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Abstract

In 1929, Edwin Hubble’s discovery of the relationship between galaxy distances and their
recession velocities unveiled the universe’s expansion, laying the foundation for modern
cosmology and the task to measure the Hubble constant, H0. In 1986, Bernard F. Schutz
proposed using gravitational waves from compact binary mergers, such as neutron stars
and black holes, as a novel method to estimate H0. This innovative approach marked the
beginning of a new era in cosmological research, significantly advanced by the advent of
gravitational wave detection through the Laser Interferometer Gravitational Wave Ob-
servatory (LIGO). The field has since evolved, employing advanced Bayesian techniques
and extensive galaxy catalogues to improve the precision of H0 measurements. However,
as the sensitivity of detectors increases and the rate of gravitational wave observations
grows, computational challenges—particularly in hierarchical Bayesian analysis—pose sig-
nificant hurdles due to the intensive and time-consuming nature of traditional methods.
In response to these challenges, this thesis, under the supervision of Dr. Christopher
Messenger and Prof. Martin Hendry, explores the integration of machine learning into
cosmological research, specifically focusing on a novel approach called CosmoFlow to ex-
tract cosmological information from gravitational waves. CosmoFlow uses Normalising
Flows, machine learning models capable of efficiently estimating probability distribution
functions of complex datasets, providing a faster and and potentially advantageous ap-
proach to hierarchical Bayesian inference of the Hubble constant. Our work demonstrates
how CosmoFlow can significantly accelerate the process compared to existing methodolo-
gies. Throughout this thesis, we rigorously compare the results of CosmoFlow with those
obtained using gwcosmo, a well-established tool in gravitational wave cosmology. By con-
trasting CosmoFlow with gwcosmo results, we highlight the strengths and limitations of
each method, emphasising the potential of machine learning to address existing computa-
tional bottlenecks in cosmological analyses. This comparative study aims to contribute to
the ongoing efforts to resolve the current 4.4σ tension between different H0 measurement
techniques, paving the way for more efficient and accurate future analyses in this rapidly
evolving field.
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. Introduction

Chapter 1

Introduction

1.1 The Universe is Expanding

As astronomers began to examine the light spectra of galaxies, they observed that the
absorption lines of specific elements were displaced from expected positions. This dis-
placement results from the Doppler effect, a phenomenon where the frequency of light or
sound emitted by a source changes in relation to an observer’s relative velocity. When
the source approaches the observer, the wavefronts of the emission compress, leading to
a blueshift in electromagnetic (EM) observations. Conversely, as the source recedes, the
wavefronts extend, causing a redshift. The magnitude of this shift for an absorption line
is quantified as:

z =
λObs −λTrue

λTrue
. (1.1)

Here, λTrue is the true rest frame wavelength and λObs is the observed wavelength. A
negative value of z indicates a blueshift (source approaching), while a positive z signifies
a redshift (source receding). Given that the emission is EM, the velocity of the source is
related to the redshift by the relativistic Doppler equation:

z =

√
1+ v

c
1− v

c
−1, (1.2)

where v represents the velocity of the emitter, and c is the speed of light, approximately
3×108 ms−1. This formula accounts for relativistic effects [1].
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In the early 20th century, significant advancements were made in understanding the scale
of the universe. Between 1908 and 1912, Henrietta Leavitt, an American astronomer, made
a groundbreaking discovery involving a class of stars known as Cepheid Variables. Leavitt
observed that these stars exhibited a consistent relationship between their brightness and
the period of their variation in brightness. Specifically, she found that the longer the period
of a Cepheid star’s pulsation, the brighter it was. This discovery provided astronomers
with a powerful tool: by measuring the period of a Cepheid Variable, one could determine
its intrinsic luminosity. Once the luminosity was known, the distance to the star could
be calculated by comparing its intrinsic luminosity to its observed brightness, making
Cepheid Variables “standard candles” for measuring astronomical distances [2].

This method of distance measurement laid the groundwork for significant astronomical
discoveries. In 1929, American astronomer Edwin Hubble expanded on these ideas by
studying the relationship between the distances to galaxies and their redshifts [2]. Hubble’s
research revealed a linear relationship between the distance to a galaxy and its recessional
velocity, which is related to the redshift through the relativistic Doppler formula, described
in Eq.(1.1). Essentially, the farther away a galaxy is, the faster it is moving away from us.
This observation led to the formulation of what is now known as Hubble’s Law, which not
only demonstrated the expansion of the universe but also provided a means to quantify
the expansion rate. At low redshifts, where z ≪ 1, the redshift-distance relation can be
approximated by the linear form of Hubble’s Law:

H0 ≈
cz
d
, (1.3)

where d denotes the distance to the galaxy, z is the redshift, and c is the speed of light.
This simple yet profound relationship has become a fundamental framework in cosmology,
allowing astronomers to estimate the expansion rate of the universe, known as the Hubble
constant (H0). Although initially underestimated, Hubble’s discovery provided the first
quantitative understanding of the universe’s expansion and paved the way for modern
cosmological studies.

In the context of a Friedmann-Lemaître-Robertson-Walker (FLRW) universe, which is the
foundation of modern cosmology, the expansion of the universe is more comprehensively
described by the Hubble-Lemaître parameter as a function of redshift z [1]:

H(z) = H0

√
Ωm(1+ z)3 +Ωk(1+ z)2 +ΩΛ, (1.4)
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1.1. The Universe is Expanding

Here, H0 is the Hubble constant, representing the rate of expansion in the current epoch.
The parameters Ωm, ΩΛ, and Ωk correspond to the dimensionless densities of different
components of the universe: Ωm includes both baryonic matter and dark matter, ΩΛ

represents dark energy density, often attributed to a cosmological constant responsible
for the universe’s accelerated expansion, and Ωk corresponds to the contribution from the
spatial curvature of the universe. Observations suggest that the universe is flat, implying
Ωk = 0 [3]. Consequently, the relationship between these components follows the constraint
Ωm+ΩΛ = 1, indicating that the combined contributions of matter and dark energy equal
the critical density, consistent with a flat universe geometry.

The expansion history of the universe translates into a “redshift-distance relation ”, as-
sociating the redshift z of observable sources with their luminosity distance DL(z). For a
flat universe, this relation is given by:

DL(z) =
c(1+ z)

H0

∫ z

0

dz′

H(z′)
(1.5)

where DL(z) is the luminosity distance, c is the speed of light, and H(z) is the Hubble
parameter at a given redshift. This relationship allows astronomers to measure cosmo-
logical parameters by comparing the observed redshift with the luminosity distance of
sources such as supernovae, variable stars, or GW events. By combining observations of z

and DL(z), one can estimate the cosmological parameters governing the universe’s expan-
sion. If the parameters Ωm, ΩΛ, and Ωk are known from independent observations (e.g.,
cosmic microwave background studies [4, 5]), this redshift-distance relation can be used
to measure H0 more precisely.

1.2 The Hubble Tension

Since Edwin Hubble’s discovery of the universe’s expansion, scientists have focused on
precisely measuring the expansion rate, known as the Hubble constant (H0), which is very
important for understanding the fate of our universe. Determining H0 helps to predict the
ultimate destiny of the universe, whether it will continue expanding forever, eventually
slow down, or collapse in a “big crunch” .Currently, there exists a significant tension in
the measured values of H0, approximately 4.4σ . The Planck experiment, which analyses
the Cosmic Microwave Background (CMB) from the early universe, estimates the Hubble
constant to be H0 = 67.4±0.5 km s−1Mpc−1 (1σ confidence interval) [4]. In contrast, the

- 3 -



1.2. The Hubble Tension

Figure 1.1: Measured values of the Hubble constant H0 from early and late universe
observations, illustrating the varying results from different experiments and analyses and
highlighting the current Hubble tension. Image credit [8].

SH0ES collaboration, which measures distances to Type Ia supernovae in the late universe,
reports H0 = 74.03± 1.42 km s−1Mpc−1 (1σ confidence interval) [6]. This discrepancy,
illustrated in Figure 1.1, suggests a potential inconsistency between early and late universe
measurements or may point to unknown systematic errors or even new physics [7].

The difference between early and late universe measurements is a fundamental aspect of
the Hubble tension. Early universe measurements, like those from the Planck satellite,
rely on the CMB, which provides a snapshot of the universe when it was only 380,000
years old [2]. These measurements depend on our understanding of the physics of the
early universe, including the composition of matter and energy. In contrast, late uni-
verse measurements, such as those from the SH0ES project, involve direct observations
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of supernovae in relatively nearby galaxies. These measurements are influenced by the
local universe’s expansion rate and require precise calibration of the distance ladder, a
method that connects different astronomical distance indicators. This tension between
early and late universe measurements raises questions about our current understanding of
cosmology. If the difference is not due to systematic errors, it could indicate new physics
beyond the standard cosmological model, such as a variation in dark energy over time or
the presence of an unknown component affecting the expansion rate [7]. Other methods
have also been used to measure H0. For instance, the Dark Energy Survey Year 1 (DES
Y1) [9], which combines clustering and weak lensing data with Baryon Acoustic Oscilla-
tions (BAO) and Big Bang Nucleosynthesis (BBN), has constrained the Hubble constant
to H0 = 67.2± 1.1 kms−1 Mpc−1 [10], aligning with early-universe measurements. Simil-
arly, observations of Mira Variables in the Type Ia Supernova Host NGC 1559 yield a
late-universe value of H0 = 73.6±4.0kms−1 Mpc−1 [11], consistent with the SH0ES res-
ult. Given the ongoing tension in the measurement of the Hubble constant, it is of key
importance to explore independent methods for resolving this discrepancy.

Gravitational wave (GW) events provide a promising and independent approach to meas-
uring H0 by using them as standard sirens [12]. GWs are ripples in spacetime caused by
the acceleration of massive objects, such as the mergers of black holes or neutron stars.
The concept of standard sirens was first proposed by Schutz in 1986 [12]. Similar to how
standard candles in astronomy use the known intrinsic luminosity of objects to determine
distance, standard sirens rely on the amplitude of GW signals. This amplitude directly
correlates with the energy released during events such as the mergers of neutron stars or
black holes, allowing for an independent estimation of distances and, consequently, the
Hubble constant. Standard sirens can be categorized into two types: bright sirens and
dark sirens. Bright sirens are GW events with an observed electromagnetic counterpart,
allowing a direct identification of the host galaxy. Dark sirens, on the other hand, are
events without an identified electromagnetic counterpart, where galaxy catalogues are
used statistically to infer the host galaxy [13].

By combining redshift data from EM galaxy catalogues with distance measurements de-
rived from GW events, one can estimate the Hubble constant using the relation given in
Eq. (1.3). Recently, the LIGO-Virgo-KAGRA (LVK) collaboration has made significant
progress in inferring the Hubble constant through two distinct methodologies: gwcosmo
[14] and IcaroGW [15]. Their primary publication [16] reports an estimated value of
H0 = 68+12

−6 km s−1 Mpc−1 (68% credible interval) when combining both dark siren and
bright siren events.
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In the next section, we will look at the mathematical framework of GW events, from
how they are generated in astrophysical events to how they are detected by observatories
like LIGO and Virgo. We will also see how these mathematical models help us extract
important cosmological parameters, including H0, from the observed GW signals. This
exploration will lay the groundwork for understanding how these events can play an
important role in modern cosmology and help address the ongoing challenges in the field.

1.3 Gravitational Waves

1.3.1 General Relativity and Gravitational Waves

In 1916, Albert Einstein published his groundbreaking work titled The Foundations of the
General Theory of Relativity [17], introducing a new framework for understanding gravity
that went beyond the limitations of Newtonian physics. Einstein’s theory showed that
massive objects cause spacetime to curve, and that energetic events can produce ripples,
known as gravitational waves (GWs), which propagate through the fabric of spacetime.
To study GWs, we begin with a fundamental concept from relativity: Minkowski space
[18]. This is a four-dimensional spacetime that combines three spatial dimensions and one
time dimension. It is the simplest model of spacetime, representing a flat, empty universe
where no gravitational effects are present. In General Relativity, however, spacetime is
typically curved by the presence of mass and energy. When studying GWs, we often
begin by approximating spacetime as nearly flat, similar to Minkowski space, and treat
any deviations from flatness as small perturbations. This approach allows us to analyze
GWs as minor disturbances on a flat background spacetime. In this approximation, the
metric tensor gµν is expressed as a perturbation hµν added to the flat Minkowski metric
ηµν :

gµν = ηµν +hµν (1.6)

where ηµν = diag(−1,1,1,1) and |hµν | ≪ 1 is a small perturbation, for all values of µ and
ν [18]. Then in a new coordinate system, the metric tensor takes the form of

g′µν =
∂xµ

∂x′µ

∂xν

∂x′ν
ηµν +

∂xµ

∂x′µ

∂xν

∂x′ν
hµν (1.7)
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1.3. Gravitational Waves

where the prime notation indicates the new coordinate system. In the assumption of a
nearly Lorentzian transformation, Eq.(1.7) holds true for any observer [18]. We can then
make a small change in the new coordinate system, as x′µ = xµ + ξ µ(xν), where ξ µ are
functions whose components depend on xν , with the approximation of the rate of change
being very small (i.e. ξ µ

,ν ≪ 1). Then, knowing that ∂x′µ
∂xν = δ µ

ν +ξ µ
,ν ,

∂xµ

∂x′γ
= δ µ

γ − ∂xν

∂x′γ
∂ξ µ

∂xν ≃ δ µ
γ −ξ µ

,γ , (1.8)

where higher-order terms were neglected. In Eq. (1.8), we have used the comma notation
indicating partial differentiation. Specifically, ξ µ

,γ represents the partial derivative of ξ µ

with respect to the coordinate xγ , i.e., ξ µ
,γ =

∂ξ µ

∂xγ . This notation is commonly used in general
relativity to simplify the representation of derivatives. The term δ µ

γ is the Kronecker delta,
which acts as an identity matrix in this context, ensuring that when µ = γ , the value is
1, and otherwise it is 0.

Then by substituting Eq.(1.8) into Eq.(1.7), and simplifying,

g′µν = ηµν +hµν −ξµ,ν −ξν ,µ , (1.9)

where we have defined ξγ = ηγβ ξ β , and the partial derivatives of ηµν are zero. From this
we see that in the new coordinate system, the perturbation term has the form h′µν =

hµν −ξµ,ν −ξν ,µ and still retains the assumption of a nearly flat spacetime. We can then
choose the ξ functions to simplify the problem as much as possible. This is called choosing
a gauge for the problem. Then, computing the fully covariant Riemann Christoffel tensor
[18], and considering the new metric tensor defined in Eq.(1.9), follows:

Rµνγδ =
1
2
(
hµδ ,νγ +hνγ ,µδ −hµγ ,νδ −hνδ ,µγ

)
. (1.10)

By further contracting Eq.(1.10), thus computing the Ricci tensor, and inserting this into
the definition of the Einstein tensor, defined as Gµν = Rµν − 1

2gµνR, where R is the Ricci
scalar (obtained by further contracting the Ricci tensor), follows:

Gµν =−1
2
(
h
,δ
µν ,δ +ηµνh

,δγ
δγ −h

,δ
µδ ,ν −h

,δ
νδ ,µ

)
, (1.11)

where for simplicity we have defined the term hµν ≡ hµν − 1
2ηµνh. After computing the

value Gµν in Eq.(1.11), and knowing that Gµν = 8πTµν [18] it follows that

h
,δ
µν ,δ +ηµνh

,δγ
δγ −h

,δ
µδ ,ν −h

,δ
νδ ,µ =−16πTµν , (1.12)
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where Tµν is the energy density tensor. Finally, by applying a Lorentz gauge (denoted by
LG) transformation, which just helps to simplify the problem in Eq.(1.12), of the form
h
(LG)
µν = h

old
µν −ξµ,ν −ξν ,µ with solution of the form h

µδ
,δ = 0, in free space (i.e. Tµν = 0),

h
,δ
µν ,δ = ηδδ ∂δ ∂δ hµν =□hµν = 0, (1.13)

where □= ηδδ ∂δ ∂δ is the d’Alembertian operator. Given the metric properties of ηµν in
flat spacetime and using natural units (c = 1), this becomes:(

∂ 2

∂ t2 −∇2
)

hµν = 0, (1.14)

where ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the Laplacian operator. The function shown in Eq.(1.14)
describes a wave, indicating that perturbations in spacetime propagate through space as
waves, or more specifically, as GWs, traveling at the speed of light. This is evident from
the velocity term in the wave equation, η00 =− 1

c2 . From this point forward, we will refer
to the term h as strain, which quantifies the relative change in length experienced by free
particles as a GW passes through them [18].

The GWs, like EM radiation, are polarised. They exhibit two fundamental polarisation
modes: the “plus ”(h+) and the “cross ”(h×) polarisations. These modes describe the
distinct ways in which space is stretched and compressed as the wave propagates and can
be expressed as a linear combination of the two as:

h = h+e++h×e×, (1.15)

where e+ and e× are the polarization tensors. Mathematically, the “plus” polarization
tensor, e+, and the “cross” polarization tensor, e×, are defined as follows in the plane
perpendicular to the direction of wave propagation (typically along the z-axis):

e+ =

(
1 0
0 −1

)
and e× =

(
0 1
1 0

)
,

where e+ describes the stretching along the x-axis and compression along the y-axis, and
e× describes the stretching and compression along axes that are rotated by 45 degrees
relative to the x and y axes. To explicitly demonstrate that e× is rotated by 45◦ relative
to e+, we apply a rotation matrix to e+. The 45◦ rotation matrix is given by:

R(45◦) =
1√
2

(
1 −1
1 1

)
,
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and its transpose is:

R(45◦)T =
1√
2

(
1 1
−1 1

)
.

To rotate e+ by 45◦, we compute:

e′+ = R(45◦)e+R(45◦)T ,

which results in:

e′+ =
1√
2

(
1 −1
1 1

)(
1 0
0 −1

)
1√
2

(
1 1
−1 1

)
=

(
0 1
1 0

)
= e×.

The resulting matrix is e×, which shows that applying a 45◦ rotation to the plus polariz-
ation matrix e+ results in the cross polarisation matrix e×.

To simplify the description of the polarised GW, we apply the Transverse-Traceless (TT)
gauge [13]. In this gauge, a GW propagating in the z direction has a particularly simple
form, where only the physical degrees of freedom, those associated with the “plus” and
“cross” polarisations, are retained. The metric perturbation in the TT gauge is given by

hµν(t,x,y,z) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

cos(ωt − kz). (1.16)

This representation shows how the h+ and h× polarisation modes manifest as distortions
in the xy-plane, while the wave propagates along the z-axis. The term cos(ωt −kz), where
ω is the angular frequency and k is the wave number in the z-direction, characterizes
the wave’s oscillatory behavior in both time (t) and space (z). In the framework of the
Transverse-Traceless (TT) gauge, the GW affects only the x and y directions, leaving
the z-axis unaffected. The traceless nature of this gauge ensures that the perturbation
induces a shearing motion without changing the overall volume of the affected region.
This results in pure deformation within the xy-plane, as depicted in Fig. 1.2, which shows
the oscillations of the h+ and h× polarization modes over a single cycle T .

The GW events are produced when massive objects undergo acceleration, but not just
any kind of acceleration results in detectable GW. For GWs to be emitted, the system
must have an asymmetry in its mass distribution. This is where the quadrupole moment
comes into play. The quadrupole moment is a measure of how mass is distributed across an
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Figure 1.2: Illustration of a GW polarizations oscillating over the course of one period,
T . Image credit [19].

object or a dynamical system in space. It is particularly important in systems like compact
binary objects, such as BBHs, NSBHs, or binary neutron stars (BNSs), where two massive
objects orbit each other. As these objects move, their mass distribution changes, which
generates GWs [18].

The quadrupole moment, Qµν , of a system is a tensor that represents deviations from
spherical symmetry in the mass distribution. It is defined as:

QTT
µν =

∫
d3xρ

(
xµxν −

1
3

δµνr2
)
, (1.17)

where ρ is the mass density, xµ and xν are spatial coordinates, and δµν is the Kronecker
delta. In GW emission, the lowest-order contribution comes from changes in the quad-
rupole moment of the system. Monopole contributions, representing the overall mass, do
not vary in time and therefore cannot generate GWs. Dipole contributions correspond to
the center of mass, which follows a geodesic and does not radiate. Thus, the quadrupole
moment provides the dominant and lowest-order contribution that leads to GW emission,
making the quadrupole approximation an effective tool for describing these waves [18].
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Using the quadrupole approximation [18], the GW amplitude hµν can be expressed as:

hµν =
2G
rc4 Q̈TT

µν

(
t − r

c

)
, (1.18)

where G is the gravitational constant, c is the speed of light, r is the distance to the
observer, and Q̈TT

µν is the second time derivative of the quadrupole moment. For simplicity,
the amplitude of the GW, h, can be described as:

h ∝
1
r

Q̈, (1.19)

where Q̈ represents the second time derivative of the quadrupole moment. This rela-
tionship indicates that the more rapidly the mass distribution changes, the stronger the
emitted GW signal becomes. In compact binary coalescences (CBCs), such as when two
black holes or neutron stars merge, the GW polarizations are directly related to the evol-
ution of the system’s quadrupole moment. During the inspiral and merger phases, rapid
changes in the mass distribution amplify the gravitational radiation, which we detect as
GWs.

In the case of CBCs, where two compact objects merge, the polarisation modes of the
GW are tied to the changes in the system’s quadrupole moment over time. In this ap-
proximation, the two linear polarisations of the GW can be quantified as

h+(t)≡
2Mz

DL

(
1+ cos2(ι)

)
(πMz f )

2
3 cos(Φ+Ψ), (1.20)

h×(t)≡
4Mz

DL
cos(ι)(πMz f )

2
3 sin(Φ+Ψ), (1.21)

where h×(t) and h+(t) represent the “cross” and “plus” polarisations of the GW strain
at time t. The term Mz represents the redshifted chirp mass of the source, defined as the
reduced mass between the two masses, m1 and m2, as

Mz = (1+ z)

(
(m1m2)

3/5

(m1 +m2)1/5

)
, (1.22)

where z is the redshift. The term DL is the luminosity distance to the source, ι represents
the inclination angle defined as the angle between the line of sight and the orbital angular
momentum vector (for a non-spinning system), f is the frequency of the GW, Φ is the
intrinsic phase of the GW related to the orbit of the system, and the Ψ is the polarisation
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Figure 1.3: Diagram of a Michelson interferometer with 4-kilometer-long Fabry-Perot
cavities in each arm. A laser beam is split into two perpendicular paths, traveling down
orthogonal arms with mirrors at both ends. The Fabry-Perot cavities increase the effective
path length, enhancing sensitivity to GWs. The reflected beams recombine at the beam
splitter, creating an interference pattern, which allows the measurement of small changes
in arm-length caused by passing GWs. Image credit [22]

angle [20, 21]. Eq.(1.20) and Eq.(1.21) are of fundamental importance, as they give us a
more concrete quantification of the strain terms, and they tell us the strain of GWs is
inversely proportional to the luminosity distance and linearly proportional to the chirp
mass (the closer and more massive the source is, the higher the relative strain).

1.3.2 Detecting Gravitational Waves

Understanding the nature of GWs has led scientists to explore how these phenomena may
be observed by detectors. As a GW passes through space, it causes tiny oscillations in the
relative distances between objects. These relative length changes can be measured using
a Michelson Interferometer. The instrument has two perpendicular arms through which
light travels back and forth. When a GW passes, it stretches one arm and compresses the
other, resulting in a small but measurable difference in light travel time. This difference
creates an interference pattern, generated by constructive and destructive interference of
the laser with itself, enabling scientists to detect and observe the impact of the GW by
measuring the change in the relative lengths of the interferometer’s arms.
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A Michelson interferometer divides a light beam into two perpendicular beams, which
travel along separate paths before recombining. A depiction of the setup at the Laser
Interferometer Gravitational Wave Observatory (LIGO) can be seen in Fig 1.3. By com-
paring the combined light with the original light, one can detect differences in the path
lengths of the two beams. These differences result in either constructive or destructive
interference, depending on the phase shift between the beams. This interference pattern
reveals small variations in the arm-lengths, allowing the detection of GWs. This is the
main idea adopted by LIGO, where in this case the light paths after the beam splitter are
4 kilometers long enclosed in vacuum sealed tubes. The reason for the 4 kilometer long
arms is due to the extremely small effects of a GW on the path length of the laser beams.
The longer the arms, the more the signal caused by the GW is amplified, making it easier
to detect the minute changes in length that these waves induce.

The extended arm-length increases the sensitivity of the interferometer, allowing it to
measure changes in distance as small as a fraction of the width of a proton [23]. Consider
a test particle located at a fixed position along the y-axis within the interferometer,
specifically at the coordinates (0,0,Ly,0) at some initial time. A GW is assumed to be
incident on the interferometer, traveling along the z-axis (perpendicular to the plane of
the interferometer arms). The spacetime interval ds2, which accounts for both spatial and
temporal separations, is described using the perturbed metric tensors due to the GW as

ds2 = gµνdxµdxν

= (ηµν +hµν)dxµdxν

=−c2dt2 +(1+h+)dx2 +(1−h+)dy2 +2h×dxdy+dz2. (1.23)

The terms dt, dx, dy, and dz correspond to infinitesimal displacements in time and the
spatial directions x, y, and z, respectively. The terms h+ and h× correspond to the two
polarization states of the GW. This equation describes how spacetime is stretched and
squeezed in the x and y directions in the presence of the GW, affecting the infinitesimal
interval ds for the test particle. Also, since the light beam within the cavity tube of
the interferometer travels at the speed of light, hence, ds2 = 0 [13, 18]. Therefore, by
considering the path of a photon traveling solely along the y-axis of the interferometer,
we set dx = dz = 0 in Eq. (1.23), and by setting the left-hand side to zero and using the
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approximation
√

1−h+ ≈ (1− 1
2h+), where h+ ≪ 1, follows

∫ t0

0
cdt =

∫ Ly

0

√
1−h+dy

ct0 = Ly

(
1− 1

2
h+

)
(1.24)

L′
y = Ly −

1
2

Lyh+

where ct0 = L′
y represents the length that the photon would have traveled in the presence

of the GW. The second term on the right-hand side of the equation represents the change
in path length compared to the case where no GW is present. Therefore, we can express
the change in the path length as

∆Ly =−1
2

Lyh+. (1.25)

The path difference shown in Eq. (1.25) shows how the perturbation of the GW changes
the optical path length of the laser. By performing the same analysis for the x-axis, we
find the same flight path change in the opposite direction, as ∆Lx =

1
2Lxh+. Therefore, to

account for the total change in the interferometer’s path length, we must consider both
the changes in the x-axes and y-axes and the fact the light travels down each arm and
back. Since the round-trip flight path is doubled, the total path length change can be
expressed as

∆Ltotal = 2∆Lx −2∆Ly = 2Lh+, (1.26)

where for the same arm-length detector, Lx = Ly = L. Equation (1.26) is regarded as the
strain-to-length relation for GW detections via Michelson interferometers.

Although the 4 kilometer length of the interferometer arms may seem substantial, simple
Michelson interferometers of this size would be insufficient for detecting GWs. According
to Eq. (1.26), the change in path length caused by a GW is proportional to the arm-length
and the GW strain, h+. However, the strain produced by GWs is extremely small, often
on the order of 10−21, depending on factors like distance from the source and the masses
involved. This means that even with 4 kilometer arms, the resulting displacement would
only be a fraction of a proton’s diameter, making direct detection incredibly difficult. To
overcome this limitation, an additional mirror is placed in each arm near the beam splitter,
with another mirror 4 kilometers away at the terminal end of the arm. This setup forms a
Fabry-Perot cavity, where light is reflected multiple times within each arm, approximately
300 times, effectively increasing the optical path length and amplifying the sensitivity of
the interferometer [24]. By increasing the number of round trips the light makes, the
interferometer can detect the tiny perturbations caused by GWs more effectively. It is
important to note, however, that the benefit of longer arms relies on the long-wavelength
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approximation, where the wavelength of the GW is much larger than the arm-length. If
the frequency of the GW was too high, the wavelength would be comparable to or shorter
than the arm-length, leading to cancellation effects that reduce the detector’s sensitivity.
Therefore, detectors like LIGO are designed to optimise sensitivity for a specific frequency
range of GWs, where the long wavelength approximation holds.

1.3.3 Noise sources and Matched Filtering

While the interferometer is designed to maximize sensitivity, detecting GWs is complic-
ated by the presence of various noise sources. These noise sources are frequency-dependent
and contribute to the overall noise profile of the detector, typically expressed using the
amplitude spectral density (ASD). The ASD represents how the noise varies across differ-
ent frequencies, setting the limit on the smallest GW strain that can be detected at each
frequency [24]. In detectors like LIGO and Virgo, the noise is characterized by several
sources, including quantum sensing noise, seismic noise, suspension thermal noise, mirror
coating thermal noise, and gravity gradient noise [24, 25]. Additionally, transient noise
events can occur due to human activities, weather conditions, or equipment malfunctions
[26]. All of these noise sources directly affect the sensitivity of the detectors and are rep-
resented in the ASD. The PSD, denoted as S( f ), characterizes how the power of noise is
distributed across different frequencies. It describes the noise power per unit frequency,
providing insight into the frequency components of the noise present in the detector. The
units of the PSD are typically strain2/Hz, reflecting the squared amplitude of the noise at
each frequency. The ASD is derived as the square root of the PSD, which makes it more
intuitive to interpret in terms of amplitude. It provides a clear picture of the detector’s
sensitivity across various frequency bands, showing how much noise amplitude exists per
unit frequency. A representation of the ASD for both LIGO detectors, Hanford and Liv-
ingston, is shown in Fig. 1.4, during the O1 observing run. The figure highlights the
characteristic shape of the ASD, demonstrating that both detectors are most sensitive to
GW events in the frequency range of 10 Hz to 1000-2000 Hz. The frequency range between
10 Hz and 1000-2000 Hz is of general interest for LIGO, since this is where GWs from
a subset of astronomical events, like the merging of stellar mass black holes or neutron
stars, are expected to be found [24].

Since the noise has now been summarized and characterized, the next step is to extract
the GW signal from it using the method of matched filtering [28]. Matched filtering is a
technique for detecting signals buried in noise when the form of the signal is known in
advance. This method works by comparing the data with a set of precomputed theoretical
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Figure 1.4: The Amplitude Spectral Density (ASD) of LIGO Hanford (H1) and Living-
ston (L1) on September 14, 2015, 09:50:45 UTC. The plot was generated using gwpy [27].

waveforms, known as a template bank, which represent the expected gravitational wave-
forms from various astrophysical sources [29]. The goal of matched filtering is to determine
if the data contains any signals that closely resemble one of the templates in the bank.
Since the template waveforms describe GWs from a range of CBCs events, any sufficiently
strong signal should be detected by this method. Assuming the detector’s output is given
by s(t) = h(t)+n(t), where h(t) represents the GW signal and n(t) is stationary Gaussian
noise, and the equivalent frequency-domain representation is given as s̃( f ) = h̃( f )+ ñ( f ),
the detector’s output is then cross-correlated with the template waveform h(t), with the
filtered signal z(t) computed as

z(t) =
∫

s(t ′)h(t ′− t)dt ′, (1.27)

which measures the similarity between the observed signal s(t) and the template h(t).
The match is highest when the GW signal aligns with the template waveform, and when
the template accurately represents the shape of the signal. For CBCs, this means having
the correct mass parameters and potentially the correct spins, ensuring the template best
reflects the true GW signal [29]. To estimate the strength of the signal in the detector’s
data stream, the matched filtering SNR, ρ , is computed as:

ρ2 = 4ℜ
{∫ ∞

0

|h̃( f )s̃∗( f )|2

Sn( f )
d f
}
, (1.28)
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where h̃( f ) is the Fourier transform of the template waveform h(t), s̃( f ) is the Fourier
transform of the detector’s signal s(t), and Sn( f ) is the noise PSD of the detector, repres-
enting noise as a function of frequency. The integral is computed over the entire frequency
range of the detector, though in practice, it is typically calculated over the frequency band
for which the template was constructed, usually starting at a low cutoff frequency. The
SNR defined in Eq. (1.28) effectively compares the signal s̃( f ) to the noise Sn( f ) in the
frequency domain. Using the definition given in Eq. (1.28) for the matched filter SNR, we
can define the power of each template waveform in terms of the optimal SNR (ρopt) as

ρopt =

√
4
∫ fhigh

fmin

|h̃( f )|2
Sn( f )

d f (1.29)

where the integral spans the frequency range over which the template was evaluated [28].

Therefore, by calculating the optimal SNR for each template in the bank, and comparing
it with the matched filter SNR, if the matched filter SNR exceeds the detection threshold
for a particular template, it suggests that the observed data closely matches the predicted
waveform of a potential astrophysical event. However, it is important to account also for
the false alarm rate (FAR) when setting a detection threshold [30]. The FAR measures how
often noise fluctuations in the detector mimic genuine GW events. These false alarms can
result from transient noise, environmental disturbances, or random fluctuations within the
detector data, collectively known as “glitches” . When setting the SNR threshold, if the
value is too low, the detector becomes more sensitive to noise, increasing the probability
of false positives.

Once a candidate GW event has been identified in the data, the next step is to perform
parameter estimation (PE) to extract key physical properties of the source, such as masses,
spins, and distances. This process relies on Bayesian statistics, where the observed data is
used to refine our understanding of the source parameters. The next section will explain
Bayesian inference in detail, illustrating how this framework allows us to compare observed
signals with theoretical models and derive astrophysical insights from the GW event.
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1.4 Bayesian statistics

To understand Bayesian statistics, we first need to explore conditional probability. The
probability of event A occurring given event B can be written as

p(A|B) = p(A∩B)
p(B)

, (1.30)

where ∩ denotes the intersection of events A and B. Similarly, the probability of event B
given event A is

p(B|A) = p(B∩A)
p(A)

. (1.31)

Since p(A∩B) = p(B∩A), we can rearrange both equations, yielding Bayes’ theorem

p(A|B) = p(A)p(B|A)
p(B)

. (1.32)

From this expression, Bayes’ theorem forms the foundation of Bayesian inference, where a
probability model is applied to observed data to update our understanding of the distribu-
tion of parameters and make predictions [31]. This framework combines prior knowledge
with observed evidence to refine the model’s parameters. In the case of Eq.(1.32), we can
substitute the parameters of a model we wish to infer, θ , which substitutes the A term,
conditioned on a measured data set, defined by X , which replaces the term B. The out-
come is a comprehensive probability distribution reflecting the parameters and potential
predictions. After making the substitutions, Bayes’ theorem becomes:

p(θ |X) =
p(θ)p(X |θ)

p(X)
, (1.33)

where p(θ |X) represents the posterior, which is our updated knowledge of the parameters
θ given the data X . The term p(θ) is the prior, reflecting our initial belief about θ before
seeing the data. The likelihood, p(X |θ), describes the probability density of observing
the data X given the parameter values θ . Finally, p(X) is the evidence, serving as a
normalisation factor to ensure the posterior is a valid probability distribution.

The posterior distribution integrates our prior beliefs with newly acquired data to update
our knowledge of the paramters θ . This updated belief becomes the basis for further
analyses. For example, if we have two independent events, X1 and X2, we first update our
understanding using the posterior from event 1. The resulting posterior then serves as the
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prior for event 2. This can be expressed as

p(θ |X2,X1) =
p(θ |X1)p(X2|θ)

p(X2)
=

p(θ)p(X1|θ)p(X2|θ)
p(X1)p(X2)

. (1.34)

For multiple measurements, this generalizes to a product over all N measurements

p(θ |X1, . . . ,XN) = p(θ)
N

∏
i=1

p(Xi|θ)
p(Xi)

. (1.35)

This expression shows how each new piece of data progressively increases our knowledge
of the parameters θ , where N represents the number of independent events and i denotes
the index of the ith event. When combining multiple events, the likelihood terms (and
evidence terms) are multiplied for each event, but the prior is applied only once. The prior
represents our initial belief about the parameters before observing any data, so it is not
updated with each event [31].

In cases where certain parameters are of less interest, we can marginalise over them. Mar-
ginalisation involves integrating out nuisance parameters to focus on the key parameters
of interest. For example, given parameters θ1 and θ2, if θ2 is a nuisance parameter, we
can marginalise it by integrating the joint posterior

p(θ1|X) =
∫

p(θ1,θ2|X)dθ2. (1.36)

This process simplifies the inference by reducing the dimensionality of the parameter
space, focusing on the parameters most relevant to the analysis. Next, we will briefly de-
scribe how PE is performed within this Bayesian framework to infer both GW parameters
and cosmological or population parameters.

1.5 Parameter Estimation

When a GW event candidate is observed, the next step is to perform PE on the measured
data to extract key information about the source parameters responsible for the event.
This process relies on a Bayesian framework, as described in Sec. 1.4. The primary goal
is to estimate the joint posterior distribution for the unknown parameters that define
the model for the observed data. From this joint distribution, we can derive marginalised
posterior probability distribution functions (PDFs) for individual parameters, which are
often used for visualisation. However, the joint distribution contains the complete inform-
ation about the system. In GW PE, we apply Bayesian inference to compute the posterior
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distribution, which represents the probability of the model parameters given the observed
data. This posterior is proportional to the product of the likelihood, the probability of
the data given the model, and the prior, representing our initial knowledge of the para-
meters. The likelihood function plays a critical role in evaluating how well the model fits
the observed data, incorporating key parameters like the masses and spins of the merging
objects as well as the noise characteristics of the detector.

The PE process begins by defining the data, modeled as a combination of the GW signal
h(t) and detector noise n(t), which can be expressed as s(t) = h(t)+n(t). This relationship
holds in both the time and frequency domains, with the latter written as s̃( f )= h̃( f )+ ñ( f )

due to the linearity of the Fourier transform. After identifying time segments that may
contain GW signals of astrophysical origin, the next step is to analyse the source respons-
ible for these signals. To extract the source parameters, we first define the likelihood of
the measured data using the Bayesian framework from Eq. (1.33). However, because the
noise in detectors is typically colored (i.e., its amplitude varies with frequency), perform-
ing the analysis in the frequency domain simplifies the process. In the frequency domain,
noise bins are uncorrelated for stationary noise, allowing us to model the likelihood as the
product of independent probabilities across frequency bins [32]. We start by modeling the
data with Gaussian noise, thus writing the likelihood as

L (d̃( f )|θ̃) ∝ exp

(
−1

2

N−1

∑
i=0

|s̃( fi)− h̃( fi, θ̃)|2

σ( fi)2

)
, (1.37)

where σ( fi) is the frequency-dependent standard deviation of the Gaussian noise. Since the
PSD, S( fi), is linearly related to the Gaussian noise, we have σ2( fi) ∝ S( fi). To properly
account for the detector’s noise characteristics, we weight the likelihood by the PSD
Sn( f ). This is done by defining the inner product, which helps to appropriately weight the
likelihood by the frequency-dependent noise [33], as

L (d( f )|θ̃) ∝ exp
(
−1

2
〈
s( f )−h( f , θ̃) | s( f )−h( f , θ̃)

〉)
, (1.38)

where the inner product weighted by the PSD is defined as [33]

⟨a(t)|b(t)⟩= 4ℜ
{∫ ∞

−∞

ã∗( f )b̃( f )
Sn( f )

,d f
}
, (1.39)

where ℜ denotes the real part of the complex valued result of the right-hand side, the
values ã∗( f ) is the complex conjugate of the Fourier transform of the time-dependent
value a(t).
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To estimate the source parameters, θ̃ , we explore the parameter space to obtain samples
from the posterior distribution, which reflects our updated knowledge of the paramet-
ers given the observed data. This process involves evaluating the likelihood within an
N-dimensional parameter space, where N represents the number of parameters in θ̃ . A
straightforward approach would be to explore this space using a grid, where each dimen-
sion corresponds to a different parameter. However, this method becomes computationally
expensive as the number of parameters increases. For example, if n points are evaluated
along each dimension, a grid search would require nN evaluations. For high-dimensional
problems, this quickly becomes infeasible. To address this challenge, stochastic sampling
techniques, such as Monte Carlo Markov Chain (MCMC) [34], provide a more efficient
way to explore high-dimensional posteriors by focusing computational resources on re-
gions with higher probability densities. The method works by generating a sequence of
samples (a “Markov chain” ) from the posterior distribution. Since each sample depends
only on the previous one, the algorithm is able to efficiently explore regions of higher
probability density. As the chain progresses, it spends more time in areas with higher
probability, ensuring the posterior is accurately represented [34]. This approach improves
efficiency and allows for accurate calculation of various posterior-derived quantities [35].
Additionally, marginalisation over unwanted parameters becomes more straightforward,
as explained in Sec.1.4. However, MCMC can be inefficient when dealing with complex
posterior distributions, such as multimodal distributions or those with long, narrow de-
generacies. Since MCMC uses random walks to explore the parameter space, this can
lead to slow convergence and difficulty in thoroughly exploring all areas, especially in
high-dimensional spaces.

