneities within dynamic panel data model, Columns 3 and 4

of Panel A in Table 4.5 describe dynamic process of the impacts on total working hours

in main job, conditional on task intensities. After Arellano-Bond estimation using lagged

level variables as instruments, consistent results emerge compared with the previous anal-

ysis. The results show that 1 unit increase of the importance of automated equipments is

associated with 6.07 hours decrease of actual working time, and rising personal income

would mitigate the declining tendency by 0.85 hours. However, the estimation coefficient

appears insignificant when the interaction terms with individual gross earnings are taking

into accounts. These mixed results suggest the need for more robust econometric analysis.

Columns 5 and 6 of Panel A in Table 4.5 continue to examine the dynamic process of
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Table 4.5: Dynamics about Actual Working Time and Automation based on SIC 2007, 2011-2018

(1) (2) (3) (4) (5) (6)

A. Total Actual Hours in Main Job and Automated Equipments

Hourt−1 -0.303∗∗∗ -0.290∗∗∗ -0.006 0.007 0.001 0.001
(0.004) (0.006) (0.007) (0.010) (0.007) (0.007)

AutoEquipt -5.413∗∗∗ -2.268 -6.074∗∗∗ -1.894 -2.001 -2.001
(1.106) (1.580) (1.419) (2.090) (2.084) (2.084)

AutoEquipt × Incomet 0.753∗∗∗ 0.851∗∗∗ 0.850∗∗∗ 0.850∗∗∗

(0.063) (0.083) (0.083) (0.083)

N of Observations 187916 187916 187916 187916 187916 187916
R2 0.034 0.037 0.146 0.159 0.145 0.163

B. Total Actual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.302∗∗∗ -0.291∗∗∗ -0.006 0.008 0.002 0.002
(0.004) (0.006) (0.007) (0.010) (0.007) (0.007)

Computert -1.474∗∗∗ -4.306∗∗∗ -1.777∗∗∗ -4.920∗∗∗ -4.938∗∗∗ -4.938∗∗∗

(0.330) (0.487) (0.418) (0.647) (0.646) (0.646)

Computert × Incomet 0.264∗∗∗ 0.297∗∗∗ 0.297∗∗∗ 0.297∗∗∗

(0.022) (0.029) (0.029) (0.029)

N of Observations 188166 188166 188166 188166 188166 188166
R2 0.021 0.022 0.057 0.051 0.056 0.056

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √

Notes:
Based on SIC 2007 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Columns
1 and 2 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and Columns 3 and 4
describe the results of system GMM using Arellano–Bond method, and Columns 5 and 6 describe the results of system
GMM using Blundell-Bond method. First difference estimation of system GMM could result in missing numbers
of observations, and time-invariant variables including nation specific effects and industry factors would also be
cancelled out. Dependent variables include actual weekly working hours measures individual’s working time during
survey reference week. Explanatory variable are degree of automated equipments, and degree of computerisation
complexities. Income levels across workers are measured using natural logarithm of gross pay last time (Government
scheme or employer). The degree of automated equipments, computerisation complexities, and task intensities are
occupation-level based on SIC 2007. Other control variables regarding task intensities in levels are based on SIC 2007,
and they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal
skill (Interpersonal), and manual skill (Manual). Those regarding education level include full time at school (School
Full), full time at university or college (College Full), part time at school (School Part), and part time at university or
college (College Part). The rest of control variables include whether female people (Female), age (Age), and marital
status (Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian
Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

impacts on individual total actual working hours, using Blundell-Bond method. The es-

timation results are significant only for interaction term between degree of automated

equipments and individual gross earnings. This suggests that, with 1 pound increase of
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personal income, the impacts from the degree of automated equipments on actual working

time will be flattened by 0.85 hours.

For Panel B in Table 4.5, the analysis shifts to the impacts from computerisation complex-

ities, based on industry classification of SIC 2007. Columns 1 and 2 present regression re-

sults about the impacts from computerisation complexities on total actual working hours.

The role played by computerisation complexities becomes significantly negative, indi-

cating that 1 unit increase of computerisation complexities is associated with 1.47 hours

decrease of actual working time. Simultaneously, the negative responses of computeri-

sation complexities on total actual working hours are mitigated by gross earnings. This

implies that, with 1 pound increase of personal income, the impacts of computerisation

complexities on actual working time will be flattened by 0.26 hours.

Considering intrinsic endogeneities within dynamic panel data model, Columns 3 and 4

of Panel B in Table 4.5 describe dynamic process of the impacts on total working hours in

main job, conditional on task intensities. Applying Arellano-Bond estimation method us-

ing lagged level variables as instruments, it exhibits consistent results compared with the

previous analysis. The results show that, 1 unit increase of computerisation complexities

is associated with 1.78 hours decrease of actual working time, and rising personal income

would mitigate the declining tendency by 0.30 hours. Columns 5 and 6 of Panel B con-

tinue to examine dynamic process of impacts on individual total actual working hours,

using Blundell-Bond method. Utilising lagged level variables as instruments, it produces

consistent results compared with the prior analysis. We observe that 1 unit increase of

computerisation complexities is associated with 4.94 hours decrease of actual working

time, and rising personal income would mitigate the declining tendency by 0.30 hours.

For Panel A of Table 56 in Appendix, I continue to examine the impacts from degree of

automated equipments on individual total usual working hours, based on industry classifi-

cation of SIC 2007. Columns 1 and 2 indicate a significant, negative correlation between
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these variables. Specifically, 1 unit increase of the importance of automated equipments is

associated with 4.62 hours drop of usual working time. At the same time, the negative re-

sponses are mitigated by gross earnings, implying that with 1 pound increase of personal

income, the impacts from the importance of automated equipments on usual working time

will be flattened by 0.71 hours.

Recognising the characteristics of dynamic panel data model, Columns 3 and 4 of Panel A

in Table 56 in Appendix describe the dynamic process of the impacts on total usual work-

ing hours, conditional on task intensities. Applying Arellano-Bond estimation method

using lagged level variables as instruments, it produces consistent results with the pre-

vious analysis. The results show that 1 unit increase of the importance of automated

equipments is associated with 5.48 hours decrease of usual working time, and rising per-

sonal income continues to mitigate the declining tendency by 0.77 hours. Columns 5 and

6 further appraise this dynamic process utilising Blundell-Bond method. Again employ-

ing lagged level variables as instruments, the results remain consistent: 1 unit increase of

the importance of automated equipments is associated with 2.16 hours decrease of usual

working time, and rising personal income would mitigate the declining tendency by 0.77

hours.

Last, for Panel B in Table 56 of Appendix, I focus on the impacts from computerisation

complexities on individual total usual working hours, based on industry classification of

SIC 2007. Columns 1 and 2 present regression results about the impacts from computeri-

sation complexities on total usual working hours. The results exhibit that computerisation

complexities have significant negative effects on total usual working hours: 1 unit in-

crease of computerisation complexities is associated with 1.58 hours drop of usual work-

ing time. However, the negative responses are mitigated by gross earnings, implying that

with 1 pound increase of personal income, the impacts of computerisation complexities

on usual working time will be flattened by 0.25 hours.
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Table 4.6: Dynamics about Actual Working Time and Automation based on S0C 2010, 2011-2018

(1) (2) (3) (4) (5) (6)

A. Total Actual Hours in Main Job and Automated Equipments

Hourt−1 -0.302∗∗∗ -0.288∗∗∗ -0.005 0.010 0.003 0.003
(0.004) (0.005) (0.007) (0.009) (0.007) (0.007)

AutoEquipt -4.208∗∗∗ -2.741 -5.740∗∗∗ -4.141 -4.112 -4.112
(1.451) (2.049) (1.844) (2.682) (2.675) (2.675)

AutoEquipt × Incomet 0.515∗∗∗ 0.593∗∗∗ 0.592∗∗∗ 0.592∗∗∗

(0.066) (0.086) (0.086) (0.086)

N of Observations 192555 192555 192555 192555 192555 192555
R2 0.064 0.065 0.129 0.150 0.129 0.150

B. Total Actual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.302∗∗∗ -0.288∗∗∗ -0.005 0.010 0.003 0.003
(0.004) (0.005) (0.007) (0.009) (0.007) (0.007)

Computer t -2.383∗∗∗ -1.616∗ -3.111∗∗∗ -2.441∗∗ -2.440∗∗ -2.440∗∗

(0.664) (0.915) (0.851) (1.216) (1.213) (1.213)

Computert × Incomet 0.180∗∗∗ 0.211∗∗∗ 0.210∗∗∗ 0.210∗∗∗

(0.023) (0.030) (0.030) (0.030)

N of Observations 192555 192555 192555 192555 192555 192555
R2 0.021 0.021 0.050 0.048 0.050 0.048

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √

Notes:
Based on SOC 2010 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Columns
1 and 2 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and Columns 3
and 4 describe the results of system GMM using Arellano–Bond method, and Columns 5 and 6 describe the results
of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in missing
numbers of observations, and time-invariant variables including nation specific effects and industry factors would also
be cancelled out. Dependent variables include actual weekly working hours measures individual’s working time dur-
ing survey reference week. Explanatory variable are degree of automated equipments, and degree of computerisation
complexities. Income levels across workers are measured using natural logarithm of gross pay last time (Government
scheme or employer). The degree of automated equipments, computerisation complexities, and task intensities are
occupation-level based on SOC 2010. Other control variables regarding task intensities in levels are based on SOC
2010, and they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interper-
sonal skill (Interpersonal), and manual skill (Manual). Those regarding education level include full time at school
(School Full), full time at university or college (College Full), part time at school (School Part), and part time at
university or college (College Part). The rest of control variables include whether female people (Female), age (Age),
and marital status (Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of
Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Considering the endogeneities within dynamic panel data model, Columns 3 and 4 of

Panel B in Table 56 describe the dynamic process of the impacts on total usual working

hours in main job, conditional on task intensities. Adopting Arellano-Bond estimation
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method using lagged level variables as instruments, the results are consistent with the

analysis above, as 1 unit increase of computerisation complexities is associated with 1.87

hours drop of usual working time, and rising personal income would mitigate the declin-

ing tendency by 0.27 hours. Columns 5 and 6 of Panel B continue to examine the dynamic

process of impacts on individual total usual working hours using Blundell-Bond method.

After utilising lagged level variables as instruments, the results are again consistent with

the previous analysis: 1 unit increase of computerisation complexities is associated with

3.66 hours decrease of usual working time, and rising personal income would mitigate the

declining tendency by 0.27 hours.

Finally, I also implement alternative measures of occupation level task intensities, and

provide dynamic analysis based on SOC 2010 in Table 4.6 to explore the impacts from

automation technologies on individual total working hours in main job, conditional on

task intensities. In Table 57 of Appendix, I continue to examine the impacts on total usual

working hours. The estimation results are insensitive to findings with alternative industry

classification systems.

Up to this point, my analysis suggests that the automation technologies has negative im-

pacts on individual total working hours conditional on task intensities, particularly when

considering lagged effects12. Besides, rising individual income level could weaken the

negative effects of automation technologies, which is consistent with the evidence from

US analysis and cross country analysis. These findings are determined by various forces

of task intensities.

However, it is important to acknowledge that even the use of advanced econometric tech-

niques in dynamic panel data settings cannot fully address the biases in estimation. There-

fore, future empirical research would benefit from a more profound exploration of exoge-

nous variations, in the penetration to automation technologies at the individual level.
12Such hypothesis as human capital accumulation, precautionary saving motives and adjustment costs could give explanations

regarding lagged effects of intertemporal working hour changes (Keane and Rogerson, 2015).
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4.5 Heterogeneous Analysis

This section turns to investigate heterogeneous effects across UK individual workers,

based on education status and living regions. Such a comprehensive micro level dataset

has the potential to yield valuable insights into the employment patterns across various

demographic groups.

4.5.1 By Education Groups

In this subsection, I examine this heterogeneity in great detail by dividing UK workers

into two mutually exclusive groups, namely those with college education13 and those

without college education. The analysis will employ a dynamic panel data model based

on Equation 4.2, which takes lagged effects into accounts, and present results derived

from both Arellano-Bond method and Blundell-Bond method.

Table 4.7 shows regression results of the impacts from automation technologies on indi-

vidual total actual working hours, by education status. Panel A points to the coefficient

estimation regarding the degree of automated equipments. For within group estimation

results of college educated workers presented in Column 1, it is discovered that 1 unit de-

crease of the importance of automated equipments is associated with 5.21 hours increase

of actual working time. To address potential endogeneity bias introduced by time varying

components of intrinsic abilities, I then implement Arellano-Bond method in Column 2,

and adopt Blundell-Bond method in Column 3. Both of them yield qualitatively similar

results to Column 1. For the preferred specification in Column 3, 1 unit increase of the

importance of automated equipments is associated with 1.35 hours drop of actual work-

ing time. This suggests a downward bias in within group estimation, aligning with the

analysis in the previous section.
13In this section, ”college education” refers to both university education, college education, and other college equivalent

education.

177



Table 4.7: Actual Working Time, Automation and Education based on NS-SEC, 2011-2018

College Educated Workers Non-College Educated Workers

Within Group IV Within Group IV

(1) (2) (3) (4) (5) (6)

A. Total Actual Hours in Main Job and Automated Equipments

Hourt−1 -0.305∗∗∗ 0.022 0.049 -0.298∗∗∗ 0.034 0.043
(0.023) (0.123) (0.049) (0.024) (0.122) (0.048)

AutoEquipt -5.208∗ -1.471∗∗∗ -1.351∗∗∗ -5.095∗ -1.428 -1.384
(2.659) (0.225) (0.221) (2.715) (2.317) (2.235)

AutoEquipt × Incomet 0.407∗ 1.125∗ 1.021∗ 0.510∗∗ 1.145 0.997
(0.239) (0.835) (0.799) (0.245) (0.820) (0.788)

N of Observations 72716 72716 72716 69865 69865 69865
R2 0.051 0.050 0.013 0.014 0.051 0.050

B. Total Actual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.305∗∗∗ 0.026 0.038 -0.298∗∗∗ 0.038 0.034
(0.023) (0.125) (0.048) (0.024) (0.122) (0.048)

Computer t -9.696∗ -2.032∗ -5.833∗∗∗ -6.676∗ -1.952 -6.418
(7.378) (1.496) (0.527) (7.619) (1.531) (5.705)

Computert × Incomet 0.167∗ 0.469∗ 0.392∗∗∗ 0.207∗∗ 0.478∗ 0.397
(0.087) (0.290) (0.279) (0.089) (0.284) (0.276)

N of Observations 72716 72716 72716 69865 69865 69865
R2 0.014 0.015 0.051 0.050 0.051 0.050

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents within group and IV estimates of the dynamic
effects of automation technologies on individual working hours, accounting for lagged effects of explained variables.
Columns 1 and 4 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and
Columns 2 and 5 describe the results of system GMM using Arellano–Bond method, and Columns 3 and 6 describe
the results of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in
missing numbers of observations, and time-invariant variables including nation specific effects and industry factors
would also be cancelled out. Dependent variables include actual weekly working hours measures individual’s working
time during survey reference week. Explanatory variable are degree of automated equipments, and degree of com-
puterisation complexities. Income levels across workers are measured using natural logarithm of gross pay last time
(Government scheme or employer). The degree of automated equipments, computerisation complexities, and task
intensities are occupation-level based on NS-SEC 2010. Other control variables regarding task intensities in levels
are based on NS-SEC 2010, and they are quadratic form including degree of repetitiveness (Repeat), analytical skill
(Analytical), interpersonal skill (Interpersonal), and manual skill (Manual). Those regarding education level include
full time at school (School Full), full time at university or college (College Full), part time at school (School Part), and
part time at university or college (College Part). The rest of control variables include whether female people (Female),
age (Age), and marital status (Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland
North of Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Turning to coefficient estimations for non-college educated workers, the results in Columns

4 to 6 reveal insignificant impacts from the degree of automated equipments on individ-

ual total actual working hours. This lack of significance may be attributed to the lower

exposure of automation technologies, leading to insignificant employment responses.

