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Abstract

Data-driven applications and services are increasingly being deployed across various sectors,
where they collect, aggregate, and process vast amounts of personal data from diverse sources on
centralized servers. Consequently, safeguarding the privacy and security of this data is crucial.
Since May 2018, the EU/UK’s General Data Protection Regulation (GDPR) has necessitated so-
phisticated compliance models. Current threat modeling techniques, however, do not adequately
address GDPR compliance, particularly in complex systems where personal data is collected,
processed, manipulated, and shared with third parties. This thesis proposes a comprehensive
solution to develop a threat modeling technique that addresses and mitigates non-compliance
threats by integrating GDPR requirements with existing security and privacy modeling tech-
niques, namely STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege) and LINDDUN (Linking, Identifying, Non-repudiation, De-
tecting, Data Disclosure, Unawareness, and Non-compliance). The proposed technique in this
thesis introduces a new data flow diagram aligned with GDPR principles, develops a knowledge
base for non-compliance threats, and employs an inference engine to reason about these threats
using the developed knowledge base. Additionally, this thesis presents a practical solution for
modeling GDPR compliance using Defeasible Logic Programming (DeLP), enhancing the ro-
bustness and reasoning capabilities of compliance models in real-world scenarios. To address
the challenges of undecided outputs in logical reasoning, this work incorporates explicit priori-
ties for conflicting rules and suggests related knowledge for queries in an incomplete knowledge
base. Furthermore, the technique includes a threat mitigation mechanism that identifies reasons
for non-compliance threats and recommends actions to mitigate them. This approach is demon-
strated through case studies on Telehealth Services and Fitbit (i.e., health tracking devices),
focusing on addressing non-compliance threats and resolving UNDECIDED query results. Fi-
nally, the complexity of the defeasible reasoning mechanism is analyzed, and its performance is
compared across different query outcomes, namely "YES/NO/UNDECIDED," based on verti-
cal and horizontal complexities. The findings indicate that DeLP offers a flexible and dynamic
framework suitable for implementing GDPR in real-world settings, making a significant con-
tribution to the fields of legal reasoning and compliance modeling. Additionally, our findings
show that the inference engine efficiently identifies non-compliance threats, handles UNDE-
CIDED query results, and suggests appropriate threat mitigation measures.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, data-driven applications are increasingly being deployed in all aspects of life
including smart homes, smart cities, healthcare, and medical services [1]. In such applications,
Artificial Intelligence (AI) incorporating various algorithms is employed, where personal data
is collected and aggregated from heterogeneous sources before being processed using "black-
box" algorithms in opaque centralised servers [2, 3, 4, 5]. As a consequence, preserving the data
privacy and security of these applications is of paramount importance [6]. In this respect, a mod-
elling technique for detecting potential threats and specifying countermeasures to mitigate the
vulnerabilities plays a significant role in securing personal data from a variety of data breaches
and privacy attacks.

Numerous threat modelling techniques have been proposed in the literature such as STRIDE
(Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation
of Privilege), LINDDUN (Linking, Identifying, Non-repudiation, Detecting, Data Disclosure,
Unawareness, and Non-compliance), and PASTA (Process for Attack Simulation and Threat
Analysis). However, none of these techniques is sufficient to model the non-compliance threats
of data-driven applications, due to several limitations:

1. Limited Scope on non-compliance Threats: Most of the existing threat modelling tech-
niques primarily focus on software security threats rather than regulatory compliance (i.e.,
non-compliance threats).

2. Reliance on Predefined Assumptions: Techniques like LINDDUN, while aimed at data
privacy, rely on predefined assumptions [7] (e.g., implementation and security assump-
tions [8, 9]). As a consequence, these techniques are restricted to addressing only pre-
defined threat scenarios [8].

3. Lack of Adaptability in Dynamic, Complex Environments: Existing methods lack the
adaptability required for new and evolving types of privacy attacks in complex systems

1



CHAPTER 1. INTRODUCTION 2

consisting of interconnected and dynamic components, such as IoT devices like smart-
phones, traffic cameras, and roadside units (RSUs).

4. Absence of Legal Focus for GDPR Compliance: Traditional methods also lack an in-
tegrated legal reasoning component for GDPR compliance, which is essential to cover
nuanced legal requirements like data minimization and purpose limitation.

To address these limitations, we propose a novel threat modelling technique based on logi-
cal reasoning (i.e., defeasible logic), as it provides a flexible and adaptable approach to reason
through dynamic and evolving compliance requirements. Defeasible logic stands out by allow-
ing for rules that can be overridden when specific exceptions arise or when new information is
available. This is crucial for GDPR compliance, as regulations may evolve and new compli-
ance threats may emerge in complex systems. Defeasible logic also enables handling conflicts
effectively (e.g., when rules about data protection conflict with emergency processing needs),
by prioritizing the more specific or higher-priority rules, thus making the system resilient to
conflicting requirements and adaptable to real-world conditions.

For instance, while LINDDUN is limited to specific privacy threats based on pre-set assump-
tions, defeasible logic allows for a dynamic model that can adapt as new threats or compliance
requirements emerge. By employing defeasible logic, our model provides a comprehensive
view of the threat landscape, dynamically adapting to changes and covering a broader range of
non-compliance threats, thereby aligning with GDPR’s stringent compliance standards.

Furthermore, since May 2018, the new data protection legislation in EU member states and
the UK, namely the General Data Protection Regulations (GDPR)1, has emphasized the need for
applications processing personal data to employ tools that can model and analyze compliance
with sophisticated GDPR requirements [10]. This highlights the necessity of developing a threat
modelling technique that is both adaptable and legally informed which defeasible logic uniquely
supports.

Therefore, the use of defeasible logic allows for a robust, adaptable, and legally focused
approach to GDPR-compliant threat modelling, overcoming the limitations of existing methods.
The advantages of GDPR, which our approach aligns with, are outlined as follows:

1. Enhanced Data Protection: GDPR mandates strict guidelines for processing and stor-
ing personal data, ensuring that individuals’ privacy is safeguarded. This comprehensive
framework requires applications and services to implement robust data protection mea-
sures, significantly reducing the risk of data breaches and unauthorized access.

2. Improved Accountability and Transparency: GDPR promotes greater accountability
among organizations managing personal data by imposing strict documentation and re-
porting requirements. To improve transparency and foster customer trust, organizations

1https://gdpr-info.eu/



CHAPTER 1. INTRODUCTION 3

must clearly outline their data processing activities and ensure compliance with GDPR
regulations.

3. Empowered Individuals with Control Over Their Data: GDPR grants individuals en-
hanced rights over their personal data, such as the right to access, rectify, and delete their
information. This empowers users to have greater control over their data, ensuring that
their personal information is handled according to their preferences and enhancing their
overall data privacy rights.

1.2 Problem Statement

Data-driven applications are being widely integrated into many aspects of daily life. With our
growing dependency on these applications, personal data is being processed more rapidly. It is
noteworthy that existing threat modelling techniques are insufficient for modelling data privacy
threats (i.e., non-compliance threats) due to their disadvantages, which are listed below.

1. Limited Scope: Existing techniques primarily concentrate on system security threats, ne-
glecting the broader spectrum of data privacy threats. This narrow focus leads to incom-
plete threat models, leaving critical vulnerabilities unaddressed, especially those related
to regulatory compliance.

2. Lack of Legal Focus: Most current modelling techniques do not incorporate legal re-
quirements, such as GDPR, into their frameworks, which limits their ability to identify
and mitigate compliance-related risks in applications handling sensitive personal data,
such as Telehealth Service Systems and Fitbit devices.

3. Insufficient Adaptability: The evolving nature of data privacy regulations and emerg-
ing threats necessitates modelling techniques that can quickly adapt. However, current
techniques lack this flexibility, reducing their effectiveness in dynamic, real-world envi-
ronments.

1.3 Aims and Objectives

The purpose of this thesis is to develop a novel GDPR-compliance threat modelling technique
based on Defeasible Logic Programming (DeLP). This technique aims to overcome the chal-
lenges faced by existing methods and effectively address compliance risks in data-driven ap-
plications. Our solution is a first-of-a-kind technique for practically and sufficiently modelling
the non-compliance threats of GDPR; the proposed solution also provides the ability to model
any systems with incomplete and conflicting knowledge which is indispensable for representing
real-world scenarios.
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1. Develop a Novel Modeling Technique: Create a first-of-its-kind technique for practi-
cally and adequately modelling non-compliance threats under GDPR, ensuring that the
technique is scalable and adaptable to various data-driven application contexts.

2. Overcome Challenges and Enhance Adaptability to Real-world Scenarios: Address
the limitations of current threat modelling techniques that are restricted in modelling non-
compliance threats and provide the ability to model any systems with incomplete and
conflicting knowledge which are indispensable for representing real-world scenarios.

3. Enhance Compliance Risk Management: Provide a robust solution for identifying and
mitigating GDPR compliance risks in data-driven applications, ensuring that the devel-
oped technique can handle dynamically evolving regulatory requirements and emerging
data privacy threats.

4. Support Practical Applications: Demonstrate the practical applicability of the proposed
solution in various fields, particularly those dealing with sensitive personal data, and vali-
date the effectiveness of the technique in modelling complex systems with incomplete and
conflicting knowledge, which are common in real-world situations.

1.4 Contributions

This thesis introduces an innovative threat modelling technique for GDPR compliance based
on logical reasoning. The solution operates as an expert system equipped with an inference
engine that leverages rule-based and defeasible programming languages. It integrates GDPR-
compliance-related knowledge, encompassing established security and privacy modelling meth-
ods (STRIDE and LINDDUN) along with core GDPR principles on roles, responsibilities, and
data protection. The proposed model effectively manages contradictions by prioritizing conflict-
ing rules, enabling comprehensive analysis to identify and mitigate non-compliance threats and
thus achieve GDPR compliance. Additionally, the system’s reasoning abilities are enhanced to
handle scenarios with incomplete knowledge, where it suggests relevant information for system
modellers to provide more accurate compliance outcomes. The primary contributions of this
thesis are summarized below:

1. Construction of a GDPR Compliance Knowledge Base: We developed a comprehen-
sive knowledge base using rule-based and defeasible logic programming languages, es-
tablishing a foundational framework for GDPR compliance analysis.

2. Implementation of a Robust Reasoning Mechanism: The thesis implements a reason-
ing mechanism for rule-based and DeLP-based knowledge bases, effectively identifying
non-compliance threats and integrating mitigation steps, demonstrating the efficacy of the
inference engine.
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3. Integration of Conflicting and Incomplete Information Handlers: The model incorpo-
rates "UNDECIDED" results handlers within the DeLP reasoning mechanism to resolve
contradictions and manage incomplete knowledge, demonstrating applicability in real-
world scenarios.

4. Analysis of Reasoning Complexity: We conducted a complexity analysis of the reason-
ing mechanism, introducing novel concepts of vertical and horizontal complexity. This
analysis provides critical insights into system performance across different query outputs
("YES/NO/UNDECIDED").

1.5 Thesis Organisation

This thesis is organised into the following chapters:

Chapter 2 provides the extensive background and literature related to the GDBR, existing no-
table threat modelling techniques, Rule-based knowledge representation, and Defeasible reason-
ing.

Chapter 3 presents the methodology of our proposed solution, illustrating the high-level system
architecture and its main components: the knowledge base and inference engine. A compre-
hensive GDPR knowledge base is constructed by combining system-default and system-specific
knowledge bases. The chapter also explains how the inference engine is used to identify non-
compliance threats within the knowledge base.

Chapter 4 introduces a comprehensive solution for developing a threat modeling technique
using Rule-based programming language. This technique addresses GDPR non-compliance
threats by integrating GDPR requirements with existing methods like STRIDE and LINDDUN.
This chapter illustrates the proposed new data flow diagram that incorporates GDPR principles
and demonstrates its application in the TSS use case to identify non-compliance threats. Finally,
this chapter presents the results and discussions to showcase the feasibility and effectiveness of
our proposed solution.

Chapter 5 elaborates on the suitability of DeLP for modelling GDPR non-compliance threats. It
details converting a Rule-based knowledge base into a DeLP knowledge base while maintaining
data integrity. The chapter explains the system design and management of logic formulas within
the DeLP framework and introduces vertical and horizontal complexity concepts to analyze the
Reasoner’s complexities. This comprehensive analysis aims to optimize the DeLP reasoner’s ef-
ficiency in handling dynamic GDPR regulations, providing robust solutions for legal reasoning
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and compliance checking.

Chapter 6 details the GDPR-compliance threat modelling tool, focusing on handling "UNDE-
CIDED" query results caused by conflicting rules or missing information. It emphasizes the
importance of classifying systems as either compliant ("YES") or non-compliant ("NO") with
GDPR. This further elaborates on the implementation of the "UNDECIDED" result handlers.
Finally, this chapter discusses the integration of threat mitigation into the defeasible reasoning
mechanism to enhance system robustness.

Chapter 7 demonstrates the identification and handling of non-compliance threats for the Tele-

health Services use case. Additionally, it describes the experiments conducted to address con-
flicting rules, missing information, and threat mitigation for the data collection and processing
use case in Fitbit wearable devices.

Chapter 8 presents results from the developed technique applied to the TSS and Fitbit use cases,
providing detailed analysis and discussion. Initially, it highlights the outcomes and insights for
various query results obtained through DeLP threat modelling for GDPR compliance. Sub-
sequently, it illustrates the performance and analysis of the "UNDECIDED" result handlers,
evaluating the proposed system’s effectiveness based on horizontal and vertical complexities.

Chapter 9 concludes the thesis and details future work to be considered for expanding the work
discussed throughout the thesis.



Chapter 2

Literature Review

This chapter explores the significance of the General Data Protection Regulation (GDPR), the
standard for data privacy regulations in Europe. The GDPR, with its 173 recitals and 99 articles
across 11 chapters, applies primarily to European organizations but also to non-European entities
providing goods, services, or monitoring individuals in Europe [11] [12]. Its core purpose is to
safeguard individuals’ fundamental rights and freedoms during personal data processing.

However, non-compliance with the GDPR can lead to significant threats. This chapter
also describes how existing threat modelling techniques are insufficient to model GDPR non-
compliance threats adequately. This chapter analyzes the pros and cons of these modelling
techniques. Additionally, it explores the characteristics of defeasible logic to demonstrate its
suitability for modelling non-compliance threats in the context of GDPR. Defeasible logic is
non-monotonic, allowing conclusions to be revised when new evidence emerges. This feature is
crucial for modelling scenarios where regulations and compliance requirements may change or
be reinterpreted.

The chapter also elaborates on related work in the field, highlighting potential gaps and lim-
itations. It provides an overview of various existing threat modelling techniques and discusses
their limitations in Section 2.1. Section 2.2 covers the importance of GDPR and its various prin-
ciples. Section 2.3 provides details about data privacy threat modelling for the use-case ACS. A
review of knowledge representation and defeasible logic is presented in Section 2.4. Section 2.5
covers the application of priority logic for conflicting information. Section 2.6 discusses related
work and its limitations. Finally, the findings of this chapter are summarized in Section 2.7.

2.1 Overview of Threat Modelling

Threat modelling is a procedure that is used to (i) determine the security requirements of a sys-
tem, (ii) identify threats and vulnerabilities, (iii) evaluate the criticality of the detected threats
and vulnerabilities, and (iv) prioritize the mitigation methods. Threat modeling relies on tradi-
tional security methods, like attack trees and STRIDE. These methods were developed in the

7
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1990s [13]. The modelling of threats requires comprehending the system’s complexity and rec-
ognizing all possible dangers to the system [14]. It is essential to identify the threats that can
occur in a system before claiming that it is secured [14]. Furthermore, the security of the system
is defined using a systematic engineering approach [15]. This approach includes the identifica-
tion of security risks, security requirements, and recovery strategies. It would require less time
and effort to address the security issues if security engineering [16] is incorporated in the system
design process [17] from the initial architecture specification.

