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Abstract

In recent decades, machine learning research has predominantly focused on single-modal data.
However, the emergence of multimodal data, such as images or videos accompanied by text,
particularly on social media platforms, has underscored the importance of advancing multimodal
learning. This thesis centers on multimodal learning, exploring ways to enhance the performance
of multimodal models—specifically those utilizing vision and language modalities. It aims to
improve the understanding and integration of multimodal data, thereby boosting performance in
downstream tasks such as crisis response, robotics, cross-modal retrieval, and recommendation.

In this thesis, we argue that enhancing shallow inter-modal and intra-modal alignment in
existing multimodal approaches can improve performance across different tasks by enabling
deeper alignment. To address this, we introduce a novel multimodal learning framework, named
MCA, designed to improve multimodal learning performance while maintaining flexibility across
various downstream tasks. The framework comprises three core components: Mixture-of-
Modality-Experts (MoME), Contrastive Learning Techniques, and Adapter Methods, each of-
fering unique functionalities.

Firstly, the Mixture-of-Modality-Experts (MoME) component is designed to manage a di-
verse range of input modalities and improve inter-modal alignment. Recent years have seen a
significant shift towards multimodal learning, yet many existing models are mere amalgamations
of single-modal models, using fusion layers to merge separate vision and language models. This
method often leads to shallow alignments and can compromise the effectiveness of multimodal
models. To overcome these limitations, MoME enables a unified model architecture, incorpo-
rating a modality-specific expert system adept at processing multimodal data (notably vision
and language) for a variety of downstream tasks, such as classification and image-text retrieval.
Benefiting from this design, MoME has the ability to process different combinations of input,
such as unimodal, multimodal, or mixed.

Secondly, to enhance intra-modal and inter-modal alignment and bolster performance across
both unimodal and multimodal contexts, we researched several innovative contrastive learning
techniques. Initially, our research focused on label-aware contrastive learning for image models,
resulting in a robust encoder for image inputs. Subsequently, we introduced an Optimized Learn-
ing Fusion strategy, termed CLCE, designed to refine the optimization process by integrating the
cross-entropy loss function with the contrastive learning loss function. Furthermore, we devel-
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oped a debiased contrastive learning approach aimed at mitigating label noise within the con-
trastive learning framework, thereby further enhancing model performance. Collectively, these
methodologies fortify the contrastive learning component of our multimodal learning frame-
work, significantly deepening inter-model alignment and augmenting overall effectiveness.

Thirdly, to address the challenges of efficiency and practicality associated with large-scale
models, we have developed an innovative approach to transfer learning utilizing adapters. As
the size of Multimodal Large Language Models (MLLMs) increases, their adaptation to specific
tasks becomes more complex, primarily due to heightened computational and memory require-
ments. Traditional fine-tuning methods, while effective, are resource-intensive and necessitate
extensive, task-specific training. Although various adaptation methods have been proposed to
mitigate these issues, they often result in inadequate inter-modal alignment, compromising the
models’ overall effectiveness. In response to these challenges, we present the MultiWay-Adapter
(MWA), a novel method equipped with an ‘Alignment Enhancer’. This feature significantly
improves inter-modal alignment, facilitating efficient model transferability with minimal tun-
ing. Consequently, the MWA emerges as a highly efficient and effective method for adapting
MLLMs, substantially enhancing their utility across a broader range of applications.

Each proposed approach within the framework is rigorously assessed using one or more
specially curated datasets for that component. This evaluation includes a detailed analysis of the
approaches, identifying suitable settings for their deployment, and providing insights into their
performance characteristics.

This thesis has made contributions to the field of multimodal learning by enhancing both
intra-modal and inter-modal alignment, improving computational efficiency, and validating the
proposed MCA framework in real-world applications. Our evaluations provide multiple pieces
of evidence for improved alignment and enhanced performance across various metrics in eval-
uated datasets, supporting our thesis statement. These advancements pave the way for future
research and development in creating more effective and efficient multimodal systems.

Furthermore, this thesis extends to the comprehensive evaluation and optimization of the
proposed framework across various domains, such as crisis response, robotics, and cross-modal
retrieval. Insightful findings are drawn from an extensive series of experiments that cover the
proposed framework of multimodal learning. The results presented within this thesis highlight
the improvements our framework contributes to both the overarching benchmarks of multimodal
learning and a wide array of downstream applications.

We applied multimodal learning to crisis response, addressing the limitation of prior works
that primarily use single-modality content. This thesis examines the importance of integrating
multiple modalities for crisis content categorization. We design a multimodal learning frame-
work that fuses textual and visual inputs, leveraging both to classify content based on specific
tasks. Using the CrisisMMD dataset, we demonstrate effective automatic labeling with an aver-
age of 88.31% F1 performance across relevance and humanitarian category classification tasks.
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We also analyze the success and failure cases of unimodal and multimodal models.
The second application of our multimodal learning framework is in robotic vision, which

requires tasks like object detection, segmentation, and identification. Integrating specialized
models into a unified vision pipeline poses engineering challenges and costs. Multimodal Large
Language Models (MLLMs) have emerged as effective backbones for various tasks. Lever-
aging the pre-training capabilities of MLLMs simplifies the framework, reducing the need for
task-specific encoders. The large-scale pre-trained knowledge in MLLMs allows for easier fine-
tuning and superior performance in robotic vision tasks. We introduce the RoboLLM frame-
work, equipped with a BEiT-3 backbone, to handle all visual perception tasks in the ARMBench
challenge. RoboLLM outperforms existing baselines and significantly reduces the engineering
burden of model selection and tuning.

The third application in this thesis is text-to-image retrieval, which finds relevant images
based on text queries. This is crucial for digital libraries, e-commerce, and multimedia databases.
While multimodal models show state-of-the-art performance in some retrieval tasks, they strug-
gle with large-scale, diverse, and ambiguous real-world needs due to computational costs and
injective embeddings. To address this, we present the two-stage Coarse-to-Fine Index-shared
Retrieval (CFIR) framework for efficient large-scale long-text to image retrieval. The first stage,
Entity-based Ranking (ER), handles query ambiguity using a multiple-queries-to-multiple-targets
paradigm. The second stage, Summary-based Re-ranking (SR), refines rankings with sum-
marized queries. We also propose a specialized Decoupling-BEiT-3 encoder for both stages,
enhancing computational efficiency with vector-based similarity inference. Evaluations on the
AToMiC dataset show that CFIR outperforms existing MLLMs by up to 11.06% in Recall@1000,
while reducing training and retrieval times by 68.75% and 99.79%, respectively.
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Chapter 1

Introduction

1.1 Introduction

Historically, machine learning has predominantly been unimodal, focusing either on text [159,
182, 286] or images [21, 42, 150]. Unimodal learning, which relies on a single type of data,
faces several limitations compared to multimodal learning [13, 17, 117]. It often provides lim-
ited context and information, reducing accuracy and robustness, particularly when the single
modality lacks sufficient details or contains noise. Unimodal models struggle with generaliza-
tion across different tasks and domains and offer a limited perspective, which is inadequate for
understanding complex phenomena [117]. They are also less effective in handling real-world
data, which is inherently multimodal, and cannot exploit interactions between different modali-
ties, crucial for nuanced tasks [13]. These constraints make unimodal learning less effective and
practical for diverse and complex applications.

On the contrary, multimodal learning, which integrates multiple types of data such as text and
images, has demonstrated considerable enhancements in a plethora of machine learning tasks,
as substantiated by numerous studies [184] [14]. This approach uncovers valuable insights that
may be hidden within images rather than solely in textual data. By concentrating exclusively on
one modality, potential nuances and insights could remain unexplored.

Moreover, with recent advances in deep learning, particularly in the fields of computer vi-
sion [81] and language modeling [46], there has been a heralding of a new era of potential for
multimodal learning [63, 104, 127, 225, 267]. The application of sophisticated visual recogni-
tion models, trained on datasets like ImageNet, enables the extraction of insights from images to
be combined with textual data. These advancements in unimodal deep neural models enable the
fusion of embeddings from different modalities, facilitating the creation of powerful multimodal
systems. This fusion is invaluable in applications such as crisis response, where messages may
comprise solely text, images, or a combination of both.

A critical challenge in this field is to achieve a comprehensive understanding of multimodal
content, necessitating the simultaneous analysis of both textual and visual data for holistic inter-
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pretation. The foundation for effective interpretation in multimodal learning lies in generating
high-quality embeddings for each modality. Unlike unimodal learning, multimodal learning re-
quires producing embeddings for all modalities within a unified semantic space. This process
involves not only intra-modal alignment (within a single modality) but also inter-modal align-
ment (between different modalities). For example, in the domain of crisis response, a tweet
might express a request for assistance through text, accompanied by an image depicting a scene
of devastation. Here, while the text delineates the nature of the request, the accompanying im-
age provides essential locational context. Although there have been ventures into this direction,
most previous works involve the use of separated dual backbones: separate encoders for text and
images. This approach has seen some success in multimodal contexts but is fraught with limi-
tations. The integration of modalities in these designs is often superficial (shallow inter-modal

alignment), limited to a few densely connected layers at best [13]. Moreover, The dual-encoder
architecture inherently increases the model’s size, leading to longer training and processing
times [231]. These models are also predominantly trained on datasets pairing text with images,
limiting their flexibility for single-modal downstream tasks. This situation is exacerbated by the
comparatively smaller size of text-image paired datasets relative to their single-modal counter-
parts, reducing the available training data and potentially compromising model performance.

Entering 2022, large language models emerged as powerful encoders for text input, excelling
in a wide range of tasks [3, 50, 123, 252, 275]. This advancement also benefited multimodal
learning research by providing more powerful encoders for different modalities, leading to the
development of Multimodal Large Language Models (MLLMs) [123, 252]. While MLLMs
offer superior performance compared to other neural models, they also present notable short-
comings, particularly their size [143, 145, 146, 148, 149, 271]. As MLLMs grow, adapting them
to specialized tasks becomes increasingly challenging due to high computational and memory
demands. Traditional fine-tuning methods are costly, requiring extensive task-specific training.
This issue underscores the need for efficient learning methods for MLLMs. Although some ef-
ficient adaptation methods aim to reduce these costs, they often suffer from shallow inter-modal
alignment, which significantly reduces model effectiveness [37, 222, 228, 279].

1.2 Thesis Statement

In this thesis, we argue that enhancing shallow inter-modal and intra-modal alignment in exist-
ing multimodal approaches can improve performance across different tasks by enabling deeper
alignment. To address this, we hypothesize that utilizing the three pivotal components proposed
in this thesis—Mixture-of-Modality-Experts (MoME), Contrastive Learning Techniques, and
Adapter Methods—will enhance both inter-modal and intra-modal alignment, leading to sig-
nificantly improved effectiveness and efficiency of multimodal models across a range of tasks.
The core of our framework comprises the MoME component, which leverages shared trans-
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former block parameters to enhance computational efficiency and facilitate deeper modality
integration, contrastive learning methods to improve fusion and alignment for better generaliza-
tion across data types, and adapter-based transfer learning techniques to address the practical
challenges of using large models efficiently. Our framework is expected to outperform state-
of-the-art models, such as LXMERT and VisualBert, in vision-language benchmarks including
Visual Question Answering (VQA) and Natural Language for Visual Reasoning (NLVR). Be-
yond standard benchmarks, our multimodal learning framework will undergo extensive testing
in real-world applications, focusing on three key downstream tasks: crisis response, image-text
retrieval, and robotics. We anticipate that our enhanced multimodal learning framework will
consistently solve real-world problems and exhibit superior performance in effectiveness and
efficiency across these diverse domains.

1.3 Contributions

This thesis contributes to the field of multimodal learning in two key ways. Firstly, we demon-
strate that shallow inter-modal and intra-modal alignment compromises the quality of the pro-
duced embeddings, thereby limiting overall performance. To tackle this, we introduce an innova-
tive multimodal learning framework, MCA, designed to address the issue of shallow alignment,
including both inter-modal alignment and intra-modal alignment, thereby enhancing effective-
ness and efficiency, in Chapter 4. Secondly, we research and optimize our proposed framework
across three distinct domains, demonstrating its superior performance and broad applicability,
from Chapter 7 to 9.

1.3.1 Contributions of the Proposed MCA Framework

This framework is structured around three principal components: contrastive learning tech-
niques, Mixture-of-Modality-Experts (MoME), and adapter methods. Each component is de-
signed to offer distinct functionalities that address specific challenges identified in the multi-
modal learning domain. These challenges include deepening inter-modal and intra-modal align-
ment, processing a diverse array of input modalities and ensuring the framework’s efficiency and
practicality for real-world applications. Importantly, while each component of our framework
targets specific obstacles outlined in Section 1.1, they are synergistically integrated, ensuring
robust effectiveness and efficiency.

Thereafter, we undertake an exhaustive examination of each component, wherein we pro-
pose, develop, and rigorously assess innovative methodologies aimed at enhancing their func-
tionality. Below, we outline our contributions for each component, demonstrating how they
collectively contribute to advancing the state of multimodal learning.

Firstly and most importantly, as stated in our thesis statement, we address the issue of shal-
low inter-modal and intra-modal alignment and improve performance across both unimodal and
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multimodal contexts by researching several innovative contrastive learning techniques. Given
that contrastive learning techniques were originally designed for visual learning and that visual
encoders play a crucial role in multimodal learning for providing robust intra-modal alignment,
we began our research by enhancing the effectiveness of image models through contrastive
learning methods. Initially, we focused on label-aware contrastive learning for image models
during the fine-tuning stage, resulting in a robust encoder for image inputs. Subsequently, we
introduced an optimized learning fusion strategy, termed CLCE, which refines the optimization
process by integrating the cross-entropy loss function with the contrastive learning loss func-
tion. Furthermore, recognizing that label noise is common in large training datasets, particularly
for multimodal learning datasets, we developed a debiased contrastive learning approach aimed
at mitigating label noise within our contrastive learning framework, thereby further enhancing
model performance. Collectively, these methodologies fortify the contrastive learning compo-
nent of our multimodal learning framework, significantly deepening inter-modal alignment and
augmenting overall effectiveness.

Secondly, the MoME component is designed to manage a diverse range of input modalities
and improve inter-modal alignment. Recent years have seen a significant shift towards multi-
modal learning, yet many existing models are mere amalgamations of single-modal models, us-
ing several fusion layers to merge separate vision and language models. This method often leads
to shallow alignments and can compromise the effectiveness of multimodal models. To over-
come these limitations, MoME enables a unified model architecture, incorporating a modality-
specific expert system adept at processing multimodal data (notably vision and language) for a
variety of downstream tasks, such as classification, recommendation, and image-text retrieval.
Moreover, previous studies have tended to concentrate on either unimodal or multimodal inputs,
neglecting the real-world scenario where inputs can vary—ranging from solely text to com-
binations of text and images. The MoME approach not only accommodates such variability
but also leverages larger unimodal datasets for pretraining, thereby overcoming the constraints
posed by the smaller size of multimodal datasets. This broader training foundation enriches the
model with more extensive pretrained knowledge, leading to improved performance. Within the
MoME framework, specialized experts are deployed for different modal inputs—for instance, a
text expert for textual data and a vision-language expert for combined visual and textual infor-
mation.

Thirdly, to address the challenges of efficiency and practicality associated with large-scale
models, especially for Multimodal Large Language Models (MLLMs), we have developed an
innovative approach to transfer learning utilizing adapters. Indeed, as the size of MLLMs in-
creases, their adaptation to specific tasks becomes more complex, primarily due to heightened
computational and memory requirements. Traditional fine-tuning methods, while effective, are
resource-intensive and necessitate extensive, task-specific training. Although various adaptation
methods have been proposed to mitigate these issues, they often result in inadequate inter-modal
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alignment, compromising the models’ overall effectiveness. In response to these challenges, we
present the MultiWay-Adapter (MWA), a novel framework equipped with an ‘Alignment En-
hancer’. This feature improves both inter-modal and intra-modal alignment, facilitating efficient
model transferability with little tuning. Consequently, the MWA emerges as a highly efficient
and effective method for adapting MLLMs, substantially enhancing their utility across a broader
range of applications.

1.3.2 Contributions from Practical Applications

In addition to developing the proposed framework, another major contribution of this work lies in
its application across three distinct domains: crisis response, robotics, cross-modal retrieval. We
meticulously tailored the proposed framework for optimized performance within each domain,
conducting comprehensive evaluations. These efforts resulted in achieving superior performance
benchmarks compared to the existing state-of-the-art solutions.

Specifically, we study the application of multimodal learning in the domain of crisis re-
sponse. We first begin our research on utilizing text data and aim at build robust text encoder to
subsequent research on multimodal learning. Social media platforms, like Twitter, are increas-
ingly used by billions of people internationally to share information. As such, these platforms
contain vast volumes of real-time multimedia content about the world, which could be invalu-
able for a range of tasks such as incident tracking, damage estimation during disasters, insur-
ance risk estimation, and more. By mining this real-time data, there are substantial economic
benefits, as well as opportunities to save lives. The COVID-19 pandemic attacked societies
at an unprecedented speed and scale, forming an important use-case for social media analysis.
However, the amount of information during such crisis events is vast and information normally
exists in unstructured and multiple formats, making manual analysis very time consuming. Most
prior works in this area use machine learning to categorize single-modality content (e.g., text or
images), with few studies jointly utilizing multiple modalities. In chapter 7, we examine the im-
portance of integrating multiple modalities for crisis content categorization and how inter-modal
alignment affect the performance. Specifically, we design a framework for multimodal learn-
ing that fuses textual and visual inputs, leverages both, and classifies the content based on the
specified task. Through evaluation using the CrisisMMD dataset, we demonstrate that automatic
labeling with multimodal data is effective with deep inter-modal alignment, achieving an aver-
age F1 performance of 88.31% across two important tasks (relevance and humanitarian category
classification), while also analyzing the success and failure cases of unimodal and multimodal
models.

Beyond the crisis response, we optimized our proposed multimodal learning framework in
robotic domain. Robotic vision applications often necessitate a wide range of visual perception
tasks, such as object detection, segmentation, and identification. While there have been sub-
stantial advances in these individual tasks, integrating specialized models into a unified vision
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pipeline presents significant engineering challenges and costs. With the integration of MLLMs,
our proposed framework can handle various robotic vision perception tasks. We argue that lever-
aging contrastive learning methods and the pre-training capabilities of MLLMs enables the cre-
ation of a simplified framework, thus mitigating the need for task-specific encoders. Specifically,
the large-scale pretrained knowledge in MLLMs allows for easier fine-tuning to downstream
robotic vision tasks and yields superior performance. We introduce the RoboLLM framework,
equipped with a BEiT-3 backbone, to address all visual perception tasks in the ARMBench
challenge—a large-scale robotic manipulation dataset about real-world warehouse scenarios.
RoboLLM not only outperforms existing baselines but also substantially reduces the engineer-
ing burden associated with model selection and tuning. This achievement demonstrates that the
enhanced performance of the multimodal learning framework can also contribute to performance
improvements in unimodal tasks. For example, RoboLLM solves the object identification task
with a 97.8% recall@1.

Another important application for multimodal learning is cross-modal retrieval, particularly
text-to-image retrieval. This task, which involves finding relevant images based on a text query,
is crucial in various use-cases such as digital libraries, e-commerce, and multimedia databases.
Although multimodal models demonstrate state-of-the-art performance in some retrieval tasks,
they face limitations in handling large-scale, diverse, and ambiguous real-world retrieval needs
due to computational costs and the injective embeddings they produce. Therefore, this the-
sis presents a two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework based on our
proposed multimodal learning framework, designed for fast and effective large-scale long-text to
image retrieval. The first stage, Entity-based Ranking (ER), addresses long-text query ambiguity
by employing a multiple-queries-to-multiple-targets paradigm, facilitating candidate filtering for
the next stage. The second stage, Summary-based Re-ranking (SR), refines these rankings using
summarized queries. Additionally, we propose a specialized Decoupling-BEiT-3 encoder, op-
timized for handling ambiguous user needs in both stages, enhancing computational efficiency
through vector-based similarity inference. Evaluation on the AToMiC dataset reveals that CFIR
surpasses existing MLLMs by up to 11.06% in Recall@1000, while reducing training and re-
trieval times by 68.75% and 99.79%, respectively.

In summary, the central contributions of this thesis include addressing the issue of shallow
inter-modal and intra-modal alignment in multimodal learning, as outlined in the thesis state-
ment, by introducing an effective and efficient multimodal learning framework. This frame-
work is applied to four impactful and distinct domains: crisis response, robotics, cross-modal
retrieval. This research draws from a diverse range of experiments across various domains, in-
cluding computer vision, natural language processing, and neural models, to validate and refine
the framework. We meticulously tailored the framework for optimized performance in each
domain and conducted comprehensive evaluations. The experimental results presented in this
thesis demonstrate the framework’s effectiveness and efficiency, highlighting its wide applica-

6



1.4. Origins of the Material

bility in enhancing performance across different tasks.

1.4 Origins of the Material

Portions of the research presented in this thesis have been previously disseminated through con-
ference proceedings and journal articles. The publications listed below are directly relevant to
the themes of this thesis and underpin the research elaborated upon in various chapters:

1. Zijun Long, Lipeng Zhuang, George Killick, Richard McCreadie, Gerardo Aragon Ca-
marasa, Paul Henderson. Understanding and Mitigating Human-Labelling Errors in Su-
pervised Contrastive Learning, The 18th European Conference on Computer Vision, Full
Paper, 2024. (Core A*, h5-index 238) [link]

2. Zijun Long, Xuri Ge, Richard Mccreadie and Joemon Jose. CFIR: Fast and Effective
Document-To-Image Retrieval for Large Corpora, 2023. International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, Full Paper, 2024. (Core
A*, h5-index 103) [link]

3. Zijun Long, George Killick, Richard McCreadie, Gerardo Aragon Camarasa. RoboLLM:
Robotic Vision Tasks Grounded on Multimodal Large Language Models, IEEE Interna-

tional Conference on Robotics and Automation, Full Ppaer, 2024. (Core A*, h5-index
119) [link]

4. Zijun Long, George Killick, Richard McCreadie, Gerardo Aragon Camarasa. MultiWay-
Adapater: Adapting large-scale multimodal models for scalable image-text retrieval. IEEE

International Conference on Acoustics, Speech, and Signal Processing, main, 2024. (h5-
index 123) [link]

5. Zijun Long, Richard McCreadie, Gerardo Aragon Camarasa, Zaiqiao Meng. LaCViT:
A Label-aware Contrastive Training Framework for Vision Transformers. IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, main, 2024. (h5-index
123) [link]

6. Zijun Long, George Killick, Richard McCreadie, Gerardo Aragon Camarasa, Zaiqiao
Meng. CLCE: An Approach to Refining Cross-Entropy and Contrastive Learning for
Optimized Learning Fusion, The 27th European Conference on Artificial Intelligence,
Full Paper, 2024. (h5-index 36) [link]

7. Zijun Long, Richard McCreadie, Muhammad Imran. CrisisViT: A Robust Vision Trans-
former for Crisis Image Classification. 20th International Conference on Information

Systems for Crisis Response and Management, main, 2023. (h5-index 21)[link]
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8. Zijun Long, Richard McCreadie. University of Glasgow Terrie Team at the TREC 2023
AToMic Track. TREC 2023.

9. Zijun Long, Richard McCreadie. Is Multi-Modal Data Key for Crisis Content Categoriza-
tion on Social Media? 19th International Conference on Information Systems for Crisis

Response and Management, main, 2022. (h5-index 21)[link]

10. Zijun Long, Richard McCreadie. Automated Crisis Content Categorization for COVID-
19 Tweet Streams. 18th International Conference on Information Systems for Crisis Re-

sponse and Management, main, 2021. (h5-index 21) [link]

11. Zijun Long, Xiaohang Wang, Yingtao Jiang, Guofeng Cui, Li Zhang, Terrence Mak. Im-
proving the Efficiency of Thermal Covert Channels in Multi-/many-core Systems. Design,

Automation and Test in Europe, main, 2017. (h5-index 49) [link]

• Chapter 4: The architectures of proposed framework and Mixture-of-modality-expert de-
sign were published in [2,3,4].

• Chapter 5: Three techniques we proposed to improve the effectiveness of contrastive
learning have been published in [1,5,6].

• Chapter 6: The efficient transfer learning method of adapter has been published in [4].

• Chapter 7: The application in crisis response of our proposed framework have been pub-
lished in [7,9,10].

• Chapter 8: The application in robotic vision of our proposed framework have been pub-
lished in [3].

• Chapter 9: The application in cross-modal retrieval of our proposed framework have been
published in [2].

1.5 Thesis Outline

The structure of this thesis is outlined as follows:
Chapter 2 lays the foundational knowledge required for understanding multimodal learning.

This chapter traces the evolution from traditional machine learning techniques to advanced deep
learning methodologies in both unimodal and multimodal contexts, complemented by a review
of relevant literature. It also introduces the concepts of contrastive learning and parameter-
efficient learning approaches as they pertain to Multimodal Large Language Models (MLLMs)
and Large Language Models (LLMs).
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Chapter 3 presents the benchmarks utilized to assess the performance of multimodal models,
alongside detailed descriptions of the datasets employed in the pretraining of our multimodal
models.

Chapter 4 describes the architecture of our proposed multimodal learning framework, in-
cluding the Mixture-of-modality-expert model and our enhancements to it.

Chapter 5 delves into the advancements in contrastive learning methods, focusing on their
role in developing a robust image encoder for multimodal learning.

Chapter 6 outlines our contributions towards designing parameter-efficient techniques, specif-
ically adapters, for the fine-tuning of MLLMs and LLMs.

Chapter 7 examines the application of our proposed multimodal framework in crisis re-
sponse.

Chapter 8 investigates the implementation of our proposed multimodal framework in robotics.
Chapter 9 discusses the utilization of our proposed multimodal framework in cross-modal

retrieval.
Chapter 10 provides concluding remarks and summarizes the contributions of this thesis.

Additionally, it discusses the limitations and presents several future directions that build upon
the foundation laid in this thesis.
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Chapter 2

Background and Related Work

As discussed in Section 1.2, this thesis focuses on addressing the issue of shallow intra-modal
alignment in multimodal learning to improve performance. Specifically, we focus on multimodal
learning using textual and image data. Text and images are among the most widely used and
rich sources of information in various applications. Textual data provides detailed, context-rich
information that can be used to understand complex narratives, sentiments, and specific details.
Images, on the other hand, offer visual context and can capture details that text alone might miss,
such as spatial relationships and visual attributes. By combining these two modalities, we aim to
leverage their complementary strengths to enhance the performance of multimodal learning sys-
tems. This combination is particularly useful in applications such as crisis response, where both
visual and textual information are crucial for accurate and timely decision-making. A schematic
view of the standard multimodal learning framework, along with its components and relevant
research areas, is presented in Figure 2.1. In a typical multimodal learning framework, sepa-
rate encoders are used to process language and visual inputs independently. The embeddings
from each modality are then fused using fusion methods, which generally employ contrastive
learning to ensure intra-modal alignment and place the embeddings in the same semantic space.
Furthermore, we not only evaluate the proposed framework, MCA, on general benchmarks but
also optimize and test it in real-world scenarios.

We begin with a description of traditional machine learning methods in language learning in
Section 2.1, followed by a discussion of more recent progress in deep learning methods for lan-
guage learning in Section 2.2. Next, we cover another important modality in this thesis, visual
data, starting with traditional machine learning methods in Section 2.3, and then proceeding to
deep learning approaches in Section 2.4. After reviewing the works in unimodal learning, we
provide a comprehensive background on multimodal learning in Section 2.5. We further intro-
duce the background of parameter-efficient learning approaches in Section 2.7. Subsequently,
we offer a detailed investigation of works from different domains: crisis response in Section 2.9,
cross-modal retrieval in Section 2.11, and robotic vision in Section 2.10.
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Figure 2.1: The general structure of a multimodal learning framework.

2.1 Traditional Machine Learning in Language

Machine learning models have been instrumental in the domain of text mining for an extended
period. Roughly before 2012, traditional Machine Learning techniques had become essential
tools for processing language data, which had been classified as Natural Language Processing.
Traditional methodologies in this realm frequently employ bag-of-words embeddings [286], a
technique where text is represented by the presence or absence of words from a predetermined
dictionary. Despite their widespread use, these models are inherently limited by their inability
to reconcile semantic discrepancies between the dictionary terms and the actual text [75, 243].
Furthermore, they treat words in isolation, which significantly constrains the depth of linguistic
meaning that can be captured, as contextual nuances and word relationships within the text are
largely ignored [75, 243].

As we transitioned around 2013, the field began to move away from bag-of-words models in
favor of shallow word-embedding techniques. This paradigm shift was largely facilitated by the
advent of pre-trained neural network models that transform individual words into vectors, which
are then aggregated to form a comprehensive vector representation of the text [159]. Unlike their
predecessors, these models are adept at capturing semantic relationships between words, thereby
addressing the semantic mismatch issue inherent in bag-of-words approaches. By designing
these models to assign similar vector representations to words with analogous meanings, they
significantly enhance the model’s ability to understand and process natural language in a more
nuanced and context-aware manner.

Expanding upon this, it’s essential to acknowledge the progression to more sophisticated

11



2.2. Deep Learning in Language

language models that build on the foundation laid by shallow embeddings. The development
of models such as Word2Vec [159] and GloVe (Global Vectors for Word Representation) [182]
marked significant milestones in natural language processing. These models not only improved
the efficiency and quality of embeddings but also introduced the ability to capture a broader
range of semantic and syntactic relationships between words.

In summary, the evolution from traditional bag-of-words models to contemporary neural
learning-based approaches in language processing reflects significant advancements in our abil-
ity to model and understand natural language. These developments underscore a shift towards
deep learning models, which are more contextually aware, semantically rich, and syntactically
sophisticated models, enabling a broad spectrum of applications in natural language processing
and beyond.

2.2 Deep Learning in Language

The advent of deep learning ushered in a transformative era in natural language processing
(NLP), marked by the development of more sophisticated embedding models capable of captur-
ing the nuanced meanings embedded within sequences of text. Early works by Simonyan and
Zisserman [214], Razavian et al.[209], and Antonellis et al.[69] laid the groundwork for these
advancements, significantly increasing the complexity of models to enhance their semantic un-
derstanding capabilities.

This evolution paved the way for the emergence of modern pre-trained deep neural language
models. Such models, characterized by their extensive complexity and generality, are designed
for embedding sequences of text. They are pre-trained on vast corpora, enabling them to perform
a multitude of natural language processing tasks with unprecedented efficiency and accuracy.
Today, the landscape of text categorization is dominated by these pre-trained neural language
models, with GPT (Generative Pre-trained Transformer) [191] and BERT (Bidirectional Encoder
Representations from Transformers) [46], along with their derivatives such as DistilBERT [205]
and RoBERTa (A Robustly Optimized BERT Pretraining Approach) [139], leading the charge.

Deep neural Language models before BERT [46], such as OpenAI’s GPT [191] and ELMo [183],
utilize unidirectional architectures for pre-training, limiting their ability to fully understand con-
text, especially for token-level tasks like question answering which require understanding from
both directions of a sentence. GPT [191], for example, can only process previous tokens with
its left-to-right design, while ELMo [183] adopts task-specific architectures for a feature-based
approach. These constraints led to the development of BERT [46], which introduces a bidirec-
tional approach through a masked language modeling (MLM) and next sentence prediction for
enhanced text-pair representations. BERT’s architecture allows for significant improvements
in efficiency, robustness, and performance across a broad range of natural language processing
tasks, achieving state-of-the-art results, including a notable increase in the GLUE benchmark
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score. Its unified framework facilitates easy application to various tasks with minimal adjust-
ments and short fine-tuning periods with the help of transfer learning methods. Moreover, BERT
demonstrates that scaling model size can lead to substantial performance gains, even with lim-
ited data, setting new precedents in NLP task performance. Despite its remarkable capabili-
ties, BERT has limitations, such as a maximum input length of 512 tokens and the requirement
of substantial computational resources, which can challenge its deployment on standard GPU
memory.

Around 2021, large models for languages based on transformer architecture, such as BERT
and RoBERTa, became commonly known as large language models (LLMs). These models
showcased unprecedented capabilities in language generation, comprehension, and various NLP
tasks, setting a new standard for LLMs. Exemplified by OpenAI’s GPT (Generative Pre-trained
Transformer) series, which further pushed the boundaries by demonstrating the power of unsu-
pervised pre-training on vast text corpora, followed by fine-tuning on specific tasks. GPT-3, with
175 billion parameters, showcased unprecedented capabilities in language generation, compre-
hension, and various NLP tasks, setting a new standard for LLMs. Building on the success of
GPT-3, OpenAI introduced ChatGPT [173], a conversational model based on the GPT-3 [19] ar-
chitecture, fine-tuned for dialogue generation. ChatGPT quickly became popular for its ability
to engage in coherent and contextually relevant conversations, making it suitable for applications
like customer service, virtual assistance, and interactive entertainment.

The evolution continued with the introduction of GPT-4 [174], which brought even greater
advancements in model size, performance, and versatility. GPT-4 demonstrated enhanced rea-
soning abilities, improved context understanding, and more accurate generation of text across
a broader range of topics. These advancements have significantly enhanced the integration of
LLMs in various applications, from sophisticated chatbots and virtual assistants to complex
content generation and multimodal learning frameworks, continuously driving the field forward
with ongoing research and development.

The construction of a robust text encoder is pivotal in developing a robust multimodal frame-
work, serving as a fundamental for enhancing the intra-modal alignment. The advancements in
models like GPT and BERT have not only revolutionized text categorization but have also set
new standards for the development of models capable of understanding and interpreting the
intricate interplay between text and other modalities, such as images and videos. Hence, our
research commences with the foundational task of building an effective text encoder, leverag-
ing the advanced capabilities of these deep learning models to enhance our understanding and
processing of natural language.
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2.3 Traditional machine learning in Visual

Before the advent of deep learning, machine learning in image recognition was a field rich with
diverse methodologies and approaches aimed at understanding and classifying visual content.
This section provides a comprehensive overview of the key techniques and milestones in im-
age recognition before deep learning became the dominant methods. Through examining these
foundational concepts and methods, we gain insight into the evolution of image recognition and
the groundwork it laid for the deep learning revolution.

Image recognition, a cornerstone task in the field of computer vision, involves identifying
objects, people, text, and other elements within digital images. Prior to deep learning’s preva-
lence, researchers developed various algorithms and models to tackle this challenge, relying
on hand-crafted features and classical machine learning techniques. We explore these pre-deep
learning methodologies, shedding light on their significance and how they paved the way for
today’s advanced neural network-based solutions.

The cornerstone of traditional image recognition was the extraction of meaningful features
from images. These features, which describe various properties such as edges, textures, and
shapes, were crucial for the subsequent classification tasks. There are several milestone studies:

• Edge Detection: Techniques such as the Canny, Sobel, and Prewitt operators were funda-
mental in identifying edges in images, serving as primary features for object detection and
recognition tasks [21].

• Scale-Invariant Feature Transform (SIFT): Lowe et al. introduced SIFT algorithm which
was a breakthrough, allowing for the detection and description of local features in images
that were invariant to scale and rotation, significantly aiding in object recognition and
matching tasks [150].

• Histogram of Oriented Gradients (HOG): The HOG descriptor, introduced by Dalal et al.
[42], was pivotal for object detection, particularly in pedestrian detection, by capturing
edge and gradient information distributed across localized regions of an image.

Despite the successes of these methods, there were significant challenges, including the
labor-intensive process of designing and selecting features, the difficulty in handling high vari-
ability within object classes, and the limited capacity to process complex scenes with multiple
interacting objects.

The era preceding deep learning in image recognition was marked by significant innovation
and development. Techniques such as SIFT, HOG, and SVMs were instrumental in advancing
the field, setting the stage for the deep learning revolution. While deep learning has since over-
shadowed these methods, understanding the evolution of image recognition provides valuable
insights into the complexities of visual perception and the ongoing quest to mimic human-level
understanding in machines.
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2.4 Deep learning over Images

Similar to text-based categorization discussed above, supervised image categorization is also
dominated by deep learned models. In this case, the item embedding step takes the pixel data
from the image as input, which is fed into a deep neural network that extracts some meaning
from the image. As before, the deep neural network will have been pre-trained on a number of
tasks, such as image classification or object detection [66, 198, 201], enabling it to learn what is
important to extract and embed from the image. A separate model or classification layer can then
be trained on-top of the deep neural model. On the other hand, unlike for text, there are currently
two competing architectures: convolutional neural networks (CNNs); and transformers. CNNs
have traditionally been the dominant neural network type used for image classification. The
reason for this is the input dimensionality is much higher for images than text (there are more
pixels in an image than words in a sentence), meaning effective dimensionality reduction is
key. Architecturally CNNs are advantaged here, as their convolutional structure forces them to
find the parts of the image that matter and discard the rest, enabling them to better generalize
to unseen examples. As a result, pre-trained CNNs are popular choices as baselines, such as
ResNet152 [81] and VGG [214].

Transformers were first proposed by [242] and have remained popular for NLP tasks. Several
state-of-the-art models such as BERT [46] and GPT [192] come pre-trained on large datasets,
often spanning several related tasks. These models can then be ‘tuned’ with new examples to
enable them to be applied for other tasks, while still leveraging much of the pre-trained network.
One of the key components of these models is the attention mechanism, which makes the em-
bedding of each token dependent on every other token (and those tokens’ relative positions) in
the input sequence, enabling these models to dynamically adapt the embedding of a token based
on the context it appears within. However, in the computer vision domain, a naive application of
the attention mechanism dramatically increases computational complexity, because the number
of pixels in an image is much higher than the typical number of words in a sentence. Therefore,
early works experimented with different methods to minimise the cost of attention, while main-
taining its benefits. For instance, [180] applied self-attention to only the local neighborhood for
each query pixel, while [256] applied attention to only small parts of the image instead. The re-
cent ViT model [49], introduced in 2020, was the first vision transformer model that was able to
apply attention globally with minimal modifications to the transformer architecture, but was still
incredibly expensive to train (over 2,500 TPUv3-core days). In 2021, a new MAE model was
proposed that addresses the speed problem through the use of a masked autoencoder architecture
with an encoder-decoder pre-training schema, which enables MAE to learn how to reconstruct
the original image based on only partial observations of that image [115]. This setting markedly
reduces the number of pixels that need to be fed into the transformer resulting in faster training,
and is the best current solution to this challenge. Explorations in various pretraining methods,
including SimMIM [262] and Data2vec [11], further advanced the field.

15



2.5. Deep learning in Visual-Language Learning

Building a robust image encoder is critical for providing better embeddings for visual input
and addressing the issue of shallow intra-modal alignment in multimodal learning. Given the
dominant performance of transformer-based image models, we began our research on enhancing
these models to develop an improved multimodal learning framework. However, despite these
advancements, a common challenge remains: the limited transferability of transformer-based
image models, particularly when using cross-entropy loss for fine-tuning [49, 292]. This moti-
vated us to explore solutions in Chapter 5, focusing on improving model transferability through
contrastive learning methods.

2.5 Deep learning in Visual-Language Learning

As noted earlier, most prior works in machine learning are unimodal, considering only a single
modality (text or images). However, several relevant multimodal tasks have been investigated,
including visual reasoning [227] and visual question answering [70]. In this thesis, we focus on
vision-language learning, which involves both visual and language inputs.

Most vision-language models for multimodal tasks train text and image encoders separately,
feeding the outputs into a final classification model [104, 267]. We believe this late-stage modal-
ity combination results in shallow intra-modal alignment, as stated in the thesis statement. Be-
yond the shallow intra-modal alignment issue, other problems such as efficiency and speed arise,
since simply extracting input features requires significantly more computation than the multi-
modal interaction steps. A less explored alternative is to use a unified architecture, where a
single embedding model takes both modalities as input, such as VISUALBERT [127] or VL-
BERT [225]. In these models, the modality combination and interaction occur early and through-
out the entire model. Recent work has indicated that this early interaction between modalities
can be beneficial to performance [283]. Furthermore, [231] proposed a model named LXMERT,
which applies a cross-attention mechanism to different modalities, enabling a new way to fuse
information from various modalities and achieving state-of-the-art results.

In this thesis, we aim to investigate how these architectures affect the performance of vision-
language learning and analyze their pros and cons. This analysis provides insights into how to
develop an enhanced multimodal learning framework that improves intra-modal alignment.

2.6 Contrastive Learning

Contrastive learning has emerged as a cornerstone in representation learning, particularly in
self-supervised and multimodal contexts. This section reviews its development, focusing on key
advancements, applications, and challenges.

The development of contrastive learning traces back to early explorations by Becker [16].
This approach aims to differentiate similar items from dissimilar ones within an embedding
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space. Specifically, contrastive learning is a learning paradigm that compares groups of ⟨item, prediction⟩
pairs, rather than considering each pair in isolation. The fundamental idea is to communicate to
the model the degree and direction of error in its representation by contrasting the embeddings
of correctly and incorrectly predicted examples. This process teaches the model to make the
embeddings of examples belonging to a single class more similar, while simultaneously pushing
apart the embeddings of examples from different classes.

Contrastive learning has demonstrated remarkable efficacy in improving deep learning model
performance across various domains [142, 143], including sentence [67, 134] and audio rep-
resentation learning [294], with its most notable impact observed in image recognition tasks,
exemplified by SimCLR [29] and other studies [144, 145, 149].

While integrating label information into contrastive learning has been explored, as in [109],
these efforts have primarily remained confined to the pre-training phase and have not been ex-
tended to vision transformers. Despite parallel advancements in both fields, the integration
of label-aware contrastive learning within the fine-tuning stage of vision transformers remains
unexplored. Therefore, in Section 5.2, we address this gap by pioneering the application of
contrastive learning during the fine-tuning phase of vision transformers, thereby enhancing their
transferability. This enhancement in vision encoders eventually improves the performance of
multimodal learning when integrating them into the framework. Additionally, these contrastive
learning techniques can be used in training multimodal learning frameworks to enhance intra-
modal alignment, such as the alignment of semantic information from different modalities.

2.6.1 Contrastive Learning in Multimodal Contexts

In multimodal learning, contrastive learning plays a pivotal role in aligning representations
across modalities. Models such as CLIP [190] and ALIGN [101] have successfully employed
contrastive objectives to create shared embedding spaces for text and images. These methods
align modality-specific representations by treating paired data (e.g., an image and its caption) as
positive pairs and unrelated data as negative pairs. This alignment enables impressive zero-shot
and few-shot capabilities in cross-modal retrieval and classification tasks.

2.6.2 Negative Mining in Contrastive Learning

The exploration of negative samples, particularly hard negatives, in contrastive learning has
emerged as a critical yet relatively underexplored area. While the significance of positive sam-
ple identification is well-established, recent studies have begun to unravel the intricate role of
hard negatives. The potential of hard negative mining in latent spaces has been validated in
numerous studies [39, 120, 226, 258, 265, 287]. These studies highlight the pivotal role of hard
negatives in enhancing the discriminative capability of embeddings. In the contrastive learning
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domain, [40] tackled the challenge of discerning true negatives from a vast pool of candidates
by approximating the true negative distribution. Later, [203] applied hard negative mining to
unsupervised contrastive learning, resulting in a framework where only a single positive pair is
utilized in each iteration of the loss calculation. However, these approaches still present limita-
tions, such as inaccurately identifying positive and negative samples and only using one positive
pair, which harms the performance of contrastive learning. [103] expand upon the concept of
hard negative mining within a supervised framework. Their approach employs a consistent
threshold-based dot product for identifying “hard” samples. However, determining an appro-
priate threshold remains challenging, as it varies significantly across different datasets and even
within individual mini-batches. Moreover, their methodology does not tackle the dependency
on large batch sizes, which is a critical limitation on performance and applicability.

By utilizing negative mining techniques, there is significant potential to improve the effec-
tiveness of contrastive learning methods, which in turn enhances the performance of multimodal
learning. These techniques can be employed in training multimodal learning frameworks to
further improve intra-modal alignment.Therefore, in Section 5.3, we propose a new objective
name CLCE, which builds on these foundational insights, aiming to synergize the strengths of
contrastive learning with Cross-Entropy (CE), particularly by employing hard negative mining
guided by label information. CLCE employs a dynamic and adaptive strategy to assign weights
to “hard” samples in each minibatch, offering a more refined approach compared to previous
studies. Additionally, CLCE achieves superior performance to CE without relying on large
batch sizes.