Nested sampling (NS) [36] is a technique designed to efficiently explore complex para-
meter spaces, particularly useful for multimodal distributions. It works by progressively
shrinking the volume of the parameter space, focusing on regions with higher likelihoods.
Introduced by Skilling in 2004 [36], NS transforms the multi-dimensional integral of the
evidence into a one-dimensional integral that is easier to compute. The evidence Z is given
by:

Z =
∫

L (θ)π(θ)dθ , (1.40)

where L (θ) is the likelihood function that measures how well the parameters θ explain the
observed data, and π(θ) is the prior distribution encoding prior knowledge or assumptions
about these parameters. Direct computation of this integral can be challenging due to
the complexity of the parameter space. The method of NS addresses this by sorting the
parameter space by likelihood values and transforming the integral into a one-dimensional
form:

Z =
∫ 1

0
L (X)dX , (1.41)
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where X represents the cumulative prior mass, defined as the fraction of the prior volume
where the likelihood is greater than a given threshold. Mathematically, X can be expressed
as:

X(λ ) =
∫
L (θ)>λ

π(θ)dθ , (1.42)

where L (θ) is the likelihood function, π(θ) is the prior probability density, and λ is the
likelihood threshold.

The NS method operates iteratively. Initially, a set of N random samples, or live points, is
drawn from the prior distribution. For each iteration, the likelihood L (θ) is evaluated for
all live points, and the sample with the lowest likelihood, Lmin, is removed. The evidence
is updated by adding Lmin∆X , where ∆X is the reduction in prior volume. The removed
sample is then replaced by a new one drawn from the prior, constrained to regions where
the likelihood exceeds Lmin. This process progressively narrows the parameter space to
regions of higher likelihood [36]. The algorithm terminates when the remaining prior
volume contributes negligibly to the evidence. This method can be further enhanced by
incorporating a machine-learning-based approach known as nessai, which significantly
accelerates the process.

In nessai [37, 38], at each iteration, a NF is trained using the current live points. This
flow maps the live points from the sampling space X to samples in the latent space Z (more
information about NF in Sec. 1.8). New samples are drawn by sampling from a truncated
latent distribution and applying the inverse mapping f−1. Rejection sampling is then
used to ensure that the samples adhere to the prior distribution. This approach results
in independently and identically distributed samples, eliminating the need for MCMC
sampling. Furthermore, since new points are drawn in parallel, likelihood evaluations can
also be parallelised, reducing the algorithm’s runtime and accelerating convergence. The
evidence in nessai is estimated by performing a weighted sum of contributions from the
nested samples, with weights assigned based on their likelihoods. Posterior samples are
derived by resampling these weighted nested samples, providing a detailed representation
of the posterior distribution. The process continues until a convergence criterion, such as
a negligible remaining prior volume or a fixed number of iterations, is satisfied. The final
outputs include the estimated evidence and a comprehensive set of posterior samples,
making nessai a powerful tool for Bayesian inference in high-dimensional, multimodal
parameter spaces.
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Beyond these approaches, alternative methods for performing PE, such as variational
autoencoders (VAE) [39] and NFs [40], and many others, have been explored to model
complex posteriors more efficiently. While these machine learning-based methods show
potential for improved computational speed, particularly in high-dimensional parameter
spaces, classical techniques still set the benchmark for accuracy and remain the preferred
choice for rigorous PE [32].

After performing PE and obtaining estimates of the GW parameters defining the observed
strain data, one of the key parameters derived is the luminosity distance. By combining
this measurement with the redshift of the GW event and identifying the host galaxy of the
GW signal, it becomes possible to estimate the Hubble constant (H0) using Eq. (1.5). The
parameter obtained in the PE process related to mass is the detector-frame chirp mass,
which is the observed chirp mass as measured by the detector. This mass is redshifted,
meaning it is multiplied by a factor of (1+z), where z is the redshift. This factor accounts
for the expansion of the universe, which stretches the wavelengths of GWs and affects the
observed mass values. In contrast, the source frame chirp mass represents the intrinsic
mass of the GW source, unaffected by the expansion of the universe. This distinction
leads to a degeneracy between the redshift and the source frame chirp mass, as the red-
shifted mass measured in the detector frame cannot independently provide the redshift
information. Therefore, external sources of redshift information must be obtained to break
this degeneracy. This is where the idea proposed by Schutz [12] comes into play. Schutz
suggested combining the calibrated GW luminosity distance estimates with redshift meas-
urements from galaxy catalogues to estimate cosmological parameters, such as the Hubble
constant H0. In the next section, we will explore this concept more thoroughly, discussing
how this idea has evolved and been integrated into cosmological analysis pipelines. We
will also examine how these pipelines are used to estimate key cosmological parameters,
such as H0.

1.6 Cosmology with Gravitational Waves

1.6.1 A short literature review

In 1986, B. Schutz proposed the groundbreaking idea of using GW events to measure the
expansion rate of the universe [12]. This marked the beginning of a new era in cosmology,
where GWs could serve as “standard sirens ”for cosmological studies. However, an imme-
diate challenge arose: the redshift information encoded in GWs is completely degenerate
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with the redshifted chirp mass, Mz. This means that while GWs can provide a measure of
the luminosity distance, they cannot directly give us the redshift needed for cosmological
measurements. To overcome this, Schutz proposed using galaxy catalogues, which contain
measured properties of galaxies, such as redshift and their uncertainties. By combining the
luminosity distance obtained from GW events with the redshift information from these
catalogues, cosmological analyses can be performed.

Building on this foundation, Finn and Chernoff [41] extended this idea by exploring how
cosmological parameters, particularly H0 and the deceleration parameter (q0) 1, could
be measured using observations of inspiraling binary systems, such as neutron stars or
black holes, detected via GWs. Their work focused on LIGO-like detectors and estimated
detection rates based on SNR, H0, and the binary chirp mass. They estimated that to
measure H0 with 10% precision, around 100 binary inspiral detections with ρ0 = 10 would
be required. Similarly, determining the deceleration parameter q0 with 20% accuracy
would require around 3000 observations.

In 2011, Walter Del Pozzo further developed this framework in his work [43], introducing a
Bayesian inference framework to address the challenge of extracting cosmological inform-
ation from GW events. This framework integrated all prior assumptions and information
about a GW source into a single, unified data analysis method. It minimised information
loss and allowed for the incorporation of event-specific details, such as the sky position in
Gamma-Ray Burst (GRB)–GW coincident detections. By applying Bayesian techniques,
the method allowed for the seamless inclusion of additional data, such as galaxy surveys,
to improve redshift estimation. Building on Schutz’s work, Del Pozzo used galaxy cata-
logues to associate redshifts with GW sources, identifying the host galaxies of GW events.
He demonstrated that by combining results from several tens of GW observations using a
global network of advanced interferometers, it would be possible to constrain H0 to within
4–5% accuracy at a 95% confidence level.

Other works, such as those by Samaya Nissanke [44], focused on the potential of BNS mer-
gers as cosmological tools, particularly through their connection with short gamma-ray
bursts (SGRBs). Observational evidence strongly suggests that some SGRBs are linked
to the mergers of compact objects like BNS systems. These mergers emit GWs during
their final inspiral and produce EM counterparts, such as kilonovae, visible in optical and
infrared bands due to the radioactive decay of elements formed in the merger. The sim-

1. Currently, the deceleration parameter q0 is related to the more commonly used cosmological para-
meters, such as the matter density parameter Ωm and dark energy density parameter ΩΛ, through the
equation q0 =

1
2 Ωm −ΩΛ [42]
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ultaneous detection of both GW and EM signals offers a unique opportunity to measure
both the luminosity distance and the redshift of the binary system. Nissanke’s analysis
indicated that detecting 15 simultaneous GW and EM events using a network of ad-
vanced detectors, such as LIGO and Virgo, could measure H0 with 5% precision. With 30
beamed GW-SGRB events, this precision could improve to better than 1%, highlighting
the potential of multi-messenger astronomy to refine cosmological measurements.

Unlike traditional distance-ladder methods that depend on astrophysical systematics,
Messenger and Read [45] demonstrated that GWs from BNS mergers could, with future
third-generation detectors like the Einstein Telescope (ET), enable precise measurement
of tidal effects that modify the GW signal. This approach represents a promising av-
enue for improving cosmological measurements once more advanced detectors become
operational. These tidal interactions introduce phase changes that break the degeneracy
between mass parameters and redshift, allowing independent estimation of both effect-
ive distance and redshift without EM counterparts. By analysing tidal information, their
research provides a robust and independent method for cosmological inference, directly
measuring rest-frame masses and redshifts. This approach significantly improves cosmo-
logical measurements, with studies indicating redshift accuracy of 8-40% for z < 1 and
9-65% for 1 < z < 4, determined from GW observations.

Following these developments, Taylor and Gair [46] proposed a novel approach to meas-
uring H0 using GW signals from compact binary systems, particularly BNS mergers.
Their work capitalized on the relatively narrow distribution of neutron star masses to use
these binaries as “standard sirens” for cosmological measurements. While GW observa-
tions can directly measure the distance to the source, determining the redshift presents
a challenge due to its degeneracy with the system’s chirp mass in GW signals. Taylor
and Gair explored a method to extract cosmological information from GW observations
alone, without relying on EM counterparts. Using a Bayesian formalism and catalogues of
BNS inspiral detections, they investigated what could be learned about background cos-
mology and neutron star mass distributions from GW data alone. Their analysis showed
that, under reasonable assumptions, the Hubble constant could be determined to within
±10% accuracy using around 100 observations, provided the Gaussian half-width of the
underlying neutron star mass distribution is less than 0.04M⊙.

Following the GW detection of GW170817, the first multi messenger event where both
EM radiation and GWs were detected [47], initial measurements of H0 were made using
key pipelines, such as IcaroGW and gwcosmo. The most recent updates on constraining
cosmological parameters, particularly H0, are outlined in the LVK collaboration work [16],

- 25 -



1.6. Cosmology with Gravitational Waves

where these pipelines were employed to estimate both cosmological and population para-
meters using multiple detected events from the GWTC-3 catalogue [48]. In this research
from the LVK collaboration, data from 47 GW events were used to estimate H0. Each GW
event provided the luminosity distance to its source, with redshifts inferred through two
methods: redshifted BBH masses and a galaxy catalog. The first method used the red-
shifted BBH masses to simultaneously infer the source mass distribution and the Hubble
parameter H(z). A peak in the BBH mass distribution was identified at approximately
34M⊙, followed by a decline. Assuming this mass distribution did not evolve with redshift,
the study estimated H0 = 68+12

−8 km s−1 Mpc−1 (68% credible interval), combined with
data from GW170817 and its electromagnetic counterpart [49]. The second method as-
sociated each GW event with its probable host galaxy from the GLADE+ catalog, using
the gwcosmo pipeline, statistically marginalising over the redshifts of each potential host.
This method yielded a similar H0 value of 68+8

−6 km s−1 Mpc−1. However, this result was
significantly impacted by assumptions regarding the BBH mass distribution. The event
most informative about H0, and least affected by these assumptions, was the well-localized
GW190814 [16, 50].

The gwcosmo method [14, 51, 52] is a well-documented and widely used Bayesian analytical
approach for inferring both cosmological and population parameters from GW events,
particularly through posterior samples of their parameters and EM data from galaxy
catalogues. Since this thesis will discuss a novel method for inferring H0, which builds
on the methodologies and assumptions of gwcosmo, we will now briefly outline the key
assumptions and methodologies behind this analysis and provide an overview of how it
operates.

1.6.2 Cosmology with gwcosmo

The gwcosmo [14, 51, 52] method is a Bayesian framework used to estimate the Hubble
constant and other cosmological parameters from GW data. This framework allows for
the incorporation of both GW events and EM counterparts when available, as well as
galaxy catalogues, to statistically infer H0 and other key parameters [51]. At the core of
the gwcosmo methodology is the computation of the posterior probability on H0 from a
set of Ndet detected GW events, expressed as

p(H0|{xGW},{DGW}) ∝ p(H0)p(Ndet|H0)
Ndet

∏
i=1

p(xGW,i|DGW,i,H0), (1.43)
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where, p(H0) is the prior on the Hubble constant, and p(Ndet|H0) represents the probability
of detecting Ndet events, which is related to the intrinsic event rate, R, and the observation
volume. In this context, p(Ndet|H0) depends on both the intrinsic event rate R and the
volume of the universe that can be observed, which is itself dependent on H0. Normally,
this would create a complex dependence of the posterior on H0 through Ndet. However,
by adopting the scale-free prior p(R) ∝ 1/R, the dependence on the value of H0 cancels
out because the prior does not impose any specific scale for the event rate [53].

The term p(xGW,i|DGW,i,H0) denotes the likelihood of the GW data (xGW), conditioned
on the detectability status (DGW) and the Hubble constant. Using Bayes’ theorem follows

p(xGW|DGW,H0) =
p(xGW|H0)

p(DGW|H0)
. (1.44)

This likelihood depends on the observed GW data xGW and accounts for the fact that the
event was detected (i.e., passed a SNR threshold). The denominator, p(DGW|H0), involves
integrating over the possible realizations of all detectable GW events. This last term can
then be expanded and written as

p(DGW|H0) =
∫

p(DGW|xGW,H0)p(xGW|H0)dxGW. (1.45)

Then, within the mathematical framework of Ref. [51], the term p(DGW|H0) only appears
in an expanded form, where it is additionally conditioned on redshift z and sky location
Ω. Therefore, to calculate p(DGW|z,Ω,H0), it needs to be integrated over all realizations
of GW events for a range of z, Ω, and H0 values, with the detection threshold ρth applied.
In practice, this calculation can be performed using Monte Carlo integration

p(DGW|z,Ω,H0) =
1

Nsamples

Nsamples

∑
j=1

p(DGW, j|xGW, j,z,Ω,H0), (1.46)

where xGW,i corresponds to a specific GW event, with parameters drawn randomly from
the prior distributions of quantities affecting the event’s detectability (e.g., mass, inclin-
ation, polarization, and sky location). The SNR ρi of each event is then calculated for
specific values of z and H0. Then, the quantity p(DGW,i|xGW,i,z,Ω,H0) is defined as

p(DGW,i|xGW,i,z,Ω,H0) =

1, if ρ > ρth,

0, otherwise.
(1.47)

This provides a smooth function for p(DGW|z,Ω,H0), which transitions from 1 to 0 over
a range of values for z, Ω, and H0 as the detection threshold is applied.
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In the absence of an EM counterpart, the gwcosmo framework makes use of galaxy cata-
logues to infer redshift information. The framework marginalises over the possibility that
the host galaxy may or may not be included in the catalog, considering the apparent mag-
nitude threshold of the catalog. The likelihood for each event is written as a combination
of two cases:

p(xGW|DGW,H0) = ∑
g=G,Ḡ

p(xGW|g,DGW,H0)p(g|DGW,H0). (1.48)

Here, G denotes the case whether the host galaxy is in the catalogue, and Ḡ denotes
the case where the host is not. This method allows for a statistical inference of H0 even
when the galaxy catalogue is incomplete. In this context, incompleteness refers to the fact
galaxy catalogues do not contain all galaxies, as many are too dim to be observed. To
address this limitation, a magnitude threshold is applied, which acts as a cutoff to make
the catalogue boundaries clearer by excluding galaxies that are too faint to detect, even
though the true extent of the catalogue’s reach remains uncertain. When incorporating
galaxy catalogues, the likelihood term p(xGW|G,DGW,H0) for events within the catalogue
(both in redshift and sky location) can be expanded to include redshift information from
the galaxies. The likelihood of detecting a GW event with the host galaxy in the catalogue
is

p(xGW|G,DGW,s,H0) =
∑N

i=1 p(xGW|zi,Ωi,s,H0)p(s|zi)p(s|M(zi,mi,H0))

∑N
i=1 p(DGW|zi,Ωi,s,H0)p(s|zi)p(s|M(zi,mi,H0))

. (1.49)

Here, the probability p(s|M,H0) accounts for the dependence on luminosity

p(s|M,H0) ∝

L(M(H0)) if the GW hosting probability is proportional to luminosity,

constant if the GW hosting probability is independent of luminosity,
(1.50)

where M is the absolute magnitude of the galaxy, and L is the intrinsic luminosity. The
term p(s|z) represents the probability of the merger rate as a function of redshift,

p(s|z) ∝

 f (z) if the rate evolves with redshift,

constant if the rate does not evolve with redshift,
(1.51)

where for f (z) in [51], a constant-rate model was assumed. These adjustments to the
redshift prior incorporate galaxy properties, enhancing GW event localization and PE by
leveraging both GW and EM observations.

- 28 -



1.6. Cosmology with Gravitational Waves

When, instead, an EM counterpart is detected, the methodology incorporates both the
GW and EM from the event data to refine the H0 estimate. The joint likelihood for a GW
and EM event is given by

p(xGW,xEM|DGW,DEM,H0) =
p(xGW|H0)p(xEM|H0)

p(DGW|H0)p(DEM|DGW,H0)
, (1.52)

where xEM denotes the data from the detected EM counterpart, and DEM indicates an
EM counterpart was observed. This method assumes that both GW and EM data are
independent, and only considers events where the EM counterpart has passed a detection
threshold.

In Ref. [14], the gwcosmo methodology was extended to address challenges related to the
assumption of uniform catalogue completeness. This extension focuses on improving the
handling of galaxy catalogue data, accounting for variations in completeness across differ-
ent sky regions, distances, and depths, thereby enhancing the robustness of cosmological
parameter estimation. The uniform completeness assumption can lead to biases in the
inference of the Hubble constant due to oversimplification across the sky. Specifically,
applying a uniform completeness correction to a non-uniform patch of the sky may result
in areas where completeness is overestimated, artificially inflating the contribution from
galaxies in those regions. This bias can be particularly pronounced if the host galaxy is
missing from the catalog. Conversely, in regions where completeness is underestimated,
valuable information about the redshift distribution of galaxies at greater distances can
be overlooked.

To mitigate these issues, the methodology introduces an extension that pixelates the sky
into equally sized regions, performing an independent analysis for each pixel. This ap-
proach allows for the use of a line-of-sight (LOS) prior on the luminosity distance for each
GW event within a pixel, combined with an estimate of the completeness for that specific
region of the sky. By doing so, both the overestimation and underestimation problems are
addressed, making the analysis more robust and theoretically more informative. The main
difference from their first paper [51] is the introduction of the pixelated sky approach. For
a single GW event, the likelihood definition now begins by marginalising over whether
the host galaxy is inside or outside the catalog. Additionally, the likelihood’s dependence
on sky direction, Ω, must be accounted for. The original continuous likelihood expres-
sion is approximated by dividing the sky into Npix equal-sized pixels and summing the
contributions from each pixel

p(xGW|DGW,H0, I) =
Npix

∑
n=1

p(xGW|θn,DGW,H0, I)p(θn|DGW,H0, I). (1.53)
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One can assume that the probability of detection is uniform across the sky, which is reas-
onable given the Earth’s rotation during long observation periods, causing the dependence
on sky direction Ωi to cancel out. However, this assumption holds only if the detection
probability, p(D), is not conditional on the event arrival time. Since the analysis relies on
p(D|H) marginalised over all parameters, including time, this effectively marginalises over
right ascension, α , supporting the uniform sky assumption. The likelihood then simplifies
to

p(xGW|DGW,H0, I) =
1

Npix

Npix

∑
i=1

p(xGW|θi,DGW,H0, I). (1.54)

This assumes that p(Ωi|H0, I) is independent of H0 in an isotropic universe, allowing the
likelihood to be simplified by averaging over pixels, while ignoring minor sky-dependent
effects like declination dependence [14].

1.6.3 Motivation for CosmoFlow

In Sec. 1.6.2, we showed how gwcosmo operates by constructing a Bayesian posterior on H0

using a combination of GW data, galaxy catalogues, and EM counterparts when available.
The methodology allows for marginalisation over the incompleteness of galaxy catalogues
and uses detection thresholds for both GW and EM events. This framework has proven
effective in constraining H0 through the combination of multiple GW events [16].

However, despite its successes, the gwcosmo method is not without limitations. One po-
tential drawback is its lack of flexibility when extra parameters are introduced into the
analysis, such as complex population models or additional cosmological parameters. As
the dimensionality of the parameter space increases, the gwcosmo framework may become
cumbersome, relying on computationally expensive and hard-to-converge integrations. 2

This issue is particularly pronounced when trying to combine thousands of events in a
hierarchical manner, where the computational cost of the integration becomes a bottle-
neck, especially in large-scale studies with expanding data sets.

This leads to the core focus of this thesis: the proposal of a novel approach, called
CosmoFlow, which builds upon the methodologies of gwcosmo. The CosmoFlow analysis
is designed to estimate cosmological and population parameters, but unlike gwcosmo, it
leverages machine learning techniques, specifically normalising flows (NFs), to overcome
the computational challenges posed by traditional Bayesian methods. As of the pub-

2. Advancements in this topic are being made, with LOS priors being computed using machine learning-
driven models, accelerating their analysis.
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lication of this thesis, CosmoFlow is capable of computing the posterior distribution of
cosmological and population parameters using only GW events from “dark sirens ”(i.e.
those without an EM counterpart), such as BBH, NSBH, and potentially BNS events.
Although BNS mergers may sometimes produce EM counterparts, dark siren analysis is
applicable to cases where no such signals are detected, though training on BNS popula-
tions has not yet been completed [54]. Machine learning techniques offer a more scalable
and efficient approach to computing the posterior distribution of cosmological parameters,
allowing for the analysis of large datasets while significantly reducing the computational
costs associated with traditional methods.

Before introducing how CosmoFlow operates and its underlying methodologies in Chapter
2, we will first provide an overview of machine learning techniques and why they are
particularly useful in this context.

1.7 Machine Learning

1.7.1 Introduction

One of the early and influential ways to describe machine learning (ML) comes from Ar-
thur Samuel, who, in 1959, defined it as a “field of study that gives computers the ability
to learn without being explicitly programmed” [55]. Although somewhat dated, this de-
scription still effectively captures the essence and power of ML. As the availability of data
continues to grow, data analysis will likely play an important role in advancing technology
because it enables more efficient processing, interpretation, and decision-making from vast
datasets that would otherwise be too complex or time consuming for traditional methods.

In computer science, algorithms are designed to solve specific problems and perform tasks
by analysing data. However, when we lack a complete understanding of the processes
that generate the data, the large amount of available data can help fill in the gaps. Even
without full knowledge of every detail, it is possible to create approximations that work
effectively across large datasets. Although some complexities remain hidden, patterns and
regularities can still be identified. This is where machine learning becomes valuable, offer-
ing practical solutions when traditional methods may not suffice. For instance, artificial
neural networks, such as Multi Layer Perceptrons (MLPs), are non-parametric models
consisting of multiple layers of nodes, where each node represents a neuron. A Multi

- 31 -



1.7. Machine Learning

Figure 1.5: A hypothetical example of a MLP network consists of an input layer with
multiple feature inputs, one or more hidden layers, and an output layer. Figure taken
from Ref. [57].

Layer Perceptron (MLP) typically contains an input layer, one or more hidden layers,
and an output layer. Each layer is fully connected to the next, meaning that every neuron
in a given layer is connected to every neuron in the following layer. MLPs are powerful
tools for both classification and regression tasks, as they can learn complex, non-linear
relationships by adjusting the weights of these connections through backpropagation [56].

A neural network (NN) is a series of algorithms that find key patterns in data, working in
a way similar to how the human brain processes information. This network is structured
into several layers of interconnected nodes, known as neurons, which include input, hidden,
and output layers. The input is usually made up of many input features, where a feature
is a distinct variable or characteristic of the data being analysed. Each input feature is
assigned to a corresponding neuron in the input layer. Neurons within one layer are linked
to those in the subsequent layer, each connection characterized by specific weights and
biases [56]. In Figure 1.5, an example of a hypothetical MLP is shown, comprised of an
input layer, a hidden layer, and an output layer. In any layer of a neural network, the
output for layer l is computed as

y(l) = f
(

W (l)x(l−1)+b(l)
)
. (1.55)
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In this equation, x(l−1) represents the input to layer l, which is the output from the
previous layer l − 1, or the input data in the case of the first layer. The weight matrix
W (l) determines the strength of the connections between neurons from layer l−1 to layer
l, while the bias vector b(l) adjusts the pre-activation sum for each neuron. The activation
function f introduces non linearity by being applied element-wise to the sum of the
weighted input and the bias. The output y(l) from layer l serves as the input for the next
layer, and this process continues through all layers, including the output layer [56].

The weights and biases are optimised using the backpropagation algorithm. Initially in-
troduced by Linnainmaa in the 1970s [58] and later popularized by Rumelhart, Hinton,
and Williams in 1986 [59], this algorithm adjusts the weights and biases in response to
the observed loss from the output layer. Backpropagation optimises the network by send-
ing the prediction errors from the output layer back through the network, adjusting the
weights and biases to minimise the loss function. The loss function quantifies the difference
between the predicted and actual values, guiding the network’s learning process. During
training, the network processes the entire dataset multiple times; each complete pass
through the dataset is called an epoch. After each epoch, backpropagation updates the
parameters, progressively refining the network’s ability to minimise the loss and improve
its predictions. The optimisation process involves two main phases:

1. Forward Pass: The input features are fed to the initial layer and then propagated
through subsequent hidden layers. Each layer applies an activation function, and
the process culminates at the output layer.

2. Backward Pass: The predicted output of the neural network is compared to the
actual target values, which represent the correct outcomes for the given input data.
These target values, often referred to as labels in supervised learning, are known from
the training dataset. The difference between the predicted output and the true target
values is quantified by a loss function, which measures how far off the predictions are
from the actual outcomes. The gradient of the loss function is computed with respect
to each weight in the network illustrating how a change in each weight would affect
the error. This step involves applying the chain rule [58] to effectively propagate the
error backward. Subsequently, the weights are adjusted in the direction opposite to
the gradient to minimise the loss.

This method allows for the efficient training of neural networks by iteratively reducing
the loss, thereby enhancing the model’s accuracy over time.
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In ML, we calculate the loss function across the entire dataset, which quantifies the
difference between the predicted and actual target values. A commonly used loss function
is the mean squared error (MSE), defined as

MSE= L (θ) =
1
n

n

∑
i=1

(yi − ŷi(θ))2, (1.56)

where yi is the target value, ŷi(θ) is the predicted value, defined as the output of the last
layer in Eq.(1.55), described by the weights and biases grouped together in θ , and n is
the number of data points. The goal is to minimise this loss function, reducing the dis-
crepancy between predictions and actual values. When the loss function is differentiable,
gradient descent is a widely used optimisation method [56]. Gradient descent minimises
the loss function, L (θ), which depends on the model’s parameters θ . This is done by
iteratively adjusting the parameters in the opposite direction of the gradient, ∇θL (θ),
which points in the direction of the steepest increase in the loss. The size of each adjust-
ment is determined by the learning rate, η . In simple terms, this process can be visualised
as rolling down the slope of a valley, with the objective of reaching the lowest point [60].
The learning rate, η , controls how large each step is when updating the parameters. A
smaller learning rate makes the updates slower and more precise, reducing the risk of over-
shooting the optimal value but requiring more iterations. A larger learning rate allows for
faster convergence but may lead to instability or missing the optimal solution if the steps
are too large. Selecting an appropriate learning rate is critical for the effectiveness of the
optimisation process.

A variant of gradient descent, stochastic gradient descent (SGD) [61], approximates the
true gradient by using a small subset of the training data, known as a batch, of size nbatch.
The parameter update at the tth iteration is given by

θt+1 = θt −
η

nbatch

nbatch

∑
j=1

∇L (x j;θt), (1.57)

where η is the learning rate, and ∇L (x j;θt) represents the gradient of the loss function
with respect to the parameters θt , calculated over a batch of data points of size nbatch,
for x j input feature parameters.

During training, the dataset is typically shuffled and split into batches. Each batch is pro-
cessed one by one, where the loss L (θ) is computed, and the network’s parameters are
updated accordingly using the gradients. A complete pass through all the batches consti-
tutes an epoch, during which the average loss is computed over all the batches. After each
epoch, the model may undergo evaluation on validation data, and the process repeats for
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several epochs until the model converges, or the loss function reaches a satisfactory value
[62]. This iterative training process allows for more frequent updates to the parameters
without having to wait for the entire dataset to be processed, as would be required in
standard gradient descent. By using smaller batches in each iteration, SGD is particularly
effective for handling large datasets and reduces memory requirements while maintaining
reasonable convergence rates.

Several other algorithms exist for optimising gradient descent, with SGD being a found-
ational method. More advanced optimisers, such as the adaptive moment estimation
(Adam) optimiser [63], are also widely used, particularly in large scale ML applications.
This optimiser combines the advantages of SGD with adaptive learning rates, which ad-
justs the learning rate dynamically during the training process, based on the characterist-
ics of the model’s parameters or gradients, leading to computational efficiency and lower
memory requirements [63]. In this work, the Adam optimiser was employed. The optim-
isation of the parameters θ involves iterative updates: for each step, the loss function
L (θ) is computed using a batch of input data. The corresponding gradients of the loss
function with respect to each parameter are then determined, allowing for the adjustment
of the parameters θ in the direction that minimises the loss function. The use of adaptive
learning rates in Adam further ensures a more stable and efficient optimisation process,
particularly when compared to traditional SGD [63].

Using this method of updating the weights and biases, a NN can approximate complex
functions that map inputs to outputs, which allows it to generalize across many types of
data sets. For example, in a supervised learning task, where each input (such as an image,
text, or numerical data) has an associated output (such as a label or target value), the
NN learns to predict the correct output for unseen inputs by minimising the error during
training. In this case, the data set could consist of labeled images (like recognizing objects
in pictures), numerical data (such as predicting house prices from features like square
meters), or time series data (like forecasting stock prices). By training on these examples,
the NN becomes capable of producing reliable and accurate predictions.

1.7.2 Different types of learning

Depending on the problem at hand, ML algorithms can be broadly classified into three
main categories: supervised, unsupervised, and reinforcement learning [62]. These categor-
ies are described as follows:
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1. Supervised Learning: In supervised learning, the algorithm makes predictions
based on a given set of examples and corresponding labels. It compares its predic-
tions against the actual outcomes to identify errors and adjust the model accord-
ingly. The input data includes both features and their corresponding labels. This
type of learning is typically employed for tasks such as regression or classification.

2. Unsupervised Learning: Unsupervised learning involves input data without any
corresponding output labels. The primary goal is to model the underlying structure
or distribution in the data to discover insights. It achieves this by exploring the data
to identify patterns, such as those used in clustering.

3. Reinforcement Learning: Reinforcement learning uses agents that learn to make
decisions by performing actions and receiving feedback in the form of rewards. The
algorithm is not instructed explicitly on which actions to take but instead must
determine which actions yield the highest rewards through trial and error [64, 65].
This method is particularly useful in fields such as robotics and gaming.

In addition to these types of learning processes, there are generative algorithms, which
are often applied in both supervised and unsupervised learning contexts. Generative al-
gorithms are a class of models that aim to learn the underlying data distribution, allowing
them to generate new, similar data points. These models are good for tasks like image
generation, text synthesis, and probabilistic modeling [66]. These models can be trained
in a supervised manner or unsupervised. An exmaple of some generative algorithms are:

• Generative Adversarial Networks (GANs): Generative Adversarial Networks
(GANs) consist of two neural networks, a generator and a discriminator, competing
against each other. The generator attempts to create data that mimics the real
dataset, while the discriminator tries to distinguish between real and generated
data [67].

• Variational Autoencoders (VAEs): VAEs encode data into a latent space and
then decode it back, with some variation. They are used to generate new samples
from these distributions [68].

• Normalising Flows (NFs): NFs are a type of generative model that transform
simple distributions into more complex ones using a series of mathematical oper-
ations. These models are especially useful for estimating probability distributions
and generating new data points [69].
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In this thesis, we will focus primarily on supervised learning, which is particularly good
for tasks that involve predicting values that may be computationally challenging to derive
analytically. Specifically, we will use an MLP in Chapter 2, Sec. 2.6.1, to approximate the
SNR calculation. However, the core focus of our work will be on NFs, which we will use
to model the probability distributions of cosmological parameters. By training the NF
model on GW and EM data from galaxy catalogues, as outlined in Chapter 3, we aim to
generate accurate posterior distributions for cosmological parameters.

1.8 Normalising Flows

Normalising Flows (NFs) are a type of generative algorithm in machine learning that
transform a simple base distribution into a more complex target distribution by applying a
series of invertible functions. This enables NFs to model complex probability distributions
with high flexibility, making them useful for tasks like density estimation and generative
modeling [69]. The core of how NFs operate is based on the change of variables formula,
which maps one probability distribution to another. This is expressed as:

px(x) = pz(z)
∣∣∣∣∂z
∂x

∣∣∣∣ (1.58)

where px(x) is the target distribution we wish to approximate, and pz(z) is a simpler base
distribution (often Gaussian) that is easy to sample from, and the random variables x and
z are vectors with dimensions corresponding to the feature space and the latent space,
respectively. The term |∂z/∂x|, known as the Jacobian determinant, measures the change
in volume between the two distributions, ensuring the preservation of total probability.

The NF models apply a sequence of transformations, each of which is invertible and
differentiable. Each transformation is parameterized by a NN, and the invertibility of
these transformations allows for both efficient sampling and exact computation of the
probability density at each step. This makes NFs particularly powerful for probabilistic
modeling, where generating new data points or estimating likelihoods is of interest. This
is done by repeatedly applying the change of variables formula, allowing the initial density
to “flow” through the sequence of transformations [70]. The utility of NFs has expan-
ded considerably, with various types of mappings [69, 71] being developed for different
applications, including GW astronomy [37, 38, 40].
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To formalise this, we begin with Eq.(1.58), under a conditional statement ω , we can
expand by taking the natural logarithm on both sides. Assuming that the random variables
x and z are related as x = f (z) and z = g(x), where f ≡ g−1, we arrive at:

log(px(x|ω)) = log(pz( f−1(x,θ |ω)))+ log
(
det
∣∣∣∣d f−1(x,θ |ω)

dx

∣∣∣∣), (1.59)

where θ represents the “trainable ”parameters optimised during the training of the NF.
The latent distribution is often chosen as a simple distribution, such as a Gaussian, because
it is easy to sample from and has a tractable PDF, pz(z). From this, two important features
of NFs arise:

1. The PDF of the target distribution, px(x), becomes tractable.
2. The target distribution can be efficiently sampled by first drawing samples from the

latent distribution and then applying the inverse mapping, x = f (z,θ).

These attributes of NFs are only possible if the mapping x = f (z,θ) is invertible (i.e. z =

g(x) can be computed) and the Jacobian determinant of the transformation is tractable.
The Jacobian ensures that the volume change between the latent space and the target
space is correctly accounted for, enabling probability computation and efficient sampling
[70].

1.8.1 Loss function for Normalising Flows

To optimise the parameters of the mapping function, θ , a loss function is defined between
the output and input target distributions. In the case of NFs, the KL divergence is used
as a loss function. The origins of the KL are from information theory [72]. To quantify
the amount of information in a dataset with a particular distribution, we use its entropy,
defined as

H =−
N

∑
i=0

p(xi) log p(xi), (1.60)

where log refers to the natural logarithm (base e). If log2 is used instead, entropy is
measured in bits, whereas with the natural logarithm, it is measured in nats. The term
H is the entropy, the minimum number of bits required to encode the information [72].
The KL divergence measures how one probability distribution q diverges from a target
distribution p. It quantifies the difference between the two distributions by comparing the
logarithms of their probabilities, weighted by the probability of the target distribution p.
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For a discrete set of random variables xi [72], this can be expressed as

KL(p||q) =
N

∑
i=0

px(xi) log
(

px(xi)

qx(xi)

)
. (1.61)

In this formulation, px(xi) is the probability of the i-th sample under the target distri-
bution, and qx(xi) is its corresponding probability under the approximating distribution.
The KL divergence is non-negative and equals zero only when the two distributions are
identical, making it a useful metric for comparing the similarity between probability dis-
tributions. Then, for continuous random variables, we replace the summation with an
integral

KL(px||qx) =
∫ +∞

−∞
px(x) log

(
px(x)
qx(x)

)
dx. (1.62)

For a set of data samples x drawn from the target distribution px(x), and an approximating
distribution qx(x) modeled by the NF, the loss function is defined as the KL divergence
between the two distributions:

Loss(θ) = L (θ) =KL(px(x)||qx(x))

= Epx [log px(x)]−Epx [logqx(x)]

= Epx [log px(x)]−Epx

[
log pz(z)+ log

(
det
∣∣∣∣d f−1(x,θ |ω)

dx

∣∣∣∣)]
= const.−Epx

[
log pz(z)+ log

(
det
∣∣∣∣d f−1(x,θ |ω)

dx

∣∣∣∣)] .
(1.63)

Since the first term is constant for a given dataset, the expectation value can be approx-
imated as a discrete average for a set of K data points {xi}K

i=1, yielding:

L (θ)≈− 1
K

K

∑
i=0

[
log pz( f−1(xi,θ |ω))+ log

∣∣∣∣d f−1(xi,θ |ω)

dx

∣∣∣∣] . (1.64)

We can approximate the target distribution by optimising the parameters of a NN, denoted
as θ , using standard optimisation algorithms such as gradient descent. Importantly, the
presence of a conditional variable, ω , does not affect this process. The mapping remains
invertible, and the Jacobian determinant remains tractable, ensuring that the overall
transformation is efficient and valid, as outlined in Ref. [70]. With the loss function defined
in Eq.(1.64), we can begin training the NF by iteratively adjusting the parameters θ
through gradient descent, minimising the loss function to improve the accuracy of the
approximation.
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1.8.2 Coupling Flows

In the implementation of a NF, certain constraints must be satisfied regarding the types
of functions used. The function that maps f : x → z (from input data space to latent
space) must be invertible, and the computation of the Jacobian determinant needs to be
tractable [69]. Three primary methods are commonly employed in constructing NFs to
meet these criteria: coupling flows [73], autoregressive flows [74], and spline flows [75].

Coupling flows introduced by [73] for NFs divide the input data into two subspaces.
Consider partitioning the input data x into two subsets: x1:d and xd:D. Here, x1:d represents
data dimensions up to d, and xd:D spans from dimension d (excluded) to D. To create
a bijective function, one that matches each input to exactly one unique output (and
vice versa), while keeping it flexible and easy to compute, simple functions called affine
coupling layers are used. These layers modify part of the input step by step to achieve the
desired transformation. The change is easy to reverse, and it depends on the unmodified
part of the input, x1:d. For a D-dimensional input x with d < D, the output y of an affine
coupling layer is determined by the following equations [73, 76]:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp(s(x1:d,θ))+ t(x1:d,θ)
(1.65)

where s and t are scale and translational functions parameterised by trainable parameters
θ , and ⊙ is the element-wise product. The reason for the construction of the bijective
functions Eq.(1.65) is so that the Jacobian is guaranteed to be invertible and tractable. In
coupling layers, this is achieved by designing the transformation in a block-wise manner,
making the Jacobian matrix easier to compute. Specifically, the Jacobian determinant can
be calculated analytically as

det
∣∣∣∣∂y(x;θ)

∂x

∣∣∣∣=
∣∣∣∣∣∣∣∣

∂y1
∂x1

· · · ∂y1
∂xD... . . . ...

∂yD
∂x1

· · · ∂yD
∂xD

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

I1:d · · · 0
... . . . ...

∂yd+1:D
∂x1:d

· · · diag(exp [s(x1:d,θ)])

∣∣∣∣∣∣∣∣ (1.66)

where I1:d represents the identity matrix of size d×d, and diag(exp [s(x1:d,θ)]) refers to
a diagonal matrix containing the exponentiated values of the scale function s(x,θ).

Since the calculation of the Jacobian determinant in the coupling layer does not require
evaluating the full Jacobian of the functions s or t, these functions can be as complex as
necessary. Although s(x,θ) appears in the transformation, we do not need to compute
the full Jacobian (i.e., the derivatives of all elements of s). Instead, only the value of
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s(x,θ) is needed to compute the determinant. This is because the Jacobian matrix has a
structure where only the diagonal elements (associated with s) contribute to the determ-
inant. Therefore, s and t can be modeled as deep neural networks, parameterized by θ ,
allowing for highly flexible and expressive transformations without incurring significant
computational overhead [76].

1.8.3 Spline Flows

Another implementation of NFs is spline flows. Work described in Ref. [77], based on
Ref. [75], shows that this development significantly amplifies the adaptability of coupling
and autoregressive transformations while maintaining the property of analytic invertibil-
ity. This methodology revealed that the implementation of neural spline flows remarkably
enhances the accuracy of density estimation [75, 77].

The main idea behind spline flows is the construction of an affine mapping function,
such as y = gθ (x) using monotonic rational-quadratic splines, where, parameterised by
trainable parameters θi. A spline is defined by a series of points called knots, which
divide the input space into bins. Each bin between knots is characterized by a monotonic
rational-quadratic function, which is a ratio of two quadratic polynomials. The knots
serve as boundaries for these intervals, allowing the spline to smoothly and flexibly map
the data by adjusting the function within each defined segment [78]. These functions are
straightforward to differentiate and analytically invertible [77]. Using notation from [77],
lets assume the input data x is defined between [−B,B]. For values outside this interval,
the transformation defaults to the identity function, introducing linear tails so that the
overall transformation can handle unconstrained inputs.

