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Abstract

Over the decades of development, electronic design automation (EDA) has been widely
applied in most electronic design problems, especially in advanced and sophisticated
digital systems. In contrast, the degree of automation for distributed-element circuits,
e.g. microwave or millimeter-wave (mm-wave) devices characterized by electromagnetic
(EM) simulations, and semiconductor devices characterized by technology computer-
aided design (TCAD) simulations, is still very limited. Two challenges are especially
notable. First, both EM and TCAD simulations are computationally expensive. Second,
some design problems in these fields are highly parameter-sensitive with many local
optimal solutions. Consequently, fully algorithmic EDA in these fields is still in its
infancy, especially incorporating with advances of machine learning (ML) or artificial
intelligence (AI) techniques for higher automation levels.

The objective of this thesis is accordingly to develop a more generic and effective frame-
work (than hitherto) for design automation in these fields, assisted by cutting-edge
progress in ML. Three representative circuits/devices are selected for investigation: mi-
crowave filter, monolithic microwave integrated circuit (MMIC) power amplifier (PA),
and semiconductor devices. Beginning with a brief introduction of EDA, basic concepts
of relevant optimization algorithms and ML techniques are brought in subsequently,
then each topic is unfolded by a comprehensive literature review followed by details of
the proposed methodology, experimental results, and comparisons. Specifically,

• Microwave Filter: A design automation method composed of two-phase design
optimization is proposed for three-dimensional microwave filters. In each phase,
the bespoke objective functions and optimization algorithm are proposed to im-
prove the robustness and success rate. By incorporating with a programmable
initial design synthesis, the proposed methodology enables the first unsupervised
design automation without human intervention.

• MMIC PA: An efficient layout-level automated design methodology is proposed
for MMIC PAs, supporting holistic characterization with EM, small- and large-
signal simulations and being compatible with most foundry process design kits.
Bayesian neural networks are integrated with novel hybrid local and global search
strategies. Two MMIC PAs—a balanced Class-AB PA and a wideband Doherty
PA—were successfully synthesized with the later taped out for manufacturing.
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• Semiconductor Device: An attempt towards algorithmic design optimization
for semiconductor devices is presented through two case studies. The first op-
timized the epitaxial layer of a commercial III-V pHEMT for higher cut-off and
maximum oscillation frequency over terahertz, achieving a 30% and 57% im-
provement, respectively. The second study proposed the concept of device circuit
co-optimization, enhancing the performance of a planar CMOS-based inverter to
outperform several reported devices with advanced technologies.

In conclusion, this thesis investigated ML-assisted EDA within the three aforemen-
tioned areas. The research outcomes demonstrate significant improvements in design
efficiency, performance, and versatility. This work paves the way for further research
into higher degrees of design automation, facilitating the emergence of the upcoming
AI-driven EDA era.
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Chapter 1

Introduction

1.1 Electronic Design Automation

Electronic design automation (EDA) has a long history in the development of mod-
ern electronic industry, and it is at the center of modern technological advances in
improving the quality and convenience of human lives [1]. EDA enables automated
design, debugging, testing, and verification processes of electronic systems with bil-
lions of transistors to meet requirements and specifications, ensuring the Moore’s Law
a significant driving force rather than a mere curiosity over the past quarter-century
[2]. Without EDA, many electronic devices that have changed our daily lives, such as
laptops, smartphones, video games, and other equipment that we now take for granted,
would be inconceivable. As a remarkable success in design technology [3] (i.e. tech-
nology focus on designing and developing products), EDA has driven and supported
numerous applications across various complex and sophisticated systems and will con-
tinue to evolve alongside advances in electronic and microelectronic technology.

As the name suggests, EDA employs a set of tools, algorithms, methodologies, and
infrastructure to streamline and speed up the electronic design process while redu-
cing human effort at the same time. The most impactful and successful use of EDA
is in digital very large scale integration (VLSI), wherein EDA tools are essential in
designing intricate integrated circuits (ICs) from logic to layout, allowing for the im-
plementation of tens of billion transistors [4]. The history of these automation tools can
be briefly summarized. After half a century of significant research into understanding
semiconductor physics and simulating circuit characteristics, many EDA tools for chip
design emerged in the 1960s to replace manual and laborious work [5]. Several now

1



1.1. Electronic Design Automation 2

well-known companies, such as Cadence and Synopsys� were founded, and many key
techniques were developed and standardized (e.g., logic synthesis and timing analysis)
in that era [6]. Entering the new millennium, the IC design flow underwent a series
of paradigm shifts as the feature size of transistors decreased to below 100 nm. This
denser integration introduces additional uncertainty due to manufacturing process vari-
ations. More analysis functions were integrated at different abstract levels to mitigate
performance degradation and improve product yields. These methodologies form the
essential EDA infrastructure and now enable the design of very large digital systems
of logic or memory, including but not limited to system-on-chip (SoC), application-
specific integrated circuits (ASICs), and field programmable gate array (FPGA).

Unlike the significant prosperity of EDA in digital ICs as mentioned above, automated
design for analog or distributed-element circuits (i.e., circuits whose dimensions are
comparable to or larger than the wavelengths of the transmitted signals. For instance,
circuits used for radio frequency (RF), microwave, or millimeter-wave (mm-wave) ap-
plications are of such type. Referred to hereinafter as distributed circuits) and semicon-
ductor devices is relatively limited, and not as standardized and generic as in digital
circuits until the modern era. Specifically, analog ICs are still largely designed and laid
out manually, with limited assistance from automation tools [2]; humans remain dom-
inant in this process. Distributed circuits or devices (e.g., microwave filter or antenna)
still heavily rely on the understanding of the analytic analysis of electromagnetic (EM)
fields, which helps designers capture the feel (i.e. intuition) behind specific structures
for designing more intricate devices [7], as well as on the experience of seasoned engin-
eers. As for semiconductors, numerical simulation for semiconductor devices often lags
behind their fabrication and experimental measurements; most new technologies are
invented, designed, and validated in laboratories or foundries based on their manufac-
turing experience rather than with numerical simulation techniques [8].

Due to this, other terms are widespread in the literature, emphasizing more on the
interaction between humans and computers with less focus on automation capability—
computer-aided design (CAD) [9] and technology computer-aided design (TCAD), the
latter being for semiconductors. In this thesis, however, it is argued that both EDA and
CAD represent a long journey to pursue rather than merely a destination. Therefore,
no distinction is made between EDA and CAD for electronic design, as their goals are
the same—to liberate people from the laborious work of product design while reducing
time-to-market.
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Although the concept of CAD and TCAD for distributed circuits and semiconductor
devices has gone through the same decades of development, there are at least three
factors impeding a higher automation level in these areas, ranging from physics to
practice. First, it is important to consider whether the underlying physics—the sci-
entific principles—are fully acknowledged and understood. These fundamentals are
often described by equations that are either linear or partial differential. Second, it is
important to note whether effective numerical methods arbitrary structures and con-
figurations of devices of interest are well established. This is the foundation of any
accurate characterization or simulation. Lastly, it is crucial to consider whether there
are key design processes that are difficult to implement by machines. This determines
the feasibility of high-level design automation. To narrow our scope to the theme of this
thesis, we briefly analyze the above three factors with respect to circuits and devices
in the different fields.

In terms of digital ICs, it is broadly true that their basis lies in Boolean algebra.
Therefore, by setting sufficient noise and power margins on MOS transistors, design
activities can be conducted at a series of independent, abstract, and analytic levels.
This facilitates the use of automation tools, whether rule-based (i.e., setting a set of
rules for all possible scenarios) or combinatorial optimization-based (i.e., optimizing a
series of discrete programming problems using algorithms), enabling a high degree of
design automation.

Analog circuits complicate this situation, wherein transistors are no longer identical
but have different configurations [10]. Simulation program with integrated circuit em-
phasis (SPICE) and SPICE-like simulators (e.g. HSPICE [11] and Spectre [12]) based
on Kirchoff’s law become pivotal in response analysis. The mathematics behind these
simulators involves solving linear and ordinary differential equations (ODEs), the latter
for transient analysis in the time domain. Although their computational cost is higher
than that of digital ICs, it remains acceptable as results can often be obtained within
seconds. Nevertheless, while all specifications may be met in the topology design of ana-
log ICs, performance can be moderately degraded in its physical design (i.e. designing
the layout) due to non-ideal effects of silicon materials and interconnects. Post-layout
SPICE simulation, including parasitic extraction, is thus indispensable. When the res-
ulting performance with parasitics is intolerable at this stage, redesign and iterative
manual tuning are often inevitable. This iterative process relies mostly on the exper-
ience of designers, greatly hindering the implementation of a higher level of design
automation.
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Distributed circuits and devices are even more complicated to accurately characterize
due to the need to solve partial differential equations (PDEs), specifically, Maxwell’s
equations regarding electromagnetic (EM) fields. The solution is analytic in closed
form only in simple cases and under assumptions, necessitating specific numerical ap-
proaches for general cases [13]. Three representative full-wave numerical simulation
methods, finite-different time-domain (FDTD), method of moments (MoM, referred to
hereinafter as momentum method), and finite element method (FEM), were developed
and matured in the 1990s [14]. FDTD and FEM are superior for three-dimensional
(3D) structures such as antennas or cavity-based filters, while MoM has advantages
in designing single- or multi-substrate quasi-planar circuits [15]. However, these meth-
ods pose a significant computational burden even on powerful workstations; it is com-
mon to observe that a simulation of a moderate structure can take several to tens of
minutes, making this approach often a final simulation resort (i.e., conducting EM sim-
ulation) before fabrication. Although lumped equivalent circuits are proposed and can
be applied as an alternative during the design process, their accuracy diminishes with
increasing frequency. Therefore, exhaustive exploration of the design space using EM
simulation is infeasible. Intuition in EM theory with specific circuits and structures
from experienced engineers becomes the core of design processes.

In terms of semiconductors, TCAD is still in its infancy [16]. The primary performance
boosters of transistors over the past decades, such as new device structure, doping
strategies, and size shrinking, were proposed and verified by intensive experiments
rather than comprehensive numerical simulation [8, 17]. This is primarily attributed to
two reasons: the complexity of multi-physics interaction in semiconductor devices, such
as the mechanical stress/strain of lattices and electron transport [16], and the signific-
ant effect of fabrication processes on these devices including annealing and implantation
[18]. Thus, structures were implemented and tested on a case-by-case basis, while accur-
ate simulation became rather intricate and costly, especially in the absence of general
simulators. Until now, simulation and modeling of some semiconductor devices have
remained the core topic within the device research community [19, 20, 21]. There is a
lack of algorithmic design methodologies for structural exploration, not to mention the
automation aspect.

Table 1.1 summarizes the main points of the above discussion. As the types of circuits
range from digital to semiconductor devices, the time cost and complexity of numerical
simulations escalate, while the level of automation decreases. Therefore, it is expected
that research in the EDA of distributed circuits and semiconductor devices has the
potential to lead to notable improvements in performance and efficiency, especially
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Table 1.1: Comparison of EDA for different areas

Area Physics Mathematics Simulation
time cost

Degree
of auto.

Digital ICs - Boolean algebra,
Graph theory Low High

Analog
circuits/ICs Kirchoff’s law Linear equations Medium

low Moderate

Distributed
circuits/ICs Maxwell’s equation Partial differential

equation High Low

Semiconductor
devices

Schrödinger’s
equation, Boltzmann
transport equation

Partial differential
equation Very high None

considering the involvement of machine learning techniques, which makes the reduction
of numerical cost possible. Henceforth, our attention will be dedicated entirely to EDA
in these areas. Two typical distributed circuits or devices, namely microwave filters
and power amplifiers (PAs), are selected for further investigation. Microwave filter is a
representative distributed circuit or device. PA can be considered both an analog and
a distributed circuit when its operating frequency is high. For semiconductor devices,
the focus is on two types of transistors used in different applications: the III/V pHEMT
and the CMOS with an inverter circuit. Further discussion regarding challenges and
objectives will be detailed in Section 1.3. Prior to this, the background of machine
learning in EDA is introduced.

1.2 Machine Learning in Electronic Design Auto-
mation

Machine learning (ML) has become the most prominent technique in this era, which
empowers and will continue to boost many cutting-edge technologies, such as auto-
matic drive, personal assistant [22], and smart manufacturing [23], liberating people
from laborious decisions and operations. As the major branch of artificial intelligence
(AI), ML demonstrates incredible capabilities in classification, regression, detection,
and design space exploration [24]. Since these tasks are also quite common in develop-
ing design automation techniques, much interest has been gained by both industrial
and academic communities [25].
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As a continuously evolving field, ML can be broadly categorized into three types by
the forms of learning: supervised learning, unsupervised learning, and reinforcement
learning [26]. Supervised learning, among them, is the foundational one [27]. It learns
the mapping and constructs an analytic model under given input-output pairs by min-
imizing errors between the model output and the ground truth. Classification and
regression are two principal problems in supervised learning, which are distinguished
by their output data types: classification deals with categorical variables, while regres-
sion is concerned with continuous prediction. ML models trained through a supervised
approach can range from relatively simple techniques, such as linear regression, to
highly complex approaches, like deep neural networks (DNNs) (also known as artificial
neural networks (ANNs) for some simpler structures) or kernel machines [28]. In re-
cent years, DNNs have demonstrated their amazing capability in discovering intricate
structures with large-scale datasets, powering many advances of modern research and
applications including large language models, speech synthesis, and video generation.
Many research efforts in EDA have also benefited from these advances.

The power of machine learning techniques has been demonstrated extensively in digital
ICs [29], ranging from logic synthesis [30, 31] and physical design [32, 33], to verifica-
tion [34] and testing [35]. In terms of analog circuits [36], advancements have also been
achieved in ML-based circuit sizing [37, 38], layout placement [39, 40], and fault dia-
gnosis [41]. For distributed circuits and semiconductors, research primarily focused on
circuit/device modeling and ML-based device optimization, with each topic explained
as follows.

The most essential and straightforward application of ML in EDA is circuit/device
modeling, wherein supervised learning is primarily involved. Due to the time-consuming
simulation for both distributed circuits and semiconductor devices, finding cheaper
performance evaluators is often necessary. In the early period, many developments
of device modeling were made by building equivalent circuit abstraction according to
corresponding theories [9]. When some machine learning techniques exhibit competitive
effectiveness compared to existing approaches, shifts are instantly captured by the
research community [42]. For instance, ANN modeling for microwave circuits can date
back to the 1990s [43, 44], where passive and active components, such as microstrip
line [45, 46] and spiral inductor [47], were modeled by ANNs for high-level design. A
similar trend also occurred for semiconductors but lagged until the 2020s [48, 49, 50],
with the capacity of ML-based modeling being continually explored. However, in these
research, ML models should often be trained case by case for specific applications.
When the structure of circuits/devices becomes complex or the reusable components
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are not explicit, the strength of training ML models becomes unclear. Furthermore, ML
models are often criticized for their lack of interpretability. When the device technology
is updated or new parameters are considered, models should be trained from scratch,
which may be unaffordable in many scenarios.

While device modeling aims to accurately mimic device behavior by ML models with
less numerical cost, design optimization leverages ML models as online surrogates,
where online refers to updating models consecutively. Prominent achievements were
obtained for microwave circuit optimization in the early 2000s [51], wherein ANNs
were employed as coarse models or auxiliary models to replace computationally ex-
pensive simulations. ANNs were trained and updated during optimization, sometimes
with empirical functions to accelerate training. These early methods can be unified
within the framework of space mapping (SM), and they often lack explicit search en-
gines. When local search algorithms, e.g. quasi-Newton or Trust-region, are used, SM
method is hard to guarantee an optimal solution for general design problems. Recent
progress involves the use of new neural network structures and the integration of trans-
fer functions for passive components [44]. More discussion can be found in Section
3.2. The work in [52] introduced computational intelligence in designing analog and
high-frequency circuits. By incorporating ML model (i.e., the Gaussian process) with
global optimization algorithm, design automation is achieved for antennas and RF ICs
with affordable computational cost. However, this method was only validated on the
examples with simple topology; its performance for complex microwave circuits is still
to be discovered. As for semiconductors, there is a lack of decisive work for device
optimization.

To sum up, the development of ML in EDA is still very immature, especially for dis-
tributed circuits and semiconductors. Although some progress has been achieved on
specific topics, e.g., computational intelligence methods incorporating ML techniques
for circuit design optimization, there is still a significant gap towards practical prob-
lems. Much attention and development are needed to enable a higher level of design
automation.
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1.3 Challenges and Research Objectives

This thesis aims to explore potential pathways towards ML-assisted EDA. The research
unfolds in two areas: distributed devices/circuits and semiconductor devices. For the
distributed area, two representative devices and circuits are considered: microwave
filter and power amplifier. Microwave filter is considered as a typical passive device
characterized by EM simulation, while PA is described as the most critical active and
nonlinear circuits requiring holistic characterization with multiple simulators. Note
that the focus in this research is given to PAs used in RF and microwave applications,
rather than those in low-frequency analog circuits. In terms of semiconductor device,
transistors are recognized as the most crucial ones. Therefore, research is conducted
on two typical transistors: III/V pHEMT for terahertz applications and CMOS-based
inverters. Given that these devices belong to distinct fields with unique challenges and
research objectives, the following three subsections provide a brief analysis of each
area. More detailed discussion please refer to the corresponding chapters of this thesis
outlined in Section 1.5.

1.3.1 Microwave Filter

The design of microwave filters can be broadly divided into three steps: topology syn-
thesis, physical dimensioning, and design optimization. While the first two steps are
straightforward and relatively simple to automate, design optimization is the most crit-
ical and challenging step that requires much more attention. Given an initial design,
i.e., an initial 3D structure of a filter constructed by physical dimensioning, design
optimization aims to produce the final practical implementation, ready for fabrication
and meeting all stringent specifications. Despite several methods proposed in recent
decades, there are still some issues hindering the implementation of a fully automated
design methodology. Specifically,

• Most filter optimization methods are proposed and validated only on direct-
coupled filters without transmission zeros or other specific types. There is still a
lack of methods designed for more general types of filters.

• Most filter optimization methods still need human interaction and decision-making
to escape local optima or even involve manual preparatory work throughout the
entire process. Therefore, the success rate is often hard to guarantee.
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• There is a lack of methods that can deal with stringent specifications. An entire
set of specifications contains requirements for both passband and stopband. When
transmission zeros are designed, specifications for the stopband are essential and
indispensable, while current proposed methods are deficient in considering this
scenario.

From the perspective of optimization algorithms, filter design optimization presents at
least two challenges: 1) the landscape characteristic of filter design problems are highly
multimodal, making the optimization result very sensitive to the perturbation of design
variables; 2) algorithms based on global optimization present acceptable effectiveness
in finding required solutions but show low efficiency in many cases. More discussions
can be found in Section 3.2 and 3.1.

The research objective is therefore evident: 1) by comprehensively reviewing the pub-
lished work in filter design optimization, conduct an in-depth understanding of the
bottlenecks of design automation; 2) explore the potential path to break the bottle-
necks and overcome the above issues; and 3) propose a new methodology that shows
efficiency and effectiveness within acceptable runtime for general filter design cases.
More discussion can be found in Section 3.3.

1.3.2 Power Amplifier

Designing a power amplifier is not trivial due to its complex circuit matching require-
ments and the cumbersome simulation process. This challenge becomes even more
intricate when designing multistage, wideband PAs with stringent specifications and
performance consistency requirements. The current design methodology involves a se-
quential process from the design of ideal circuits and schematics to layouts, where
intensive manual tuning is inevitable. Design automation techniques are therefore ex-
pected to revolutionize this process and free people from tedious trial-and-error. How-
ever, although some research has been published targeting automated design, there
is still a significant gap in achieving design automation. To be specific, the following
issues are prominent in the current stage.

• Most published work is proposed only for PAs of a specialized purpose, such as
pre-building some reusable passive-component models by machine learning for
reuse in the future. There is a lack of work dedicated to a general methodology
that can be applied to the majority of PA design problems.
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• Most reported work is proposed for designing PAs only at the schematic level
without EM simulations. Therefore, these methods can only be applied to simple
configurations within sub-6 GHz. When the operating frequency becomes higher,
or the configuration of PA becomes complex, the outcome is often hard to guar-
antee with these reported methods.

• Most published work employs off-the-shelf algorithms that are not specialized
for PA design problems. There is a lack of bespoke optimization algorithms that
can handle PA design problems with acceptable efficiency. Hence, even without
considering the above two limitations, feasible methods often require thousands
to tens of thousands of simulation runs, which is unrealistic for practice.

In addition, unlike the design automation of microwave filters, which involves only
EM simulation for passive structures, challenge of PA design automation also lies in
the complexity of multiple simulation procedures. For instance, when considering the
design of monolithic microwave integrated circuit (MMIC) PAs, holistic characteriza-
tion includes various simulators (e.g., harmonic balance for nonlinear characterization,
S-parameter for linear frequency-domain characterization, and momentum for refined
EM simulation) and relies on the design kits provided by foundries. Therefore, to cor-
rectly design such PAs, it is necessary to build an integrated environment that connects
both algorithms and simulation processes. More discussion can be found in Sections
4.2 and 4.1.

In summary, the research objective aims to: 1) comprehensively review the published
work in the field of PA design automation and conduct an in-depth understanding
of current bottlenecks; 2) explore potential paths to break the bottlenecks and over-
come the above issues; and 3) propose a new methodology targeting more general PA
structures with reasonable efficiency and effectiveness. More discussion can be found
in Section 4.3 and 4.4.

1.3.3 Semiconductor Device

Over the past half-century, the performance improvement of semiconductor devices
has primarily benefited from the continuous shrinkage in technology nodes. Design-
ing devices based on a trial-and-error approach was generally feasible. However, as
transistors transition from planar to three-dimensional structures, the complexity of
processing makes emulation and simulation in advance indispensable. Despite these
advancements, in general, TCAD is still in its infancy and there is a lack of algorithmic



1.3. Challenges and Research Objectives 11

design methodology that can be applied to semiconductor devices. This is partially due
to the complexity of device simulation, which typically involves multiple physical mod-
els and is very computationally expensive. Hence, traditional optimization algorithms
are obviously intractable. More analysis of this situation can be found in Section 5.1.

Therefore, the research objective of this topic is to take the first step toward algorithmic
design optimization in the semiconductor field. This involves a comprehensive review
of existing work in device modeling and design, analyzing key characteristics of device
design challenges, proposing suitable algorithms, and validating these through practical
applications. For more discussion, please refer to Section 5.3.1 and 5.4.1.

1.4 Contribution and Research Outcomes

Based on the challenges and objectives outlined earlier, this research explored the
potential pathway toward machine learning-assisted EDA for distributed-parameter
devices/circuits and semiconductor devices. The contribution mainly concentrates on
the new design methodologies proposed with specialized optimization algorithms ap-
plicable to the corresponding area. To be specific,

• Microwave Filter An unsupervised filter design methodology is proposed and
validated using two real-world examples. The proposed methodology consists of
a systematic sampling method and a two-phase optimization process, each with
a bespoke objective function. Design knowledge is comprehensively considered
at different stages of design optimization to enhance robustness and improve
success rate. A hybrid optimization algorithm incorporating Gaussian process
models is proposed to achieve both efficiency and effectiveness. This methodo-
logy can handle more general filter specifications rather than specific cases. By
incorporating a programmable physical dimensioning method, the design optim-
ization can be completed in approximately half a day on a standard desktop
computer without decision and intervention from designers. The outcome of this
contribution is published in [J1].

• Power Amplifier: A new methodology is proposed for designing MMIC PAs at
layout level. By implementing and incorporating an integrated simulation envir-
onment, the methodology is compatible with most product design kits and work-
flows, and is able to conduct required holistic characterization. Bayesian neural
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networks are introduced in design optimization to predict and prescreen candid-
ate solutions during optimization. A novel hybrid search strategy is proposed and
embedded in global optimization to speed up convergence. Additionally, the ef-
fectiveness of the proposed methodology is validated by two MMIC PAs: a 27-31
GHz balanced PA and a 24-31 GHz wideband Doherty PA, with the latter having
been taped out for manufacturing. The outcome of this contribution is primarily
published in [J2] and [C1].

• Semiconductor Device: The contribution in this topic unfolds through two
case studies. For the first case study, the structure of the epitaxial layer of an
InP pHEMT is optimized to promote terahertz operating frequency. Compared
to the commercial pHEMT, the optimized design achieves 57% and 37% improve-
ments in its cut-off frequency and maximum oscillation frequency, respectively,
without altering the gate length. For the second case study, the concept of device
circuit co-optimization is proposed and validated using CMOS inverters. Using
a novel actor-critic-based optimization algorithm, the proposed method achieves
better performance on the inverter with planar MOSFETs than with advanced
technology. To the best of our knowledge, the algorithmic design method in these
studies is proposed for the first time. Additionally, a practical TCAD interface
is implemented to form a foundation supporting the above and future research.
The outcome of this contribution is published in [J3] and [C2].

The research outcomes include three journal and two conference publications listed as
follows:

[J1] L. Xue, B. Liu, Y. Yu, Q. S. Cheng, M. Imran, and T. Qiao, “An Unsupervised
Microwave Filter Design Optimization Method Based on a Hybrid Surrogate
Model-Assisted Evolutionary Algorithm,” IEEE Transactions on Microwave The-
ory Techn., vol. 71, no. 3, pp. 1159–1170, Mar. 2023, doi: 10.1109/TMTT.2022.3219072.
Published

[J2] B. Liu, L. Xue, H. Fan, Y. Ding, M. Imran, and T. Wu, “An Efficient and
General Automated Power Amplifier Design Method Based on Surrogate Model
Assisted Hybrid Optimization Technique,” IEEE Transactions on Microwave The-
ory Techn. Accepted

[J3] L. Xue, A. Dixit, N. Kumar, V. Georgiev, and B. Liu, “Machine Learning-
Assisted Device Circuit Co-Optimization: A Case Study on Inverter,” IEEE
Transactions on Electron Devices, vol. 71, no. 12, pp. 7256–7262, Dec. 2024, doi:
10.1109/TED.2024.3476231. Published
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[C1] L. Xue, H. Fan, Y. Ding, and B. Liu, “A Design Methodology of MMIC Power
Amplifiers Using AI-driven Design Techniques,” in 2023 19th International Con-
ference on Synthesis, Modeling, Analysis and Simulation Methods and Applica-
tions to Circuit Design (SMACD), Funchal, Portugal: IEEE, Jul. 2023, pp. 1–4.
doi: 10.1109/SMACD58065.2023.10192155. Published

[C2] J. Wang, L. Xue, B. Liu, and C. Li, “Design of Terahertz InP pHEMT Us-
ing Machine Learning Assisted Global Optimization Techniques,” in 2021 16th
European Microwave Integrated Circuits Conference (EuMIC), London, United
Kingdom: IEEE, Apr. 2022, pp. 67–70. doi: 10.23919/EuMIC50153.2022.9784068.
Published

In all the publications mentioned above, the author (Liyuan Xue) is responsible for
identifying the research questions and making major contributions, including propos-
ing the methodology, implementing the interface and algorithm, and conducting the
experiments. Note that, in [C2], the pHEMT simulation model was constructed and
calibrated by Jing Wang, who also provided a detailed description of the structure of
the epitaxial layer. The first author of [J2] is the author’s primary supervisor who dis-
cussed and proposed the alternate search strategy of the algorithm in Chapter 4. The
author (Liyuan Xue) implemented and refined this idea, and integrated the algorithm
into the proposed design methodology followed by validation and comparison on two
examples.

1.5 Outline of Thesis

There are six chapters in this thesis. This chapter has set out the background and intro-
duced the basic concept of EDA and three research problems with their challenges and
objectives. Chapter 2 introduces the fundamental concepts related to optimization al-
gorithms and machine learning techniques used in this thesis, forming the technological
foundation for the following chapters. In Chapter 3, microwave filter design automation
is thoroughly investigated, including a comprehensive literature review, problem de-
scription, explanation of the proposed methodology, and experimental results followed
by a summary. Chapter 4 follows a similar structure to Chapter 3, while the research
theme is PA design automation. In Chapter 5, an attempt towards algorithmic design
optimization for semiconductor devices is explored with two case studies, each including
a brief introduction and methodology explanation followed by results and discussion.
Finally, Chapter 6 concludes this dissertation and discusses potential future research
extensions.