The identification of threats helps in the formulation of realistic and relevant security require-
ments. This is important because if the security criteria [18] are inaccurate, the system’s concept
of security is incorrect, and the system cannot be secured. A proper threat assessment [19] re-
duces the capacity of attackers to misuse the system. The most succinct and basic descriptions
of the threat modelling approach have been provided which include four key phases, namely
decomposing the system, eliciting the threats, determining the countermeasure and mitigation,
and prioritizing the threats. Therefore, a threat modelling technique is typically developed based
on a four-step framework in accordance with the four phases, as illustrated in Figure 2.1 [20].

In step 1, a model of the system is created. Data flow diagrams and attack trees, for example,
are good ways to illustrate system modelling. In step 2, the threat model/approach is used to
find threats. Threat modelling approaches such as STRIDE [20], Attack trees [21], PASTA [22]
etc., can be used to find threats in a system. In step 3, these approaches are used to outline
mitigation strategies for the threats. Finally, in step 4, the model is validated for completeness
and effectiveness (i.e., the system is secured from potential threats).

2.1.1 Notable Threat Modelling Techniques

A variety of threat modelling techniques have been proposed and are already used in real-world
scenarios, coming with both pros and cons.

STRIDE

STRIDE is a model-based threat modelling technique developed by Microsoft [23]. It has been
effectively applied to cyber-physical systems (i.e., grid systems, robotics systems etc.)[24]. This
is a two-way method. In the first phase, a data flow diagram is created to check the flow of
data. In the second phase, the STRIDE technique is utilized to identify and model the threats
as defined by its name (i.e., Spoofing, Tempering, Repudiation, Information Disclosure, and

Figure 2.1: The four-step framework for threat modelling techniques
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Table 2.1: Threat Categories of STRIDE

Threat Security
Requirement Description

Spoofing Authentication
Pretending to be some-
thing or someone other
than yourself.

Tampering Integrity
Try to add/modify some-
thing in resources(disk,
network, memory etc.).

Repudiation
Non-
Repudiation

Claiming you were not
responsible or did not do
something.

Information
Disclosure Confidentiality

The information is pro-
vided to the one who is
not authorized.

Denial
of Service Availability

Restrict the resources that
are required to deliver.

Elevation
of privilege Authorization

Permitting someone to
perform a task for which
they are not authorised.

Elevation of Privileges) [25]. The threats identified by STRIDE are listed in Table 2.1, along
with their corresponding definitions.

Before the physical installation of systems (i.e., IoT devices, autonomous systems etc.),
STRIDE [26] is utilized in the design phase to identify cyber-attacks(i.e., phishing attacks).
After that, threat mitigation strategies are employed to stop the identified threats [27, 28, 29].
In addition, The main issue of modelling with the STRIDE is that as the system’s complexity
grows, so does the number of threats. Another drawback of STRIDE is that it cannot guarantee
to model the system’s data privacy threats [30].

LINDDUN

LINDDUN stands for Linkability, Identifiability, Non-Repudiation, Detectability, Disclosure of
information, Unawareness, and Non-Compliance. Linkability allows the attacker to connect two
or more Items of Interest (IoIs) to establish a link to a specific system. The term ”identifiability"
means that the attacker will be able to locate the object of interest. Non-repudiation is another
threat in which an adversary attempts to attack a target, but difficult-to-counter evidence. De-
tectability refers to whether an enemy can identify a target of interest. Furthermore, information
disclosure is a security risk that exposes information that should not be exposed [31].

Moreover, Unawareness is a threat that occurs when a user does not know the effects of
sharing information. The non-compliance threat shows that the system is not compliant with
the regulations and legislation. Table 2.2 illustrates the threat categories of LINDDUN. Further-
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Table 2.2: Threat Categories of LINDDUN

Threats Properties
Linkability Unlinkability
Identifiability Anonymity & pseudonymity
Non-repudiation Plausible deniability
Detectability Undectecbility & unobservability
Disclosure of information Confidentiality
Content unawareness Content awareness
Policy and
content non-
compliance

Policy and content compliance

more, LINDDUN uses the iterative process to discover dangers in a system and then build threat
trees [32, 33, 34]. The strong point of LINDDUN is that it has rich privacy documentation. On
the other hand, it is a lengthy procedure.

Another deficiency of LINDDUN is that it is based on some pre-defined assumptions and
lacks flexibility in complex scenarios where different components interplay with each other. The
assumptions are defined in the LINDDUN tutorial [32] as "direct or indirect choices to trust the
system components (i.e., data store or data flow) to behave as expected". The LINDDUN threat
template (which is included in the supporting materials) allows assumptions to be entered in the
’Remarks’ section. However, the study [7] found that most of the assumptions are based on the
DFD notation’s limitation of expressiveness. Some assumptions directly refer to concepts such
as trust and attacker capabilities that are not typically modelled in a system architecture, which
raises the question of whether these aspects should be modelled directly as a part of the system
[7].

PASTA

Process for Attack Simulation and Threat Analysis (PASTA) is a risk-centric technique that
consists of seven stages [35]. It has several functions which are performed at various phases.
Stage 1, defines the objectives; stage 2, defines the technical purpose; stage 3, implements the
application decomposition; stage 4, conducts threat analysis; stage 5, conducts vulnerability and
weaknesses analysis; stage 6, conducts attack modelling; and stage 7 conducts risk and impact
analysis [22], [36]. This technique can be used to meet both business and technical goals [37].
PASTA has rich documentation to assist with its laborious and extensive process [38]. However,
this technique is insufficient to deal with data privacy threats.

Persona non-Grata

The Persona Non-Grata (PnG) modelling approach focuses on attackers, their motivations, and
their ability to attack a system. It allows the threat modellers to identify the threats from the
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counter side. The technical experts try to identify vulnerabilities that are caused by the poten-
tial adversary [39]. This technique [40] identifies misuse cases with a target, possible attack
scenarios, and adversarial personas [41].

Furthermore, this technique is simple to implement, yet it is underutilized in research. It has
a low rate of false positives and a good level of consistency, although it may not be able to detect
all threat types [40]. This technique can be used with an agile approach that includes personas.

Security Cards

This is an informal technique based on brainstorming to identify novel and difficult attacks. The
analysts utilize play cards to answer questions about potential attacks in various scenarios. For
instance, why is the system under attack? Who is responsible for this? What kind of assets can
be harmed and how can they be harmed? [40].

To identify threats, the Security Cards modelling technique uses a deck of 42 cards such as
human impact (9 cards), adversary’s motivations (13 cards), adversary resources (11 cards), and
adversary’s methods (9 cards). This approach can be used to discover almost any form of threat,
but it produces a lot of false positives and can not be employed in non-standard scenarios [40].
In industry, the Security Card technique is hardly used [40].

hTMM

The Hybrid Threat Modelling Method (hTMM) is made up of SQUARE (Security Quality Re-
quirements Engineering Method), Security Cards, and PnG activities [41], which was developed
by the Software Engineering Institute in 2018. The main characteristic of the technique is to pro-
vide a consistent result with no false positives(i.e., an object, that has been classified as harmful
despite the fact that it isn’t a threat), and no overlooked threats [41]. The main steps of hTMM
are to highlight the system to be threat-modelled, apply for the security cards, remove unlikely
PnG (i.e., there are no realistic attack vectors), use the tool support for finalizing the results, and
finally continue to process for risk assessment. The flaw in htMM is that it does not provide mit-
igation for the threats that have been identified, and it requires a lot of effort to model complex
systems.

CVSS

The Common Vulnerability Scoring System (CVSS) modelling approach identifies vulnerability
attributes and assigns a numerical score to their severity. This establishes a consistent grading
system for a variety of cyber-physical systems [42, 43]. CVSS has three metric categories (Base,
Temporal, and Environmental), each with a set of measurements.

The scoring algorithms in CVSS can be complex to implement due to the layered nature of
these metrics. For example, calculating a Base score involves assessing multiple interdependent
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factors such as attack vector, attack complexity, and privileges required. This scoring requires
users to accurately interpret each metric’s parameters, and any misinterpretation can lead to
inconsistencies in scoring across similar vulnerabilities. Despite these challenges, CVSS is
widely adopted, with its complexity often mitigated by using complementary threat modeling
techniques for a more holistic view.

Attack Trees

This is one of the oldest techniques, and it has been widely used in conjunction with other threat
modelling techniques like STRIDE, CVSS, and PASTA [44, 45]. The attacker’s aim is put at the
root of the tree, while the strategies to achieve the goal are put at the leaf nodes. By travelling
through the leaves, AND and OR nodes are used for various aims. Attack trees are used to make
security decisions and determine whether the system is vulnerable to attack. The use of the attack
tree modelling technique was proposed [45] to develop the threat model of buildings and home
automation systems to model the security flaws in their development and implementation. This
strategy is simple to understand and only beneficial when security considerations are properly
comprehended [45].

Quantitative Threat Modelling Method (QTMM)

This technique [46] consists of STRIDE, CVSS and Attack Trees. With this technique [47], a
few pressing issues could be solved for cyber-physical systems. Another aim of QTMM tech-
nique is to generate attack ports for individual components. These attack ports then forward the
risk to the connected components. The system risk assessment is done by score- card (i.e., (1)
Insignificant, (2) Minor, (3) Moderate, (4) Major, and (5) Catastrophic). If the component root
nodes have a high-risk score, the attacked port has a high-risk score as well and is thus more
likely to be executed. This is a time-consuming technique and requires high effort to achieve
consistent results.

Trike

Trike is a risk-driven threat modelling method that emphasizes defensive measures by analyz-
ing system security requirements rather than solely identifying attacker capabilities[48]. The
process begins with defining the system and creating an actor-asset-action matrix, which maps
each actor’s potential interactions with assets, identifying any actions that may breach security
requirements. By focusing on risk management, Trike prioritizes actions based on risk toler-
ance, helping organizations align system functions with security objectives. However, Trike’s
detailed, requirement-centric approach can be complex and time-consuming, often lacking com-
prehensive documentation, which may limit its scalability in large, dynamic systems.
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VAST

The Visual, Agile, and Simple Threat (VAST) modelling approach is an automated threat mod-
elling approach. Because of its scalability and applicability, this strategy is employed in large
organizations to offer actionable and dependable findings for a variety of stakeholders [49, 50].

Two models are developed in this technique: an application threat model that uses data flow
diagrams and an operational threat model that is based on attacker mindset DFDs. As a result,
VAST can be integrated into the development and DevOps life-cycle of an organization [49].
This technique is used to model security and privacy in intelligent autonomous vehicles [51].
However, this technique is time-consuming and requires extensive effort in modelling a system.

OCTAVE

OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation) is a comprehen-
sive, risk-based threat modeling technique focused on identifying and managing organizational
risks rather than technical or system-specific vulnerabilities [52, 53]. OCTAVE involves three
key phases: building an asset-based threat profile, identifying infrastructure vulnerabilities, and
developing a security strategy based on identified risks. A significant advantage of OCTAVE is
its flexibility and scalability, as it can be adapted to suit large organizations as well as smaller
entities through OCTAVE-S. However, its extensive, in-depth process and limited guidance on
specific technical threats make it time-intensive and challenging to document effectively in com-
plex settings.

Table 2.3 illustrates the strengths and weaknesses of threat modelling techniques [37]. These
techniques are evaluated based on various parameters such as maturity, focus, time/effort, mit-
igation etc. The ’maturity’ is determined by how effectively each technique is specified, how
frequently it has been utilized in case studies, and how frequently it has been coupled with other
techniques. The ’focus’ shows the point of view or the perspective based on which the technique
was designed. The ’Time/Effort’ indicator indicates how time-consuming and labour-intensive
the procedure is. The term ’mitigation’ refers to whether the procedure includes any mitigation
strategies. The term ’consistent results’ refers to whether or not a technique provides consistent
results when repeated. The ’Easy to use/learn’ term represents how easily these techniques are
adopted. The term ’automation’ shows the ability of the technique to be examined in an auto-
mated way. Finally, the term ’tool’ shows its integration with the Software Development Life
Cycle (SDLC).

In this thesis, we prioritize STRIDE and LINDDUN due to their distinct advantages in cov-
ering security and privacy threats, which are crucial for determining GDPR non-compliance
threats. STRIDE’s structured approach to identifying diverse security threats and its adaptabil-
ity across complex systems make it a robust choice, especially compared to narrower techniques
like VAST or Attack Trees. For example, VAST is scalable and integrates well with DevOps, it is
less focused on security or privacy threats from a regulatory compliance perspective, which was
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Table 2.3: Strengths and Weaknesses of some notable Threat Modelling Techniques [37]

Threat Modelling
Techniques

Maturity Focus Time/Effort Mitigation Consistent
results

Portability Easy to
use/learn

Automation Tool

STRIDE [25] High Defender High Yes No Yes Medium Yes Yes
LINDDUN [32] High Assets

/Data
High Yes No Yes No No No

PASTA [35] High Risk High Yes No Yes No No No
CVSS [54] High Scoring High No Yes No No Yes No
Attack Trees [45] High Attacker High No Yes Yes Yes No No
PnG [40] Medium Attacker Medium No Yes Yes Yes No No
Security Cards
[40]

Medium Attacker Medium No No Yes Yes No No

hTMM [41] Low Attacker
/Defender

High No Yes Yes Medium No No

Quantitative
TMM [46]

Low Attacker
/Defender

High No Yes Yes No No No

Trike [48] Low Risk High Yes No Yes Medium No No
VAST [49] High Attacker High Yes Yes Yes Medium Yes Yes
OCTAVE [52,
53]

Medium Risk /Or-
ganization

High Yes Yes Yes No No No

a core requirement of this research. LINDDUN, uniquely tailored for privacy threats, directly
aligns with GDPR’s compliance requirements, addressing privacy concerns that broader risk-
centric methods like PASTA or OCTAVE often overlook. Together, STRIDE and LINDDUN
enable a comprehensive threat modelling framework that meets both security and privacy stan-
dards, offering the rigour, flexibility, and alignment with evolving compliance needs that other
techniques lack. This thesis demonstrates how these security and privacy threats can lead to
non-compliance threats, illustrating their interrelationship and how addressing them within our
framework supports overall GDPR compliance. In the following section, we will explore the
GDPR regulation in detail and illustrate how it can serve as a baseline when using the STRIDE
and LINDDUN modeling techniques.

2.2 Understanding GDPR

GDPR is a regulation on data protection and privacy [55]. This was enacted in May 2018 in the
countries of the European Union [56]. This is an up-gradation of privacy principles proposed
in 1995 [57]. GDPR is developed to preserve the privacy of personal data by complying with
its principle under strict conditions [58]. Each organization in the EU is obliged to comply
with GDPR. If the organization avoids complying with the GDPR then it would be liable to
pay a heavy amount of fine[59, 60]. The GDPR is detailed in more than 95 articles that cover
all of the technical and administrative principles that govern how corporate and government
organizations process personal data [61].

European legislators aimed to harmonize privacy law and enforcement with GDPR [62].
They intended to enhance individual privacy protection while preserving the benefits of data
processing [63]. Each EU member state is supposed to have a supervisory authority that is
responsible for monitoring GDPR compliance [64, 12].
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The organization should comply with Global Privacy Principles 1 such as being clear and
transparent; being accountable and keeping personal data secure; taking responsibility and valu-
ing privacy; processing personal data ethically and respecting individual preferences. The inter-
national data protection privacy laws are followed and guided by five global privacy principles
[65] that include Notice; Choice and Consent; Access and Participation; Integrity and Security;
and Enforcement. The principle of ‘Notice’ means that the user should notice and know about
the rules available to protect personal information. The ’Choice and Consent’ principle is meant
to give individual choices and consent about the use, collection and management of personal
information and storage. The ’Access and Participation’ principle states that information should
only be utilized and accessed by those who are authorized and have the appropriate security pro-
tocols in place. The ’Integrity and Security concept’ is intended to ensure that data is accessed
in a secure and authorized manner. Finally, the term ’enforcement’ refers to the process of en-
forcing compliance with any regulatory model. Therefore, the GDPR is based on international
data protection rules, which are an extension of privacy principles.

GDPR is open for interpretation because compliance requirements are abstract. It is made
up of seven main principles [66, 67] such as Lawfulness, Fairness, and Transparency; Data
minimization; Purpose limitation; Storage limitation; Accuracy; Integrity and Confidentiality;
and Accountability. Based on these principles, GDPR is aimed to meet the privacy requirement
of personal data.