The construction then involves K distinct rational-quadratic functions, defined by K +1
coordinates, {(x(k),y(k))}K

k=0, referred to as knots. These knots are arranged monotonically
from (x(0),y(0)) = (−B,−B) to (x(K),y(K)) = (B,B). To define the spline’s behavior further,
[77] assigns K − 1 positive values, {δ (k)}K−1

k=1 , to represent the derivatives at the internal
knots, ensuring smooth transitions between segments. The derivatives at the boundary
knots, δ (0) and δ (K), are set to 1 to match the gradients of the linear tails. Figure 1.6
illustrates this setup [77].
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Figure 1.6: (Left): random monotonic rational-quadratic transform with K = 10 bins and
linear tails, defined by K+1 knots. Each interval between knots is described by a rational-
quadratic function. (Right): The derivative of the transform on the left with respect to x,
illustrating the smooth and monotonic nature of the transformation. Image credit [77]

The slope between adjacent points (xk,yk) and (xk+1,yk+1) is defined as

sk =
yk+1 − yk

xk+1 − xk
, (1.67)

and the position of x between two knots is normalised as

ζ (x) =
x− xk

xk+1 − xk
. (1.68)

The rational-quadratic spline for the k-th segment is

y =
α(k)(ζ )
β (k)(ζ )

= y(k)+

(
y(k+1)− y(k)

)[
s(k)ζ 2 +δ (k)ζ (1−ζ )

]
s(k)+

(
δ (k+1)+δ (k)−2s(k)

)
ζ (1−ζ )

, (1.69)

where δ (k) and δ (k+1) are the derivatives at the k and k + 1 knots, defining the shape
of the mapping spline function. Since the rational-quadratic transformation is monotonic
and applied element by element to the input vector, the Jacobian determinant can be
calculated by taking the derivative of the transformation for each input value. The logar-
ithm of the determinant is then the sum of the logarithms of these individual derivatives
[77]. The derivative of the rational-quadratic transformation with respect to x is given by:

d
dx

(
α(k)(ζ )
β (k)(ζ )

)
=

s(k)
[
2δ (k+1)ζ 2 +2s(k)ζ (1−ζ )+δ (k)(1−ζ )2

]
(
s(k)+

(
δ (k+1)+δ (k)−2s(k)

)
ζ (1−ζ )

)2 . (1.70)

To invert the rational-quadratic transformation, we solve for ζ (x) by solving a quadratic
equation derived from Eq.(1.69), as

aζ 2 +bζ + c = 0, (1.71)
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where the coefficients a, b, and c are given by

a = (y(k+1)− y(k))
(

s(k)−δ (k)
)
+(y− y(k))

(
δ (k+1)+δ (k)−2s(k)

)
, (1.72)

b = (y(k+1)− y(k))δ (k)− (y− y(k))
(

δ (k+1)+δ (k)−2s(k)
)
, (1.73)

c =−s(k)(y− y(k)). (1.74)

The quadratic formula then gives two potential solutions for ζ (x)

ζ (x) =
−b±

√
b2 −4ac

2a
. (1.75)

Since the rational-quadratic spline is monotonic, we can always determine the correct
root, ensuring that the inverse transformation is well-defined, and therefore find solutions
for x [77].

The rational-quadratic spline is applied elementwise to each component of the input vec-
tor, allowing for flexible transformations while ensuring computational efficiency. Since
the transformation is performed elementwise, the log-determinant of the Jacobian can be
computed as a sum over the transformed components. This makes the model efficient at
both transforming and inverting data distributions, which is especially useful for tasks
such as density estimation and generative modeling.

1.9 Conclusion

In this chapter, we covered a range of key topics that connect cosmology, GW, and ML. We
began by addressing the Hubble tension, the discrepancy between different measurements
of the universe’s expansion rate, which is a central challenge in modern cosmology. To
provide context, we discussed how the universe is expanding and why this tension arises
from inconsistencies in the observed expansion rate using different methods.

From there, we explored GWs, their theoretical background in general relativity, how they
are detected by observatories like LIGO and Virgo, and the challenges posed by noise,
along with techniques like matched filtering to detect GW signals.
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We then introduced Bayesian statistics, which provides a powerful framework for inferring
parameters from observed data. This approach is especially useful for studying GWs, as
it allows us to estimate the parameters describing the GW source, such as mass and
distance. From these parameters, we can measure the calibrated distance to the event,
which, in turn, enables cosmological measurements without relying on the traditional
cosmic distance ladder. However, due to the degeneracy between redshift and mass, it is
impossible to measure the Hubble constant solely using GW observations. To resolve this,
galaxy catalogues must be used with GW data, a technique proposed by Schutz [12].

We then provided a brief literature review on the advancements in cosmology through GW
observations, beginning with the foundational proposal by Schutz, who first suggested the
use of GWs to measure the Hubble constant with galaxy catalogues. This was followed by
the contributions of Finn and Chernoff, and later by Walter Del Pozzo. Samaya Nissanke,
Messenger and Read continued this progress, with further developments from Taylor and
Gair. These efforts ultimately culminated in the first direct GW measurements, where
pipelines such as gwcosmo and IcaroGW were employed to estimate cosmological and pop-
ulation parameters. These developments laid the foundation for using GWs as a powerful
tool to extract valuable cosmological insights.

We then explored how Bayesian methods are applied to address the challenges of inferring
cosmological parameters from GW observations. In particular, we focused on gwcosmo, a
key tool for estimating cosmological and population parameters by combining GW data
with galaxy catalogues. We also present CosmoFlow, which builds on the assumptions
made in gwcosmo but exploits ML techniques to predict cosmological parameters, which
is the main topic of this thesis.

In the ML section, we introduced the different types of learning, supervised, unsupervised,
and reinforcement and their applications in processing large datasets. We then focused on
NFs, an ML technique designed for modeling complex probability distributions efficiently.
We explored how NFs operate, emphasizing the role of coupling and spline flows, which
make these models both powerful and computationally feasible. These techniques will play
a central role in the methodologies of CosmoFlow in this analysis.
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Chapter 2

CosmoFlow: data generation

Declaration: the majority of the material in this chapter is based on the methodology of
my first-author paper [54].

2.1 Introduction: What is CosmoFlow and why is it
important?

As highlighted in the introductory Chapter 1, the use of GW for inferring cosmological
parameters has advanced significantly since the first detection in 2015 [30]. A major break-
through occurred in 2017 with the detection of a BNS merger event [49]. This event,
notable for its multimessenger nature, where both EM and GW signals were observed,
provided one of the most precise cosmological measurements to date using GW events.
Subsequent detections of other GW events have continued to contribute incrementally to
our understanding of cosmology. This progress has involved using a Bayesian approach
to estimate the posterior distributions of cosmological parameters by leveraging GW pos-
terior data samples, particularly the luminosity distance, in combination with EM data
such as galaxy surveys.
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Current methods, while effective at estimating cosmological parameters, rely heavily on
the computational speed of evaluating complicated integrals. This becomes increasingly
inefficient as the number of GW events rises due to enhanced detector sensitivity. Addi-
tionally, these pipelines lack the flexibility to expand the analysis to multiple cosmological
parameters, which will become important as more distant events are detected, where para-
meters like the dimensionless density parameters have greater influence on the luminosity
distance estimation.

There is a clear need for faster and more flexible pipelines to manage the growing number
of detectable events by the LIGO/VIRGO and future KAGRA detectors. This requires
much quicker computation of likelihoods to estimate cosmological parameters efficiently.

This chapter introduces CosmoFlow, a machine learning tool designed for the estima-
tion of cosmological parameters through the application of simulation-based inference.
Simulation-based inference methods address complex problems by using simulations to
approximate the likelihood function, which can then be incorporated into traditional
Bayesian frameworks to infer the posterior distribution. This likelihood-based approach is
particularly useful when the likelihood is difficult to calculate analytically but still feasible
to estimate numerically or approximate with computational methods, making it tractable.
Alternatively, likelihood-free inference techniques directly estimate the posterior distri-
bution without the need to compute the likelihood explicitly. Methods like Approximate
Bayesian Computation (ABC) [79] generate simulated data and compare it to observed
data, adjusting the model parameters to achieve a close match. Likelihood-free meth-
ods are especially valuable in situations where calculating the likelihood is impractical or
impossible [80]. In the case of CosmoFlow, we use the likelihood-based approach, where
we approximate parts of the likelihood function to estimate the posterior distribution of
cosmological parameters using NFs.

In simpler terms, our objective is to generate synthetic data of GW events under different
cosmological scenarios, representing potential GW events from BBHs observable under
various cosmological parameters. We aim to identify which events can be detected above
a certain SNR threshold to account for GW selection effects. The SNR measures the
strength of the GW signal relative to background noise, with higher SNRs indicating
more reliable detections and accurately measured parameters. Events with lower SNRs
are more susceptible to noise, leading to uncertainties and biases in parameter estimation.
By setting an SNR threshold, both gwcosmo and CosmoFlow include only high-confidence
events, improving the reliability and accuracy of inferred cosmological parameters.
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This chapter focuses on three major aspects of the CosmoFlow analysis: the theoretical
Bayesian approach to estimate the posterior distribution from GW and EM data; the
generation of GW event data and integration of galaxy surveys, for which we use GLADE+
[81]; and finally, the training of the NF within the data-generation process.

2.2 CosmoFlow: Bayesian Framework

In this section, we will define the Bayesian framework developed for the analysis of
CosmoFlow [82]. In developing this framework, we aimed to remain as consistent as pos-
sible with the established Bayesian framework of gwcosmo [14, 51, 52, 83]. This consistency
allows us to compare the methods more directly and, if needed, change CosmoFlow’s un-
derlying methodologies to align more closely with gwcosmo.

We start by defining the posterior distribution of the cosmological parameters, Ω, condi-
tioned by the GW strain data with n events, h = [h1,h2, . . . ,hn] as

p(Ω|h,D, I) = p(Ω|I)∏
i

p(hi,Di|Ω, I)
p(hi,Di|I)

, (2.1)

where D = [D1,D2, . . . ,Dn] is the binary state of detection, 1 for detected and 0 for not
detected for the ith event, and I represents all other assumed information. The detect-
ability of a GW signal accounts for the selection effects that arise when applying SNR
thresholds on candidate events [84, 85]. It is important to ensure the likelihood term is
properly normalised, such that

∑
Di=0,1

∫
p(hi,Di|Ω, I)dhi = 1. (2.2)

This normalisation allows us to properly evaluate the likelihood over all detectable and
non-detectable events, marginalising over all events. This ensures that the analysis covers
the entirety of the GW parameter space. However, encoded within I is the information
that only events exhibiting an SNR greater than some threshold ρth are considered.

To elaborate further, although we have measured strain data for all times, not just for
detected events, our analysis focuses on the subset of events that exceed the detection
threshold. This implies that for detected events, we only consider the data where Di = 1.
This ensures that our likelihood function is conditioned on the event being detectable,
effectively normalising the likelihood to the subset of detectable events. This is why we can
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simplify p(hi|Ω,Di = 1, I) to p(hi|Ω, I), as Di = 1 by definition for these cases. Therefore,
by only considering detectable events (i.e., ρ ≥ ρth), we find that

p(hi,Di|Ω, I) =
p(hi|Ω, I)
p(Di|Ω, I)

(2.3)

where p(hi|Ω,Di, I)≡ p(hi|Ω, I). This equivalence holds because, for detected strain data
hi, the event is certainly detected by definition.

Therefore, the normalisation term p(Di|Ω, I) ensures that we correctly account for the se-
lection bias introduced by only considering events above the ρth threshold, allowing us to
properly evaluate the likelihood over all detectable events and marginalise appropriately.
This approach ensures that the analysis encompasses the entirety of the GW parameter
space relevant to detectable events. This result allows us to write our cosmological para-
meter posterior as

p(Ω|h,D, I) = p(Ω|I)∏
i

p(hi|Ω, I)
p(hi,Di|I)p(Di|Ω, I)

. (2.4)

Then the numerator term can be expanded by marginalising over the GW detector-frame
parameters (θGW) as follows

p(Ω|h,D, I) = p(Ω|I)∏
i

∫
p(hi|θi,GW, I) p(θi,GW|Ω, I) dθi,GW

p(hi,Di|I) p(Di|Ω, I)
. (2.5)

We continue our derivation by focusing on expanding the second term in the numerator
within the integrand, namely p(θi,GW|Ω, I), which describes the prior distribution of the
GW parameters conditioned on the cosmological parameters.

This term is important because it accounts for the distribution of GW parameters given
our cosmological model and prior information. Conditioning the GW parameters on the
detectability of the event is essential to account for selection effects. Without this con-
sideration, our analysis could be biased by the fact that some events are more easily
detectable than others, which could skew the results. By incorporating detectability into
the prior, we ensure that our analysis accurately reflects the underlying population of GW
events and avoids biases introduced by selection effects.
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This can be achieved by applying Bayes’ rule, as defined in Eq. (1.33), to the term
p(θ |Ω,D, I) as follows:

p(θi,GW|Ω,Di, I) =
p(Di|θi,GW, I)p(θi,GW|Ω, I)

p(Di|Ω, I)
. (2.6)

We note that the detectability of an event is unaffected by Ω once the GW parameters
are specified in the detector frame, i.e., p(Di|θi,GW) ≡ p(Di|Ω,θi,GW, I). This holds true
because θi,GW are the detector frame parameters. In the detector frame, parameters such
as mass are already redshifted, and the luminosity distance is fixed for a given set of
GW parameters. Therefore, additional cosmological information does not influence the
detectability further.

We can define the probability of detection for a single detector, given the matched-filtering
SNR ρ , which depends on the GW parameters θGW, as:

p(D|θGW, I) =

1, if ρ(θGW)> ρth,

0, otherwise.
(2.7)

By rearranging Eq. (2.6), we can solve for p(θi,GW|Ω, I), and subsequently substitute this
expression into Eq. (2.5). After some mathematical manipulation, we obtain:

p(Ω|h,D, I) = p(Ω|I)∏
i

∫ p(hi|θi,GW, I) p(θi,GW|Ω,Di, I)������p(Di|Ω, I)
p(hi,Di|I)������p(Di|Ω, I) p(Di|θi,GW, I)

dθi,GW (a)

= p(Ω|I)∏
i

∫ p(θi,GW|hi, I) p(hi|I) p(θi,GW|Ω,Di, I)
p(hi,Di|I) p(Di|θi,GW, I) p(θi,GW)

dθi,GW (b)

= p(Ω|I)∏
i

p(hi|I)
p(hi,Di|I)

∫ p(θi,GW|hi, I) p(θi,GW|Ω,Di, I)
p(Di|θi,GW, I) p(θi,GW)

dθi,GW. (2.8)

In these series of equations, we have considered the posterior distribution of the GW para-
meters, p(θi,GW|hi, I). These parameters reflect the probabilistic model of GW parameters
conditioned on the observed strain data hi from each detected GW event, as detailed in
[86] and [87]. Then, by only considering terms that depend on the variation of the cos-
mological parameters, and noting that the prior on the GW parameters is conditioned on
the cosmological model and parameters used, we can write p(θi,GW|I) ≡ p(θi,GW|Ω0, I),
where p(θi,GW|Ω0, I) represents the GW parameter priors used in the parameter estima-
tion assuming a fixed cosmology Ω0 [86, 87]. This follows the proportionality relationship:

p(Ω|h,D, I) ∝ p(Ω|I)∏
i

∫ p(θi,GW|hi, I)p(θi,GW|Di,Ω, I)
p(Di|θi,GW, I)p(θi,GW|Ω0, I)

dθi,GW, (2.9)
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where we have omitted the term outside the main integral, as it is not a function of the
cosmological parameters and will thus be eliminated during the normalisation process.
From the definition of the expected value of a PDF of a random variable g(x) sampled
from a continuous distribution f (x), the expected value is given by:

E [g(x)] =
∫ ∞

−∞
g(x) f (x)dx. (2.10)

If we only have access to a set of samples from the distribution f (x), the expected value
can be approximated using these samples. This approximation is given by:

E [g(x)]≈ 1
N

N

∑
i=1

g(xi) = ⟨g(x)⟩x∼ f (x), (2.11)

where {xi}N
i=1 are the sampled values from f (x), and ⟨·⟩ denotes the expectation value

or average over the distribution f (x). This approximation becomes increasingly accurate
with a larger number of samples and is particularly useful in Monte Carlo simulations,
where the expected value is computed by averaging over these samples.

By examining Eq. (2.9), we can use the definition of the expectation value described in Eq.
(2.11) to compute the necessary integrals via Monte Carlo sampling. This ensures accurate
estimations of the posterior distributions. For a fixed number of sampled GW parameters
from the posterior defined as p(θ |h, I), it is possible to approximate the integral over
the GW parameters using a Monte Carlo summation. This approximation results in the
following expression:

p(Ω|h,D, I) ∝ p(Ω|I)∏
i

〈
p(θi,GW|Ω,Di, I)

p(Di|θi,GW, I)p(θi,GW|Ω0, I)

〉
θi,GW∼p(θi,GW|hi,I)

. (2.12)

The equation shows that the expectation is calculated over the GW parameters sampled
from the posterior distribution p(θi,GW|hi, I).

In Eq. (2.12), the numerator includes the probability density function of the GW para-
meters given the detection status of the ith event, Di, the cosmological parameters Ω,
and prior information I. This term is important to our analysis as it describes the prior
distribution of the GW parameters conditioned on the cosmological model Ω and the
detectability of the event. Within the prior distribution of the parameters, EM data will
be included through the use of galaxy catalogues, specifically GLADE+ [81].
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The denominator contains two terms: 1) p(Di|θi,GW, I) , the probability mass of detecting
an event given the GW parameters derived from the posterior samples for the ith event.
2) p(θi|Ω0, I), the prior distribution of GW parameters used in computing the posterior
samples for the ith event, which is influenced by the baseline cosmological model Ω0 and
prior information I.

2.2.1 Probability of detection

The probability of detection, p(D|θGW, I), as shown in the denominator of Eq. (2.12),
serves as a weighting factor for each posterior distribution sample associated with every
event. Each event in the GWTC-2 [86] and GWTC-3 [88] GW catalogues consists of a
set of posterior samples representing the inferred physical parameters of the detected GW
events. These samples are weighted according to their detectability when used in Eq.
(2.12).

The matched-filter SNR of an event, ρ , is compared against a threshold ρth to determ-
ine detectability. This approach follows the analysis presented in [16]. For the matched-
filtering SNR of a detector network, we assume that different detectors’ data can be
combined in quadrature

ρnet ≡
√

∑
i

ρ2
i , (2.13)

where ρi is the matched-filtering SNR of the ith detector, as described in Eq. (1.28), in the
network. This formula is valid when the noise of each detector is statistically independent
[89].

Due to the coincident analysis of multiple detectors, the noise-dominated matched-filter
SNR of the detector network can be described using a χ2 distribution. This arises from
the central limit theorem and the typically Gaussian nature of noise in GW detectors.

When no signal is present, the sum of squared independent Gaussian noise variables
follows a central χ2 distribution. This distribution arises because Gaussian noise in each
detector contributes to a squared sum, and in the absence of a signal, the expected value
of each squared term remains centered around zero.
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Figure 2.1: Survival function of the χ2 distribution, as detailed in Eq. (2.14), with
ρth = 11.

When a signal is present, however, the distribution changes to a non-central χ2 distri-
bution. In this case, the SNR follows a non-central χ2 distribution with a non-centrality
parameter Q(θGW)= ρ2, where ρ is the matched-filter SNR. The non-centrality parameter
Q(θGW) represents the contribution from the detected GW signal, which depends on the
GW parameters of the event, denoted by θGW. Essentially, when a signal is present, the
SNR has an offset (given by Q(θGW)), which indicates that the distribution is shifted away
from zero, reflecting the presence of an actual GW signal. This is expressed as follows:

p(D|θGW, I) =
∫ ∞

Q>ρ2
th

χ2(Q(θGW),k = 2n)dQ, (2.14)

where k = 2n represents the degrees of freedom, accounting for n detectors and doubled to
include both the real and imaginary parts of the strain data. The strain is represented as
a complex quantity because it includes both amplitude and phase information of the GW
signal. This integral function describes the survival function of the non central χ2 distri-
bution, and can be easily evaluated using the built-in function in scipy.stats.ncx2.sf
[90]. In Fig. 2.1 the probability distribution of detection, following a non-central χ2 distri-
bution, is plotted over different values of combined detector matched-filter SNR. In this
case, the ρth = 11 was set as the detector threshold SNR, which is the same value used in
[16].
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In this framework, highly detectable samples (with ρ(θ)≫ ρth) will have p(D|θ , I) ≈ 1,
meaning they contribute directly to the posterior without additional weighting. Con-
versely, samples with ρ(θ) ≈ ρth will have p(D|θGW, I) ≈ 0, meaning they are less likely
to be detected and thus are up-weighted in the analysis to account for their lower detect-
ability. This weighting ensures a balanced contribution from all samples.

2.2.2 Prior distribution

The prior distributions for GW parameters, represented by p(θGW|Ω0, I), define the ex-
pected range of values for these parameters, given the cosmological model Ω0 and any
relevant prior information I. Among the various GW parameters, the luminosity distance
DL plays a pivotal role in cosmological analysis.

In a flat universe (where Ωk = 0), the luminosity distance DL is related to the comov-
ing distance DC through the redshift factor (1+ z). Specifically, the luminosity distance
accounts for both the expansion of the universe and the increase in distance due to the
redshift, which can be expressed as:

DL = (1+ z)DC, (2.15)

where DC is the comoving distance. In a more detailed form, the comoving distance DC

can be written as:
DC =

c
H0

∫ z

0

dz′

E(z′)
, (2.16)

where E(z) describes the evolution of the expansion rate of the universe and depends on
cosmological parameters, such as the matter density parameter Ωm, curvature density
parameter Ωk, and dark energy density parameter ΩΛ:

E(z) =
√

Ωm(1+ z)3 +Ωk(1+ z)2 +ΩΛ. (2.17)

In the case of a flat universe (Ωk = 0), this simplifies to:

E(z) =
√

Ωm(1+ z)3 +ΩΛ. (2.18)

Thus, the luminosity distance can be expressed as:

DL =
c(1+ z)

H0

∫ z

0

dz′

E(z′)
. (2.19)

- 53 -



2.2. CosmoFlow: Bayesian Framework

This relationship highlights how the luminosity distance DL depends directly on the red-
shift z, the Hubble constant H0, and the evolution of the expansion rate E(z), which is
determined by the cosmological parameters [1].

In the GW events listed in GWTC-3, a prior uniform in comoving volume was used, assum-
ing a constant merger rate in the source’s comoving frame with H0 = 67.9kms−1Mpc−1

and Ωm = 0.3065 [47, 48, 91]. The comoving volume, VC, is defined under the assumptions
of isotropy and homogeneity, implying that matter is uniformly distributed on large scales
(greater than 100 Mpc). The differential comoving volume is

p(z) ∝
dVC
dz

=
c3

H3
0

(∫ z

0

dz′

E(z′)

)2 1
E(z)

. (2.20)

When normalised, this volume becomes independent of H0, since it is only a function of
redshift, making it suitable for modeling galaxy distributions as a function of redshift [92].
To maintain a uniform distribution in comoving volume, the corresponding prior in terms
of luminosity distance is

p(DL) = p(VC)

∣∣∣∣dDL
dVC

∣∣∣∣ ∝ D2
L. (2.21)

This approach aligns with the analysis in Ref. [16].

Apart from luminosity distance, other GW parameters, such as spin magnitudes, compon-
ent masses, spin orientation, sky location, and binary orientation, are assigned uniform
or isotropic priors [48]. For instance, spin magnitudes and redshifted component masses
have uniform priors, while spin orientation and sky location follow isotropic distributions,
meaning they are equally likely in all directions. This approach allows for an unbiased
sampling of the parameter space [48]. Therefore, the term in the denominator of Eq. (2.12)
that accounts for the prior probability of the GW parameters used during PE is

p(θGW|Ω0) ∝ p(DL) ∝ D2
L, (2.22)

where the priors on the other GW parameters are uniform and thus contribute as con-
stants, which cancel out upon normalisation [48]. Further details on these priors will be
discussed in Sec. 2.5.
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2.3 CosmoFlow: Data Generation

2.3.1 Short overview

In the Bayesian framework outlined in Sec. 2.2, our primary focus is evaluating Eq. (2.12).
To do so, we plan to approximate the numerator using a machine learning strategy. A
NF, as introduced Sec. 1.8, is the ideal choice due to its capability to model complex
distributions, which is essential for incorporating GW selection effects and EM information
into the posterior distributions of cosmological parameters.

Our objective is to achieve a data distribution that mirrors the probability distribution
p(θGW|Ω,D). This term reflects the prior probability of GW parameters conditioned on
the cosmological parameters and the detectability of each GW event. This term is of high
importance, as it will efficiently handle complex features inherent in cosmological data-
sets, such as galaxy clusters present in galaxy surveys and selection effects caused by the
detectability of GW signals, which require careful consideration. For instance, the detect-
ability of an event can be influenced by cosmological parameters. For a fixed redshift,
sampled from either a galaxy catalogue or a comoving volume prior, higher values of H0

result in shorter luminosity distances, thereby increasing the SNR and, consequently, the
probability of detection. Other parameters that could influence the results include popu-
lation parameters, such as the maximum mass (Mmax). Allowing for different maximum
mass levels could increase the probability of detecting events at greater distances.

This section will give a brief overview of how the data generation process is performed,
varying only one cosmological parameter, H0, while keeping other parameters, such as
the mass model parameters and the dimensionless density parameter, Ωm, fixed. More
details about the mathematical descriptions of all priors used in the data generation will
be provided in the following sections.

The data generation process begins by choosing a specific cosmological model. In this
case, a flat ΛCDM model is used, the same as in Ref. [16], with Ωm = 0.3. We then
uniformly sample the cosmological parameters, Ω, which, for the one-dimensional case,
would only be H0. We proceed by selecting redshifts sampled from a comoving volume
prior distribution, reparameterized to account for the merger rate in the detector frame,
as defined in [93].
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Figure 2.2: A schematic representation of spherical coordinates. The polar angle θ starts
from the north pole, and the azimuthal angle ϕ is the longitudinal coordinate. The small
surface element dA is shown with sides r dθ and r sin(θ)dϕ . Image credit [94].

We then sample sky locations over the 2D sphere by uniformly sampling right ascension,
α , from a uniform distribution between 0 and 2π, and declination, δ , from a uniform dis-
tribution in cosine between -1 and 1. This method ensures uniform sky coverage, avoiding
clustering at the poles. Mathematically, the area element on a sphere in spherical coordin-
ates is given by:

dA = r2dθ sin(θ)dϕ . (2.23)

Here, ϕ and θ correspond to the longitudinal and latitudinal polar coordinates, with θ
starting from the pole, and r is the radial component. In Fig. 2.2 a schematic representation
of spherical coordinates is provided, showing the longitudinal and latitudinal coordinates
with radius r. A small element of the surface area is also illustrated, with sides r dθ
and r sin(θ)dϕ . Since sin(θ) = cos(δ ), the prior distribution in declination, normalised
between −π/2 and π/2, is given by:

p(δ )dδ =
cos(δ )dδ∫ π/2

−π/2 cos(δ )dδ
=

1
2

cos(δ )dδ . (2.24)

Following the selection of cosmological parameters, redshifts, and sky locations, absolute
magnitudes are sampled using a luminosity function, also known as the Schechter function
[95], described as

p(L)dL = ϕ∗

(
L
L∗

)α

exp

(
− L

L∗

)
dL. (2.25)
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In this function, ϕ∗ represents the normalisation factor, L∗ denotes the characteristic
luminosity, and α is the faint-end slope. To convert this luminosity function to absolute
magnitudes, we use the relation

M = M∗−2.5log10

(
L
L∗

)
, (2.26)

where M∗ is the absolute magnitude corresponding to L∗. Since we are interested in using
a specific galaxy catalog, the luminosity function we will use follows the one fitted for the
galaxy catalog. To align with [16], we will use the GLADE+ catalog. For the K-band, the
Schechter function parameters are M∗

K =−23.39 and αK =−1.09 [96]. The bright cut-off
is set to Mmin,K =−27.00 and the faint cut-off is set to Mmax,K =−19.0, corresponding to
galaxies with luminosity L > 0.017L∗

K .

In preprocessing, the catalog is divided into individual pixels using the HealPy [97, 98]
module. HealPy is based on the HEALPix (Hierarchical Equal Area isoLatitude Pixela-
tion) framework, which divides the entire sky into equal-area pixels. Each pixel represents
a discrete area of the sky and is identified by a unique index, allowing for efficient stor-
age, manipulation, and analysis of the catalog corresponding to different sky regions.
Consequently, from each sky sample, we can determine the pixel location on the sky and
correlate this with the preprocessed pixelated galaxy catalog. With the galaxy catalogue
pixelated, we can compute the magnitude threshold map of the galaxy survey. A mag-
nitude threshold map is a tool used to filter galaxies based on their apparent magnitudes.
In gwcosmo, this map is created by taking the median of apparent magnitudes within
each pixel and discarding all galaxies with magnitudes above this threshold. The median
is used because it is a robust statistic that effectively represents the central tendency of
the apparent magnitudes within each pixel. Unlike the mean, the median is not heavily in-
fluenced by outliers or extreme values, making it a more reliable measure for this purpose.
This approach ensures only the most significant and detectable galaxies are considered in
the analysis [14]. By focusing on galaxies that are bright enough to be reliably detected,
the magnitude threshold map helps improve the accuracy and efficiency of the analysis.

After selecting a host galaxy, we determine whether the galaxy should be sampled from
the catalogue or remain as a sample from the prior. To make this decision, we use the
magnitude threshold map. We compute the apparent magnitudes of the sampled galaxies,
with

m = M+5log10

(
DL

[Mpc]

)
+25, (2.27)
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where m represents the apparent magnitude of the galaxy, M is the absolute magnitude
of the galaxy, and DL is the luminosity distance to the galaxy in megaparsecs (Mpc). The
decision then to select a galaxy from the catalogue depends on the comparison between
the apparent magnitude of the sampled host galaxy and the magnitude threshold provided
by the catalogue for that galaxy’s specific pixel location. Essentially, this step determ-
ines whether the sampled galaxy meets the visibility criteria set by the catalogue. If the
galaxy’s apparent magnitude is brighter than the catalogue’s threshold at that pixel, it
suggests that the galaxy would realistically be part of the catalogue under typical obser-
vational conditions. Therefore, we sample a galaxy from the catalogue pixel, weighting
it by its intrinsic luminosity and down-weighting by a factor of (1+ z) to account for
the time delay between different host galaxies at different redshifts. This means that the
weighting factor for each galaxy within a pixel is L/(1+ z). Otherwise, if the apparent
magnitude is higher than the magnitude threshold map value at the specific pixel, we
retain the simulated galaxy as originally sampled from the priors.

Then we proceed to place synthetic compact binary coalescence (CBC) events, such as
BBHs or NSBHs systems, within these galaxies. This is done by sampling the GW para-
meters that describe the strain-data waveform model (14 in total, excluding the phase
parameter) from uniform priors, except for the masses, and associating each set of GW
parameters with a selected host galaxy.

In this section, we introduce the population models of the events, describing the prob-
ability distribution of the primary and secondary masses. To align our results with [16],
we use the Power Law Plus Peak mass distribution for m1 and m2, which is described
in detail in Section 2.5.1. It is important to note that the events we generate will be in
detector-frame mass. Therefore, the masses are coupled with the respective redshift value
obtained from the host galaxy, which could be a galaxy from the catalogue or otherwise,
thus obtaining the detector frame masses as

mdetector = msource(1+ z), (2.28)

where mdetector are the detector-frame masses, msource are the source-frame masses and
z is the redshift. The parameter-estimation process involves 15 parameters that describe
the strain-data waveform model. These parameters include the component masses m1 and
m2, the spin magnitudes a1 and a2, the spin tilt angles θ1 and θ2, the inclination angle
θJN, the luminosity distance DL, the right ascension α , the declination δ , the polarization
angle ψ , the time of coalescence tc, and the phase ϕ at coalescence.
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Therefore, for the remaining 10 parameters, the spin magnitudes a1 and a2 are assumed
to follow uniform distributions between 0 and 1, while the spin tilt angles θ1 and θ2 are
uniformly distributed between 0 and π. The inclination angle θJN is uniformly distributed
in cosine between 0 and π. The polarization angle ψ is uniformly distributed between 0
and π. The time of coalescence tc is uniformly distributed over the observation period
of one sidereal day (86164.0905 seconds). The azimuthal angle ϕ12, which describes the
position compared to the orbital plane, and ϕ jl, which describes the orientation of the
total angular momentum relative to the line of sight, are uniformly sampled between 0
and 2π [99]. Finally, the phase ϕ at coalescence is omitted because it does not influence
the matched-filtered SNR and therefore has no impact on the detectability of the events
we synthetically generate.

After sampling GW parameters from their priors, we compute the optimal SNR associated
with the resulting waveforms. This step is recognized as the primary bottleneck in the
data generation process. The bottleneck arises because the computation of the optimal
SNR for a synthetic event relies on the bilby package [100]. This package allows us to pass
the sampled GW parameters, along with other initialization components and a defined
power spectral density (PSD) for the detectors used, to compute the optimal SNR.

A key challenge is that this computation may not be easily parallelizable, requiring the
evaluation of millions of SNRs individually, which significantly impacts performance. Con-
sequently, this significantly slows down the process. Following the consideration of selec-
tion effects, only GW events with an SNR above a certain threshold, ρth, are retained
along with their associated cosmological parameters. This leads to inefficiencies, as many
of the sampled parameters fall within regions of the parameter space that are not eas-
ily detectable, resulting in the majority of synthetic events being discarded. To mitigate
this inefficiency, a machine learning approach is employed. Specifically, a Multi Layer
Perceptron (MLP) is used to approximate the optimal SNR calculation. This method
significantly accelerates the process by providing a fast, approximate computation of the
SNR.

Events that are not detected undergo resampling of all parameters except for the cosmolo-
gical parameter. This is then fed back into the initial stage of the data generation process,
where all host galaxy and GW parameters are resampled. This iterative process contin-
ues until a combination of intrinsic and extrinsic GW parameters results in a detectable
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Figure 2.3: Flow chart representing the simulation process used for GW event para-
meter generation conditional on cosmological and population parameters. Here the θ̂GW
correspond to the spin magnitudes, angular orientations and geocentric time of arrival
parameters.

event. This approach ensures that the generated cosmological data ultimately matches
the chosen prior distribution of cosmological parameters. A detailed flowchart illustrating
the data generation process is presented in Fig. 2.3. The data generation process can be
split into three sections.
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In Section I, cosmological and population parameters are sampled uniformly, followed
by sampling redshifts of galaxies hosting GW events. These parameters are combined to
compute the luminosity distance for each event. A galaxy catalogue provides luminosity
function parameters, from which absolute magnitudes are sampled. With the luminosity
distance, apparent magnitudes are computed. Host galaxies are placed on a 2D sky map,
assigned to pixels based on resolution. If a galaxy’s magnitude is below the threshold,
we sample from the galaxy catalogue within that pixel; otherwise, the previously selected
host galaxies are retained. In Section II, GW parameters are sampled, with source masses
following a power law plus peak distribution [87]. Luminosity distance, redshifts, and sky
locations are taken from the host galaxies. Remaining GW parameters are sampled from
uniform priors. In Section III, the GW parameters are passed as inputs into the SNR ap-
proximator defined in Sec.2.6.1. If the SNR exceeds the threshold, all GW and associated
cosmological parameters are retained. If below the threshold, cosmological parameters
are reused, while other parameters are resampled until a GW event is detected. The next
section delves into the data generation process, split into three parts:

• Selecting Host Galaxies, Sec.2.4, Fig. 2.3 (Sec.I);
• Selecting GW parameters, Sec.2.5, Fig. 2.3 (Sec.II);
• Selecting detected GW events, Sec.2.6.1, Fig. 2.3 (Sec.III);

2.4 Selecting Host Galaxies

In this section, we will look at the initial step of the data generation process: the selec-
tion of host galaxies for synthetic CBC events. By selection of galaxies, we refer to the
determination of specific astronomical parameters, as in, right ascension (α), declination
(δ ), redshift and luminosities. These parameters for each galaxy are either drawn from
predefined priors or directly sourced from the galaxy catalogue.

First, we will discuss the prior distributions for host galaxy redshifts. Next, we will examine
the GLADE+ galaxy catalogue, focusing on its characteristics, particularly the luminosity
function and its fitting parameters. We follow the methodology from [16] to compute
a magnitude threshold map, which is important due to the flux-limited nature of the
GLADE+ catalogue. This map helps differentiate between galaxies that are detectable in
the catalogue and those that are not within our data generation process. Finally, we will
explain our approach for deciding whether to retain a sampled galaxy from the priors or
select it from the galaxy catalogue.
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Figure 2.4: 1D distribution of GW redshifts in host galaxies given the Madau and
Dickinson phenomenological model expressed in Eq. (2.29). The values used are γ = 4.59,
k = 2.86 and zp = 2.47 with a Flat ΛCDM universe with Ωm = 0.3.

2.4.1 Redshift distribution for host galaxies

We first choose a prior on H0 and fix the baryonic density parameter at Ωm = 0.3 within a
flat ΛCDM model, and then we sample the cosmological parameters. Next, we sample the
redshifts of the host galaxies. To do so, we use the assumption that dark-sirens BBH GW
events are localized within galaxies hosting them, thus it is possible to model the binary
merger rate using a phenomenological model introduced by Ref. [101], and parameterized
by Ref. [93], as follows:

p(z|γ,k,zp,Ω) =
dN

dtdz
= N R0

[
1+(1+ zp)

−γ−k
] 1

1+ z
∂Vc(Ω)

∂ z
(1+ z)γ

1+(1+ z/1+ zp)
γ+k , (2.29)

where R0 is the merger rate today, zp is the characteristic redshift point between the two
power-law regimes (corresponding to the maximum of the function), γ is the slope of the
power-law regime for the rate-evolution before the point zp, and k is the slope of the
power-law regime for the rate-evolution after the point zp, and N is the normalisation
factor. The 1/(1+z) factor allows for the transformation from the source rest frame to the
detector frame in the time dimension, while the factor (1+ zp) ensures that the merger
rate today is R0 by normalising the equation such that terms involving (1+zp)

−γ−k cancel
out at z = 0, thereby simplifying the expression to R0 when evaluated at z = 0 [101].
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The phenomenological distribution described in Eq. (2.29) for GW events is hypothesized
to correlate with various astrophysical processes, including the rate of binary system
formations and star formation rates within host galaxies [101]. This distribution is essential
for understanding the evolution of GW event rates over cosmic time. By linking GW event
rates with astrophysical processes such as star formation, the model provides valuable
insights into the distribution of GW events across different redshifts.

The population parameters that describe Eq. (2.29) will be held fixed at the following
values: γ = 4.59, k = 2.86, and zp = 2.47 as described in [87]. These are the same values
used in the analysis by [16]. A representation of the redshift distribution of GW events
is shown in Fig. 2.4. Using the PDF described in Eq. (2.29), we sample redshift values
corresponding to host galaxies of BBH mergers.

2.4.2 Galaxy catalogue, GLADE+

The GLADE+ [81] catalogue is an extended version of the GLADE [102] galaxy cata-
logue. It is comprised of six distinct yet interconnected astronomical catalogues: the
GWGC [103], 2MPZ [104], 2MASS XSC [105], HyperLEDA [106], and WISExSCOSPZ
[107, 108] galaxy catalogues, alongside the SDSS-DR16Q quasar catalogue [109].

The GLADE+ catalogue covers the entirety of the sky, with exception of the region
covered by the galactic band of the Milky Way. A sky map of the GLADE+ catalogue
is shown in Fig. 2.5, where the galactic band of the Milky way is clearly visible. The
map was generated using the K-band galaxies from the catalogue with a resolution of
NSIDE = 64. Overdensities, such as the central region depicted in Fig. 2.5, originate from
the HyperLEDA catalogue. These overdensities arise due to more in-depth and sensitive
surveys, like SDSS and GAMA, conducted in the corresponding sky areas [81]. GLADE+
contains approximately 22 million galaxies and it covers the full 2D sphere of the sky,
with a completeness of 20% up to 800 Mpc [81]. Catalogue completeness refers to how
well a catalogue represents the actual population of galaxies. For a flux-limited catalogue
like GLADE+, completeness assesses the extent to which the catalogue includes galaxies
of varying brightness across different distances [81]. Higher completeness indicates a more
comprehensive inclusion of galaxies, especially those that are more distant and fainter
in magnitude. Due to the flux-limited nature, as the distance increases, the catalogue
increasingly misses fainter galaxies, which impacts the overall completeness.
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Figure 2.5: Mollweide projection of GLADE+ catalogue showing bin count on each pixel
with a resolution of NSIDE = 64, with a total number of pixels of Npix = 12×NSIDE2 =
49152. The galaxies shown here are only for the K-band and a mask with a minimum
galaxy per pixel has been applied of Nth = 1, setting the count to zero if there are 1 or
less galaxies in that pixel, for plotting purposes.