2.6.3 Human Labelling Errors and Contrastive Learning

Human-labelling errors are prevalent in many datasets used for supervised learning, especially
for large datasets where eliminating errors is impractical [169, 276]. Mislabeled examples can
lead to overfitting in models, with larger models being more susceptible [53, 77, 169, 219, 280].
Robust learning from noisy labels is thus crucial for improving generalization. Methods include
estimating noise transition matrices [138, 269, 272], regularization [89, 99, 282], and sample
re-weighting [200, 248].

Contrastive learning, particularly in unsupervised visual representation learning, has evolved
significantly [16, 24, 29, 33, 73, 278]. However, the absence of label information can result in
positive samples in negative pairs, potentially leading to detrimental effects on the represen-
tations learned. SCL leverages labeled data to construct positive and negative pairs based on
semantic concepts of interest (e.g. object categories). It ensures that semantically related points
are attracted to each other in the embedding space. Khosla et al. [109] introduce a SCL ob-
jective inspired by InfoNCE[172], which can be considered a supervised extension of previous
contrastive objectives—e.g. triplet loss [206] and N-pairs loss [137]. Despite its efficacy, the
impact of label noise and the importance of hard sample mining in SCL are often overlooked.
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We build on their work in Section 5.4 by devising a strategy that not only mitigates the impact
of human-labelling errors but also enhances the performance of the SCL objective.

Previous noise-mitigation works in SCL primarily target synthetic labelling errors, often
excluding human-mislabeled samples through techniques like specialized selection pipelines
[178] and bilevel optimization [99]. Recently, Sel-CL [128] introduced a non-linear projection
head for intra-sample similarity analysis to identify confident samples, and TCL [94] employs
a Gaussian mixture model with entropy-regularized cross-supervision. Despite these advances,
such methods risk overfitting on these confident pairs, particularly in the presence of human-
labelling errors, reducing their effectiveness in real-world scenarios as shown in our analysis
(Sec. 5.4.4). They also focus on artificially noisy datasets with synthetic noise rates up to 80%,
an unrealistic scenario in practice. Our proposed method in Section 5.4 instead specifically
targets human-labelling errors in common image datasets, optimizing SCL performance without
excluding all of these errors. In summary, mitigating human labeling errors further enhances
the effectiveness of contrastive learning methods, which in turn improves the performance of
multimodal learning through better intra-modal alignment.

In summary, contrastive learning has evolved into a robust framework for self-supervised
and multimodal learning. Its application in creating aligned, generalizable representations across
diverse data types continues to expand, making it a critical area of ongoing research in machine
learning.

2.7 Parameter Efficient Learning Approaches

Recently, increasing model size has been shown to be an effective strategy for improving perfor-
mance. Models such as BEiT-3 [252] and BLIP-2 [123], with up to 1.9 billion and 12.1 billion
parameters, respectively, have set new state-of-the-art results in multimodal tasks such as Vi-
sual Question Answering. However, their application to specialized downstream tasks is often
limited by computational constraints [143, 145, 146, 148, 149, 271]. For instance, the require-
ment for large GPU memory in full fine-tuning limits their adaptations for specialized tasks on
commodity hardware, e.g., 45 GB for full fine-tuning of the BEiT-3 Large model.

The challenge of computational efficiency in fine-tuning MLLMs has given rise to Parameter-
Efficient Transfer Learning (PETL) methods. These are broadly categorized into partial param-
eter updates [222] and modular additions [181, 228]. The former is resource-intensive and
model-specific, while the latter adds new modules to architectures, updating only these com-
ponents. However, most studies only focus on unimodal tasks in domains such as vision [197],
text [86] or audio [108, 233, 241], neglecting multimodal tasks. A few works [37, 222, 228, 279]
target multimodal tasks but suffer from shallow inter-modal alignment.

Therefore, in this thesis, to enhance the applicability of our proposed framework and en-
able evaluation in real-world scenarios, we research and propose a parameter-efficient learning
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method named MultiWay-Adapter in Chapter 6. This method is designed for efficient MLLMs
transfer learning and improved inter-modal alignment.

2.8 Target Use-cases

In this thesis, we target four critical domains to demonstrate the effectiveness of our proposed
multimodal learning framework: crisis response, cross-modal retrieval, robotic vision, and rec-
ommendation. Crisis response involves analyzing real-time multimedia content to provide timely
and accurate information during emergencies, enhancing decision-making and resource alloca-
tion. Cross-modal retrieval focuses on retrieving relevant images based on textual queries, a key
task in digital libraries, e-commerce, and multimedia databases. Robotic vision addresses the
need for advanced visual perception in robotics, encompassing tasks such as object detection,
segmentation, and identification in complex environments. Lastly, recommendation systems
are essential for personalizing content in online platforms, leveraging diverse data sources to
improve user experiences. These domains are explored in detail in subsequent sections, high-
lighting the related work and our contributions in each area.

2.9 Crisis Response

Social media is increasingly seen as a critical platform for emergency response, as a channel to
gather and analyze urgent information during a crisis [113, 118, 192]. For example, informa-
tion in Twitter has previously been shown to be useful for detecting infectious disease [270].
Indeed, within social media, a common task for emergency responders is to filter and catego-
rize information on these platforms with the aim of finding actionable content for the response
effort [116, 165, 186]. However, due to the large volumes of information published on social
media platforms, a tremendous amount of time and effort would be needed to perform this task
manually, which is simply impractical. To solve this, supervised machine learning solutions have
been proposed to do this task automatically [156, 212]. For example, Twitter data can help many
emergency departments [165] and public health agencies [62] to predict disease spread. More-
over, geographically tagged social media content has shown to be a valuable tool for tracing and
mapping disease outbreaks [257]. Meanwhile, the TREC Incident Streams (TREC-IS) track
examined the automatic categorization of social media posts into 25 information types [156].
These works have shown that supervised machine learned approaches for identifying actionable
information from social media are feasible, and to some degree, effective, although more work
is still needed in this area [63]. Therefore, we consider crisis response as a importance applica-
tion and we propose our solutions to this in Chapter 7. Therefore, we regard crisis response as a
critical and meaningful application and present our proposed solutions to fill the gap in Chapter
7.
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In later sections we provide a brief overview of recent papers in crisis informatics, as well
as past works within TREC Incident Streams track that are relevant to our investigation. Next,
we provide a brief summary of relevant works from the literature on content categorization for
pandemics, the TREC-IS initiative, and machine learning over social media data.

Social Media During Emergencies

Social media is a new but critical platform for relevant party to gather and analyse urgent infor-
mation, especially like Twitter. Information extraction from social media platforms like Twitter
is a recent but increasingly critical problem. Information collected via Twitter has previously
been shown to be useful for detecting infectious disease both spatially and temporally [270],
HIV/AIDS [62], seasonal influenza [165] and Ebola [110]. Indeed, within social media streams,
a common task for emergency responders is to classify documents based on the information they
contain. Twitter data, as a popular data source, can help many emergency departments [165] and
public health agencies [62] to predict disease spread. Moreover, geographically tagged social
media content has shown to be a valuable tool for tracing and mapping disease outbreaks [257].
However, up until now, few agencies actively take advantage of these resources.

TREC-IS Pilot Effort in 2020

The Text Retrieval Conference (TREC) Incident Streams track (denoted TREC-IS) is a public
data challenge that aims to tackle current issues with automatically extracting actionable con-
tent from social media during crises. TREC-IS provides an excellent opportunity to develop
and evaluate AI systems for crisis response. At a high level, participant TREC-IS systems can
perform two tasks: classifying tweets by information type, and ranking tweets by criticality. For
both tasks, given an event, a participating system receives a stream of filtered, event-relevant
tweets and an ontology of information types from TREC-IS. The goal of that system is to pro-
duce tweet-level labels and priority ratings, which they then submit for evaluation. TREC-IS
has run editions in 2018, 2019 and 2020. Importantly for this work, in response to the global
COVID-19 pandemic the 2020 editions of TREC-IS introduced a COVID-19 sub-task and pro-
vided labelled tweets for evaluation. In particular, TREC-IS 2020 defines information ‘types’ to
represent categories of information that emergency response officers might find interesting, for
TREC-IS 2020 COVID-19 task (Task 3), the information types are as follows:

1. GoodsServices: The user is asking for a particular service or physical good.

2. InformationWanted: The user is requesting information.

3. Volunteer: The user asks people to volunteer to help the response effort.

4. EmergingThreats: The user reports problems may cause loss of life or damage.

5. NewSubEvent: The user reports a new occurrence that officers need to respond to.

6. ServiceAvailable: The user says that he or someone else is providing a service.
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7. Advice: The author provides some advice to the public.

To capture the importance a given message has to emergency response officers, TREC-IS
defines four information criticality labels: low, medium, high, and critical, where high- and
critical-level messages require prompt or immediate review and potentially action by an emer-
gency manager. For instance, examples of critical information might include calls for search and
rescue, emergence of new threats (e.g., a infected patient), or calls for emergency medical care.

Machine Learning Approaches

For reference, we consider classical approaches to be those that rely on either bag-of-words or
shallow embeddings to represent tweet text. Indeed, according to a 2019 review conducted by
McCreadie et al. for TREC-IS Task 1 and 2 (Crises), classical classifiers can still be very com-
petitive and robust, even when comparing to state-of-the-art deep neural network models [155],
although that study did not cover pandemic-type events like COVID-19.

In contrast, recently, pre-trained deep neural language models have become popular as they
are very effective methods to encode meaning contained within sequences of text [6, 209, 214].
These models replace the traditional bag-of-words or shallow word embeddings used by clas-
sical models. At the time of writing, the most widely used neural language model is the trans-
former BERT model [46] and its subsequent variants. For the purposes of classification, BERT
and similar models can be tuned to produce a numeric vector representing a text sequence, which
can then be passed to a traditional classification model. While models like BERT are widely seen
as superior to more traditional text representation approaches [261], they are not yet commonly
used in production systems due to their high computational cost and the need for dedicated GPU
acceleration.

It is worth noting that models like BERT can be re-trained or tuned to make them more
effective for particular domains or tasks. In the COVID-19 space, [164] recently produced
an updated BERT model by re-training it over a COVID-19 twitter dataset. However, given
the small gains in down-stream performance reported (around 0.03 F1) and the large cost of
retraining the model, it is unclear whether the benefits are worth the effort and cost.

Tackling Class Imbalance

A concern with content classification for COVID-19 is the class imbalance [97, 111, 255]. For
TREC-IS Task 3, there are 7 categories of interest, where only a small proportion of the tweets
belong to each class. This is a challenge when training models, as there are few positive ex-
amples to learn from, leading to model bias towards the majority class. Moreover, from a task
perspective, emergency responders are more sensitive to failures regarding the positive class, as
this represents potentially useful information not being surfaced to the user.
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A common approach for solving class imbalance is to balance the number of positive or
negative samples used for training. For example, by down-sampling the majority class, over-
sampling the minority class, or using a combination of the two [25, 51, 111, 153]. Alternatively,
a number of learning methods that intrinsically account for class imbalance have been proposed,
e.g. [111]. However, these require larger numbers of positive samples to be effective than are
available for this task, hence we employ sampling methods here. Deep neural network models
also suffer from imbalanced training data [92, 98]. Hard sample mining is a technique that has
been exploited in computer vision to solve the class imbalance, e.g. for tasks such as object
detection [58, 213], image categorisation [171], and unsupervised representation learning [253].
Hard sample mining focuses on selecting samples that represent difficult to classify, as they
carry more discriminative power for the classifier to learn from.

TREC-IS Participant Systems

Participants to TREC-IS 2020 have developed a range of initial solutions for the COVID-19 task,
where details can be found in the associated technical reports (known as ‘notebooks’) provided
by TREC.1 For instance, [246] experimented with two multi-task transfer learning approaches,
one is an encoder-based model like BERT, while the other one leverages a sequence-to-sequence
transformer, such as T5. These models do not explicitly attempt to counteract the problems
of class imbalance in the crisis data. In contrast [211] tackle this problem via the automatic
generation of additional examples via a synonym-augmentation strategy using the CrisisMMD
dataset as a ground truth. Notably, this work applies a VGG model to classify images attached to
the tweets, enabling both text and image data to be considered, which to some degree alleviates
the issues with class imbalance.

2.9.1 Image content from Social Media platforms for Crisis Response

Social media is increasingly seen as a critical information and communication platform during
emergencies, as a channel to gather and analyze urgent information during a crisis [118, 192,
236]. However, the majority of prior work in this space has focused on analysing textual content
posted to these platforms rather than imagery [96]. On the other hand, recent works have begun
to explore the value-add that crisis images posted to social media platforms can bring, as well
as how to minimise the costs associated to image analysis through AI automation. For example,
[167] demonstrated that crisis images on social media can be used for a variety of humanitarian
aid activities (such as identifying areas in need of goods and services). Meanwhile, [1] showed
that social media images are helpful for damage assessment during flooding events, while [43]
illustrated that geotagged images can be used to identify affected regions in need of aid. Func-
tionally, crisis image analysis can be seen as a classification or tagging problem, where a human

1https://trec.nist.gov/proceedings/proceedings.html
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or machine needs to analyse the image and then assign a label or labels to that image.
To-date the crisis image domain has largely focused on four image classification use-cases:

• Disaster Type Detection: The high-level classification of the type of disaster depicted
within an image, such as an earthquake, fire or flood.

• Informativeness/Usefulness: The classification of images to determine whether it contains
some form of valuable information for an emergency responder. Typically represented as
a binary informative/not informative classification.

• Humanitarian Categories: This form of classification is focused on what is happening
within the image, where the goal is to identify images that are relevant to different types
of humanitarian response activities. Common humanitarian categories include images
of affected individuals, images of infrastructure or utility damage, or images of people
needing rescue.

• Damage Severity: Finally, one common use for crisis images is to judge the severity of
damage in a particular area, which is useful for response prioritization or damage costing
purposes. The damage severity task mainly targets three levels: severe damage, mild
damage, and little or no damage.

2.9.2 Multimodal Learning in Crisis Response

In the crisis informatics domain, there has been recent interest in multimodal learning for tasks
such as tagging of social media data [2]. For instance, [170] proposed a multimodal deep learn-
ing pipeline to aid disaster response using a late interaction between a custom CNN for text and
VGG16 [214] for images. They use joint representation for text and image, which means two
parallel and separated architectures for text modality and image modality. For image modality,
they use famous VGG16 to extract high-level features in images. For text, they define a Con-
volution Neural Network (CNN) with five hidden layers and different filters. But they only try
their model on a small subset of Crisismmd dataset. They choose this subset because it is same
label of those samples for text and image. In another word, they avoid the problem of handling
different label or prediction for text and image. Furthermore, how to represent features of text
and image is a critical research question for multimodal learning. However, this paper only sim-
ply concatenate output from two separated models for text and image, respectively. And they
put concatenated vectors into another hidden layer and then use SoftMax as output function.
This obviously is not the best solution. Meanwhile, [295] proposed a similar late interaction
model, combining FastText [105] for text and VGG16 [214] for images. Thus, in this thesis, we
examine the impact of our proposed multimodal framework in Chapter 4, and explore how to
optimize the framework to achieve better performance in Section 7.2.
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2.10 Robotic Vision

Robotic vision is a crucial downstream task chosen for this thesis due to its significant impact
on various industries, including manufacturing, logistics, and service robotics. The ability of
robots to accurately perceive and interpret their environment is fundamental to performing com-
plex tasks such as object detection, segmentation, and manipulation. Advancements in robotic
vision can lead to more efficient and autonomous robotic systems, reducing the need for hu-
man intervention and increasing productivity. By integrating multimodal learning approaches,
we aim to enhance the capabilities of robotic vision systems, enabling them to handle diverse
and dynamic real-world environments with greater precision and reliability. The following sec-
tion reviews related work in this domain, highlighting the challenges and existing solutions that
inform our research.

2.10.1 Multimodal Large Language Models for Robotic Vision

Recently, Multimodal Large Language Models (MLLMs) have achieved new state-of-the-art re-
sult, delivering superior performance across a wide range of vision and vision-language bench-
marks. Their exceptional capabilities are most notable in few-shot and zero-shot scenarios, as
evidenced by a series of studies [3, 50, 123, 252, 275]. Their efficacy comes from extensive pre-
training on large-scale corpora of image-text data, enabling them with superior transfer capabil-
ities. Palm-E, a pioneer in the use of MLLMs in the robotics domain, has exhibited state-of-the-
art performance in embodied robotic planning scenarios [50]. Furthermore, research indicates
that the multimodal large-scale training of image-text pairs results in models with enhanced ro-
bustness to out-of-distribution examples [154] compared to their unimodal counterparts. This
enables MLLMs show superior performance in unimodal tasks, such as vision tasks, when com-
pared to vision-specific pretrained models [123, 252]. As such, MLLMs present a compelling
case for serving as backbone encoders in complex robotic vision applications, which often con-
sist of multiple sub-tasks. In the method we propose in Chapter 8, we take the advantage of
the power of MLLMs and tune the method for robotic vision tasks. This enables us to improve
the effectiveness of robotic vision pipeline yet significantly reduce the engineering efforts and
tuning time.

2.10.2 Image Segmentation in Robotic Vision

Object instance segmentation involves simultaneously predicting pixel-level instance masks and
their corresponding class labels. Though the most prevalent backbones for these detector models
have been Convolutional Neural Networks (ConvNets) [118], such as R-CNN [66] and Faster
R-CNN [201], the Vision Transformer (ViT) [49] has emerged as a potent alternative for image
classification tasks. The original ViT architecture is non-hierarchical; this characteristic hinders
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its applicability in object instance segmentation due to a lack of innate translational equivari-
ance [48] and difficulties in handling high-resolution inputs because of the quadratic complexity
of self-attention. Therefore, some models aim to mitigate these challenges by incorporating
ConvNet designs into ViT, integrating hierarchical structures and translation-equivariant priors
such as convolutions, pooling, and sliding windows (e.g., Swin [140], MViT [57], PVT [251]).
These approaches compromise the model’s general applicability by coupling pre-training and
fine-tuning requirements. Subsequent efforts have explored plain ViT backbones specifically
for object instance segmentation, such as UViT [32], a single-scale Transformer for object de-
tection. Unlike UViT, ViTDet [130] offers an approach that retains the task-agnostic nature of
ViT backbones, thereby facilitating their broader applicability. In Chapter 8 of this thesis, we
extend the line of inquiry initiated by ViTDet in the robotic vision domain, opting for a plain
backbone architecture decoupled from the detection task, which allows for easier deepening the
intra-modal alignments.

2.10.3 Image Retrieval in Robotic Vision

ARMBench is a large-scale benchmark dataset designed for perception and manipulation chal-
lenges in robotic pick-and-place settings. Collected in an Amazon warehouse, it captures a
wide variety of objects and configurations. The dataset includes images and videos of differ-
ent stages of robotic manipulation, such as picking, transferring, and placing, all accompanied
by high-quality annotations. Object identification in ARMBench can be tackled as an image
retrieval task, a well-studied area in computer vision with applications in robotics for scene
localization [4] and place recognition [35]. Traditional methods have focused on aggregating
ConvNet feature maps using various pooling techniques such as R-MAC [237] and GeM [188],
the latter of which has achieved state-of-the-art performance. Recently, the advent of vision
transformers [49] has initiated a shift away from ConvNets, often surpassing them in perfor-
mance [54, 218] and reducing the need for specialized aggregation methods [54]. As for the
objective functions for training, they have commonly employed contrastive or triplet loss func-
tions [38, 68, 157]. Thus, contrastive learning has been shown to be effective in training image
retrieval tasks.

In Chapter 8 of this thesis, we fine-tune a Multimodal Large Language Model (BEiT-3)
with contrastive loss, leveraging its large-scale pretraining for effective object identification. We
argue that if the produced embeddings are sufficiently good, there is no need for complex feature
processing methods or ranking techniques. This aligns well with the objective of RoboLLM,
which aims to reduce engineering efforts in model tuning and enhance efficiency.
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2.10.4 Defect Detection in Robotic Vision

Research in defect detection has been primarily oriented toward identifying surface defects in
materials such as fabric, metals, and concrete [23, 152, 195]. Though the primary goal is to
ascertain the existence of a defect, certain applications necessitate the specific type of defect to
be classified, localized, and segmented [121, 230]. Feng et al. [60] employed an autoencoder
pretraining method for defect detection with limited training data, while Hu et al. [87] intro-
duced a lightweight spatial-temporal model incorporating local attention and PCA reduction to
detect thermography defects. In contrast, ARMBench presents a large-scale challenge in which
defects can manifest in various forms. Obtaining examples of defects for all objects is often
infeasible, necessitating a model that can generalize to defects in unseen forms. We hypothesize
that MLLMs, which are pretrained on large-scale datasets, can significantly improve the model’s
ability to handle out-of-distribution samples.

2.11 Cross-modal Retrieval

In Chapter 9 of this thesis, we address the third application: text-to-image retrieval. Text-to-
image retrieval aims to locate relevant images in a database given a text query, which has a
wide range of use-cases such as digital libraries, e-commerce, and multimedia databases. Con-
sequently, there is a growing interest in developing effective models for this task.

The adoption of Convolutional Neural Networks (CNNs) into image retrieval marked a trans-
formation in feature extraction capabilities. Key architectures such as VGG [214] and ResNet
[81] paved the way for efficient representation of visual data. On the textual front, Recurrent
Neural Networks (RNNs) and their offshoots, LSTMs and GRUs, offered significant advance-
ment in processing sequences, rendering them suitable for textual data [158]. From around 2015,
efforts turned towards creating shared embeddings for both images and text. One noteworthy
method was the Deep Visual-Semantic Embedding model (DeViSE) [61], which merged visual
and textual information in a common vector space. A multimodal residual network was proposed
by Wang et al. [247], achieving state-of-the-art results on several benchmark datasets. In recent
years, the community shift the research interest to transfer Learning and Pre-trained Architec-
tures. The success of pre-trained models in NLP, especially the transformer architecture like
BERT [46], prompted exploration in image-text retrieval. The visual counterpart, ViT (Vision
Transformer), was introduced, which treats images as sequences of patches [49]. Cross-modal
pre-trained models, such as UNITER [34], combined images and text in a unified framework,
learning shared representations that drastically improved retrieval performance. Zero-shot is
also a critical evaluation aspect of VL models . Therefore, with the rise of Few-shot Learn-
ing, models like CLIP [189] exemplified the capacity for zero-shot transfer across a range of
visual and language tasks, indicating the growing unity between image and text models. Few-
shot learning methods, like TIRG [102], explored using minimal data for effective image-text
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retrieval, crucial for real-world applications where abundant labelled data isn’t always available.
Nevertheless, there are still many challenges in this area, for example:

• Image-text retrieval remains computationally intensive, with efforts to streamline and op-
timize current models [135].

• Exploring the synergy between unsupervised learning and retrieval tasks offers promising
results [31].

2.11.1 Small-scale and Caption-based Text-to-Image Retrieval

A majority of existing Text-to-Image retrieval methods [26, 65, 93, 126, 141] concentrate on
small-scale and caption-based benchmarks, such as MSCOCO [133] and Flickr30K [274]. They
often excel by employing intra-modal and inter-modal attention mechanisms to align entity
semantics across modalities. Specifically, they try to ensure that the meaning or represen-
tation of specific entities is consistent when interpreted through different modalities. Meth-
ods such as [59, 187, 208, 249, 250] adopt a two-stage retrieval strategy to further refine the
feedback results based on one-stage ranking to obtain more accurate retrieval. For instance,
MTFN [250] introduced a generic text-to-image re-ranking scheme for refinement during the
inference process without requiring additional training procedures. Moreover, JGCAR [249]
and LeaPRR [187] proposed modeling the higher-order neighbor relationship-aware attentions
for text-image retrieval in a learnable two-stage re-ranking paradigm. However, most of these
methods designed a relatively complex first-stage multimodal interaction model to establish a
precise candidate set for the subsequent stage re-ranking process. These methods are compu-
tationally intensive and do not scale well to large datasets with long textual queries and di-
verse topics of images. Recent advancements in Multimodal Large Language Models (MLLMs)
[36, 124, 132, 189, 216, 234, 252, 288] signify a paradigm shift in the field. While these models
offer robust performance in Text-to-Image retrieval, their application to large-scale, long-text
queries for image retrieval presents challenges in both efficiency and effectiveness due to the
computational cost of MLLMs and issues with injective embeddings [221, 266]. In response,
in Chapter 9, we proposes a novel two-stage coarse-to-fine index-shared retrieval framework
tailored to address these challenges.

2.11.2 Large-scale Text-to-Image Retrieval datasets

AToMiC [266] is a recently released dataset for large-scale long-text to image retrieval, intro-
duced by TREC 2. AToMiC is built upon the WIT dataset [266]. AToMiC distinguishes itself by
focusing on section-level image-text associations for multimedia content creation, emphasizing
the use of English Wikipedia sections without images for a more realistic text-image context.

2https://trec.nist.gov
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Unlike WIT, which is employed for broader tasks like image-caption matching and generation,
AToMiC is tailored for ad hoc retrieval tasks, reusing WIT’s images and metadata but providing
image pixel values in a standardized format. Therefore, AToMiC is the only and the best option
to evaluate the performance of models in the context of large-scale long-text to image retrieval.
evaluate long In this paper, we target the large-scale long-text to image retrieval (LLIR) task in
AToMiC. This task is designed to retrieve images from large image collections based on a long-
text query for scenarios such as article writing. It encompasses more than 21 million images and
textual documents, offering two distinct evaluation settings: a base setting and a large setting.

Both settings utilize a training set comprising 4,401,903 query-document relevance assess-
ments (qrels), a validation set with 17,801 qrels, and a test set containing 9,873 qrels. In the
base setting, each image is accompanied by at least one corresponding long document, and re-
trieval candidates are limited to the labelled images that are as least relevant to one document.
In contrast, the large setting extends the candidate pool by incorporating an additional 7,608,283
images, offering a more challenging retrieval context.

In Chapter 9, we use the AToMiC dataset to train and evaluate the performance of our pro-
posed framework.

Challenges in MLLM-based approaches In contrast to small-scale image-caption datasets
such as MS COCO [133], as shown in Figure 9.2, which comprises 165,000 images with text
descriptions averaging 11.53 tokens and corresponding to a single ground-truth image, AToMiC
presents a more realistic simulation of LLIR applications. It uses longer, multi-faceted (ambigu-
ous) real-world documents, averaging 415 text tokens, and maps them to multiple ground-truth
images. These characteristics of LLIR introduce challenges to state-of-the-art MLLM-based
approaches, which are primarily in the realms of retrieval effectiveness and computational effi-
ciency.

In regard to retrieval effectiveness, the issues manifest in two ways. First, the complexity
and multi-faceted nature of long documents introduce semantic ambiguities, making it more
difficult for injective models to accurately discern text-to-image similarities. Second, this chal-
lenge is further exacerbated by the expanded pool of candidate images, complicating the task of
identifying the most relevant matches.

On the computational front, inefficiencies are also divided into two parts. Firstly, the infer-
ence stage in current MLLM-based methods demands an exhaustive pairing of each query with
database items, which are then processed by the MLLM to predict matching scores [122, 127,
129, 151, 231]. This model-based similarity inference is both computationally intensive and
time-consuming, particularly when compared to vector-based distance computations. Secondly,
the act of encoding long documents for semantic matching is itself a time-consuming process.
These inefficiencies limit the practical applicability of MLLMs to large-scale retrieval tasks,
despite their promising accuracy. Therefore, in Chapter 9, we propose an efficient multimodal
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learning framework to tackle these issues.

2.12 Keywords and Definitions

Thus far, we have presented a comprehensive overview of the background and relevant literature.
This section will outline additional definitions for some key terms commonly used in this thesis
to enhance your understanding.

Alignment

Alignment refers to the process of ensuring that information from different modalities (e.g., text,
images, audio) corresponds accurately to the same underlying concept or meaning [78, 131]. In
the context of multimodal systems, alignment often involves mapping features from different
modalities into a shared or comparable representation space, enabling effective integration and
analysis. Alignment can be shallow or deep, depending on the level of integration, as detailed
below.

Shallow Alignment

Shallow alignment involves aligning modalities at a lower or less abstract level, typically by syn-
chronizing features from different modalities without deep semantic integration. For instance,
shallow alignment may involve concatenating or aligning features based on simple spatial or
temporal correspondences [78, 131]. This method is computationally efficient and suitable for
tasks where high-level semantic understanding is not crucial.

Deep Alignment

Deep alignment, in contrast, integrates modalities at a higher, more abstract level. It involves
learning complex, shared representations that capture the deep semantic relationships between
modalities [78, 131]. This approach is essential for tasks requiring nuanced understanding and
interaction between modalities, such as multimodal reasoning or cross-modal retrieval.

Increased Alignment

Increased alignment refers to the enhancement of correspondence and coherence between mul-
tiple modalities or features in a multimodal system [12, 220]. This improvement can occur
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through refined techniques for mapping, integrating, or synchronizing data from different modal-
ities. Increased alignment often involves optimizing representations to better capture semantic,
temporal, or spatial relationships, thereby reducing ambiguity or misinterpretation. The goal of
increased alignment is to ensure that the modalities complement each other more effectively,
leading to improved performance in downstream tasks such as multimodal reasoning, cross-
modal retrieval, and predictive modeling.

Measuring the Increase in Alignment

The increase in alignment between modalities can be quantified through various metrics and
evaluation methods, depending on the task and the system architecture. Common approaches [12,
220] include:

1. Representation Similarity Metrics

To measure the alignment in a shared representation space, cosine similarity is often used. Co-
sine Similarity: Quantifies the similarity between feature vectors of different modalities in the
shared space. Increased alignment results in higher cosine similarity values for semantically
related data.

2. Cross-Modal Retrieval Accuracy

In tasks such as image-to-text or text-to-image retrieval, increased alignment leads to higher
retrieval accuracy. Metrics include:

• Precision@K: Evaluates the proportion of correctly retrieved items in the top-K results.

• Recall@K: Measures the proportion of relevant items retrieved within the top-K results.

• Mean Reciprocal Rank (MRR): Averages the reciprocal ranks of correct results over
multiple queries.

3. Downstream Task Performance

The effectiveness of alignment can also be evaluated indirectly by assessing improvements in
the performance of downstream tasks such as:
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• Multimodal Classification: Increased alignment often results in higher classification ac-
curacy.

• Multimodal Reasoning: Multimodal tasks typically benefit from enhanced alignment,
reflected in improved metrics like F1 score or BLEU score.

4. Alignment Loss Reduction

Many alignment models include a loss term specifically designed to encourage cross-modal
coherence, such as:

• Contrastive Loss: Reduces the distance between representations of related data while
increasing the distance for unrelated pairs.

• Triplet Loss: Optimizes alignment by ensuring that positive pairs are closer than negative
pairs by a certain margin.

A reduction in these losses over training epochs indicates increased alignment.

Mixture of Modality Experts

A mixture of modality experts is a computational strategy used to model and integrate infor-
mation from multiple modalities [252]. Each modality expert specializes in processing data
from a specific modality (e.g., vision, language, or audio) and contributes its outputs to a uni-
fied decision-making process. This approach allows the system to leverage the unique strengths
of each modality while mitigating the effects of noisy or irrelevant information in any single
modality.

The combination of these concepts—alignment, modality experts, shallow alignment, and
deep alignment—forms the foundation for advanced multimodal learning systems. These sys-
tems aim to effectively process and integrate diverse types of data to achieve superior perfor-
mance in complex tasks.
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Chapter 3

Benchmarks and Datasets

In this chapter, we provide a comprehensive overview of the datasets and benchmarks utilized
in this thesis, divided into two main sections. We demonstrate the main features and statistic of
these datasets and benchmarks in Table 3.1. The first section, 3.1 , covers vision training datasets
and benchmarks, including widely recognized datasets such as ImageNet, CIFAR-10, and other
commonly used datasets. These are critical for training and evaluating the visual components
of our models. The second section , 3.2, focuses on multimodal learning training datasets and
benchmarks, featuring datasets like MS COCO and Conceptual Captions. These datasets are
essential for developing and assessing our multimodal learning framework, enabling the inte-
gration and alignment of diverse data types to enhance performance across various applications.
By detailing these resources, we aim to underscore their significance in the development and
validation of our proposed solutions.
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3.1. Vision Training Datasets and Benchmarks

3.1 Vision Training Datasets and Benchmarks

In this section, we provide a comprehensive overview of the vision training datasets and bench-
marks utilized in our research. The inclusion of these datasets and benchmarks is crucial as
they form the foundation for training and evaluating the visual components of our multimodal
learning framework. By leveraging diverse and representative datasets, we ensure that our vi-
sion encoders are robust and capable of handling real-world scenarios. These datasets not only
facilitate the development of effective image models but also play a pivotal role in enhancing
the overall performance of our multimodal framework. Understanding the characteristics and
challenges of these benchmarks allows us to fine-tune our models for optimal intra-modal and
inter-modal alignment, thereby improving the efficacy of our proposed solutions across various
applications, including crisis response, cross-modal retrieval, and recommendation systems.

3.1.1 ImageNet

The ImageNet dataset is a landmark resource in the field of computer vision, playing a criti-
cal role in advancing technologies related to image classification, object recognition, and deep
learning. Developed by Deng et al. [45], this extensive dataset was designed to mirror the
structure of the human visual wordnet, making it both broad and detailed in scope. It contains
more than 14 million labeled images collected from the web, each categorized into over 20,000
categories, providing a diverse and comprehensive visual representation of objects and scenes.

One of the most influential aspects of ImageNet is its use in the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), which has been a key driver in the development
of advanced neural network architectures. The challenge tasks participants with classifying
images into thousands of categories, detecting objects, and localizing them within the image.
It has been a proving ground for pioneering architectures like AlexNet [114], ResNet [81], and
VGG [215], each of which has set new benchmarks in accuracy and efficiency.

ImageNet’s depth and complexity challenge algorithms to develop robust and accurate mod-
els capable of handling real-world variability in object appearance, pose, and lighting conditions.
The dataset has not only been instrumental in the evolution of computer vision but has also im-
pacted other fields by facilitating advancements in machine learning techniques that leverage
large-scale data. As such, ImageNet remains a foundational tool for researchers and develop-
ers aiming to create more intelligent and adaptive systems in the ever-evolving landscape of AI
technology.

3.1.2 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets are fundamental resources in the field of machine learn-
ing, specifically designed for training and testing image recognition systems. Developed by
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Krizhevsky et al. [112], these datasets provide a compact yet challenging benchmark for evalu-
ating algorithmic performance in visual classification tasks.

The CIFAR-10 dataset consists of 60,000 32x32 color images divided into 10 classes, with
6,000 images per class. The dataset is split into 50,000 training images and 10,000 testing
images, encompassing a variety of everyday objects such as airplanes, cars, birds, and cats. This
dataset is particularly notable for its balance across classes, providing a uniform challenge for
machine learning models.

Expanding on the CIFAR-10, the CIFAR-100 dataset is structured similarly in terms of im-
age size and number but offers a finer classification with 100 classes, each containing 600 im-
ages. These classes are grouped into 20 superclasses, adding an additional layer of hierarchical
labeling that can be used for more nuanced learning and classification tasks. Like CIFAR-10,
the CIFAR-100 is also divided into 50,000 training images and 10,000 testing images.

Both datasets are derived from the ‘80 million tiny images’ dataset and are intentionally de-
signed to be computationally manageable while still offering a significant challenge due to the
low resolution and high variability of the images. The CIFAR datasets have been instrumen-
tal in driving advances in computer vision, particularly in the development and refinement of
convolutional neural networks (CNNs), by providing a standard, reproducible benchmark for
researchers to evaluate new models, algorithms, and techniques in image classification.

3.1.3 Caltech-256

The Caltech-256 dataset is a prominent image dataset in the field of computer vision, specifically
designed to further the development of object recognition systems. Developed by Griffin et al.
[72], it serves as an extension and enhancement of the earlier Caltech-101 dataset, offering a
more challenging testbed for machine learning models due to its larger number of categories
and images.

Caltech-256 contains a total of 30,607 images categorized into 256 object classes, plus a
background/clutter category. Each class has at least 80 images, which significantly improves
the dataset’s utility for training robust object recognition models. The images in Caltech-256
are more diverse and include a greater degree of intra-class variability and background clutter
than its predecessor, Caltech-101, providing a more rigorous challenge that better simulates
real-world conditions.

The dataset encompasses a wide range of objects from various everyday categories, includ-
ing animals, vehicles, household objects, and scenic images. This variety, coupled with the
challenging nature of the images, tests the limits of existing algorithms and drives innovation
in areas such as feature extraction, object classification, and the generalization capabilities of
computer vision systems.

Caltech-256 has been instrumental in advancing the field of object recognition. It provides
a comprehensive platform for developing and benchmarking algorithms, particularly those em-
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ploying techniques such as convolutional neural networks (CNNs) and other advanced machine
learning methods aimed at handling complex visual data. The dataset’s impact is reflected in its
widespread use across academic research and its contribution to the improvement of practical
applications in image-based recognition and classification systems.

3.1.4 Oxford-Flowers

The Oxford-Flowers dataset is a specialized dataset designed for image classification tasks, par-
ticularly focusing on flower species recognition. Developed by Nilsback and Zisserman [168],
this dataset is part of the broader effort to enhance computer vision systems’ ability to recognize
natural objects within uncontrolled environments.

The Oxford-Flowers dataset includes two key collections: the Oxford-Flowers 17 and Oxford-
Flowers 102. The Oxford-Flowers 17 contains 1,360 images divided into 17 different flower
classes, each class corresponding to a species commonly found in the United Kingdom. Each
class has 80 images for training, and the images are taken under natural conditions with varia-
tions in scale, lighting, and viewpoint.

Expanding significantly on this, the Oxford-Flowers 102 consists of 8,189 images represent-
ing 102 flower species, encompassing a more comprehensive range of common flowers in the
UK. This dataset is challenging due to the high variability in appearance of the flowers due to
natural factors such as growth stage, occlusion, and environmental conditions.

The dataset images were acquired from various sources, including web searches and pho-
tographs taken by the researchers, ensuring a realistic variation in image quality and background
complexity. Each image in the datasets is annotated with the corresponding flower class, which
facilitates supervised learning tasks.

These datasets are particularly useful for advancing algorithms in fine-grained visual cate-
gorization, a sub-field of computer vision that focuses on distinguishing between highly similar
objects. The Oxford-Flowers datasets have been instrumental in developing and benchmarking
algorithms for image classification, and they continue to support new approaches in deep learn-
ing, feature extraction, and more robust model training in the context of natural image settings.

3.1.5 Oxford-IIIT Pet

The Oxford-IIIT Pet dataset is an enriched image dataset designed specifically for fine-grained
visual categorization, focusing on pet animals. Developed by Parkhi et al. [179], this dataset
provides a rich test bed for algorithms aiming to distinguish between different breeds of cats and
dogs, a challenging task given the subtle differences between breeds.

The dataset comprises 7,349 images representing 37 different pet breeds (12 cat breeds and
25 dog breeds), with approximately 200 images per breed. Each image has been meticulously
annotated to include not only the breed labels but also head annotations, with each image tagged
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with a head region and a tight bounding box around the pet. These annotations are critical for
tasks that require understanding of the structure and features specific to each breed, such as
facial recognition technologies and advanced classification systems.

One of the key challenges posed by the Oxford-IIIT Pet dataset is the inherent variability in
the images, which include differences in pose, scale, lighting, and background. These factors
mimic real-world conditions, thus providing a realistic scenario for developing robust algorithms
capable of accurate breed classification.

The Oxford-IIIT Pet dataset has become a valuable resource for researchers in the field of
computer vision, particularly for those working on fine-grained classification tasks. It has also
been used extensively to benchmark and refine the performance of various image recognition
models, including those based on convolutional neural networks (CNNs), which benefit from
the detailed annotations and high-quality images provided in the dataset. This dataset continues
to support advancements in image processing techniques and contributes to the improvement of
practical applications involving pet identification and animal welfare technologies.

3.1.6 iNaturalist

The iNaturalist 2017 (iNat2017) dataset [240] is a specialized resource aimed at fostering ad-
vancements in fine-grained visual categorization, particularly focusing on species identifica-
tion. Developed as part of the iNaturalist species classification and detection competition at the
FGVC4 workshop (held in conjunction with CVPR 2017), this dataset presents a unique set of
challenges due to the natural variability in species appearance.

The iNat2017 dataset features over 675,000 images representing approximately 5,000 species,
ranging from plants and insects to birds and mammals. The dataset is derived from observations
submitted by citizen scientists around the world through the iNaturalist platform, making it one
of the largest and most diverse collections of natural images available for research.

Each image in the dataset is annotated with species labels, and many include additional
information such as the location and time of the observation. This contextual data can be in-
valuable for tasks that require understanding environmental influences on species appearance
or behavior. The dataset’s diversity and size challenge existing image recognition systems to
improve their accuracy and robustness, particularly in conditions of variable lighting, occlusion,
and background.

The iNat2017 dataset is not only a tool for advancing machine learning techniques but also
serves as a bridge between technology and biodiversity conservation. By improving the ability
of algorithms to recognize and classify species from photographs, this dataset supports efforts to
monitor biodiversity, track species distributions, and engage the public in scientific research. It
remains a critical resource for researchers in both the fields of computer vision and conservation
biology, promoting deeper understanding and protection of the natural world.
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3.1.7 Places365

The Places365 dataset is an extensive image collection designed specifically for scene recogni-
tion tasks, an area of computer vision focused on identifying and classifying different environ-
ments rather than objects. Developed by Zhou et al. [290], this dataset is part of the larger Places
project, which aims to provide a comprehensive resource for training models to understand the
context and settings of various scenes.

Places365 contains over 1.8 million images across 365 scene categories, representing a di-
verse array of indoor and outdoor environments. Categories range from common rooms like
kitchens and living rooms to outdoor landscapes such as beaches, fields, and urban scenes. This
wide variety helps ensure that models trained on the dataset can generalize across a variety of
real-world scenarios.

Each image in the dataset is carefully annotated with its scene category, facilitating the de-
velopment of robust algorithms capable of distinguishing subtle differences between similar
categories, such as different types of restaurants or natural landscapes. The dataset is designed
to challenge and enhance the performance of deep learning models, particularly those using
convolutional neural networks (CNNs), in recognizing and categorizing complex scenes.

The Places365 dataset is crucial for advancing scene recognition technologies, which have
wide-ranging applications including robotics navigation, augmented reality, and automated tag-
ging in photo libraries. By providing a rich, varied collection of scene images, Places365 allows
researchers and developers to push the boundaries of what AI systems can understand about the
visual world, improving how machines interpret and interact with their surroundings.

3.1.8 Summary

The aforementioned datasets will primarily be used for developing contrastive learning methods
in Chapter 5 and for training the image encoder in the proposed multimodal learning framework,
MCA, detailed in Chapter 6.

3.2 Multimodal Training Datasets and Benchmarks

In this section, we provide a detailed overview of the multimodal training datasets and bench-
marks that are integral to our research. These datasets and benchmarks are crucial for the de-
velopment and evaluation of our proposed multimodal learning framework. By incorporating
a variety of data types, such as text, images, and other modalities, these multimodal datasets
enable the comprehensive training of models that can effectively integrate and align information
from different sources. This alignment is essential for enhancing the performance and robustness
of our framework across diverse applications. The benchmarks serve as standardized measures
to assess the efficacy of our models, ensuring that they perform well not only in controlled envi-
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ronments but also in real-world scenarios. By understanding and leveraging these datasets, we
can refine our framework to achieve superior intra-modal and inter-modal alignment, thereby
optimizing its application in areas such as crisis response, cross-modal retrieval, robotics, and
recommendation systems.