GDPR defines three main entities [68] such as Data Controller [69] (DC), Data Processor
(DP) [70], and Data Subject (DS) [71] play important roles while preserving data privacy. The
enterprise must be a data controller and a third-party provider can be a data processor who
performs on behalf of the enterprise. There is also a difference between the data controller
and the data owner. For example, an accountant can be considered a data controller due to
independent judgment which is done to perform professional duties [70]. The various scenarios
in which acting as a data controller by enterprise and the third party are discussed in [70].

GDPR gives DS more control over its data by allowing it to exercise various rights such as
the right to be informed; right of access; right to rectification; right to erasure; right to restrict
processing; right to object; right to data portability; and right to automated decision-making.
The DC and DP are responsible for providing access to various rights to DS and fulfilling the
request of DS. Moreover, there are six lawful bases of data processing, for example, consent,
legitimate interest, contract, legal obligation, vital interest, and public interest. For processing
the data, one of these six lawful bases of processing is taken to ensure compliance. For example,
the DC should take the consent of the DS before processing its personal data; Without obtaining
the consent of the DS, its data can not be processed.

The system can only be considered compliant when the principles identified by GDPR are
adopted and the defined duties of DP and DC are performed for preserving the privacy of the in-

1https://globaldma.com
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dividual [12]. Furthermore, to comply with the GDPR, organizations are required to implement
appropriate controls and statistical disclosure-limitation strategies. One of the challenges for the
implementation is the considerable conceptual gap between legal statements and mathematical
formulation around data privacy [72]. The authors explained the concept of “Predicate Singling

Out” (PSO), which is a privacy attack type that endeavours to capture the notion of singling
out occurring in the GDPR. If an attacker identifies a predicate p matching exactly one row in
x with a probability substantially higher than a statistical baseline, it isolates a dataset x using
the output of a data-release mechanism M(x). This further demonstrates that PSO security im-
plied differential privacy [73] which is a mathematical concept with legal outcomes. The PSO
security of differential privacy and k-anonymity are investigated in [74]. Furthermore, the study
in [72] depicted that differentiated privacy necessitates PSO security through a relationship to
statistical generalisation.

It is worth noting that while the GDPR predominantly applies to organizations within the
EU/UK, it extends its obligations to organizations outside the regions that process EU/UK cit-
izens’ data [12]. A summary of principles and user rights, along with their related Articles, is
provided in Table 2.4 [75].

The next section of this chapter goes into further detail on GDPR principles and how they
relate to threats to data privacy.

2.2.1 GDPR Principles and the Reciprocity to Data Privacy Threats

GDPR is aimed to provide data protection and privacy to individuals [55]. In today’s modern
age, preserving the privacy of individuals is not trivial. This sub-section discusses the reciprocity
between GDPR principles and data privacy and security by scrutinizing the underlying threats
which may occur in case of non-compliance. The relationship between non-complying with the
GDPR principles and potential privacy threats will be thoroughly discussed.

Lawfulness, Fairness and Transparency

The first principle of GDPR is Lawfulness/Fairness & Transparency. The lawful basis for pro-
cessing personal data must be considered for the processing to be lawful. There are six lawful
bases (i.e., consent, legitimate interest, contract, legal obligation, vital interest, and public inter-
est). If none of the legal bases apply, there will be a violation of this principle, resulting in the
unlawful processing of personal data.

Fairness is applied when the data is handled reasonably. This covers how data is collected.
The data controller violates the principle of fairness if they have misled someone to collect their
data.

According to the principle of transparency, individuals must know which data is obtained,
for what purpose, for whom, and for how long it will be kept. This information should be written
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Table 2.4: Some important Requirements and Obligations defined in the GDPR. [75]

GDPR
Article

Name Description

5 Principles relat-
ing to Processing
of Personal Data

Personal data controllers are obliged to follow principles
encompassing lawfulness, fairness, transparency, purpose
limitation, accuracy, storage limitation, integrity, and con-
fidentiality. The data controller is mandated to guarantee
and demonstrate compliance with the principle of Account-
ability.

6 Lawfulness of
Processing

Data subjects are required to grant explicit consent for the
processing of their personal data for specific purposes, and
such processing must adhere to the legal obligations im-
posed on the controller.

7 Conditions for
Consent

Controllers must be capable of showcasing that explicit con-
sent has been granted by the data subject for the processing
of their personal data, with the provision that such consent
can be revoked at any given moment.

12 Transparent In-
formation

Controllers are required to implement suitable measures to
furnish the data subject with clear, transparent, understand-
able, and easily accessible information regarding the pro-
cessing activities.

13 Right to be In-
formed

Controllers are obligated to supply the data subject with par-
ticular information at the time of collecting their personal
data.

15 Right of Access Individuals possess the entitlement to retrieve any personal
data maintained by a company.

16 Right to Rectifi-
cation

Guarantees the ability to correct any inaccurate data held by
controllers.

17 Right to Erasure Ensures the capability to delete any data held by controllers
upon the subject’s request.

18 Right to Restric-
tion of Processing

Guarantees that any collected data will be utilized solely for
the purposes for which consent was granted.

19 Notification Obli-
gation

Controllers are obligated to inform every recipient to whom
the personal data has been disclosed about rectification, era-
sure of personal data, or restriction of processing.

20 Right to Data
Portability

Empower individuals to carry their data when they depart
from the organization.

21 Right to Object Enables individuals to raise objections to the processing of
their data.

as clearly as possible in an easily understandable way.
If the processing of data is unlawful, unfair, and non-transparent, the processing of personal

data would lead to data abuse, and data exploitation . For example, it is noted that Amazon
processes the data of its users unlawfully without informing the DS which is the transparency
requirement (i.e., the right to be informed). It was, therefore, recently fined a large sum of money
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(i.e. $877 million) due to the way it collects and shares personal data via cookie consent on its
website 2. Furthermore, the violation of principles of lawfulness, fairness & transparency would
lead to privacy leakage with various privacy attacks (i.e., property inference, reconstruction,
membership inference, and model extraction etc.) [76].

Purpose Limitation

This principle states that the processing of the data should be limited to legitimate, explicit, and
specific ‘purposes’ clearly defined in the legal basis (e.g., consent) before the data collection.
The processing of data should not be used or transferred beyond the initial purposes for which
it has been collected or stored. Generally, processing personal data for new purposes outside
of the originally stated purposes is considered unlawful; unless the Data Controller performs
and passes a ‘Compatibility’ test for a new purpose to ensure that the data is still processed on
the same ‘lawful basis. There are also exceptions including further processing based on EU
or member state law and further processing for public interest purposes. Purpose limitation is
designed to ensure the confidentiality, reliability, and accuracy of personal data being collected
and processed [77]. Preserving purpose limitation is of interest to Data Subject, ensuring the
confidentiality of personal data, as well as safeguarding the balance of powers between Data
Subjects and Data Controllers 3.

Violation of this purpose limitation principle neglects personal privacy and might lead to
various data privacy threats including data misuse, data exploitation, and data breaches. The
fundamental purpose of this principle is to protect the Data Subject’s privacy from data misuse
and data exploitation. For instance, Google has been found to unlawfully feed personal data
to advertisers in violation of the purpose limitation principles and unclear data consent policies
by the French data regulator 4. This could go further than just a targeted advertisement, and
the damage could be tremendous. Personal data could be processed for numerous illegitimate
purposes including (e.g., by using inference attacks [78, 79]) to political campaigns 5.

Data Minimization

According to the principle of Data Minimization, only the required detail of personal data that
is necessary for a specific purpose should be processed by the data controller. The data breaches
would result in a violation of the data minimization principle. As H&M was fined (i.e., $41.4
million) for data breaches that occur due to violating the principle of data minimization 6.

2https://www.tessian.com/blog/biggest-gdpr-fines-2020/
3https://migrationpolicycentre.eu/point-no-return-migration-and-crime/
4https://www.bbc.co.uk/news/technology-46944696
5https://publications.parliament.uk/pa/cm201719/cmselect/cmcumeds/1791/17

9110.htm
6https://www.bankinfosecurity.com/clothing-retailer-hm-told-to-wear-41-m

illion-gdpr-fine-a-15111
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If the data provided for processing is not minimized sufficiently, there would be the privacy
threats of Linkability and Identifiability 7. Because the excessive availability of data [80] would
let the attacker easily find and identify the two items of interest (IOI)s for the specific target. The
violation of data minimization would also lead to data abuse [80] and inference privacy attacks
(i.e., location privacy attacks, property inference etc.) [81].

Accuracy

According to the principle of Accuracy, the data provided for processing should be accurate and
up to date. Organizations should ensure that the given data is correct and provide the option of
erasure and rectification to DS for updating their personal data.

Failing to comply with the ’Accuracy’ principle would lead to the processing of data with
inaccurate and erroneous data. This would also mean not providing the right to erasure and
rectification to the data subject. Therefore, the processing of data with inaccurate data would
lead to data abuse and data exploitation [82, 83].

Storage Limitation

According to the principle of Storage Limitation, organizations should keep personal data until
the purpose of processing is achieved. The personal data should be erased after the required
processing. Thus, erasure from the storage is needed after the processing. The violation of the
’storage limitation’ principle would lead to the linkability and identifiability 8 at the data store
because data stored even after the purpose of processing is completed would let the attacker
easily identify the two Items of Interests (IOI)s and link it to the targeted object (i.e, AC). The
violation of storage limitation would lead to data breach incidents and undesired inference of
data [84]. For instance, the data breaches [85] caused by privacy attacks include similarity
attack, skewness attack, differential privacy attacks, homogeneity attack and background attack
etc. [86, 87].

Integrity and Confidentiality

According to the principle of Integrity and Confidentiality, DC should ensure the secrecy and
confidentiality of personal data. For integrity, the controller should maintain the ’accuracy and
validity (consistency)’ of the data. There should be the ’trustworthiness’ of the data. For confi-
dentiality, data should be protected from unauthorized access, theft, or disclosure of information.

The violation of the ’integrity and confidentiality’ principle would lead to the privacy threats
of disclosure of information 9 and data theft because if the data is not secured any unauthorized
user can get access to personal data which would lead to the disclosure of information. The

7https://www.linddun.org/linddun-threat-catalog
8https://www.linddun.org/
9https://www.linddun.org/disclosure-of-information
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violation of the principle of integrity and confidentiality would also lead to data privacy threats
[88] of tempering and unauthorized alteration and destruction of data [89, 90].

Accountability

The Accountability principle asserts taking responsibility for whatever you do with the data of
the DS. It also enforces showing how you comply with the other principles. Therefore, there
should be appropriate measures and records to present compliance with the GDPR.

The violation of the principle of accountability would lead to data breaches [91] and the
privacy threat of non-repudiation [91], for which the subject would be held accountable if it is
not able to repudiate a claim or action.

GDPR principles provide the compliance requirements that need to be adopted to reduce
privacy threats 10. The relation of data privacy threats with GDPR principles is illustrated in
Table 2.5.

Table 2.5: Data privacy threats and related GDPR principles

Data Privacy threats Description Consequences Related GDPR
Principles

Linkability
Being capable of identifying whether two
items of interests (IOI)s are linked or not.

It can cause identifiability and inference
about the particular subject. Data Minimiza-

tion

Identifiability
The subject can be identified easily within
the available set of subjects.

It causes severe privacy violations (when
the subject is assumed anonymous). Data Minimiza-

tion

Non-repudiation Unable to deny a claim or an action. If a subject is not able to repudiate a
claim/action, it can be held accountable. Accountability

Detectability
The ability to distinguish if an item
of interests (IOI)s exists or not.

Inference of a subject can be caused by the
detection of an IOI. -

Disclosure of in-
formation

This is referred to information disclosure
of the subject.

This can lead the disclosure of personal in-
formation of subject. Confidentiality

Unawareness
Not aware of impacts and consequences of
sharing information.

This can lead to linkability and identifiabil-
ity. -

Consent non-
compliance

The system/organization is compliant if it
adheres to the regulatory principle of trans-
parency and takes the user’s consent.

This can make consent inconsistent. Transparency

The following section provides a comprehensive review of existing modeling techniques
used to address data privacy threats concerning the aforementioned GDPR principles and re-
quirements, focusing on a specific use case of autonomous systems.

2.3 Data Privacy Threat Modelling for ACS

This section discusses how threat modelling techniques, specifically STRIDE and LINDDUN,
can be used to model data privacy threats in a specific autonomous system, namely Autonomous
Car Systems (ACS). It examines the challenges and gaps encountered when using these tech-
niques to identify data privacy threats, leveraging GDPR as the baseline.

10https://www.linddun.org/
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2.3.1 Use-cases: Data Privacy Threats in ACS

Overview of ACS

ACS is one of the milestone inventions in autonomous technology [92] including automotive
capabilities based on LIDAR, Radar [93, 94] and machine learning algorithms. The successful
implementation of ACS depends on both safety parameters (i.e., the effectiveness of the self-
driving mechanisms, cyber-security and data privacy) and human trust [95]. ACS can only be
practically deployed in the real world if it is trustworthy [96, 97, 98]. Along with technologies
to ensure safety, there should be approaches to educate and enhance users’ confidence and trust
in ACS [95, 99].

Figure 2.2 [100], illustrates the main components of an ACS in which data acquisition is
done by the radars, sensors, cameras, communication devices, and Light Detection and Ranging
(LIDAR). Data collected by these devices are manipulated and processed by a central system of
the Autonomous Car (AC) and then passed to a decision-support system which lets the system
perform a set of required tasks. To travel from point A to point B, AC perceives and gets aware-
ness of the external surroundings, plans an appropriate route, navigates, and makes controlled
movements.

Moreover, Figure 2.3 [100] is a simple illustration of the ACS in which AC communicates
with other communicating nodes that include the Road Side Unit (RSU), Trusted Authority
(TA)(i.e., registration and management authorities), and other connected AC for its fully im-
plemented. Notably, AC communicates with RSU, other connected vehicles, and TA through
VANET by LTE, WiFi, visible light communication etc. In ACS a vehicle (e.g., AC) interacts
with another vehicle (V2V) [101, 102], and infrastructure (V2I) [103, 104] such as RSU and TA
for sharing information (i.e., traffic information, safety warnings etc.).

Furthermore, one of the most serious issues in the automotive industry is the threat to security
and privacy [100]. The researchers in [105] and [106] have examined numerous cyber threats in
autonomous vehicles. There are a variety of conventional security vulnerabilities in ACS such
as the injection of malicious code into various sensors and telematics units [107, 108]; hacking
into an in-car network [109, 110]; external spoofing while communication [111]; packet fuzzing
[112]; and jamming [113, 114]. Researchers have also demonstrated how an automobile may be
readily hacked using a bus of Connected and Autonomous Networks (CAN) [115]. Furthermore,
a car communicates with the other car through the CarSpeak mechanism for sharing sensory
information [116] which should be protected from privacy concerns. In ACS, personal data
is shared with infrastructure and other connected cars for multiple purposes (e.g., safety and
value-added services), thus it is crucial to preserve the privacy and security of such data.
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Data Privacy Threats in ACS

There are a large number of data privacy threats in ACS, as the system collects and processes
heterogeneous personal and sensitive information from different sources such as RSUs, central
base stations, and other ACs. In [117], the researcher presented the main challenges to safety and
security in ACS by identifying various attacks. For example, Sensor Attack [118] occurs when
an attacker attempts to disable the GPS by hacking the sensor installed on the car. An attack on
VANET [119] is done when a hacker employs brute force to get access to a vehicle’s confidential
data (i.e., passwords or keys). The V2X attack [120] is held when the attacker attacks any
gadget (i.e., smartphone) through which a vehicle communicates to an external network by
WiFi, Global System for Mobile or Bluetooth. The V2V attack [121] in which a distributed
denial-of-service (DDoS) occurs by overpowering and manipulating the V2V communication.
Moreover, GPS spoofing attacks occur when the attacker pretends to be the legitimate terminal

Figure 2.2: AC Architecture

Figure 2.3: Simple illustration of ACS
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in the GPS network and tries to access confidential data and pose significant damage to the
network. This would let the attacker navigate the AC by spoofing the GPS and taking control of
the car.

