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Definition of key terms

Infrared spectroscopy: refers to a scientific method that uses light waves, specifically in the
infrared range, to study and identify the chemical composition of substances. It works by
shining infrared light on a material and measuring how the light is absorbed or reflected,
allowing the detection of unique ”fingerprints,” such as molecules in the samples.

Mid-infrared spectroscopy: is a type of infrared spectroscopy that focuses on light
waves in the middle range of the infrared spectrum. This range is particularly useful for
studying organic molecules, as it can reveal detailed information about their biochemical
structure and composition.

Machine learning: is a branch of computer science that enables computers to learn
and make decisions or predictions from data with minimal human intervention. This is
achieved through algorithms that learn and improve over time by repeatedly processing
data, a process known as training.

Transfer learning: refers to a machine learning technique where a model trained for
one task is adapted to perform a similar but different task. It helps save time and resources
by reusing knowledge from an existing model. For example, a model trained on mosquito
data from one region can be adjusted to work in another region with different mosquito
populations.

Dimensionality reduction: is a method used to simplify complex data by reducing the
number of features or variables. This process removes noise or redundant information
while retaining the most important information in the data.

Malaria: is a disease caused by a parasites of the genus Plasmodium that infect humans
through the bites of infectious female Anopheles mosquitoes. It is a significant public health
concern in many tropical and subtropical regions.

xi



Summary

Malaria vector surveillance is a critical element in control and elimination programs in
endemic regions, serving to assess current transmission levels, vector species behaviours,
and the efficacy of control interventions. Key surveillance metrics typically include the
density and diversity of biting Anopheles mosquitoes, their blood-feeding histories,
parasite prevalence within vectors, and the age structure of adult mosquito populations,
among other indicators. However, conventional methods for monitoring these metrics are
often costly, labour-intensive, and time-consuming, underscoring the need for scalable,
simple, and cost-effective alternatives. The work presented in this thesis aligns with the
recommendations of key policy organisations, including the World Health Organisation
(WHO), which advocate for integrating effective surveillance into malaria control
strategies in endemic regions.

The primary aim of my PhD project was to demonstrate that the emerging approach of
Mid-infrared spectroscopy combined with machine learning (MIRS-ML) – a method that
analyses biochemical signals generated by infrared light absorption in a sample – can offer
high-throughput, and accurate assessments of entomological and parasitological indicators
of malaria transmission. The project was therefore designed to provide field validation
for the application of this technology by addressing several critical gaps to facilitate the
effective implementation of MIRS-ML in vector surveillance. These gaps included: 1) the
necessity for field-calibrated models to predict key entomological indicators of malaria
across diverse settings, 2) the need to demonstrate the efficacy of this approach in areas
where Anopheles funestus is predominant, as this species is the most significant malaria
vector in East and Southern Africa but had not been analysed using MIRS-ML, 3) the need
to apply this approach to multiple indicators in both laboratory and field settings, and 4)
the necessity to show that infectious mosquitoes harbouring Plasmodium sporozoites in
their salivary glands can be reliably detected using MIRS-ML.

The specific objectives of my PhD thesis were therefore as follows: 1) To evaluate the
usefulness of transfer learning and dimensionality reduction techniques for improving the
generalisability and transferability of MIRS-ML-based predictions for mosquito age
classifications, 2) To demonstrate the application of MIRS-ML in classifying
epidemiologically relevant age categories of adult female An. funestus mosquitoes, 3) To
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demonstrate the field applicability of MIRS-ML for identifying blood meal sources in
field-collected An. funestus mosquitoes, 4) To validate the field applicability of MIRS-ML
for detecting Plasmodium-infected An. funestus mosquitoes, and 5) To explore key lessons
learned from infrared-based entomological and parasitological studies, and to outline
future directions for the use of MIRS-ML in malaria surveillance. The field studies were
conducted in an area in Southeastern Tanzania where An. funestus accounts for more than
80% of malaria transmission.

In objective 1 (Chapter 2), I explored whether dimensionality reduction and transfer
learning could improve the generalisability of MIRS-based age predictions. Here, the
dimensionality of the spectra data was reduced using unsupervised principal component
analysis (PCA) or t-distributed stochastic neighbour embedding (t-SNE), and then used
to train deep learning and standard ML models. Transfer learning was also used to reduce
computational costs and enhance generalisability when predicting mosquito ages from
new populations. The findings indicated that while dimensionality reduction alone did not
improve generalisability, it did reduce computational time. Transfer learning was crucial
for achieving generalisable MIRS-ML models for mosquito age prediction, suggesting that
combining it with dimensionality reduction can improve the efficiency, transferability, and
dissemination of these models.

In objective 2 (Chapter 3), I focused on applying MIRS-ML to rapidly classify the
epidemiologically relevant age categories of An. funestus. Spectra data were divided into
two age categories: 1-9 days (young, non-infectious) and 10-16 days (old, potentially
infectious). PCA was used to reduce dimensionality, and a set of standard ML models
and multi-layer perceptron (MLP) were trained to predict mosquito age categories. The
results demonstrated the effectiveness of MIRS-ML in quickly classifying epidemiologically
relevant age groups of An. funestus. Having been previously applied to Anopheles gambiae,
Anopheles arabiensis and Anopheles coluzzii, this demonstration on An. funestus supports
the potential of this low-cost, reagent-free technique for widespread use across all major
Afro-tropical malaria vectors.

In objective 3 (Chapter 4), I demonstrated the first field application of MIRS-ML for
assessing the blood-feeding histories of malaria vectors, with direct comparison to
polymerase chain reaction (PCR) assays. After scanning mosquito samples on a
spectrometer, blood meals were confirmed by PCR to establish the ‘ground truth’ for
training ML models. Logistic regression and MLP models achieved over 88% accuracy in
predicting mosquito blood meal sources, as well as closely matching the human blood
index (HBI) estimates with the PCR-based standard HBI. This chapter provided evidence
for the utility of MIRS-ML as a complementary surveillance tool in settings where
conventional molecular techniques are impractical, given its cost-effectiveness, simplicity,
scalability, along with its generalisability, outweighing minor gaps in HBI estimation.
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In objective 4 (Chapter 5), I demonstrated the first field application of MIRS-ML for
rapid and accurate detection of Plasmodium sporozoite in wild-caught An. funestus
mosquitoes without requiring laboratory reagents. Desiccated mosquito head and
thoraxes were scanned on MIRS, and sporozoite infection were confirmed by
enzyme-linked immunosorbent assay (ELISA) and PCR, to establish references for
training ML models. The ML models accurately predicted sporozoite-infectious mosquito
samples with ∼92% classification accuracy, highlighting the potential of MIRS-ML to
enhance surveillance in malaria-endemic regions.

Building on the findings from objective 1, 2, 3 & 4, chapter 6 discusses key lessons
learned from infrared-based entomological and parasitological studies and explored the
future prospects forMIRS-ML inmalaria surveillance. While significant advances have been
made, challenges such as improving model generalisability across different environments
and enhancing the interpretability of biochemical signals remain. Transfer learning can
improve model performance, but no single approach fully address the variability of field
samples. The broader implementation of MIRS-ML for malaria surveillance will require
continuous data generation, model validation, and the development of deployment-ready
systems, including the potential use of pooled samples as current scanning is limited to
individuals.

In conclusion, this thesis demonstrates the potential of MIRS-ML for reagent-free
assessments of key entomological indicators of malaria transmission in field settings
including mosquito age, blood-feeding histories, and Plasmodium infections. Another
important advancement was the successful application of transfer learning and
dimensionality reduction to improve model generalisability and computational efficiency
across different mosquito populations. MIRS-ML achieved high accuracy in classifying
epidemiologically relevant age groups, detecting blood meal sources, and identifying
sporozoite-infected mosquitoes. While challenges such as data variability and model
robustness remain, this research highlights the potential of the MIRS-ML approach as a
powerful, reagent-free alternative to traditional surveillance methods. Future work should
focus on optimising model performance and developing deployment-ready systems for
multi-variable assessments in real-world settings, particularly in resource-limited,
malaria-endemic regions.
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Chapter 1

General Background

Mosquito-borne diseases impose a significant burden in Africa, with mosquitoes being
among the world’s greatest contributors to death and misery. They transmit numerous
viruses and parasites to both humans and animals. The most important mosquito-borne
diseases affecting humans include malaria, dengue, chikungunya, yellow fever, and
lymphatic filariasis, among others. Many of these diseases are endemic across the region,
and some occur frequently as outbreaks across all continents rural and urban areas. Given
the tight linkages with environment, many of these diseases are expected to worsen due to
climate change factors, notably warming temperatures and increased frequency of
floods [1].

Malaria stands as themost significant andwell-documented ofmosquito-borne illnesses,
with 249 million cases and 608,000 deaths reported globally in 2022 [2]. The majority of
these cases and deaths are concentrated in sub-Saharan African countries, accounting for
94% and 96% of global malaria-related cases and deaths, respectively [2]. Other important
mosquito-borne diseases include dengue, responsible for millions of cases and thousands
of deaths annually though data on its prevalence are limited compared to malaria [3,4],
and lymphatic filariasis, a parasitic nematode infection that is on the verge of elimination
in many settings [5].

Malaria control is one of the current priority initiatives in sub-Saharan African countries
and has been earmarked for elimination by various national governments and the African
Union. Despite notable progress since 2000, there has also been significant stagnation
since ∼2015, with many high-burden countries reporting increased malaria cases in recent
years [6]. It is estimated that in the WHO African region, malaria control efforts have
reduced cases by 82% and deaths by 94% since 2000 [2]. Yet, the disease remains one
of the leading public health challenges, with ∼580,000 malaria deaths in WHO-Africa
alone [2]. Several countries have established strategies to eliminate the disease within the
next 10-20 years, all of them planning on the use of multiple strategies. For example, in
Tanzania, malaria prevalence in children has significantly dropped from 14% in 2008 to 8%
in 2022 [7, 8].

This reduction is partly due to large-scale implementation of vector control strategies,
such as insecticide treated nets (ITNs) and indoor residual spraying (IRS) [9, 10]. There is
a strategy (National Malaria strategic Plan 2021-2025: Transitioning to Malaria Elimination
in Phases) aimed at further reducing malaria prevalence to less than 1% by 2025 [11].
However, achieving this target remains far-fetched due to persistent malaria transmission.
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ITNs are mosquito nets treated with insecticide that repel or kill adult mosquitoes upon
contact. ITNs are the main vector control strategy in Africa and have been estimated to
contribute to two-thirds of all gains in malaria control since 2000 [12]. Another key strategy
is IRS, which involves spraying the interior surface of houses with residual insecticides
to kill or repel indoor-resting mosquitoes. IRS has been widely used for most of the past
century andwas at the core of the first Global Malaria Eradication campaign [13]. However,
the effectiveness of these tools is currently threatened by various challenges, notably the
rise of insecticide resistance and changes in mosquito behaviour from biting indoors to
outdoors during early hours before bedtime [14–16]. This shift in behaviour creates a
protection gap because mosquitoes can now evade the protective coverage of bed nets by
biting individuals before they are under the nets.

1.1 Malaria parasite and life cycle

Malaria is caused by protozoan parasites belonging to the genus Plasmodium, which
complete their life cycle in vertebrates and Anopheles mosquitoes, referred to as vectors
(Fig. 1.1). Five species of Plasmodium are known to infect humans: Plasmodium falciparum,
Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and P. knowlesi – the latter
primarily infecting monkeys but occasionally causing infections in humans [17,18]. The
life cycle of the Plasmodium parasite is divided into three phases: the sporogonic cycle in
the mosquito, and two phases in the human host – the erythrocytic cycle (within red blood
cells) and exo-erythrocytic cycle (outside red blood cells) [19].

When a mosquito bites an infected person, it ingests gametocytes along with the blood
[17]. The blood itself is necessary for the development of the mosquito’s eggs. In the
mosquito’s gut, the gametocytes that have matured into male and female gametes fuse
to form a zygote. The zygote transforms into an ookinete, which penetrates the gut wall
and develops into an oocyst. Within the oocyst, the nucleus divides repeatedly, producing
many sporozoites. These sporozoites are then released when the oocyst bursts, and they
migrate to the mosquito’s salivary glands, ready to be transmitted to a new human host
during the next blood meal. The entire sporogonic cycle typically takes about 8-15 days,
depending on temperature and species [20].

The infected Anopheles mosquito then bites a human and injects the sporozoite into the
bloodstream. These sporozoites travel to the liver, where they multiply. After 7-12 days,
the liver schizonts bursts, releasing merozoite into the bloodstream, where they invade
red blood cells and continue asexual replication cycle [17]. Some of parasites develop
into gametocytes, which are then ingested by another Anopheles mosquito, continuing the
cycle [17].
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Figure 1.1: Illustration of the malaria Parasite life cycle. Image credit: Laura Olivares Boldú
/ Wellcome Connecting Science.

1.2 The life cycle of Anophelesmosquito

The life of an Anopheles mosquitoes consists of four stages: egg, larva, pupa and adult
(Fig. 1.2). After a blood-meal, female mosquitoes develop eggs, which they lay after 3-4
days [19]. The choice of oviposition sites varies, with mosquitoes ovipositing eggs in
locations such as small and large pools, streams, swamps, rivers, ponds, lakes, rice fields,
or containers near human dwellings [19,21–23].

The eggs hatch into larvae within 1-3 days, and these larvae feed on organic particles
in the water. Under normal tropical conditions, the larvae stage lasts about 8-10 days,
although cooler temperatures can extend this period [19]. The larvae then transform into a
non-feeding pupa, which undergoes metamorphosis and emerges as a flying adult within
1-3 days. Mating occurs soon after emergence, and females seek out blood meals, repeating
the cycle. The duration of each developmental stage is influenced by environmental factors
such as temperature and nutrition, with faster development occurring inwarmer conditions.
Some species, like Anopheles funestus, develop more slowly [24].
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Figure 1.2: Illustration of the life cycle of Anopheles. Image credit: CDC

There are around 30 species of Anopheles mosquitoes that are of major importance
in transmitting malaria [25]. In Africa, the major Afro-tropical malaria vectors include
Anopheles gambiae sensu stricto, Anopheles arabiensis, Anopheles coluzzii and An. funestus
[26–28]. Additionally, there is also the rise of invasive vector species, notably Anopheles
stephensi, which is currently spreading in eastern Africa and has potential to increase the
risk of malaria in urban settings [29–31].

1.3 Surveillance of malaria vectors and transmission

Vector surveillance is an essential component of malaria control and elimination programs
in Africa for assessing prevailing transmission intensities, the behaviours of different vector
species, for planning key interventions and assessing their responsiveness to different
interventions [32]. The key metrics typically include the biting densities of various vector
species, insecticide resistance status, proportion of mosquitoes that have blood-fed on
humans or other vertebrates, prevalence of malaria parasites in the vector species, densities
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of the immature stages, and age distribution of the adult mosquito populations, among
others. The most important and commonly usedmetric for estimating malaria transmission
is Entomological Inoculation rate (EIR), which quantifies the number of infectious bites
per person over a given period of time. It is calculated as the product of the human biting
rate (HBR) and proportion of the biting mosquitoes carrying Plasmodium sporozoite in
their salivary glands [33–35]. The metric is typically used to estimate exposure levels and
evaluate the effectiveness of control programs; and is one of the most direct measures of
disease transmission. EIR is additive and is calculated for different species then summed
up. It can also be calculated for indoor and outdoor biting vectors separately and then
summed up. Typically, it is estimated annually but can also be scaled down to monthly or
daily approximate EIR estimates.

Studies have shown that while there are statistical correlations between EIR and the
epidemiological burden of malaria in different settings [36], these statistical correlations
do not always hold across all transmission intensities. They are especially spurious in
low transmission settings, where the statistical correlation is either completely lost or
significantlyweakened [37]. At high transmission intensities, it is also common for values to
saturate, meaning additional increases inmalaria transmission intensities do not necessarily
lead to higher malaria prevalence. This situation is particularly common in areas where
significant populations of people have developed some form of natural immunity to the
disease [38]. Therefore, while EIR is one of the easiest and most widely used measures
of malaria transmission, caution is required when using the data to inform intervention
strategies. In settings nearing malaria elimination, EIR estimates can become difficult to
obtain, as common methods for entomological estimation become poorly sensitive. For
example, in one study in Ifakara, Tanzania, an area where long periods of ITNs coverage,
gradual urbanisation with improved housing, and improved health systems has led to
significant declines in disease, researchers had to sample continuously for over 3500 trap
nights using different methods to obtain just one malaria-infected Anopheles [39]. Without
this single infected mosquito, estimating the EIR would have been impossible. In such
settings, it has been suggested to either measure the receptivity of an area (based on
presence or absence of competent vector species and importation of the parasites) [40] or
simply categorise EIR as either above 1 infectious bites/per/year (ib/p/y) (elimination
unlikely) or below 1 ib/p/y (elimination possible).

Another important measure of malaria transmission risk is the proportion of all blood
meals mosquitoes take from humans compared to other vertebrate blood meals, commonly
referred to as human blood index (HBI), as malaria is not zoonotic (with exception of P.
knowlesi). HBI typically measures the propensity of mosquitoes to feed on humans and
thus transmit pathogens to them. Though increasingly ignored, it is one of the strongest
indicators of malaria vector competence and has been considered an important indicator
of malaria transmission in different settings [41]. This metric is reported to be particularly
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high in major Afro-tropical malaria vectors, including An. gambiae, An. funestus and An.
coluzzii, which are well-adapted to human environments [27]. The high anthropophily –
i.e., the preference to bite humans – of these vectors is one of the main reasons malaria
control in Africa has been lagging [27].

To estimate the HBI, mosquitoes must be collected from multiple sites in ways that are
agnostic of their blood-feeding, resting or host seeking behaviours, covering both indoor
and outdoor locations in human dwellings. The abdominal content of the females is then
analysed by either enzyme-linked immunosorbent assay (ELISA) or polymerase chain
reaction (PCR) to determine the main vertebrate blood sources. Metagenomic sequencing
can improve understanding of the range of host species that mosquitoes depend on in
the area [42]. Mosquitoes that primarily bite humans are more likely to be involved in
pathogen transmission, while those that regularly bite both humans and animals may
transmit zoonotic infections [18,43–49]. Previous studies have shown that additional blood
meals post-infection is also an important factor in the ability of the vector species to transmit
the disease. The growth and maturity of parasite stages, particularly oocysts, significantly
increase with additional blood meals [50, 51].

Thirdly, one can estimate mosquito age and survivorship, using these data to assess
transmission risk, the overall demographic characteristics of vector populations, and the
performance of interventions. Age-grading of mosquitoes is particularly important for
determining the likelihood that mosquitoes will live long enough to allow complete
parasite development (the extrinsic incubation period), and subsequent transmission to
humans [52]. For malaria infections, it is expected that vector populations constantly
targeted by ITNs and IRS or other adult-targeting interventions are likely to have far
younger populations than those without such interventions. This assessment is essential
for monitoring the impact of interventions like ITNs and IRS, which primarily target adult
mosquitoes in the field [53].

Overall, accurate determination of the age, blood-feeding histories, and infectious
status of malaria vector species are important indicators of their feeding behaviour, role in
ongoing malaria transmission, and the overall risk exposure of people within those
settings. However, measuring these indicators at intervention sites remains challenging,
necessitating scalable, simple-to-implement, and low-cost methods for quantification. The
work contained in this thesis was aimed at addressing these issues, and to allow better
scalability of measuring entomological markers of transmission at low cost. In part, this
effort responds to the WHO recommendation that countries incorporate effective
surveillance as a core malaria control strategy and also the desire of the malaria endemic
countries for low-cost approaches. The following section provides more detailed
information on how these measures are currently conducted, and the advantages and
disadvantages of the different approaches.
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1.4 Mosquito age classification

Accurate estimation of mosquito age and survival probabilities is crucial for monitoring
transmission dynamics and assessing the impact of vector control interventions. This
metric is particularly important for malaria, as typically only a small subset of adult
mosquitoes survive long enough to transmit the disease. The Plasmodium parasite requires
approximately 10-12 days tomature from the time themale and female gametes are ingested
by the mosquito to the time mature sporozoites are ready in the salivary glands [20]. The
development of both the parasite and the vector depends on climatic factors and can be
accelerated inwarmer temperatures. Inmuch of tropical Africa, it is possible to estimate and
assign thresholds for chronological age (number of days lived) and biological age (referring
to physiological maturity of mosquitoes), beyond which parasite transmission can occur.
Biological age is particularly important when considered alongside other physiological
developments such as blood-meal acquisition and exposure of susceptible humans.

The primary entomological technique for estimating mosquito age is the dissection of
mosquito ovaries [53]. This process involves using microscopy to examine the reproductive
history of mosquitoes. When dissected, the ovaries are inspected for coiled tracheolar
skeins, which indicate non-parous (young) mosquitoes, or stretched-out tracheole, which
indicate parous (older) mosquitoes that may carry malaria parasites due to multiple blood-
feedings [53]. Dissection can also be used to determine how many times a female mosquito
has previously laid eggs by counting the tracheolar constrictions [54]. This method has
also been used for assessing dwarf ovarioles, which typically do not mature into full egg
production, to estimate the number of times the mosquito has previously been gravid;
while mostly reliable, it is difficult to obtain approximation of the population-level age of
the mosquitoes using these methods.

Amajor challenge associated with this approach is that these dissectionmethods are not
scalable, given that they are labour-intensive and time-consuming [53,54]. Additionally,
the reliability of dissection is compromised by the reproductive history of mosquitoes. For
instance, gonotrophic discordance, where a female mosquito takes multiple blood meal
without laying eggs, can skew the result [55]. Additionally, when trying to estimate the
number of completed gonotrophic cycles, mosquitoes that have recently laid eggs may still
be having an open ovariolar sac, making it impossible to assess the number of previous
gravidity events. Thirdly, relevant in the context of malaria transmission, which requires
an incubation period of 9-14 days [20], differentiating between distinct categories of adult
mosquitoes based solely on parity is not always informative. Therefore, there is a need for
alternative age-grading techniques that are cost-effective, scalable, and capable of providing
an accurate representation of mosquito age categories and populations.
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Alternative mosquito age classification methods have been explored in different
settings, though mostly on a small scale in research settings. One example is
transcriptional profiling, which involves analysing the expression of age-related
genes [56]. This molecular approach can offer high precision in age determination,
although it requires sophisticated laboratory equipment and expertise. Another method
investigated is age-grading through the examination of cuticle protein degradation [57].
This method relies on identifying specific protein markers that degrade over time, offering
insights into the chronological age of the mosquito. Another innovative approach is the
use of wing scales on the fringes, where the degradation of these scales can be used as a
marker of mosquito age [58]. More recently, there has been growing interest in the use of
infrared spectroscopy, which utilises the absorption or reflectance of specific wavelengths
of light to estimate the age of mosquitoes by analysing their cuticular hydrocarbons. This
technique has shown promise in differentiating between young and old mosquitoes,
providing a non-destructive and rapid assessment method [59–61], as described in more
detail below. These methods, although promising, have yet to be validated in large-scale
field studies. In summary, the transition from experimental to practical, large-scale
application will require addressing the need for standardisation, affordability, and lack of
specialised training in laboratory techniques.

1.5 Identification of vertebrate blood meal sources to
understand mosquito blood-feeding histories

Identifying mosquito blood meal sources is crucial for understanding host-vector
interactions and providing important information on the transmission dynamics of
important vector-borne diseases, including malaria, lymphatic filariasis, Zika, dengue,
Japanese encephalitis, Rift Valley fever, Chikungunya and West Nile virus, pose significant
risks to humans [5, 17, 18, 43–49]. Blood-feeding by mosquitoes is important for two main
reasons: for the mosquito itself, it is essential for egg production, reproductive fitness, and
at times serves as a source of metabolic energy; it is also important for the pathogens
which mosquitoes transmit, as it enables them to complete their life cycle in a new
host [62, 63]. Additionally, evidence suggests that the host selection pattern of
anthropophagic mosquitoes may be influenced by factors such as the presence of
vector-control strategies like ITNs, which provides a physical barrier and have a killing
effect, reducing mosquito exposure to humans [64]. This may lead mosquitoes to seek
alternative hosts, particularly livestock [64], which can have a zoopotentiation effect. This
effect refers to an increased tendency of mosquitoes to feed on humans who live near
livestock [65, 66], as the livestock emit heat and odour cues that attract mosquitoes.
Consequently, zoophagic mosquitoes find additional blood sources, and even naturally
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anthropophagic mosquitoes may feed on cattle when host cues are mixed nearby. This can
increase disease transmission risk by providing alternative blood meal sources,
consequently increasing mosquito survival rates and abundance [67].

Host blood meal sources are primarily identified using a range of tools that have
evolved over time, from immunological assays like ELISA [68] to nucleic acid assays such
PCR [69]. Both techniques offer a reasonable degree of specificity and sensitivity, enabling
accurate identification of host species from even small amounts of blood, to distinguish
between different blood meal types based on the vertebrate antigens and deoxyribonucleic
acid (DNA). ELISA uses host-specific antibody-enzyme conjugate to detect homologous
immunoglobulin G (IgG) in blood-fed mosquito samples, thereby indicating the host
species [68]. In contrast, PCR assays rely on the extracted DNA from the sample to target
the mitochondrial cytochrome b (cytB) protein, the protein encoded by the mitochondrial
genome [70, 71]. Since cytB has a high copy number as a mitochondrial gene, it is effective
in identifying mosquito blood meals [69]. These techniques are now commonly used in
many laboratories for identification of the source of arthropod blood meals, thanks to the
commercial availability of antibody-enzyme conjugate for ELISA and primers to amplify
homologous DNA fragments.

Proper collection and handling of mosquito samples are crucial for the accurate
identification of blood meal sources. Mosquitoes can be collected using various traps,
including aspirators, light traps, or mechanical aspirators. Host-baited traps are usually
inappropriate because they target host-seeking mosquitoes which are typically not yet
blood-fed; instead, the focus is primarily on resting mosquitoes that are already engorged.
To ensure the best results, it is important to preserve the sample properly to prevent the
degradation of host DNA or proteins in the blood meal. Specimens should be stored in
tubes containing silica gel desiccant or frozen at -20∘C or lower until analysis. For
molecular assays, preserving samples in ethanol or RNAlater can help maintain DNA
integrity and improve the quality of the tests [72,73]. Additionally, care should be taken to
avoid cross-contamination between samples during collection and processing.

The ELISA and PCR approaches for identifying mosquito blood meals each have their
advantages and disadvantages. Immunological assays, such as ELISA, are relatively
straightforward, cost-effective, and can be performed with minimal equipment, making
them suitable for field use. However, they are also prone to cross-reactivities when testing
multiple hosts, or poor detection thresholds when the samples have not been
appropriately handled, potentially leading to false negatives [74]. PCR-based methods
offer higher sensitivity and specificity, and can identify blood meals from mixed host
sources [69]. These methods also allow for detection of non-host pathogens within the
blood meal. However, they require more sophisticated laboratory infrastructure and are
more expensive. Where there is adequate capacity, these nucleic acid-based tests can be
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expanded to include metagenomic analysis of mosquito gut content [42]. This approach
allows for a comprehensive representation of the full repertoire of vertebrate hosts that the
mosquitoes have previously bitten. By utilizing metagenomic techniques, researchers can
identify a wide array of host DNA present in the mosquito gut, providing a more detailed
understanding of host-vector interactions and enhancing surveillance of vector-borne
disease transmission dynamics [42].

1.6 Detection of infective Plasmodium sporozoite adult
Anophelesmosquitoes

Detection of infective Plasmodium sporozoite in adult Anopheles mosquitoes is equally
important, serving as a key parameter in estimating human exposure to infectious
mosquitoes over time. Several techniques can be used to detect Plasmodium sporozoite
infections in mosquitoes. These include techniques such as dissection of salivary glands
using microscopy [75]. Loop-mediated isothermal Amplification (LAMP) assays [76]
which enable DNA amplification under isothermal conditions [77]. However, in ELISA
and PCR are the most common used techniques in malaria surveillance [75, 78, 79]. ELISA
measures the presence of Plasmodium circumsporozoite (CS) protein originating from
sporozoites and have been developed and standardised for human malaria parasite like P.
falciparum, P. vivax, P. malariae, and P. ovale [75, 80–83]. However, ELISA can yield false
positives if non-target protozoans are present, potentially leading to an overestimate of the
sporozoite prevalence and subsequent EIR [84,85]. Additionally, ELISA requires specific
antibodies, repeated reagents, and well-trained personnel, making it both costly and
time-consuming. For most local laboratories in malaria endemic countries, such supplies
are not always readily available even if the unit prices are also high and controlled [86].

PCR-based methods offer higher specificity and sensitivity by amplifying Plasmodium
DNA from mosquito samples, allowing for the detection of lower-density infections that
ELISA might miss [78]. These molecular techniques can differentiate between species of
Plasmodium in a single multiplexed reaction, providing detailed epidemiological data [78].
However, PCR assays also require significant laboratory infrastructure, including
thermocyclers, electrophoresis equipment, and access to high-quality reagents, primers
and probes, which may not be widely or readily available in field laboratories in endemic
settings. Additionally, they necessitate highly trained personnel and stringent
contamination controls, further increasing the operational cost and complexity. Despite
these challenges, advances in high-throughput and field-deployable PCR systems, along
with improved sample preservation techniques, are enhancing the feasibility of these
methods for large-scale epidemiological and entomological surveillance.
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1.7 Using infrared spectroscopy to analyse key
entomological and parasitological indicators of malaria
transmission

Advances in infrared spectroscopy have opened new possibilities for entomological and
parasitological investigations into the transmission of mosquito-borne pathogens, including
malaria. Infrared spectroscopy, encompassing near-infrared (NIR, 12,500 - 4,000 cm-1),
mid-infrared (MIR, 4,000 - 400 cm-1), and far-infrared (FIR, 1,000 - 50 cm-1) regions, can
be utilized for various analytical purposes in biological sciences. NIR spectroscopy, for
example, is often used for rapid and non-destructive analysis of water content and organic
compounds [87, 88], making it useful for studying plant-insect interactions and assessing
the physiological state of insects [89,90]. It is also used in assessing the quality of food and
pharmaceutical products [91] and, changes in age and infectivity of mosquitoes [60,92–95].
FIR spectroscopy, although less commonly used, provides detailed information on the low
vibrational region of vibrational spectra, aiding in the study of inter – and intramolecular
structures and dynamics within biological samples [96].