In Panel B of Table 4.7, I report the regression results regarding computerisation com-

plexities. For the preferred specification adopting Blundell-Bond method, Column 3 re-

veals that rising computerisation complexities are reducing individual total actual working

hours. With 1 unit increase of computerisation complexities, the individual total actual

working hours tend to decline by 5.83 hours. The positive coefficients for the interaction

term between computerisation complexities and personal gross earning, indicate mitigat-

ing impacts from income levels. Furthermore, the results in Columns 4 to 6 reveal in-

significant impacts from computerisation complexities on individual total actual working

hours. These findings are consistent with Panel A, implying that such technical changes

are more pronounced among high skilled workers.

For Panels A and B in Table 58 of Appendix, I continue to examine the impacts on total

usual working hours. All the estimation results remain consistent across various specifi-

cations. Therefore, by examining heterogeneous effects of automation technologies on in-

dividual total working hours, it is discovered that technical changes are more pronounced

for high skilled workers, characterised by their affluent human capital accumulations.

4.5.2 By Regions

In this subsection, I further explore this heterogeneity in another dimension, by dividing

UK workers into two mutually exclusive groups, namely those living in London and those

residing outside London. This distinction is particularly relevant, given that empirical

analysis based on both US evidence in Chapter 2 and cross country evidence in Chapter

3, highlight regional variations of employment responses to automation technologies.
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The following analysis employs a dynamic panel data model based on Equation 4.2, which

takes lagged effects into accounts, alongside results adopting Arellano-Bond method.

Table 4.8: Actual Working Time, Automation by Regions based on NS-SEC, 2011-2018

Within London Outside London

(1) (2) (3) (4)

Dependent Variable: Actual Working Hours
Hourt−1 -0.212∗∗ -0.227∗∗ -0.317∗∗∗ -0.317∗∗∗

(0.102) (0.098) (0.024) (0.024)

AutoEquipt -5.452∗∗∗ -4.093∗

(0.948) (2.916)

Computer t -1.380∗∗∗ -8.813
(0.249) (8.343)

AutoEquipt × Incomet 1.603∗∗∗ 0.369∗

(0.109) (0.255)

Computert × Incomet 0.645∗ 0.151∗

(0.405) (0.092)

N of Observations 2866 2866 28578 28578
R2 0.154 0.153 0.147 0.147

Task Intensities
√ √ √ √

Year FE
√ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents IV estimates of the dynamic effects of automation
technologies on individual working hours, accounting for lagged effects of explained variables. Based on Equation
4.2 with dependent variable of individual hours worked, this table describe the results of system GMM using Arel-
lano–Bond method. First difference estimation of system GMM could result in missing numbers of observations, and
time-invariant variables including nation specific effects and industry factors would also be cancelled out. Dependent
variables include actual weekly working hours measures individual’s working time during survey reference week.
Explanatory variable are degree of automated equipments, and degree of computerisation complexities. Income levels
across workers are measured using natural logarithm of gross pay last time (Government scheme or employer). The
degree of automated equipments, computerisation complexities, and task intensities are occupation-level based on
NS-SEC 2010. Other control variables regarding task intensities in levels are based on NS-SEC 2010, and they are
quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill (Interper-
sonal), and manual skill (Manual). Those regarding education level include full time at school (School Full), full time
at university or college (College Full), part time at school (School Part), and part time at university or college (College
Part). The rest of control variables include whether female people (Female), age (Age), and marital status (Marry).
Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal Northern
Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.8 shows the regression results of the impacts from automation technologies on

individual total actual working hours by regions. It is expected that the dynamics of labour

supply would be more pronounced within London, due to concentration of manufacturing
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sectors in the area, as suggested in Section 2.6 of Chapter 2.

Columns 1 and 2 present the coefficient estimations regarding degree of automated equip-

ments. For panel data regression results of workers living within London, it is discovered

that 1 unit increase of the importance of automated equipments is associated with 5.45

hours decline of actual working time, and those driven by computerisation complexities

are reduced by 1.38 hours. In addition, the positive coefficients for gross earnings indicate

mitigating effects from rising income levels.

Shifting our attention to estimations for people living outside London, Columns 3 and

4 reveal relatively less significant impacts from automation exposure in other areas14.

This is consistent with the analysis in Section 2.6 of Chapter 2. Because the impacts of

automation technologies on labour market outcomes are more prominent in regions with

high GDP share attributed to manufacturing sectors. Therefore, people in London, the

largest city with intensive manufacturing establishments in the UK, tend to become more

susceptible to the effects of automation adoptions.

For Table 59 in Appendix, I continue to examine the impacts on total usual working

hours. The findings remain consistent across various specifications. Therefore, by ex-

amining heterogeneous effects of automation technologies on individual total working

hours, it is discovered that technical changes are more pronounced in regions with a high

concentration of manufacturing sectors such as London.

4.6 Summary

This chapter also offers insights into the impacts of automation technologies on labour

market outcomes. In contrast with US evidence in Chapter 2 and cross country analysis in

Chapter 3, this chapter turns to focus on UK context, to conduct individual level analysis.
14Although some of the coefficients are significant at confidence level of 10%, they are sensitive to different measures of

automation technologies. For example, the coefficient for computerisation complexities in Column 4 is insignificant.
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Utilising comprehensive worker level data from 2011 to 2018, this study indicates that

growing exposure of automation technologies, measured by degree of automated equip-

ments and computerisation complexities, translates to declines of individual total work-

ing hours. Moreover, the rise of income levels could mitigate such negative employment

responses. On average, 1 unit increase of the importance of automated equipment is as-

sociated with 2.29 hours increase of actual working time. For each additional pound of

gross earnings, the impacts of degree of automated equipments on actual working time

will be flattened by 0.36 hours. This result is consistent with the EU evidence by Graetz

and Michaels (2018), which showed that one additional robot per thousand labour force

could reduce working time by 1.22 hours for high skilled workers, and 8.59 hours for low

skilled workers15.

In addition, this study employs advanced panel data econometric methods to address en-

dogeneity concerns. Utilising both Arellano-Bond method and Blundell-Bond method,

along with robustness checks regarding various occupation systems, the results demon-

strate consistency across different specifications.

Drawing on the findings presented in Section 2.6 of Chapter 2, this heterogeneous anal-

ysis incorporates educational attainments and geographical locations as key factors. The

results indicate that negative employment responses to automation technologies, and miti-

gating effects from income levels, are more pronounced among college educated workers.

This is consistent with findings in Chapter 2, implying that such technological change is

biased towards high skilled workers (Graetz and Michaels, 2018).

Furthermore, by dividing UK workers into people living within London and those living

outside London, it is uncovered that such heterogeneous effects are more pronounced

among London-based workers. Taking structural change into accounts, these evidence

support the notion that production workers in manufacturing industries could benefit from
15As suggested in Figure 4.1, the development of automation technologies in UK is lower than average value of automation

adoptions in Europe, that is why the results of displacement effects for UK are slightly lower than those for European Union.
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productivity effects, and thus more exposed to technological changes.

This section also points out some challenges and future directions for individual level

analysis.

Firstly, as noted in Section 4.4.4, the regression results of both static and dynamic models

may be influenced by potential endogeneity issues. For example, the time-varying compo-

nents of skills and abilities, which people acquired through on-the-job training and work-

ing experience, may directly affect individual working hours. Besides, the ability to use

machines is considered to be correlated with automation exposures. This chapter builds

on advanced panel data models, and utilises Arellano-Bond method and Blundell-Bond

method to obtain relatively consistent estimation results. However, these two approaches

cannot fully address the endogenous concerns arising from time invariant individual abil-

ities. Therefore, further analysis with appropriate identification strategies would be more

valuable.

Secondly, utilising comprehensive datasets and selecting a suitable indicator of automa-

tion technologies to perform individual level analysis is challenging. This chapter draws

on data from Skills and Employment Survey in 2006, 2012 and 2017, to obtain informa-

tion about individual responses to automated equipments and computerisation. Averaging

these scores across occupations or industries, presents a measure of job characteristics

each year. However, this approach ignores individual heterogeneities within occupations

and industries, making it hard to identify heterogeneous employment effects from automa-

tion technologies across UK workers. Relying on novel datasets, more in-depth research

on exogenous variations in individual responses, such as through event studies based on

specific policies, might be a promising direction for future empirical implications.

Thirdly, the heterogeneous labour market impacts from automation technologies, can also

be influenced by institutional settings. In European countries where union plays an im-

portant role in the determinations of employment and wage, the introduction of automa-
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tion technologies may not have significantly negative impacts on individual total working

hours (Dauth et al., 2021). Furthermore, in other economies with high trade openness,

the offshoring policies by developed countries could also affect individual responses to

automation technologies (Kugler et al., 2020). Therefore, research accounting for institu-

tional factors and international trade would be another potential avenue for explorations.

Overall, these findings produce several policy implications.

Firstly, as technical changes are biased against low skilled workers, encouraging individ-

uals to enhance their human capital is crucial. This can be achieved through increased

access to education, or participation in on-the-job training programs. Therefore, it would

enable them to remain competitive in the face of automation, or facilitate the transition to

new roles driven by productivity effects. Addressing this skill gap represents a potential

avenue for policies aiming to deal with high unemployment rate.

Secondly, as the productivity effects from automation technologies are beneficial for

workers in manufacturing sectors, a continued emphasis on boosting manufacturing in-

dustries is necessary. This approach could offer employment opportunities for individuals

displaced from other automated sectors, while simultaneously enhancing overall produc-

tivity, thereby contributing to sustainable economic growth.
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Chapter 5

Conclusion

Automation seems to influence employment differently depending on the income level

of each country, region, and worker. This thesis leverages comprehensive US commut-

ing zone level data, cross country data, and UK worker level data, to provide a unified

analysis regarding the impacts of automation technologies on labour market outcomes.

In addition, it evaluates mechanisms based on responses of workers with different skill

levels and industries, under forces of displacement effects and productivity effects. The

results remain consistent under the IV approach and across different specifications.

5.1 Key Findings

The thesis focuses primarily on US evidence. Chapter 2 reveals that rising penetration

of automation technologies, including industrial robots and ICT (Information and Com-

munication Technologies) trade volumes, corresponds to reductions in employment rate

across all commuting zones. The rise of 1 unit robot per thousand labour force could

generate job losses by 0.67 percentage points. The magnitudes of these negative employ-

ment responses are more sizeable and significant in low- and middle-income areas. For

instance, 1000 unit increase in robotic stocks per worker will lead to a drop of 0.87 per-

centage points in employment rate over the period 2000-2019. The evidence implies that
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displacement effects are the prevailing force in the process of technology updating, par-

ticularly for those with rising proportion of routine occupations. While mitigating effects

of income levels suggest that productivity effects may flatten some of the welfare deteri-

orations, caused by displacement effects. Specifically, the job losses are more substantial

in areas from middle income group, as the concentration of routine occupations would

make production workers more susceptible to automation adoptions.

Motivated by the task-based conceptual framework, these patterns can be explained by a

simple net job creation channel. After adopting automation technologies, job displace-

ment occurs across all regions. In high income CZs, new vacancies arise in other non-

automated sectors, where high skilled labour forces are required in most cases. A larger

proportion of university educated workers raises the possibility of successful matches in

these regions. Nonetheless, relatively lower percentage of skilled workers in low and

middle income CZs limits opportunities for such job creations, leading to substantial em-

ployment losses. As a consequence, growing income levels could suppress the absolute

magnitudes of negative employment effects, and partially alleviate the welfare deteriora-

tion. Encouragingly, the analysis reveals that such technological change is biased towards

high skilled workers (Graetz and Michaels, 2018), and causes welfare improvement for

them, as new roles primarily emerge for university graduates. Factoring in structural

change, production workers in manufacturing industries could benefit from productivity

effects, with significant differential effects across sub-sectors within manufacturing.

Moreover, regression results from cross country analysis indicate the potential to gener-

alise the implications for global economic growth. The findings of Chapter 3 demonstrate

that rising penetration of automation technologies, including industrial robots and ICT

investments, corresponds to reductions in employment rate across all countries. Adopting

novel shift share IV approach based on differential ageing trends, this study also discov-

ers that rising income levels could mitigate such technological unemployment. Interest-

ingly, heterogeneous analysis based on OECD countries and non-OECD countries reveals
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that differential employment dynamics induced by automation technologies, along with

mitigation effects from income levels, are only observable in advanced economies. The

evidence confirms that heterogeneous employment effects of automation technologies are

prevalent in regions with intensive manufacturing activities.

This study also leverages a comprehensive UK dataset, and finds consistent results when

focusing on individual behaviours. In contrast to US evidence and cross country evidence,

Chapter 4 adopts advanced panel data econometric techniques, such as Arellano-Bond

method and Blundell-Bond method, to address endogeneity issues arising from unob-

served intrinsic abilities. The findings indicate that growing exposure to automation tech-

nologies, measured by degree of automated equipments and computerisation complex-

ities, translates to declines of individual total working hours. Moreover, rising income

levels could mitigate such negative employment responses. Encouragingly, the analysis

reveals that negative employment responses from automation technologies, and mitigating

effects from income levels, are more pronounced among college educated workers. The

evidence confirms that such technological change is biased towards high skilled workers.

Moreover, the study uncovers that such heterogeneous effects are more pronounced for

workers in London, which is also consistent with the analysis about technology updating

and structural changes.

In the existing literature, this research connects with several empirical studies on the ef-

fects of technological adoption on labour market outcomes, and makes three strands of

contributions.

The first main contribution is to explore the heterogeneous effects of technological adop-

tions across regions from different income groups. While previous research has focused

on general measures of technological updating such as TFP (total factor productivity)

growth and patent awards across different countries (Autor and Salomons, 2018; Autor

et al., 2020), this study employs two complementary indicators, namely robotic density
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and ICT intensity. These specifications allow for a differentiation between productivity

growth originating from automated and non-automated sectors.

In addition, the analysis on regional variations of technological unemployment also com-

plements a vast body of literature on RBTC (Routine Biased Technical Change). (Autor

and Dorn, 2013; Goos et al., 2014; Graetz and Michaels, 2017). Others have identified the

phenomenon of job polarisation in western developed countries, and showed how automa-

tion could replace labour forces in occupations located at the middle of skill percentiles

with routine tasks, and cause positive employment and wage effects in other occupations.

Departing from previous occupational level analysis, this thesis yields novel insights on

RBTC across regions. It emphasises that job displacement due to automation is likely

to be more pronounced in middle income regions, compared with low income regions.

This difference is attributed to the concentration of routine occupations in middle income

regions.

For the second main contribution, this thesis builds upon research exploring the effects

of skill shares and industrial structures on net job creation, causing heterogeneous em-

ployment effects from automation technologies. Recent work by Acemoglu and Restrepo

(2021) has evaluated how educational upgrading affects automation adoption, reflecting

the fact that growing educational attainment could result in scarcity of production work-

ers in blue collar jobs. The resulting wage increases for manufacturing workers, coupled

with decline of participation rate, will finally provide great opportunities for automation.

This thesis departs from previous studies, by shifting the focus from low skilled workers

to high skilled labour force, to demonstrate a unique channel. With intensive growth of

highly educated workers, supply effect appears to generate stronger productivity effects,

and act as the primary driver of rising employment in advanced economies. In addition,

such effects are more pronounced in manufacturing industries.

For the third main contribution, this thesis sheds light on the fact that net employment
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effects primarily result from differentials in productivity effects, as measured by job

creations. In contrast, job destructions, a suitable proxy of displacement effects, are

widespread across regions. In terms of mechanisms, this study complements the work

of Acemoglu and Restrepo (2020, 2022); Bonfiglioli et al. (2021); Dauth et al. (2021),

and confirms that job creations1 typically benefits high skilled workers with advanced ed-

ucation, while welfare deteriorations from unemployment are concentrated among labour

force from low skilled groups.

5.2 Limitations and Future Works

As noted in Section 1.2 of Chapter 1, research concerning the effects of technological

changes on labour market outcomes often encounters significant challenges, including

methods to deal with identification issues, data quality and measurement errors, as well

as future works to deal with influence from institutional settings and international trade.