The AC is more computerized in generating a large amount of data. This system is more
vulnerable to privacy concerns[122], since the autonomous industry pays less attention to mon-
itoring and analyzing how data is collected and created by the AC. Third parties and hackers
now have more opportunities to abuse the vehicle’s data. A hacker can easily access the driver’s
personal information, the vehicle’s location, the information of others in the car (such as pas-
sengers), or someone in the vicinity of the automobile.

As demonstrated in Figure 2.2, in AC, the obtained data from the sensors [118] can be used
by organizations and third parties for location tracking. In self-driving cars, location data is
primarily collected and used for route planning [123]. A data collection that correlates location
and travel information (e.g., current area, goal, speed, course, date, and time) may reveal sensi-
tive information about users. These concerns about personal safety exist on both a personal and
societal level (Data Protection Report 11).

Moreover, autonomous vehicles are ideal for acquiring information about different drivers’
driving habits, goals, and other information without their consent. Additional issues could arise
as a result of the vehicle’s use of symbolism, such as ownership questions and potential intrusion
of protection claims, depending on the situations in which the images are captured [123]. Sim-
ilarly, an individual’s information around AC (i.e., client’s locations and on-street behaviour)
may be useful to third parties such as the government and private sector entities, law enforce-
ment, the news media, private specialists, and insurance companies. In the following section,
we will elaborate on the detailed challenges in modelling data privacy threats in ACS.

2.3.2 Detailed Challenges in Modelling Data Privacy Threats in ACS

As GDPR Principles provide the finest foundation for assuring data protection and privacy in a
system, we will utilize them as a baseline to analyze STRIDE and LINDDUN concerning their
capabilities in modelling data privacy in ACS.

Comparison between threat modelling techniques for ACS

Table 2.6 presents our comparison of the threat model using STRIDE and LINDDUN in accor-
dance with the GDPR principles, individual rights, and other requirements. We use the GDPR as
the baseline for comparing STRIDE and LINDDUN, which consists of 7 principles and require-
ments (e.g. individual rights and international transfer). If one of the requirements of a principle
is not covered by a modelling technique, then the main principle is not covered. LINDDUN is

11https://www.dataprotectionreport.com/2017/07/the-privacy-implications-o
f-autonomous-vehicles/
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Table 2.6: Modelling threats using LINDDUN & STRIDE in accordance with the GDPR

GDPR Principles and Requirements STRIDE LINDDUN
I. GDPR Principles
1. Lawfulness, fairness, and transparency No No
1.1 Consent - X
1.2 Legitimate Interests - -
1.3 Contract - -
1.4 Legal Obligation - -
1.5 Vital Interests - -
1.6 Public Interests - -
2. Purpose Limitation No No
3. Data Minimization No Yes
4. Accuracy Yes Yes
5. Storage Limitation No Yes
6. Integrity and Confidentiality Yes Yes
7. Accountability No No
II. Data Subject Rights
a. Right to be Informed No Yes
b. Right of Access No Yes
c. Right to Rectification No No
d. Right to Restrict Processing No No
e. Right to Data Portability No No
f. Right to Object No No
g. Right to Automated Decision Making No No
h. Right to Erasure No No
III. International Transfer No No

37% providing compliance with GDPR as it is mapped with 6 principles. And STRIDE provides
12% GDPR compliance because it is mapped with only 2 principles.

GDPR Principles: The comparison of STRIDE/LINDDUN based on GDPR principles
[124], and the identified gaps are discussed below:

1. Lawfulness, Fairness and Transparency: The privacy requirements of awareness and
compliance mentioned in LINDDUN do discuss the consent. But it does not provide any
reference about AC users’ (i.e. owner/driver and passenger) ability to update/withdraw
and view consent; and AC users’ consent for sharing data with third parties. On the other
hand, STRIDE does not define any threat to processing the data based on lawfulness.
Moreover, LINDDUN and STRIDE do not provide any description for processing the
AC’s users’ data on a lawful basis which includes: legitimate interests, contracts, legal
obligations, vital interest, and public interest. Similarly, LINDDUN and STRIDE do not
provide any reference to the principle of fairness and transparency. Thus, these two mod-
elling approaches do not deal with the compliance threats of un-lawfulness, unfairness,
and non-transparency.
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2. Purpose Limitation: In LINDDUN and STRIDE, we do not find any reference regarding
purpose limitation, hence these techniques do not cover this principle. Therefore, STRIDE
and LINDDUN do not address the non-compliance threat of ’violating the purpose limi-
tation’.

3. Data Minimization: LINDDUN has a reference to data minimization, under the threat
tree of Linkability and Identifiability. However, LINDDUN does not include any direct
privacy targets/countermeasures or Privacy Enhancing Techniques (PET) to address data
minimization, which is regarded as a gap/challenge. STRIDE, on the other hand, shows
no evidence of adhering to this principle. As a result, there is a threat of ’non-compliance
with data minimization, which must be addressed.

4. Accuracy: In LINDDUN, we get references about Accuracy under the threat tree of Un-
awareness. It also provides a solution for enhancing accuracy by allowing users to delete,
update, or review data. In STRIDE, we get a reference for Accuracy/update data under
the threat of Tampering, which requires Integrity as a security requirement. Thus, both
approaches cover the Accuracy principle.

5. Integrity and Confidentiality: LINDDUN and STRIDE define the threat of Disclosure of
Information, which has the security requirements of Integrity and Confidentiality. Hence,
the principles of Integrity and Confidentiality are covered by these two approaches.

6. Storage Limitation: Under the Linkability of a Data Store Threat Tree, LINDDUN dis-
plays the potential threats that can arise as a result of storing data for an extended period
of time or storing an excessive amount of data. So, we get the reference of storage limita-
tion/retention time in LINDDUN. Furthermore, there is no mention of Storage Limitations
in STRIDE. As a result, while modelling using STRIDE, there is a risk of ’non-compliance
with the storage limitation’ in ACS.

7. Accountability: In the use-case of the ACS, the accountability would be held by a Trusted
Authority (TA), which would generate revocation/or cancellation of the certificate for the
misbehaving AC. LINDDUN does not define any threat related to Accountability. How-
ever, it refers to Accountability indirectly, under the Content Unawareness threat tree.
Similarly, STRIDE makes no security requirements for Accountability and does not ad-
dress any threats associated with it. As a result, the threat of ’non-accountability’ is not
addressed by both modelling techniques.

Data Subject Rights: The GDPR requires ACS to implement a variety of Data Subject rights
to be compliant with the legislation and to protect Data Subjects from numerous data breaches,
data exploitation, and data abuse.
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1. Right to Informed: LINDDUN refers to the compliance requirement of this principle
under the threat tree of Unawareness and Non-compliance. But STRIDE does not provide
any reference to cover this right.

2. Right of Access: In LINDDUN’s Unawareness threat tree, the "unable to review personal
information" node refers to individuals’ right to access their data without needing physical
access to the storage media. Reviewing data can be facilitated through secure methods like
remote access, data summaries, or reports, allowing individuals to examine their personal
information without directly accessing the physical systems where it’s stored. There is
also a reference DS to not being able to modify or remove data under the Non-repudiation
of the data store threat tree. Moreover, STRIDE does not cover the Right to access, as it
does not define any threat related to this right.

3. Right to Rectification: Neither LINDDUN nor STRIDE include any references or se-
curity/privacy requirements for the Right to Rectification. As a result, both modelling
approaches fail to respect the right to rectification.

4. Right to Erasure: LINDDUN does not directly define the threat to the right to erasure. It
does, however, appear in the Non-repudiation of a Data Store threat tree, where the user is
unable to erase their own data. Because this right is not explicitly described in LINDDUN,
it is assumed that it is not covered. Similarly, STRIDE does not have any reference related
to this right. Thus, both modelling approaches fail to respect the right to erasure.

5. Right to Restrict Processing: In both LINDDUN and STRIDE, there is no descrip-
tion/reference of any privacy threat or countermeasure related to the right to restrict pro-
cessing. Thus, this right is not covered by STRIDE and LINDDUN.

6. Right to Data Portability: This right is not covered by STRIDE and LINDDUN, as there
is no description or reference related to the right to data portability in these two modelling
approaches.

7. Right to Object: In both LINDDUN and STRIDE, there is no reference to any privacy
threat, related to the right to object. Thus, this right is not covered by STRIDE and LIND-
DUN.

8. Right to Automated Decision and Profiling: This right is not covered by STRIDE and
LINDDUN, as there is no description or reference related to the right to an automated
decision and profiling in these modelling approaches.

International Data Transfer: The compliance requirements of International data transfers in
ACS are intended to ensure that the controller/processor complies with the GDPR. However,
neither LINNDUN nor STRIDE addresses the threat of ’Non-compliance of international data
transfer’.
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In the following section, we will elaborate on the challenges in modelling GDPR compliance
based on the previously discussed challenges in modelling data privacy threats in ACS.

2.3.3 Challenges in Modelling the GDPR-compliance

LINDDUN and STRIDE failed to model non-compliance threats of un-lawfulness, unfairness,
and non-transparency, as they do not meet the compliance requirements of lawfulness, fairness,
and transparency for processing the AC and its user’s personal data. The non-compliance threat
of un-lawfulness occurs when the processing of personal data invalidates any lawful basis. Con-
sent non-compliance 12, for example, occurs when trusted authorities fail to obtain the consent
of AC’s users (i.e., the driver/owner and passenger) before processing and sharing sensitive data
with third parties, as well as when users are unable to update, view, or withdraw consent while
their data is being processed. Similarly, neither LINDDUN nor STRIDE mentions any com-
pliance requirements for another lawful basis of data processing, such as legitimate interest,
contract, legal obligation, vital interest, or public interest. Vital interest is a lawful basis for
processing personal data under data protection laws, typically used when the data is necessary
to protect someone’s life or prevent harm. It applies in emergencies where consent isn’t feasi-
ble, allowing data processing to safeguard the individual or public from imminent threats. Any
lawful basis for data processing can be used to process the data of the ACS. For example, if
a malicious AC causes an accident, data processing can be based on ’vital interest’. However,
neither LINDDUN nor STRIDE addresses the threat of "not respecting vital interest". As a
result, there is a gap in both LINDDUN and STRIDE to cope with the compliance threats of
un-lawfulness, unfairness, and non-transparency.

Moreover, STRIDE and LINDDUN modelling techniques lack the privacy/compliance re-
quirements to ensure the principle of ’Purpose limitation’. For example, the data of ACS col-
lected for vehicle management should not be used to share with third parties (i.e., the insurance
company - Direct Line Group (DLG)). Likewise, these two modelling approaches do not pro-
vide any reference to the compliance requirement of ’data minimization. For example, service
providers and data processors (such as RSU, TA, and Uber) should only keep as much data as
is required to process it for a specific purpose. LINDDUN and STRIDE also do not meet the
’storage limitation’ compliance requirements, which assert holding the data until the purpose of
processing is completed. Thus, LINDDUN and STRIDE failed to deal with the non-compliance
threats of ’violating of purpose limitation’; ’non-compliance with data minimization’; and ’non-
compliance with storage limitation’

Another challenge and gap in LINDDUN and STRIDE modelling techniques are that they do
not deal with the compliance threat of ’unaccountability’. In our use-case of the Autonomous
Car (AC) system, the principle of ’Accountability’ plays a crucial role. If AC misbehaves or
has an accident, then AC’s users (i.e. driver/owner) should be accountable and explainable for

12https://www.linddun.org/
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this act. For example, in the case of collision and emergency, the AC’s owner/driver would be
accountable and explain this act [125]. Extensive research is going on the accountability [126,
92, 125] of the autonomous vehicle but none of the existing threat modelling techniques (i.e.,
LINDDUN/STRIDE) have covered this principle of GDPR.

The compliance requirements for the ’international transfer’ of personal data are not guar-
anteed by LINDDUN and STRIDE. For example, the consent of AC users should be obtained
before personal data is transferred for cross-border road safety investigations or commercial
purposes (i.e., EU-US privacy shield C/2016/4176) [127].

Furthermore, there is a gap in LINDDUN and STRIDE to meet the compliance requirements
of individual rights (Art.12-23). In the ACS, the users of the car should be able to exercise their
right to rectification, right to update, right to object, and right to restrict its data processing.
For example, it is the right of AC’s users to know how their data is gained, stored, shared, and
processed (Art. 13, 14 GDPR). The users of the AC may want to access its data from the TA or
other data processors where it can exercise its ‘right to access’ (Art. 15 GDPR). Similarly, these
two modelling methods do not respect the ‘right to rectification’; ‘right to restrict processing ’;
right to object’, ‘right to data portability’; and ‘right to automated decision making’.

Given the challenges of modelling ACS for GDPR compliance using STRIDE and LIND-
DUN, we are motivated to explore knowledge representation programming languages and logi-
cal reasoning, upon which a novel threat modelling technique can be proposed, as discussed in
the following section.

2.4 Knowledge Representation and Logical Reasoning

The creation of a suitably precise notation for representing knowledge is the core challenge of
Knowledge Representation in which the two significant representation schemes (i.e., Declar-
ative and Procedural schemes) were identified 50 years ago and have been widely used until
now [128]. The Declarative schemes are further categorized into logical and semantic net-
work schemes, where logical representation utilizes concepts like constants, variables, func-
tions, predicates, logical connectives, and quantifiers to express facts as logical formulae in
various logics (e.g., First or Higher- Order/Multivalued/Modal/Fuzzy, etc.). A knowledge base,
from this standpoint, is a compilation of facts and logical rules providing a limited description
of the world. Therefore, the fundamental principle of Knowledge Representation is crafting an
accurate way to express knowledge, where the use of representation schemes helps us struc-
ture and understand complex information about the world effectively [129]. In the following
sections, we will discuss different types of knowledge representation programming languages.
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2.4.1 Rule-based Knowledge Representation

Rule-based knowledge representation is a subset of the logical representation scheme that incor-
porates the domain knowledge necessary for problem-solving [130]. In this scheme, knowledge
is represented in the form of rules, typically structured as IF(condition)-THEN(conclusion)
statements. This method allows for the efficient organization and retrieval of knowledge by
breaking down complex information into manageable rules [131].

To enhance the exploration and utilization of rule-based knowledge bases, hierarchical ap-
proaches can be used. These approaches involve clustering rules into hierarchical frameworks,
which help in creating coherent and precisely defined clusters of knowledge. By organizing
rules hierarchically, it becomes easier to manage large sets of rules, ensuring that related rules
are grouped together and can be processed more efficiently.

This method has the important feature of being able to distinguish exceptional rules that
differ dramatically from other rules in the same cluster. By isolating these outliers, it becomes
possible to address unique or rare scenarios that may require special attention. This capability
is crucial for maintaining the accuracy and reliability of the knowledge base [132].

Furthermore, the hierarchical clustering of rules supports the clear and structured represen-
tation of domain knowledge. The hierarchical design of this organised approach allows for
systematic modifications, which makes it easier to maintain and update the knowledge base.

Overall, rule-based knowledge representation using hierarchical approaches provides an in-
novative and effective method for managing domain knowledge bases. It guarantees the devel-
opment of well-organized and precisely defined clusters of rules while concurrently allowing for
the identification and handling of exceptional cases, thus enhancing the overall representation
and usability of the knowledge base [133].

2.4.2 Defeasible Logic Knowledge Representation and Reasoning

Advancements in knowledge representation and reasoning have been significantly influenced by
research in non-monotonic reasoning, such as Defeasible Logic (DL), logic programming, and
argumentation [134]. The combination of Logic Programming and Defeasible Argumentation
has resulted in DeLP so that it is feasible to declaratively define data in the form of weak rules
and then employ the argumentation inference mechanism to justify the conclusions drawn from
the data [135]. These weak rules are an important component of adding defeasibility that will
be used to show a relation between pieces of information that, when all things are taken into
consideration, can be defeated.