3.2.1 VQA

The Visual Question Answering (VQA) dataset is a pivotal resource designed to advance the
field of machine learning, specifically focusing on the integration of visual and textual informa-
tion. Introduced by Antol et al. [5], this dataset facilitates the development and evaluation of
models capable of answering open-ended questions about images. Central to its structure is a
collection of images paired with a series of questions that challenge the model’s understanding
of visual content in relation to textual queries. Each question is accompanied by multiple an-
swers, which are typically obtained through crowd-sourcing, ensuring a diverse representation
of human perception and opinion. This dataset not only supports the enhancement of algorithms
for image understanding and natural language processing but also propels research in multi-
modal learning, where the intersection of different types of data modalities is crucial. The VQA
dataset, therefore, serves as a fundamental tool for researchers and practitioners aiming to build
systems that better mimic human-level understanding in complex, multimodal environments.
The challenges of the VQA task stem from the ambiguity of certain questions and answers, as
well as question bias.

3.2.2 NLVR

The Natural Language for Visual Reasoning (NLVR) dataset is an essential resource developed
to enhance the capabilities of machine learning systems in the area of visual reasoning. Intro-
duced by Suhr et al. [227], the dataset is designed to assess the ability of models to interpret and
reason about images based on structured textual descriptions. Unlike simpler image caption-
ing tasks, NLVR requires a model to verify the truth of a statement given one or more images,
adding a layer of complexity that involves logical deduction and deeper semantic understanding.
This dataset includes a diverse set of images paired with statements that are either true or false,
meticulously annotated to challenge the model’s reasoning abilities. The NLVR dataset supports
advancements in the field by pushing the boundaries of how AI systems integrate and interpret
multimodal information, aiming to achieve a more nuanced and accurate understanding of visual
content in the context of natural language descriptions.
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3.2.3 MS COCO

The Microsoft Common Objects in Context (MS COCO) dataset is a cornerstone in the fields of
computer vision and machine learning, tailored to enhance technologies in image recognition,
segmentation, and captioning. Introduced by Lin et al. [133], this dataset features a rich collec-
tion of images that depict complex everyday scenes with common objects in natural contexts.

MS COCO is renowned for its detailed annotations, which include object bounding boxes,
segmentation masks, and comprehensive captions, facilitating precise object localization and ex-
tensive scene understanding. The dataset encompasses over 330K images, with more than 200K
labeled for training. It covers 91 object types that have been annotated with over 1.5 million
object instances, making it one of the most extensive datasets available for object detection and
image captioning.

This extensive labeled dataset is structured to challenge and refine algorithms by presenting
varied and complex scenarios that demand both detailed recognition capabilities and a broader
contextual understanding of scenes. Consequently, MS COCO has become an indispensable re-
source for researchers and practitioners aiming to advance the perceptual abilities of AI systems,
significantly contributing to the development of technologies that allow machines to interpret
and describe visual information both accurately and contextually.

3.2.4 Flick30k

The Flickr30k dataset is a prominent resource in the field of computer vision and natural lan-
guage processing, specifically designed to enhance the capabilities of image captioning systems.
Introduced by Young et al. [274], this dataset comprises 31,000 images sourced from the online
photo-sharing platform, Flickr. Each image in Flickr30k is accompanied by five detailed cap-
tions, which are independently written by human annotators. This structure enables the devel-
opment and evaluation of algorithms that must understand and describe complex visual scenes
in natural language.

Flickr30k offers a diverse array of everyday scenes and events, capturing a wide range of hu-
man activities, objects, and settings that are commonly encountered in daily life. The inclusion
of multiple captions per image not only provides a rich set of linguistic expressions describ-
ing the same visual content but also encapsulates varied interpretations and descriptive focuses,
enhancing the training of more robust and versatile models.

This dataset is particularly valuable for training and benchmarking models in tasks such as
automatic image captioning, visual question answering (VQA), and multimodal machine trans-
lation. By bridging the gap between visual data and natural language, Flickr30k helps advance
the development of AI systems capable of understanding and generating human-like descrip-
tions of visual content, thereby contributing significantly to the field’s progress towards more
sophisticated multimodal interactions.
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3.2.5 GQA

The GQA dataset is a specialized resource developed to advance research in visual reasoning and
natural language understanding within the context of question answering systems. Introduced by
Hudson and Manning [95], the GQA dataset offers a structured environment for evaluating and
enhancing machine learning models’ abilities to parse and reason about complex visual scenes
using a question-and-answer format.

This dataset consists of over 22 million question-answer pairs, which are systematically
generated from 113,000 images. These questions are not merely descriptive but are designed to
test various levels of reasoning, including spatial understanding, relational reasoning, and log-
ical inference. Each question is carefully crafted to reflect a balanced mix of compositionality,
requiring multiple steps of reasoning, and diversity in both question type and difficulty.

The GQA dataset’s unique contribution lies in its emphasis on consistency and balance,
addressing common biases that often plague visual question answering datasets. It provides
detailed annotations for both questions and answers, including the types of reasoning needed
and the relationships among objects within the images. Furthermore, GQA supports a variety
of tasks such as object detection, attribute classification, and spatial reasoning, making it a
comprehensive tool for developing more sophisticated, context-aware AI models.

By focusing on structured, real-world visual reasoning, the GQA dataset plays a crucial
role in pushing the boundaries of what AI systems can achieve in understanding and interacting
with the visual world, thus propelling forward the capabilities of AI in interpreting complex
multimodal data.

3.2.6 Conceptual Captions

The Conceptual Captions dataset is a large-scale resource designed to bolster advancements
in image captioning and the broader field of multimodal machine learning. Developed by
Sharma et al. [210], this dataset provides a substantial collection of image-caption pairs, which
are uniquely generated by harvesting and transforming alt-text data from the web into image
captions. The transformation process involves removing any web-specific context to make the
captions more generalizable and applicable to a broader range of images.

Comprising over 3.3 million image-caption pairs, the Conceptual Captions dataset is charac-
terized by its diversity and complexity of both visual content and associated textual descriptions.
Unlike other datasets where captions are often manually annotated and may follow a more con-
sistent format, the captions in Conceptual Captions are sourced from a variety of online contexts,
resulting in a wide range of linguistic expressions and styles. This variability makes it an ex-
cellent resource for training models to understand and generate natural language descriptions of
images in a way that is less constrained and more reflective of how people naturally describe
scenes.
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The dataset is particularly valuable for training deep learning models in tasks such as auto-
matic image captioning, visual question answering, and other AI-driven applications where the
interaction between visual data and natural language is crucial. By providing a bridge between
these two modalities, the Conceptual Captions dataset helps in developing more sophisticated,
context-aware AI systems that can operate effectively in diverse and dynamic environments.

Overall, the Conceptual Captions dataset represents a significant step forward in the creation
of AI that can interpret visual content with the same richness and diversity as human language,
enhancing the capabilities of systems to engage in more intuitive and meaningful multimodal
interactions.

3.2.7 SBU Captioned Photo Dataset (SBU)

The SBU Captioned Photo Dataset, developed by Ordonez et al. [176], is a substantial collection
specifically curated to facilitate research in automatic image captioning and vision-language
integration. This dataset comprises one million image-caption pairs, sourced primarily from
Flickr, which provides a rich basis for training and evaluating machine learning models that
handle both visual and textual data.

Each image in the SBU dataset is paired with a natural language caption, generated by the
original image uploader, offering a genuine and spontaneous description of the scene. This
characteristic is particularly valuable as it captures a wide variety of human perceptions and
linguistic expressions, reflecting real-world usage of language in describing visual content.

The diversity in the dataset extends not only to the captions but also to the images themselves,
which depict a broad range of subjects including people, animals, objects, and landscapes in
various settings and situations. This variety ensures that models trained on the SBU dataset can
develop robust capabilities in understanding and generating descriptions across a wide array of
scenes and contexts.

The SBU Captioned Photo Dataset is instrumental for advancements in several key areas
of AI research, including but not limited to image captioning, automatic metadata generation
for visual content, and the training of models for more sophisticated vision-language tasks. By
providing a bridge between visual data and natural language, the SBU dataset helps to enhance
the interpretative and descriptive capabilities of AI systems, making it a critical resource for
developing more intuitive and context-aware AI applications.

3.2.8 Conclusions

In conclusion, the datasets and benchmarks detailed in this chapter provide a comprehensive
foundation for our research. By utilizing a diverse array of vision training datasets, such as
ImageNet, CIFAR-10, CIFAR-100, Caltech-256, Oxford-Flowers, Oxford-IIIT Pet, iNaturalist,
and Places365, we ensure robust training and evaluation of the visual components of our mul-
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timodal learning framework. Additionally, the inclusion of multimodal training datasets like
VQA, NLVR, MS COCO, Flick30k, GQA, Conceptual Captions, and the SBU Captioned Photo
Dataset allows us to effectively integrate and align various data modalities. This diverse dataset
collection supports a wide range of tasks and is instrumental in validating our experiments and
substantiating our claims. By leveraging these datasets, we can demonstrate the efficacy and
versatility of our proposed multimodal learning framework across multiple applications, thereby
reinforcing the contributions and findings of this thesis.
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Chapter 4

The Proposed MCA Framework

In this chapter, we introduce the MCA framework based on new Mixture-of-Modality-Experts
(MoME) design for multi-modal model learning, as shown in Figure 4.1, that aims to enhance
intra-modal and inter-modal alignment, as stated in the thesis statement (1.2). This framework
forms the foundation of the thesis, as if we are able to demonstrate that the use of this frame-
work results in both a) measurable increases in intra-modal and inter-modal alignment; and b)
increased on-task effectiveness, we provide evidence supporting the thesis statement. Indeed,
we instantiate this framework with a range of modular components and for a range of tasks in
subsequent experimental chapters. Moreover, contrastive learning methods also contribute to
improve the intra-modal and inter-modal alignment. More detailed information on MoME is
provided in Section 4.1, while the contrastive learning methods are discussed in Chapter 5. Ad-
ditionally, as highlighted in Section 2.7, the efficiency issue becomes more severe as the size
of neural models continues to grow, often limiting their application to specialized downstream
tasks due to computational constraints. To address this, we also propose a dedicated parameter-
efficient learning method named MultiWay-Adapter to enhance inter-modal alignment. More
details on the MultiWay-Adapter are provided in Chapter 6.

4.1 Mixture of Modality Experts (MoME)

The Mixture of Modality Experts (MoME) design [252], illustrated in Fig. 4.2, aims to ad-
dress the issue of shallow intra-modal and inter-modal alignment in multimodal learning, as
outlined in the thesis statement (Section 1.2). MoME is a novel approach implemented within
a Transformer framework specifically for handling multimodal tasks involving both vision and
language. Here, we give the key aspects of the MoME design to show how it enhances the intra-
modal and inter-modal alignment. The MoME Transformer replaces the standard feed-forward
network in Transformer blocks with a pool of modality-specific experts. There are two types of
experts:

1. Vision Expert (V-FFN): Processes image-only inputs.
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Figure 4.1: The illustration of the proposed multimodal learning framework, MCA.
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Vision
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Language
FFN

Multi-Head Self Attention

Modality Experts

L x

Multi-Way Transformer Full Fine-tuning

Multimodal Input

Figure 4.2: The illustration of architecture of the Mixture of Modality Experts design.

2. Language Expert (L-FFN): Processes text-only inputs.

Another key design decision is the addition of shared Self-Attention: Each MoME Trans-
former block includes a shared multi-head self-attention layer that aligns visual and linguistic
content across different modalities. This shared layer facilitates the interaction between image
and text features within the same Transformer layer. This interaction deeply enhance both intra-
modal and inter-modal alignment which solves the issues we identify in the thesis statement
1.2.

Flexible Modeling: Due to its flexible design, MoME can be utilized in different ways:

• Dual Encoder: For tasks like image-text retrieval, the model can encode images and text
separately, allowing for efficient retrieval operations.

• Fusion Encoder: For tasks requiring deeper interaction between image and text (e.g., vi-
sual question answering), the model encodes image-text pairs together to capture complex
relationships.

• Unified Pre-Training and Fine-Tuning: MoME is pretrained on large-scale datasets with
multiple tasks, including image-text contrastive learning, image-text matching, and masked
language modeling. This unified pre-training approach allows the model to generalize well
across various downstream tasks, such as classification and retrieval.
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• Stagewise Pre-Training: To leverage large-scale datasets effectively, the model undergoes
a stagewise pre-training process. Initially, vision experts and self-attention modules are
pretrained on image-only data. Subsequently, language experts are pretrained on text-only
data, and finally, the model is fine-tuned with vision-language data, improving its ability
to handle diverse inputs.

There are several advantages of MoME design:

• Enhanced modalities alignment: By training multiple experts to specialize in different
regions of the input space, MoME models can capture more complex patterns and de-
pendencies in the data compared to a single monolithic model, thereby enhancing the
intra-modal and inter-modal alignment significantly.

• Efficiency: The MoME approach can improve computational efficiency. Since only a
subset of experts is activated for each input, the model can be more efficient in terms of
both computation and memory usage.

• Scalability: MoME models can scale to larger architectures by adding more experts with-
out a proportional increase in computational cost for each input, as only a few experts are
used at a time.

In summary, the MoME design plays a crucial role in our proposed multimodal framework,
offering all the advantages mentioned above, particularly in enhancing shallow inter-modal
alignment. The MoME design enables the model to perform efficiently and accurately across
a variety of vision-language tasks, delivering state-of-the-art performance while maintaining
flexibility and efficiency. We will provide more details of MoME in Chapter 9.

4.2 Multimodal Large Language Models (MLLMs) Used in
this Thesis

In light of the advantages of deep alignment techniques for multimodal representation learning,
as discussed in Section 2, we detail the settings in which we extend the use of MLLMs encoders
for different applications. First, we describe the process of extracting features using multimodal
embeddings obtained from CLIP, VLMo, and BEiT-3. Next, we outline the method for fine-
tuning these MLLMs encoders on downstream datasets and illustrate the integration of these
encoders with other task-specific models in an end-to-end approach.

4.2.1 Preliminaries on Multimodal Large Language Models

We first introduce how MLLMs encoders work, showing the input representations, propagation
functions, and pre-training objectives of these MLLMs encoders.
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Table 4.1: Notations used in this section to describe the proposed multimodal learning frame-
work.

Symbol Description
m the multimodal embeddings of the token
l the layer number

LN the layer normalisation operation
MSA the multi-head self-attention operation
FFN the feed-forward network
pi2t the softmax-normalised image-to-text similarities
pt2i the softmax-normalised text-to-image similarities
N the batch size
T the length of the text sequence

w(i)
j the j-th word in the i-th text sequence

w(i)
< j the prefix of the i-th text sequence up to the j-th word

4.2.2 Input representations

In the following, we describe the input of the MLLMs encoders we use in this section:

(1) CLIP: For CLIP, raw images and texts are encoded into image and text vector represen-
tations. CLIP leverages the Vision Transformer (ViT) architecture [49] to process image
representations by dividing the input image into non-overlapping patches, flattening them
into vectors, and linearly projecting them to create patch embeddings. Text representa-
tions are generated using the GPT-2 [192] model, after tokenizing the raw text input using
byte pair encoding (BPE) and adding positional embeddings.

(2) VLMo & BEiT-3: Similar to CLIP, raw images and texts are encoded into image and
text vector representations. Image representations are created by splitting input images
into patches, flattening them, and linearly projecting them to form patch embeddings. A
learnable special token [I_CLS] is added to the sequence, and image input representations
are computed by summing the patch embeddings, 1D position embeddings, and linear
projection, respectively. Text representations are generated using BERT tokenization and
WordPiece for subword units, with a start-of-sequence token ([T_CLS]) and a boundary
token ([T_SEP]) added. Text input representations are generated by summing the word,
position, and type embeddings.

To illustrate how the multimodal embeddings of CLIP, VLMo, and BEiT-3 can be used as
initial input embeddings in downstream tasks, we use the VLMo-Base Plus model variant as an
example. The resulting text embeddings for all items from the VLMo-Base Plus encoder have a
shape of [input number, text_token_length+2, 544], where each input comprises the number of
raw text tokens along with [CLS] and [SEP] tokens. As for image embeddings, each input has
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an embedding shape of [197, 544]. We obtain the input visual and text embeddings by selecting
the 544-dimensional vector corresponding to the [CLS] token for each input embedding, which
should encapsulate rich, high-level information in each modality.

4.2.3 Propagation functions

In the following, we describe the propagation functions of the used MLLMs encoders:

(1) CLIP: CLIP leverages a dual-stream architecture to encode distinct modalities, incorpo-
rating a separate stream for each modality—visual and textual—while maintaining shared
multi-head self-attention layers to enable alignment and interaction between visual and
linguistic content. Each stream consists of a series of transformer blocks. Hence, the
propagation function is defined as follows:

h(l)i = LN
(

h(l−1)
i +MSA(h(l−1)

i ,h(l−1)
i ,mi)

)
(4.1)

where h(l)i is the hidden state of the i-th token in the l-th layer, LN and MSA are the layer
normalization operation and the multi-head self-attention mechanism, respectively, and
mi is the corresponding multimodal embedding of the token.

(2) VLMo & BEiT-3: As unified LMM encoders, VLMo and BEiT-3 both use the MoME
transformer to encode different modalities, with a mixture of modality experts substitut-
ing the feed-forward network of a standard Transformer [242]. Each MoME transformer
block captures modality-specific information by switching to a different modality expert
and employs multi-head self-attention (MSA) shared across modalities to align visual and
linguistic content. Hence, the propagation function is defined as follows:

h(l)i = LN
(

h(l−1)
i +MSA(h(l−1)

i ,h(l−1)
i ,mi)+FFN(h(l−1)

i ,mi)
)

(4.2)

where FFN is the feed-forward network. This mechanism of MoME-FFN is capable of
selecting an expert among multiple modality experts to process the input according to
the modality of the input vectors and the index of the Transformer layer. There are three
modality experts: vision expert (V-FFN), language expert (L-FFN), and vision-language
expert (VL-FFN). The choice of a given expert depends on the input modality and the
layer within the transformer architecture. The contextualized representations for image-
only, text-only, and image-text inputs are obtained accordingly.

4.2.4 Pre-training Objectives of the MLLMs Encoders:

In order to study the impact of fine-tuning the MLLMs encoders, we first describe their training
objectives before adapting these encoders to the recommendation task:
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(1) Image-Text Contrastive (ITC) Loss: All MLLMs encoders (CLIP, VLMo, and BEiT-3)
leverage the ITC loss, which aims to encourage the model to learn a joint embedding space
where the similarity between an image and its corresponding text is maximized, while the
similarity between mismatched image-text pairs is minimized. ITC loss is defined as
follows:

LITC =− 1
N

N

∑
i=1

log
pi2t(i)

∑
N
j ̸=i pi2t( j)

− 1
N

N

∑
i=1

log
pt2i(i)

∑
N
j ̸=i pt2i( j)

(4.3)

where N is the batch size, while pi2t(i) and pt2i(i) are the softmax-normalized image-to-
text and text-to-image similarities of the i-th pair, respectively. As a result, a joint embed-
ding space is learned using a contrastive loss, where the similarity between an image and
its corresponding text encourages the encoder to generate more aligned embeddings.

(2) Masked Language Modeling (MLM) loss: This loss function is exclusively used by the
VLMo and BEiT-3 encoders. These encoders randomly select and mask tokens in the text
sequence with a 15% masking probability, as in BERT [46]. Both the VLMo and BEiT-3
encoders are trained to predict these masked tokens, using unmasked tokens and visual
cues. The MLM loss is computed as follows:

LMLM =− 1
N

N

∑
i=1

∑ j = 1Ti log p(w(i)
j |w

(i)
< j,mi) (4.4)

where N is the batch size, Ti is the length of the i-th text sequence, w(i)
j is the j-th word in

the i-th text sequence, w(i)
< j is the prefix of the i-th text sequence up to the j-th word, and

mi is the corresponding multi-modal embedding of the i-th text sequence. As such, pre-
dicting masked tokens in the presence of a visual context enables the encoder to generate
embeddings that better capture the joint representation of image and text data, leading to
enhanced multimodal representation learning.

(3) Image-Text Matching (ITM) loss: This loss function is solely used by VLMo. VLMo
uses the final hidden vector of the [T_CLS] token to represent the image-text pair, em-
ploying a cross-entropy loss for binary classification. Hard negatives are sampled from
the training examples for this purpose. ITM loss is formulated as follows:

LITM =− 1
N

N

∑
i=1

[yi log p(yi = 1|hi)+(1− yi) log p(yi = 0|hi)] (4.5)

where yi is the ground truth label (matched or unmatched) for the i-th image-text pair, and
hi is the final hidden vector of the [T_CLS] token representing the pair. The loss is com-
puted using a binary cross-entropy loss function. By using a binary cross-entropy loss and
hard negative mining, VLMo is expected to learn to differentiate between matched and
unmatched image-text pairs. This process encourages the encoder to generate more ac-
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curate and semantically aligned multimodal embeddings, thereby improving the model’s
overall capability to mine relationships between image and text data.

4.2.5 Training Strategies of the MLLMs Encoders

In this subsection, we present various training paradigms we use in our multimodal learning
framework as previously shown in 4, for incorporating the MLLMs encoders with task specific
models. We discuss the optimization objectives used to tune both the MLLMs encoders and the
task specific models. We aim to identify the best training paradigm that facilitates the effective
integration of the MLLMs encoders, leveraging their strengths to enhance the performance of
existing task specific models:

(1) Two-stage training involves first fine-tuning the MLLMs encoders on downstream tasks
images and texts. This fine-tuning process is designed to enhance the adaptability and per-
formance of the MLLMs encoders in the context of downstream tasks scenarios. Specifi-
cally, we tune both CLIP, VLMo, and BEiT-3 using the ITC loss [15, 189];

(2) End-to-end training typically needs the seamless integration of the MLLMs encoders
so as to jointly optimize both the MLLMs encoders and the existing task specific mod-
els with the task specific loss. This integration must account for the different types of
losses used by each model, such as the BPR loss [202] and the contrastive loss [259].
Notably, this end-to-end training process does not incorporate the previously mentioned
pre-training losses of the MLLMs in Subsection 4.2.4, such as the ITC, MLM, and ITM
losses. Algorithm 1 (below) presents an example pseudo-code of recommendation tasks
for end-to-end training.

These training objectives and strategies form the foundation for achieving state-of-the-art
performance with our proposed MCA multimodal learning framework. Unlike previous work,
we systematically evaluate the impact of these methods on the performance of multimodal learn-
ing and optimize them specifically for the four domains targeted in this thesis. This optimization
is detailed in Chapters 7 through 9.

4.3 Research Questions

This thesis focuses on addressing critical issues that limit the performance of multimodal learn-
ing in terms of effectiveness and efficiency. Specifically, we target the shallow intra-modal and
inter-modal alignment problem present in previous multimodal learning frameworks. This leads
to the following research questions:

• RQ 1: How do contrastive learning methods impact on modalities alignment? (Chapter 5)
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Algorithm 1 End-to-end training
1: Step 1: Load data
2: data_loader ← DataLoader(dataset_path, raw_images, concatenated_texts(title, descrip-

tion, brand, categorical_info))
3: Step 2: Initialise and load pre-trained weights for CLIP/VLMo/BEiT-3 encoder
4: clip/vlmo/beit3← CLIP()/VLMo()/BEiT-3()
5: clip/vlmo/beit3.load_pretrained_weights()
6: Step 3: Generate embeddings with CLIP/VLMo/BEiT-3 encoder
7: image_embeddings, text_embeddings, image_text_embeddings
8: ← clip/vlmo/beit3.generate_embeddings(data_loader)
9: Step 4: Integrate embeddings into the recommendation model

10: rec_model← REC(image_embeddings, text_embeddings, image_text_embeddings)
11: Step 5: End-to-end training
12: for epoch in range(num_epochs) do
13: # Forward pass
14: user_item_scores← rec_model.forward()
15: # Compute loss
16: loss← compute_loss(user_item__scores, ground_truth)
17: # Backward pass and optimisation
18: optimiser.zero_grad()
19: loss.backward()
20: optimiser.step()
21: # Update model with new embeddings
22: rec_model.update(image_embeddings, text_embeddings, image_text_embeddings)
23: # Evaluate and print performance metrics
24: evaluate_and_print_metrics(epoch, rec_model)
25: end for

• RQ 2: How do parameter-efficient methods improve the efficiency of multimodal learning
frameworks? (Chapter 6)

• RQ 3: How does our proposed multimodal learning framework perform in real-world
scenarios? (From Chapter 7 to Chapter 9)

By addressing the three research questions, we validate the core thesis statement that en-
hancing intra-modal and inter-modal alignment in multimodal learning frameworks significantly
improves performance across various tasks. RQ 1 evaluates how effectively our proposed con-
trastive learning methods tackle the issues of shallow intra-modal and inter-modal alignment
within our MCA framework. Solving these alignment issues is expected to yield notable perfor-
mance improvements. Additionally, as the size of neural models grows, the costs associated with
tuning and running these models become prohibitively high, limiting the practical application
of multimodal frameworks. Therefore, RQ 2 focuses on assessing how our parameter-efficient
methods, such as the multi-way adapter, can mitigate efficiency issues and broaden the appli-
cability of the MCA framework. Finally, we move beyond standard evaluations to apply and
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validate our framework in real-world scenarios. Through comprehensive evaluations in Chap-
ters 7 to 9, we demonstrate the practical effectiveness of our framework in four critical appli-
cations, thereby addressing RQ 3. This systematic approach confirms that our enhancements to
multimodal learning not only improve performance but also ensure scalability and real-world
applicability, validating the overarching thesis statement.

4.4 Linkage Between Use-Case Applications and the Proposed
Multimodal Learning Framework

The proposed multimodal learning framework is designed to address challenges inherent
in processing and integrating information from diverse modalities, such as text, images, audio,
and sensory data. Its relevance is demonstrated through various use-case applications, where the
framework’s ability to create semantically aligned and robust representations across modalities
enhances task performance. This section clarifies the connections between these applications
and the framework’s design principles.

4.4.1 Addressing Domain-Specific Challenges

Each use-case application introduces unique domain-specific challenges, which are directly ad-
dressed by the framework:

Cross-Modal Retrieval: Applications such as image-text retrieval present significant chal-
lenges due to the inherent differences between visual and textual data. Images are represented
in pixel-based spatial formats, while text is inherently sequential and symbolic, making direct
comparisons between the two modalities non-trivial. Additionally, variations in linguistic de-
scriptions, ambiguity in textual representations, and the contextual nature of images further
complicate the alignment process. The proposed framework addresses these challenges by lever-
aging contrastive learning, which maps representations from different modalities into a shared
semantic space. This shared space ensures that semantically similar image-text pairs are closely
aligned while maintaining clear separation from dissimilar pairs. By optimizing this alignment,
the framework improves retrieval efficiency, as evidenced by metrics such as Precision@K,
which reflect better matching between images and their corresponding textual descriptions.

Multimodal Reasoning: In scenarios like crisis response, multimodal reasoning tasks re-
quire the integration of diverse inputs, such as textual reports and visual imagery, to derive
actionable insights. These tasks are particularly challenging because the inputs often come from
heterogeneous sources, may contain missing or noisy data, and require contextual understanding
across modalities. Textual data might describe an event in detail, while visual data provides spa-
tial and situational cues that are complementary but not explicitly linked. The framework tackles
these challenges by incorporating attention-based mechanisms that selectively weigh and com-
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bine modality-specific features. This fusion not only ensures that relevant information is pri-
oritized but also facilitates coherent reasoning by aligning the contextual relationships between
text and images. Such mechanisms enable the generation of accurate and reliable predictions,
critical for decision-making in high-stakes environments.

Robotic Vision: Robotic systems operating in real-world environments must process and
integrate multimodal sensor data, such as visual inputs from cameras and tactile feedback from
sensors. Challenges arise due to the differing nature and temporal characteristics of these modal-
ities. For instance, visual data provides detailed spatial information but lacks tactile context,
while touch data offers insights into texture or force but lacks spatial coverage. Furthermore,
synchronizing these inputs and interpreting them in a unified manner is non-trivial, especially
in dynamic or unstructured environments. The framework addresses these issues by encoding
sensory inputs into a unified representation that captures both modality-specific and shared fea-
tures. This integrated representation enhances the robot’s ability to perceive complex scenes,
infer context, and respond effectively. By improving multimodal integration, the framework
significantly enhances task performance, such as object manipulation, navigation, or interaction
with uncertain and variable surroundings.

4.4.2 Key Components and Their Applications

The core components of the framework are intrinsically linked to specific use cases:

• Shallow Alignment: Applicable in domains where lightweight models are required (e.g.,
edge devices in IoT systems), shallow alignment ensures computational efficiency while
achieving sufficient modality integration.

• Deep Alignment: Suitable for high-complexity tasks like multimodal content generation
or medical image-text analysis, deep alignment creates rich representations that capture
intricate cross-modal relationships.

• Contrastive Learning: The framework’s contrastive learning component aligns paired
multimodal data, enabling effective performance in zero-shot and few-shot tasks such as
cross-modal classification or retrieval in resource-constrained environments.

4.4.3 Generalization Across Use Cases

A key strength of the framework lies in its capacity to generalize across a wide range of ap-
plications, achieved through its flexible and adaptive design. The modular architecture of the
framework plays a central role in this adaptability. Specific components, such as alignment
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mechanisms or fusion strategies, can be customized to suit the requirements of different modal-
ities and domains. This modularity ensures that the framework remains versatile and scalable
for various tasks. Furthermore, the creation of a shared representation space enables effective
transfer learning. By aligning diverse inputs in a unified semantic space, the framework facili-
tates seamless adaptation to new tasks with minimal retraining. This ability to generalize makes
it particularly well-suited for applications involving heterogeneous and evolving datasets.

4.4.4 Empirical Evidence of Linkage

The effectiveness of the framework is validated through empirical results on benchmark datasets,
demonstrating its robustness and performance across diverse use cases. In cross-modal retrieval
tasks, the framework achieves state-of-the-art Recall@K scores, reflecting its proficiency in
aligning semantically similar data across modalities. For crisis response applications, it out-
performs existing baselines with higher accuracy and F1 scores, showcasing its capability to
integrate and reason over diverse modalities in high-stakes scenarios. Additionally, in robotic
vision contexts, simulations reveal significant improvements in task performance, attributed to
the benefits of enhanced multimodal pretraining. These results collectively highlight the frame-
work’s ability to address the unique challenges of different domains while maintaining high
levels of efficiency and accuracy.

4.4.5 Conclusion

The proposed multimodal learning framework provides a versatile and robust solution for var-
ious use-case applications. By addressing domain-specific challenges, leveraging key compo-
nents, and generalizing effectively across tasks, it establishes a strong linkage between theoret-
ical advancements in multimodal learning and practical applications. This linkage underscores
the framework’s potential for broader adoption and impact in real-world scenarios.
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Chapter 5

Improving Vision Performance through
Contrastive Learning

5.1 Introduction

In Chapter 1, we discussed the importance of multimodal models in encoding visual inputs to
generate high-quality visual embeddings, which are crucial for superior performance in both
vision-specific and multimodal tasks. However, as stated in the thesis statement (Section 1.2),
shallow intra-modal and inter-modal alignments limit the improvement in embedding quality
and impact the performance in multimodal downstream tasks, such as Visual Question An-
swering (VQA) and Natural Language Video Retrieval (NVLR). Previous studies have explored
contrastive learning methods to deepen intra-modal and inter-modal alignment, improving the
quality of embeddings and boosting performance in both unimodal and multimodal contexts.
Consequently, our thesis proposes several contrastive learning techniques designed to enhance
intra-modal alignment, setting the stage for later applications in different domains. This ap-
proach aims to improve the model’s generalization across various data types and its overall
performance.

As outlined in Section 2.4, developing a robust image encoder, such as Vision Transformers
(ViTs), is essential for advancing multimodal frameworks. Vision Transformers (ViTs) have
emerged as popular models in computer vision, demonstrating state-of-the-art performance
across various tasks, such as object identification and segmentation, highlighted by the semi-
nal ViT model [224]. This success typically follows a two-stage strategy involving pre-training
on large-scale datasets using self-supervised signals, such as masked random patches, followed
by fine-tuning on task-specific labeled datasets with cross-entropy loss. Despite their state-of-
the-art performance in various vision tasks, some studies [49, 292] indicate that this reliance on
cross-entropy loss has been identified as a limiting factor in ViTs, affecting their generalization
and transferability to downstream tasks.

Additionally, we chose not to include a text-only chapter because the out-of-the-box perfor-
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mance of state-of-the-art text encoders, such as those based on transformer models like BERT
and GPT, is already very high. These models demonstrate exceptional performance across a
wide range of natural language processing tasks, reducing the necessity for further fine-tuning
specifically for text-only applications within the scope of this thesis.

Addressing this challenge, we introduce a novel Label-aware Contrastive Training frame-
work, LaCViT in Section 5.2, which significantly enhances the quality of embeddings in ViTs.
LaCViT not only addresses the limitations of cross-entropy loss but also facilitates more effec-
tive transfer learning across diverse image classification tasks. Our comprehensive experiments
on eight standard image classification datasets reveal that LaCViT statistically significantly en-
hances the performance of three evaluated ViTs by up-to 10.78% under Top-1 Accuracy.

Moreover, while recent works employing contrastive learning address some of these limi-
tations by enhancing the quality of embeddings and producing better decision boundaries, they
often overlook the importance of hard negative mining and rely on resource intensive and slow
training using large sample batches. Indeed, integrating contrastive learning at the fine-tuning
stage introduces a dependence on large mini-batch sizes (e.g., 1024 or 2048), unlike methods
based on cross-entropy. To counter these issues, we introduce a novel approach named CLCE
as detailed in Section 5.3, which integrates Label-Aware Contrastive Learning with CE. Our
approach not only maintains the strengths of both loss functions but also leverages hard neg-
ative mining in a synergistic way to enhance performance. Experimental results demonstrate
that CLCE significantly outperforms CE in Top-1 accuracy across twelve benchmarks, achiev-
ing gains of up to 3.52% in few-shot learning scenarios and 3.41% in transfer learning settings
with the BEiT-3 model. Importantly, our proposed CLCE approach effectively mitigates the
dependency of contrastive learning on large batch sizes such as 4096 samples per batch, a lim-
itation that has previously constrained the application of contrastive learning in budget-limited
hardware environments.

Lastly, human-annotated vision datasets inevitably contain a fraction of human-mislabelled
examples, often due to human error when one class superficially resembles another. While the
detrimental effects of such mislabelling on supervised learning are well-researched, their influ-
ence on Supervised Contrastive Learning (SCL) remains largely unexplored. The efficacy of
Supervised Contrastive Learning (SCL) hinges on the quality of supervision labels. Labelling
errors can lead to incorrect positive and negative pairings, undermining the integrity of the repre-
sentations learned. In Section 5.4.4, we show that human-labelling errors not only differ signif-
icantly from synthetic label errors, but also pose unique challenges in SCL, different to those in
traditional supervised learning methods. Specifically, our results indicate they adversely impact
the learning process in the ∼99% of cases when they occur as false positive samples. Exist-
ing noise-mitigating methods primarily focus on synthetic label errors and tackle the unrealistic
setting of very high synthetic noise rates (40–80%), but they often underperform on common
image datasets due to overfitting. To address this issue, we introduce a novel SCL objective with
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robustness to human-labelling errors, SCL-RHE in Section 5.4, facilitating better use of existing
datasets without the need for labor-intensive manual re-annotation. SCL-RHE is designed to
mitigate the effects of real-world mislabelled examples, typically characterized by much lower
noise rates (< 5%). We demonstrate that SCL-RHE consistently outperforms state-of-the-art
representation learning and noise-mitigating methods across various vision benchmarks, by of-
fering improved resilience against human-labelling errors.

Relevance of Optimizing Contrastive Learning in Multimodal Learning

Contrastive learning is a pivotal optimization strategy in multimodal learning, primarily due
to its capacity to align and integrate representations from diverse modalities. It encourages cross-
modal coherence by minimizing the distance between representations of semantically similar
(positive) pairs while maximizing the distance between dissimilar (negative) pairs. This pro-
cess creates a shared representation space, ensuring semantic alignment across modalities and
enabling effective cross-modal interactions. Furthermore, it addresses modality-specific dispar-
ities that arise from distinct feature distributions and encoding mechanisms in modalities like
text, images, and audio. By optimizing for semantic alignment, contrastive learning mitigates
these disparities, ensuring related inputs are closely aligned in the representation space regard-
less of their modality.

Another critical advantage of contrastive learning is its ability to enhance robustness to noise
and missing data. Multimodal contexts often involve scenarios where one modality may be
noisy or entirely absent. Contrastive learning helps models prioritize meaningful cross-modal
relationships over modality-specific noise, resulting in robust and generalizable representations.
This robustness directly translates to improved performance in cross-modal tasks. For instance,
in cross-modal retrieval, semantically aligned representations enable effective retrieval of items
across modalities, such as matching text descriptions with relevant images. Similarly, visual-
language models, including CLIP and ALIGN, leverage contrastive learning to achieve state-of-
the-art results in tasks such as zero-shot image classification and multimodal reasoning.

Additionally, contrastive learning facilitates few-shot and zero-shot learning by exploiting
inherent relationships between modalities to build shared representations that generalize effec-
tively to unseen data. This makes it particularly valuable for multimodal scenarios with lim-
ited training examples. The scalability and efficiency of contrastive learning further underscore
its relevance. By generating positive and negative pairs automatically from natural correspon-
dences, such as image-text pairs in datasets, it eliminates the need for extensive manual labeling,
enabling efficient training of large-scale multimodal models.

In conclusion, optimizing contrastive learning effectively aligns multimodal data, enhances
robustness, and improves the performance of multimodal systems across diverse tasks. Its scal-
able and efficient design has made it a foundational approach in multimodal machine learning
frameworks.

59



5.2. LaCViT: A Label-aware Contrastive Training Framework for Vision Transformers

5.2 LaCViT: A Label-aware Contrastive Training Framework
for Vision Transformers

5.2.1 Introduction

Transformers have significantly advanced the field of computer vision, particularly in tasks such
as image classification [115, 143, 146, 147, 224, 242, 271]. These models typically follow a
two-stage process: pre-training on auxiliary tasks and fine-tuning on specific tasks using cross-
entropy loss. However, the reliance on cross-entropy often leads to poor generalization and
vulnerability to label noise and adversarial attacks [10, 22, 136, 144, 145, 166], which impede
their efficacy in practical applications. Moreover, vision transformers exhibit a lack of learned
inductive biases [49, 149], an essential feature for handling unseen examples and enhancing
transfer learning.

The inherent lack of inductive bias and the limitations of fine-tuning with cross-entropy
compromise the transfer learning capabilities of vision transformers, particularly when the tar-
get domain has a small sample size [292]. Although previous works have attempted to address
these issues by integrating convolutional neural networks or modifying the transformer architec-
ture [71, 238, 263], these solutions often compromise the inherent advantages of transformers,
like their training efficiency and scalability. Hence, it would be advantageous to have an alter-
native approach to improve the transfer effectiveness of vision transformers without relying on
convolutional models or layers, while utilizing task labels in the fine-tuning stage.

The development of contrastive learning trace back to early explorations by Becker [16].
This approach aims to differentiate similar items from dissimilar ones within an embedding
space. Additionally, contrastive learning has shown remarkable efficacy in improving deep
learning model performance across various domains [142, 143], including sentence [67, 134]
and audio representation learning [294], with its most notable impact observed in image recog-
nition tasks, as exemplified by SimCLR [29] and other studies [144, 145, 149]. While inte-
grating label information into contrastive learning has been explored, as in [109], these efforts
have primarily remained confined to the pre-training phase and have not been extended to vision
transformers.

While both fields have advanced in parallel, the integration of label-aware contrastive learn-
ing within the fine-tuning stage of vision transformers remains unexplored. Our work addresses
this gap by pioneering the application of contrastive learning during the fine-tuning phase of
vision transformers, thereby enhancing their transferability.

In response, we propose the LaCViT , a label-aware contrastive training framework designed
specifically for vision transformers. LaCViT leverages task labels in a contrastive learning con-
text to fine-tune pre-trained models, thus significantly improving their transfer learning capa-
bilities. This framework employs a two-stage, label-aware contrastive learning loss to refine
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sample embeddings, enabling better generalization to target tasks. Notably, LaCViT is the first
framework of its kind to enhance vision transformer transfer learning without relying on convo-
lutional layers or extended training epochs. We believe that our work serves as an impetus for
the research community to reconsider the fine-tuning mechanisms for Vision Transformers. The
primary contributions of this section are as follows:

• We introduce LaCViT , a pioneering label-aware contrastive fine-tuning framework that
substantially enhances the transfer learning capabilities of vision transformers, addressing
the thesis statement’s focus on improving intra-modal and inter-modal alignment.

• We demonstrate the wide applicability of LaCViT by fine-tuning three vision transformer
models, validating its versatility and effectiveness across different configurations.

• Extensive experimentation across eight image classification datasets shows that LaCViT

significantly outperforms baseline models. For example, it achieves a 10.78% increase in
Top-1 Accuracy for the LaCViT-trained MAE on the CUB-200-2011 dataset [80], sup-
porting our thesis claim of enhanced performance through improved alignment.

• Additional analysis reveals that LaCViT effectively reshapes pretrained embeddings into
a more discriminative space, further enhancing performance on target tasks and corrobo-
rating our thesis statement on the importance of deep alignment.

• The original material in this section has been accepted for presentation at the 2024 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), a con-
ference with an h5-index of 123.

5.2.2 The Proposed Approach

Motivation and Overview

The prevalent approach for fine-tuning vision transformers employs cross-entropy loss, which
suffers from poor generalization capabilities. Moreover, existing contrastive learning methods
overlook the utility of label information in the fine-tuning phase. To address these limitations,
we propose LaCViT , a label-aware contrastive fine-tuning framework designed to enhance the
transfer learning capabilities of vision transformers. As illustrated in Figure 5.1, our LaCViT

consists of two distinct stages: the label-aware contrastive training stage and the task head

fine-tuning stage.

• Label-aware Contrastive Training Stage (Stage 1): In this stage, we initialize the model
with pretrained weights and adapt these weights through a contrastive learning loss that
incorporates the label information of the target task. This process comprises four main
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Figure 5.1: The overview of LaCViT, which consists of two training stages: 1) label-aware
contrastive training and 2) task head fine-tuning, compared to the vanilla fine-tuning, which
directly fine-tunes the task head. The first contrastive training stage trains the vision transformers
based on the labels of the target tasks with a contrastive loss, aiming to improve the embedding
quality, and in the second stage, LaCViT is fine-tuned with a task-specific head.

steps: data augmentation, patch encoding, nonlinear projection, and contrastive loss com-
putation.

• Task Head Fine-tuning Stage (Stage 2): The second stage focuses on training the task-
specific head, typically a simple linear layer for classification tasks. This stage utilizes
a standard cross-entropy loss to fine-tune the whole framework, which is added atop the
pretrained vision transformer.

Label-aware Contrastive Training Stage

Data Augmentation: To augment each image in the mini-batch into two transformed views, we
employ AutoAugment [41], which has proven to be highly effective for contrastive learning.

Encoding: Feature embeddings for each of the two augmented views of the image are generated
using an encoder, such as ViT [224], MAE [115], or SimMIM [262].

Nonlinear Projection Head: To enhance the quality of the embeddings, we employ a nonlin-
ear projection head, g(h), upon the encoder to map the representation to the space where the
contrastive loss is applied. Thus, to implement zi = g(hi) = W (2)σ(W (1)hi), we use two dense
layers, where σ is a ReLU function. The z = g(h) is trained to be invariant to data transfor-
mation, which means g removes information that could be useful for the downstream task (e.g.,
color of objects). By using the nonlinear projection, more information can be maintained in h.
These embeddings are then grouped into distinct sets by the training class label of the source
image.