Chapter 2

Optimization Algorithms and
Machine Learning Techniques

Chapter 1 provides the background of EDA and outlines the challenges and research
objectives across three focused fields. In this chapter, the mathematics and techniques
behind the design methodologies proposed in this thesis are explained in detail. The
following content is divided into three main sections. First, optimization algorithms are
introduced, as they serve as the foundation of most design technologies, including those
in this thesis. Next, several supervised learning methods are detailed, along with their
implementation. The third section introduces two general frameworks that integrate
machine learning with optimization algorithms, forming the backbone of this thesis.
Unlike many works in the CAD domain that employ ML techniques independently, as
discussed in Section 1.2, the research in this thesis integrates ML models cohesively with
optimization algorithms. Further details are provided in the third section. Additionally,
this chapter defines and clarifies the majority of symbols and notations used in the
following chapters.

2.1 Optimization Algorithms

Optimization algorithms are essential for achieving design automation in almost all
aspects. The importance arises from the ability to precisely search for solutions that
meet rigorous requirements, i.e., objectives and constraints. While engineers adjust
parameters based on their design knowledge, algorithms seek the best solution through
their search engine. Therefore, to achieve and even surpass human design abilities,

14
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algorithms must be delicately designed to be robust, effective, and efficient for specific
problems. In this section, we first clarify some basic concepts of optimization problems,
and then move on to two main categories of search strategies in optimization algorithms:
local search methods and heuristics.

2.1.1 Basic Concept

Electronic design problems can often be cast as optimization problems formulated as
follows:

min
x

f(x)

subject to gi(x) ≤ 0 for i ∈ I
x ∈ X

(2.1)

where operator min
x

indicates a minimization problem, in which x is the design variables
within decision domain or design space X , representing the design parameters of a
problem. I is the index set of i. f(x) is the objective to be optimized, and gi(x) is
the i-th inequality constraints. The aim of the problem is to find the optimal x that
minimizes the objective function f(x). Additionally, X is assumed to be a subset of
a high-dimensional real domain. In other words, all optimization problems discussed
hereinafter are considered continuous.

Mathematically speaking, Equation (2.1) is the canonical single-objective constrained
optimization [53], whereas Equation (2.2) is more appropriate for expressing a practical
design problem considered in this thesis:

argmin
x

f(R(x), ω)

subject to gi(R(x), ω) ≤ 0 for i ∈ I
Ax ≤ c

x ∈ [xL, xH ]
d

ω ∈ [ωL, ωH ]

R(x)is a computational-expensive function

(2.2)

where the operator argmin
x

refers to the value of the variable x that minimizes a given
function. R(x) is the computationally expensive function often performed by com-
mercial simulation software. f(·, ω) represents the objective function with an adjoint
variable ω corresponding to some independent parameters within interval [ωL, ωH ], e.g.
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frequency range. Ax ≤ c describes the geometry constraints through linear inequal-
ity. The design parameters x are bounded by a hypercubic design space denoted by
[xL, xH ]

d of d dimension. Unless stated otherwise, all optimization problems in this
thesis are considered or converted to minimization problems.

Item Feature

Maximization Output Power (Pout)
Frequency (ω) Range 21 - 25 GHz
Specification 1 Gain (G) ≥ 20 dB
Specification 2 Efficiency (Eff) ≥ 30%
Specification 3 S11 ≤ -15 dB
Simulation EM and circuit simulation
Search Range [xL, xH ]

d

Table 2.1: Example of a power amplifier design problem

argmin
x

P ref
out −min

ω
(Pout(x, ω))

subject to min
ω

(G(x, ω)) ≥ 20 dB

min
ω

(Eff(x, ω)) ≥ 30%

max
ω

(S11(x, ω)) ≤ −15 dB

x ∈ [xL, xH ]
d

ω ∈ [21, 25] GHz

(2.3)

Table 2.1 provides an example of a power amplifier design problem and shows how the
performance requirements (i.e., specifications with notations in bracket) are converted
to an optimization problem as formulated in Equation (2.3). min

ω
(·) and max

ω
(·) repres-

ent the minimum and maximum values of a given function over frequency ω. Notation
S11 in the table denotes the input reflection coefficient in dB of the circuit, and P ref

out

means the reference output power.

When there is no objective to optimize and only constraints to satisfy—a situation that
often occurs when the performance requirements are so stringent that no margin is pre-
dictably available, Equation (2.1) degrades to a feasibility problem [54]. The aim of a
feasibility problem is to find a feasible solution that satisfies all constraints. Although
the feasibility problem involves slightly different mathematical theory compared to op-
timization, it is not distinguished from an engineering perspective and instead is viewed
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as a special case of Equation (2.1). Table 2.2 provides an example of a microwave filter
design problem which can be cast as a feasibility problem. As the same notation in
Table 2.1, S11 and S21 denote S-parameters of the microwave filter, representing the re-
flection and transmission coefficient, respectively. Equation (2.4) shows the formulated
problem.

Item Feature

Specification 1 S11 ≤ −20 dB in 5 - 6 GHz
Specification 2 S21 ≤ −20 dB in 4 – 4.8 GHz
Specification 3 S21 ≤ −20 dB in 6.2 – 7 GHz
Simulation EM simulation
Search Range [xL, xH ]

d

Table 2.2: Examples of microwave filter design problem

find x

subject to max
ω∈Ω1

(S11(x, ω)) ≤ −20 dB

max
ω∈Ω2

(S21(x, ω)) ≤ −20 dB

x ∈ [xL, xH ]
d

Ω1 = [5, 6] GHz
Ω2 = [4, 4.8] ∪ [6.2, 7] GHz

(2.4)

Before a problem is ready to be solved or optimized, one should consider the approach to
handling constraints, as optimization engines are often blind to constraints. This issue
depends on the practical problem and the difficulty or stringency of the constraints.
The most commonly used method involves static or adaptive penalty functions (or
fitness functions in some context) formulated by

F (x) = f(x) +
∑
i∈I

αi max(gi(x), 0) (2.5)

where the parameters αi are the predefined weighting coefficients and are kept fixed for
the static case during optimization, and function max(·, 0) compares the given value
with 0 and outputs the larger one.
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Additionally, optimization problems formulated in Equation (2.2) are also known as
expensive optimization (EO) [55, 56] or black-box optimization (BBO) [57, 58], where
their goal is to find a promising solution within a limited evaluation budget. EO and
BBO are common in the real world and are frequently employed in many complex
scenarios beyond design automation, such as hyperparameter tuning, financial trading
optimization, and chemical process optimization.

2.1.2 Local Search Method: Nelder-Mead simplex

If both objective f(x) and constraints g(x) in Equation (2.1) are analytic or straight-
forward to evaluate, several methods can be employed to solve the problem, at least
in terms of finding local optima. Examples of such methods include gradient (i.e., the
derivative vector of a multivariate function) descent and Newton-like methods. These
methods iteratively move the solution towards the steepest descent, or the direction
of negative gradient, thereby reducing the objective function value. However, when a
computationally expensive function is involved, evaluating the objective or constraints
becomes costly, making the gradient difficult, or even impossible, to obtain. This neces-
sitates the use of derivative-free methods to alleviate the function evaluation burden,
such as Powell’s method [59], the Nelder-Mead (NM) simplex method [60], and the
Trust-region (TR) method. In this section, the Nelder-Mead simplex method is primar-
ily introduced.

The NM simplex method is a widely used derivative-free local search algorithm that
is suitable for non-smooth or even discontinuous landscapes. It is known to converge
quickly with a relatively small number of function evaluations, thus achieving preferable
results within an acceptable cost. Due to its robustness, effectiveness, and ease of use, it
is employed as the local search engine in microwave filter design automation described
in Chapter 3.

The pseudo-code of NM simplex method is shown in Algorithm 1 (denoted by NMSimplex(·)
hereafter). It starts from a set of d + 1 points (i.e., the initial simplex) that lie in dif-
ferent hyperplanes (i.e., the so-called nondegenerate working simplex), where d refers
to the dimension of the design variable. Then four primary operations consisting of
reflection, expansion, contraction, and shrinkage are performed iteratively according
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Algorithm 1 Nelder-Mead Simplex Method (NMSimplex(·))
Input: Initial solution xini ∈ Rd, objective function function f(·).
1: X ← {xi | xi = xini + ϵδi, i = 0, . . . , d} ▷ Generate initial simplex.
2: repeat
3: Order simplex S by f(·), so that f(x0) ≤ f(x1) ≤ · · · ≤ f(xd)
4: m←

∑d−1
i=0 xi/d ▷ Compute centroid of top d− 1 points.

5: xr ← 2m− xd ▷ Reflection.
6: if f(x0) ≤ f(xr) < f(xd−1) then
7: xd ← xr and continue
8: end if
9: if f(xr) < f(x0) then
10: xs ←m+ 2(m− xd) ▷ Expansion.
11: if f(xs) < f(xr) then
12: xd ← xs and continue
13: else
14: xd ← xr and continue
15: end if
16: end if
17: if f(xd−1) ≤ f(xr) < f(xd) then
18: xc ←m+ (xr −m)/2 ▷ Outside Contraction.
19: if f(xc) < f(xr) then
20: xd ← xc and continue
21: else
22: break
23: end if
24: end if
25: if f(xr) ≥ f(xd) then
26: xcc ←m+ (xd −m)/2 ▷ Inside Contraction.
27: if f(xcc) < f(xd) then
28: xd ← xcc and continue
29: else
30: break
31: end if
32: end if
33: for i← 1 to d do
34: vi = x0 + (xi − x0)/2 ▷ Shrinkage.
35: end for
36: X ← {x0,v1, . . . , vd}
37: until Stopping criteria are satisfied
Output: Best solution x0 and the corresponding function value f(x0)

to the different conditions depending on the comparison of function values. In each
iteration, at least one solution is updated, and no more than two new solutions are
evaluated by the given function. The stopping criteria can be the exhaustion of the
number of function evaluations or the achievement of desired solution accuracy.
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Figure 2.1: Illustration of the solutions in NM simplex method [61]

NM simplex method is straightforward to understand and easy to use. The reflec-
tion, expansion, and contraction operations are used to explore possible directions for
improving adaptively, while shrinkage is employed to zoom in on the current search
region and further exploit when the current step size (i.e. the scale of the simplex) is
no longer effective. Figure 2.1 illustrates the relationship among different solutions on
a two-dimensional plane during optimization. By setting the worst point as a fulcrum,
this method can gradually converge in the desired direction to decrease the function
value. For more details on its convergence properties, one can refer to [60].

2.1.3 Evolutionary Algorithm: Differential Evolution

The NM simplex method is capable of performing local searches within the design space
of an EO or BBO problem; however, it is limited in finding global solutions in most
cases. In this subsection, a global optimization method is introduced, namely Evol-
utionary algorithms (EAs). EAs, which are inspired by biological evolution and the
characteristics of live organisms, are popular for solving problems formulated as BBO
in Equation (2.1). EAs commonly include algorithms like genetic algorithm (GA), dif-
ferential evolution (DE), particle swarm optimization (PSO), and ant colony algorithm
(ACO). Inspired by the concept of “survival of the fittest” from natural evolution, EAs
iteratively generate new individuals using specific evolutionary operators and select
those with higher fitness to advance to the next generation. EAs can efficiently find sat-
isfactory solutions without requiring gradient information, making them highly suitable
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for solving real-world problems. Compared with traditional methods, such as Newton’s
method, EAs are capable of solving non-convex, discontinuous, and non-differentiable
problems. In contrast to the NM method introduced in the last subsection, EAs are
also capable of conducting global search, aiming at finding the global optima.

Among the different EAs, the DE algorithm is often the first choice when the design
variable is in the real domain. It is based on the differences between design vectors and
is very straightforward to use with only a few control parameters, including the scaling
factor F and crossover rate CR. The DE algorithm has good convergence properties
and surpasses many other algorithms in complex benchmark problems [62, 63]. It was
therefore selected as the global search engine in this thesis, detailed as follows.

Algorithm 2 Differential Evolution Algorithm
Input: Objective functionf(·), population sizeN , corssover rate CR, scal-

ing factor F .
1: P ← {x1, . . . ,xN} ▷ Population initialization
2: repeat
3: for each xi ∈ P do
4: xn ← xi

5: r1, r2, r3 ← randidx(N)
6: vi ← xr1 + F · (xr2 − xr3) ▷ Mutation
7: for j ← 1 to d do
8: if rand() ≤ CR | randidx(d) = i then
9: xjn ← vji ▷ Crossover
10: end if
11: end for
12: if f(xn) < f(xi) then
13: xi ← xn ▷ Selection
14: end if
15: end for
16: until Stopping criteria are satisfied
Output: Best solution and the corresponding function value

The pseudo-code of the DE algorithm employed in the following work is shown in
Algorithm 2, where the function rand(·) produces a random number from a uniform
distribution within [0,1], and the function randidx(·) outputs non-duplicate indexes
within the given number. The DE algorithm primarily encompasses three operations:
mutation, crossover, and selection. It begins with the initialization of a population con-
sisting of N individuals denoted by {x1, . . . ,xN}, where each one represents a potential
solution in the search space. During the mutation step, a mutant vector vi is generated
by first randomly selecting three different individuals and then computing with a pre-
defined strategy. In Algorithm 2, the mutation operation is performed by adding the
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scaled vector difference of two randomly selected vectors xr2 and xr3 to another one
xr1 . Subsequently, for each dimension of the mutant vector, algorithm decides whether
to take the value from the mutant vector or the original one by comparing the crossover
rate with a random number—the process known as crossover. As for the selection step,
function value of the new solution is evaluated and compared with the existing one, and
only the better is retained in the population. The main loop continues until stopping
criteria, such as a maximum number of generations or a satisfactory fitness level, are
met.

Apart from the hyperparameters F and CR, there are also several different mutation
strategies that can balance exploration (i.e., the ability to explore a wider region within
the design space) and exploitation (i.e., the ability to refine the current promising
region) capabilities of the algorithm, resulting in different DE variants. The mutation
strategy formulated in Algorithm 2 is called DE/rand/1, which aims to maintain high
diversity within the population, largely exploring the design space. A more moderate
version is formulated in Equation (2.6), called DE/current-to-best/1. This strategy
perturbs the current solution, rather than a random one, and also incorporates the
feature from the best solution xrbest . This helps spread favorable patterns from the best
solution and often converges more quickly, especially when the problem requires less
exploration ability. Equation (2.7) formulates the most aggressive mutation strategy,
called DE/best/1, which widely disseminates the feature of the current best solution
to each individual, regardless of the current selected one. This strategy is efficient in
exploitation but is at risk of being trapped in a local optimum, especially when the
global optimum lies in a narrow valley (as is often the case in microwave filter design
problems explained in the next chapter).

vi ← xri + F · (xrbest − xri) + F · (xr2 − xr3) (2.6)
vi ← xrbest + F · (xr1 − xr2) (2.7)

DE algorithm is efficient in solving real domain problems with effective global op-
timization capability. However, each iteration requires N evaluations of the objective
function as list in Line 12 of Algorithm 2, making it difficult to apply directly to compu-
tationally expensive problems. Typically, DE algorithm requires thousands to tens of
thousands of evaluations to converge (or find a satisfactory solution) when the design
variable has tens of dimensions. This is often unacceptable for many real-world prob-
lems, particularly the design automation problems considered in this thesis, where each
function evaluation can take several minutes to tens of minutes, potentially extending
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the entire optimization process to over half a month. In Section 2.3, the introduction
of two optimization frameworks, namely Bayesian optimization (BO) and surrogate
model-assisted evolutionary algorithms (SAEAs), will show how this issue can be alle-
viated by incorporating machine learning techniques. But before that, several machine
learning techniques will be introduced.

2.2 Supervised Learning

As the most predominant and substantial technique in machine learning, supervised
learning has attracted so much attention due to its effectiveness and versatility in
solving a wide range of problems. This section introduces the basic concept of super-
vised learning followed by a discussion about three cutting-edge supervised learning
techniques: Gaussian process (GP), deep neural network (DNN), and Bayesian neural
network (BNN), which form the ML foundation for the following chapters.

2.2.1 Basic Concept

Given a training set of N input-output pairs {(xi, yi) | i = 1, . . . , N}, supervised
learning tries to construct a modelMϕ(·) to mimic the unknown (or known but complex
to explicitly illustrate) behavior or relationship between xi and yi, parameterized by ϕ.
In this context, yi (assume a scalar for simplicity) is also called the ground truth—the
true value ones hope the model will predict—and the formulation of Mϕ(·) is called
hypothesis [26]. Supervised learning assumes that the training set consists of a sample
of independent and identically distributed pairs. By defining and minimizing the loss
function L(Mϕ(xi), yi) on the training set, such as the mean square error function, the
trained model is expected to generalize and predict on unseen data.

However, beyond the basic assumption of training data, supervised learning faces the
bias-variance issue. Imagine a trained model that has a small bias on training data but
exhibits high variance for a particular input. This indicates that the model is overfitting
or “too flexible” on the training set and may not generalize well to unseen data. A more
detailed discussion is illustrated in Table 2.3, where the upper left corner represents the
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ideal state—low bias and low variance—while the lower right corner represents a state
to avoid. When variance is small but bias is high, one should consider improving the
model’s capability (e.g., by adding more terms or increasing the number of parameters
inMϕ(·)). Generally, there is often a tradeoff between bias and variance.

Table 2.3: Bias-Variance tradeoff

Variance

Small High

Bias Small Good model Overfitting

High Underfitting Bad model

The simplest supervised learning is linear regression, which assumes a linear relation-
ship between x and y. By setting the sum of squared errors as the loss function, linear
regression can be solved in closed form using the least squares method. However, linear
regression lacks the capability of modeling complex landscapes, making it less suitable
for many engineering problems. Therefore, more advanced models, such as Gaussian
processes and deep neural networks, should be introduced.

2.2.2 Gaussian Process Model

Gaussian process model is a widely used supervised learning method in engineering
optimization, whose strengths include its strong learning and characterization capabil-
ity and the ability to provide a statistically grounded prediction uncertainty. The GP
model treats the training data y as a set of N samples from a multivariate Gaussian
distribution. Therefore, the likelihood function can be expressed in terms of samples y
as

LGP =
1

(2πσ2)N/2 |R|1/2
exp

[
−(y − 1µ)TR−1(y − 1µ)

2σ2

]
(2.8)

where µ and σ2 are the mean and variance of the Gaussian process model. 1 is a N × 1

vector of ones, R is the N × N covariance matrix defined by the correlation function
(i.e., the Gaussian kernel function)�

Ri,j = Corr (xi,xj) = exp
(
−

d∑
l=1

θl
∣∣xli − xlj∣∣pl

)
, θl > 0, 1 ≤ pl ≤ 2 (2.9)
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where d is the dimension of x, different samples are indicated by i and j, and θ and p

are hyperparameters describing how fast the correlation decreases on the l-th variable
and the corresponding function smoothness, respectively. For a given set of training
data, the maximum likelihood (Equation (2.8)) estimates the model parameters that
maximize the probability of observed samples. Therefore, by setting ∂

∂µ
log(LGP) and

∂
∂σ2 log(LGP) to zero, and assuming the hyperparameter θ and p are known, the µ and
σ in Equation (2.8) can be obtained in a closed form, where

µ̂ =
1TR−1y

(1TR−11)−1

σ̂ =
(y − 1µ̂)TR−1(y − 1µ̂)

N

(2.10)

Substituting Equation (2.10) into (2.8), the likelihood function can be maximized nu-
merically either by Quasi-Netwon method or others, obtaining the optimal hyperpara-
meter values formulated by

θ̂, p̂ = argmax
θ,p

(
−N

2
ln σ̂2 − 1

2
ln |R|

)
(2.11)

Given a new design x∗, the prediction value ŷ(x∗) and the uncertainty ŝ(x∗) can be
obtained by best linear unbiased estimation and mean square error:

ŷ(x∗) = µ̂+ rTR(y − 1µ̂) (2.12)

ŝ2 (x∗) = σ̂2

[
1− rTR−1r +

(
1− 1TR−1r

)2
(1TR−11)

]
(2.13)

where r = [Corr(x∗,x1),Corr(x∗,x2), ...,Corr(x∗,xN)]
T describing the correlation between

x∗ and all sample designs. More details about GP can be found in [64].

The GP model has advantages in terms of its preciseness and tractability. As a non-
parametric model [65], the number of parameters of a GP model grows with the size
of the observed dataset (i.e., the training data). When a moderate-sized training set is
given, GP modeling is a theoretically principled method with a relatively small number
of hyperparameters to determine, making it ideal for small-sample modeling. However,
training a GP model suffers from high computational complexity, specifically O(N3d),
where N is the size of the training set and d is the dimension of the input variables
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x. Given that N is at least linearly dependent on d, the computational complexity
approaches the fourth power of d. Additionally, considering the optimization iterations
required to solve Equation (2.11), the time consumption of applying GP models needs
serious consideration.

Moreover, GPs can only model cases where the output is scalar. When the output
variable is a vector, i.e., with multiple values, GP modeling cannot be directly applied.
A remedy is to construct several models for each output element, although this approach
ignores the correlation between output variables. In such scenarios, a more appropriate
method is to use deep neural networks, which can directly model multiple input and
output variables comprehensively.

2.2.3 Deep Neural Network

Neural networks have emerged in recent years as one of the most powerful techniques
for practical application, as introduced in Chapter 1. Inspired by how the human brain
processes information—though the paradigm has now largely shifted away from biolo-
gical inspiration, a deep neural network consists of a stack of several functional layers.
These layers, along with the connections between them, mimic the neurons and axons
of the human brain, passing and processing information to extract abstract representa-
tions that produce an output. While the first artificial neural networks were proposed
[66], their true potential was gradually discovered with the advent of powerful compu-
tational resources and large datasets. Various different configurations of neurons have
been proposed to drive advancements in different fields.

In this thesis, a kind of neural network called multilayer perceptron (MLP) is employed
as a regression method to model the behavior of multivariant input-output pairs. It
involves three operations (functional layers): linear combination, nonlinear activation,
and batch normalization. The linear combination and nonlinear activation can be for-
mulated as follows

z = h (Wx+ b) (2.14)
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where h(·) is the activation function, W and b are trainable parameters, and z is the
output after these operations. To facilitate the subsequent derivation, element form of
Equation (2.14) is formulated as:

zj = h

(
d∑

i=1

wijxi + bj

)
, j = 1, . . . ,M (2.15)

where i and j index the input dimension d for x and the output dimension M for z,
respectively. The linear combination and nonlinear activation transform the input data
to a higher-dimensional space for feature extraction; therefore, M is always greater
than d.

For each output neuron zj, given a training batch B (a subset of the given training
set), the corresponding output value is denoted by zj;k, where k ∈ {1, ..., |B|}. Hence,
for normalization operation [67], let

µj =
1

|B|

|B|∑
k=1

zj;k

σ2
j =

1

|B|

|B|∑
k=1

(zj;k − µj)
2

ẑj;k =
zj;k − µj√
σ2
j + ϵ

yj;k = γjzj;k + ψj

(2.16)

where γj and ψj are trainable parameters, µj and σ2
j are statistical information com-

puted based on the current training batch, and ϵ is a small number (often 1 × 10−5)
for numerical stability. Equation (2.16) normalizes the output from activation to the
normal distribution (zero mean and unit variance), then scales and shifts the result
through trainable parameters. This process is known as batch normalization [68]. It
offers benefits by accelerating the training of neural networks and introducing a slight
regularization effect, helping the model generalizes better. Furthermore, by applying
batch normalization on an element-wise basis of input data, the input variables are
standardized, effectively disregarding differences in scales or magnitudes—–a common
situation encountered in engineering optimization.
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The activation function used in this thesis includes tanh(·) and relu(·), defined by

tanh(x) = ex − e−x

ex + e−x
(2.17)

relu(x) = max(0, x) (2.18)

where max(0, ·) output the maximum value compared to 0. Additionaly, when the
output variable is bound within [0, 1], sigmoid function is also used, defined by

sigmoid(x) = 1

1 + e−x
(2.19)

Stacking (2.14) and (2.16) multiple times creates deeper neural networks. After defining
the loss function at the output, the network’s parameters can be trained using back-
propagation [69], which iteratively applies the chain rule to each calculation. Assuming
y;k is the output of the neural network, ignoring neuron index j in derivation, and the
loss function is denoted by L. Hence,

∂L

∂ẑ;k
=

∂L

∂y;k
· γ

∂L

∂σ
=

|B|∑
k=1

∂L

∂ẑ;k
· (z;k − µ) ·

−1
2

(
σ2 + ϵ

)−3/2

∂L

∂µ
=

 |B|∑
k=1

∂L

∂ẑ;k
· −1√

σ2 + ϵ

+
∂L

∂σ2
·
∑|B|

k=1−2 (z;k − µ)
|B|

∂L

∂z;k
=

∂L

∂ẑ;k
· 1√

σ2 + ϵ
+
∂L

∂σ2
· 2 (z;k − µ)

|B|
+
∂L

∂µ
· 1

|B|

∂L

∂γ
=

|B|∑
k=1

∂L

∂y;k
· ẑ;k

∂L

∂ψ
=

|B|∑
k=1

∂L

∂y;k

(2.20)

Equations in (2.20) indicate the fully differentiable properties of the neural network,
allowing the model’s parameters to be trained using stochastic gradient descent (SGD)
or ADAM [70]. Additionally, during the training procedure, the data is often divided
into two sets: the training set and the test set. This division helps monitor the de-
crease in the loss function and prevent overfitting. Due to the powerful approximation
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capabilities of neural networks, guaranteed by universal approximation theorems [71],
overfitting can often be inevitable. The simplest and most commonly used approach to
prevent overfitting is early stopping, where the stopping point is determined by setting
a threshold for the reduction rate of the loss function.

Figure 2.2 illustrates the differences between GP and DNN models. While DNN models
can intrinsically handle multivariate outputs, GP models require separate models for
each variable. Therefore, DNNs are more efficient and appropriate for problems with
many objectives or constraints for modeling as formulated in Equation (2.2).
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Figure 2.2: Illustration of GP and DNN models for multivariate output.

However, GP models provide predictive uncertainty, which characterizes the confid-
ence or trustworthiness of the prediction—an aspect that is crucial in optimization
frameworks introduced in Section 2.3. To enable neural networks to provide predict-
ive uncertainty, an intuitive approach is to replace all the parameters of the network
with probability distributions rather than scalar values, thereby transforming it into a
probabilistic model. This method is detailed in the next subsection.

2.2.4 Bayesian Neural Network

As shown in Figure 2.3, Bayesian neural networks are the natural extension of the clas-
sical neural networks, which not only provide predictions but also quantify uncertain-
ties. Since its introduction, BNNs have sparked widespread attention and stimulated
substantial research, particularly in the domain of computational science for engineer-
ing [72]. To understand BNNs, it is essential first to recall Bayes’ theorem, which states
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Figure 2.3: Illustration of the structure of DNN and BNN models.

that for two events A and B, the conditional probability P (A|B) of event A occurring
while B has occurred is

P (A|B) =
P (B|A)P (A)

P (B)
(2.21)

Equation (2.21) is derived from the product rule of probability, where the probability of
events A and B happening simultaneously is P (A,B) = P (A|B)P (B) = P (B|A)P (A).
Now, consider a neural network parameterized by w, where the prior of w is p(w).
Given a set of training data D, the posterior distribution of the parameters can be
calculated as

p(w|D) = p(D|w)p(w)

p(D)
=
p(D|w)p(w)∫
p(D|w)dw

(2.22)

The denominator in this formulation is called the marginal likelihood or evidence. Ex-
plicitly, Equation (2.23) illustrates the relationship between likelihood, prior, evidence,
and posterior, where

Posterior = Likelihood× Prior
Evidence (2.23)

However, directly computing the posterior distribution is intractable due to the compu-
tational burden of the denominator (i.e., the infinite integration). To address this issue,
variational inference is employed. A variational distribution qθ(w) is introduced over
the parameter set w. The parameters of this variational distribution are then adjusted
to minimize the dissimilarity between the variational distribution qθ(w) and the true
posterior p(w|D), as measured by KL-Divergence:

KL [qθ(w)∥p(w|D)] =
∫
qθ(w) log qθ(w)

p(w|D)
dw (2.24)
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Equation (2.24) can serve as the objective function for optimization with regards to
the variational parameters θ. It can be further simplified as

KL [qθ(w)∥p(w|D)] = Eq[log p(D|w)]−KL [qθ(w)∥p(w)] + log p(D) (2.25)

Equation (2.25) can be optimized by a gradient-based solver (i.e., SGD or ADAM as
introduced in DNNs). While the last term log p(D) in Equation (2.25) is constant and
does not contribute to gradient for optimization, the remaining terms constitute the
well-known evidence lower bound (ELBO). The ELBO consists of maximizing the like-
lihood estimation Eq[log p(D|w)] and the regularization KL [qθ(w)∥p(w)]. In practice,
Eq[log p(D|w)] is equivalent to the mean square error loss in regression estimated by
Monte Carlo sampling, while KL [qθ(w)∥p(w)] can be computed analytically [73].