Other studies have also used Raman spectroscopy, which relies on the inelastic scattering
of monochromatic light, usually from a laser [97]. When this light interacts with amolecule,
most photons are elastically scattered (Rayleigh scattering), but a small fraction of light
is scattered at different energies, corresponding to the vibrational modes of the molecule
(Raman scattering) [97]. This technique is particularly advantageous for its ability to
provide detailed molecular fingerprints without the need for extensive sample preparation
[98]. It is widely used in various fields such as pharmaceuticals [99,100], earth andmaterial
science [101], and forensic analysis [102]) due to its high sensitivity and specificity. Most
recently, surface-enhanced Raman spectroscopy has also been used for mosquito age-
grading [103,104].

Visible wavelengths have also been used in different spectroscopic techniques, such as
visible absorption spectroscopy and fluorescence spectroscopy [105, 106]. Visible
absorption spectroscopy measures the absorption of visible light by a sample, providing
information about the electronic transitions of molecules, which can be related to their
chemical structure and concentration [105]. This method is often used in chemical
analysis, quality control, and environmental monitoring and has also been applied in
parasitological investigations of malaria infections [107–112]

Among these spectroscopy approaches, mid-infrared spectroscopy (MIRS) has shown
remarkable promise for entomological and parasitological applications. MIRS records
spectral information on the biochemical composition of samples within the 4,000 - 400
cm-1 frequency range (Fig. 1.3), providing structural identities of molecules present
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through well-delineated absorption bands [97,98]. This technique measures key biological
components such as lipids, proteins, and chitin [59], which can vary with mosquito age
and species, the presence or absence of parasites, increased cuticle thickness in resistant
mosquitoes, and different mosquito host blood meal sources [61,113–117].

Infrared techniques offer significant advantages, particularly because they are quick
and do not require any reagents aside from desiccants for sample preservation and
controlling humidity in the spectrometers. This makes them a potentially cost-effective
technique for malaria surveillance in resource-limited areas. Further, the ability to analyse
the biochemical composition of mosquito samples rapidly and accurately without the need
for extensive sample preparation or chemical reagents is a crucial benefit for large-scale
field applications. While the analysis of large amounts of infrared spectral data requires
appropriate analytical techniques, the advancements in machine learning now make it
possible to automate most of these processes and more efficiently analyse the voluminous
mosquito and parasite data.

Figure 1.3: Assignment of spectral bands in MIR spectra showing different chemical
composition of a mosquito sample. By relying on the fundamental molecular vibration of
C-H, N-H, O-H and S-H functional groups, MIR produces distinctive spectra for closely
similar molecules making them particularly invaluable in distinguishing biological samples.
Image credit: Dr. Mario González-Jiménez.
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1.8 Machine learning

Machine learning (ML) is a branch of computer science that enables computers to make
decisions based on data with minimal human input [118]. This capability is achieved
through algorithms that learn and improve over time by repeatedly processing data, a
process known as training [119]. During training, the algorithm is provided with data
inputs (features) and corresponding outputs (labels), allowing it to optimise and refine its
decision-making ability. The model’s performance is evaluated by comparing its prediction
to the true values. Once trained, the model can make predictions or decisions from new,
unseen data [118]. Ultimately, the goal is for the model to generalise well, meaning it
can make accurate predictions across a variety of new, unseen data with no or minimal
retraining. ML has broad applications across various scientific fields, including biomedical
sciences, chemistry, and pattern recognition [120–122].

ML can be broadly categorised into supervised and unsupervised learning.
Unsupervised learning does not rely on labelled data; instead, it identifies patterns or
relationships within data and is often used for tasks like association, clustering, and
dimensionality reduction. Dimensionality reduction simplifies data by reducing the
number of features (or variables), removing noise or redundant information while
retaining the important information [119, 123]. Techniques like principal component
analysis (PCA) are frequently used in fields like spectroscopy for visualising and
analysing data, as well as for dimensionality reduction [124,125].

In contrast, supervised learning uses labelled data, where the algorithm learns from
specific input-output pairs [118]. After training, the algorithm is tested on new data to
estimate its accuracy. If the results are not satisfactory, the training process is repeated
until the model’s performance improves. Supervised learning is often divided into
classification, where items are sorted into categories, and regression, which predicts
continuous values [118]. Popular supervised learning algorithms include K-nearest
neighbours, linear regression, logistic regression, support vector machines, decision trees,
random forests, and neural networks. Additionally, other learning methods, such as
semi-supervised learning, reinforcement learning, and deep learning, offer alternative
approaches to solving complex problems [118, 119]. Algorithms are typically chosen
based on their suitability for the task at hand, the size and complexity of the dataset, and
the desired outcome.

Pre-trained or newly trained ML algorithms can then be used to identify patterns
and correlations in spectral data that may not be apparent through traditional analytical
methods, thereby enhancing the accuracy and speed of entomological assessments using
MIRS.
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1.9 Research focus and objectives

The core focus of this PhD thesis is to investigate the potential of MIRS combined with
different ML techniques to measure various entomological and parasitological parameters
typically assessed during malaria vector and transmission surveillance. The work is
motivated by the need to develop cost-effective techniques for rapidly and effectively
estimating entomological and parasitological indicators of malaria at scale in
resource-limited areas.

Several studies have already documented the potential of MIRS combined with ML
in estimating key entomological and parasitological indicators of malaria transmission
[59,61,113–115,126]. Most of these studies have been conducted in semi-field environments,
with only few involving field-collected samples. For example, Siria et al., used MIRS-ML to
predict both age and species of An. gambiae, An. arabiensis, and An. coluzzii from single
samples collected under laboratory and semi-field conditions [61].

A major challenge reported in this study was the lack of generalisability. The models
often failed to accurately predict unseen data from different locations due to inherent
variability in mosquitoes arising from differences in environmental conditions, mosquito
populations, genetic factors, and dietary factors [61]. Moreover, previous research focused
on a limited range of entomological indicators, primarily the identification of species
and the determination of their age, either individually or as a population. To address
these concerns, one part of this thesis aimed to investigate whether the generalisability
of ML models can be improved by using transfer learning (i.e., updating a pre-trained
model with a small amount of new data from a different target population) and reducing
the dimensionality of the MIR spectra. The expectation was that this could improve the
predictive accuracy of the MIRS-ML approach for mosquitoes from different locations.

Furthermore, while MIRS-ML has been successfully used to predict the age of three
major Afro-tropical malaria vectors such as An. gambiae, An. arabiensis, and An. coluzzii,
it was clear that the technique needed to be expanded to include other vectors, such An.
funestus, whose role in malaria transmission has been increasing significantly [127–134].
This PhD thesis was therefore aimed also at broadening the application of MIRS-ML to
effectively differentiate the epidemiologically relevant age of An. funestus.

In the preliminary studies that we conducted prior to the start of my PhD work, my
colleagues and I had demonstrated that a MIRS-ML based-approach could distinguish
and predict mosquito blood-feeding histories from four different hosts, achieving ∼97%
accuracy with spectra data recorded from the abdomens of laboratory-reared An. arabiensis
[114]. We argued then that MIRS offered far better distinctive capabilities for the biological
signals contained in the spectral data and showed that this system was a viable option for
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multiple parameters. However, it was also noted that for MIRS-ML to be viable for malaria
vector surveillance, field validation is crucial, as mosquitoes collected from the field comes
from different ecological conditions that are likely to affect MIRS profiles. Moreover, MIRS-
ML have not yet been used to estimate the infection status of field-collected malaria vectors.
Therefore, this thesis evaluates the field performance of MIRS-ML based approaches, using
molecular and immunological assays as the ground truth, to assess the host preferences
of blood-feeding mosquitoes and their parasite infection status from field-collected An.
funestus.

Finally, to ensure that MIRS-ML are effectively integrated into malaria surveillance, my
thesis explores lessons learned from previous works and potential future directions.

1.10 Objectives

The overall objective of my thesis is to demonstrate that MIRS-ML based-approaches
can provide high-throughput and accurate assessments of mosquito age, blood-feeding
history, and detection of P. falciparum in field-collected mosquitoes. Additionally, it aims to
evaluate the lessons learned and future directions for the wider use of MIRS-ML in malaria
surveillance.

Specific objectives

1. Demonstrate the application of transfer learning and dimensionality reduction to
MIRS data to improve the transferability and generalisability of MIRS-ML based
predictions for mosquito age [CHAPTER 2].

2. Demonstrate the application of the MIRS-ML based approach to classify the
epidemiologically relevant age of adult female An. funestus mosquitoes [CHAPTER
3].

3. Demonstrate the field application of MIRS-ML based approaches to detect blood
meal sources of field-collected An. funestus [CHAPTER 4].

4. Demonstrate the field application of MIRS-ML based approaches to detect
Plasmodium-infected An. funestus from field-collected samples. This objective focuses
on An. funestus, which now contributes more than 80% of malaria transmission in
Southeastern Tanzania [128] [CHAPTER 5].

5. Interrogate key lessons learned from infrared-based entomological and
parasitological studies so far, and the potential future directions of the use of
MIRS-ML in malaria surveillance [CHAPTER 6].
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1.11 Geographical focus

The studies in this thesis were all done in Tanzania, where the primary malaria vectors
are An gambiae s.s, An. funestus, and An. arabiensis [26, 28]. Among these species, An.
funestus and An. arabiensis have become the main vectors of malaria transmission due to
their high resistance to the insecticides commonly used in ITNs [128, 135]. As a result, the
role of An. funestus in malaria transmission has increased significantly [28,129,132], now
accounting for approximately 80% of ongoing malaria transmission, particularly in rural
areas [128,130].

Indeed, the increased prominence of An. funestus in malaria transmission is closely
linked to its preference for human blood over animal blood [128, 136], and its adaptability
to bite humans early before they go to bed [14,15]. This behavioural plasticity, combined
with its insecticide resistance, underscores the critical need for innovative surveillance
and control strategies to address the growing challenge posed by An. funestus in malaria-
endemic regions.
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2.1 Abstract

Background: Old mosquitoes are more likely to transmit malaria than young ones.
Therefore, accurate prediction of mosquito population age can drastically improve the
evaluation of mosquito-targeted interventions. However, standard methods for
age-grading mosquitoes are laborious and costly. We have shown that Mid-infrared
spectroscopy (MIRS) can be used to detect age-specific patterns in mosquito cuticles and
thus can be used to train age-grading machine learning models. However, these models
tend to transfer poorly across populations. Here, we investigate whether applying
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dimensionality reduction and transfer learning to MIRS data can improve the
transferability of MIRS-based predictions for mosquito ages.

Methods: We reared adults of the malaria vector Anopheles arabiensis in two insectaries.
The heads and thoraces of female mosquitoes were scanned using an attenuated total
reflection-Fourier transform infrared (ATR-FTIR) spectrometer, which were grouped into
two different age classes. The dimensionality of the spectra data was reduced using
unsupervised principal component analysis (PCA) or t-distributed stochastic neighbour
embedding (t-SNE), and then used to train deep learning and standard machine learning
classifiers. Transfer learning was also evaluated to improve the computational cost of the
models when predicting mosquito age classes from new populations.

Results: Model accuracies for predicting the age of mosquitoes from the same
population as the training samples reached 99% for deep learning and 92% for standard
machine learning. However, these models did not generalise to a different population,
achieving only 46% and 48% accuracy for deep learning and standard machine learning,
respectively. Dimensionality reduction did not improve model generalisability but
reduced computational time. Transfer learning by updating pre-trained models with 2% of
mosquitoes from the alternate population improved performance to 98% accuracy for
predicting mosquito age classes in the alternative population.

Conclusion: Combining dimensionality reduction and transfer learning can reduce
computational costs and improve the transferability of both deep learning and standard
machine learning models for predicting the age of mosquitoes. Future studies should
investigate the optimal quantities and diversity of training data necessary for transfer
learning and the implications for broader generalisability to unseen datasets.

Key terms: Anopheles arabiensis, convolutional neural network, standard machine
learning, generalisability, dimensionality reduction, transfer learning.

2.2 Background

Malaria currently kills approximately one child every minute [137]. In 2020, there were
241 million cases and 627,000 deaths, nearly all in Sub-Saharan Africa [137]. Currently, the
most widespread and cost-effective method of malaria prevention is based on controlling
the mosquitoes that transmit the disease. Since 2000, insecticide-treated nets (ITNs) and
indoor residual spraying (IRS) have so far contributed nearly 80% of all global malaria
decline [12]. However, the direct impact of individual control programs on the mosquito
populations and on malaria transmission at the sites of intervention remains difficult to
measure. To guide further efforts against the disease, evaluating the performance of these
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and other vector control interventions is crucial for measuring their impact in different
settings. The World Health Organization (WHO) now recommends that surveillance be
integrated as a core component of malaria control programs [32] .

This necessitates scalable, simple-to-implement and low-cost methods for quantifying
key biological attributes of mosquitoes, such as age, infection status, and blood meal
preferences, which are essential for understanding pathogen transmission dynamics. The
age and survivorship of key Anopheles vectors are especially important in determining the
likelihood that the mosquitoes will live long enough to allow complete parasite
development (the extrinsic incubation period), and subsequent transmission to
humans [52]. The assessments are essential for monitoring the impacts of interventions
such as ITNs and IRS, which primarily kill adult mosquitoes in the field [53].

The current “gold standard” for estimating the age of malaria mosquitoes is to dissect
their ovaries to estimate how many times they have laid eggs [53, 54]. Despite their
low technical demands, such procedures are time-consuming and labour-intensive. Age-
grading dissections can also be imprecise because of gonotrophic discordance, which is
common in Afrotropical malaria vectors [55], or of their reliance on the availability of host
blood meals, which determines when and how frequently a mosquito blood-feeds.

We and others have demonstrated that spectroscopic analysis of mosquitoes using
near infrared (12,500 - 4,000 cm-1) or mid-infrared (MIR) (4,000 - 400 cm-1) frequencies
can identify key biochemical signals that vary with age [59, 60]. These methods, when
combined with specific machine learning (ML) techniques, allow for rapid estimation of
mosquito ages [59,61].

Despite early successes, these infrared-based applications have limitations such as their
portability to mosquitoes from different locations or laboratories [61] and the substantial
computational requirements for retraining such models. Indeed, the inherent variability of
mosquitoes from different environmental and genetic backgrounds may limit the
generalisability of models trained on infrared spectra. The models could also be misled by
signals in MIRS that are associated with confounding factors introduced during sampling
(e.g., atmospheric contamination with water vapour, temperature variations and high
humidity in the laboratory), thus learning features that are not strictly related to the
biochemical trait being investigated. Therefore, machine learning models must be
regularly updated with new data from target mosquito populations.

To increase the generalisability of ML models for a given training dataset, a variety of
spectral smoothing and regularisation techniques have been tested, such as penalised
regression [138]. These methods are known to be computationally efficient and to improve
generalisability [138]. Deep learning (DL) techniques such as convolutional neural
networks (CNN) have recently been used on large spectra data [61], improving
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generalisability through transfer learning (i.e., updating a pre-trained model with a small
amount of new data from a different target population). However, when trained on large
datasets, such techniques remain computationally expensive and may necessitate repeated
sampling of hundreds of mosquitoes from different populations and environments to
allow successful generalisability. Alternatively, since standard ML models are less complex
than DL, computational time can be kept to a minimum. DL methods are versatile
extensions of machine learning that are ideal for complex or large datasets [118]. But are
prone to overfitting, such as predicting the training dataset well but failing on previously
unseen or new data.

However, unsupervised learning algorithms, which find patterns independent of pre-
defined target labels, can aggregate, cluster or eliminate features while retaining dominant
statistical information before machine learning training on the spectra data. The resulting
dimensionality reduction may improve generalisability, reducing overfitting, increasing
the signal-to-noise ratio of the data, as well as lowering computational requirements
for training machine learning models. Examples include principal component analysis
(PCA) [124,125,139], which projects a large number of variables into distinct categories
that summarise data into a small number of independent principal components, and t-
distributed Stochastic Embedding (t-SNE) [140], which clusters data points based distances
between all their input dimensions.

This study assessed whether the generalisability and computational costs of MIRS-
based models for predicting the age classes of female An. arabiensis mosquitoes reared in
two different insectaries in two locations could be improved by combining dimensionality
reduction and transfer learning methods.

2.3 Methods

2.3.1 Collection of mosquito spectra data

We analysed mid-infrared spectra from two strains of An. arabiensis mosquitoes obtained
from two different insectaries, one from University of Glasgow, UK and another from
Ifakara Health Institute, Tanzania. The same data had previously been used to demonstrate
the capabilities of mid-infrared spectroscopy and CNN for distinguishing between species
and determining mosquito age [61]. The insectary conditions under which the mosquitoes
were reared (temperature 27±1.0∘C, and relative humidity 80±5%) have been described
elsewhere [61].
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Mosquitoes were collected from day 1 to day 17 after pupal emergence at both
laboratories and divided in two age classes (1-9 day-olds and 10-17 day-olds). Silica gel
was used to dry the mosquitoes. For each chronological age in each laboratory, 120
samples were measured by MIRS on each day. The heads and thoraces of the mosquitoes
were then scanned with an attenuated total reflectance Fourier-Transform Infrared (FTIR)
ALPHA II and Bruker Vertex 70 spectrometers both equipped with a diamond ATR
accessory (BRUKER-OPTIC GmbH, Ettlingen, Germany). The scanning was performed in
the mid-infrared spectral range (4,000 - 400 cm-1) at a resolution of 2 cm-1, with each
sample being scanned 16 times to obtain averaged spectra as previously
described [59,114]. As a result, the spectral dataset contained 1665 spectral features (Fig.
2.1).

Figure 2.1: The Average mid-infrared spectra of dried mosquitoes aged 1-9 days and 10-17
days. The supervised learning was trained on the slight difference between mosquitoes
aged 1-9 and 10-17 days

2.3.2 Data pre-processing

The spectral data were cleaned to eliminate bands of low intensity or significant
atmospheric intrusion using the custom algorithm [59]. The final datasets from Ifakara
and Glasgow contained 1,720 and 1,635 mosquito spectra, respectively. In these two
datasets, the chronological age of An. arabiensis was categorised as 1-9 days old (i.e. young
mosquitoes representative of those typically unable to transmit malaria) and 10-17 days
old (i.e. older mosquitoes representative of those potentially able to transmit
malaria) [20].

To improve the accuracy and speed of convergence of subsequent algorithms, data were
standardised by centring around the mean and scaling to unit variance [141].
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2.3.3 Dimensionality reduction

Principal component analysis (PCA) and t-distributed stochastic neighbour embedding
(t-SNE) were used separately to reduce the dimensionality of the data [124, 125, 139, 140].
Both PCA and t-SNE were implemented using the scikit-learn library [141]. Separately,
t-SNE was used to convert high-dimensional Euclidean distances between spectral points
into joint probabilities representing similarities. To cluster the data into three features,
the embedded space was set to 3, because the Barnes-hut algorithm in t-SNE is limited to
only 4 components. Perplexity was set to 30 as the number of nearest neighbours, which
means that for each point, the algorithm took the 30 closest points and preserved the
distances between them. For smaller datasets perplexity values ranging from 5 and 50 are
thought to be optimal for avoiding local variations and merged clusters caused by small or
large perplexity values [140]. The learning rate for t-SNE is generally in the range of 10 -
1,000 [141], thus it was set to 200 scalar.

2.3.4 Machine learning training

Deep learning: DL models were trained and used to classify the An. arabiensis mosquitoes
into the two age classes (1-9 or 10-17 day-olds). The intensities of An. arabiensis mid-
infrared spectra (matrix of features) were used as input data, while the model outputs
were the mosquito age classes.

Three different deep learning models were trained; 1) Convolutional neural network
(CNN) model without dimensionality reduction, 2) Multi-Layer Perceptron (MLP) with
PCA as dimensionality reduction, and 3) MLP with t-SNE as dimensionality reduction.
For all models, a SoftMax layer was added to transform the non-normalized outputs of
K-units in a fully connected layer into a probability distribution of belonging to either one
of two age classes (1-9 or 10-17 days). Moreover, to compute the gradient of the networks,
stochastic gradient boosting was used as an optimisation algorithm [142], and categorical
cross-entropy loss was used for the classifier’s metric.

To begin, we trained a one-dimensional CNN model with four convolutional layers and
one fully connected layer when the dimensionality of the data was not reduced (Fig. 2.2A),
and therefore consisting of 1,666 training features from the data. The one-dimensional CNN
was used because it is effective at deriving features from fixed-lengths (i.e., the wavelengths
of the mid-infrared spectra), and it has been previously been used efficiently with spectral
data [61]. To extract features from spectral signals, the deep learning architecture used
convolutional, max-pooled and fully connected layers. The convolutional operation was
carried out with kernel sizes (window) of 8, 4, and 6, and a kernel window shift size
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(stride) of either 1 or 2. For each kernel size, 16 filters were used to detect and derive
features from the input data. Furthermore, given the size of the training data, the fully
connected layer consisted of 50 neurons to reduce the model’s complexity.

Moreover, batch normalisation layers were added to both models to improve model
stability by keeping mean activation close to 0 and activation standard deviation close
to 1. To reduce the likelihood of overfitting, dropout was used during model training
to randomly and temporarily remove units from the network at a rate of 0.5 per step.
Furthermore, after 50 rounds, early stopping was used to halt training when a validation
loss stopped improving.

Dimensionality reduction: We trained two additional deep learning models, in this
case Multi-Layer Perceptron (MLP), with PCA or t-SNE transformed input data (Fig. 2.2B).
The models were trained with only fully connected layers (n = 6) containing 500 neurons
each, given the limited number of training features to ensure performance and stability.
To control for overfitting, the procedure was similar to that of the CNN above, except that
early stopping was used to halt training when a validation loss stopped improving after
500 rounds.

Figure 2.2: A schematic representation of a deep learning models that uses mosquito
spectra as input to predict mosquito age classes. A) CNN - no dimensionality reduction is
applied: standardised spectral features are fed as input through four different convolutional
layers, followed by one fully connected layer, with the predicted age classes shown as the
output layer. B) MLP - dimensionality reduction is used: spectral features that have been
reduced in dimension using PCA or t-SNE are fed as input through 6 fully connected layers,
with the predicted age classes shown as the output layer.
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Transfer learning: The Ifakara dataset was used as the source domain for pre-training
the ML model. The Ifakara dataset was divided into training and test sets, and estimator
performance was assessed using K-fold cross-validation (k = 5) [143], (Fig. 2.3). We
therefore determined what percentage of the new spectra data from the alternate location
as target domainwas required forMLmodels to learn the variability between the insectaries.
To put transfer learning options to the test, either 82 or 33 spectra were randomly selected
from the 1,635 of the Glasgow data, accounting for 5% and 2% of the dataset, respectively.
The learning process in this case relied on a pre-trained model (trained with Ifakara data),
avoiding the need to start training from scratch (Fig. 2.3). The ML models pre-trained
with Ifakara dataset were fine-tuned using 2% or 5% subsets of the Glasgow dataset. The
output was compared to that of a model trained solely with Ifakara data (i.e., no transfer
learning).

Precision, recall, and F1-scores were calculated from predicted values for each age class
to demonstrate the validity of the final models in predicting the unseen Glasgow data.
Keras and TensorFlow version 2.0 were used for deep learning process [144,145].

Figure 2.3: Schematic illustrating the process of data splitting, model training, cross-
validation, and transfer learning.

Standard machine learning: We also compared the prediction accuracy of CNN to
that of a standard machine learning model trained on spectra data transformed by PCA or
t-SNE. Different algorithms were compared, including K-Nearest Neighbour, logistic
regression, support vector machine classifier, random forest classifier, and a gradient
boosting (XGBoost) classifier. The model with the highest accuracy score for predicting
mosquito age classes was optimised further by tuning its hyper-parameters with
randomised search cross-validation [141]. The cross-validation evaluation used to assess
estimator performance in this case was the same as that used in deep learning. The
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fine-tuned model was used to predict mosquito age classes in previously unseen Glasgow
dataset.

Python version 3.8 was used for both the deep learning and standard machine learning
training. All computations were done on a computer equipped with 32 Gigabytes of
random-access memory (RAM) and an octa-core central processing unit. The ‘best model’
was the one that achieves high accuracy while maintaining low run times.

2.4 Results

2.4.1 Deep learning mosquito age classification with and
without dimensionality reduction: Lack of
generalisation between two locations

In the initial analysis, only spectra from the Ifakara insectary were used to train the CNN.
During model training, the CNN classifier achieved 99% training accuracy without any
dimensionality reduction (Fig. 2.4A).When given new held-out data from the same Ifakara
insectary (test set), the model predicted mosquitoes aged 1-9 days with 100% accuracy
and those aged 10-17 days with 99% accuracy (Fig. 2.4B). However, when the same model
was used to predict age classes for Glasgow insectary samples, the overall accuracy was
46%, and therefore indistinguishable from any random classifications (Fig. 2.4C).

In addition, a CNN classifier required 200 epochs for training, with a running time of
7.2-7.8 seconds per epoch when no dimensionality reduction on the input data was used
(Table 2.1).

Figure 2.4: CNN generalisation and prediction of mosquito age using data from a
single insectary (Ifakara) with no dimensionality reduction. A) Training and validation
classification accuracy for mosquito age classes improved from 60% to 95% as training
iterations increased (200 epochs). B) A normalised confusion matrix displaying the
proportions of correct mosquito age class predictions achieved on the held-out Ifakara data
(test set) during model training. C) Proportions of correct mosquito age class predictions
based on unseen data from the alternate insectary (Glasgow).
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PCA was used to project the data into lower dimensional space using singular value
decomposition [125, 146], with the goal of achieving the best summary using optimal
number of principal components (PCs) with up to 98% of variance explained (Fig. 2.5A).
Further, when the impact of PCs on accuracy was assessed, a greater prediction accuracy
was found, leading to the selection of 8 PCs (Fig. 2.5B).

Figure 2.5: A) Cumulative explained variance and eigenvalues as the function of principal
components. B) Number of principal components included in the XGB classifier (i.e. from
1:8 PCs)

When PCA was used to reduce the dimensionality of the data, the MLP model trained
with only Ifakara spectra predicted the held-out data from the same insectary (Ifakara)with
an overall accuracy of 91% but could attain only 58% accuracy for predicting age classes of
Glasgow mosquitoes (Table 2.1). Similarly, when t-SNE was used as the dimensionality
reduction technique, the model predicted the held-out Ifakara data (test set) with an
accuracy of 85% but failed to accurately predict age classes of Glasgow data (Table 2.1).

Furthermore, when PCA or t-SNE were used to transform the input data, a MLP
classifier needed 5,000 epochs to train, with a running time of 0.7-0.8 seconds per epoch
(Table 2.1).

2.4.2 Transfer learning improves deep learning accuracy
and generalisability

To improve generalisability (i.e., the ability of the models to predict the age classes of
samples from other sources), we tuned the pre-trained CNN models with 2% or 5% of the
spectra from Glasgow (i.e., 2% or 5% target population samples for transfer learning) and
used the updated model to predict the unseen Glasgow dataset. When no dimensionality
reduction was used, the pre-trained model predicted the held-out test (Ifakara dataset)
with 99% accuracy and transferred well to the Glasgow dataset when 2% and 5% target
population samples were used for transfer learning, achieving 100% and 96% accuracies,
respectively (Table 2.1).
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However, when PCA or t-SNE were used to reduce the dimensionality of the data, the
MLP classifier was trained with only fully connected layers in this case to allow the model
to learn the combination of features with the network’s learnable weights. Using PCA, the
pre-trained model predicted the held-out test (Ifakara dataset) with 91% accuracy, but
when 2% transfer learning was applied, the model transferred well to the Glasgow dataset,
achieving 97% accuracy when predicting the mosquito age classes, and 96% accuracy with
5% target population samples ((Table 2.1), Fig. 2.6A-C).

Figure 2.6: MLP trained on PCA-transformed Ifakara dataset plus 2%new target population
samples: A)As training time increased (5,000 epochs), training and validation classification
accuracy for mosquito age classes increased from 50% to 91%, B) A normalised confusion
matrix displaying the proportions of correct mosquito age class predictions achieved on
the held-out Ifakara test set during model training, C) Proportions of correct mosquito age
class predictions achieved on unseen Glasgow dataset. MLP trained on t-SNE-transformed
Ifakara dataset plus 2% new target population samples: D) As training time increased
(5,000 epochs), training and validation classification accuracy for mosquito age classes
increased from 60% to 83%, E) A normalised confusion matrix displaying the proportions
of correct mosquito age class predictions achieved on the held-out Ifakara test set during
model training, F) Proportions of correctmosquito age class predictions achieved on unseen
Glasgow dataset.

When using t-SNE, the pre-trained predicted the age classes in the held-out data (test
set) with 83% accuracy but failed to achieve generalisability for the Glasgow data when
either 2% or 5% transfer learning was applied, achieving only 50% and 55% accuracy,
respectively ((Table 2.1), Fig. 2.6D-F).