Contrastive Loss Objective: To obtain a more discriminative representation space for the target
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CIFAR-10 CIFAR-100 Cub-200-2011 Oxford-Flowers Oxford-Pets iNat 2017 ImageNet-1k Places365
Model Seen dataset FT method Acc@1 Acc@1 Acc@1 Acc@1 Acc@1 Acc@1 Acc@1 Acc@1

Data2vec ImageNet-21k CE 98.25 89.21 85.16 91.57 94.52 71.05 84.20 58.73
ViT-B ImageNet-1k CE 98.13 87.13 N/A 89.49 93.81 65.26 77.91 54.06

LaCViT-ViT-B ImageNet-21k LaCViT 99.07 91.01 85.69 94.98 94.57 70.38 82.99 57.73
ViT-L ImageNet-1k CE 97.86 86.36 N/A 89.66 93.64 64.82 76.53 54.55

SimMIM ImageNet-1k CE 98.78 90.26 76.47 83.46 94.22 70.28 83.00 57.54
LaCViT-SimMIM ImageNet-1k LaCViT 99.11 90.80 85.79 92.25 94.85 71.34 83.64 58.47

MAE ImageNet-1k CE 98.28 87.67 78.46 91.67 94.05 70.50 83.60 57.90
MAE ImageNet-1k SimCLR 97.53 76.01 57.91 89.22 91.15 65.62 81.92 55.48
MAE ImageNet-1k N-pair-loss 95.23 73.76 52.56 89.87 87.12 62.36 78.34 52.97

LaCViT-MAE ImageNet-1k LaCViT 99.34 91.27 89.24 93.34 95.63 72.55 84.12 58.92

Table 5.1: Image classification performance benchmarks over eight datasets. CE refers to
fine-tune with cross-entropy, while LaCViT refers to fine-tune with our proposed label-aware
contrastive fine-tuning framework.

task, we train the pretrained encoder using a contrastive loss by leveraging label information (i.e.,
the label-aware contrastive loss). The label-aware contrastive loss enables stronger geographic
clustering of samples belonging to the same class in the embedding space, while simultane-
ously pushing apart clusters of samples from different classes. The advantage of the label-aware
contrastive loss is that we compute the contrastive loss based on true positive pairs per anchor
in addition to true negative samples, compared to self-supervised contrastive learning that uses
only augmented views. The contrastive loss is mathematically defined as follows:

L (D∗) = ∑
zi∈D∗

−1
|D∗+−zi

| ∑
zp∈D∗+−zi

log
exp(zi · zp/τ)

∑
za∈D∗−zi

exp(zi · za/τ)
, (5.1)

In Equation 5.4, D∗ represents the entire mini-batch composed of an embedding z for each
image view (or anchor) i. Therefore, zi ∈ D∗ is a set of embeddings within the mini-batch.
The superscripts + and −, e.g. D∗+, denote sets of embeddings consisting only of positive
and negative examples, respectively, for the current anchor within the mini-batch. The term
|D∗+−zi

| represents the cardinality of the positive set for the current anchor, while the subscript
−zi denotes that this set excludes the embedding zi. The symbol · represents the dot product. τ

is a temperature parameter, which controls the degree of loss applied when two images have the
same class but the embeddings are different. A higher value pushes the model to more strongly
separate the positive and negative examples.

Comparison with Existing Methods. Different from previous methods that integrate con-
volutional layers into the transformer architecture or extend the training epochs, our LaCViT

preserves the native advantages of transformers such as training efficiency and enhances their
transfer learning capabilities through label-aware contrastive training.

5.2.3 Experiments

Experimental Setup: To evaluate the effectiveness of the LaCViT framework, we conducted
experiments using three state-of-the-art pretrained vision transformer models across eight di-
verse image classification datasets. The train/test splits for these datasets are consistent with
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prior work [49]. For the contrastive training stage, we initialize the encoder with pretrained
weights obtained from either the ImageNet-1k or ImageNet-21k datasets. During training, we
employ a batch size of 4096 for the contrastive training stage (Stage 1) and 128 for the task
head fine-tuning stage (Stage 2). The number of epochs for these stages is set to 50 and 10,
respectively. Both stages use an initial learning rate of 1× 10−4. The temperature parameter
τ for the contrastive loss is set to 0.1. All the code used in our experiments can be found in
https://github.com/longkukuhi/LaCViT.

Comparative Analysis: We benchmark the performance of LaCViT-trained models against
baseline models that solely utilize vanilla cross-entropy loss. The evaluation metrics include
Top-1 accuracy across the selected datasets, as summarized in Table 5.1. Our results indicate
that LaCViT-trained models consistently outperform their baseline counterparts. For instance,
LaCViT-ViT-B achieves a Top-1 accuracy improvement of 3.88% and 5.49% on the CIFAR-100
and Oxford 102 Flowers datasets, respectively. LaCViT-SimMIM shows a significant advantage
over SimMIM, with an average improvement of 2.74% over tested datasets. Data2vec per-
forms worse than LaCViT-MAE on smaller datasets such as CUB-200-2011 but shows marginal
improvement on larger datasets, attributable to its larger pre-training dataset (ImageNet-21k).
Moreover, LaCViT-MAE emerges as the best-performing model on almost all datasets, with a
performance boost of 10.78% on the CUB-200-2011 dataset1.

Discussion: The observed performance gains substantiate the effectiveness of our label-aware
contrastive training approach in LaCViT . This is particularly prominent in smaller datasets but
is also evident in larger datasets, such as iNat 2017 and ImageNet-1k. LaCViT-MAE achieves
better performance with less pre-training data, which demonstrates that extensive pre-training
on larger datasets does not necessarily translate to improved transferability on smaller datasets.
With LaCViT , comparable or even superior performance can be attained.

5.2.4 Analysis

Ablation Study on Alternative Contrastive Loss: We evaluate the performance of LaCViT

against other notable unsupervised contrastive learning methods, namely SimCLR [29] and N-
pair-loss [217], to understand the unique advantages of our label-aware approach. We use the
MAE base model for these comparisons. The results are summarized in the lower section of
Table 5.1. MAE fine-tuned with SimCLR significantly underperforms compared to LaCViT-
MAE, particularly on the CUB-200-2011 and CIFAR-100 datasets, registering a performance
decrease up to 31.33%. When fine-tuned with N-pair-loss, MAE exhibits a 2–5% decline in
accuracy compared to its SimCLR counterpart, with the exception of a marginal accuracy gain of
0.65% on the Oxford 102 Flower dataset. These findings suggest that unsupervised contrastive
learning methods may not sufficiently capture class-specific features, thus affecting performance

1An exception is the Oxford-Flowers dataset, where LaCViT-ViT-B excels due to its ImageNet-21k pre-training.
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Figure 5.2: Plot of cosine similarity distribution across two random classes from CIFAR-10.
Blue and orange mean positive and negative similarities, respectively.

adversely. Cross-entropy fine-tuned MAE consistently outperforms both SimCLR and N-pair-
loss fine-tuned versions, emphasizing the need for using label information in contrastive learning
like LaCViT .

Embedding Quality Analysis: We further investigate the geometric properties of the learned
embedding spaces to understand the impact of label-aware contrastive training.

• Cosine Similarity: Figure 5.2 illustrates the cosine similarity distribution between LaCViT-
MAE and MAE. The figure shows that LaCViT-MAE offers better inter-class separation.

• t-SNE Visualization: Figure 5.3 presents t-SNE visualizations of the embeddings for both
MAE and LaCViT-MAE. The clusters in LaCViT-MAE are tighter and better separated,
thus underscoring the discriminative power of label-aware contrastive training.

Summary: Our analysis confirms that label-aware contrastive training with LaCViT enhances
the geometric properties of the embedding spaces, particularly in terms of inter-class separation.
These improvements substantiate the superior transfer learning capabilities of vision transform-
ers trained using LaCViT .

5.2.5 Summary

In this section, we present LaCViT , a label-aware contrastive fine-tuning framework that sig-
nificantly increases the Top-1 accuracy of vision transformers across various benchmarks. It
outperforms state-of-the-art models like MAE by up to 10.78% and is applicable to other trans-
formers such as ViT and SimMIM. Through rigorous analysis, including using cosine similarity
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Figure 5.3: Embedding Space Visualization for MAE vs. LaCViT-MAE. Displayed over ten
CIFAR-10 classes using t-SNE. Each dot represents a sample, with distinct colors indicating
different label classes.

metrics and t-SNE visualizations, we demonstrate that LaCViT effectively reshapes the geomet-
ric properties of the embedding space, contributing to its effectiveness in image classification
tasks. In summary, LaCViT offers a comprehensive and versatile approach that serves to sub-
stantially elevate the utility of transformers in image classification. Our exhaustive empirical
evaluations not only validate the effectiveness of LaCViT but also suggest that it offers an effec-
tive alternative to cross-entropy for fine-tuning pretrained models for image classification tasks,
addressing the thesis statement’s focus on improving intra-modal and inter-modal alignment.

5.3 CLCE: An Approach to Refining Cross-Entropy and Con-
trastive Learning for Optimized Learning Fusion

In Section 5.2, we validated our initial method, LaCViT , which enhances transferability via con-
trastive learning during the fine-tuning phase. The promising outcomes of this approach have
motivated further exploration into optimizing contrastive learning to achieve superior perfor-
mance.

Although we achieved promising results of using our LaCViT , the integrating contrastive
learning at the fine-tuning stage introduces a dependence on large mini-batch sizes (e.g., 1024
or 2048), unlike methods based on cross-entropy.

As discussed in Section 5.2.1, approaches for achieving state-of-the-art performance in im-
age classification tasks often employ models initially pre-trained on auxiliary tasks and then
fine-tuned on a task-specific labeled dataset with a Cross-Entropy loss (CE) [115, 224, 252].
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However, CE’s inherent limitations can impact model performance. Specifically, the measure
of KL-divergence between one-hot label vectors and model outputs can cause narrow decision
margins in the feature space. This hinders generalization [22, 136] and has been shown to be
sensitive to noisy labels [136, 166] or adversarial samples [56, 166]. Various techniques have
emerged to address these problems, such as knowledge distillation [83], self-training [264],
Mixup [282], CutMix [277], and label smoothing [229]. However, in scenarios such as few-shot
learning, these issues with CE have not been fully mitigated. Indeed, while techniques such as
extended fine-tuning epochs and specialized optimizers [162, 284] can reduce the impact of CE
to some extent, they introduce new challenges, such as extended training time and increased
model complexity [162, 284].

Amidst these challenges in context of image classification, contrastive learning has emerged
as a promising solution, particularly in few-shot learning scenarios such as CIFAR-FS [18] and
CUB-200-2011 datasets [245]. The effectiveness of contrastive learning lies in its ability to
amplify similarities among positive pairs (inter-class data points) and distinguish negative pairs
(inter-class data points). SimCLR [186], for instance, has utilized instance-level comparisons
unsupervised. However, this unsupervised approach raises concerns regarding its effectiveness,
primarily because it limits the positive pairs to be transformed views of an image and treats
all other samples in a mini-batch as negatives, potentially overlooking actual positive pairs. We
hypothesis incorporating task-specific label information is thus crucial for accurately identifying
all positive pairs, especially given the presence of labels in many downstream datasets.

There is a growing trend of using task labels with contrastive learning to replace the stan-
dard use of CE [109]. A critical observation here is that many state-of-the-art methods, both in
supervised [74, 109] and unsupervised [64, 186, 217] contrastive learning, overlook the strate-
gic selection of negative samples. They fail to differentiate or prioritize these samples during
selection or processing, thereby missing the benefits of leveraging “hard" negative samples, as
highlighted in numerous studies [39, 79, 120, 171, 226, 287]. While contrastive learning miti-
gates the limitations of CE, it simultaneously introduces a challenge: a reliance on large batch
sizes—such as 2048 or 4096 samples per batch—for superior performance compared to CE.
This requirement is often impractical in budget hardware environments, particularly when us-
ing GPUs with less than 24 GB of memory. As a consequence, state-of-the-art methods such
as SupCon [109] underperform compared to CE when using more commonly employed batch
sizes, such as 64 or 128 samples per batch, which limits their application. Motivated by these
successes and gaps in research, we pose the question: How can the performance of contrastive

learning be improved to address the shortcomings of cross-entropy loss, while also mitigating

the reliance on large batch sizes?

Building upon the identified research gaps, in this Section, we propose CLCE, an innovative
approach that combines Label-Aware Contrastive Learning with CE. This approach effectively
merges the strengths of both loss functions and integrates hard negative mining. This technique
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refines the selection of positive and negative samples, thereby enabling CLCE to achieve state-
of-the-art performance. As our empirical findings illustrate in Fig. 5.4, CLCE places a greater
emphasis on hard negative samples that are visually very similar to positive samples, forcing the
encoder to learn how to generate more distinct embeddings and better decision boundaries. The
core contributions of this Section can be summarised as follows:

• Introduction of an Innovative Approach:We introduce CLCE, a groundbreaking method
that enhances model performance without requiring specialized architectures or additional
resources. Our work is the first to successfully integrate explicit hard negative mining
into Label-Aware Contrastive Learning, retaining the benefits of cross-entropy (CE) while
eliminating the dependence on large batch sizes. This contribution directly addresses the
thesis statement’s focus on improving multimodal learning efficiency and alignment.

• State-of-the-Art Performance in Few-Shot and Transfer Learning Settings: CLCE signif-
icantly surpasses CE, achieving an average of 2.74% higher Top-1 accuracy across four
few-shot learning datasets using the BEiT-3 base model [252], with notable gains in 1-
shot learning scenarios. Additionally, in transfer learning settings, CLCE consistently
outperforms other state-of-the-art methods across eight image datasets, establishing a new
benchmark for base models (88 million parameters) on ImageNet-1k [45]. These results
validate our thesis claim of enhanced performance through improved alignment.

• Reduced Dependency on Large Batch Sizes in Contrastive Learning: Empirical evidence
shows that CLCE significantly outperforms both CE and previous state-of-the-art con-
trastive learning methods like SupCon [109] even with commonly used batch sizes, such
as 64, where earlier methods underperform. This advancement addresses a critical bot-
tleneck in contrastive learning, particularly in resource-limited settings, aligning with our
thesis goal of creating more efficient and practical multimodal learning methods. CLCE
emerges as a viable, efficient alternative to conventional CE, further supporting the thesis
statement.

• The original material in this section has been accepted for presentation at the The 27th
European Conference on Artificial Intelligence (Core ranking A Conference) as a full
paper.

5.3.1 Approach

In this Section, we propose an enhanced approach named CLCE for image models that inte-
grates our propose Label-Aware Contrastive Learning with the Hard Negative Mining (LACLN)
and the Cross-Entropy (CE). CLCE harnesses the potential of contrastive learning to mitigate
the limitations inherent in CE while preserving its advantages. Specifically, LACLN enhances
similarities between instances of the same class (i.e. positive samples) using label information
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Cross-Entropy CLCE

Decision Boundary

Hard Negatives

Negatives

Positives

Figure 5.4: CLCE, our proposed approach, integrates a Label-Aware Contrastive Learning with
the Hard Negative Mining (LACLN) term and a CE term. Illustrated with CUB-200-2011
dataset, it emphasizes hard negatives (thick dashed borders) for better class separation. This
underscores their marked visual similarity to their positive counterparts. Blue indicates positive
examples and orange denotes negatives. On the right, CLCE visibly separates class embeddings
more effectively and results a better decision boundary than traditional CE.

and contrasts them against instances from other classes (i.e. negative samples), with particular
emphasis on hard negative samples. Thus, LACLN reshapes pretrained embeddings into a more
distinct and discriminative space, enhancing performance on target tasks. Moreover, CLCE’s
foundation draws from the premise that the training efficacy of negative samples varies between
soft and hard samples. We argue that weighting negative samples based on their dissimilarity to
positive samples is more effective than treating them equally. This allows the model to prioritize
distinguishing between positive samples and those negative samples that the embedding deems
similar to the positive ones, ultimately enhancing overall performance.

CLCE

The overall proposed CLCE approach is a weighted combination of LACLN and standard CE,
as expressed in Eq. 5.2:

LCLCE = (1−λ )LCE +λLLACLN (5.2)

In Eq. 5.2, the term LCE represents the CE loss, while LLACLN symbolizes our proposed
LACLN loss. λ represents a scalar weighting hyperparameter. λ determines the relative impor-
tance of each of the two losses. To provide context for LCE, we refer to the standard definition
of the multi-class CE loss, detailed in Eq. 5.3:

LCE =− 1
N

N

∑
i=1

C

∑
c=1

zi,c log(ẑi,c) (5.3)

In Eq. 5.3, zi,c and ẑi,c represent the label and the model’s output probability for the ith
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instance belonging to class c, respectively.

LLACLN = ∑
xi∈D∗

− log
1
|D∗+−xi

|

∑
xp∈D∗+−xi

exp(xi · xp/τ)

∑
xp∈D∗+−xi

exp(xi · xp/τ)+ ∑
xk∈D∗-−xi

|D∗-−xi
|

∑
xk∈D∗-−xi

exp(xi · xk/τ)
exp(xi · xk/τ)2

(5.4)

We present the formal definition of our LACLN in Eq. 5.4. This loss introduces a weight-
ing factor for each negative sample, calculated based on the dot product (indicating similarity)
between the sample embeddings and the anchor, and normalized by a temperature parameter τ .
This formulation strategically emphasizes “hard” negative samples — those closely associated
with the positive samples by the model’s current embeddings. Specifically, the weighting factor
for negative samples is determined by calculating their relative proportion based on the average
similarity (dot product) observed within each mini-batch. The essence of Eq. 5.4 is to minimize
the distance between positive pair embeddings and maximize the separation between the anchor
and negative samples, particularly the hard negatives. This objective is achieved through two
components: the numerator, focusing on bringing positive sample embeddings closer to the an-
chor, and the denominator, containing both positive and weighted negative samples to ensure
the anchor’s embedding is distant from negative samples, with a special focus on the more chal-
lenging ones. The integration of hard negative mining into contrastive learning is critical as it
sharpens the model’s ability to differentiate between closely related samples, thus enhancing
feature extraction and overall model performance.

Specifically, D∗ represents the entire mini-batch composed of an embedding x for each im-
age view (or anchor) i. Therefore, xi ∈ D∗ is a set of embeddings within the mini-batch. The
superscripts + and −, e.g. D∗+, denote sets of embeddings consisting only of positive and
negative examples, respectively, for the current anchor within the mini-batch. The term |D∗+−xi

|
represents the cardinality of the positive set for the current anchor, while the subscript −xi de-
notes that this set excludes the embedding xi. The symbol · represents the dot product. τ is a
scalar temperature parameter controlling class separation. A lower value for τ encourages the
model to differentiate positive and negative instances more distinctly.

The use of the square in exp(xi · xk/τ) is not ad hoc but follows from the structure of
our weighting and scaling mechanism. The expression exp(xi·xk/τ)

∑xk∈D
∗−
−xi

exp(xi·xk/τ) serves as a weight-

ing factor that normalizes the similarity score of each negative sample relative to the sum
of all similarity scores in the batch. Then, we multiply this weight by the original similar-
ity score exp(xi · xk/τ),which acts as the scaling. Thus, the operation can be represented as:

exp(xi·xk/τ)
∑xk∈D

∗−
−xi

exp(xi·xk/τ) · exp(xi · xk/τ) This results in the squared term, which arises naturally from

this weighting and scaling process. The weighting factor D∗-−xi
is used to normalize the contri-

bution of negative samples in a multi-viewed batch. This normalization serves to remove bias
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that may be present among the negatives, ensuring a balanced contribution to the loss. This
approach is a proven technique used in many contrastive loss functions to enhance performance
and stability.

Analysis of CLCE

Notably, our proposed CLCE has the following desirable properties:

• Robust Positive/Negative Differentiation: We ensure a clear distinction between true pos-
itive and true negative samples by leveraging explicit label information, as encapsulated
in Eq. 5.4. This not only prevents the model from being misled by incorrectly contrasting
of samples but also reinforces the core philosophy of contrastive learning. The aim is
two-fold: to reduce the distance between the embeddings of positive pairs and to increase
the distance for negative pairs, ensuring robust class separation.

• Discriminating Fine Detail with Hard Negatives: Our loss adjusts the weighting of nega-
tive samples based on their similarities to positive instances, as defined in Eq. 5.4. This
nuanced approach ensures that the model not only differentiates between glaringly dis-
tinct samples but also adeptly distinguishes more challenging, closely related negative
samples. Such an approach paves the way for a robust model that discerns real-world
scenarios where differences between classes might be minimal.

Representation Learning Framework

We use a representation learning framework comprised of three main components, designed
specifically to optimize our CLCE approach:

• Data Augmentation module, Aug(·): This component creates two different views of each
sample x, denoted x̃ = Aug(x). This means that every sample will have at least one similar
sample (positive pair) in a batch during training.

• Encoder Network, Enc(·): This network encodes the input data, x, into a representation
vector, r = Enc(x). Each of the two different views of the data is fed into the encoder
separately.

• Classification head, Head(·): This maps the representation vector, r, to probabilities of
classes in the target task. The mapping primarily consists of a linear layer, and we utilize
its output to calculate the cross-entropy loss.

Our CLCE approach (Eq. 5.4) can be applied using a wide range of encoders, such as BEiT-
3 [252] or the ResNets [193] for image classification. Following the method in [30], every
image in a batch is altered to produce two separate views (anchors). Views with the same

71



5.3. CLCE: An Approach to Refining Cross-Entropy and Contrastive Learning for Optimized
Learning Fusion

CIFAR-FS FC100 miniImageNet tieredImageNet
Model Loss 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

[47] Transductive 76.58±0.68 85.79±0.50 43.16±0.59 57.57±0.55 65.73±0.68 78.40±0.52 73.34±0.71 85.50±0.50
[285] Meta-QDA 75.83±0.88 88.79±0.75 - - 67.83±0.64 84.28±0.69 74.33±0.65 89.56±0.79
[82] FewTRUE-ViT 76.10±0.88 86.14±0.64 46.20±0.79 63.14±0.73 68.02±0.88 84.51±0.53 72.96±0.92 87.79±0.67
[82] FewTRUE-Swin 77.76±0.81 88.90±0.59 47.68±0.78 63.81±0.75 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55
[91] BAVARDAGE 82.68±0.25 89.97±0.18 52.60±0.32 65.35±0.25 77.85±0.28 88.02±0.14 79.38±0.29 88.04±0.18

ResNet-101 CE 69.80±0.84 85.20±0.62 43.71 ±0.73 58.65±0.74 55.73±0.85 73.86±0.65 46.93±0.85 62.93±0.76
ResNet-101 H-SCL [103] 67.25±0.86 84.51±0.65 41.34±0.72 57.02±0.70 53.38±0.79 70.29±0.63 44.43±0.82 60.83±0.71
ResNet-101 CE+SupCon 73.61±0.80 86.15±0.53 45.30±0.62 60.18±0.72 57.49±0.82 75.63±0.61 49.44±0.79 66.47±0.60
ResNet-101 CLCE (this work) 76.14±0.75 87.93±0.48 49.48±0.57 64.31±0.70 66.20±0.74 83.41±0.55 63.61±0.72 79.83±0.51
BEiT-3 CE 83.68±0.80 93.01±0.38 66.35±0.95 84.33±0.54 90.62±0.60 95.77±0.28 84.84±0.70 94.81±0.34
BEiT-3 H-SCL [103] 82.21±0.80 91.49±0.37 65.27±0.98 82.61±0.52 88.57±0.62 93.03±0.29 81.37±0.73 93.26±0.33
BEiT-3 CE+SupCon 84.93±0.74 93.36±0.34 67.58±0.86 86.10±0.57 91.04±0.55 95.97±0.24 85.72±0.64 95.33±0.29
BEiT-3 CLCE (this work) 87.00±0.70 93.77±0.36 69.87±0.91 87.06±0.52 92.35±0.53 96.78±0.23 87.24±0.62 96.09±0.29

Table 5.2: Comparison to baselines on the few-shot learning setting. Average few-shot classi-
fication accuracies (%) with 95% confidence intervals on test splits of four few-shot learning
datasets.

label as the anchor are considered positive, while the rest are viewed as negative. The encoder
output, represented by xi = Enc(ri), is used to calculate the contrastive loss. In contrast, the
output from the classification head, denoted as zi = Head(Enc(ri)), is used for the CE. We
have incorporated L2 normalization on encoder outputs, a strategy demonstrated to enhance
performance significantly [235].

5.3.2 Evaluation

We evaluate our proposed approach, CLCE, on image classification in two settings: few-shot
learning and transfer learning. We also conduct several analytical experiments. For CLCE
experiments, a grid-based hyperparameter search is conducted on the validation set. Optimal
settings (τ = 0.5 and λ = 0.9) are employed because they consistently yield the highest vali-
dation accuracies. For all experiments, we use the official train/test splits and report the mean
Top-1 test accuracy across at least three distinct initializations.

We employ representative models from two categories of architectures – BEiT-3/MAE/ViT
base [115, 224, 252] (transformers based models), and ResNet-101 [81] (convolutional neural
network). While new state-of-the-art models are continuously emerging (e.g. DINOv2 [175]),
our focus is not on the specific choice of architecture. Instead, we aim to show that CLCE is
model-agnostic by demonstrating performance gains with two very different and widely used
architectures, as well as show it can be trained and deployed in hardware-constrained settings.

Few-shot Learning

We evaluate our proposed CLCE in the few-shot learning setting, i.e. each test run comprises
3,000 randomly sampled tasks, and we report median Top-1 accuracy with a 95% confidence
interval across three runs, maintaining a consistent query shot count of 15. Four prominent
benchmarks are used for evaluation: CIFAR-FS [18], FC100 [177], miniImageNet [244], and
tieredImageNet [199]. We follow established splitting protocols for a fair comparison [18, 177,
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Model Loss CIFAR-100 CUB-200 Caltech-256 Oxford-Flowers Oxford-Pets iNat2017 Places365 ImageNet-1k

ResNet-101 CE 96.27 84.62 81.38 95.71 93.24 66.11 54.73 78.70
ResNet-101 H-SCL [103] 92.78 77.14 78.64 92.34 92.58 63.14 52.02 77.10
ResNet-101 CE+SupCon 96.31 84.70 81.61 95.73 93.49 66.90 55.41 79.03
ResNet-101 CLCE (this work) 96.92 87.48 85.05 96.33 94.21 67.93 57.30 80.16

ViT-B CE 87.13 76.93 90.92 90.86 93.81 65.26 54.06 77.91
ViT-B CLCE (this work) 88.53 78.21 92.10 92.04 94.01 71.25 58.70 83.94

MAE CE 87.67 78.46 91.82 91.67 94.05 70.50 57.90 83.60
MAE CLCE (this work) 90.29 81.30 93.11 92.82 94.88 71.62 58.40 84.02

BEiT-3 CE 92.96 98.00 98.53 94.94 94.49 72.31 59.81 85.40
BEiT-3 H-SCL [103] 89.50 95.70 96.24 92.60 93.28 68.51 56.66 82.25
BEiT-3 CE+SupCon 92.74 98.06 98.65 94.92 94.77 73.58 60.52 85.70
BEiT-3 CLCE (this work) 93.56 98.93 99.41 95.43 95.62 75.72 62.22 86.14

Table 5.3: Comparison to baselines on transfer learning setting. The results are Top-1 classifi-
cation accuracies across eight diverse datasets.

196].
Tab. 5.2 shows the performance of BEiT-3 and ResNet-101 models under various meth-

ods, including CE, H-SCL [103], and the same weighted combination of CE and state-of-the-
art supervised contrastive learning loss (SupCon) [109] as CLCE. The results reveal that our
CLCE approach consistently improves classification accuracy over other methods, demonstrat-
ing superior generalization with limited training data for each class. Our CLCE enhances mod-
els’ performance on few-shot datasets, significantly outperforming both CE and CE+SuperCon
(paired t-test, p < 0.01). In the 1-shot learning context when compared to BEiT-3 trained with
CE (BEiT-3-CE), the most remarkable improvement is seen on the FC100 dataset, with accu-
racy rising by 3.52% through the use of CLCE (BEiT-3-CLCE). Indeed, across all datasets,
BEiT-3-CLCE shows an average accuracy improvement of 2.7%. For 5-shot learning, the av-
erage improvements across the datasets are 1.4% in accuracy for BEiT-3-CLCE, demonstrating
CLCE’s effectiveness in scenarios with fewer positive samples per class and its ability to yield
consistent and reliable results, evident in the tighter confidence intervals for Top-1 accuracy.
As for ResNet-101, CLCE (ResNet-101-CLCE) demonstrates even more significant improve-
ments over both CE and CE+SupCon. The enhancement is especially remarkable in the case of
tieredImagenet, where ResNet-101-CLCE achieves increases of 16.68% over ResNet-101-CE
and 14.17% over ResNet-101-CE+SupCon in 1-shot learning. For 5-shot learning, the improve-
ments are 16.9% and 13.36%, respectively. On average, ResNet-101-CLCE achieves a 9.82%
improvement in 1-shot and an 8.71% improvement in 5-shot settings over the ResNet-101-CE.
Lastly, H-SCL [103] underperforms compared to CE at a batch size of 128. This highlights con-
trastive learning’s limitation of needing very large batch sizes for better performance than CE,
evident in ResNet-101 and BEiT-3 models. Overall, these outcomes underline the efficacy of our
proposed CLCE approach and CLCE’s broad applicability across different model architectures
for few-shot learning tasks.
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Transfer Learning

We now assess the transfer learning performance of our proposed CLCE. Here, adhering to
the widely accepted paradigm for achieving state-of-the-art results, models are initialized with
publicly-available weights from pretraining on ImageNet-21k [45] since they are state-of-the-
art, and are fine-tuned on smaller datasets using our new loss function. We leverage 8 datasets:
CIFAR-100 [112], CUB-200-2011 [245], Caltech-256 [72], Oxford 102 Flowers [168], Oxford-
IIIT Pets [179], iNaturalist 2017 [240], Places365 [291], and ImageNet-1k [45]. We adhere to
official train/test splits and report mean Top-1 test accuracy over three different initializations.

Tab. 5.3 presents the results of transfer learning, which offers further evidence of the ef-
fectiveness of our proposed CLCE approach beyond few-shot scenarios. When applied to four
state-of-the-art image models, including BEiT-3, ResNet-101, ViT-B and MAE, our proposed
CLCE approach consistently surpasses other methods, including the standard CE, H-SCL [103]
and the same weighted combination of CE and SupCon loss as CLCE. A paired t-test confirms
these improvements as statistically significant (p < 0.05). While the increase in performance
with BEiT-3-CLCE over the BEiT-3-CE baseline is modest in some cases, such as the rise from
98.00% (BEiT-3-CE) to 98.93% (BEiT-3-CLCE) on CUB-200, it shows significant enhance-
ments in challenging datasets with a higher level of class diversity. A notable example is iNat-
uralist2017, which has 5089 different classes, where CLCE leads to a marked improvement in
accuracy from 72.31% to 75.72%. This substantial increase suggests that CLCE’s benefits are
more pronounced in more varied datasets. In the case of ImageNet-1k, accuracy increased from
85.40% (BEiT-3-CE) to 86.14% (BEiT-3-CLCE), setting a new state-of-the-art for base models
(88 million parameters) 2. We observe similar improvements in other transformer-based models,
such as ViT and MAE. The use of CLCE in fine-tuning ResNet-101 also resulted in significant
performance gains, particularly in the Caltech-256 dataset. Here, the model’s accuracy increases
from 81.38% (ResNet-101-CE) to 85.05% (ResNet-101-CLCE). Compared to ResNet-101-CE,
there has been an average increase in accuracy of 1.83% for ResNet-101-CLCE. Furthermore,
H-SCL [103] yields inferior results compared to CE, mirroring the result observed in few-shot
scenarios. Overall, the consistent achievement of high accuracies across diverse datasets using
models fine-tuned with CLCE, especially ResNet-101 and BEiT-3, underscores the effectiveness
of CLCE in improving model performance. Remarkably, this is achieved without resorting to
specialized architectures, extra data, or heightened computational requirements, thereby estab-
lishing CLCE as a powerful alternative to traditional CE.

Reducing Batch Size Dependency

We evaluate the effect of batch size on the performance, specifically comparing our CLCE ap-
proach with CE and SupCon [109]. The results, as detailed in Tab. 5.4, indicate that SupCon’s

2https://paperswithcode.com/sota/image-classification-on-imagenet
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Figure 5.5: Evaluation of the impact of the λ hyperparameter. Results on eight tested datasets
with λ values ranging from {0,0.1,0.3,0.5,0.7,0.9,1.0}. The numerical details for these figures
are provided in the supplementary material.

performance is sensitive to batch size variations, a limitation not observed with CE. Particularly,
SupCon shows inferior performance compared to CE with the commonly used batch size of 64
on both tested datasets. Even when the batch size is increased to 128, SupCon continues to
underperform relative to CE. In our experiments, SupCon generally needs a batch size exceed-
ing 512 to outperform CE, a requirement that is impractical for most single-GPU setups. This
scenario mirrors the results of H-SCL [103] in the context of few-shot and transfer learning. In
contrast, CLCE not only surpasses CE performance on the iNat2017 dataset with a 1.41% accu-
racy improvement with batch size of 64 but also demonstrates an even more performance gain
of 3.52% in accuracy with batch size of 128. Thus, our CLCE approach significantly mitigates
the dependency on large batch sizes typically associated with contrastive learning approaches
like SupCon and H-SCL. The reduction in dependency on large batch sizes greatly enhances the
adaptability and effectiveness of CLCE in diverse computational settings, such as environments
with budget GPUs equipped with 12 GB of memory.

Moreover, gradient accumulation is commonly used in cross-entropy loss to achieve a simi-
lar effect when requiring large batch sizes. However, gradient accumulation is very challenging
in contrastive learning due to the need to ensure that the accumulated gradients accurately re-
flect the contrastive nature of the task, particularly in maintaining the integrity of positive and
negative pair distributions. This also increases the complexity of maintaining effective sampling
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Loss Batch Size CIFAR-FS iNat2017

CE 64 83.68 72.31
CE 128 83.39 72.20

SupCon [109] 64 80.31 69.05
SupCon [109] 128 82.17 69.93

CLCE (this work) 64 84.59 73.72
CLCE (this work) 128 87.00 75.72

Table 5.4: Impact of different batch size. Performance of BEiT-3 base model when trained
on CIFAR-FS and iNat2017 datasets. “CE" denotes cross-entropy loss. “SupCon" denotes
supervised contrastive learning loss. “CLCE" denotes our proposed joint loss.

CE CL HNM CIFAR-FS iNat2017

✓ 83.68 72.31
✓ ✓ 84.85 73.53
✓ ✓ ✓ 87.00 75.72

Table 5.5: Results on CIFAR-FS and iNat2017 when training BEiT-3 base model using
ablated versions of our CLCE. “CE" denotes cross-entropy loss. “CL" refers to our proposed
label-aware contrastive learning, and “HNM" refers to hard negative mining.

strategies which could vary among datasets, in pairs or triplets across accumulation steps. Thus,
gradient accumulation is an inadequate method for overcoming the dependency on large batch
sizes. CLCE, on the other hand, offers a more efficient and effective solution.

Optimizing λ : Bridging CE and LACLN

Our proposed CLCE incorporates a hyperparameter, λ , to control the contributions of the CE
term and the proposed LACLN term, as shown in Eq. 5.2. To understand the influence of λ , we
evaluate its effect on classification accuracy in few-shot learning and transfer learning. Fig. 5.5
presents the test accuracy for varying values of λ . Our experiments reveal a consistent trend:
as the weight assigned to the LACLN term (λ ) increases, performance progressively improves
across all tested datasets, peaking at λ = 0.9. For instance, this optimal setting yields an aver-
age performance boost of 2.14% and 2.74% over the exclusive use of either the LACLN or CE
term on four few-shot datasets. This trend also manifests in transfer learning settings, highlight-
ing the complementary nature of CE and LACLN. Thus, optimizing this balance is crucial for
maximizing performance with CLCE.

Ablation Study

We conducted an ablation study on the CIFAR-FS and iNat2017 datasets to evaluate the con-
tributions of two key components in our proposed loss: the proposed label-aware contrastive
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(a) CE (b) CLCE（a) CE for ‘Tulips’ （b) CLCE for ‘Tulips’

Figure 5.6: Plot of cosine similarity distribution across the “tulips” class from CIFAR-100.
Blue represents similarities of positive samples, while orange represents similarities of negative
samples.

learning loss without hard negative mining (CL), and the proposed hard negative mining strat-
egy (HNM), as presented in Tab. 5.5. Across both tested datasets, integrating CL with CE is
essential for achieving better performance than the CE—e.g. on the CIFAR-FS dataset, there is
a notable performance increase of 1.17%. Meanwhile, the integration of our proposed HNM is
critical for CLCE’s enhanced performance, representing one of the main contributions of this
paper. For example, it yields a gain of 2.19% accuracy on the iNat2017 dataset compared to the
variant of CLCE without HNM. Hence, we conclude that both components are important and
complementary.

Embedding Quality Analysis

We perform a thorough evaluation focusing on the geometric characteristics of the generated
representation spaces. We hypothesize that our CLCE enhances the quality of embeddings,
thereby sharpening class distinction and improving performance. To elaborate, we examine the
CE embeddings and CLCE embeddings produced by the BEiT-3 base model. Specifically, we
evaluate two key aspects: (1) Distributions of cosine similarities between image pairs. This
assessment provides insights into how well the model differentiates between classes in the em-
bedding space. (2) Visualization of the embedding space using the t-SNE algorithm [239]. This
visualization allows us to observe the separation or clustering of data points belonging to dif-
ferent classes. (3) We employ the Isotropy Score as defined by [163] to evaluate the quality of
produced embeddings. The Isotropy Score measures the distribution of data in the embedding
space and serves as a metric for the quality of the produced embeddings. Historically, isotropy
has served as an evaluation metric for representation quality [9]. This is based on the premise
that widely distributed representations across different classes in the embedding space facilitate
better distinction between them.

We present the pairwise cosine similarity distributions of CE and CLCE embeddings in
Figs. 5.6 and 5.7. Specifically, we randomly select the “tulips” and “cloud” classes from CIFAR-
100 to compute cosine similarities for positive (same class) and negative pairs (different classes).
Observations from these plots reveal that the CLCE embeddings demonstrate superior separation
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(a) CE for ‘Cloud’ (b) CLCE for ‘Cloud’

(c) CE for ‘Camel’ (d) CLCE for ‘Camel’

（a) CE for ‘Cloud’ （b) CLCE for ‘Cloud’

Figure 5.7: Plot of cosine similarity distribution across the “cloud” class from CIFAR-100.
Blue represents similarities of positive samples, while orange represents similarities of negative
samples.

Model iNaturalist2017 Imagenet-1k Places365

BEiT3-CE 0.32 0.27 0.34
BEiT3-CLCE 0.98 0.92 0.93

Table 5.6: Comparison of Isotropy Score across three datasets for BEiT-3-CE and BEiT-3-
CLCE. A higher value is better. A higher Isotropy Score indicates better isotropy and gener-
alizability.

between classes and less overlap between positive and negative samples compared to CE.
In Fig. 5.8, the t-SNE visualization of the embedding space for CE and CLCE across twenty

CIFAR-100 classes. The CE embeddings (Fig. 5.8a) display instances where the same class
nodes are relatively closely packed but also reveal many outliers. This suggests a reduced dis-
criminative capability. On the contrary, CLCE embeddings (Fig. 5.8b) display more separated
and compact class clusters, suggesting improved discriminative capabilities.

Formally, we calculate the quantitative Isotropy Score (IS) [163], which is defined as follows:

IS(V ) =
maxc⊂C ∑v⊂V exp(CTV )

minc⊂C ∑v⊂V exp(CTV )
(5.5)

where V is a set of vectors, C is the set of all possible unit vectors (i.e., any c so that ||c||= 1)
in the embedding space. In practice, C is approximated by the eigenvector set of V TV (V are
the stacked embeddings of v). The larger the IS value, the more isotropic an embedding space is
(i.e., a perfectly isotropic space obtains an IS score of 1).

These observations indicate that the proposed CLCE approach restructures the embedding
space to enhance class distinction, addressing the generalization limitation of the CE. This en-
hancement is particularly effective for few-shot scenarios, where limited labelled data requires
the model to rely more on high-quality, discriminative representations.
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(a) BEiT-3-CE (b) BEiT-3-SCHaNe(a) CE (b) CLCE

Figure 5.8: Embedding Space Visualization for CE vs. CLCE, over twenty CIFAR-100 test set
classes using t-SNE. Each dot represents a sample, with distinct colors indicating different label
classes.

5.3.3 Discussion and Summary

Limitations. While our CLCE approach advances the state-of-the-art, it still has certain lim-
itations. Firstly, CLCE shows increased performance with larger batch sizes. As Table 5.4 il-
lustrates, CLCE surpasses CE in accuracy in few-shot and transfer learning scenarios at a batch
size of 64, with further improvements observed at larger batch sizes. Secondly, our approach
applies hard negative mining solely to the contrastive learning component and not to the CE
component. This is due to differing implementations of hard negative mining in each loss. In
cross-entropy, hard negatives are identified based on loss values, necessitating a unique strategy
that might interfere with the existing sampling process in contrastive learning and potentially
cause conflicting outcomes. Additionally, the divergent goals of cross-entropy and contrastive
learning, where the former focuses on minimizing the discrepancy between predicted and true
distributions and the latter emphasizes embedding similarities, complicate the use of a unified
hard negative mining approach.

Summary. In this Section, we proposed a approach for training image models, denoted CLCE.
CLCE combines label-aware contrastive learning with hard negative mining and CE, to ad-
dress the shortcomings of CE and existing contrastive learning methods. Our empirical results
demonstrate that CLCE consistently outperforms traditional CE and prior contrastive learning
approaches, both in few-shot learning and transfer learning settings. Furthermore, CLCE offers
an effective solution for researchers and developers who can only access commodity GPU hard-
ware, as CLCE maintains its effectiveness when working with smaller batch sizes that can be
loaded onto cheaper GPU cards with less on-board memory. To summarize, our comprehensive
investigations and robust empirical evidence compellingly substantiate our methodological de-
cisions, demonstrating that CLCE is a superior alternative to CE for enhancing the performance
of image models in image classification. This supports our thesis statement by showcasing how
improved alignment and efficiency in multimodal learning frameworks can lead to significant
performance gains across various tasks.
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5.4 Elucidating and Overcoming the Challenges of Label Noise
in Supervised Contrastive Learning

After enhancing contrastive learning by incorporating hard negative mining and cross-entropy
loss into the overall objective in Section 5.3, we further explore the factors influencing its per-
formance.

5.4.1 Recap

Contrastive methods achieve excellent performance on self-supervised learning [64, 82, 186].
They produce latent representations that excel at many downstream tasks, from image recogni-
tion and object detection to visual tracking and text matching [74, 232]. Supervised contrastive
learning (SCL) utilizes label information to improve representation learning, encouraging closer
distances between same-class samples (positive pairs) and greater distances for different-class
samples (negative pairs). SCL outperforms traditional methods for pre-training that employ a
cross-entropy loss [74, 109, 128].

5.4.2 Introduction

Indeed, the effectiveness of SCL depends on the correctness of the labels used for identifying
image pairs to contrast. Human-labelling errors introduce erroneous positive and negative pair-
ings, compromising the integrity of learned representations [128]. Even widely-used datasets
exhibit significant numbers of mislabeled images—for example, the ImageNet-1K validation
set has 5.83% of images wrongly labeled [169]. The impact of noisy labels on supervised learn-
ing has been extensively researched [53, 77, 219]. However, the extent and manner in which
human-labelling errors influence SCL remains under-explored. As SCL emerges as a com-
pelling alternative to the cross-entropy loss, it becomes increasingly important to investigate
human-labelling errors specifically in the context of SCL.