In DeLP, the language is characterized by three distinct sets: facts, strict rules, and defeasi-
ble rules. Facts represent statements that are always true within the logic program. Strict rules
represent sound knowledge and are denoted by the symbol "<-" (e.g., Head <- Body). These
rules establish a strict connection between the rule’s head (consequent) and body (antecedent),
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meaning that if the body is true, the head must also be true. On the other hand, defeasible rules
represent tentative or weak knowledge and are denoted by the symbol "-<" (e.g., Head -< Body).
Defeasible rules provide a practical way to represent knowledge that can be used unless valid
arguments are presented against it. This type of rule expresses a weaker connection between the
rule’s head and body, indicating that while reasons to believe in the antecedent (Body) provide
reasons to believe in the consequent (Head), this connection can be challenged or overridden.
Strong negation in the head of program rules can indicate contradicting knowledge. A query (q)
in DeLP seeks to determine whether a specific conclusion is justified based on the provided facts,
strict rules, defeasible rules, and defeaters through dialectical analysis. A query q succeeds in
DeLP when there is a supporting argument (A) for it. An argument in DeLP is a logical sequence
deriving a conclusion from premises using facts and rules, while a supporting argument specif-
ically justifies a conclusion based on these premises. Moreover, dialectical analysis in DeLP
is the process of evaluating arguments and counterarguments to determine which conclusions
are justified by constructing and analyzing a dialectical tree, where nodes represent arguments
and edges represent defeat relations. Thus, DeLP’s structured approach, integrating facts, strict
rules, and defeasible rules, enhances its ability to navigate and represent complex knowledge,
facilitating the reasoning process.

DeLP uses defeasible inference and dialectical analysis to effectively handle contradictions,
warranting queries when their supporting arguments are undefeated, showing its advanced rea-
soning and data representation capabilities. Defeasible inference in DeLP can be blocked or
defeated through weak rules, defining the space where blocking may occur. If a supporting
argument for a query is not defeated, the query succeeds. The warrant technique, utilizing di-
alectical analysis, ensures that if an argument A supporting a query q cannot be refuted, the query
is warranted. Certain restrictions are imposed during dialectical analysis to prevent undesirable
outcomes, such as an infinite series of defeaters. DeLP adeptly manages contradicting programs
and facilitates DL reasoning, allowing the representation of both defeasible and non-defeasible
information.

For example, a DeLP knowledge base is used to check GDPR compliance for a wearable
device (like Fitbit) processing health data. Facts define that user consent is only given for in-
ternal processing (ConsentGivenForInternalProcessing(user)), while GDPR requires explicit
consent for any external sharing of personal data. Strict rules state that any purpose involving
personal data needs consent(ConsentGiven(Y,X) < −Speci f icPurpose(X ,Y )), and defeasible
rules infer potential non-compliance if required consent is absent (∼ConsentCompliance(Y,X)
-< ∼ConsentGiven(Y,X)).

When queried about GDPR compliance for external sharing, the DeLP Reasoner checks if
explicit consent is provided by identifying supporting argument and dialectical tree. Since con-
sent only covers internal use, the argument for non-compliance is undefeated, meaning a GDPR
non-compliance threat is inferred due to the lack of consent for external sharing. This demon-
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strates how DeLP can model GDPR requirements, identifying compliance risks effectively.

Characteristics of Defeasible Logic

The characteristics of DeLP play a crucial role in enhancing its applicability in legal reasoning,
particularly in modelling threats related to GDPR non-compliance. One noteworthy attribute is
its defeasibility, acknowledging the potential for conclusions to be overridden or revised, align-
ing well with the dynamic nature of real-world reasoning processes [136]. Previous research
on defeasible reasoning in natural language has explored methods to adjust the probability of
a conclusion when new, concrete information is introduced [137, 138]. This flexibility enables
the model to adapt to changing circumstances and evolving information, a critical aspect in legal
scenarios where contextual shifts are frequent.

Another notable feature of DeLP is the prioritization of rules, enabling the system to consider
the significance of certain rules over others [135]. This feature allows one to put preferences on
conflicting rules and draw the outcome based on the specified priorities. Hence, the embed-
ded conflict resolution mechanisms by prioritization of rules within DeLP address situations of
conflicting rules.

DeLP’s proficiency in handling inference with defaults is significant and enables the system
to conclude even in the absence of complete information. This capability mirrors the wide and
evolving nature of legal arguments and interpretations. Moreover, the non-monotonic nature of
DeLP provides a crucial analytical advantage by allowing conclusions to be retracted or adjusted
based on new information added to fill the gaps in a knowledge base, reflecting the cautious and
adaptable nature of legal analysis [139].

In conclusion, the combination of these distinctive features establishes DeLP as a robust
analytical logic for legal reasoning, notably highlighted in its effectiveness in modelling threats
related to GDPR non-compliance. DeLP proves valuable by tackling the dynamic, uncertain, and
complex aspects inherent in legal scenarios, providing a comprehensive and precise foundation
for legal analysis. This contribution significantly enhances the field of legal decision-making.
Therefore, the attributes of DeLP and its use in legal reasoning highlight its pivotal role in mod-
elling GDPR non-compliance threats, with priority logic being suitable for resolving conflicts
among defeasible rules.

2.5 Priority Logic

In the context of logical frameworks for knowledge representation and reasoning, priority is
commonly acknowledged as an essential element for characterising an individual’s knowledge
and its intended application. This prioritization is vital in instances where competing claims or
rules must be evaluated against each other to derive meaningful conclusions. For example, the
claim that Quakers are generally pacifists is more persuasive than the claim that Republicans are
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not generally pacifists [140]. Thus, the inclusion of priority within logical frameworks enhances
the accuracy and applicability of knowledge representation and reasoning systems, ensuring that
they are capable of managing and interpreting conflicting information in a manner that aligns
with human reasoning and real-world scenarios.

The authors in [135] have defined DeLP and a preference relation ’>’ among its defeasible
rules. When two argument structures where A defined as argument and h defined as literal,
<A1, h1> and <A2, h2> are compared; If (1) there is at least one rule in A1 and one rule in
A2 with ra > rb, and (2) there isn’t any rule in r’b ∈ A2 and r’a ∈ A1 with r’b > r’a,
then <A1, h1> is considered superior to <A2, h2>. Please note that ra and rb are the rules
in A1 and A2, respectively.

Defeasible reasoning, a classic challenge, can be adapted to manage conflicting information
through a preference-based approach [141, 142, 143]. Defeasible reasoning relies on the pri-
oritisation of rules, favouring the rule with higher priority in conflict situations. Therefore, this
prioritization mechanism, ensures that when contradictory information arises, the system can
selectively apply the most relevant rule to maintain logical consistency and accuracy.

The conflicting rules are resolved by prioritising the sources of information and choosing
data from the source that is most desired in the context of a contradiction [144]. This approach
makes use of preferences, which might change based on the situation, to solve reasoning prob-
lems. For example, when talking about general statements like ’birds fly’ may be replaced by
particular exceptions like ’penguins are birds that do not fly’ [145]. In short, conflicting rules
are addressed by assigning priority to the desired sources of information. The following section
elaborates on the related work and its limitations.

2.6 Related Work

Regulations like the GDPR have specific properties that make DeLP a suitable choice for inter-
preting its knowledge base. Regulations may complement, overlap, contradict, and change over
time [146]. DeLP is well-suited for this due to its intrinsic defeasibility, which enables conclu-
sions to adapt with the introduction of defeaters or arguments. The logical alignment of DeLP in
modelling regulations becomes clear when considering the common occurrence of overlapping
and contradictory legal texts across various government levels. Thus, the practical application of
DeLP in daily legal practice [147] emerges as a notable benefit for system modellers, supporting
decision assistance and legal reasoning [148].

Defeasibility is implemented through mechanisms from default logic, prioritization [149], or
norm’s partial ordering [150]. An extension of DL, known as Modal Description Logic (Modal
DL), incorporates modality to describe preferences among different legal interpretations [151].
This approach involves three types of rules: monotonic rules, non-monotonic (defeasible) rules,
and defeaters, which block conclusions instead of generating new ones [152]. While the di-
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rect handling of conflicting information in DL is computationally straightforward, it has found
extensive application in modelling various aspects of legal reasoning [153, 154], regulations
[155, 156], business rules, contracts [157], negotiation [158], and business process monitoring
of compliance [159].

The legal domain has experienced growing interest in applying argumentation and defeasible
reasoning. In a recent publication by [160], a comprehensive overview of various logic-based
approaches to defeasible reasoning is provided, including Defeasible Logic (DL), Answer Set
Programming, ABA+, ASPIC+, and DeLP. The authors’ comparative analysis assesses these
approaches from three distinct perspectives: the logical model (related to knowledge representa-
tion), the method (encompassing computational mechanisms), and the technology (considering
available software resources). However, it is important to note that the paper does not address
the specific relevance of GDPR compliance in the legal field, nor does it examine the logical
reasoning associated with GDPR compliance.

Similarly, the study by [161] demonstrates how the inherent characteristics of DL, such as ex-
pressiveness, contribute to the development of explainable, transparent, and justified intelligent
systems for GDPR compliance. The paper specifically focuses on the application of argumen-
tation theory in Medical Informatics, offering an overview of existing approaches documented
in the literature. However, it is crucial to highlight that the study does not present empirical
results to demonstrate the practical application of DL with conflicting rules for the stated objec-
tive. Moreover, the writer [162] argues that defeasible reasoning, valued for its efficiency and
simplicity, is well-suited for use as a modelling language in practical applications, such as the
representation of regulations and business rules. However, the paper does not provide concrete
examples of real-world applications, including how they might be applied to GDPR compliance
or how legal rules are prioritized. In a separate study, Pandit et al. [163] discuss the utiliza-
tion of open and shared technologies, specifically designed for GDPR compliance, to develop
knowledge-based systems. Their methodology utilized semantic web technologies (i.e., RDF
triples), chosen for their openness and adaptability in describing concepts and relationships.
However, the study’s scope is limited by the challenges of documenting exceptions within the
developed knowledge bases for this regulation.

In light of data protection compliance threat analysis, the authors in [164] have proposed
a framework for modelling compliance in which a System Security Modeller (SSM) tool has
been developed. This tool is expected to enable the automated detection of compliance issues
and end-to-end security concerns during system layout. However, the modeler cannot handle
conflicting and missing information, nor can it address emerging threats effectively. In [165],
the authors have provided a modelling framework motivated by the privacy-by-design concept
for designing systems that are GDPR-compliant. Semantic web technologies are also leveraged
to represent and query provenance data pertaining to GDPR compliance requirements [166].
But the modeler lacks the capability to manage conflicting and missing information in real time
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and is ineffective at addressing emerging threats. Additionally, the study fails to offer mitigation
strategies in cases of non-compliance. The authors have developed a provenance ontology called
GDPRov13 to express provenance data on consent and data lifecycles. A linked data version of
the GDPR text and an ontology defining its many terminology and concepts are both provided
by GDPRtEXT in the same work [167]. The semantic web-based approach enables the creation
of meaningful knowledge in terms of concepts and relationships with the flexibility to be de-
veloped and connected in accordance with requirements. For instance, an interactive ontology
for GDPR has been developed by Irem Besik14. Nevertheless, these ontologies have never been
translated into DeLP, which allows for the incorporation of new information and is well-suited
for modeling GDPR compliance threats.

Legal ontology, such as PrOnto [168, 169], aims to model GDPR requirements through
DeLP. However, it does not demonstrate how the formal model addresses the resolution of con-
flicting legal information. Similarly, Sovrano et al. [170] present the scenario where the GDPR
Art. 8 is overridden by corresponding regulation in Italy, achievable through modelling legal
rules in LegalRuleML using DL. Nevertheless, this study does not thoroughly explore the com-
plexities involved in converting between LegalRuleML and DL, nor does it address the issue
of missing information in the knowledge base. Similarly, the authors in [170] illustrated the
scenario where the GDPR Art. 8 is overridden by corresponding regulation in Italy, achievable
through modelling legal rules in LegalRuleML using DL. However, the study did not delve into
the intricacies and complexities involved in converting facts and rules from LegalRuleML to
DL. Another study by [171] proposed a formal modelling approach for GDPR compliance, em-
ploying interactive theorem proving, temporal logic, and Kripke structures. But this approach
operates within a "completed closed world", requiring all information related to GDPR require-
ments, security, and privacy to be explicitly formulated, which is not practical in real-world
scenarios.

The above research works have tried to enhance the structure and meaning of logical pro-
gramming and disjunctive databases to accurately depict incomplete information when multiple
outcomes are possible. However, most of them fall short of presenting a practical approach
for addressing this incomplete information in real-life scenarios including reasoning for GDPR
compliance. Many current benchmarks for reasoning are designed with scenarios where some
essential information is not provided and must be inferred by the model itself [172, 173, 174,
175]. There are also cases where datasets are structured so that none of the necessary rules
is directly given [176, 177, 178, 179]. In the topic of modelling GDPR compliance, our pro-
posed solution should deal with incomplete information scenarios; and the proposed reasoner
would generate a list of possible missing information (i.e., facts) in the knowledge base, and
then inquire from the user to explicitly supply the facts that need to be re-evaluated.

13https://harshp.com/GDPRov/
14https://github.com/irembesik/gdpr-ontology



CHAPTER 2. LITERATURE REVIEW 35

The distinctiveness of our work lies in five key aspects: (i) introducing an innovative solution
using DeLP to model GDPR compliance by developing a comprehensive knowledge base that
includes GDPR requirements (principles and user rights) (ii) Utilizing an inference engine based
on DeLP to infer non-compliance threats over this knowledge base, (iii) handling the "UNDE-
CIDED" query result by resolving the issue of conflicting rules and missing information, (iv) the
integration of threat mitigation into reasoning mechanism, (v) A Fitbit use-case demonstration
focusing on non-compliance threats and dealing with "UNDECIDED" query results.

This chapter provided the related work in the field that outlines its limitations and gaps. The
work of this thesis seeks to fill this gap in the literature. The next chapter describes the system
design and the proposed methodology of our problem statement.

2.7 Summary

This chapter have provided the background regarding existing threat modelling techniques with
their pros and cons. The limitation of these existing modelling techniques shows that they are
insufficient to model the data privacy threats and more specifically non-compliance threats. This
chapter have discussed the GDPR and its various principles in relation to data privacy threats.
This chapter has also highlighted knowledge representation and defeasible logic with its various
characteristics and described how it is an appropriate tool to model the legal norms and regula-
tions (i.e., GDPR). Furthermore, it provided related work in the field that outlines its limitations
and gaps.

The work of this thesis seeks to fill this gap in the literature. The next chapter describes the
system design and the proposed methodology of the problem statement.



Chapter 3

GDPR-compliance Threat Model: A
Holistic Solution Approach

This chapter outlines the methodology of our proposed solution, focusing on the system’s high-
level architecture, which includes the knowledge base and inference engine. We describe the
construction of a comprehensive GDPR knowledge base using various knowledge representation
programming languages, such as Rule-based and DeLP-based programming languages. This
involves integrating the system’s default knowledge base with a system-specific knowledge base
to build a comprehensive model for GDPR compliance.

We also detail the utilization of the inference engine in identifying potential non-compliance
threats within the knowledge base. Specifically, we employ a Rule-based inference engine for
the Rule-based knowledge base and a DeLP-based inference engine to perform reasoning over
the DeLP-based knowledge base.

Overall, this chapter provides a thorough overview of the design and functionality of our
GDPR compliance modeling system, demonstrating its ability to meet the stringent requirements
of modern data protection laws.

3.1 Overview of the Solution Approach

This section provides an overview of the development of the proposed GDPR-compliance threat
modelling technique based on logical reasoning. Technically, the proposed modelling solution
aligns with developing an expert system [180] tailored for GDPR compliance. Thus, this devel-
opment, as illustrated in Fig. 3.1, the process involves three key steps: constructing a GDPR-
compliant knowledge base that stores relevant rules and policies, designing a user interface that
allows modelers to specify system details (e.g., adding specific facts and rules into the knowl-
edge base to represent the system accurately), and developing an inference engine to perform
logical deductions on the knowledge base. This structure enables the system to dynamically
verify and enforce GDPR compliance through consistent, rule-based decision-making.