Transfer learning also reduced training time while improving the performance of both
DL and standardmachine learningmodels in predicting samples from the target population.
Transfer learning took less than two minutes for both models to produce the desired results
(Table 2.1).
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Table 2.1: The performance of deep learning and standard machine learning models for predicting mosquito age classes from the same or
alternate insectaries, with and without dimensionality reduction (DR) and transfer learning

Models
Dimensionality
reduction (DR)

technique

Training data
sources

Transfer
learning

Base Model
runtime

Transfer learning
runtime

Predictions for
age of mosquitoes from same
insectary (Ifakara) - Test

accuracy (%)

Predictions for age of
mosquitoes from alternate

insectary (Glasgow) -
unseen data accuracy (%)

CNN-1 No DR Ifakara No TL 7.2 seconds/iteration N/A 99 46
CNN-2 No DR Ifakara 2% (33 of 1635) 7.2 seconds/ iteration 1 minute 99 100
CNN-3 No DR Ifakara 5% (82 of 1635) 7.8 seconds/ iteration 2 minutes 99 96
MLP-1 PCA Ifakara No TL 6.5 seconds/ iteration N/A 91 58
MLP-2 t-SNE Ifakara No TL 1 seconds/ iteration N/A 84 58
MLP-3 PCA Ifakara 2% (33 of 1635) 0.8 seconds/iteration 35 seconds 91 97
MLP-4 PCA Ifakara 5% (82 of 1635) 0.7 seconds/ iteration 51 seconds 91 96
MLP-5 t-SNE Ifakara 2% (33 of 1635) 0.7 seconds/ iteration 47 seconds 83 50
MLP-6 t-SNE Ifakara 5% (82 of 1635) 0.7 seconds/ iteration 49 seconds 83 55

XGB-1 No DR Ifakara No TL 645 seconds/iteration N/A 92 48
XGB-2 No DR Ifakara 2% (33 of 1635) 975 seconds/iteration 1 seconds 92 98
XGB-3 No DR Ifakara 5% (82 of 1635) 861 seconds/iteration 1 seconds 92 98
XGB-4 PCA Ifakara No TL 60 seconds/iteration N/A 90 48
XGB-5 t-SNE Ifakara No TL 66 seconds/iteration N/A 68 55
XGB-6 PCA Ifakara 2% (33 of 1635) 54 seconds/iteration 1 seconds 90 98
XGB-7 PCA Ifakara 5% (82 of 1635) 54 seconds/iteration 2 seconds 90 97
XGB-8 t-SNE Ifakara 2% (33 of 1635) 60 seconds/iteration 1 seconds 81 43
XGB-9 t-SNE Ifakara 5% (33 of 1635) 60 seconds/iteration 1 seconds 82 49

* CNN–1 to 3: Different versions of convolutional neural network, MLP–1 to 6: Different versions of Multi-Layer Perceptron, XGB-1 to 9:
Different versions of XGBoost classifier (standard machine learning), No DR: No dimensionality reduction, PCA: Principal component
analysis, t-SNE: t-distributed stochastic neighbour embedding, No TL: No Transfer learning, N/A: Not applicable.
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2.4.3 Comparison between deep learning and standard
machine learning models in achieving
generalisability

The XGBoost classifier (Fig. 2.7A), when trained with Ifakara data only, failed to predict
age classes of mosquitoes from the Glasgow insectary, with or without dimensionality
reduction (Table 2.1). However, when the classifier was updated with 2% target population
samples, the model correctly classified individual mosquito age classes with 98% for both
1–9 days old and 10–17 days old mosquitoes (Fig. 2.7B). Increasing the samples for transfer
learning to 5% of the training set had no effect on the accuracies (Table 2.1). However,
when t-SNE was used for dimensionality reduction, transfer learning with either 2% or 5%
Glasgow samples did not improve the generalisability of the XGBoost classifier (Table 2.1).

(Table 2.2) shows how the performance of deep learning and standardmachine learning
was evaluated using other metrics such as precision, recall, and F1-scores. When it comes
to mosquito age classification, the XGBoost classifier matches the deep learning model in
both specificity (precision) and sensitivity (recall).

Table 2.2: Precision, recall, and F1-score of the best deep learning model for classifying
mosquito age classes from alternate sources compared to the best standardmachine learning
algorithm (i.e. XGBoost classifier)

Model name Age class (Days) Precision Recall F1-score No. of samples per
age class

MLP-3 1-9 0.98 0.97 0.98 895
10-17 0.97 0.97 0.97 707

XGB-6 1-9 0.98 0.99 0.98 895
10-17 0.98 0.98 0.98 707

*MLP–3: Multi-Layer Perceptron trainedwith PCA as a dimensionality reduction technique
and 2% transfer learning, XGB-6: XGBoost classifier trained with PCA as a dimensionality
reduction technique and 2% target population samples used for transfer learning.

Further to that, standard machine learning models were trained with 10 iterations, and
still the computing runtime were generally shorter than those for CNN models when PCA
and t-SNE were used to transform the input data, in some cases by up to 5 times (Table
2.1).
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Figure 2.7: Standard machine learning models’ predictive accuracies and generalisability
when trained with PCA-transformed Ifakara data plus 2% new target population. A)
Comparison of standard machine learning models for mosquito age classification; KNN:
K-nearest neighbours, LR: Logistic regression, SVM: Support vector machine classifier, RF:
Random Forest classifier, and XGB: XGBoost. B) proportions of correct mosquito age class
predictions achieved on unseen Glasgow dataset.

2.5 Discussion

This study demonstrates that transfer learning approaches can substantially improve the
generalisability of both deep learning and standard machine learning in predicting the age
class of mosquitoes reared in two different insectaries. We evaluated 1635 mosquito
spectra from Glasgow-reared mosquitoes and show that using transfer learning and
dimensionality reduction techniques could improve machine learning models to predict
mosquito age classes from alternate insectaries. Furthermore, reducing the dimensionality
of the spectral data reduced computational costs (i.e. computing time) when training the
machine learning models. The current study adds to the growing evidence of the utility of
infrared spectroscopy and machine learning in estimating mosquito age and
survival [60, 90, 94, 147]. In the past, most applications of infrared spectroscopy in
estimating mosquito vector survival relied on near-infrared frequencies (12,500 cm-1 to
4,000 cm-1). A recent study used mid-infrared spectra (from 4,000 cm-1 to 400 cm-1

frequencies) and standard machine learning to distinguish mosquito species with up to
82% accuracy, but found lower age prediction accuracy in several alternate settings [59].
González et al., suggested that machine learning under-prediction may be explained by the
small training dataset and ecological variability between the training and validation
sets [59].

In our study, despite categorising mosquito chronological age into two classes (young:
1-9 day olds and old: 10-17 day olds), deep learning and standard machine learning
approaches both remained unable to generalise, even after reducing the dimensionality of
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the spectra data. This result is consistent with Siria et al., [61], where CNNunder performed
as a result of the difference in data distribution between the training and evaluation data
driven by non-genetic factors such as ecological variation. When near-infrared spectroscopy
was used to predict the age of Anopheles mosquitoes reared from wild populations, a
similar limitation was reported [60,94].

Nonetheless, Siria et al., [61] also observed that using transfer learning to correct the
difference data distribution between training and evaluation data improved deep learning
generalisation, achieving 94% accuracy in predicting both species and mosquito age
classes. Furthermore, in the latter study, the performance of the classifier was improved by
incorporating a subset (n = 1,200~1,300 spectra) of the evaluation data into the training
data.

The present study shows performing transfer learning using 2% of the spectra from the
target domain (33 of 1,635) as well as dimensionality reduction resulted in the improved
generalisability of both deep learning and standard machine learning models achieving
overall accuracy of 98%. In this case, we expected that all models to which transfer
learning was applied would outperform the baseline models as previously demonstrated
[61, 148]. However, as the proportion of data from the target domain in the training
increased, the performance slightly dropped for the deep learning. The reason for the
deterioration in performance after turning the pre-trained\base model with 5% transfer
learning could be that themodel over-fitted randomnoise during training, which negatively
impacted the performance of these models on unseen data. These results were consistent
across multiple random train/test splits. Other studies have proposed alternative transfer
learning approaches, such as adaptive regularisation to address cross-domain (i.e., source
domain and target domain) learning problems [149], transferring knowledge gained in the
source domain during training to the target domain [150], and integrating dimensionality
reduction to transform features of the source to ensure data distribution in different domains
is minimised [151], such as transfer learning with multi-target regression approach to
exploit orthologous genes to capture similarities inmetabolic responses inmice and humans
[152,153].

Furthermore, dimensionality reduction was used in conjunction with transfer learning
to reduce noise, redundant features, and computational time. Based on our findings,
dimensionality reduction alone cannot achieve generalisability of machine learning models.
The PCA improvedmodel stability because the eigenvectors of the correlationmatrix in PCA
provide new axes of variation to project new data while preserving the original distance
between the points in the data. The model with t-SNE as a dimensionality reduction
technique failed to achieve generalisability on the newdata, the reason for poor performance
could be t-SNE is a probabilistic technique with a non-convex cost function [140], causing
the output to differ from multiple runs, and may not preserve the original distances
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between the points in the data. In this study, PCA is considered a better choice than other
dimensionality reduction technique for trainingmachine learningmodels from spectra data
because it is simple to implement, computationally efficient, and produces good results.

Furthermore, incorporating dimensionality reduction substantially reduces model
training time and thus, computational requirements. When compared to models trained
without dimensionality reduction, the computing runtime for models trained with
dimensionality reduction were less than five-fold. Moreover, transfer learning in general
was fast, tuning the pre-trained models in under two minutes on our machine (standard
laptop). This makes the technique applicable and reproducible even to users with low
computing power and capacity providing they have access to pre-trained models.

This study only included An. arabiensis reared in the laboratory from two insectaries.
Future research should put the techniques to the test with samples from more laboratories,
field settings, and mosquito species, as these factors can affect the model’s predictive
capacity. The optimal ratio of transfer learning data required to achieve best generalisability
in predictingmosquito age class has yet to be determined, so future studies could investigate
this gap. Furthermore, because dimensionality reduction reduced the computational
requirements in this study, we suggest that clustering spectra with algorithms such as PCA
can be a beneficial strategy for models trained on MIRS.

2.6 Conclusion

This study found that using transfer learning and dimensionality reduction with principal
component analysis (PCA) improved the generalisability of machine learning models for
predicting mosquito age classes from 56% to ≥97%. This suggests that these techniques
could be scaled up and further evaluated to determine the age of mosquitoes from
different populations. In addition, when dimensionality reduction and transfer learning
are used, simpler machine learning algorithms, such as the XGBoost classifier, can reduce
computational time while still achieving performance close or equal to deep learning. This
could help entomologists reduce the amount of time and work required to dissect large
numbers of mosquitoes. Overall, these approaches have the potential to improve
model-based surveillance programs, such as assessing the impact of malaria vector control
tools, by monitoring the age structures of local vector populations.

For future research, our goal is to create a large database of spectra data and use transfer
learning to build a pipeline that can predict the age of wild malaria mosquitoes across
different populations in order to support vector surveillance in malaria-endemic areas.
Here we have presented a new technique that uses transfer learning and dimensionality
reduction to improve the generalisability of machine learning predictions. However, the
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optimal proportion of new data from target populations required for generalisability is
still unknown, and warrants further optimisation.
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3.1 Abstract

Background: Accurately determining the age and survival probabilities of adult
mosquitoes is crucial for understanding parasite transmission, evaluating the effectiveness
of control interventions and assessing disease risk in communities. This study was aimed
to demonstrating rapid identification of epidemiologically relevant age categories of
Anopheles funestus, a major Afro-tropical malaria vector, through the innovative
combination of infrared spectroscopy and machine learning, instead of the cumbersome
practice of dissecting mosquito ovaries to estimate age based on parity status.

Methods: An. funestus larvae were collected in rural south-Eastern Tanzania and reared
in the insectary. Emerging adult females were sorted by age (1-16 day-olds) and preserved
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using silica gel. PCR confirmation was conducted using DNA extracted frommosquito legs
to verify the presence of An. funestus and eliminate undesired mosquitoes. Mid-infrared
spectra were obtained by scanning the heads and thoraces of the mosquitoes using an
ATR FT-IR spectrometer. The spectra (N = 2,084) were divided into two epidemiologically
relevant age groups: 1-9 days (young, non-infectious) and 10-16 days (old, potentially
infectious). The dimensionality of the spectra was reduced using principal component
analysis, then a set of machine learning and multi-layer perceptron (MLP) models were
trained using the spectra to predict the mosquito age categories.

Results: The best performing model, XGBoost, achieved an overall accuracy of 87%,
with classification accuracies of 89% for young and 84% for old An. funestus. When the
most important spectral features influencing the model performance were selected to train
a new model, the overall accuracy increased slightly to 89%. The MLP model, utilising the
significant spectral features, achieved higher classification accuracies of 95% and 94% for
the young and old An. funestus, respectively. After dimensionality reduction, the MLP
achieved 93% accuracy for both age categories.

Conclusion: This study shows how machine learning can quickly classify
epidemiologically relevant age groups of An. funestus based on their mid-infrared spectra.
Having been previously applied to An. gambiae, An. arabiensis and An. coluzzii, this
demonstration on An. funestus underscore the potential of this low-cost, reagent-free
technique for widespread use on all the major Afro-tropical malaria vectors. Future
research should demonstrate how such machine-derived age classifications in field
collected mosquitoes correlate with malaria in human populations.

Key terms: Malaria, Anopheles funestus, deep learning, machine learning, Ifakara health
institute, mid-infrared Spectroscopy

3.2 Background

Despite significant investments inmalaria control and research, therewere still an estimated
249 million malaria cases and 619,000 deaths in 2021 globally, a significant majority of
which occurred in sub-Saharan Africa [6]. Other than the poor economic conditions and
weak health systems, the continued high burden of malaria in Africa is attributable to key
biological threats, notably malaria parasite resistance to drugs [154–156], vector resistance
to insecticides [157, 158], increasing occurrence of malaria parasites evading detection
by rapid diagnostic tests [159–163], and disruptions from major disease outbreaks such
as Ebola and COVID-19 [2, 164, 165]. Effective vector control, primarily with insecticide
treated nets (ITNs) and indoor residual spraying (IRS), has been the most important
component of malaria control in Africa [12]. However, its continued effectiveness requires
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active innovation to address the current threats, and improved understanding of the major
vector species in different settings.

Anopheles funestus is one of the four main malaria vector species in sub-Saharan Africa,
the others being An. gambiae, An. arabiensis and An. coluzzii, and also one of the most
widespread [127–129, 133]. An. funestus is particularly important in East and Southern
Africa, where it is becoming the dominant malaria vector. For example, in parts of Tanzania,
An. funestus is reported to be responsible for 86-97% of all new malaria infections [128, 130,
131,134]. Its dominance is due to multiple factors, including i) being highly anthropophilic,
and thus preferring to bite humans over other vertebrates [128, 136], ii) being highly
endophilic, i.e. preferring to bite inside human dwellings than outside [166], iii) having
significantly higher survival rates than other species [167], iv) being resistant to commonly
used insecticides [127,128,168] and v) preferentially breeding in perennial habitats with
year-round productivity [23]. Given its importance and dominance in malaria transmission
systems, vector surveillance programs in the respective countries should be designed with
special attention to this vector species.

Besides evaluating biting densities and Plasmodium infection rates, accurately
determining the age and survival of An. funestus is crucial for monitoring transmission
dynamics and assessing the effectiveness of vector control interventions such as ITNs and
IRS. Dissection of mosquito ovaries is still the main entomological technique for estimating
the age of vector populations [53]. The dissections are usually performed under light
microscopes to assess the reproductive history, specifically the parity status, of the
mosquitoes. This involves observing whether the ovaries contain coiled tracheolar skeins
(indicating non-parous mosquitoes) or stretched-out tracheoles (indicating parous
mosquitoes). Non-parous mosquitos are considered young in this case, whereas parous
mosquitos are considered old and may carry the malaria parasites, having had multiple
blood-feedings [53]. Unfortunately, these dissections tend to be laborious and
time-consuming, especially when dissecting large numbers of mosquitoes, and are
impractical on a large scale.

Furthermore, the reliability of mosquito dissections is limited by their reproductive
history. For instance, a female mosquito can have more than one blood meal but still not
oviposit, a scenario known as gonotrophic discordance or pre-gravid blood-meal [55].
Moreover, since the gonotrophic cycles of Anopheles mosquitoes can be as short as 2–3
days under optimal climatic conditions [169,170], it is possible for parous mosquitoes to
be relatively young, and in rare cases, nulliparous mosquitoes to be several days old due
to the scarcity of blood meals (e.g. when ITNs coverage and usage is high). Therefore,
using parity alone to distinguish between epidemiologically distinct age categories of adult
mosquitoes, especially in the context of malaria transmission, which requires 10-14 days of
incubation [20], is not always realistic.
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All these concerns suggest the need for alternative age-grading techniques that are easy
to perform cheaply at scale and can provide accurate representations of epidemiologically
important mosquito age categories and populations. The alternative mosquito age-grading
methods currently include the analysis of cuticular hydrocarbon patterns in a gas
chromatograph [171] and gene transcription [72, 172, 173]. Near-infrared spectroscopy
(NIRS) (12,500 cm-1 to 4,000 cm-1 frequencies) [174], which involves passing infrared light
through a mosquito sample to measure absorbance or reflectance of the organic
compound functional groups, has also been used to estimate ages for various mosquito
species of both laboratory-reared and wild collected mosquitoes [60,94, 95, 147, 175–177].

More recently, mid-infrared spectroscopy (MIRS) has been used to predict and
estimate mosquito age, recording the biochemical composition of mosquito samples at
longer wavelength frequencies [59, 61, 178]. In addition, machine learning (ML)
techniques, including convolutional neural networks, have been utilised to differentiate
MIRS spectra associated with distinct mosquito ages and species in both laboratory and
wild mosquitoes [61, 178]. The infrared based systems have so far been successful for
various applications on three of the four main African malaria vectors (i.e. An. gambiae s.s,
An. arabiensis and An. coluzzii [61], but have yet to be demonstrated for An. funestus. The
goal of this study was therefore to test whether a similar ML-MIRS approach could
classify adult female An. funestus mosquitoes derived from wild-caught larvae into two
epidemiologically relevant age categories: young (0-9 days old, too young to have mature
Plasmodium sporozoites in their salivary glands) and old (10 days or older, potentially
carrying mature Plasmodium sporozoites given the right climatic conditions), factoring in a
parasite incubation period of 10-14 days.

3.3 Methods

3.3.1 Mosquito collection

Third and fourth instar mosquito larvae were collected from known aquatic habitats of An.
funestus in five different villages in Southeastern Tanzania, namely Tulizamoyo (8.3669∘S,
36.7336∘E), Kilisa (8.3721∘S, 36.5584∘E), Lupiro (8.38333∘S, 36.66667∘E), Ikwambi (7.9833∘S,
36.8184∘E), and Ruaha (8.9068∘S, 36.7185∘E). The larvae were transported to the vector
biology laboratory (VectorSphere), at Ifakara Health Institute for further rearing. The
larvae were kept in water from their natural breeding habitats and were fed Tetramin®

fish food. Once they pupated, the pupae were separated from the larvae and placed in
emergence cages. The emergent adult mosquitoes were maintained at 26-28∘C, 70-85%
relative humidity and a 12:12 hour light/dark photoperiod, on a 10% sugar solution diet.
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3.3.2 Mosquito preservation and scanning

The female adults were collected and individually preserved according to their age, from 1
to 16 days old. A total of 2084 mosquitoes were collected. The female mosquitoes were
killed using chloroform and subsequently stored in separate 1.5 ml microcentrifuge tubes
containing silica gel for desiccation. The heads and thoraces of the individual female
mosquitoes were scanned using an Attenuated total reflection - Fourier transform infrared
spectrometer (ATR – FT-IR) to obtain mid-infrared spectra with a resolution of 2 cm-1 at
4,000 - 400 cm-1 frequencies as previously described, complete with background spectral
calibration [59, 114, 115]. For each sample, 16 sample scans were averaged to obtain the
primary output spectrum [61].

3.3.3 Mosquito identification

Though the field collections had been done in known An. funestus habitats, it was necessary
to confirm the identity of the mosquitoes and eliminate any unwanted species. This
was accomplished primarily by morphology-based taxonomy using keys of Afro-tropical
Anopheles [179] but was complemented by PCR identification to sort between sibling species
in the An. funestus group. Wild An. funestus complex DNA was extracted from the two
legs of adult female mosquitoes. The two legs of an individual An. funestus mosquito
were placed separately in a 1.5 ml micro-centrifuge tube, followed by 20𝜇L of TE buffer
(Tris -EDTA), and incubated at 95∘C for 15 minutes. PCR was then used to differentiate
An. funestus from other sibling species, using species-specific primers targeting the non-
coding region of ITS2 using the protocol by Koekmoer et al., [180]. The PCR reaction was
performed in a 25𝜇L volume, consisting of a PCR mixture of 2.5𝜇L 10x reaction buffer,
25mM MgCl2, 10pmol/𝜇L of each primer, 8mM of each dNTP, 5 units of thermo-stable
Taq DNA polymerase, and 3𝜇L of DNA template. The PCR products were analysed by
electrophoresis in 2.5% agarose gel stained with classic view DNA dye for visualisation of
DNA bands. Only An. funestus mosquitoes were considered for further analysis, and any
other species discarded.

3.3.4 Machine learning

Mosquito spectra with low intensity, abnormal background or atmospheric interferences
(with water vapor and carbon dioxide) were discarded [59]. The data from the remaining
spectra (N = 2,084) were processed and analysed in Python 3.9, using Scikit-learn [141],
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and Tensorflow 2.0 [144, 145]. The data were rescaled using the Standard Scaler algorithm,
with a mean of 0 and a standard deviation of 1.

Using the algorithm stratified shuffle split, the dataset was split into training (n= 1,875)
and test/unseen (n = 209) sets. To train the supervised ML models, An. funestus ages
were used as training labels. An. funestus, ranging from 1 to 16 days old, were divided
into two epidemiologically relevant age categories taking into consideration the incubation
period of malaria parasites of 10-14 days [20]. The first group included An. funestus that
were between 1 to 9 days old and were considered young and incapable of transmitting
malaria (i.e., non-infectious age group). The second group included An. funestus that were
between 10 to 16 days old and were considered old enough to be capable of transmitting
malaria given the right environmental conditions (i.e., potentially infectious).

Multiple standard machine learning (ML) classifiers, including K-nearest neighbours
(KNN), logistic regression (LR), support vector machine (SVM), random forest (RF),
and extreme gradient boosting (XGBoost), were compared to determine which model
predicted the data with the highest classification accuracy. The best-performing model
was further optimised by fine-tuning its hyper-parameters. The top 100 spectral features
(wavenumbers) with the most influence on the model predictions were identified and
utilised to reduce the dimensionality of the spectra data, followed by retraining of the best
ML classifier.

Moreover, two Multi-layer Perceptron (MLP) models were trained by reducing the
dimensionality of the spectra data using different inputs: 1) the top 100 features extracted
from the best performing ML classifier, and 2) principal components using Scikit-learn
library. Both MLP models had six fully connected layers, each containing 500 neurons, to
enable the model to learn from the network’s weights as previously demonstrated [178].
To prevent overfitting, a dropout layer with a rate of 0.5 was used, and early stopping
was implemented when the validation loss could no longer improve after 400 iterations
[181,182]. The model’s performance was evaluated using K-fold cross-validation (k = 5)
to ensure an unbiased assessment of the standard ML and MLP models, as previously
described [178].

To assess the ability of the optimised models to identify all positive instances and avoid
false negatives, the recall score (i.e. sensitivity or true positive rate) was estimated as a ratio
of correctly age-classified An. funestus to the total number of An. funestus in the respective
age category in the dataset. Moreover, to measure the ability of the models to avoid false
positives, the precision score (i.e. the positive predictive value) was estimated as a ratio
of correctly age-classified An. funestus to the total number of predicted positive instances
of the respective age categories. Lastly, we calculated the F1-score, which balances both
precision and recall scores by giving equal weight to both measures. This score provides a
single value that represents the overall performance of the model in terms of its ability to
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correctly classify positive and negative cases. A higher F1-score signifies a better model
performance, where a maximum value of 1 represents flawless precision and recall.

3.4 Results

3.4.1 Predicting An. funestus age classes using standard
machine learning models

In the initial comparison of standard ML models, XGBoost emerged as the best classifier
with the highest prediction accuracy and lowest standard deviation, achieving 84% accuracy
(Fig. 3.1A). After optimising the parameters, the XGBoostmodelwas able to classify spectra
that were previously unseen with an overall accuracy of 87%. It achieved accuracies of
89% and 84% for young (1-9 days old) and old (10-16 days old) An. funestus females
respectively (Fig. 3.1B). The recall scores (i.e. sensitivity or true positive rates) of this
model were 0.89 and 0.84 for the young and old mosquitoes respectively, while its precision
scores (i.e. the positive predictive value) were 0.87 for both age categories (Table 3.1).

Figure 3.1: Machine learning prediction of An. funestus age classes. A) Comparison of
standard ML classifiers in predicting An. funestus age classes; KNN: K-nearest neighbours,
LR: Logistic regression, SVM: Support vector machine, RF: Random Forest, XGBoost:
Gradient boosting, MLP: Multilayer perceptron. B) Confusion matrix for predicting the
age class of An. funestus using XGBoost on an unseen dataset, results for the ML trained
with all spectra features.

From the initial XGBoost model, we identified the spectral features that were most
important for the prediction. This analysis aimed to reduce the number of training features
and enhance the accuracy of the model during retraining (Fig. 3.2A). When the XGBoost
classifier was retrained with the top 100 features, the classification accuracy increased to
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89%, correctly predicting young and old An. funestus females with 92% and 85% accuracies
respectively (Fig. 3.2B).

Figure 3.2: A) Relative importance of XGBoost features that have the most influence in
predicting the age classes of An. funestus. B) Confusion matrix for predicting the age class
of An. funestus using XGBoost on an unseen dataset, the results for the ML retrained with
important features/wavenumbers (n = 100) identified by the initial XGBoost model.

3.4.2 Prediction of An. funestus age classes using
Multi-layer perceptron (MLP) models

We explored the possibility of improving the accuracy by training the MLP classifier using
the important wavenumbers (n = 100) identified in the XGBoost predictions. As a result,
the MLP achieved an improved accuracy of 94.5% in the unseen test data (Fig. 3.3A),
correctly distinguishing between young and old An. funestus females with accuracies of
95% and 94%, respectively (Fig. 3.3B).

Lastly, in a previous study, we presented evidence that employing PCA with eight
components effectively reduces the dimensionality of the spectra data [178]. This reduction
in dimensionality not only preserved a substantial portion of the data variability, but also
mitigated overfitting while enhancing the signal-to-noise ratio. By utilising a reduced set
of features, we trained the MLP model to improve its predictive performance [178]. In the
present study, when PCA was utilized to reduce the dimensionality of the spectra data, the
MLP classifier achieved an overall accuracy of 93% for both young and old An. funestus
mosquitoes (Fig. 3.3C).
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Figure 3.3: A) MLP Training and validation accuracy for An. funestus age classes as
training time increases (epoch; number of iterations over the entire dataset during the
training process, i.e. seconds/iterations). Confusion matrix for predicting the age
class of An. funestus; Panel B shows the results for the MLP trained with important
features/wavenumbers (n = 100) identified by the XGBoost. Panel C shows the results for
the MLP method trained with eight principal components.

Table 3.1: Precision, recall, and F1-score of XGBoost and multi-layer perceptron (MLP)
models for predicting age categories of An. funestus

Model Age classes Precision Recall F1-score No. test samples

XGBoost 1 1 - 9 0.87 0.89 0.88 113
10 - 16 0.87 0.84 0.86 96

XGBoost 2 1 - 9 0.88 0.92 0.90 113
10 - 16 0.90 0.85 0.88 96

MLP 1 1 - 9 0.95 0.95 0.95 113
10 - 16 0.94 0.94 0.94 96

MLP 2 1 - 9 0.94 0.93 0.93 113
10 - 16 0.92 0.93 0.92 96

* XGBoost 1: Trained with all MIRS wavenumbers (n = 1,665), XGBoost 2: Trained with
spectral features extracted based on feature importance summaries (n = 100), MLP 1:
Trained with spectral features extracted based on feature importance summaries (n = 100),
MLP 2: Trained with PCA as a dimensionality reduction technique.

3.5 Discussion

An. funestus mosquitoes are currently the major vector of malaria transmission in Tanzania,
accounting for over 80% of malaria transmission [128, 130, 131, 134]. An. funestus tends
to have better survival rates [167], and is generally a slow-growing mosquito, which
adds to the challenge of studying its demographic characteristics and how these might
influence pathogen transmission. Here, we present a rapid age-grading technique that
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has potential to replace the traditional methods like ovarian dissections, which are time-
consuming and challenging to apply on a large scale. Using 2084 spectra data, we trained
machine learning models that classify the epidemiologically relevant age groups of An.
funestusmosquitoes reared from wild larvae using water from the same habitats, but under
laboratory conditions. The models correctly distinguished between the young An. funestus
females (1-9 days old) and the older ones (10-16 days old) based on the MIR spectra
indicative of the varying biochemical composition of the mosquito cuticles [116]. While
this was the first demonstration of the effectiveness of this technique for predicting the
age of An. funestus mosquitoes, the approach of combining infrared spectra and machine
learningmodels has beenwidely demonstrated for predicting different indicators including
age, blood meals, infection status, and insecticide resistance profiles of other Anopheles
species [61,114,115]. If validated on field collected adults, these findings could be a step
towards wider applications of this approach for malaria vector surveillance in settings with
different vector species.

In settings such as rural south-eastern Tanzania where An. funestus is the dominant
malaria vector [128, 130] it is particularly important that vector surveillance programs are
expanded to include this vector species. Indeed, the successful demonstration that this
technique on An. funestus, which is one of the most efficient and also most widespread
malaria vectors in Africa [183], expands the range of utility of this technique for a much
broader application for malaria vector surveys in different parts of Africa.