Additionally, to make the training of BNN compatible with the backpropagation frame-
work, a trick called reparameterization is introduced. This technique serves as the found-
ation for pathwise-gradient estimation (i.e., the automatic differentiation frameworks).
Considering the calculation of Eq[log p(D|w)] in the ELBO, which requires sampling
w from its variational distribution qθ(w), define θ = {µ,σ} and let

w ∼ N
(
µ,σ2

)
w = g(θ, ϵ) = µ+ σ ⊙ ϵ

(2.26)

where ϵ ∼ N (0, I) is a sampling set and ⊙ represents the element-wise product. µ and
σ can then be updated by gradient backpropagation iteratively.

Once the distribution of p(w|D) is obtained, the inference of a trained BNN denoted
by πw(x) is considered as the ensemble of a classic neural network:

ŷ = E
w∼p(w|D)

[πw(x
∗)] (2.27)

ŝ2 = E
w∼p(w|D)

[
(πw(x

∗)− ŷ)2
]

(2.28)

where Equation (2.27) and (2.28) are the prediction and its corresponding variance
(square of pridictive uncertainty).
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Compared to GPs, BNNs are more computationally efficient and flexible in captur-
ing multivariant complex patterns. Compared to DNNs, BNNs are more robust in
small-sample modeling and provide uncertainty estimates simultaneously. However,
the training complexity of BNNs is higher than DNNs, making them potentially over-
complicated for tasks that do not require uncertainty estimation, which is the case for
problems discussed in Chapter 5.

2.3 Bayesian Optimization and Surrogate-Assisted
Evolutionary Algorithm

Bayesian optimization (BO) and surrogate-assisted evolutionary algorithm (SAEA) are
two promising frameworks that offer efficient solutions for solving EO and BBO prob-
lems, as discussed in Section 2.1.1. Although, the underlying mechanisms for these two
frameworks are similar—both employ machine learning methods to approximate (or
surrogate) the objective function while reducing computational cost, BO places greater
emphasis on the prior and posterior distribution (Bayes’ theorem) of the problem by
incorporating specific infill sampling, whereas SAEA focuses primarily on EA strategies
and the incorporation of surrogate models. To compare the similarities and differences
between these two frameworks, the pseudo-codes of them are shown in Algorithm 3
and 4.

Algorithm 3 Bayesian optimization (BO)
Input: Objective function f(x), acquisition function u(·)
1: Initialize the observed dataset D and evaluate each sample by f(x).
2: Set prior to the probabilistic modelM(·)
3: repeat
4: Fit the posterior ofM(·) to D
5: Optimize acquisition function overM(·) to get the next solution xn

6: Evaluate xn to obtain f(xn)
7: Add (xn, f(xn)) to D
8: until Stopping criteria are satisfied

Output: Best solution and the corresponding function value

BO begins with the initialization of an observed dataset, where each sample is evaluated.
Following this, a probabilistic model, often a Gaussian process model, is established
with a prior distribution. In the main loop, the model is first fitted by computing pos-
terior distribution over the current observed dataset D. Then the acquisition function



2.3. BO and SAEA 33

u(·) is optimized over the model to determine the next solution xn. Specifically, for a
minimization problem, this process is formulated by

xn = argmin
x∈X

u(M(x)) (2.29)

The acquisition function, also known as infill criteria, aims to reward solutions with
risk (i.e., uncertainty) while balancing exploration (searching new region of the design
space) and exploitation (refining the search in promising region) to efficiently navigate
the search space, so-called infill sampling. The optimization of Equation (2.29) is often
performed by gride search due to its lower computational cost compared to the original
problem. Once some new solutions are selected, they are evaluated to obtain the ground
truth and then added to D. This loop continues until some stopping criteria are met,
such as the time limit or the maximum number of iterations. BO has been proven to
have global optimization capabilities [74, 75], making it particularly advantageous for
solving EO and BBO problems with global optima.

Algorithm 4 Surrogate-Assisted Evolutionary Algorithm (SAEA)
Input: Objective function f(x), population size N
1: Initialize the population P of N individuals
2: Evaluate each individual and form training dataset D
3: repeat
4: Train surrogate modelM(·) by D
5: Generate offspring Po by applying mutation and crossover operations
6: Predict and prescreen solutions in Po byM(·)
7: Select a small subset S ⊂ Po for real evaluation by f(x)
8: Combine evaluated solutions in S to D
9: Generate new P from D
10: until Stopping criteria are satisfied
Output: Best solution and the corresponding function value

In terms of SAEA, it starts by initializing a population P of N individuals. Each in-
dividual in the population is evaluated to form the training dataset D. In the main
loop, the surrogate modelM(·) is first trained using D. The algorithm then performs
mutation and crossover operations to generate offspring set Po, following the same
procedures as outlined in Algorithm 2 (i.e., the DE algorithm). These operations in-
troduce a series of diversity to the population, enabling the exploration of new regions
in the search space. Subsequently, the surrogate model is employed to predict and
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prescreen the solutions, identifying the most promising candidates. The prescreening
operates similarly to the acquisition function in BO, which rewards solutions either
with good prediction and low uncertainty, or with relatively good prediction and large
uncertainty.

After prescreening, a small subset S is selected for real function evaluation by f(·), and
this subset is then merged with the training dataset D. When only one new solution
is selected for evaluation (i.e., |S| = 1), which aligns with Line 6 of the BO algorithm,
SAEA iterates as BO in terms of the cost of expensive function evaluations. Lastly, the
algorithm generates a new population from D to continue into the next loop.

In general, both SAEA and BO optimize the given objective by incorporating machine
learning models to reduce and alleviate the need for real function evaluations. Unlike
many machine learning-based works in the CAD domain, such as [43, 44, 45, 48, 49],
frameworks used in this thesis are free of the need for large-volume datasets for accurate
modeling. Instead, the machine learning model is trained solely to indicate promising
regions that lead to better solutions (i.e., designs with improved performance metrics).
Consequently, in one optimization process, SAEA and BO are able to collect training
data, train probabilistic models, and search for the optimal design simultaneously.

As for their difference, SAEAs introduce the specific search engine, i.e. evolutionary
operations including mutation, crossover, and selection, into the main loop, whereas BO
does not specify any optimizer to solve the model-based sub-problem (2.29). Therefore,
BO is more flexible but requires specialized adjustment to adapt to practical problems.
SAEA can be directly applied to problems that have been validated by conventional
evolutionary algorithms (e.g., DE). Additionally, both frameworks have many variants
that claim to possess diverse optimization capabilities.

2.3.1 Handle Prediction Uncertainty

The other important topic to emphasize in the above two algorithms is the method
of handling prediction uncertainty, i.e., the acquisition function in BO and the pre-
screening in SAEA. Here, we introduce three commonly used functions: expected im-
provement (EI), probability of improvement (PI), and lower confidence bound (LCB)
(for minimization problems, while the upper confidence bound (UCB) is used for a
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maximization problem). These functions are formulated as follows

uEI(x) = (ymin − ŷ(x)) Φ
(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
(2.30)

uPI(x) = Φ

(
ymin − ŷ(x)

ŝ(x)

)
(2.31)

uLCB = ŷ(x)− βŝ(x), β ∈ [0, 3] (2.32)

where ϕ(·) and Φ(·) are the probability density function and cumulative distribution
function of Gaussian distribution, respectively. ymin denotes the minimum solution of
the current iteration (i.e., the current best function value), and ŷ(x) and ŝ(x) are
the predictive value and standard deviation with regards to the solution x. β is the
hyperparameter of uLCB, balancing ŷ(x) and ŝ(x).

(a) EI function. (b) PI function.

(c) LCB function when β = 0.5. (d) LCB function when β = 2.

Figure 2.4: Heatmap distribution of three acquisition functions.
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The EI, PI, and LCB methods reward predictions with uncertainty in different ways.
Figure 2.4 shows the heatmap distribution of three functions, where the ymin is set to
zero, and ŷ(x) and ŝ(x) corresponds to the horizontal and vertical axis, respectively,
both varying from zero to one. For EI and PI, higher values indicate better solution
quality. EI favors regions with lower predictive values and higher uncertainty, while
PI prefers regions with sufficiently good prediction values, regardless of uncertainty.
As for LCB, where lower values indicate better solution quality, it offers control over
the balance between exploration and exploitation by adjusting the hyperparameter
β. When β is relatively small, LCB favors regions with small prediction values. As β
increases, greater emphasis is placed on higher uncertainty.

Although comparisons of the above three functions applied in SAEA have shown sim-
ilar performance in numerical optimization experiments [76], LCB stands out for its
flexibility due to the introduction of the controllable hyperparameter β. This hyper-
parameter is useful for balancing exploration and exploitation in the search process
and can be tuned to suit different problems. Therefore, in the following chapters, LCB
is often selected as the prescreening method, unless otherwise specified.

2.4 Summary

This chapter introduces the optimization algorithms and machine learning techniques
used in this thesis. It begins with an overview of optimization problems, with a par-
ticular focus on expensive optimization and black-box optimization. Subsequently, two
optimization algorithms are discussed: the local search method, Nelder-Mead simplex,
and the global optimization technique, differential evolution. This chapter also delves
into various machine learning techniques, including Gaussian process models, deep
neural networks, and Bayesian neural networks, explaining their theoretical founda-
tions and practical implementations. Additionally, two optimization frameworks, i.e.,
BO and SAEA, that integrate these optimization algorithms with machine learning are
presented in detail. These frameworks will be adapted to address practical problems
in the following chapters. To be specific, Chapter 3 utilizes the SAEA framework with
Gaussian process surrogate models and also embeds the Nelder-Mead simplex method.
Chapter 4 develops the SAEA framework with alternate DE search operators incor-
porating Bayesian neural networks. Chapter 5 leverages the SAEA framework and also
considers the potent modeling capability of deep neural networks for algorithmic design
optimization



Chapter 3

Microwave Filter Design
Automation

3.1 Background

Microwave filters are known as the most critical passive components [77] in communic-
ation systems, designed to selectively pass or block specific frequencies. Their primary
function is to allow signals within a desired frequency band to pass through while at-
tenuating signals outside this band as much as possible. These filters play a vital role in
various applications, including satellite communications, radar systems, and mobile net-
works. Due to the finite resource of the radio spectrum, microwave filters are essential
for preventing cross-channel interference and ensuring electromagnetic compatibility
[78]. Consequently, the performance of microwave filters is defined by their passband
and stopband characteristics, with selectivity being a crucial aspect.

Microwave filters can be classified according to different regards, such as single-mode or
multiple-mode filters, single-band or multiple-band filters, and filters with or without
cross-couplings. Despite these variations, the main design process generally follows
three key steps: topology synthesis, physical dimensioning, and design optimization
[79].

Given filter specifications about passband and stopband, topology synthesis [80] begins
by approximating the filter’s performance requirements into polynomial responses (i.e.,
the reflection and transmission characteristics, S11 and S21). During this step, the filter
order, as well as the number and location of transmission zeros (also reflection zeros or

37
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poles hereinafter), are first determined. Ideal values of the lumped-element equivalent
circuit or coupling matrix are then calculated within the normalized frequency domain,
namely the low-pass prototype. Thanks to extensive research and advances in filter
analysis and research on design methodologies, theoretical design can often be achieved
through many analytical methods [81, 82]. When analytical synthesis is not feasible,
optimization-based synthesis is also straightforward to be employed for obtaining the
desired responses[83, 84, 85]. At this point, the filter is theoretically constructed.

The next step, physical dimensioning, translates the theoretical design into practical,
real-world implementation [86]. This step starts by aligning real dimensions with denor-
malized coupling values and subsequently determines the dimension of each resonator
or coupling window/gap. Various methods are proposed for physical dimensioning, each
with its unique advantages [78, 87, 88, 89]. Most of these methods are fully program-
mable and can be automated. However, due to the ideal conditions assumed during
this process, the full-wave EM response of this initial design often fails to meet the
required specifications. As a result, this step is often considered preparatory, leading
to a more crucial phase of EM-based design optimization.

Design optimization is the final and most challenging step, essential for achieving strin-
gent specifications required for successful fabrication. During this step, several key
design parameters related to resonators and couplings are optimized to approach the
desired performance. This task is formidable due to the complex and highly multimodal
characteristics of the filter design landscape [90], and it often consumes most time be-
cause of the intensive computational costs of 3D EM simulation. To assist designers,
experience-guided approaches are often employed, incorporating with off-the-shelf local
optimizers which are invoked iteratively and manually by designers. For instance, cer-
tain methods proposed in [91, 92, 93] optimize the filter by progressively adding one
resonator at a time, and performing an optimization run at each stage. These meth-
ods significantly reduce the design space, making the complexity of the design process
more manageable within the constraints of design cycles and time-to-market. However,
they may not be universally applicable, and their effectiveness can vary depending on
the engineer’s experience. The outcomes from employing these methods are, therefore,
unstable.
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Due to the importance of design optimization in filter design, simulation-based design
optimization has been attracting much attention since the end of the last century.
In recent years, several innovative and successful intelligent 3D design optimization
methods have been proposed. For example, space mapping (SM) techniques [94, 95,
96] utilize a low-fidelity model, such as an equivalent circuit, to reduce the required
number of computationally expensive EM simulations of high-fidelity. Cognition-driven
optimization methods [97, 98] leverage designers’ intuition by first optimizing frequency
features and then fine-tuning ripple heights. The homotopy method [99] constructs a
sequence of intermediate optimization problems that gradually transition from the
initial design to the optimal one, proving effective when the initial design is of low
quality. Machine learning techniques are employed within some of the above methods to
enhance speed and efficiency. Compared to off-the-shelf local optimizers, these methods
achieve higher quality solutions more efficiently, with optimization playing a role equally
important as designers’ expertise. However, these methods were primarily validated
only on straightforward filter structures [97, 98, 99], like direct-coupled filters without
transmission zeros [100], and their effectiveness for other filter types require further
investigation. A more detailed review of their advantages and limitations is provided
in the literature review section.

In summary, the design of microwave filters requires a deep understanding of both
theoretical principles and practical experience to achieve successful results. Of the
three steps outlined, design optimization is the most crucial, as it ensures that the final
design meets all required specifications. Therefore, this chapter mainly focuses on the
research of design optimization for higher level of filter design automation. It begins
with a review of relevant literature to establish the foundational concepts, followed
by a summary and clarification of the main problem to be addressed. The proposed
methodology is then discussed in detail and demonstrated through several practical
design examples, highlighting how this methodology can significantly advance design
automation for microwave filters.

3.2 Literature Review

SM is likely the most prevalent attempt in microwave filter CAD since its invention,
although it is not specifically designed for microwave filters. To be specific, while the
synthesis step produces an ideal design (i.e. an equivalent circuit or coupling matrix)
that satisfies all design specifications, a straightforward idea is to build a “mapping”
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that correlates the optimal design parameters of circuit or matrix elements with 3D
physical structure. This mapping helps guide the design of 3D structures by searching
around the optimal region, thereby reducing unnecessary simulation costs [101]. This
is the fundamental concept behind the SM method [95]. As the name indicates, SM op-
erates within two design spaces (i.e., the design of lumped elements and 3D structures)
aiming to the same design target ( i.e., a practical design that meets all performance
requirements), with one-to-one correlations between each variable. The mapping cap-
tures this correlation, with the equivalent circuit or coupling matrix serving as the
coarse model and the 3D EM simulation functioning as the fine model. By iteratively
updating this mapping, SM effectively bridges these two models in the near-optimal
region, predicting the potential optimal design for the physical structure [96].

Over time, many variants of SM have been proposed and investigated [102, 103, 104,
105]. However, SM has an intrinsic issue regarding design uniqueness, as it assumes
that the optimal solution is unique in both design spaces [95]. Algorithms may often
struggle to obtain a satisfactory solution when this assumption is not valid. Although
several remedies have been proposed [9, 95, 102], their effectiveness is limited due to
the local search nature of these methods. For example, a filter tuning method based
on SM was proposed in [106], where tunable elements are added to provide circuit-
based surrogates at each step of optimization to avoid intensive full-structured EM
simulations. However, this method is designed to fine-tune design variables within a
small range around the optimal solution and is not capable of designing from scratch,
making it less suitable for full automation of filter design. SM is now regarded as
an early version of surrogate-assisted optimization (SAO), characterized primarily by
its local search capability relying on quasi-Newton methods. In recent decades, more
advanced approaches have been developed, specifically targeting filter design problems
and surpassing SM in many aspects. Some of these methods are discussed.

In [107], the authors utilize the NM simplex method to optimize ridged waveguide
filters characterized by cascaded circuits, where the discontinuities of the filter were
represented by generalized scattering matrices. They applied the simplex algorithm
iteratively, incorporating additional perturbations to avoid being trapped in local min-
ima. The method is validated by designing two direct-coupled ridged waveguide filters
with four and six poles, respectively. However, the authors had to adjust the optimiza-
tion process to accommodate narrow-band cases, making this method somewhat ad hoc
and lacking general design capability. Moreover, ensuring the global optimum becomes
challenging when relying solely on the simplex method with perturbations.
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Another study in [97] proposed a so-called cognition-driven SM method for the optim-
ization of equal-ripple filters. Intermediate feature metrics, including feature frequency
metrics (related to the position of poles) and ripple height metrics (the maximal ripple
between two adjacent poles), are extracted from EM simulation to construct two SM
models. The optimization process, based on the Trust-region method, unfolds in two
stages. First, optimizing the pole positions to fall within the required band, followed by
optimizing the ripple height to meet the specified criteria. This method was validated
using two direct-coupled filters. However, it may fail if the pole positions in the initial
design are not clearly defined, and applying it to filters with designated zeros presents
a significant challenge. Additionally, as with the previous method, achieving global
optimality is also difficult when using only conventional Trust-region methods.

The concept of feature extraction is further explored in [98] and [108]. In these works,
multiple features are extracted from the EM simulation response, including a neural
network that maps design variables to a transfer function in a zero-pole format, as well
as ripple heights and pole positions. These features mitigate the limitations highlighted
in [97], especially when the initial design significantly deviates from the requirements.
The transfer function is used to identify pole positions even when they are not explicitly
evident. However, this approach still relies on the Trust-region method and has only
been verified on direct-coupled filters, making it challenging to apply to general filter
design problems.

In most of the aforementioned research, features are extracted from the magnitude
of filter responses, whereas in [109] the authors utilize the group delay instead. The
coupling matrix of EM responses is first extracted by a global optimizer with its group
delay setting as the objective function. Then the SM method with predefined linear
mapping guides the search for design parameters. This method was validated using two
wideband resonator-coupled bandpass filters and diplexers. However, it is not an end-
to-end method; it produces relatively good results but still requires refinement through
built-in optimization tools of simulation software, as noted by the authors.

Homotopy optimization is introduced into filter design in [99]. The entire design process
is divided into a series of intermediate optimization problems, gradually transitioning
from the initial design to the final one. This method greatly reduces the search region
and alleviates the challenges faced by local optimizers, potentially leading to conver-
gence on the optimal solution. It was validated with two five-pole waveguide filters.
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However, this work does not directly rely on EM simulation; instead, it constructs
ANN models for S-parameters of basic sub-blocks (resonators with coupling windows)
and then cascades them to characterize filter performance. This method may not be
suitable for more complex filter structures. Its general applicability is therefore limited.

The work in [110] presented an innovative global optimization method called SMEAFO,
designed for general microwave filter optimization. It combines SAEA with Gaussian
local search and was found to surpass existing local optimizers such as SM methods,
providing optimal designs that are comparable to the DE algorithm. This algorithm
was validated through two examples: a fourth-order direct-coupled waveguide and an
eighth-order microstrip filter. Although the algorithm reduces the overall computation
time compared to full global optimization, it still requires substantial computational
resources, particularly for high-order filters with complex configurations or for large-
scale filter design problems.

In [111], a new optimization algorithm, Harris Hawks optimization, inspired by the co-
operative behavior of birds, is introduced. It consists of two search phases: the explora-
tion phase, and the exploitation phase. This method was only validated by a four-order
dual-mode waveguide filter, where it outperformed many heuristic algorithms, such as
DE and PSO. However, applicability to more intricate filters remains to be tested.

With the rise of convolutional neural networks, the authors in [112] leveraged convo-
lutional autoencoder (CAE) as a surrogate model, incorporating particle swarm op-
timization for microwave filter design. This method follows the typical framework of
SAO, with the CAE model being updated online during the optimization process. The
CAE effectively represents complete reflection and transmission responses versus fre-
quency, resulting in a highly accurate final design after optimization. However, the
initial design in the test case was already very close to the optimized one, with only
minor inband violations on ripple, raising questions about its effectiveness in more
challenging scenarios.

In summary, the above literature can be grouped into three categories based on the
degree of human participation. Methods proposed in [96, 101, 106] can be classified as
supervised design optimization, where the designer’s tuning procedure and experience
play a major role in determining the final design success. These approaches are currently
the standard routine approach in industrial design practices. Methods proposed in [97,
98, 99, 108, 109] can be considered as the semi-supervised, which still require designer
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interaction for peripheral tasks and to help the optimizer escape local optima. In these
methods, the success of the design is determined by both the practitioner and the
optimization algorithm. Methods proposed in [110, 112] have the potential to become
real unsupervised design optimization by extensive validation for their effectiveness
and efficiency across more general design cases. However, due to the highly multimodal
characteristics of the filter design landscape, as mentioned earlier, this is often not
guaranteed naturally.

3.3 Problem Description

There are at least two characteristics that must be fulfilled for an unsupervised design
optimization method: 1) it is end-to-end to satisfy stringent design specifications without
extra steps, making designer interactions unnecessary during the optimization process.
In other words, the process is merely completed simply by launching the program, with
no need for further consideration. 2) It must be applicable to most design cases and is
not restricted to specific filter types or structures.

Benefits of this methodology are evident: 1) It will significantly reduces the design time
(and thus the cost) required by engineers; 2) it can be applied to most engineers with
less design experience, while still ensuring successful outcomes.

Figure 3.1 summarizes the input and output that are considered in the proposed un-
supervised design optimization. It takes design specifications, the ideal response, the
initial design structure, and specified design parameters as inputs, and outputs the op-
timal design structure discovered by algorithms. All inputs are considered the essential
information and knowledge needed for designing a microwave filter. In addition, the
ideal response is derived from topology, which implicitly indicates the ideal positions of
poles and zeros. For a typical bandpass filter, design specifications might include center
frequency, filter bandwidth, passband reflection level, and stopband transmission level.
To ensure that the algorithm is applicable to a wide range of filter design problems, no
additional specific design knowledge or techniques are leveraged. As discussed, this is
critical for achieving effective unsupervised filter optimization.

To achieve this goal, the following elements are considered essential:
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Input Output

Initial design

Design variables

Ideal responses

Specifications

Center frequency

Bandwidth

Passband reflection

Stopband transmission

Optimal design

Figure 3.1: Illustration of input and output for filter design optimization problem.

• A framework or methodology that effectively integrates filter design knowledge
(as outlined in Figure 3.1, the inputs) with optimization algorithms, while main-
taining reasonable versatility across a diverse type of filters.

• Proper objective functions that simplify the filter design landscape. Besides ob-
jective functions based on the magnitude of S-parameters (e.g., minimizing the
maximummagnitude of |S11| in dB within a required band, denoted by max(|S11|)),
which are straightforward and very widely used, several promising methods have
also been proposed [98, 99, 109]. However, these works are far from mature,
and it remains unclear whether these functions are still valid for an end-to-end
framework with broader applicability. We compare some of these functions in the
experiment section of this chapter.

• A global optimization algorithm bespoke for filter design problems. Compared to
local optimization, global optimization ensures that the optimal design is likely
to be found, and improves the success rate of outcomes. However, due to the
no-free-lunch theorem [113], conventional global optimization is often slow and
inappropriate to be applied directly. This necessitates the development of a novel
algorithm that is specialized for filter design problems.
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These three elements are deemed indispensable for achieving automated filter design
optimization, yet no research in the literature fully addresses all of them. For instance,
in [110], a promising endeavor called SMEAFO is proposed for general microwave
filter optimization, applying global optimization based on SAEA. However, it lacks
sufficient consideration of the three elements mentioned above, particularly overlooking
systematic design knowledge, and thus only targets small-scale design problems (less
than 6 design variables) without specification on stopband. Nevertheless, SMEAFO
provides valuable insight into the intrinsic challenge of filter design problems and lays
a pivotal foundation for further research. In the next section, the proposed methodology
is elaborate, incorporating some operators inherited from SMEAFO.

3.4 Proposed Methodology

The pipeline of the proposed methodology is illustrated in Figure 3.2. It consists of three
main blocks in addition to the input and output stages. Design knowledge utilized in
each block is displayed above the corresponding block, while the objective function
and optimization engine are listed below, respectively. The workflow can be summar-
ized as follows. The initial design obtained from physical dimensioning is first accepted
as the input of the entire design process. Based on this initial solution, a systematic
sampling method is performed to sample a set of designs (the initial design dataset)
around it, with resonator theory being employed to determine the appropriate perturb-
ation that ensures effective sampling. Subsequently, the optimization stage unfolds in
two phases, each involving different design knowledge, objective functions, and search
engines. Phase I optimization aims to quickly converge on a solution that captures
the general shape (i.e., locate the positions of zeros and poles calculated by the ideal
response) of the desired response, while Phase II optimization focuses on finding the op-
timal design that satisfies all design specifications. Once the entire process is complete,
the best solution in the design set is output. Note that, although the initial design
obtained by any physical dimensioning methods is acceptable, the recommended pro-
grammable method is described in [114], which has been found efficient and effective
by incorporating with the proposed pipeline in this chapter.
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Figure 3.2: Illustration of the pipeline of the proposed methodology.

Two questions need to be clarified regarding this methodology: First, why is the sys-
tematic sampling method emphasized and considered indispensable? Second, why is it
necessary to divide the optimization process into two phases, each utilizing different
objective functions and search engines? We briefly address these questions and then
provide a detailed description of associated techniques in the following subsections.

The initial design of the microwave filter is of great importance in filter design optim-
ization due to its complicated landscape, i.e. the narrow optimal region and numerous
local optima. It provides critical information about the potential search region, though
its performance is often poor. However, global optimization, particularly DE, is gen-
erally considered free of initial solutions, as it uses the difference between individuals
in the population to maintain search capacity. Thus, pervasive sampling across the
entire design space can undermine the benefits of a good initial design and hinder con-
vergence. Conversely, undersampling solely around the initial design may weaken the
algorithm’s search capacity. To resolve this conflict and strike a balance—leveraging
the information from the initial design while integrating it effectively into the down-
stream algorithm—a systematic sampling method is crucial and essential. Therefore,
an appropriate sampling method forms the foundation for the subsequent optimization
process and cannot be overemphasized.

Regarding the use of different objective functions, despite the advantages of a good
initial design and systematic sampling method, their performance is often far from
requirements. This makes some objective functions difficult to assess the quality of
designs at the early stages of optimization, especially when using the straightforward
one—minimizing max(|S11|). This issue can significantly slow down convergence or
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even prevent it altogether. For instance, Figure 3.3 shows two |S11| responses of a
filter that needs to operate from 4.9 to 5.1 GHz. While they differ in quality from
a designer’s perspective, they have very similar objective value regarding max(|S11|):
-3.36 dB versus -3.15 dB. It’s inapplicability is thus demonstrated clearly.

-3.36 dB

-3.15 dB

Figure 3.3: Illustration of the issue of max(|S11|) objective function in two typical cases.

In general, an appropriate objective function should: 1) align with the design spe-
cifications, 2) effectively discriminate between different designs, and 3) Smooth the
design landscape near the global optimum by preventing penalties for values that ex-
hibit drastic changes. Clearly, minimizing max(|S11|) in dB only meets the first cri-
terion. Therefore, applying different objective functions at various stages is a practical
approach to meet these requirements throughout entire optimization process and to
ensure the success of an unsupervised design methodology.