To address the incompleteness of GLADE+, we generate a magnitude threshold map from
the catalogue. The completeness of a galaxy catalogue is typically assessed based on
an apparent magnitude threshold [110], denoted as mth. This threshold is determined by
calculating the median apparent magnitude from the distribution of galaxies for each pixel,
establishing a limiting magnitude in every direction. We adopt the methodology described
in Ref. [111], where the median apparent magnitude of all galaxies in each pixel is used
to set the threshold, discarding galaxies dimmer than this threshold. The magnitude
threshold map aims to approximate a fully complete catalogue, meaning it includes all
galaxies above a certain apparent brightness and ignores those that are dimmer than the
threshold. This method simplifies the analysis by removing the need to account for varying
levels of completeness across different regions, ensuring that only galaxies bright enough
to meet the threshold in each pixel are considered. Figure 2.6 illustrates this concept,
showing the median K-band apparent magnitude from each pixel as the threshold for
the apparent luminosity of galaxies within each pixel. This magnitude threshold map is
employed in the data generation process to distinguish between galaxies sampled from
the prior or from the GLADE+ catalogue.
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Figure 2.6: Mollweide projection of the magnitude threshold map of GLADE+ catalogue
using the K-band. The resolution is set to NSIDE = 32. The shaded grey area represents
the galactic band of the Milky Way, where the values of mth = 0 for a better figure
readability.

Owing to its extensive sky coverage, GLADE+ stands out as one of the best catalogues for
following up on GW events. This advantage, however, comes with the trade-off of having
somewhat limited depth in redshift measurements. Other catalogues, such as the Dark
Energy Survey (DES) Year 1 [9] and the DESI Legacy Imaging Survey [112], are expected
to be complete up to redshift z ∼ 1. Nevertheless, we choose to employ the same all-sky
galaxy catalogue for all our events, following the analysis in Ref. [16]. Future work will
explore combining data from different catalogues to perform data generation over various
galaxy surveys, allowing for more in-depth information about redshifts.

Most of the redshifts in the GLADE+ catalogue are photometric and are estimated using
a machine learning model described in Ref. [113]. The photometric redshifts are determ-
ined by analyzing the magnitudes across various color bands to discern the extent of
redshifting of the source. To obtain the redshift information, Ref. [113] employs an arti-
ficial NN, named ANNz, designed to estimate photometric redshifts from apparent mag-
nitudes across different color bands. After training, the model achieves a relative error
of σ ≈ 0.033(1+ zph), where zph represents the photometric redshift [114]. The catalogue
also includes corrections for peculiar velocities, obtained using a Bayesian technique as
described in Ref. [115].
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The catalogue consists of two main magnitude bands: the BJ band and the Ks band
(hereafter referred to as the K-band). In this analysis, we use all galaxies with measured
K–band luminosity reported in the Vega system. This band was chosen because of a good
match between the galaxy luminosity function and the galaxy number density in the
GLADE+ catalogue [16]. Each spectral band has its own luminosity distribution, which
follows the Schechter function, described in Eq. (2.25). This function was first described in
the Press-Schechter formalism [95]. It is mathematically described by a Gamma function
(for more information about Gamma functions, see Ref. [116]), as

p(L)dL = ϕ∗

(
L
L∗

)α

exp

(
− L

L∗

)
dL, (2.30)

and the parameters are p(L)dL, which is the number of galaxies per unit volume within
a luminosity interval L and L+∆L, ϕ∗ is the normalisation constant and L∗ is a charac-
teristic luminosity, indicating the luminosity at which the exponential cutoff of the dis-
tribution occurs [95]. We can also transform this distribution to absolute magnitudes, M,
which are more practical for our purposes. By using the absolute magnitude in Eq. (2.27)
(the distance modulus equation) together with the luminosity distance, we can obtain
the apparent magnitudes. To do so, we can use the change of variable equation, where
p(L)dL = p(M)dM, where the relationship between absolute magnitudes and intrinsic
luminosity can be described as

M =−2.5log10(L)+ const., (2.31)

where the constant can be associated with any known luminosity for which we have a
corresponding absolute magnitude (i.e. for the Sun, const.= M⊙,K+2.5log10(L⊙)), where
M⊙,K = 3.28 is the absolute mangitude of the Sun in the K-band [117]. By applying the
relationship in Eq. (2.31) to the change of variable in Eq. (2.30), we obtain the Schechter
function described in terms of absolute magnitude

p(M) = 0.4 ln(10)ϕ∗ 100.4(M∗−M)(α+1) exp
(
−100.4(M∗−M)

)
. (2.32)

For the K-band, parameters from [118] are adopted, with ϕ∗ = 1.16102× h3Mpc3, h ≡
H0/100, M∗ = 23.39, and α = 1.09, where the fit has been applied in the luminosity range
of MK = [−19,−27]. These parameters were fitted using a value of the Hubble constant
fixed at H0 = 100kms−1 Mpc−1. Color and evolution correction terms have been applied,
modifying the distance modulus relationship in Eq. (2.27) to:

mcorr = m+K, (2.33)
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where mcorr is the corrected apparent magnitude, K is the correction factor given by
K =−6.0log10(1+ z) for redshifts z > 0.25, as detailed in [118].

In the data generation process, we assume that the luminosity function of the entire
universe, or at least up to the maximum distance of detectable events, can be described
by the Schechter function as detailed in Eq. (2.32). We set a bright cut-off high enough
to include all the bright galaxies supported by the Schechter function: Mmin,K = −27.00
and consider all the galaxies no fainter than Mmax,K = −19.0, for an h = H0/100 = 1.
These choices correspond to all galaxies with luminosity L > 0.017L∗

K , where L∗ is the
characteristic galaxy luminosity of the Schechter function [16].

An important consideration for this study, particularly because we focus on host galaxies
of GW events, is the assumption of luminosity weighting as used in [16]. The assumption
is that galaxies more likely to host CBCs events are typically more massive and, as a
result, more luminous in certain bands. The underlying reasoning is that galaxies with a
higher number of compact binaries are generally heavier, leading to increased luminosity.
Therefore, more massive and luminous galaxies are assumed to have a higher probability
of hosting GW events. However, given the absence of a definitive empirical relationship
between galaxy properties and the occurrence of CBC events, we adopt a conservative
approach by applying a linear weighting. Consequently, the distribution we are interested
in is represented as

p(L)L = ϕ∗L∗

(
L
L∗

)α+1

exp

(
− L

L∗

)
. (2.34)

When expressed in terms of absolute magnitude, Eq. (2.34) becomes

p(M) ∝ 100.4(M∗−M)(α+2) exp
(
−100.4(M∗−M)

)
. (2.35)

This equation modifies Eq. (2.32) by incorporating an additional term in the exponential
factor. Specifically, an extra factor of L introduces an additional factor of 10−0.4∗M. The
distribution described in Eq. (2.35) will be used as the prior distribution for sampling
galaxy luminosities that host CBC throughout the entire analysis. From this distribution,
we sample absolute magnitudes before determining whether the sampled galaxy should
be included in the catalogue or not.

Therefore, after sampling the cosmological parameters and the redshifts, and computing
the luminosity distance, we proceed to sample the absolute magnitude from the lumin-
osity function defined in Eq. (2.35). One important aspect of the luminosity function
described in Eq. (2.35) is that it remains mathematically invariant when varying H0. This
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is because H0 affects the distance measurements and, consequently, the luminosity calcu-
lations. Changing H0 scales the luminosities but does not alter the relative distribution
of galaxy luminosities. In this case, since the shape of the distribution is invariant under
changes in H0, we can sample the Schechter function with a fixed value of h = H0/100 = 1.
We then shift the magnitude by M(h) = M100 + 5log10(h), where M100 is the absolute
magnitude sampled under the condition that h = 1.

To derive this equation, we start with the distance modulus formula, using the distance
in parsecs:

m−M = 5log10(DL)−5. (2.36)

The luminosity distance DL depends on the Hubble constant H0. For a given redshift
z, DL ∝ 1/H0. Let DL,100 be the luminosity distance for H0 = 100kms−1Mpc−1, then
DL = DL,100/h, then

log10(DL) = log10(DL,100)− log10(h). (2.37)

Substituting back into the distance modulus formula in Eq. (2.36) and rearranging, we
get

m−M = 5log10(DL,100)−5log10(h)−5. (2.38)

For H0 = 100, the absolute magnitude is M100, so m−M100 = 5log10(DL,100)−5. Combining
these, we obtain

M = M100 +5log10(h). (2.39)

Therefore, when sampling from Eq. (2.35), the absolute magnitude can be shifted to the
correct luminosity given by Eq. (2.39).

This adjustment changes the boundaries of possible luminosities that can be sampled.
Specifically, the minimum (dimmer) boundary is calculated as −19+5log10(140/100) =
−18.85 and the maximum (brighter) boundary as −27+ 5log10(20/100) = −27.69, as-
suming a range of H0 from 20kms−1 Mpc−1 to 140kms−1 Mpc−1.

Next, by uniformly assigning a sky position (α ∼U [0,2π] and sin(δ )∼U [−1,1]), we can
associate each sampled galaxy with a specific pixel location. With the absolute magnitude
(correctly shifted) and the luminosity distance, we compute the apparent magnitude, from
which we then compare with the threshold magnitude mth of the specific pixel in which
the galaxy was sampled, and decide whether to retain the prior sampled galaxy or to
select one from the catalogue.
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2.4.3 Selecting a galaxy from the catalogue

When sampling a galaxy from the catalogue, we follow these steps: first, identify all
galaxies that meet the selection criteria based on their computed apparent magnitude
being less than the specified magnitude threshold, second, access the pixelated GLADE+
catalogue corresponding to the sky locations we sampled, and finally sample from the
pixel catalogue giving weights to each galaxy within each pixel by the luminosity and
redshift.

From each sky sample, an associated pixel can be obtained, along with the cosmological
parameters related to that pixel. We then count the number of galaxies within each pixel
based on the catalogue data and compute the luminosity distance DL for each galaxy using
the cosmological parameters associated with the pixel. Using the apparent magnitudes of
the galaxies, mi, we can compute their absolute magnitudes given the luminosity distances
using Eq. (2.27). From the absolute magnitudes, we can then determine their luminosities,
Li using Eq. (2.31). Within each pixel, galaxies are weighted by their luminosity and
redshift, with the weight for each galaxy defined as:

wi =
Li

1+ zi
, (2.40)

where Li is the luminosity of the ith galaxy and zi is its redshift. This weighting method
follows Ref. [16], where luminosities are used to upweight galaxies, reflecting a linear
relationship w ∝ L. Conversely, the time dilation factor, (1+ z)−1, is used to downweight
more distant galaxies, accounting for the reduced contribution of high redshift sources.

One important point is that the selection of the pixel from which to sample a galaxy from
the galaxy catalogue is done before introducing any catalogue information. Since the sky
is sampled uniformly, each pixel has the same probability of being selected, which can bias
the results. In reality, galaxy catalogues have a well-defined distribution of luminosities,
making some regions more likely to host GW events due to higher galaxy densities. This
issue has been studied by implementing a weighted sky sampling approach, where pixels
are weighted by the luminosity of galaxies within them, assigning higher probabilities to
regions with more luminosity. However, this method was computationally slow due to the
dependence of the luminosity map on cosmological parameters and high pixel variability.
Therefore, we proceeded with the uniform sky distribution approach, which was deemed
sufficient. Future work will explore weighting sky locations by galaxy catalogue luminosity.
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To sample a galaxy, we use a multinomial distribution. Each galaxy within the pixel is
assigned a weight based on Eq. (2.40), and the probability of selecting a specific galaxy
is proportional to its weight. This ensures that galaxies with higher luminosity and lower
redshift are more likely to be selected to host GW events. We then select one galaxy from
the pixel using the weights in Eq. (2.40) and maintain its properties for further analysis.
Accounting for the uncertainty in redshift in the catalogue, we select the redshift value
z from the catalogue, along with its associated 1σ uncertainty σz. To ensure that the
sampled redshift value remains within realistic bounds (i.e., non-negative), we employ a
truncated normal distribution. The PDF for the truncated normal distribution is

f (z|µ,σ) =
1

σz
√

2π
exp
(
−(z−µ)2

2σ2
z

)/[
erf
(

b−µ
σz

)
− erf

(
a−µ

σz

)]
, (2.41)

where µ is the measured redshift value from the catalogue, σz is the standard deviation
from the catalogue, er f is the error function of the standard normal distribution, and a

and b are the lower and upper bounds of the truncation, respectively. In our case, we set
a = 0 to ensure non-negative redshifts and b → ∞. This method ensures that all sampled
values are valid and remain within the defined physical constraints. The truncated normal
distribution was implemented using scipy.stats.truncnorm [90].

Thus, we compute the PDF of in-catalogue redshifts after selecting a pixel, expressed as

p(z|G,pix(α,δ )) ∝
Ngal

∑
i=1

wi f (z|µi,σi), (2.42)

where G denotes the conditional sampling from the catalogue, and pix(α,δ ) refers to the
pixel indexed by right ascension α and declination δ . Equation (2.42) is a weighted sum
over all galaxies within the pixel, weighted by wi, combining all the truncated Gaussian
distributions within the pixel, f (z|µi,σi), where µi and σi are the observed redshift and
its standard deviation of the ith galaxy within the selected pixel.

2.4.4 Note on sampling from the luminosity function

In this section, we will shed light on how to sample from the luminosity function (i.e.,
the Schechter function) defined in Section 2.4.2. To sample efficiently from the Schechter
function fitted for GLADE+, we first need to understand the distribution it describes in
Eq. (2.35).

- 70 -



2.4. Selecting Host Galaxies

The Gamma (factorial) function is defined as

Γ(z) =
∫ ∞

0
tz−1e−t dt. (2.43)

This function extends the concept of factorial to non-integer values. For more information,
refer to the Handbook of Mathematical Functions with Formulas, Graphs, and Mathemat-
ical Tables by Abramowitz and Stegun [119].

From Eq. (2.43), we can describe a PDF, namely the Gamma distribution, as

f (x;k,θ) =
xk−1e−x/θ

θ kΓ(k)
, (2.44)

where k is the shape parameter and θ is the scale parameter [120]. For θ = 1 and k = L/L∗,
we can recover the Schechter function described in Eq. (2.30). Since we are interested in the
luminosity-weighted Schechter function, as described in Eq. (2.34), we need the following
exponent to be defined as k− 1 = α + 1. Therefore, the shape parameter for describing
the luminosity-weighted Schechter function is k = α +2.

We also define the upper incomplete gamma function, which is a generalization of the
gamma function that allows for integration over a finite range starting from a non-zero
lower bound [119]. It is defined as

Γ(a,x) =
∫ ∞

x
ta−1e−t dt. (2.45)

To sample the luminosity-weighted Schechter function described in Eq. (2.34), we need
to compute its cumulative distribution function (CDF). Considering the cutoffs in lumin-
osities, defined in Section 2.4.2, the sampling can only be done starting from a minimum
luminosity cut off, Lmin, corresponding to the minimum absolute magnitude value of
Mmin =−19.

We begin the derivation from the un-normalised luminosity-weighted Schechter function,
given by:

p(L)L ∝ ϕ∗L∗
(

L
L∗

)α+1

e−L/L∗
. (2.46)

To find the CDF from Lmin to L, we need to integrate the weighted luminosity function:

CDF(L) ∝
∫ L

Lmin
ϕ∗L∗

(
L′

L∗

)α+1

e−L′/L∗
dL′. (2.47)
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Factoring out the constants, we get:

CDF(L) ∝ ϕ∗L∗2
∫ L

Lmin

(
L′

L∗

)α+1

e−L′/L∗ dL′

L∗ . (2.48)

Substituting x = L′/L∗, hence dL′ = L∗dx, we have:

CDF(L) ∝ ϕ∗L∗2
∫ L/L∗

Lmin/L∗
xα+1e−x dx. (2.49)

Recognizing that the integral represents the incomplete gamma function, we can use the
upper incomplete gamma function Γ(s,x), to express the CDF as:

CDF(L) ∝ ϕ∗L∗2 [Γ(α +2,Lmin/L∗)−Γ(α +2,L/L∗)] . (2.50)

Finally, to properly normalise Eq. (2.50), we need to integrate the starting distribution
in Eq. (2.46) between the minimum and maximum values of the luminosities, which, in
the case outlined in Section 2.4.2, follows:

CDF(L) = Γ(α +2,Lmin/L∗)−Γ(α +2,L/L∗)

Γ(α +2,Lmin/L∗)−Γ(α +2,Lmax/L∗)
, (2.51)

where Lmax corresponds to the maximum absolute magnitude of Mmax = −27. The fi-
nal expression described in Eq. (2.51) is the analytical expression for the CDF of the
luminosity-weighted Schechter function, which will be used to sample luminosities.

An interesting characteristic of Eq. (2.51) is that it depends on the ratio of luminosities,
L/L∗. This term is independent of the Hubble constant, since, as described in Sec. 2.4.2,
by keeping all cosmological parameters fixed except for H0, both the luminosity L and the
characteristic luminosity of the Schechter function, L∗, will be scaled the same way for
a given value of H0 (since we know that M = M100 + 5log10(h), where M is the absolute
magnitude). Therefore, if we use h = 1, we use the L∗ fitted for that value, and when
we sample a luminosity, we then shift its absolute magnitude by 5log10(h). Therefore,
Eq. (2.51) is independent of H0 (but not other cosmological parameters) and can be used
to sample luminosities regardless of the H0 value.
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Figure 2.7: The antenna response function plotted over a Mollweide projection of the sky
for each detector (H1, L1, and V1), at time t = 0 and ψ = 0. The color bar represents the
total magnitude of the antenna response from both F+ and F×, combined as (F2

++F2
×)

1/2,
spanning values between 0 and 1.

2.5 Selecting GW parameters

After selecting the host galaxies and deciding whether each galaxy would be from the
galaxy catalogue or not, we can now begin the second stage of the data generation process,
which is to sample the GW parameters for BBH type events.

The GW strain data is described by a waveform, parameterized by a set of 15 parameters.
From the context of a geocentric reference frame, the strain h(k)(t |⃗θ), where t is the
time series and θ⃗ represent the 15 GW parameters, observed by the kth detector for a
source with polarization amplitudes h+ and h×, located at sky coordinates (α,δ ), where
α represents the right ascension and δ the declination, can be expressed as [121]

h(k)(t |⃗θ) = F(k)
+ (α,δ ,ψ)h+(t |⃗θ)+F(k)

× (α,δ ,ψ)h×(t |⃗θ), (2.52)

where F(k)
+,×(α,δ ,ψ) are the antenna response functions for GW detectors. These functions

depend on the source’s sky location (α,δ ) and the GW’s polarization angle ψ . These
functions also vary with the time of coalescence and GPS time due to the Earth’s rotation
and orbital motion, which alter the detector’s orientation and position relative to the
source. Consequently, the sensitivity of the detectors to the GW’s polarizations changes
over time. For detailed calculations and models, see [122].

The antenna response functions can be described in polar coordinates (θ ,ϕ) as

F+ =−1
2
[
(1+ cos2 θ)cos2ϕ cos2ψ −2cosθ sin2ϕ sin2ψ

]
, (2.53)
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Name Description Distribution
m1 Source frame mass of the first object PowerLaw+Peak [87]in a binary system
m2 Source frame mass of the second object PowerLaw+Peak (m2 < m1)in a binary system
θ1 Tilt angle of the first object sin(θ1) forθ1 ∈ [0,π]
θ2 Tilt angle of the second object sin(θ2) forθ2 ∈ [0,π]
ϕ12 Azimuthal angle compared to orbital plane U [0,2π]
ϕ jl Azimuthal position compared to orbital plane U [0,2π]
a1 Dimensionless spin magnitude

U [0,0.999]of the first object
a2 Dimensionless spin magnitude

U [0,0.999]of the second object
DL Luminosity distance to the source Comoving volume + EM
ι Inclination angle relative to the line of sight sin(ι) for ι ∈ [0,π]
ϕ Phase of the wave at coalescence U [0,2π]
tc Time of coalescence U [0,1] Sidereal days
α Right ascension of the source U [0,2π]+EM
δ Declination of the source cos(δ ) forδ ∈ [−π

2 ,
π
2 ]+EM

ψ Polarization angle U [0,π]

Table 2.1: Gravitational wave parameters with their descriptions and the priors from
which they are sampled. Where EM is present, some of the parameters are sampled from
the EM catalogue as well.

and F× is expressed as

F× =
1
2
[
(1+ cos2 θ)cos2ϕ sin2ψ −2cosθ sin2ϕ cos2ψ

]
, (2.54)

where longitudinal coordinate ϕ is related to the right ascension as α = ϕ +GMST, where
GMST stands for the Greenwich Mean Sidereal Time of the signal’s arrival, and the
latitudinal component is related to the declination as δ = π/2− θ [122]. A visual rep-
resentation of the antenna response function is depicted in Fig. 2.7, where the antenna
response functions for the H1, L1, and V1 detectors are plotted over the sky. This fig-
ure highlights regions of high and low response, indicating areas with strong and weak
sensitivity, respectively.

The strain data parameters are summarised in Table 2.1. The first column lists the para-
meter symbols, the second explains the parameters, and the third outlines the prior distri-
bution assumption on the GW parameters. The parameters DL, α , and δ incorporate EM
data from the galaxy catalogue. The other parameters are derived from priors consistent
with existing literature, such as Refs. [87, 99, 123].
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Depending on the observing run for which we are generating data, the operational dur-
ations of the detectors vary significantly, affecting the potential detection times. For
instance, the O1 observing run lasted for four months, O2 spanned from January to
November 2016, and O3a and O3b extended from April 2019 until March 2020 [124].
Sampling timestamps across these entire periods for data generation would be highly in-
efficient. Instead, we restrict the coalescence time of arrival parameter to a range between
0 and 86164.0905 seconds, corresponding to one sidereal day. This approach is based on
the assumption that every sidereal day is identical if the PSD is constant. By considering
only a single day, we simplify the computational process without impacting the accuracy
of our simulations, as extending the time modulation beyond one day would be analogous
to extending the right ascension over multiple years.

It’s important to highlight that the mass parameters, m1 and m2 follow the power law
plus peak (PLP) distribution. The PLP distribution used for the source frame masses
m1 and m2 combines a power-law component, which captures the majority of the mass
distribution, with a Gaussian peak that accounts for a possible excess of events around
a certain mass scale [125]. Selection effects play a significant role in GW astronomy,
where the detectability of events depends on the properties of the source. Specifically,
detectors are more sensitive to higher mass systems due to the stronger GW signals they
produce. This means that the observed distribution of masses is influenced not only by
the underlying astrophysical population but also by the sensitivity of the detectors.

In the next section, we will delve deeper into the specifics of the PLP distribution, explain-
ing its parameters and how it models the mass distribution of binary systems observed
by GW detectors.

2.5.1 Power Law Plus Peak Model for BBH Mergers

The PLP distribution is a phenomenological population model, which accurately describes
the mass distribution of binary black hole mergers detected in the first, second, and third
observing runs completed by Advanced LIGO and Advanced Virgo [87, 99, 125]. This
mass model is the same one used in Ref. [16].
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Figure 2.8: (Top): 1D distribution of primary masses from the PLP distribution with the
probability density function overlaid using Eq. (2.55). (Bottom): Distribution of secondary
masses, m2, sampled from the conditional probability p(m2), marginalised over all m1
sampled from the top plot, as described in Eq. (2.58). Both plots show the histograms
of 150.000 samples. The hyperparameters used are α = 3.78, β = 0.81, mmax = 112.5M⊙,
mmin = 4.98M⊙, δm = 4.8M⊙, µg = 32.27M⊙, σg = 3.88M⊙, and λg = 0.03.

The distribution consists of a power-law component, which describes the high frequency
of low-mass black holes in the GWTC-3 catalogue [99], and a Gaussian peak designed
to capture a potential accumulation of high-mass black holes resulting from pulsational
pair-instability supernovae [125, 126]. This process refers to a particular type of supernova
event that occurs in very massive stars, typically with initial masses ranging from about
70 to 140 solar masses. In these events, the core of the star contracts, ignites burning of
elements like oxygen or silicon, expands and cools, and then contracts again to reignite.
Eventually, the core’s mass stabilizes, typically within a narrow range of about 35 to 50
solar masses [126]. A third component of the distribution is a smoothing function, which
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accounts for factors like metallicity that may obscure the boundaries of the lower mass gap,
a hypothesized range in the black hole mass spectrum between the most massive neutron
stars and the least massive black holes, if such a gap exists [125]. The mathematical
formulation of this distribution is as follows:

p(m1 |⃗θ) = (1−λg)A(θ)m−α
1 Θ(mmax −m1)+λgB(θ)exp

(
−
(m1 −µg)

2

2σ2
g

)
S(m1,mmin,δm),

(2.55)
where θ⃗ represents the hyperparameters describing the prior distribution in m1, including
mmax, the maximum mass, α , the power-law index, µg and σg, the mean and standard
deviation of the Gaussian component, respectively, and λg, the fraction of the distribution
modeled by the Gaussian component. Also, Θ is the Heaviside step function, which is zero
for any mass greater than the maximum mass, and S(m1,mmin,δm) is a smoothing function
described as

S(m|mmin,δm) =


0 for m < mmin;

[ f (m−mmin,δm)+1]−1 for mmin ≤ m < mmin +δm;

1 for m ≥ mmin +δm;

(2.56)

with the f function described in Eq.(B5) in Appendix B in [87] as

f (m′|δm) = exp
(

δm

m′ +
δm

m′−δm

)
, (2.57)

where δm represents the mass range over which the black hole mass spectrum transitions.
The terms A(⃗θ) and B(⃗θ) are the normalisation factors for the two components of the
distribution, ensuring the total probability density integrates to one.

Given the primary mass as defined in Eq. (2.55), we then characterise the conditional
distribution for the secondary mass under the assumption that the secondary mass is
always smaller. The secondary mass distribution is characterised as follows

p(m2|m1,θ) =C(θ)mβ
2 S(m2|mmin,δm) for m1 > m2, (2.58)

where β is the power law index for the secondary mass and C(⃗θ) is the normalisation
factor of the distribution. Therefore, the full mass distributions for the BBH coalescences
can be described as p(m1,m2 |⃗θ) = p(m1 |⃗θ)p(m2|m1, θ⃗), with θ⃗ incorporating all the hy-
perparameters of the joint distributions. The hyperparameters are: α = 3.78, β = 0.81,
mmax = 112.5M⊙, mmin = 4.98M⊙, δm = 4.8M⊙, µg = 32.27M⊙, σg = 3.88M⊙, and λg = 0.03,
which are the same values used in Ref. [16].
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2.5.2 A note on sampling with multiple CDFs

The CosmoFlow analysis relies heavily on the ability to efficiently sample from multiple
distributions, each defined by a set of hyperparameters. These hyperparameters can be
adjusted to explore different astrophysical scenarios and their impacts on the results. For
instance, hyperparameters might influence the shape, scale, and location of the distribu-
tion, reflecting various underlying physical processes or conditions. Sampling from these
distributions with varying hyperparameters is essential because it enables the generation
of diverse data sets that represent a broad range of possible situations. For example, in
our data generation approach, we might vary the hyperparameters described in Sec.2.5.1.
This allows us to sample primary and secondary source masses corresponding to each set
of hyperparameters, where each set is drawn from a prior distribution.

To do so, the inverse cumulative sampling method [127] plays a crucial role in this process.
This technique uses the PDF to derive the CDF through integration. Then, by interpol-
ating the CDF, it is possible to map samples in U [0,1] (the domain of the CDF) to the
distribution’s random variables. This allows consistent sampling from the PDF, as long
as the interpolation is accurate. However, adapting the CDF for each hyperparameter
set can be computationally demanding. Vectorising this process by pre-computing and
chaining the CDFs for each PDF set can enhance efficiency. This method involves con-
structing a series of CDFs, each corresponding to a different set of hyper-parameters,
λ⃗ = [λ0,λ1, ...,λN−1], where λ⃗ represents the set of hyperparameters describing the PDFs.

We chain together a sequence of CDFs, each one specific to a particular hyperparameter
set. This approach forces individual samples to be drawn between integer ranges, effect-
ively interpolating across the different CDFs. By doing so, we efficiently sample from
all the separate CDFs within a single interpolation scheme. To model the process for N

random variables, each associated with a unique set of hyperparameters, we compute the
CDF for each. This computation can be vectorised for computational efficiency. We then
concatenate these CDFs, adding one multiplied by the index of the hyper-parameter.

The final combined CDF, F(Nx), where Nx is the sequential element value after repeating
the X values from each CDF defined (i.e., for two CDFs, each defined over a range of L

elements of the same X axis, then the range of Nx is [0,2L]), is constructed by sequentially
concatenating each individual CDF while adding a corresponding incremental unit value.
With each CDF defined over a range of X values, we can then define a function F(Nx).
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The expression is given by:

F(Nx) = CDFi=⌊Nx
L ⌋(X j=Nx mod L|λi=⌊Nx

L ⌋)+
⌊

Nx

L

⌋
, (2.59)

where i =
⌊Nx

L

⌋
is the ith CDF and j = Nx mod L is the jth element within the ith X range

of values.

From Eq. (2.59), the new function F(Nx) undergoes interpolation, enabling efficient sampling.
The process involves concatenating the individual CDFs into a single, continuous func-
tion. Then we sample from the i’th CDF by inputting a CDF value in the range [i, i+1],
where each range [i, i+1] corresponds to a different CDF. This approach allows us to draw
samples from all the individual CDFs within a single interpolation of a combined CDF,
ensuring a seamless and efficient sampling process.

Algorithm 1: draw_snake function (Pseudocode)

Input: Nsamples, cdfs, x_arr
Output: Nsamples from each CDF
def draw_snake(Nsamples, cdfs, x_arr):

N = number of CDFs in cdfs
cdfs_snake = horizontally stack cdfs
xlist = convert x_arr to list
xlist = N * xlist
x_array = convert xlist to array
cdfs_snake = cdfs_snake + incremental unit values for each CDF
t = random values between 0 and 1 + incremental units for each CDF
return interpolate(t, cdfs_snake, x_array)

A representation of the Python code used to enable this method is presented in Algorithm
1, where the entire process is described line by line, using only the well known mathemat-
ical package NumPy [128]. This method streamlines the process of sampling across multiple
distributions, each characterised by unique hyperparameters, facilitating efficient analysis
across different distributions.

We demonstrate a simple application of this method using the following example. Consider
five Gaussian distributions from which we intend to sample multiple times. We begin by
computing the CDFs for each distribution, as illustrated in Fig. 2.9. Subsequently, we
concatenate these CDFs and combine each with an incremental unit vector to form a
snake-like function, F(Nx), depicted in the bottom left plot in Fig. 2.9, where it shows
the concatenated CDFs spanning 5000 elements, with 1000 array elements allocated to
each function. As described in Algorithm 1, by interpolating the snake-like function and
sampling accordingly between integer step ranges of [i, i+1], we effectively vectorise the
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Figure 2.9: (Top Left): PDFs of five different Gaussian distributions, each with its
corresponding mean (µ) and standard deviation (σ). (Top Right): CDFs computed from
each of the Gaussian distributions. (Bottom Left): Concatenated CDFs from the top
right plot, with the x-axis representing the number of elements in each CDF array and
red dashed lines indicating the junctions between CDFs. (Bottom Right): Histogram of
10000 samples drawn from each distribution using the ’snake’ method, overlaid with the
combined total PDF from each Gaussian.

sampling process across multiple distinct distributions. The bottom right plot of Fig. 2.9
illustrates the distributions of the Gaussians from the top left plot, each sampled 10,000
times. The results shows the feasibility of drawing samples from each PDF, enabling the
sampling from different realizations of hyperparameter sets.
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This sampling technique, named snakes, is integrated into the CosmoFlow analysis to
conduct sampling routines across various realizations of 1D probability distributions. We
employ this technique to sample from Eq. (2.58), where for each sampled m1, a different
PDF is computed and sampled to obtain the m2 random variable. In the final chapter,
we will present the results of the data generation process, where all cosmological and
population parameters are varied. This technique of sampling from multiple different
distributions is extensively used in that process.

2.6 Selecting detected GW events

2.6.1 Signal-To-Noise Ratio calculation and MLPs

After determining the host galaxy locations for the GW events and sampling their intrinsic
parameters from specified priors, a key step is assessing the detectability of each synthetic
event. This is achieved by applying an SNR threshold, denoted as ρth. Events whose
matched-filter SNR, ρ , exceeds this threshold are considered detectable. Specifically, we
perform an incoherent combination of SNR values from multiple detectors, similar to the
coincident analysis used in the primary all-sky search pipelines [129].

Each detector SNR is estimated using the bilby package, which calculates it for each
event via Eq. (1.28). Subsequently, the SNR values from each detector are incoherently
combined quadratically to yield the full network SNR value, as

ρnetwork =
√

∑
i

ρ2
i , (2.60)

with i corresponding to the ith detector. Events that exceed ρth are retained for further
analysis, while non-detectable events are discarded. This methodology is consistent with
the approach used by gwcosmo as detailed in [16, 51], incorporating GW selection effects
related to detectability.
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Events that are discarded undergo resampling for all parameters except the Hubble con-
stant, ensuring that this parameter is reused until a detectable event is confirmed. This
process, illustrated in the flowchart shown in Fig. 2.3, preserves the detectable events and
their corresponding Hubble constant values. By keeping the Hubble constant unchanged
for non-detectable events, while resampling the other parameters, we ensure that the prior
distribution on H0 (the distribution of H0 after marginalising over all other parameters)
remains consistent with the initially chosen prior distribution.

However, the SNR calculation performed by bilby is not inherently optimised for vec-
torization, which can slow down the sampling and evaluation of SNR for synthetically
generated events. While some optimisations might be possible, the current implement-
ation does present challenges in computational efficiency. During the data generation
process, in our search for detectable events from the prior parameter space, it is highly
unlikely that each sample we draw will surpass the SNR threshold. Consequently, many
of the events for which we compute the SNR will be discarded, further slowing down
the data generation process. With an average computational time of approximately 0.1
seconds to compute the associated SNR for each set of parameters from each detector,
the total computational time for the data generation process would extend into months.

To overcome this bottleneck, a machine learning approach has been implemented. Specific-
ally, an MLP model has been implemented with 13 input parameters, excluding the phase
ϕ which does not influence the SNR calculation. The luminosity distance is not directly
used as an input but rather appears as part of the output of the MLP, which produces
the product ρ ×DL. Analytically, this formulation allows us to reduce the dimensionality
of the problem by leveraging the inverse relationship between SNR and distance. Thus,
we define a new quantity, ξ , as:

ξ = ρ ×DL. (2.61)

This approach effectively reduces the dimensionality of the output while capturing the
relationship between optimal SNR (ρ) and luminosity distance (DL). Thus, to reduce the
dimensionality of the problem that the MLP must learn, the network is designed to output
three separate values: specifically, the product of the optimal SNR and the luminosity
distance for each of the three detectors, H1, L1, and V1. We define this product as the
variable ξi for each detector i, simplifying the modeling process by allowing the network
to directly predict ξi instead of separate parameters. The three outputs ξ1, ξ2, and ξ3
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Figure 2.10: Time-averaged PSD curves for O1, O2, and O3 observing runs for each GW
detector, adapted from [131]. These curves represent the sensitivity of the detectors across
different runs, showing the noise performance and the frequency-dependent sensitivity
limits of the instruments during each observation period.

correspond to the predicted values for each of the detectors in the network. From these
outputs, the individual SNR for each detector can be calculated by dividing ξi by the
luminosity distance DL. The total network SNR is then computed by combining these
individual SNR values. The MLP was implemented using the poplar package [130].

In this analysis, three MLPs were trained, one for each detector run: O1, O2, and O3. To
align our analysis with the gwcosmo analysis, we used the same sensitivity curves provided
in their repository Refs. [83, 92]. Each sensitivity curve corresponds to a PSD file for each
detector in each run. The time averaged sensitivity curves were taken from Ref. [131]
and are plotted in Fig. 2.10. Using these sensitivity curves ensures consistency with the
gwcosmo analysis and accurately reflects the noise characteristics of each detector during
the corresponding runs. The primary change in input for each MLP is the PSD, which
directly influences the SNR by modifying the noise levels. By assuming that the PSDs
are constant throughout each run, we simplify the training process of the MLPs while
ensuring that the network can effectively model the SNR calculations for each specific
detector and observing run.
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The bilby waveform generator [100] is then configured to use the waveform approximant
IMRPhenomXPHM, the same approximator employed in [16]. This waveform represents
a phenomenological model that describes the GW signals from quasi-circular, precessing
binary black hole systems in the frequency domain. Notably, IMRPhenomXPHM extends
the analysis beyond the dominant quadrupole to incorporate higher multipoles within the
precessing frame [132].

To begin the process of generating data for the MLP, we start by setting the sampling
frequency and minimum frequency at 4096Hz and 20Hz respectively. The first is im-
portant for determining the time resolution of the waveform and directly influences the
highest frequency component that can be accurately captured by the Nyquist frequency
[133], which is half the sampling rate. The second setting defines the minimum frequency
from which to start the waveform analysis, thus considering only frequency contributions
above this threshold.

Since the MLP requires training on every realization of events, both detected and un-
detected, prior bounds were placed on the GW parameters, but no further constraints
were applied within those bounds. This approach ensures uniform performance across the
entire parameter space defined by the prior bounds. We did not attempt to optimise per-
formance within specific regions of the parameter space, allowing the MLP to generalize
well across all possible GW events within the defined bounds.

The parameters were sampled from the same priors as described in Tab. 2.1 (excluding
EM information), except for the detector frame mass priors, which were set to a uniform
distribution between U [4,350]M⊙. This range adequately covers the source masses from
[5 M⊙,112.5 M⊙] when multiplied by the (1+ z) factors, appropriate for detector frame
masses. Additionally, the prior on the luminosity distance was set to uniform between
U [10,11000]Mpc. Adopting these priors allows the MLP to be optimised consistently
across the defined regions of the GW parameter space. Both the input and target output
data are scaled using Z-score normalisation, which involves subtracting the mean and
dividing by the standard deviation of each feature, as

z =
x−µ

σ
, (2.62)
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where µ is the mean of the feature values and σ is the standard deviation of it. In this case,
the features are the GW parameters. This rescaling ensures that the learning algorithm
treats each feature equally, facilitates faster convergence, and improves overall perform-
ance by preventing features with larger ranges from dominating the learning process. It
is important to note that the choice of priors is an important aspect of the modeling
process. While uniform priors are commonly used, they are not always the most general
or uninformative choice.

For each observing run, the training dataset for the MLP consisted of one million data
points. Each data point included 13 features representing the GW parameters, and the
target data was ξ , for each detector. Therefore, the dataset comprised 13 input features
and 3 target columns (the ξ values), resulting in a total of 16 columns and one million
rows. The parameter samples were then drawn from their priors, then used with bilby,
employing the PSD corresponding to each detector, to estimate the optimal SNR. The
MLP underwent training with 90% of the data, with 128 neurons across 8 layers. The
ReLU (Rectified Linear Unit) activation functions were used in each layer. ReLU is an
activation function defined as f (x) = max(0,x), which outputs the input directly if it
is positive; otherwise, it outputs zero. ReLU introduces non-linearity to the network,
allowing it to learn complex patterns. It is widely used in NNs due to its simplicity and
computational efficiency, helping to mitigate issues like the vanishing gradient problem
commonly encountered with other activation functions [134].

The training proceeded for 200,000 epochs with a learning rate of 0.001 and used MSE
as the loss function. The Adam optimiser was employed for training. No early stopping
criterion was used; instead, the model with the lowest validation loss at the end of training
was selected. The entire training process took approximately 15 hours using an RTX
GeForce 2080 graphics processing unit (GPU). The loss trends for both the training and
validation datasets are displayed in Fig. 2.11, where clear reductions in loss values are
observed, indicating that the model increasingly generalizes better to the data. However,
as the loss is still decreasing towards the end of the training, minor improvements could
potentially be achieved with additional training.

To evaluate the network’s performance, 10% of the data, which was not seen by the
network during training, was used as validation data. The results are depicted in Fig. 2.12.
The figure illustrates the overall accuracy of the MLP model in predicting SNR values.
The top left plot of Fig. 2.12 shows the predicted versus true SNR values, with a color bar
representing the absolute magnitude of the residuals. The bottom left plot of Fig. 2.12
displays the residuals against the true SNR values, indicating that the magnitude of
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Figure 2.11: Loss values of the training and validation data as a function of training
epoch.

errors increases with higher SNR. This increase in error magnitude is primarily due to the
distribution of SNR values in the training data, which contains fewer data points at higher
SNR levels, as shown in Fig. 2.13. Consequently, the MLP is less exposed to high SNR cases
during training, leading to diminished performance and less accurate predictions in these
regions. It is important to note that this trend indicates the magnitude of the errors and
not a bias, as we are plotting the absolute residuals. The right plot of Fig. 2.12 presents
a histogram of the residuals, highlighting the distribution and frequency of prediction
errors, showing no obvious biases.