One of the key concerns regarding previous applications of MIRS-ML based approaches
for entomological assessments is that, with exception of some cases [61], these methods
have been rarely validated for wild-caught malaria vectors in field settings. Here, An.
funestus mosquitoes were collected as larvae from various villages and breeding habitats,
to account for genetic variation, variation in larval food sources and microbiome, and to
maintain some characteristics of the natural ecosystems. The success of this analysis and
the high accuracies obtained may therefore be indicative of the potential of the approach
for predicting key mosquito attributes in field settings. However, it is unknown whether
specific climatic factors could influence the prediction and generalisability of MIRS-ML
approach. Future studies should therefore test the generalisability of this approach across
different populations of wild mosquitoes.

This study classified mosquitoes only as young (1-9 days old) or old (10-16 days old)
and did not attempt to classify them at specific chronological ages because the sample size
was not large enough to test it. However, the chosen age classes represent the typical
epidemiological distinction relevant to the transmission of malaria parasites, which, under
standard climatic conditions, requires that a vector must be at least 10 days old [20].
However, it may fail to capture variations in MIR spectra or the small biochemical changes
that occur within a mosquito cuticle after each ageing day (such as chronological age from
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1 up to 16) [59]. Moreover, it has been demonstrated that calibrating machine learning
models based on physiological age (which considers key life cycle processes such as
blood-feeding and oviposition) may be more useful than simply relying on chronological
age classifications [60, 90]. In our study, mosquitoes were all sugar fed, and therefore
physiological age was not assessed. Future efforts should assess key differences in these
approaches and evaluate models trained on biological age and chronological age to
determine which ones are most practical and most generalisable. An obvious next step is
therefore to investigate any correlations that might exist between the machine-classified
age categories and the epidemiology of malaria in human populations.

To improve the classification accuracy of ourmodel, the XGBoost feature importancewas
relied upon to reduce the number of spectral features from 1,665 to 100. This dimensionality
reduction significantly lowered the noise and redundant features in the MIR spectra data.
The important features were mostly associated with proteins, with themost influential peak
(1,700 cm-1) being the band associated with the amide bond from proteins. The region
around 3,000 cm-1, which is also related to proteins, was also found to be important in the
model prediction. This implies that the model is learning from protein-based biological
traits that vary depending on the age of the mosquito [61]. Moreover, when PCA was
used to reduce the dimensionality of the spectra from 1,665 features to eight principal
components [178], the prediction accuracy matched that of the MLP model trained with
the top 100 biological features as identified from the XGBoost model. This suggests that
machine learningmodels may perform better when trained with fewer features that explain
more variation in the data, rather than many redundant features that introduce noise into
the model. Moreover, as observed previously, reducing the dimensionality of the spectra
data reduces the computational resources needed to train machine learning models [178].

Future research should investigate the effects of rearing wild An. funestus larvae in the
insectary on the predictive accuracies of MIRS-ML approach for mosquito age-classification
as this could impact the generalisability of the findings.

3.6 Conclusion

This study demonstrates the classification of adult female An. funestus into distinct and
epidemiologically relevant age categories using a MIRS-ML approach. In conjunction
with prior research conducted on other Anopheles mosquitoes, this study suggests that the
applicability of this approach can be extended to evaluate various entomological attributes
in An. funestus. The MIRS-ML approach proves to be quick, cost-effective, and has the
potential to significantly enhance An. funestus surveillance efforts, thereby contributing
valuable insights to national malaria control programs, particularly in resource-constrained
settings where this vector is highly prevalent. Nonetheless, further research is needed to
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validate the MIRS-ML approach in field conditions, using adult An. funestus populations
and other vector species within malaria-endemic communities, and to examine how the
machine-classified age categories correlate with the epidemiological strata of malaria in
human populations.
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4.1 Abstract

Background: The degree to which Anopheles mosquitoes prefer biting humans over other
vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing
malaria transmission risk. However, existing techniques for identifying mosquito blood
meals are demanding in terms of time and effort, involve costly reagents, and are prone to
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inaccuracies due to factors such as cross-reactivity with other antigens or partially digested
blood meals in the mosquito gut. This study demonstrates the first field application of
mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-
feeding histories of malaria vectors, with direct comparison to PCR assays.

Methods and Results: FemaleAnopheles funestusmosquitoes (N= 1,854) were collected
from rural Tanzania and desiccated then scanned with an attenuated total reflectance
Fourier-transform Infrared (ATR-FTIR) spectrometer. Bloodmeals were confirmed by PCR,
establishing the ‘ground truth’ for machine learning algorithms. Logistic regression and
multi-layer perceptron classifiers were employed to identify blood meal sources, achieving
accuracies of 88% and 90%, respectively, as well as HBI estimates aligning well with the
PCR-based standard HBI.

Conclusions: This research provides evidence of MIRS-ML effectiveness in classifying
blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in
settings where conventional molecular techniques are impractical. The cost-effectiveness,
simplicity, and scalability of MIRS-ML, along with its generalisability, outweigh minor
gaps in HBI estimation. Since this approach has already been demonstrated for measuring
other entomological and parasitological indicators of malaria, the validation in this study
broadens its range of use cases, positioning it as an integrated system for estimating
pathogen transmission risk and evaluating the impact of interventions.

Key terms: Anopheles, human blood index, machine learning, transfer learning,
VectorSphere

4.2 Background

Effective entomological surveillance requires systematic collection, analysis, and
interpretation of data on insects that transmit pathogens in different localities. It is
essential for assessing risks and guiding the planning and implementation of vector
control strategies, as well for monitoring, and evaluation of those strategies [184]. The
likelihood of pathogen transmission can vary widely, depending on factors such as the
presence of competent vectors, favourable climatic conditions, the presence of vulnerable
human populations and the presence of other vertebrate hosts, which may sustain the
vector populations [184]. Other factors may include the diversity of vector species in the
area, their population dynamics, their behaviours in and around human dwellings such as
the timing and location of biting, their resting behaviours and host preferences of these
vectors [136,185].
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Anopheles mosquitoes are considered particularly hazardous due to their propensity to
feed on, and thus transmit pathogens to, humans, notably malaria, which causes
approximately 620,000 deaths and about 250 million cases annually [6] . Compared to
mosquitoes from other regions, the Afro-tropical malaria vectors are particularly
dangerous in this regard due to their comparatively greater preference for humans over
other vertebrates [136]. This attribute, which is generally estimated as the human blood
index, has been considered an important measure of the stability of malaria in different
settings [41]; and is known to be highest in major malaria vectors, including Anopheles
gambiae, Anopheles funestus and Anopheles coluzzii, which appear to be particularly well
adapted synanthropes [27]. Following closely is Anopheles arabiensis, which can be an
opportunistic vector species capable of blood-feeding readily on either humans or cattle,
depending on availability [136, 185, 186]. Consequently, while this behaviour poses a
notable risk for the transmission of zoonotic pathogens in addition to malaria, An.
arabiensis is also a far less competent vector of malaria than either An. gambiae, An. funestus
or An. coluzzii [128,130,131, 187].

While anthropophagy (i.e., preference for feeding on humans) in malaria vectors can be
augmented by the degree of endophily (i.e., preference for indoor resting), this behaviour
can also be attenuated under high degrees of exophily (i.e., preference for outdoor resting).
For example, An. funestus is known for being both highly anthropophilic and highly
endophilic [128,136], enforcing its major role in malaria transmission [128,130] though
there are settings where it is known to bite outdoors early in the morning [188,189] or to
feed on non-human hosts [190]. On the other hand, mosquitoes that rest indoors are more
likely to feed on human host, while mosquitoes that prefer to rest outdoors are more likely
to feed on non-human host [136,191]. This might be due to mosquitoes feeding on the first
host they encounter when presented with multiple hosts in the same environment [186],
or to the use of bed nets preventing access to human hosts [192, 193]. Overall, accurate
determination of the blood-feeding histories of malaria vector species is an important
indicator of their feeding behaviour, their role in ongoing malaria transmission and the
overall risk exposure of people within those settings.

Methods for investigating the blood-meal sources in mosquitoes include several
techniques: the precipitin test observes the formation of a white precipitate resulting from
the interaction between a saline extract of the blood meal and a suitable antiserum from a
known host, indicating the presence of an antigen-antibody interaction [194]; microsphere
assays is a molecular-based assay involving uniquely labelled microspheres with host
species-specific capture probes to detect host blood meals [195]; microsatellite assays
analyse short tandem repeat sequences in the mosquito’s DNA to identify blood sources
based on unique genetic markers [196]; enzyme-linked immunosorbent assays (ELISA)
detect immunoglobulin G (IgG) from blood-fed mosquito samples [68]; and polymerase
chain reactions (PCR) target mitochondrial cytochrome b to identify arthropod blood
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meal sources [69]. ELISA and PCR, the most common techniques for studying host blood
meals in mosquitoes, have played a crucial role in understanding mosquito host
preference since the early 1980s and emerged as powerful tools due to their
sensitivity [68,69, 197–200]. These methods have evolved over time with modification to
enhance accuracy and efficiency. ELISA, for instance, utilises two basic procedures:
indirect ELISA, where an antiserum is used to trap a particular IgG [197], and direct
ELISA, which relies solely on the antibody-enzyme conjugate to attach to host-specific IgG
in the bloodmeal [68, 198], currently preferred for its simplicity over indirect ELISA. PCR,
being more sensitive due to specific primers targeting host DNA, has evolved from
conventional PCR, which amplified human host DNA extracts at the human tyrosine
hydrolase (TC-11 or HUMTHO1) and VWA (HUMVWFA31) [199, 200], to the current
multiplexed PCR capable of detecting five mammalian blood meals in mosquitoes in a
single step (i.e., by size-differentiated DNA fragment on agarose gels) [69]. While these
techniques offer significant advantages, they also come with challenges such as being
time-consuming, laborious, and require repeated use of expensive reagents, not always
readily available in rural laboratories where field collections are conducted. Moreover,
ELISA assays, one of the most widely used technique, are prone to high levels of
cross-reactivity, occasionally failing to sufficiently distinguish between human and
hon-human blood meals [74]. Since field collections do not always yield synchronous
physiological states, some of the blood meals may have been partly digested, which might
also compound the detection capability of current methods [201].

In a recent study, our team demonstrated that machine learning models trained on
mid-infrared spectra data collected from mosquitoes fed on different hosts (4000 cm−1 to
400 cm−1 frequencies) (MIRS-ML) could accurately distinguish vertebrate blood meals in
laboratory-reared An. arabiensis mosquitoes without the need for molecular techniques
[114]. However, it was also noted that field validation would be necessary for multiple
reasons. Firstly, in field settings, the time post-feeding is unknown, and the mosquitoes
may have multiple blood meals, occasionally from multiple sources. Secondly, unlike
laboratory settings where the age of mosquitoes is known, field mosquitoes vary in age and
may have taken their 2nd, 3rd, or 4th meals. Thirdly, the amount of blood in the mosquito
gut may be small in the field due to increased disturbance during feeding compared to
controlled laboratory conditions, and lastly, the genetic variability for blood sources is
higher in the field. Overcoming these challenges would enable the potential use of MIRS-
ML in real-world field scenarios. We, therefore, concluded from the initial laboratory
study that whereas the technique offers a unique opportunity to rapidly test individual
mosquitoes for blood-type and other attributes, assessing blood-feeding histories of wild
malaria mosquitoes would provide an opportunity to test its potential field validation.

The current study aimed to analyse the blood-feeding preferences of wild-caught
malaria mosquitoes, by using MIRS-ML models to identify the sources of their blood
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meals. The study also explored how well the models trained using laboratory-reared
mosquitoes can be applied to field-collected samples by incorporating specific transfer
learning techniques previously used for predicting the species identification and age of
mosquitoes collected in different countries [61, 178]. The ultimate goal of the work was to
demonstrate the utility of this approach for field applications. Implementing these models
in the field would significantly enhance the knowledge of mosquito feeding behaviours
and disease transmission, potentially informing more effective vector control strategies
against multiple mosquito-borne diseases [18,43–49].

4.3 Methods

4.3.1 Mosquito collection and processing

Mosquitoes were sampled from five sites in Tulizamoyo, a rural village in Ulanga district,
southeastern Tanzania (8.3544∘S, 36.7054∘E). To capture a comprehensive range of blood-
meals, collections were conducted as follows: a) indoors using CDC light traps and resting
buckets throughout the night (6:30 PM to 6:30 AM) and Prokopack aspirators during
the early morning (5:30 AM to 6:30 AM); b) outdoors in peri-domestic areas, including
outdoor kitchens, with the same night and early morning methods; and c) around animal
sheds, again using resting buckets at night and Prokopack aspirators in the morning.

The collected mosquitoes were sorted by taxa and physiological states [202]. All blood-
fed Anopheles females were killed with chloroform and preserved individually in 1.5 mL
Eppendorf tubes containing silica gel desiccant afterwards. The mosquitoes were kept for
5 days at 5∘C before scanning (see below). In total, 1,854 blood-fed (76% An. funestus and
24% An. arabiensis) females were examined.

4.3.2 Mid-infrared spectrometer scanning

The abdomens of all blood-fed An. funestus and An. arabiensiswere scanned. An attenuated
total reflection Fourier-transform infrared (ATR-FTIR) ALPHA II spectrometer (Bruker
optics) was used to collect the infrared spectra of dried mosquito abdomens over a spectral
range of 4,000 to 400 cm-1, with a 2 cm-1 resolution. The absorbance data obtained from
scanning the mosquito abdomens provides insights into the biochemical makeup, e.g. the
protein and lipid concentrations present in the blood meal, which are indicative of the
vertebrate source of the blood meal [114]. Each mosquito was scanned 32 times and the
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spectra were averaged. Scanning was done inside the Ifakara Health institute’s Vector
Biology Laboratory, the VectorSphere.

4.3.3 Identification of blood meals from different vertebrate
hosts using polymerase chain reaction (PCR)

Following MIRS analysis, mosquito carcasses were subjected to a multiplex PCR assay to
identify the vertebrate origins of their blood meals as either from humans, cows, goats,
dogs, or pigs. A multiplexed PCR assay was used targeting the cytochrome b (cytB)
gene following the Kent et al., protocol [69]. DNA was extracted using DNAzol® with a
final volume of 20𝜇L per sample. The PCR mix included 5𝜇L of DNA, 1𝜇L each of 20𝜇M
universal and species-specific primers, and 12.5𝜇L of One Taq Quick Load 2X master mix.
Amplification conditions were: 95∘C for 5 minutes, 29 cycles of 95∘C for 1 minute, 58∘C for
1 minute, 72∘C for 1 minute, and a final extension at 72∘C for 7 minutes. The PCR products
were run on a 2% agarose gel with Classic view stain and imaged under UV light with the
Kodak Logic 100 system, assessed in comparison to the known fragment sizes for different
hosts (Kent et al., [69] as shown in Table 4.1). PCR results were used as the “ground truth”
to train and validate machine learning algorithms.

Table 4.1: Amplified DNA fragments from different blood meal hosts

Host Blood Fragment size (base pairs)
Human 334
Bovine 561
Goat 132
Dog 680
Pig 453

4.3.4 Confirmation of the identity of sibling species in the
An. funestus group

Using DNA extracted from the same mosquitoes, a multiplex PCR protocol by Koekemoer
et al., [180] was used to identify and distinguish between sibling species within the An.
funestus group.
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4.3.5 Training machine learning models to identify and
distinguish between blood meal types

The analysis was carried out in Python 3.9 using the Scikit-learn [141] and Keras [145]
libraries for the machine learning tasks. Supervised machine learning was exclusively
trainedwithwild-caughtAn. funestus females dataset (N=751), consisting of human-blood
fed (n = 167) and bovine blood-fed (n = 584) mosquitoes, in order to predict blood meal
sources for field-collected mosquitoes. Before performing model training and prediction,
the classes were balanced by randomly under-sampling the over-represented blood meal
class to match the under-represented classes (i.e., human-blood fed (n = 167) and bovine
blood-fed (n= 167)mosquitoes). The remaining samples from the randomunder-sampling
were later included in the unseen data/test data for overall prediction. Field collected An.
arabiensis were not used for model training since there were only 256 (human blood-fed
(n = 2) and bovine blood-fed (n = 254)) of them in the total sample set. Additionally,
prior to model training, the spectra were cleaned of water vapour absorption bands and
carbon dioxide (CO2) interference bands then standardised by rescaling to zero mean
and a variance of 1 to ensure consistency and uniformity. The following algorithms were
tested and compared to select the one with the highest predictive accuracy and precision:
K-nearest neighbours (KNN), Logistic Regression (LR), Support Vector Machine (SVM),
Gradient Boosting (XGB), Random Forest (RF), and Multilayer Perceptron (MLP). The
best-performing model was selected based on predictive accuracy and refined it through
hyper-parameter tuning. This optimised model was then validated using 5-fold cross-
validation. Once the model was validated, it was tested using a balanced set of unseen
spectra from human blood-fed (n = 17) and bovine blood-fed (n = 17) mosquito samples
derived from the under-sampling process.

A second-stage model evaluation was conducted using a larger but imbalanced set of
test samples consisting predominantly of spectra from bovine-fedmosquitoes (n= 688) and
a small number of spectra from human-fed mosquitoes (n = 19). While the datasets used
for both the model training and the first stage testing consisted of only An. funestus, this
larger dataset used for the second stage testing also included a small number of blood-fed
An. arabiensis (n = 254), which had been excluded from model training.

Lastly, a transfer learning technique was implemented to predict field data by initially
training machine learning models with laboratory data and then augmenting with small
quantities of field data as follows. In this context, deep learning frameworkwas utilised due
to their direct provision of pre-trained models and pre-build transfer learning capabilities,
which differs from traditional machine learning algorithms. Spectral data from a previous
study were utilised [114], which involved laboratory-reared mosquitoes to train the deep
learning model. This earlier study used age-synchronised lab-reared An. arabiensis fed
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on four different host types, cattle, goat, chicken and humans [114]. This pre-existing
data was used here to train an MLP deep learning model within the Keras framework,
but only the mosquitoes fed on human blood (n = 409) and bovine blood (n = 454) were
included. Then, the model was augmented with a small subset of newly collected data
from wild mosquitoes to assess the amount of field data needed for effective transfer
learning. The resulting MLP model was then utilised to classify the sources of blood
meals in wild-collected mosquitoes from two different test sets: a near-balanced set of test
samples (human blood-fed (n = 177) and bovine blood-fed (n = 120)) derived from the
under-sampling process, and an imbalanced set of test samples consisting predominantly
of spectra from bovine-fed mosquitoes and a small number of spectra from human-fed
mosquitoes; the second test set included 784 bovine blood-fed and 122 human blood-fed
mosquito samples.

While accuracy was the primary evaluation metric for the model, additional metrics,
namely recall (true positive rate), precision (positive predictive value), and F1-scores were
also employed for a comprehensive performance assessment. The recall score, indicating
the ability of the model to identify all actual positives and minimise false negatives, was
calculated as the proportion of accurately identified blood meal hosts out of the total
blood-fed mosquitoes within each category. Precision, reflecting the success of the model
in avoiding false positives, was measured as the proportion of correctly classified blood
meal host/source against all the positive predictions of that model for each blood meal
category. Lastly, the F1-score, a harmonic mean of precision and recall, was computed to
gauge the balanced performance of the model in accurately classifying blood meal host
sources. A higher F1-score denotes superior model efficacy, with a score of 1 indicating
perfect precision and recall.

4.3.6 Estimating the human blood index (HBI) from
polymerase chain reaction (PCR) and mid-infrared
spectroscopy and machine learning (MIRS-ML)
approaches

The proportion of mosquito blood meals obtained from humans were estimated through
predictions generated by MIRS-ML based approaches and compared them to the
outcomes of PCR analysis. The definitive ‘ground truth’ HBI (human-fed/total blood-fed
mosquitoes) was calculated using PCR results, while MIRS-ML based prediction were
used for comparison.
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4.4 Results

4.4.1 Polymerase chain reaction (PCR) based identification
of blood meals from different vertebrate hosts

A total of 1,854 samples were examined (Table 4.2). Of these 45.2% of the mosquitoes
had consumed bovine blood, 9% human blood, 3.7% dog blood, and 1.4% a mixture of
human and bovine blood. Another 0.3% had fed on either a mix of human and dog blood
or bovine and dog blood. Notably, 40.1% of all samples remained unamplified, possibly
due to prolonged host-blood digestion within the mosquito abdomen [201] or the presence
of blood from other vertebrates not targeted by the list of primers used in the study.

Table 4.2: Number of amplified host blood meal sources of wild-caught Anopheles
mosquitoes

Host Blood An. funestus group An. arabiensis Total Count (%)
Bovine blood 584 254 838 (45.2)
Human blood 167 2 169 (9)
Dog blood 65 3 68 (3.7)
Human & bovine blood 26 - 26 (1.4)
Bovine & dog blood 5 - 5 (0.3)
Human & dog blood 5 - 5 (0.3)
Unamplified 553 190 743 (40.1)
Total 1,405 449 1,854 (100)

4.4.2 Confirmation of the identity of sibling species in the
Anopheles funestus group

Additional PCR was conducted to determine the species composition of An. funestus
that blood-fed on bovine and humans. These tests revealed that 99% of the successfully
amplified bovine blood-fed samples were An. funestus, with Anopheles rivolurum and
Anopheles vaneedeni making up 0.7% and 0.1%, respectively. An. funestus also accounted for
100% of the amplified samples from mosquitoes that had fed on human blood.
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4.4.3 Using machine learning models to identify and
distinguish between blood meal types

As humans and cattle were found to be the predominant hosts (Table 4.2), the ML models
were exclusively trained using labels from An. funestus human blood-fed (n = 167) and
bovine blood-fed (n = 584). To address the imbalance, the bovine blood-fed class was
under-sampled at random to match the under-represented class (i.e., human-blood fed (n
= 167) and bovine blood-fed (n = 167) mosquitoes) [203].

LR achieved the highest in-sample prediction accuracy at 80% (Fig. 4.1A). After hyper-
parameter tuning, the LR model predicted the previously unseen balanced set of test
samples with an overall accuracy of 88%, with 94% for bovine and 82% for human blood
meal classifications (Fig. 4.1B). The summarization of this result on a confusion matrix
shows that about 6% of mosquitoes blood-fed on bovine were misclassified as human
blood-fed, and 18% of human blood-fed mosquitoes were misclassified as bovine blood-fed
(Fig. 4.1B).

Moreover, when all the remaining samples were included in the test set to create a larger
but imbalanced dataset, the LR model classified all the previously unseen spectra with an
overall accuracy of 78%, predicting bovine blood-fed and human blood-fed mosquitoes
with 73% and 82% accuracy, respectively (Fig. 4.1C). Additionally, a lower precision was
observed for the minority class (i.e. Human). Additional metrics (precision, recall and F1
statistics) and the number of test samples are in Table 4.3.

Figure 4.1: A) Comparison of machine learning algorithms; K-nearest neighbours (KNN),
Logistic regression (LR), Support vector machine (SVM), Extreme Gradient boosting
(XGB), and Random forest (RF). B) A confusion matrix from the LR classifier’s predictions
on the balanced set of test samples of wild An. funestus blood-fed on human and bovine.
C) A confusion matrix from the LR classifier’s predictions of the imbalanced set of test
samples of wild mosquitoes blood-fed on human and bovine.
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Table 4.3: Precision, recall, and F1-score of the LR classifier in classifying Bovine and
human blood-meal sources in out-of-sample wild malaria mosquitoes

Host blood Precision Recall F1-score No. test samples
Model testing using a balanced set of test samples

Bovine 0.84 0.94 0.89 17
Human 0.93 0.82 0.87 17

Model testing using an imbalanced set of test samples
Bovine 0.99 0.79 0.88 688
Human 0.09 0.79 0.17 19

4.4.4 Using machine learning models trained with
laboratory data to classify host blood meals of
field-collected mosquitoes

Although the initial model trained with field data yielded a relative high accuracy
performance, the effectiveness of a model trained using laboratory data from an earlier
study was evaluated [114], for classifying the host blood meals of field-collected samples.
Indeed, the advantage of this approach is that it would allow to create models using
laboratory samples, which are easier to produce and balance between different hosts.

After training a baseline MLP model, a small subset of field spectra was incorporated
using transfer learning which can allow generalisation with minimal re-calibrations [61].
Transfer learning exhibited a significant enhancement in classification accuracy, increasing
from 76% to approximately 90% (Fig. 4.2A). This level of accuracy was achieved by
integrating, into the MLP model trained with laboratory data up to 100 field samples,
evenly split between human-fed and bovine-fed classes. Specifically, on the balanced set of
test samples, the MLP model achieved a classification accuracy of 90% for bovine blood
meal sources and 91% for human blood meal sources (Fig. 4.2B).

Moreover, on the imbalanced set of test samples (784 bovine blood-fed and 122 human
blood-fed), the MLP model improved and achieved an overall accuracy of 94%, with 98%
for bovine and 90% for human blood-fed mosquitoes (Fig. 4.2C). The precision, recall,
F1-score metrics, and the number of test samples are presented in Table 4.4.

Lastly, to assess whether MIRS-ML could be used to estimate human blood index
(HBI), which reflects the proportion of mosquito blood meals derived from humans, the
predictions by MIRS-ML were compared against standard HBI values obtained by PCR. It
was observed that LR predictions, when solely based on field data, slightly underestimated
the HBI by 6% compared to PCR results. On the other hand, the predictions obtained by
the model that used transfer learning were much more accurate in estimating HBI; and
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even minimal number of samples included in the re-calibration model well aligned with
the PCR-based standard HBI (Fig. 4.3).

Figure 4.2: A) The accuracy of classifying unseen blood-meal sources in field mosquitoes
significantly increased from 76% to 90% when using a training set of up to 100 field
mosquitoes for transfer learning. The mean accuracy is depicted by the solid line, while
the shaded ribbon represents the standard deviation of the mean across 10 models. B) A
confusion matrix from the transfer learning model for classifying human and bovine blood
meals in field mosquitoes from the balanced set of test samples. C) A confusion matrix
from the transfer learning model’s classification prediction of the imbalanced set of test
samples of wild mosquitoes blood-fed on human and bovine.

Table 4.4: Precision, recall, and F1-score of the transfer learning model (i.e. MLP)
in classifying out-of-sample bovine and human blood-meal sources in wild malaria
mosquitoes.

Host blood Precision Recall F1-score No. test samples
Model testing using a balanced set of test samples

Bovine 0.91 0.90 0.90 120
Human 0.90 0.91 0.90 117

Model testing using an imbalanced set of test samples
Bovine 0.98 0.98 0.98 784
Human 0.88 0.90 0.89 122

4.5 Discussion

Human blood index (HBI), which reflects the tendency of mosquitoes to feed on humans
compared to other vertebrates, is vital for assessing malaria transmission dynamics and the
level of stability of transmission [41]. Current techniques for determining mosquito blood
meal sources are slow, labour-intensive, and expensive due to the need for costly reagents.
They are also susceptible to errors, such as false positives from cross-reactivity with other
antigens or due to the partial digestion of blood meals in the mosquito digestive system.
Yet, as malaria endemic countries move towards elimination, there is a pressing need for
simpler, more cost-effective methods that can be deployed at scale in malaria-endemic
countries to improve entomological surveillance and evaluate the effectiveness of malaria
control interventions.
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Figure 4.3: Estimation of the HBI by the transfer learning (i.e. MLP-TL, Multilayer
perceptron-transfer learning) compared to PCR when using a training set of up to 100
field mosquitoes for transfer learning. The solid line represents the average HBI, while the
shaded ribbon illustrates the standard deviation across 10 iterations.

This study demonstrates the first-ever field application of the simple mid-infrared
spectroscopy and machine learning (MIRS-ML) approach for predicting the blood-feeding
histories of malaria vector in rural Africa. Beyond this, the study also demonstrates the
transferability of the laboratory-trainedMIRS-MLmodels to identify and classify host blood
meals in field-collected samples through the utilisation of transfer learning techniques.
For validation, PCR as the ‘ground truth’ was used to determine the actual blood-feeding
histories of the field-collectedmosquitoes; and examined a total of 1,854 blood-fedAnopheles
mosquitoes.

Based on the PCR analysis, most of the mosquitoes blood-fed on humans or bovines,
and only a very small percentage had fed on other hosts, such as dogs and pigs. Given the
inherent limitations of the PCR, classification of blood meals in 41% of the samples was
impossible, possibly because they fed on a host other than those tested in this study and
therefore could not be amplified with the primers used. Nonetheless, only mosquitoes
confirmed to have fed on either humans or bovines were included in this analysis, as they
were the vast majority; thus binary machine learning classifiers were trained for blood-
meal prediction. The capability of the MIRS-ML models to classify mosquito blood-meal
sources was demonstrated, achieving an accuracy of 88%, when using 338 spectra data
collected from field samples (169 human-fed and 169 from bovine-fed mosquitoes). This
demonstrates a realistic opportunity to deploy such simple methods for estimating HBI,
thereby extending the capability of infrared-AI based systems already well demonstrated
for tracking several other entomological attributes [204].

In prior work using age-synchronised laboratory-reared mosquitoes, the focus was
on predicting blood-meal sources with An. arabiensis, where the MIRS-ML approach
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achieved a classification accuracy of ~98% for four blood meal sources (bovine, human,
goat and chicken) [114]. Whereas the mosquitoes used in that earlier study were only 6
to 8 hours post-feeding, this current study included a broader range of age groups and
natural variation in the degrees of digestion of the bloodmeals. This current study therefore
strongly demonstrates the potential of theMIRS-ML approach for realistic field surveillance,
even when the time of actual blood-feeding and digestion stages is unknown upon sample
collection and preparation.