As for the search engine, the methodology primarily relies on SAEA framework, with
the NM simplex method being employed in Phase II to accelerate convergence. To
ensure the success rate of the proposed algorithm, exploration ability must be main-
tained to avoid local optima, particularly at the beginning of optimization, as in Phase
I. In Phase II, pilot experiment indicates that hybridizing SAEA with a local search
engine benefits rapid convergence, even though the exploration ability is somewhat
compromised. This trade-off is acceptable given the payoff—if the current best design
is improved through local search, the entire population benefits in subsequent iterations.
This approach makes the design optimization process both efficient and effective.
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3.4.1 Systematic Sampling Method

The aim of sampling is to provide a basic understanding of the characteristics of the
design landscape and to form the initial population for optimization algorithms. Several
conventional sampling methods are widely used in SAEAs, such as full-factor sampling
[115], Monte Carlo sampling [116], and Latin hypercube sampling [117]. However, these
methods mainly focus on maintaining the uniformity of samples in the design space,
thus losing the advantage of the initial design.

To preserve the benefits of the initial design while still providing sufficient diversity
across the design space, a feasible approach is to perturb each element of the initial
design by adding Gaussian-distributed random numbers with zero mean and specified
variances. This is formulated as follows:

xi = xi +N (0, σ2), i ∈ I (3.1)

The value of σ is crucial in this method. It determines how much information from
the initial design is utilized. If a large random number is added to the initial design
parameters, the pattern of the initial design may be overwritten, rendering it less useful
to the global optimizer. In contrast, adding a small random number retains patterns of
the initial design, but may cluster the initial samples within a narrow region, greatly
preventing the search from escaping local optima.

In this context, σ measures the dimensional perturbation for initial geometries. There-
fore, according to microwave resonator theory [118], for a resonator with a physical
length L, L is proportional to the guided wavelength λg at the resonant frequency f .
Therefore, the perturbation ∆L of the physical length and the corresponding frequency
shift ∆f are related as follows

∆L ∝ ∆f

f
λg (3.2)

Thus, L varies with FBW × λg, where FBW can be cast as the fractional bandwidth
of a filter. This relationship forms the solid foundation of the parameter-perturbation
method and is broadly applicable for different filter types. Additionally, design vari-
ables are divided into two categories: resonance-related and coupling-related, cover-
ing most cases of filter design variables. Resonance-related variables primarily control
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the center frequency and bandwidth, directly influencing the frequency characteristics.
Coupling-related variables, on the other hand, mainly control ripple heights. According
to microwave theory, these variables exhibit different sensitivities in terms of the filter
response. Therefore, σ is assigned a different value for each category.

Based on pilot experiments, for resonating-related design variables, let σf = 0.25 ×
FBW × λg and for coupling-related variables, let σc = FBW × λg, where λg is the
guided wavelength of the central frequency. This empirical rule is also applicable to
other global optimizers for filters.

In summary, the pseudo-code of the proposed systematic sampling method is shown
in Algorithm 5, where R represents the output response (i.e., the S11 and S21) from
the EM simulation, and randn(0, ·) denotes the Gaussian random number with zero
mean and a given variance. Once the algorithm is complete, the sampling dataset D is
output.

Algorithm 5 Filter Systemic Sampling Method (FilterSampling(·))
Input: Initial design xini, the number of samples N , simulation program

Sim()
1: R← Sim(xini)
2: D ← {(xini, R)}
3: n← 1
4: repeat
5: x← xini
6: for each element xi in x do
7: if xi is coupling-related then
8: xi ← xi + randn(0, σ2

c )
9: end if
10: if xi is resonance-related then
11: xi ← xi + randn(0, σ2

f )
12: end if
13: end for
14: R← Sim(x)
15: D ← {(x,R)} ∪ D
16: n← n+ 1
17: until n > N − 1
Output: Initial sampling dataset D
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3.4.2 Phase I Optimization

3.4.2.1 Objective Function: F1

In the initial phase, many points around the initial design may exhibit poor responses.
Thus, the goal of Phase I is to quickly obtain a general shape of the desired response, i.e.,
determine the positions of zeros and poles. Therefore, the proposed objective function
is based on the response at the ideal positions of zeros, poles, and edge (denoted as
ZPE function) [83] with an added term Z to restrict the bandwidth, formulated as
follows:
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Figure 3.4: Illustration of key features considered in F1

F1 =
∑
i

|S21(fzi)|2 +
∑
j

|S11(fpj)|2 +
∑
k

(|S11(fegk)| − ϵeg)
2 + Z(BW ) (3.3)

where ϵeg is the magnitude of S11 at the edge of the passband under the ideal condition,
and all S-parameters are real values. BW are the bandwidth requirement of the filter.
By considering the magnitude of S-parameters at the ideal frequencies of zeros, poles,
and edges (denoted by fzi , fpj and fegk), the desired response shape can be efficiently
formed. Key features of this proposed objective function are depicted in Figure 3.4.
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This ZPE objective function was originally developed for optimization-based filter CM
synthesis and has shown high efficiency in [83]. Some pilot experiments show that it is
much more efficient at obtaining a coarse shape of the desired response compared to
minimizing max(|S11|) for the proposed design methodology.

The added term Z(BW ) is defined as

Z(BW ) = (fzmax(S11)− fzmin(S11)− ϵBW − BW )/BW (3.4)

where fzmax(S11) and fzmin(S11) are the maximum and minimum frequency from extrac-
ted reflection zeros, identified through vector fitting [119, 120, 121]. ϵBW represents
the small difference between the bandwidth estimated from the extracted reflection
zeros and the required bandwidth, calculated theoretically. Vector fitting can accur-
ately identify reflection zeros even for designs with poor responses, as validated by
existing research [98]. The division by BW serves a normalization purpose. The role
of the Z term is to penalize designs with a typical incorrect response shape, where
some of the reflection zeros fall outside the passband, even though ZPE function may
meet the passband specification. Additionally, no weighting is required, as all terms
are comparable in scale due to normalization and are equally important. Specifically,
for an ideal response, all terms in F1 should be zero.

Nonetheless, this objective function cannot be used throughout two phases. This is
because there is often a deviation between the ideal response and the real response
obtained from physical design. In most cases, even when the filter is fully optimized
using F1, the specifications are often not met, in other words, F1 does not always
align with the design specifications while the general response shape has been formed.
Consequently, a new objective function is introduced in Phase II, as described in the
next section.

3.4.2.2 Optimization Algorithm: DE-based SAEA

With the proposed objective function F1, the pseudo-code for Phase I optimization is
shown in Algorithm 6, where the main framework is inherited from [110]. Compared
to the general framework of SAEA in Algorithm 4, several modifications are made to
adapt to filter design problems. First, the top N designs, ranked by F1, are selected
at the beginning of the main loop, ensuring that the population is consistently com-
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posed of elite solutions in each iteration. Second, mutation and crossover operations are
performed following the same approach in DE (Algorithm 2), where the DE/current-
to-best/1 mutation strategy is used to balance the exploration and exploitation. As
discussed in Section 2.1.3, this strategy promotes the spread of good patterns from the
best solution while maintaining sufficient diversity through the current solution.

Algorithm 6 Phase I Filter Design Optimization
Input: Initial sampling dataset D, objective function F1, population size

N , simulation program Sim(·)
1: repeat
2: Sort all designs in D in ascending order by F1

3: Select top N designs to form the population P
4: Perform mutation and crossover operators on P to form Po

5: Train GP models {M(·)} for each solution in Po

6: Predict and prescreen solutions in Po by GP models
7: Select the best xo ∈ Po with the minimium prescreening value
8: Simulate xo by Sim(·) and add xo with its simulation result to D
9: until Average improvement of F1 less than 2%

Output: Current best design xbest, simulated dataset D

Additionally, GP models are employed as surrogates. To ensure high model quality,
models are constructed for each solution in Po and for each term of F1 in one iteration,
resulting in a total of 4N local GP models per loop. Training separate models for each
term of the objective function, as well as for each solution has been shown to perform
better than training a single model for the summation. Regarding the training dataset,
it is selected by calculating the Euclidean distance between the current solution and
individuals from D. The nearest N individuals are chosen to train a local GP model.

For the prediction and prescreening operation outlined in Line 7, the LCB method
is employed, with coefficient β being 2. Afterward, the best solution from Po in pre-
screening is simulated, meaning that EM simulation is carried out once per iteration.
Therefore, the efficiency of the algorithm can be compared based on the number of
iterations or the number of simulation calls.

Phase I optimization stops when the average improvement of F1 is less than 2% over
consecutive 100 iterations. This 2% is empirical and not particularly sensitive. Once
Phase I concludes, Phase II optimization is launched, with an objective function focused
on exactly satisfying the specifications and smoothing the design landscape at the same
time. This helps to reduce the burden on the global optimizer and accelerates the search
process described in the next section.
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3.4.3 Phase II Optimization

3.4.3.1 Objective Function: F2

In Phase II optimization, the objective function is defined to find the optimal design
that meets all specifications. A straightforward idea is to extend the max(|S11|) to
max(|S11|) + max(|S21|), in which passband performance is penalized by max(|S11|),
and stopband performance is penalized by max(|S21|). When the function value ap-
proaches zero, all design specifications should be fully met. However, as discussed
earlier, max(|S11|) is not ideal for use at the beginning of optimization due to its
low discriminative ability, and it is also not suitable for Phase II, despite aligning with
required specifications.
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Figure 3.5: Comparison of max(|S11|) +max(|S21|) values for a practical example.

F =max(PB − (−20), 0) +max(PBl1 − (−40), 0)+

max(PBl2 − (−40), 0) +max(PBr1 − (−50), 0)+

max(PBr2 − (−50), 0),

PB =max(|S11|), in dB from 11.9865 to 12.0135 GHz
PBl1 =max(|S21|), in dB from 11.9500 to 11.9840 GHz
PBl2 =max(|S21|), in dB from 12.0160 to 12.0500 GHz
PBr1 =max(|S21|), in dB from 11.9500 to 11.9810 GHz
PBr2 =max(|S21|), in dB from 12.0190 to 12.0500 GHz

(3.5)
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To elaborate its issue, consider a practical example shown in Figure 3.5, which illus-
trates the ideal response of an eighth-order filter and a slightly shifted response (where
all S-parameters shift 0.00025GHz to higher frequency). This results in a dramatic
change in the objective function from 0 to 13, as formulated in Equation (3.5), which is
very counter-intuitive. Unarguably, this objective function will lead to a rugged land-
scape [90, 110]. The reason behind this issue is that as the order of the filter increases
and its edge response becomes steeper, small perturbations in the design variables
can cause drastic changes in the objective function, rendering this value meaningless.
Therefore, proposing a new objective in Phase II becomes inevitable.

The proposed objective function for Phase II is denoted by F2 as shown in Figure 3.6,
which includes three terms: the average inband ripple R(·), stopband edge frequency
E(·), and bandwidth restriction Z(·). All of them are to be minimized.
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Figure 3.6: Illustration of key features considered in F2

The inband ripple term (R(·) in Figure 3.6) is defined as:

R(BW,Sr) =
1

SrBW

∫
BW

max(|S11(f)| − Sr, 0)df (3.6)
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where BW is the bandwidth, Sr is the specification (e.g., −20 dB for inband |S11|).
1

SrBW
is a normalization factor. The use of integration calculates the average violation

of the S11 specification, effectively smoothing the design landscape and preventing the
issue from using max(|S11|) as discussed above. Pilot experiment shows that with the
same optimizer, not only is the success rate improved, but the convergence speed is
also much faster compared to using max(|S11|).

The stopband edge frequency term (E(·) in Figure 3.6) is defined as:

E(fs, Sr) =
∑
i

max(f(Sri)− fsi , 0)/BW (3.7)

where f(Sr) is the first frequency where |S21| meets the given stopband specification
Sr (e.g., |S21| reaches −30 dB at the frequency f(−30dB)), and fs is the frequency
specification (e.g., |S21| should be under −30 dB at fs and below). The index i indicates
the number of stopband specifications. The division by BW serves as normalization.
Note that even for some design cases without stopband specifications, this term can be
added using a reasonable estimation of fs. Pilot experiment shows that this improves
optimization speed in collaboration with the previous term.

The passband reflection zero term (i.e., Z(·) in Figure 3.6) Z(BW ), is the same as that
in F1. To sum up, the final objective function for Phase II is

F2 = R(BW,Sr) + E(fs, Sr) + Z(BW ) (3.8)

Note that no weighting is needed, as the terms are normalized. In comparison with
the objective functions formulated in Equation (3.5), for the same responses shown
in Figure 3.5, F2 varies only from 0 to 0.674, which aligns with human intuition and
results in a smoother design landscape.

3.4.3.2 Optimization Algorithm: Hybrid DE-based SAEA with
NM Simplex

The pseudo-code of the Phase II optimization using F2 is shown in Algorithm 7. Lines
2 to 8 follow the same processes performed in Phase I. From lines 9 to 12, when the
current best solution is not updated for 50 consecutive iterations, the local optimizer
(i.e., NMSimplex(·)) is triggered. Once the local optimizer reaches a local optimum
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Algorithm 7 Phase II Filter Design Optimization (Hybrid algorithm)
Input: Design dataset D, objective function F2, population size N , sim-

ulation program Sim(·)
1: repeat
2: Sort all designs in D in ascending order by F2

3: Select top N designs to form the population P
4: Perform mutation and crossover operators on P to form Po

5: Train GP models {M(·)} for each solution in Po

6: Predict and prescreen solutions in Po by GP models
7: Select the best xo ∈ Po with the minimium prescreening value
8: Simulate xo and add xo with simulation result to D
9: if xbest remains unchanged for 50 iterations then
10: Perform local search NMSimplex(xbest, F2)
11: Select and add solutions visited by local search to D
12: end if
13: until Stopping criteria are satisfied
Output: Best solution xbest and the corresponding function value

or the maximum number of iterations, it halts, and the design dataset D is updated
by merging selected solutions visited by the local optimizer. Therefore, compared to
Algorithm 6, this algorithm hybridizes DE-based SAEA with NM simplex, where the
two optimizers complement each other by combining their strengths. Hereinafter, the
algorithm proposed for Phase II in this chapter is also called the hybrid optimization
algorithm.

As introduced in Section 2.1.2, NM simplex is a derivative-free search method that is
well-suited for rugged, highly multimodal landscape [60], which is a common character-
istic of filter design landscapes. In the local optimization process, no surrogate model is
used. This is because local search requires a highly accurate surrogate model, and build-
ing one with a limited number of EM simulations is often challenging in filter design.
An inaccurate surrogate model could mislead the local search. Pilot experiments with
real-world filters show that without using a surrogate model converges even faster than
using a GP model in NM simplex optimization.

Furthermore, solutions visited by the local optimizer must be carefully selected for
inclusion in the database, considering both performance and diversity. This is essential
to avoid SAEAs being trapped in local optima, especially when the current best N
solutions in the database lack diversity. The scoring strategy from [122] is used to rank
and select solutions visited by NM simplex, which are then added to the design dataset
as outlined in Line 11.
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3.5 Experiment Results

The performance of the proposed methodology is validated through two real-world ex-
amples, including an eighth-order dual-band waveguide filter with four transmission
zeros [123] and a sixth-order waveguide filter with two transmission zeros [124]. The
initial design for both filters is obtained using the method presented in [114]. As demon-
strated in the subsequent experiments, several widely used filter optimization methods
fail to achieve unsupervised design when starting from the given initial designs. All the
experiments are conducted on a workstation with Intel 3.2 GHz Core (TM) i7 CPU and
8 GB RAM, running the Windows operating system. The simulations are performed
using CST Microwave Studio, with wall clock time used to measure time consumption.
No parallel computing is employed.

To highlight the advantages of the proposed new objective functions, the same optim-
ization algorithm used in Phase II is applied with the same initial design to compare
several reference objective functions. These include: (a) the sole use of F1 without band-
width constraint (i.e., ZPE objective function in [83]), (b) the sole use of F2, (c) the
objective function based on extracted CM from group delay [109] (referred to as CM-
difference method in the following), (d) the cognition-driven multi-feature objective
function [98], and (e) the commonly used S-parameters based objective function (e.g.,
minimizing max(|S11|) +max(|S21|), simplified as max(|S11|) in the following).

Each objective function is carried out with five independent runs, and the results are
compared statistically. Due to the computational cost of EM simulations, more runs
are not affordable. In all the comparisons, a run is considered successful if the optimal
design achieves less than 0.1 overall specification violation (i.e., summed together)
within 2500 EM simulation budget. Note that this limit is only for comparison pur-
poses; the proposed methodology required significantly fewer EM simulations than
this budget.

To demonstrate the benefits of the hybrid optimization algorithm proposed in Phase
II, a comparison is conducted between two scenarios: the one where the NM simplex is
involved (hybrid) and the one where it is not (nonhybrid). This comparison highlights
the impact of integrating local search within SAEA for filter design optimization. Note
that the nonhybrid version behaves the same as the algorithm in Phase I. In other words,
the comparison is carried out between Algorithm 7 and 6, with the same objective
function (i.e., F2).
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Due to the stochastic nature of algorithms, random seeds influence the number of EM
simulations required to satisfy the specifications. To minimize this effect and focus on
comparing different search mechanisms, the experiments are divided into five groups.
In each group, initial populations are randomly generated by the systematic sampling
method, and the same initial population and random seed are applied for five inde-
pendent runs with the hybrid and nonhybrid algorithms. The convergence speed is
compared statistically. All five groups yield the same conclusion. Hence, the results
from one typical initial population are displayed in the following subsections.

3.5.1 Example 1: X-band Dual-band Filter

The first example is an X-band symmetric eighth-order dual-band filter with four trans-
mission zeros, as shown in Figure 3.7. This filter is designed to operate at the center
frequency of 10 GHz with two passbands symmetrically located at 9.35-9.70 GHz and
10.30-10.65 GHz. Of the eight cavity resonators, four are independent and the corres-
ponding resonators share the same dimensions. The four resonators (i.e., resonators
1-4 or 5-8) form a cascaded quadruplet which generates two explicit transmission zeros
at 9.88 GHz and 10.12 GHz, respectively. Due to the symmetric structure, a total
of four transmission zeros are created but overlapped at two frequencies, resulting
in the improvement of stopband rejection between two passbands. This filter has 10
design variables, of which [L1, L2, L4] (L2 = L3) target the resonant frequency, and
[W12,W34,W14,W45,We,H23, L23] control the coupling between resonators. The
filter is modeled in CST Microwave Studio with around 12000 mesh elements, and
each EM simulation takes 1 and 1.5 minutes to complete.
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Figure 3.7: The structure of the X-band filter
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Table 3.1: Design specifications for example 1

Notation Item Frequency
Range (GHz)

Specification
(dB)

PB1
Passband 1 Reflection

Coefficient (S11)
9.35 - 9.70 −20

PB2
Passband 2 Reflection

Coefficient (S11)
10.30 - 10.65 −20

SB
Stopband Transmission

Coefficient (S21)
9.85 - 10.15 −40

SBl

Stopband Left Edge
Transmission

Coefficient (S21)
≤ 8.8 −20

SBr

Stopband Right Edge
Transmission

Coefficient (S21)
≥ 11.2 −20

Table 3.2: The initial design and a typical optimized design (all sizes in mm) (example
1)

Variable Name W12 W34 W14 W45 We

Initial Value 4.504 3.464 5.210 3.417 6.186
Optimized Value 4.234 3.489 4.192 2.713 6.894
Variable Name H23 L23 L1 L2 L4

Initial Value 7.645 9.940 46.374 20.983 24.193
Optimized Value 6.766 8.962 46.035 20.673 23.359

The design specifications are listed in Table 3.1, with notations marked in Figure 3.8(b).
Note that the central stopband is formed by four transmission zeros, with two located
at 9.88 and the other two at 10.12 GHz.

In all five runs, the optimal design obtained after the two-phase optimization process
successfully meets all specifications. The initial design and a typical optimal design
are shown in Table 3.2, with the response shown in Figure 3.8. Across the five runs,
an average of 678 EM simulations were executed, taking 13 hours. This demonstrates
that the time consumption is manageable compared to the manual design process
from industry, especially considering an unsupervised design process without human
intervention.
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(a) Initial response

PB1 PB2

SB

SBl SBr

(b) Optimized response

Figure 3.8: Responses of the X-band filter using proposed methodology. (The grey
dotted lines show the specification levels)

Five reference objective functions were compared. In all five runs, the ZPE objective
function, the CM-difference objective function, and the cognition-driven multi-feature
objective function fail to achieve successful results for this example. A typical response
of the best design obtained using the ZPE objective function is shown in Figure 3.9(a),
verifying that, as stated earlier, the ZPE objective function does not align with the
design specifications after the general response shape is established. Similarly, the
cognition-driven multi-feature objective function focuses on the correct positions for
the zeros and poles and the ripple height of the passband, as shown in Figure 3.9(b),
but fails to meet stopband and bandwidth requirements, even though the overall re-
sponse shape is correct.
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(a) An optimized response using ZPE objective function

(b) An optimized response using cognition-driven multi-feature objective function

Figure 3.9: Comparison of responses using different objective functions. (Grey dotted
lines indicate met specs; red dotted lines indicate violations.)

Figure 3.10: A group delay deviation using the CM-difference objective function.
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For the CM-difference objective function, the result indicates a main challenge in ac-
curately extracting the coupling matrix via group delay for many cases, leading to
optimization errors, as shown in Figure 3.10. The group delay of extracted CM by
a global optimizer (i.e., DE) still shows a large deviation compared to the simulated
result. It’s important to note that these functions, though ineffective for unsupervised
design cases in this chapter, have shown success in semi-supervised design with some
human intervention, as mentioned in the literature review.

The max(|S11|), sole F2, and hybrid F1+F2 were all successful in the five runs, though
their performance varied. The max(|S11|) yielded successful results in three out of
five runs. In contrast, both F2 and the hybrid F1 + F2 achieved success in all five runs.
The comparison results are summarized in Table 3.3, where only the successful runs for
max(|S11|) are included in the statistical calculations. It can be observed that the hybrid
F1 + F2 significantly improves efficiency, reducing the number of EM simulations by
30% to 50% compared to the reference methods, based on average values. Additionally,
the hybrid method has a much smaller standard deviation, indicating more stable and
consistent performance.

Table 3.3: Statistical results for different objective functions using hybrid optimization
algorithm

max(|S11|) Sole F2 Hybrid F1 + F2

Success Rate 3/5 5/5 5/5
Min. Number of EM Sims. 1179 526 646
Max. Number of EM Sims. 1430 1298 740
Ave. Number of EM Sims. 1286 955 678
Standard Deviation 129 390 36

Next, a comparison between the hybrid and nonhybrid optimization algorithms using
the same objective function, F1 + F2, is conducted. As previously mentioned, with the
same initial population and random seed, the convergence trends of the two algorithms
differ when NM simplex is triggered. At that point, both algorithms have the same
current best design and training data points, after which their search mechanisms
are conducted separately. The results from a typical initial population (out of five)
are presented, as all runs show the same conclusion. The corresponding convergence
trends are shown in Figure 3.11. Using the overall constraint violation threshold of 0.1,
the hybrid approach required an average of 654 EM simulations to converge for this
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Figure 3.11: Typical convergence trends of the hybrid and nonhybrid optimization
algorithms (example 1)

typical initial population, whereas the nonhybrid approach required an average of 1015
EM simulations across five runs. Thus, the hybrid algorithm reduces about 30% of the
total EM simulations, demonstrating the improved efficiency of NM simplex and the
combination of global and local search for optimizing the filter design landscape.

3.5.2 Example 2: C-Band Sixth-order Waveguide Filter

The second example is a C-band sixth-order waveguide filter with two transmission
zeros, as shown in Figure 3.12. The operating frequency range is 4.9 to 5.1 GHz and
resonators 2-5 form a cascaded quadruplet. In this filter, two transmission zeros are
created at the upper and lower stopbands, resulting in higher stopband rejections. The
resonators are coupled through inductive posts or coupling irises, as capacitive coupling
irises are unsuitable due to the narrow passband frequency range. Consequently, the
filter is designed using an H-plane cut structure. Resonator 4 employs a TE102 mode
to achieve negative coupling between resonators 2 and 5.
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Figure 3.12: The structure of the C-band filter

This filter has 14 design variables, in which [L1, L2, L3, L4, L5, L6] target resonant
frequency and [D12, D23, D34, D45, D56, D25, De1, De2] control the coupling between
resonators. The filter is modeled in CST Microwave Studio with approximately 12000
mesh elements, and each EM simulation takes about 1 to 1.5 minutes. The design
specifications are listed in Table 3.4, with notations marked in Figure 3.13(b).

Table 3.4: Design specifications for example 2

Notation Item Frequency
Range (GHz)

Specification
(dB)

PB
Passband Reflection
Coefficient (S11)

4.9 - 5.1 −20

SBl

Stopband Left Edge
Transmission

Coefficient (S21)
≤ 4.87 −30

SBr

Stopband Right Edge
Transmission

Coefficient (S21)
≥ 5.15 −30
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In all five runs, the optimal design obtained after the two-phase optimization process
successfully meets all specifications. The initial design and a typical optimal design are
shown in Table 3.5, with the response displayed in Figure 3.13. Across these five runs,
an average of 776 EM simulations were executed, costing 16 hours. As concluded in
Example 1, this time consumption is reasonable considering the unsupervised design
process.

(a) Initial response

PB
SBl SBr

(b) Optimized response

Figure 3.13: Response of the C-band filter using proposed methodology. (The grey
dotted lines show the specification levels)

As for the comparison with five reference objective functions, the ZPE objective func-
tion, the CM difference objective function, and the cognition-driven multi-feature ob-
jective functions all failed to achieve successful results for this example, for reasons
similar to those discussed in Example 1. The max(|S11|) objective function also failed to
find a design that satisfies all specifications. The optimization was found to be trapped
in a local optimum with a maximum passband |S11| of −17.9 dB. A potential explana-
tion is that, as discussed in the methodology, with the increasing number of orders of
the filter, the edges of the passband response become steeper making the max(|S11|)-
based objective function lead to a more complex design landscape [90], which causes
the search to fail.
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Table 3.5: The initial and a typical optimized design (all sizes in mm) (example 2)

Variable Name D12 D23 D34 D45 D56

Initial Value 2.616 3.233 18.830 3.233 2.616
Optimized Value 2.509 3.246 21.230 2.919 2.325
Variable Name D25 L1 L2 L3 L4

Initial Value 12.484 50.004 43.615 41.343 86.963
Optimized Value 12.101 50.006 43.310 41.320 86.568
Variable Name L5 L6 De1 De2

Initial Value 42.976 49.971 2.918 2.919
Optimized Value 43.023 50 2.481 2.492

Table 3.6: Statistical results for different objective functions using hybrid optimization
algorithm

Sole F2 Hybrid F1 + F2

Success Rate 3/5 5/5
Min. Number of EM Sims. 1460 511
Max. Number of EM Sims. 2350 925
Ave. Number of EM Sims. 1916 776
Standard Deviation 445 168

Three out of five runs using the sole F2 objective function were successful. The compar-
ison results are shown in Table 3.6, where only the successful runs for F2 are included in
the statistical analysis. The results show that the hybrid F1+F2 significantly improves
the efficiency, reducing the required simulation by 60% compared to using F2) alone.
Additionally, the hybrid F1 + F2 has a much smaller standard deviation than using
only F2, demonstrating the benefits of F1 and the combination of F1 + F2.

Comparisons between the hybrid and nonhybrid optimization algorithms show the same
observation as in Example 1. All the five initial populations conducted similar results.
For a typical initial population among the five, the hybrid algorithm reduces the total
EM simulations by 30% compared to the nonhybrid algorithm, based on an average
of five runs. The corresponding convergence trends are shown in Figure 3.14, where
the hybrid approach takes 712 EM simulations, while the nonhybrid approach takes
1211 EM simulations. In this case, NM simplex optimization converged directly to the
final optimal design when it was triggered. Once again, the effectiveness of the NM
simplex optimization and the combined global and local search mechanism for filter
design optimization is thus demonstrated.
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Figure 3.14: Typical convergence trends of the hybrid and nonhybrid optimization
algorithms (example 2)

3.6 Summary

This chapter focuses on microwave filter design automation. It begins by discussing the
general design process, identifying design optimization as the main challenge and bottle-
neck in achieving a higher degree of automation. A thorough review of recent literature
reveals a lack of unsupervised design methodologies for general types of filter design op-
timization (beyond direct-coupled filters) without human intervention. The proposed
end-to-end unsupervised design methodology combines a systematic sampling approach
with a two-phase optimization process, utilizing two novel objective functions and a
hybrid optimization algorithm. Its effectiveness is demonstrated through the design of
two examples: an X-band dual-band filter and a C-band sixth-order waveguide filter.
Comparative analyses show the superiority of the proposed objective functions and
algorithms. The process can be completed in approximately half a day on a standard
desktop computer without decision and intervention from designers. These real-world
examples, which were previously considered challenging for unsupervised design with
existing methods, demonstrate that the proposed methodology enables unsupervised
filter design automation with reasonable efficiency.