Firstly, research about employment effects of automation technologies is often threatened

by endogenous factors, such as spillover effects and reverse causalities, which are ad-

dressed in Section 2.5 of Chapter 2. For US evidence, this study follows most existing

literature, and adopts shift share IV approach, assuming that European automation could

only affect US employment exclusively through US automation. Although the robotic

densities of sample European countries in Chapter 2 are higher than their US counterparts,

the technological spillover from US to Europe cannot be neglected. Therefore, studies

containing detailed information of robots (Graetz and Michaels, 2018), or adopting other

policy shocks to address these concerns (Bloom et al., 2015), may provide directions for

future research.

In addition, Chapter 3 extends the shift share IV approach, based on the ageing trends
1Here ”job creation” refers to rising job vacancies in incumbent occupations, rather than creation of new occupations or new

tasks, as the latter only applies in the context of artificial intelligence.
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in different countries. Nonetheless, there are concerns about the intuitions of plausibly

exogenous conditions, as the labour force participation rate tends to be higher among

young workers, and lower among old workers, especially in developed countries. As a

consequence, whether or not people could implement IV estimation using demographic

changes remains unexplored. A more in-depth research uncovering exogenous variations

in penetration to automation technologies across countries is a promising direction for

future empirical implications.

For individual level analysis, Chapter 4 provides analysis about endogeneity issues aris-

ing from time varying intrinsic abilities. It builds on advanced panel data models, and

utilises Arellano-Bond method and Blundell-Bond method, to obtain relatively consistent

estimation results. However, these two approaches are not able to deal with endogenous

concerns arising from time invariant individual abilities. Therefore, a more comprehen-

sive analysis with appropriate identification strategies would be more valuable.

Secondly, obtaining comprehensive datasets and selecting a suitable indicator of automa-

tion technologies, is challenging. Early work has focused on general measures of techno-

logical updating such as TFP (total factor productivity) growth and patent awards across

different countries (Autor and Salomons, 2018; Autor et al., 2020). Yet they fail to distin-

guish between productivity growth originating from automated and non-automated sec-

tors. Chapter 2 and Chapter 3 follow recent literature, such as Acemoglu and Restrepo

(2020), which utilised International Federation of Robotics (2021) to perform empirical

analysis, In addition, I adopt data about US ICT import and export from bilateral trade

statistics of Comtrade database (United Nations, 2020), and ICT capital data from Total

Economy Database of The Conference Board (2021), to obtain a comprehensive picture of

the relationship between automation technologies and employment. However, the adop-

tions of these datasets may face challenges when generalising to cross country analysis,

as the quality of robots may vary across regions. Relying on novel datasets, other ICT

indicators, or patent awards about automation technologies, such as those in Autor et al.
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(2020); Bloom et al. (2015), might be a good indicator for the development of automation

technologies in future research.

Furthermore, it is also necessary to identify individual level exposures to automation tech-

nologies. Chapter 4 draws on information about average scores of automation exposures

from industry level or occupation level. However, this approach ignores individual het-

erogeneities within occupations and industries, making it hard to identify heterogeneous

employment effects from automation technologies across UK workers. A more in-depth

research based on individual responses to automation technologies is more interesting.

Thirdly, whether automation technologies have positive or negative impacts on employ-

ment rate, can also be influenced by institutional settings. Due to unions, old workers

in Germany are not easily replaced by robots (Dauth et al., 2021), even though some are

low skilled workers. In other economies with trade openness, firms may tend to relocate

production activities to developing countries, thus affecting the adoption of automation

technologies.

In addition, the wave of AI (artificial intelligence) may also promote employment through

reinstatement effects. In contrast to conventional automation technologies, the adoption

of artificial intelligence could have positive impacts on employment rate through job cre-

ations in both existing and emerging occupations. Therefore, identifying these new jobs

would be a valuable contribution to future research. Previous work by Acemoglu et al.

(2022a); Webb (2019) used data from the Burning Glass to identify the AI requirements

from job descriptions. However, this approach only allows us to observe ”new” jobs,

but does not capture changes in existing jobs (if they are different from ”new” jobs) or

disappeared jobs in the job ads data. Therefore, a more comprehensive analysis into the

impacts of AI on labour market outcomes would be more interesting.

Another potential avenue for exploration is the role of international trade, as automation

reshapes the relative labour costs, which is the determinant of international competitive-
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ness (Rodrik, 2018). At the same time, facing international trade, even with cost effective

labour, the firm owner may still choose to use machine. According to the task based

framework in Section 2.5 of Chapter 2, when the wage of low skilled workers exceeds

the price of machines, the firm owners may favour machines over labour. Whereas, when

low skilled wages are below the price of machines, the firms may still choose to employ

workers. However, the dynamics change when we introduce international trade. For in-

stance, confronting with comparative advantage of lower labour costs of China, US firms

in labour intensive industries may find themselves unable to compete without adopting

automation, even when low skilled wages are below the price of machines.

Considering offshoring activities, declining production costs and rising productivity would

motivate firm owners to expand output demand for other inputs, including automation

(Hummels et al., 2014). Differentiating between the effects of import competition and off-

shoring would be a valuable contribution. Event studies based on the removal of product-

specific quotas following China’s entry into WTO (the World Trade Organisation) in 2001

could be employed to address endogeneity concerns (Bloom et al., 2015).

In conclusion, with novel datasets and appropriate identification strategies, both empirical

studies exploring heterogeneous effects under diverse institutional settings, and theoreti-

cal models incorporating roles of skill upgrading, hold significant promise as directions

for future research.

5.3 Policy Implications

Regional variations in employment responses to technological advancements have sig-

nificant policy implications, particularly in reducing technological unemployment and

enhancing labour market conditions. For workers in high income regions, policies can be

implemented to encourage on-the-job training, enabling high skilled workers to remain

abreast of currently advanced technological development. Therefore, they can become
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less likely to be replaced by machines. For workers in middle income regions, the ac-

quisition of non-routine skills could prove invaluable. Meanwhile, for workers in low

income regions, human capital accumulation remains an effective strategy, and policies

could prioritise investments in manual skills development.

In recent years, the UK government has implemented several policies to raise the employ-

ment rate and boost the economy. One such instance is the government’s plan to raise the

minimum wage level in 2023 (GOV.UK, 2023). Similar to the outcomes observed after

the last minimum wage reform in 1999, it is expected to see an increase of wage of low

skilled workers, potentially protecting the livelihoods of production workers. However,

with the adoption of automation technologies in the 21th century, presents a significant

risk of labour displacement, as machines become increasingly capable of replacing human

workers. Therefore, policy evaluations are crucial in the future.

The analysis of this thesis also offers insights for government policies in the post-pandemic

era. For instance, confronting with labour shortages exacerbated by Brexit and COVID

19 pandemic, the UK government launched the policy about Post-Study Work (PSW) visa

in 2021 (GOV.UK, 2023). This policy sought to attract high skilled workers, particularly

those with postgraduate qualifications. This policy could promote productivity effects

from automation technologies to some extent, as it provides a sufficient pool of high

skilled workers for non-automated sectors. However, with growing penetration of other

technologies like ChatGPT and other forms of AI, it becomes important to consider how

to offer on-the-job training, to reduce the possibility to be replaced by other technologies.

Therefore, it is essential to consider policies aiming to raise human capital. For school

education and college education, protecting students from any disruptions such as COVID

19 pandemic, is paramount. Moreover, policies about investment in education expendi-

tures are also important. While for those already in the workforce, offering on the job

training could help reduce the risks of job displacement, due to automation technologies.
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This analysis offers several policy implications.

Firstly, as technical changes are biased against low skilled workers, encouraging people

to accumulate more human capital is essential. This can be achieved through further

education or participation in on-the-job training. Therefore, such measures would help

workers remain competitive in the face of automation technologies, and facilitate their

transition to new roles driven by productivity effects. This approach represents a potential

avenue for policies that aim to address high unemployment rates.

Secondly, as the productivity effects from automation technologies are beneficial for the

workers in manufacturing sectors, a continued focus on boosting manufacturing industries

is necessary. It could not only accommodate displaced workers from other automated

sectors, but also raise the overall productivity, which would be helpful for sustainable

economic growth.

Thirdly, when formulating policies for the adoption of new technologies, the local gov-

ernments should consider the stages of economic development for given areas. As the

employment responses to automation vary across regions with different income levels,

automation adoptions in high income regions would be beneficial for productivity im-

provement, while the introduction of automation technologies in low and middle income

regions would lead to substantial job losses. Therefore, it is important to consider the spe-

cific development stages and status quo of each region during policy implementations.

194



Bibliography

Acemoglu, D. (2024). The Simple Macroeconomics of AI. Working Paper 32487, Na-

tional Bureau of Economic Research. 7

Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for

Employment and Earnings. In Ashenfelter, O. and Card, D., editors, Handbook of Labor

Economics, volume 4 of Handbook of Labor Economics, chapter 12, pages 1043–1171.

Elsevier. 3, 5, 6, 12, 17

Acemoglu, D., Autor, D., Hazell, J., and Restrepo, P. (2022a). Artificial Intelligence and

Jobs: Evidence from Online Vacancies. Journal of Labor Economics, 40(S1):S293–

S340. 16, 17, 191

Acemoglu, D., Autor, D. H., and Lyle, D. (2004). Women, War, and Wages: The Effect

of Female Labor Supply on the Wage Structure at Midcentury. Journal of Political

Economy, 112(3):497–551. 160

Acemoglu, D., De Feo, G., and De Luca, G. D. (2019). Weak States: Causes and Conse-

quences of the Sicilian Mafia. Review of Economic Studies, 87(2):537–581. 61, 136

Acemoglu, D., Johnson, S., and Robinson, J. A. (2001). The Colonial Origins of

Comparative Development: An Empirical Investigation. American Economic Review,

91(5):1369–1401. 7, 61, 136

Acemoglu, D., Koster, H. R. A., and Ozgen, C. (2023). Robots and Workers: Evidence

195



from the Netherlands. Working Paper 31009, National Bureau of Economic Research.

11, 13, 108

Acemoglu, D. and Loebbing, J. (2022). Automation and Polarization. Working Paper

30528, National Bureau of Economic Research. 15, 29
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.1 Job characteristics and Working Conditions

.1.1 Task Intensities

1. Analytical

• Paying close attention to detail

• Teaching people (individuals or groups)

• Making speeches/ presentations

• Working with a team of people

• Specialist knowledge or understanding

• Knowledge of how organisation works

• Spotting problems or faults

• Working out cause of problems/faults

• Thinking of solutions to problems

• Analysing complex problems in depth

• Checking things to ensure no errors

• Noticing when there is a mistake

• Planning own activities

• Planning the activities of others

• Organising own time

• Thinking ahead

• Reading written information (e.g. forms, notices and signs)

• Reading short documents (e.g. reports, letters or memos)

• Reading long documents (e.g. manuals, articles or books)

• Writing materials (e.g. forms, notices and signs)

• Writing short documents (e.g. reports, letters or memos)

• Writing long documents with correct spelling and grammar

• Adding, subtracting, multiplying and dividing numbers

• Calculations using decimals, percentages or fractions

• Calculations using advanced statistical procedures

2. Interpersonal

• Dealing with people
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• Persuading or influencing others

• Selling a product or service

• Counselling, advising or caring for customers or clients

• Listening carefully to colleagues

• Knowledge of particular products or services

3. Manual

• Physical strength (e.g. to carry, push or pull heavy objects)

• Physical stamina (e.g. to work on physical activities)

• Skill or accuracy in using hands/fingers (e.g. to assemble)

• Knowledge of use or operation of tools/equipment machinery

.1.2 Degree of Repetition

In the Skills and Employment Survey, the respondent had to answer ”how often work
involves short repetitive tasks”, and rank the frequencies by giving score from 1 to 5. I
calculate the average value of task repetitiveness every year as a kind of job characteristics
measures.

.1.3 Computerised or Automated Equipment

In the Skills and Employment Survey, the respondent had to answer ”whether job involves
use of computerised or automated equipment”, and recorded 1 if they used automated
equipment, and 0 if not. I calculate the average value every year as the probability of
automated equipment use.

For computerisation, the respondent had to answer ”complexity of computer use in job”,
and rank the frequencies by giving score from 1 to 4, and 0 if they did not contain any
requirements of computerised equipment. I calculate the average value of computer com-
plexity every year as a kind of job characteristics measures.
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Figure 7: ICT Intensity and Employment Rate for All Countries, 1993-2019

Notes:
The ICT intensity is from The Conference Board (2021), and employment rate is from World Bank (2021). Employ-
ment rate is defined as the ratio of employed people and total population who are above 15 years old. ICT intensity
in Graph A refers to ICT capital per 10000 population, that in Graph B refers to ICT capital per 10000 labour force.
ICT capital is calculated based on ICT capital share and GDP measured by constant US dollars.
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Figure 8: ICT Intensity and Employment Rate for Rich Countries, 1993-2019

(a) OECD Countries

(b) High Income Group

Notes:
The ICT intensity is from The Conference Board (2021), and employment rate is from World Bank (2021). Employ-
ment rate is the ratio of employed people and total population who are above 15 years old. ICT intensity in Graph A
refers to ICT capital per 10000 population, that in Graph B refers to ICT capital per 10000 labour force. ICT capital
is calculated based on ICT capital share and GDP measured by constant US dollars. The sample economies of OECD
countries are obtained from OECD (2020). Countries with a GNI per capita above $12,696 in 2020 are defined as
economies from high income group, based on GNI per capita using the World Bank Atlas method World Bank (2021).
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Figure 9: ICT Intensity and Employment Rate for Poor Countries, 1993-2019

(a) Low and Lower Middle Income Group

(b) Upper Middle Income Group

Notes:
The ICT intensity is from The Conference Board (2021), and employment rate is from World Bank (2021). Employ-
ment rate is defined as the ratio of employed people and total population who are above 15 years old. ICT intensity
in Graph A refers to ICT capital per 10000 population, that in Graph B refers to ICT capital per 10000 labour force.
ICT capital is calculated based on ICT capital share and GDP measured by constant US dollars. Based on GNI per
capita using the World Bank Atlas method World Bank (2021), the GNI per capita threshold for economies from low
income group and lower middle income group in 2020 is $1,045, and the GNI per capita threshold between economies
from lower middle income group and upper middle income group in 2020 is $4,095, and the GNI per capita threshold
between economies from high income group and upper middle income group in 2020 is $12,696.
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Figure 10: ICT Intensity and Employment Rate for for Middle Income Group, 1993-2019

Notes:
The ICT intensity is from The Conference Board (2021), and employment rate is from World Bank (2021). Employ-
ment rate is defined as the ratio of employed people and total population who are above 15 years old. ICT intensity in
Graph A refers to ICT capital per 10000 population, that in Graph B refers to ICT capital per 10000 labour force. ICT
capital is calculated based on ICT capital share and GDP measured by constant US dollars. Based on GNI per capita
using the World Bank Atlas method World Bank (2021), the GNI per capita threshold for economies from low income
group and lower middle income group in 2020 is $1,045, and the GNI per capita threshold between economies from
high income group and upper middle income group in 2020 is $12,696.
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Figure 13: Skill Distribution Across Income Levels in 2000

(a) High Skilled Labour

(b) Middle Skilled Labour

Notes:
The proportion of university educated workers is from Bureau of Economic Analysis (2021), percentage of high school
educated workers is from Bureau of Economic Analysis (2021), and income level measured by personal income per
capita are from Bureau of Economic Analysis (2021). The classification of regions from high income group, middle
income group, low income group is based on Figure 2.2.
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Figure 15: Ratio of Labour Force and Population, 1993-2019

Notes:
The graph presents trends in the ratio of total labour force and overall population aging 15-65 - using data from
World Bank (2021).
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.3 Tables

Table 1: Preliminary Results for US State-Level Employment and Other Automation, 2000-2019

High Low
Total Income Income

CZs CZs

(1) (2) (3) (4) (5) (6)