36
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Figure 3.1: A high-level system architecture of an expert system for modelling GDPR compli-
ance based on logical reasoning[180]

In the expert system example for GDPR-compliance, the knowledge base contains GDPR
rules and policies specific to data access permissions and role-based authorizations, such as
which roles are allowed to access certain patient data under the law. The reasoner processes
each data access request, comparing it against the rules in the knowledge base to determine
if the requester has the necessary permissions. If a non-compliance threat, like unauthorized
access, is detected, the reasoner denies access. The user interface allows healthcare personnel
to submit data access requests and receive feedback, either granting or denying access based
on GDPR compliance. This setup ensures real-time adherence to GDPR by verifying requests
before any sensitive data is accessed.

In the next section, we will discuss how we constructed the knowledge base, a crucial com-
ponent of the expert system.

3.2 Knowledge Base Construction

We have constructed a knowledge base for GDPR compliance by interpreting the principles,
obligations, and requirements (e.g., depicted in Table 2.4) into knowledge representation lan-
guages. For example, for our modeling tool, we use two important types of knowledge repre-
sentation languages: Rule-based and DeLP-based Programming. Initially, we tried Rule-based
programming language to develop the knowledge base [181, 180] and then converted it to DeLP
to better represent the legal requirements of the GDPR. This transformation enables the knowl-
edge to be expressed through a combination of related facts, strict rules, and defeasible rules,
allowing for a comprehensive representation of real-world scenarios. Constructing a complete
knowledge base covering all aspects of the GDPR is a substantial effort. Therefore, in this
chapter, we focus on specific GDPR requirements, such as "Consent as the legal basis for data
processing", as a proof-of-concept and for demonstration purposes.

Generally, to model a system for GDPR compliance, a knowledge base consists of two parts:
(1) general information applicable to all systems (i.e., system-default knowledge base) and (2)
specific knowledge for the system being modeled (i.e., system-specific knowledge base). Further
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explanations of our Rule-based knowledge base and DeLP-based knowledge base, including
their respective parts, are discussed in the following sections.

3.2.1 Building a Rule-based Knowledge Base

The knowledge base is represented using Rule-based/policy-based language such as RuleML
and Semantic Web Rule Language (SWRL). Every rule specifies a relation, recommendation,
directive, strategy or heuristic and has the IF(condition) T HEN(action) structure. As illustrated
in Fig. 3.2, the knowledge base for the GDPR non-compliance threat modelling consists of three
main areas: (i) STRIDE knowledge base: Rule-based threat library obtained from STRIDE,
LINDDUN knowledge base: additional threat trees described in LINDDUN specification and
converted to Rule-based language; and (iii) the GDPR knowledge base: obtained from Ontology
and expert knowledge using an SWRL as a combination of the Web Ontology Language (OWL)
and the Rule Markup Language (RuleML)1.

Figure 3.2: GDPR-Compliance Modelling Catalyst

The three aspects, i.e., security, data privacy, and GDPR-compliance sets of knowledge, in-
terplay with each other to make sure whether a service provider is compliant with the GDPR.
When developing the modeller, we employ STRIDE-the operational threat model with DFD
along with data security threats, LINDDUN-privacy threats tree, and the GDPR-compliance
baseline including the legal basis, accountability and governance, DS rights, and DS, DC, and
DP relationships. The Rule-based knowledge base is comprised of two parts: a default knowl-
edge base and a system-specific knowledge base as follows.

1https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
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Rule-based Default Knowledge Base

The default knowledge base for the GDPR non-compliance threat modelling consists of three
overlapped areas: (i) the STRIDE knowledge base converted to a Rule-based threat library, (ii)
the LINDDUN knowledge base which is additional threat trees converted to Rule-based knowl-
edge, and (iii) the GDPR knowledge base. Again, all of this knowledge is represented under
Rule-based/Policy-based language such as RuleML [182] and Semantic Web Rule Language
(SWRL)[183].

The first two areas are extracted from the existing threat modelling tools whereas the GDPR-
compliance knowledge base is developed by our team. For instance, we have taken consent as
the legal basis for processing personal data and used GConsent the OWL2 ontology to represent
consent for GDPR compliance. The ontology is based on an analysis of modelling metadata
requirements related to the consent lifecycle for GDPR compliance. For example, the consent
complaint requirements in our knowledge base are used as expressions such as "ConsentPro-

vided" and "ConsentRequestFormProvided".

Rule-based System-specific Knowledge Base

The second part of our knowledge base is the specific knowledge of a particular system to
be modelled. This is the duty of the modeller, who understands the system and will use an
existing tool to provide such information to the knowledge base. For example, for our use-case,
the Telehealth Services System (TSS), the modeller will add system-specific information to the
knowledge base using a provided tool (e.g., the Microsoft Threat Modelling Tool (MSTMT))
with the novel format of the DFD.

In the following section, we present how we developed the knowledge base based on defea-
sible logic.

3.2.2 Building a DeLP-based Knowledge Base

Similar to the Rule-based knowledge base, constructing the DeLP-based knowledge base fol-
lows our GDPR-compliance modeling framework. This framework determines whether a ser-
vice provider is GDPR compliant based on three factors: (i) system security threats, (ii) data
privacy threats, and (iii) the GDPR principles and requirements [180]. In this respect, we cre-
ate our modelling methodology which harnesses STRIDE and LINDDUN and integrates with
GDPR principles, as illustrated in Fig. 3.3. Our approach involves utilising STRIDE, an oper-
ational threat model to address system security threats, alongside LINDDUN, which presents a
privacy threat hierarchy with a primary emphasis on DS privacy threats. Additionally, we inte-
grate the six GDPR principles encompassing legal foundations, DS rights, accountability, gover-
nance, and the interplay between DS, DC, and DP. For this purpose, the Rule-based knowledge
for GDPR developed in this project [181, 180] is reused and converted into DeLP so that the
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knowledge is expressed as a collection of facts, strict rules, and defeasible rules to expressively
present real-world scenarios. This knowledge base encompasses both the general knowledge
shared across all systems (i.e., default knowledge base) and the specific knowledge unique to a
particular system that is being modelled (i.e., system-specific knowledge base).

Figure 3.3: Defeasible Knowledge base for GDPR-Compliance consisting of STRIDE Rule-
based security threats, LINDDUN privacy threat trees, and GDPR requirements.

DeLP-based Default Knowledge Base

The default knowledge base encompasses three core domains: (1) STRIDE knowledge base:
A Rule-based knowledge base of threats converted into DeLP, (2) LINDDUN knowledge base:
Integration of the LINDDUN Threat Tree into DeLP knowledge base, and (3) GDPR knowl-
edge base converted from the RuleML and Semantic Web Rule Language (SWRL) knowledge
extracted from the project [181, 180] into DeLP.

It is a substantial effort to build a complete GDPR knowledge base, and we focus on re-
quirements of the GDPR for proof-of-concept and demonstration. For instance, we construct a
knowledge base for Consent as the legal basis for processing personal data. We employ GCon-

sent which is an OWL2 ontology to present GDPR-compliant consent. This ontology is designed
after inspecting metadata requirements linked to the GDPR-consent lifecycle. For instance, the
specifications for consent compliance in this knowledge base are denoted through terms like
"ConsentGiven" and "RevokeConsent". We also leverage PrOnto, which is a Legal Ontology
(MeLOn) for modelling GDPR conceptual concepts[168], for our knowledge base.

DeLP-based System-specific Knowledge Base

As mentioned before, this part of the knowledge base is to depict a system being modelled which
involves system-specific insights. The modeller who possesses a comprehensive understanding
of the system would employ an existing tool to incorporate these particulars into the knowledge
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base. For our TSS use case, for instance, the modeller will directly infuse system-specific details
into the knowledge base in the form of defeasible facts and rules, which supplement the default
knowledge base.

In the previous sections, we discussed the construction of the knowledge base, a critical
component of our system design. Now, we will elaborate on the inference engine, another
essential component, which performs reasoning over the knowledge base. The knowledge base
serves as the foundation for the inference engine, with the rules and facts it contains directly
informing the engine’s decision-making processes.

3.3 Reasoning over Knowledge Base

As illustrated in Fig. 3.1, an inference engine is performed over the knowledge base to reason
about potential compliance threats in a system. To perform reasoning over different types of
knowledge bases, we use various types of inference engines, which are elaborated in the follow-
ing sections.

3.3.1 Rule-based Inference Engine

For Rule-based knowledge base, a Rule-based inference engine is utilised for reasoning, for
instance, a semantic reasoner with either backward-chaining or forward-chaining algorithms.
This reasoner takes the knowledge base as its input and iteratively infers new knowledge until a
goal has been reached (i.e., finding a specific non-compliance threat) or no rules can be matched
(i.e., finding all potential non-compliance threats). For instance, in the demonstration in chapter
4, we use the MSTMT’s inference engine which follows the following defined syntax to infer
potential threats.

Include: IF w is A, and x is B or y is C

Exclude: IF t is D, or u is E and v is F

THEN z = pw + qx * ry

The terms Include and Exclude work as IF(condition)−T HEN(conclusion) rules. If the
condition is satisfied as defined in Include, then whatever condition is written in Exclude the
inference engine should exclude it for the defined threats in the knowledge base. where A, B, C,
D, E, and F are sets in the antecedent and p, q, and r are constants, the variables w, x, y, t, u, and
v represent elements (or values) that belong to the respective sets.

3.3.2 DeLP-based Inference Engine

We leverage the defeasible reasoning algorithm proposed by [135] over our DeLP-based knowl-
edge base to determine whether a system is compliant with the GDPR. It plays a pivotal role in
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evaluating the truth value of a query in the form of logical formulas. The mechanism is struc-
tured in sequential steps including (1) Receiving Query, (2) Grounding the DeLP Knowledge
Base, (3) Generating Arguments, (4) Validating the Arguments, (5) Constructing Dialectical
Tree, (6) Marking and Evaluating Nodes, (7) Making Decision (Warranted?), and (8) Returning
Query Result as illustrated in Figure 3.4. The implementation of the standard reasoning algo-
rithm proposed in [135] is also available as a part of the Tweety project proposed in [184]. The
open source code related to this algorithm can be found here 2.

Figure 3.4: The defeasible reasoning route comprises eight sequential steps, spanning from
receiving a query to returning the query result.

In detail, the reasoning mechanism follows a systematic procedure that includes the 8 sub-
sequent steps as below, which guarantee the logical derivation of a reliable and valid conclusion
from the knowledge base (Figure 3.4).

1. Query Input: The reasoner processes a query formulated as a logical formula. This for-
mula represents a statement for which the reasoner determines the truth value, based on
the available knowledge base.

2https://github.com/TweetyProjectTeam/TweetyProject/tree/main/org-tweetyp
roject-arg-delp
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2. Grounding: This step substitutes variables with specific instances to create a concrete
representation of the knowledge base, resulting in a finite set of grounded facts and rules
for inference [139]. The grounding process makes the knowledge base finite and well-
defined, supporting further analysis.

3. Argument Generation: The reasoner identifies potential arguments in the grounded knowl-
edge base that could support or oppose the query’s conclusion, using the finite set of facts
and rules from the grounding process to ensure a manageable number of potential argu-
ments.

4. Check Valid Argument?: After generating all potential arguments, the reasoner identifies
only those that support the formula’s conclusion.

5. Dialectical Tree Construction: For each relevant argument, the reasoner constructs a di-
alectical tree [135], recursively applying defeater rules to uncover potential exceptions.
This process, constrained by the knowledge base’s structure, prevents infinite tree expan-
sion [162], ensuring the reasoning process remains manageable and efficient.

6. Marking and Evaluation: As dialectical trees are constructed, nodes are marked as De-
feated (D) or Undefeated (U). A node is marked with ’D’ when exceptions or defeaters
negate its supporting argument. Conversely, ’U’ denotes the absence of any negating ex-
ceptions or defeaters. This mechanism prevents infinite loops in the evaluation process.
The marking mechanism ensures the algorithm does not reconsider the same argument
paths, thereby facilitating efficient convergence.

7. Decision-Making (Warranted?): The decision-making process evaluates all constructed
dialectical trees, enabling the algorithm to identify whether there are valid arguments sup-
porting or opposing the query’s conclusion or if there are no valid arguments that exist at
all.

8. Return Query Result: Ultimately, given the finite set of potential arguments and the con-
trolled expansion of dialectical trees, the algorithm concludes with a result of "YES",
"NO", or "UNDECIDED".

For instance, we want to query: Is the TSS_Server allowed to process patient_P’s data
under Consent legal basis upon a knowledge base? This query can be expressed in the form of
the logic formula q: ConsentCompliance(TSS_Server, patient_P). The objective
is to determine whether this statement holds true in the knowledge base.

In Step (1) and Step (2), the algorithm verifies if q qualifies as a literal statement and if it can
be grounded by substituting variables with instances (i.e., TSS_Server and patient_P).
After Step (3), which generates a list of potential arguments, Step (4) involves identifying a
supporting argument (argument A) for the warranted query. From the given knowledge base, the
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algorithm finds the supporting argument, which affirms the query, as the rule:
ConsentCompliance(X,Y) -< DataSubject(Y), DataController(X),

ConsentGiven(Y, X). This rule asserts if patient_P has provided consent, and TSS_Server
is authorised to process the data.

Figure 3.5: A part of a dialectical tree constructed for supporting argument A

The algorithm then constructs a dialectical tree for argument A as shown in Fig. 3.5 (Step
(5)). The root of the tree denoted as (A,q) representing the literals for argument A and query
q (i.e., literal A=ConsentCompliance(TSS_Server,patient_P)-<DataSubject
(patient_P), DataController(TSS_Server), ConsentGiven(patient_P

,TSS_Server) and q=ConsentCompliance(TSS_Server,patient_P)).
In the given knowledge base, argument A has two defeaters ∼D1 and ∼D2 that are con-

structed as two nodes in the tree denoted as Node1: (∼D1,q) and Node2: (∼D2,q).
∼D1 is a literal obtained from the associated rule (∼ConsentCompliance(TSS_Server,
patient_P) -< DataSubject(patient_P), DataController(TSS_Server),

ConsentExpired(patient_P, TSS_Server) that affirms the non-compliance as the
given consent is expired. Similarly, the defeater ∼D2 affirms patient_P has revoked the
consent. This concludes that TSS_Server is not allowed to process Patient_P’s data.

In Step (6), from the dialectical tree traversal, it is concluded that even though patient_P’s
consent is provided, A is defeated due to the existence of some defeaters. Therefore the root of
the tree is marked as defeated ′D′ (i.e., (A,q)D), as represented in Fig. 3.5. Node1 and Node2
are marked as undefeated ′U ′ (i.e., (∼D1,q)U and (∼D2,q)U)), implying that no exceptions or
defeaters are further applicable in these cases.

In the final step (7), the reasoning algorithm determines that the query q is unwarranted
and subsequently, in step (8), returns a negative response, ’NO’. This signifies that, within
the framework of defeasible reasoning, the evidence aligns to assert that TSS_Server is not
authorised to process patient_P’s data under the consent legal basis.

3.4 Summary

This chapter presents the methodology of the proposed GDPR compliance modelling technique,
focusing on the system’s high-level architecture, which includes the knowledge base and infer-
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ence engine. We describe the construction of a comprehensive GDPR knowledge base using
rule-based and DeLP languages, integrating both default and system-specific knowledge bases.
Furthermore, this chapter explains the utilization of inference engines to identify potential non-
compliance threats, employing a rule-based inference engine for the rule-based knowledge base
and a DeLP inference engine for the DeLP-based knowledge base.

The next chapter will detail the implementation of our proposed modelling technique for
GDPR compliance using a Rule-based programming language, along with its results and limita-
tions.



Chapter 4

Rule-based Threat Modelling for
GDPR-Compliance

This chapter presents a novel comprehensive solution for developing a threat modelling tech-
nique using Rule-based programming languages to address and mitigate threats of non-compliance,
taking GDPR requirements as the baseline and combining them with existing security and pri-
vacy modelling techniques, such as STRIDE and LINDDUN. To achieve this, we propose a new
data flow diagram integrated with GDPR principles, introducing new entities and their relation-
ships for modelling GDPR compliance. This chapter further illustrates the implementation of
the proposed method to infer non-compliance threats using the developed knowledge base for
non-compliance threats in the Telehealth Service System (TSS) use case. We demonstrate the
solution for threats of non-compliance with legal basis and accountability in the TSS use case.
Finally, this work presents the results, providing analysis and discussions to show the feasibility
and effectiveness of the proposed solution.