Chapter 4

MMIC Power Amplifier Design
Automation

4.1 Background

The growing demand for high data-rate communication systems has driven the rapid
development of RF and millimeter-wave (mm-wave) technology, targeting applications
such as 5G or satellite communications and remote sensing. Power amplifiers (PAs)
are one of the critical components of RF and mm-wave front ends, responsible for
amplifying the power of small RF signals radiated through antennas. As the sole non-
linear large-signal device in both downlink and uplink, PAs have significant impacts on
system performance, influencing factors such as data rate, latency, and more. Differ-
ent systems have different performance requirements; for instance, a radar application
requires high power and high efficiency, while a base station application favors good lin-
earity and wideband flat gain response. Consequently, there is a lack of straightforward,
universally applicable procedures for PA design, though many PA design methods and
configurations have been proposed in recent decades, e.g., Class F [125], Doherty [126],
and Outphasing [127].

To delve into this issue, the conventional PA design methodology is reviewed. While
the performance specifications (e.g., gain, efficiency, or output power) are defined ac-
cording to the application scenario, the transistor technology (e.g., LDMOS, GaAs, or
GaN) is first determined to ensure a sufficient margin of performance. Subsequently,
the configuration of PA is settled, and based on the corresponding design theory, the
topology and the preliminary ideal design are drawn out with lumped components.

68
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Due to the non-linear operations of PAs, the input and output impedance must be
carefully selected through load- and source-pull experiments or simulations. Note that
the target output impedance may vary depending on different power levels (e.g., for
Doherty PAs at full power and backoff) and frequencies (e.g., wideband PAs), requiring
one matching network that serves multiple purposes, which significantly increases the
design complexity. Once the ideal design is optimized and shows acceptable responses,
the lumped elements are then replaced by distributed or model-based components
(e.g., transmission lines and MIM capacitors). Manual trail-and-error tuning is then
performed on schematics, aiming to achieve an optimal design that meets all require-
ments. Due to computational burden, EM simulations are often performed only at the
end of the design procedure before or around layout. If the performance deteriorates
undesirably in EM simulation, which is common in mm-wave PAs, designers must con-
duct manual fine-tuning or apply local search (often via built-in optimizers in EDA
software) for further optimization.

This situation becomes even more complicated when considering multistage PAs, which
include both driver stages and a final stage, as often seen in monolithic microwave in-
tegrated circuits (MMICs). MMIC PAs integrate both driver and final stages into a
single chip, offering a compact and cost-effective solution, especially for mm-wave band
operations, This potential has attracted considerable attention in recent decades due
to the development of 5G and 6G communication. To design MMIC PAs, specifications
are first decomposed into several requirements for each stage. Each stage is then de-
signed separately using the aforementioned process and combined for layout, followed
by manual fine-tuning and optimization. While this approach is manageable and heav-
ily relies on the designer’s experience, achieving an optimal design remains challenging
due to the intricate correlations between parameters and responses, even for seasoned
engineers.

Thanks to the rapid development of computing power and the reduction in its cost, fully
optimization-oriented automated PA design methods have emerged as a crucial innova-
tion to enhance efficiency and performance in PA development [128]. Without consider-
ing EM simulations, several successful optimization-oriented design algorithms working
at the schematic level (including only circuit simulations with lumped elements) have
been proposed, demonstrating excellent performance for various sub-6GHz PAs [129,
130, 131, 132]. These methods, employing global optimization algorithms (e.g., simu-
lated annealing, brainstorm optimization, and particle swarm optimization), optimize
parameters of board-level one-stage PAs (i.e., a discrete transistor with its matching
networks), often resulting in commendable designs. However, for high-frequency and
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intricate applications, particularly considering microwave and MMIC PAs, the perform-
ance of schematic-level designs often degrades sharply after rendering EM simulation.
Thus, performing PA design optimization at the layout level is often necessary, and
remains a significant challenge.

This challenge becomes more evident when dealing with many parameters (e.g., around
30 to 50) and the need for consistent performance (i.e., good flatness of efficiency, output
power, and gain over frequency) across the entire band for multiple stages. Considering
the optimization-oriented PA design at the layout level, the computational cost of EM
simulations is a critical factor, making the direct use of global optimization algorithms
prohibitive.

A possible approach to mitigate this issue is by constructing offline ML models as
proxies in lieu of costly simulations. In this approach, parameters of components or
reusable structures are sampled in advance and simulated extensively. As a result, ML
models are trained to capture the correlation between parameters and performance
(e.g., power, gain, or efficiency). By applying these computationally cheaper surrogates,
modern global or multi-objective optimization algorithms can be employed without
sacrificing efficiency. Successful results are shown in [131] and [133]. However, this
kind of method is often suitable for PAs with plain topology (i.e., one stage with only
bias and matching networks) or simply cascaded matching networks, and less stringent
specifications, e.g. a typical one-stage class-AB PA or a transformer-based CMOS PA.
When one of these factors increases in complexity, such as in multistage Doherty PAs,
training accurate offline models for components or reusable structures becomes a new
burden prior to PA design optimization.

In contrast to building offline machine learning models, another approach, capable of
addressing more general and intricate cases, integrates machine learning with optimiz-
ation algorithms, allowing ML models to be trained online for performance prediction.
Bayesian optimization framework, detailed in Section 2.3, is employed in [134, 135, 136],
which uses GPs incorporating various constrained and multiobjective optimization al-
gorithms. Several sub-6GHz broadband and Doherty PAs with medium-scale design
variables were successfully designed. However, while these methods and studies offer
promising directions, they still have limitations in terms of efficiency, effectiveness, or
generality, which will be detailed in the next section.
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The discussion above highlights the significant demand and necessity for investigating
holistic machine learning-assisted design methodologies that facilitate the synthesis
of PAs with stringent performance requirements, considerable complexity, and high
integration density, while achieving a higher degree of automation. Specifically, there
is a critical need for PA design optimization at the layout level that can eliminate the
need for manual tuning. In the following content, several selected papers are reviewed
in detail and their pros and cons are analyzed respectively. Then the main problem is
clarified, and the research goals are emphasized. Finally, the proposed methodology is
explained in detail, followed by experiments and discussions.

4.2 Literature Review

Table 4.1 summarizes publications in recent decades related to PA design automation,
which can be categorized from various perspectives. In this review, we classify these
works into four categories based on the algorithms and ML techniques employed. The
first category (I) includes papers [137] and [138], which utilize a rule-based circuit
matching technique, i.e., simplified real frequency technique (SRFT), to produce and
optimize theoretical or ideal PA designs. These methods are effective for assisting ex-
perienced engineers in designing from scratch, but the resulting designs are often far
from the final outcomes, which therefore is not the main focus. The second category
(II) includes papers [130, 133, 139, 140, 141, 142, 143], which typically employ ad hoc
global optimization algorithms for schematic design, mainly applied to discrete PAs at
board level, and generally excluding ML techniques. The third category (III) features
papers [131, 144, 145], which integrate offline ML with optimization algorithms for PA
design. The forth category (IV) includes paper [134, 135, 136, 146, 147, 148], which
employ online ML with optimization algorithm. Several key papers selected from the
(II), (III), and (IV) are discussed in the following context.

Two representative studies in category (II) are [129] and [130]. In these studies, the au-
thors utilized a simulated annealing particle swarm optimization (SA-PSO) method for
designing high-efficiency and broadband discrete PAs. As a heuristic optimization al-
gorithm, SA-PSO can find excellent solutions by directly optimizing drain efficiency and
output power, without requiring redundant source/load-pull simulations and manual
tuning, offering the main strength of these methods. However, these methods are lim-
ited to schematic-level design optimization, of which circuit simulation results can be
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obtained quickly, often within seconds. To quantify this limitation, the maximum num-
ber of simulations, or the simulation budget (estimated by multiplying the number of
iterations and the population size) was set to 8000 in the experimental cases discussed.
Their time cost becomes prohibitively expensive when considering EM simulations.

In category (III), an innovative DNN-based PA design technique was presented in [131],
which can automatically determine the topology of matching networks and estimate the
value of components as well. This method uses an offline, pre-trained DNN—specifically,
long short-term memory (LSTM) neural networks—as a classifier to predict the number
and the corresponding topology of lump components, and a regression model with
Thompson sampling optimization to optimize their values. While this method indeed
reduces the need for manual tuning, it must be deployed on a case-by-case basis, as
the DNN models need to be retrained from scratch for different PA configurations.
For instance, each time the classifier determines a topology, the regression models
must be re-trained based on that specific topology. Additionally, training high-quality
offline DNN models requires numerous simulations and careful parameter adjustments,
making the process complex and time-consuming for general cases.

In category (IV), the key work proposed in [134] introduced an optimization-oriented
PA design method based on BO framework. In this method, PA performance is op-
timized indirectly by optimizing the drain waveforms. This method is verified using
both schematic and EM simulations, resulting in excellent solutions within a simula-
tion budget of 1000 (with EM simulation) to 4000 (with only schematic simulation on
lumped elements). The authors later extended this work to a multi-objective case aim-
ing to broadband high-efficiency PAs [135], where the mean square error of the target
and tested impedance was optimized to achieve the desired performance. This method
is viable for PA design optimization within a few thousand simulations and has been
shown to outperform built-in EDA optimizers; however, it is not intended for engineers
without experience, as the objective function is not straightforward and needs to be
defined on a case-by-case basis. Furthermore, due to the lack of search operators in BO,
an initial high-quality design is often required, as its quality significantly impacts the
final outcome.

Another key research in category (IV) is in [146], where a surrogate model-assisted IC
synthesis method called GASPAD was proposed and validated using two 60GHz CMOS
PAs. This method employs the SAEA framework, combined with GP models to pre-
dict performance and reduce the need for EM simulations during optimization. To bal-
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ance the efficiency (convergence speed) and exploration (optimization ability), a model
management method called the surrogate model-aware search mechanism (SMAS) is
utilized. This method is innovative in terms of its algorithm, with the search engine
being carefully analyzed and designed. However, it primarily targets CMOS ICs with
a narrow bandwidth and simple typologies (cascaded transformers with CMOS tran-
sistors). When they are applied to complicated PAs (e.g., MMIC Doherty PAs) with
stringent specifications, achieving satisfactory results can be very challenging.

In conclusion, while the paper discussed above attempts to tackle the problem of PA
design automation from various perspectives, particularly for those in category (IV),
their effectiveness remains limited. First, most methods require thousands to tens of
thousands of simulations to achieve the desired design, which makes them impractical
for complex real-world applications. Second, many methods lack consideration of both
effectiveness and generality during their development. The use of specific objective
functions, such as harmonic power, or impedance error, does not necessarily guarantee
that the required specifications about overall power output and efficiency are met,
greatly limiting their applicability. In the next section, the main problem to address is
further clarified and described before introducing the proposed methodology.

4.3 Problem Description

Building on the previous discussion, this research aims to propose a new PA automated
design methodology that operates at the layout level, i.e., including both large-signal cir-
cuit simulation and EM simulation for holistic characterization before tape-out. Given
the circuit topology, design variables, and specifications, the proposed methodology
can synthesize satisfactory PAs through a fully optimization-oriented approach. Note
that this work does not focus on synthesizing or modifying the circuit topology (such
as adjusting, adding, or removing components from a given circuit) during design op-
timization, although this remains an appealing challenge to address.

Additionally, the proposed methodology is specifically designed for MMIC PAs. Com-
pared to board-level discrete PAs, MMIC PA design is more intricate in the following
aspects:
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• As previously mentioned, MMIC PAs are often multistage, involving more com-
plex design processes, numerous design parameters, and stringent specifications.
Therefore, a methodology proposed for MMIC PAs can seamlessly be applied to
board-level discrete PAs, but not vice versa.

• MMICs often have a more complicated layout with many folds and bends in
transmission lines due to the space constraints of chips. In contrast, board-level
PAs are often laid out by sequentially connecting several matching components
without significant space considerations.

• Board-level PAs can often be adjusted post-fabrication to address possible de-
viations against expectation, especially for sub-6 GHz applications. In contrast,
MMICs, frequently operating at microwave and mm-wave frequencies, are chal-
lenging to tune manually after tape-out. Hence, ensuring a high first-pass success
rate through comprehensive design and optimization becomes crucial for MMICs.

Given these considerations, it is reasonable to expect that a methodology proposed
for MMIC PAs can also work well with other PAs and MMICs. To achieve this, the
following goals are considered essential:

• Compatible with the current MMICs design environment. The design of MMICs
relies on process design kits (PDKs) provided by foundries. PDKs typically in-
clude structures and simulation models of components based on a specific tech-
nology and are integrated with EDA software (e.g., Advanced Design System
(ADS)). To ensure accurate characterization of MMICs through various simulat-
ors (e.g., harmonic balance, S-parameters, and momentum) and to allow seamless
transition from upstream topology or initial schematic design, the methodology
must be compatible with the existing design environment.

• General enough to be applicable to different PA configurations. The methodology
should be independent of PA configurations and should be straightforward to use
by directly optimizing explicit performance rather than specific design metrics,
such as harmonic power consumption, overlap of drain current-voltage waveforms,
impedance-matching errors, and so on.

• Capable of handling multistage PAs with stringent specifications. A typical MMIC
PA often includes two or three stages, resulting in 30 to 50 design variables, and
requires optimization across approximately 10 specifications covering small-signal
(e.g., return loss, gain, and gain ripple) and large-signal (e.g., power-added effi-
ciency and output power) performance.
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4.4 Proposed Methodology

To achieve the aforementioned goals, the proposed methodology consists of two funda-
mental components: the optimization-oriented integrated environment and the BNN-
based optimization algorithm. Both are essential for achieving a layout-level synthesis
of MMIC PAs. As the most popular MMIC design software, Advanced Design System
lacks a built-in interface for communication with external programming languages (as
of this thesis is writing). Therefore, the optimization-oriented integrated environment is
implemented as infrastructure to bridge the programming environment and simulation
environment, streamlining both dataflow and workflow. The BNN-based optimization
algorithm, which is the core of the proposed methodology, is designed to adapt to the
landscape of PA design problems, achieving a good balance between exploration and
efficiency. Each block is explained in detail below.

4.4.1 Optimization-oriented Integrated Environment

I/O 

Interface
Simulator

AEL script

· Data Management

  · Design pre-process

  · Result post-process

· Script Generation

· Project Management

· Simulation

   · Harmonic Balance

   · S parameters

   · Momentum EM

· Result output

Raw 
results 

Global 

Optimization

Algorithm

· Initialization

· Model Training

· Prediction

· Prescreening

· Design suggestion

Parameter
set

Performance
metrics

Figure 4.1: Workflow of the proposed optimization-oriented integrated environment.

As the name indicates, the optimization-oriented integrated environment bridges the
optimization algorithm (implemented by MATLAB) with simulation software. Fig-
ure 4.1 illustrates this workflow, and depicts the interaction between three key ele-
ments: the algorithm, the input/output (I/O) interface, and the simulator, along with
their corresponding functions. The optimization algorithm manages the entire optim-
ization process, including design initiation, model training, performance prediction,
design prescreening, and so on. When the algorithm suggests a new parameter set,
the I/O interface converts these values into a valid format recognizable by EDA soft-
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ware, ensuring they are correctly formatted with appropriate precision and units (i.e.,
design pre-process). An AEL (application extension language) script is then generated
to control the simulation software. Once the script execution is complete, the raw per-
formance results are retrieved and abstracted into several performance metrics, which
are then fed back and provided to the optimization algorithm for further processing
(i.e. result post-process).

AEL is a built-in programming language in ADS, designed to record and automate
manual operations within the main window. Since AEL is not officially designed to
be called externally through command line, assistance from operation system is often
necessary. An example code is provided in Appendix B. Generally, ADS hosts and
manages the whole design project with PDKs, while the AEL script adjusts paramet-
ers within the design project, runs, monitors a series of simulations, and exports raw
performance data.

In addition, for a holistic layout-level characterization of MMIC PAs, simulation in-
volves several steps. First, geometric structures of passive components (i.e., microstrip
lines, capacitors, etc.) are constructed and simulated using momentum simulator. Next,
S-parameters involving active components (i.e., transistors and power source) are sim-
ulated to obtain small-signal performance, such as input and output return loss and
gain. Finally, harmonic balance (HB) simulation is performed to obtain nonlinear large-
signal performance, such as amplitude modulation to amplitude modulation (AMAM),
and drain efficiency. However, the HB method, which assumes steady-state solutions
can be approximated with a finite Fourier series for a given sinusoidal excitation, is
iterative and may suffer from convergence issues. To diminish the influence of failed
convergence of HB simulation, a retry mechanism is implemented within the AEL
script. If the simulation still fails after several retries, an error flag is passed to the I/O
interface, and a high penalty value is assigned.

To the best of the author’s knowledge, this optimization-oriented environment, which
is compatible with most PDKs provided by foundries and integrates both EM and
large-signal simulations for MMICs, is proposed and implemented for the very first
time. This distinguished the proposed method from others mentioned in the literature
review, enabling a higher degree of PA design automation.
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4.4.2 BNN-based Optimization Algorithm

Although several prospective studies have employed Bayesian optimization as the frame-
work for PA design optimization [134, 135], it is not well-suited to the problem described
in section 4.3. Some of its limitations have been discussed in section 2.3. First, BO lacks
a guaranteed optimization engine (the engine that efficiently searches the posterior dis-
tribution within an acquisition function), which significantly reduces the algorithm’s
efficiency. Second, the machine learning technique used in BO, i.e., GP, suffers from
high computational complexity, especially when modeling multiple performance met-
rics (around 10 in the case of the experiment section) separately. Consequently, ex-
perimental discussion in [134] suggest that their method often relies on a high-quality
initial design, with the search range typically restricted to ±10% around this design
which greatly limits their potential to find optimal solution.

To address these issues, the proposed algorithm utilizes SAEA as the main framework
because of its well-known global optimization capability, and leverage DE operation as
the search engine. BNNs are employed in place of GPs to model PA performance metrics
during optimization process. As mentioned in Section 2.2.4, computational costs of
BNNs are significantly reduced compared to GPs. In addition, the model management
method proposed in [146], i.e., SMAS, is adapted and modified to strike a balance
between algorithm efficiency and exploration of PA design solutions. The pseudo-code
of the proposed BNN-based optimization algorithm is shown in Algorithm 8.

The algorithm does not rely on an initial layout design and only uses a schematic design
with transmission lines. Therefore, it begins by sampling a set of designs using a Latin
hypercube sampling method within the given design space, ensuring that the initial
dataset D is well-distributed. This approach eliminates the need for a high-quality
initial design, requiring only a defined search range. Note that the initial design and
search range are provided and estimated based on the basic schematic simulation. And
it is found negligible impact to the performance of the algorithm. Additionally, when
any variable reaches the given search bound, the bound is expanded by 10% until
the maximum allowed simulation value is reached. The simulation counter is then
initialized to zero in Line 2, and all designs are sorted in ascending order according
to a penalty function. The penalty function penalizes every designs that violate any
specifications. When the penalty function value is zero, all specifications should be
satisfied. Subsequently, the top N solutions are selected from the sorted designs to
form the initial population.
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Algorithm 8 BNN-based Optimization Algorithm
Input: Design datasetD, penalty function F (·), population sizeN , simulation

program Sim(·), maximum number of simulations M
1: Initialize database D by Latin hypercube sampling
2: Set simulation counter n← 0
3: Sort all designs in D in ascending order by F (·)
4: Select top N solutions from D to form the population P
5: repeat
6: if n is odd then ▷ Local DE search
7: Perform local mutation on P with a scalling factor Fl

8: Perform crossover operator to have Po

9: else ▷ Global DE search
10: Perform global mutation on P with a scalling factor Fg on P
11: Perform crossover operator to have Po

12: end if
13: Train BNN models with parameter inheritance for each solution in Po

14: Predict and prescreen solutions in Po by BNN models
15: Select the best xo ∈ Po with the minimium prescreening value
16: Simulate xo and add xo with simulation result Sim(xo)to D
17: Set simulation counter n← n+ 1
18: Sort all designs in D in ascending order by F (·)
19: if n is odd then ▷ Population reconstruction
20: Select top 2N designs from D to form the population P
21: Cluster 2N designs into N groups by k-means clustering method
22: Remove the design with higher penalty value in each cluster
23: else
24: Select top N design from D to form the population P
25: end if
26: until Stopping criteria are satisfied or n > M
Output: Best solution xbest and the corresponding penalty function value

In the main loop of the algorithm, a hybrid search engine is proposed, of which local
and global DE searches are alternated. Specifically, the local DE search uses DE/best/1
mutation operator with a relatively small scaling factor Fl, focusing on improving the
current best design by exploring nearby solutions. In contrast, the global DE search
employs DE/current-to-best/1 mutation operator with a regular scaling factor Fg to
maintain global search capability. The crossover operations (Lines 8 and 11) remain the
same. Compared to standard SAEAs, the introduction of local DE search accelerates
convergence. The underlying principle is that, given the dimensionality of PA design
problems, a solution generated by DE/current-to-best/1 is likely to be further improved
by exploring its neighborhood. When a new current-best design is found through local
search, the entire population benefits in the subsequent global search iteration.
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Unlike the standard local optimization algorithm (e.g., NM-simplex) used in many
optimization problems (e.g., filter design optimization in Chapter 3), DE/best/1 with
small scaling factor Fl is preferred due to its flexibility. This approach allows for a
more flexible search process by adjusting the scaling factor, effectively exploiting better
solutions within the promising region controlled by the scaling factor, whereas NM-
simplex often fails to do so. Additionally, DE/best/1 is less likely to get trapped in local
minima compared to NM-simplex, making it a robust choice for PA design problems.

After the offspring population Po is generated, BNNs are trained for each solution
within Po, which is different from the SMAS strategy used in [146]. Training data is
selected by choosing the N nearest designs in D, based on Euclidean distance, which
helps to improve model accuracy. To further speed up the training process, the para-
meters of BNNs are passed down in each iteration. This means that, except for the first
iteration, subsequent training builds upon previously learned parameters (the last pos-
terior). Pilot experiments indicate that BNNs require 1/50 of the time needed by GPs
for performance training and prediction in practical PA design problems. The trained
BNNs are then used to predict and prescreen the solutions within Po, employing the
LCB prescreening method. Only the best solution in Po with minimum LCB value is
simulated and added to D for the next iteration.

Furthermore, Lines 19 to 25 describe the process called population reconstruction. Due
to the introduction of local DE search, the population diversity may decrease on some
occasions. To counteract this effect, different reconstruction processes are employed.
When the next iteration involves a local DE search (n ← n + 1 is odd), the top 2N

designs are clustered and selected to reduce design similarity, enhancing diversity for
the subsequent local search. Conversely, when the next iteration is a global DE search,
the regular top N designs are selected, as they generally maintain sufficient population
diversity. This careful balance between exploration and optimization speed has proven
effective for PA design shown in the next section.

4.4.3 Numerical Experiment on Benchmark Problem

To assess performance of the proposed algorithm, numerical experiments on bench-
mark problems were conducted. Due to the computationally expensive simulations, it
is difficult to verify the algorithmic performance of the proposed algorithm through
practical PA design problems, as it requires many statistical runs. Therefore, a compu-
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tationally inexpensive mathematical benchmark problem was used. Since the PA design
landscape is often multimodal (i.e., containing many local optima) [129], a highly mul-
timodal mathematical benchmark problem is chosen, which is the Griewank function
with 20 variables, as formulated in Appendix A. The search range for each variable is
[-600,600], with the known global minimum at f(0) = 0.

A comparison was performed among three SAEAs: (a) the proposed algorithm, (b)
SMAS with GPs, and (c) SMAS with BNN. SMAS with GPs is the core of GASPAD,
while SMAS with BNNs replaces the GP modeling technique with BNNs. This com-
parison allows for observing the contribution of the introduced BNN modeling and the
hybrid search engine. The computing budget, i.e., the maximum number of simulations,
is set to 2000, and 20 independent runs were carried out for each method due to the
stochastic nature of the algorithms.
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Figure 4.2: The convergence trends of the proposed method, SMAS with GP and SMAS
with BNN

The statistical results are summarized in Table 4.2. Figure 4.2 shows the convergence
trends. In terms of the statistical results, the proposed algorithm achieves the best
average and median values. While SMAS with BNNs underperformed compared to the
proposed algorithm, it still outperformed SMAS with GPs, demonstrating the benefits
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of introducing both BNNs and the hybrid optimization engine. As for the convergence
curve, a significant improvement with the proposed algorithm is observed, primarily due
to the local DE search and enhanced modeling accuracy achieved through individual-
wise BNNs.

Table 4.2: Statistical results on the benchmark problem

Method Min (Best) Max (Worst) Mean Median

SMAS with GPs 0.006534 0.105479 0.029456 0.024908
SMAS with BNNs 0.002238 0.031217 0.014240 0.015774
Proposed algorithm 0.000014 0.034589 0.011134 0.008688

4.5 Experiment

In this section, two real-world PAs are used to demonstrate the proposed methodo-
logy. The first example is a 27-31 GHz class-AB PA designed for satellite application,
and the second example is a 24-31 GHz wideband Doherty PA for both 5G mm-wave
base station and satellite application. Both cases utilize GaN-on-Si 100 nm technology.
The schematic topologies for both examples are designed using PA synthesis theory
[151, 152] with a wide search range for design variables provided by the designer. As
mentioned earlier, layout-level design optimization is carried out, and the holistic char-
acterization is conducted. To compare the performance of the proposed algorithm,
GASPAD [146], i.e., SMAS with GPs as mentioned in above section, is implemented as
the reference method. Both algorithm incorporates with the implemented optimization-
oriented environment. As noted in the literature review, GASPAD is the only available
method targeting general PA specifications and IC design with EM simulations.

Additionally, to prevent component overlaps while adjusting parameters during optim-
ization, two layout control strategies are used. First, components between each stage
are grouped into several functional sub-circuits, such as bias networks or matching
networks. Each sub-circuit is then simulated by momentum as an independent unit.
Second, when the geometric constraint of the layout (e.g., the chip die must fit within
2mm × 2mm) is imposed, transmission lines are pre-folded to maintain a specific re-
gion, and the design parameters are carefully set to preserve its shape. The detail of
the pre-folding strategy is explained in the second example.
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The penalty function used for optimization is formulated in 4.1, where yspec
i is the ith

specification and yworst
i is the worst value of the ith specification during initial sampling

(often the worst design during optimization as well). This step normalizes all specific-
ations in a minimization direction, ensuring that when the penalty function value is
zero, all specifications are satisfied.

F =
∑
i

max(yi − yspec
i , 0)

yworst
i − yspec

i

(4.1)

Due to the stochastic nature of the algorithm, random numbers may affect the perform-
ance outcomes. Hence, considering the computationally expensive simulations, four
independent runs are conducted for each example with statistical results analyzed ac-
cordingly. For the reference method, the same four initial populations are used, and
the four independent runs are performed. The experiments are run on an AMD Ryzen
Threadripper PRO 3975WX 32-core workstation under the Linux operating system,
with all the time measurements referring to wall-clock time.

4.5.1 Example 1: 27-31 GHz Balanced Class-AB MMIC PA
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Figure 4.3: Top-level schematic of the balanced class-AB MMIC PA.

The first example is a balanced class-AB PA consisting of two driver stages and a final
stage. The input signal is first amplified by the driver stages, and then split equally
(so-called balanced) by a non-isolated divider, amplified in two branches, and combined
at the output. This PA is designed to operate over 27-31 GHz, covering 5G FR2 bands
n257 and n261. The main design challenge is to achieve consistent performance (i.e.,
gain, output power, and PA efficiency) across the entire bandwidth since multiple stages
are involved.
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Figure 4.4: A layout photo of the balanced class-AB MMIC PA

Table 4.3: Design variables, search ranges, and a typical optimal design obtained by
proposed method (Example 1)

Type b a b a b a b
Name L1 C1 L2 C2 L3 C3 L4
Upper Bound 40 400 300 300 50 1500 100
Lower Bound 10 100 100 100 10 500 10
Optimized 36 337 182 184 15 1429 28
Type a b b b a b a
Name C4 L5 L6 L7 C5 L8 C6
Upper Bound 300 200 300 200 300 300 300
Lower Bound 100 50 50 10 50 30 50
Optimized 283 71 221 93 67 178 207
Type b a b b a b a
Name L9 C7 L10 L11 C8 L12 C9
Upper Bound 200 300 100 200 300 500 200
Lower Bound 50 50 30 50 100 100 100
Optimized 129 139 51 128 168 334 110
Type b a b c c c
Name L13 C10 L14 W1 W2 W3
Upper Bound 500 200 200 100 100 100
Lower Bound 100 50 100 40 40 40
Optimized 171 82 152 60 80 60

As shown in Figure 4.3, the passive components, such as capacitors and microstrip lines
in the input, output, and intermediate matching circuits, are connected and grouped
into four parameterized sub-circuits (i.e., matching circuits 1-4 in dashed circles). These
sub-circuits are interconnected at the top-level circuit for holistic characterization. The
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drain voltage and gate voltage of all stages are fixed at 12 V and -1.25 V, respectively.
There are 27 design variables in total, as marked in Figure 4.4. These variables can be
categorized into three types: (a) values of capacitors (fF), (b) widths and lengths of
microstrip lines (µm), and (c) the gate widths of transistors (µm). Table 4.3 lists all
design variables along with their search ranges (lower and upper bounds).