Dependent Variable: Employment Rate
A. ICT Import Volumes
ICT Import -0.184∗∗∗ -0.153∗∗∗ -0.196∗∗∗ -0.162∗∗∗ 0.216∗∗∗ -0.442∗∗∗

(0.024) (0.032) (0.018) (0.020) (0.026) (0.048)
R2 0.380 0.480 0.698 0.725 0.991 0.742

B. ICT Export Volumes
ICT Export -0.470∗∗∗ -0.312∗∗∗ -0.472∗∗∗ -0.413∗∗∗ 0.541∗∗∗ -0.732∗∗∗

(0.051) (0.072) (0.045) (0.044) (0.058) (0.173)
R2 0.383 0.476 0.697 0.726 0.982 0.743

C. ICT Net Export Volumes
ICT Net -0.283∗∗∗ -0.263∗∗∗ -0.303∗∗∗ 0.245∗∗∗ 0.331∗∗∗ -0.733∗∗∗

(0.043) (0.053) (0.031) (0.034) (0.045) (0.070)
R2 0.375 0.482 0.697 0.724 0.991 0.740

D. Automation Import Volumes
Auto Import -0.077∗∗∗ -0.065∗∗∗ -0.083∗∗∗ -0.068∗∗∗ 0.091∗∗∗ -0.183∗∗∗

(0.011) (0.014) (0.008) (0.009) (0.011) (0.021)
R2 0.378 0.480 0.698 0.725 0.990 0.742

E. Automation Export Volumes
Auto Export -0.152∗∗∗ -0.113∗∗∗ -0.156∗∗∗ -0.133∗∗∗ 0.176∗∗∗ -0.279∗∗∗

(0.018) (0.024) (0.014) (0.015) (0.019) (0.049)
R2 0.382 0.478 0.698 0.726 0.985 0.743

F. Automation Net Export Volumes
Auto Net -0.144∗∗∗ -0.134∗∗∗ -0.154∗∗∗ -0.124∗∗∗ 0.171∗∗∗ -0.324∗∗∗

(0.024) (0.030) (0.018) (0.019) (0.025) (0.048)
R2 0.372 0.481 0.696 0.722 0.987 0.739

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √

Geographic × Year FE
√ √ √ √

N of Commuting Zones 48 48 48 48 10 38
N of Observations 960 960 960 960 200 760

Notes:
The table presents preliminary results about within group estimates of the effects of exposure of automation tech-
nologies on employment rate, based on US state level data. Explanatory variables are changes in ICT trade volumes
(ICT import, ICT export, and ICT net export), as well as automation trade volumes (automation import, automation
export, and automation net export). Other demographics include population, age (Old People), gender (Female Peo-
ple), race (Hispanic People) and education (Bachelor Degree). Import volume from China and Mexico (Import), and
export volume to Germany, Japan, and Korea, are also controlled. Geographic FE refers to Census Divisions. Small
magnitudes of the coefficients of control variables are due to different magnitudes of the variables. The regressions
are weighted by total labour force in 2000. The classification of US states from high income group and low income
group are illustrated in Section 2.4.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Robustness Checks of Employment Effects from Robots Across Different Periods

(1) (2) (3) (4) (5) (6)

Dependent Variable: Employment Rate
Robotic Penetration -1.293∗∗∗ -0.637∗∗∗ -0.673∗∗∗

(0.396) (0.240) (0.208)

Robotic Penetration -0.289∗∗∗ -0.218∗∗∗ -0.195∗∗∗

(Adjusted) (0.027) (0.020) (0.017)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Time Periods 2000-2005 2000-2010 2000-2015 2000-2005 2000-2010 2000-2015
R2 0.588 0.720 0.714 0.601 0.777 0.758

N of CZs 722 722 722 722 722 722

N of Obs 2890 2888 2888 2888 2888 2888
Notes:
The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory
variable for Columns 4-6 are changes in robotic density calculated as Equation 2.5. Other demographics include
population, age, gender, race and education. Geographic FE refers to Census Divisions. The regressions are weighted
by total labour force in 2000. Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Robustness Checks for Employment, Robot and Income using Alternative IV, 2000-2019

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Employment Rate
A. Without Income Level
Robotic Penetration -4.820∗∗∗ -1.904∗∗∗ 6.369 139.582 13.209 -2.296∗∗∗ -3.686∗∗∗

(1.799) (0.447) (4.224) (1544.896) (16.272) (0.532) (1.130)
B. Only Robot is Endogenous
Robotic Penetration -4.994∗∗∗ -3.281∗∗∗ -14.160 -7.583∗∗∗ -9.189∗∗ -3.485∗∗∗ -4.514∗∗∗

(1.145) (0.579) (9.015) (2.603) (3.919) (0.642) (0.954)
Robotic Penetration 0.731∗∗∗ 0.482∗∗∗ 2.066 1.108∗∗∗ 1.342∗∗ 0.512∗∗∗ 0.661∗∗∗

× Income (0.169) (0.087) (1.308) (0.378) (0.568) (0.096) (0.141)

Year FE
√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the relationship between robotic penetration in US and employment rate, where
robotic penetration computed using operational stocks of robots from European countries is used as the instrument.
Column 1 is based on data from Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland; Column 2 is
based on data from all European countries; Column 3 is based on data from Denmark, Finland, France, Italy, Sweden;
Column 4 is based on data from Denmark, Finland, France, Italy, Sweden, Germany; Column 5 is based on data from
Spain, Finland, France, Italy, Norway, Sweden, UK; Column 6 is based on data from Denmark, Netherlands, Italy,
Sweden, UK; Column 7 is based on data from Austria, Denmark, Finland, France, Germany, Italy, Netherlands, Spain,
Sweden, Switzerland, UK. Other demographics include population, age, gender, race and education. Geographic FE
refers to Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US
analysis. Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: First Stage Regression of Employment and Automation for US, 2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dep Var Robot ICT Imp ICT Exp ICT Net Exp Auto Imp Auto Exp Auto Net Exp
Robot IV 1.407∗∗∗

(0.001)

ICT Imp IV 1.008∗∗∗

(0.001)

ICT Exp IV 1.003∗∗∗

(0.001)

ICT Net Exp IV 1.005∗∗∗

(0.001)

Auto Imp IV 1.020∗∗∗

(0.003)

Auto Exp IV 1.010∗∗∗

(0.001)

Auto Net Exp IV 1.011∗∗∗

(0.002)

Year FE
√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

First Stage F Statistics 126.37 132.92 140.13 129.19 140.84 142.78 135.32

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents first stage estimates of the relationship between robotic penetration and employment rate in US,
where predicted automation computed using operational stocks of robots from 8 European countries (Austria, Den-
mark, Finland, Germany, Italy, Spain, Sweden, Switzerland) is used as the instrument. Dependent variable for Column
1 is robotic penetration (Robot), that for Column 2 is ICT import (ICT Imp), that for Column 3 is ICT export (ICT
Exp), that for Column 4 is ICT net export (ICT Net Exp), that for Column 5 is automation import (Auto Imp), that
for Column 6 is automation export (Auto Exp), that for Column 7 is automation net export (Auto Net Exp), and all of
them are based on US data. The regressions are weighted by total labour force in 2000. Other demographic controls
which are not displayed here, include total population (Population), proportion of old people (Old), female workers
(Female), Hispanic people (Hispanic), high skilled workers measured by people who received high school degree
(High School) and bachelor’s degree (Bachelor), and import volumes from China and Mexico are also controlled.
Geographic FE refers to Census Divisions.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Robustness Checks for Employment, Other Automation and Income in US, 2000-2019

(1) (2) (3) (4) (5) (6)
Dependent Variable: Employment Rate
A. Without Income Level
ICT Import -0.100∗∗∗

(0.019)
ICT Export -0.242∗∗∗

(0.043)
ICT Net Exp -0.171∗∗∗

(0.034)
Auto Import -0.052∗∗∗

(0.010)
Auto Export -0.070∗∗∗

(0.013)
Auto Net Exp -0.200∗∗∗

(0.057)
B. Only Robot is Endogenous
ICT Import -1.755

(0.430)
ICT Export -1.682∗∗∗

(0.593)
ICT Net Exp -2.016

(11.473)
Auto Import 0.940

(0.985)
Auto Export -0.559∗∗

(0.220)
Auto Net Exp -0.330∗∗∗

(0.085)
ICT Import × Income 0.349

(0.288)
ICT Export × Income 0.326∗∗∗

(0.120)
ICT Net Exp × Income 4.091

(23.243)
Auto Import × Income -0.192

(0.200)
Auto Export × Income 0.110∗∗

(0.045)
Auto Net Exp × Income 0.074∗∗∗

(0.018)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the relationship between ICT and automation trade volumes in US and
employment rate, where corresponding other automation computed using ICT and automation trade volumes from 8
European countries (Austria, Denmark, Finland, Germany, Italy, Spain, Sweden, Switzerland) is used as the instru-
ment. The regressions are weighted by total labour force in 2000. Explanatory variables include ICT import (ICT
Import), ICT export (ICT Export), ICT net export (ICT Net Exp), automation import (Auto Import), automation ex-
port (Auto Export), and automation net export (Auto Net Exp). The regressions are weighted by total labour force
in 2000. Other demographics include population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis. Robust
standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Robustness Checks for Business Dynamics, Robot, Income in US, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8)
A. Dependent Variable: ∆ Job Destruction Rate

Robot 2.473 3.553 3.001∗∗ 9.033 2.573 2.584∗ 1.374 1.495
(49.129) (20.420) (1.250) (6.686) (1.683) (1.502) (1.765) (1.869)

Robot × Income -4.306 -1.108 -0.355 -0.192
(24.881) (0.850) (0.219) (0.267)

R2 0.002 0.001 0.000 0.001 0.002 0.044 0.045 0.158
B. Dependent Variable: ∆ Job Creation Rate

Robot -1.945 -2.776 -2.435∗∗∗ -7.764 -3.690∗∗ -3.707∗∗∗ -2.864∗ -3.170∗∗

(38.624) (16.571) (0.834) (6.799) (1.512) (0.962) (1.533) (1.232)
Robot × Income 3.390 0.979 0.567∗∗∗ 0.484∗∗∗

(20.191) (0.858) (0.142) (0.182)

R2 0.010 0.012 0.020 0.033 0.014 0.015 0.011 0.015
C. Dependent Variable: ∆ Net Job Creation Rate

Robot -4.418 -6.329 -5.436∗∗∗ -1.680 -6.262∗∗ -6.291∗∗∗ -4.238∗ -4.665∗∗

(87.748) (36.971) (1.719) (1.299) (2.602) (1.739) (2.449) (2.108)
Robot × Income 7.695 2.086 0.922∗∗∗ 0.676∗∗

(45.048) (1.646) (0.254) (0.306)

R2 0.015 0.015 0.011 0.013 0.008 0.006 0.009 0.009
Year FE

√ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √

State × Year FE
√ √ √ √

Firm Size × Year FE
√ √

N of CZs 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetrations on business dynamics, where robotic penetration
computed using operational stocks of robots from 8 European countries is used as the instrument. Dependent variable
in Panel A refers to changes in job destruction rate for all US commuting zones, that in Panel B refers to changes
in job creation rate for all US commuting zones, and that in Panel C refers to changes in net job creation rate for
all US commuting zones. Other demographics include number of firms, population, age, gender, race and education.
Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in 2000, the
initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

230



Table 7: Robustness Checks for US Business Dynamics, Robot, Income in Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8)
A. Dependent Variable: ∆ Job Destruction Rate

Robot -1.512 8.060∗∗∗ 4.539∗∗∗ 3.850∗∗∗ 1.583 3.333 -0.478 -2.073
(1.565) (2.664) (1.493) (1.310) (1.219) (2.831) (1.331) (3.974)

Robot × Income -0.949∗∗∗ -0.433∗∗∗ -0.601 0.435
(0.325) (0.161) (0.550) (0.726)

R2 0.002 0.001 0.000 0.001 0.002 0.044 0.045 0.158
B. Dependent Variable: ∆ Job Creation Rate

Robot 3.997 -2.297 -1.718 -1.437 -2.142∗∗∗ -5.473∗∗∗ -2.489∗∗∗ -8.618∗∗

(4.821) (2.148) (1.137) (0.942) (0.713) (1.911) (0.738) (3.363)
Robot × Income 0.258 0.177 1.144∗∗∗ 1.672∗∗∗

(0.260) (0.115) (0.384) (0.639)

R2 0.010 0.012 0.020 0.033 0.014 0.015 0.011 0.015
C. Dependent Variable: ∆ Net Job Creation Rate

Robot 1.912 -10.356∗∗∗ -6.257∗∗∗ -5.287∗∗∗ -3.725∗∗∗ -8.807∗∗∗ -2.011 -6.545
(1.895) (3.808) (1.784) (1.534) (1.228) (3.182) (1.355) (4.539)

Robot × Income 1.206∗∗∗ 0.609∗∗∗ 1.745∗∗∗ 1.237
(0.467) (0.192) (0.627) (0.834)

R2 0.015 0.015 0.011 0.013 0.008 0.006 0.009 0.009
Year FE

√ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √

State × Year FE
√ √ √ √

Firm Size × Year FE
√ √

N of CZs 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetrations on business dynamics, where robotic penetration
computed using operational stocks of robots from 8 European countries is used as the instrument. Dependent variable
in Panel A refers to changes in job destruction rate for middle income commuting zones in US, that in Panel B refers
to changes in job creation rate for middle income commuting zones in US, and that in Panel C refers to changes
in net job creation rate for middle income commuting zones in US. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Robustness Checks for Job Destructions, Other Automation and Income for US CZs, 2000-2019

(1) (2) (3) (4) (5) (6)
Dependent Variable: ∆ Job Destruction Rate
A. Without Income Level
ICT Import 0.027

(0.035)
ICT Export 0.066

(0.085)
ICT Net Exp -0.045

(0.058)
Auto Import 0.014

(0.018)
Auto Export 0.019

(0.025)
Auto Net Exp -0.048

(0.062)
B. Only Other Automation is Endogenous
ICT Import 6.784

(53.469)
ICT Export 1.314

(1.271)
ICT Net Exp 1.040

(1.514)
Auto Import -0.176

(0.224)
Auto Export 0.500

(0.518)
Auto Net Exp 0.090

(0.117)
ICT Import×Income -1.355

(10.675)
ICT Export×Income -0.267

(0.254)
ICT Net Exp×Income -0.209

(0.306)
Auto Import×Income 0.035

(0.046)
Auto Export×Income -0.102

(0.105)
Auto Net Exp×Income -0.019

(0.026)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job destruction rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is the instrumental
variable. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net
Exp), automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp).
Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to
Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Job Destructions, ICT Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Job Destruction Rate
ICT Import -0.017 0.491 0.031

(0.046) (1.246) (0.455)

ICT Export -0.041 0.609 0.185
(0.113) (1.221) (0.745)

ICT Net Exp 0.028 4.221 0.025
(0.077) (50.304) (1.387)

ICT Import -0.119 -0.011
×Income (0.283) (0.097)

ICT Export -0.161 -0.056
×Income (0.279) (0.158)

ICT Net Exp -9.573 0.001
×Income (114.215) (0.298)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job destruction rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the
instrument. Columns 1-3 present regression results without income levels, Columns 4-6 present regression results
when ICT trade volumes and interaction terms are endogenous, and Columns 7-9 present regression results when
only ICT trade volumes are endogenous. Explanatory variables include ICT import (ICT Import), ICT export (ICT
Export), and ICT net export (ICT Net Exp). Other demographics include number of firms, population, age, gender,
race and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per
capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Job Destructions, Automation Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Job Destruction Rate
Auto Import -0.009 -0.211 -0.143

(0.024) (0.694) (2.715)

Auto Export -0.012 0.197 0.061
(0.033) (0.392) (0.234)

Auto Net Exp 0.032 0.023 -0.053
(0.090) (0.236) (0.209)

Auto Import 0.044 0.029
×Income (0.156) (0.586)