A major achievement in the present work is the demonstration of the transferability of
laboratory-trained models to field samples through the application of transfer learning.
The transferability of laboratory-trained models achieved a classification accuracy of 90% in
predicting blood-meal sources for field-collected An. funestus. The base laboratory model
was initially trained using spectra data from blood-fed An. arabiensis [114], which was then
augmented by incorporating a small subset (n = 100, with 50 samples each from humans
and bovine blood-fed An. funestus spectra) of field-collected data into the model. This
implies that the technique can be extended to assess blood-meal sources in the abdomens of
Afro-tropical malaria vectors, as the species would not be a confounding factor in this case.
It also implies that the generalisability of this model will cut across laboratory and field
sample prediction, and therefore, sample origin might not be a confounding factor. Since
field-collected mosquitoes were likely of varied ages, and therefore mosquito age, a factor
readily classifiable byMIRS-MLmodels [61], is also unlikely to be a confounder, and can be
overcome by similar transfer learning approaches. The results presented here corroborate
with previous studies in which the utilisation of transfer learning successfully generalised
predictions of mosquito age and species across different countries and laboratories [61,178].
This approach effectively accounts for the inherent variability of mosquitoes from different
environmental and ecological settings or genetic backgrounds, which could otherwise
limit the generalisability of ML models trained on mosquito spectra data to new mosquito
populations. Indeed, the genetic variability for blood meals in the field is likely high, and
blood-fed mosquitoes collected during the study contained a mixture of fully engorged
and partially consumed blood meals.

Partial digestion or low quantity of ingested blood meals, could potentially impair
the capability of MIRS-ML to accurately identify or differentiate between various blood
meals, thereby affecting the Human Blood Index (HBI) estimates. To mitigate this, it is
advised against including gravid mosquitoes in samples and recommended to preserve
all blood-fed mosquitoes immediately upon collection to halt any biochemical changes
before spectroscopy. Currently investigating this phenomenon, preliminary studies have
demonstrate a notable decrease in MIRS-ML accuracy after 36 hours post-feeding (Mgaya
et al., (unpublished), which coincides with gravidity in a typical 2-3 day gestation period
under optimal conditions. In this paper, field models closely aligned with PCR outcomes,
considered as the benchmark, despite the inability to precisely determine the gestational
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stage of mosquitoes at the time of collection each morning post-trapping. Moreover, earlier
studies by Mukabana et al., [201], have successfully used PCR to amplify host DNA up
to 32 hours post-feeding after which the host DNA is degraded. Crucially, the analysis
only incorporated samples that yielded successful PCR amplification of host DNA for
MIRS-ML training, discarding all non-amplified samples. This selection criterion may
inadvertently introduce bias since the partially or fully digested blood meals may be
the ones least likely to yield good-quality host DNA. Future models should therefore
include samples of mosquitoes that have blood-fed on known hosts, 1-4 days post-feeding
to evaluate the efficacy of MIRS-ML across various stages, including gravid and post-
oviposition states. Lastly, though the model was already trained on a large number of
mosquitoes, it is recommended to increase these sample sizes and obtain mosquitoes from
different sampling locations so as to neutralise effects such as partial blood-meals and
partial digestion, as well as any effects of environmental or micro-climatic factors affecting
blood feeding and digestion.

Indeed, increasing the number of field samples for transfer learning not only enhanced
the classification accuracy for field blood-fed mosquitoes but also improved the precision
in estimating the HBI in comparison to the ‘ground truth’ PCR method. This indicates
that the technique has the potential to be a reliable method for estimating HBI, capable of
generalising HBI estimations in field-collected mosquitoes as effective as PCR. Therefore,
it can provide valuable information to national malaria control programs regarding the
feeding preferences of malaria mosquitoes.

Despite the successes of this technique, there remain several gaps. Firstly, it is unclear
whether the technique can detect mixed blood meals, a situation that is more likely to
occur in the field, remains unanswered, warranting future investigation. Secondly, PCR
and ELISA remains highly sensitive and specific, known for their accuracy in detecting
host DNA and specific protein from blood meals, even in small amounts, respectively.
Although MIRS-ML has demonstrated notable accuracies in detecting mosquito blood
meals, its performance, being highly sensitive and specific, depends on the quantity and
quality of the training data and machine learning algorithms used. This robustness of
the model will contribute to its ability to handle variations. Thirdly, the machine learning
models in this study were trained using An. funestus mosquitoes that had blood-fed on
humans and bovines. This choice was made because most mosquito samples collected
from the field contained either human or bovine blood in their abdomens, while only a
minority had dog blood or mixed blood-meals. Consequently, the available samples were
insufficient to adequately train the machine learning models to detect mosquito blood-meal
sources from hosts other than humans and bovines. In their current state, these models
would face challenges in field deployment since they will not be capable of identifying
blood-meal sources from other potential hosts often found in human dwellings such as goat,
pig, and chicken. However, considering that the transferability of the laboratory-trained
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models for field sample prediction has also been demonstrated, the deployment of these
models could involve initially training them on laboratory data, which can be generated in
large quantities. Additionally, this approach allows for the inclusion of a wider range of
hosts, ensuring accurate mosquito blood-meal source prediction from all common hosts
typically found near human dwellings, including humans, bovines, goats, dogs, pigs and
chickens. Thus, once validated, MIRS-ML approaches have the potential tomake significant
contributions to understanding the dynamics of disease transmission involving humans,
livestock, wildlife, and vectors. Specifically, they could offer valuable insights into scenarios
where mosquitoes have opportunities to feed on multiple host species.

Interestingly, despite its anthropophilic behaviour, An. funestus, the main vector in
the study area, was found to also blood-feed on bovines. This finding is consistent with
previous studies that demonstrated a potential switch in host choice by An. funestus
from humans to cattle [205, 206]. In brief, given the circumstances of the collections,
this observation may be explained by several factors: Firstly, the houses where mosquito
collections were conducted had been supplied with intact bed nets before the collections
started, which might have created a physical barrier, reducing mosquito exposure to
humans [64]; and forcing mosquitoes to use alternative blood sources in the surrounding
areas as previously documented by Iwashita et al, [64]. Secondly, it might have been a result
of the zoopotentiation effect, which refers to the increased tendency ofmosquitoes to feed on
humans living near livestock [65,66], especially when livestock in close proximity to human
dwellings emit heat and odour cues that attract mosquitoes. In such circumstances, not
only do zoophagic mosquitoes find additional blood sources that they already prefer, but
even the naturally anthropophagic mosquitoes may also accidentally feed on cattle when
host cues become mixed nearby. There is a lot of evidence suggesting that zoopotentiation
may increase malaria transmission risk by creating an alternative source of bloodmeals,
consequently increasing both mosquito survival rates and abundance [67,207–210]. This
interaction of mosquitoes between humans and non-human hosts may also elevate the
likelihood of transmitting parasitic helminths and zoonotic pathogens [18,43–49,211].

Infrared spectroscopy and machine learning methods have already been demonstrated
for several other use cases, such as age-grading mosquitoes [59–61, 94, 178], detection
of pathogens inside mosquitoes [93], identification of mosquito species [61] and even
detection of parasites in human blood [113, 115, 126]. This demonstration of its usefulness
for analysing the blood-feeding histories ofmosquitoes in both the laboratory (as previously
shown [114]) and the field (this current study), underscores the unique potential of
the technology as a one-stop system for comprehensive analysis of entomological and
parasitological indicators of malaria and other mosquito-borne diseases.
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4.6 Conclusion

In conclusion, the study marks the pioneering application of mid-infrared spectroscopy
combined with machine learning (MIRS-ML) for the rapid assessment of blood-feeding
patterns in field-collected malaria vectors. By successfully classifying the blood meals
of wild An. funestus female mosquitoes, it has been demonstrated that, regardless of
whether the ML models were trained with MIR spectra from field-collected conspecific
females or from laboratory-reared An. arabiensis, MIRS-ML has the accuracy, precision, and
overall potential for identifying and distinguishing between different host blood meals. By
comparing results with multiplex PCR assays, considered the ’ground truth’, MIRS-ML
achieved high classification accuracies of 88% and 90% with logistic regression and multi-
layer perceptron classifiers, respectively. Notably, the study also confirms the effectiveness
of transfer learning in adapting laboratory-trained models for field data analysis. The
MIRS-MLmethod represents a scalable, cost-efficient alternative to traditional, more labour-
intensive blood meal analysis methods, and has the added advantage of estimating the
human blood index (HBI) with only slight overestimation. Since this technology has
already been demonstrated for several other entomological and parasitological surveys,
this study demonstrates its extended capability and potential as a ’one-stop’ system for
comprehensive analysis of entomological and parasitological indicators of malaria and
other mosquito-borne diseases. This advancement is crucial for malaria-endemic regions
seeking simpler analytical methods to enhance entomological surveillance or to evaluate
the impact of disease control efforts. The marginal discrepancies in HBI estimation do not
detract from the method’s utility; rather, they highlight the transformative potential of
MIRS-ML in facilitating comprehensive surveillance and providing deeper insights into
malaria transmission dynamics.
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5.1 Abstract

Field-derived metrics are critical for effective control of malaria, particularly in
sub-Saharan Africa where the disease kills over half a million people yearly. One key
metric is entomological inoculation rate, a direct measure of transmission intensities,
computed as a product of human biting rates and prevalence of Plasmodium sporozoites in
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mosquitoes. Unfortunately, current methods for identifying infectious mosquitoes are
laborious, time-consuming, and may require expensive reagents that are not always
readily available. Here, we demonstrate the first field-application of mid-infrared
spectroscopy and machine learning (MIRS-ML) to swiftly and accurately detect
Plasmodium falciparum sporozoites in wild-caught Anopheles funestus, a major Afro-tropical
malaria vector, without requiring any laboratory reagents. We collected 7,178 female An.
funestus from rural Tanzanian households using CDC-light traps, then desiccated and
scanned their heads and thoraces using an FT-IR spectrometer. The sporozoite infections
were confirmed using enzyme-linked immunosorbent assay (ELISA) and polymerase
chain reaction (PCR), to establish references for training supervised algorithms. The
XGBoost model was used to detect sporozoite-infectious specimen, accurately predicting
ELISA and PCR outcomes with 92% and 93% accuracies respectively. These findings
suggest that MIRS-ML can rapidly detect P. falciparum in field-collected An. funestus, with
potential for enhancing surveillance in malaria-endemic regions. The technique is both
fast, scanning 60-100 mosquitoes per hour, and cost-efficient, requiring no biochemical
reactions and therefore no reagents. Given its previously proven capability in monitoring
key entomological indicators like mosquito age, human blood index, and identities of
vector species, we conclude that MIRS-ML could constitute a low-cost multi-functional
toolkit for monitoring malaria risk and evaluating interventions.

5.2 Background

Vector surveillance is an essential component of malaria control and elimination, and
generally includes an assessment of prevailing transmission intensities, the behaviours of
different vector species and the responsiveness of these species to different interventions
[32]. The most direct metric of malaria transmission intensities is the entomological
inoculation rate (EIR), which is the number of infectious bites per person in a unit time,
and is defined as the product of the human biting rate (HBR) and proportion of the
biting mosquitoes that have Plasmodium sporozoite in their salivary glands [33–35]. While
other entomological parameters such as mosquito abundance, age structure, daily survival
probabilities, larval densities and blood-feeding preferences are important, EIR is also
used to estimate the level of exposure and analyse the effectiveness of control programs.
However, current reports indicate that not all endemic countries possess transmission
intensity data or measure sporozoite rates [34, 212]. Arguably, therefore, having a simpler
method for testing samples might improve these surveillance capabilities in endemic
countries.

Plasmodium infections in mosquitoes can be detected using various techniques, the main
ones being enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction
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(PCR), which are both used widely, especially in research settings [75, 78, 79, 213, 214].
Other more traditional approaches include dissection and microscopic examination of the
salivary glands 8 and Loop-Mediated Isothermal Amplification (LAMP) assays [76]. These
techniques, despite being key features in many laboratories, present several challenges,
which often limit their adoption for programmatic use beyond research projects. For
example false positivity rates have been reported in ELISA assays, especially where malaria
vector species with zoonotic behaviours are screened, in which cases a number of non-target
protozoans may be picked up in the assays, potentially leading to an overestimation of
EIR [84,85]. More importantly, despite their benefits attained by both PCR and ELISA, PCR
is generally expensive due to the cost of reagents. Moreover, the reagents for both PCR and
ELISA are often not readily available in the localities where they are most needed. They
are also time-consuming, requiring significant efforts and specialised laboratory facilities
for sample preparation and processing [60, 93]. Lastly, all the methods, including hand
dissections of the salivary glands require highly trained and experienced personnel. These
challenges underscore the critical necessity for innovative approaches that not only achieve
high accuracy in detecting malaria parasites in mosquitoes but are also cost-effective, rapid,
and user-friendly. Such a system would be beneficial in low-income, malaria-endemic
countries, where theWHO’s recommendation to incorporate surveillance as a fundamental
pillar of malaria programs [32] is hindered by the absence of easily scalable systems for
effective surveillance.

Recently, the use of infrared spectroscopy, specifically near-infrared spectroscopy (NIRS,
12,500 - 4,000 cm-1 frequencies of the electromagnetic spectrum), has shown potential
for detecting the presence of Plasmodium spp. in Anopheles mosquitoes under controlled
laboratory settings [93,215]. However, in a field validation of this technique, the predictive
models could not distinguish between sporozoite-infectious and non-infectious mosquitoes
[92]. Mid-infrared spectroscopy (MIRS), which uses frequencies between 4000 - 400 cm-1,
can provide clearer peaks withmore detailed information thanNIRS [98,174], and has been
hypothesized to carry greater potential for such applications. Advancements in machine
learning and deep learning algorithms are enhancing the potential of spectroscopic data
analysis by enabling more detailed examination. This advancement allows for better
specimen classification and a more detailed understanding of how samples differ in their
biochemical composition [59,61, 114, 115, 178, 216].

By integrating MIRS spectroscopic techniques and machine learning approaches, it has
been possible to measure multiple entomological and parasitological indicators of malaria
transmission. Examples include identifying epidemiologically relevant species and age
groups of Anopheles mosquitoes [59, 61, 178], evaluating the blood-feeding histories of
mosquitoes to determine preferences for either humans or other vertebrates [114], and
detecting Plasmodium falciparum infections in human blood samples collected from malaria
endemic villages [113, 115, 126, 216]. However, the ability of MIRS to detect natural
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Plasmodium infections in wild-caught malaria vectors has not been demonstrated, a
capability which is greatly needed to estimate malaria transmission intensities in endemic
settings.

This current study was therefore designed to demonstrate the first field application of
mid-infrared spectroscopy combined with machine learning (MIRS-ML) for rapid and
accurate detection of P. falciparum in field-collected An. funestus. To achieve this, we
evaluated the technique using PCR and ELISA as the ‘ground truth’ to detect P. falciparum
sporozoites inwild-caughtAn. funestus, the leadingmalaria vector in Tanzania [28,128,130].

5.3 Results

5.3.1 Prevalence of P. falciparum sporozoites in An.
funestus as detected by enzyme-linked
immunosorbent assay (ELISA) and polymerase chain
reaction (PCR)

The ELISA screening detected 184 positives out of the 4281 tested samples (4%) while the
PCR screening method detected 144 positives out of the 2897 tested samples (5%).

5.3.2 Machine learning classifications of mid infrared
spectra of infectious and non-infectious An. funestus

To differentiate between infectious and non-infectious An. funestus mosquito spectra (refer
to Fig. 5.1A), four of the six machine learning models we tested achieved prediction
accuracies above 85% (Fig. 5.1B). Prediction accuracy refers to the proportion of correct
predictions (both true positives and true negatives)made by amodel out of total predictions.
XGBoost was selected for further tuning of the model settings with the aim of finding the
optimal combination of parameters for improved performance. This choice was made due
to the capability of the XGBoost model to capture relationships between variables in the
data, particularly those that do not follow straight line or a simple curve [217].
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Figure 5.1: Mid-infrared spectra and machine learning analysis for classifying An. funestus
mosquitoes based on infectious status. A, averaged mid-infrared spectra for infectious
and non-infectious mosquitoes, which when analysed by the different machine learning
algorithms, can enable categorisation of the mosquitoes based on their infectious status.
B, accuracy of standard machine learning algorithms; K-Nearest Neighbours (KNN),
Logistic regression (LR), Support Vector Machine (SVM), Extreme Gradient Boosting
(XGB), Random Forest (RF), and Multilayer perception (MLP) in distinguishing between
infectious and non-infectious mosquitoes.

Our first XGBoost model, trained using the ELISA dataset, was able to predict the
results of the ELISA test dataset with an overall accuracy of 92%. It classified spectra
from the infectious and non-infectious mosquito samples with accuracies of 93% and 91%
respectively (Fig. 5.2A). The same model was further tested to determine if mosquito age
affected the classification, by introducing spectra from the known uninfected lab-reared
14-days old An. funestus from the laboratory (Table 5.2). The results showed that the
performance was unaffected and was the same for classifying the new ELISA test dataset,
suggesting that mosquito age did not confound the infection status in this model (Fig.
5.2B). The XGBoost model trained on ELISA data was also used to predict the infection
labels of the spectra from mosquitoes screened for Plasmodium infection using PCR (Table
5.2). Here, the overall classification accuracy achieved by the model was 73% (Fig. 5.2C),
though the model misclassified 43% of Plasmodium-negative samples (Fig. 5.2C); indicating
limited generalisability of the model trained with ELISA derived data.

To understand the biochemical signature associated to this XGBoost model, we analysed
the relative importance of specific spectral features highlighted by the model. We found
that the X-H region of the MIR spectra (fundamental vibrations generally due to O-H, C-H,
and N-H stretches) and fingerprint region (1500 - 500cm-1 frequencies) contributed most
to the predictions (Fig. 5.3A).
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Figure 5.2: Illustrates the confusion matrices generated by the XGBoost model trained
on ELISA and PCR infection datasets for predicting sporozoite infection in An. funestus.
A, shows prediction results on an unseen segment of the ELISA dataset. B, displays
predictions on augmented ELISA unseen dataset, including lab-reared 14-days old non-
infectious mosquitoes. C, presents predictions on PCR dataset using the model trained on
ELISA infection dataset. D, demonstrates predictions on the unseen segment of the PCR
test dataset. E, shows predictions on a modified test dataset that integrates the PCR unseen
test dataset with lab-reared 14-days old non-infectious mosquitoes data in the negative
class. F, displays predictions on unseen ELISA test dataset using the model trained on PCR
infection dataset. G, demonstrates the predictions from the model trained on the combined
ELISA and PCR infection dataset for predicting sporozoite infection in An. funestus.

Our second XGBoost model, trained using the PCR dataset achieved an overall
classification accuracy of 94% on the PCR test dataset, predicting infectious and
non-infectious mosquito samples with 87% and 100% accuracies respectively (Fig. 5.2D).
As above, to test the influence of mosquito age on the prediction, we incorporated some
old non-infectious mosquitoes (i.e. age ≥14 days old) into a negative class to modify the
PCR test dataset and found that the classification accuracy for this augmented test dataset
was identical to the model trained without the augmentation (Fig. 5.2E). Finally, we tested
this PCR-trained model for classifying the infectious and non-infectious samples in the
ELISA-derived dataset, and found an 85% classification accuracy, with the model
predicting infectious and non-infectious classes at 100% and 70% accuracies respectively
(Fig. 5.2F). The results suggest that the model, compared to the ELISA-trained model, was
more effective in differentiating between Plasmodium-negative and positive mosquitoes.
This indicates its potential as a versatile tool for analysing samples screened with various
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molecular techniques, including ELISA (see Fig. 5.2F). The analysis of important spectral
features in this model showed that the spectral wavenumbers from ~2,000 cm-1 to ~700
cm-1 frequencies, which contain a complex series of absorptions, played a significant role
in the predictions made by the XGBoost model (Fig. 5.3B).

To enhance generalisability, a new XGBoost model was trained using a combined
ELISA and PCR dataset. This resulted in a prediction accuracy of 95% for the test data,
including 98% accuracy for non-infectious mosquitoes and 91% for infectious ones (Fig.
5.2G). Notably, the crucial features contributing to this prediction, particularly from the
X-H (encompassing O-H, C-H, and N-H stretching) and fingerprint regions, were also the
key factors influencing the model predictions in the independent PCR and ELISA dataset
trainings (Fig. 5.3C).

Figure 5.3: Illustrates the feature importance of the XGBoost model. The blue bars
highlight the most important features for predictions, represented by scores assigned
to each feature (wavenumber). The coloured stripes indicate the regions associated with
different biochemical properties across the spectra. While the individual features may not
be important on their own, their integration in the XGBoost Model enable the distinction
of mosquitoes as either infectious or non-infectious.
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5.3.3 Estimation of the entomological innoculation rate
(EIR) from the balanced test sets of polymerase chain
reaction (PCR) and enzyme-linked immunosorbent
assay (ELISA) infection datasets

Estimation of the EIRwas performed using balanced test sets from PCR and ELISA infection
datasets used during model testing. Two parameters were used: sporozoite rate and biting
rate. The sporozoite rate for PCR and ELISA was calculated as the number of infectious
mosquitoes divided by the total number of mosquitoes tested (refer to Table 5.1). For
MIRS prediction, the sporozoite rate was calculated as the number of mosquitoes predicted
as infectious (sum of True Positives (TP) and False Positives (FP)) divided by the total
number of mosquitoes predicted, as derived from the confusion matrices in Table 5.1. The
low and high biting rates of 0.5 and 4.13, respectively, were sourced from literature as
the biting rates for An. funestus in the Kilombero valley [128,218]. It was found that, in
scenarios with both low and high biting rate, EIR estimates from the MIRS-ML models
closely matched the ‘ground truth’ values from PCR and ELISA, showingminimal variation
(Fig. 5.4).

Table 5.1: Displays the balanced, unseen segment of the PCR and ELISA infection datasets
alongside their respective machine learning predictions

PCR model prediction on an unseen segment of the PCR infection dataset
Predicted non-infectious Predicted Infectious

Actual non-infectious TN = 13 (87%) FP = 2 (13%)
Actual infectious FN = 0 (0%) TP = 14 (100%)
The total number of samples in the test set: N = 29 (Infectious = 14, Non-infectious = 15)

ELISA model prediction on an unseen segment of the ELISA infection dataset
Predicted non-infectious Predicted Infectious

Actual non-infectious TN = 20 (91%) FP = 2 (9%)
Actual infectious FN = 1 (7%) TP = 14 (93%)
The total number of samples in the test set: N = 37 (Infectious = 15, Non-infectious = 22)
TN: True Negative, FN: False Negative, FP: False Positive, TP: True Positive
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Figure 5.4: Estimated entomological inoculation rate from MIRS-ML, PCR, and ELISA
predictions under hypothetical low and high mosquito biting rates.

5.4 Discussion

In the quest for effective malaria control, particularly in regions like sub-Saharan Africa
where the burden of this disease is heaviest, the development of rapid, cost-efficient tools for
monitoring transmission dynamics is imperative and urgent. Being able to swiftly identify
Plasmodium-infectious Anopheles is particularly critical for understanding the transmission
patterns in different localities, estimating the impact of interventions and planning new
interventions. Unfortunately, current methodologies, predominantly ELISA and PCR,
for detecting Plasmodium in Anopheles mosquitoes are resource-intensive, necessitating
specialised skills and materials often scarce in local settings. This limitation hampers
granular, district-level evaluations of malaria risk and the effectiveness of interventions.

Our research presents a novel, economical approach that leverages mid-infrared (MIR)
spectroscopy coupled with supervised machine learning algorithms to swiftly identify
Plasmodium-infectious Anopheles mosquitoes. By collecting and analysing the MIR spectral
signatures from the heads and thoraces of wild-caught An. funestus females in rural
Tanzanian villages, and subsequently validating these findings with ELISA or PCR for the
presence of P. falciparum sporozoite, we established a reliable ’ground truth’ for model
training. The findings of this study are compelling, demonstrating that MIR spectral
analysis can differentiate between infectious and non-infectious mosquitoes with accuracies
exceeding 90% in certain cases. Notably, models trained on PCR data showed greater
generalisability compared to those based on ELISA data, with mosquito age posing no
significant interference. Although tested exclusively on P. falciparum and An. funestus, this
advancement represents a significant step in malaria surveillance. Once calibrated for other
major Afro-tropical malaria vectors and malaria transmission systems, it could have the
potential to offer a scalable, low-cost solution that could transform data-driven decision-
making in disease control programs. Moreover, we view this as an important step towards
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creating a deployment-ready system but recognise that further development is necessary.
Models trained using more diverse data from different settings will improve observed
accuracies and enhance the readiness of this approach for broader implementation.

This study contributes to the expanding body of knowledge showcasing the potential of
MIRS-MLbased approaches formalaria vector surveillance. The use of thesemethodologies
in delineating key entomological parameters such as age, species identification, and blood-
feeding patterns of mosquitoes has been well documented [59,61, 114]. The outcomes of
our study suggest that this technology could serve as a versatile platform, enabling the
interpretation of infrared scans to ascertain not only the species and age of mosquitoes,
factors critical to their potential as malaria vectors, but also their blood-feeding history
on humans or other vertebrates, and their infection status with malaria parasites. Such
comprehensive profiling is instrumental in accurately characterising malaria risk, marking
a significant advancement in vector surveillance and malaria control strategies.

In addition to the high classification accuracies of the MIRS-ML approach, the PCR-
trained models also achieved generalisability of >85% in predicting sporozoite infection in
wild-caught An. funestus mosquitoes even when predicting results of an ELISA dataset.
These findings achieve consistent performance with studies utilising NIRS frequencies in
the laboratory, which reported a >90% classification accuracy in detecting P. falciparum
sporozoite infection in An. gambiae mosquitoes [93], and 77% accuracy in detecting P.
berghei sporozoite infection in An. stephensi [215]. While earlier models trained on NIRS
failed to identifymosquitoes infectedwithwild-strain parasites from asymptomatic malaria
carriers, possibly due to limitations in the training dataset or detection capabilities of the
system [219], models trained onMIRS, which provide clearer peakswith richer biochemical
information appear to perform better [98, 174]. This enhancement enabled our models
to effectively identify infections in mosquitoes, a capability not fully realised with NIRS
models in previous studies.

MIRS captures the biochemical composition of mosquito, which may consistently differ,
in this case, with the infection status such as presence or absence of the parasite. The
presence of parasite-specific proteins, such as circumsporozoite (CS) protein and the
thrombospondin-related adhesive protein (TRAP), may contribute to the main spectral
difference between infectious and non-infectious An. funestus [220]. Furthermore, since
mosquitoes elicit immune responses to the parasites, this could consequently affect the
biochemical characteristics of the infectious or non-infectious mosquitoes [221].
Additionally, higher levels of energy resource storage, such as glucose and lipid
accumulation in the non-infectious mosquitoes [222, 223], might yield distinct spectra
signals between infectious and non-infectious An. funestus. This aligns with our
observation where the majority of spectral features influencing machine learning
prediction primarily originated from the O-H, C-H, and N-H bonds, as well as the
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fingerprint region of the spectrum (1,500 cm-1 to 520 cm-1), suggesting the presence of
carbohydrates, protein, and lipids related to the parasite [115]. However, it is important to
note that we are not focusing on individual spectra features; rather, we are using ML
models to integrate a set of spectral features from different biochemical group regions to
enable these classifications. While it may not be essential to identify specific features, we
believe that additional studies should be conducted to better understand the biochemical
signals underlying our algorithmic classifications.

The biological prerequisite that mosquitoes must exceed a certain age threshold (e.g.
over 9 days) to become vectors for malaria transmission, due to the requisite extrinsic
incubation period for the parasite [20], introduces potential age-related biases in detection
efficacy. In this context, mosquito age could be considered a confounding factor influencing
prediction accuracy. However, despite the theoretical possibility of age influencing the
accuracy of predictions, our analysis demonstrated that the machine learning models
adeptly identified signals indicative of infection across all age brackets, including older
mosquitoes beyond 14 days, thus negating age as a significant confounding variable in our
study.

Moreover, the MLmodel trained with the PCR infection dataset demonstrated an ability
to generalise its prediction to samples screened by ELISA. In contrast, the model trained
with the ELISA infection dataset had some limitation in predicting samples screened by
PCR. We further observed similarities in the fingerprint region where both ELISA and
PCR models detected signals, demonstrating agreement in parasite detection between
the two models (Fig. 5.3). However, a noticeable difference was observed in the signals
identified by the ELISA and PCR models, particularly in the frequency range of 3,500
to 3,000 cm-1. Moreover, it is still not clear why ML models are picking up different
signals from this region. Additionally, the generalisability of the ML model trained with
PCR infection dataset can be attributed to the sensitivity of PCR in detecting even low
sporozoite numbers in mosquitoes [224]. Leveraging the sensitivity of PCR can enhance
the performance of MIRS-ML models. However, a study by Hendershot et al., observed
infection in mosquitoes at 0.5-1 day post-infection, indicating that false positive results
can occur because PCR can report positives even when sporogonic development has not
started [224]. This situation arises when an infectious blood meal has not full migrated to
the mosquito abdomen, and the presence of gametocytes in the mosquito head and thorax
is more likely to contribute to positive results.