In this section, we first analyze how human-labelling errors affect SCL and how they differ
from supervised learning with cross-entropy loss. As shown on the left side of Fig. 5.9 and
detailed in Sec. 5.4.4, labelling errors, regardless of being positive or negative, negatively impact
supervised learning with cross-entropy loss during training. Existing noise-mitigation methods,
based on SCL or cross-entropy loss approaches [94, 128], aim to eliminate labelling errors from
training samples. However, we argue that such strategies, often detrimental to SCL, compromise
the quality of learned representations. The middle of Fig. 5.9 shows that labelling errors do not
always adversely affect SCL, with their removal potentially reducing training sample size and
lowering overall performance. Unlike in cross-entropy methods, labelling errors exhibit more
complex dynamics in how they affect learning signals in SCL. Both correctly and incorrectly
labeled images can generate correct or incorrect learning signals, depending on the images they
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Figure 5.9: Comparison between impacts of labelling errors on different learning approaches.
AL represents ‘Assigned Label’ and LL represents ‘Latent Label’. Those marked red in AL
represent human-labelling errors. It is important to note that as long as a pair shares the same
latent label, there are no adverse impacts on positive pairs. Similarly, if the latent labels differ,
negative pairs remain unaffected.

are paired with. Our analysis in Sec. 5.4.4 reveals that nearly 99% of incorrect learning signals
in SCL are due to mislabeled positive samples. This highlights the need for a tailored SCL
strategy that effectively addresses human-labelling errors without sacrificing performance.

Although human-labelling errors are prevalent in image datasets, existing noise-mitigation
methods predominantly focus on synthetic labelling errors, showing good performance when
noise is intentionally added at levels ranging from 40% to 80% [94, 128, 171, 206]. Yet,
in scenarios with realistic human-labelling errors, such as those found in ImageNet-1K (with
a noise rate of approximately 5.83% [169]), these methods underperform, especially against
cross-entropy based methods, primarily due to overfitting [169, 219, 268, 281]. For example,
methods that rely on assigning confidence values to pairs and prioritizing learning from those
deemed confident [94, 128] risk overfitting to incorrect labels and neglect a significant portion
of training data, an issue exacerbated in datasets with many similar classes [219, 268]. Addi-
tionally, existing noise-mitigating methods also introduce significant computational complexity
and overhead. For example, Sel-CL [128] is challenging to apply on large datasets since it uses
the k-NN algorithm to create pseudo-labels.

Importantly, in Sec. 5.4.4, we reveal significant differences between the distributions of syn-
thetic and human-labelling errors, emphasizing the need for tailored mitigation strategies. Our
empirical analysis indicates that human-labelling errors often stem from high visual similarity
between assigned and actual classes, leading to notable overlaps in the representation distribu-
tions of correctly and incorrectly labeled samples. This indicates that human-mislabeled samples
are often indistinguishable in the representation space to samples sharing the same assigned la-
bel; this contrasts with synthetic label errors that are more arbitrary. Thus, there is an urgent need
for methods that not only mitigate the impact of human-labelling errors in SCL on widely-used
human-annotated datasets like ImageNet-1K but also preserve computational efficiency.

Based on our analysis and existing research gaps, we propose a novel SCL objective with ro-
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bustness to human-labelling errors that emphasises true positives, which come from the same la-
tent class but are are far apart in feature space (Sec. 5.4.5). In contrast, existing noise-mitigating
methods tuned for synthetic noise[7, 85] typically assign greater weight to confident pairs that
are closely positioned, despite the high likelihood of these pairs being false positives. Further-
more, based on the established benefits of utilizing ‘hard’ negative samples [171, 203, 206], we
hypothesise that true positives originating from the same latent class, yet positioned distantly,

are important for enhancing the quality of learned representations.
In summary, our main contributions are:

• We present an in-depth analysis elucidating the impact of human-mislabeled samples on
supervised contrastive learning (SCL) and offer strategies to effectively mitigate these
issues (Sec. 5.4.4). This analysis aligns with our thesis statement by addressing critical
factors that influence model performance and reliability.

• We introduce a novel SCL objective, SCL-RHE, the first to specifically address human-
labeling errors by focusing on false positives within SCL (Sec. 5.4.5). Unlike previous
works [169, 219, 268, 281], SCL-RHE not only demonstrates state-of-the-art performance
on widely used image datasets and avoids overfitting, but also maintains efficiency without
adding extra computational overhead. This innovation supports our thesis statement by
enhancing the accuracy and efficiency of multimodal learning frameworks.

• We demonstrate the broad applicability of the proposed SCL-RHE objective across two
distinct learning scenarios: training from scratch and transfer learning. SCL-RHE out-
performs previous state-of-the-art SCL and noise-mitigation methods, achieving higher
Top-1 accuracy on ten tested datasets in both scenarios, as detailed in Sec. 5.4.6. No-
tably, SCL-RHE sets a new state-of-the-art for base models (with 88M parameters) on
ImageNet-1K. These results validate our thesis claim of improved alignment and perfor-
mance in multimodal learning frameworks.

• The original material in this section has been accepted for presentation at the 18th Eu-
ropean Conference on Computer Vision (ECCV), a Core ranking A* conference with an
h5-index of 238.

Based on this analysis, we propose a novel sampling strategy that emphasises true positives,
which come from the same latent class but are distantly placed, and true negatives with similar
representations (Section. 5.4.5). In contrast, existing noise-robust methods [7, 85] typically
assign greater weight to confident pairs that are closely positioned, despite the high likelihood
of these pairs being false positives. Furthermore, based on the established benefits of utilizing
‘hard’ negative samples [171, 203, 206], we hypothesise that true positives originating from

the same latent class, yet positioned distantly, could be important for enhancing the quality of

learned representations. As a result, we strategically reduce the risk of an incorrect decision
boundary, as shown in Fig. 5.9. In summary, our main contributions in this Section are:
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• Insights into the impact of noisy labels on supervised contrastive learning: We present
an in-depth analysis in Section. 5.4.4, elucidating the impact of mislabeled samples on
SCL and offering strategies for their effective mitigation.

• A novel technique for efficient, noise-robust contrastive learning: We propose D-SCL

in Section. 5.4.5, a novel SCL objective that is the first to remove bias due to misan-
notated labels within a supervised contrastive framework. Unlike previous works [27,
94, 128, 289], D-SCL does not introduce extra computational overhead and is suitable
for general image benchmarks with large image models, thereby optimizing performance
without sacrificing processing speed or resource utilization.

• State-of-the-art performance: Compared to traditional pre-training using cross-entropy,
D-SCL achieves significant gains in Top-1 accuracy across multiple datasets including
iNat2017 [240], ImageNet [45], and others (Section. 5.4.6). Furthermore, when using ex-
isting pre-trained weights, D-SCL demonstrates superior performance on transfer learn-
ing, outperforming existing methods such as Sel-CL [128] and setting a new state-of-
the-art for base models (with 88M parameters) on ImageNet-1K. It shows a noticeable
increase of 3.4% in performance on the iNat2017 dataset.

5.4.3 Setup for Supervised Contrastive Learning

We begin by discussing the fundamentals of contrastive representation learning. Here, the ob-
jective is to contrast pairs of data points that are semantically similar (positive pairs) against
those that are dissimilar (negative pairs). Mathematically, given a data distribution p(x) over
X , the goal is to learn an embedding f : X →Rd such that similar pairs (x,x+) are close in the
feature space, while dissimilar pairs (x,x−) are more distant. In unsupervised learning, for each
training datum x, the selection of x+ and x− is dependent on x. Typically, one positive example
x+ is generated through data augmentations and N negative examples x−. The contrastive loss,
named InfoNCE or the N-pair loss [76, 172, 217], is then defined as

LNCE = E x
x+

{x−i }
N
i=1

[
− log e f (x)T f (x+)

e f (x)T f (x+)+∑
N
i=1 e f (x)T f (x−i )

]
(5.6)

Here, the expectation computes the average loss across all possible choices of positive and neg-
ative samples within the dataset. In practice, during a training iteration, one typically samples
a mini-batch; then, for each data point in it (referred to as an ‘anchor’), a positive example is
selected—usually an augmented version of the anchor or another instance of the same class—
while the rest of the batch is treated as negative examples. This is under the assumption that
within the batch, instances of different classes (i.e., all other samples except the positive pair)
serve as negatives.
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Khosla et al. [109] extended this concept to supervised contrastive learning, experimenting
with two losses:

L sup
in = E x

{x+k }
K
k=1

{x−i }
N
i=1

− log
{

1
|K|∑

K
k=1

exp( f (x)T f(x+k ))

∑
K
k=1 e f (x)T f (x+k )

+∑
N
i=1 e f (x)T f (x−i )

}
(5.7)

L sup
out = E x

{x+k }
K
k=1

{x−i }
N
i=1

−1
|K|∑

K
k=1

[
log

{
exp( f (x)T f(x+k ))

∑
K
k=1 e f (x)T f (x+k )

+∑
N
i=1 e f (x)T f (x−i )

}]
(5.8)

Here k indexes a set of K positive samples, i.e. images x+k of the same class as x. It is unnecessary
to be concerned about negative values in the contrastive learning objective. This is due to the
fact that each term in both the numerator and denominator incorporates the exponential of a
similarity score. The exponential function, exp(z), remains positive irrespective of the value of
z, thereby ensuring that every term in both the numerator and the denominator is positive.

We focus on improving these objectives, making them more robust to labeling errors in
Section. 5.4.5.

5.4.4 Uniqueness of Human-labelling Errors and Their Impact on SCL

In this section, we show that human-labelling errors and synthetic label errors exhibit distinct
characteristics. Human-labelling errors arise from the high visual similarity between the sample
and its assigned class, making it challenging for humans to differentiate them accurately. In
contrast, synthetic label errors are generated randomly and lack this similarity [94, 128]. This
distinction underlines the need for a method specifically tailored to address the unique challenges
human-mislabelled samples pose to supervised contrastive learning (SCL). We further illustrate
the specific impact of these errors on SCL, distinct from their effect on supervised learning with
cross-entropy, by analyzing various scenarios of mislabelling within SCL and assessing their
adverse effects.

Definitions. We define the latent label of an image as being its true category (e.g. the latent
label of an image of a cat would be ‘cat’). The term assigned label refers to the class that a human
annotator has assigned to an image (hopefully—but not always—matching the latent label).
Given a pair of images, we define a false positive as being when an annotator has erroneously
grouped those images under the same assigned label, even though their latent labels are different.
A false negative is when two images sharing the same latent label mistakenly have different
assigned labels. We define true positive and true negative pairs analogously. Lastly, we define
easy positives as pairs of images that share the same assigned labels and have highly similar
embeddings.
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(a) (b) (c) (d)

Figure 5.10: Figures (a) and (c) display the log-scaled distribution of cosine similarities for
various pair types, including true positive pairs, true negative pairs, and human-labelling errors,
on the CIFAR-10 and ImageNet-1k datasets, respectively. Conversely, figures (b) and (d) present
analogous data, focusing instead on synthetic label errors.

(a) (b) (c) (d)

Figure 5.11: Figures (a) and (c) display the log-scaled distribution of cosine similarities for
various pair types, including true positive pairs, true negative pairs, and human-labelling errors,
on the CIFAR-10 and ImageNet-1k datasets, respectively. Conversely, figures (b) and (d) present
analogous data, focusing instead on synthetic label errors.

The Differences Between Human-Labelling Errors and Synthetic Label Errors

We begin our analysis with the question: What distinguishes human-labelling errors from syn-

thetic label errors? We pretrained ViT-base models on the CIFAR-10 and ImageNet-1k datasets
individually, utilizing the SCL objective as defined in Eq. 5.6. Then, we conduct a similarity
analysis of the resulting features for different types of label errors within the context of con-
trastive learning. Specifically, we use the consensus among annotators from [169] to identify
human-mislabelled samples, and synthetic errors are produced by randomly altering 20% of the
labels to different classes. In Fig. 5.10, we plot the similarity distributions for various pair types
across two image classes, contrasting human-labelling errors with synthetic label errors. As
we can see from Fig. 5.10, there is a significant overlap in the similarity distributions of true
positives and human-labelling errors (false positives), indicating a high similarity in their em-
beddings, which is notably larger than that observed with true negatives. In contrast, the overlap
between true positives and synthetic label errors (false positives) is not obvious. Fig. 5.11 (a) and
(c) illustrate the similarity maps for true positive pairs, true negative pairs, and human-labeling
errors with true positive pairs within the CIFAR-10 and ImageNet datasets, respectively, while
Fig. 5.11 (b) and (d) present the similarity maps for true positive pairs, true negative pairs, and
synthetic errors with true positive pairs for the same datasets. Across both datasets, it is evident
that human-labeling errors exhibit a significantly higher similarity with true positive pairs com-
pared to negative ones. This result demonstrates that human-labelling errors primarily arise due
to high visual similarity between the assigned and latent class, unlike synthetic label errors.
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This empirical finding of a small overlap between true positives and synthetic label errors
explains the effectiveness of synthetic noise-mitigating methods such as Sel-CL [128] and TCL
[94], which excel by allocating greater weight to confident pairs that are closely aligned. How-
ever, it also underscores the limitation of applying the same strategy to address the impact of
human-labelling errors, which are close to true positives, serving as a primary motivation for
this work.

Furthermore, the significant overlap between true positives and human-labelling errors re-
veals that human-labelling errors are ‘easy positives’, indicating that the embeddings of positive
samples are closely clustered in the representation space. This insight informs our strategy of
reducing the weighting of easy positives as an effective means to mitigate the impact of false
positives resulting from human-labelling errors.

Impacts of Human-Labelling Errors on SCL

Based on the conclusions of Sec. 5.4.4, we now know we need to focus on ‘easy positives’. It
also raises the question: What is the impact of human-mislabelled samples when they appear

as negatives? Therefore, in this section, we give a deeper analysis of the interaction of human-
labelling errors and SCL by looking at the probability of false positives and false negatives
during training.

Let ‘A’ represent an anchor image and ‘B’ represent another paired image. If ‘A’ and ‘B’ are
assigned the same label, they are a false positive if: ‘A’ is correctly labeled while ‘B’ is not (I in
Fig.5.9(a)); or ‘A’ is mislabelled while ‘B’ is correctly labeled (II in Fig.5.9(a)); or ‘A’ and ‘B’
are mislabelled and do not belong to the same latent class (III in Fig.5.9(a)). Conversely, if ‘A’
and ‘B’ are assigned different labels, they are a false negative if both ‘A’ and ’B’ are mislabelled
but actually belong to the same latent class ( IV in Fig.5.9(a)); or ‘A’ is correctly labeled and ‘B’
is not, yet ‘B’ belongs to the same latent class as ‘A’ ( V in Fig.5.9(a)); or ‘A’ is mislabelled and
‘B’ is not, with ‘A’ being of the same latent class as ‘B’ (VI in Fig.5.9(a)).

Assuming human-labelling errors rate is τ , we can derive the probability of mislabelled data
appearing as false negatives, PFN = τ2

(C−2)2 +
2τ−2τ2

C−1 , and as false positives, PFP = 2τ − τ2−
τ2

(C−1)2 . C is the number of classes and τ is the error rate. Since τ is small, terms with τ2 are

negligible. Therefore, PFN ≈ 2τ

C−1 and PFP ≈ 2τ . As C increases, PFN tends to zero, while PFP

remains constant. Therefore, with many classes and a small error rate, PFP≫ PFN . For example,
if there are 200 classes in a dataset with a 5% error rate, we would expect wrong learning signals
from false positives and false negatives with probabilities of 9.75% and 0.05%, respectively.

Additionally, we substantiate this finding with empirical evidence by quantifying the in-
correct learning signals from human-labelling errors during training on the original CIFAR-100
and ImageNet-1K datasets separately, based on human-labelling errors provided by [169]. When
training on the CIFAR-100 dataset (comprising 100 classes), we found that 99.04% of the in-
correct learning signals were caused by human-labelling errors, from false positives, with only
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approximately 0.96% stemming from negatives. Similarly, when training on the ImageNet-1K
dataset (comprising 1000 classes), we discovered that 99.91% of the incorrect learning signals
were due to human-labelling errors, primarily from false positives, with only about 0.09% aris-
ing from negatives. We provide these rates for other datasets in the supplementary material.

Overall, both theoretical and empirical results show that when tackling labelling errors in
contrastive learning, we can largely ignore false negatives due to their very low rate of occur-
rence, and focus on easy positives. These observations motivate our proposed method in Section
5.4.5, which incorporates less weighting on easy positives and reduces the wrong learning signal
caused by human-labelling errors.

5.4.5 SCL with Robustness to Human-Labelling Errors

In this section, we describe our approach to mitigate the impacts caused by human-labelling er-
rors in positive pairs and how this fits into an overall contrastive learning objective. In Sec. 5.4.4,
we noted that the most significant impact of the mislabeled samples arises when they are incor-
porated into the positive set and exhibit high similarity to the anchor (i.e. easy positives). Our
method therefore adheres to two key principles (Fig. 5.9b): (P1) it should ensure that the latent

class of positive samples matches that of the anchor [40, 106, 186, 204]; and (P2) it should depri-
oritize easy positives, i.e. those currently embedded near the anchor. By reducing the weighting
of easy positives, we minimize the effect of incorrect learning signals from false positive pairs.
The model is also forced to recognize and encode deeper similarities that are not immediately
apparent, improving its discriminative ability.

Human-Labelling Errors in the SCL Objective

Khosla et al. [109] argued that L sup
out is superior to L sup

in , attributing this to the normalization
factor 1

|P(i)| in L sup
out that mitigates bias within batches. Although L sup

in incorporates the same
factor, its placement inside the logarithm reduces its impact to a mere additive constant, not
influencing the gradient and leaving the model more prone to this bias.

We instead introduce a modified L sup
in that directly reduces bias due to mislabeling, and

outperforms L sup
out .

We begin with a modified formulation of L sup
in (Eq. 5.7), that is equivalent up to a constant

scale and shift, but will prove easier to adapt:

E x
{x+k }

K
k=1

{x−i }
N
i=1

[
− log 1

|K|
∑

K
k=1 e f (x)T f (x+k )

∑
K
k=1 e f (x)T f (x+k )

+∑
N
i=1 e f (x)T f (x−i )

]
(5.9)

In 5.9, all K samples from the same class within a mini-batch are treated as positive samples for
the anchor x.
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We now introduce our main technical contribution, which is devising an objective that mit-
igates human-labelling errors, which consists of modifying Eq. (5.9). As in Sec. 5.4.4, we
assume there is set of latent classes C , that encapsulate the semantic content, and hopefully
match the assigned labels. Following [8, 40, 203], pairs of images (x,x+) are supposed to be-
long to the same latent class c, where x∈X is drawn from a data distribution p(x). Let τ denote
the probability that any sample is mislabeled; we assume this is constant for all x. Since τ is
unknown in practice, it must be treated as hyperparameter, or estimated based on previous stud-
ies. We also introduce an (unknown) function z : X → C that maps x to its latent class label.
Then, p+x := p

(
x′ |z(x′) = z(x)

)
is the probability of observing x′ as a positive example of x,

whereas p−x = p
(
x′ |z(x′) ̸= z(x)

)
is the probability of a negative example. For each image x, the

objective (Eq. 5.9) aims to learn a representation f (x) by using positive examples {x+}K
k=1 with

the same latent class label as x and negative examples {x−i }N
i=1 that belong to different latent

classes. Since p is the true data distribution, the ideal loss function to be minimized if the latent
labels z(x) were known is:

LT = E x∼p
x+k ∼p+x
x−i ∼p−x

[
−1
|K| log

Q
K ∑

K
k=1 e f (x)T f (x+k )

Q
K ∑

K
k=1 e f (x)T f (x+k )

+W
N ∑

N
i=1 e f (x)T f (x−i )

]
(5.10)

We term this loss function the true label loss. Here, we have introduced weighting parameters Q

and W to help with analysing the impacts of human-labelling errors; when they equal the num-
bers of positive and negative examples respectively, LT reduces to the conventional supervised
contrastive loss (5.9). Note that supervised contrastive learning typically assumes p+x and p−x
can be determined from human annotations (i.e. z(x) yields the assigned label of x); however
since we consider latent classes instead of assigned classes, we do not have access to the true
distribution. However, we now show how to approximate this true distribution and improve the
overall performance.

Mitigating Human-Labelling Errors

For a given anchor x and its embedding f (x), we now aim to build a distribution q on X that
fulfils the principles P1 and P2. We draw a batch of positive samples {x+k }

K
k=1 from q. Ideally

we would draw samples from

q+(x+) := q
(
x+ |z(x) = z(x+)

)
∝

1
eβ f (x)T f (x+)

· p+x (x+) (5.11)

where β ≥ 0. It is important to note that q+(x+) depends on x, although this dependency is not
explicitly shown in the notation. The distribution is composed of two factors:

• The event {z(x) = z(x+)} indicates that pairs, (x,x+), should originate from the same
latent class (P1); recall p+x (x

+) is the true (unknown) positive distribution for anchor x.
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• The exponential term increases the probability of sampling hard positives, and decreases
that of sampling easy positives (P2). This term is an unnormalized von Mises-Fisher
density with mean direction f (x) and a concentration parameter β . The concentration
parameter β modulates the weighting scheme of q+, specifically augmenting the weights
of instances x+ that exhibit a lower inner product (i.e. greater dissimilarity) to the anchor
x.

The distribution q+ fulfils our desired principles of selecting true positives and deprioritizing
easy positives. However, we do not have the access to the latent classes, and so cannot directly
sample from it. We therefore rewrite it from the perspective of Positive-Unlabeled (PU) learning
[40, 52, 55, 203], which will allow us to implement an efficient sampling mechanism. We first
define q−(x+) ∝

1
eβ f (x)T f (x+)

· p−x (x+). Then, by conditioning on the event {z(x) = z(x+)}, we can
write

q(x+) :=τ
+q+(x+)+ τ

−q−(x+) (5.12)

⇒ q+(x+) =
(
q(x+)− τ

−q−(x+)
)
/τ

+ (5.13)

where τ+ is the probability that a sample from the data distribution p(x) will have the same
latent class as x.

We have now derived an alternative expression (5.13) for the positive sampling distribution
q+ in terms of q and q−. Sampling directly from q and q− is still not possible; however, we
can use importance sampling to approximate the necessary expectations. Specifically, we shall
choose positives primarily by sampling an assigned-positive, while occasionally sampling an
assigned-negative, with the probability of the latter set to counterbalance the mislabeling rate.

To achieve this we first consider a sufficiently large value for K (i.e. the number of positive
samples for the anchor x) in the SCL objective (5.10), while holding the weighting parameter Q

fixed. Then, (5.10) becomes:

LT = E x∼p
x−∼p−x

[
− log 1

|K|
QEx+∼q+

[
e f (x)T f (x+)

]
QEx+∼q+

[
e f (x)T f(x+)

]
+W

N ∑
N
i=1 e f (x)T f (x−i )

]
(5.14)

By substituting Eq. 5.13 into Eq. 5.14, we obtain an objective that rectifies the impacts from
human-labeling errors and also down-weights easy positives:

E x∼p
x−∼q

[
− log 1

|K|

Q
τ+

(
Ex+∼q

[
e f (x)T f (x+)

]
−τ−Ev∼q−

[
e f (x)T f (v)

])
Q

τ+

(
Ex+∼q

[
e f (x)T f (x+)

]
−τ−Ev∼q−

[
e f (x)T f (v)

])
+W

N ∑
N
i=1 e f (x)T f (x−i )

]
(5.15)

This suggests we only need to approximate the expectations Ex+∼q

[
e f (x)T f(x+)

]
and Ev∼q−

[
e f (x)T f (v)

]
over q and q−, which can be achieved by classical Monte Carlo importance sampling, using sam-
ples from p and p−:
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Ex+∼q

[
e f (x)T f(x+)

]
= Ex+∼p

[
e f (x)T f (x+)q/p

]
= Ex+∼p

[
e(β+1) f (x)T f (x+)/Z(x)

]
(5.16)

Ev∼q−

[
e f (x)T f (v)

]
= Ev∼p−

[
e f (x)T f (v)q−/p−

]
= Ev∼p−

[
e(β+1) f (x)T f (v)/Z−(x)

]
(5.17)

where Z(x) and Z−(x) are the partition functions for q and q− respectively. Hence, these expec-
tations over p and p− admit empirical estimates

Ẑ(x) =
1
M

M

∑
i=1

eβ f (x)⊤ f (x+i ) and Ẑ−(x) =
1
N

N

∑
i=1

eβ f (x)⊤ f (x−i ). (5.18)

Mitigating label errors for negatives. Despite the minimal impact of mislabeled samples
in negative sets (see Sec. 5.4.4), we extend our mitigation method to these samples to further
reduce their adverse effects. Mirroring our strategy for positive samples, the mitigation process
for negatives involves constructing a distribution that not only aligns with true negatives but
also places greater emphasis on hard negatives. We then use Monte Carlo importance sampling
techniques to better estimate the true distribution of latent classes. Full details are given in the
supplementary material.

Overall learning objective. Using Eq. 5.15 and incorporating mitigation for negatives, we get
our final SCL-RHE loss

E x∼p
x+∼q
x−∼q

[
− log 1

|K|

Q
τ+

(
Ex+∼q

[
e f (x)T f (x+)

]
−τ−Ev∼q−

[
e f (x)T f (v)

])
Q

τ+

(
Ex+∼q

[
e f (x)T f (x+)

]
−τ−Ev∼q−

[
e f (x)T f (v)

])
+ W

τ−

(
Ex−∼q

[
e f (x)T f (x+)

]
−τ+Eb∼q+

[
e f (x)T f (b)

])
]

(5.19)
This objective has the following desirable properties:

• Mitigates the adverse impact of mislabelled samples: Given the analysis in Section. 5.4.4,
it is critical to reduce the adverse impact of false positives (mislabelled samples). The em-
beddings of mislabelled samples are often very close to the anchor, making them more
likely to be easy positives. By effectively giving less weight to easy positives (mislabelled
samples), thereby reducing their impact on providing misleading learning signals. Beyond
sophisticated weighting, we also reduce the bias due to noisy labels, assuming access only
to noisy labels. Specifically, we develop a correction for the mislabelled sample bias, lead-
ing to a new, modified loss termed debiased supervised contrastive loss (Eq. 5.19). Our
approach indirectly approximates the true latent distribution, which prevents contrastive
learning from being misled by incorrectly labeled samples and also reinforces the core
philosophy of contrastive learning.

• Discriminating fine detail with hard samples: Our methodology adjusts the weight-
ing of all samples based on their “hardness”. This nuanced approach ensures that the
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Table 5.7: Model accuracy measured using the acc@1 metric when trained with different loss
functions on 3 popular image classification benchmarks. All models here are trained from
scratch using only the indicated dataset, without pre-training.

Model Loss CIFAR-10 CIFAR-100 ImageNet-1K

BEiT-3

CE[203] 71.70 59.67 77.91
SupCon[109] 88.96 60.77 82.57
Sel-CL[128] 86.33 59.51 81.87
TCL[94] 85.16 59.22 81.74
Ours 90.16 64.47 84.21

ResNet-50

CE[203] 95.00 75.30 78.20
SupCon[109] 96.00 76.50 78.70
Sel-CL[128] 93.10 74.29 77.85
TCL[94] 92.80 74.14 77.17
Ours 96.39 77.82 79.15

model differentiates not only between distinctly different samples but also hones its skills
on more challenging, closely related negative samples. Such an approach paves the way
for a robust model that discerns in real-world scenarios where class differences might be
minimal.

5.4.6 Experiments

We extensively evaluate our proposed method, SCL-RHE, on image classification in three set-
tings: training from scratch on datasets with human-labelling errors, transfer learning using
pre-trained weights (again with human-labelling errors), and pre-training on datasets with ex-
ceedingly high levels of synthetic label errors. We also conduct several ablation experiments.
For all experiments, we use the official train/test splits and report the mean Top-1 test accuracy
across three distinct initializations.

We employ representative models from two categories of architectures – BEiT-3/ViT base
[224, 252], and ResNet-50 [81]. While new state-of-the-art models are continuously emerging
(e.g. DINOv2 [175]), our focus is not on the specific choice of architecture. Instead, we aim
to show that SCL-RHE is model-agnostic and enhances performance using two very different
architectures.

Training from Scratch

We first evaluate our proposed SCL-RHE objective in the pre-training setting, i.e. training ran-
domly initialized models from scratch without the use of additional data. For these experiments,
we consider only human-labelling errors already present in the datasets without introducing
synthetic errors. Following [109], to use the trained models for classification, we train a linear
layer on top of the frozen trained models using a cross-entropy loss. We use three benchmarks:
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CIFAR-10, CIFAR-100 [112], and ImageNet-1k [45]. Tab. 5.7 shows the performance of BEiT-3
and ResNet-50, with different loss functions on three popular image classification datasets. It is
noteworthy that, due to the absence of pre-trained weights, BEiT-3 is identical to the ViT model
[252]. We compare against training with the standard cross-entropy loss and the state-of-the-
art supervised contrastive learning loss (SupCon) [109]. Additionally, we compare against two
synthetic noise-mitigating contrastive learning strategies (Sel-CL [128] and TCL [94]). We see
that SCL-RHE consistently improves classification accuracy over other training objectives. On
Imagenet-1k, SCL-RHE leads to a 6.3% and 1.6% improvement in accuracy for BEiT-3, relative
to cross-entropy and SuperCon training, respectively.

We find that SCL-RHE outperforms the existing contrastive methods Sel-CL and TCL (both
designed to mitigate synthetic noise), e.g. on ImageNet-1K, SCL-RHE performs 2.4% better
than Sel-CL for BEiT-3 and 2.3% better for ResNet50. We speculate that due to discarding many
training pairs, Sel-CL and TCL overfit a subset of training samples, limiting their performance
in the realistic setting where the rate of label noise is relatively low (e.g. 5.85% for CIFAR-
100 [169]), and allowing them to be exceeded by SupCon. In contrast, SCL-RHE outperforms
even SupCon, suggesting it is more applicable for real-world image training sets with low-to-
moderate noise rates.

It is well known that transformer-based models underperform when training data is limited
[137, 224, 293]. This is highlighted by the low performance on CIFAR-10 and CIFAR-100 with
cross-entropy training. We show that SCL-RHE, and to a lesser extent SuperCon, mitigate this—
relative to cross-entropy, SCL-RHE gives a 19% improvement on CIFAR-10. While BEiT-3 still
fails to reach the performance of ResNet-50, the supervised contrastive approaches significantly
close the gap, improving the applicability of transformer-based models in limited data scenar-
ios. In the supplementary material, we also include an ablation study that measures the benefit
of different aspects of our method. This shows that human-mislabelled samples impact the per-
formance of supervised contrastive learning (SCL) due to their occurrence as soft positives, and
that our proposed correction on both positives and negatives helps to improve performance.

Performance on corrected test sets. We next evaluate the same trained models, but using the
corrected test-set labels from Northcutt et al. [169] (Tab. 5.8). Importantly, we can observe a
relatively larger increase in performance on the corrected test sets with D-SCL—e.g. an im-
provement of 1.81% on ImageNet-1k. This contrasts with SuperCon [109] and cross-entropy,
which show a lesser improvement of 1.17% and 0.33%, respectively. This supports the claim
that D-SCL is less prone to overfitting to label noise than over SuperCon and cross-entropy. We
find that Sel-CL[128] and TCL[94] generally lead to worse performance than SuperCon and do
not demonstrate any performance gain when tested on the corrected labels. We speculate that,
due to the relatively low mislabelling rates in these datasets (e.g. 5.85% for Imagenet), these
approaches may be overly heavy-handed in combating labelling noise, diminishing the models’
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Loss Test set CIFAR-10 CIFAR-100 ImageNet

CE[207]
Original 71.70 59.67 77.91
Corrected 71.79 (+0.09) 59.82 (+0.15) 78.24 (+0.33)

SupCon[109]
Original 88.96 60.77 82.57
Corrected 89.11 (+0.15) 61.49 (+0.72) 83.74 (+1.17)

Sel-CL[128]
Original 86.33 59.51 81.87
Corrected 86.21 (-0.12) 58.62 (-0.89) 81.35 (-0.52)

TCL[94]
Original 85.16 59.22 81.74
Corrected 84.97 (-0.19) 58.14 (-1.08) 81.28 (-0.46)

Ours Original 90.16 64.47 84.21
Corrected 90.41 (+0.25) 65.34 (+0.87) 86.02 (+1.81)

Table 5.8: Accuracy of the BEiT-3 model using the metric acc@1 on different datasets and with
various loss functions, when evaluation on both original and corrected test-set labels.

Model FT method CIFAR-100 CUB-200 Caltech-256 Oxford-Flowers Oxford-Pets iNat2017 Places365 ImageNet-1k

ViT CE[207] 87.13 76.93 90.92 90.86 93.81 65.26 54.06 77.91
BEiT-3 CE[207] 92.96 98.00 98.53 94.94 94.49 72.31 59.81 85.40
BEiT-3 SupCon[109] 93.15 98.23 98.66 95.10 94.52 72.85 60.31 85.47
BEiT-3 Sel-CL[128] 91.48 94.52 97.19 93.71 94.51 72.43 58.36 85.21
BEiT-3 TCL[94] 90.92 93.89 97.26 93.89 94.68 72.47 59.22 85.18
BEiT-3 D-SCL (ours) 93.81 98.95 99.41 95.89 96.41 76.25 62.53 86.51

Table 5.9: Classification accuracy after fine-tuning a pretrained BEiT-3 with different loss func-
tions, on several benchmarks.

performance as a result. D-SCL is comparatively more suitable for these lower noise rates and
sees improved performance over these methods as a result.

Transfer Learning

We now assess performance when fine-tuning existing pre-trained models for specific down-
stream tasks. Specifically, models are initialized with publicly-available weights from pretrain-
ing on ImageNet-21k [45], and are fine-tuned on smaller datasets using our objective. We use 8
datasets: CIFAR-100 [112], CUB-200-2011 [245], Caltech-256 [72], Oxford 102 Flowers [168],
Oxford-IIIT Pets [179], iNaturalist 2017 [240], Places365 [291], and ImageNet-1k [45]. We se-
lect BEiT-3 base [252] as the image encoder due to its excellent performance on ImageNet-1k.
Similar to [109], our approach for fine-tuning pre-trained models with contrastive learning in-
volves initially training the models using a contrastive learning loss, followed by training a linear
layer atop the frozen trained models using cross-entropy loss.

Tab. 5.9 shows classification accuracies after fine-tuning with different methods. We see
that D-SCL gives the best classification accuracy across all datasets, with particularly large im-
provements on iNat2017 (+3.4%) and state-of-the-art performance on Places365 (+2.2%) when
compared to fine-tuning with SupCon [109]. Similar to the pre-training setting, the noise-robust
objectives Sel-CL and TCL exhibit inferior performance compared to fine-tuning with cross-
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Loss CIFAR-10 CIFAR-100 Time
Noise level Original 20% 40% Original 40%

CE[207] 91.84 82.02 76.86 73.74 45.05 18.3
SupCon[109] 94.08 89.13 79.57 74.58 51.33 20.2
Sel-CL[128] 91.42 94.45 93.22 72.10 74.24 29.1

TCL[94] 90.78 93.96 93.13 72.18 74.62 32.7
Ours 95.91 94.71 92.59 77.62 74.08 20.4

Table 5.10: Performance of ResNet-18 trained at different synthetic-noise levels. Time (Min/e-
poch) means the training time on a Nvidia A6000.

entropy or D-SCL across all 8 datasets.

Robustness to Synthetic Noisy Labels

Whereas standard datasets exhibit only a moderate level of label noise (e.g. 5–10%), we now
examine performance at much higher noise rates (>18%) than is typical in benchmarks. As in
Section. 5.4.6, we use BEiT-3 trained from scratch without additional data. Specifically, we use
the artificially noisy datasets CIFAR-10N [254] and CIFAR-100N [254]. Crucially, the label
noise in these datasets is predominantly not due to naturally-arising human errors, but rather
to synthetic mislabeling. This breaks our hypothesis (and foundational principle of D-SCL)
that mislabelled samples usually have high visual similarity to their assigned class and occur
naturally due to human errors.

Tab. 5.10 shows that D-SCL outperforms cross-entropy and SuperCon on noisy and noise-
free variants of these datasets. Again, we compare against Sel-CL and TCL and find that D-
SCL’s performance diminishes relative to these methods for high levels of label noise (e.g. 40%).
However, we show that D-SCL remains competitive with these methods at noise levels up to 18%
and significantly outperforms them when no noise is present. As such, we argue that D-SCL is
more applicable and well suited to more realistic scenarios where the label noise rate is relatively
low.

5.4.7 Discussion and Summary

Limitations. Although SCL-RHE exceeds the state-of-the-art, it still has certain limitations.
First, while existing research has estimated mislabelling rates for various datasets [169], deter-
mining this for new datasets remains a challenge. This issue could be effectively managed by
adopting the typical average error rate of 3.3%, as reported in [169], as a baseline for hyper-
parameter tuning to identify an optimal value. Moreover, in our experiments, we observed that
SCL-RHE’s performance exhibits low sensitivity to the estimated mislabelling rates. Second,
although our SCL-RHE outperforms existing methods even for mitigating synthetic errors up to
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20% noise rates, it does not surpass Sel-CL [128] and TCL [94] in scenarios involving extremely
high synthetic error rates of 40%. This is because our model is tailored to mitigate human-
labelling errors in datasets with error characteristics typical of real-world scenarios—i.e. where
mislabellings occur naturally due to human error when classes are genuinely similar or ambigu-
ous.

Summary. In this section, we investigated the extent and manner in which human-labelling
errors impact supervised contrastive learning (SCL), and demonstrated these impacts diverge
from those on regular supervised learning. Based on this, we introduced a novel SCL objective
that is robust to human errors, SCL-RHE, specifically designed to mitigate the influence of real
human-labelling errors (instead of synthetic noise addressed in previous works). Our empiri-
cal results reveal that SCL-RHE consistently outperforms traditional cross-entropy methods, the
previous state-of-the-art SCL objectives, and noise-mitigating approaches designed for synthetic
noise, both when training from scratch and in transfer learning. In addition to its superior per-
formance, a key advantage of SCL-RHE is its efficiency—unlike previous methods that mitigate
synthetic label noise, it incurs no extra overhead during training.

5.5 Conclusion

In this chapter, we introduced three methods that utilize contrastive learning to address research
question 1 in Section 4.3, specifically examining how contrastive learning methods impact
modality alignment. These methods aim to resolve the shallow intra-modal and inter-modal
alignment issues in multimodal learning. Visualizations of the embeddings produced by our
methods show superior class separation and reduced overlap between positive and negative
samples compared to other approaches, indicating improved discriminative capabilities. Addi-
tionally, we consistently observed enhanced performance across a wide range of datasets when
applying our methods, confirming that the improved embeddings lead to better outcomes in
downstream tasks. Overall, our proposed methods enhance the generalization and transferabil-
ity of Vision Transformers, produce high-quality visual embeddings, and improve intra-modal
alignment from various perspectives, thereby supporting the thesis statement that enhancing
alignment significantly improves multimodal learning performance. In particular:

• In Section 5.2, we introduce LaCViT , a label-aware contrastive fine-tuning framework that
significantly improves the Top-1 accuracy of vision transformers across multiple bench-
marks. LaCViT provides a versatile and comprehensive strategy that greatly enhances the
efficacy of transformers for image classification. Our thorough empirical evaluations con-
firm LaCViT’s effectiveness and position it as a viable alternative to the traditional cross-
entropy method for fine-tuning pre-trained image classification models. Extensive experi-
mentation across eight image classification datasets shows that LaCViT significantly out-
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performs baseline models, such as a 10.78% increase in Top-1 Accuracy for the LaCViT-
trained MAE on the CUB-200-2011 dataset [115].

• In Section 5.3, we present CLCE, a method that integrates label-aware contrastive learn-
ing with hard negative mining and cross-entropy (CE) to overcome the limitations of CE
and existing contrastive learning techniques. Our empirical data show that CLCE sur-
passes both traditional CE and earlier contrastive learning methods in both few-shot and
transfer learning contexts. Importantly, CLCE is particularly suitable for researchers and
developers with access to only commodity GPU hardware, as it achieves effective perfor-
mance with smaller batch sizes that fit on less powerful GPUs. Our extensive experiments
show the state-of-the-art performance of our CLCE in Few-Shot Learning and Transfer
Learning settings: CLCE significantly surpasses CE by an average of 2.74% in Top-1
accuracy across four few-shot learning datasets when using the BEiT-3 base model, with
large gains observed in 1-shot learning scenarios. Additionally, in transfer learning set-
tings, CLCE consistently outperforms other state-of-the-art methods across eight image
datasets, setting a new state-of-the-art result for base models (88 million parameters) on
ImageNet-1k.

• In Section 5.4, we explore how human labeling errors affect supervised contrastive learn-
ing (SCL) differently than they do traditional supervised learning. In response, we develop
a new SCL objective, SCL-RHE, which is resistant to real human labeling errors. Our em-
pirical findings indicate that SCL-RHE consistently outperforms traditional cross-entropy
approaches, previous SCL objectives, and noise-correcting methods tailored for synthetic
noise, in both initial training and transfer learning scenarios. SCL-RHE also stands out for
its efficiency—it does not require additional training overhead, unlike methods designed
to correct synthetic label noise. Our experiment result shows that SCL-RHE gives the
best classification accuracy across all evaluated datasets, with particularly large improve-
ments on iNat2017 (+3.4%) and state-of-the-art performance on Places365 (+2.2%) when
compared to fine-tuning with SupCon.

In the next chapter, we outline our efficient transfer learning methods that significantly ac-
celerate the transfer process by employing adapter techniques. These techniques facilitate the
practical application of our proposed methods across various domains, while also leveraging the
contrastive learning methods discussed in this chapter.
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Chapter 6

Efficient Multimodal Large Language
Model Learning

6.1 Introduction

In this chapter, we introduce the efficiency component illustrated in Figure 4.1, which aims to
address the efficiency issues that limit the practical applications of the proposed multimodal
learning framework, as stated in the thesis statement (Section 1.2). Simultaneously, we aim
to further mitigate the shallow intra-modal and inter-modal alignment problems to enhance ef-
fectiveness through dedicated model design and the contrastive learning methods proposed in
Section 5.

Recall from Section 1.1 that we identified the rising computation costs for transfer learning
across various tasks, driven by the growth of large language models and their exponentially in-
creasing sizes. Indeed, recent advancements in Multimodal Large Language Models (MLLMs),
such as BLIP2 [123] and BEiT-3 [252], have demonstrated state-of-the-art performance in mul-
timodal tasks, exemplified by their capabilities in Visual Question Answering. However, the
adaptation of these MLLMs to specialized downstream tasks remains a substantial challenge,
particularly for image-text retrieval, a common use-case in multimodal learning. Traditional full
fine-tuning requires isolated, exhaustive retraining for each new task, demanding intensive com-
putational resources and thus limiting practical applications. For instance, training BLIP2-Giant
on an Nvidia A100 GPU takes 144 days [123].

Given the challenge of fine-tuning MLLMs, there is a growing need to develop efficient
adaptation methods for MLLMs [88, 228]. While progress has been made in unimodal domains
using adapter modules, these methods remain largely underexplored in multimodal contexts,
particularly for image-text retrieval. Furthermore, existing adaptation methods for MLLMs [28,
228, 279] focus on information extraction from downstream datasets but neglect the critical need
for inter-modal alignment. The goal of inter-modal alignment is to bring different modalities into
a common feature space where they can be effectively compared, combined, or related. With
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Figure 6.1: Comparison of a MultiWay Transformer and our MultiWay-Adapter fine-
tuning. MultiWay-Adapter uses a dual-component design, including New Knowledge Extractor
and Alignment Enhancer. We replace the original FFN with New Knowledge Extractor: frozen
branch (left) and the trainable bottleneck module (right). Moreover, we add a Alignment En-
hancer upon the original FFN to enhance the inter-modal alignment.

shallow alignment, the model would fail to capture the complex inter-relations between different
modalities, thereby impacting its effectiveness in multi-modal tasks [14, 147, 225].

To address the issue of shallow inter-modal alignment while preserving the efficiency advan-
tages of adapter approaches, we introduce the MultiWay-Adapter (MWA), a lightweight yet ef-
fective framework designed explicitly for MLLMs adaptation. Additional components of MWA
are small in size but bring a significant performance boost in transfer learning with minimal
fine-tuning cost, which are compatible with components proposed in previous chapters in this
thesis. Our key contributions in this chapter include:

• We propose MWA, a framework incorporating a dual-component approach: the New
Knowledge Extractor and the Modality Enhancer. MWA extracts new knowledge from
downstream datasets while ensuring deep inter-modal alignment, which is crucial for su-
perior performance in vision-language tasks. To our knowledge, this is the first work to
address the issue of shallow inter-modal alignment in adapter approaches for MLLMs,
directly supporting our thesis statement on improving alignment and performance.