Auto Export -0.052 -0.018
×Income (0.090) (0.050)

Auto Net Exp 0.002 0.014
×Income (0.053) (0.048)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job destruction rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the in-
strument. Columns 1-3 present regression results without income levels, Columns 4-6 present regression results when
automation trade volumes and interaction terms are endogenous, and Columns 7-9 present regression results when
only automation trade volumes are endogenous. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Robustness Checks for Job Creations, Other Automation and Income for US CZs, 2000-2019

(1) (2) (3) (4) (5) (6)
Dependent Variable: ∆ Job Creation Rate
A. Without Income Level
ICT Import -0.056∗∗∗

(0.015)
ICT Export -0.137∗∗∗

(0.036)
ICT Net Exp -0.094∗∗∗

(0.026)
Auto Import -0.028∗∗∗

(0.008)
Auto Export -0.040∗∗∗

(0.010)
Auto Net Exp -0.100∗∗∗

(0.034)
B. Only Other Automation is Endogenous
ICT Import -10.395

(82.729)
ICT Export -1.696∗

(0.973)
ICT Net Exp -1.729

(1.520)
Auto Import 0.278

(0.177)
Auto Export -0.624

(0.438)
Auto Net Exp -0.171∗∗∗

(0.059)
ICT Import×Income 2.073

(16.515)
ICT Export×Income 0.333∗

(0.195)
ICT Net Exp×Income 0.351

(0.306)
Auto Import×Income -0.057

(0.036)
Auto Export×Income 0.124

(0.089)
Auto Net Exp×Income 0.038∗∗∗

(0.013)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job creation rate, where
robotic penetration computed using operational stocks of robots from 8 European countries is used as the instrument.
Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net Exp),
automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp).
Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to
Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: Job Creations, ICT Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.087∗∗∗ -1.954∗∗ -0.774∗∗

(0.030) (0.913) (0.360)

ICT Export -0.214∗∗∗ -1.864∗∗ -1.168∗∗

(0.071) (0.907) (0.561)

ICT Net Exp 0.146∗∗∗ -1.964 -2.437∗

(0.052) (24.454) (1.324)

ICT Import 0.439∗∗ 0.162∗∗

×Income (0.209) (0.078)

ICT Export 0.410∗ 0.237∗

×Income (0.216) (0.125)

ICT Net Exp 0.446 0.520∗

×Income (5.552) (0.286)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job creation rate, where
robotic penetration computed using operational stocks of robots from 8 European countries is used as the instrument.
Columns 1-3 present regression results without income levels, Columns 4-6 present regression results when ICT trade
volumes and interaction terms are endogenous, and Columns 7-9 present regression results when only ICT trade
volumes are endogenous. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), and ICT
net export (ICT Net Exp). Other demographics include number of firms, population, age, gender, race and education.
Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in 2000, the
initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: Job Creations, Automation Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Job Creation Rate
Auto Import -0.045∗∗∗ -1.174∗∗ -4.588

(0.017) (0.561) (12.293)

Auto Export -0.062∗∗∗ -0.597∗∗ -0.361∗∗

(0.021) (0.288) (0.178)

Auto Net Exp 0.168∗ -0.416∗∗∗ -0.380∗∗∗

(0.090) (0.141) (0.134)

Auto Import 0.265∗∗ 0.988
×Income (0.124) (2.651)

Auto Export 0.133∗ 0.074∗

×Income (0.069) (0.040)

Auto Net Exp 0.095∗∗∗ 0.089∗∗∗

×Income (0.030) (0.030)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of job creation rate, where
robotic penetration computed using operational stocks of robots from 8 European countries is used as the instru-
ment. Columns 1-3 present regression results without income levels, Columns 4-6 present regression results when
automation trade volumes and interaction terms are endogenous, and Columns 7-9 present regression results when
only automation trade volumes are endogenous. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14: Robustness Checks for Net Job Creations, Other Automation and Income for US CZs, 2000-2019

(1) (2) (3) (4) (5) (6)
Dependent Variable: ∆ Net Job Creation Rate
A. Without Income Level
ICT Import -0.083∗∗

(0.036)
ICT Export -0.203∗∗

(0.089)
ICT Net Exp -0.139∗∗

(0.062)
Auto Import -0.042∗∗

(0.019)
Auto Export -0.059∗∗

(0.026)
Auto Net Exp -0.148∗∗

(0.071)
B. Only Other Automation is Endogenous
ICT Import -17.178

(135.908)
ICT Export -3.010

(1.837)
ICT Net Exp -2.769

(2.743)
Auto Import -0.454

(0.341)
Auto Export -1.124

(0.819)
Auto Net Exp -0.261∗

(0.136)
ICT Import×Income 3.428

(27.131)
ICT Export×Income 0.600

(0.369)
ICT Net Exp×Income 0.559

(0.554)
Auto Import×Income 0.092

(0.069)
Auto Export×Income 0.226

(0.166)
Auto Net Exp×Income 0.058∗

(0.030)
Year FE

√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of net job creation rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is the instrumental
variable. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net
Exp), automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp).
Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to
Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 15: Net Job Creations, ICT Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -0.070 -2.446 -0.805

(0.051) (1.627) (0.552)

ICT Export -0.173 -2.472 -1.352
(0.126) (1.541) (0.885)

ICT Net Exp 0.118 -0.239 2.412
(0.087) (2.937) (1.813)

ICT Import 0.559 0.173
×Income (0.372) (0.118)

ICT Export 0.571 0.293
×Income (0.360) (0.190)

ICT Net Exp 0.542 -0.521
×Income (6.669) (0.390)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of net job creation rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the
instrument. Columns 1-3 present regression results without income levels, Columns 4-6 present regression results
when ICT trade volumes and interaction terms are endogenous, and Columns 7-9 present regression results when
only ICT trade volumes are endogenous. Explanatory variables include ICT import (ICT Import), ICT export (ICT
Export), and ICT net export (ICT Net Exp). Other demographics include number of firms, population, age, gender,
race and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per
capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 16: Net Job Creations, Automation Trade Volumes, Income for US Middle Income CZs, 2000-2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ∆ Net Job Creation Rate
Auto Import -0.037 -1.386∗ -4.445

(0.027) (0.834) (12.173)

Auto Export -0.050 -0.794 -0.422
(0.037) (0.494) (0.279)

Auto Net Exp 0.135 -0.438∗ -0.327
(0.111) (0.263) (0.237)

Auto Import 0.309∗ 0.959
×Income (0.186) (2.625)

Auto Export 0.185 0.092
×Income (0.116) (0.061)

Auto Net Exp 0.094 0.075
×Income (0.058) (0.054)

Year FE
√ √ √ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √ √ √

N of CZs 722 722 722 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of other automation technologies on changes of net job creation rate,
where robotic penetration computed using operational stocks of robots from 8 European countries is used as the in-
strument. Columns 1-3 present regression results without income levels, Columns 4-6 present regression results when
automation trade volumes and interaction terms are endogenous, and Columns 7-9 present regression results when
only automation trade volumes are endogenous. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 17: Robustness Checks for Job Destructions, Robots, Skill Share in US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
Robotic Penetration 0.106 1.374 1.480 1.135 1.579 0.859

(0.071) (1.765) (1.860) (1.375) (2.094) (1.373)
Robotic Penetration -0.002 -0.004

× %High School Educated Worker (0.003) (0.005)
Robotic Penetration -0.003 -0.007

× %University Educated Workers (0.005) (0.009)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of robotic penetration on changes of job destruction rate, by
skills share and income level, where robotic penetration computed using operational stocks of robots from 8 European
countries is used as the instrument. Column 1 presents within group estimation of robotic penetration on on changes
of job destruction rate; Columns 2 to 4 only treat robotic penetration as endogenous variable; Columns 5 to 6 treat both
robotic penetration and the interaction term with income level as endogenous variable. Other demographics include
number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income
level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 18: Robustness Checks for Job Creations, Robots, Skill Share in US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
Robotic Penetration 0.256∗∗∗ -2.864∗ -3.134∗∗∗ -2.264∗∗∗ -3.260∗ -1.936

(0.088) (1.533) (1.211) (0.872) (1.742) (1.273)
Robotic Penetration 0.005∗∗∗ 0.008∗∗

× %High School Educated Worker (0.002) (0.004)
Robotic Penetration 0.008∗∗∗ 0.013∗∗

× %University Educated Workers (0.003) (0.007)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes: The table presents IV estimates of the effects of robotic penetration on changes of job creation rate, by skills
share and income level, where robotic penetration computed using operational stocks of robots from 8 European
countries is used as the instrument. Column 1 presents within group estimation of robotic penetration on on changes
of job destruction rate; Columns 2 to 4 only treat robotic penetration as endogenous variable; Columns 5 to 6 treat both
robotic penetration and the interaction term with income level as endogenous variable. Other demographics include
number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income
level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 19: Robustness Checks for Net Job Creations, Robots, Skill Share in US, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
Robotic Penetration 0.149∗∗ -4.238∗ -4.614∗∗ -3.398∗∗ -4.838 -2.795

(0.067) (2.449) (2.114) (1.543) (2.976) (2.208)

Robotic Penetration 0.007∗∗ 0.012∗

× %High School Educated Worker (0.003) (0.006)

Robotic Penetration 0.012∗∗ 0.020∗

× %University Educated Workers (0.005) (0.012)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on changes of net job creation rate, by skills share
and income level, where robotic penetration computed using operational stocks of robots from 8 European countries
is used as the instrument. Column 1 presents within group estimation of robotic penetration on on changes of job
destruction rate; Columns 2 to 4 only treat robotic penetration as endogenous variable; Columns 5 to 6 treat both
robotic penetration and the interaction term with income level as endogenous variable. Other demographics include
number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income
level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 20: US Job Destructions, Automation Trade, and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Destruction Rate
Auto Import 1.234

(5.103)

Auto Export 0.515
(0.618)

Auto Net Exp -0.750
(1.120)

Auto Import -0.025
×%University Educated Workers (0.112)

Auto Export -0.009
×%University Educated Workers (0.011)

Auto Net Exp -0.010
×%University Educated Workers (0.017)

Auto Import×Income 0.003
×%University Educated Workers (0.015)

Auto Export×Income 0.001
×%University Educated Workers (0.001)

Auto Net Exp×Income 0.001
×%University Educated Workers (0.002)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job destruction
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 21: Robustness Checks for US Job Destructions, Other Automation, University Education, 2000-
2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
ICT Import 0.272

(0.254)
ICT Export 0.460

(0.421)
ICT Net Exp -0.691

(0.660)
Auto Import 0.186

(0.180)
Auto Export 0.143

(0.131)
Auto Net Exp 0.395

(0.468)
ICT Import -0.002
×%University Educated Worker (0.001)

ICT Export -0.003
×%University Educated Worker (0.002)

ICT Net Exp 0.004
×%University Educated Worker (0.004)

Auto Import -0.001
×%University Educated Worker (0.001)

Auto Export -0.001
×%University Educated Worker (0.001)

Auto Net Exp -0.002
×%University Educated Worker (0.002)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job destruction
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Explanatory variables include ICT import (ICT Import), ICT export
(ICT Export), ICT net export (ICT Net Exp), automation import (Auto Import), automation export (Auto Export), and
automation net export (Auto Net Exp). Other demographics include number of firms, population, age, gender, race
and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita
in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 22: US Job Destructions, ICT Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
ICT Import 0.525 1.365

(0.504) (1.519)

ICT Export 0.674 1.658
(0.636) (1.897)

ICT Net Exp -2.578 -1.046
(3.095) (1.772)

ICT Import -0.001 -0.006
×%High School (0.001) (0.007)

ICT Export -0.001 -0.007
×%High School (0.001) (0.009)

ICT Net Exp 0.006 0.045
×%High School (0.007) (0.077)

ICT Import×Income 0.001
×%High School (0.001)

ICT Export×Income 0.001
×%High School (0.001)

ICT Net Exp×Income -0.004
×%High School (0.007)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

N of CZs 722 722 722 722 722 722
N of Obs 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job destruction
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from 8
European countries is used as the instrument. Columns 1-3 present regression results by high school education, and
Columns 4-6 present regression results by high school education and income level. Explanatory variables include
ICT import (ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographics include
number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income
level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 23: US Job Destructions, Automation Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
Auto Import 0.452 0.655

(0.497) (0.868)

Auto Export 0.216 0.550
(0.203) (0.624)

Auto Net Exp 0.303 -0.711
(0.333) (1.848)

Auto Import -0.001 -0.002
×%High School (0.001) (0.003)

Auto Export -0.000 -0.002
×%High School (0.000) (0.003)

Auto Net Exp -0.001 0.006
×%High School (0.001) (0.014)

Auto Import×Income 0.000
×%High School (0.000)

Auto Export×Income 0.000
×%High School (0.000)

Auto Net Exp×Income -0.001
×%High School (0.002)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job destruction
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Columns 1-3 present regression results by high school education,
and Columns 4-6 present regression results by high school education and income level. Explanatory variables include
automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Other
demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 24: US Job Creations, Automation Trade, and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Creation Rate
Auto Import -1.360

(1.044)

Auto Export -1.246∗∗∗

(0.398)

Auto Net Exp 1.785
(3.112)

Auto Import 0.005
×%University Educated Workers (0.004)

Auto Export 0.006∗∗∗

×%University Educated Workers (0.002)

Auto Net Exp -0.015
×%University Educated Workers (0.023)

Auto Import×Income -0.000
×%University Educated Workers (0.000)

Auto Export×Income -0.001∗∗∗

×%University Educated Workers (0.000)

Auto Net Exp×Income 0.002
×%University Educated Workers (0.003)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job creation rate, by
skills share and income level, where robotic penetration computed using operational stocks of robots from 8 European
countries is used as the instrument. Explanatory variables include automation import (Auto Import), automation
export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 25: Robustness Checks for US Job Creations, Other Automation, University Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.396∗∗∗

(0.147)
ICT Export -0.645∗∗∗

(0.193)
ICT Net Exp -1.025∗

(0.524)
Auto Import -0.272∗∗

(0.127)
Auto Export -0.200∗∗∗

(0.061)
Auto Net Exp -0.609∗

(0.343)
ICT Import 0.002∗∗∗

×%University Educated Workers (0.001)
ICT Export 0.003∗∗∗

×%University Educated Workers (0.001)
ICT Net Exp 0.005∗

×%University Educated Workers (0.003)
Auto Import 0.001∗∗

×%University Educated Workers (0.001)
Auto Export 0.001∗∗∗

×%University Educated Workers (0.000)
Auto Net Exp 0.003∗

×%University Educated Workers (0.002)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job creation rate, by
skills share and income level, where robotic penetration computed using operational stocks of robots from 8 European
countries is used as the instrument. Explanatory variables include ICT import (ICT Import), ICT export (ICT Export),
ICT net export (ICT Net Exp), automation import (Auto Import), automation export (Auto Export), and automation
net export (Auto Net Exp). Other demographics include number of firms, population, age, gender, race and education.
Geographic FE refers to Census Divisions. Income level is measured using personal income per capita in 2000, the
initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 26: US Job Creations, ICT Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.880∗∗ -1.151

(0.344) (0.751)

ICT Export -1.103∗∗∗ -2.283
(0.299) (1.556)

ICT Net Exp 4.380 2.329
(4.428) (1.535)

ICT Import 0.002∗∗∗ 0.019
×%High School (0.001) (0.014)

ICT Export 0.002∗∗∗ 0.038
×%High School (0.001) (0.029)

ICT Net Exp -0.009 -0.039
×%High School (0.009) (0.029)

ICT Import×Income -0.002
×%High School (0.002)

ICT Export×Income -0.005
×%High School (0.004)

ICT Net Exp×Income 0.005
×%High School (0.004)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job creation rate, by
skills share and income level, where robotic penetration computed using operational stocks of robots from 8 European
countries is used as the instrument. Columns 1-3 present regression results by high school education, and Columns
4-6 present regression results by high school education and income level. Explanatory variables include ICT import
(ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 27: US Job Creations, Automation Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
Auto Import -0.757 -1.676

(0.521) (6.199)