Table 4.4: Design specifications (Example 1)

Types Items Band Specifications
Specification 1 Input Matching / S11 27-31 GHz ≤ -11 dB
Specification 2 Output Matching / S22 27-31 GHz ≤ -11 dB
Specification 3 Gain / S21 27-31 GHz ≥ 18 dB
Specification 4 Gain Ripple / ∆S21 27-31 GHz ≤ 1 dB
Specification 5 PAE 27-31 GHz ≥ 22 %
Specification 6 Output Power 27-31 GHz ≥ 34 dBm
Specification 7 AMPM 27-31 GHz ≤ 20 deg

The design specifications of this example are provided in Table 4.4. Among these
specifications, input matching, output matching, and gain are characterized by S-
parameter, specifically, i.e., S11, S22, and S21. Gain ripple refers to the variations in the
gain across the operating band. Output power denotes the RF power delivered from
PA to the load. PAE refers to power-added efficiency, defined by

PAE =
Pout − Pin

PDC
× 100% (4.2)

where Pout is the RF output power, Pin is the RF input power, and PDC is the DC
power supplied to the PA. AMPM refers to amplitude-to-phase modulation, which
describes the linearity of PA by measuring the change in phase of the output signal as
the amplitude of the input signal varies.

Table 4.5: Performance of a typical optimal design by proposed method (Example 1)

Item Band Worst In-band Value
Input Matching / S11 27-31 GHz -10.5 dB
Output Matching / S22 27-31 GHz -12.47 dB
Gain / S21 27-31 GHz 19.32 dB
Gain Ripple / ∆S21 27-31 GHz 0.66 dB
PAE 27-31 GHz 25.62 %
Output Power 27-31 GHz 34 dBm
AMPM 27-31 GHz 15.8 deg
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For each specification, the worst value across the given band is used as the performance
metric. Due to the pre-designated RC tanks before the input port of each stage, the
stability factor is not included as a specification here; however, it is monitored, and
no violations were observed during the optimization process. It can be seen that this
example takes most small- and large-signal PA metrics into full consideration than
works in [134, 135, 146].

(a) AMAM performance

(b) PAE performance

Figure 4.5: The performance of a typical optimal design, Example 1

In terms of simulation time, each simulation takes approximately 5-6 minutes and the
maximum simulation budget is set to 1200 (about five days). Note that, this budget
was deliberately overestimated to ensure convergence and allow for a fair comparison
between two algorithms. The following result quickly illustrate this point: In the four
independent runs using the proposed algorithm, all of them successfully satisfy all the



4.5. Experiment 87

specifications, with the objective function reaching zero after 551, 465, 545, and 503
simulations, respectively. The average value across these runs is approximately 516
simulations (52 hours). A typical optimal design is shown in Table 4.3. Its large-signal
performances, including gain and power-added efficiency versus output power within
the operation band, are shown in Figure 4.5. The performance metrics are summarized
in Table 4.5. It can be observed that for this challenging PA design problem, the
proposed algorithm can obtain layout-level high-performance designs within about 2
days. Compared to the manual design process that took several weeks [153], efficiency
has been greatly improved. Note that, ADS built-in optimization tools are not able to
find feasible solutions within the given simulation budget.
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Number of simulations
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Proposed method

Figure 4.6: The convergence trends of the proposed method and GASAPD (average of
four runs, Example 1)

In contrast, in the four independent runs of GASPAD using the same initial populations,
only two of them successfully satisfy all the specifications within 1200 simulations
(using 1186 and 1097 simulations, respectively). For the other two runs, the best designs
achieved were still far from satisfying the specifications. The average convergence trend
is shown in Figure 4.6, demonstrating a significant superiority in both efficiency and
effectiveness.
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4.5.2 Example 2: A 24-31 GHz Wideband Doherty MMIC PA

The second example is a wideband Doherty PA with two stages: a driver stage and a
final stage. The input signal is split by a coupler with an isolation resistor, and then
fed forward into two branches with different bias classes (i.e., the main branch and the
auxiliary branch). The two branches amplify the signal separately and are combined
at the output without isolation. The design of a Doherty PA is difficult due to an
active load-pull interaction between the main and auxiliary branches and the need to
ensure proper phase and amplitude alignment. The complexity is further increased for
a multistage Doherty PA that operates over a wide bandwidth, as is the case for this
example.
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Figure 4.7: Top-level schematic of the wideband Doherty MMIC PA.

As shown in Figure 4.7, the passive components are connected to form four sub-circuits:
an input coupler with matching circuits for the first stage (sub-circuit 1), two interme-
diate matching circuits (sub-circuits 2 & 3), and an output combining and matching
circuit (sub-circuit 4). The top-level schematic is depicted in Figure 4.7. In each sub-
circuit, the microstrip line is pre-folded into a specific shape to generally satisfy the
space constraints. The details of this rule-based prefolding approach are illustrated in
Figure 4.8. Subsequently, design variables are assigned to each segment to maintain
the shape of the folded line. Note that prefolding rules are defined manually by the
designer and are not automated by the algorithm.

Microstrip 

line
Prefolding Setting 

variable

L1

W1

Figure 4.8: Illustration of microstrip line prefolding.
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Table 4.6: Design variables, search ranges, and a typical optimal design obtained by
proposed method (Example 2)

Type b b a a a c b b
Name L1 L2 C1 C2 C3 R1 L3 L4
Upper Bound 200 550 200 200 200 100 50 50
Lower Bound 50 400 100 100 100 40 -30 -30
Optimized 112 539 130 183 103 53 -25 9
Type a b b b b a a b
Name C4 W1 L5 L6 L7 C5 C6 W2
Upper Bound 200 70 50 50 50 200 200 70
Lower Bound 100 50 -30 -30 -30 100 100 50
Optimized 188 64 -16 -26 -19 164 199 51
Type b b b b b a a a
Name L8 W3 L9 L10 L11 C7 C8 C9
Upper Bound 250 70 250 250 150 200 300 300
Lower Bound 100 50 100 100 50 80 200 200
Optimized 196 57 141 160 85 137 205 262
Type a a a b b b b
Name C10 C11 C12 W4 L12 L13 L14
Upper Bound 200 150 1400 85 300 50 50
Lower Bound 100 50 800 65 100 -50 -50
Optimized 124 53 1281 79 279 -38 -46

There are 31 design variables in total, which are marked in Figure 4.9. These variables
are categorized into four types: (a) capacitor values (fF), (b) widths and lengths of
microstrip lines (µm), and (c) resistor values (Ω). The transistor parameters, such as
the number of fingers and gate width, are fixed by the designer in this example at 4
and 80 µm in the driver stage and 6 and 80 µm in the final stage, respectively. Table
4.6 lists all of the design variables along with their search ranges. The drain voltage of
all stages is 12 V; the gate voltage is -1.25 V for the main branch, and -2.6 V and -2.2
V for the auxiliary branches, respectively.
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Figure 4.9: The layout photo of the wideband Doherty MMIC PA

Table 4.7: Design specifications (Example 2)

Type Item Band Specification
Specification 1 Input Matching / S11 24-31 GHz ≤ -7 dB
Specification 2 Output Matching / S22 24-31 GHz ≤ -7 dB
Specification 3 Gain / S21 24-31 GHz ≥ 8.8 dB
Specification 4 Gain Ripple / ∆S21 24-31 GHz ≤ 2.5 dB
Specification 5 PAE 24-31 GHz ≥ 20 %
Specification 6 6dB backoff PAE 24-31 GHz ≥ 14 %
Specification 7 Output Power 24-31 GHz ≥ 34 dBm
Specification 8 AMPM 24-31 GHz ≤ 20 deg
Specification 9 Maximum Main Pout 24-31 GHz ≥ 31 dBm
Specification 10 Maximum Peak Pout 24-31 GHz ≥ 31 dBm

The specifications of this wideband Doherty PA are shown in Table 4.7. Specifications
1 to 8 are large- and small-signal performances as the same in Example 1. Note that the
6th specification is defined specifically to Doherty PA with PAE at 6 dB backoff being
used. The last two specifications, which concern the maximum output power at the
main and auxiliary branches, are included to prevent the optimization from resulting
in undesirable performance (e.g., where almost all the output power comes only from
the main branch).
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(a) AMAM performance

(b) PAE performance

Figure 4.10: The performance of a typical optimal design, Example 2

For this PA, each simulation takes about 6 to 7 minutes and the maximum budget is
1000 simulations (i.e., about five days). In the four independent runs of the proposed
method, all successfully satisfy the specifications, with the objective function reaching
zero after 469, 713, 603, and 513 simulations, respectively. The average across these runs
is approximately 574 simulations (60 hours). A typical optimal design is shown also in
Table 4.6. Its large-signal performances, gain, and power-added efficiency versus output
power across the operation band are shown in Figure 4.10. All performance metrics are
summarized in Table 4.8. It can be observed that considering the 7 GHz bandwidth
requirement, the design obtained by the proposed method is promising within just
about 2.5 days. As for comparison, GASPAD, exhausting the simulation budget, and
the best designs obtained in the four runs were far from satisfactory. The average
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convergence trend shown in Figure 4.11 also demonstrates significant superiority in
both efficiency and effectiveness, similar to the results observed in Example 1. Still,
ADS built-in optimization tools are not able to find feasible solutions within the given
simulation budget.

Table 4.8: Performance of a typical optimal design by proposed method (Example 2)

Item Band Worst In-band Value
Input Matching / S11 24-31 GHz -7.05 dB
Output Matching / S22 24-31 GHz -9.7 dB
Gain / S21 24-31 GHz 9.7 dB
Gain Ripple / ∆S21 24-31 GHz 1.8 dB
PAE 24-31 GHz 20.2 %
PAE at backoff 24-31 GHz 14.9 %
Output Power 24-31 GHz 34.0 dBm
AMPM 24-31 GHz 10.8 deg
Maximum Main Pout 24-31 GHz 32.53 dBm
Maximum Peak Pout 24-31 GHz 31.55 dBm
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Figure 4.11: The convergence trends of the proposed method and GASAPD (average
of four runs, Example 2)
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Table 4.9 provides a comparison of performance figures of merit with several Ka-band
Doherty PAs published within the last 5 years. It is demonstrated that our optimized
design achieves the broadest bandwidth while maintaining comparable performance
in other aspects. Although this comparison is not very rigorous, as our results are
only from simulations, it still serves to demonstrate the effectiveness of the proposed
methodology.

4.6 Summary

In this chapter, the design automation for MMIC PA at the layout level is explored.
The chapter begins with an introduction to the conventional PA design methodology
and its challenges, followed by a thorough review of techniques proposed over recent
decades for PA design automation. The primary problem addressed in this research is
then identified and discussed in detail. The proposed methodology consists of two key
components: the optimization-oriented integrated environment and the BNN-based
optimization algorithm, which together enable a higher degree of MMIC PA design
automation. The optimization-oriented integrated environment, bridging the external
programming language with ADS, is compatible with most PDKs and current design
workflows and serves for holistic circuit characterization. To the best of my knowledge,
it is proposed for the first time. The main innovation of the proposed algorithm lies
in the use of BNN-based prediction and prescreening during optimization, combined
with the hybrid search engine introduced in SAEA frameworks. The effectiveness of
the proposed methodology is validated by two MMIC PAs: a 27-31 GHz balanced PA
and a 24-31 GHz wideband Doherty PA, with the latter having been taped out for
manufacturing. The average number of simulations required for both PAs is approx-
imately 500, demonstrating good efficiency and outperforming most of the published
work discussed in the literature review.
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Chapter 5

Algorithmic Design Optimization
for Semiconductor Devices

5.1 Background

Semiconductor devices (simplified as devices hereinafter) are critical components in
modern electronic systems because of their ability to control and manipulate electrical
signals. Among the different categories of devices, transistors are a key type and serve as
the fundamental building blocks for most electronic circuits [160]. However, the design
of transistors has been somewhat artisanal till now. For most of the history of semi-
conductor technology, the industry relied mainly on shrinking transistor geometries for
performance improvements [161]. New devices are developed, designed, fabricated, and
validated in laboratories using a trail-and-error method [17]. Due to the complexity of
physical processes in fabrication as well as their variations, simulation based on quantit-
ative or semi-quantitative equations is often considered inaccurate or even intractable,
with experimental designing and testing being the gold standard of validation.

However, the use of new technology and materials has significantly increased the com-
plexity of transistor structures, requiring extensive experiments due to the numerous
combination options in the design process, which greatly increases time-to-market [162,
163]. This complexity has driven the development of technology computer-aided design
(TCAD), enabling the simulation of processes and devices to predict performance to
some extent in advance [16]. Despite these achievements, there are often delays between
qualitative understanding and quantitative reproduction within TCAD and the actual
application of a technology node [164]. Consequently, in the semiconductor domain,

95
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optimization generally refers to improvements based on theory and experience rather
than algorithmic pathway [165]. The advantage of this methodology is that this optim-
ization outcomes are often accountable and interpretable, while the downside is that
the results are likely to be suboptimal.

Table 5.1: Publications on DTCO over past 15 years (1994-2021)

Ref. Article
type Year Algorithm

involved?
Design

optimized? Device/Circuit

[166] Journal 2021 YES NO Compact Model
[167] Conference 2020 NO YES CMOS
[168] Conference 2020 NO YES CMOS
[169] Conference 2020 NO YES FinFET
[170] Conference 2020 NO NO CMOS
[171] Conference 2020 NO NO DRAM
[172] Journal 2020 YES (SA) YES System
[173] Journal 2020 NO NO Ga2O3 SBD
[174] Conference 2020 YES NO MOSFET
[175] Journal 2019 NO NO FinFET
[176] Journal 2019 YES YES Compact Model
[177] Journal 2018 NO YES Carbon Nanotube
[178] Conference 2018 NO YES FinFET
[179] Conference 2017 NO NO FinFET
[180] Conference 2017 YES (PSO) YES CMOS
[181] Journal 2015 NO NO FinFET
[182] Journal 2015 YES (GD) YES CNFET
[183] Journal 2015 NO NO CMOS
[184] Conference 2014 No NO CMOS
[185] Journal 2012 NO Yes CMOS
[186] Journal 2010 NO YES CMOS
[187] Conference 2009 NO NO MOSFET
[188] Journal 2008 NO YES CMOS
[189] Journal 2007 YES NO FPGA
[190] Conference 2007 NO NO CMOS
[191] Journal 2005 NO YES CMOS
[192] Journal 2004 YES NO NMOS
[193] Journal 1999 NO YES Bipolar
[194] Conference 1994 NO Yes MOSFET
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A critical methodology that must be mentioned is the concept of design technology co-
optimization (DTCO) proposed for silicon technology [195] around twenty years ago.
In DTCO, due to the complexity of advanced nodes (e.g., FinFET), the manufactur-
ing process and device design are optimized simultaneously for better performance and
lower yield loss. Table 5.1 lists publications on DTCO from 1994 to 2021 (the time when
this research was conducted). At least three conclusions can be drawn. First, in most
publications, algorithms are not involved, even though the device or circuit is truly op-
timized by manual trail-and-error. Second, even when algorithms are involved, they are
always off-the-shelf global or local optimization algorithms, such as simulated anneal-
ing, particle swarm optimization, and gradient descent, lacking specialized algorithms
designed for device optimization. Third, the concept of DTCO primarily targets silicon
devices, with very little or no work on other technologies like III/V semiconductors.

Therefore, in this chapter, an attempt of algorithmic design optimization for semicon-
ductor devices is presented, showcased by two case studies: a terahertz InP pHEMT
design optimization and a novel concept of device circuit co-optimization for CMOS.
For design optimization of semiconductor devices, efficiency (measured by iterations)
is the most crucial factor due to their high computational cost, which often exceeds
that of electromagnetic simulations. Hence, the optimization algorithms used and pro-
posed in these two studies are carefully devised to suit the scenario. Efficiency and
effectiveness are validated through outcomes.

In the following section, the implementation of TCAD interface is first introduced,
forming the foundation for further research. Then two case studies are presented se-
quentially, followed by a conclusion in the summary section.

5.2 Preliminary: Implementation of TCAD Inter-
face

To enable algorithmic design optimization in TCAD, simulation software such as Sil-
vaco or Sentaurus must be controlled and interfaced with external programming lan-
guages. However, off-the-shelf tools that facilitate this process are often unavailable.
Therefore, it is necessary to implement a custom TCAD interface as a preliminary
step. This section provides a detailed explanation of the TCAD interface, with the
specific focus on Sentaurus, as the following case study is based on this software.
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Understanding the simulation process and file structures is essential before interacting
with TCAD software. In Sentaurus, a simulation project consists of several model
(physical structure) files and command files that combine different numerical solvers.
The entire simulation process is organized through a tree file called gtree.dat, which
sequentially populates design variables into different nodes. An example of gtree.dat
is provided in Appendix C. When the simulation is launched, the gtree.dat file scans
these nodes and locates the necessary command files. Once the simulation is complete,
results can be exported to a .csv file by commands linked to specific nodes.

gtree.dat

Node 1

Node 2

Node 3

Node 1 Node 2 Node 3

SDE SNMESH SDEVICE

I. Manapulate gtree.dat

II. Clean project by gcleanup

III. Run simulation by batch mode

IV. Retrieve simulation result

read

write

Figure 5.1: Illustration of procedures of TCAD interface.

Note that Sentaurus offers a batch mode that allows simulations to run directly via
the command line, provided the gtree.dat file is correctly organized. This enables
the implementation of an interface. Figure 5.1 summarizes the main procedures of the
Sentaurus interface and the aforementioned simulation process. An external program-
ming language, in this case, MATLAB is used to manipulate the gtree.dat file by
populating new variable values, which are then read by the Sentaurus main program.
As the tree file expands, different nodes correspond to different solvers, such as SDE,
SNMESH, and SDEVICE. Before launching a new simulation, the project is cleaned
and refreshed, followed by running the simulation in batch mode and retrieving the
results.

It is important to note that this pipeline is not limited to Sentaurus or specific TCAD
software. It can be widely applied to other simulation software that supports command-
line execution. An example code is provided also in Appendix C.
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5.3 Case Study 1: Terahertz pHEMT Design Op-
timization

5.3.1 Introduction

Terahertz (THz) frequency, ranging from 100 GHz to 10 THz [196], has gained much
attention in various applications, such as security screening [197], next-generation
autonomous radars [198], and high data rate mobile communications beyond 5G. Tran-
sistors, the core devices of RF system front-ends, benefit from indium phosphide (InP)-
based pseudomorphic high electron mobility transistors (pHEMTs), which exhibit a
cut-off frequency fT (i.e., the frequency at which the transistor current gain drops to
unity [199]) over 700 GHz and a maximum oscillation frequency fmax (i.e., the frequency
at which the power gain drops to 0 dB) nearing 1.5 THz [200]. These characteristics
make them ideal for terahertz monolithic integrated circuits, offering advantages in
cost, integration, and compactness over other technologies.

However, designing pHEMTs is often not trivial, requiring optimization of both ma-
terials of epitaxial layers and structures of electrodes, with over 20 parameters in-
volved. For example, To achieve the highest operating frequency, one must first optimize
materials—such as material composition, layer thickness, and doping concentration—
to increase electron mobility as much as possible, followed by structural optimization
to reduce parasitic capacitance, including gate length, gate shape, source-drain separ-
ation, the gate to drain/source distance, and so on. In addition, gate and source/drain
contact materials must also be refined. Traditionally, the above optimization process
relied on trial-and-error experiments in a clean room, a time-consuming and costly
task requiring hundreds of iterations. Thanks to the extensive development of TCAD,
numerical model simulation is now available for the characterization of most electronic
devices. However, the intensive computational cost of TCAD simulation hinders the
algorithmic device design by directly optimizing key parameters. Therefore, low effi-
ciency due to the trial-and-error methodology still exists. This calls for the need to
employ modern optimization techniques.

This section introduces a machine learning-assisted global optimization method for
pHEMT design optimization for the first time. A GP-based SAEA algorithm [201] is
employed to optimize the structure of a commercial pHEMT [202] and enhance its
performance towards terahertz. Depending on different applications, the optimization
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focus of pHEMTs varies. For terahertz applications, fT and fmax are the main figures
of merit and should be maximized wherever possible. Therefore, they are set as the
objective of this research. This new method demonstrates great potential in terms of
efficiency and optimization quality in ultrafast transistor design and can be extended
to other advanced semiconductor devices and circuits. The next subsection provides an
overview of the commercial pHEMT structure, followed by details of the optimization
method. The results and discussion are concluded in the final section.

5.3.2 Structure and Design Methodology

5.3.2.1 pHEMT Structure

Drain

Barrier (In0.52Al0.48As)

Spacer (In0.52Al0.48As)

Channel (InaGa1-aAs)

Buffer (In0.52Al0.48As)

Substract (InP)

Drain

T-Gate

2-dim electron gas 

(2DEG)

Delta-doping

Ohmic contact

Gate length

Schottky barrier
Cap Cap

Figure 5.2: Illustration of the structure of pHEMT epilayers and electrodes

Figure 5.2 shows the typical structure of an InP pHEMT. The epilayers consist of sev-
eral layers, each with different functions, including the InP ground substrate, buffer,
channel, spacer, and barrier layers. The materials of each layer used are indicated in
brackets, with the barrier, spacer, and buffer layers all composed of In0.52Al0.48As. The
channel layer is made of InaGa1−aAs to form lattice mismatch, where the indium mole
fraction a is adjustable for improved electron mobility [203, 204]. A two-dimensional
electron gas (2DEG) is thus formed between the spacer and channel layer [205], confin-
ing electrons in a thin layer that can only move freely in the plane of the layer, known
as pseudomorphic. To provide more electrons to the channel, silicon delta-doping is
introduced between the spacer and barrier, which further enhances the electrical prop-
erties regarding electron mobility. Above the barrier layer, a T-shaped Schottky gate
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(T-gate) is formed by the contact between metal and semiconductor. The T-gate is
used in pHEMT to balance current capacity and parasitic capacitance for higher oper-
ating frequency. In addition, the source and drain electrodes form ohmic contacts with
the cap layer, providing a low-resistance path for current flow.

5.3.2.2 Traditional Design Method

The epilayers play a significant role in determining the performance of a pHEMT. To
improve operating frequency (i.e., fT and fmax), both material and structure should
be carefully designed. As part of the traditional design methodology, Equation (5.1)
and (5.2) express the relationship between the equivalent components and fT and
fmax, derived from small-signal equivalent circuit [206]. The variables in the right-band
term include capacitance (source-gate Cgs and drain-gate Cds), resistance (parasitic
source Rs, parasitic drain Rd, parasitic gate Rg, output Rds, and channel intrinsic
Ri), and transconductance gm. Therefore, by optimizing the thickness, mole fractions,
and material compositions in the barrier, spacer, and channel, these variables can be
adjusted to achieve the desired performance. Obviously, this is often a trail-and-error
process that heavily relies on experience.

fT =
gm

2π (Cgs + Cgd) (1 + (Rs +Rd)/Rds) + Cgdgm (Rs +Rd)
(5.1)

fmax =
fT

2
√

(Rg +Ri +Rs)/Rds + 2πfTRgCgd

(5.2)

Another straightforward approach to increase fT and fmax is to reduce the gate length.
Generally, shorter gate lengths result in better frequency performance. However, when
the gate length is reduced below 50 nm, the mechanical support provided by the gate
foot becomes insufficient, which can compromise the structural stability and lead to
yield losses. Thus, reducing gate length is not always practical, though a successful
example has been reported [207] with the gate length around 10 nm. In this work, the
gate length was fixed at 100 nm, which is the same as the commercial pHEMT. This
aims to verify the capability of algorithmic design optimization in a stringent scenario.
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5.3.2.3 Algorithmic pHEMT Design Method

Although the equivalent circuit-based method provides a fundamental approach for
extending operating frequencies, it is often implicit and inconvenient, lacking a clear
inverse relationship from the values of lumped parameters to the actual pHEMT struc-
tures. Additionally, the representation capability of lumped components is limited and
typically varies with different bias conditions. As a result, this approach is highly con-
strained, and the outcomes are often suboptimal.

An alternative approach involves using a global optimizer to search for the optimal
pHEMT structure through TCAD simulation. However, given the significant time re-
quired for TCAD simulations based on finite element analysis, standard global op-
timization methods, such as genetic algorithms, often demand thousands to tens of
thousands of simulations, making this direction generally impractical.

To reduce the optimization time to a practical level while maintaining the quality of
standard global optimization algorithms, SAEAs are introduced into pHEMT design in
this work. In SAEA, as introduced in Section 2.3, a surrogate model mapping the inputs
(i.e., design variables) to outputs (i.e., performances) is constructed using machine
learning techniques. By replacing the computationally expensive Sentaurus simulations
with computationally cheaper surrogate model predictions, the optimization time can
be considerably reduced. Specifically, the algorithm is implemented in MATLAB, where
parameters are passed to Sentaurus for simulation through the aforementioned interface,
and the resulting fT and fmax values are returned upon completion of the simulation.
Notably, this is the first attempt to apply a machine learning-assisted algorithm to the
design of pHEMTs.

Regarding the details of the optimization algorithm, the framework is inherited from
Algorithm 6 due to its effectiveness in handling expensive optimization tasks, with
modifications to some operators for better adaptation to pHEMT design problems.
Latin hypercube sampling is chosen as the initial sampling method to uniformly initial-
ize the design space. In each iteration, all simulated designs are ranked in descending
order by fT + fmax, and the top 100 designs are selected to form the parent population.
The offspring population is then generated by applying DE mutation and crossover
operators. To maximize efficiency, the DE/best/1 mutation strategy is employed for
its fast convergence. The construction of GP surrogate models follows the same manner



5.3. Case Study 1: Terahertz pHEMT Design Optimization 103

as in Algorithm 6. The LCB prescreening method introduced in Section 2.3.1 is also
used to account for both prediction uncertainty and performance, identifying the most
promising design to simulate with Sentaurus. This process continues until the stopping
criterion is met.

5.3.3 Result and Discussion

To optimize the design of the pHEMT, the device must first be modeled and calibrated
in TCAD environment to match real-world performance as documented in the data-
sheet [202]. The TCAD models used in Sentaurus include the hydrodynamic transport
model for electrons, high-field mobility, and recombination models such as Shockley–
Read–Hall (SRH), Auger, and Radiative recombination. Both ohmic and Schottky con-
tact are defined. The properties of the materials used in the simulation are listed in
Table 5.2, with the indium mole fraction a set to 0.53. All simulations are conducted
under room temperature conditions. The pHEMT structure is modeled in two dimen-
sions, as illustrated in Figure 5.2. To ensure simulation accuracy, the mesh density
below the gate region is increased. The calibrated results, i.e., the transfer character-
istics, are shown in Figure 5.3, and performance metrics are summarized in Table 5.4,
showing a good alignment between the simulation and the results of the datasheet.

Figure 5.3: Comparison of transfer characteristics between calibrated simulation and
datasheet results.
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Table 5.2: Semiconductor parameters used in the TCAD simulation.