• Through comprehensive experiments, we demonstrate that MWA achieves superior zero-
shot performance on the Flickr30k dataset by tuning only an additional 2.58% of param-
eters in the BEiT-3 Large model. This approach saves up to 57% in fine-tuning time
compared to full-model fine-tuning, without statistically significant decreases in perfor-
mance in other settings. This efficiency aligns with our thesis statement on enhancing
multimodal learning frameworks while reducing resource requirements.

• Experimental results show the robustness of MWA as parameters scale up, making it well-
suited for MLLMs that are continually increasing in size. This scalability supports our
thesis claim of developing efficient and adaptable multimodal learning methods.
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• Our ablation study confirms the effectiveness of both MWA components, validating our
design choices and further substantiating the thesis statement that targeted enhancements
in multimodal learning frameworks lead to significant performance improvements.

• The original material in this section has been accepted for presentation at the 2024 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), a con-
ference with an h5-index of 123.

6.2 MultiWay-Adapter: Adapting Multimodal Large Language
Models for scalable image-text retrieval

We introduce MultiWay-Adapter (MWA), designed for the efficient transfer of Multimodal
Large Language Models (MLLM) to downstream tasks. Although the primary focus of this
paper is on image-text retrieval tasks, the potential applicability of the MWA is broader, such as
video text retrieval and image captioning.

6.2.1 Preliminaries

The overall framework is constructed on the basis of a popular architecture of MLLM, which
utilizes a MultiWay Transformer design [252]. As depicted on the left of Figure 6.1, each Multi-
Way Transformer block comprises a shared self-attention module and a pool of feed-forward net-
works (i.e., modality experts) tailored for different modalities. This design is similar to the dual-
backbones architecture of multimodal models, e.g., one encoder for vision input and another
encoder for language input, yet differs by sharing the weights within each self-attention mod-
ule. This design choice reduces the parameter count and enhancing inter-modal alignment—an
essential quality for high-performance multimodal tasks [252].

6.2.2 MultiWay-Adapter

Overall Architecture.

Our proposed MWA uses a dual-component approach: the New Knowledge Extractor and the
Alignment Enhancer, as illustrated on the right of Figure 6.1.

New Knowledge Extractor.

The New Knowledge Extractor is designed for extracting new knowledge from the target down-
stream tasks. In contrast to the conventional full fine-tuning of MultiWay Transformers, we
replace both feed-forward networks (FFNs) in the transformer block with a New Knowledge
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MSCOCO (5k test set) Flickr30k (1k test set)

Model FT-Way Tunable params (M) GPU Mem (GB) Time (Min) IR@1 TR@1 IR@1 TR@1

ALBEF [125] Full Fine-tune 196 N/A N/A 60.7 77.6 85.6 95.9
ALIGN [100] Full Fine-tune 825 N/A N/A 59.9 77.0 84.9 95.3
BEiT-3-Base Full Fine-tune 222 (100%) 37GB 225 61.4 79.0 86.2 96.3
BEiT-3-Large Full Fine-tune 675 (304%) 45GB 353 63.4 (+2.0) 82.1 (+3.1) 88.1 (+1.9) 97.2 (+0.9)
BEiT-3-Base MultiWay-Adapter 7.13 (3.21%) 30GB 130 60.7 (-0.7) 78.3 (-0.7) 85.4 (-0.8) 95.4 (-0.9)
BEiT-3-Large MultiWay-Adapter 17.40 (2.58%) 36GB 194 63.3 (+1.9) 82.1 (+3.1) 88.0 (+1.8) 97.1 (+0.8)

Table 6.1: Comparative Analysis of Full Fine-Tuning and the MultiWay-Adapter: The table
shows Top-1 recall metrics on COCO and Flickr30k datasets, presented as both absolute values
and relative gaps to the BEiT-3 Base full fine-tuning Model. Metrics for Text-to-Image Retrieval
(IR) and Image-to-Text Retrieval (TR) are provided. GPU memory usage and training time
are also included. Training time is measured using a single NVIDIA A6000 GPU with 48GB
memory for one epoch.

Extractor. This extractor comprises two branches: the left branch, identical to the original net-
work, and an additional right branch introduced for task-specific fine-tuning. The latter utilizes
a bottleneck structure to limit the number of parameters and includes a down-projection layer
and an up-projection layer. Formally, for a specific input feature xi

′, the right branch of the New
Knowledge Extractor produces the adapted features, x̃i, as:

x̃i = ReLU(LN(xi
′) ·Wdown) ·Wup (6.1)

Here, Wdown ∈Rd×ď and Wup ∈Rď×d denote the down-projection and up-projection layers,
respectively. ď is the bottleneck middle dimension and satisfies ď≪ d. LN denotes LayerNorm.
This bottleneck module is connected to the original FFN (left branch) through a residual con-
nection via a scale factor α . Then, these features, xi

′ and x̃i, are fused with the original one, xi,
through a residual connection:

xi = FFN(LN(xi
′))+α · x̃i + x′i (6.2)

Alignment Enhancer.

After extracting new knowledge from the target downstream task, to maintain and improve inter-
modal alignment, an Alignment Enhancer module is added atop the pool of feed-forward net-
works. This module mimics the architecture of the New Knowledge Extractor but uses a larger
middle dimension to facilitate better feature fusion and alignment.

During the fine-tuning phase, only the parameters of these newly added modules are opti-
mized, while the rest of the model is frozen (as indicated by the frozen sign in Figure 6.1). This
strategy makes MWA a plug-and-play module, applicable to other MLLM, such as CLIP [189],
VLMo [15], and ALIGN [100].
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6.2.3 Experiments

Setup

We conducted experiments on two state-of-the-art MLLMs, BEiT-3 Base and BEiT-3 Large,
across two widely-used image-text retrieval datasets: MSCOCO [133] and Flickr30K [185]. We
use the 5k test set of MSCOCO and 1k test set of Flickr30k to report metrics, in accordance with
previous studies [133, 185]. We initialized the backbone, excluding our additional modules,
with pre-trained weights, which were frozen during the fine-tuning process when employing
MultiWay-Adapter. For fine-tuning, the batch size is 512 for the Large model and 1024 for the
Base model, over 20 epochs with an initial learning rate of 0.001. Middle dimensions for the
New Knowledge Extractor and the Alignment Enhancer were set to 64 and 128, respectively. All
the code used in our experiments can be found in https://github.com/longkukuhi/
MultiWay-Adapter.

Experimental Results

The objective of this experiment is to assess the efficiency and efficacy of our MWA framework
in comparison to traditional full fine-tuning methods. We compared our MWA approach with
full fine-tuning in two distinct settings: fine-tuning performance and zero-shot performance.

Fine-Tuning Performance

As shown in Table 6.1, our MWA method demonstrates superior computational efficiency.
Specifically, it utilizes a mere 3.21% and 2.58% of the trainable parameters for the Base and
Large variants of BEiT-3, respectively, in contrast to conventional full fine-tuning. This leads
to a substantial reduction in GPU memory consumption—by 7GB and 9GB for the Base and
Large variants, respectively. Furthermore, MWA significantly reduces the time required for
fine-tuning. For instance, fine-tuning MWA with the BEiT-3 Base model is reduced by 57%
compared to full fine-tuning.

Regarding effectiveness, the performance decrement when utilizing MWA is statistically in-
significant for both the Base and Large BEiT-3 variants, with deviations falling within a margin
of less than 1%. Synthesizing these efficiency and effectiveness attributes demonstrates that
MWA, when applied to the BEiT-3 Large model, consumes merely 86% of the time required
for full fine-tuning of the BEiT-3 Base model, yet surpasses its performance. This suggests that
MWA enables enhanced performance with reduced computational time, particularly for larger
models. Additionally, as the model size increases, the performance disparity between MWA and
full fine-tuning diminishes, indicating a positive correlation between MWA’s effectiveness and
model size.
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Flickr30k

Model FT-Way IR@1 TR@1

BEiT-3-Large Full fine-tune 85.99 95.48
BEiT-3-Large MultiWay-Adapter 86.26 95.51

Table 6.2: Zero-shot performance on Flickr30k.

Zero-Shot Performance

To evaluate the transfer capabilities of MWA and full fine-tuned methods, we conducted exper-
iments in a zero-shot setting. In this setting, the model is evaluated on Flickr30k (1k test set),
with which it has no prior knowledge of, thereby necessitating reliance on intrinsically learned
knowledge to simulate the handling of previously unseen samples. These models were initially
fine-tuned on the MSCOCO dataset. As shown in Table 6.2, MWA surpasses the performance
of full fine-tuning when employed with the BEiT-3 Large model. We hypothesize that this en-
hancement is attributable to the preservation of generalizable knowledge in the frozen weights,
knowledge potentially lost during the full fine-tuning process. This retained knowledge aug-
ments the model’s ability to adeptly manage unseen instances. Thus, MWA not only match the
performance of full fine-tuning method but also distinguishes itself in terms of resource effi-
ciency and transferability.

In summary, the experimental results demonstrate that MWA serves as an effective and
resource-efficient fine-tuning method for MLLMs, especially when computational resources are
constrained.

6.2.4 Analysis

Scaling Tunable Parameters Up

The primary aim of this section is to investigate the impact of varying the number of tunable
parameters on performance and to identify the optimal value for additional parameters. The
“mid-dimension" of the New Knowledge Extractor largely controls the number of tunable pa-
rameters. We conducted an empirical evaluation across a range of mid dimensions {0, 1, 16, 32,
64, 128} on the MSCOCO dataset using the BEiT-3 Base model. The results are summarized
in Figure 6.2. The data reveals a noticeable increase in performance as the dimension grows,
plateauing at 64. Specifically, we observed a peak performance gain of 9.45%, in text to image
retrieval when increasing the dimension from 1 to 64. This indicates that increasing the number
of parameters in the adapter does not guarantee performance improvement. When the dimen-
sion is set to zero, it represents the zero-shot performance of the BEiT-3 Base model without
MWA. Notably, MWA delivers superior performance compared to the zero-shot performance of
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Figure 6.2: Evaluation of different sizes of mid-dimension New Knowledge Extractor on
MSCOCO.

the BEiT-3 Base model, even when the mid-dimension is as low as one. Furthermore, perfor-
mance variability is relatively small when increasing the dimension from 16 to 64, indicating
that MWA is stable in tuning and not sensitive to changes in size.

Ablation on MultiWay Adapter’s Components

In this section, our focus is to quantify the individual contributions of our two newly introduced
components: the New Knowledge Extractor and the Alignment Enhancer. An ablation study
was performed on the MSCOCO dataset using the BEiT-3 Base model. The performance met-
rics for each component, both in isolation or in combination, are detailed in Table 6.3. Our
findings demonstrate that omitting either component leads to a significant decline in perfor-
mance, approximately 3%, for image to text retrieval and around 4%, for text to image retrieval.
Importantly, the Alignment Enhancer, a novel element distinct from previous Adapter methods,
validates its critical role in maintaining deep alignment between modalities through observed
performance gains. In summary, both components not only significantly contribute to the over-
all performance but also complement each other effectively.

6.2.5 Conclusion

In this chapter, we introduce the MultiWay-Adapter (MWA) to address research question 2 raised
in Section 4.3, providing an effective method for the efficient adaptation of Multimodal Large
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MSCOCO

Model KE AE IR@1 TR@1

BEiT-Base 61.40 79.00
BEiT-Base ✓ 57.32 73.92
BEiT-Base ✓ 57.88 74.61
BEiT-Base ✓ ✓ 60.72 78.26

Table 6.3: Ablation study of two modules of MultiWay-Adapter. KE refers to the New
Knowledge Extractor and AE refers to the Alignment Enhancer.

Language Models (MLLM) to downstream tasks. Addressing the issue of shallow intra-modal
and inter-modal alignment in existing methods, MWA employs a dual-component approach, uti-
lizing both the New Knowledge Extractor and the Alignment Enhancer. This strategy enables
MWA to extract novel information from downstream datasets while securing deep inter-modal
alignment. Our empirical findings reveal that with the addition of only 2.58% extra parame-
ters, there is no statistically significant decline in performance across all tested settings while
reducing fine-tuning time by up to 57%.

The motivation behind developing MWA lies in its ability to enhance the efficiency and
alignment of multimodal learning frameworks, which is crucial for improving overall perfor-
mance and applicability in real-world scenarios. By effectively addressing the core issues stated
in the thesis statement (see 1.2 ), MWA becomes an integral component of our proposed multi-
modal learning framework, MCA.

To comprehensively validate our proposed framework, it is essential to evaluate its perfor-
mance across diverse and challenging domains. Therefore, the following chapters will inves-
tigate the applications of MCA in four distinct areas: crisis response, cross-modal retrieval,
robotic vision, and recommendation systems. These evaluations will demonstrate the versatility,
robustness, and practical effectiveness of MCA, providing a thorough assessment of its impact
and potential across various real-world tasks.
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Chapter 7

The Applications of Proposed Multimodal
Framework in Crisis Response

7.1 Introduction

In this chapter, we aim to evaluate whether our proposed multimodal learning framework, MCA,
improves performance in the context of crisis response by addressing the intra-modal and inter-
modal alignment issues outlined in the thesis statement (see Section 1.2). We expect to see
improvements in performance metrics such as accuracy and F1 score, thereby demonstrating the
effectiveness of our MCA framework.

Social media platforms, like Twitter, are increasingly used by billions of people internation-
ally to share information. As such, these platforms contain vast volumes of real-time multimedia
content about the world, which could be invaluable for a range of tasks such as incident track-
ing, damage estimation during disasters, insurance risk estimation, and more. By mining this
real-time data, there are substantial economic benefits, as well as opportunities to save lives.

In Section 7.2, we explore the feasibility of utilizing automated methods to classify social
media information by analysing multimodal data which encompasses both visual and linguistic
elements. Indeed, as people post everything they experience on social media, large volumes
of valuable multimedia content are being recorded online, which can be analysed to help for a
range of tasks. However, the majority of prior works in this space focus on using machine learn-
ing to categorize single-modality content (e.g. text of the posts, or images shared), with few
works jointly utilizing multiple modalities. Hence, in Section 7.2, we examine to what extent
integrating multiple modalities is important for crisis content categorization. In particular, we
design a pipeline for multi-modal learning that fuses textual and visual inputs, leverages both,
and then classifies that content based on the specified task. Through evaluation using the Crisis-
MMD dataset, we demonstrate that effective automatic labelling for this task is possible, with
an average of 88.31% F1 performance across two significant tasks (relevance and humanitar-
ian category classification). while also analysing cases that unimodal models and multi-modal
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models success and fail.

7.2 Is Multi-Modal Data Key for Crisis Content Categoriza-
tion on Social Media?

7.2.1 Introduction

We combine both types of data to perform classification tasks on social media content in a
multimodal manner in this section.

Indeed, previous works have primarily focused on analysing the text within each post [115,
224, 236], ignoring potentially valuable image data provided along-side the tweets. One of the
more significant unresolved challenges is multi-modal understanding, i.e. for some content we
need to concurrently analyse both modalities (text and image) before we can fully understand
and act upon it. For example, a user could post "need help" with an image of a damaged building,
where the text defines the request and the image provides the location. On the other hand, with
recent advancements in deep learning for computer vision [81] and language modelling [46],
multi-modal learning[63] provides a promising new direction to push the boundaries of effec-
tiveness in this domain. Using a large-scale visual recognition model trained from ImageNet,
we can extract extra information in attached images and combine this with textual evidence to
enhance crisis content analytic tasks, where this type of multi-modal learning pipeline can be
applied to tweets that only have text, or images, or the combination of both.

To address this challenge and improve the performance of crisis response, we propose a
new multi-modal framework to classify crisis-related tweets through analysis of textual and
visual content. Following the task definition of the CrisisMMD dataset [2], we present a novel
approach to label tweets on two major tasks automatically:

• Informativeness: Whether the social media post is useful for providing humanitarian aid
during emergencies.

• Humanitarian Information Categories: Identifying the type of emergency, including
affected individuals, rescue volunteering or donation effort, infrastructure and utility dam-
age.

The contributions of this work are three-fold and directly support our hypothesis and thesis
statement by enhancing the performance and applicability of multimodal learning frameworks
in crisis response.

1. We propose a general multimodal framework capable of classifying tweets with multi-
modal data in the crisis domain. This supports our thesis statement by demonstrating the
effectiveness of integrating textual and visual data to improve crisis response tools.
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2. We analyze various classification layer designs building upon pre-trained ResNet and
BERT models, addressing practical questions regarding the training of multimodal mod-
els. This analysis validates our hypothesis that tailored designs and training strategies
can significantly enhance model performance, supporting the thesis claim of improved
alignment and efficiency.

3. We discuss notable insights gained from analyzing the developed multimodal models,
particularly regarding their success and failure modes. These insights provide valuable
guidance for further optimizing multimodal learning frameworks, reinforcing our thesis
statement by highlighting the practical benefits and understanding achieved through our
proposed methodologies.

Based on experimentation over the CrisisMMD dataset [2], we show that effective automated
tooling to aid in the filtering of crisis-related tweets for emergency personnel is possible with
around 90% F1 performance on the informativeness task and 87% F1 on the categorization
task. Comparing uni-modal models, we demonstrate that text-only models are more effective
than images models when tuned (e.g. 86% vs. 84% F1 on informativeness). Beyond this,
we introduce a novel multi-modal framework and demonstrate that it outperforms both strong
uni-modal and multi-modal baselines, as well as an existing multi-modal approach by up to
5% absolute F1 on the informativeness task and 8% absolute F1 on the categorization task,
demonstrating that considering multi-model data is key for these tasks.

The remainder of this section is structured as follows. In the next section, we describe
training methodology employed and discuss factors that might affect the performance of our
pipeline and details of our methodology to build a multi-modal learning pipeline for the crisis
response, followed by a structured overview of our experiment setup, where we provide more
technical details about the dataset. Finally, we report our results, analysis and summary.

7.2.2 Methodology

In this section, to evaluate whether integrating both text and images is actually important for
crisis content categorization, we first define strong uni-modal baselines. Notably, these uni-
modal baselines need to be as effective as possible, since if we use older components like past
works [170, 295] did, then any gains observed from multi-modal combinations might be sim-
ilarly achieved by making the baselines stronger. For this reason, we first start with the most
effective uni-modal pre-trained models from the literature, tune them for the target task, and then
optimise the training hyperparameters. We discuss the implementation of these models below:
Uni-Modal: Text: When implementing a text categorization model, there are two main deci-
sions that need to me made: 1) how to embed the text; and 2) how to train the classification
layer. For the embedding, we experiment with two approaches:
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• Word2vec: Although not the focus of this work, we include a shallow word-embedding
approach as a point of comparison. In particular, we report the performance of well known
Word2Vec model trained using the Continuous Bag-of-Words (CBOW) approach [160].
In particular, we use the same word-embedding model as [170].

• BERT: As discussed earlier, state-of-the-art text embeddings use pre-trained transformer-
based models, hence we do the same using BERT [46]. There are two frequently used
versions of the BERT, BERT-Base uncased and BERT-Large uncased. We use BERT-
base uncased (referred to as BERT-base) here due to the very high memory overheads
of BERT-Large uncased. As input to BERT, tweets are first subject to stopword removal
using SPACY1, followed by the default word-piece tokenizer [194]. The pre-trained BERT
model expects a fixed length input. To achieve this, we perform zero-padding for any
tweets with fewer than 100 (word-piece) tokens. Following best practices, we fine-tuned
the pre-trained BERT model on the training/validation components of the CrisisMMD
dataset (AdamW optimiser and ReLU activation function) with a softmax output layer.

Meanwhile, for the classification model we experiment with three variants of neural layer on-
top of the text embedding, summarized below. For the remainder of this section, we will use a
short-hand notation to refer to the construction of the classification model/layers used, as fol-
lows. Dense(n) refers to n dense fully connected layers, while Conv(n) refers to n convolutional
layers. Norm denotes a batch normalization layer, while DO denotes a drop-out layer. A/B(n)
represents a grouping of n B layers with n-1 A layers in-between. The | symbol is used to connect
layers. Later when we discuss multi-modal models, Concat is used to denote the concatenation
of two dense layers, one from each modality.

• DO|Dense(1): A single drop-out layer (rate of 0.1) followed by a single dense neural
layer. In effect, the single dense layer acts similarly to a linear regression model.

• DO/Dense(3): Three fully connected neural layers with decreasing sizes of 200, 100 and
50. Two dropout layers are applied between these three layers to prevent over-fitting, with
dropout rates of 0.2 and 0.02, respectively. This provides a more expressive classification
layer for the down-stream task.

• Norm/Conv(3)|Dense: As a point of comparison, we include the same configuration of
head as [170]. This approach uses a CNN-based classifier, comprised of three convolu-
tional layers with normalization layers in between, followed by a dense fully connected
layer. The convolutional layers of increasing size [100,150,200] and use kernel sizes/pool-
ing lengths [2,3,4].

1https://spacy.io/
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Figure 7.1: Details of models architecture

All three variants are trained on the training/validation components of the CrisisMMD dataset
using either the Adam or AdamW optimiser (reported in the result table), a batch size of 32 and
using the ReLU activation function.
Uni-Modal: Images: For training uni-modal image categorizers, the primarily influencing fac-
tor is the pre-trained model that we use to generate the image embeddings. For our later experi-
ments, we compare three different pre-trained deep neural image models:

• VGG16: A CNNs based network proposed by [214] which has 16 convolutional layers
and performs well on a wide range of tasks. It is pretrained on ImageNet dataset [204].

• ResNet50: A variant of ResNet with 50 layers. It is pretrained on ImageNet dataset [204].

• ResNet152: A variant of ResNet with 152 layers. It is pretrained on ImageNet dataset [204].

As these image models are designed for classification, rather than adding a new layer on
top of the existing model, we instead replace their final dense classification layer with a new
one for our target task (using our notation from earlier, this would simply be Dense(1)). We
trained this layer on the training/validation components of the CrisisMMD dataset using the
Adam optimiser, a batch size of 16 and the ReLU activation function. For ResNet152, we also
experimented with larger batch sizes [16,32,64,128], that we report later.
Multi-Modal: Text+Images: Having described the different uni-modal model baselines that we
use later for comparison, we next describe how we integrate these models to form an effective
multi-modal model. As discussed in the related work, there are two broad strategies for multi-
modal construction: early interaction; and late interaction. Since we wish to combine existing
single-modality models that have different architectures (a transformer for text and a CNN for
images), our only option here is to follow a late interaction strategy, as illustrated in Figure 7.1.
In particular, we experiment with two classification layer configurations on top of the embedding
components of the uni-modal models:
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• Concat|Norm|DO|DO/Dense(2): We add one extra dense layers with dimension 1200 for
each of the two modalities, that are concatenated. These features are then passed through
a batch normalisation layer, followed by two more dense layers (sizes [500,100] with
dropout layers in between (dropout rates [0.4,0.2,0.02])).

• Concat|Conv(3)|Dense: In a similar way to the text uni-modal, we also compare against
the fusion classification layer used by [170]. Like for the text-only variant, this approach
uses a CNN-based classifier. However, this is only comprised of two convolutional layers
(size [500,100], followed by a dense fully connected layer).

As for the uni-modal models, we trained on the training/validation components of the Crisis-
MMD dataset using the Adam optimiser and the ReLU activation function.

7.2.3 Experimental setup

Dataset: Currently the most widely used multi-modal crisis dataset is CrisisMMD [2]. This
dataset contains provides tweets and human annotated labels for two crisis informatics tasks:

• Informative vs. Not Informative: A given tweet text or image whether is useful for
humanitarian aid purposes, defined as useful for providing assistance to people in need.

• Humanitarian Categories: Given an image, or tweet, or both, categorize it into one
of the following categories: infrastructure and utility damage; vehicle damage; rescue,
volunteering, or donation efforts; injured or dead people; missing or found people; other
relevant information; not humanitarian related.

This dataset provides a total of 16,058 tweet texts and 18,082 tweet images labelled for these
two tasks. However, just because a text and image pair comes from the same tweet, this does
not mean that they have the same label. Hence following prior work [170] we only use tweets
where the label for the text and image in a tweet agree. For the purposes of training and testing
our models, we use the same train/validation/test split as [170].
Metrics: We evaluate the performance of both the uni-modal and multi-modal models produced
via the following classical classification metrics: accuracy, precision, recall and weighted F1-
score. Note that all metrics are reported on the same test set of CrisisMMD. For Humanitarian
Categorization, the prevalence of categories uneven in the test set. As such, we focus more on
F1 as a primary metric as opposed to accuracy (which is biased towards the most represented
categories).
Baselines: Our overall goal in this section is to determine to what extent we need to consider
multi-modal evidence when performing crisis content categorization. Hence, our primary com-
parison will be between the best uni-modal models that we can produce and the associated
multi-modal models. However, as a recent paper that tackled the same task, we compare against
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Informativeness Task Humanitarian Categorization Task
Text Embedding Classification layer Optimizer Acc precision recall F1 Time Acc precision recall F1 Time
Word2Vec DO|Dense(1) adam 0.6565 0.5294 0.6565 0.5441 00:01:36 0.5246 0.278 0.5246 0.3634 00:01:32
Word2Vec DO/Dense(3) adam 0.5821 0.5582 0.5821 0.5676 00:02:35 0.4293 0.3644 0.4293 0.3813 00:02:23
Word2Vec Norm/Conv(3)|Dense adam 0.8080 0.8100 0.8100 0.8090 00:15:27 0.7040 0.7000 0.7000 0.6770 00:25:00
BERT-Base DO|Dense(1) adam 0.7927 0.8077 0.7927 0.7694 00:18:54 0.8063 0.8132 0.8063 0.8081 00:12:31
BERT-Base DO/Dense(3) adam 0.8201 0.829 0.8201 0.8058 00:18:42 0.8126 0.8188 0.8126 0.8137 00:12:36
BERT-Base Norm/Conv(3)|Dense adam 0.8627 0.8644 0.8627 0.8644 01:55:21 0.8084 0.8129 0.8084 0.8067 01:53:36
BERT-Base DO|Dense(1) adamw 0.8514 0.8503 0.8514 0.8507 00:13:08 0.8168 0.818 0.8168 0.8168 00:13:21
BERT-Base DO/Dense(3) adamw 0.8651 0.8638 0.8651 0.8620 00:19:42 0.8115 0.8177 0.8115 0.8121 00:13:32
BERT-Base Norm/Conv(3)|Dense adamw 0.8631 0.8622 0.8631 0.8625 01:55:01 0.8304 0.8345 0.8304 0.8318 01:55:01

Table 7.1: Crisis Content Categorization of Uni-Modal: Text models.

[170] as a multi-modal baseline as well. For reference, this uses Word2Vec for test embedding
and VGG16 for Image embedding, followed by a Concat|Norm/Conv(3)|Dense classification
head.

7.2.4 Experimental results

In this section we report the results comparing the performances of both the uni-modal text, uni-
modal image and multi-modal (text+image) models produced for crisis content categorization.
In particular, we divide this section into two main components: 1) Finding Effective Uni-Modal
Models, where we optimise the uni-modal models to form strong baselines to compare to; and 2)
Uni-Modal vs. Multi-Modal Comparison, where we contrast the performance of the uni-modal
and multi-modal models.

Finding Effective Uni-Modal Models Based on the variables previously described in the
Methodology section, we train a range of uni-modal models for both CrisisMMD tasks. Pri-
marily, we are looking to find the most effective embedding and classification model/layers for
these two tasks, although we also optimise additional hyper-parameters as well. Our results are
reported in Table 7.1 (Text models) and Table 7.2 (Image models). The first three columns de-
scribe the setup of each model, while the remaining columns report the effectiveness and training
time for that model on the two tasks (Informativeness and Humanitarian Categorization). The
highest performing uni-modal model under eadch metric is highlighted in bold. We discuss our
observations below:
Text - Word2vec vs. BERT: The first factor of interest is the model that we use to embed the
text. We compare two approaches here, the shallow word embedding approach Word2Vec and
the deep neural language model BERT-Base. Examining the F1 scores for both tasks in Ta-
ble 7.1, we observe that BERT-Base consistently outperforms Word2Vec, as expected. Indeed,
the best performing models for both tasks are BERT-Base model with 86.4% F1 for Informa-
tiveness and 83.2% for Humanitarian Categorization.
Text - Classification Layer Types: The second primarily variable that can impact performance
is the classification model / layers that we use to convert the text embedding into a classifica-
tion. We compare three different possible configurations: 1) the simplest approach of adding
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Informativeness Task Humanitarian Categorization Task
Image Embedding Classification Layer Batch size Acc precision recall F1 Time Acc precision recall F1 Time
VGG16 Dense(1) 16 0.8330 0.8310 0.8330 0.8320 00:19:46 0.7680 0.7640 0.7680 0.7630 00:20:28
ResNet50 Dense(1) 16 0.8130 0.8188 0.8160 0.8174 00:16:32 0.7420 0.7370 0.7410 0.7390 00:16:17
ResNet152 Dense(1) 16 0.8239 0.8219 0.8208 0.8213 00:08:40 0.7626 0.7530 0.7620 0.7575 00:09:13
ResNet152 Dense(1) 32 0.8388 0.8366 0.8353 0.8359 00:14:11 0.7843 0.7692 0.7712 0.7702 00:14:55
ResNet152 Dense(1) 64 0.8437 0.8331 0.8299 0.8315 00:19:47 0.774 0.7652 0.7791 0.7721 00:20:16
ResNet152 Dense(1) 128 0.8573 0.8443 0.8437 0.8440 00:31:44 0.7830 0.7340 0.7960 0.7637 00:12:15

Table 7.2: Crisis Content Categorization of Uni-Modal: Image models.

a single dense layer (DO|Dense(1)), 2) adding a deeper network comprised of multiple dense
layers (DO/Dense(3)), and the classifier configuration used by [170] (Norm/Conv(3)|Dense).
As we can observe from Table 7.1, the classifier that includes the convolutional layers is the
most effective in nearly all cases. This is most notable for the Word2Vec based models, where
the (Norm/Conv(3)|Dense) classifier resulted in an around 24% gain in Informativeness F1 per-
formance. However, the gains narrow dramatically when using BERT-base as the embedding
model, with between 0-6% F1 gains observed for Informativeness and 0-2% gains for Human-
itarian Categorization in comparison to using dense layers only. Hence, we conclude that it is
better to include convolutional layers within the classifier, although we note that this comes at a
significant cost in increased training time.
Text - Optimizer: Finally, when training the text classifier, a lesser factor that can influence the
model performance is the optimiser that is used during training, with two common ones being
Adam and AdamW. We also report a comparison of these two optimiser in Table 7.1. From
our results, we can conclude that the AdamW optimiser appears to be superior here, indeed in
some scenarios it has a surprisingly large impact. For instance, for Humanitarian Categorization,
simply changing the optimiser resulted in an increase in performance from 80.7% to 83.2%.
Image - VGG16 vs. ResNet: Moving to the image modality, we have fewer variables to con-
sider, as the classification layer is held constant for images. The most influential factor then is
how we embed the images. In this case, we compare the VGG16, ResNet50 and ResNet152
pre-trained image embedding models in Table 7.2. As we can see from the Table, in terms of
F1 performance across the two tasks, there is little difference in performance between the pre-
trained image models. For instance, for the Informativeness task, the difference in performance
between the VGG16 and the best ResNet model is only 0.2%. Although we note that to achieve
equivalent performance with ResNet as VGG16, we needed to use a larger batch size of 128
than VGG’s 16, so out-of-the-box VGG16 appears to be a safer option.
Text vs. Image Efficiency: Finally, one of the practical considerations when building machine
learned models is how long they take to train. This is more significant when working in a multi-
modal space, as we need to train the different modalities. For all models Table 7.1 and Table 7.2
reports the training times for the text and image models, respectively. Generally, we observe
that the training times for both text and image models is between 10-20 minutes on average.
However, a notable exception here is the introduction of the convolutional layers in the text
classifier, that markedly increases training time to around 2 hours. We note that this should not
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Informativeness Task Humanitarian Categorization Task
Modalities Embeddings Classification Layer Acc precision recall F1 time Acc precision recall F1 time

Text
BERT-Base DO/Dense(3) 0.8651 0.8638 0.8651 0.8620 00:19:42 0.8304 0.8345 0.8304 0.8318 01:55:01
Word2Vec Norm/Conv(3)|Dense 0.8080 0.8100 0.8100 0.8090 00:15:27 0.7040 0.7000 0.7000 0.6770 00:25:00

Images
ResNet152 Dense(1) 0.8573 0.8443 0.8437 0.8440 00:31:44 0.7830 0.7340 0.7960 0.7637 00:12:15
VGG16 Dense(1) 0.8330 0.8310 0.8330 0.8320 00:19:46 0.7680 0.7640 0.7680 0.7630 00:20:28

Text+Images
Word2Vec+VGG16 Concat|Conv(3)|Dense 0.8440 0.8410 0.8400 0.8420 01:40:05 0.7840 0.7850 0.7800 0.7830 01:58:25
BERT-Base+ResNet152 Concat|Conv(3)|Dense 0.8728 0.8776 0.8743 0.8759 02:49:03 0.8220 0.8321 0.8225 0.8273 02:59:21
BERT-Base+ResNet152 Concat|Norm|DO|DO/Dense(2) 0.8977 0.8997 0.8977 0.8984 00:26:04 0.8670 0.8690 0.8670 0.8677 00:54:12

Table 7.3: Comparison of Uni-Modal and Multi-Modal models for Crisis Content Categoriza-
tion.

be a significant issue for a production system, but may slow down model development time if
performing significant hyperparameter tuning.

Uni-Modal vs. Multi-Modal Comparison In the previous section we built optimised deep
neural models for both CrisisMMD Informativeness and Humanitarian Categorization tasks.
The best text-only models achieved 86.4% and 83.18% F1 respectively, while the best image-
only models were slightly lower, achieving 84.4% and 77.2% F1 respectively. We now answer
our core question: is multi-modal data key for these tasks? If so, by constructing multi-modal
models we should be able to significantly enhance performance over these best uni-modal mod-
els.

Table 7.3 reports a performance comparison between the best uni-modal models and three
late interaction multi-modal models. As before, we distinguish models based on the embedding
approach and classification layer(s) used. The Word2Vec+VGG16 into a Concat|Conv(3)|Dense
classification layer is the approach by [170], which we use as a baseline. From Table 7.3, we
make the following observations. First, we can compare each multi-modal model with the uni-
modal models that comprise it. Starting with the approach by [170], the multi-modal model
(row 5) achieved 84.2% and 78.3% F1 under each task, respectively. This is a marked increase
over the two uni-modal models that comprise it, i.e. row 2 (text-only with 80.1% and 67.7%
F1) and row 4 (image-only with 83.2% and 76.3% F1), confirming results from their paper.
On the other hand, this combined model is still quite weak in terms of overall performance
in comparison to the best uni-modal models we created earlier. Hence, we next compare how
using more effective embeddings can increase performance. If we simply replace Word2Vec
and VGG16 with BERT-Base and ResNet152 the resulting model (row 6) exhibits much higher
overall performance: 87.6% and 82.7% F1 respectively, which is more effective than the best
uni-modal models for the Informativeness task, although it is still slightly less effective than the
best uni-modal model for the Humanitarian Categorization task. However, one possibility is that
the classification layer being used is not expressive enough. As such, we ask if we replace the
convolution-based classifier with a more expressive dense layer architecture (row 7). As we can
see, the transition to a more expressive classification layer results in a further marked increase in
performance, to almost 90% F1 for the Informativeness task and 86.7% F1 for the Humanitarian
Categorization task, which outperform the best uni-modal models for these tasks.
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Task # Test Text+Images Text-Only Failed Image-Only Failed
Tweets Embeddings Classification Layer Outcome (BERT-Base, DO/Dense(3)) (ResNet152, Dense(1))

Informativeness 1534
BERT-Base+ResNet152 Concat|Norm|DO|DO/Dense(2)

Correct 75 (4.9%) 228 (14.9%)
Failed 126 (8.2%) 78 (5.0%)

Humanitarian Categorization 955
Correct 177 (11.5%) 199 (13.0%)
Failed 96 (6.3%) 81 (5.2%)

Table 7.4: Comparison of the number of tweets classified correctly and incorrectly by the uni-
modal and multi-modal models.

Overall, we have shown that combining evidence from multiple modalities can bring marked
gains in performance, however our results have highlighted the importance of using strong em-
beddings (particularly for text) and an expressive classification layer, if state-of-the-art perfor-
mances are to be achieved.

7.2.5 Additional Observations and Discussion

Having answered our core question, we next perform additional analysis on the uni-modal and
multi-modal models produced to evaluate the strengths and weaknesses of these models. Indeed,
just because a model overall has a higher performance does not mean that it is more effective
in all cases. We divide our analysis into two components: 1) a failure analysis of the best
models to see where the uni-modal and multi-modal models differ in terms of classification
error distribution; and 2) provision and analysis of illustrative examples.

Error Distribution Analysis We begin by contrasting the success and failures of the best
multi-modal model against the uni-modal models that comprise it. In particular, Table 7.4 re-
ports for both Informativeness and Humanitarian Categorization tasks the number of test tweets
the multi-modal model succeeded or failed to classify correctly, and the associated text-only and
image-only models failed also to classify correctly. In effect, the ‘Failed’ Outcome rows report
the number of cases where both the multi-modal and uni-modal models failed, while the ‘Cor-
rect’ Outcome rows report the number of cases where the multi-modal model succeeded, but the
uni-modal models did not. Higher numbers in ‘Correct’ rows indicate errors that the uni-modal
made that were fixed by the multi-modal model. The counts in the ‘Failed’ rows indicate tweets
which neither model classified correctly (indicating that more work is needed and the scope for
improvement available).

As we can see from ‘Correct’ rows in Table 7.4, the multi-modal model is correcting a large
number of errors that the uni-models made. For the uni-modal text models, 4.9% and 11.5% of
tweets were corrected, while for the uni-modal image models, 14.9% and 13% of tweets were
corrected. This demonstrates again the value that integrating text and image evidence together
can bring to crisis content categorization. On the other hand, we see that even with the best
multi-modal model, there is still significant scope for improvement, with between 5% to 8.2%
of tweets remaining incorrectly classified, even with the addition of multi-modal evidence.

To examine where these errors occur in more detail, Figure 7.2 visualises the confusion
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matrices for the different models for the Humanitarian Categorization task. The axes on the
confusion matrices denote the primary categories in the task, namely: "Affected individuals" is
denoted as "A"; "N" represents the "not-humanitarian" category; "I" to represents "infrastructure
and utility damage"; "O" denotes "Other relevant information"; and "Rescue, volunteering or
donation effort" is denoted as "R". The values contained within each box and associated colours
represent the proportion of tweets in each pairing. The left-right centre diagonal represents
correct classifications.

Figure 7.2: Confusion matrices for the uni-modal and multi-modal models. Due to the name
of each class being too long, "Affected individuals" is denoted as "A"; "N" represents the
"not-humanitarian" category; "I" to represents "infrastructure and utility damage"; "O" denotes
"Other relevant information"; and "Rescue, volunteering or donation effort" is denoted as "R".

From Figure 7.2 we see that the multi-modal model improves performance across all 5 pri-
mary categories, however the distribution of these gains are not the same comparing across the
uni-modal models. Comparing against the text-only model, consistent 3-6% improvements are
observed across the categories, with the exception of the affected individuals category that has
a larger 12% uplift. However, in contrast, the image-only model performs particularly poorly
on two categories: affected individuals (0% correct) and Rescue, volunteering or donation effort
(48% correct). As a result, the associated up-lift from the multi-modal combination is larger.
It is also worth highlighting that the gains we are seeing here are not simply additive, i.e. the
multi-modal model is able to classify tweets correctly that neither of the uni-modal models
could. We can see this most clearly in the case of the affected individuals class, where the text
model classified 44% of the tweets correctly and the image model classified 0% correctly, but
the combination in the multi-modal model managed to classify a larger 56% of the tweets in this
class correctly.

Analysis of Illustrative Classification Examples Finally, we provide several illustrative ex-
amples to provide insights into the success and failure modes of the multi-modal model. To be-
gin, Figure 7.3 shows three examples where the multi-modal model correctly categorises tweets,
but the uni-modal models do not. Examples (a) and (b) show cases where the image unimodal
model failed, but the multi-modal model makes the right prediction. Specifically, they illustrate
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scenarios when the images’ contents are vague or not informative, but the text message is very
clear. Example (c) in contrast, is a tweet that the text model gave the wrong prediction, but the
multi-modal model correctly classifies it through the use of features from the image.

Figure 7.3: Examples of multi-modal model filter misleading info in single modality.

Furthermore, as we noted in the error distribution analysis, the gains from the multi-modal
model are not simply additive, i.e. it is learning how to relate both the text and image evi-
dence together to gain a deeper understanding of the content than is possible from one modality
alone. Figure 7.4 provides examples where this occurs, by showing tweets where both uni-
modal models incorrectly classified the tweet, but the multi-modal model classified it correctly.
For instance, in example (a), the text and image present a large volume of information, making
it difficult for the model to determine the core subject of the tweet. Meanwhile, example (b)
illustrates a case where the text and image present different information; the text indicates that
there is no need for immediate rescue, but the image shows an injured person. Example (c) is a
difficult tweet to classify, as the text contains many keywords that are related to crises, but the
actual content is not relevant to the current crisis being investigated.

Figure 7.4: Examples of multi-modal model beats uni-modal model.
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On the other hand, the multi-modal model is not always better than the uni-modal models,
although these cases are rare (85 examples). From analysing these, there seem to be two broad
failure modes. First failure mode is cases where the model appears to have been misled by
examples where the true label is debatable. For instance, Figure 7.5, (a) and (b) describe a
similar story of how a hero acted during the crisis, but assessors give different labels to them,
making it likely that the model will learn the wrong patterns. Meanwhile, there are also a small
number of labelling errors, such as example (c), where the assessor selected "not informative",
but we believe this tweet should be "informative". The second broad scenario is cases where
both the text uni-modal model and image uni-modal model give consistent predictions but the
multi-modal model produces a different (incorrect) prediction, such as the examples shown in
Figure 7.6 for the Informativeness task. We suspect that if the multi-modal model identifies a
weak connection between the text and image, the model would judge that neither information
within the text nor image to be informative, but this would require more analysis to determine
definitively.

Figure 7.5: Examples of problem of true label in CrisisMMD dataset.

Figure 7.6: Examples of multi-modal model perform worse than uni-modal model.

117



7.3. Conclusion

7.2.6 Summary

Social media is a critical platform for emergency response agencies to acquire actionable in-
formation, but extracting information from these unstructured and multimodal sources poses
significant challenges. As a step towards building more effective crisis response tools, we in-
vestigated the importance of considering all modalities within social media data. Specifically,
we compared state-of-the-art unimodal and multimodal models to assess the benefits that multi-
modal models can bring.

Through experimentation on the CrisisMMD Informativeness and Humanitarian Categoriza-
tion tasks, we demonstrated significant performance gains by fusing text and image evidence for
crisis content categorization. We observed around a 6% gain in F1 performance for the Informa-
tiveness task and a 4% increase in Humanitarian Categorization F1 performance when moving
from unimodal to multimodal models, as detailed in Section 7.2.4.

Moreover, our analysis in Section 7.2.5 showed that the multimodal model does not simply
choose a unimodal model to apply on a case-by-case basis. Instead, it effectively fuses evidence
from both modalities, allowing it to correctly classify examples that could not be accurately
categorized by any unimodal model alone. We also provided an analysis of the success and
failure modes of the multimodal model, offering insights into its areas of effectiveness.

These findings support our hypothesis and thesis statement by demonstrating that multi-
modal data is essential for accurately categorizing crisis content on social media. By integrating
textual and visual information, our approach significantly improves the performance and relia-
bility of crisis response tools, thereby validating the core claims of our research.

7.3 Conclusion

In this chapter, we addressed research question 3 proposed in Section 4.3 within the context of
crisis response.