As mentioned in Chapter 3, the Rule-based knowledge base is constructed by combining
the system-default and system-specific knowledge bases, upon which the Rule-based inference
engine is utilized to perform the reasoning. The following section presents a novel data flow
diagram developed to show how modellers can specify their systems, including GDPR entities
and their relationships.

4.1 A Novel Data Flow Diagram

GDPR concepts are integrated into the legacy DFD to form a novel DFD. For this reason, GDPR-
related roles are introduced to show adherence to the system’s regulations. The novel DFD is
an idea to complement the existing DFD defined in STRIDE with the new entities and their
relationships (Fig. 4.1).
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4.1.1 New Entities for Modelling GDPR Compliance

The new entities are defined for the GDPR roles such as Data Subject (DS), Data Controller
(DC), and Data Processor (DP). Other entities such as Supervisory Authority (SA) (i.e., a gov-
ernment entity to govern compliance with the GDPR) and Reporting Mechanism (RM) (i.e.,
where DS can lodge a complaint against any data breach, and DC and DP can report any data
breach through RM to Supervisory Authority) are also defined. Compliance Trust Boundary
Border is also implemented to present that compliance trust boundary would be where a system
attains an increased privilege level of compliance. In Fig. 4.1 the circle shape is depicted as
processes, the square shape reflects the external entity (e.g., DS), and the entity with a rectangle
shape is the traditional Generic Data Store (GDS). Some entities with their attributes are defined
below:

Element1 Data Controller(DC)
Actions: Provide; Request; Notify; Response;
Accomplish
Properties: ConsentRequestForm; CleanData;
ErasingData; EraseDataWithin28Days; DataBreach

Element2: Data Subject(DS)
Actions: Provide; Request; Complain
Properties: Consent; ErasingData;
DataBreach

4.1.2 New Relationships for Modelling GDPR Compliance

The interactions among various entities in a complex system result in challenging tasks to
model GDPR-compliance [185]. In this project, we define a variety of interactions between
the new entities with attributes in order to help the modellers specify their system in detail. In
our demonstration, we build new types of relationships between entities in the proposed DFD
with attributes based on the GDPR requirements using the MSTMT. For instance, as shown
in Fig. 4.1 the DS-DC relationship will have some attributes such as ConsentProvided, and
RequestForErasingData with detailed information on the Consent and Right to Erasure as fol-
lows:

Relationship1: DS-DC, DC-DS
Properties: (DS-DC)ConsentProvided,
RequestForErasingData;
(DC-DS)ConsentRequestFormProvided

Modellers then can select the relationships with attributes in their systems, providing specific
knowledge for the inference engine to accurately determine potential non-compliance threats
(i.e., non-consent and non-provided right to erasure).

The chronological order in Fig. 4.1 is represented through the relationships among entities
and the directional data flow arrows, which together indicate the sequence in which processes
occur within the system. The relationships between entities, such as the DS, DC, DP, RM and
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SA, are connected by directional arrows, visually guiding the logical flow of data and estab-
lishing the order of operations. The flow begins with the DS, who provides consent (denoted
as "Consent Provided") to the DC, marking the initiation of the process. The DC processes this
consent and forwards the necessary data to both the GDS for storage and the RM for compliance
purposes. The RM subsequently interacts with the SA to ensure GDPR compliance by sending
reports. Simultaneously, the DP may receive data from the DC for further processing. The di-
rectional arrows connecting the entities clearly define how data flows chronologically through
the system, reflecting the progression of GDPR-compliant activities such as data collection,
processing, storage, and reporting in a structured and well-defined order.

Figure 4.1: The proposed DFD can specify data flow between the new entities (GDPR-related)
and the traditional entities (System-related)

In this section, we illustrate the novel DFD for modelling GDPR compliance. In the next
section, we will demonstrate how the proposed DFD is mapped onto the roles of telehealth
services.

4.2 Use-case: Modelling the GDPR Compliance for Tele-health
Services System

This section describes how the Rule-based threat modelling technique is employed in TSS use
case [186].
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4.2.1 Consent and Right to Erasure in Telehealth Services

Telehealth is the application for the provision of a variety of user-group-specific healthcare ser-
vices to individuals (e.g., patients, physicians, nurses, etc.) who are located in a diverse range of
locations [187]. The TSS has been facing various challenges related to the security and privacy
of patients. For example, inadequate security procedures allow for potential data breaches [186],
causing patients and healthcare professionals to be vulnerable to security and privacy threats
[188]. STRIDE was employed to identify every possible security threat to TSS in [186] and it
has shown that the non-compliance threats could result from STRIDE security threats emerging
within TSS (e.g., non-consent, non-providing right to erasure, and non-accountability).

In TSS, regardless of any legitimate interest, patients should be requested for consent to
process data. The patients might also be requested for consent before their data is processed or
shared with third parties by a data processor (such as an Organ Transplant Service). Moreover,
a patient may request to erase his/her personal data from the data stores; and the right to erasure
may be violated if the DC or DP fails to provide the DS with the required data erasure, posing a
non-compliance threat of the non-provided right to erasure.

4.2.2 Data Flow Diagram for Telehealth Services

The proposed novel DFD is mapped on the roles of telehealth services as shown in Fig. 4.1. As
Patient (P) plays the role of the DS; Telehealth Service Server takes the role of DC; and Organ
Transplant Service (OTS) is the DP in the system. Therefore, these entities are playing two
separate tasks for the GDPR-related roles and the system-related roles.

As STRIDE does not provide a mechanism for modellers to add GDPR-related information
to the DFD, the ultimate purpose of developing the novel DFD is for the modellers to describe
their systems in relation to the GDPR legislation. In our proposed modelling tool, modellers can
add a variety of entities, relationships, and events with associated characteristics so that it can
help infer how the system demonstrates GDPR compliance.

For example, in Fig. 4.1, the relationship between P(DS) and T SS(DC) with the annotations
of CP(ConsentProvided) and CRFP(ConsentRequestFormProvided) reflects that the P(DS)

provides consent when the consent request form is provided by T SS(DC) for processing the
personal data with all of its compliance requirements (i.e., specific, cleared, and direct etc.).
The tool automatically determines that consent has been granted and does not add a non-consent
threat to the list of threats in the report. I added annotations and directional flow indicators to
show that P(DS) provides consent only after receiving the consent request form from TSS(DC).
This order is illustrated by labeled arrows, depicting the step-by-step progression of the consent
process to make the chronological sequence clear. Additionally, the clean process is introduced
in the DFD to reflect that the DS would be able to exercise Right to Erasure so that personal data
is completely erased from the GDS. However, neither the request for Right to Erasure from DS is
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illustrated, nor are its compliance requirements met by DC or DP. As a result, the MSTMT tool
equipped with the proposed DFD would generate the threat of a non-provided Right to Erasure.

4.2.3 Non-compliance Threats

The non-compliance threats (i.e., non-consent, and non-provided Right to Erasure) that might
occur in the TSS use case are presented in detail as follows:

Threat type: non-consent
IF DS.Provide{Consent}=NOT AND
DC.Provide{DS.ConsentRequestForm}=NOT
THEN {non-Consent}

Threat type: non-provided right to erasure
IF DS.Request{DC.EraseData} AND
DC.Request{GDS.CleanData}=NOT AND
DC.Request{DP.EraseData}=NOT AND
DP.Request{GDS.CleanData}=NOT OR
GDS.Response.{cleanData}=Not AND
DC.Notify{RecipientAboutErasingData}=NOT AND
DP.Notify{RecipientAboutErasingData}=NOT AND
DC.Accom Request{EraseDataWithin28Days}=NOT AND
DP.Accom Request{EraseDataWithin28Days}=NOT
THEN {non-provided right to erasure}

A non-compliance threat might be a consequence of more than one threat in different cate-
gories inferred by STRIDE. For instance, the threat of non-Accountability can be an aftermath
of some types of security threats identified by STRIDE itself. However, our technique shows
that even a system without any security threats related to the non-Accountability principle, still,
if the system does not implement an RM for which DC or DP can notify SA of data breaches
then there will be the threat of non-accountability.

In the telehealth use case, the RM process (depicted from the DFD) demonstrates that the
T SS(DC) and OT S(DP) are responsible for notifying SA of data breaches. Otherwise, there
would be a threat of non-accountability caused by either T SS(DC) or OT S(DP). The rules for
identifying non-accountability threat is depicted below:

Threat type: non-accountability
IF DS.Complain{RM.DataBreach} AND
DC.Report {RM.DataBreach}=NOT AND
DP.Report{RM.DataBreach}=NOT
THEN {non-accountability}

4.2.4 Templates for Modelling GDPR-compliance Threats

A new template for our proposed modelling technique is developed in addition to the built-in
templates developed by MSTMT. This template for the GDPR-compliance threat modelling is
designed to implement all of the new entities we have introduced (i.e., GDPR role-based entities
and relationships) along with pre-defined rules associated with the entities. As a result, this



CHAPTER 4. RULE-BASED THREAT MODELLING TECHNIQUE FOR GDPR 51

template supports modellers to understand more about the GDPR-compliance requirements and
easily model their systems using the tool.

To demonstrate the compliance threats for the use case, a new template designed for TSS
has been developed (along with a DFD for the use case illustrated in Fig. 4.1). The DFD uses
this template to model the TSS system in an effective and convenient manner.

The GDPR threat modeling template is provided on GitHub1 and can be applied in practice
to model various systems for GDPR compliance. For instance, the template has been used to
model a telehealth service system, where the relevant entities and their roles were identified and
mapped to GDPR-defined entities such as DS, DC, DP, and SA. By establishing the relationships
between these entities, the compliance requirements were demonstrated effectively.

The template supports further analysis by allowing the generation of reports to identify any
non-compliance threats. These reports highlight potential GDPR violations and provide mitiga-
tion suggestions to address the identified risks. Beyond telehealth systems, the template can be
applied to any other system by following a similar approach:

1. Identify the entities and their roles in the target system.

2. Map these entities to GDPR-defined roles (e.g., Data Subject, Data Controller).

3. Analyze their relationships to demonstrate the system’s compliance requirements. Gener-
ate reports for any identified non-compliance threats and suggest mitigating actions.

We have showcased how the proposed Rule-based modelling technique for non-compliance
threats can be employed for the TSS. The next section will further discuss and analyse the results.

4.3 Results, Analysis and Discussion

In this section, results from our proposed technique for the TSS use case are presented. An
insightful analysis and discussion of the results are also provided.

4.3.1 GDPR-compliance Threat Reports

For the demonstration, we use MSTMT equipped with the proposed DFD to identify GDPR-
compliance potential threats for the TSS use case. The MSTMT with the novel DFD provides a
facility for modellers to describe their system in regard to the GDPR legislation, which can then
be further translated into the knowledge base on the back end (i.e., System-specific Knowledge

base). Combining with the Default Knowledge base, the list of potential threats is generated by
sparking the MSTMT built-in inference engine over the whole knowledge base (i.e., clicking on

1https://github.com/nailaazam/ModellingGDPRCompliance/blob/main/template/
nonCompliant.tb7
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the ’Generate a Report’ button in MSTMT). Based on the output from the inference engine, a
report is generated which shows a list of potential non-compliance threats2. Fig. 4.2 shows a
part of the non-compliance threat report that we have obtained from the tool.

Figure 4.2: A part of the GDPR-compliance threats report generated by MSTMT

Threats to non-provided Rights to Erasure and non-Accountability are identified across the
TSS entities and recorded in the report results. Even though the DFD does not provide informa-
tion to fulfil the compliance requirements of the Right to Erasure and Accountability principle,
the report does not result in a non-Consent threat. This is also because in DFD there is an il-
lustration of consent requirements in the form of expressions (i.e., CP(ConsentProvided) and
CRFP(ConsentRequestFormProvided)).

4.3.2 Analysis and Discussion

We have demonstrated the three potential non-compliance threats i.e., non-consent, non-provided
right to erasure, and non-accountability for the TSS use case. As shown in Table 4.1, symbol
(×) shows the mapping between non-compliance threats and the entities (i.e., the source of the
threats) defined in the DFD. As already mentioned the report does not generate the non-Consent

threat as the system described in the DFD is compliant with the legal base (i.e., Consent) re-
quirement. However, the non-provided Right to Erasure and non-Accountability threats occur
across all of the entities T SS(DC), OT P(DP), GDS except the P(DS). This is because there is
not enough information related to the compliance requirements that can be obtained from the
DFD for further analysis of potential non-compliance threats.

The results show that if necessary compliance requirements can be obtained from the DFD
then the related non-compliance threat will not be presented in the report. It can be understood

2https://github.com/nailaazam/ModellingGDPRCompliance
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Table 4.1: Mapping between GDPR-compliance Threats and Sources of Threats

Compliance
Threats

TSS(DC) OTP(DP) GDS P(DS)

Consent
Right to Erasure × × ×
Accountability × ×

that the system, as illustrated by the DFD, is compliant with this type of GDPR requirements,
except for providing more information to describe the system in more detail. On the other hand,
we have shown that a non-compliance threat (i.e., non-accountability) can still occur in a system
even though there is no security threat related to it. These results of identifying non-compliance
threats from a variety of information sets are evidence of the feasibility and effectiveness of the
proposed GDPR-compliance threat modelling technique.

4.4 Limitations

Rule-based threat modelling for GDPR compliance has several significant limitations. Firstly,
the Rule-based knowledge base strictly follows predefined rules without considering exceptions
or changes in context. This rigidity makes it difficult to adapt to new or evolving GDPR re-
quirements and handle intricate scenarios where exceptions might apply or rules might conflict.
Additionally, as the number of rules increases, managing and maintaining the Rule-based knowl-
edge base becomes increasingly complex. Scalability is also an issue, as adding new rules or
modifying existing ones can negatively impact our system performance.

Moreover, Rule-based systems struggle with ambiguity, which is often present in legal texts
and compliance scenarios. They require precise definitions and straightforward scenarios, which
are not always available, making it challenging to address uncertain information effectively.
The Rule-based knowledge base also lacks contextual understanding, as it operates solely on
predefined conditions and actions without considering the broader context, leading to potentially
incorrect compliance assessments in complex situations. Furthermore, maintaining and updating
the rule base to reflect the latest GDPR amendments and interpretations demands significant
manual effort. Continuous monitoring and updates are essential to ensure ongoing compliance,
adding to the overall maintenance burden.

4.5 Summary

This chapter presents a holistic solution for a threat modeling technique to address and mitigate
issues of non-compliance by integrating GDPR legislation with the security and privacy model-
ing techniques STRIDE and LINDDUN. The proposed technique includes a new DFD for mod-
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elers to precisely describe a system with GDPR compliance and to infer non-compliance threats
using the developed rule-based knowledge base. For demonstration, we apply this technique to
identify non-compliance threats in a telehealth service, focusing on issues such as non-consent,
non-compliance with the Right to Erasure, and non-compliance with Accountability. The re-
sults demonstrate the feasibility and effectiveness of this modeling technique in addressing such
threats.

The next chapter will introduce the use of Defeasible Logic Programming, a non-monotonic
formalism with conflict-solving capabilities [135], which supports legal reasoning and compli-
ance checking. We will further illustrate how we implemented the defeasible inference engine
to perform reasoning over a constructed GDPR compliance knowledge base.



Chapter 5

Defeasible Logic Programming for
Modelling GDPR-Compliance

This chapter elaborates on the characteristics of Defeasible Logic Programming (DeLP) that
make it more suitable for modelling non-compliance threats to GDPR compliance. It details
the process of converting a Rule-based knowledge base discussed in the previous chapter into
a DeLP knowledge base, ensuring a seamless transition while maintaining the integrity of the
original data and logic.