Parameter InP InaGa1−a In0.52Al0.48

Lattice constant (Å) 5.86 5.86 5.86
Band gap (eV) 1.34 0.72 1.48
Dielectric constant (static) 12.4 14.3 12.4
Electron affinity (eV) 4.44 4.55 4.27
Effective mass m∗

c/mo at central valley 0.079 0.047 0.081

For design optimization, 15 key design variables were selected, covering most tunable
parts of the pHEMT structures. The gate length is maintained 100 nm, consistent with
the same as the commercial design. Table 5.3 outlines the search range for each vari-
able. Besides these variables, variations in the Schottky barrier and contact resistance
are also considered but not listed here. Geometric constraints were applied during op-
timization to ensure the physical feasibility of the parameters. Thus, the optimization
problem can be formulated as follows:

argmax
x

(fT, fmax)

subeject to: fT ⩾ 220GHz
fmax ⩾ 550GHz
x4 + x5 − x10 ⩾ 3 (nm)

x10 − x12 ⩾ 2 (nm)

x13 − x14 ⩾ 0.35 (µm)

x13 + x15 ⩽ 1.15 (µm)

(5.3)

The final optimized pHEMT design is shown in the last column of Table 5.3, with
transfer characteristics presented in Figure 5.4, and performance metrics summarized
in Table 5.4. The Schottky barrier is set to 0.6 eV, and the contact resistance is 30
Ω · µm. The results show that fT and fmax are improved to 336 GHz and 770 GHz,
respectively, compared to the commercial design’s 220 GHz and 550 GHz, representing
57% and 37% improvements without altering the gate length. Additionally, the max-
imum transconductance and drain current are improved from 1255 to 1672 mS/m and
from 675 to 775 mA/mm, respectively, even though these were not primary optimiza-
tion objectives. Overall, the optimized pHEMT achieves higher operating frequencies
in terms of fT and fmax, as expected. The optimization process took 16 hours on a
standard desktop computer, which is significantly faster than traditional methods that
typically take several days.
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Table 5.3: The search ranges of the design parameters and the optimized value.

Var. Parameter name Search range Opt. value

x1 The thickness of substrate layer (µm) 50 - 100 61
x2 The thickness of buffer layer (µm) 0.2 - 0.8 0.2
x3 The thickness of channel layer (nm) 4 - 20 4
x4 The thickness of spacer layer (nm) 2 - 10 2
x5 The thickness of barrier layer (nm) 8 - 15 8
x6 The thickness of cap layer (nm) 8 - 25 8.5
x7 Cap bulk concentration (cm2/Vs) 1e18 - 2e19 1.40e18
x8 Delta-doping concentration (cm2/Vs) 1e12 - 1e13 9.40e12
x9 Indium fraction of channel layer 0.6 - 0.85 0.85
x10 Location of delta doping (nm) 4 - 21 7
x11 Passivation thickness (nm) 40 - 100 40
x12 Recessed thickness (nm) 0 - 7 5
x13 Gate foot location (µm) 0.45 - 1.05 0.47
x14 Gate-source separation (µm) 0.1 - 0.6 0.1
x15 Gate-drain separation (µm) 0.1 - 0.6 0.1

Figure 5.4: Comparison of transfer characteristics between optimized and commercial
results.

In conclusion, this work presents a machine learning-assisted design optimization method
for pHEMTs. A commercial 100 nm pHEMT was modeled in TCAD simulation, and
the structure of its epitaxial layers was optimized for higher cut-off frequency and
maximum oscillation frequency. Significant improvements were achieved, with a 57%
increase in cut-off frequency and a 30% increase in maximum oscillation frequency com-
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Table 5.4: Performance comparison among the commercial, calibrated and optimized
pHEMTs

Performance Commercial Calibrated Optimized

Transconductance (mS/mm) 1250 1255 1672
Drain Current (mA/mm) 700 675 775
fT (GHz) 220 215 336
fmax (GHz) 550 542 770

pared to the commercial design. The optimization took just 16 hours on a standard
desktop computer, using 200 iterations, a substantial reduction in time compared to
the traditional trial-and-error method, which usually takes several days. Additionally,
the maximum transconductance and drain current were improved to 1600 mS/m and
approach 800 mA/mm, respectively. This method demonstrates high potential in terms
of efficiency and optimization quality for transistor design regarding different perform-
ance metrics and can be seamlessly extended to other advanced semiconductor devices
and circuits.

5.4 Case Study 2: Device Circuit Co-Optimization

5.4.1 Introduction

In the current era of semiconductor technology, numerous advancements are taking
place at the device level, including the development of FinFET, nanosheet [208], and
gate-all-around transistors [8]. These devices empower circuit engineers to design intric-
ate circuits, such as memory and processors, with higher efficiency in terms of reduced
power consumption and enhanced processing speed. However, the performance of these
circuits relies not only on the precise adjustment of external passive components, such
as resistors and capacitors [209], but also, predominantly, on the physical characterist-
ics of the device. These characteristics include the width and length of the device, and
also the process and material of the device, such as the doping concentration in the
channel region of the CMOS. However, the manual tuning procedure for determining
the accurate values of these parameters is a challenging task involving a substantial
computing cost on both circuit and technology simulation, which greatly hinders ob-
taining the optimal performance [210, 211, 212].
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Table 5.5: Literature about ML techniques in semiconductor device

Category Ref. Year ML techniques

Device Modeling

[166] March 2021 ANN
[213] May 2023 ANN
[214] Nov. 2023 Physics-informed NN
[215] Jan. 2024 VAE
[216] Jan. 2024 ANN
[217] Jan. 2024 Physics-based ANN
[218] Jan. 2024 ANN

Device Simulation [219] Nov. 2021 ANN, Autoencoder
[220] Oct. 2023 Convolutional NN

Process Variation Prediction

[221] July 2019 ANN
[222] Oct. 2019 ANN
[223] Apr. 2020 ANN
[224] Jan. 2022 ANN
[225] Apr. 2023 ANN

Failure Troubleshooting [226] Oct. 2019 Linear regression

Device Designing

[227] Nov. 2021 GP, Active learning
[228] Apr. 2022 GP
[229] July 2022 ANN
[230] Nov. 2023 Decision tree
[231] Jan. 2024 Regression
[232] Feb. 2024 Knowledge-based ANN

Thanks to the rapid development of machine learning and artificial intelligence [233],
many recent studies have demonstrated that methods based on ML can greatly help
in many fields of semiconductor industry, including but not limited to device model-
ing, device simulation, process variation prediction, failure troubleshooting, and device
designing. Some of the selected papers with their corresponding ML techniques are
listed in Table 5.5. These methods successfully contribute to reducing simulation time
through a pre-trained model of electrical characteristics (i.e. I-V relations) for down-
stream tasks, while effectively obtaining a better design. However, to capture subtle
variations of the signal in downstream tasks, the models (either the ML-based model
or the conventional compact model) have to be highly accurate, requiring thousands of
data, either by simulation or measurement, to be collected for modeling case by case.
This makes the modeling phase time-consuming and extends the time-to-market of the
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device. Moreover, ML techniques in the reported literature only play an assisting role
in helping engineers with performance evaluation, while manual parameter tuning in
the circuit level is still vital in the whole design process. Therefore, suboptimal designs
are often obtained.

In this section, a novel design methodology that applies the ML technique to co-
optimize the device and circuit parameters simultaneously is presented. Driven by
directly modeling the performance at the circuit level, the optimization algorithm helps
design the device and circuit in an integrated and straightforward way. To the best of
our knowledge, this work is the first to utilize the ML technique directly for the entire
design workflow of the device and circuit simultaneously. It is worth noting the differ-
ence between traditional DTCO and the proposed device and circuit co-optimization.
In traditional DTCO, accurate compact models [234] are first constructed and then
used for downstream tasks, and this co-optimization is typically achieved by optimiz-
ing parameters across several design phases. In contrast, the proposed methodology
does not rely on explicit compact models. Instead, circuit performance is characterized
and optimized directly. Further details will be explained in the next section.

The CMOS inverter is used as a proof of concept, since the inverter is the fundamental
building block in almost any digital circuit. Appropriate design of the inverter greatly
facilitates the development of more intricate structures, such as NAND gates, adders,
multipliers, and microprocessors, making the process substantially more efficient. The
optimization algorithm proposed for this work is called actor-critic optimization, which
is a quasi-reinforcement learning algorithm adapted from the deep deterministic policy
gradient (DDPG) for efficient optimization. Considering the intensive computational
cost of TCAD simulation, efficiency is the most critical factor for the optimization
algorithm to be used.

By applying this algorithm, the inverter is synthesized without predefined or nominal
configurations. Five types of parameters were considered as the design variables, in-
cluding gate length, channel width, channel doping concentration for both NMOS and
PMOS, area factor, and load capacitance. The goal is to synthesize an inverter from
scratch that functionally works well in a given circuit topology and achieves optimal
switching performance. It is noted that this work is a proof-of-concept of the feasibility
of ML-based optimization techniques for device circuit co-optimization. Promising ap-
plications including FinFET, Gate all around (GAA) FET, and nanosheet architecture
can be considered in future works.
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5.4.2 Co-Optimization Methodology

In traditional design workflow, industrial compact models of devices are constructed
based on experimental results or thousands of calibrated TCAD simulations [166]. Sub-
sequently, engineers use compact models to carry out circuit-level design, where only
the width-to-length ratio of devices can be adjusted, known as transistor sizing. Note
that circuit performance is related to both circuit and device parameters, but due to
an implicit correlation of the performance with device characteristics, manually tuning
these parameters in the current workflow is impracticable.

In the proposed methodology, the device and circuit are simulated in a mixed-mode
approach (i.e. sequential TCAD and SPICE simulation), while no explicit compact
models are constructed. The correlation between device and circuit parameters and
performance is learned consecutively through an ML model during optimization. Mean-
while, an algorithm, replacing the manual manipulation of the device parameters (the
designer) in the traditional design process, suggests the next candidate solution based
on the learned pattern directly.

The dataflow and workflow of our methodology are illustrated in Figure 5.5(a) and
(b). In terms of dataflow, the actor-critic-based optimization (i.e., optimizer) is imple-
mented in MATLAB, while the circuit and device simulation models are constructed
in Sentaurus (i.e., simulator). For the latter, mixed mode simulation of the circuit
and device is performed, including TCAD simulation of the device. In each iteration,
the simulator simulates and outputs the performance of a design, and the optimizer
provides a new design for the next simulation. This happens iteratively until the op-
timal design is obtained.

In terms of the workflow in Figure 5.5(b), it commences with several steps. First, a
small set of initial sampling for design variables within the predefined search bounds
is conducted. For each sample, the circuit performance metrics are extracted from its
raw characteristics data. All simulated designs and performance metrics are stored as
design-metrics pairs in the dataset. Then the actor-critic-based optimization algorithm
is applied to learn the model and suggest the next design with good potential for sim-
ulation for the next iteration. Note that only a single new design is suggested for the
mixed-mode simulation in each iteration. The iterative process stops when the conver-
gence criteria are satisfied, such as a satisfactory design is obtained, or the computing
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(b) Workflow of the proposed design methodology

Figure 5.5: The dataflow and workflow of the proposed design methodology.

budget (the maximum iterations) is exhausted. Then, the process is terminated and
the current best design becomes the output. In the following subsections, the mixed-
mode simulation setup, metrics extraction, and optimization algorithm are detailed,
respectively.

5.4.2.1 Simulation Setup

Figure 5.6 shows the transfer characteristics (Id vs. Vg) of the separate planar NMOS
and PMOS devices with two-dimensional architectures, designed using the Sentaurus
TCAD structure editor and Sdevice tools [235]. The transfer curves show the expected
device behavior for a transistor with a gate length of 50 nm and a height of 10 nm. Here,
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Figure 5.6: Transfer characteristics of the N/P MOSFET

both N- and P-type devices have the same width and channel doping for illustration,
and are of enhancement mode. The figure depicts different gate bias conditions required
to operate the transistor from liner to saturation regions when Vds = 0.5 V. The curves
are not strictly symmetric due to the different mobilities of electrons and holes.

Table 5.6: Key parameters in defining the CMOS inverter

Parameter Bound / Value

LG (Gate length) 14 ∼ 90 nm
TSi (Channel thickness) 5 ∼ 30 nm
WSi (Aspect ratio of PMOS) 1 ∼ 4
* Lext (Source & drain (S&D) length) 30 nm
* EOT (Effective oxide thickness) 2 nm
* NSDC (Doping in the S&D region) 1×1018 cm−3

NCh (Doping in channel for N&PMOS) 5×1016 ∼ 5×1017 cm−3

CL (Load capacitor) 0.01 ∼ 10 fF

Table 5.6 displays the complete list of the parameters required to define this device.
Parameters that are not set as design variables are marked with (*). In the TCAD
simulation, the doping dependence and oldSlotboom mobility along with Shockley-
Read-Hall (SRH) recombination models are included. A mixed-mode simulation setup
is then developed utilizing an individual MOS transistor. Figure 5.7 shows all the
passive components, external node connections, and power supplies needed for the
NMOS and PMOS transistors to operate as an inverter circuit.
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Figure 5.7: Schematics and topology of inverter circuit using NMOS and PMOS device
with external node connections and electrical components.

Two types of responses are considered to characterize the performance of the inverter:
the voltage transfer response (DC characteristic) and the pulse response (dynamic
characteristic). The DC characteristic is depicted by the input versus output voltage
of the circuit, denoted by Vin and Vout, and the dynamic characteristic is depicted by
Vin and Vout over time.

5.4.2.2 Metrics Extraction

For an ideal inverter, the output voltage must trigger, vary, and switch simultaneously
as the input pulse rises and falls. This can be manually identified and quantified by
defining the figures of merit (FoMs), such as rise time, fall time, edge rate, and propaga-
tion delay when the circuit functions effectively [236]. However, when nominal device
configurations are not provided, setting these figures as optimization metrics is not
straightforward. The red dashed line in Figure 5.10(b) and (c) is a typical response in
initial sampling, showing the challenge in extracting FoMs as the performance is far
from a practical inverter.

Therefore, in this study, raw inverter characteristics V are transformed intoN extracted
metrics compared with the ideal response Videal:

yi = MSE(V i − V i
ideal) i = 1, 2, . . . , N (5.4)
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where MSE(·) is the mean square error function. For DC characteristics, the curve
is divided into three parts to extract features, as enumerated and illustrated in Fig-
ure 5.10(a): (1) the high-level region, (2) the low-level region, and (3) the central switch-
ing point. Equation (5.4) is then applied to compute the metric value for each part.
Similarly, for pulse characteristics, we derive four parts using the same idea as shown
in Figure 5.10(b): (4) the high-level region, (5) the low-level region, (6) the rising edge,
and (7) the falling edge, comparing with the steepest ideal switching (green dashed line)
as well. For an ideal—or rather, theoretical—inverter, all features extracted would be
zero initially. By using this approach, even when the circuit’s operation state deviates
significantly from a practical inverter, the above metrics can be used to discriminate
candidate designs with different qualities.

5.4.2.3 Actor-critic-based Optimization

The actor-critic-based optimization is a quasi-reinforcement learning algorithm [237]
developed from the DDPG algorithm [238], which is commonly used for continuous
space control problems. Traditional reinforcement learning algorithms like DDPG are
designed to train agents to operate in specific environments towards defined targets.
However, these algorithms typically require thousands or even tens of thousands of
operating trajectories for training, which is impractical for semiconductor devices and
circuit design due to high computational costs. Additionally, algorithmic optimization
in most contexts is a non-Markovian process, which violates the fundamental assump-
tions underlying reinforcement learning. Therefore, applying these reinforcement learn-
ing algorithms directly to such problems is inappropriate without adaptation. More
discussion to clarify the connection and difference between reinforcement learning and
optimization refers to Appendix. D. In general, actor-critic-based optimization is pro-
posed for expensive optimization tasks, adapting the concepts of actor and critic from
their traditional use in DDPG but with a different purpose. The algorithm trains a
critic network based on the current dataset, uses actor network to exploit the prom-
ising design region over the model, and outputs the best-predicted design for the next
evaluation. The main terms of the algorithm are first clarified and then the procedure
is described in detail.

• Design space: This is the space of the design variables x for the inverter, which
is continuous and bounded within given intervals.
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• Action space: This refers to the space of the perturbations, or actions, a ap-
plied to the design variables, where x+ a forms a new design within the design
space. The action space is continuous and typically bounded by twice the design
intervals.

• Data augmentation: As the only available data for the training model are the
design-metrics pairs extracted from the simulation during optimization, the data
volume is quite limited. To mitigate training challenges, the design-metrics pairs
are augmented into design-action-metrics triples. Given a set of design-metrics
pairs D = {(x,y)}, the augmented dataset is B = {(x,a,y)|(x + a,y) ∈ D}.
Obviously, if D contains N elements, then B contains N2 elements.

• Critic network: A neural network Qϕ(x,a), parameterized by ϕ, accepts a
design x and an action a, and predicts the performance of the design x+ a. Qϕ

is trained using the mean square error on a set of design-action-metrics triples
by

Lϕ(x,a) = (Qϕ(x,a)− y(x+ a))2 (5.5)

The critic network inherits its parameter ϕ from the last training, denoted by ϕ−.
The inheritance makes training faster and easier in a sequential manner.

• Actor network: A neural network µθ(x), parameterized by θ, produces the most
promising action for a given design x. µθ is trained after the training of the critic
network. The loss function aims to minimize the weighted sum of metrics estim-
ated by the critic network, effectively exploring the design space while heading
to promising regions of lower metrics. In addition, to ensure that the produced
design x + µθ(x) stays within the given bounds, a penalty term is added to the
loss function

Lθ(x) = w(Qϕ(x, µθ(x))) + ψ(x+ µθ(x)) (5.6)

where w(·) is the weighted sum function and ψ(·) enforces the bound constraints
defined by

ψ(x) =

∥∥∥∥max (0,xlow − x)

xhigh − xlow

∥∥∥∥2
2

+

∥∥∥∥max (0,x− xhigh)

xhigh − xlow

∥∥∥∥2
2

where xlow and xhigh are the lowest and highest values of the design in the dataset
D. max(0, ·) is the element-wise function that outputs a lager value compared to
0.
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Figure 5.8: The structure of the actor and critic network as well as their training
process.

Figure 5.8 outlines the structure of the actor and the critic network. Specifically, the
actor network is employed to generate the best action over a given design and the critic
network is employed as an estimator to evaluate how good the new design is. Both
networks are sequentially stacked by a fully connected layer, batch-normalization layer,
and rectified activation layer. The training algorithm is stochastic gradient descent.

Algorithm 9 Actor-critic-based optimization
Input: Actor network µθ, Critic network Qϕ, dataset D, and inherited

parameter ϕ−(optional).
1: Initialize θ and ϕ
2: if ϕ− is defined then
3: ϕ← ϕ−

4: end if
5: Augment dataset D into B
6: Train the critic network Qϕ on B by Equation (5.5)
7: Train the actor network µθ on D using Equation (5.6)
8: Y ← {}
9: for each (x, ·) ∈ D do
10: a← µθ(x) + ϵa(xr1 − xr2) ▷ Add noise on action.
11: ŷ ← Qϕ(x,a)
12: if ŷ < min (Y) then
13: x∗ ← x+ a
14: end if
15: Y ← ŷ ∪ Y
16: end for
17: ϕ− ← ϕ
Output: Suggest the new design x∗
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The pseudo-code of the actor-critic-based optimization is shown in Algorithm 9. Fol-
lowing network training, each design in the current dataset is passed to the actor
network to generate an action. The action is then added with the noise consisting of
the difference between two randomly selected designs from the dataset, scaled by a
hyper-parameter ϵa. The purpose is to balance the exploration and exploitation and
enhance the algorithm’s robustness. The new design added with the action is input
into the critic network for querying metrics, and only the one with the best predictive
metrics is output for simulation in the next iteration.

The number of hidden layers and neurons in each layer is set to ensure that the networks
have sufficient modeling capability; therefore, these are generally determined by the
number of parameters and metrics. In our experiment, the critic network has two
hidden layers, each containing 16 neurons, while the actor network has three hidden
layers, each containing 16, 23, and 16 neurons, respectively. In addition, ϵa is set to 0.1
for good balancing ability, while the number of initial samples is set to 25.

To verify the performance of the proposed optimization algorithm, several well-known
mathematical benchmark functions with diverse landscapes are used. These include the
Zakharov, Sphere, Rastrigin [239], Griewank, and Ackley [240] functions. All of these
functions share a global minimum value of 0 located at (0, . . . , 0). For more information
on these benchmark functions, please refer to Appendix A. The function values are
normalized to a [0, 1] range and then summed together to form the fitness, as formulated
in Equation (4.1). A 20-dimensional problem was tested, with the search range defined
as [−20, 20]20. Both critic and actor networks consisted of two fully-connected hidden
layers, each with 128 neurons. For comparison, an optimization algorithm used in
Section 5.3 (Case Study 1) is employed. The function evaluation budget is set to 1000
iterations, with no initial solution provided.

The convergence results are shown in Figure 5.9(a), alongside the dataset (training)
variance for each iteration. This figure shows that the proposed algorithm performs
well on this benchmark problem, converging to 10−3 within 600 iterations. The results
demonstrate that the proposed algorithm significantly improves efficiency, showcasing
its strong ability to exploit the solution space, which is highly valuable in semicon-
ductor design processes. Furthermore, Figure 5.9(b) shows that the algorithm main-
tains a lower variance in the dataset than the reference method, suggesting that it can
efficiently handle complicated problems even with a smaller dataset diversity, which is
another key advantage for device optimization.
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Figure 5.9: The convergence trend and population variance versus iterations on the
benchmark problem

5.4.3 Result and Discussion

The evaluation of the CMOS inverter’s performance was conducted through an analysis
of its voltage transfer response and pulse transient response. To validate our methodo-
logy, two design cases in nanosecond and picosecond pulses are considered, respectively.
The input pulse for the nanosecond case is 100 ns, while that for the picosecond case
is 140 ps. These two-pulse cases are chosen based on [241]. Due to the limitation of
the device’s maximum oscillation frequency, meeting functional requirements with a
nanosecond pulse for a CMOS inverter is relatively straightforward, while maintaining
the same performance with a picosecond pulse is more challenging. In this case, the out-
put signal may deviate significantly from the requirement, leading to additional delay,
overshoot, and other performance degradation. Therefore, it was chosen as an excellent
case to demonstrate how our methodology can help to find the optimal solution.
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Considering manufacturability, the same gate lengths of NMOS and PMOS are kept
for both cases, and the most flexible case in which gate lengths can be different is also
provided to fully explore the design space. The resulting designs are compared with
respect to transfer characteristics, providing much inspiration for the future technology
node.

Table 5.7 lists the best parameter values, which were found within 100 iterations for
the first case, and 200 iterations for the second case. More iterations are assigned to
the second case to ensure convergence. All the parameter values are obtained by the al-
gorithm to get the desired output characteristics close to the ideal one (the target data).
Compared to other modeling-based methodologies [218, 232], our approach significantly
reduces computational costs by eliminating the need for thousands of simulations re-
quired to train device models.

Table 5.7: Optimized parameter values for various cases

Case 1 (ns pulse) Case 2 (ps pulse)

NMOS PMOS NMOS PMOS

LG (nm) 58 24
TSi (nm) 24 27 12 13
NCh (×1017cm−3) 3.8 5 0.5 0.7
WSi - 1.7 - 4
CL (fF) 0.5 0.01

Case 2 (diff. LG) (ps pulse)

NMOS PMOS Man. N/P

LG (nm) 17 20 50
TSi (nm) 12 15 20
NCh (×1017cm−3) 2.6 2.3 5 / 6
WSi - 3.1 - / 2
CL (fF) 0.01 0.01

The corresponding DC and dynamic characteristics are illustrated in Figure 5.10 by
solid lines. As shown in Figure 5.10(a), the voltage transfer characteristic of the inverter
reveals the expected inverting behavior. The input voltage Vin is plotted against the
output voltage Vout, along with the typical initial and manual Vout points to depict
the switching threshold. Three distinct regions can be observed as Region (1): this
represents the cut-off region where Vout is high and almost equal to VDD, indicating
that the NMOS is in the OFF state and the PMOS is in the ON state; Region (2):
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the saturation region where Vout approaches ground level, indicating that NMOS is on
and PMOS is off; and Region (3): the transition region is characterized by a sharp
fall in Vout as Vin increases. This region is crucial as it defines the inverter’s switching
threshold and gain.

Vin Vout Init. Vout Man. Vout IdealVin Vout Init. Vout Man. Vout Ideal

(1)

(2)

(3)

(a) DC characteristics

(4)

(5)

(6)
(7)

(b) Pulse characteristics, nanosecond case

(c) Pulse characteristics, picosecond case

0.6 1

1

1.04

0.96

1.4

0

0.02

-0.02

8 8.2 8.4

(d) Comparison of different N/PMOS LG configur-
ations

Figure 5.10: DC, pulse characteristics of two design cases, and comparison between the
same and different N/PMOS LG.

Voltage transfer characteristics indicate a superior switching behavior of the optim-
ized inverter over the manually designed inverter with steeper slopes for both rising
and falling edges. Region (1) and (2) indicate that the typical initial design’s pull-up
and pull-down functions are not as effective as those of the co-optimized design. The
intersection point of the input and output curves, which ideally should be half VDD

for the inverter, is significantly different in the typical scenario as compared to the
co-optimized design. This suggests a better noise margin and a more robust operation
in the presence of voltage variations.
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The pulse characteristics are compared with existing literature [241, 242] and a manu-
ally designed circuit. Table 5.8 provides a comprehensive comparison of figures of merit
for CMOS inverters based on different technology nodes and design optimizations, in-
cluding low-doped drain (LDD) FinFET and silicon on insulator (SOI) complementary
FinFET (C-FinFET). The metric comparison includes rise time, fall time, edge rise,
delay times, propagation delay, contamination delay, maximum oscillation frequency
(MUF), and overshoot voltage.

The optimized inverter design using Planar FET technology shows superior perform-
ance compared to the manually optimized (Manual) Planar FET design across several
parameters as shown in Figure 5.10(b) and (c). Specifically, the ML-assisted design
demonstrates faster rise and fall times (4.20 ps and 3.6 ps respectively) compared to
the manual design (7.95 ps and 8.22 ps respectively). This indicates a more rapid
transition between logic states which is critical for high-speed applications.

Table 5.8: Comparison figures of merit ofdifferent inverters operating on picosecond
pulse

Co-opt. Manual [242] [241]

Technology Planar
FET

Planar
FET

SOI
C-FinFET

LDD-
FinFET

Supply voltage (V) 1.0 1.0 1.0 1.5
Signal Period (ps) 140 140 200 140
Rise time (ps) 4.20 7.95 10.00 4.56
Fall time (ps) 3.6 8.22 10.00 4.10
Edge rise (ps) 3.9 8.08 10.00 4.33
High to low delay (ps) 1.45 3.66 2.11 3.27
Low to high delay (ps) 1.52 4.5 1.49 3.55
Propagation delay (ps) 1.58 4.08 1.30 3.41
Contamination delay (ps) 1.45 3.66 0.9 3.27
MUF (THz) 0.12 0.06 0.05 0.11
Overshoot (V) 0.026 0.170 - -

Voltage overshoot during the rise and fall period of the pulse is a critical parameter for
signal integrity and reliability. This depends on the charging and discharging time of
the output capacitor further determined by its time constant. When comparing MOS
devices with the same and different gate lengths, as seen in Figure 5.10(d), we found
that the voltage deviation at rise and fall periods is smaller when the gate length
is used as an optimized parameter separately for N- and P-MOS devices than when
the variable is constrained to the same value throughout the optimization. This is
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because the gate length influences the fringing capacitance associated with the channel
components as affects the intrinsic capacitance value of the device [241]. The ML-
assisted design demonstrates a negligible undershoot and a minimal overshoot of 0.026
V which is significantly lower than the manual design’s overshoot of 0.170 V. This
suggests that the ML-assisted design is not only faster but also more precise, with less
risk of damaging other components or causing logic errors due to excessive voltage.
Hence, the proposed methodology helps find the most optimal parameter set and can
be easily extended to complicated circuits and speed up the time-to-market of new
devices.

To demonstrate the robustness of the optimization algorithm, more experiments with
different configurations of algorithm parameters were conducted. The results indicate
that the bound constraint ψ(·) in Equation (5.6) is indispensable. Without this con-
straint in the loss function of actor network, the algorithm suggests new designs that
are impractical and far outside the given range. The settings for the number of hidden
layers and neurons in each layer prove to be robust, provided the modeling capacity
is sufficient. Therefore, configuring two or more hidden layers, with each layer having
more than 2d neurons, where d is the number of neurons of the input layer, is adequate
and has a limited impact on the final outcomes. The noise figure ϵa on the action bal-
ances efficiency and exploration; a larger value results in a slower convergence rate. For
this optimization task, 0.1 was deemed appropriate through our experiments.