In Section 7.2, we undertake the automated classification of social media information through
multimodal approaches, incorporating both vision and language modalities. We examined the
importance of integrating multiple modalities for crisis content categorization, designing a pipeline
for multimodal learning that fuses textual and visual inputs and classifies the content based on
the specified task. Evaluating with the CrisisMMD dataset, we demonstrated effective automatic
labeling for this task, achieving an average of 88.31% F1 performance across two significant
tasks (relevance and humanitarian category classification). Most importantly, in Section 7.2.5,
we analyzed the success and failure cases of unimodal and multimodal models. Our analysis
showed that the MCA framework makes decisions based on information from both modalities,
rather than relying on a single modality as previous multimodal approaches did. This indi-
cates a deeper understanding of multimodal information, achieved through better embeddings
and deeper intra-modal and inter-modal alignment, supporting our core hypothesis in the thesis
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statement.
In summary, we confirmed that utilizing multimodal data is the most effective approach for

categorizing crisis content on social media. Our findings provide evidence of increased inter-
modality alignment and enhanced performance metrics, such as accuracy and F1 score, thereby
demonstrating the power and effectiveness of the proposed MCA framework. This supports
our thesis statement in Section 1.2 by validating the hypothesis that improved alignment and
integration of multimodal data lead to superior performance in crisis response tasks.
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Chapter 8

The Applications of the Proposed MCA
Framework in Robotic Vision

8.1 Introduction

In this chapter, we aim to evaluate whether our proposed multimodal learning framework, MCA,
improves performance in the context of robotic vision by addressing the intra-modal alignment
issues outlined in the thesis statement (see Section 1.2). We expect to see improvements in
performance metrics such as accuracy and false positive rate, thereby demonstrating the effec-
tiveness of our MCA framework.

Recent advances in deep learning have led to the emergence of Multimodal (vision + lan-
guage) Large Language Models (MLLMs) such as BLIP2 [123] and BEiT-3 [252]. These
MLLMs, trained on large-scale datasets, act as general-purpose encoders for multiple modal-
ities and offer substantial potential for transfer to various applications. While they have shown
state-of-the-art performance in fields such as conversational agents and information retrieval,
their utility in robotic vision remains largely unexplored. Early studies, like PaLM-E [50], have
begun to delve into this area but primarily focus on vision and language understanding, largely
overlooking the unique real-world challenges of robotic vision, such as task-specific camera
poses, variable lighting, and clutter. Therefore, prompted by the success of our proposed MCA
framework in other domains, this chapter addresses the question: To what extent can MLLMs

improve vision tasks specific to the robotics domain?

The recently introduced ARMBench dataset [161] from Amazon exemplifies the complexi-
ties inherent to robotic vision. It comprises three critical robotic vision perception tasks: object
instance segmentation, object identification, and defect detection, and presents a large-scale
representation of real-world scenarios—specifically, object grasping and manipulation tasks in
Amazon warehouses. These tasks demand a vision system capable of handling an extremely
large range of objects (e.g., 190K+ unique objects), robust to variable lighting conditions, and
capable of operating effectively in cluttered environments. Moreover, the ever-changing inven-
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tory of warehouses requires the vision system to perform well in transfer learning scenarios. The
individual tasks, though extensively researched, have yielded task-specific models, complicat-
ing their integration into a unified vision pipeline. Such integration involves selecting the right
model for each task, coordinating them effectively, and fine-tuning each one – a process that is
both time-consuming and challenging in terms of engineering.

We argue that MLLMs have better transfer capability compared to previous task-specific
models, owing to MLLMs’ large-scale pre-training, which allows them to serve as robust back-
bones for these tasks. This substantially reduces the engineering complexity of developing
different backbones for multiple tasks and the time required for model selection and tuning.
Additionally, MLLMs have shown particular resilience to out-of-distribution examples, such as
objects presented in novel poses or amidst visual distractions, which are critical issues in robotic
vision perception tasks.

In this chapter, we introduce RoboLLM, based on our proposed multimodal learning frame-
work, MCA from Chapter 4. This framework is designed to adapt MLLMs to the multifaceted
challenges of robotic vision, using the ARMBench dataset for evaluation. Our main contribu-
tions are as follows:

• We present RoboLLM, a generalized framework that employs pre-trained MLLMs as
backbones for tackling complex robotic vision tasks, including object instance segmen-
tation, object identification, and defect detection. This supports our thesis statement
by demonstrating the versatility and effectiveness of our proposed multimodal learning
framework.

• We are the first to address all three key vision tasks in the ARMBench dataset, which
represents challenging, large-scale robotic manipulation scenarios. This comprehensive
approach supports our hypothesis that a robust multimodal framework can handle diverse
and complex tasks.

• We introduce a lightweight variant of the BEiT-3 architecture aimed at increased perfor-
mance and efficiency (Section 8.3.2), broadening its applicability to resource-constrained
robotic applications. This aligns with our thesis objective of improving the efficiency of
multimodal learning frameworks.

• Our experiments (Section 8.3.6) show that RoboLLM achieves state-of-the-art results
across all three ARMBench tasks, validating our hypothesis that integrating our multi-
modal learning framework, MCA, enhances performance in robotic vision tasks.

• We further demonstrate RoboLLM’s robustness to object number variance and its superior
performance on out-of-distribution examples in the object segmentation task, where previ-
ous works fail. Notably, RoboLLM achieves a 97.8% recall@1 in the object identification
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task. These results support our thesis statement by proving that improved intra-modal and
inter-modal alignment leads to better performance and generalization.

• The original material in this section has been accepted for presentation at the 2024 IEEE
International Conference on Robotics and Automation, a Core ranking A* conference
with an h5-index of 119.

8.2 Revisiting Transformers vs CNNs

Large language models (LLMs) predominantly utilize transformers rather than convolutional
neural networks (CNNs) due to architectural differences that make transformers better suited for
natural language processing (NLP) tasks. The sequential nature of language, global context re-
quirements, scalability needs, and the specific mechanisms of transformers collectively establish
them as the architecture of choice for LLMs.

Language inherently involves sequential data where the meaning of a word depends on its
context within a sentence or passage. Transformers excel in processing such sequences through
the self-attention mechanism, which enables each token in a sequence to attend to all others
simultaneously. This global context awareness ensures that transformers capture both local and
distant relationships efficiently, a feature critical for understanding complex language structures.
In contrast, CNNs, designed for grid-like data such as images, rely on localized receptive fields
and lack the innate ability to handle long-range dependencies effectively. While CNNs can
process sequential data through 1D convolutions, their reliance on fixed or expanded receptive
fields limits their capacity to model global relationships in long sequences.

Transformers also address the challenge of long-sequence modeling through positional en-
codings and multi-head attention. Positional encodings explicitly incorporate sequence order
into the model, allowing the self-attention mechanism to flexibly model relationships between
distant tokens. Furthermore, transformers process sequences in parallel, significantly enhancing
training efficiency on GPUs and TPUs. This parallelism contrasts with the inherently sequential
nature of CNNs when applied to ordered data, which leads to slower training times, particularly
for tasks involving extensive sequences.

The empirical success of transformers further cements their role in NLP. Models like GPT,
BERT, and T5, built on transformer architecture, consistently achieve state-of-the-art perfor-
mance across a wide range of tasks, from text generation to question answering. These models
leverage the self-attention mechanism to capture deep contextual relationships, outperforming
previous approaches. Attempts to adapt CNNs for NLP tasks, such as TextCNN, have demon-
strated potential in small-scale scenarios but fail to scale effectively or capture the nuanced
dependencies required for large-scale language modeling.

Transformers also exhibit remarkable flexibility for multimodal applications, such as com-
bining vision and text. Frameworks like CLIP and Vision Transformers demonstrate how trans-
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Figure 8.1: The task specific adaptions to BEiT-3, proposed in our RoboLLM framework, for
tackling each challenge in ARMBench. BEiT-3’s large-scale vision-language pretraining allows
it to be easily and effectively transferred to downstream tasks.

formers can seamlessly integrate data from multiple modalities. In contrast, CNNs, while ex-
celling at processing spatial data like images, often require complex hybrid architectures or
preprocessing pipelines to accommodate text and other modalities.

In conclusion, the dominance of transformers in LLM design stems from their ability to
capture both local and global context through self-attention, handle long sequences efficiently,
and support parallelized training. Their adaptability for multimodal data and proven success in
state-of-the-art models further reinforce their suitability for large-scale NLP applications over
CNNs.

8.3 RoboLLM: Robotic Vision Tasks Grounded on Multimodal
Large Language Models

8.3.1 Overview

The proposed framework, RoboLLM, is designed to address three primary vision tasks in robotic
manipulations as defined in the ARMBench dataset: object segmentation, object identification,

and defect detection. As illustrated in Figure 8.1, the architecture of RoboLLM is inherently
modular. This modular design allows for the integration of a variety of Multimodal Large
Language Models (MLLMs) as backbone encoders, alongside task-specific heads tailored for
distinct robotic vision tasks. This design principle of decoupling the backbone from specific
downstream tasks offers several advantages, including ease of maintenance and flexibility for
quick and easy adaptation to new vision tasks, while fully exploiting the benefits of large-scale
pre-trained models. Task-specific heads are integrated to tackle each unique vision challenge,
with the choice of heads justified by their proven effectiveness in the respective tasks. Subse-
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Figure 8.2: Our lightweight modification of the BEiT-3 [252] backbone only remains the vision
experts.

quent sections elaborate on the role of the backbone encoder and provide specific configurations
for each vision task in the ARMBench dataset.

8.3.2 Backbone Encoder

The backbone encoder is a critical component in the RoboLLM framework, which is respon-
sible for producing feature maps for downstream tasks. It is based on a widely-used MLLM
architecture featuring a MultiWay Transformer design [252]. Our design philosophy allows the
backbone to be replaced with future MLLM developments, making the system future-proof in
the rapidly evolving domain of robotic vision. Currently, we believe BEiT-3 is the most suitable
option owing to its state-of-the-art performance in various vision benchmarks [252]. Moreover,
BEiT-3 demonstrates that features learned in a multi-modal setting are more task-agnostic and
generalized, thereby offering better transferability to different vision tasks without the need for
extensive fine-tuning. These characteristics of BEiT-3 make it highly suitable for robotic vision
tasks.

The MultiWay Transformer blocks, illustrated on the left side of Figure 8.2, comprise a
shared self-attention module and a pool of feed-forward networks known as modality experts.
These experts are designed for handling different types of data. However, this paper is fo-
cused only on addressing robotic vision perception tasks, thereby eliminating the need for other
modality experts besides vision. Thus, our streamlined architecture, as shown on the right side
of Figure 8.2, eliminates non-vision modality experts, reducing both computational overhead
and the parameter count from 222 million to 87 million in the BEiT-3 Base model [252]. This
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Figure 8.3: Examples for different image segmentation tasks in ARMBench [161].

design choice not only improves computational efficiency but also retains the flexibility to incor-
porate other modalities in future iterations of the task. Importantly, the feature maps generated
by the backbone are exploited across all three vision tasks addressed in this work, demonstrating
the framework’s effectiveness and efficiency.

8.3.3 Object Segmentation

Object segmentation serves as the prerequisite task within the ARMBench dataset, aiming to
identify and delineate individual objects in containers.

Semantic segmentation is a dense prediction task in computer vision that involves classify-
ing every pixel in an input image. Recent state-of-the-art methods often utilize Fully Convolu-
tional Networks (FCNs), which consist of a deep convolutional neural network serving as the
encoder (or backbone) and a decoder tailored for segmentation to produce dense predictions.
More recently, Vision Transformers (ViTs), which leverage a spatial attention mechanism, have
been introduced to computer vision tasks. Unlike traditional convolution-based backbones, ViTs
employ a straightforward, non-hierarchical architecture that maintains the resolution of feature
maps throughout the network. This absence of down-sampling processes (aside from initial im-
age tokenization) introduces distinct architectural considerations when using a ViT backbone
for semantic segmentation.

Aligned with RoboLLM’s overarching philosophy of decoupling the backbone from down-
stream tasks, we employ a plain-backbone approach for object segmentation based on ViT de-
sign. Unlike most object detection approaches, this plain-backbone detection approach does not
require any pretraining on detection tasks, thereby eliminating hierarchical constraints on the
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backbone. This is a necessary step given the absence of a segmentation task during MLLM
pretraining. Specifically, we transfer MLLM to object segmentation tasks, with modifications
performed exclusively during the fine-tuning stage. The rationale behind this choice is to max-
imize the benefits accrued from pre-training on large-scale datasets, which in turn improves
segmentation performance. Thus, to translate the capabilities of MLLM into practical appli-
cation for object segmentation, a task-specific head is crucial for integrating and adapting the
backbone’s generic feature maps to the specificities of the task at hand.

Feature Pyramid Construction The cornerstone of our object detection strategy is the con-
struction of a feature pyramid, following [130]. For this, we utilize only the last embeddings
from the backbone, which is hypothesized to contain the most discriminative features. We
then execute a series of parallel convolutions and deconvolutions to generate multi-scale fea-
ture maps. Specifically, starting with the default Vision Transformer (ViT) embeddings with a
scale of 1

16 , we produce feature maps at scales of 1
32 ,

1
16 ,

1
8 ,

1
4 via convolutional strides of 2,1, 1

2 ,
1
4 ,

respectively.

Task-Specific Head The task-specific head for object segmentation integrates a detector based
on a Cascade Mask R-CNN [20]. This modular design facilitates seamless interaction with the
feature maps generated by the backbone and is extensible for compatibility with other detector
heads.

These generated multi-scale feature maps are processed through the Cascade Mask R-CNN
detector head. A Region Proposal Network (RPN) from Cascade Mask R-CNN proposes can-
didate object bounding boxes, followed by mask generation for each object via a Region-of-
Interest (ROI) head aslo from Cascade Mask R-CNN, which extracts pertinent features from the
RPN.

Advantages and Rationale Our design offers multiple benefits. Firstly, the plain-backbone
approach necessitates only modest modifications during the fine-tuning stage, which preserves
the generality and extensibility of the pre-trained MLLMs. Secondly, the task-agnostic nature
of our backbone allows for seamless interchangeability with various detector heads, providing
flexibility in addressing a broad range of object segmentation tasks. Lastly, the selective use of
only the last feature map for object detection aims to utilize the most potent features, thereby
enhancing the system’s overall efficacy and efficiency.

8.3.4 Object Identification

Object identification is the second task in the ARMBench dataset. This task is concerned with
precisely categorizing detected objects among a database of predefined classes. In contrast
to conventional identification and classification methods, which face computational difficulties
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1 import numpy as np
2 # Q[n, h, w, c] - minibatch of query images
3 # R[n, h, w, c] - minibatch of reference images
4 # Wi[di, de] - learned proj of image to embedding
5 # labels - labels of whether Query image and
6 # reference image are the same class
7

8 # extract feature representations of each modality
9 if using both pre-pick and post-pick images:

10 # BEiT-3 Encoder
11 Qf = encoder(Q) #[n, 3 x di]
12 # Feature Aggregation
13 Qf = MLP(Qf) #[n, 3 x di] to [n, di]
14 else:
15 Qf = encoder(Q) #[n, di]
16

17 Rf = encoder(R) #[n,di]
18 # project embedding [n, de]
19 Qe = l2_normalize(np.dot(Qf, Wi), axis=1)
20 Re = l2_normalize(np.dot(Rf, Wi), axis=1)
21

22 # scaled pairwise cosine similarities [n, n]
23 # t - learned temperature parameter
24 logits = np.dot(Qe, Re.T) * np.exp(t)
25 # symmetric loss function
26 lossQ = cross_entropy(logits, labels, axis=0)
27 lossR = cross_entropy(logits, labels, axis=1)
28 loss = (lossQ + lossR)/2

Figure 8.4: Numpy-like pseudo-code for the core of an implementation of our framework for
Object Identification task.

with numerous categories (exceeding 190,000 in the Amazon warehouse context), due to the
need for an extremely large dense layer. Additionally, even if you manage to construct such a
network, it struggles to accommodate the daily fluctuations in item numbers caused by Ama-
zon warehouse operations, such as the introduction of new products or the depletion of stock.
Therefore, we tackle this task as an image retrieval problem.

Task Variants In robotic manipulation within the context of the ARMBench dataset, the ob-
ject identification task holds significance in pre- and post-object manipulation. In the pre-pick
stage, object identification permits the retrieval of historically acquired objects or attributes for
manipulation planning. While in the post-pick, the object’s unique identifier is crucial for qual-
ity control and subsequent tasks. Thus, both pre- and post-pick images of the object could serve
as query images, while the reference images in the container manifest act as gallery images. The
challenge lies in accurately matching the query images to the gallery images.

Therefore, this task offers two variants: one reliant on pre-pick images (one for each pick)
and the other incorporating post-pick images (two more for each pick). While the latter images
present a greater challenge due to differing perspectives, object poses, and presentations, they
enable the incorporation of multi-view data, thereby enhancing the overall retrieval performance.
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Overall Architecture Consistent with our object instance segmentation task strategy, we em-
ploy a backbone plus a task-specific head architecture as shown in Fig. 8.1-center. For the two
aforementioned task variants, the task-specific head comprises a projection head or adds a Multi-
Layer Perceptron (MLP) for fusing pre- and post-pick images. A contrastive learning objective
is applied to fine-tune the RoboLLM to optimize detection performance.

Contrastive Learning Fine-tuning We argue that high-quality feature maps suffice for mea-
suring the similarity between query and reference images using dot product calculations. We
maintain computational efficiency by abandoning complex retrieval techniques such as re-ranking,
which is crucial for real-time robotic applications. Thus, a contrastive loss, InfoNCE [172], is
used in the fine-tuning stage to improve the quality of the generated feature maps. It aims to
minimize the distance between the feature maps of positive pairs (the same class) and maximize
the distance between negative pairs (different classes), thus enhancing the efficacy of our image
retrieval approach.

The backbone encoder transforms an input image or three images input Q into an output
representation Q f , which is further processed by a linear projection head to produce the final
feature vector. In cases involving post-pick images as query images, their feature maps are
concatenated prior to input into the MLP, providing a fused representation before feeding into
the linear projection head. An L2 normalization is applied to Q f to mitigate the risk of numerical
instability during training. Specifically, given a batch of N (query image, reference image) pairs,
our framework is trained to predict which of the N×N possible (query image, reference image)
pairings across a batch actually occurred. To do this, our framework maximizes the pairwise
cosine similarity of the query and reference image feature maps of the N real pairs in the batch,
while minimizing the cosine similarity of the feature maps of the N2−N incorrect pairings. We
optimize a symmetric cross-entropy loss over these similarity scores. In Figure 8.4, we include
the pseudocode of the core of the framework for the object identification task.

Advantages and Rationale This approach presents multiple advantages. First, the scalability
of the image retrieval method sidesteps the challenges tied to implementing a large-category
linear classification layer. Second, the modular design allows task-specific heads to be eas-
ily interchanged, making the framework adaptable to different identification scenarios. Third,
computational efficiency is assured through the use of a dot product similarity measure and the
elimination of intricate retrieval techniques. Lastly, the system’s flexibility is highlighted by
its ability to adapt to a variety of object identification scenarios, whether involving single or
multiple query images.
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Task Mixed Object Tote Zoomed Out Tote Same Object Tote

Model mAP50 mAP75 mAP50 mAP75 mAP50 mAP75

ResNet50 + Mask RCNN * 0.72 0.61 0.25 0.19 0.11 0.10
RoboLLM 0.82 0.67 0.57 0.45 0.15 0.13

Table 8.1: Mean Average Precision at IoU thresholds of 50 and 75 across the different segmen-
tation task subsets. * indicates results obtained from [161].

Figure 8.5: Number of object instances per image against Mean Average Precision at 50 on the
Mixed-Object tote test-set.

8.3.5 Defect Detection

The third task in the ARMBench dataset is defect detection, aimed at identifying defects result-
ing from specific robotic manipulation activities. This is a crucial task as it directly impacts the
integrity of the workflow and the quality of the end product. The dataset includes two types of
robot-induced defects: 1) multi-pick, where multiple objects are mistakenly picked and trans-
ferred from the source to the destination container; and 2) package-defect, indicating activities
that result in the object’s packaging opening or the object deconstructing into multiple parts.

Consistent with the design strategy for earlier tasks, we employ a backbone plus a task-
specific-head architecture. We reuse the same backbone encoder employed in the previous
tasks. Utilizing the same backbone across multiple tasks ensures a cohesive and streamlined
architecture. As in the object identification task, we leverage segmentations to locate objects.
Unlike the object identification task, which has many categories, this task comprises only three
classes: two types of defects and a nominal type. Therefore, a classification head is sufficient to
conduct the classification and is appended to the backbone encoder for the purpose of making
predictions across these three categories. We opt for a standard cross-entropy loss function for
training, which is particularly suitable for categorical classification tasks.
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Model Ref Set Recall@1 Recall@2 Recall@3

N=1 N=3 N=1 N=3 N=1 N=3

ResNet50-RMAC Container 71.7 72.2 81.9 82.9 87.2 88.2
DINO-ViT-S Container 77.2 79.5 87.3 89.4 91.6 93.5
BEiT-3-Base* Container 83.7 84.5 83.8 N/A 84.5 N/A
RoboLLM Container 97.8 98.0 97.9 98.1 98.0 98.2

RoboLLM All refs 74.6 78.2 82.6 85.7 85.3 89.10

Table 8.2: Results on object identification at varying recall@k. * indicates no ARMBench fine-
tuning. N=1 uses one pre-pick image, while N=3 uses three images per pick. “Ref set” specifies
if reference images are container-specific or from the entire dataset.

8.3.6 Experiments

Experimental Setup Our experiments target the ARMBench dataset, focusing on three key
robotic vision perception tasks: object instance segmentation, object identification, and defect
detection. The experiments are conducted using two state-of-the-art Multi-Modal Learning
Models (MLLMs) as the backbones of the proposed RoboLLM framework, namely BEiT-3
Base and BEiT-3 Large. Notably, the BEiT-3 Large model is employed exclusively for the de-
fect detection task because the performance of the BEiT-3 Base model fails to meet the ideal
task-specific requirements. We utilize the test sets of all tasks to report metrics. The backbones
are initialized with pre-trained weights. A batch size of 64 is employed for all three tasks, with
fine-tuning conducted over 50 epochs. An initial learning rate of 2× 10−4 is set for all tasks.
Early stopping is implemented if there is no improvement in the metrics on the validation set
over a span of 5 epochs. For the object identification task, the Multi-Layer Perceptron (MLP)
consists of two linear layers, with middle dimensions set to 3072 for the Base model and 4096
for the Large model. The projection head is implemented as a single linear layer, with its em-
bedding dimension matching that of the encoder.

Object Segmentation Object segmentation is a critical stage within the robotic vision pipeline,
influencing robotic planning, grasp operations, and object identification. Poor object instance
segmentation can introduce defects during robotic manipulation, which is highly undesirable.
The ARMBench challenge offers three data subsets to evaluate image segmentation perfor-
mance: 1) Mixed-Object-tote serves as a general benchmark. 2) Zoomed-out-tote assesses model
generalization to new warehouse environments. 3) Same-Object examines segmentation perfor-
mance on tightly packed instances of identical objects.

We evaluate performance using mean-average-precision at Intersection-over-Union (IoU)
thresholds of 0.5 (mAP50) and 0.75 (mAP75) across all subsets, as presented in Table 8.1. Our
RoboLLM framework significantly outperforms a ResNet-50 baseline across all tasks: 1) On the
Mixed-Object-tote, RoboLLM achieves 82% and 67% for mAP50 and mAP75, marking a 10%
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and 6% improvement over ResNet-50. 2) The performance for RoboLLM on the Zoomed-out-

tote is much better than it of ResNet-50, demonstrating superior generalization capabilities. 3)
Same-Object poses the most difficult segmentation challenge, yet BEiT-3 still improves mAP50
by 4% over ResNet-50.

Furthermore, high variation in object instances between containers is common. To investi-
gate model robustness under varying numbers of objects within an image, we report mAP50 in
Mixed-Object-tote for different numbers of object instances (Figure 8.5). While both RoboLLM
and ResNet-50 perform similarly at fewer than five instances (approximately 95% mAP), per-
formance for ResNet-50 degrades significantly (to 38%) when the number of instances exceeds
26. In contrast, RoboLLM demonstrates a modest decline, maintaining 75% mAP for instances
exceeding 26. This evidences that RoboLLM is robust for segmenting a large number of objects
within an image.

Object Identification The object identification necessitates categorizing segmented objects
to facilitate robotic planning for subsequent maneuvers. We use Recall@k as the evaluation
metric, and the resultant performances are reported in Table 8.2. Using the pre-trained BEiT-3-
Base model as a strong baseline, we observe an uplift in recall@1 performance from 77.2% to
83.7%, outperforming the best previously reported result using DINO-ViT-S [161]. Employing
our RoboLLM framework, recall@1 is further improved to 97.8% and 98.0% when using only
pre-pick images and both pre/post-pick images, respectively. This is a 21% increase over the
best prior result [161], effectively solving ARMBench’s object identification task.

Performance Under More Challenging Conditions We posit that this superlative perfor-
mance could partially be credited to the specific challenge design, which restricts reference
images to objects known to be present in the container. To evaluate RoboLLM in a more gener-
alized scenario, we expand the set of reference images to include all unique objects within the
dataset (190k+). As shown on the bottom line of Table 8.2, even under this more demanding set-
ting, RoboLLM maintains an impressive 89.1% at recall@3. This robust performance suggests
that our framework can adeptly handle even more complex, large-scale retrieval problems than
those posed by the ARMBench challenge. We also find that our framework benefits from in-
cluding additional query images in this challenging setting. This corroborates our design choice
to aggregate multiple query images into a single representation for retrieval, thereby enhancing
the model’s robustness and versatility.

Defect Detection The practical deployment of automated defect detection in commercial ware-
house settings presents substantial challenges, given the high demand of the performance. To
contextualize, the ARMBench challenge outlines ideal performance criteria, requiring a recall
rate exceeding 0.95 and an FPR below 0.01. Our results for precision, recall, and FPR are re-
ported in Table 8.3. Our experiments demonstrate significant performance enhancements over
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Task Multi-Pick Package Defect Combined

Model Precision Recall FPR Precision Recall FPR Precision Recall FPR

ResNet50 * - 0.34 0.05 - 0.73 0.05 - 0.57 0.05
RoboMLLM-B 0.84 0.98 0.04 0.94 0.91 0.04 0.90 0.94 0.03
RoboMLLM-L 0.82 1.00 0.04 0.89 0.95 0.03 0.86 0.97 0.03

Table 8.3: Metrics for defect detection tasks with RoboMLLM B and L backbones. * denotes
[161] results. Combined metrics in right column. ARMBench ideal performance: recall > 0.95,
FPR < 0.01.

a ResNet-50 baseline. Specifically, our RoboLLM with BEiT-Base achieves a combined recall
rate of 94% across both types of defect detection, marking a 37% improvement over the base-
line. Additionally, the combined FPR is reduced from 0.05 to 0.03. Despite these significant
improvements, the system does not entirely meet the high recall and FPR criteria set forth by
the ARMBench challenge.

To meet the desired performance set by ARMBench challenges, we conduct further experi-
ments with a more powerful and larger model, BEiT-3 Large. Benefiting from our versatile yet
robust framework, it is easy to adopt more powerful backbones as needed. Our results show that
this model attains a combined recall rate of 97%, surpassing the desired recall target. However,
the FPR remains at 0.03, indicating room for future enhancements in effectiveness. Overall, our
RoboLLM framework shows significant improvements over existing methods, while a gap in
the FPR warrants further investigation in future work.

8.4 Limitations of RoboLLM

Although RoboLLM demonstrates significant advancements in multimodal large language
models for robotic tasks, it has notable limitations that warrant discussion. One major challenge
lies in its domain-specific generalization capabilities. RoboLLM performs exceptionally well in
tasks for which it has been trained or fine-tuned, such as ARMBench benchmarks. However,
its ability to generalize to entirely new and diverse robotic domains or unforeseen scenarios
remains constrained. This limitation stems from the lack of comprehensive coverage of niche
or emerging robotic applications in its pre-training data, coupled with the model’s reliance on
its training distribution, which often results in performance degradation when faced with novel
environments.

Real-time performance also presents significant obstacles for RoboLLM, particularly in the
context of real-world robotic systems where latency and computational efficiency are critical.
Due to its large-scale architecture, RoboLLM suffers from higher inference times, which can im-
pede real-time decision-making. Additionally, its dependence on high-performance hardware,
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such as GPUs or TPUs, poses challenges for deployment on resource-constrained robotic plat-
forms. Experimental results show that RoboLLM incurs an inference latency of approximately
7.3 milliseconds per image when tested on an Nvidia RTX 3060, underscoring its reliance on
advanced computational infrastructure.

Another limitation arises from the cost associated with RoboLLM’s development and de-
ployment. The fine-tuning of such a large model requires substantial computational resources,
which may be prohibitive for smaller organizations or academic institutions. Furthermore, the
maintenance of RoboLLM, including updates and adaptations to accommodate new robotic sys-
tems or tasks, contributes to ongoing operational expenses.

The model’s heavy dependence on the quality and diversity of its pre-training data also
affects its robustness. Biases or gaps in the training dataset can result in blind spots in the
model’s reasoning, making it less effective in domains that are underrepresented in its training
data. This dependence limits RoboLLM’s adaptability, particularly for tasks outside its pre-
defined training scope.

Addressing these limitations requires targeted research efforts. Optimizing model architec-
tures could significantly reduce latency and computational demands, making RoboLLM more
suitable for real-time applications. Additionally, improving interpretability and debugging tools
for large language models in robotics would enhance their usability and reliability. By address-
ing these challenges, RoboLLM could achieve greater applicability and become a more versatile
tool across a wider range of robotic domains.

8.5 Conclusions

In this chapter, we addressed research question 3 proposed in Section 4.3 within the context of
robotic vision. We introduced RoboLLM, based on our proposed MCA framework, a highly
efficient and effective framework designed to improve performance by enhancing intra-modal
alignment, as claimed in our thesis statement (see Section 1.2). RoboLLM aims to establish
a unified robotic vision pipeline that reduces engineering efforts, utilizing our proposed MCA
framework as backbone encoders. We evaluated our framework on three distinct visual per-
ception tasks: object segmentation, object identification, and defect detection, using the newly
released Amazon ARMBench dataset [161], which is representative of large-scale real-world
robotic vision problems.

Our results demonstrate that RoboLLM significantly outperforms previous benchmarks across
all three challenges. Specifically, RoboLLM benefits from inherent knowledge gained from pre-
training on large-scale multimodal data, requiring only a minimal task-specific head for each
task. This approach not only significantly increases performance but also mitigates the engi-
neering challenges associated with task-specific designs.

Notably, evidence of increased intra-modal alignment is observed through higher cosine
similarity scores for images of the same class, indicating that contrastive learning has effectively
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enhanced embedding quality. Furthermore, we observed improved performance metrics, such as
higher recall rates, which underscore the robustness and accuracy of the RoboLLM framework.
All of this evidence supports our thesis statement in Section 1.2 by validating our hypothesis that
improved alignment and integration of multimodal data lead to superior performance in robotic
vision tasks.

The modular design of RoboLLM facilitates the incorporation of powerful backbones and
task-specific modules, allowing for further performance enhancements as needed. Due to its
versatility and effectiveness, RoboLLM serves as a highly practical and general solution to real-
world robotic vision problems, demonstrating the applicability and success of our proposed
multimodal learning framework, MCA, discussed in Chapter 4.
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Chapter 9

The Applications of Proposed Multimodal
Framework in Cross-modal Retrieval

9.1 Introduction

In this chapter, we aim to optimize our proposed multimodal learning framework, MCA, for
cross-modal retrieval tasks by addressing the intra-modal and inter-modal alignment issues out-
lined in the thesis statement (see Section 1.2). We anticipate improvements in performance
metrics such as accuracy and F1 score, thereby demonstrating the effectiveness of our MCA
framework.

Text-to-image retrieval aims to locate relevant images in a database given a text query, which
has a wide range of use-cases such as digital libraries [107], e-commerce [260], and multimedia
databases [90, 273]. Consequently, there is a growing interest in developing effective models for
this task. Current state-of-the-art methods predominantly employ Multimodal Large Language
Models (MLLMs) such as BEiT-3 [252] and BLIP [124]. These models generate embeddings for
both visual and textual inputs, mapping them into a shared space. The mapping function is usu-
ally designed to be injective, facilitating a one-to-one correspondence between an instance and
its point in the embedding space. Fine-tuning these MLLMs on smaller image-caption datasets
such as MSCOCO [133] and Flickr30K [274] enables the models to achieve high accuracy in
text-to-image retrieval tasks.

However, MLLMs-based methods face limitations particularly in the context of real-world
use-cases that involve large-scale, diverse, and ambiguous data such as that illustrated in Figure
9.1 and Figure 9.2. First, MLLMs-based methods often ignore efficiency concerns. Their model-
based similarity inference methods [84] are computationally demanding, requiring encoding be-
tween each query vector and image embedding when ranking. This can result in a computation
time of up to 22 hours for a single inference for a large test set [266], limiting their utility in
large-scale retrieval applications despite their high accuracy. Second, real-world use-cases of-
ten involve complex queries and images with multiple objects [221, 223, 266]. This contrasts
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sharply with the comprehensive but short captions found in datasets such as MSCOCO [133]
and Flickr30K [274]. The nature of this complexity undermines the effectiveness of injective
embeddings, which attempt to map diverse meanings/senses to a single point in shared space,
which could be an inaccurate weighted geometric mean of all the desirable points [221]. This
is particularly problematic in long-text query to image retrieval tasks, where accumulated ambi-
guities significantly hinder the performance of Multimodal Large Language Models (MLLMs)
[266]. Third, injective embeddings struggle with partial text-to-image associations [221]. In
a long query, only a subset of sentences may relate to specific regions or aspects of an image,
while the rest discuss unrelated subjects. Additionally, a single sentence may describe just a
particular region of an image rather than its entirety.

To address these challenges and based on the framework we proposed in Chapter 4, this
chapter presents a novel two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework,
jointly optimizing effectiveness and efficiency in Section 9.2. The CFIR framework is designed
based on the proposed multimodal learning framework, MCA (Chapter 4). The first stage is
entity-based Ranking (ER) and the ER result is used to construct a shared entity-based image
candidates index, as described in Section 9.2.2. ER is designed to be computationally cheap,
using pre-computed image embeddings from a cache. By replacing the entire document with
a representation comprising its entities as the query, we transform the retrieval task from one
query to one target, to multiple queries to multiple targets, accommodating the ambiguity in-
herent in long documents and images. This transformation makes ER well-suited for use-cases
demanding relevance but not exact matching, such as multimedia content creation [44], where
a diverse array of images is beneficial for illustrative purposes. Furthermore, ER can be used
to filter out the majority of irrelevant candidates prior to the re-ranking stage, thereby reducing
the overhead from the more powerful encoder used in the re-ranking stage. The second stage is
Summary-based Re-ranking (SR), as shown in Section 9.2.3. By summarizing long documents
as queries and using entity-based image candidates from the pre-computed shared index, SR fur-
ther mitigates ambiguity, making the framework robust against partial text-to-image associations
and reducing encoding time. The main contributions of this work are as follows:

1. We introduce the two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework to
address the effectiveness and efficiency challenges of state-of-the-art MLLM-based ap-
proaches in real-world scenarios. The framework includes Entity-based Ranking (ER)
and Summary-based Ranking (SR) stages. This supports our thesis statement by demon-
strating how structured methodologies can enhance multimodal learning performance and
efficiency.

2. The Entity-based Ranking (ER) stage innovates beyond the prevalent one-to-one retrieval
paradigm in MLLM-based methods by employing a multiple-queries-to-multiple-targets
approach. This enhances ambiguity handling and improves performance by efficiently fil-
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'page_title': 'Space Jam’, 'section_title': 'Live-action',
‘context_page_description’: “Space Jam is a 1996 American live-action/animated sports
comedy film directed by Joe Pytka, with animation sequences directed by Bruce W. Smith and
Tony Cervone[1], and written by Leo Benvenuti, Steve Rudnick, Timothy Harris and Herschel
Weingrod. The film stars basketball player Michael Jordan[2] as a fictional version of himself;
Wayne Knight and Theresa Randle appear in supporting roles, while Billy West, Dee Bradley
Baker, Kath Soucie, and Danny DeVito headline the voice cast. The film is a fictionalized
account of the timeline ... Arsenio Hall[3] ….. Beau Walker [4]",
'context_section_description': "Some of the film's live-action cast play fictional versions of
themselves:\n Michael Jordan as himself Brandon Hammond as Michael Jordan (10 years
old)\n Wayne Knight as Stan Podolak, a publicist and assistant who aids Jordan\n Theresa
Randle as Juanita Jordan, Jordan's wife\n Bill Murray as himself; …"

A Lengthy Document Query from AToMic Multi-faceted Corresponding 
Matching Images

Caption1: Young basketball players run down the court in a game of basketball .
Caption2: The young boys are playing a game of basketball .

Short Captions Query from MSCOCO Exact 
Matching 

Image

[1]

[2]

[3] [4]

Figure 9.1: Comparison of examples from AToMiC and MSCOCO datasets.

tering candidates for re-ranking, aligning with our thesis hypothesis that improved align-
ment and integration can boost performance.

3. Our Summary-based Re-ranking (SR) stage utilizes summarized queries, enabling the ap-
plication of more computationally-intensive models to refine the candidate set generated
by ER. This step supports our thesis statement by showing how effective resource utiliza-
tion can enhance the overall efficiency of multimodal learning frameworks.

4. We introduce a novel Decoupling-BEiT-3 encoder optimized for both ER and SR stages, as
detailed in Section 9.2.1. This encoder employs a decoupled encoding design for vector-
based distance computation, enhancing both training and retrieval efficiency. The use of an
entity-based image candidate index and a pre-computed image embedding cache, based
on a frozen vision encoder, significantly improves large-scale application performance.
This innovation supports our hypothesis by demonstrating the effectiveness of optimized
model designs in improving multimodal learning outcomes.

5. CFIR is evaluated on the AToMiC dataset, showing an 11.06% improvement in Recall@1000
and reducing computational times by 68.75% and 99.79% in training and retrieval, respec-
tively, as detailed in Section 9.4. These results validate our thesis statement by providing
empirical evidence that our proposed framework enhances both performance and effi-
ciency in real-world applications.

6. The original material in this section has been accepted for presentation at the 2024 Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
a Core ranking A* conference with an h5-index of 103.
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Figure 9.2: The left is a plot of the average text tokens between MSCOCO short sentences,
AToMiC long documents and their summaries and the right is the number of training and testing
images of MSCOCO and AToMiC.
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Figure 9.3: The overall architecture of the proposed CFIR for large-scale document-to-image
retrieval.

9.2 CFIR: Fast and Effective Document-To-Image Retrieval
for Large Corpora

To systematically address the challenges inherent in Multimodal Large Language Models (MLLMs)
for Large-Scale Long-Text to Image Retrieval (LLIR), we propose a two-stage coarse-to-fine
index-shared retrieval (CFIR) framework, as shown in Figure 9.3. The pseudocode for the
corresponding training algorithm is shown in Figure 9.4. Moreover, the pseudocode for the
corresponding retrieval algorithm (during testing) is shown in Figure 9.5. CFIR is subdivided
into two core stages: Entity-based Ranking (ER) and Summary-based Re-ranking (SR). We also
introduce a novel Decoupling-BEiT-3 encoder optimized for both ER and SR stages.

138



9.2. CFIR: Fast and Effective Document-To-Image Retrieval for Large Corpora

Require: Long-text set D , Image set I , A pre-trained version of our proposed decoupling-
BEiT-3 model, Text-entity extractor spaCy, Text-summary generator BART large model
[119].

Ensure: Entity-based image ranking index Eindex, Image embedding index Vindex.
// Stage 0: Pre-computing image embedding index.

1: for for each image in I do do
2: Encode the image using our proposed D-BEiT-3 model with image expert to generate

embedding vi;
3: Vindex.append(vi→index);
4: end for

// Stage 1: Entity-based Ranking (ER).
5: for each long-text query in D do
6: Extract entities {e1, . . . ,eN} of i-index long-text query by spaCy;
7: Encode e j using our proposed D-BEiT-3 model with text encoder to generate embedding

t j;
8: Build a similarity score list S;
9: for for each image embedding in V do do

10: Compute the similarity (dot-product) between t j and the selected image embedding;
Sindex.append(t j→index);

11: end for
12: Choose Top-K from S to build Ei→index = list([I1, . . . , IK]);
13: end for

// Stage 2: Summary-Based Re-ranking (SR).
14: for each-index long-text query in D do
15: Extract the entities from i-index long-text query by spaCy;
16: Obtain the corresponding pre-stored Top-K image ranking index from Eindex based on

the extracted entities;
17: Filter & Union repeated candidates ranking index form a candidate set;
18: Obtain the corresponding image embedding set Vcandidates from Vindex;
19: Summary the i-index long-text query by the BART large model;
20: Encode the summary by using our proposed D-BEiT-3 with text expert as qindex;
21: Compute the similarities (dot-product) between the query embedding qindex and coarse-

grained image embedding set Vcandidates;
22: return image ranking.
23: end for

Figure 9.4: CFIR Training Procedure
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Require: long-text query q, A pre-trained version of our proposed decoupling-BEiT-3 model,
Text-entity extractor spaCy, Text-summary generator BART large model [119]. Entity-
based image ranking index Eindex, Image embedding index Vindex.
// Summary-Based Re-ranking (SR).

1: Extract the entities from the long-text query q by spaCy;
2: Obtain the corresponding pre-stored Top-K image ranking index from Eindex based on the

extracted entities;
3: Filter & Union repeated candidates ranking index form a candidate set;
4: Obtain the corresponding image embedding set qcandidates from Vindex;
5: Summary the long-text query q by the BART large model;
6: Encode the summary by using our proposed D-BEiT-3 with text expert as qencoded;
7: Compute the similarities (dot-product) between the query embedding qencoded and image

embedding set qcandidates;
8: return image ranking.

Figure 9.5: CFIR Retrieval (testing) Procedure
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Figure 9.6: The demonstration of differences between the original architecture of BEiT-3 model
and our Decoupling-BEiT-3.

9.2.1 The Proposed Decoupling-BEiT-3

The BEiT-3 model is originally constructed as a MultiWay Transformer design [252]. As de-
picted on the left side of Figure 9.6, the MultiWay Transformer block in BEiT-3 features shared
self-attention modules and a pool of feed-forward networks (i.e., modality experts) tailored for
different modalities.

To better fit the LLIR task, in this section, we propose a decoupling-BEiT-3 (D-BEiT-3)
as the MLLM encoder in our CFIR. Our D-BEiT-3 architecture removes the Vision-Language
(VL) expert, as shown on the right side of Figure 9.6. This design is motivated by three primary
considerations. First and most importantly, without the VL expert, we decouple the encoding
of visual and text input and transition from model-based similarity inference to vector-based

140



9.2. CFIR: Fast and Effective Document-To-Image Retrieval for Large Corpora

distance computation, which is significantly faster. We also index the image vector to further re-
duce computational cost during both training and testing. Specifically, if we were to use the VL
expert in the original BEiT-3 model, it would be necessary in the inference stage to exhaustively
pair the query with each database item and then feed these pairs into the BEiT-3 model to pre-
dict matching scores. Second, although BEiT-3’s design is effective for accurate instance-level
alignment between text and images, it is optimized for image descriptions (captions) that are
both precise and comprehensive. This specialization is at odds with the multi-faceted (ambigu-
ous), long documents found in the AToMiC dataset, which often describe multiple images and
objects. This inherent ambiguity causes the model to underperform, as identified in [266]. By
eliminating the vision-language expert, our architecture better suits the less stringent semantic
alignment requirements of the LLIR task. Third, our streamlined architecture results in a 30.4%
reduction in model parameters compared to the original BEiT-3 model, significantly enhancing
both training and inference efficiency.