We employed this method to train a total of three MLPs, one for each detection run from
O1 to O3. Although it is possible to train a single MLP on data from all detection runs,
this would require adding extra features to the input data. Specifically, we would need
to include features for the three detectors (H1,L1,V1) and the observing run (O1, O2, or
O3). This would increase the number of input features from 13 to 19, with three binary
features for the detectors and three for the observing runs. While this could streamline
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Figure 2.12: (Top left): Scatter plot of the true SNR against the predicted SNR from
the MLP model for the H1 dataset. The color scale represents the absolute residuals
|ρpred −ρtrue|, indicating the error magnitude. The dashed line represents the ideal case
where the predicted SNR equals the true SNR. (Bottom left): Scatter plot of the absolute
residuals |ρpred −ρtrue| against the true SNR values on a log-log scale, showing how the
prediction errors vary with the true SNR. (Right): Histogram of the residuals |ρpred −
ρtrue|, illustrating the distribution and frequency of prediction errors. The histogram is
plotted on a logarithmic scale to highlight the distribution’s tails. All results are specific
to the H1 dataset.

the training process, it would also make the input data more complex and increase the
training time. Therefore, we chose to train separate MLPs for each detection run to keep
things simple and reduce the computational burden. The results from the trained MLP
with O1 and O2 PSDs are found in Appendix A.

Within the data generation code, we use the trained MLP to estimate the optimal SNR
for each generated event and retain the optimal SNRs from the specific detectors chosen
for use during the data generation process. The optimal SNR values from each detector
are then combined quadratically to obtain the detector network’s optimal SNR. To add
realism to the observed SNR for these GW events, the optimal detector network SNR is
used as the non-central parameter of a χ2-distribution with k = 2n degrees of freedom,
where n is the number of detectors used. We then sample from this distribution into
obtain the matched-filtered network SNR. The distribution is defined in Eq. (2.14), with
a threshold of ρth = 11.
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Figure 2.13: SNR distribution of the validation data for the H1 detector. This is from
the O3 H1 SNR values, showcasing the distribution and tail of the SNR values.

For the purposes of this analysis, obtaining accurate estimates of the optimal SNR is
very important. To quantify the accuracy of the MLP predictions, we analyse the er-
ror distribution. The bottom left plot of Fig. 2.12 shows that the residuals, or errors,
between the predicted and true SNR values range from 0.01 to 10 units, with a mean
error of approximately 1 unit of SNR. Having a mean error of 1 unit is acceptable for
our analysis, particularly given the SNR detection threshold of 11. This level of error
demonstrates that the MLP operates reliably within the margin of uncertainty associated
with the detection criterion, effectively distinguishing between detected and non-detected
events. While achieving perfect accuracy is ideal, the current mean error demonstrates the
model’s robustness and effectiveness in practical applications. Future work will look into
further reducing this error by incorporating more data, refining the model, and poten-
tially using more sophisticated techniques, building on the strong foundation established
by this analysis. The trained MLPs significantly increases the SNR calculation speed,
achieving a speed increase of 10,000×. This enhancement is very important for bypassing
the computational bottleneck associated with SNR calculations.
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2.6.2 Optimising Redshift Threshold for Maximum Detection
Efficiency

The data generation code, designed to sample from the chosen priors and select only
events that are detectable, is efficient yet could be enhanced by optimising the parameter
space. To avoid biases while optimising the search for detectable events, it is important
to carefully select the regions from which we sample. By minimising the parameter space,
we can avoid regions where events are nearly impossible to be detect, thereby improving
efficiency. One effective strategy is to implement a redshift threshold, which focuses the
search on a constrained range. This ensures that the final set of output samples remains
unbiased and representative of detectable GW events.

The maximum observable distance for GW events primarily depends on the luminosity
distance and the chirp mass of the events, with additional influences from spins and sky
positions. Initially, we sample GW parameters to cover the entire prior space defined in
Tab. 2.1. We adopt a uniform prior for the luminosity distance, ranging from 10 to 11000
Mpc, which encompasses the entire detectable distance for GW events for O1, O2 and
O3 sensitivities. The primary and secondary masses are adjusted for the detector frame
mass, spanning from 4.8 M⊙ to 337.5 M⊙, with a maximum redshift of 2. The lower and
upper mass bounds are defined by Mmin and Mmax × (1+ z), respectively. This choice
extends the range from the smallest possible redshifted minimum mass to the highest
possible redshifted maximum mass, ensuring coverage across all potential values due to
redshift. For each GW parameter sample, we then evaluate the SNR and store the highest
possible SNR. We then evaluated 1000 iterations, each with 10,000 samples, calculating
the product of SNR and luminosity distance for each sample using the optimal setup
with all detectors active, focusing on the most detectable events. This computation was
expedited using the previously trained MLP. For each iteration, the maximum sampled
value of the product was retained.

The distributions in Fig. 2.14 show the maximum values of the product of SNR and lu-
minosity distance for the O1, O2, and O3 observing runs in the first row. Each histogram
represents the counts of these maximum values across the 1000 iterations, with the mean
and 99.99% percentile values from the total dataset, comprising 10 million data points,
indicated by the red and black dashed lines, respectively. By evaluating in 1000 itera-
tions of 10,000 samples each, we aim to capture a more representative distribution of high
SNR events, marginalising over all parameters in each batch. This approach avoids relying
solely on the single most extreme event, instead providing a broader view of loud events
under realistic conditions. The 99.99% quantile was selected as a conservative threshold
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to identify very loud events without overemphasizing outliers. This quantile captures the
most significant events while avoiding extremes that could be influenced by noise or stat-
istical anomalies. It reflects a balance between capturing rare but plausible optimal events
and maintaining statistical robustness. Additionally, given the large sample size (10 mil-
lion data points), the 99.99% quantile still provides a meaningful set of 10,000 events for
analysis, ensuring that the results are both statistically significant and representative of
realistic high SNR events. These results demonstrate that there is a range of distances
within which GW events can be detected with an SNR above a defined threshold. This
threshold helps to rule out high values of ξ (the product of optimal SNR and luminos-
ity distance) that would almost certainly result in non-detections, thereby refining the
detectability criteria for GW events.

To estimate this range, we can consider an event at the detection threshold ρth and place
it at the maximum possible distance DL,max. We would expect to detect it, optimising
over all other parameters. Then, by taking the same source and changing its distance, its
SNR will change according to the following relation:

ρthDL,max(zmax,H0) = ρDL. (2.63)

This equation relates the product of SNR and luminosity distance at the detection threshold
to the same product at any other distance, thereby allowing us to estimate the maximum
detectable distance for events given a specific SNR threshold.

In Eq. (2.63), the maximum luminosity distance, DL,max(zmax,H0), on the left-hand side
is a function of redshift zmax and the Hubble constant H0. By setting ρth = 11 in Eq.
(2.63) and choosing a conservative value for the maximum ρ ×DL, we selected the 99.99%
quantile from each total distribution across the three histograms, we can solve for zmax

by inverting the equation, which then just becomes a function of H0. Initially, we opted
to use the mean of the maxima, but quickly realized this value was imposing a cutoff at
high Hubble constants, even if minimal. Therefore, we decided to use the 99.99% quantile
from the combined dataset of 10 million samples.

These quantiles, calculated from the entire datasets, correspond to values of ρ ×DL =

[64,859.84Mpc,89,547.08Mpc,109,010.27Mpc] for the O1, O2, and O3 detector runs,
respectively. Using these values, we determine the maximum distance at which a GW
event is detectable. This distance is then converted into redshift values for a given H0,
by inverting Eq. (1.5). In practice, this approach effectively narrows down the parameter
space to include only those distances where GW events are likely to be detectable, ac-
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Figure 2.14: Plots showing the distributions of the maximum SNRs multiplied by the
luminosity distance. The top row displays the distribution of the maximum SNRs times the
luminosity distance for each batch of 10,000 samples over 1,000 iterations. In contrast,
the bottom row shows the distribution for the total amount of data, encompassing all
10 million samples. The red dashed line represents the mean of the distribution of the
maxima, while the black dashed line indicates the 99.99% quantile. The plots are organized
sequentially with O1 on the left, O2 in the center, and O3 on the right.

counting for variations in the rate of cosmic expansion. By limiting the maximum redshift
as a function of the Hubble constant in the redshift prior when sampling z, we avoid
wasting time generating high-distance events that are almost certainly undetectable. Im-
portantly, this does not alter the data generation distributions but optimises the sampling
process to focus on potentially detectable events.

An example of the prior distribution, reflecting this modification, is shown in Fig. 2.15.
The left plot displays samples drawn from the joint prior distribution p(z,H0), for an
O3 run and ρth = 11, highlighting the variation in sample density between regions of
high and low H0. The right plot of Fig. 2.15 shows the ratio of the comoving volume,
VC, with a fixed maximum redshift at zmax = 2.86 (the maximum redshifts achieved by
setting H0 = 140kms−1 Mpc−1 in zmax(H0)), and a varying maximum comoving volume
computed using the zmax(H0) at each H0 value. The ratio shows that for a specific value,
say H0 = 25kms−1Mpc−1, the reduction factor in the sampled volume is VC/VC,zmax ≈ 15,
which corresponds to a speedup of about the same value. With this modification to the
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Figure 2.15: (Left): 20,000 redshift samples from the prior distribution with cutoff at
zmax defined in Eq. (2.63), with the overlaid dashed red line showing the zmax boundary as
a function of H0, for an O3 event distribution and an ρth = 11. (Right): Ratio of comoving
volume between a set zmax = 2.86 for an O3 data generation process compared to the
modified reduced comoving volume, Vc,zmax , as a function of zmax(H0,SNRth).

prior redshift distributions, we achieve a significant speedup in our data generation code,
on average about 5 times faster. This speedup can be quantified by integrating the area
under the curve in the right plot of Fig. 2.15 and then dividing over the range of H0 the
integration was performed, resulting in the average value of the function. The ratio of
fixed to varying comoving volume approximately corresponds to the speedup factor (or
reduction factor, as we are reducing the search volume).

2.7 Data generation results

In the previous sections, we discussed the components of the data generation process, with
a focus on the SNR MLP approximator. This tool allows for rapid and vectorized calcu-
lations of SNR across multiple events simultaneously, enabling efficient data generation
within practical time frames.
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Figure 2.16: Multiple histograms show the distributions of 3 million synthetic GW
source parameters associated with galaxy characteristics and cosmological parameters.
These include the SNR (ρ), redshift, the Hubble constant (H0), luminosity distance (DL),
primary and secondary masses redshifted masses (m1(1+ z) and m2(1+ z)), sky location
coordinates (α,δ ), spin magnitudes (a), tilt angles (θ1, θ2, θ jn), phase angles (ϕ jl, ϕ12),
geocentric time of arrival (tgeo) and both apparent and absolute magnitudes. The color
coding helps differentiate the total dataset in blue, with subsets categorized as in-catalogue
(in green) and out-of-catalogue (in orange), thereby providing a clear visual distinction
among the groups. This particular data set is for a O3 run sensitivity with H1, L1 and
V1 detector setup.
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Following the data generation framework outlined in Fig 2.3, we have successfully com-
pleted the data generation phase. The decision to sample cosmological parameters uni-
formly ensures consistent performance across the entire data space during the NF training,
thereby preventing performance biases. The results of this process are depicted in Fig. 2.16,
which displays a series of histograms detailing the distributions of GW source parameters
for the H1, L1, and V1 detector setup, corresponding to LIGO Hanford, LIGO Living-
ston, and Virgo Pisa, respectively, using the O3 run PSD. Additionally, when generating
the data, we record the origin of the simulated event, indicating whether the galaxy from
which the signal was simulated is within the catalogue or outside of it. In Fig. 2.16, orange
represents samples outside the catalogue, while green indicates those within the GLADE+
catalogue.

This visual comparison highlights the characteristic differences between samples in and
out of the catalogue, as seen in the distribution of various histograms such as the Hubble
constant. The distribution of the Hubble constant (H0) shows that in-catalogue events are
concentrated towards lower values, while out-of-catalogue events spread across a broader
range. The detector frame masses of the binary components (m1 and m2) also show a no-
ticeable difference, with in-catalogue events having a slightly different distribution com-
pared to out-of-catalogue events, favouring lower masses since in-catalogue galaxies are
usually closer than out-of-catalogue galaxies.

The apparent magnitude plot shows a clear difference between in-catalogue and out-
of-catalogue events, with a noticeable spike at the threshold for categorizing galaxies.
We do not have a definitive explanation for this phenomenon, but our best estimate is
as follows: when determining the apparent magnitude of galaxies outside the catalogue,
there is a smooth trend. However, in the magnitude range between 14 and 15, where
we start selecting galaxies from the catalogue, this trend is interrupted by the actual
observations from the catalogue. This results in a discontinuity in the overall apparent
magnitude distribution. The spin magnitude parameter a1 tends to favor higher spins due
to detectability, as higher spins make events more likely to be detected. We would expect
a similar effect for the secondary spin magnitude parameter a2, but this is not observed.
This discrepancy may be because we are generating synthetic BBH events where the spin
of the secondary mass has less influence compared to the primary mass. The primary mass,
having a higher mass, contributes more significantly to the total angular momentum. The
sky location parameters exhibit interesting features. The right ascension shows distinct
galaxy catalogue features in the distribution for in-catalogue events, with a noticeable dip
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in the region between 4− 5 rads due to the galactic band. The declination, particularly
for out-of-catalogue events, displays two distinct bulges. These bulges reflect the average
antenna pattern, depicted in Fig2.7, for the three detectors (HLV) averaged over one
sidereal day.

Out of all the parameters presented in Fig. 2.16, the one with the most informational im-
pact is the redshift distribution, specifically the in-catalogue distribution. This is where
the EM information (and the sky locations) come into the analysis, allowing us to in-
corporate EM information from the catalogue. To better understand how this inform-
ation varies within the analysis, Fig. 2.17 shows the variation of redshift over 32 ran-
dom pixels across the sky for different sky locations. The subplots show in-catalogue
and out-of-catalogue distributions. Specifically, in the in-catalogue distribution, it is pos-
sible to observe variation over the distribution for each pixel, showcasing the variation
and clustering of the catalogue in different sky directions. Other pixels, such as locations
α,δ = [(146.74,−55.87),(285.47,14.48)], show no catalogue contributions, suggesting that
the redshifts for those pixels are located in the galactic band.

It is also important to note that the samples in Fig. 2.16 are split in approximately
20/80 between in-catalogue and out-of-catalogue events. This significant difference is an
important consequence of the selection effects. If the selection effects were not incorporated
into the data generation, the dataset would be dominated by out-of-catalogue events.
This dominance would prevent the network from learning the structure of the catalogue
effectively, as the catalogued events provide key information about the distribution and
characteristics of detectable sources.

The angles ϕ jl and ϕ12 were unaffected by selection effects due to the detectability of
the GW signals we simulate. The same applies to the geocentric time of arrival (tgeo),
which shows a flat distribution over the span of an entire sidereal day, indicating that
the marginal distribution of the arrival time of the events is uniform throughout the day.
However, we know that the arrival time directly influences the type of events we observe,
as it is highly correlated with α .

The plot in Fig. 2.18 illustrates the relationship between right ascension (α) and geocentric
time of arrival (tgeo) for detected GW events. The colour scale indicates the bin count of
the events, with yellow regions representing higher-density regions. The plot shows a clear
periodic pattern in the distribution of events, reflecting the Earth’s rotation, which affects
the sensitivity of GW detectors to different parts of the sky over the course of a sidereal
day (approximately 86,164 seconds). This periodicity in the high density regions with
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Figure 2.17: Redshift variation in 32 random pixels from a HealPy pixelated map,
with NSIDE = 32, of the synthetically generated events from Fig. 2.16. Each subplot
shows two histogram distributions: blue for in-catalogue redshifts and orange for out-of-
catalogue redshifts. A cut-off at 0.5 was set for better visualization of the variation of the
in-catalogue distribution of redshifts.

respect to right ascension (α) and geocentric time of arrival (tgeo) can be attributed to
the antenna response patterns of the GW detectors (HLV). The antenna response of GW
detectors varies depending on the direction from which the GWs are coming, as depicted
in Fig. 2.7. This means that detectors are more sensitive to certain parts of the sky at
specific times due to their orientation and the rotation of the Earth. Consequently, the
detectors’ sensitivity to different sky locations changes as the Earth rotates, leading to
the observed periodic structure.
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Figure 2.18: Scatter plot showing samples of right ascension (in radians) and geocentric
time of arrival (in seconds). A Gaussian KDE was used to evaluate the density of each
scatter point, with regions of higher-density indicated by lighter colors. Constant hour
angles are also plotted at values π, 0, and −π.

We describe the Hour Angle (HA) of an event as:

HA= α −
tgeo

239.34

(
π

180

)
, (2.64)

where α is the right ascension in radians, tgeo is the geocentric time of arrival in seconds,
and 239.34 is the factor that converts the length of one sidereal day (86,164 seconds) into
degrees. As the Earth rotates, the sensitivity of the detectors varies with the changing hour
angle, leading to regions where the probability of detecting an event is higher or lower.
The straight diagonal lines in the plot represent constant hour angles, corresponding to
values −π, 0, and π in Eq. (2.64). These lines appear as specific right ascensions cross the
local meridian (culminate) at these Local Sidereal Time (LST) values, creating regions
of higher and lower detection probabilities. When a specific region of the sky aligns with
the detectors’ optimal sensitivity, the probability of detecting events from that region
increases, resulting in higher densities. As the Earth rotates, the same right ascension
regions move into and out of the detectors’ view, forming the observed diagonal bands
of higher and lower density regions. This results in the periodic pattern seen in the plot,
where specific regions of the sky have varying probabilities of event detection due to the
changing sensitivity of the detectors over the sky.
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Figure 2.19: Mollweide projections showing the galaxy count distributions for three
different categories for the synthetic GW events from Fig. 2.16, for an NSIDE = 64. The
top panel displays the counts of galaxies within the catalogue (pixels removed for zero
counts for better readability), the middle panel shows the counts of galaxies outside the
catalogue, and the bottom panel presents the total counts combining both in and out-of-
catalogue galaxies. The color bar beneath the projections indicates the number of galaxy
counts, with the scale spanning from 40 to 160.
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Table 2.2: Percentages of the data sets for in and out-of-catalogue for each run and
detector setup

Run Detectors in-catalogue (%) out-of-catalogue (%)
O1 H1, L1 42 58
O2 H1, L1 31 69
O2 H1, L1, V1 28 72
O3 H1, L1, V1 18 82
O3 H1, L1 19 81
O3 H1, V1 23 77
O3 L1, V1 23 77

In Fig. 2.19, the sky location bin counts of synthetic GW events are plotted for in-
catalogue, out-of-catalogue, and total combined events. The top plot illustrates events
originating within the GLADE+ galaxy catalogue, while the middle plot shows events
sourced externally. Interestingly, the bottom plot, which combines in-catalogue and out-
of-catalogue events, reveals an under density of counts along the Galactic plane of the
Milky Way. This is unusual, as a uniform distribution was expected when combining both
in-catalogue and out-of-catalogue events. This effect was observed in data sets generated
for the O1 and O2 runs, where we saw a more pronounced concentration of catalogue-
hosted GW events, showing an excess of events in the plane of the galactic band. The
reasons for these under densities in the galactic plane are still unknown and may be
related to differences in detection sensitivity, data integration methods, or the intrinsic
distribution of the events. No clear explanation has been found for this effect, and future
work will investigate this feature more thoroughly.

Overall, the data distribution for the O3a and O3b runs, with the H1, L1, and V1 detect-
ors active, has been generated. We then proceeded to generate datasets reflecting each
observing run and each detector setup. Each of these different datasets will be used to
train a separate NF. To assess how much of the EM information from the catalogue each
dataset will be using, we can look at the different contributions, in percentages, between
in-catalogue and out-of-catalogue for each dataset.

The ratios of in-catalogue and out-of-catalogue events are shown in Tab.2.2, with the O1
HL dataset showing 42% in-catalogue, while the O3 HLV dataset shows an in-catalogue
contribution of 18%. This is a good sanity check, as we expect that with better sensitivities,
the number of detectable events would increase with luminosity distance, thus placing
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more events in the out-of-catalogue category. This indicates that to introduce more EM
information from galaxy catalogues, more in-depth catalogues are necessary, spanning
deeper ranges of redshifts, and thus increasing the expected number of GW events sourced
from the catalogue.

2.7.1 Batching the Data Generation with Nselect

Despite major improvements in efficiency and speed, further enhancements in data gener-
ation are possible. Currently, generating 3 million samples takes approximately 21 hours.
To further enhance efficiency and minimise the time required to generate synthetic GW
events, while still covering the entire prior space defined in Table 2.1, we introduce a
parameter Nselect.

The parameter Nselect is designed to increase the number of samples drawn from each
distribution, thereby enhancing detection efficiency. If there are N different samples of
H0, we sample Nselect times from the redshift and mass distributions, and other priors, for
each H0. This means each value of the Hubble constant is repeated Nselect times. After
each iteration of the data generation process, we detect Ndet events, thereby decreasing
the number of events we need to synthetically generate after each iteration by N −Ndet.
To further increase efficiency, we can increase Nselect after each iteration as follows:

Nselect(t = i+1) = Nselect(t = 0)×

⌊
N

N −Ndet(t = i)

⌋
, (2.65)

where Nselect(t = i+1) and Nselect(t = 0) are the values of the Nselect parameter at the i+1
iteration and the zeroth iteration, respectively, N is the total number of events we wish
to generate, and Ndet(t = i) is the cumulative number of events detected at iteration i.
The floor function ⌊·⌋ ensures that the fraction gets rounded to the nearest integer, as
Nselect(t = i+1) must always be an integer.

Starting at iteration i = 0, Ndet(t = 0) = 0 since no events have been detected yet. For
example, if we are interested in detecting 1,000 events, and at the nth iteration Ndet(t =

n) = 900, then the new updated Nselect(t = n) = 50 for an initial setup of Nselect(t = 0) = 5.
This allows the data generation code to be more efficient when generating events from
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priors that are detectable in parameter space regions where detectability is very unlikely,
such as low values of H0. While there might be more sophisticated methods to update
the Nselect parameter after each iteration, the method described in Eq. (2.65) efficiently
updates Nselect, minimising memory usage and processing time.

The speedup from using this process is about 3 times faster, allowing us to generate events
from an O3 run with the HLV setup, generating 3 million samples in about 9 hours, when
choosing a Nselect(t = 0) = 2. Of course, we also ensure that out of the Nselect GW samples
we obtain for each H0, we only retain one from each batch, even if there are more than
one detected events for a single value of H0.

2.8 Conclusion

In this chapter, we introduced CosmoFlow, a data generation tool enhanced with ML
capabilities, designed to simulate GW events from an EM catalogue. The tool includes all
relevant GW event parameters, as well as information from the GLADE+ catalogue.

We began by outlining the Bayesian framework within which CosmoFlow operates and the
primary purpose of this analysis: to estimate the posterior distribution of cosmological
and population parameters using GW event observations. With a clear understanding
of the posterior distributions outlined in Eq. (2.12), our goal was to evaluate this equa-
tion by expediting the analysis using a conditional NF, conditional on the cosmological
and population parameters. Before training NFs, we generated training data reflecting
the probability distribution outlined in the numerator of Eq. (2.12), i.e., p(θ |D,Ω, I), or
the probability of the GW parameters conditioned on the event being detected and the
cosmological and population parameters. For the 1D case, the conditional cosmological
parameters will only consider H0.

We then outlined the process for generating these datasets in a flowchart (Fig. 2.3),
allowing for EM data to be introduced from galaxy catalogues such as GLADE+ through
the evaluation of the apparent magnitude of each synthetic host galaxy we generated
from priors and comparing it with the magnitude threshold map of GLADE+. This map
acts as a cutoff threshold for the actual EM catalogue, differentiating what would be
considered in-catalogue and out-of-catalogue from synthetically generated GW events. An
MLP was used to vectorize the SNR calculation of each simulated event, expediting the
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data generation process by about 4 orders of magnitude, thus bypassing the bottleneck
of evaluating the SNR for each event individually. The MLP was trained to evaluate
the SNR multiplied by the luminosity distance for each detector for specific observing
runs, using time-averaged PSDs for each run. We then generated 3 million data points
for each detector setup and observing run, where each dataset will be used to train a
NF, consistent with the different types of events observed and categorised in the GWTC
catalogues [99]. The overall distributions presented in Fig. 2.16 are consistent with the
expected distributions of the events, divided into in-catalogue and out-of-catalogue events.
Each dataset showed different percentages of in and out, as tabulated in Tab. 2.2.

After the successful generation of a comprehensive dataset for each observation run and
detector setup, the next step involves training the NF. This involves training an NF model
for each distinct setup to encapsulate the probability distribution of p(θ |H0,D, I), where
θ are the GW parameters and D is the detectability status. It is essential to generate
data that accurately reflects the specific conditions under which events are detected.
This alignment between data generation and event conditions ensures the accuracy and
reliability of our results. By properly accounting for the joint probability distribution
under various scenarios, we can minimise potential biases in our analysis.
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Chapter 3

CosmoFlow: Normalising Flow

In Chapter 2, we introduced CosmoFlow, which aims to estimate the posterior distribution
over cosmological and population parameters using observed GW events. This Bayesian
framework is detailed in Sec. 2.2, where we outlined the mathematical foundations, cul-
minating in the posterior distribution equation for cosmological parameters conditioned
on observed GW data, as follows:

p(Ω | h,D, I) ∝ p(Ω | I)∏
i

〈
p(θi,GW | Ω,Di, I)

p(Di | θi,GW, I)p(θi,GW | Ω0, I)

〉
θi,GW∼p(θi,GW|hi,I)

. (3.1)

The goal of the CosmoFlow analysis is to estimate Eq. (3.1). To expedite this process, we
employ an approach driven by machine learning, specifically using a conditional normal-
ising flow (NF) to evaluate the numerator in Eq. (3.1), p(θGW | Ω,D, I).

3.1 Introduction

As described in Chapter 1, a NF is a type of probabilistic model that transforms a simple,
tractable distribution (such as a Gaussian) into a more complex target distribution using
a series of invertible and differentiable transformations, conditioned on some input data
[69, 71]. This allows for flexible modeling of complex distributions while maintaining
the ability to compute exact likelihoods and perform efficient sampling. Starting from
a standard Gaussian distribution, we apply a series of transformations using trainable
parameters ϕ to scale and shift the distribution, ultimately transforming it into the input
data, generated in Chapter 2. This process is achieved by using the change-of-variable
formula described in Eq. (1.58), which allows the Jacobian of the transformation to be
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Figure 3.1: This diagram illustrates the transformation of the posterior distribution
px(x |ω) using a latent variable z and a transformation function f parameterized by ϕ . The
posterior distribution px(x | ω) is given on the left, and the function f (x | ω,ϕ) is applied
to map the distribution p(x | ω) to a latent probability space represented by pz(z), shown
in the center (Gaussian). The inverse function f−1(x | ω0,ϕ) maps the latent variable z
back to the posterior distribution px(x | ω0) for a new set of conditional statements ω0.
The transformed posterior distribution px(x | ω0) is depicted on the right.

modeled with these trainable parameters. We define the change-of-variable equation as

log(px(x | ω)) = log(pz( f−1(x | ϕ ,ω)))+ log
(
det
∣∣∣∣d f−1(x | ϕ ,ω)

dx

∣∣∣∣), (3.2)

where x is the input data, which in the CosmoFlow analysis consists of 14 input parameters
corresponding to the GW parameters, described in Tab. 2.1. The phase parameter is
excluded, as we are interested in parameters affected by selection effects, and since phase
does not influence the SNR of an event, it is excluded. The conditional parameters are
the Hubble constant values and the detectability status, hence ω ≡ [H0,D]. During data
generation, we ensured that the synthetic GW events are detectable above a specific SNR
threshold; this makes the detectability status, D, a placeholder indicating that the events
the flow is training on are all detectable, but it has no practical effect on the conditional
statement.

Figure 3.1 illustrates the process of evaluating the left-hand side of Eq. (3.2) for specific
conditional input values. Here, the input data (sampled from px) is input into the flow,
with conditional statement ω , sampled from a specific prior, used together to optimise
the parameter ϕ of the function f , which transforms px into the latent space pz. After
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training the NF, the parameters ϕ are optimised while keeping the transformation function
invertible and tractable, allowing for evaluation of f−1. With the optimised parameters
ϕ , we can now evaluate the desired probability distribution px(x | ω0) for any specific
conditional input parameters, ω0.

In this chapter, we will explore how the conditional NF is trained with the GW input
parameters, with conditional inputs as H0. We will quantify the learning process by eval-
uating the loss function of the training routine, then we will perform performance tests
on the NF, which include the resampling test, the Probability-Probability test, and the
final bias test. We will examine why these tests are essential for assessing the trained NF’s
capacity to evaluate the correct distribution.

3.2 Training the Normalising Flow

The training of the normalising flow (NF) is facilitated by the Python package glasflow
[135], which acts as a wrapper for the well-established nflows [136] library, which spe-
cializes in NFs. With glasflow, users have the ability to easily initialise flow models of
different types, including the RealNVP (Non Volume Preserving) flow model and the
spline-based flow known as CouplingNSF (Neural Spline Flow). For clarity and con-
ciseness, we will focus on results from the flow model using the O3 data set with the
HLV (Hanford-Livingston-Virgo) detector setup; the flows trained for the other data sets
areshown in the Appendix A.

In Table 3.1, we present the hyper-parameters employed for training the NF, as:

• The Batch Size specifies the subset of the dataset used at each iteration to estimate
the loss value as defined in Eq. (1.63). A suitable batch size ensures efficient training
and stable gradient estimates, which are important for the model convergence.

• The Number of Epochs indicates the total number of complete passes through
the entire training dataset.

• The Shuffle Option determines if the data is randomized before each epoch. Shuff-
ling helps in preventing the model from learning the order of the data, which can
improve generalization.

• The Activation Function is a non-linear function applied to the output of each
layer to introduce non-linearity and allow the network to learn complex patterns.
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• The Dropout Probability indicates the proportion of network connections (weights)
omitted during training for regularization. This technique helps to minimise over-
fitting by preventing the network from becoming too reliant on any particular set
of connections.

• The Learning Rate sets the magnitude of updates to the weights and biases (size
of the step) during training. A well-chosen learning rate ensures that the model
converges efficiently and avoids oscillations or divergence.

• The Learning Rate Scheduler is a mechanism that adjusts the learning rate
over time. Gradually decreasing the learning rate allows for finer adjustments to
the weights during later stages of training, improving the accuracy of loss value
estimates and aiding in generalization.

• The Split Parameter determines how much of the data is used for training and
how much is used for validation. This helps in monitoring the model’s performance
on unseen data, checking if the model is generalizing well over the data or not.

• The Optimiser is the algorithm used for updating the network’s weights. Common
optimisers include SGD [137] and Adam [63]. The choice of optimiser affects the
speed and stability of the training process.

• The Linear Transform is applied before each coupling transform for data manip-
ulation.

• The Neurons, Layers, and Blocks per Transform define the architecture’s
depth and complexity. Nneurons refers to the number of neurons per layer, Nlayer
indicates the number of layers, and Nblocks specifies the number of residual blocks
per transform.

• The Input Dimensions specify the size of the target data, which directly affects
the model’s architecture and the complexity it needs to handle.

• The Conditional Input Dimensions specify the size of the conditional dataset.
• The Flow Type determines the NF method used, which in glasflow could either

be RealNVP or CouplingNSF.
• The XYZ Parameter controls spatial coordinate scaling, with True for Cartesian

coordinates and False for Polar coordinates. This parameter transforms the in-
put data, specifically the right ascension, declination, and luminosity distance, i.e.,
α,δ ,DL, into x,y,z spatial Cartesian coordinates if enabled.

• The Scaler defines the input data scaling method, which is important for normal-
ising the data to improve model performance and training stability.

• The Mask is used in constructing the flow, determining which parts of the data are
transformed [136]. This helps in focusing the model’s learning on relevant features.

• The Number of Bins determines the spline interpolation granularity when us-
ing the flow type CouplingNSF. A higher number of bins allows for more detailed
transformations but may increase computational complexity.
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Hyperparameter Value
Batch Size 50,000

Number of Epochs 1,000
Shuffle Option True

Activation Function ReLU
Dropout Probability 0.0

Learning Rate 0.0005
Learning Rate Scheduler CosineAnnealingLR [138]

Data Split Ratio 80% (Training)
Optimizer Adam [63]

Linear Transform LU Decomposition
Neurons 128
Layers 5

Blocks per Transform 3
Input Dimensions 14
Conditional Inputs 1

Flow Type CouplingNSF [77]
XYZ Parameter False

Scaler Standard
Mask None

Number of Bins 4

Table 3.1: Hyperparameters for training the normalizing flow.

For additional details on the implementation and other initial setups for the flow using
glasflow, including configuration options, modular design, and usage guidelines, please
refer to Ref. [135]; this provides comprehensive documentation on the functionality of
glasflow, including its compatibility with PyTorch, the implementation of NFs, and
specific details on the CouplingNSF architecture

From here we initiated a CouplingNSF model with the configuration parameters shown
in Tab. 3.1. Once configured, the model can be moved to a computational device, such as
a Compute Unified Device Architecture (CUDA)-enabled GPUs, to leverage accelerated
computing resources, thereby enhancing performance for model training and inference.
This step allows handling larger datasets or for achieving faster computation times in
practical applications [139].
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Figure 3.2: (Left): Loss versus epochs for both the training and validation data. (Right):
The Kullback-Leibler (KL) divergence between a 1D Gaussian distribution and each di-
mension of the latent space is plotted against epochs. The curves have been smoothed
using a running mean filter for improved visualisation, with the original curves shown in
the background in a transparent style. The KL divergence values are measured in nats.

After initialising the parameters, the subsequent phase involves training the NF. In ML,
a widely recognized method to show how a model performs during training is to observe
the values of the loss function, expressed in Eq. (2.11), at each epoch. Ideally, one aims for
a general trend of decreasing values as the model progresses through the predetermined
number of iterations, although fluctuations and occasional increases are common, as evid-
enced by the loss plot in Fig. 2.11. The flow model was trained for 1000 epochs using the
glasflow package. The training process, accelerated by an NVIDIA RTX G-Force 2080
GPU, took approximately four hours. Given the specific nature of the NF model, which
aims to transform a simple latent distribution into a more complex target distribution,
an additional metric can be employed to assess the training performance. The primary
objective of NFs is to scale and translate the input dataset to approximate a normal
distribution. At various stages of the training process, we can draw samples from the
latent space to evaluate the model’s performance. By performing a kernel density estiam-
tion (KDE) on these samples and expecting them to approximate a normal distribution,
we can assess the closeness of our sampled distribution to an ideal normal distribution.
This comparison can be quantitatively measured using the KL divergence, as defined by
the equation

DKL(P||Q) = ∑
i

P(xi) log
P(xi)

Q(xi)
, (3.3)
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Figure 3.3: The Kullback-Leibler (KL) divergence between two Gaussian distributions:
as the mean of the orange dashed distribution (Q) diverges from the solid blue distribution
(P), the relative separation increases. The KL divergence, expressed in millinats, quantifies
the growing difference between the two distributions. The second row represents the same
idea, but with the mean value fixed and varying the standard deviation of the Gaussian for
Q. Each subplot shows the PDFs of the two distributions at varying levels of separation.

where P is the true distribution and Q is the approximated distribution modeled by the
flow and xi is the ith sample from the P distribution. In Fig. 3.2, the plot on the right
shows the evaluated KL divergence at each epoch of training for each dimension of the
latent space, z0 up to z13 (corresponding to 14 dimensions of the GW parameter space).
While the latent space has the same dimensions as the input data (14 GW parameters),
these dimensions are not strictly related one-to-one due to correlations in the data. The
monotonic decrease in the KL divergence for each dimension suggests that the latent space
distributions are progressively approaching closer and closer to a Gaussian distribution
as the NF training proceeds.

To provide a reference for the magnitude of KL divergence values, a simple illustrative
example is presented in Fig. 3.3. Two Gaussian distributions are compared across four
different stages. The first distribution, P, remains fixed, centered at 0 with a standard
deviation of 1. In the first row, the second distribution, Q, shifts its mean across four
instances with values [0.0,0.2,0.6,1.2] while maintaining a standard deviation of 1. In the
second row, Q varies its standard deviation with values [1,1.5,2,2.5], keeping the mean
fixed at 0. For each distribution, 50,000 samples were generated, and a Gaussian KDE was
used to estimate the PDFs. It is important to note that the use of KDE introduces a slight
amount of noise into the estimated distributions, adding an additional layer of variability
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to the setup. This noise simulates the types of distributions that might be encountered in
practical scenarios discussed later in this thesis. By examining the evolution of the Q dis-
tribution, we observe how the KL divergence values increase with the separation between
the distributions. The resulting KL divergence values are [0.54,21.7,176.11,723.89] mil-
linats for the changing mean example, and [0.72,125.61,319.08,491.57] millinats for the
varying standard deviation case. The KL values were computed using Eq. (3.3).

Then, at each stage of training, the KL divergence between a normal Gaussian distribution
(centered at zero with unit standard deviation) and the latent samples of the n-th dimen-
sion is compared by sampling 10,000 samples from both P and Q and evaluating Eq. (3.3).
A KL divergence value of zero indicates that the sampled distribution exactly matches
the standard normal distribution, while larger values indicate greater differences. How-
ever, when estimating it from samples through a KDE, there will be noise from sampling,
making it impossible to achieve a perfect zero. The extent to which the KL divergence can
approach zero depends on the number of samples used. Thus, a lower KL divergence value
indicates a closer match to the standard normal distribution, highlighting the effectiveness
of the training process. From Fig. 3.2, the KL values across all dimensions show a steady
and noisy descent towards low values, achieving final KL values ranging from 4 down to
0.8 millinats. This approach validates the model’s capability to accurately transform and
fit the data to a normal distribution.

A comparison between the latent space and a normal multivariate distribution is illus-
trated in Fig. 3.4. In this figure, the black contours represent the distribution of samples in
the latent space after training the NF, while the red contours depict samples from a mul-
tivariate normal distribution. Each plot uses 10,000 samples. The KL divergences for the
1D samples between the latent space and the normal distributions are also displayed, with
values presented in units of millinats (where 1 millinat = 10−3 nats, a measure of inform-
ation divergence). A KL divergence value below 4 millinats indicates strong agreement
between the latent and target distributions. This demonstrates that the training process
was effective in mapping the target data into the normal distribution. This plot shows the
latent space pz at the final stage of training, indicating consistency with a multivariate
normal distribution and confirming the success of the flow model’s training. To simplify
the evaluation, the KL divergence was computed on the individual one-dimensional data
sets instead of the full 13 dimensions because evaluating the KL divergence with that many
dimensions was challenging. Therefore, we resorted to this practical and straightforward
approach.
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Figure 3.4: Corner plot with the latent samples distribution and overlaid the samples
generated from the multivariate normal distribution. The KL divergences of each 1D
distribution are shown in the legend. The contour levels are 68%, 95% and 99% of the
total data enclosed

To better understand the information enclosed in Fig. 3.4, we present the covariance mat-
rix of the latent-space samples in Fig. 3.5. This matrix helps us understand the correlation
between each dimension. The covariance between two dimensions Xi and X j, for n samples,
is given by

cov(Xi,X j) =
1

n−1

n

∑
k=1

(Xki − X̄i)(Xk j − X̄ j), (3.4)
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Figure 3.5: Covariance matrix for the latent space shown in Fig. 3.4. The color scale
indicates the magnitude of the covariance, with values ranging from −1 to the maximum
covariance. The diagonal elements represent the variance of each latent dimension.

where Xki is the kth sample of the ith dimension, Xk j is the kth sample of the jth dimension,
and X̄i and X̄ j are the means of the ith and jth dimensions. Computing the covariance
matrix between latent space dimensions shows very little covariance, as indicated by the
fact that the diagonal entries are all one or close to one. This demonstrates that the latent
distribution is both Gaussian (low KL) and uncorrelated (low covariance).

After training the NF to the point where the loss no longer decreases, we select and save
the best NF state, defined by the lowest validation loss, for future use. Before using the NF
for the intended calculations, we conduct preliminary tests to ensure it has been properly
trained. These tests include the resampling test, Probability-Probability (PP) test, and
bias test.
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3.2.1 Resampling test

The resampling test is designed to evaluate the effectiveness of the mapping functions
employed by the flow. In Fig. 3.4, the latent space showed high Gaussianity, indicating that
the mapping function f (x|ϕ ,ω) has been correctly tuned. However, this does not provide
a good indication of whether the inverse process, using f−1 as depicted in Eq. (3.2),
is sufficiently accurate to map back to the initial distribution, px. To address this, we
perform the resampling test. This involves generating samples from the latent space and
then transforming these back into the original target data space to verify how closely
the final distribution aligns with the training data. This process assesses the accuracy
and reversibility of the flow’s mapping functions. Significant discrepancies between the
original and resampled distributions indicate that the inverse functions were not optimally
calibrated or sufficiently trained.

To conduct this test, we uniformly sample from the conditional space, ω ≡ [H0,D]. As
mentioned previously, the detectability status is just a placeholder in the conditional
statement, indicating that all the GW parameters we sample from the flow should be
detectable events. We then sample H0 from the prior distribution used in the data gener-
ation (U ∼ [20,140]kms−1 Mpc−1) and input these into the conditional statement of the
trained NF. Having satisfied the conditional part of the NF, we can then directly sample
from the flow.

The sampling is performed straightforwardly by first sampling from a standard normal
distribution. Each sample is then mapped from the latent space, pz (which we have as-
sumed to be perfectly Gaussian, even though it slightly deviates from it), to the target
data space, px. The new samples in the target data space are now the resampled GW
parameters from the flow. The results of the resampling test are shown in the corner plot
in Fig. 3.6, where the target data (in black), the actual data used to train the flow, and
the samples from the flow (in red) are overlaid. Qualitatively, the distributions match
very well, except for the marginalized uniform distributions, specifically in a1, ϕJL, ϕ12, ψ ,
and tgeo. This discrepancy is likely due to the fact that these are uniform hard-bounded
distributions.