The primary focus of this investigation was to showcase the field application of the
MIRS-ML technique for detecting sporozoites in malaria vectors, not to directly compare it
with PCR or ELISA methods, which were instead used solely to provide reference labels
for ML model training. Moreover, this study represents only the first demonstration of
field applications of the MIRS-ML technique for sporozoite detection in malaria vectors,
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underscoring the need for further validation before its integration into surveillance or
national malaria control efforts. Our analysis was also confined to An. funestus mosquitoes,
chosen for their relatively high sporozoite rates in the region, highlighting the necessity to
broaden future models to include more vector species. We recognise that expanding the
MIRS-ML approach to all important mosquito species may necessitate compiling a
comprehensive dataset of mosquito infection spectra, a task that presents logistical
challenges in field settings, especially where natural infection prevalences are very low. A
promising solution is to employ transfer learning, integrating laboratory-generated data
with field-collected samples to enhance model robustness [61,178]. This method involves
refining a model initially trained on laboratory data with new field data, facilitating the
development of an effective tool for field infection prediction. Additionally, in low
transmission setting where sporozoite infection rates are low, ELISA and PCR can be used
for mosquito pool testing, reducing operational costs compared to individual mosquito
tests. However, the feasibility of using MIRS-ML for mosquito pool testing remains
unknown, prompting our investigation in the next steps. Additionally, in this study,
MIRS-ML was not evaluated for identifying the Plasmodium species. Future studies should
address this aspect to enhance the utility in regions where more than once species of
Plasmodium is prevalent.

MIRS-ML proves cost-effective as it eliminates the need for repeated reagent costs in
mosquito sample tests, with the only incurred expense being the initial £25,000/= for
purchasing the FT-IR spectrometer. Capable of processing approximately 60 mosquitoes
per hour, the portable bench-top design of the FT-IR spectrometer measures 22 x 33 x
26cm, requiring connection to an AC power supply. Currently, we are developing an
online system to serve as a centralised platform for predicting various entomological and
parasitological indicators of malaria. This online system aims to facilitate the scaling up
of MIRS-ML, enabling end-users from different locations to upload unknown mosquito
spectra for predictions related to infection status, species, age, or resistance status.

In conclusion, here we demonstrate the first application of mid-infrared spectroscopy
combined with machine learning (MIRS-ML) for the rapid and accurate detection of P.
falciparum in field collected Anopheles funestus mosquitoes. By analysing 7,178 female An.
funestus specimens collected from rural Tanzania, we achieved detection accuracies of
92% and 93% against ELISA and PCR benchmarks, respectively. Moreover, MIRS-ML
can guide programmatic decisions on vector control, as the EIR estimates, derived from
MIRS-ML models, closely align with those obtained from PCR and ELISA methods across
low and high biting rate scenarios, demonstrating consistency and reliability in malaria
infection prediction. This method, capable of processing approximately 60-100 mosquitoes
per hour with minimal costs, presents a significant advancement in malaria surveillance,
particularly in sub-Saharan Africa where the disease has a profound impact. The utility of
MIRS-ML extends beyond sporozoite detection, offering insights into critical entomological
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indicators such as mosquito age, blood-feeding patterns, and species identification, thereby
positioning MIRS-ML as a versatile tool in malaria risk assessment and evaluation of vector
control interventions.

5.5 Methods

5.5.1 Mosquito collection and processing

Mosquitoeswere collected fromfive villages in two rural districts in South-eastern Tanzania,
Kilombero and Ulanga: Kisawasawa (7.8941∘S, 36.8748∘E), Mbingu (8.1952∘S, 36.2587∘E),
Ikwambi (7.9824∘S, 36.8216∘E), Sululu (7.9973∘S, 36.8317∘E) and Tulizamoyo (8.3544∘S,
36.7054∘E) (Fig. 5.5). These villages experience annual rainfall of 1200 - 1800 mm, with
mean daily temperatures of 20-32∘C [225], and were selected because of the high densities
of the malaria vector, An. funestus. The vector species was chosen for this study because
it is the primary contributor to malaria transmission in the area and typically exhibits a
higher prevalence of Plasmodium sporozoites compared to other local vector species such
as Anopheles arabiensis [128, 130]. Mosquitoes were collected both indoors using CDC light
traps and Prokopack aspirators [226,227], and outdoors, in outdoor kitchens and animal
sheds using resting buckets [228]. The collected Anopheles mosquitoes were sorted by taxa
based on their morphological features [202]. All An. funestus group mosquitoes were
immediately killed with chloroform and then stored individually in 1.5mL microcentrifuge
tubes containing silica gel as desiccant and preservative. The An. funestus samples were
transferred to the VectorSphere laboratory at the Ifakara Health Institute and stored dry
for at least five days for further investigation.
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Figure 5.5: Map of the five villages where mosquitoes were collected.

5.5.2 Mid-infrared spectroscopy

We used a Bruker ALPHA II Fourier-Transform Infrared (FT-IR) spectrometer with
attenuated total reflectance (ATR) to measure the infrared spectrum of the dried mosquito
samples. Prior to scanning, the head and thorax of each mosquito was carefully separated
from the abdomen, ensuring that only the head and thorax regions were scanned. The
mosquito heads and thoraces were placed on the infrared optical window, and pressure
was applied to ensure maximum direct contact between the sample and the diamond
crystal. The spectral signal was obtained at frequencies between 4,000 to 400 cm-1, with a
resolution of 2 cm-1. Each spectrum was an average of 32 scans of a single mosquito
sample, with band intensity recorded as an absorbance. Following scanning, the
remaining of the mosquito head and thorax (carcasses) were individually packed in 1.5mL
tubes for subsequent molecular analysis. The recorded spectra were pre-processed by
compensating for carbon dioxide interference bands and water vapour absorption bands
as previously described [59]. Additionally, spectra with no intensity (i.e. flat spectra) and
low intensity (i.e. <0.11 absorbance units) were removed before machine learning
steps [59].
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5.5.3 Detection of Plasmodium sporozoites using
polymerase chain reaction (PCR) and enzyme-linked
immunosorbent assay (ELISA)

To obtain reference labels of P. falciparum sporozoite infections in the mosquito head and
thorax carcasses, we used real-time PCR targeting var gene acidic terminal sequences
(varATS) of the parasites [78, 214] and Enzyme-linked immunosorbent assays (ELISA)
assays for detecting circumsporozoite protein (CSP) [75]. Each carcass underwent
individual analysis, a method previously demonstrated for detecting mosquito blood meal
remaining [229]. In total, 7,178 An. funestus carcasses were examined across two rounds
using the following methods:

Initially, 4,281 samples were screened using ELISA [75], each time ensuring that the
lysates of all the positive samples were boiled for 10 minutes at 100∘C to eliminate false
positives usually associated with heat labile non-Plasmodium protozoans, and retested [85].

Next, 2,897 samples underwent multiplex real-time PCR for sporozoite infection
detection. This involved DNA extraction of mosquito carcasses using the DNAzol®

reagent [230], DNA was eluted in 50𝜇L of Tris-Acetate-EDTA (TAE) buffer. Subsequent to
this, Real-Time PCR was conducted targeting the Pan-Plasmodium 18S rRNA and P.
falciparum specific varATS sequences, along with a 28S rRNA mosquito sequence as a
reference gene/internal control, enhancing specificity and sensitivity for P. falciparum and
non-falciparum species.

The PCR reaction used a 10𝜇L mix including Luna Universal Probe qPCR Master
Mix (New England Biolabs, USA), a primer mix, water, and template DNA. The thermal
cycle parameters involved an initial polymerase activation at 95∘C for 1 minute, DNA
denaturation at 95∘C for 15 seconds for 45 cycles, and annealing/elongation at 57∘C for 45
seconds for 45 cycles [78, 231]. Samples exhibiting a sigmoid curve that reached the cycle
threshold (Ct) value at ≤35 cycles were classified as positive, while those reaching >35
cycles were classified as negative. The assays were run in duplicates, and each run included
a non-template control and P. falciparum NF54 DNA as positive control. The real-time PCR
measurements were analysed using CFX96 Real-Time PCR system (Bio-Rad Laboratories,
USA).
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5.6 Data analysis

The PCR and ELISA data were separately used as references to evaluate performance of the
infrared spectroscopy and machine leaning models for accurately identifying individual
mosquitoes infected with P. falciparum sporozoites in their salivary glands. Since only
a small proportion of the mosquitoes were found infectious (see results section), it was
necessary to first obtain similar numbers of randomly selected non-infectiousmosquitoes as
controls, to avoid skewed model performance. The non-infectious samples were therefore
under-sampled by randomly selecting individual specimen based on their smallest average
Euclidian distances to the 3 farthest positive samples [203, 232]. This process was repeated
50 times and bootstrapped to cover as many negative samples as possible.

To ensure consistency and uniformity, the spectra data were standardised using the
StandardScaler algorithm [141]. Supervised machine learning techniques, including K-
nearest neighbours (KNN), logistic regression (LR), support vector machine (SVM),
gradient boosting (XGB), random forest (RF), and multilayer perception (MLP), were
then compared for predicting the ELISA and PCR results. The model with the highest
accuracy was optimised further by adjusting its hyper-parameters using randomised search
cross-validation, and its final estimator was evaluated using K-fold cross-validation (k
= 5). The analysis was performed using Python 3.8 with the Scikit-learn library [141].
The machine learning models were trained using ELISA, PCR, or combined ELISA + PCR
training datasets and tested on all three corresponding test sets (Table 5.2). Training was
done with up to 90% of the known positive and negative samples, each time leaving out at
least 10% for model validation (Table 5.2). Additional validation of the models included
using samples tested by either of the two methods, and incorporating lab-reared, non-
infectious mosquitoes confirmed to be at least 14 days old. This was to guarantee that the
models accurately classified infection status rather than mosquito age, as age can confound
results and only mosquitoes older than 9 days are capable of transmitting malaria [20].
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Table 5.2: Training and test datasets used in the different models

Model Training data Test data

ELISA ELISA dataset (90%)

1. ELISA dataset (10%)

2. ELISA dataset (10%) modified
(14-day oldlab-reared An. funestus
mixed into negative class)

3. PCR dataset

PCR PCR dataset (90%)

1. PCR dataset (10%)

2. PCR dataset (10%) modified
(14-day old lab-reared An. funestus
mixed into negative class)

3. ELISA dataset

Combined PCR & ELISA dataset
combined (90%) 1. PCR & ELISA dataset combined (10%)
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6.1 Abstract

Effective surveillance is crucial for malaria elimination with key metrics including
parasitological (e.g., parasite incidence and prevalence in humans) and entomological
(e.g., prevalence of Plasmodium sporozoite infections in Anopheles mosquitoes, mosquito
age and human blood index) factors. Traditional methods for gathering these data include
PCR, microscopy, rapid diagnostic tests (RDTs), and ELISA for parasitological estimates,
and dissections, microscopy, ELISA, and PCR for entomological estimates. Though
effective, these methods are labour-intensive, slow and costly. Other challenges include
inadequate expertise, need for frequent resupply of reagents, and poor sensitivity and
specificity e.g., those caused by cross-reactivity in ELISA assays (false positives) or
parasite mutations in some RDTs tests (false negatives). Infrared spectroscopy (IR),
particularly when paired with chemometrics or machine learning (ML), offers a rapid,
low-cost, and reagent-free alternative for measuring multiple malaria indicators associated
with chemical changes in the samples. In particular, techniques using near-infrared or
mid-infrared spectra have been used to determine mosquito age, species, infection status,
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and blood meal sources. This chapter discusses the lessons learned from the different
research studies using IR spectroscopy; and broadly explores the future prospects for
IR-spectroscopy and machine learning for malaria vector surveillance. While recognising
significant recent advances, there are still several challenges that must be addressed to
ensure optimal performance – notably improved model generalisability for different use
cases and interpretability of bio-chemical signals captured by the infrared spectra.
Techniques such as transfer learning can enhance model performance across different
environments but there are still no effective approaches that can fully address the broader
variability of field samples. Broader implementation of MIRS-ML for malaria surveillance
will require continuous, extensive data generation and model validation. To achieve the
scale-up, future research should also focus on developing deployment-ready systems and
inclusion of pooled samples, as current scanning is limited to individual samples. Lastly,
while current ML models have not achieved satisfactory diagnostic accuracy levels and are
therefore more useful for field screening than diagnostics, the approaches hold potential
as a surveillance tool.

6.2 Background

Achieving malaria elimination requires effective surveillance techniques to measure
biological attributes that influence the overall potential of malaria transmission and to
assess impacts of interventions. These attributes can be parasitological, e.g., parasite
incidence and prevalence in humans, or entomological, e.g., prevalence of Plasmodium
sporozoite infections in Anopheles mosquitoes, proportions of mosquito blood meals
derived from humans other than other vertebrates (human blood index), and mosquito
age [33, 136, 185, 233, 234]. For many years, polymerase chain reaction (PCR) and enzyme
linked immunosorbent assays (ELISA) have been the cornerstone for vector and parasite
surveillance, detecting parasite and host blood-meal in mosquitoes [68,69,75, 78,79, 213],
as well as parasite in human blood [214,234]. Additionally, dissections are commonly used
for assessing ovarian development stages to inform age classification and mating status.

Though broadly effective, these current approaches are labour-intensive and time-
consuming, with high operational costs due to the costs of equipment installation and
repeated need for reagents in routine surveillance. The development of malaria rapid
diagnostic tests (RDTs) has revolutionised parasite detection in human blood due to their
simplicity and accessibility [235–237] but no similar system currently exists for detecting
Plasmodium infections in mosquitoes. Moreover, in areas with low transmission and the
risk of Histidine-rich protein II (HRP-2) gene deletions, there is a potential for missed
malaria infections, leading to significant false-negative results [236, 238–241]. The need for
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effective surveillance therefore remains one of the key priorities for countries aiming at
malaria elimination.

In 2015, the World Health Organisation, in its global technical strategy for malaria
elimination, recommended that endemic countries prioritise transforming malaria
surveillance into a key intervention in their elimination policies, supporting innovation
and research to develop surveillance tools and strategies that capture essential malaria
data in a complete, accurate and timely manner [32]. In response, countries must find
scalable approaches to conduct such surveillance and effectively use the data to improve
their program outcomes cost-effectively. Unfortunately, most malaria endemic countries
do not yet have adequate surveillance systems and are not measuring all the essential
malaria metrics consistently [34]. The authors collected country metadata on vector
surveillance and control activities, via an online survey by officials from National Malaria
Control Programmes (NMCPs) and partner organisations and analysed these activities for
alignment with WHO-recommended indicators. This study revealed significant
differences between countries approaching malaria elimination and those with intense
transmission; and identified gaps in data collection and management strategies [34]. In a
separate analysis [242], it was found that most vector surveillance programs lack sufficient
capacity, with only 80% of NMCPs having the necessary resources. Moreover, countries
nearing malaria elimination tended to have more operational staff and better training
systems than countries in malaria control phase [242]. The authors concluded that
strategic planning and training deficiencies are major obstacles to effective vector
surveillance [242]. Addressing these gaps broadly requires simpler low-cost approaches
that can be deployed at scale and without requiring extensive staff training.

6.3 Applications of infrared spectroscopy and machine
learning for entomological surveillance

In recent years, infrared spectroscopy (IR) has gained attention for its ability to measure
key entomological and parasitological indicators of malaria transmission [204]. Unlike
commonly used methods that require multiple reagents, IR, when combined with
chemometrics or machine learning (ML), offers a quick, low-cost and reagent-free
approach, requiring only desiccants [204]. The IR assesses the biochemical composition of
biological samples (i.e., protein, lipids and carbohydrates) [59, 116], providing insights
into various factors including the age and species of
mosquitoes [59–61, 94, 147, 175–177, 243, 244], presence or absence of the pathogen
infection in mosquitoes and humans [92, 93, 107, 113, 115, 126, 215, 245, 246], blood meal
sources of field-collected mosquitoes [229], and the symbiont Wolbachia in
mosquitoes [95, 247]. The two main types of IR spectroscopy employed to measure these
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indicators of malaria transmission include Near-infrared spectroscopy (NIRS) and
Mid-infrared spectroscopy (MIRS).

TheNIRS approach, as used in entomological and parasitological studies, is a rapid, non-
destructive technique that requires no sample preparation, not even desiccation. It operates
within the near-infrared wavelength, ranging from 12,500 cm-1 to 4,000 cm-1 wavenumbers
[98]. NIRS absorptions aremainly based on overtone and combination vibrationswithin the
sample [98]. Overtone absorption bands are due to vibrational transitions from the ground
state to higher excited states. They appear at frequencies that are approximately integer
multiples of the fundamental vibrational frequency and are typically weaker in intensity
[97, 174]. Combination modes occur when different vibrations are excited simultaneously,
resulting in combined vibrational modes [97,174]. The application of NIRS combined with
multivariate statistics, partial least square regression (PLS) analysis has been demonstrated
severally for determining species and age ofmajorAfro-tropicalmalaria vectors,An. gambiae
s.s and An. arabiensis [60, 90, 94, 176, 177]. Other studies have also shown the application of
NIRS for detecting P. falciparum infections in mosquitoes and human blood [92,93,107,245],
as well as for detecting Wolbachia, chikungunya and Zika virus in Aedes aegyptimosquitoes
[246–248].

In more recent studies, further improvements in measuring the entomological and
parasitological indicators of malaria transmission have been achieved by focusing on the
corresponding fundamental vibrations in MIRS, which operates within a wavelength
of 4,000 cm-1 to 400 cm-1 wavenumbers [97, 98], and can address the challenge of the
weaker nature of absorption overtones and combination bands. For example, Gonzalez-
Jimenez et al., demonstrated a machine-learning approach using mid-infrared spectra to
simultaneously identify age and species of An. gambiae and An. arabiensis mosquitoes,
achieving 82.6% species classification accuracy [59]. In a follow-up study, Siria et al., used
the convolutional neural network (CNN) to learn from MIRS spectra data and predict
both age and species from single samples of An. gambiae, An. arabiensis, and An. coluzzii
originating from laboratory and semi-field conditions with up to 95% prediction accuracy
[61]. Another study has further demonstrated the feasibility and potential of MIRS-ML
for age grading by extending its application to predict the epidemiologically relevant age
categories (young and old) of another Afro-tropical malaria vector, An. funestus [244].

Additionally, ML models have been shown to distinguish host-blood meal sources in
the abdomens of laboratory reared An. arabiensis with an accuracy of 98% [114]. Although
MIRS-ML shows great promise as a surveillance tool, validations in field conditions are
important. A recent study demonstrated a field application of MIRS-ML in detecting
host blood-meal sources in field-collected An. funestus, achieving a classification accuracy
of 90% [229]. The study also showed that the HBI estimates derived MIRS-ML models
and PCR estimates are closely aligned, suggesting consistency between the MIRS-ML
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models and the common PCR approach. Furthermore, MIRS-ML was also effective in
detecting sporozoite infections in naturally infected An. funestus [249]. More research
has also focused on parasite detection in human-blood. For example, MIRS combined
with PLS was used to detect early ring stages of P. falciparum cultured in the laboratory,
achieving detection limits of less than 1 parasite/microliter(𝜇L) [113]. In a subsequent
study, Plasmodium cultures were introduced into whole blood samples from uninfected
individuals, and by analysing MIR spectra data with PLS, they accurately detected 98%
of specimen with parasitaemia densities above 0.5% [126]. However, these studies were
limited by their reliance on laboratory cultures, which may not capture the genetic diversity
present in natural environment. In contrast, Mwanga et al., detected P. falciparum in human
dried blood spots (DBS) obtained from a cross-sectional malaria survey in 12 wards in
south-eastern Tanzania, achieving an overall accuracy of 92% in distinguishing malaria
infected and uninfected DBS [115].

Despite the notable accuracies, one major challenge reported by researchers has been
the lack of generalisability between sites [61]. The models often failed to accurately
predict unseen data from different locations, such as different laboratories, and semi-field
settings, likely due to the inherit variability in mosquito samples [61]. This variability
potentially originates from differences in environmental conditions, such as temperature
and humidity, which can impact mosquito development rates and physiology. Variation in
mosquito populations, including species composition and genetic diversity, can also lead
to differences in the biochemical composition of the sample. Furthermore, dietary factors,
such as the availability of blood meals and sugar sources, can affect mosquito
development, fitness and survival, altering the characteristics of the sample used for
model training and testing. These factors can create discrepancies in the data, reducing
ability of the model to generalise across different settings. As a result, models that
performed in one setting may not necessarily translate to effective prediction in another,
highlighting the need for more robust approaches to address these discrepancies. To
improve generalisability of the ML models in predicting samples originating from
different locations, transfer learning can be performed by updating pre-trained models
using small subsets of data from the target population to improve prediction on unseen
data in that target population [61,178].

To advance the utility of these approaches and fulfil the need of malaria endemic
countries for scalable surveillance systems that are both effective and low-cost, it is crucial
to evaluate key lessons from the use of infrared spectroscopy and machine learning for
vector and parasite surveillance. Additionally, it is important to identify essential aspects
for consideration to ensure future integration into malaria surveillance programs,
including addressing protocols (such as sample preservation and scanning), instrument
installations and maintenance, data management and processing, machine learning
analysis, and transfer learning. Additionally, challenges such as the interpretability of
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biological signals, the generalisability of MIRS-ML, and its implementation must be
considered. The following sections will discuss these lessons and challenges in detail.

6.4 Key lessons from applications of infrared spectroscopy
in malaria vector surveillance

Previous research on infrared spectroscopy has highlighted critical lessons in protocol
development, instrument maintenance, and data analysis. Key insights include best
practices for sample preservation and scanning, which ensure consistent and accurate
measurements. For purposes of this thesis, the focus is solely on entomological
applications of these technologies and does not include work on parasitological
assessments in humans.

6.4.1 Preparation and preservation of mosquito samples

Mosquito collection methods vary based on the indicators being assessed. For evaluating
biting rates, host-seeking mosquitoes are collected using human landing catches, odour-
baited or human-baited traps, such as CDC light traps placed near occupied bed nets, or
volunteer-occupied double net traps [166,227].

For NIRS or MIRS studies aimed at accurately predicting the age, species, and blood-
feeding histories of collected mosquitoes, the ideal method for killing should possess
several key characteristics (Table 6.1). It should be inert, meaning it does not chemically
alter or leave residue on the mosquito samples. The method should be safe for researchers
to handle, non-toxic, and should not pose significant health risks. Importantly, it should
have minimal impact on the mosquito’s biochemical composition, ensuring that it does not
interfere with infrared spectra. Finally, the method should kill the mosquito while also
preserving the samples against decomposition, thereby maintaining the integrity of the
data for accurate predictions.

Currently, chloroform is commonly used in entomological studies for killing
mosquitoes [61, 114, 250–252]. Chloroform is favoured because it is fast, efficient, and does
not leave residues on the mosquito samples. Additionally, it kills bacteria within the
mosquito, minimising decomposition and thereby having minimal impact on MIRS or
NIRS prediction. However, chloroform is also known to be toxic and carcinogenic upon
inhalation or prolonged exposure [253], posing health risks to researchers.
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An alternative approach is the use of insecticide formulations, such as Kaltox Paalga®

(which includes active ingredients pyrethroids, allethrin 0.27%, permethrin 0.17%,
tetramethrin 0.20% and an organophosphorus compound, chlorpyrifos ethyl 0.75%). A
study comparing this insecticide to chloroform for killing mosquitoes before NIRS
scanning found no significant difference in NIRS prediction accuracy, with chloroform and
the insecticide yielding classification accuracies of 92% and 90%, respectively [254].
However, the increasing resistance of mosquitoes to insecticides necessitate the
exploration of non-pyrethroid formulations.

Other methods, such as ethanol or freezing at -20∘C, are also commonly used. Ethanol,
however, is not ideal for infrared spectroscopy as it denatures proteins and washes away
lipids in biological samples [255]. Freezing has been evaluated primarily for preserving
mosquitoes after killing rather as a method for killing mosquitoes [256]. The impacts of
these alternative mosquito killing methods on NIRS or MIRS predictions require further
investigation.

Table 6.1: Comparison of mosquito killing methods for NIRS/MIRS studies

Method Chemical
alteration

Human
safety

Effect on
IR spectra Notes

Chloroform No No None Toxic;
carcinogenic;
handle with care.

Insecticide No Yes None Depends on formulations;
explore non-pyrethroids.

Ethanol Yes Yes High Denatures proteins;
not ideal for MIRS studies.

Freezing (-20°C) No Yes Minimal Introduce moisture;
noise in MIRS spectra.

After mosquitoes are killed, the ideal preservative for infrared studies should preserve
the biochemical integrity of the samples, ensuring that the chemical composition remains
unaltered for accurate prediction of entomological indicators of malaria transmission.
Various preservatives have been used in previous studies including RNAlater, ethanol,
Carnoy’s fixative (3:1 ethanol: acetic acid), silica gel (silicon dioxide (SiO2)), anhydrous
calcium sulfate, refrigeration at 4-5∘C, and freezing at -20∘C [250–252, 254, 256]. Most
studies on NIRS indicate that the best results for age classification and species identification
in mosquitoes are achieved when samples are preserved using silica gel, refrigeration, or
RNAlater [250–252].

Silica gel is porous and highly absorbent, making it effective for keeping products dry
and free frommould (Fig. 6.1A). Its inert nature ensures that it does not chemically interact
with mosquito tissues, preserving the integrity of the samples. Silica gel is also low-cost,
widely available as commonly used in packaging and laboratories, and suitable for long
term preservation. Mgaya et al., demonstrated that silica gel can preserve mosquito samples
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up to 8 weeks without introducing noise to the spectra, making it ideal preservative for
NIRS and MIRS studies [256].

Freezing at -20∘C is another method used for preserving mosquito samples. While it
effectively halts biological process and prevents microbial growth, freezing can introduce
excess water into the samples. This added moisture can cause noise in the MIRS spectra,
affecting the accuracy of prediction [59]. Additionally, repeated freeze-thaw cycles can
degrade the sample quality, making freezing less ideal for long-termpreservation compared
to silica gel.

RNAlater is effective at stabilising ribonucleic acid (RNA) and preventing degradation
(Fig. 6.1B), which helps maintain the biochemical composition of the samples. However,
its effectiveness in infrared-based studies decreases for storage duration exceeding four
weeks [251], and it is less cost-effective compared to Silica gel and freezing [250,251].

Ethanol, though commonly used for preserving biological samples (Fig. 6.1C), can be
problematic for IR studies. Ethanol depletes lipids and denatures proteins [255], which are
critical for accurate MIRS predictions, leading to alterations in the biochemical composition
of the biological samples. Therefore, while ethanol is readily available and effective in
killing mosquitoes, it is less suitable for preserving samples for infrared spectroscopy.
Carnoy’s fixative, is the mixture of ethanol and acetic acid, is effective for preserving
nucleic acid and prevent autolysis. However, the acetic acid component as it is ethanol may
cause degradation of lipids and proteins, potentially altering the infrared spectra. This also
makes Carnoy’s fixative less suitable for preserving samples intended for infrared studies,
where maintaining the original biochemical composition is important.

The most comprehensive assessment of these preservatives for MIRS was done by
Mgaya et al., who evaluated the effect of sample preservation methods and storage duration
on the performance ofMIRS for predicting the age of malaria vectors,An. arabiensis. In their
study, laboratory-reared mosquitoes were first killed using ethanol then preserved using
either silica gel desiccant, freezing, or ethanol. The study found that silica gel consistently
proven to be the most suitable preservative method. Additionally, the study found that
the highest accuracy in age prediction was achieved when models were trained and tested
on similarly preserved samples, but classification accuracy declined significantly when
training and test samples were preserved differently [256]. This emphasises the need the
need for standardised sample-handling protocols in infrared studies to ensure consistency
and accuracy in predictions. Table 6.2 summarises the pros and cons of the preservatives
used for mosquito sample storage in infrared studies.
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Figure 6.1: Mosquito preservation methods: A) Silica gel, B) Ethanol, and C) RNAlater.

Based on these assessments, we recommend maximising the potential of NIRS and
MIRS for predicting mosquito age, species, or blood-feeding histories by killing mosquitoes
with chloroform, ensuring sufficient caution, or alternatively using ethanol or freezing.
However, samples should be preserved using silica gel, which is widely available, effective,
and does not alter the biochemical composition of the samples. Other approaches, such
as RNAlater, ethanol or freezing, can be considered only under specific circumstances if
required, but their limitations should be carefully considered based on goals of the study
and duration.

Table 6.2: Preservatives used for mosquito sample storage in infrared studies.

Preservative Characteristics Pros Cons

Silica gel Desiccant Inexpensive, effective
for long-term storage -

RNAlater RNA stabilizer Preserves biochemical
composition

Decrease in
effectiveness with
time, costly.

Ethanol Alcohol Readily available Lipid depletion,
protein denaturation.

Carnoy’s
fixative

Alcohol and acetic
acid Preserves nucleic acids Potential alteration of

lipids and proteins.

Freezing
(-20∘C)

Temperature-based Prevents microbial
growth

Introduce moisture
and noise in MIRS
spectra, costly as
requires electricity
for refrigerators;
may cause mould
and fungus to the
sample.

6.4.2 Infrared scanning of mosquito samples

Infrared scanning of mosquito samples allows for the measurement and collection of
spectra from various body parts, including the head and thorax, abdomen, and legs. For
instance, when identifying infectious mosquitoes, the head and thorax are also suitable
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because mature Plasmodium sporozoites are typically lodged in the salivary glands within
the mosquito mouth parts [92, 93, 249]. For identifying mosquito age and species, the
head and thorax are ideal because pteridines concentration, which are linked to ageing,
accumulate in these body parts due to the presence of thick tissues [60, 61, 244, 257].
However, othermosquito body parts like legs can also be used for age and species prediction,
as demonstrated in various studies [258–260], as well as cuticular resistance which is linked
to the thickening of legs [117,261]. The abdomen is best for measuring mosquito blood-
feeding histories as the gut content containing blood reveals differences between various
host blood meal sources [114, 229]. In future such abdominal measures might be extended
to inform not just the source of the blood meals but also the digestion stage of the blood
meal.