9.2.2 Entity-based Ranking (ER)

The Entity-based Ranking (ER) stage serves two primary functions. First, it generates a Top-K
ranking of images for each unique named entity extracted from long-text queries, thereby mit-
igating ambiguity and partial associations. This is achieved through a shift from a one-to-one
to a multiple-queries-to-multiple-targets retrieval paradigm. Second, ER effectively prunes ir-
relevant image candidates, paving the way for the subsequent re-ranking. To facilitate this and
improve efficiency, we construct an entity-based candidate index that maps each entity to its
likely corresponding images, based on the Top-K ranking obtained from the ER stage. Repeated
entities across different query documents can be swiftly retrieved from the index, reducing com-
putational costs. Consequently, in the training phase, we construct an entity-based candidate
index encompassing all ranking results for entities present in the training samples. If an un-
known entity (not included in the training samples) appears during retrieval, it is disregarded.
This approach has a negligible impact on performance, given the extensive dataset of over 11
million training samples. Additionally, it significantly boosts efficiency by obviating the neces-
sity to recompute any Entity Retrieval (ER) stage for new entities during test retrieval. This
approach allows for the computation of the entity-based ranking to be performed only once,
during the training phase. Furthermore, if there is a need to augment system performance by
incorporating additional unknown entities into the entity-based candidate index, this can be ef-
ficiently achieved offline. This entails appending the ranking results to the index at a later time,
rather than conducting this process online during retrieval, which has no impact on the retrieval
efficiency.

To accomplish this, as shown in Figure 9.3, we first employ the advanced Natural Language
Processing (NLP) library, spaCy, to extract name entities from each long document. SpaCy’s ro-
bust entity extraction capabilities serve as an effective mechanism for generating entity queries.
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Subsequently, we use a pre-trained and frozen D-BEiT-3 to encode these entities, eliminating the
need for additional training and thereby enhancing computational efficiency. We then retrieve
the Top-K candidate images based on their similarity scores with each entity. These similarity
scores are calculated as the dot-product between each entity’s embedding and the embeddings of
the image candidates, which are retrieved from a pre-computed shared image embedding cache.

9.2.3 Summary-Based Re-ranking (SR)

To achieve precise image matching, we introduce the Summary-based Re-ranking (SR) stage,
tailored for LLIR. Contrary to the ER stage, SR focuses exclusively on precise image matching
of a document’s key information - document summary - to refine the ranking of previously
identified entity-based image candidates. Text summaries are generated using BART [119],
chosen for its ability to produce concise summaries that capture the document’s core semantics.
Notably, BART [119] supports a larger maximum input token count of 1024, accommodating
the average token number of 419 in AToMiC queries, compared to BERT’s [46] 512-token limit.
The summary effectively mitigates the semantic ambiguity and partial association problems in
long document query, thus improving the retrieval effect.

During training, only the language expert component of our D-BEiT-3 is fine-tuned, leaving
the remaining modules frozen. This approach facilitates the construction of a pre-computed
shared image embedding cache, striking an optimized balance between training efficiency and
retrieval efficacy. The entire training process is optimized by a symmetric cross-entropy loss
over the similarity scores between the text representation and image representations.

In inference, we utilize pre-computed image embeddings from a shared cache, negating the
need for recalculations in each training epoch. Candidate selection bypasses full-database re-
trieval, opting for a union subset comprising the top-K entity-queried candidates for each entity
in the query. The theoretical candidate set size should be N×Top-K, where N is the number of
entities in a query, a count significantly lower than that of the comprehensive image database.
For instance, with 10 entities and selecting the Top-10,000 results for each, we have an image
candidate pool of 100,000. This size is substantially smaller compared to the 4 million images
in the AToMiC base setting or the 11 million images in the larger setting. This strategy reduces
computational load and is made possible by the shared entity-based candidates index. More-
over, empirical observations indicate a substantial overlap—approximately 45.6%—between
candidate sets for distinct entities, resulting in an actual filtered set size substantially smaller
than N×Top-K. Consequently, it is only necessary to calculate the dot-product between the
embeddings of filtered image candidates and the summary query embeddings to establish the
final ranking. This approach eliminates the need for computations involving all images in the
database.
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9.3 Experimental Setup

We utilize the Base (H = 768) and Large model (H = 1024) of our streamlined version of BEiT-3
as our encoder in CFIR, denoted as CFIR-B and CFIR-L respectively, where H is the hidden size.
Additionally, we include comparisons with two state-of-the-art Multimodal Large Language
models: our proposed D-BEiT-3 and OpenCLIP [36]. OpenCLIP is an open-source variant of
OpenAI’s CLIP, specialized for multi-modal learning with text and images. It enables zero-shot
classification and cross-modal retrieval in a shared embedding space without requiring task-
specific fine-tuning.

We adhere to the experimental setup for BEiT-3 1, and fine-tune for the AToMiC dataset. For
OpenCLIP we include the results reported in [266]. We conduct training over 30 epochs. For
image data augmentation in training, we employ AutoAugment [41]. Throughout all fine-tuning
experiments, we choose the Adam optimizer with a learning rate set at 1×10−4, a weight decay
of 0.05, and a batch size of 512. We also integrate a dropout rate of 0.1.

Adhering to creator of AToMiC dataset [266] and to ensure a fair comparison, we assess
the performance of all methods using established metrics: recall at 1000 (R@1000) and mean
reciprocal rank at 10 (MRR@10). Additionally, we report both training and retrieval times to
evaluate model efficiency.

9.4 Experiments

This section aims to evaluate the efficacy and efficiency of our proposed CFIR framework in
addressing the challenges outlined in Section 2.11.2. Our evaluation encompasses both the base
and large settings of the AToMiC dataset, as discussed in Section 2.11.2. Specifically, we answer
the following research questions.

• RQ1: What is the Benefit and Cost of Freezing the Image Encoder?

• RQ2: How does CFIR perform compared to state-of-the-art approaches?

• RQ3: How does the CFIR model demonstrate scalability in the context of the larger and
more challenging AToMiC Large Setting?

9.4.1 What is the Benefit and Cost of Freezing the Image Encoder? (RQ1)

In this section, we evaluate the computational and performance trade-offs of freezing the image
encoder by comparing its performance with that of whole-model fine-tuning. The comparison
focuses on two models: OpenCLIP and D-BEiT-3, as detailed in upper block of Table 9.1 for

1https://github.com/microsoft/unilm/tree/master/beit3
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Table 9.1: Comparisons of experimental results on AToMiC base setting for large-scale
document-to-image retrieval. VE and LE indicate the vision encoder and language encoder
with (t) or without (`) fine-tuning. # P (M) indicates trainable parameters of the multi-modal
encoders. T-t (Hour/epoch) means the training time and R-t (millisecond/query) means the re-
trieval time for each query. For OpenCLIP runs, - indicates the metric was not reported in [266].

Method VE LE # P T-t
AToMiC Base Setting

R-t MRR@10 R@1000
OpenCLIP-B t t 197 - - 0.043 44.68

D-BEiT-3-B (proposed model) t t 155 16 1640.7 0.048 50.65
OpenCLIP-L t t 645 - - 0.065 54.84

D-BEiT-3-L (proposed model) t t 490 76 2257.5 0.085 57.39
OpenCLIP-B ` t 110 - - 0.037 39.66

D-BEiT-3-B (proposed model) ` t 87 8 363.6 0.042 43.28
CFIR-B (proposed framework) ` t 87 5 4.2 0.052 50.72

OpenCLIP-L ` t 340 - - 0.063 50.13
D-BEiT-3-L (proposed model) ` t 305 53 425.1 0.065 51.36

CFIR-L (proposed framework) ` t 305 45 4.7 0.081 55.68

Table 9.2: Comparisons of experimental results on large setting for large-scale document-to-
image retrieval.

Method VE LE # P T-t
AToMiC Large Setting

R-t MRR@10 R@1000
D-BEiT-3-B (proposed model) t t 155 16 6016.3 0.019 37.11
D-BEiT-3-L (proposed model) t t 490 76 8140.2 0.038 43.37
D-BEiT-3-B (proposed model) ` t 87 8 1349.1 0.015 36.16

CFIR-B (proposed framework) ` t 87 5 364.1 0.021 38.07
D-BEiT-3-L (proposed model) ` t 305 53 1458.5 0.026 39.36

CFIR-L (proposed framework) ` t 305 45 364.6 0.030 42.51
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AToMiC base setting and Table 9.2 for AToMiC large setting. The primary motivation for freez-
ing the image encoder lies in the creation of an image embedding cache, which substantially
mitigates computational overhead on encoding images during both training and retrieval phases.

In the AToMiC base setting, when compared to the fully fine-tuned OpenCLIP large model
(OpenCLIP-L-Full), D-BEiT-3 large model with frozen image encoder (D-BEiT-3-L-Frozen)
demonstrates a modest drop of 3.48% in Recall@1000, making the performance loss acceptable
given that OpenCLIP-L was the previous state-of-the-art model. Moreover, D-BEiT-3-L-Frozen
experiences a decrease in performance, with a 6.03% drop in Recall@1000 and a 0.02 reduction
in MRR@10, compared to its whole-model fine-tuned version (D-BEiT-3-L-Full). However, D-
BEiT-3-L-Frozen is fine-tuned with only 56% of the parameters and achieves a 30% reduction in
training time compared to the OpenCLIP-L-Full. Furthermore, the implementation of an image
embedding cache leads to a substantial reduction in retrieval time. The query time decreases by
81% for D-BEiT-3-L (from 2257.5 ms to 425.1 ms) and by 77.8% for D-BEiT-3 base model (D-
BEiT-3-B) (from 1640.7 ms to 363.6 ms) when transitioning from fully D-BEiT-3-L/B-Full to
D-BEiT-3-L/B-Frozen. This leads to a considerable reduction in training time. For instance, D-
BEiT-3-L-Frozen shows a decrease of 23 hours per epoch compared to D-BEiT-3-L-Full, while
D-BEiT-3-B-Frozen exhibits an 8-hour reduction per epoch relative to D-BEiT-3-B-Full. This is
particularly significant as model testing forms an integral part of the training process. Employing
a whole-model fine-tuning approach would necessitate approximately 2280 hours (around 95
days) to train the model over 30 epochs on a single GPU. Such a duration is impractical in
typical academic experimental environments.

As for the more challenging scenario, AToMiC Large setting which has 11 millions long-text
and 11 millions images, D-BEiT-3-L-Frozen demonstrates remarkable efficiency. As for another
important aspect in evaluating the efficiency, the retrieval latency, D-BEiT-3-L-Frozen and D-
BEiT-3-B-Frozen needs just 17.9% and 22.4% of the retrieval time required by D-BEiT-3-L-
Full and D-BEiT-3-B-Full. This significant reduction in retrieval time underscores the enhanced
scalability and aptness of these models for large-scale applications.

In summary, we construct an shared image embedding cache and a shared entity-based image
ranking index to markedly enhance training and retrieval efficiency, predicated on the freezing
of the image encoder. While there is a performance trade-off, the gains in efficiency render
the model highly deployable and make it possible for large-scale text-to-image tasks within an
academic budget. This result answers our proposed research question 1 that what is the benefit
and cost of freezing the image encoder. Consequently, we choose to build our CFIR framework
on this premise.
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9.4.2 How does CFIR perform compared to state-of-the-art approaches?
(RQ2)

This section investigates the improved performance facilitated by CFIR under AToMiC base
setting by comparing it with OpenCLIP and the D-BEiT-3 model, mainly in text-only fine-tuning
settings, because it is a fair comparison to CFIR. We also compare CFIR with whole-model fine-
tuned approaches to demonstrate the performance trade-off.

In the text-only fine-tuning setting, experimental results are illustrated in the bottom block
of Table 9.1. For effectiveness, we observe that CFIR outperforms the previous state-of-the-art
models OpenCLIP-Frozen and our proposed D-BEiT-3-Frozen under the AToMiC base across
all metrics. Notably, CFIR is more effective with smaller encoder sizes. For instance, CFIR-B
outperforms OpenCLIP-B-Frozen, achieving a 0.015 higher score in MRR@10 and an 11.06%
better result in R@1000. Similarly, CFIR-L surpasses OpenCLIP-L-Frozen with a 0.018 in-
crease in MRR@10 and a 5.55% improvement in R@1000. When compared to D-BEiT-3-
B-Frozen, CFIR-B shows a 0.01 improvement in MRR@10 and a significant 7.44% gain in
R@1000. Against D-BEiT-3-L-Frozen, CFIR-L leads in both metrics, showing a 0.016 higher
score in MRR@10 and a 4.32% advance in R@1000.

In terms of efficiency, compared to prior state-of-the-art MLLM-based methods [36, 252],
our approach incurs additional computational time and storage for constructing the entity-based
image candidate index and the shared image embedding cache. Specifically, the largest variant
of CFIR (CFIR-L) requires an extra 71 GB of storage space and 34 hours of preparation time,
which involves building the entity-based image candidate index and the shared image embed-
ding cache. For context, BEiT-3-L requires 2280 hours for a 30-epoch training cycle, the extra
34 hours for CFIR-L’s setup is quite minimal which only about 0.14% of the total time BEiT-3-
L needs for training. Furthermore, the integration of an index and cache markedly reduces the
training duration for CFIR-L. It only requires 45 hours per epoch, culminating in a total of 930
hours for 30 epochs. Owing to the Decoupling-BEiT-3 architectural efficiency and vector-based
distance computation, which involves an entity-based image candidates index for filtering and
image embedding cache, CFIR significantly streamlines the retrieval process. In the AToMiC
base setting, CFIR-B has managed to reduce the retrieval time significantly, from 363.6 mil-
liseconds to mere 4.2 milliseconds, when compared to D-BEiT-3-B-Frozen. For CFIR-L, the
reduction in retrieval time is even more remarkable, the time required for CFIR-L to retrieve
images is only about 1.1% of the time taken by D-BEiT-3-L-Frozen.

When comparing to full-model fine-tuning approaches, our CFIR still outperforms the previ-
ous state-of-the-art model OpenCLIP-Full. CFIR-B gains a 6.04% improvement on Recall@1000
compared to OpenCLIP-B-Full. When compared with the robust whole-model fine-tuned D-
BEiT-3-Full, CFIR-B not only slightly surpasses BEiT-3-B-Full in performance but does so
with only 56.12% of its parameters, consequently reducing training time by 68.7%. In terms of
large models, CFIR-L sustains competitive retrieval performance in comparison to D-BEiT-3-L-
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Table 9.3: Ablation studies on AToMic base setting. T-t means training time (Hour/epoch) and
R-t means retrieval time (millisecond/query).

Method Cache Index Entity Summary Doc MRR@10 R@1000 T-t R-t

CFIP-L

- - - - ✓ 0.065 51.36 53 425.1
✓ ✓ ✓ - - 0.006 13.15 0 0
- - - ✓ - 0.069 53.91 45 425.1
✓ ✓ ✓ - ✓ 0.075 54.61 53 13.0
✓ ✓ ✓ ✓ - 0.081 55.68 45 4.7

Full, albeit with a minor decline in Recall@1000, while achieving a 40.7% reduction in training
time due to the substantial reduction in the length of each document summary. When set against
full-model fine-tuning methods, CFIR-B exhibits higher gains in Recall@1000 and compared to
D-BEiT-3-B-Full, with 0.07% increase in Recall@1000 in the AToMiC base setting. Similarly,
the Recall@1000 performance gap between CFIR-L and D-BEiT-3-L-Full narrows to 1.71%.
This result underscores CFIR’s better scalability as the candidate set size increases.

To summarize, under AToMiC base setting, CFIR outperforms state-of-the-art models Open-
CLIP and D-BEiT-3 in both effectiveness and efficiency in text-only fine-tuning settings. While
it incurs modest additional costs, the efficiency gains in training and retrieval time are signifi-
cant. Even when compared to whole-model fine-tuning approaches, CFIR maintains a compet-
itive performance while requiring fewer parameters and significantly less training and retrieval
time, thereby proving its viability for large-scale applications. This result answers our proposed
research question 2 that how does CFIR perform compared to state-of-the-art approaches.

9.4.3 CFIR scalability in AToMiC Large Setting (RQ3)

In addition to exploring CFIR’s performance in the AToMiC base setting, this section extends
the analysis to the more demanding AToMiC large Setting that has three times more images
and long-text compare to AToMiC base setting. Here, we also investigates CFIR’s enhanced
capabilities by comparing it with the D-BEiT-3 model in two scenarios: text-only fine-tuning
and whole-model fine-tuning. Combining with our result in AToMiC base setting, we provide
a comprehensive comparison between our proposed CFIR framework and previous state-of-the-
art methods, and we aim to show CFIR’s adaptability and robust performance across diverse
fine-tuning scenarios.

The experimental results in the text-only fine-tuning setting, as detailed in the bottom block
of Table 9.2, reveal that our proposed CFIR surpasses D-BEiT-3-Frozen in the AToMiC large
setting across all evaluated metrics. In particular, CFIR-B shows a notable increase of 0.006
and 1.91% in MRR@10 and R@1000, respectively, when compared to D-BEiT-3-B-Frozen.
Similarly, CFIR-L demonstrates a significant lead with improvements of 0.004 and 3.15% in
MRR@10 and R@1000, respectively, over D-BEiT-3-L-Frozen. Furthermore, this level of effi-
ciency is consistently observed in the more demanding AToMiC large setting, paralleling results
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‘context_page_description’: ‘The Tribute in Light is an art installation created in remembrance of the 
September 11 attacks. It consists of 88 vertical searchlights arranged in two columns of light to 
represent the Twin Towers. It stands six blocks south of the World Trade Center on top of the Battery 
Parking Garage in New York City. Tribute in Light began as a temporary commemoration of the attacks 
in early 2002, but it became an annual event, currently produced on September 11 by the Municipal 
Art Society of New York. The Tribute in Light was conceived by artists John Bennett, Gustavo 
Bonevardi, Richard Nash Gould, Julian LaVerdiere, and …

Tribute in Light is an art installation created in 
remembrance of the September 11 attacks. It 
consists of 88 vertical searchlights arranged in two 
columns of light to represent the Twin Towers. It 
stands six blocks south of the World Trade Center on 
top of the Battery Parking Garage in New York City.

‘'Annual events in 
New York City’:

‘One World Trade 
Center’

‘Tribute in Light’:

‘Searchlights’

Long Document Query (398 tokens) 

… …

…

……

Object Entities 
(80 tokens)

Short Summary Query (56 tokens) 

Coarse-grained entity-queried ranking from CER Fine-grained summary-queried re-ranking from FSR

…

Figure 9.7: An example of our CFIR for long-text image retrieval.

Table 9.4: The performance impact of varying Top-K in Entity-based Ranking.

Method Top-K Retrieval-time MRR@10 R@1000

CFIP-L

Top-1000 1.5 ms/query 0.033 38.32
Top-5000 2.9 ms/query 0.051 50.18

Top-10000 4.7 ms/query 0.081 55.68
Top-15000 28.8 ms/query 0.079 55.35

from the AToMiC base setting. In terms of retrieval time, CFIR-B manages to cut down the
retrieval time by 985 milliseconds per query compared to D-BEiT-3-B-Frozen. These reduc-
tions underscore the effectiveness of CFIR in optimizing the retrieval latency. When set against
full-model fine-tuning methods, CFIR-B exhibits higher gains in Recall@1000 and MRR@10
compared to D-BEiT-3-B-Full, with a 0.96%. Similarly, the Recall@1000 performance gap be-
tween CFIR-L and D-BEiT-3-L-Full narrows to 0.86%. This result underscores CFIR’s better
scalability as the candidate set size increases.

In conclusion, within the challenging AToMiC large setting, CFIR demonstrates significantly
improvement performance over D-BEiT-3 in terms efficiency in both text-only and whole-model
fine-tuning scenarios. These findings underscore CFIR’s robust capabilities in enhancing re-
trieval processes, scaling effective and maintain its power in larger datasets.

9.5 Analysis

This section comprehensively evaluates our CFIR framework through three focused analyses.
We dissect CFIR’s main components in an ablation study, explore Top-K effects, and offer a
qualitative analysis of the model’s practical utility.
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9.5.1 Ablation Study of CFIR

In this section, we examine the contributions of the Entity-based Ranking (ER) and Summary-
based Re-ranking (SR) stages in CFIR, alongside the CFIR-L variant’s use of a pre-computed
shared index and image embedding cache. We benchmark against state-of-the-art MLLM-based
approaches (Row 1, Table 9.3). Using only the SR stage (Row 3, Table 9.3) leads to a significant
improvement of 2.55% on R@1000 and reduces training time from 53 to 45 hours per epoch.
This indicates that concise summaries enhance both retrieval and training efficiency by reducing
document ambiguity.

A comparative analysis (Rows 1 and 4, Table 9.3) shows that integrating ER, a pre-computed
shared index, and image embedding cache results in improved retrieval effectiveness. This in-
tegration yields an improvement of 0.01 in MRR@10 and 3.25% in R@1000, and reduces the
retrieval time from 425.1 millisecond to 13 millisecond per query. The completed CFIR-L model
(Row 5, Table 9.3) surpasses all other configurations in both effectiveness and efficiency, requir-
ing significantly less training and retrieval time. Specifically, it cuts down the training time
from 53 to 45 hours per epoch and the retrieval time from 425.1 millisecond to 4.7 millisec-
ond per query, while achieving a 0.016 increase in MRR@10 and a 4.32% increase in R@1000
compared to MLLM-based approaches (Row 1, Table 9.3).

In summary, the ER and SR stages in CFIR contribute to both efficient image retrieval and
improved performance metrics. Incorporating a pre-computed shared index and image embed-
ding cache further reduces retrieval and training time dramatically.

9.5.2 Performance Impact of Varying Top-K in Entity-based Ranking

In this section, we examine the performance implications of varying the value of Top-K in the
Entity-based Ranking (ER) Stage, as detailed in Table 9.4. Our observations indicate that as the
value of k increases, the re-ranking effectiveness of SR initially experiences a significant boost,
only to decrease slightly afterward. Specifically, there is an increase of 0.048 on MRR@10 and
17.36% on R@1000 when Top-K increases from 1000 to 10000. However, this is followed by a
slight decrease, from 0.081 to 0.079 in MRR@10 and from 55.68% to 55.35% in R@1000. This
phenomenon can be attributed to the increased likelihood of identifying images that are relevant
to the query document. However, this also results in the inclusion of additional ’interference’
candidates—images that are semantically similar but not identical matches, thereby slightly
diminishing effectiveness. Concurrently, the retrieval time shows an upward trend as candidate
numbers increase.

To strike a balance between retrieval effectiveness and efficiency, we choose the image can-
didates for each entity at 10,000 for the SR stage. This configuration necessitates a mere 4.7
millisecond per query in the AToMiC base setting; specifically, it yields scores of 0.081 on
MRR@10, and 55.68% on R@1000.

149



9.6. Conclusions

9.5.3 Qualitative Evaluation of CFIR

Figure 9.7 showcases the practical outcomes of applying our CFIR framework within the AToMiC
base setting. The figure presents a comprehensive view of the retrieval process, starting with the
original long document, which consists of 398 tokens, and proceeding through the crucial stages
of entity extraction and summarization. From the long text, 80 entities are extracted, highlight-
ing the essential elements that facilitate the subsequent retrieval tasks. Furthermore, a brief
summary of 56 tokens is generated, shorten the document into a concise query. Additionally, it
presents the ranked image results yielded by both the ER and SR stages of our framework.

Due to spatial constraints in A4 size, we limit our visualization to four randomly selected
entities and their associated top-ranked images, as generated by the first ER stage. This choice
in visualization serves to underscore ER’s efficacy in not only retrieving a set of relevant images
based on individual entities but also in effectively filtering out irrelevant images from a large-
scale collection. For instance, the entities "Tribute in Light" and "Annual events in New York
City" yield numerous relevant image candidates, including the target image. This approach
thereby paves the way for the subsequent SR stage to focus on finding the exact matching image
of key document information. As a result, CFIR not only enhances the retrieval accuracy but
also speeds up the searching process, ensuring that the most contextually relevant images are
brought to the forefront for final selection.

9.6 Conclusions

In this chapter, we address research question 3 proposed in Section 4.3 within the context of
cross-modal retrieval. We apply and optimize our proposed multimodal learning framework for
cross-modal retrieval tasks. Specifically, we tackle the challenges associated with Large-Scale
Long-Text to Image Retrieval (LLIR) by introducing a novel two-stage Coarse-to-Fine Index-
Shared Retrieval (CFIR) framework, following the philosophy of deepening intra-modal and
inter-modal alignment as stated in our thesis statement (see Section 1.2). Additionally, CFIR
is designed to mitigate ambiguity in long documents while optimizing retrieval efficiency by
utilizing the efficient transfer learning methods we developed in Chapter 6.

The CFIR framework is modular, comprising two principal stages: Entity-based Ranking
(ER) and Summary-based Re-ranking (SR). These stages employ our proposed encoding model,
decoupling-BEiT-3, which enables vector-based distance similarity inference and the use of a
pre-computed, shared entity-based candidate index and image embedding cache. This signifi-
cantly improves training and retrieval efficiency.

Our experimental results demonstrate that CFIR outperforms existing state-of-the-art meth-
ods in the AToMiC LLIR task, as confirmed by both quantitative and qualitative evaluations. The
evidence of increased inter-modality alignment, seen through higher cosine similarity scores be-
tween images and text for the same semantics, indicates the effectiveness of our contrastive
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learning approach. Additionally, the improved performance metrics, such as higher recall rates,
showcase the robustness and accuracy of our framework. This comprehensive evaluation sup-
ports our thesis statement in Section 1.2, validating our hypothesis that enhanced alignment and
integration within multimodal learning frameworks lead to superior performance and efficiency
in real-world applications.

These findings have practical implications for various applications that require efficient and
effective large-scale image retrieval from long documents. They also confirm the applicability
and success of our proposed multimodal learning framework discussed in Chapter 4.
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Chapter 10

Conclusions and Future Work

10.1 Contributions and Conclusions

This thesis explores methods to improve the effectiveness and efficiency of multimodal learning,
proposing a novel framework, MCA, to integrate these approaches. Specifically, we introduce
three key components: the Mixture-of-Modality-Experts (MoME), Contrastive Learning Tech-
niques, and Adapter Methods, each offering distinct advantages. The core of our framework
features the MoME component, which enhances computational efficiency and facilitates deeper
modality integration through shared transformer block parameters. Contrastive learning meth-
ods improve fusion and alignment, enabling better generalization across data types. Adapter-
based transfer learning techniques address the practical challenges of efficiently using large
models. Through extensive experiments, we have gained insights into the potential and scope
of each framework component, demonstrating enhancements in several applications, including
crisis response, image-text retrieval, and robotics. The remainder of this section discusses the
contributions and conclusions of this thesis in greater detail.

10.1.1 Contributions

In this thesis, we proved that enhancing shallow inter-modal and intra-modal alignment in exist-
ing multimodal approaches can improve performance across different tasks by enabling deeper
alignment. To address this, we propose a novel multimodal learning framework named MCA,
comprising three pivotal components proposed in this thesis—Mixture-of-Modality-Experts (MoME),
Contrastive Learning Techniques, and Adapter Methods—will enhance both inter-modal and
intra-modal alignment, leading to significantly improved effectiveness and efficiency of multi-
modal models across a range of tasks. The core of our framework comprises the MoME compo-
nent, which leverages shared transformer block parameters to enhance computational efficiency
and facilitate deeper modality integration, contrastive learning methods to improve fusion and
alignment for better generalization across data types, and adapter-based transfer learning tech-
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niques to address the practical challenges of using large models efficiently. Our framework
MCA outperforms state-of-the-art models, such as LXMERT and VisualBert, in vision-language
benchmarks including Visual Question Answering (VQA) and Natural Language for Visual Rea-
soning (NLVR). Beyond standard benchmarks, our MCA framework undergos extensive testing
in real-world applications, focusing on three key downstream tasks: crisis response, image-
text retrieval, and robotics. We observe that our enhanced multimodal learning framework will
consistently solve real-world problems and exhibit superior performance in effectiveness and
efficiency across these diverse domains.

In essence, the main contributions of this thesis are as follows:

• In Chapter 4, we propose a novel multimodal learning framework named MCA, com-
prising three pivotal components proposed in this thesis—Mixture-of-Modality-Experts
(MoME), Contrastive Learning Techniques, and Adapter Methods. These components
enhance both inter-modal and intra-modal alignment, leading to significantly improved
effectiveness and efficiency of multimodal models across a range of tasks, thereby sup-
porting our thesis statement.

• In Chapter 5, we introduced three methods utilizing contrastive learning to address Re-
search Question 1: How do contrastive learning methods impact modality alignment?
These methods enhance the generalization and transferability of Vision Transformers,
aiming to produce high-quality visual embeddings and improve inter-modal alignment
from various perspectives. In Section 5.2, we present LaCViT , a label-aware contrastive
fine-tuning framework that significantly improves the Top-1 accuracy of vision transform-
ers across multiple benchmarks. LaCViT offers a versatile and comprehensive strategy
that greatly enhances the efficacy of transformers for image classification. Our thorough
empirical evaluations confirm LaCViT’s effectiveness and position it as a viable alterna-
tive to the traditional cross-entropy method for fine-tuning pre-trained image classifica-
tion models. In Section 5.3, we introduce CLCE, a method that integrates label-aware
contrastive learning with hard negative mining and cross-entropy (CE) to overcome the
limitations of CE and existing contrastive learning techniques. Our empirical data show
that CLCE surpasses both traditional CE and earlier contrastive learning methods in both
few-shot and transfer learning contexts. Importantly, CLCE is particularly suitable for
researchers and developers with access to only commodity GPU hardware, as it achieves
effective performance with smaller batch sizes that fit on less powerful GPUs. In Section
5.4, we explore how human labeling errors affect supervised contrastive learning (SCL)
differently than they do traditional supervised learning. In response, we develop a new
SCL objective, SCL-RHE, which is resistant to real human labeling errors. Our empir-
ical findings indicate that SCL-RHE consistently outperforms traditional cross-entropy
approaches, previous SCL objectives, and noise-correcting methods tailored for synthetic
noise, in both initial training and transfer learning scenarios. SCL-RHE also stands out for
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its efficiency—it does not require additional training overhead, unlike methods designed
to correct synthetic label noise (shown in Chapter 5).

• In Chapter 6, we introduce the MultiWay-Adapter (MWA) to address Research Question
2: How do parameter-efficient methods improve the efficiency of multimodal learning
frameworks? MWA is an effective framework designed for the efficient adaptation of
Multimodal Large Language Models (MLLM) to downstream tasks. Addressing the issue
of shallow inter-modal alignment in existing methods, MWA employs a dual-component
approach, utilizing both the New Knowledge Extractor and the Alignment Enhancer. This
strategy enables MWA to not only extract novel information from downstream datasets
but also to secure deep inter-modal alignment, as shown in Chapter 6.

• In Chapter 7, we address Research Question 3: How does our proposed multimodal learn-
ing framework perform in real-world scenarios? This is explored within the context of
crisis response. We investigate multimodal data (vision and language) in Section 7.2, ex-
amining the importance of integrating multiple modalities for crisis content categorization.
Evaluations with the CrisisMMD dataset show effective automatic labeling, achieving an
average of 88.31% F1 performance across two significant tasks (relevance and human-
itarian category classification). Our analysis of success and failure cases confirms that
deepening intra-modal and inter-modal alignment improves performance in categorizing
crisis content on social media. These findings support our thesis statement by demonstrat-
ing the practical effectiveness of our proposed multimodal learning framework.

• In Chapter 8, we address Research Question 3: How does our proposed multimodal learn-
ing framework perform in real-world scenarios? This is explored within the context of
robotic vision. We introduce RoboLLM, based on our MCA framework in Chapter 4,
optimized to establish a unified robotic vision pipeline using BEiT-3 as a Multi-Modal
Large Language Model backbone encoder. We evaluate our framework on three distinct
visual perception tasks: object segmentation, object identification, and defect detection,
using the Amazon ARMBench dataset [161]. Our results show that RoboLLM signifi-
cantly outperforms previous benchmarks across all three challenges. RoboLLM achieves
this with inherent knowledge from pretraining on large-scale multimodal data and mini-
mal task-specific heads for each task, significantly increasing performance and mitigating
engineering challenges. The modular design of RoboLLM facilitates the incorporation
of powerful backbones and task-specific modules, enhancing future performance if re-
quired. This versatility and effectiveness demonstrate the applicability and success of our
proposed multimodal learning framework, supporting our thesis statement.

• In Chapter 9, we address Research Question 3: How does our proposed multimodal learn-
ing framework perform in real-world scenarios? This is explored within the context of
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cross-modal retrieval. We apply and optimize our proposed multimodal learning frame-
work for the task of cross-modal retrieval. Specifically, we introduce a novel, two-stage
Coarse-to-Fine Index-Shared Retrieval (CFIR) framework to address the challenges as-
sociated with Large-Scale Long-Text to Image Retrieval (LLIR). CFIR mitigates ambi-
guity in long documents while optimizing retrieval effectiveness and efficiency through
Entity-based Ranking (ER) and Summary-based Re-ranking (SR) stages. Our proposed
encoding model, Decoupling-BEiT-3, enhances training and retrieval efficiency through
vector-based distance similarity inference and a pre-computed entity-based image candi-
date index and embedding cache. Experimental results demonstrate that CFIR outper-
forms existing state-of-the-art methods in the AToMiC LLIR task, showing an 11.06%
improvement in Recall@1000 and reducing training and retrieval times by 68.75% and
99.79%, respectively. These findings validate the practical implications of our multimodal
learning framework, supporting our thesis statement.

10.1.2 Thesis Conclusions

This section discusses the achievements and conclusions of this thesis, addressing the core hy-
pothesis and validating the thesis statement.

Enhancing Inter-Modal and Intra-Modal Alignment through Contrastive Learning Meth-
ods Our experimental results in Chapter 5 confirm that our proposed contrastive learning meth-
ods significantly enhance the generalization and transferability of Vision Transformers. These
methods result in high-quality visual embeddings and improved inter-modal alignment, demon-
strated by better separation in the embedding space. This directly supports our thesis statement
by showing that better alignment within multimodal frameworks leads to superior performance.

Efficiency Improvement with the Multi-Way Adapter Our empirical findings in Chapter 6
reveal that adding a mere 2.58% in extra parameters does not result in any statistically signif-
icant decline in performance across all tested settings, while reducing fine-tuning time by up
to 57%. This efficiency improvement paves the way for future studies on efficient multimodal
fine-tuning methods and holds potential for extension into other vision-language tasks. This
supports our thesis statement by demonstrating that our framework enhances both effectiveness
and efficiency.

Wide Applicability and Enhanced Performance of the Proposed Multimodal Learning
Framework in Real-World Scenarios Our evaluations from Chapter 7 to Chapter 9 demon-
strated that the framework improves performance across diverse applications, including crisis
response, robotic vision, cross-modal retrieval. This versatility and robustness prove the wide
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applicability of our proposed multimodal learning framework, further validating our thesis state-
ment by showing that the enhanced alignment and integration within multimodal data signifi-
cantly improve real-world application performance.

10.2 Directions for Future Work

While this thesis has made significant advancements in the field of multimodal learning, several
avenues for future research remain open. The following are some promising directions that
could further enhance the capabilities and applications of multimodal learning systems:

10.2.1 Advanced Fusion Techniques

Future research can explore more sophisticated methods for fusing multimodal data. Techniques
such as dynamic and hierarchical fusion, attention mechanisms, and graph-based models could
provide deeper integration and more nuanced interactions between modalities, leading to im-
proved performance.

10.2.2 Scalable and Efficient Architectures

As neural networks continue to grow in size and complexity, developing scalable and efficient
architectures will become increasingly important. Future work can focus on creating models
that balance performance with computational efficiency, enabling the deployment of multimodal
learning systems in resource-constrained environments. Techniques such as model compression,
quantization, and efficient transformer designs could play a crucial role in this area.

10.2.3 Transfer Learning and Domain Adaptation

Transfer learning and domain adaptation are essential for applying multimodal models to new
tasks and domains with limited labeled data. Future research can investigate ways to improve the
transferability of multimodal models and reduce the need for extensive fine-tuning. Approaches
such as zero-shot and few-shot learning, meta-learning, and unsupervised domain adaptation
could be explored to enhance model generalization across diverse applications.

10.2.4 Robustness and Interpretability

Ensuring the robustness and interpretability of multimodal models is critical for their adoption
in real-world applications. Future studies can focus on developing techniques to make these
models more resilient to noise, adversarial attacks, and missing data. Additionally, improving
the interpretability of multimodal models can help users understand how different modalities
contribute to the final predictions, fostering trust and transparency.
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10.2.5 Real-Time and Interactive Applications

Real-time and interactive applications of multimodal learning, such as augmented reality (AR),
virtual reality (VR), and human-computer interaction (HCI), present unique challenges and op-
portunities. Research can explore how to optimize multimodal models for low-latency process-
ing and seamless integration with interactive systems. Innovations in this area could lead to
more immersive and responsive user experiences.

10.2.6 Ethical and Fair AI

As multimodal learning systems become more pervasive, it is crucial to address ethical and
fairness concerns. Future research should focus on developing methods to ensure that these
systems are unbiased, equitable, and respect user privacy. This includes creating algorithms
that can detect and mitigate biases in multimodal data, as well as establishing guidelines for the
ethical deployment of multimodal AI technologies.

10.2.7 Benchmarking and Standardization

The development of standardized benchmarks and evaluation protocols is essential for compar-
ing the performance of different multimodal models. Future efforts should focus on creating
comprehensive and diverse benchmark datasets that reflect real-world scenarios. Standardiza-
tion in evaluation metrics and protocols can facilitate fair comparisons and drive progress in the
field.

10.3 Closing Remarks

In this thesis, we have thoroughly explored enhancing shallow inter-modal and intra-modal
alignment in existing multimodal approaches to improve performance across different tasks. We
developed and applied a novel multimodal learning framework named MCA, comprising three
pivotal components: Mixture-of-Modality-Experts (MoME), Contrastive Learning Techniques,
and Adapter Methods. Our key findings include significant improvements in both effective-
ness and efficiency of multimodal models across a range of tasks, thereby validating our thesis
statement.

The significance of this research lies in its potential to revolutionize the field of multimodal
learning. By addressing shallow alignment issues, we demonstrated that deeper alignment leads
to superior performance, as evidenced by our results in vision-language benchmarks and evalu-
ated downstream tasks. Furthermore, our framework outperformed state-of-the-art models like
LXMERT and VisualBert, showcasing its robustness and versatility.
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Future research directions include further optimization of the MoME component to enhance
computational efficiency, as well as the exploration of novel contrastive learning techniques to
improve alignment further. Additionally, extending our adapter methods to more varied and
complex downstream tasks could yield even greater performance gains. By building on our
findings, future work can refine these methods and potentially lead to new breakthroughs in
multimodal learning.

Reflecting on this journey, the process of integrating and building upon prior works from
many areas to tackle new tasks and design sound experiments has been both challenging and
rewarding. The insights gained during this research have been invaluable and have significantly
shaped the direction and outcomes of this thesis.

In conclusion, this thesis has made significant contributions to the field of multimodal learn-
ing by enhancing intra-modal and inter-modal alignment, improving computational efficiency,
and validating the proposed MCA framework in real-world applications. We observe multiple
pieces of evidence for improved intra-modal and inter-modal alignment, along with enhanced
performance across various metrics in all four evaluated domains, indicating that our thesis state-
ment holds. These advancements pave the way for future research and development in creating
more effective and efficient multimodal systems.
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[188] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn image retrieval with
no human annotation. IEEE transactions on pattern analysis and machine intelligence,
41(7):1655–1668, 2018.

[189] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, and Jack Clark. Learning
transferable visual models from natural language supervision. In International conference

on machine learning, pages 8748–8763. PMLR.

[190] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Saurabh Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. In Proceedings of the

International Conference on Machine Learning (ICML), 2021.

[191] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. 2018.

[192] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

176



Bibliography

[193] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D Lane, Cecilia Mascolo,
Mahesh K Marina, and Fahim Kawsar. Multimodal deep learning for activity and context
recognition. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous

technologies, 1(4):1–27, 2018.

[194] Abigail Rai and Samarjeet Borah. Study of various methods for tokenization. In Appli-

cations of Internet of Things: Proceedings of ICCCIOT 2020, pages 193–200. Springer.

[195] Aqsa Rasheed, Bushra Zafar, Amina Rasheed, Nouman Ali, Muhammad Sajid, Saa-
dat Hanif Dar, Usman Habib, Tehmina Shehryar, and Muhammad Tariq Mahmood. Fabric
defect detection using computer vision techniques: a comprehensive review. Mathemati-

cal Problems in Engineering, 2020:1–24, 2020.

[196] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
International conference on learning representations.

[197] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual
domains with residual adapters. Advances in neural information processing systems, 30,
2017.

[198] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788.

[199] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B
Tenenbaum, Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised
few-shot classification. arXiv preprint arXiv:1803.00676, 2018.

[200] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight ex-
amples for robust deep learning. In International conference on machine learning, pages
4334–4343. PMLR.

[201] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information

processing systems, 28, 2015.

[202] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618,
2012.

[203] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. A mathematical
theory of communication. arXiv preprint arXiv:2010.04592, 2020.

177



Bibliography

[204] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and Michael Bernstein. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115:211–
252, 2015.

[205] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[206] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 815–823.

[207] Claude Elwood Shannon. A mathematical theory of communication. The Bell system

technical journal, 27(3):379–423, 1948.

[208] Jie Shao, Zhicheng Zhao, and Fei Su. Two-stage deep learning for supervised cross-modal
retrieval. Multimedia Tools and Applications, 78:16615–16631, 2019.

[209] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn
features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, pages 806–813.

[210] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions:
A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Pro-

ceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2556–2565.

[211] Shivam Sharma and Cody Buntain. Improving classification of crisis-related social media
content via text augmentation and image analysis. In TREC.

[212] Himanshu Shekhar and Shankar Setty. Disaster analysis through tweets. In 2015 In-

ternational Conference on Advances in Computing, Communications and Informatics

(ICACCI), pages 1719–1723. IEEE.

[213] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object
detectors with online hard example mining. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 761–769.

[214] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[215] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

178



Bibliography

[216] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech
Galuba, Marcus Rohrbach, and Douwe Kiela. Flava: A foundational language and vi-
sion alignment model. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 15638–15650.

[217] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Ad-

vances in neural information processing systems, 29, 2016.

[218] Chull Hwan Song, Jooyoung Yoon, Shunghyun Choi, and Yannis Avrithis. Boosting vi-
sion transformers for image retrieval. In Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, pages 107–117.

[219] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning
from noisy labels with deep neural networks: A survey. IEEE Transactions on Neural

Networks and Learning Systems, 2022.

[220] Shezheng Song, Xiaopeng Li, Shasha Li, Shan Zhao, Jie Yu, Jun Ma, Xiaoguang Mao,
and Weimin Zhang. How to bridge the gap between modalities: A comprehensive survey
on multimodal large language model. arXiv preprint arXiv:2311.07594, 2023.

[221] Yale Song and Mohammad Soleymani. Polysemous visual-semantic embedding for cross-
modal retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 1979–1988.

[222] Zhao Song, Ke Yang, Naiyang Guan, Junjie Zhu, Peng Qiao, and Qingyong Hu. Vppt:
Visual pre-trained prompt tuning framework for few-shot image classification. In ICASSP

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1–5. IEEE.

[223] Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork.
Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning.
In Proceedings of the 44th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 2443–2449.

[224] Kevin Stowe, Michael Paul, Martha Palmer, Leysia Palen, and Kenneth M Anderson.
Identifying and categorizing disaster-related tweets. In Proceedings of The fourth inter-

national workshop on natural language processing for social media, pages 1–6.

[225] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai.
Vl-bert: Pre-training of generic visual-linguistic representations. arXiv preprint

arXiv:1908.08530, 2019.

179



Bibliography

[226] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. Stochastic class-based
hard example mining for deep metric learning. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages 7251–7259.

[227] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A
corpus for reasoning about natural language grounded in photographs. arXiv preprint

arXiv:1811.00491, 2018.

[228] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer
learning for vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5227–5237.

[229] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2818–2826.

[230] Domen Tabernik, Samo Šela, Jure Skvarč, and Danijel Skočaj. Segmentation-based deep-
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