The NF models usually struggle with uniform distributions, especially those with hard
boundaries, because these distributions lack smoothness and have sharp edges, making it
challenging for the smooth, invertible transformations in NF to capture them accurately.
Additionally, the sharp density changes at the boundaries can cause instability during
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Figure 3.6: Corner plot illustrating the target data distribution, consisting of 3 million
data points, overlaid with samples generated from the trained flow model, which includes
1 million data points. The contours represent the 50% and 99% confidence levels of the
total data. The black lines denote the target data distribution, while the red lines indicate
the distributions generated by the NF. The Jensen–Shannon (JS) divergences for each
one-dimensional marginal distribution are also displayed, quantitatively indicating the
similarity between the target data and the generated samples. The JS divergence values for
each parameter are presented in the legend, showing variations across different parameters.

training and poor gradient estimates [140]. The initial reason for using neural spline flows
was to mitigate issues with hard boundaries in distributions by increasing the number
of spline bins, which helps to handle these boundaries more effectively [77]. However, it
appears that this approach was not sufficient to fully address the problem.
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One way to mitigate this effect would be to apply a transformation to the uniformly
distributed GW parameters in the p(θ |H0,D) distribution. This can be achieved using a
logistic function, given by

logistic(x) = 1
1+ e−x . (3.5)

By passing the uniformly distributed samples through Eq. (3.5), the boundaries extend
from finite to [−∞,∞]. This essentially transforms a uniform flat distribution into a Gaus-
sian, allowing the NF model to better train and learn these parameter dimensions due to
the new smooth parameter distributions. For the resampling test, one must remember to
convert the transformed distribution back to its initial shape by applying the inverse of
the sigmoid function, the logit function.

The JS divergences between the target data and the distributions given by the NF are also
shown for each marginalized distribution in Fig. 3.6. In this case, the JS divergence was
chosen for its symmetry, which is crucial for comparing two distributions without favoring
one over the other. When comparing two distributions, if one is the target distribution,
the KL divergence is often sufficient to measure how far off the approximating distribution
is from the target. However, for the resampling test, we need to quantitatively determine
the offset between the real data and the resampled data from the NF without ambiguity or
directional bias. The JS divergence, being symmetric, ensures that the comparison treats
both distributions equally, making it more suitable for this purpose. It is defined as

JS(P||Q) =
1
2

DKL(P||M)+
1
2

DKL(Q||M), (3.6)

where M = 1
2(P+Q) is the average of the two distributions, P is the target distribution,

and Q is the distribution given by the NF. This symmetry property ensures JS(P||Q) =

JS(Q||P), unlike the KL divergence, which is asymmetric and measures the difference in
a specific direction.

3.2.2 Probability-Probability test

The Probability-Probability (PP) test uses cumulative distribution plots to identify biases
in the resampling of data spaces, providing a measure of the normalizing flow model’s
consistency and reliability in reproducing parameter distributions.
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Figure 3.7: PP plot for various parameters of the latent space, comparing the fraction
of events within a given confidence interval (C.I.) to the ideal 1:1 line. The parameters
include distance DL, angles α , δ , and θ , detector frame masses m1,z and m2,z, spins a1 and
a2, and additional parameters such as ϕ , ψ , and tgeo. The values in parentheses indicate
the respective p-values. The y-axis represents the fraction of events within the specified
confidence interval, while the x-axis represents the confidence interval. The shaded region
represents the confidence intervals of 68%, 90%, 99% and 99.99%.

The process starts with uniformly sampling the conditional space (as the flow was trained)
and then sampling the parameter space. Specifically, given data comprising 14 GW-event
parameters and a cosmological conditional value, we sample the latent space while keeping
the conditional values consistent with those used in training. This generates distributions
for the parameters. For each sample in the training dataset, the true parameter values are
known. By comparing the distribution generated by the flow model to these true values,
PP plots are constructed.
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In a PP plot, the x-axis represents the cumulative probability or confidence interval (C.I.),
ranging from 0 to 1. The y-axis shows the fraction of events (or data points) for which
the true parameter value falls within the corresponding confidence interval on the x-axis,
also ranging from 0 to 1. The ideal scenario is represented by a 45-degree line (y = x)
on the plot. This line indicates perfect calibration, meaning that the fraction of events
within a given confidence interval matches the confidence interval itself. For instance, if
the model is perfectly calibrated, 68% of the true parameter values should fall within the
68% confidence interval of their posterior distributions. If the plot lies above the ideal line,
it indicates the model is overconfident, as the actual fraction of events falling within the
given confidence intervals is higher than expected, suggesting the intervals are too narrow.
Conversely, if the plot lies below the ideal line, it means the model is under confident,
as the actual fraction of events falling within the given confidence intervals is lower than
expected, indicating the intervals are too wide. We can also compute the p-value for each
parameter, which is a measure that helps determine whether the results observed in data
are real or occurred by chance, with a value ranging from 0 to 1. In the context of PP
plots, a high p-value indicates that the model’s predictions match the actual data well,
while a low p-value suggests potential biases in the model, specifically for values below
0.05 [141]. For further understanding of PP plots, a recommended resource is available in
[142].

In Fig. 3.7, the PP test outcomes for the training data parameters are displayed, indicat-
ing no inherent biases in data resampling through the flow. The PP plot was generated
using the bilby Python package [100], with 1000 iterations and 50,000 samples per itera-
tion. This extensive sampling ensures a thorough examination of the distribution for each
parameter. The PP plot shown in Fig. 3.7 shows a maximum p-value of 0.78 for δ and a
minimum p-value of 0.03 (just below the 0.05 statistical threshold) for the tgeo parameter.
The combined p-value is 0.2516.

This test can also be performed over the conditional data space. This is done by evaluating
the NF for an array of values in the conditional space, ω0, for each individual synthetic
GW event in the training dataset. Each GW synthetic event in the training dataset is
assumed to be perfectly constrained (no uncertainty on the GW parameters), allowing us
to use the posterior equation p(H0|θ ,D) ∝ p(θ |H0,D). Since each event also has a true
value of H0, we can compare the number of events found within a confidence interval of the
distribution evaluated, which in this case would be p(H0|θ ,D). An example of this process
is shown in Fig. 3.8, where examples of p(H0|θ ,D) curves are shown for six synthetic GW
events from the training data. This is achieved by computing the NF over fixed values of
the GW parameters and varying H0 in steps from [20,140]kms−1 Mpc−1.
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Figure 3.8: Subplot of different p(H0|θ ,D) distributions in orange, with the appropriate
samples from it, and the true value shown (red dashed line).

Now that we evaluate single event posteriors on H0, we can compare the posterior distri-
bution samples with the true values for each event and compute a PP plot, as shown in
Fig. 3.9. Performing the same test with 1000 iterations with 50,000 samples each distri-
bution, it is clear that there is no underlying bias, with a p-value of 0.736.

Although these tests are strong, showcasing the performance and the sampling power of
the trained NF, a better approach would be to generate 1000 synthetic GW events from
the data generation process with a fixed value of H0 and then combine all the events
together hierarchically. In this context, combining hierarchically refers to integrating the
information from all events into a unified analysis using a statistical or probabilistic frame-
work. This involves calculating a joint posterior distribution for H0 by aggregating the
likelihoods or posteriors from individual events, allowing the cumulative evidence from
the entire dataset to constrain H0 more effectively. The combined distribution can then be
used to evaluate the number of samples within each confidence interval. We would perform
this analysis over many values of H0, each time generating 1000 events and combining
them. The construction of the PP plot would lead to a more powerful result showcasing
the unbiased nature of the trained NF.

We can also perform this test over one iteration, meaning fixing the value of H0 and
combining the event posteriors together to obtain an overall combined distribution and
check if the true value lies within the distribution. This is the bias test mentioned in
Section 3.2, which we will now discuss.
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Figure 3.9: PP plot for H0 sampled from p(H0|θ ,D) of the target space, comparing the
fraction of events within a given confidence interval (C.I.) to the ideal 1:1 line. The value
in parentheses indicates the respective p-value. The y-axis represents the fraction of events
within the specified confidence interval, while the x-axis represents the confidence interval.
The shaded region represents the confidence intervals of 68%, 90%, 99%, and 99.99%.

3.2.3 Bias test

In the bias test, we examine the inherent bias of the trained flow model. Using our data
generation algorithm, we produce 1000 events with H0 = 70kms−1 Mpc−1. These events
are treated as real with precisely constrained parameters, except for Gaussian noise in the
SNR. We then use Eq. (3.1) to combine multiple events, omitting the denominator since it
is constant across all events. This test can be performed for any value in the cosmological
space, not just H0 = 70kms−1 Mpc−1.
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By assuming there is no noise in the estimation of the synthetic GW parameters (other
than the SNR), we simplify the probability term p(θ |h) to a delta function. This represents
the best-case scenario for PE, thereby making the bias test more stringent. However,
because the observed SNR is sampled from a non-central χ2 distribution (with the network
matched-filter SNR serving as the non-central parameter), there is still some uncertainty
in detectability due to this sampling process. This introduces noise into the observed
SNR, affecting detectability slightly. Therefore, the expectation value is calculated over
the delta function, which allows us to ignore the denominator in Eq. (3.1), as it does not
depend on the cosmological parameters being tested.

These events are passed to the flow model for probability evaluations. The results, shown
in Fig. 3.10, present combined posterior analyses for the Hubble constant, H0, across
different totals of events: 10, 50, 100, 250, 350, 500, 750, and 1000. Each subsequent
combined posterior includes all previous events, meaning that the combined posterior for
50 events also contains the 10 events from the previous plot, and so on. In the figure,
the red curves represent the individual posteriors from each event, while the blue curve
represents the combined hierarchical inference of H0 by combining the single posterior
distributions together. The true value of H0 falls within the 2σ confidence interval of each
combined posterior, except 1000 events combined. This might indicate a systematic bias
of the NF at this level of precision.

We also present the mean H0 value for each distribution, with error bars indicating the 95%
highest density interval (HDI), as shown in the subplot below in Fig. 3.10. Additionally,
we plot the theoretical curve showing how the standard deviation decreases by

√
Nevents,

in red. To plot these curves, we used the 95% HDI result of the first 10 combined events,
took a mean of the uncertainties ranging above and below the mean value, and used that
as the mean uncertainty starting at 10 combined events. We then divided the result by
√

Nevents. From the plot, we see that the error bars are within the theoretical standard
deviation, but there seems to be some level of systematic bias in the NF. To improve these
results, increasing the amount of training data and dedicating additional time to training
the model, potentially with higher complexity networks, may enhance the inference power
of the NF, reducing bias when combining multiple events.

It’s important to emphasize that this analysis assumes an ideal scenario where each GW
event is perfectly measured, with no uncertainty, meaning they are perfectly localised in
the GW parameter space. Under these conditions, combining 1000 events gives us an error
of about 5 units for H0, resulting in an accuracy of 5

70 ≈ 0.071 (or approximately 7.1%).
This means that even with 1000 perfect events, the best accuracy we could achieve for H0
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Figure 3.10: Subplots showing the combined posterior distributions for 10 to 1000 events
using testing data. The true value used to generate the testing data was set at H0 =
70 km s−1 Mpc−1. The red curves represent the posterior distributions of H0 for each
individual synthetic GW event, while the shaded grey region indicates the 95% highest
density interval (HDI). The bottom subplot illustrates the mean estimates and 2σ error
bars of each combined posterior as a function of the number of events. The theoretical
curve, 2σ/

√
Nevents, is also plotted as a dashed red line. THe blue line is the total posterior

distribution over H0.

is around 7.1%. Since this scenario represents a best-case upper limit (where all events
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are perfectly constrained, which is unrealistic), the actual number of events required to
constrain H0 to below 1% would be much higher. A lower-boundary estimate suggests
that at least 10,000 GW BBH events would be needed to reach sub-percent precision,
uisng only BBH GW events.

3.3 Conclusion

In this chapter, we explored the sections of the CosmoFlow analysis of training a NF and
assessing its validity through a series of tests.

After generating the dataset, a NF model is initialised for training, incorporating 14 GW
parameters: luminosity distance (DL), primary mass (m1), secondary mass (m2), detector
frame masses, right ascension (α), declination (δ ), primary spin magnitude (a1), secondary
spin magnitude (a2), inclination (θJN), spin tilt angles (θ1 and θ2), spin phase angles (ϕJL

and ϕ12), polarization angle (ψ), and coalescence time (tgeo). Additionally, a conditional
variable is included, given by the H0 values attributed to these events. The training of the
flow model, executed over 1000 epochs using the glasflow package and facilitated by an
NVIDIA RTX G-Force 2080 GPU, is done over an estimated duration of four hours. The
model then undergoes a series of validation tests, specifically the resampling test, the PP
plot test and the bias test.

Initially, a resampling test was conducted to verify that sampling from the latent space,
conditioned on the same dataset used for data generation, accurately reflects the target
data distribution. The results of this test are shown in Fig. 3.6. The next test involves using
PP plots to assess potential biases by comparing the distribution conditioned on specific
H0 values against the corresponding true values. The outcomes, presented in Fig. 3.7,
reveal no inherent bias. We can also perform a PP plot for the conditional space. In this
analysis, we use the single event GW parameter set from the target data and evaluate
for different values of H0. This approach allows us to estimate the posterior distribution
p(H0|θ ,D) and obtain posteriors over H0 for each individual event. Since each event has
a different true value of the H0 parameter, we can compare the posterior distribution of
each event with the true values, enabling the construction of a PP plot for H0. The results
in Fig. 3.9 show an unbiased PP plot, with a p-value of 0.736.
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The final test focuses on bias detection within the model. This involves generating datasets
with a fixed H0 value by creating 1000 synthetic GW events and applying Eq. (2.12), with
the exception of the SNR, which is adjusted for Gaussian noise per detector. This approach
allows for the combination of posteriors from multiple simulated events, as demonstrated
in Fig. 3.10. The results from the bias test indicate the presence of a slight systematic
bias, particularly when combining 1000 GW event posteriors over H0. This bias can be
mitigated by increasing the amount of training data and extending the number of training
epochs for the NF.

Having rigorously trained the model with synthetic data generated from Chapter. 2, we
proceed to apply real GW posterior samples to compute the H0 posterior distribution for
each event, considering various detector setups and PSDs.
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Chapter 4

CosmoFlow: Results from GW data

Declaration: The results presented in this Chapter are derived from my first author paper
[54], with additional findings included. We provide one-dimensional posteriors for both
BBHs and NSBHs, and explain the inconsistencies observed with gwcosmo. One significant
difference, while still consistent with [54], is that at the time of producing these results, only
5 dimensions of the gravitational wave data were used, instead of the full 15 dimensional
space. This limitation has since been corrected, but the results presented here are based on
a 5 dimensional flow with a 1 dimensional conditional space.

4.1 Introduction

The primary objective of the CosmoFlow analysis is to estimate cosmological parameters
using information extracted from GW detections using NFs. In Chapter 2, we discussed
the preliminary stage of this analysis, which involves training an NF model on synthetic
data that represents GW events derived from specific cosmological and population priors.
This approach enabled us to create a dataset with no uncertainty on the parameter values
for GWs, conditional on many different realisations of the Hubble constant.

After generating the training data, a conditional NF was trained to evaluate the map-
ping function from the data space to a Gaussian latent space, as shown in Chapter 3.
In alignment with the gwcosmo analysis in [16], only five GW parameters were used: lu-
minosity distance, primary and secondary masses, and sky locations (right ascension and
declination). The conditional data was the cosmological parameter, specifically the Hubble
constant. Training the NF allows us not only to map the target data to a Gaussian latent
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space and back, but also to evaluate p(θ |Ω,D) in the numerator of Eq.(3.1), for specific
values of the cosmological parameters, Ω. To remind the reader, in Sec. 2.2, we out-
lined the Bayesian framework used to evaluate the posterior distribution of cosmological
parameters using GW data. The derived equation was

p(H0|h,D, I) ∝ p(H0|I)∏
i

〈
p(θi|Di,H0, I)

p(Di|θi, I)p(θi|Ω0, I)

〉
θi∼p(θi|hi,I)

, (4.1)

where hi, Di, θi are the strain data, detectability status, and the posterior samples of the
ith event, respectively, and Ω0 is the cosmological fixed values for the priors used in the
PE analysis of the GW events. The trained NF provided us with a tool that enabled us
to compute the numerator in Eq.(4.1), thus allowing us to perform hierarchical inference
on the cosmological parameters using GW posterior samples as input. In this chapter, we
will present the results obtained from using O1, O2 and O3 GW posterior samples events
from BBHs to infer the Hubble constant, H0.

Since this is a novel approach for inferring H0 and uses ML, benchmarking is necessary to
evaluate the consistency and validity of the results. Therefore, we will compare our pos-
terior results with those obtained from gwcosmo during the publication of the collaborative
work on constraining cosmological parameters using GW data [16]. The gwcosmo analysis
has been tested in the past, including a Mock Data Analysis (MDA) [51] for well-localised
BNSs, which showed no systematic bias. However, it is important to note that the results
from the gwcosmo analysis are not the true posterior distributions. Matching these results
only provides indirect evidence of a correct analysis for CosmoFlow. While gwcosmo has
undergone some benchmarking, it has not been extensively validated to the point where
its posteriors can serve as a definitive benchmark. Therefore, even if our results match
those of gwcosmo, it only serves as indirect evidence of correctness. To date, there has not
been a BBH Mock Data Challenge (MDC) with a known truth against which gwcosmo
has been tested. A more rigorous test of our analysis (and gwcosmo) would involve using
simulated data with known correct results. This would allow us to argue for the absence of
bias and pass PP-plot tests. Although we approach this, with the bias test in Chapter 3,
we fall short of actually simulating posterior distributions for BBH events. Before using
CosmoFlow for cosmological analysis, it is essential to understand the nature of the data
being analysed.
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4.2 GWTC data

On September 14, 2015, at 09:50:45 UTC, both detectors of the LIGO observatory de-
tected a transient GW event, designated GW150914, with a delay of only 7 milliseconds
between them. This event marked the first direct observation of GWs, providing a ground-
breaking confirmation of Einstein’s theory of general relativity. The strain data, h, from
this event was then used to estimate the dynamics and underlying physics of the black hole
merger, allowing us to infer the system’s properties. The detection showed a matched-filter
SNR of 24. A high SNR, such as the value of 24 observed for GW150914, indicated a very
strong signal standing out clearly above the noise, making it highly reliable. Additionally,
the event had a false alarm rate (FAR) of less than one event per 203,000 years. The FAR
quantifies the expected rate at which noise alone would produce a signal that mimics a
true GW event. Mathematically, FAR can be expressed as:

FAR=
Nfalse

T
(4.2)

where Nfalse is the number of false positives detected in a given time period T . In this
context, a false positive is defined as a non-astrophysical candidate that equals or exceeds
the detection statistic in question. A FAR this low as one over 203,000 implies an extremely
rare probability of a false detection, translating to a statistical significance exceeding 5.1σ .
This high level of statistical significance further confirms the authenticity of the detection,
ensuring that the observed signal is indeed a genuine GW event rather than a random
noise fluctuation [30].

Following the identification of a GW signal such as GW150914 via matched-filtering [30],
the next phase involves deducing the source’s physical attributes. This is known as para-
meter estimation (PE) and is done using sophisticated Bayesian inference methods. As
outlined in Chapter 1 Sec. 1.4, Bayesian inference evaluates the probability of certain
parameters given the observed data and prior knowledge of the parameters’ probable val-
ues. Detection is determined by matched-filtering, which involves comparing the observed
data with theoretical templates to find the best fit. Once a signal is detected, some limited
information from the matched-filtering analysis, such as the time of arrival and the nature
of the event (e.g., BBH, NSBH or BNS), is used to define the prior space for the Bayesian
analysis. Bayesian inference is then employed to deduce the physical parameters that gen-
erated the signal. Within this framework, the bilby [143, 144, 145] Python package is
commonly used for analysing posterior estimations within the LVK collaboration.
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Figure 4.1: Corner plot of the sampled joint posterior distribution showing luminosity
distance, detector frame masses, and sky location (right ascension and declination). The
marginalized distributions’ titles show the mean value with 16% and 84% quantiles, and
the 2D histograms display the 11.8%, 39.3%, 67.5%, and 86.4% credible regions. The
remaining 10 signal parameters have been marginalized over and are not shown here.
(Top Right): Bin counts per pixel plot over a Mollweide projection of the sky location
posterior samples of GW150914 [48, 86, 88]. The colorbar shows the log10 scale of the bin
counts, using a resolution of 3.36deg2 per pixel

As discussed in Sec. 1.5, bilby, a Python-based package that serves as a high-level inter-
face for GW parameter estimation (PE), is used to process data. It simplifies the work-
flow by providing a wrapper around various stochastic sampling algorithms to determine
the posterior distributions of parameters that define the waveform template. Traditional
methods like MCMC face challenges with increasing problem dimensionality. However,
more advanced approaches, such as NS, implemented via the dynesty [146] code, offer

- 127 -



4.2. GWTC data

a different strategy for exploring the joint posterior distribution of the parameter space.
Both MCMC and NS methods have their own advantages and limitations, particularly
in high-dimensional settings, and remain widely used for GW PE [123, 146]. More recent
machine learning enhanced methods, like Nested Sampling with Artificial Intelligence
(nessai), employ NF to efficiently sample from the prior within iso-likelihood contours,
thus expediting the process of sampling the joint posterior distribution [37].

An example result of the PE analysis of GW150914 is partially shown in Fig. 4.1. The
corner plot displays the posterior distributions of five parameters that will be used as
target inputs to the CosmoFlow analysis 1. However, the full PE analysis considers all 15
parameters, as described in Tab. 2.1. The figure also includes a Mollweide projection of
the sky location posterior samples, showing bin counts per pixel. This skymap illustrates
the sky coverage of this GW event, which spans approximately 200 square degrees, and
indicates how much of the galaxy catalogue GLADE+ is covered by the event. This plot
highlights the complex nature of these parameter data spaces, which should be taken into
consideration when using these samples to evaluate posterior distributions over H0.

We gathered the posterior samples from 42 BBH events observed during the O1, O2, and
O3 detector runs, cataloged in GWTC-2.1 and GWTC-3, for our CosmoFlow analysis.
Events were selected with an SNR greater than 11, in line with [16]. It is important to
note that the GW data collected from GWTC-2.1 and GWTC-3 includes events detected
during the O1 through O3 runs, each with different detector setups. The detectors exhib-
ited varying noise characteristics between runs, and even between events within the same
run, due to ongoing improvements and maintenance. Furthermore, not all detectors were
operational for every event; hence, each detection was made with a different network con-
figuration, involving either two or three detectors. We do not consider any single-detector
events. This variability in the detector network and noise characteristics is summarized
in Tab. 4.1.

To ensure an unbiased analysis, we generated training data to reflect various combinations
of detector configurations across different observing runs. Specifically, we considered the
following combinations: O1 [H, L] (Flow 1), O2 [H, L] (Flow 2), O2 [H, L, V] (Flow 3), O3
[H, L] (Flow 5), O3 [H, V] (Flow 7), O3 [L, V] (Flow 6), and O3 [H, L, V] (Flow 4). Each
entry in the brackets indicates whether a particular detector was operational (included)

1. As noted at the beginning of this chapter, the results presented in Chapter 4 for CosmoFlow are
obtained using NF trained on 5 GW parameters. For comparison, results using the full 14D parameter
space of the GW events, excluding the phase parameter, are provided in Appendix B, where posteriors
obtained with the 5D and 14D conditional NFs are analysed side by side.
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Observing Run Event Detectors Network SNR Flow

O1 GW150914_095045 H, L 24.4 Flow 1
GW151226_033853 H, L 13.1 Flow 1

O2

GW170104_101158 H, L 13.0 Flow 2
GW170608_020116 H, L 15.4 Flow 2
GW170809_082821 H, L, V 12.4 Flow 3
GW170814_103043 H, L, V 16.3 Flow 3
GW170818_022509 H, L, V 11.3 Flow 3
GW170823_131358 H, L 11.5 Flow 2

O3a-O3b

GW190408_181802 H, L, V 14.8 Flow 4
GW190412_053044 H, L, V 19.7 Flow 4
GW190503_185404 H, L, V 12.8 Flow 4
GW190512_180714 H, L, V 12.4 Flow 4
GW190513_205428 H, L, V 12.9 Flow 4
GW190517_055101 H, L, V 11.3 Flow 4
GW190519_153544 H, L, V 13.9 Flow 4
GW190521_030229 H, L, V 14.4 Flow 4
GW190521_074359 H, L 24.7 Flow 5
GW190602_175927 H, L, V 12.6 Flow 4
GW190630_185205 L, V 15.2 Flow 6
GW190701_203306 H, L, V 11.9 Flow 4
GW190706_222641 H, L 12.7 Flow 5
GW190707_093326 H, L 13.2 Flow 5
GW190708_232457 L, V 13.1 Flow 6
GW190720_000836 H, L, V 11.6 Flow 4
GW190727_060333 H, L, V 12.1 Flow 4
GW190728_064510 H, L, V 13.4 Flow 4
GW190828_063405 H, L, V 16.6 Flow 4
GW190828_065509 H, L, V 11.1 Flow 4
GW190910_112807 L, V 13.4 Flow 6
GW190915_235702 H, L, V 13.1 Flow 4
GW190924_021846 H, L, V 13.0 Flow 4
GW191109_010717 H, L 15.8 Flow 5
GW191129_134029 H, L 13.3 Flow 5
GW191204_171526 H, L 17.1 Flow 5
GW191216_213338 H, V 18.6 Flow 7
GW191222_033537 H, L 12.0 Flow 5
GW200112_155838 L, V 17.6 Flow 6
GW200129_065458 H, L, V 26.5 Flow 4
GW200202_154313 H, L, V 11.3 Flow 4
GW200224_222234 H, L, V 19.2 Flow 4
GW200225_060421 H, L 13.1 Flow 5
GW200311_115853 H, L, V 17.6 Flow 4

Table 4.1: Summary of BBH GW events and corresponding detectors by observing run
for a total of 42 detected GW events. Detection thresholds were determined based on a
matched-filter SNR above 11 [16]. The table comprises five columns: the observing run, the
event names, the detector configuration during the event detection, the network matched-
filter SNR, and the flow used. The flows are defined as follows: Flow 1 - HL O1, Flow 2 -
O2 HL, Flow 3 - O2 HLV, Flow 4 - O3 HLV, Flow 5 - O3 HL, Flow 6 - O3 LV, Flow 7 -
O3 HV.
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or not (excluded) during the detection of GW events. These combinations resulted in
seven distinct datasets, and consequently, seven distinct NFs, each representing different
configurations of operational detectors during the O1, O2, and O3 observing runs, as
described in Tab. 4.1.

Initially, we considered generating a single dataset and using “one-hot encoding” to in-
clude information about the detector setup and the specific PSD from each detector run.
One-hot encoding, a machine learning and data preprocessing technique, transforms cat-
egorical variables into a numerical format, enabling algorithms to interpret and process
the data more effectively for predictions [147]. In our case, one-hot encoding would dif-
ferentiate the data based on different detector configurations, assigning a binary value to
each detector: 0 if it was off and 1 if it was operational. For example, for an HLV dataset,
the extra features would be [1,1,1], and for an HV dataset, it would be [1,0,1]. We also
considered adding a fourth one-hot variable to represent the observing run (O1, O2, O3),
or incorporating additional conditional input to represent the PSD of each run or event.
Mathematically, this would modify the NF model to learn the distribution p(θ |Ω,D,C),
where C represents the conditional one-hot encoded features, including detector config-
uration and PSD. The method involved generating entire datasets, each having the same
number of data points, and then training the flow with these extra conditional features. For
instance, with HLV binary values, we would have a total of 4 dimensions in the conditional
space. In our initial test, we chose to fix the PSD specific to the detector run. However,
this approach was unsuccessful due to the complexities involved in setting up the prob-
lem. Specifically, it was challenging to evaluate the probability p(θ |Ω,D,C) for varying
values of H0 while keeping C fixed for specific events. The results showed inconsistencies
when producing the posterior distributions over H0, including the presence of unphysical
features. Future research will explore this area further to address these challenges. This
approach would have allowed us to generate a single training dataset per observing run,
and hence a single flow for each observing run, or even better, for all configurations, mak-
ing the process more efficient. However, instead of using one-hot encoding, we ultimately
decided to create separate datasets for each combination of detectors and observing runs.
This approach resulted in more manageable and distinct datasets, avoiding potential bi-
ases and complexities that could arise from combining different configurations and PSDs
into a single dataset, while also simplifying the training process for each NF, even though
this required training seven separate NFs.

Therefore, we trained a separate conditional NF model for each detector configuration
and observing run, rather than a single NF model with multiple conditional inputs. This
approach allowed us to maintain the integrity and accuracy of our analyses while ac-
commodating the varied detector configurations and noise characteristics across different
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runs. Then seven NF models were trained, each with a six-dimensional dataset: five di-
mensions for the target data (luminosity distance, detector frame masses, right ascension,
and declination) and one dimension for the conditional input (the Hubble constant). In
the results presented in [54], each NF was trained with one million data points. How-
ever, as we will explain in the next section, more data was needed to better capture the
catalogue features.

4.3 Results

4.3.1 Pre-analysis sanity check

Before using the trained NFs to estimate the single event posterior distributions, we
should perform a sanity check on the datasets generated in Chapter 2. An effective way to
analyse the data is by using the GW posterior sample distributions to sample data points
from the training data. These samples are weighted by the probability distributions of
the posterior, effectively cutting out a segment of the training data. We then examine
the associated H0 from each sampled data point. This process yields an H0 distribution,
which we can compare with the results from gwcosmo.

Initially, we attempted to approximate the posterior parameter space of the GW event by
drawing simple bounding boxes. However, this approach proved inadequate for accurately
capturing the complexities of the posterior distributions, particularly for parameters such
as sky location and primary and secondary masses. These parameters are often highly
correlated and exhibit non-trivial, irregular shapes that cannot be well-represented by
simple bounding boxes, as shown in Fig. 4.1.

To address these limitations, a more effective approach is to use a non-conditional NF. This
involves training the NF on the five-dimensional parameter space of the GW posterior
samples, which includes luminosity distance, primary and secondary masses, and sky
location. An intuitive way to understand this is to think of the posterior distributions as
“cookie cutters”, slicing through the generated training data to create shapes defined by
equal-probability contours corresponding to p(θ |h), the posterior distributions of the GW
parameters. The NF models these complex shapes more accurately than simple bounding
boxes, capturing their full structure and correlations.
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With a NF trained on the posterior distribution data points we then follow specific steps
to sample the training data using the GW posterior distribution. Firstly, we compute the
log probability of each data point xi in the training dataset by passing it through the NF.
The log probability log pθ (xi) is given by

log pθ (xi) = log pz( fθ (xi,ϕ))+ log
∣∣∣∣det

(
∂ fθ (xi,ϕ)

∂xi

)∣∣∣∣ , (4.3)

where pθ is the probability distribution modeled by the NF approximating the posterior
distribution of the GW parameters, zi = fθ (xi,ϕ) is the transformation defined by the NF
with ϕ being the trainable parameters of the NF model, pz is the probability density of
the latent space (a standard normal), and

∣∣∣det
(

∂ fθ (xi,ϕ)
∂xi

)∣∣∣ is the Jacobian determinant
of the transformation. Next, by setting a specific threshold τ , we retain only those data
points xi whose log probability log pθ (xi) is above the threshold:

{xi | log pθ (xi)≥ τ} (4.4)

This process effectively segments the data set, keeping the data points with the highest
relative log probability values. The threshold τ can be chosen to retain a desired proportion
of the data, which in this case was set to τ = −3.0. The retained data points can be
visualised as being cut out by the posterior sample distributions of the event, similar to
using “cookie cutters”. This is because the NF has been trained to model the posterior
distribution, and high log probability values indicate that the retained data points are
more consistent with the posterior.

An important sanity check we wish to highlight is the results from GW170814. This
particular GW BBH event is noteworthy due to its proximity, ∼ 540 Mpc [148], which
allows significant overlap between the GLADE+ catalogue and the 3 dimensional space of
the event. This overlap enables us to observe catalogue features in the results of gwcosmo
[16]. Therefore, we present results for GW170814, although we have performed this sanity
check for all 42 BBH events. The training process consists of 100 epochs with a simple
network configuration: 12 neurons per layer, 3 layers, and 2 residual blocks, with a learning
rate of 0.001, using a Tesla V100 GPU, with a total of 197,034 posterior samples from
GW170814. The results of this method are illustrated in Fig. 4.2, where the corner plot
shows a remarkable match between the posterior distribution of event GW170814 and the
trained NF. In Fig. 4.3, the training and validation loss are plotted alongside the average
KL divergence from comparing each marginalised latent space dimension for the NF with
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Figure 4.2: Results of the NF method for event GW170814, showing the posterior sample
distribution (in black) overlaid with samples from the NF (in red). The contour levels are
50% and 90% of the total enclosed data.

a standard unit Gaussian, showing how quickly the model can achieve low loss values after
just 100 epochs. Finally, we sample from the segmented training data to obtain a set of
H0 values. The resulting plot, shown in Fig. 4.4 provides insights into the H0 distribution
as inferred from the posterior sample distributions of the event.

In Fig. 4.4, we present the results of using the NF trained to model the GW parameter
posterior distribution of the GW170814 event. The figure shows two histograms repres-
enting the contributions to H0 from sources within the catalogue and those outside the
catalogue. These distributions are mathematically described, using gwcosmo notation, as
p(H0|θGW,D,G) and p(H0|θGW,D, Ḡ), where G and Ḡ represent the conditions of being
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Figure 4.3: Results of the NF method for event GW170814, displaying the training and
validation loss over epochs, along with the average KL divergence over all five latent space
dimensions, each compared to a Gaussian distribution.

in the catalogue and not in the catalogue, respectively and θGW are the GW posterior
samples of GW170814. Overlaid on the histograms are the gwcosmo results for this specific
event [16], allowing us to compare the normalised H0 distribution from the training data-
set with the reference results. The term “empty catalogue”in the gwcosmo results refers
to the scenario where no prior knowledge of the galaxy distribution is used.This results in
a broader and less constrained posterior distribution for H0 in the absence of additional
EM information. In contrast, incorporating the galaxy catalogue leads to a sharper and
more constrained posterior. The difference between the gwcosmo results with and without
catalogue information shows the impact of including prior knowledge about galaxy dis-
tributions. When combining the data points from the training set, both from within and
outside the catalogue (the green histogram), we see that the overall combined histogram
matches well, within some uncertainty, to the gwcosmo posterior distribution with cata-
logue assumption. Specifically, if we had not included the in-catalogue information from
GLADE+, the feature observed on the left side, around H0 = 35kms−1Mpc−1, would not
be captured by CosmoFlow. This test demonstrates the importance of including catalogue
information for inferring H0 and shows that the data generation process has successfully
captured the over density of galaxies in the GLADE+ catalogue.

Although we managed to sample 3 million data points for the training routine for this spe-
cific detector configuration and observing run, after passing the data through the trained
NF model, as described in Eq. (4.3), over the GW event, only 507 points were retained.
This highlights the challenge of sampling the data space at a high enough density to cover
all detected events. However, even with the relatively low number of samples, the contri-
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Figure 4.4: Histogram of the Hubble constant (H0) samples for the GW170814 event,
obtained using the cookie cutter method. The histogram is divided into contributions
from out-of-catalogue events (blue), in-catalogue events (orange), and the total samples
(green). Overlaid are the results from gwcosmo (red solid line) and gwcosmo EMPTY (no
catalogue information) (purple line) for this specific event.

butions from within and outwith the catalogue are clearly visible, showing a peak in the
total histogram that matches the results from gwcosmo when the GLADE+ catalogue is
used. It is important to note that the features from the galaxy catalogue typically manifest
in the lower part of the H0 posterior distributions. This is because the galaxy catalogue
provides additional information about the spatial distribution of galaxies, which helps
to constrain the values of H0 more effectively. When incorporating this prior knowledge,
the posterior distribution tends to show more pronounced features at lower H0 values,
reflecting the regions where the galaxy catalogue GLADE+ information is most influen-
tial. This matching peak validates both the data generation process and the integration of
EM information from the GLADE+ catalogue, showing the result is not solely driven by
population assumptions. If the galaxy catalogue information from GLADE+ had not been
included, as demonstrated by the gwcosmo EMPTY result in Fig.4.4, the distinct feature
around H0 = 35kms−1 Mpc−1 would have been missed. This confirms that incorporating
the catalogue information following the approach outlined in the data generation section
in Chapter 2 effectively integrated EM data from GLADE+.
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4.3.2 H0 posterior distribution, BBH result

After visually validating the training data, we perform the calculation as described in
Eq.(4.1) to evaluate the posterior distributions of the Hubble constant (H0) for individual
GW events detected during the O1, O2, and O3 observing runs, as listed in Table 4.1.
We begin by presenting the results for the BBH events, followed by an analysis of the
NSBH events. We do not perform any analysis regarding BNS events. This is because the
gwcosmo analysis can evaluate the posterior for bright sirens relatively quickly, making
it unnecessary to speed up this particular analysis using CosmoFlow. Bright sirens are
typically well-localized in the sky and have EM counterparts, which facilitates a faster
and more straightforward posterior evaluation with gwcosmo. Future work will look into
having CosmoFlow perform the same bright siren analysis.

After generating datasets for each detector configuration and run, 7 distinct flow models
were trained on these specific datasets, each with 3 million data points. The permutations
and combinations of the detector setups for each event are detailed in Table 4.1. For
each event, 1000 five-dimensional posterior samples from the GW event parameters were
used. The resulting curves for each sample were then averaged together to produce a
single posterior distribution for each event. Using each trained flow model, Eq. (4.1) was
evaluated over a range of 500 H0 values, evenly spaced, between 20 to 140 kms−1Mpc−1,
for each GW posterior sample. The plot in Fig. 4.5 compares our results using CosmoFlow
with the gwcosmo results under both catalogue and empty catalogue assumptions. The red
curves represent the single posterior sample evaluation of Eq. (4.1), while the blue curve
shows the evaluation of Eq. (4.1) averaged over 1000 GW posterior samples. Several key
observations can be made from this plot. Firstly, the variation between the red likelihood
curves indicates the spread and uncertainty in the H0 estimation for the event GW170814.
Our CosmoFlow result aligns closely with the gwcosmo catalogue result, more so than with
the empty catalogue result. To quantify the closeness between the various models, we will
use the JS divergence.

In our comparison, the JS divergence between our CosmoFlow result and the gwcosmo
catalogue result is 25 millinats, while the divergence between our result and the gwcosmo
empty catalogue result is 35 millinats, suggesting that the CosmoFlow model has effectively
learned the galaxy catalogue information. We then repeat this process for each event listed
in Tab. 4.1. Figure 4.6 presents the results of the individual one-dimensional posterior
distributions from CosmoFlow and gwcosmo for each event. Starting from GW150914 and
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Figure 4.5: The plot compares the posterior distributions of the Hubble constant H0
derived from different methodologies. The red curves represent normalised likelihoods of
H0 for each GW sample, proportional to p(θi|H0,D). The blue line shows the CosmoFlow
posterior, while the black and green dashed lines represent the gwcosmo posteriors with
and without the GLADE+ catalogue, respectively. All analyses assume uniform priors on
H0. The JS divergences are 25 millinats (CosmoFlow vs. gwcosmo with catalog) and 34
millinats (CosmoFlow vs. gwcosmo without catalogue).

in chronological order, the posterior distributions over H0 for both CosmoFlow and gwcosmo
are shown in Fig. 4.6. The results show a good comparison between CosmoFlow and
gwcosmo with EM catalogue information, with similarity ranging from from 0.03 millinats
to 26.27 millinats with GW190706_222641.

The results also reveal some catalogue features, as explained in Sec. 4.3.1, although not
perfectly captured by CosmoFlow compared to gwcosmo. Galaxy catalogue features seem to
be captured by CosmoFlow for some events, such as GW150914_095045, GW170814_103043,
GW190521_030229, but not so clearly in other events where catalogue features are more
evident in gwcosmo, such as GW190412_053044. This discrepancy raises questions about
the validity of the dataset generated using the in-catalogue procedure. This issue warrants
specific investigation, as multiple factors could contribute to the discrepancy. Potential
causes include imperfectly described GW-selection effects, as modeled by the MLP de-
scribed in Chapter 2, or the EM selection effects, particularly in how the galaxy catalogue
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Figure 4.6: Comparison of Hubble constant H0 posterior distributions for individual
GW events from O1,O2 and O3 observing runs over the SNR threshold runs gravitational
wave events using CosmoFlow (red solid lines) and gwcosmo (black dashed lines). The JS
divergence is noted for each event, indicating the similarity between the two posteriors
for each event.

is integrated within the CosmoFlow analysis. Nevertheless, the CosmoFlow analysis effect-
ively captures the population-driven approach performed by gwcosmo, as outlined in [16].
A fully population-driven H0 inference implies an estimation of H0 based solely on the stat-
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Figure 4.7: Comparison of Hubble constant H0 estimations and posterior distributions
using the CosmoFlow and gwcosmo methods. Top plot: Posterior distributions of H0 for
CosmoFlow (red solid line) and gwcosmo (black dashed line) overlaid with individual single
GW event posteriors (gray lines). The 68% minimal credible region bounds are indicated
by dashed vertical lines. Vertical lines also mark the Planck (pink) and SH0ES (green)
measurements, with shaded regions representing their 2σ confidence intervals. Bottom
plot: The cumulative combined measurement uncertainty on H0 as a function of number
of events in chronological order, with the center dot representing the mean of the combined
distribution after combining Nevents and the error bar is the 68% minimal confidence range.
The Planck and SH0ES measurements are again shown as vertical lines with shaded
regions for their 2σ confidence intervals.

istical properties and distributions of the GW events themselves, without incorporating
external data such as EM information from galaxy catalogues. The population information
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side of the analysis tends to agree with the gwcosmo population-driven analysis, specific-
ally by matching the overall trends for each posterior distribution over H0. This agreement
is particularly evident in events with relatively low galaxy catalogue contributions, such
as GW190910_112807 and GW200224_222234 [16].