The speed and efficiency of sampling are influenced by both the modality and the
type of instruments used. NIRS is widely used due to its ability to quickly scan large
numbers of samples with minimal preparations. Most studies employing NIRS utilise the
QualitySpec Pro instrument, where up to 20 mosquitoes can be placed on a plate, with
each mosquito scanned individually [60]. The NIR spectrometer with fibre optic probe
collects a minimum of 20 spectra from each sample, which are then averaged into a single
spectrum. This technique is highly efficient, enabling the scanning of ∼100 freshly collected
mosquitoes per hour, as long as they are immobilised. The speed and ease of use make
NIRS ideal for large-scale studies, particularly when fresh samples are available.

For MIRS, attenuated total internal reflectance – Fourier transform infrared (ATR-FTIR)
spectrometers are commonly used because they allow for fast and stable collection of MIR
spectra. In this system, samples are placed directly on top of the ATR diamond crystal, and
an anvil (an adjustable pressure arm) ensures maximum contact between the sample and
the ATR crystal. This step is crucial because only the evanescent waves of infrared light,
extending approximately 0.5 to 5 𝜇m beyond the ATR crystal, penetrate the sample before
being refracted back into the crystal [262]. This technique allows formore detailed chemical
analysis, as MIRS wavelength provides information about the molecular composition of
the sample. The spectrometer can scan 60-100 samples per hour, depending on factors
such as the number of scans per sample and speed of the operator [249]. The precision of
ATR-FTIR is one of its main advantages, as it allows for the detection of subtle changes
in the chemical composition of the sample. However, it may require more careful sample
handling and preparation to ensure consistent results.

While both NIRS and ATR-FTIR offer distinct advantages, the choice between them
depends on the specific need of the study. NIRS is preferable for high-throughput
applications where speed, ease of use, and non-destructiveness to the sample are
paramount, while ATR-FTIR is more suitable for detailed chemical analysis where
molecular information is critical. The limitation of each method, such as the potential for
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surface-level analysis in NIRS or the need for precise sample placement in ATR-FTIR,
should be considered when selecting the appropriate techniques for infrared studies.
Table 6.3 summarises the basic characteristics of NIRS and MIRS (ATR-FTIR).

Table 6.3: Some characteristics of NIR and MIR (ATR-FTIR)

MIRS (ATR-FTIR) NIRS
wavenumber 400 - 4,000 cm-1 4,000 - 12,500 cm-1

Absorption bands due to Absorbed radiation
(fundamental vibration)

Absorbed radiation
(overtones and combination)

Absorption bands Well-resolved, assignable to
specific chemical groups

Series of broad overlapping
bands

Signal intensity Good,
More intense than NIRS Good

Interference

Atmospheric intrusion such as
water, carbon dioxide and
humidity, physical attributes
(e.g., sample size, shape, and
hardness)

Water, physical attributes
(e.g., sample size, shape, and
hardness)

Sample preparation Reduced, essential with ATR None

In the MIRS systems, multiple scans are essential for improving the signal-to-ratio and
ensuring the reliability of the spectra data. Each scan records the infrared absorption of
the sample, and by averaging multiple scans, random noise can be minimised, leading to a
more accurate and stable spectrum. Depending on the specific type of study and tissues
being scanned, background and sample measurement can be taken with varying number of
scans. For instance, 64 sample scans, which last for 1 minute, provide highly reliable data at
the cost of longer processing time. Conversely, 32 sample scans last for 30 seconds, offering
balance between speed and accuracy, while 16 sample scans, taking only 15 seconds, make
the spectrometer rapid while maintaining sufficient efficiency for many applications [262],
including mosquito studies [61]. The average spectrum from these scans is stored at a
resolution of 2 cm-1, which can be generally adequate for most analytical purposes.

Going forward, we recommend that every individual mosquito should be scanned in
multiple body parts, including at least head and thorax, and the abdomen, and that the
data can be used separately to answer different questions and provide measures different
surveillance indicators. Such an approach would save the time for and enable the
extension of this technology to be multi-purpose and more comprehensive. Additionally,
the ideal direction for the technology would involve optimising the balance between the
number of scans and data quality, potentially through the development of more advanced
hardware and algorithms that can extract accurate information from fewer scans without
compromising reliability.
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6.4.3 Mid-infrared spectroscopy (MIR) instrumentation
and maintenance

When selecting the most appropriate instruments for NIRS and MIRS spectroscopy, it is
crucial to consider factors such as spectral resolution, which is important when discerning
between peaks or features that are very close to each other. This may not be as critical for
solid samples but could be for wet or liquid samples. Sensitivity, or the ability of the
instrument to detect signals, is also a key factor, along with durability and ease of
maintenance, particularly in resource-limited settings where frequent repairs or
replacement may not be feasible. High-quality instruments like ATR-FTIR spectrometers
offer advanced stabilisation of the IR light source, ensuring consistent performance and
longevity, with a typical lifetime of up to 10 years [262].

Additionally, it is important to ensure that the chosen spectrometer can operate under
varying environmental conditions, as fluctuations in temperature, humidity and other
contextual factors that can affect instrument performance. Instruments equipped with
robust software for monitoring and validating performance can help detect and mitigate
these effects by providing real-time feedback. In resource-limited settings, the choice of
instrumentation will depend on what is locally available. Many countries may already
possess different spectrometers in various institutions used for non-entomological purposes
(Table 6.4). For instance, spectrometers are widely used in Africa for pharmaceutical and
agricultural applications and can be readily repurposed to meet entomological surveillance
needs. This approach leverages existing resources, making it a cost-effective solution for
implementing advanced vector surveillance programs.

To ensure the quality of spectra data collected by MIRS, the spectrometer must be
properly maintained and regularly calibrated. For the ATR-FTIR spectrometers used in
the majority of this thesis, the most common maintenance task is replacing desiccant
bags. This is important because MIRS is highly affected by environmental micro-climatic
conditions such as humidity. Therefore, humidity levels should be regularly checked using
the spectrometer software to ensure optimal operating conditions, with a relative humidity
(RH) of less than 30% and an absolute humidity of less than 14g/m3 [263]. Maintaining
these humidity levels is important because excessive moisture in the air can interfere with
infrared spectroscopy by absorbing infrared radiation, leading to increased noise in the
spectra. Low humidity reduces this interference, ensuring accurate and reliable spectra
data. Additionally, controlling humidity prevents condensation on optical components,
which can degrade the performance and longevity of the spectrometer. Moreover, some
vendors offer advanced stabilisation of the IR light source in ATR-FTIR spectrometers, with
a lifetime of up to 10 years [262]. This demonstrates the durability of the spectrometer,
although the IR light source may need to be replaced at the end of its service life.
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Table 6.4: Distribution of infrared spectrometers used for entomological and non-
entomological purposes across Africa based on a short survey.

Countries MIRS (n) MIRS-NIRS (n) NIRS (n) Unknown (n) Total (N)
Benin - - - 2 2
Burkina Faso 1 - 1 - 2
Kenya 1 - 3 - 4
Malawi - 1 - - 1
Mozambique 1 - - - 1
Nigeria 1 - - - 1
Tanzania 2 - 1 - 3
Uganda 1 - - - 1
Total (N) 7 1 5 2 15

Once maintenance has been performed, the OPUS validation program can be used
to carry out validation tests such as Operational Qualification (OQ) and Performance
Qualification (PQ) tests [262,263]. The OQ test is typically performed once a year or when
a defective optical component, such as the IR light source, has been replaced, to check
whether the spectrometer meets the specified performance parameters. These parameters
include spectra resolution, sensitivity, energy distribution, and wavenumber accuracy.
The PQ test, on the other hand, consists of instrument self-test procedures that test the
signal-to-noise ratio and the 100%-line test.

6.4.4 Processing of the infrared spectra data

Upon scanning samples, the spectra data are stored in various formats based on the intended
data processing methods. For most NIR and MIRS applications, the default storage format
is typically binary file formats, compatible primarily with the default spectrometer software.
This format is not directly usable in other open-source software for analysis, but custom-
built programs can be developed to convert the computer-readable binary data into a
text file format, allowing for broader accessibility and analysis using different software
tools [264].

Once collected, infrared data usually require varying degrees of cleaning to eliminate
unwanted sections or data points and to ensure appropriate labelling. For instance, noise
in MIRS data that originate from atmospheric intrusions like water vapour and carbon
dioxide (CO2) can pose a challenge to obtaining a clean spectrum (Fig. 6.2A & B). Some of
this noise can be mitigated by regularly running background measurements to account for
any atmospheric interference. However, when atmospheric intrusions are extreme, custom
programs can be used to filter the affected spectra out, as well as those with low or no
intensity [264]. When atmospheric interferences are extreme, water vapour bands with
many narrow peaks appear between 4,000 and 3,400 cm-1, 2,200 and 1,300 cm-1, and 800
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cm-1 frequencies, while CO2 strong bands appear at 2,345 cm-1, and weaker bands at 3,650
and 750 cm-1 frequencies [59, 114]. Moreover, in our experience, spectra with low intensity
and all flat spectra with no signals are defined based on the reference band of the plateau
between 400 and 500 cm-1 frequencies when the average intensity is lower than 0.11 (based
on empirical observation), (Fig. 6.2C) [59, 114]. Low intensity or no intensity spectra arise
when the sample moves slightly on the crystal during scanning, causing a reduction in peak
intensity and loss of definition due to a poor signal-to-noise ratio. Therefore, the optimal
threshold intensity value needs to be adjusted based on the sample type, as other sample
types may require a different threshold. Based on our observations, the threshold should
be high enough to maintain good peak definition yet low enough to avoid discarding too
many spectra. Since these factors introduce noise to the spectra, it is necessary to drop the
affected spectra to ensure quality clean spectra for ML training.

In conclusion, based on the lessons learned in all the different chapters, it can be
concluded that infrared spectra data, typically stored in binary formats compatible with
default spectrometer software, require custom programs for broader accessibility and
analysis using different tools. Additionally, effective data processing involves cleaning to
remove low or no-intensity spectra and atmospheric intrusions, ensuring high-quality data
for machine learning training.

6.4.5 Using machine learning models for predicting
different entomological indicators of malaria based
on the infrared spectra data

ML models typically require spectroscopic data pre-processing before training to ensure
the data is in the correct format. This improves performance, speeds up training process,
and enhances the model’s ability to generalise to new, unseen data. Previous studies
have used various pre-processing techniques to scale spectroscopy data before training
the models, such as mean centring, principal component analysis (PCA), and Savisky-
Golay derivative [61,113,114,126,178]. For example, in earlier studies, spectra data were
vector-normalised, and the second derivative calculated using Savitzky-Golay algorithm,
after which PLS was trained to detect P. falciparum in vitro [113,126]. Additionally, other
studies pre-processed spectral data by scaling to a mean of 0 and a standard deviation of 1
before training ML models to predict age and species, mosquito host blood-meal source,
sporozoite infections, and P. falciparum infections in human blood [59,61, 114, 249, 265].
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Figure 6.2: Experimental errors leading to noise inmosquitomeasurement usingMIRS. The
figure illustrates mosquito spectra with A) atmospheric intrusion, B) high water content,
C) poor defined features due to low intensity, compared to the correct measured sample
shown with a dashed line [59].

A variety of ML models, including classical/statistical and deep learning models, have
been trained and used to predict different entomological and parasitological indicators of
malaria transmission from MIR spectra. In Gonzalez Jiminez et al., a linear-based logistic
regression model and a tree-based extreme gradient boosting (XGBoost) model were
trained to predict mosquito age classes and species, respectively [59]. In this study, the
ML models were trained using 17 wavenumbers as features selected from well-defined
vibrational absorption peaks and troughs, achieved only 82% classifications accuracy,
although they were trained with small number of samples. In Siria et al., a much larger and
balanced dataset was used to train CNNmodel on the entirewavelength of theMid-infrared
spectra, where each wavenumber corresponds to individual vibrational modes [61]. The
CNN model, trained on the laboratory data, improved prediction accuracy for mosquito
age and species from the same data source [61].

However, inherit variability in the samples limited the generalisability of the models in
predicting mosquitoes collected from semi-field or field conditions. To address this,
instead of re-training the CNN model entirely on the semi-field or field dataset, transfer
learning was used. The weights of the convolutional layers of the CNN trained with
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laboratory data were frozen, and only the weights of the dense layers were updated with a
subset of new data from either semi-field or field samples [61]. However, training a CNN
model is computationally expensive. In a follow-up study, the dimensionality of the
spectra data was reduced using PCA and t-distributed stochastic neighbour embedding
(t-SNE) to lower computational cost while improving the generalisability of the ML
models in predicting mosquito age from two different insectaries [178]. The PCA or t-SNE
transformed data can be passed directly to XGBoost or multi-layer perceptron (MLP)
models, significantly reducing computational costs [178, 244]. However, this alone may
not improve generalisability of the ML models, which can only be achieved with transfer
learning [61,178]. More evidence of transfer learning is demonstrated with an MLP model
trained with laboratory-reared blood-fed An. arabiensis spectra data to predict
blood-feeding histories of wild-caught An. funestus [229]. Table 6.5 highlights the most
common models used for analysing MIRS spectra data in malaria surveillance.

Therefore, when training ML models using spectra data, the following factors should
be considered: a) data pre-processing; b) in places with high computational capacity,
CNN model can be trained; c) in places where computational capacity is limited,
dimensionality reduction of the spectra data can be applied, and standard ML models may
match the performance of deep learning models [178]; d) transfer learning is important to
achieve the generalisability of ML models; e) and for parasite detection in human blood,
training a model with the highest parasite concentration can result to robust model
capable of predicting malaria infections at different parasitaemia levels, even in the
presence of anaemia [265].
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Table 6.5: The most common models used to date for analysing MIRS spectra data in malaria surveillance.

Models Pros Cons References
PLS: identifies latent variables
(components) by extracting linear
combinations of the original predictor
to capture maximum covariance with
the response variable

• Can handle multicollinearity among
predictors

• Latent variables can provide insights
into the data

• Prone to overfitting, leading to poor
generalisation

• Not suitable for non-linear
relationships

[113,126]

Logistic regression: predicts the
probability of binary or multiple
responses based on one or more
predictor variables

• Simple, easy to implement, and
computationally efficient

• Provides insights into important
features for prediction

• Works well with linearly separable
data

• Not suitable for non-linear
relationships

[114,115,265]

XGBoost: builds an ensemble of
decision trees sequentially, where each
tree corrects the errors of the previous
tree

• High performance

• Provides insights into important
features for prediction

• Suitable for non-linear relationships

• Many hyper-parameters to tune

• Computationally expensive for large
datasets

[59, 178, 244]

Deep learning (MLP and CNN): uses
neural networks with many layers for
tasks involving large data and complex
patterns

• High performance

• Can handle large datasets

• Suitable for non-linear relationships

• Requires large labelled datasets for
good performance

• Computationally expensive

• Considered “black boxes” due to
difficulty in interpreting weights

[61, 178]
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6.5 Key challenges in the application of infrared
spectroscopy for malaria vector surveillance

Despite significant advancement, previous research on IR spectroscopy has highlighted
several remaining challenges, which must be addressed before this technology can be
deployed at scale. These issues include the gaps in interpretability of biological signals,
which can be complex and difficult to translate, the lack of generalisability of many
machine learning models, and the challenges in field implementation of the infrared
spectroscopy and machine learning techniques. Further explanation is provided below
and also summarised in Table 6.6.

6.5.1 Limited generalisability of existing algorithms

While ML models trained on spectra data have demonstrated potential for mosquito and
parasite surveillance, the inherent variability of samples from different species, diets,
environments, and genetic backgroundsmay limit the generalisability of thesemodels [204].
For instance, ML models trained using laboratory-generated data may not be transferable
to the field, resulting in inaccurate predictions for field-collected data [92,138,219]. This
challenge can also arise from various sources of variability, including biological differences
among samples, technical inconsistencies between users ormachines, andmodel overfitting,
where the ML models learn noise rather than meaningful patterns.

Understanding the root causes of these issues is the first step toward resolving them. For
instance, biological variability, in predicting mosquito age, could be addressed by targeting
more biologically relevant features. For example, training models on biological age rather
than chronological age could improve generalisability. Additionally, technical variability
introduced by different instruments or operators can be mitigated using standardised
protocols and calibration across devices. Overfitting, on the other hand, can be addressed
by employing more robust ML techniques, such as regularisation or cross-validation, and
by ensuring models are trained on diverse datasets that better represent real-world settings.

Transfer learning has emerged as a promising approach to improve the generalisability
of ML models, enabling them to predict mosquito samples regardless of their inherent
variability [61, 178, 229]. However, this approach, necessitates repeated sampling from
different populations and environments to ensure successful generalisation. Additionally,
continuous updates and validation of themodels with newdata are crucial tomaintain their
accuracy and reliability in diverse real-world settings. Moreover, a deeper understanding
of the field data may also allow for the identification of the key attributes that should be
targeted to obtain more generalisable training data. Furthermore, such field collections



102

should include specific records of metadata, which would be useful for understanding
variation in the model results.

A key concern with IR-MLmodels is the trade-off between accuracy and generalisability.
While generalisablemodels are essential for large scale applications, context-specificmodels
can offer substantial advantages in targeted settings. The choice between these models
could depend on the specific goals of the surveillance efforts and the resources available.
For large-scale mosquito screening, a slightly less accurate model but more generalisable
model could provide consistent and reliable results across various contexts, facilitating
broad surveillance efforts. This approach is particularly important in diverse environments,
where deploying multiple context-specific models may be impractical.

On the other hand, context-specific models can be invaluable for localised studies or
interventions, where high accuracy is essential for precise decision-making. For instance, in
regions with unique ecological or epidemiological characteristics, a context-specific model
could offer detailed insights that a generalised model might miss.

In making this trade-off, one must consider factors such as the scale of the surveillance
program, the variability of the environment being studied, and the criticality of accuracy in
decision-making. Ideally, a hybrid approach that combines generalisable models for broad
surveillance and context specific models for detailed analysis in key areas could offer best
of both worlds.

6.5.2 Gaps in the interpretability of bio-chemical
signatures

The ML models rely on the changes in biochemical bonds within lipids, chitin and protein
associate with a specific trait, detected through MIR absorption intensities to make
predictions or classify biological samples. These models trained on MIRS data leverage
these biochemical components to distinguish host blood in mosquito abdomens [114,229],
determine age and species [59, 61, 244, 266], detect the presence of Plasmodium-specific
proteins in infected human blood, and the biochemical changes in red blood cells
following malaria infection [113, 115, 126, 265]. These important biochemical compositions
in MIRS are also utilised in other spectroscopic methods, such as matrix-assisted laser
desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) [267–269].

It is evident that ML models are learning from the signals within the X-H stretching
region (3,800 - 2,500 cm-1), double bond region (2,000 - 1,500 cm-1), and the fingerprint
region (1,500 - 400 cm-1) of the MIR spectra [59,61,114,115,229,244,265]. It is important to
note that ML models do not rely solely on individual features to make predictions; rather,
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they use combination of features from the MIR spectra wavelength. However, the
translation of the features influencing the predictions of ML models is still poorly
understood. The recent study observed similarities in signals originating from the
fingerprint region of the spectra that influenced ML predictions of three different
models [249]. However, differences in signals influencing predictions were particularly
noted in the X-H stretching region ranging from 3,500 to 3,000 cm-1 frequencies [249].
Therefore, it is still unclear what causes the differences in signals observed in the X-H
stretching region for the three models, raising the question whether these signals result
from the actual parasite or indicate changes in mosquito cuticular composition due to the
presence of the parasite. Moreover, we cannot rule out the possibility that these features or
signals picked up by the ML models can be affected by different model iterations.

Furthermore, previous studies have demonstrated that MIRS detect malaria parasite in
human blood by picking up signals from parasite byproducts resulting from the digestion
of haemoglobin during erythrocytes infection [113, 115, 270]. However, we have observed
that methodological variation can significantly impact the performance and generalisability
of MIRS-ML for malaria parasite detection. For example, in two separate experiments
conducted using the cultured malaria parasite P. falciparum NF54 strain, one experiment
used normal saline (0.9% NaCl) solution to re-suspend the red blood cells (RBCs), and
the resulting ML model failed to predict the same field-collected samples used in the first
experiment (Fig. 6.3A) (Mwanga et al., unpublished). In contrast, another experiment
used plasma to resuspend RBCs after the removal of the culturing medium, resulting in a
laboratory model that successfully transferred to making predictions for the field-collected
samples (Fig. 6.3B) [265]. This raises a question of whether MIRS-ML detects actual
parasite signals or changes in the blood as a result of parasite invasion of the erythrocytes,
a question that requires further investigation.

Figure 6.3: Confusion matrix showing the prediction of P. falciparum infection in field
collected human samples using laboratory-trained ML models. Red blood cells were re-
suspended differently after the removal of the culturing medium: A) using normal saline
(0.9% NaCl), and B) using plasma.
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Lastly, a critical assessment is necessary to determine the need for supervised versus
unsupervised approaches, based on the quality, quantity, and understanding of the
available data. In cases where there are large quantities of data, but limited understanding
of specific characteristics, deep learning and unsupervised approaches may be more
beneficial. These approaches can uncover patterns and structure within the data without
prior labels, making them suitable for exploratory analysis and generating hypotheses
about the underlying structure of the data. Conversely, when the number of data points is
few and there is detailed information about individual samples, supervised models can be
more effective. These models can leverage the labelled data to make predictions, and most
importantly, to understand the relationship between input features and output
predictions.

6.5.3 Implementation of infrared spectroscopy and
machine learning

ML has provided a major breakthrough towards creating deployment-ready systems for
malaria surveillance. However, further development is necessary, requiring models to be
trained on more diverse data to improve the observed accuracies. ML models rely heavily
on the quantity and quality of data; more data generally lead to improved performance.
Due to data limitations, manyMIRS-MLmodels are still in the development stage. Building
deployment-ready ML models that can detect parasite or host-blood meal source in field-
collected mosquitoes or parasite in human blood from real field settings requires extensive
sampling efforts over an extended period of time. Given that robust ML models are
data-hungry, simulating different scenarios that occur in real field settings in laboratory
conditions can produce larger datasets. These datasets can be sufficiently large to train
deployment-readyML models. Despite the current developmental stage, with the accuracy
achieved in various studies, the question remains whether MIRS-ML should be positioned
as a diagnostic or surveillance tool. At present, the technique should serve primarily as a
surveillance or screening tool, as the accuracy of 99 to 99.9% for diagnostic has not been
achieved.

Obtaining precise and accurate spectral data necessitates the use of MIR spectrometers.
However, the lack of proper storage for samples can further impact the quality of the data
scanned on the MIR spectrometer. Reliable internet connectivity is crucial for effective
implementation of MIRS-ML, as it enables the uploading of datasets and access to cloud-
based computational resources. We are currently developing a web app for deploying
MIRS-ML models, which underscores the need for stable internet connections.
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The effectiveness of surveillance programs can be significantly impacted by the lack of
sufficiently trained personnel ML model development. Proper operation of spectrometers
requires knowledge, which, if lacking, can lead to inaccurate data collection and analysis.
Training ML models demands a deep understanding of both the underlying algorithms
and the specific applications to which they are being applied. Without adequately trained
personnel, the development and fine-tuning of these models may be sub-optimal, reducing
their utility. Regular maintenance of the equipment is crucial to ensure its long-term
functionality and reliability. Any neglect in this aspect can result in breakdowns, leading to
interruptions in data collection. Effective data management is important to ensure that the
information derived from spectra datasets is accurate and consistent. Inadequate storage
solutions can lead to data loss or corruption, which can compromise the integrity of the
dataset. Therefore, investing in comprehensive training programs for personnel, ensuring
they are well-versed in both the technical and practical aspects of training ML models, is
essential for success and sustainability of surveillance programs.

The initial cost of procuring advanced spectrometers, coupled with ongoing expenses
related to continuous training anddata processing can be prohibitive formany organisations
in low-resource settings. The substantial upfront investment requires at least £25,000/= for
a high-quality spectrometer and associated installation. Additionally, continuous training
is crucial for personnel to stay updatedwith the latest advancement inML and data analysis
techniques. This ongoing education involves not only time but also financial resources, as
training programs and professional development workshops can be costly. Furthermore,
the costs related to data processing, such as the acquisition of computational resources
and data storage solutions, add another layer of expense. These financial challenges can
be particularly burdensome for institutions with limited budgets or those in resource-
constrained environments.

In terms of applications, commonly used methods for malaria surveillance, such as PCR
and ELISA [68,69,75,78,79,213,214,234], can analyse sample by pooling them (i.e., in sizes
of 10, 50, 100 etc.) and performing multiplexed reactions. This is particularly important in
the areas with low transmission and when resources are limited. The question of whether
MIRS-ML can also pool samples requires further investigation. Pooling might be feasible
in MIRS-ML, but it will require new spectra data generated from pooled samples, as these
would differ from spectra of individual mosquitoes. Additionally, new models would
be necessary, as MIRS-ML models trained on individual spectra would likely struggle to
generalise to pooled data without modification. These models would need to be trained
specifically on data derived from pooled samples to effectively interpret combined signals.
However, the spectra signatures of pooled samples would represent a composite of all
the mosquitoes in the pool. Disentangling signals from infectious and non-infectious
mosquitoes, or mosquitoes of different ages and species, could be challenging and might
introduce noise or reduce accuracy. Future investigations are needed to determine whether
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signals are gained or lost when samples are pooled inMIRS-ML, given that pooling sacrifice
the ability to assess individual mosquitoes. Despite this limitation, MIRS-ML remain a
fast and convenient method capable of processing a large number of samples in a short
duration. Further research should also explore the best mechanism for pooling samples in
MIRS-ML and identify the optimal pool size, as excessively large pools could dilute signals
and compromise model accuracy, while smaller pools might not offer significant efficient
gains.

Table 6.6: Major challenges to be addressed before the infrared spectroscopy and machine
learning techniques can be deployed at scale for malaria vector surveillance.

Challenge Description Possible Solutions

Limited
generalisability

Variability in samples from different
species, diets, environments, and
genetic backgrounds limits ML model
generalisability. Models trained on lab
data may not predict accurately for
field data.

Implement transfer learning,
perform repeated sampling
from diverse populations, and
continuously update models
with new data.

Gaps in the
interpretability of
biological signals

Complex biochemical signals in MIR
spectra can be difficult to translate,
into meaningful predictions.
Differences in signals raise questions
about their source.

Conduct further research to
understand signal sources,
improve model interpretation,
and explore the biochemical
basis of the signals.

Challenges in field
implementation of
MIRS-ML

Developing deployment-ready ML
models requires extensive data from
diverse settings. Current models may
not achieve diagnostic-level accuracy
and may not support sample pooling
like in PCR and ELISA.

Generate large datasets in
laboratory settings simulating
field conditions, focus on
surveillance use, and
investigate pooling
mechanisms for MIRS-ML.

6.6 Conclusion

The application of infrared spectroscopy and machine learning in malaria vector
surveillance has shown great promise, offering a rapid, low-cost, and reagent-free
alternative to traditional methods. This chapter has summarised the lessons learned
during the research activities in the preceding chapters. This reflection has revealed that
despite significant advancements, several challenges remain, particularly related to data
quantity and quality, generalisability, and scalability, that must be addressed if these
technologies are to be used effectively on a large scale. In particular, ensuring the
generalisability of ML models is crucial, as the inherent variability in mosquito samples
from different species, environments, and genetic backgrounds can limit model accuracy.
Transfer learning and continuous model updates with diverse data sets can help improve
generalisability, and there are opportunities to make further improvements by enhancing
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data quality and coverage. Additionally, the interpretability of biochemical signals in the
spectra needs further research to enhance model predictions and understand the sources
of variability. For maximum value from the IR spectra, effective data processing is
essential for obtaining high-quality spectra data, which involves cleaning to remove low or
no-intensity spectra and atmospheric interference. Custom programs may be required to
convert binary data into more accessible formats for analysis. Instrument maintenance,
such as replacing desiccant bags and performing regular calibration, is also critical to
ensure consistent performance. Overall, while MIRS-ML techniques have not yet reached
diagnostic-level accuracy, their utility as surveillance tools is clear. Future research should
focus on creating deployment-ready systems, including investigating pooling mechanisms
for sample analysis and generating diverse datasets to train robust ML models.
Addressing these challenges will be key to maximising the potential of infrared
spectroscopy and machine learning for effective malaria vector surveillance.



Chapter 7

General Discussion

7.1 Overview of the main findings

The overall aim of this thesis was to demonstrate that mid infrared spectroscopy coupled
with machine learning (MIRS-ML) can provide high-throughput and accurate assessments
of mosquito age, blood-feeding histories, and detection of Plasmodium falciparum in field-
collected mosquitoes. Additionally, the thesis discusses key lessons learned and potential
future directions for the use of MIRS-ML in malaria surveillance. Insights gained through
this work mark an important step towards creating a deployment-ready system for malaria
vector and parasite surveillance, particularly in malaria-endemic and low-resource settings
where routine surveillance techniques are costly, labour intensive and time consuming.

Prior to this work, near-infrared (NIR) spectroscopy had already proven useful for
mosquito age-grading and species identification [60, 94, 147, 176]. Furthermore, early
evaluations of mid-infrared (MIR) spectroscopy had suggested that it could offer
significantly greater resolution, enabling the detection of finer biological signals [59,61].
At that time, robust desktop equipment for these techniques was available, suggesting that
these tools could be deployed beyond controlled laboratory environments. However,
critical questions remained: Would MIRS-ML be used solely as an age-grading and species
identification tool? Could it be effectively deployed in the field? What additional
entomological indicators could it track?