Auto Export -0.352∗∗∗ -0.709
(0.098) (0.486)

Auto Net Exp -0.526∗∗ -1.121
(0.211) (1.362)

Auto Import 0.002 0.034
×%High School (0.001) (0.136)

Auto Export 0.001∗∗∗ 0.012
×%High School (0.000) (0.009)

Auto Net Exp 0.001∗∗ 0.012
×%High School (0.000) (0.023)

Auto Import×Income -0.005
×%High School (0.019)

Auto Export×Income -0.001
×%High School (0.001)

Auto Net Exp×Income -0.001
×%High School (0.003)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of job creation rate,
by skills share and income level, where robotic penetration computed using operational stocks of robots from 8
European countries is used as the instrument. Columns 1-3 present regression results by high school education,
and Columns 4-6 present regression results by high school education and income level. Explanatory variables include
automation import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Other
demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 28: US Net Job Creations, Automation Trade, and University Education by Income, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Net Job Creation Rate
Auto Import -2.015

(1.724)
Auto Export -1.797∗∗

(0.833)
Auto Net Exp 2.496

(4.839)
Auto Import 0.006
×%University Educated Workers (0.006)

Auto Export 0.008∗∗

×%University Educated Workers (0.004)
Auto Net Exp -0.021
×%University Educated Workers (0.036)

Auto Import×Income -0.000
×%University Educated Workers (0.001)

Auto Export×Income -0.001∗

×%University Educated Workers (0.000)
Auto Net Exp×Income 0.003
×%University Educated Workers (0.005)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of net job creation
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 29: Robustness Checks for US Job Net Creations, Other Automation, University Education, 2000-
2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -0.669∗∗

(0.282)
ICT Export -1.105∗∗

(0.432)
ICT Net Exp -1.716∗

(0.879)
Auto Import -0.458∗∗

(0.230)
Auto Export -0.343∗∗

(0.135)
Auto Net Exp -1.003

(0.693)
ICT Import 0.004∗∗

×%University Educated Workers (0.002)
ICT Export 0.006∗∗

×%University Educated Workers (0.002)
ICT Net Exp 0.009∗∗

×%University Educated Workers (0.005)
Auto Import 0.002∗∗

×%University Educated Workers (0.001)
Auto Export 0.002∗∗

×%University Educated Workers (0.001)
Auto Net Exp 0.005
×%University Educated Workers (0.003)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of net job creation
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Explanatory variables include ICT import (ICT Import), ICT export
(ICT Export), ICT net export (ICT Net Exp), automation import (Auto Import), automation export (Auto Export), and
automation net export (Auto Net Exp). Other demographics include number of firms, population, age, gender, race
and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per capita
in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 30: US Net Job Creations, ICT Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -1.405∗∗ -1.951

(0.608) (1.528)

ICT Export -1.776∗∗∗ -3.922
(0.662) (3.156)

ICT Net Exp 6.959 3.914
(6.669) (3.069)

ICT Import 0.003∗∗ 0.033
×%High School (0.001) (0.029)

ICT Export 0.004∗∗∗ 0.065
×%High School (0.001) (0.059)

ICT Net Exp -0.015 -0.066
×%High School (0.014) (0.058)

ICT Import×Income -0.004
×%High School (0.004)

ICT Export×Income -0.008
×%High School (0.008)

ICT Net Exp×Income 0.008
×%High School (0.008)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of net job creation
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from 8
European countries is the instrument. Columns 1-3 present regression results by high school education, and Columns
4-6 present regression results by high school education and income level. Explanatory variables include ICT import
(ICT Import), ICT export (ICT Export), and ICT net export (ICT Net Exp). Other demographics include number
of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is
measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 31: US Net Job Creations, Automation Trade Volumes, and High School Education, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
Auto Import -1.209 -2.910

(0.852) (11.233)

Auto Export -0.568∗∗∗ -1.224
(0.213) (0.991)

Auto Net Exp -0.829∗ -1.971
(0.435) (2.319)

Auto Import 0.002 0.059
×%High School (0.002) (0.247)

Auto Export 0.001∗∗∗ 0.020
×%High School (0.000) (0.018)

Auto Net Exp 0.002∗ 0.021
×%High School (0.001) (0.039)

Auto Import×Income -0.008
×%High School (0.034)

Auto Export×Income -0.003
×%High School (0.002)

Auto Net Exp×Income -0.002
×%High School (0.005)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on changes of net job creation
rate, by skills share and income level, where robotic penetration computed using operational stocks of robots from 8
European countries is the instrument. Columns 1-3 present regression results by high school education, and Columns
4-6 present regression results by high school education and income level. Explanatory variables include automation
import (Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Other demo-
graphics include number of firms, population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 32: Robustness Checks for US Job Destructions, Robot, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Destruction Rate
Robot Penetration 0.763 1.453 1.444 1.370 1.380 1.736

(1.156) (1.840) (1.777) (1.751) (1.759) (2.184)

Robot Penetration -0.002
× %Manufacturing GDP (0.002)

Robot Penetration -0.002
× %Agriculture GDP (0.001)

Robot Penetration -0.002∗∗

× %Mining GDP (0.001)

Robot Penetration -0.000
× %Utility GDP (0.002)

Robot Penetration -0.002
× %Construction GDP (0.005)

Robot Penetration -0.032
× %R&D GDP (0.036)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job destruction
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographics include number of firms, population, age, gender,
race and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per
capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 33: Robustness Checks for US Job Creations, Robot, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
Robot Penetration -1.844∗∗ -2.944∗ -2.755∗ -2.846∗ -2.852∗ -3.573∗

(0.742) (1.596) (1.473) (1.525) (1.548) (2.060)

Robot Penetration 0.004∗∗∗

× %Manufacturing GDP (0.001)

Robot Penetration 0.002
× %Agriculture GDP (0.001)

Robot Penetration -0.003∗∗

× %Mining GDP (0.001)

Robot Penetration 0.001
× %Utility GDP (0.002)

Robot Penetration -0.003
× %Construction GDP (0.009)

Robot Penetration 0.063∗

× %R&D GDP (0.033)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job creation
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographics include number of firms, population, age, gender,
race and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per
capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 34: Robustness Checks for US Net Job Creations, Robot, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
Robot Penetration -2.606∗ -4.397∗ -4.199∗ -4.215∗ -4.232∗ -5.309∗

(1.335) (2.606) (2.404) (2.440) (2.445) (3.174)

Robot Penetration 0.006∗∗

× %Manufacturing GDP (0.003)

Robot Penetration 0.003∗

× %Agriculture GDP (0.002)

Robot Penetration -0.001
× %Mining GDP (0.002)

Robot Penetration 0.002
× %Utility GDP (0.003)

Robot Penetration -0.002
× %Construction GDP (0.012)

Robot Penetration 0.094∗

× %R&D GDP (0.049)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job creation
rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots from
8 European countries is used as the instrument. Other demographics include number of firms, population, age, gender,
race and education. Geographic FE refers to Census Divisions. Income level is measured using personal income per
capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 35: Job Destruction Dynamics and Robotic Penetration by Manufacturing Sectors (Group 1) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Job Destruction Rate
Robot Penetration 0.049 0.007 -0.019 0.189 0.259 0.280 0.416

(1.083) (1.580) (0.956) (1.107) (1.141) (1.034) (1.397)
Robot Penetration -0.075

×%Textile GDP (0.231)
Robot Penetration -0.019

×%Wood GDP (0.301)
Robot Penetration 0.045

×%Paper GDP (0.105)
Robot Penetration 0.029

×%Pharmaceutical GDP (0.054)
Robot Penetration 0.027

×%Chemical GDP (0.034)
Robot Penetration 0.211

×%Plastic GDP (0.294)
Robot Penetration 0.303

×%Glass GDP (0.564)
Robot Penetration×Income 0.007

×%Textile GDP (0.084)
Robot Penetration×Income -0.002

×%Wood GDP (0.058)
Robot Penetration×Income -0.015

×%Paper GDP (0.032)
Robot Penetration×Income -0.006

×%Pharmaceutical GDP (0.011)
Robot Penetration×Income -0.005

×%Chemical GDP (0.008)
Robot Penetration×Income -0.041

×%Plastic GDP (0.062)
Robot Penetration×Income -0.057

×%Glass GDP (0.113)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job destruction
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 36: Job Destruction Dynamics and Robotic Penetration by Manufacturing Sectors (Group 2) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Job Destruction Rate
Robot Penetration 0.049 1.059 0.591 0.056 -0.177 0.252 0.880

(1.083) (2.116) (1.744) (1.001) (1.439) (1.491) (1.716)
Robot Penetration 0.301

×%BasicMetal GDP (0.330)
Robot Penetration 0.205

×%MetalProduct GDP (0.393)
Robot Penetration 0.131

×%Electric GDP (0.239)
Robot Penetration -0.013

×%Machine GDP (0.236)
Robot Penetration 0.051

×%Automotive GDP (0.085)
Robot Penetration 0.108

×%Other GDP (0.093)
Robot Penetration×Income -0.058

×%BasicMetal GDP (0.070)
Robot Penetration×Income -0.038

×%MetalProduct GDP (0.076)
Robot Penetration×Income -0.030

×%Electric GDP (0.057)
Robot Penetration×Income -0.000

×%Machine GDP (0.047)
Robot Penetration×Income -0.010

×%Automotive GDP (0.017)
Robot Penetration×Income -0.019

×%Other GDP (0.016)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job destruction
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 37: Job Creation Dynamics and Robotic Penetration by Manufacturing Sectors (Group 1) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Job Creation Rate
Robot Penetration -2.426∗∗ -3.898∗ -2.301∗∗ -1.992∗∗∗ -1.994∗∗ -2.462∗∗ -3.055∗∗

(1.186) (2.064) (0.901) (0.625) (0.946) (1.255) (1.529)
Robot Penetration -0.523∗

×%Textile GDP (0.293)
Robot Penetration -0.963∗∗

×%Wood GDP (0.423)
Robot Penetration -0.288∗∗

×%Paper GDP (0.133)
Robot Penetration -0.054

×%Pharmaceutical GDP (0.051)
Robot Penetration -0.020

×%Chemical GDP (0.037)
Robot Penetration -0.735∗∗∗

×%Plastic GDP (0.274)
Robot Penetration -1.325∗∗

×%Glass GDP (0.600)
Robot Penetration×Income 0.164∗

×%Textile GDP (0.094)
Robot Penetration×Income 0.173∗∗

×%Wood GDP (0.075)
Robot Penetration×Income 0.079∗∗∗

×%Paper GDP (0.030)
Robot Penetration×Income 0.013
×%Pharmaceutical GDP (0.010)

Robot Penetration×Income 0.009
×%Chemical GDP (0.007)

Robot Penetration×Income 0.153∗∗∗

×%Plastic GDP (0.055)
Robot Penetration×Income 0.264∗∗

×%Glass GDP (0.115)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job creation
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 38: Job Creation Dynamics and Robotic Penetration by Manufacturing Sectors (Group 2) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Job Creation Rate
Robot Penetration -2.426∗∗ -3.824 -3.867∗ -2.107∗∗ -3.230 -3.320∗ -2.787∗∗

(1.186) (2.830) (2.245) (1.000) (2.566) (1.740) (1.397)
Robot Penetration -0.626

×%BasicMetal GDP (0.469)
Robot Penetration -0.867

×%MetalProduct GDP (0.589)
Robot Penetration -0.517∗∗

×%Electric GDP (0.208)
Robot Penetration -0.593∗∗

×%Machine GDP (0.241)
Robot Penetration -0.244∗∗

×%Automotive GDP (0.113)
Robot Penetration 0.034

×%Other GDP (0.063)
Robot Penetration×Income 0.133

×%BasicMetal GDP (0.099)
Robot Penetration×Income 0.168

×%MetalProduct GDP (0.110)
Robot Penetration×Income 0.125∗∗∗

×%Electric GDP (0.045)
Robot Penetration×Income 0.116∗∗

×%Machine GDP (0.047)
Robot Penetration×Income 0.046∗∗

×%Automotive GDP (0.023)
Robot Penetration×Income -0.001

×%Other GDP (0.010)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of job creation
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 39: Net Job Creation Dynamics and Robotic Penetration by Manufacturing Sectors (Group 1) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Net Job Creation Rate
Robot Penetration -2.475 -3.905 -2.282∗ -2.181∗ -2.253 -2.742 -3.472

(1.765) (2.518) (1.375) (1.261) (1.518) (1.841) (2.289)
Robot Penetration -0.448

×%Textile GDP (0.351)
Robot Penetration -0.944∗

×%Wood GDP (0.520)
Robot Penetration -0.333∗∗

×%Paper GDP (0.169)
Robot Penetration -0.083

×%Pharmaceutical GDP (0.077)
Robot Penetration -0.047

×%Chemical GDP (0.050)
Robot Penetration -0.946∗∗

×%Plastic GDP (0.406)
Robot Penetration -1.628∗

×%Glass GDP (0.894)
Robot Penetration×Income 0.157
×%Textile GDP (0.118)

Robot Penetration×Income 0.175∗

×%Wood GDP (0.094)
Robot Penetration×Income 0.094∗∗

×%Paper GDP (0.043)
Robot Penetration×Income 0.019
×%Pharmaceutical GDP (0.015)

Robot Penetration×Income 0.014
×%Chemical GDP (0.010)

Robot Penetration×Income 0.194∗∗

×%Plastic GDP (0.083)
Robot Penetration×Income 0.321∗

×%Glass GDP (0.173)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of net job creation
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 40: Net Job Creation Dynamics and Robotic Penetration by Manufacturing Sectors (Group 2) for US,
2000-2019

(1) (2) (3) (4) (5) (6) (7)
Dependent Variable: ∆ Net Job Creation Rate
Robot Penetration -2.475 -4.882 -4.458 -2.163 -3.052 -3.572 -3.667

(1.765) (4.260) (3.060) (1.549) (3.179) (2.303) (2.393)
Robot Penetration -0.927

×%BasicMetal GDP (0.685)
Robot Penetration -1.072

×%MetalProduct GDP (0.773)
Robot Penetration -0.648∗∗

×%Electric GDP (0.323)
Robot Penetration -0.580∗

×%Machine GDP (0.305)
Robot Penetration -0.295∗∗

×%Automotive GDP (0.149)
Robot Penetration -0.075

×%Other GDP (0.131)
Robot Penetration×Income 0.191

×%BasicMetal GDP (0.144)
Robot Penetration×Income 0.206

×%MetalProduct GDP (0.145)
Robot Penetration×Income 0.155∗∗

×%Electric GDP (0.073)
Robot Penetration×Income 0.116∗

×%Machine GDP (0.059)
Robot Penetration×Income 0.056∗

×%Automotive GDP (0.030)
Robot Penetration×Income 0.019

×%Other GDP (0.022)
Year FE

√ √ √ √ √ √ √

Demographics
√ √ √ √ √ √ √

Geographic FE
√ √ √ √ √ √ √

State × Year FE
√ √ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of robotic penetration on interactions between changes of net job creation
rate and proportion of GDP by manufacturing sectors, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Manufacturing sectors include textiles; wood and fur-
niture; paper; Pharmaceuticals and cosmetics; other chemical products; rubber and plastic products (non-automotive);
glass, ceramics, stone, mineral products (non-automotive); basic metals; metal products (non-automotive); electrical
or electronics; industrial machinery; automotive; and other vehicles. Other demographics include number of firms,
population, age, gender, race and education. Geographic FE refers to Census Divisions. Income level is measured
using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 41: Job Destruction Dynamics and Automation Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Destruction Rate
Auto Import 0.015

(0.020)

Auto Export 0.019
(0.025)

Auto Net Exp -0.095
(0.180)

Auto Import 0.001
×%Manufacturing GDP (0.001)

Auto Export 0.001
×%Manufacturing GDP (0.001)

Auto Net Exp -0.009
×%Manufacturing GDP (0.012)

Auto Import×Income -0.000
×%Manufacturing GDP (0.000)