We also consider the discrepancy between the results of CosmoFlow and gwcosmo for
GW190706_222641. This could be due to many reasons, but upon close inspection, the
posterior distribution for this event over the luminosity distance gives a measurement of
3630+2600

−2000 Mpc, placing this event at a very high distance where catalogue contributions
are very low, with p(G|z,H0) = 0 [16]. Therefore, the issue here could be associated with
the selection effects implemented in the data generation of CosmoFlow. Specifically, the
accuracy of the MLP in evaluating the matched-filtering SNR of the event, and since this
event was predicted to have a network SNR of 13.4+0.2

−0.4, it lies within the uncertainty range
of our capability to discern events above or below the SNR threshold of 11. However, other
events, such as GW190720_000836, show less discrepancy between the two posteriors
despite having a matched-filter network SNR of 11.6. Therefore, we do not have a definitive
answer to why this discrepancy is present. Future work will investigate this aspect further
to understand the nature of the mismatch between CosmoFlow and gwcosmo.

Since the individual posterior distributions of the GW events over H0 in Fig. 4.6 are inde-
pendent of each other, we can combine them into one full combined posterior distribution.
This is shown in Eq. (4.1), where we take the product of each likelihood and multiply
it by the prior once. However, since we enforced the prior to be uniform over the entire
range of [20,140] km s−1 Mpc−1, the prior becomes a proportionality constant.In Fig. 4.7,
the result of combining the individual H0 posteriors is shown. Our results demonstrate
that the combined posterior obtained through CosmoFlow is largely consistent with the
results from gwcosmo, although a small shift to higher H0 values is observed. This shift
suggests that while the overall agreement between the two methods is strong, there are
both statistical and potentially systematic differences influencing the results. Addition-
ally, with the current number of events, it is premature to determine whether the data
favors the late-type or early-type measurements of H0 as given by Planck [5] or SHOES
[149]. The values obtained from the combined posterior distributions are as follows:

• gwcosmo: H0 = 68.72+15.64
−12.41 kms−1 Mpc−1

• CosmoFlow: H0 = 76.51+15.15
−11.54 kms−1 Mpc−1.
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The uncertainties on these measurements were obtained by estimating the highest density
interval, covering 1σ (68%) of the distribution. While both methods provide H0 estimates
within overlapping uncertainty ranges, the results from CosmoFlow consistently show a
shift towards higher values. This discrepancy underscores the importance of investigating
both statistical effects and potential systematic biases inherent in the CosmoFlow analysis.

4.3.3 NSBHs results

The methodology outlined for computing the posterior distribution over H0 for BBH
GW events can also be applied to NSBHs, with slight adjustments in the prior distri-
butions, aligning with the methodology from [16]. During the O3 observing run, three
events were detected with an estimated secondary mass within the typical neutron star
mass range (approximately 1.1 to 2.5 solar masses). The specific events referred to are
GW190814_211039 [50], GW200105_162426, and GW200115_042309 [150]. A table of
the main characteristics of the NSBH events are listed in Tab. 4.2. To compute the pos-
terior distribution over the NSBH events, we regenerated the training data to account
for events that reflect the nature of NSBHs. Specifically, the prior on the secondary mass
was set to be uniform between [1,3]M⊙. This ensures that all simulated events during
the data generation process reflect the characteristics of NSBHs, as only such events are
considered during the signal detection stage of data generation. The optimal SNR approx-
imation using the MLP was retrained to accommodate the new prior distribution, as the
previous prior used for estimating the optimal SNR of BBHs had a lower boundary for
the secondary mass set at 4 M⊙. This made the MLP trained for BBHs unsuitable for the
new configuration. We kept the same waveform approximant, IMRPhenomXPHM [132].

Table 4.2: Summary of 5 parameters of the NSBHs events detected during the O3 ob-
serving run with 90% credible regions. The table includes the primary and secondary
masses, sky localization area, matched-filter detector network SNR, and luminosity dis-
tance (DL) for each event [86, 150].

Event m1,det (M⊙) m2,det (M⊙) δΩ (deg2) SNR DL (Mpc)
GW190814_211039 24+1

−1 2.7+0.1
−0.1 20 22.2 241+45

−41
GW200105_162426 8.9+1.5

−1.2 1.9+0.2
−0.3 7000 13.9 280+110

−110
GW200115_042309 5.7+2.1

−1.8 1.5+0.3
−0.7 700 11.3 300+200

−100

For the GW190814 event, the sky map resolution of the EM catalogue GLADE+ was set
to NSIDE = 128, corresponding to a pixel size of 0.2 deg2. This higher resolution was used
to accommodate the more precise sky localization for this event, which was ten times smal-
ler than other detected events. In comparison, for the BBH analysis, we used NSIDE = 32,
corresponding to 3.36 deg2 per pixel. To align with the methodology from [16], GLADE+
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was divided into 196,608 pixels, and the magnitude threshold map was generated accord-
ingly using the K band (see Chapter 2 for more details). However, sampling over the entire
sky proved inefficient due to the highly localized sky location of GW190814. This targeted
data generation ensured the dataset was optimised for analysing this specific event. We
restricted the sampling of sky coordinates to only cover the GW190814 event, thus making
it a targeted data generation. Given that the total sky coverage is 41,253 deg2, restricting
data generation to the 20 deg2 area of the event allows us to maximise the number of
samples obtained in each run by 2300 times. By focusing the training of the NF on this
smaller, highly localized sky region, we force the NF to concentrate its learning on the
area of interest. This approach maximises the efficiency of data generation, allowing for a
higher density of samples within the region where the posterior is expected to peak, and
ensures that the flow is optimised for analysing the specific event, leveraging the precise
sky localization. However, there are notable disadvantages to this approach. Training can
only be performed after an event has been detected and its localization determined, which
means the method is not applicable for general, pre-detection training. Additionally, the
trained NF can only be used for this particular event, limiting its applicability to other
detections. Instead for GW200105_162426 and GW200115_042309, NSIDE = 32 was
used, and the entire sky was sampled during data generation. Therefore, two NF were
trained, one specifically for GW190814 and one for the other two NSBH events.

The results of the posterior distributions for the three NSBH systems over H0 are presented
in Fig. 4.8. The individual event posterior results for GW200105 and GW200115 show
good agreement with gwcosmo, exhibiting JS divergences of 0.5 millinats and 0.4 millinats,
respectively. However, the result for GW190814 stands out, indicating a clear mismatch
between the gwcosmo and CosmoFlow posterior distributions, both with catalogue and
empty catalogue assumptions. Despite extensive investigation, no definitive reason for this
discrepancy has been identified. This suggests a need to better understand how the data
generation process should produce synthetic GW events from a given galaxy catalogue.

In the CosmoFlow result, a distinct catalogue feature is observed at H0 = 28kms−1Mpc−1,
which is absent in the gwcosmo result. This discrepancy warrants further investigation
to uncover its underlying causes. Interestingly, results from Ref. [151], which used the
Dark Energy Survey (DES) [9] catalogue, also show a similar feature for the same event.
Their posterior distribution over H0, depicted in Fig. 4.9, reveals a clear peak at H0 =

28kms−1 Mpc−1 that matches the CosmoFlow results, despite differences in other modes.
While this observation initially seemed unexpected, given that the CosmoFlow analysis
used the GLADE+ catalog, it is plausible since low H0 spikes correspond to low redshift
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Figure 4.8: Posterior distributions of the Hubble constant, H0, for three NSBH events.
The top panel shows the posterior distribution for the event GW190814, while the bottom
two panels show the posterior distributions for the events GW200105 (left) and GW200115
(right). The red solid lines represent the CosmoFlow posterior distributions, the black and
green dashed lines represent the gwcosmo posterior distributions for catalogue and empty
catalogue assumptions. The JS values between CosmoFlow and gwcosmo (JSC for catalogue
distribution, JSE for empty catalogue distribution, both in units of millinats) are indicated
in each panel.

galaxies, which are likely shared between both catalogues. Therefore, it is not surprising
that such a feature could align in the posteriors obtained using the DES and GLADE+
catalogues. This intriguing result is noted for its interest, and further work will be directed
at understanding the mismatch between our primary analysis and the gwcosmo results.

- 143 -



4.3. Results

Figure 4.9: Plot showing three posterior distributions of H0: the CosmoFlow result in
red, the gwcosmo result in black dashed lines (both from Fig. 4.8), and the result from
[151] in solid blue.

4.3.4 NSBH + BBH results

We are now able to combine all 45 GW events (BBHs and NSBHs) to compute the final
combined posterior distribution over H0. The final result is shown in Fig. 4.10. Clearly,
there is a mismatch between the three posteriors, but there is evidence that this discrep-
ancy is not due to CosmoFlow failing to capture catalogue features, such as modes in the
lower value regions of H0. If it had, there should have been a better match with the empty
catalogue result of gwcosmo. Evidently, the mismatch could be more related to selection
effects implemented within the data generation code, both from the EM and GW sides.
This would explain the discrepancy with event GW190706_222641 in Fig.4.6, where this
event is solely driven by the priors, as it is too distant to have any catalogue informa-
tion present. What we noticed with this particular event is the limited data in regions
consistent with the event posteriors, specifically in the dimensions of luminosity distance
and detector-frame masses. When generating the training data, we conditioned it only on
detectable events with a SNR of ρ ≥ 11 to account for selection effects. This conditioning
leads to a highly correlated prior distribution that is conditional on detection, which is
not an analytic function and differs from the basic prior. As a result, the training data
distribution is well-defined but constrained, causing fewer samples in specific parameter
space areas where some GW event posteriors overlap, such as GW190706_222641. Con-
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Figure 4.10: Posterior distributions of the Hubble constant H0 derived from different
datasets. The solid red curve represents the posterior from the CosmoFlow BBH + NSBH
dataset. The dashed black line shows the posterior from the gwcosmo BBHs and NSBHs
with galaxy catalogue psoterior distribution, the green dashed line shows the result for
an empty catalogue approach for gwcosmo. The 68% minimal confidence regions are also
shown for each respective distribution. For context, the Planck and SH0ES measurements
of H0 are shown with their respective vertical lines. The shaded regions around these lines
represent their 2σ confidence intervals, providing a visual comparison of how the GW
based measurements align with these established cosmological results.

sequently, the NF may not have learned sufficient detail in those areas. It is important
to note that some differences between the results may be due to variations in the prior
assumptions used by the two methods. Despite our efforts to keep these assumptions con-
sistent, there can still be factors that influence the outcomes. One example is the zmax

cutoff applied in Chapter 2 to speed up data generation, which may have contributed to
the observed discrepancies.

In conclusion, by refining the SNRMLP approximator and re-evaluating our prior assump-
tions, we hope to resolve these issues and achieve a more robust and accurate estimation
of H0. Future work will focus on these improvements, aiming for better alignment between
CosmoFlow and gwcosmo and advancing our understanding and analysis of cosmology with
GW events.
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4.4 Speed Up with Batching

The results of the posterior distributions over H0 for each GW event shown in Fig. 4.6
were generated by evaluating the NF model for each value of H0 sequentially, with a fixed
set of GW posterior samples, Nθ . While this method effectively computes the posterior
distribution, it requires looping over the cosmological parameters for each event, and
then combining the resulting posterior distributions from each event to obtain the overall
combine posterior distribution. However, this sequential approach does not take advantage
of batching techniques that could significantly speed up the process.

The posterior distribution of the Hubble constant H0, given the data, can be expressed
as:

p(H0|h,D, I) ∝ p(H0|I)∏
i

〈
p(θi|Di,H0, I)

p(Di|θi, I)p(θi|Ω0, I)

〉
θi∼p(θi|hi,I)

. (4.5)

In this equation (this is the same as in Eq. (2.12)), the numerator inside the brackets is
computed using the NF model and averaged over the posterior samples θi. Evaluating in-
dividual H0 values sequentially for each event is inefficient, especially with a large number
of events and samples, as batching is applied only over the GW parameters and not over
H0. To address this, we can batch all inputs: the GW posterior samples (Nθ ), the cos-
mological parameter values (Nsamples), and the number of events (Nevents). By structuring
these inputs into a single array with dimensions [Nevents ×Nθ ×Nsamples], we can evalu-
ate Eq. (4.5) in parallel across all events, rather than sequentially. After the NF model
computes the probabilities, the log probabilities of each event’s posterior are summed to
produce the final result.

We tested the batching method using different sets of Nθ posterior samples from 21
events labeled with O3 and H1 L1 V1, using a single flow (Flow 4 from Table 4.1). The
left plot in Fig. 4.11 shows the clear advantage of batching over the sequential approach.
The computation time for the minimal batching method remains relatively constant and
slow, while the full batching method scales efficiently, keeping computation time below
10 seconds. The key advantage of batching is that it fully uses the available memory
of the GPU, maximising the efficiency of computing Eq. (4.5). With minimal batching,
each event’s Nθ parameters are processed sequentially over all H0 values, using minimal
GPU memory, resulting in computation times around 100 seconds, as shown by the red
points in Fig. 4.11. In contrast, when inputs are batched, the computation time ranges
from 0.2 seconds for Nθ = 10 to a maximum of 10 seconds for Nθ = 2000. Using an RTX
2080 GPU with 8 GB of memory, we observed that as the memory usage approaches its
limit, data must be processed in multiple smaller batches, leading to a linear increase in
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Figure 4.11: (Left) Computation times as a function of the number of posterior samples
Nθ . Red points represent computation times minimal batching (sequential over H0), while
black points represent times using full batching. (Right) Posterior distributions for differ-
ent values of Nθ . The vertical dashed line represents H0 = 70 km s−1 Mpc−1. The legend
indicates the number of posterior samples used.

computation time. Interestingly, this linear trend appears at lower memory consumption
levels than expected (i.e. lower values of Nθ ), suggesting further investigation is needed
to optimise computational speeds. Future work will address these issues to fully exploit
GPUs capabilities, enhancing the efficiency of this analysis.

The right plot of Fig. 4.11 shows the impact of not using enough GW posterior samples,
with values below Nθ = 500 leading to noisy results. Based on our observations, we set
a threshold of Nθ = 1000 as the minimum number of posterior samples to ensure stable
results, as little variation was observed between 500, 1000, and 2000 samples. For a min-
imum of Nθ = 1000 posterior samples per event, the evaluation time was approximately
4.4 seconds when combining 21 events, with 1000 GW posterior samples evaluated over
100 H0 values. This corresponds to about 2 milliseconds for one evaluation of H0 for a
single event. This computation time scales linearly, suggesting that at a scale of 1000
events, each using 1000 GW posterior samples, the final combined posterior distribution
could be evaluated in approximately 2ms×Nevents×Nsamples ≈ 200 seconds, which is ≈ 3.3
minutes. However, a significant challenge with this method arises from the memory us-
age of the NF model when evaluated using a single GPU. Batching a large number of
events and cosmological parameter samples can lead to substantial memory consump-
tion, potentially filling the available GPU memory. Therefore, it is important to consider
the memory limitations of the GPU when evaluating the NF model to avoid exceeding
its capacity. As the number of events or posterior samples increases, memory usage also
rises, potentially leading to memory overflow if not properly managed. This would negate
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the advantages of the batching method, as full memory consumption would require the
batched data to be processed iteratively, looping over smaller subsets to handle the entire
large dataset. Balancing the computational efficiency gained through batching with the
memory constraints of the GPU is essential for optimising the evaluation process.

Overall, this analysis shows the batching method not only provides a significant speedup
but also handles larger datasets more effectively, making it a more suitable choice for
computationally intensive tasks such as cosmological PE. Future work will focus on further
optimising this approach by enabling the use of multiple GPUs in parallel. This will
allow different NF models to be evaluated simultaneously across various GPUs, thereby
distributing the computational load and avoiding the risk of overflowing the memory
capacity of any single GPU.

4.5 Conclusion

In this chapter, the results of the CosmoFlow pipeline have been presented and thoroughly
compared against the findings from [16], which used the gwcosmo method.

We began by describing the GW data used in the analysis, specifically focusing on the
posterior samples from the selected events, which include parameters such as luminos-
ity distance, primary and secondary masses, and sky location. The events selected for
this analysis are listed in Table 4.1. These events were chosen based on their matched-
filter SNR values across the detector network, specifically selecting those with a detector
network matched-filtering SNR above a certain threshold, ρth = 11, as outlined in [16].
Consequently, only 42 BBH events from the GWTC catalogues [99] met this criterion.
For each event, the active detectors and corresponding observational run were identified,
prompting us to generate a dataset and train the model for each combination of detector
setup and observing run, resulting in seven distinct NF models. With these seven con-
ditional NFs trained, each corresponding to a specific observing run and detector setup,
we computed the posterior distribution for each event over H0. The individual posterior
distribution results are presented in Fig. 4.6, where the results from [16], obtained using
gwcosmo, are also plotted for comparison. The comparison shows that in many cases, the
agreement between CosmoFlow and gwcosmo was strong, with a minimum JS divergence of
0.03 millinats. However, some cases, such as GW190706_22264, exhibited less agreement,
with a JS divergence of 26.27 millinats. This discrepancy may be attributed to several
factors, including undersampling of the parameter space in our generated datasets, which
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could lead to underperformance of the NF. Additionally, potential inaccuracies in ac-
counting for GW selection effects or the SNR approximation using the MLP could also
contribute to the mismatch. Future work will investigate these factors more thoroughly.
After obtaining the posterior distributions over H0 for each event, we combined the res-
ults to derive an overall estimate of H0 = 76.51+15.15

−11.54 kms−1 Mpc−1 using the CosmoFlow
analysis, which included only BBH GW events.

We extended the analysis to include NSBHs by adjusting the priors in the data generation
process to reflect the physical prior for neutron star masses in the detector frame. Specific-
ally, a uniform prior between [1,3]M⊙ was applied, in line with the gwcosmo analysis from
[16]. A particularly notable case in this extended analysis was GW190814, where the GW
parameter space was highly constrained by the posterior distribution, especially in terms
of sky location. The posterior distribution for this event indicated a well-defined sky loc-
ation, covering at most 18 deg2. To enhance the efficiency of sampling data points within
this tightly constrained sky region, a targeted data generation strategy was employed spe-
cifically for GW190814. Despite this higher density of training data, a noticeable mismatch
between CosmoFlow and gwcosmo was observed, with a JS divergence of 8.7 millinats. Fi-
nally, we explored how the inference process can be accelerated by batching the posterior
sample data from the GWTC catalogues to vectorize the calculation of Eq. (4.5). By
batching the GW posterior samples with the cosmological parameter values, we achieved
a significant speedup, reducing the computation time to approximately 4 ms per 1000
GW posterior samples for one cosmological parameter value and one GW event. This op-
timisation highlights the potential for further enhancing the efficiency of the CosmoFlow
pipeline, especially for large-scale analyses.
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Chapter 5

Joint cosmological and population
parameter estimation

5.1 Introduction

In Chapter 4, we presented the one-dimensional PE for the Hubble constant (H0) using
GW posterior samples from the third GWTC [99]. During this analysis, we held the
population and merger-rate parameters constant primarily to perform a direct comparison
with results from gwcosmo [16].

However, CosmoFlow is also capable of inferring and marginalising over uncertainties for
any parameter associated with the distribution models used during the data-generation
process in Chapter 2. Given this capability, we now aim to expand our analysis to include
not only H0 but also various population parameters. These include parameters from the
Madau and Dickinson model for the merger-rate, as described in Chapter 2, Sec. 2.4.1,
such as the power law index at low redshifts (γ), the power law index at high redshifts
(k), and the peak redshift (zp), as well as those related to the black hole mass PLP
distribution, described in Chapter 2 Sec. 2.5.1, including the power-law slopes (α,β ), the
maximum mass (Mmax), the minimum mass (Mmin), the mean of the Gaussian component
(µg), the standard deviation of the Gaussian component (σg), the fraction of black holes
in the Gaussian component (λ ), and the smoothing factor parameter (δm). The reason for
specifically varying these parameters at this stage is to directly compare our results with
the latest outcomes from gwcosmo [52], which is also capable of performing PE on these
parameters.
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In this chapter, we will first discuss the changes made to the data-generation process
to account for the variation of these additional parameters, focusing specifically on the
distributions p(z) and p(m1,m2), since these are the ones being varied over the hyperpara-
meters. Then, we will explain how we train the NF models with 14 target inputs and 12
conditional inputs for each flow, one for each training data set as described in Tab. 4.1.
Finally, we will compute the joint posterior distribution using NS, specifically employing
nessai [38], which is a machine-learning driven approach to performing NS.

5.2 Data-generation with multiple parameter variation

The data-generation process for multiple parameters retains the same structure as the
one-dimensional case shown in Fig. 2.3. The key differences involve the new hyperpara-
meters of the distributions, specifically p(z) described in Eq. (2.29), and the p(m1) and
p(m2|m1) distributions described in Eq. (2.55) and Eq. (2.58), respectively. When gener-
ating synthetic GW events, we ensure that each hyperparameter is reused if it does not
yield a detectable event. This approach ensures that the chosen hyperparameter priors are
under our control and conform to the distributions we dictate, leading to a known cov-
erage of the parameter space independent of detectability, which in this case, we choose
a uniform distribution. As discussed in Chapter 2, this method maintains a consistent
prior coverage and avoiding biases that could arise from only using hyperparameters that
produce detectable events. While it is technically acceptable to avoid reusing these hyper-
parameters, since the cosmological priors are on the right-hand side of the NF probability
function described in the numerator of Eq. (4.5), doing so could bias the distribution
towards hyperparameter values yielding more detectable events. This bias could, in turn,
negatively impact the performance of the NF in regions with lower detectability.

the table in Tab. 5.1 lists the parameters varied during the multi-parameter data-generation
process, along with their descriptions and priors. The prior values are based on the latest
analysis performed with gwcosmo [52], which in turn relies on the LVK cosmology analysis
[16], where wide uniform priors were used for both the cosmological and BBH population
parameters. Also, a constant prior for the local merger-rate, p(R0) ∝ 1/R0, was used in
the gwcosmo analysis (see Chapter 1 Sec. 1.6.2). Although we haven’t explicitly discussed
merger-rate priors in previous sections, it is important to note that by not including this
prior explicitly in our analysis, we are effectively assuming the same prior as used by
gwcosmo. We also provide an example of how the PLP model for p(m1) and p(m2) is af-
fected by variations in the population parameters, as illustrated in Fig. 5.1. Each subplot
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Figure 5.1: Impact of varying population parameters on the PLP model. Each subplot
shows the effect of varying a single parameter on the probability density functions of the
primary mass (m1) and secondary mass (m2) distributions for BBH mergers. The para-
meters varied include: (Top Row) α (power-law slope, fixed at 3.78), β (mass ratio slope,
fixed at 0.81), Mmin (minimum mass, fixed at 4.98 M⊙); (Middle Row) Mmax (maximum
mass, fixed at 112.5 M⊙), µg (mean of the Gaussian peak, fixed at 32.27 M⊙), σg (width of
the Gaussian peak, fixed at 3.88 M⊙); (Bottom Row) λpeak (λg) (fraction of the Gaussian
peak, fixed at 0.03), and δm (smoothing parameter at the lower mass boundary, fixed at
4.8 M⊙). The labels within each plot indicate the specific values of the varied parameter,
demonstrating how changes in these parameters influence the overall mass distributions
p(m1) and p(m2). For p(m2), m1 = 100 M⊙.

shows different instances of the distributions with all parameters held constant except for
one, highlighting its specific influence. It is evident that varying the population paramet-
ers simultaneously results in complex distributions, particularly when each GW event is
subject to detection thresholds. Certain parameters, such as µg and Mmax, have a more
pronounced effect on detectability.

After generating the synthetic data with different sets of cosmological and population
parameters for each sample, we can then explore the data to check for any inconsistencies
or potential biases introduced by the choice of priors. We begin by examining the com-
ponent masses, m1 and m2 for the detector-frame. The sampling of each individual mass
component was achieved by varying the population parameters within their respective
priors, as outlined in Tab. 5.1. In Fig. 5.2, plot shows the distributions of the detector-
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Table 5.1: Summary of hyper-parameter distributions with the corresponding priors [52].

Cosmology Parameters
Parameter Description Prior

H0 Hubble constant U(20.0,180)kms−1 Mpc−1

PLP, p(m1,m2)

Parameter Description Prior
MBH min Minimum mass of the PL component

of the black hole mass distribution
U(2.0M⊙,10.0M⊙)

MBH max Maximum mass of the PL component
of the black hole mass distribution

U(50.0M⊙,200.0M⊙)

α Spectral index for the PL of the
primary mass distribution

U(1.5,12.0)

µg Mean of the Gaussian component in
the primary mass distribution

U(20.0M⊙,50.0M⊙)

σg Width of the Gaussian component in
the primary mass distribution

U(0.4M⊙,10.0M⊙)

λg Probability of sampling from Gaussian
component

U(0.0,1.0)

δm Range of mass tapering on the lower
end of the mass distribution

U(0.0M⊙,10.0M⊙)

β Spectral index for the PL of the
secondary mass distribution

U(−4.0,12.0)

merger-rate Shape Parameters, p(z)

Parameter Description Prior
γ Power-law index describing the

merger-rate at low redshift
U(0,12.0)

κ Power-law index describing the
merger-rate at high redshift

U(0,6.0)

zp The redshift where the slope of the
merger-rate changes

U(0,4.0)

frame masses for m1 and m2, conditioned on detectability. Figure 5.2 shows that most of
the points in the distribution tend to cluster near the m1 = m2 line or within the broader
Gaussian peak. The clustering along the m1 = m2 line occurs because scenarios where
m1 ≈ m2 generally yield higher matched-filter SNR, making these events more detectable.
On the other hand, the broad and densely sampled Gaussian region is a result of mar-
ginalising over the parameters λg, σg, and µg, which describe the Gaussian component of
the mass distribution model. Marginalising over these parameters broadens the Gaussian
component and allows for a wide range of events to be sampled from this distribution.
Specifically, λg, which ranges from 0 to 1, controls the relative contribution of the Gaus-
sian component within the overall PLP distribution. Higher values of λg increase the
chances of sampling masses from this Gaussian component, while lower values reduce its
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Figure 5.2: Distribution of primary and secondary black hole masses in the detector-
frame, highlighting the relationship between m1 and m2 conditioned on detectability. The
main panel presents a 2D histogram of m1 versus m2, with a color scale representing
the density of events. For clarity, both axes are truncated at 250 : M⊙. The red dashed
line indicates where m1 = m2, serving as a reference to identify mass pairs with equal
components. The marginal distributions along the top and right axes depict the one-
dimensional distributions of m1 and m2, respectively. The density map was obtained by
computing a 2D KDE.

influence. The top and right panels show the marginalised distributions for m1 and m2,
respectively. The marginal distribution of m1 exhibits a pronounced peak, reflecting the
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Figure 5.3: Top panel: 2D density distribution (obtained by computing a 2D KDE) of
H0 versus z with a density color scale. The red dashed line represents the maximum red-
shift zmax(H0|ρth = 11) based on the detectability threshold. Bottom panel: the marginal
distribution of z is shown for different H0 bins, with the total marginalised distribution in
black.

combined effects of detectability and the contribution from the Gaussian component of
the mass model. This peak is more pronounced due to the fact that higher primary masses
are more likely to be detected, especially when the Gaussian component is emphasized by
higher values of λg.
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Figure 5.4: The cumulative number of detected events as a function of elapsed time
for the multi-dimensional data-generation (12D, in black) and one-dimensional data-
generation (1D, in red) process for 100,000 detected synthetic GW events.

In addition to the mass distribution, we also examine the relationship between redshift
and the Hubble constant. In Fig. 5.3, the top panel displays a 2D density distribution
of the redshift (z) versus H0 from the generated training data. The density distribution
shows that higher values of H0 correspond to higher redshift values, with the density
decreasing as both H0 and z increase. The redshift samples were thresholded by the max-
imum redshift values obtained from Sec. 2.6.2, where a redshift GW horizon was set for
all detectable events above a detector network matched-filter SNR above 11, as a func-
tion of H0. However, for this case, the zmax (see Sec. 2.6.2) value was increased by 20%
to address the observed cutoff in the redshifts at higher H0 values. This adjustment was
made to avoid artificial cutoffs in the generated synthetic GW events across all H0 values.
The goal is to allow the detectability criterion to naturally suppress the distribution at
high redshifts, without artificially excluding any potentially detectable events. Using the
same value as in Chapter 2 resulted in some cutoff in the data, prompting the increase
of zmax by 20%. The cutoff was due to marginalisation over the mass hyperparameters,
specifically λg and Mmax. The first parameter, as observed in Fig. 5.2, allows for m1 to
be sampled from the Gaussian component, increasing the chance of sampling an event at
higher distances due to the higher mass. The second parameter, Mmax, sets the upper limit
on the maximum mass that can be sampled from the joint distribution p(m1,m2). This
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adjustment allows for sampling higher masses, similar to the purpose of the λg parameter.
To confirm the validity of the cutoff, the second plot in Fig. 5.3 presents the marginalised
density distribution of z across different H0 bin intervals. The distribution tails within
each H0 segment approach negligible values, indicating that the imposed cutoff at zmax is
reasonable and does not exclude significant portions of the observable population.

Unfortunately, the data-generation process for the multi-parameter case is significantly
more time-consuming than for the single-parameter (1D) case, taking approximately 75
times longer to complete. This increased time is due to the variation of all the hyperpara-
meters, which often results in the generation of events that lie in very undetectable regions
of the parameter space. Consequently, more time is required to find configurations of the
sampled θGW parameters that yield detectable events. In Fig. 5.4, the number of detected
events in the multi-hyperparameter data-generation process is plotted against the cumu-
lative time taken. It is evident how slow the process is compared to the 1D case, even after
applying various efficiency methods to the data-generation (e.g., SNR approximator in
Sec. 2.6.1, maximum redshift distribution in Sec2.6.2, simultaneous sampling from CDFs
Sec. 2.5.2). The process of detecting 100,000 events took approximately 1,500 minutes (≈
25 hours) for the 12D case, instead for the 1D it took approximately 18 minutes. This
extended duration is primarily due to the data-generation process, which attempts to use
fixed samples of hyperparameters that are situated in regions of the parameter space where
GW events are very difficult to detect. This inefficiency becomes especially evident after
the first 75% of the events are detected. The initial 75,000 events were detected in about
1 hour, but the remaining 25,000 events took approximately 24 hours. The reason for this
significant slowdown is that the process continues to reuse fixed samples of hyperpara-
meters from these hard-to-detect regions, which makes the detection process increasingly
time-consuming. If we were to discard these fixed samples of hyperparameters instead of
attempting to make them detectable, the process could be considerably faster. However,
this approach carries the untested risk of generating hyperparameter distributions that
are conditional on detection, deviating from the initial uniform prior distribution that was
originally set. This deviation could introduce bias into the results. The trade-off between
speeding up the process and maintaining the integrity of the original, unbiased para-
meter distribution should be carefully weighed before making any changes to the current
approach.
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5.2.1 Threshold on minimum detectable Chirp Mass

New methods to enhance efficiency are being investigated, one of which involves intro-
ducing a threshold in the luminosity distance and detector-frame chirp mass parameter
space. We begin by defining the GW strain h(t) for a binary inspiral in the leading-order
approximation, commonly referred to as the Newtonian limit or quadrupole approxima-
tion [13], as:

h(t) ∝
M

5/3
z

DL
(Gπ f (t))2/3 cos(2π f (t)t +ϕ0) , (5.1)

where Mz = M (1 + z) is the redshifted chirp mass, DL is the luminosity distance to
the source, f (t) is the GW frequency, and ϕ0 is the phase of the wave at time t = 0.
By substituting Eq.(5.1) into the matched-filter SNR equation, described in Eq.(1.28),
follows:

ρ ∝
M

5/6
z

DL
. (5.2)

The variation in luminosity distance imposes a threshold on the maximum redshifted chirp
mass that detectors can observe, assuming a fixed SNR threshold, ρth. Therefore, to focus
on detectable events, a bootstrap analysis can be performed to identify the minimum
detector-frame chirp mass associated with the maximum observable distance for a given
ρth.

One way to find the function Mz,min(ρth,DL) is to perform a bootstrap analysis, similar
to the one described in Sec. 2.6.2, where we found the maximum redshift at which events
can be detected by marginalising over all other parameters and selecting the maximum
distances times SNR. The matched-filtering SNR is influenced by factors beyond just
detector-frame chirp mass and luminosity distance, making it difficult to identify a clear
minimum. To account for complex dependencies and better understand detectability lim-
its, a statistical approach like bootstrap analysis was used and applied to the M z and DL
spaces. In this case, we sampled m1 and m2 uniformly in the detector-frame within the
range U [2,350]M⊙, while fixing the distance at 100 specific steps between 10 Mpc and
12,000 Mpc. For each step, we sampled 200,000 sets of GW parameters (enough to find an
SNR above a threshold of 11). We evaluated the minimum Mz for all the ρ > ρth, at each
luminosity distance step. From this analysis, we can perform a best-fit evaluation. The
results are illustrated in Fig. 5.5, where the best fit is shown for the data set generated
during an O3-type run with only HV detectors operational. This particular data set was
chosen because it is the most time-consuming to generate, as the absence of the L de-
tectors significantly lowers the probability of sampling detectable GW events. The figure
presents a 2D density map of the parameter space defined by Mz and DL, conditioned on
detectability. The best-fit function for the minimum chirp mass is overlaid on this map
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and is expressed mathematically as:

Mz,min = (aDL)
6/5, (5.3)

where a = (0.0055±0.0002)M5/6
⊙ Mpc−1. The choice to keep the proportionality constant

within the power of 6/5 is to preserve the functional form of Eq.(5.2). We also note that
the value of the fit parameter a in Eq. (5.3) depends on the threshold ρth = 11. For a
different SNR threshold, the fit value would change accordingly. Also, the presence of some
events below the minimum redshifted chirp mass is due to the way the data-generation
process handles SNRs. Initially, we generate optimal SNRs using the MLP approximator.
The optimal SNR represents the maximum possible SNR for a given set of parameters,
assuming perfect alignment and no noise interference. However, in reality, GW detectors
measure the matched-filter SNR, which includes the effects of noise. To simulate this, we
add noise to the optimal SNR values during data-generation. This noise can cause some
events, which originally had an optimal SNR below the detection threshold, to cross the
threshold due to favorable noise fluctuations. As a result, these events are detected even
though their corresponding redshifted chirp masses fall below the fit predicted by the
optimal SNR alone. In future work, we plan to refine the best-fit analysis for Mz,min by
explicitly accounting for the impact of noisy fluctuations on the matched-filter SNR and
implement this within the analysis.

In Fig. 5.5, A clear region in the bottom right is not being sampled because, at increasing
distances, a minimum detector-frame chirp mass is required to obtain a matched-filter
SNR above ρth. These regions of the parameter space yield an SNR lower than the SNR
threshold, therefore can be limited by sampling redshifted chirp masses above a certain
value, Mz,min(DL), as plotted in Fig. 5.5. This minimum redshifted chirp mass would act
as a minimum mass for simulating GW events from the data-generation code. Currently,
we do not yet have a definitive method for implementing this threshold, but future work
will focus on developing such an approach. Incorporating this threshold could significantly
accelerate the data-generation process by reducing the parameter space that needs to be
explored. Preliminary estimates, based on overlaying the minimum redshifted chirp mass
function onto the prior distribution, suggest that the lower boundary of the prior space’s
maximum cutoff could exclude approximately 94% of the parameter space. This reduction
implies that the speed of the data-generation process could potentially be increased by a
factor of 10.
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Figure 5.5: 2D density map of the detector-frame chirp mass Mz,detector against the
luminosity distance DL for O3 synthetic data set with HV detectors operational. The red
dashed line indicates the minimum detector-frame chirp mass described in Eq.(5.2), above
which detectable events have 1/200,000 chance of being detectable, assuming a fixed SNR
threshold ρth = 11. For visual purposes, the y axis was limited to 150 M⊙ and the x axis
at 6500 Mpc. The density map was obtained by computing a 2D KDE.
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Figure 5.6: (Left): The training and validation losses are plotted across the range of
epochs. (Right): The KL divergence values are shown for the 14D latent space, comparing
the marginalised latent distributions with a unit Gaussian N (µ = 0,σ = 1). A running
mean filter over 20 epochs is applied to smooth the results, highlighting trends more
clearly. The average KL divergence is depicted by the black line, providing a summary of
the overall performance.

5.3 Training the multidimensional conditional flow

As described in Chapter 3, we will employ the same procedure to instantiate the spline
conditional NF, now extended to incorporate higher-dimensional conditional data. Dur-
ing the process of obtaining the results for Chapter 4, it became evident that, within
the Bayesian framework structured in Chapter 2, there is no reason to omit other GW
parameters. In the previous analysis, we only considered luminosity distance, component
masses in the detector-frame, and sky location, since these are the same parameters used
by gwcosmo. Therefore, in this analysis, we have decided to include all GW parameters,
with the exception of phase, as it does not affect the matched-filter SNR. In this section,
we briefly outline the training process of the conditional NF and then conduct the bias
test, as introduced in Chapter 3, since this test remains the most rigorous evaluation
method for a conditional NF.

We trained the conditional NF model with the parameters listed in Tab. 5.1, with two
modifications: the number of layers was increased from 5 to 7, and the conditional data
space now comprises 12 dimensions, corresponding to the hyperparemters in Tab. 5.1. The
NF was trained over 6000 epochs, taking approximately 15 hours on an RTX 2080 GPU. In
Fig. 5.6, the loss curves for the training and validation datasets are plotted, along with the
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KL divergence values between the marginalised latent space single dimensions and a unit
Gaussian distribution. A generalisation gap is evident in the final stages of the training
routine, indicating a disparity between the model’s accuracy on the training dataset and
its performance on a separate validation dataset [152]. This gap can be mitigated by
applying regularization techniques during training, such as L1 or L2 regularization and
implementing a dropout mechanism [152]. However, this issue was not observed in the
other flows trained for each data set.

To evaluate the performance of the new NF model trained with a 12D conditional space,
a bias test similar to the one described in Sec 3.2.3 can be conducted. This test involves
generating multiple noise-free GW events using the same hyperparameters and combining
the posterior distributions from each event to obtain a final posterior distribution for each
hyperparameter. However, a more efficient approach is required for performing hierarchical
Bayesian inference using testing data, as evaluating the 12D space over finite steps in each
direction would be overwhelmingly resource-intensive. Therefore, we propose using nested
sampling (NS) [36], which allows for efficient exploration of the joint posterior distribution
space. Specifically, we will use the nessai (Nested Sampling with Artificial Intelligence)
sampler [37, 38], which is particularly well-suited for exploring the posterior distribution
of a 12D joint posterior.

5.3.1 Bias Test with nessai

Table 5.2: Injected values used for the bias test with CosmoFlow.

Parameter Injected Value
H0 70.0 km s−1 Mpc−1

γ 4.56
k 3.1
zp 2.4
β 0.1
α 2.4

Mmax 112.0 M⊙
Mmin 4.5 M⊙

µg 35.0 M⊙
σg 3.0 M⊙
λg 0.1
δm 2.0 M⊙
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The nessai algorithm is a Bayesian inference tool designed to enhance NS through the
use of NFs [37, 38]. By integrating machine learning, specifically NFs, it significantly
improves the efficiency of the sampling process compared to traditional NS methods, as
detailed in Sec. 1.5. To demonstrate its capabilities, we will apply the nessai algorithm
to perform a bias test (see Chapter 3) over a 12D parameter space. This analysis will yield
a combined joint posterior distribution for the cosmological and population parameters
specified in Tab. 5.1.

For this test, we used the set of cosmological and population parameters described in
Tab. 5.2. Based on these fixed cosmological and population parameters, 500 simulated GW
events were generated using the configuration of HLV detectors from the O3 run. Typically,
for each event, we would generate many thousands of posterior samples, which would
describe our uncertainty in the parameters estimated from that particular event. These
posterior samples represent the distribution of possible parameter values given the data,
reflecting the uncertainty due to noise and other factors. However, for this test, we assume
no uncertainty in the individual event parameters, and each event is represented by only a
single posterior sample corresponding to the true value of the event. This simplification is
unusual because it eliminates the uncertainty in the parameter estimation for each event.
Even with a finite number of exact measurements (one per event), we still cannot expect
to perfectly measure the hyperparameters. Though this approach is somewhat extreme, it
reflects the best the CosmoFlow pipeline can constrain the parameters, assuming that the
data-generation accurately represents how these events are sourced in the universe and
that the parameters of the GW can be perfectly constrained.