5.5 Summary

This chapter focuses on the algorithmic design methodology for semiconductor devices.
It begins with a brief introduction to the devices and TCAD simulation. The concept
of DTCO is introduced, along with a discussion of its limitation. By explaining im-
plementation of the TCAD interface, two case studies based on TCAD simulation
are presented. In the first case study, the structure of the epitaxial layer of an InP
pHEMT is designed and optimized for terahertz operating frequency. Compared to the
commercial pHEMT, the optimized design achieves 57% and 37% improvements in its
cut-off frequency and maximum oscillation frequency, respectively, without altering
the gate length. In the second case study, the concept of device circuit co-optimization
is proposed and validated on a CMOS inverter. Using a novel actor-critic-based optim-
ization algorithm, the proposed design methodology achieves better performance on
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an inverter with planar FETs than that with advanced technology nodes, e.g., LDD
FinFET and SOI C-FinFET. In summary, this chapter explores the potential pathway
for algorithmic design methodology using TCAD simulation and highlights the use of
machine learning in enhancing design automation within TCAD.



Chapter 6

Conclusions and Future Work

This chapter summarizes the conclusions drawn from Chapter 3 to Chapter 5 of this
thesis. The chapter also discusses and highlights potential routes for further exploration
and expansion from the current research.

In general, this thesis investigates the potential path toward machine learning-assisted
EDA for distributed-element devices/circuits and semiconductor devices. Due to com-
putationally expensive simulation, design automation in these areas is considered chal-
lenging and intractable. The circuits and devices selected for research in this thesis
are both relevant and diverse. From the perspective of electronic engineering, the se-
lected circuits include passive, active, and transistor components. The simulation com-
plexity and time cost also increase accordingly. From the perspective of optimization
algorithms, the design problems of microwave filters are very challenging due to their
multimodal landscapes. The challenge of designing power amplifiers mainly lies in their
problem scales, i.e., the multivariate performance metrics and design variables. And the
design optimization of semiconductor devices demands high efficiency. Therefore, this
research can be viewed as a comprehensive EDA research to address problems within
the areas mentioned above. With these distinctions, each area is discussed in detail,
respectively.

123
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6.1 Microwave Filter Design Automation

For the research on microwave filter design automation presented in Chapter 3, an unsu-
pervised design methodology is proposed, consisting of a systematic sampling method
with two-phase design optimization. Once the initial design is constructed via a pro-
grammable approach, the entire process can produce the final physical implementation
without human intervention. The novel objective functions employed in different op-
timization phases successfully capture landscape structures, leading to better solutions.
Payoffs of the proposed methodology are validated and compared through two real-
world examples. Furthermore, it is concluded that design knowledge, such as positions
of zeros and poles and resonator theory, plays an important role in achieving better
outcomes. Without considering design knowledge, such as the resonator theory in the
sampling method, both effectiveness and success rate degrade. From the perspective of
algorithms, global optimization with the assistance of GP surrogates is advantageous
in finding optimal solution but struggles with limited efficiency. By incorporating an
appropriate local search strategy, the entire framework demonstrates potent capability
in searching complex landscapes efficiently.

In addition, the proposed methodology is not limited to any specific filter types. Two
examples with transmission zeros and a dozen variables have been demonstrated, show-
ing competitive performance compared to other methods. When more complex design
cases, such as higher-order filters with tens of design variables, are considered, they
can be addressed by tuning some hyperparameters of the algorithm to allow for greater
exploration capacity. Therefore, this methodology demonstrates broader applicability
in the field of filter design automation.

An extension of this research is to investigate yield optimization considering manu-
facturing tolerance. This is a crucial follow-up step after design optimization, which
accounts for process errors in design to maximize yield, and should be developed inde-
pendently. Another extension is to promote the investigation into the design of diplex-
ers. Diplexers can be viewed as devices composed of multiple microwave filters. The
current methodology requires designing each branch separately and then combining
them for manual tuning; therefore, achieving unsupervised diplexer design is highly
meaningful, although very challenging. Furthermore, research on algorithms and ma-
chine learning techniques is also worth exploring. Investigating the use of generative
AI for filter topology design could significantly advance filter design automation in the
future.
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6.2 MMIC Power Amplifier Design Automation

For the research on power amplifiers presented in Chapter 4, a new methodology
targeting general layout-level PA design automation is proposed, which consists of
an optimization-oriented integrated environment and a BNN-based optimization al-
gorithm. The proposed methodology enables a higher degree of MMIC PA design
automation, validated by two practical and challenging examples. The optimization-
oriented integrated environment bridges external algorithms with ADS, making the
methodology able to manage commercial PDKs and compatible with current design
workflows. By incorporating Bayesian neural networks, the proposed methodology can
predict and identify the most promising solution in each iteration and achieve reason-
able efficiency with around 500 simulation runs on the presented examples. In addition,
it is found that the proposed methodology is potent for the cases requiring perform-
ance consistency, which is often difficult to achieve through manual trade-offs across
the entire band.

Similar to the design automation of microwave filters, yield optimization is also crucial
for MMIC PAs. However, considering manufacturing tolerance in MMICs is more chal-
lenging and even intractable due to multiple sources of variability, such as the accuracy
of PDKs and process variations in transistors and passive components. Therefore, it
should be explored as a separate research topic, known as design for manufacturing.

In terms of potential future research, several directions are suggested. First, although
this research has promoted considerable progress toward PA design automation, an un-
avoidable issue is that the current methodology lacks the ability to predict the possible
performance limit. In other words, it is impossible to know whether the given specific-
ations can be achieved or not before the optimization is completed. When the given
specifications are difficult to achieve, the output best design may not meet expectations
or even be misled. A feasible approach to mitigate this issue is to run the proposed
algorithm on schematics first. The optimal performance achievable by schematics can
generally be considered the performance upper limit involving layout (with EM simu-
lation). More solutions are worth exploring. Second, the methodology can be extended
to multi-objective optimization. Typically, there is a conflict between PA efficiency and
output power or gain and linearity. When a set of trade-off designs is needed rather
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than a single optimal design, a methodology based on multiobjective optimization is
more appropriate. Third, an expansion of this research is to investigate topology design
automation. As discussed in the main body, this is also an interesting and attractive
problem to solve.

6.3 Algorithmic Design Optimization for Semicon-
ductor Devices

The research in Chapter 5 promotes an attempt toward algorithmic design optimiz-
ation for semiconductor devices. By implementing a TCAD interface, algorithms are
able to interact with TCAD simulation for device optimization. Two case studies are
conducted to manifest the effect of this approach. The first case study uses GP-based
SAEA to optimize the epitaxial layer structure of a pHEMT for higher cut-off frequency
and maximum oscillation frequency. Significant improvements were achieved, with a
57% improvement in the cut-off frequency and a 30% increase in the maximum oscil-
lation frequency compared to the commercial design. The optimization process took
just 16 hours on a standard desktop computer, achieving a substantial reduction in
time consumption compared to the trial-and-error method. For the second case study,
the concept of device circuit co-optimization is proposed, incorporating a novel actor-
critic-based optimization algorithm. The effectiveness of the proposed methodology
is validated by a CMOS-based inverter, achieving better performance regarding pico-
second switching characteristics on a planar N/PMOS than with advanced technology.
In summary, this research demonstrates that using machine learning techniques to
enable algorithmic design optimization within TCAD can bring considerable benefits,
which pave the way for future research on more complex circuit and design challenges.

A straightforward extension from this research is to apply the proposed methodology
to more advanced technology and complex circuits, such as FinFET, Gate all around
(GAA) FET, and nanosheet architecture. The structure of these devices is more com-
plex than planar CMOS, resulting in higher computational costs. This promotes new
challenges for the efficiency of optimization algorithms and is indeed a promising dir-
ection as the next plan. In addition, process variability plays a significant role in the
characterization of semiconductor devices. Therefore, incorporating variability-aware
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models into the optimization framework to account for process-induced variations is
a crucial step toward a robust and practical methodology. This prospective research
will make algorithmic design optimization more applicable to real-world manufacturing
scenarios.



Appendices

A Benchmark Functions

Here the benchmark functions used in this thesis are formulated and described in detail.
In each function, d refers to the dimension of the argument and is often set to 20 in
the numerical tests of the main body of this thesis.

• Zakharov function: a plate-shaped surface function that has different gradient
values in different dimensions.

f(x) =
d∑

i=1

x2i +

(
d∑

i=1

0.5ixi

)2

+

(
d∑

i=1

0.5ixi

)4

(1)

Figure A.1: Zakharov function in two dimensions

• Sphere function: a commonly used bowl-shaped function that is continuous,
convex, and unimodal.

f(x) =
d∑

i=1

x2i (2)

128
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Figure A.2: Sphere function in two dimensions

• Rastrigin function: a function has several local minima and is highly mul-
timodal, but the locations of the minima are regularly distributed.

f(x) = 10d+
d∑

i=1

[
x2i − 10 cos (2πxi)

]
(3)

Figure A.3: Rastrigin function in two dimensions

• Griewank function: a highly rugged multimodal function that has many wide-
spread local minima, which are regularly distributed.

f(x) =
d∑

i=1

x2i
4000

−
d∏

i=1

cos
(
xi√
i

)
+ 1 (4)
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Figure A.4: Griewank function in two dimensions

• Ackley Function: a widely used multimodal function for testing. In its two-
dimensional form, it is characterized by a nearly flat outer region and a large
hole at the center. The function poses a great risk for optimization algorithms to
be trapped in one of its many local minima.

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp
(
1

d

d∑
i=1

cos (cxi)
)

+ a+ exp(1) (5)

Figure A.5: Ackley function in two dimensions, when a = 20, b = 0.2 and c = 2π
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B File and Code Example of Integrated Simulation
Environment with ADS

Here gives the content of a typical high-level AEL script, used in simulation-oriented
intergated environment.

1 if (ael_file_exists(fix_path("./lyxAutoRunADS.atf")))
2 {
3 decl glob_sim_runing_status = TRUE;
4 load(fix_path(".\\lyxAutoRunADS.atf"));
5 lyx_open_design(fix_path("C:\Users \xxxxxxxxx\Documents\Project\

PA_Design\210326_6x80_D01GH_AB_2W_wrk"),
6 "6x80_D01GH_AB_2W_lib:

Complete_EM_test_OPT_N1:schematic");
7 lyx_update_parameters(list("VAR2","VAR3","VAR6"),
8 list(list("x1","x2","x3","x4","x5","x6","x7","

x8"),list("x9","x10","x11","x12","x13","x14","x15","x16"),list("x17","
x18","x19","x20","x21","x22","x23","x24")),

9 list(list
(3.5,72.3,277,159.6,3,1276.9,6.5,265.7),list
(22,247.5,43,225.3,3,215.9,34,209.8),list
(49.5,137,121.3,100.5,119.3,264.5,88,187.5)));

10 remove("./objective.txt");
11 lyx_run_sim_and_exist("6x80_D01GH_AB_2W_lib:Complete_EM_test_OPT_N1:

schematic");
12 }

A code snippet of the simulation-oriented intergated environment implemented by
MATLAB is presented.

1 function value = RunADSSimulation(ProjectPath , LibName , CellName ,
Parameters , time_estim)

2 file_id = DirectorySetup();
3 [work_path ,~,~] = fileparts(mfilename('fullpath'));
4 [project_root ,project_name ,~] = fileparts(ProjectPath);
5 % lib_name = [project_name(1:end -3),'lib '];
6 full_cell_name = sprintf('%s:%s:%s',LibName ,CellName ,'schematic');
7 %% prepare ael script
8 ael_content = fileread(fullfile(work_path ,'testTemplate.ael'));
9 ael_content = strrep(ael_content ,'_PROJECT_PATH_',ProjectPath);

10 ael_content = strrep(ael_content ,'_CELL_FULL_NAME_',full_cell_name);
11 [comp_str , name_str , value_str] = ParseParameters(Parameters);
12 ael_content = strrep(ael_content ,'_COMP_ITEM_',comp_str);
13 ael_content = strrep(ael_content ,'_NAME_LIST_',name_str);
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14 ael_content = strrep(ael_content ,'_VALUE_LIST_',value_str);
15 ael_path = fullfile(work_path ,[file_id ,'.ael']);
16 log_path = fullfile(ProjectPath ,'data',[CellName ,'_data'],'logFile.txt');
17 SaveAEL(ael_path ,ael_content);
18 %% run simulation
19 ads_path = 'ads';
20 ads_command = sprintf('%s -m %s',ads_path ,ael_path);
21 check_file_path = fullfile(ProjectPath ,'data',[CellName ,'.ds']);
22 tic
23 err_count = 0;
24 while err_count < 10
25 try
26 cleanUpResults(check_file_path);
27 runADS(ads_command , check_file_path ,time_estim);
28 log_str = fileread(log_path);
29 if contains(log_str ,'Error')
30 SaveAEL(fullfile(fullfile(work_path ,'.log',[file_id ,'_log.txt

'])),log_str);
31 pause(2);
32 error('Error log saved to .log folder.');
33 end
34 break;
35 catch
36 err_count = err_count + 1;
37 disp('Error occurred , retry it now...');
38 end
39 end
40 toc
41 pause(3);
42 %% fatch results
43 textdata_path = fullfile(work_path ,'.dsdata',[file_id ,'_text.txt']);
44 dsdump_command = sprintf('%s %s > %s','dsdump',check_file_path ,

textdata_path);
45 runADS(dsdump_command ,textdata_path ,10);
46 obj_path = fullfile(work_path ,'.obj',[file_id ,'_obj.txt']);
47 copyfile(fullfile(ProjectPath ,'objective.txt'),obj_path);
48 value = csvread(obj_path);
49 movefile(ael_path ,fullfile(work_path ,'.ael'));
50 end
51

52 function cleanUpResults(check_file_path)
53 try
54 delete(check_file_path);
55 catch
56 return;
57 end
58 end
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59

60 function runStatus = runADS(ads_command , res_monitor , time_estim)
61 tic
62 system(ads_command ,'-echo'); pause(2);
63 while toc < time_estim
64 if exist(res_monitor ,'file')
65 runStatus = 0;
66 %system('taskkill /f /im "hpeesofde.exe"')
67 return;
68 end
69 pause(2);
70 end
71 if ~exist(res_monitor ,'file')
72 error('Run command error , no file outputs.');
73 end
74 end
75

76 function SaveAEL(SavePath , Content)
77 fid = fopen(SavePath ,'w');
78 fprintf(fid,'%s',Content);
79 fclose(fid);
80 end
81

82 function [comp_str , name_str , value_str] = ParseParameters(Parameters)
83 comp_str = jsonencode(Parameters.comp);
84 comp_str = comp_str(2:end -1);
85 name_str = jsonencode(Parameters.name);
86 name_str = name_str(2:end -1);
87 if length(Parameters.comp)==1
88 value_str = num2str(Parameters.value ,'%.2g,');
89 value_str = value_str(1:end -1);
90 else
91 name_str = strrep(name_str ,'[','list(');
92 name_str = strrep(name_str ,']',')');
93 comp_str = ['list(',comp_str ,')'];
94 Parameters.value = RoundCell(Parameters.value ,2);
95 value_str = jsonencode(Parameters.value);
96 value_str = value_str(2:end -1);
97 value_str = strrep(value_str ,'[','list(');
98 value_str = strrep(value_str ,']',')');
99 end

100 end
101

102 function outcell=RoundCell(incell ,n)
103 outcell = cell(size(incell));
104 for i=1:length(incell)
105 outcell{i}=round(incell{i},n);



B. File and Code Example with ADS 134

106 end
107 end
108

109 function file_id = DirectorySetup()
110 persistent sub_idx;
111 if isempty(sub_idx)
112 sub_idx = 1;
113 end
114 file_id = [datestr(datetime ,'yymmddHHMM -'),num2str(sub_idx)];
115 fprintf('Project id: %s ',file_id);
116 if ~exist(fullfile(pwd,'.ael'),'dir')
117 mkdir(fullfile(pwd,'.ael'));
118 end
119 if ~exist(fullfile(pwd,'.dsdata'),'dir')
120 mkdir(fullfile(pwd,'.dsdata'));
121 end
122 if ~exist(fullfile(pwd,'.fig'),'dir')
123 mkdir(fullfile(pwd,'.fig'));
124 end
125 if ~exist(fullfile(pwd,'.obj'),'dir')
126 mkdir(fullfile(pwd,'.obj'));
127 end
128 if ~exist(fullfile(pwd,'.log'),'dir')
129 mkdir(fullfile(pwd,'.log'));
130 end
131 if ~exist(fullfile(pwd,'testTemplate.ael'),'file')
132 CreatAELTemplate();
133 end
134 sub_idx = sub_idx+1;
135 end
136

137 function TemplateStr=CreatAELTemplate()
138 TemplateStr=['if (ael_file_exists(fix_path("./lyxAutoRunADS.atf")))\n'

...
139 '{\n' ...
140 '\tload(fix_path(".\\\\lyxAutoRunADS.atf"));\n' ...
141 '\tlyx_open_design(fix_path("_PROJECT_PATH_"),"_CELL_FULL_NAME_");\n' ...
142 '\tlyx_update_parameters(_COMP_ITEM_ ,list(_NAME_LIST_),list(_VALUE_LIST_)

);\n' ...
143 '\tlyx_run_sim_and_exist("_CELL_FULL_NAME_");\n' ...
144 '}\n'];
145 fid = fopen(fullfile(pwd,'testTemplate.ael'),'w+');
146 fprintf(fid,TemplateStr);
147 fclose(fid);
148 end



C. File and Code Example with TCAD 135

C File and Code Example of TCAD Interface

Here shows the content of a typical gtree.dat file.
1 # Copyright (C) 1994-2011 Synopsys Inc.
2 # swbtree vcurrent , Tue Mar 30 07:24:56 2021
3

4 # --- simulation flow
5 sde1 sde "-h 10240" {}
6 sde1 Hbuffer1 "0.03" {0.3}
7 sde1 Hchannel1 "0.01" {0.01}
8 sde1 Hbarrier1 "0.01" {0.01}
9 sde1 Hspacer1 "0.003" {0.004}

10 sde1 Hcap1 "0.0085" {0.0085}
11 sde1 SheetChargeSpacer "7e12" {7e+12}
12 sde1 SheetChargeBarrier "4e12" {4e+12}
13 sde1 SheetChargeCap "1e13" {1e+13}
14 sdevice3 sdevice "" {}
15 sdevice3 Vg "-1.2" {0.2}
16 Fmax2 svisual "" {}
17 Fmax2 P "MAG" {MAG}
18 svisual4 svisual "" {}
19 RF2 svisual "" {}
20 # --- variables
21 # --- scenarios and parameter specs
22 scenario default Hbuffer1 ""
23 scenario default Hchannel1 ""
24 scenario default Hbarrier1 ""
25 scenario default Hspacer1 ""
26 scenario default Hcap1 ""
27 scenario default SheetChargeSpacer ""
28 scenario default SheetChargeBarrier ""
29 scenario default SheetChargeCap ""
30 scenario default Vg ""
31 scenario default P ""
32 # --- simulation tree
33 0 1 0 {} {default} 0
34 1 2 1 {0.3} {default} 0
35 2 3 2 {0.01} {default} 0
36 3 4 3 {0.01} {default} 0
37 4 5 4 {0.004} {default} 0
38 5 6 5 {0.0085} {default} 0
39 6 7 6 {7e+12} {default} 0
40 7 8 7 {4e+12} {default} 0
41 8 9 8 {1e+13} {default} 0
42 9 10 9 {} {default} 0
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43 10 11 10 {0.2} {default} 0
44 11 12 11 {} {default} 0
45 12 13 12 {MAG} {default} 0
46 13 14 13 {} {default} 0
47 14 15 14 {} {default} 0

Here gives a code snippet of the TCAD interface.
1 function T = f_eval_obj_withpath(x,gtree_file ,project_path ,

export_file_list)
2 uuid = datestr(datetime ,'yymmddHHMMSS');
3 disp(['Project ID: ',uuid]);
4 %% Generate gtree.dat
5 % load x;
6 [work_path ,~,~] = fileparts(mfilename('fullpath'));
7 gtree_content = fileread(fullfile(work_path ,gtree_file));
8 for i = 1:length(x)
9 Vstr = ['_V',num2str(i),'_'];

10 gtree_content = strrep(gtree_content ,Vstr,num2str(x(i),'%.3g'));
11 end
12 fid = fopen(fullfile(work_path ,'gtree.dat'),'w');
13 fprintf(fid,'%s',gtree_content);
14 fclose(fid);
15 disp('Build gtree.dat successfully.');
16 disp(gtree_content); pause(2);
17 %% run Simulation
18 % project_path = '/home/tcad2017/STDB/AI_RF_20210527/';
19 % export_file_list = {'n23_Gain.csv','n24_Pdcmin.csv','n25_NFmin.csv '};
20 runSimulationLocal(project_path ,work_path ,export_file_list);
21

22 %% read results
23 T = cell(1,length(export_file_list));
24 for i = 1:length(export_file_list)
25 filepath = fullfile(work_path ,export_file_list{i});
26 if exist(filepath ,'file')
27 T{i} = readmatrix(filepath);
28 movefile(fullfile(work_path ,export_file_list{i}) ,...
29 fullfile(work_path ,'res',[export_file_list{i},'-',uuid]));
30 else, T{i} = [];
31 end
32 end
33

34 end
35

36 %% runSimulationLocal
37 function runSimulationLocal(remote_path ,work_path ,file_list)
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38 clean_up_str = sprintf('gcleanup -d %s',remote_path);
39 runCommand(clean_up_str);
40 commond_str = sprintf('cp gtree.dat %s',remote_path);
41 runCommand(commond_str);
42 commond_str = sprintf('gsub -e all %s',remote_path);
43 try
44 runCommand(commond_str);
45 catch
46 clean_up_str = sprintf('gcleanup -d %s',remote_path);
47 runCommand(clean_up_str);
48 runCommand(commond_str);
49 end
50 % fatch results
51 for i=1:length(file_list)
52 file_name = file_list{i};
53 file_path = fullfile(remote_path ,file_name);
54 res_path = work_path;
55 commond_str = sprintf('cp -f %s %s',file_path ,res_path);
56 runCommand(commond_str);
57 end
58 % disp('Run simulation successfully!');
59 end
60

61 %% runSimulationViaSSH
62 function runSimulationViaSSH(remote_path ,local_path ,file_list ,user,ip)
63 % clean up
64 % disp('2. Clean up previous computation.');pause(2);
65 clean_up_str = sprintf('ssh %s@%s "gcleanup -d %s"',user,ip,remote_path);
66 runCommand(clean_up_str);
67 % tansfer file
68 commond_str = sprintf('scp -rp gtree.dat %s@%s:%s',user,ip,remote_path);
69 runCommand(commond_str);
70 % run simulation
71 run_solver_str = sprintf('"gsub -e all %s"',remote_path);
72 % commond_str = sprintf('ssh -o ServerAliveInterval=300 %s@%s %s',user,ip

,run_solver_str);
73 commond_str = sprintf('ssh %s@%s %s',user,ip,run_solver_str);
74 % disp('3. Run simulation.');pause(2);
75 try
76 runCommand(commond_str);
77 catch
78 clean_up_str = sprintf('ssh %s@%s "gcleanup -d %s"',user,ip,

remote_path);
79 runCommand(clean_up_str);
80 runCommand(commond_str);
81 end
82 % fatch results
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83 % disp('4. Fatch results.');pause(2);
84 if remote_path(end) ~= '/', remote_path=[remote_path ,'/']; end
85 for i=1:length(file_list)
86 file_name = file_list{i};
87 file_path = [remote_path ,file_name];
88 commond_str = sprintf('scp %s@%s:%s %s',user,ip,file_path ,local_path)

;
89 runCommand(commond_str);
90 end
91 % disp('Run simulation successfully.');
92 end
93

94

95 function cmstat = runCommand(commond_str)
96 count_num = 0;
97 err_num = 0;
98 while count_num == err_num && err_num <10
99 try

100 [cmstat ,cmlog] = system(commond_str);
101 % fprintf('run commond successfully with status %d.',cmstat);
102 catch
103 err_num = err_num+1;
104 disp('Error occurred , retry it now...');
105 end
106 count_num = count_num+1;
107 end
108 if err_num >= 10
109 error('Run fail.')
110 end
111 end
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D Discussion: Reinforcement Learning and Optim-
ization

Recent developments in reinforcement learning (RL) have proven its capability in plenty
of human-level works, including but not limited to the game of Go [243], complex
video games [244], automatic drive [245], and control problems [246]. Derived from
Markov decision processes (MDPs), although RL research has gone through a long
history, its emphatic power has only emerged with the help of deep neural networks in
recent decades. In 2014, Deepmind published their research on playing Atari [244] and
declared the first deep reinforcement learning algorithm that outperforms all previous
approaches and surpasses a human expert, opening up a new era of artificial intelligence.
The DNN used in this algorithm was later called deep Q-learning networks (DQNs)
and has also become a classical method in modern deep reinforcement learning. The
subsequent research utilizing DNNs as a bunch of functional operators, like feature
extractor, function approximator, probability estimator, or category classifier, provides
plentiful remarkable variants in broad applications.

The prosperity of RL encourages more researchers to dive into this field. Some of them
perceive the connection between RL and optimization algorithms (although RL itself
uses stochastic gradient descent as the optimizer, it is not the purpose of RL) and
start applying RL in solving complex combinatorial problems, i.e., NP-hard problems.
[247, 248, 249, 250, 251, 252, 253] A couple of publications show that, compared to
the off-the-shelf heuristics, RL-based algorithms are more robust and can be trained
on small-scale training sets and applied to mediate new cases. A trained RL model can
also cooperate with heuristics and obtain a better solution in less time than before.
It is quite a promising area, however, such algorithms for combinatorial problems are
not suitable for the problems discussed in this thesis, since almost all optimization
problems are with the continuous domain.

The main characters of RL are the agent and the environment, as a comparison, the
main characters of optimization are the optimizer and the problem. In RL, the envir-
onment is the world that the agent lives in and interacts with. At every step of the
interaction, the agent takes action by its policy rule to the environment, observes the
state transition, and receives the reward. The observation of the state may be partial,
and the environment may be non-deterministic. The goal of the agent is to update
its internal policy rule to tackle the environmental state transition and maximize the
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cumulative reward, also called return. Since the cumulative reward involves future in-
formation, the agent must have the ability to forecast the expected reward from the
future and determine whether the current action is good enough. That is the difficulty
when considering the complicated action and state interactions.

As for the optimization, there is no concept of cumulative reward, while the objective
function of the problem is solely concerned. At every iteration, the optimizer suggests
new solutions and receives the corresponding function values (zero-order) from the prob-
lem. In some cases, gradient information (first-order) is also available, which will help
determine the solution more effectively. Differing from RL, optimization algorithms,
such as the Newton method, BFGS, and conjugate gradient method, always have rigor-
ous theories on convergence. This ensures the feasibility of applying algorithms to vari-
ous practical problems. Heuristic algorithms like evolutionary algorithm and particle
swarm optimization, have become popular in recent decades for their ability to global
exploration. A more general high-level term, metaheuristics, aims to seek, generate, or
select a heuristic strategy that provides a sufficiently good solution to the problem.
The core of metaheuristics is the search strategy, while the main difficulty lies in how
to design the strategy for a balanced exploration and exploitation ability.

Agent

Environment

State ActionReward

Optimizer

Problem

SolutionObjective 

value

Reinforcement 

Learning
Optimization

Figure D.1: Reinforcement Learning versus Optimization

As far as we know, there is no direct connection between RL and optimization. But
if you view the optimizer as an agent and the problem as the environment, where the
purpose of the optimizer is to explore the problem space and obtain a better solution,
the two things look somewhat similar, as shown in Figure D.1. Thereafter, the solution
can be seen as an action, and the objective value or any other information from the
problem can be seen as the state. Although this view bridges the gap between the two
concepts and is worthwhile to leverage from each other in both fields, it is far from
mature to widely apply. Some obvious drawbacks and open questions are listed here:

• RL needs tens to hundreds of thousands of episodes for training, which means it
is more computationally complex than heuristics for a given problem.
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• Although, after training, the inference cost is relatively low, it is not clear to
what extent the agent can be applied to new problems. In other words, the
generalization ability of an agent is doubtful.

• It is not adequate to only regard the objective function values as states, as such a
state may correspond to more than one action resulting in the action space being
much larger than the state space. In most cases, there is only one optimal action.
When optimization problems are black-box, this issue becomes more salient since
there is no information available other than the objective value from problems.
As we have discussed, design automation problems are such a type of black-box
optimization problem.

In summary, this appendix briefly reviews the development of reinforcement learning
in recent decades, and discusses the connection and differences between it with optim-
ization, aiming to provide a more comprehensive understanding of why reinforcement
learning algorithms should be adapted to specific optimization problems. Due to the
intensive need for training data and different application scenarios, reinforcement learn-
ing algorithms are unlikely to be used directly for the problems discussed in this thesis.
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