Before starting the work for this PhD, I had already taken the first steps toward
addressing these questions by demonstrating that MIRS-ML was versatile enough to
measure additional entomological indicators [114]. Notably, I had shown, using
laboratory-generated samples, that MIRS-ML could accurately assess human blood
indices, offering a valuable method for studying mosquito blood-feeding histories [114].
This, in turn, would enable the determination of anthropophily, which is the degree to
which a vector bites humans over other vertebrates. This is considered a direct measure of
how suitable a mosquito species could be for transmitting human diseases and therefore a
critical factor in evaluating transmission abilities of vectors [41, 136].

Building on this foundation, a further objective of this thesis was therefore to explore
MIRS-ML as a multipurpose tool, evaluating its suitability for tracking multiple
entomological traits in field mosquito populations. The research presented here therefore
represents the most comprehensive assessment to date of the applications of infrared
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spectroscopy and machine learning for tracking essential entomological indicators of
malaria. Taken together, these findings represent a significant advancement towards the
creation of a one-stop, deployment-ready platform for malaria vector and parasite
surveillance, particularly in malaria-endemic and resource-limited settings.

This general discussion synthesises the key findings from each chapter, highlights the
potential of MIRS-ML in malaria surveillance, reflects on its limitations, and identifies key
questions for future research.

7.2 Transfer learning and dimensionality reduction to
mid-infrared spectra data to improve the transferability
and generalisability of mid-infrared spectroscopy and
machine learning (MIRS-ML) based predictions for
mosquito ages

In the early stages of our research, one of the significant challenges was the need to develop
context-specific models to answer particular questions or estimate specific attributes within
different settings and circumstances. These models, while effective in their respective
laboratory environments, often lacked generalisability, limiting their utility outside the
specific settings where they were developed. One solution was to collect new data from
each new setting and train entirely new models. However, this approach was labour-
intensive and time-consuming. A more efficient option emerged through the use of pre-
existing models that could be re-calibrated using small subsets of data from the new target
environments – a technique known as transfer learning.

Recognising the potential of transfer learning, this thesis began with exploring whether
transfer learning approaches could improve the generalisability of both deep learning and
standard machine learning models in predicting mosquito age classes across different
rearing conditions, such as those in various insectaries. By fine-tuning pre-trained models
with limited, context-specific data, this method holds the promise of significantly reducing
the need for extensive retraining while increasing the applicability of models to diverse
environmental settings. This exploration represents a critical step toward creating more
adaptable, scalable tools for malaria vector surveillance.

Machine learning models were trained with data from Ifakara and evaluated with
1,635 spectra from Glasgow-reared mosquitoes. The findings demonstrated that transfer
learning can improve the generalisability of the ML models in predicting mosquito age
classes across different locations; by correcting differences in data distribution between
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training and evaluation datasets. Furthermore, reducing the dimensionality of the spectral
data reduced computational costs (i.e., computing time) when training the ML models.

This study showed that performing transfer learning using only 2% of the spectra from
the target domain (Glasgow-reared mosquitoes, 33 of 1,635) as well as dimensionality
reduction resulted in the improved generalisability of both deep learning and standard
ML models, achieving an overall accuracy of 98%. The expectation was that all models
with transfer learning applied would outperform the baseline models without transfer
leaning in generalising predictions, as previously demonstrated [61,148]. Furthermore,
dimensionality reduction like PCA and t-SNE were used on different occasions to reduce
noise and redundant features in the spectra, as well as to decrease computational timewhen
training theMLmodels. However, the findings indicate that dimensionality reduction alone
cannot achieve the generalisability of theMLmodels but canwhen used in conjunctionwith
transfer learning. The use of PCA improved model stability by projecting data into a lower-
dimensional scale while preserving the original distance between the data points [124].
On the other hand, t-SNE failed to improve generalisability of the ML models due to its
probabilistic nature and a non-convex cost function [140], resulting in different outputs
from multiple runs, which may not preserve the original distance between the data points.

The improvement observed in model performance on the target population following
the addition of 2% of data is attributed to the transfer learning process, which involves fine-
tuning a pre-trained model on new data. This process leverages the knowledge encoded in
the pre-trained model, enabling faster convergence and better generalisation with limited
new data. To isolate the contribution of transfer learning from mere data addition, future
studies could compare performance by retraining amodel from scratch with 2% added data
versus fine-tuning a pre-trained model on the same data. While computational efficiency
is an important advantage of transfer learning, the process itself is crucial as it allows the
model to adapt to the target population by building on previously learned features rather
than starting from zero. This is particularly important in cases with small datasets, where
retraining a model from scratch often fails to achieve comparable performance due to the
lack of sufficient training data to develop robust feature representations.

Therefore, transfer learning approaches became standard in all subsequent work I did,
offering a practical solution for model training in new settings that takes into account the
high sensitivity of mosquito development to its environment, and would otherwise require
extensive data collection. This approach allows users to build on existing models rather
than starting training from scratch each time.
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7.3 Classification of the epidemiologically relevant age of
malaria vectors

An. funestus is not only the main malaria vector in Tanzania but also serves as an excellent
model for studying Anopheles vectors in general, due to its relatively higher survival rates
compared to other vectors, such asAn. arabiensis [135,271], making age-grading this species
particularly relevant. Several factors make age-grading in An. funestus unique. In addition
to being one of the longest-living malaria vectors in Tanzania, it also exhibits significantly
delayed maturity rates. It takes longer to mature sexually (Hape et al., Unpublished); has
nearly twice the duration in its aquatic stages compared to contemporary vectors [272];
requires almost twice as much time to mate (Hape et al., Unpublished); and consistently
features higher parity rates in the field. Moreover, it shows stronger resistance to insecticides
than other vectors in Tanzania, allowing it to survive multiple exposures to insecticidal
interventions [135]. Therefore, after age-grading had been demonstrated in An. arabiensis,
An. gambiae, and An. coluzzii [61], it was clear that the most appropriate model for age-
grading in Anopheles should include An. funestus.

Chapter 3 presented a study that used 2,084 spectra data points to train ML models
to classify the epidemiologically relevant age groups of An. funestus mosquitoes. These
mosquitoes were reared from wild larvae using water from their natural habitats but under
controlled laboratory conditions. One of the key concerns with previous applications of
MIRS-ML based approaches for entomological assessment is the lack of validation for
wild-caught malaria vectors in field settings, with few exceptions in semi-field and field
setting [61]. In this study, An. funestus larvae were collected from various villages and
breeding habitats to account for genetic variation, differences in larval food sources, and
microbiome diversity, maintaining some characteristics of natural ecosystems.

The ML models successfully distinguished between young An. funestus females (1-9
days old) and the older ones (10-16 days old) based on the MIR spectra, which is likely
to reflect the varying biochemical composition of the mosquito cuticles. The study did
not attempt to classify mosquitoes based on exact chronological ages due to insufficient
sample size. Instead, the selected age classes represent a typical epidemiological distinction
relevant to malaria parasite transmission, which requires a vector to be at least 10 days
old under optimal conditions [20]. The success of this analysis and the high accuracies
obtained indicate the potential of this approach for predicting key mosquito attributes
in field settings. Although this was the first demonstration of the effectiveness of this
technique for predicting the age of An. funestus mosquitoes, the MIRS-ML approach has
been widely demonstrated for predicting indicators such as age, blood meals in other
Anopheles species [59, 61, 114, 178].



112

Building on the findings from the previous chapter, dimensionality reduction was used
to reduce noise and redundant features in MIR spectra. Initially, this chapter relied on the
capabilities of XGBoost model to select the most dominant features (e.g. by selecting the
top 100 features) which the model had used for prediction. These important features were
mostly associated with proteins, with the most influential peak (1,700 cm-1)
corresponding to the amide bond of proteins. This suggests that the model learns from
protein-based biological traits that vary with the mosquito age. Additionally, PCA was
applied to reduce the dimensionality of the spectra data by projecting them into eight
principal components [178], resulting in prediction accuracy comparable to the model
trained with top 100 features extracted from the XGBoost model. This indicates that ML
models are more accurate when trained with fewer features that explain more variations
in the data, rather than many redundant features that introduce noise. Furthermore,
reducing the dimensionality of the spectra data can reduce the computational
requirements for training ML models, which is especially beneficial in areas with limited
computational capacity.

7.4 Detection of blood meal sources in field-collected
mosquitoes

Malaria transmission between vertebrate hosts is facilitated by the blood-feeding behaviour
of mosquitoes, which allows pathogens to establish and be transmitted by the mosquitoes.
The HBI is critical for understanding vector transmission dynamics, especially in high-risk
malaria areas. HBI is one of the strongest indicators of malaria vector capacity and is
considered an important metric in assessing malaria vector transmission across various
settings [41]. Afro-tropical malaria vectors are especially dangerous due to their high
anthropophily [27]. These vectors pose significant risks in regions with frequent human-
mosquito contact.

In my previous work, I used laboratory-reared An. arabiensis to identify host types
with known identities [114]. Building on that study, I moved to field validation, where
the host range, genetics, and digestion times were unknown, to assess real-world blood-
feeding histories. This transition was crucial for providing a more realistic assessment of
host preferences, which is essential for understanding transmission dynamics. For this
study, mosquitoes scanned with MIRS to assess blood-feeding histories excluded gravid
individuals. Unlike the other chapters on age and infection status, where mosquitoes were
collected using host-seeking traps [227], this study relied primarily on resting mosquitoes,
as they tend to rest after feeding. To ensure a comprehensive analysis, I expanded collections
to multiple locations, including animal shelters, outdoor areas, and indoor environments.
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Given the known feeding behaviours in Kilombero [128, 190, 273], I anticipated finding
significant variations in host preferences across different ecological settings.

Chapter 4 of this thesis demonstrated the first-ever field application of the MIRS-ML
approach for predicting the blood-feeding histories of malaria vectors in rural Africa. This
chapter further demonstrated the transferability of the laboratory-trainedMIRS-MLmodels
to classify host blood meals in field-collected samples using transfer learning techniques.
PCR served as the ground truth to determine the actual blood-feeding histories of the
field-collected mosquitoes, with a total of 1,854 blood-fed Anopheles mosquitoes being
examined.

Among these field-collected mosquitoes, the majority of mosquitoes were confirmed to
have fed on either human or bovines. Consequently, binary classifiers were trained for host
blood-meal prediction. This chapter demonstrated the capability of MIRS-ML models to
classify mosquito blood-meal sources with high accuracy using a well-balanced set of 338
spectra data from field samples (169 human-fed and 169 from bovine-fedmosquitoes). This
demonstrates a significant opportunity to deploy MIRS-ML for estimating HBI, thereby
extending the capability of infrared-AI-based systems already proven effective for assessing
other entomological attributes such as age and species [204].

Comparatively, earlier work focused on age-synchronised, laboratory-reared, blood-fed
An. arabiensis achieved a classification accuracy of ∼98% in predicting four mosquito host
blood-meal sources (i.e., bovine, human, goat, and chicken) [114]. That study was limited
to mosquitoes that were only 6-8 hours post feeding. In contrast, the field mosquitoes used
in this chapter represented a broader range of age groups and natural variation in blood-
meal digestion stages, suggesting the potential of MIRS-ML for realistic field surveillance,
even when the actual time of blood-feeding and digestion stages is unknown upon sample
collection.

A major achievement highlighted in this chapter is the successful demonstration of the
transferability of laboratory-trained models to field samples through the application of
transfer learning. Initially trained using spectra data from blood-fed An. arabiensis [114],
the base laboratory model was updated by incorporating a small subset (n = 100, with 50
samples each from humans and bovine blood-fed An. funestus spectra) of field-collected
data. With the application of transfer learning, the updated model successfully predicted
the blood-meal sources of field-collected An. funestus with a classification accuracy of 90%.
This finding indicates that MIRS-ML can be extended to detect blood-meal sources of
different Afro-tropical malaria vectors, suggesting that species would not be a
confounding factor. Furthermore, transfer learning enables prediction to bridge the gap
between laboratory and field samples from different locations, ensuring that the origin of
the sample does not influence the accuracy of the results. Moreover, the blood content in
laboratory-reared mosquito is comparable to that of field-collected mosquitoes; for
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instance, the digestion process in mosquito that feed on human host in the laboratory is
likely to be the same as that of a field mosquito feeding on a human. Therefore, blood
meal models are likely to be more easily transferable between laboratory and field settings
compared to other models, such as those predicting age or infection status, which ted to
differ more significantly between insectary and field conditions. Additionally, the age of
field-collected mosquitoes is unlikely to be a confounder, as similar transfer learning
approaches can mitigate this issue. This chapter further contributes to the growing body
of evidence that utilising transfer learning can significantly enhance the generalisability of
ML prediction for entomological attributes of malaria transmission, as demonstrated for
age and species across different countries and laboratories [61, 178].

Finally, this chapter demonstrated that the transferability of laboratory-trained models
to field conditions not only enhanced the classification accuracy for blood-fed mosquitoes
collected from the field, but also improved the precision in estimating the HBI compared
to the ground truth PCR method. This indicates that the technique has the potential to be
a reliable method for estimating HBI, capable of generalising HBI estimations in
field-collected mosquitoes as effective as PCR. Therefore, it can provide valuable
information to national malaria control programs regarding the feeding preferences of
blood-fed mosquitoes.

7.5 Detection of Plasmodium-infections in field-collected
mosquitoes

In chapter 5, this thesis demonstrated the field application of MIRS-ML for detecting
Plasmodium falciparum-infectious Anopheles mosquitoes. This was achieved by collecting
and analysing the MIR spectral signatures from the heads and thoraces of wild-caught An.
funestus females in rural Tanzanian villages. These findings were validated using ELISA or
PCR to confirm the presence of P. falciparum sporozoite, establishing a reliable ‘ground truth’
for model training. The findings showed thatMIR spectral analysis can distinguish between
infectious and non-infectious mosquitoes with accuracies exceeding 90% in some instances.
These findings are consistent with studies that used NIRS frequencies in laboratory settings,
which reported the detection of P. falciparum sporozoite infection in An. gambiaemosquitoes
[93], and P. berghei sporozoite infection in An. stephensi [215]. Earlier models trained on
NIRS failed to identify mosquitoes infected with wild-strain parasites from asymptomatic
malaria carriers, possibly due to limitations in the training dataset [219]. Models trained on
MIRS, which provide clearer peaks with richer biochemical information appear to perform
better [98, 174]. This enhancement suggest that MIRS-ML can also detect infections in
wild-caught mosquitoes, a capability not fully realised with NIRS models in previous
studies.
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Furthermore, the study found that the model trained with ELISA infection dataset
had limitations in predicting samples screened by PCR. Instead, the ML model trained
with the PCR infection dataset demonstrated a robust ability to generalise its prediction in
classifying infectious and non-infectious wild-caught An. funestus mosquitoes screened by
ELISA. This generalisability can be attributed to the sensitivity of PCR in detecting even
low sporozoite numbers in mosquitoes [224], thereby training set might have been ‘more’
reliable, thus enhancing the performance of MIRS-ML models.

The biological requirement that mosquitoes must exceed a certain age threshold (i.e.,
over 10 days) to become infectious, due to the requisite extrinsic incubation period for
the parasite [20], introduce potential age-related biases in detection efficacy. However, in
this study, mosquito age did not significantly interfere with the prediction of infectious
and non-infectious An. funestus. Analysis demonstrated that the machine learning models
adeptly identified signals indicative of infection regardless of age, thus negating age as a
significant confounding variable in our study.

Lastly, this study contributes to the expanding body of knowledge showcasing the
potential of MIRS-ML based approaches for malaria vector surveillance. The use of MIRS-
ML in assessing key entomological parameters such as age, species identification, and blood-
feeding patterns ofmosquitoes has beenwell documented [59,61,114]. The outcomes of our
study suggest that MIRS-ML could serve as a versatile platform, enabling the interpretation
of infrared scans to ascertain not only the species and age of mosquitoes, factors critical to
their potential as malaria vectors, but also their blood-feeding history on humans or other
vertebrates, and their infection status with malaria parasites. Although this advancement
was tested exclusively on P. falciparum and An. funestus, this advancement represents a
significant step forward in developing MIRS-ML for malaria surveillance.

7.6 Key lessons learned from infrared-based entomological
and parasitological studies so far, and the potential
future directions

Building on the findings from chapters two, three, four and five, chapter 6 concludes this
thesis with a literature review that explores the lessons learned from mid-infrared based
entomological and parasitological studies and the potential future directions of research
using MIRS-ML technique. The literature reveal that applying MIRS-ML in malaria vector
surveillance shows great potential, offering a cost-effective and regent free alternative to
commonly used methods, especially in resource-limited settings.
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Effective data processing remains essential for obtaining high quality spectra. This
includes cleaning the data to remove noise caused by low or no-intensity spectra or
atmospheric interference, such as water and carbon dioxide. Custom programs may be
required to convert binary data formats into more accessible text formats for broader
analysis. Instrument maintenance through regular calibration and reducing humidity
levels is also essential for consistent performance in MIRS.

While significant progress has been made in predicting mosquito age, species, blood
meal sources, sporozoite infection and parasite infection in human blood, challenges in
generalising ML models persist. The MIRS-ML models are indeed learning true signals
rather than just noise. This is supported by several factors: First, the models demonstrate
consistent performance across experiment in controlled laboratory environments, where
they have shownhigh accuracy in predicting the aforementioned attributes. The consistence
of these results across different settings and mosquito species suggests that the models are
learning meaningful patterns from the spectra. Second, studies have validated MIRS-ML
model predictions against established method such as PCR and ELISA, which serve as
‘ground truth’ for model training [115,229,249]. The high agreement between MIRS-ML
predictions and these widely used methods further support the idea that the models are
detecting real biological signals. Moreover, MIRS-ML models have been able to highlight
specific spectral features linked to biological process such as protein degradation or parasite
presence [114,115,229].

Despite learning biological signals, transfer learning is often necessary due to inherit
variability in real-world data. Mosquitoes from different locations may have diverse
genetic backgrounds, environmental exposures, physical conditions, diets, and age
distributions, all of which can affect the spectral signatures. Given the complex and
variable nature of mosquito populations and environmental factors, transfer learning
become essential to maintain model accuracy across different datasets. Additionally,
improving the interpretability of biochemical signals within the spectra could further
enhance model predictions and clarify the sources of variability in spectra data.

For wider deployment-ready system, more data diverse data are needed, which is
currently a limitation. Field collections is resource-intensive, and laboratory-generated
datasets simulating field conditions may offer a practical solution to fill this gap.

7.7 Limitations of the study and next steps

This thesis has demonstrated significant progress toward developing a deployment-ready
MIRS-ML based-approach for high-throughput and accurate assessments of mosquito age,
blood-feeding history, and Plasmodium falciparum detection in field-collected mosquitoes.
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However, several challenges and limitations require further consideration and investigation.
These limitations, which are linked to specific chapters, are discussed in the individual
studies but are summarised here to provide a comprehensive overview.

In chapter 2, the study focused on a single species, An. arabiensis, originating from two
insectaries, to evaluate the impact of transfer learning and dimensionality reduction on the
spectra data in improving the generalisability of ML models. While the results showed
improved model generalisability, relying on one specie may not adequately represent
other Afro-tropical malaria vectors. Future research should test the technique with more
diverse samples from different laboratories, field settings, and mosquito species to enhance
the predictive capacity of the model. Additionally, this study tested 2% and 5% transfer
learning ratios, while Siria et al., used ∼10% [61]. Although a 2% transfer learning ratio
was sufficient for achieving generalisability, the optimal ratio for MIRS-ML in mosquito
and parasite surveillance remain undetermined and warrants further investigation.

In chapter 3, the adult mosquitoes were fed only a 10% sugar solution and collected
based on chronological age. Although MIRS-ML models successfully classified
epidemiologically relevant age categories, future studies should incorporate other
physiological factors such as blood-feeding and oviposition, which could help build more
robust age classification models [60, 90]. This could be achieved by maintaining
mosquitoes in a semi-field or insectary setting, where upon emergence from pupae, a
subset of mosquitoes is collected daily. The remaining mosquitoes would be allowed to
undergo natural physiological processes such as blood-feeding, gonotrophic cycles, and
oviposition until the population is naturally depleted. This process would be repeated
across multiple cohorts until the desired sample size is achieved, providing a robust
dataset for training and validating models that reflect real-world biological conditions.
Additionally, future research should explore the different ageing rates, the correlation
between ML-classified age categories and malaria transmission epidemiology, including
infection rates in mosquito and prevalence in human populations. Furthermore, although
the mosquitoes were collected in the field as larvae and reared in an insectary using water
from their natural habitats to mimic field conditions, this approach does not account for
microbial changes that may occur during the transition from field to insectary
environments.

In chapter 4, in field settings – mosquitoes feeding on multiple host – pose a challenge
in field applications. While PCR effectively detect mixed blood meals, it is unclear whether
MIRS-ML can achieve the same, making this an area for further research. The ML model
in this study were trained only on mosquito that had fed on human and bovines, limiting
their application in real-field settings where other potential hosts, such as chicken, pigs,
goats, and dogs, are present. Future ML models should include a broader range of hosts
to create a fully deployed system for detecting mosquito blood meal sources. Although
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extensive field sampling may be required to obtain well-balanced datasets which also
not all of them will amplify with PCR or ELISA, laboratory-generated data simulating
various hosts near human dwellings could be used, with transfer learning applied for
field predictions. Moreover, This study did not assess how the model (i.e. trained with
human and bovine blood-fed samples) performs when predicting non-human or non-
bovine blood-fed samples. It would be valuable to investigate the model’s predictions for
such samples and determine whether their predictions probabilities are systematically
lower than those for actual human or bovine samples. This could include using prediction
probabilities to establish a threshold that restricts the model from classifying samples as
human or bovine blood-fed if they are likely to belong to other hosts.

In chapter 5, the study focused on screening individual mosquitoes for sporozoite
infection. In low transmission settings, however, sporozoite infections are rare [39]. PCR
and ELISA can poolmosquito samples to reduce operational costs and time, but it is yet to be
determined if MIRS-ML can perform pooled testing. Furthermore, the study only focused
on P. falciparum and did not assess co-infections with other Plasmodium species. Since
parasite-specific proteins, such as circumsporozoite (CS) protein and the thrombospondin-
related adhesive protein (TRAP) [220,221], or immune responses elicited by mosquitoes
as a result of parasite infection, may influence the biochemical characteristics of infectious
and non-infectious mosquitoes, it is possible that MIRS-ML could detect any Plasmodium
species. This suggests that the presence of multiple Plasmodium species co-circulating in a
region might not pose a significant challenge for the real-world application of MIRS-ML.
However, it remains unknown whether differences among species could influence model
performance. Future studies are needed to confirm whether the model is equally sensitive
to infections by different Plasmodium species and to assess its ability to handle co-infections.
Additionally, to understand the model’s sensitivity to P. falciparum, further research could
involve training models using data from infections exclusively caused by P. falciparum
and other specific Plasmodium species, allowing a comparison of predictive performance.
Alternatively, deeper exploration of the biological basis of the models – such as identifying
which biochemical features in mosquito spectra correspond specifically to P. falciparum
infections – could provide insights into improving model sensitivity and specificity.

There are common limitations affecting all chapters (CHAPTER 2, 3, 4 & 5). The
availability of sufficient data for training ML models remains a significant constraint.
Robust ML models rely on large, high-quality datasets, and future efforts should focus on
generating additional and more diverse laboratory data to develop more robust and
deployment-ready systems. Furthermore, the generalisability of the models is a key
challenge, as they need to be applicable across diverse settings and mosquito species to be
truly effective. Additionally, understanding the biological signals captured by ML models
remains difficult, which hinders the interpretability of the data. Lastly, practical issues
related to field implementation need to be addressed to ensure that these models can be
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effectively deployed in real-world scenarios – these challenges are discussed in detail in
chapter 6.

Another key limitation is that the different variables – mosquito age, blood-feeding
histories, and infection status – were evaluated separately in different experiments and
with different mosquitoes. While this was necessary to validate the technique’s suitability
for each indicator, the next crucial step will be to test all these indicators on the same
mosquito. This integration could significantly enhance the workflow’s efficiency and
utility. One potential solution could involve the use of robotics or automated bench-top
systems to streamline the process and reduce menial labour. This may allow for faster and
more efficient data collection, making the entire workflow more practical for large-scale
deployment. Future studies should investigate the feasibility of integrated systems capable
of assessing multiple indicators simultaneously.

7.8 Conclusion

The work presented in this thesis has been a significant step in validating the potential of
mid-infrared spectroscopy coupled with machine learning (MIRS-ML) for
high-throughput, accurate assessments of mosquito age, blood-feeding histories, and P.
falciparum infections in field-collected mosquitoes. In totality, it represents a significant
advancement from prior work with both near-infrared and mid-infrared spectroscopy
approaches – ultimately showing that MIR can offer greater resolution and versatility. The
incorporation of transfer learning was particularly crucial in enhancing the generalisability
of machine learning models, allowing predictions to be applied across different mosquito
populations and environments. These advancements mark important progress toward the
development of a deployment-ready system for malaria vector and parasite surveillance,
offering a scalable and cost-effective solution for resource-limited settings. However,
further research is needed to address challenges in data availability, model generalisability,
and field implementation to fully realise the potential of MIRS-ML in large-scale malaria
surveillance programs. While each entomological indicator was tested separately in this
study, without assessing multiple variables in the same mosquito, the results consistently
suggest the potential of MIRS-ML as a multipurpose tool for tracking a wide range of
mosquito attributes. Future research should therefore focus on integrating these
capabilities into a unified system to be more readily applicable for understanding disease
transmission dynamics and evaluating vector control interventions in resource-poor
settings. Realising this vision will mark a transformative advancement in field-based
entomological surveillance systems, with the potential to revolutionise malaria control and
elimination efforts in Africa.



Key Messages

Technical summary

Effective malaria surveillance and control require a thorough understanding of key
biological traits, including preferred blood-hosts, infection rates, survivorship, and age
distribution. Current methods such as polymerase chain reactions (PCR), enzyme-linked
immunosorbent assays (ELISA), and dissection are labour-intensive, time-consuming, and
require expensive reagents, making it difficult for routine surveillance, especially in
low-resource settings. Advances in infrared spectroscopy and machine learning
(MIRS-ML) may offer a faster, cost-effective alternative for predicting mosquito age and
species, identifying blood source and detecting pathogens like Plasmodium. My PhD
aimed to validate and extend MIRS-ML for malaria vector surveillance by improving its
generalisability, particularly for predicting mosquito age, blood-feeding histories, and P.
falciparum infection status.

By applying transfer learning and dimensionality reduction, I was able to significantly
improve MIRS-ML model accuracy in classifying key entomological and parasitological
indicators of malaria transmission. This research represents an important step toward
creating a scalable, field-deployable system to enhance malaria surveillance and
intervention monitoring.

Lay summary

Malaria surveillance is essential for understanding disease transmission, planning
interventions, and assessing their effectiveness in endemic regions. Traditional
surveillance methods are time-consuming and expensive, making them difficult for large
scale implementation. My PhD focused on demonstrating that MIRS-ML can serve as a
high-throughput, cost-effective alternative for assessing key malaria transmission
indicators, such as mosquito age, blood-feeding behaviour, and infection status.
Specifically, I applied MIRS-ML to predict mosquito age in various species, detect
blood-meal sources and assess P. falciparum infection in An. funestus. This research
provides a significant step toward scaling MIRS-ML for broader in malaria control
programs.
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Key findings and messages

1. MIRS-ML for malaria surveillance: MIRS-ML proved highly effective in predicting
mosquito age, blood-feeding histories, P. falciparum infection in field-collected
mosquitoes. The method has great potential for broadening its use to all Afro
malaria vectors, making it a valuable tool for surveillance.

2. Data pre-processing is important: Effective data cleaning and instrument
maintenance are essential for obtaining high-quality spectra. Removing
low-intensity signals and atmospheric noise improves the model’s performance and
reliability. Regular instrument calibration and customised data processing are vital
for achieving consistent results.

3. Transfer learning improves the generalisability: Transfer learning significantly
improves model accuracy across different locations by adapting laboratory-trained
models for use with field data. This technique allows for better predictions of
mosquito age and blood-feeding history, even when environmental and biological
condition vary. Optimal transfer learning ratios also need to be established for
mosquito and parasite surveillance.

4. Dimensionality reduction: While dimensionality reduction alone does not
guarantee model generalisability, when combined with transfer learning, it can
reduce computational requirements and improve efficiency . Probabilistic methods
like t-SNE did not improve the stability compared to PCA, which is more reliable for
consistent results.

5. Fewer, more relevant features enhance model performance: Model trained with
fewer, high-variance features outperform those with many redundant ones. This
reduction also lowers computational time, making it more practical for real-field
applications.

6. PCR is preferable as the “ground truth” for training models for sporozoite
detection: Models trained on PCR data proved more accurate than those trained on
ELISA data for detecting P. falciparum infection in mosquitoes. This suggests that
PCR, with its sensitivity, should be the “ground truth” for training future ML
models.

7. Species and environmental diversity needed: Although transfer learning improved
generalisability, future studies should include more diverse mosquito species and
environments to further enhance the predictive capacity of MIRS-ML.

8. Physiological factors for age prediction: Future research should incorporate
additional physiological factors, such as blood-feeding and oviposition, to improve
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the robustness of mosquito age classification. Moreover, understanding the
relationship between mosquito age and malaria transmission is critical for effective
vector control.

9. Data Limitations: A key challenge in this study was the limited data available
for training ML models. More extensive and diverse datasets will improve model
robustness and generalisability. Additionally, challenges such as mixed blood meals,
pooled testing, and co-infections need to be addressed in future studies to make
MIRS-ML more applicable in the field.

Personal learning

This PhD program has equipped me with a versatile skill set, enhancing my scientific and
academic writing, project management, data analysis, and molecular biology expertise. I
have also developed a deeper understanding of machine learning and statistics, which have
been essential for analysing complex datasets. Perhaps most importantly, I have learned
the value of collaboration and knowledge exchange, which has been critical for advancing
research and making a meaningful impact in malaria control.
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