To perform the hierarchical Bayesian inference using the injected values, we begin by
evaluating the posterior distribution of the cosmological and population parameters as
follows:

log p(Ω⃗|h,D, I) ∝ log p(Ω⃗|I)+
N

∑
i

log

〈
p(θi|Di,Ω⃗, I)

p(Di|θi, I)p(θi|Ω0, I)

〉
θi∼p(θi|hi,I)

. (5.4)

Here, Ω⃗ represents the set of hyperparameters, which includes the cosmological and pop-
ulation parameters described in Tab. 5.1 (this is the same as in Eq. (2.12)) . We apply
Eq. 5.4 to each event, sequentially summing the results across all events. The numerator
in Eq. 5.4 is specifically evaluated using the NF model trained on the set of generated
events, as detailed in Chapter 3, instead, the probabilities in the denominator, as well
as the averaging brackets, can be omitted since each event is represented by a single
posterior sample. In this process, we leverage the advantage of batching the data, com-
prising 500 GW synthetic events, each with a single posterior sample, into the NF for
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Figure 5.7: Posteriors on 12 cosmological and population parameters obtained by com-
bining the simulated GW posteriors from 500 synthetic BBH events. The true values,
listed in Tab. 5.2, are marked by black crosshairs. The figure is a corner plot, where the
off-diagonal panels show joint 2D marginalised posteriors, and the diagonal panels present
1D marginalised posteriors. In the diagonal panels, the titles display the median values
along with the associated 0.16 and 0.84 quantiles. For clarity, units have been omitted
from the plot but are provided in Tab. 5.2. The contours represent the 50%, 90%, and
99% credible intervals, respectively.

a more efficient evaluation of the posterior distribution in Eq. 5.4. At each stage of the
nessai sampler, we evaluate the posterior using Eq. 5.4, invoking the appropriate NF
for each event. Since the 500 synthetic events were generated using an O3 run and HLV
detector configuration, we use a single flow model, specifically Flow 4, for this evaluation,
as described in Tab. 4.1. The results of the bias test are shown in Fig. 5.7. The nessai
sampler completed 200,555 likelihood evaluations, yielding 6,245 posterior samples in 1
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hour, 38 minutes, and 22 seconds, using 1,000 live points. The stopping criterion was set
to dZ = 0.1, which is based on the change in the estimated evidence. Further details on
the parameter estimation process using nessai, as shown in Fig. 5.7, can be found in
Appendix C.

This threshold ensures that the sampling process halts once further iterations are unlikely
to significantly improve the evidence estimate, balancing computational efficiency with
accuracy. Overall, the test results indicate minimal bias across most dimensions; however,
there is noticeable bias in the Mmin and Mmax dimensions, where the true values lie on
the 99% contour. This suggests that while the CosmoFlow analysis is largely unbiased
with respect to its own data-generation algorithm, some parameters may still exhibit
minor bias. This bias, particularly in the Mmin and Mmax dimensions, warrants further
investigation and could potentially be reduced with additional training and more extensive
training data.

The covariance between two variables, X and Y , is formally defined as:

cov(X ,Y ) = E[(X −E[X ])(Y −E[Y ])], (5.5)

where E[X ] and E[Y ] represent the expected values of X and Y , respectively. This formula-
tion is equivalent to Eq. (3.4), expressed in terms of expectation values for the variables X

and Y . Using this definition, the covariance matrix provides a comprehensive summary of
the linear relationships between pairs of parameters in the joint posterior distribution. It
captures how changes in one parameter might correspond to changes in another. Positive
covariance values indicate that as one parameter increases, the other tends to increase as
well, while negative values reflect an inverse relationship. The magnitude of the covari-
ance signifies the strength of this linear association, with larger absolute values indicating
stronger correlations [153].

We present the covariance matrix of the joint posterior distribution in Fig. 5.8, corres-
ponding to the results shown in Fig. 5.7. This matrix offers valuable insights into the
dependencies between parameters, enhancing our understanding of their interplay in the
model. The diagonal elements of the matrix represent the variances of each parameter,
indicating the degree of uncertainty associated with each. Notably, the variance of Mmax

is particularly high, suggesting significant uncertainty in the estimation of this parameter.
This high variance reflects a wider spread in the possible values of Mmax, indicating that
the model has less confidence in pinpointing its exact value. For H0, the variance is ap-
proximately 48.1195, implying a standard deviation of about

√
48.1195 ≈ 6.94. Assuming
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Figure 5.8: Lower triangular part of the covariance matrix obtained from the joint
posterior distribution in Fig. 5.7. The colorbar represents the levels of covariance between
each pair of parameters. The axes correspond to the 12 hyperparameters of the model,
with the diagonal elements representing the variance of each parameter.

a mean value of H0 ≈ 70kms−1 Mpc−1, this corresponds to an uncertainty of approxim-
ately 9.91%. This standard deviation reflects the spread in the estimation of H0 given
the possible 500 perfectly constrained GW events, indicating that even with this ideal
dataset, the uncertainty in estimating H0 remains at this level.
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5.4 Results

5.4.1 Joint inference of cosmological and population parameters

After training the 12D conditional NF and testing its capabilities in constraining the
cosmological and population parameters from synthetic GW data (as shown in Fig. 5.7),
we are now ready to use this model for hierarchical inference on these 12 parameters using
real GW observations. As mentioned in the previous section, the inferred parameters are
listed in Tab. 5.1

We performed hierarchical inference on the 12 cosmological and population parameters
using 42 BBH GW events, as listed in Tab. 4.1. This analysis was conducted using the
nessai algorithm. However, unlike the bias test, we now employ 42 GW events selected
from the GWTC-3 catalogue, each with a SNR above 11 (see Chapter 4 for details). To
evaluate the posterior distribution at various parameter locations, we used Eq. (5.4). For
the hierarchical inference of the 12D conditional hyperparameters, we drew 1,000 posterior
samples from the parameter posterior distribution of each GW event. These samples were
then batched together with prior samples of the conditional hyperparameters to compute
the log-likelihood in Eq.(5.4). The specific NF models used in this analysis were made
for each group of GW events, taking into account the observational run and the detector
configuration. This approach is the same as described in Chapter 4, where the models
were trained on datasets corresponding to the particular observation runs and detector
setups, with a total of 7 conditional NF models. We set up the nessai sampler with 1,000
live points and a stopping criterion of dZ = 0.1

The hierarchical inference results are depicted in the corner plot in Fig. 5.9, showcasing
the posterior distributions obtained from both CosmoFlow and gwcosmo. The gwcosmo
results were generated using its latest version [52], with the nessai algorithm configured
with 1,000 live points and 8-core parallel processing. The same setup was applied to
CosmoFlow. Notably, the sampling time for gwcosmo was approximately 2.86 days, requir-
ing 144,818 likelihood evaluations. In contrast, CosmoFlow completed the sampling in just
7.73 hours, using 1 GPU and performing 120,732 likelihood evaluations. 1 The results high-
light discrepancies between the two approaches. For instance, the marginalised posterior
distributions for parameters such as H0, zp, and k exhibit significant inconsistencies, with
CosmoFlow revealing features that warrant further investigation. The underlying causes of

1. I would like to express my gratitude to Alex Papadopoulos, a Ph.D. student at the University of
Glasgow, for providing the posterior distribution results using gwcosmo and the GLADE+ catalogue.
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Figure 5.9: Posterior distributions for 12 cosmological and population parameters de-
rived from the 42 BBH events in the GWTC-3 catalogue. Blue lines represent results
from gwcosmo, while orange lines correspond to CosmoFlow. Above each 1D marginalised
distribution, the JS divergence between the two analyses is displayed in units of millinats.
The legend also includes the approximate sampling times for each analysis. Contour levels
indicate the regions containing 50% and 90% of the total posterior distribution.

these discrepancies remain unclear. Ongoing and future work will focus on analysing the
contributions of individual events with the aim of identifying the sources of inconsistency
more precisely. It is suspected that these differences might stem from the restriction of
the redshift space via zmax (described in Sec. 2.6.2), or possibly from the need for more
extensive and efficient training of the conditional NF to better capture the parameter
space.
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Another notable observation is the differing levels of parameter constraints between
CosmoFlow and gwcosmo. Certain parameters, such as α , β , and λg, show tighter con-
straints in the CosmoFlow results compared to gwcosmo, raising questions about the meth-
ods used to constrain these parameters. While it is possible that CosmoFlow might be
overly restrictive in its parameter constraints, this remains difficult to confirm, despite ef-
forts to align the analysis closely with gwcosmo. Remarkably, the CosmoFlow analysis was
approximately 10 times faster than the gwcosmo analysis, using 1,000 posterior samples
from each GW event in the GWTC-3 catalog, with the same sampler and number of
live points. This speedup allows for the analysis of a larger number of events within the
same timeframe as gwcosmo, enabling more precise constraints on both cosmological and
population parameters. This capability will be increasingly important given the expected
surge in events from the upcoming O4 and O5 observation runs. Nonetheless, further
improvements are needed to achieve a better match between the two analyses.

We also present the Pearson correlation matrix [153] values for each parameter derived
from both gwcosmo and CosmoFlow in Fig. 5.10. Pearson’s correlation, denoted as ρ(X ,Y ),
is a measure of the linear relationship between two variables X and Y . It is defined math-
ematically as

ρ(X ,Y ) =
Cov(X ,Y )

σX σY
, (5.6)

where Cov(X ,Y ) is the covariance of X and Y , as defiend in Eq.(3.4), and σX and σY are the
standard deviations of X and Y , respectively. The resulting value ranges from −1 to +1,
with −1 indicating a perfect negative linear relationship, +1 indicating a perfect positive
linear relationship, and 0 indicating no linear relationship. In comparing the Pearson
correlation matrices from both gwcosmo and CosmoFlow, we observe that while there
are clear differences in correlation values between the two approaches, some correlations
remain consistent across both methods. Notably, the parameter pairs (H0,γ), (H0,µg),
(H0,Mmin), and (δm,Mmin) exhibit strong anti-correlations in both analyses. Similarly, the
pair (λg,σg) shows a high positive correlation in both approaches, indicating agreement
between the two methods for these specific parameter relationships. We also note that
the negative correlation between H0 and γ of −0.2927 is well understood. The parameter
γ models a power-law increase in the merger-rate with redshift; hence, higher values of
γ support lower values of H0. This occurs because lowering H0 places events at lower
redshifts, which are incompatible with the observed mass distribution [16]. As a result, γ
compensates by favoring higher redshifts. This result, observed in CosmoFlow, aligns with
the findings from Ref. [16], showing similar correlations between H0 and γ .
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Figure 5.10: Pearson correlation matrices for the joint posterior distributions from
CosmoFlow (lower triangular) and gwcosmo (upper triangular) are presented. These
matrices correspond to the results shown in Fig. 5.9. The colorbar reflects the strength of
the correlation between parameter sets, ranging from -1 (strong negative correlation) to
+1 (strong positive correlation). Ideally, for identical analyses, the upper right and lower
left triangles should mirror each other.

However, beyond these consistencies, a broader examination reveals notable inconsist-
encies. The overall correlation degrees between parameters are generally higher in the
CosmoFlow results compared to those from gwcosmo. This suggests that CosmoFlow might
be identifying stronger relationships between parameters than gwcosmo, which raises
questions about the underlying processes driving these correlations. Understanding why
CosmoFlow produces these stronger correlations will be an important focus of future work.
Investigating these differences further will help determine whether these higher correla-
tions are an artifact of the method or if they reveal a deeper, more complex relationship
between the parameters that gwcosmo might not fully capture.
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We finally performed the hierarchical inference of 42 BBH GW events, demonstrating that
CosmoFlow, in the future, could compete with gwcosmo. To determine which analysis is
best suited for inference, a Mock Data Challenge (MDC) would allow us to test how these
two pipelines constrain the parameters of interest by injecting synthetic GW events with
fixed cosmological and population parameters. In this MDC, synthetic GW data would be
generated based on predetermined cosmological and population parameters, simulating a
realistic set of BBH events. Both CosmoFlow and gwcosmo would then analyse this mock
dataset to recover the injected parameters. The challenge would evaluate the pipelines on
accuracy, precision, computational efficiency, and robustness across varying scenarios. A
key goal would be to determine which pipeline most effectively constrains the parameters
while handling the complexities of large datasets and realistic noise conditions.

Furthermore, the CosmoFlow analysis is highly flexible, allowing various parameters to be
sampled within the analysis. For instance, one assumption in the data-generation process
is when sampling from the luminosity function, each galaxy is weighted by its intrinsic
luminosity. This assumes that GW BBH events are linearly correlated with luminosity.
However, this is only an hypothesis, and the true universal relationship remains uncer-
tain. It is important to recognize that luminosity is derived from the observed apparent
magnitude in a specific band, and different bands can influence the inferred correlation.

5.4.2 Beyond gwcosmo

The gwcosmo pipeline is a well-known tool for estimating cosmological parameters from
GW events, primarily focusing on H0. However, it hasn’t yet been used to infer other
cosmological parameters. In this section, we expand the analysis to include multiple cos-
mological parameters, showing how we can both marginalise over them and directly infer
their values. Along with traditional parameters like H0 and Ωm, we introduce two addi-
tional parameters: w0 and η . The parameter w0 describes the equation of state of dark
energy, which is a fundamental aspect of cosmology that relates the pressure p of dark
energy to its density ρ through the equation p = w0ρ [154]. The parameter η represents
the correlation between the intrinsic luminosity of host galaxies in a specific magnitude
band and the likelihood of those galaxies producing a GW event. This parameter has been
employed in studies like the recent IcaroGW [155], where it is referred to as ε , though they
only consider two cases: ε = 1 and ε = 0. Luminosity here refers to the intrinsic EM radi-
ation output from galaxies, measured in a specific band of wavelengths. For our analysis,
we use the K-band from the GLADE+ catalogue, which captures near-infrared light typ-
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ically associated with stellar mass. The parameter η modifies how much this luminosity
influences the probability of a galaxy being a host, using the function Lη , where L is
the galaxy’s luminosity. By sampling η from a prior distribution, we can account for its
uncertainty and use the data to better constrain this relationship.

In this analysis, we consider the three cosmological parameters, H0, Ωm, and w0, along-
side η . Including η allows us to better understand how galaxy luminosity relates to the
chances of a GW event occurring. We start by exploring how changes in Ωm, w0, and
η affect the distance-redshift relationship and the luminosity-weighted probability func-
tion, specifically when using the K-band luminosity. After this, we compute the joint
posterior distributions of these parameters using 21 GW events from the GWTC-3 cata-
logue detected by the HLV detectors network during the O3 run. This section is still in
the early stages of development; therefore, the analysis currently includes only a subset of
the events. This is because we have trained only one conditional NF model using training
data-generated with the O3 HLV setup, varying the parameters H0, Ωm, w0, and η . Al-
though this analysis isn’t fully complete, future work will include all the events, providing
a more comprehensive picture.

We begin by defining the complete luminosity-distance function, which is central to our
analysis

DL(z,H0,Ωm,w0) = (1+ z)
c

H0

∫ z

0

dz′√
Ωm(1+ z′)3 +(1−Ωm)(1+ z′)3(1+w0)

, (5.7)

where c is the speed of light, Ωm is the dimensionless matter density parameter, w0 is the
dark energy equation of state parameter, H0 is the Hubble constant, and z is the redshift
[154]. This equation is derived from the standard cosmological model and is used to
estimate the luminosity distances and the prior redshift distribution of GW host galaxies in
our data-generation process, as detailed in Sec. 2.4.1. The choice of the prior distributions
for the cosmological parameters Ωm and w0 is informed by both theoretical considerations
and observational constraints. We adopt uniform priors within the ranges [0,1] for Ωm and
[−1.9,0.9] for w0. The selected range for Ωm reflects our current understanding that the
matter density parameter lies within this interval, encompassing both matter dominated
and dark energy dominated universes, assuming a flat ΛCDM model. The prior for w0 was
chosen to be uniform in the range [−1.9,0.9] to ensure it covers the cosmological constant
scenario (w0 = −1), as well as alternative models with a weaker or stronger dark-energy
component [4].
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The parameter η , which modifies the probability of a galaxy being a GW event host
based on its luminosity, is assigned a uniform prior over the range [0.5,3.0]. This range is
chosen to explore a wide variety of plausible scenarios for how galaxy luminosity might
influence the probability of hosting a GW event. The lower and upper bounds of the prior
distribution of the η parameter are derived from [156], where it is shown that the relation
between halo/subhalo mass and hosted galaxy luminosity is well fit by a double power
law, which asymptotes to L ∝ M4 at low mass, while at high mass, the former follows
L ∝ M0.28. The assumption we make here is that the probability of a host galaxy sourcing
a CBC event is directly proportional to the halo mass of the galaxy, which is proportional
to the actual mass of the galaxy. High mass halo galaxies, such as large elliptical and spiral
galaxies, typically have higher stellar densities and star formation rates. This increased
stellar density implies a greater number of massive stars that can evolve into compact
objects like black holes and neutron stars, which are progenitors of GW events. High
mass halos provide such environments due to their large stellar masses. Studies show that
binary black hole mergers are more likely to occur in galaxies with higher stellar densities
[157].

Next, when calculating the luminosity-weighted Schechter function, we modify the tra-
ditional approach by multiplying the Schechter function by a factor of Lη instead of the
usual L. This adjustment alters the final CDF derived in Sec. 2.4.4 (Eq. (2.51)) as follows:

CDF(L|η) =
Γ(α +1+η ,Lmin/L∗)−Γ(α +1+η ,L/L∗)

Γ(α +1+η ,Lmin/L∗)−Γ(α +1+η ,Lmax/L∗)
. (5.8)

In this equation, the index factor in the CDF changes from α +2 to α +1+η , reflecting
the impact of the new parameter η . However, it is important to note that the luminosity
ratios within this CDF remain independent of the cosmological parameters. This inde-
pendence arises because, in applying Eq. (5.8), we continue to use the same cosmological
framework that was employed when inferring the Schechter function parameters (α , M∗,
and ϕ∗), as outlined in Sec. 2.4.2. Specifically, this framework uses the following fixed
cosmological parameters: (H0,Ωm,w0) = (100 km s−1 Mpc−1,0.3,−1). Consequently, the
ratios of luminosity remain invariant to the cosmological values used. Next, using Eq.
(5.8), we sample luminosities from a specific band, which alters Lmin, Lmax, and α accord-
ingly, depending on the band, in this case, the K-band. We can then sample from each
different luminosity distribution using the snakes algorithm described in Sec. 2.5.2. Once
the luminosities are sampled, they are converted into absolute magnitudes using

M = M⊙−2.5log10

(
L

L⊙

)
, (5.9)
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where M⊙ and L⊙ are the absolute magnitude and luminosity of the Sun, respectively.
These absolute magnitudes are initially sampled based on the fixed cosmological para-
meters (H0,Ωm,w0) = (100 km s−1 Mpc−1,0.3,−1). However, to align them with the ac-
tual cosmological parameters used during the sampling process, we need to adjust the
magnitudes. This adjustment is done using the following equation:

M(H0,Ωm,w0) = M0 +5log10

(
DL(H0,Ωm,w0)

DL,0

)
, (5.10)

where M0 is the absolute magnitude calculated using the initial fixed cosmological para-
meters, DL(H0,Ωm,w0) is the luminosity distance corresponding to the actual cosmological
parameters, and DL,0 is the luminosity distance corresponding to the initial fixed paramet-
ers. This conversion ensures that the magnitudes reflect the correct cosmological context
for the sampled data.

We then proceed with the data-generation process as outlined in Chapter 2. After sampling
a sky location and associating it with the corresponding magnitude threshold value, we
determine whether to retain the sample from the prior distributions or to resample a new
host galaxy from the GLADE+ catalogue. In the previous 1D analysis focused solely on
H0, when sampling from a specific pixel in the catalogue, the luminosities within that
pixel were evaluated, and the weighting factor for each galaxy was computed as

wi =
Li

(1+ zi)
, (5.11)

where Li is the luminosity of the ith galaxy and zi is its redshift. However, in our cur-
rent multidimensional analysis where we vary the (H0,Ωm,w0,η), the weighting factor is
modified to account for these variations. The new weighting factor is given by:

wi =
Lη

i (H0,Ωm,w0)

(1+ zi)
, (5.12)

where Li is raised to the power of η , reflecting the correlation between luminosity and
the probability of a galaxy hosting a GW. Since luminosity scales linearly with H0, the
weighting factor is independent of H0, but not of the other parameters. All other para-
meters, including the merger-rate parameters (zp, γ , k) and the population mass model
parameters, are held constant at the same values used in the 1D analysis described in
Chapter 4.
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Figure 5.11: Corner plot of the joint posterior distributions for the parameters H0, Ωm,
w0, and η . The histograms along the diagonal display the marginalised posterior distri-
butions for each parameter, with the 16% and 84% quantiles highlighted by dashed lines.
The off-diagonal panels show the joint posterior distributions between pairs of paramet-
ers, with contour levels representing 50% and 90% of the enclosed data. These results are
based on the analysis of 21 GW events from the GWTC-3 catalogue during the O3 run
using the HLV detector network.

We then trained a NF model with a 14D target space (the GW parameters, excluding
phase) and a 4D conditional space for H0, Ωm, w0, and η , using a total of one million
data points. The training of the NF model was performed with the following parameters:
batch size of 50,000, 1,000 epochs, shuffling enabled, no activation function, no dropout
rate, learning rate of 0.0005, Adam optimizer, LU linear transform, 64 neurons per layer,
5 transforms, 2 blocks per transform, 14 inputs, 4 conditional inputs, CouplingNSF flow
type, no xyz transformation,and the MinMax scaler (see Chapter 3). We then used the
trained NF model to estimate the 4 conditional parameters using 21 GW events from
the GWTC-3 catalogue. The results of the parameter estimation process, obtained by
combining 21 events from the GWTC-3 catalogue observed during the O3 run with HLV
detectors, using CosmoFlow as the core likelihood function described in Eq.(5.4), and
performed with nessai using 1000 live points and a stopping criterion of dZ = 0.1, are
shown in Fig. 5.11.
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As anticipated, the results mainly show that H0 is well-constrained, which is consistent
with our previous 1D analysis presented in Chapter 4. However, due to the limited number
of events used, we didn’t achieve strong constraints for Ωm, w0, and η . Additionally, we
couldn’t directly compare our results with gwcosmo since it has yet to provide estimates
for cosmological parameters other than H0. Future results will also be compared with other
pipelines, such as IcaroGW [15], which do give estimates on Ωm and w0. One important
takeaway from this analysis is the added complexity that comes with introducing new
parameters into the model. Whether these parameters are cosmological or not, like η in
our case, adding them makes the data-generation and analysis processes more complicated.
The parameter η , for example, was introduced to explore how galaxy brightness might
relate to the probability of hosting a GW event.

Looking ahead, our next steps will include performing detailed tests with synthetic data
to check for any biases in our current analysis. We want to understand how well we can
estimate these parameters given a fixed number of events and to see if there are any
areas where our method might be improved. We also plan to develop better strategies
for dealing with the increased complexity that comes with adding more parameters. This
might involve finding more efficient ways to handle the data or improving how we guide
the training data process when dealing with multiple parameters. Finally, we hope that in
a future MDC, CosmoFlow, gwcosmo and IcaroGW, and other pipelines, can be tested on
synthetic data to see how well they can recover parameters like Ωm, w0, and η . This will
give us valuable insights into how these pipelines perform and help us refine our methods
for future studies. Despite the challenges, this analysis demonstrates the flexibility and
potential of CosmoFlow in incorporating different types of parameters and models. This
makes it a strong candidate for future cosmological parameter estimation.

5.5 Conclusion

In this chapter, we explored obtaining joint posterior distributions of multiple cosmological
and population parameters using a trained conditional NF. Initially, we generated training
data using the algorithm presented in Chapter 2, varying not one but twelve conditional
parameters, specifically H0, the cosmological parameter, the merger-rate parameters, and
the population parameters first described in Sec. 2.4.1 and Sec. 2.5.1. These parameters
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were sampled from the same priors presented in Ref. [16] and listed in Tab. 5.1. After
generating data for each detector setup and observational run (7 datasets of 300,000 data
points each), we trained a flow for each setup, subsequently applying the specific NF to
the GW events observed with their respective detector setups and PSDs.

We then tested the NF performance by conducting a bias test, as described in Chapter 3,
but this time over a 12D parameter space. This was carried out using the nessai sampler
[38], which leverages NFs to enhance the NS process. The results of the bias test, shown in
Fig. 5.7, reveal an overall consistent joint posterior distribution with the true values listed
in Tab. 5.2. The only two parameters showing some degree of bias are Mmin and Mmax, both
within the 99% contour. This result underlines the ability to constrain the parameters of
interest, assuming a perfectly localised and noise-free event. Even after analysing 500 GW
events, our precision over H0 remains within 10%. Therefore, to resolve the H0 tension
between the Planck measurements [5] and SH0ES [6], many more GW events need to be
analysed.

Subsequently, we used the trained NF to perform hierarchical Bayesian posterior estima-
tion using 42 GW events from the GWTC-2 and GWTC-3 catalogues [99]. The results,
shown in Fig. 5.9, compare the gwcosmo and CosmoFlow outcomes, revealing both con-
sistencies and inconsistencies across various parameters. Notably, the marginal zp, k, and
H0 parameters show little alignment with the gwcosmo results. This discrepancy suggests
potential issues in the data-generation process, which could stem from inaccuracies in
estimating GW selection effects, such as using the SNR approximator (MLP) or redshift
thresholding errors with zmax(H0,ρth). Additionally, there may be issues in how galax-
ies are sampled from the galaxy catalogue. Other discrepancies include more constrained
power law indices of the population PLP models, α and β , compared to gwcosmo, war-
ranting further investigation. Consistencies were observed in parameters like γ , Mmin,
and µg. Importantly, the results in Fig. 5.9 highlight CosmoFlow’s faster sampling time,
approximately 10 times quicker than gwcosmo.

We also presented results using 21 GW events from the O3 run (with an HLV detector
configuration) to estimate three cosmological parameters plus one additional parameter:
H0, Ωm, w0, and η . The last parameter, η , is the luminosity index for weighting each
host galaxy sourcing a GW event. This analysis demonstrates CosmoFlow’s flexibility and
adaptability to various models and parameterizations. The results, shown in Fig. 5.11,
indicate that while there is limited information to constrain the parameters (except for
H0), the results are consistent with the 1D combined posterior presented in Chapter 4.
Although the current dataset doesn’t provide strong constraints on these additional cos-
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mological parameters, we expect this to change as more events are accumulated. A future
bias test analysis could be valuable in determining the minimum number of high-quality
events needed to achieve meaningful constraints for these other parameters, offering in-
sights into how the results will improve with a larger dataset.

Overall, the multi-dimensional posterior distributions presented in this chapter should be
taken cautiously, as the results are from early stages of the analysis. Nevertheless, they
are promising, showing both consistencies and inconsistencies with the gwcosmo analysis.
Future work will involve further testing the multi-parameter data-generation process,
aiming to speed it up and reduce any systematic biases present. Ultimately, a mock data
challenge will allow the two algorithms to compete under controlled conditions, revealing
any biases and flaws systematically present in each algorithm.
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Conclusion and Future Work

The expansion of the universe has long been a focus of study for astrophysicists, raising
fundamental questions about the nature of the cosmos. Today, we have a clearer under-
standing that the universe is continuously expanding. However, the exact rate of this
expansion remains uncertain. Measurements from the early universe, such as those from
the Planck mission, suggest an expansion rate of H0 = 67 km s−1 Mpc−1 [5], while more
recent observations by the SH0ES team report a higher value of H0 = 74 km s−1 Mpc−1

[6]. These two results are in conflict, differing by about 4.4σ . To date, no systematic
errors have been identified in either the Planck or SH0ES measurements, leading to the
possibility that either one is incorrect, or there is an aspect of the universe’s expansion
that we have yet to understand.

In 1986, Bernard F. Schutz wrote a seminal paper [12] describing the potential measure-
ment of the expansion rate of the universe using GW events. He associated the luminosity
distance of these exotic astrophysical events with redshift information from galaxy cata-
logues, opening up a new branch of astrophysics that includes both cosmology and GW
astrophysics. One significant advancement in parameter estimation of the Hubble constant
using Schutz’s idea and standard sirens was the publication of the gwcosmo analysis [51].
This analysis performed parameter estimation on H0 using standard sirens, such as CBCs
events including BBH and BNS and NSBH mergers, with and without EM counterparts. It
integrated galaxy catalogues to obtain redshift information and accounted for the incom-
pleteness of EM catalogues. This groundbreaking analysis led to the LIGO-Virgo-KAGRA
collaboration presenting their cosmology-related paper in 2022, showing an inference of
H0 from both dark and bright standard sirens [16]. Ever since, the gwcosmo analysis has
been at the forefront of cosmological GW analysis tools. However, it has one drawback:
the inference power, although efficient, is not fast enough to handle the upcoming surge
of events expected from future detector generations, such as the O5 generation.
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This thesis focused on the development of a machine learning-based tool for estimat-
ing cosmological parameters, named CosmoFlow. Since 2021, my work has centered on
creating CosmoFlow as a bench-marking tool against gwcosmo, designed for future GW
detections. The CosmoFlow analysis is intended to provide rapid and accurate estimations
of cosmological parameters, preparing us for the increase in data from next generation
GW detectors and potentially contributing to resolving the H0 tension. This machine
learning-driven approach offers a new method for inferring cosmological parameters from
GW events. In this thesis, I detailed the various components of the CosmoFlow model and
explained how it operates.

After providing an introduction to cosmology, the Hubble tension, GW, and ML in
Chapter 1, Chapter 2 focused on the CosmoFlow analysis. This chapter provided a com-
prehensive overview of the methods used, detailing the generation of training data for the
conditional NF model that was employed to estimate posterior distributions of cosmolo-
gical and population parameters based on GW posterior samples from detected events.
Chapter 2 described the Bayesian framework in which CosmoFlow operates and outlined
the process of generating the distribution p(θ |Ω,D), representing the probability distri-
bution of GW parameters conditioned on detectability and cosmological and population
parameters. The data generation process started by sampling cosmological parameters,
focused initially on varying only H0. For each sampled H0, a redshift was sampled from
a prior independent of H0, followed by calculating the corresponding luminosity distance.
Sky locations were sampled uniformly, and host galaxy luminosities were drawn using a
Schechter function fitted to the GLADE+ catalogue. This function characterised the lu-
minosity distribution of galaxies, and GLADE+ was chosen for its extensive sky coverage,
despite its limited depth with only 20% completeness at 800 Mpc. Apparent magnitudes
of sampled galaxies were compared to a magnitude threshold map of GLADE+, determ-
ining whether galaxies are considered part of the catalogue or not. This step helped refine
the catalogue’s boundaries, allowing accurate integration of EM information. Detected
galaxies with apparent magnitudes brighter than the threshold were substituted with real
galaxies from GLADE+, matched by location, luminosity, and redshift.

Next, the intrinsic GW parameters were sampled, with all but the source masses, m1

and m2, drawn from uniform priors. The masses were sampled from a power law plus
peak (PLP) distribution, which captured the observed trend of a high number of low-
mass BBHs and fewer high-mass BBHs. The matched-filter SNR was then computed
for each event, considering the contributions of each detector setup and applying an SNR
threshold of 11, consistent with the gwcosmo approach to account for selection effects. The
key aspect of this approach was maintaining consistency in the cosmological parameter
distribution conditioned on detectability. By reusing the initial H0 sample for undetected
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events, the method prevented biased trends toward higher H0 values, ensuring that the
model explores regions of the parameter space evenly and effectively. This methodology
allowed for robust training of the NF model without skewing the data distribution based
on detectability.

In Chapter 3, we focused on training the NF and evaluated its performance using injected
GW events with fixed cosmological and population parameters. The training was per-
formed using glasflow [135], built on the widely used nflows module [136]. The primary
goal was to condition the NF on cosmological parameters to transform the input data com-
prising the 5D space of luminosity distance, sky location, and detector frame component
masses—into a simple latent space distribution, such as a unit Gaussian. To achieve this
transformation, the Jacobian of the change of variable equation was parameterised and
optimised, ensuring that it remained invertible and computationally feasible. Training was
conducted for each detector setup and observational run using one million data points per
flow and a consistent set of hyperparameters. The results demonstrated that the latent
space marginalised distributions closely approximate a unit Gaussian, with JS divergences
around 0.1 millinats, indicating successful modeling of the training data.

To further assess the performance of the NF, three key tests were conducted:

1. Resampling Test: New samples were drawn from the conditional space, with H0

sampled from a uniform prior, and passed through the trained NF. This test eval-
uated the ability of the NF to recover original data from the latent space, though
some inefficiencies were noted in sampling distributions with hard boundaries, which
can be mitigated with transformations like the logit function.

2. PP Test : This test involved sampling both the input and conditional spaces to
identify any systematic biases. The p-values were plotted for the 14 target dimen-
sions and the single conditional dimension, providing insights into the overall ac-
curacy and potential biases of the model.

3. Bias Test: Synthetic data with a fixed H0 value was generated, and the main equa-
tion for the posterior of H0 was applied to noise-free GW events. By combining
posteriors from multiple events, hierarchical inference was performed to obtain the
final posterior over H0. Results showed minimal systematic bias when combining
1000 events, highlighting the robustness of the model.

In Chapter 4, the trained conditional flow was used to estimate the 1D posterior distri-
bution of H0 and compared the results with those from gwcosmo. Although the initial
results were promising, they highlighted the need for further development. Benchmarking
was conducted to assess the consistency and validity of CosmoFlow results compared to
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gwcosmo. Posterior samples from 42 BBH events observed during the O1, O2, and O3
runs (catalogued in GWTC-2.1 and GWTC-3) were analysed. Seven datasets were gen-
erated by considering different combinations of detector setups and observing runs, and
a separate NF model was trained for each to learn the data distribution. A sanity check
was performed before estimating the single event posterior distributions by using the GW
posterior sample distribution as “cookie cutters ”to segment the generated data distri-
bution and examine the H0 distribution. This step validated the data generation process
by showing distinct contributions from in catalogue and out of catalogue events. The
individual 1D posterior distributions of H0 for each GW event were then evaluated and
compared between CosmoFlow and gwcosmo. The comparisons showed good agreement
overall, though some discrepancies were observed, possibly due to data sampling issues.

The combined posteriors provided an overall estimate of H0 = 76.51+15.15
−11.54 kms−1 Mpc−1

using the CosmoFlow analysis. The analysis was further extended to include NSBHs, with
adjustments made to the priors. The results displayed varying degrees of consistency with
gwcosmo, with some mismatches likely arising from selection effects or differences in data
coverage, particularly when comparing the well localised event GW190814. Additionally,
the potential of the trained conditional NF to accelerate the inference process was explored
by batching GW posterior sample data, allowing vectorised calculation of the posterior
distribution. This approach achieved a significant speed up, enabling one likelihood eval-
uation for 1000 posterior samples in about 4 ms, thus enhancing the efficiency of joint
parameter estimation analyses.

In Chapter 5, the analysis was extended to consider multiple cosmological and popu-
lation parameters, including H0 and various parameters describing the black hole mass
distribution and event rate evolution. The data generation process was changed to ac-
count for the variation of these additional parameters, and a conditional NF model was
trained on this expanded multi-parameter data to handle the higher-dimensional space.
The NF was trained using a 14-dimensional target space, incorporating all GW paramet-
ers for BBH events except the phase component. The model’s performance was validated
through a bias test using 500 synthetic GW events with fixed cosmological and population
parameters. The test indicated minimal bias, suggesting that the CosmoFlow analysis is
inherently unbiased with respect to its data generation algorithm. To efficiently explore
the complex parameter space involving numerous parameters, a machine learning-driven
nested sampling approach, nessai, was employed, allowing for the retrieval of posterior
distributions when combining 500 events.
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Hierarchical inference of the cosmological and population parameters was performed by es-
timating the joint posterior distributions using real GW events. The results were compared
to those from gwcosmo, showing good consistency for some parameters but discrepancies
for others. The CosmoFlow analysis was notably faster, allowing for the analysis of more
events in less time. The flexibility of CosmoFlow was further demonstrated by exploring
the inclusion of additional cosmological parameters beyond H0, such as Ωm and the dark
energy equation of state parameter (w0). This was achieved by training the NF model to
vary these parameters while keeping the population parameters fixed. The joint posterior
distributions of H0, Ωm, w0, and a new parameter η (describing the correlation between
galaxy luminosity and the likelihood of hosting a GW event) were estimated using 21
GW events. While the results did not reveal significant new features, they demonstrated
CosmoFlow’s capability to efficiently introduce and infer new parameters with ease.

In the future, we see CosmoFlow playing a key role in the LIGO collaborations by in-
ferring cosmological parameters such as H0, as well as other fundamental parameters
that describe our universe. This tool could be crucial for analysing the vast number of
GW events expected with the upcoming enhancements in detector sensitivity, potentially
handling thousands or even tens of thousands of events. Additionally, CosmoFlow aims to
contribute to resolving the Hubble tension. We also plan to evaluate CosmoFlow against
other pipelines in a Mock Data Challenge (MDC) to identify and understand any sys-
tematic biases present in both CosmoFlow and alternative methods. This comparison will
help us refine the most effective approach for inferring cosmological parameters.

Future work will explore several ways to expand this analysis. One approach is to generate
training data that includes all detector setups and PSDs using a one-hot encoding mech-
anism. This would allow a single flow to be trained for the entire analysis, avoiding the
need to store multiple separate conditional NF models. Instead of encoding the detector
data, the NF could also be conditioned on the time-of-day PSD, which would help avoid
using a single time-averaged PSD for the entire observing run. Another direction is to use
multiple galaxy catalogues that cover different depths and sky areas to generate training
data. This approach would allow the integration of multiple EM catalogues, increasing
the EM information available when inferring H0. We also plan to improve the process of
generating synthetic GW data quickly, potentially up to millions of data points, which
would be highly valuable for scientists conducting population studies or creating mock
data challenge (MDC) data. Overall, CosmoFlow has shown to be adaptable and capable
of addressing new challenges, helping us investigate the relationship between cosmolo-
gical parameters and GW events. Continued development will enable deeper analysis and
understanding of these complex interactions.
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6. Conclusion and Future Work

Finally, as we move forward in the field of cosmology, it’s becoming increasingly clear
that integrating machine learning tools into our analyses is essential. These advanced
techniques can handle complex problems, like inferring the Hubble constant from GW
events, with greater efficiency and accuracy. Embracing machine learning will help us
tackle the challenges of the future and deepen our understanding of the universe’s expan-
sion. It’s time to adapt and innovate, using the best tools available to push the boundaries
of our knowledge.
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Appendix

A Appendix A: SNR approximator with MLP

Figure A1: Comparison of predicted vs. true SNR values (V1, O3).
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A. Appendix A: SNR approximator with MLP

Figure A2: Comparison of predicted vs. true SNR values (L1, O3).
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A. Appendix A: SNR approximator with MLP

Figure A3: Training and validation loss curve (O2).
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A. Appendix A: SNR approximator with MLP

Figure A4: Comparison of predicted vs. true SNR values (H1, O2).
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A. Appendix A: SNR approximator with MLP

Figure A5: Comparison of predicted vs. true SNR values (L1, O2).
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A. Appendix A: SNR approximator with MLP

Figure A6: Comparison of predicted vs. true SNR values (V1, O2).

- 190 -



A. Appendix A: SNR approximator with MLP

Figure A7: Training and validation loss curve (O1).
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A. Appendix A: SNR approximator with MLP

Figure A8: Comparison of predicted vs. true values SNR (H1, O1).
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A. Appendix A: SNR approximator with MLP

Figure A9: Comparison of predicted vs. true SNR values (L1, O1).
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B. Appendix B: Comparison between the 5D and the 14D condtional NF

B Appendix B: Comparison between the 5D and the
14D condtional NF

Figure A10: Comparison of Hubble constant H0 posterior distributions for individual
GW events detected during the O3 observing run with HLV detectors. The distributions
are shown for CosmoFlow with 5D (red solid lines) and 14D (green solid lines) NF, along
with gwcosmo (black dashed lines). The JS divergence is noted for each event, highlighting
the similarity between the 5D and 14D posteriors and providing a measure of the consist-
ency of each model’s predictions.
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C. Appendix C: nessai diagnostic plots for nested sampling

C Appendix C: nessai diagnostic plots for nested
sampling

Figure B11: State of the model for 500 test samples, showing log-likelihood, population
radius, and acceptance rates during the parameter estimation process for Fig.5.7.

Figure B12: Insertion indices with 500 test samples for Fig.5.7. If the sampler is working
properly, the insertion indices should be uniformly distributed between 0 and 1, indicating
that the true values are equally likely to be located at any position within the range of
posterior samples.
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C. Appendix C: nessai diagnostic plots for nested sampling

Figure B13: State of the model over iterations, showing log-likelihood, population radius,
and acceptance rates for Fig.5.9.

Figure B14: Distribution of insertion indices for Fig.5.9..
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