Auto Export×Income -0.000
×%Manufacturing GDP (0.000)

Auto Net Exp×Income 0.002
×%Manufacturing GDP (0.002)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of automation trade volumes on interactions between changes of job
destruction rate and proportion of GDP by industry, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Explanatory variables include automation import
(Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Since net job creation
dynamics are only pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP.
Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to
Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 42: Robustness Checks for US Job Destruction Dynamics, Other Automation, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Destruction Rate
ICT Import 0.028

(0.037)
ICT Export 0.070

(0.090)
ICT Net Exp -0.048

(0.062)
Auto Import 0.014

(0.019)
Auto Export 0.020

(0.026)
Auto Net Exp -0.049

(0.065)
ICT Import×%Manufacturing GDP -0.000

(0.000)
ICT Export×%Manufacturing GDP -0.000

(0.000)
ICT Net Exp×%Manufacturing GDP 0.000

(0.000)
Auto Import×%Manufacturing GDP -0.000

(0.000)
Auto Export×%Manufacturing GDP -0.000

(0.000)
Auto Net Exp×%Manufacturing GDP 0.000

(0.000)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of job destruction rate and proportion of GDP by industry, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Alternative measures of automation technolo-
gies include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net Exp), automation import
(Auto Import), automation export (Auto Export), automation net export (Auto Net Exp). Since net job creation dy-
namics are only pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other
demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 43: Job Creation Dynamics and Automation Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Job Creation Rate
Auto Import -0.031∗∗

(0.014)

Auto Export -0.040∗∗∗

(0.012)

Auto Net Exp 0.186
(0.300)

Auto Import -0.002∗∗

×%Manufacturing GDP (0.001)

Auto Export -0.002∗∗

×%Manufacturing GDP (0.001)

Auto Net Exp 0.016
×%Manufacturing GDP (0.020)

Auto Import×Income 0.000∗∗

×%Manufacturing GDP (0.000)

Auto Export×Income 0.000∗∗∗

×%Manufacturing GDP (0.000)

Auto Net Exp×Income -0.003
×%Manufacturing GDP (0.004)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of automation trade volumes on interactions between changes of job cre-
ation rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of robots
from 8 European countries is used as the instrument. Explanatory variables include automation import (Auto Import),
automation export (Auto Export), and automation net export (Auto Net Exp). Since net job creation dynamics are only
pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other demographics
include number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions.
Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 44: Robustness Checks for US Job Creation Dynamics, Other Automation, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Job Creation Rate
ICT Import -0.058∗∗∗

(0.016)
ICT Export -0.142∗∗∗

(0.038)
ICT Net Exp -0.098∗∗∗

(0.028)
Auto Import -0.029∗∗∗

(0.008)
Auto Export -0.041∗∗∗

(0.011)
Auto Net Exp -0.102∗∗∗

(0.035)
ICT Import 0.000∗∗∗

×%Manufacturing GDP (0.000)
ICT Net Exp 0.001∗∗∗

×%Manufacturing GDP (0.000)
ICT Net Exp -0.000∗∗∗

×%Manufacturing GDP (0.000)
Auto Import 0.000∗∗∗

×%Manufacturing GDP (0.000)
Auto Export 0.000∗∗∗

×%Manufacturing GDP (0.000)
Auto Net Exp -0.000∗∗∗

×%Manufacturing GDP (0.000)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of job creation rate and proportion of GDP by industry, where robotic penetration computed using operational stocks of
robots from 8 European countries is used as the instrument. Alternative measures of automation technologies include
ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net Exp), automation import (Auto Import),
automation export (Auto Export), automation net export (Auto Net Exp). Since net job creation dynamics are only
pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other demographics
include number of firms, population, age, gender, race and education. Geographic FE refers to Census Divisions.
Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 45: Net Job Creation Dynamics and Automation Trade Volumes by Industry for US, 2000-2019

(1) (2) (3)

Dependent Variable: ∆ Net Job Creation Rate
Auto Import -0.046∗

(0.026)

Auto Export -0.059∗∗

(0.028)

Auto Net Exp 0.281
(0.453)

Auto Import -0.003∗∗

×%Manufacturing GDP (0.001)

Auto Export -0.003∗∗

×%Manufacturing GDP (0.001)

Auto Net Exp 0.025
×%Manufacturing GDP (0.029)

Auto Import×Income 0.001∗∗

×%Manufacturing GDP (0.000)

Auto Export×Income 0.001∗∗

×%Manufacturing GDP (0.000)

Auto Net Exp×Income × -0.005
×%Manufacturing GDP (0.006)

Year FE
√ √ √

Demographics
√ √ √

Geographic FE
√ √ √

State × Year FE
√ √ √

Firm Size × Year FE
√ √ √

N of Commuting Zones 722 722 722
N of Observations 2888 2888 2888

Notes:
The table presents IV estimates of the effects of automation trade volumes on interactions between changes of net
job creation rate and proportion of GDP by industry, where robotic penetration computed using operational stocks
of robots from 8 European countries is used as the instrument. Explanatory variables include automation import
(Auto Import), automation export (Auto Export), and automation net export (Auto Net Exp). Since net job creation
dynamics are only pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP.
Other demographics include number of firms, population, age, gender, race and education. Geographic FE refers to
Census Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 46: Robustness Checks for US Net Job Creation Dynamics, Other Automation, Industry, 2000-2019

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ Net Job Creation Rate
ICT Import -0.086∗∗

(0.040)
ICT Export -0.211∗∗

(0.097)
ICT Net Exp -0.145∗∗

(0.067)
Auto Import -0.044∗∗

(0.020)
Auto Export -0.062∗∗

(0.028)
Auto Net Exp -0.151∗∗

(0.076)
ICT Import 0.000∗∗

×%Manufacturing GDP (0.000)
ICT Export 0.001∗∗

×%Manufacturing GDP (0.000)
ICT Net Exp -0.001∗∗

×%Manufacturing GDP (0.000)
Auto Import 0.000∗∗

×%Manufacturing GDP (0.000)
Auto Export 0.000∗∗

×%Manufacturing GDP (0.000)
Auto Net Exp -0.001∗∗

×%Manufacturing GDP (0.000)

Year FE
√ √ √ √ √ √

Demographics
√ √ √ √ √ √

Geographic FE
√ √ √ √ √ √

State × Year FE
√ √ √ √ √ √

Firm Size × Year FE
√ √ √ √ √ √

N of Commuting Zones 722 722 722 722 722 722
N of Observations 2888 2888 2888 2888 2888 2888

Notes:
The table presents IV estimates of the effects of alternative automation technologies on interactions between changes
of net job creation rate and proportion of GDP by industry, where robotic penetration computed using operational
stocks of robots from 8 European countries is used as the instrument. Alternative measures of automation technolo-
gies include ICT import (ICT Import), ICT export (ICT Export), ICT net export (ICT Net Exp), automation import
(Auto Import), automation export (Auto Export), automation net export (Auto Net Exp). Since net job creation dy-
namics are only pronounced for manufacturing industry, I will focus on the percentage of manufacturing GDP. Other
demographics include number of firms, population, age, gender, race and education. Geographic FE refers to Census
Divisions. Income level is measured using personal income per capita in 2000, the initial year of US analysis.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 47: Robustness Checks for Employment, Robot Across Countries, 2004-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: ∆ Employment Rate
Robotic Density -0.396 -0.603 -0.300 -0.481 -1.442∗∗∗ -1.791∗∗∗ -0.444∗ -1.623∗∗∗

(0.286) (0.404) (0.272) (0.374) (0.231) (0.335) (0.228) (0.265)

Robotic Density×Income 0.021∗∗ 0.019∗∗ 0.035∗∗∗ 0.062∗∗∗

(0.009) (0.009) (0.010) (0.008)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Observations 1026 1026 1026 1026 1026 1026 1026 1026
N of Countries 65 65 65 65 65 65 65 65
R2 0.002 0.003 0.001 0.002 0.457 0.543 0.606 0.743

Notes:
The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory
variable is changes in robotic density. The regressions are weighted by total labour force in 2004. Income levels
across countries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years.
Other demographic controls include country level demographics such as total population in thousands (Population),
GDP (Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female
people (Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 48: Robustness Checks for Employment, Robot Across Countries, 2010-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: ∆ Employment Rate
Robotic Density 0.091 0.095 0.138 0.165 -1.171∗∗∗ -1.594∗∗∗ -0.295 -1.622∗∗∗

(0.330) (0.518) (0.318) (0.490) (0.260) (0.434) (0.248) (0.368)

Robotic Density × Income 0.003 0.002 0.032∗∗∗ 0.060∗∗∗

(0.012) (0.011) (0.012) (0.010)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Observations 641 641 641 641 641 641 641 641
N of Countries 65 65 65 65 65 65 65 65
R2 0.001 0.003 0.012 0.014 0.438 0.508 0.569 0.691

Notes:
The table presents within group estimates of the effects of robotic penetration on employment rate. Explanatory
variable is changes in robotic density. The regressions are weighted by total labour force in 2010. Income levels
across countries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years.
Other demographic controls include country level demographics such as total population in thousands (Population),
GDP (Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female
people (Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 49: Robustness Checks for Employment, ICT Across Countries, 2004-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: ∆ Employment Rate
ICT Intensity -0.018∗∗ -0.022∗∗∗ -0.018∗∗ -0.022∗∗∗ -0.027∗∗∗ -0.028∗∗∗ -0.007∗∗ -0.002

(0.007) (0.008) (0.007) (0.008) (0.005) (0.005) (0.003) (0.004)

ICT Intensity × Income 0.021 0.019 -0.004 0.030∗∗∗

(0.013) (0.014) (0.009) (0.007)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Observations 1728 1728 1728 1728 1728 1728 1728 1728
N of Countries 108 108 108 108 108 108 108 108
R2 0.000 0.001 0.002 0.005 0.312 0.358 0.408 0.487

Notes:
The table presents within group estimates of the effects of ICT adoption on employment rate. Explanatory variable
is changes in ICT intensity. The regressions are weighted by total labour force in 2004. Income levels across coun-
tries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years. Other
demographic controls include country level demographics such as total population in thousands (Population), GDP
(Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female people
(Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 50: Robustness Checks for Employment, ICT Across Countries, 2010-2019

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: ∆ Employment Rate
ICT Intensity -0.008 -0.012 -0.008 -0.012 -0.022∗∗∗ -0.023∗∗∗ -0.004 0.001

(0.009) (0.010) (0.009) (0.010) (0.006) (0.007) (0.005) (0.005)

ICT Intensity × Income 0.049∗∗ 0.049∗∗ 0.012 0.047∗∗∗

(0.020) (0.020) (0.014) (0.010)

Year FE
√ √ √ √ √ √

Geographic FE
√ √ √ √

Location×Year FE
√ √ √ √

Demographics
√ √

N of Observations 1080 1080 1080 1080 1080 1080 1080 1080
N of Countries 108 108 108 108 108 108 108 108
R2 0.001 0.004 0.006 0.002 0.316 0.352 0.393 0.460

Notes:
The table presents within group estimates of the effects of ICT adoption on employment rate. Explanatory variable
is changes in ICT intensity. The regressions are weighted by total labour force in 2010. Income levels across coun-
tries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous years. Other
demographic controls include country level demographics such as total population in thousands (Population), GDP
(Gross Domestic Product) in current thousand US dollars (GDP), percentage of old people (Old) and female people
(Female). Geographic FE or location FE refers to region dummies.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 51: First Stage Regression about Employment Effects of Automation Across Countries, 2004-2019

(1) (2) (3) (4)
Dep Var Robotic Penetration ICT Intensity

Robot IV: Predicted Robotic Exposure 1.984∗∗∗ 1.692∗∗∗

(0.175) (0.159)

ICT IV: Predicted ICT Exposure 1.291∗∗∗ 1.482∗∗∗

(0.317) (0.091)

Year FE
√ √ √ √

Geographic FE
√ √ √ √

Geographic FE × Year FE
√ √ √ √

Demographics
√ √

N of Economies 65 65 108 108
N of Observations 1026 1026 1728 1728

First Stage F Statistics 127.84 113.38 100.85 136.28
Kleibergen-Paap rk LM statistics 46.30 57.29 10.90 40.33
Cragg-Donald Wald F statistic 1233.14 868.26 100.11 36.50
Kleibergen-Paap rk Wald F statistic 127.85 113.38 100.85 36.28

Notes:
The table presents first stage estimates of the relationship between automation adoption and employment rate across
countries, where automation adoption predicted using aging trend is used as the instrument. Dependent variable for
Columns 1 and 2 is robotic penetration (Robot), that for Columns 3 and 4 is ICT intensity (ICT), and all of them
are based on US data. Independent variables include predicted robotic exposure and ICT exposure. The regressions
are weighted by total labour force in 2004. Other demographic controls include country level demographics such as
total population in thousands (Population), GDP (Gross Domestic Product) in current thousand US dollars (GDP),
percentage of old people (Old) and female people (Female). Geographic FE refers to region dummies. Income levels
across countries are measured using GNI per capita in 2019, to avoid the problems of missing values in previous
years. Geographic FE refers to Census Divisions.
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 52: Robustness Checks for Usual Weekly Working Time and Automation Technologies for UK Work-
ers based on NS-SEC 2010, 2011-2018

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Usual Working Hours
Auto Equip -2.730∗∗∗ -2.943∗∗∗ -1.882∗∗∗ -1.487∗∗∗

(1.577) (1.650) (1.664) (2.050)

Computer -0.667∗ -0.550 -0.434 -1.563∗∗∗

(0.362) (0.371) (0.386) (0.447)

Auto Equip 0.383∗∗∗

×Income (0.019)

Computer 0.139∗∗∗

×Income (0.007)
Task Intensities

√ √ √ √ √ √ √ √

Year FE
√ √ √ √ √ √

Nation FE
√ √ √ √

Occupation FE
√ √ √ √

Demographics
√ √ √ √

R2 0.028 0.028 0.118 0.117 0.027 0.027 0.117 0.117
N of Observations 141910 141910 141910 141910 141910 141910 141910 141910

Notes:
The table presents within group estimates of the effects of automation technologies on individual working hours.
Dependent variable is usual weekly working hours reflecting individual habits on work schedule. Explanatory variable
are degree of automated equipments, and computerisation complexities. Income levels across workers are measured
using natural logarithm of gross pay last time (Government scheme or employer) The classification of occupation
dummies are 3-digit level SOC 2010. Other demographic controls include individual specific characteristics such as
sex, age, marital status, and education level. Geographic FE refers to nation dummies (England, Wales, Scotland,
Scotland North of Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 53: Robustness Checks for Weekly Working Time and Automation Technologies for UK Workers
based on SIC 2007, 2011-2018

(1) (2) (3) (4) (5) (6) (7) (8)

A. Dep Var: Total Actual Hours in Main Job
Auto Equip -5.148∗∗∗ -4.896∗∗∗ -0.528 -4.702∗∗∗

(0.333) (0.334) (0.407) (0.499)

Computer -1.471∗∗∗ -1.423∗∗∗ -1.517∗∗∗ -2.587∗∗∗

(0.096) (0.100) (0.105) (0.134)

Auto Equip 0.424∗∗∗

×Income (0.018)

Computer 0.146∗∗∗

×Income (0.006)

R2 0.021 0.022 0.057 0.051 0.020 0.021 0.056 0.056
N of Observations 718123 718123 718123 718123 719030 719030 719030 719030

B. Dep Var: Total Usual Hours in Main Job
Auto Equip -6.202∗∗∗ -5.666∗∗∗ -1.537∗∗∗ -2.296∗∗∗

(0.199) (0.200) (0.234) (0.263)

Computer -1.315∗∗∗ -1.023∗∗∗ -1.621∗∗∗ -2.529∗∗∗

(0.057) (0.061) (0.061) (0.069)

Auto Equip 0.394∗∗∗

×Income (0.009)

Computer 0.136∗∗∗

×Income (0.003)

R2 0.034 0.037 0.146 0.159 0.031 0.032 0.145 0.163
N of Observations 714102 714102 714102 714102 715002 715002 715002 715002

Task Intensities
√ √ √ √ √ √ √ √

Year FE
√ √ √ √ √ √

Nation FE
√ √ √ √

Occupation FE
√ √ √ √

Demographics
√ √ √ √

Notes:
The table presents within group estimates of the effects of automation technologies on individual working hours.
Dependent variables include actual weekly working hours measures individual’s working time during survey reference
week, and usual weekly working hours reflecting individual habits on work schedule. Explanatory variable are degree
of automated equipments, and computerisation complexities. Income levels across workers are measured using natural
logarithm of gross pay last time (Government scheme or employer) The classification of occupation dummies are 3-
digit level SOC 2010. Other demographic controls include individual specific characteristics such as sex, age, marital
status, and education level. Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of
Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

274



Table 54: Robustness Checks for Weekly Working Time and Automation Technologies for UK Workers
based on SOC 2010, 2011-2018

(1) (2) (3) (4) (5) (6) (7) (8)

A. Dep Var: Total Actual Hours in Main Job
Auto Equip -4.485∗∗∗ -3.649∗∗∗ -1.738∗∗∗ -1.523∗∗∗

(0.389) (0.414) (3.028) (3.552)

Computer -1.901∗∗∗ -1.629∗∗∗ -2.051∗∗∗ -0.786∗∗

(0.147) (0.180) (0.262) (0.310)

Auto Equip 0.413∗∗∗

×Income (0.018)

Computer 0.142∗∗∗

×Income (0.006)

R2 0.021 0.021 0.050 0.048 0.021 0.021 0.050 0.048
N of Observations 736005 736005 736005 736005 736005 736005 736005 736005

B. Dep Var: Total Usual Hours in Main Job
Auto Equip -2.340∗∗∗ -2.260∗∗∗ -1.499∗∗∗ -1.197∗∗∗

(0.216) (0.228) (1.657) (1.751)

Computer -1.124∗∗∗ -1.349∗∗∗ -1.715∗∗∗ -0.405∗∗∗

(0.081) (0.100) (0.144) (0.154)

Auto Equip 0.386∗∗∗

×Income (0.009)

Computer 0.136∗∗∗

×Income (0.003)

R2 0.064 0.065 0.129 0.150 0.065 0.065 0.129 0.150
N of Observations 731692 731692 731692 731692 731692 731692 731692 731692

Task Intensities
√ √ √ √ √ √ √ √

Year FE
√ √ √ √ √ √

Nation FE
√ √ √ √

Occupation FE
√ √ √ √

Demographics
√ √ √ √

Notes:
The table presents within group estimates of the effects of automation technologies on individual working hours.
Dependent variables include actual weekly working hours measures individual’s working time during survey reference
week, and usual weekly working hours reflecting individual habits on work schedule. Explanatory variable are degree
of automated equipments, and computerisation complexities. Income levels across workers are measured using natural
logarithm of gross pay last time (Government scheme or employer) The classification of occupation dummies are 3-
digit level SOC 2010. Other demographic controls include individual specific characteristics such as sex, age, marital
status, and education level. Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of
Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 55: Robustness Checks for Dynamics about Usual Working Time and Automation based on NS-SEC
2010, 2011-2018

(1) (2) (3) (4) (5) (6)

A. Total Usual Hours in Main Job and Automated Equipments
Hourt−1 -0.236∗∗∗ -0.212∗∗∗ 0.099 -0.094 0.006 0.006

(0.020) (0.023) (0.092) (0.099) (0.057) (0.057)

AutoEquipt -12.046 -4.553 -43.204 -126.967 -137.829 -137.829
(10.047) (14.023) (84.062) (142.209) (121.890) (121.890)

AutoEquipt × Incomet 0.593∗∗∗ 0.029 0.002 0.002
(0.133) (0.401) (0.428) (0.428)

N of Observations 38292 38292 38292 38292 38292 38292
R2 0.028 0.028 0.118 0.117 0.117 0.117

B. Total Usual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.236∗∗∗ -0.211∗∗∗ 0.085 -0.104 0.004 0.004
(0.020) (0.023) (0.093) (0.101) (0.060) (0.060)

Computert -1.424 -0.699 -37.087∗∗∗ -17.441 -7.623 -7.623
(2.644) (3.521) (12.641) (73.931) (24.352) (24.352)

Computert × Incomet 0.229∗∗∗ 0.005 0.025 0.025
(0.048) (0.146) (0.155) (0.155)

N of Observations 38292 38292 38292 38292 38292 38292
R2 0.014 0.015 0.051 0.050 0.051 0.050

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Columns
1 and 2 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and Columns 3
and 4 describe the results of system GMM using Arellano–Bond method, and Columns 5 and 6 describe the results
of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in missing
numbers of observations, and time-invariant variables including nation specific effects and industry factors would
also be cancelled out. Dependent variables include usual weekly working hours reflecting individual habits on work
schedule. Explanatory variable are degree of automated equipments, and degree of computerisation complexities.
Income levels across workers are measured using natural logarithm of gross pay last time (Government scheme or
employer). The degree of automated equipments, computerisation complexities, and task intensities are occupation-
level based on NS-SEC 2010. Other control variables regarding task intensities in levels are based on NS-SEC 2010,
and they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal
skill (Interpersonal), and manual skill (Manual). Those regarding education level include full time at school (School
Full), full time at university or college (College Full), part time at school (School Part), and part time at university or
college (College Part). The rest of control variables include whether female people (Female), age (Age), and marital
status (Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian
Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

276



Table 56: Robustness Checks for Dynamics about Usual Working Time and Automation based on SIC
2007, 2011-2018

(1) (2) (3) (4) (5) (6)

A. Total Usual Hours in Main Job and Automated Equipments
Hourt−1 -0.292∗∗∗ -0.247∗∗∗ 0.010 -0.006 0.002 0.002

(0.004) (0.006) (0.007) (0.009) (0.007) (0.007)

AutoEquipt -4.617∗∗∗ -2.650∗∗∗ -5.484∗∗∗ -2.194∗ -2.163∗ -2.163∗

(0.657) (0.863) (0.849) (1.141) (1.144) (1.144)

AutoEquipt × Incomet 0.714∗∗∗ 0.768∗∗∗ 0.769∗∗∗ 0.769∗∗∗

(0.033) (0.042) (0.042) (0.042)

N of Observations 185759 185759 185759 185759 185759 185759
R2 0.021 0.022 0.057 0.051 0.056 0.056

B. Total Usual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.294∗∗∗ -0.249∗∗∗ 0.009 -0.007 0.001 0.001
(0.004) (0.006) (0.007) (0.009) (0.007) (0.007)

Computert -1.575∗∗∗ -3.529∗∗∗ -1.870∗∗∗ -3.665∗∗∗ -3.660∗∗∗ -3.660∗∗∗

(0.196) (0.260) (0.252) (0.339) (0.339) (0.339)

Computert × Incomet 0.250∗∗∗ 0.268∗∗∗ 0.268∗∗∗ 0.268∗∗∗

(0.012) (0.015) (0.015) (0.015)

N of Observations 186005 186005 186005 186005 186005 186005
R2 0.034 0.037 0.146 0.159 0.145 0.163

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √

Notes:
Based on SIC 2007 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Columns
1 and 2 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and Columns 3
and 4 describe the results of system GMM using Arellano–Bond method, and Columns 5 and 6 describe the results
of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in missing
numbers of observations, and time-invariant variables including nation specific effects and industry factors would
also be cancelled out. Dependent variables include usual weekly working hours reflecting individual habits on work
schedule. Explanatory variable are degree of automated equipments, and degree of computerisation complexities.
Income levels across workers are measured using natural logarithm of gross pay last time (Government scheme or
employer). The degree of automated equipments, computerisation complexities, and task intensities are occupation-
level based on SIC 2007. Other control variables regarding task intensities in levels are based on SIC 2007, and
they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill
(Interpersonal), and manual skill (Manual). Those regarding education level include full time at school (School Full),
full time at university or college (College Full), part time at school (School Part), and part time at university or college
(College Part). The rest of control variables include whether female people (Female), age (Age), and marital status
(Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal
Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

277



Table 57: Robustness Checks for Dynamics about Usual Working Time and Automation based on SOC
2010, 2011-2018

(1) (2) (3) (4) (5) (6)

A. Total Usual Hours in Main Job and Automated Equipments
Hourt−1 -0.287∗∗∗ -0.239∗∗∗ 0.006 -0.006 -0.001 -0.001

(0.004) (0.005) (0.007) (0.009) (0.007) (0.007)

AutoEquipt -1.277 -2.245∗∗ -2.484∗∗ -0.718 -0.726 -0.726
(0.818) (1.055) (1.041) (1.366) (1.368) (1.368)

AutoEquipt × Incomet 0.485∗∗∗ 0.497∗∗∗ 0.498∗∗∗ 0.498∗∗∗

(0.033) (0.043) (0.043) (0.043)

N of Observations 190304 190304 190304 190304 190304 190304
R2 0.021 0.021 0.050 0.048 0.050 0.048

B. Total Usual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.287∗∗∗ -0.239∗∗∗ 0.006 -0.006 -0.001 -0.001
(0.004) (0.005) (0.007) (0.009) (0.007) (0.007)

Computert -0.932∗∗ -0.338 -1.516∗∗∗ -0.194 -0.191 -0.191
(0.370) (0.463) (0.479) (0.618) (0.619) (0.619)

Computert × Incomet 0.168∗∗∗ 0.174∗∗∗ 0.174∗∗∗ 0.174∗∗∗

(0.012) (0.015) (0.015) (0.015)

N of Observations 190304 190304 190304 190304 190304 190304
R2 0.064 0.065 0.129 0.150 0.129 0.150

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √

Notes:
Based on SOC 2010 job classification system, the table presents within group estimates of the dynamic effects of
automation technologies on individual working hours, accounting for lagged effects of explained variables. Columns
1 and 2 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and Columns 3
and 4 describe the results of system GMM using Arellano–Bond method, and Columns 5 and 6 describe the results
of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in missing
numbers of observations, and time-invariant variables including nation specific effects and industry factors would
also be cancelled out. Dependent variables include usual weekly working hours reflecting individual habits on work
schedule. Explanatory variable are degree of automated equipments, and degree of computerisation complexities.
Income levels across workers are measured using natural logarithm of gross pay last time (Government scheme or
employer). The degree of automated equipments, computerisation complexities, and task intensities are occupation-
level based on SOC 2010. Other control variables regarding task intensities in levels are based on SOC 2010, and
they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill
(Interpersonal), and manual skill (Manual). Those regarding education level include full time at school (School Full),
full time at university or college (College Full), part time at school (School Part), and part time at university or college
(College Part). The rest of control variables include whether female people (Female), age (Age), and marital status
(Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal
Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 58: Robustness checks about Usual Working Time, Automation and Education based on NS-SEC,
2011-2018

College Educated Workers Non-College Educated Workers

OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

A. Total Usual Hours in Main Job and Automated Equipments

Hourt−1 -0.212∗∗∗ -0.094 0.006 -0.209∗∗∗ -0.090 0.004
(0.023) (0.099) (0.057) (0.025) (0.094) (0.058)

AutoEquipt -4.553∗∗∗ -1.270∗∗∗ -1.378∗ -1.121 -1.468 -1.543
(1.402) (0.142) (1.219) (0.143) (1.380) (1.222)

AutoEquipt × Incomet 0.593∗∗∗ 0.290∗∗∗ 0.200∗∗∗ 0.604∗∗∗ 0.013 0.001
(0.133) (0.040) (0.042) (0.138) (0.395) (0.425)

N of Observations 72374 72374 72374 69535 69535 69535
R2 0.051 0.050 0.028 0.028 0.051 0.050

B. Total Usual Hours in Main Job and Computerisation Complexities

Hourt−1 -0.211∗∗∗ -0.104 0.004 -0.209∗∗∗ -0.101 -0.002
(0.023) (0.101) (0.060) (0.025) (0.099) (0.059)

Computer t -0.699 -1.744∗∗ -0.762∗∗∗ -0.275 -2.300 -0.671
(3.521) (0.739) (0.244) (3.474) (7.718) (2.292)

Computert × Incomet 0.229∗∗∗ 0.500∗∗∗ 0.025∗ 0.235∗∗∗ 0.010 0.026
(0.048) (0.015) (0.016) (0.050) (0.148) (0.156)

N of Observations 72374 72374 72374 69535 69535 69535
R2 0.027 0.027 0.051 0.050 0.051 0.050

Task Intensities
√ √ √ √ √ √

Year FE
√ √ √ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents within group and IV estimates of the dynamic
effects of automation technologies on individual working hours, accounting for lagged effects of explained variables.
Columns 1 and 4 are estimated based on Equation 4.2 with dependent variable of individual hours worked, and
Columns 2 and 5 describe the results of system GMM using Arellano–Bond method, and Columns 3 and 6 describe
the results of system GMM using Blundell-Bond method. First difference estimation of system GMM could result in
missing numbers of observations, and time-invariant variables including nation specific effects and industry factors
would also be cancelled out. Dependent variables include usual weekly working hours reflecting individual habits
on work schedule. Explanatory variable are degree of automated equipments, and degree of computerisation com-
plexities. Income levels across workers are measured using natural logarithm of gross pay last time (Government
scheme or employer). The degree of automated equipments, computerisation complexities, and task intensities are
occupation-level based on NS-SEC 2010. Other control variables regarding task intensities in levels are based on
NS-SEC 2010, and they are quadratic form including degree of repetitiveness (Repeat), analytical skill (Analytical),
interpersonal skill (Interpersonal), and manual skill (Manual). Those regarding education level include full time at
school (School Full), full time at university or college (College Full), part time at school (School Part), and part time at
university or college (College Part). The rest of control variables include whether female people (Female), age (Age),
and marital status (Marry). Geographic FE refers to nation dummies (England, Wales, Scotland, Scotland North of
Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 59: Robustness Checks for Usual Working Time, Automation by Regions based on NS-SEC, 2011-
2018

Within London Outside London

(1) (2) (3) (4)

Dependent Variable: Usual Working Hours
Hourt−1 -0.271∗∗∗ -0.277∗∗∗ -0.206∗∗∗ -0.205∗∗∗

(0.068) (0.067) (0.026) (0.026)

AutoEquipt -6.686∗∗∗ -2.267∗

(0.491) (1.521)

Computer t -1.159∗∗∗ 0.825
(0.104) (3.725)

AutoEquipt × Incomet 0.250∗∗∗ 0.609∗∗∗

(0.051) (0.143)

Computert × Incomet 0.100∗∗∗ 0.232∗∗∗

(0.019) (0.052)

N of Observations 2846 2846 28247 28247
R2 0.219 0.214 0.149 0.150

Task Intensities
√ √ √ √

Year FE
√ √ √ √

Notes:
Based on NS-SEC 2010 job classification system, the table presents IV estimates of the dynamic effects of automation
technologies on individual working hours, accounting for lagged effects of explained variables. Based on Equation
4.2 with dependent variable of individual hours worked, this table describe the results of system GMM using Arel-
lano–Bond method. First difference estimation of system GMM could result in missing numbers of observations, and
time-invariant variables including nation specific effects and industry factors would also be cancelled out. Dependent
variables include usual weekly working hours reflecting individual habits on work schedule. Explanatory variable
are degree of automated equipments, and degree of computerisation complexities. Income levels across workers are
measured using natural logarithm of gross pay last time (Government scheme or employer). The degree of automated
equipments, computerisation complexities, and task intensities are occupation-level based on NS-SEC 2010. Other
control variables regarding task intensities in levels are based on NS-SEC 2010, and they are quadratic form including
degree of repetitiveness (Repeat), analytical skill (Analytical), interpersonal skill (Interpersonal), and manual skill
(Manual). Those regarding education level include full time at school (School Full), full time at university or college
(College Full), part time at school (School Part), and part time at university or college (College Part). The rest of
control variables include whether female people (Female), age (Age), and marital status (Marry). Geographic FE
refers to nation dummies (England, Wales, Scotland, Scotland North of Caledonian Canal Northern Ireland).
Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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