This chapter provides an in-depth explanation of the system design, outlining the structure
of the logic formulas and the implementation of the DeLP reasoner. This includes a step-by-step
guide on how the logic formulas are constructed, how rules are defined, and how exceptions are
managed within the DeLP framework.

Furthermore, we analyze the complexities involved at each stage of the reasoner’s operation.
We introduce the concepts of vertical and horizontal complexity to provide a comprehensive
understanding of the challenges and performance metrics of the system. Understanding these
complexities is crucial for optimizing the reasoner’s efficiency and effectiveness in various sce-
narios. By breaking down the intricate details of the DeLP implementation and its complexities,
we aim to provide a clear framework for enhancing the performance and accuracy of GDPR
compliance modelling. This comprehensive analysis ensures that the DeLP reasoner can han-
dle the dynamic and evolving nature of GDPR regulations, offering robust solutions for legal
reasoning and compliance checking.

5.1 DeLP for GDPR-compliance Modelling

GDPR aims to enforce the protection of personal data confidentiality by adhering to its funda-
mental principles and rigorous standards [189]. To ensure compliance, service providers must
navigate through complex legal requirements, exceptions, and contextual considerations, mak-
ing traditional logic insufficient for capturing the intricacies of GDPR [55]. On the other hand,
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DeLP allows defeasible reasoning and default inferences, which are essential for modelling the
uncertainty and flexibility inherent in GDPR compliance due to its legal dynamics property
[190]. With its characteristics, DeLP facilitates the representation of rules and their exceptions,
making it suitable for handling situations where certain rules can be overridden by other rules or
contextual factors. This capability enables the formalism to accommodate the various exceptions
and contextual considerations found in GDPR [11].

In this regard, our research delves into an extensive analysis of constructing a knowledge
base using DeLP and conducts DeLP reasoning using DeLP to effectively determine GDPR
non-compliance threats.

5.1.1 Defeasible Knowledge Base

To lay the foundation for modelling GDPR compliance, we commence by defining relevant
facts about entities essential to the regulation, such as DS, DC, and DP. For instance, we may
establish a fact denoting DC(T SS_Server), signifying that T SS_Server operates as a DC within
the system. Subsequently, we develop a set of rules that encapsulate the GDPR principles, legal
grounds for data processing, and mechanisms for reporting data breaches. This combination of
facts and rules forms a building block for a comprehensive GDPR-compliance knowledge base.

As a requirement of the GDPR, data processing activities can only be carried out once DC

and/or DP obtain Consent from DS. The GDPR also specifies a DS’s right to withdraw consent
at any time. When consent is revoked, DC must stop processing data to comply with GDPR.
Defeasible reasoning is well-suited to represent this situation. We can define a rule that allows
data processing based on consent, and another rule that defeasibly revokes data processing in
case of consent withdrawal. This means the initial rule providing consent can be overridden by
the defeater rule when the consent is revoked. For example, we can define the following DL
rules:

r1: ConsentCompliance(X,Y) -<

DS(Y), DC(X), ConsentGiven(Y,X)

r2: ∼ConsentCompliance(X, Y) ←
DS(Y), DC(X), ConsentGiven(Y,X), RevokeConsent(Y,X)

The first rule r1 states that if Consent is given by DS(Y) to DC(X), then
ConsentCompliance(X,Y)= YES, meaning that the DC(X) is compliant with the consent
requirement of the GDPR. The second rule r2 states that although Consent is given, if it is later
revoked, then ConsentCompliance(X,Y)=NO. r2 is a strict rule (denoted by the symbol
←) and overrides r1, which is a defeasible rule (denoted by the symbol −<).

DeLP enables us to construct arguments based on the available knowledge base. For in-
stance, given the facts DS(patient), DC(TSS_Server) and ConsentGiven(patient,
TSS_Server), we can build ConsentCompliance(TSS_Server,patient)=YES ar-
gument, given a valid consent. However, introducing a new fact ConsentExpired(patient,



CHAPTER 5. DEFEASIBLE LOGIC PROGRAMMING FOR GDPR-COMPLIANCE 57

TSS_Server) would defeat this argument, resulting in a response of NO.

5.1.2 Conversion from Rule-based to DeLP-based Knowledge Base

A semantic rule-based knowledge base for GDPR compliance with reasoning capability has re-
cently been investigated and it is still in its infancy [181, 180]. We take a step further to construct
a complete knowledge base by integrating the existing related knowledge about the GDPR and
integrating with DL which offers non-monotonic reasoning capabilities for the compliance as-
sessment. Fig. 5.1 illustrates the process of the conversion from standard rule-base knowledge
to DL as the following steps:

Figure 5.1: Conversion process of transforming rule-based to defeasible knowledge base

1. Construct the Knowledge Base with Insights: To leverage an existing rule-based knowl-
edge base, we begin by analysing its structure and identifying relevant facts, the possibility
of strict and defeasible rules, and their relationships. This knowledge is transformed into
DL, combining strict rules and facts to describe specific scenarios (e.g., TSS), while de-
feasible rules capture general statements that can be overridden by defeaters.

2. Incorporate Defeaters and Conflict Resolution: Additional information and rules are in-
corporated into the defeasible knowledge base in the form of DL defeaters. Introducing
defeaters enables the expressive description and handling of scenarios such as consent
revocation, data breach reporting, and legal data processing grounds.

3. Preserve Integrity Constraints: Integrity constraints are also introduced into the DL knowl-
edge base during conversion as supplementary knowledge in order to guarantee data in-
tegrity. This process involves incorporating specific constraints from Compliance’s legal
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requirements to ensure compliance. These constraints are implemented as defeasible rules
within the DL knowledge base.

4. Validating Correctness and Consistency: We created an inference engine to rigorously
compare DL-based reasoning with the original rule-based system, ensuring consistent re-
sults for known inputs. This validation verifies that the transition to DL maintains the
effectiveness of the compliance model.

For converting a rule-based system to a defeasible logic (DL) knowledge base, consider
the GDPR rule on data access requests: in a rule-based system, we might have a rule stat-
ing, "IF a data subject requests access, THEN access must be granted within 30 days." In the
DL knowledge base, this defeasible rule is translated directly as " RighttoAccess(Y,X) − <

AccessGrantedWithin30Days(X ,Y )", maintaining its mandatory nature. Additionally, we add
flexibility with a defeater: "IF a data subject is under investigation for fraud, THEN access
may be delayed." This translation allows DL to handle exceptions by letting specific conditions
override the strict rule when justified, aligning with GDPR’s provisions for legal exceptions.

In the above section, we elaborated on the conversion of the rule-based knowledge base to
a DeLP-based knowledge base. In the next section, we will illustrate the DeLP-based system
design for modelling GDPR compliance.

5.2 System Design

The design of our DeLP-based threat modelling technique for GDPR involves several key parts:
the knowledge base, reasoning mechanism, and user interface. The knowledge base holds both
general GDPR principles along with security and privacy threats (STRIDE and LINDDUN), and
specific details about theTSSuse case.

Figure 5.2: System architecture for GDPR compliance modelling system using DeLP with a
combined knowledge base
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5.2.1 System Overview

Our system design centres around constructing a GDPR-compliance knowledge base and a rea-
soner in which the capabilities of DeLP are leveraged. To achieve this, we first converted the
STRIDE and LINDDUN threat modelling frameworks into DeLP, effectively representing var-
ious security and privacy considerations. Then, the GDPR-specific knowledge base, which in-
cludes facts, strict rules, and defeasible rules tailored to GDPR compliance requirements, is
integrated to form the complete knowledge base. Fig. 5.2 depicts the overview of the system
including components and interactions among them.

As described in Section 3.2, the knowledge base is comprised of two parts: the default
knowledge base, which contains generic information applicable to various scenarios, and the
system-specific knowledge base, which incorporates domain-specific facts and rules relevant to
the TSS use case. This approach ensures flexibility and adaptability, allowing us to model differ-
ent GDPR scenarios effectively. To implement the DeLP, we develop our solution based on the
Tweety project1 utilising its functionalities for logic and argumentation reasoning [135, 184].
It also offers tools and libraries that facilitate the development of intelligent systems, reasoning
engines, and applications that rely on structured knowledge representation. To perform reason-
ing, a DeLP reasoner is implemented that takes the constructed knowledge base and a query q

as inputs and outputs a conclusion for the query q.

5.2.2 Logic and Formula

DeLP leverages the concept of DL and Argumentation that allows for the representation of ex-
ceptions and defeaters and facilitates defeasible logical reasoning. In this regard, the DeLP
knowledge base is comprised of facts, (strict and defeasible) rules and queries that are all in
the form of logical formulas. A literal, which stands for an unambiguous assertion, or a more
intricate logical expression incorporating variables and predicates can be considered formu-
las. For instance, a patient P is a DS which is a fact in the knowledge base and is spec-
ified by the literal formula DS(P). A defeasible rule is also in the form of a formula like
ConsentCompliance(X,Y) -< DS(Y), DC(X), ConsentGiven(Y,X) states that
if X is DC, Y is DS, and Y grants consent to X , then X is compliant with the GDPR consent legal
basis to process Y ’s data. In this rule, X and Y are specified as variables and can be replaced by
appropriate instances (i.e., ground literal).
∼ConsentCompliance(X,Y) ← DS(Y), DC(X), ConsentExpired(Y,X) is

an example of a strict rule stating that DC(X) is not compliant with consent legal basis for pro-
cessing Y ’s data as the given consent is expired. This rule also implies that there should be an-
other fact or rule specifying the given consent between X and Y (i.e., ConsentGiven(Y,X)).
Note that a strict rule and a defeasible rule are distinguished from one another by the symbols

1https://github.com/TweetyProjectTeam/TweetyProject
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"←" and --<, respectively. The latter rule is a defeater for the former rule. An example of a
defeasible knowledge base including these two rules is as follows:

r1: ConsentCompliance(X,Y) -<

DS(Y), DC(X), ConsentGiven(Y,X)

r2: ~ConsentCompliance(X,Y) ←
DS(Y), DC(X), ConsentExpired(Y, X)

r3: ~ConsentCompliance(X, Y) ← DS(Y), DC(X),

ConsentGiven(Y,X), RevokeConsent(Y,X)

r4: RevokeConsent(Y,X) ← ConsentExpired(Y,X)

f1: DS(patient_P)

f2: DC(TSS_Server)

f3: ConsentGiven(patient_P, TSS_Server)

f4: ConsentExpired(patient_P, TSS_Server)

Here r1 is a defeasible rule and r2, r3 and r4 are strict rules. f 1, f 2, f 3, f 4 are facts specifying
instances (i.e., T SS_Server as a DC and patient_P as a DS) known as ground literals. To
perform reasoning over the above-mentioned knowledge base, the DeLP reasoning algorithm
is employed, which is elaborated in the following section.

5.2.3 DeLP Reasoning Mechanism

We implement a mechanism to reason about a query in the context of DeLP, utilizing the algo-
rithms proposed in [135, 184], as described in the various reasoning steps in Section 3.3.2. This
reasoner presents a comprehensive implementation of the algorithm using a DeLP for evaluating
the warrantability of a given literal formula (i.e., a query) upon the knowledge base defined in
DeLP. The pseudo-code for the implementation is presented as follows:

INPUT: delp (DeLP program), q (query formula)

OUTPUT: result (YES, NO, UNDECIDED)

REASONER(delp, q)

// Validate the query formula

1: validate_literal_ground(q)

// Grounding facts and rules in DeLP

2: groundDelp = ground(delp)

// Initialise warrant value for the query

3: warrant = FALSE

// Generate supporting arguments for the query

4: args = get_arguments(groundDelp, q)

// Construct a dialectical tree

5: FOR arg IN args:

5.1 dtree = createDialecticalTree(arg)

// Initialise a stack for tree traversal
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5.1 stack = create_Deque()

5.2 stack.add(dtree)

// Marking and Evaluation

5.3 WHILE !stack.isEmpty

dtree2 = stack.pop()

defeaters = dtree2.getDefeaters(

groundDelp, comparisonCriterion)

stack.addAll(defeaters)

5.4 IF dtree.getMarking() == Mark.UNDEFEATED THEN

warrant = TRUE

BREAK;

// q not warranted, get arguments for complement of q

6: IF !warrant THEN

// Negate the query formula

6.1: comp_q = q.complement()

// Initialise a warrant value for comp_q

6.2: comp_warrant = FALSE

6.3: REPEAT Step 4 & 5 for comp_q & comp_warrant

// Decision Making

7: IF warrant THEN return YES

8: ELSE IF comp_warrant THEN return NO

9: ELSE return UNDECIDED

Here are the explanation of each steps of the reasoning mechanism, discussed below:

1. Validate Input Formula: The reasoner first checks if the input formula q is valid, ensuring
it is literal and in its ground form. This guarantees a meaningful query (Line 1).

2. Ground the Knowledge Base: The reasoner grounds the DeLP by creating a fully instanti-
ated knowledge base, called groundDelp. In this step, all variables in the rules are replaced
with constants, generating a specific, grounded version of the defeasible theory (Line 2).

3. Search for Warrantability of q: The reasoner seeks arguments concluding with q from
groundDelp, creating a reasoning chain for q (Lines 2 to 5).

4. Construct Dialectical Tree: For each argument, a dialectical tree is built to explore argu-
mentation structures, with arguments and counterarguments represented as nodes. The
algorithm uses a stack to navigate through counterarguments, assessing each argument’s
defeasibility based on the grounded DeLP and comparison criteria (Lines 5 and 5.1 to
5.4).

5. Identify and Compute Defeaters: The dialectical tree computes defeaters by identifying
arguments that counter each argument in a tree node, and these nodes are added as the
current node’s children (Lines 5 to 6).
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6. Determine Warrantability: If an argument is “UNDEFEATED,” meaning no counterargu-
ments can refute it, q is deemed warrantable. If q is not warrantable, the reasoner then
negates q and checks if the negation (i.e., comp_q) is warrantable, following the same
steps (Lines 6 and 6.1 to 6.3).

7. Final Decision: Based on the warrantability of q and its negation, the reasoner determines
the final result of the query (Lines 7 to 9).

Each step of the above-explained algorithm has its own complexity, which contributes to the
overall complexity of the reasoner. The novel concepts of horizontal and vertical complexity
are introduced based on which the complexities of the most significant reasoning stages are
identified in the following section.

5.3 Horizontal and Vertical Complexity of DeLP Knowledge
Base

We define the complexity of a DeLP knowledge base by two aspects: Horizontal Complexity

(HC) and Vertical Complexity (VC). To define these concepts, we formulate a general DeLP
knowledge-base as follows:

DeLP KB = {

//m number of defeasible rules

rd1: head_rd1 -< tail_rd1_1, tail_rd1_2, ..., tail_rd1_x1

rd2: head_rd2 -< tail_rd2_1, tail_r2_2, ..., tail_rd2_x2

...

rdm: head_rdm -< tail_rdm_1, tail_rdm_2, ..., tail_rdm_xm

...

//n number of strict rules

rs1: head_rs1 <- tail_rs1_1, tail_rs_12, ..., tail_rs1_y1

rs2: head_rs2 <- tail_rs2_1, tail_rs_22, ..., tail_rs2_y2

...

...

rsn: head_rsn <- tail_rsn_1, tail_rs_n2, ..., tail_rsn_yn

//t number of facts.

// tail_rfi: a tail from defeasible or strict rules.

f1: tail_rf1

f2: tail_rf2

...

...

ft: tail_rft
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For a particular query q, there is a set of rules relevant to query (q) (that is, rules are applied
in the reasoning process for query q) in the DeLP KB called Rq. Then, we define the Vertical

Complexity, VC, of the KB to derive query q is defined as the number of elements in Rq, which
can be represented by the formula:

VC(q) = |Rq|

Accordingly, the Horizontal Complexity, HC, is defined as the maximum Number of Con-

ditions presented in any single rule (rdi and rs j in Rq) relevant to the query q. This can be
represented by the following formula:

HC(q) = max(Number of Conditions(ri)),∀ri ∈ Rq

In other words,

HC = max(xi,y j);∀rdi,rs j ∈ Rq

Based on these two novel concepts of complexity in the DeLP knowledge base, we will
analyze the complexity of the key stages of the defeasible Reasoner.

5.4 Identifying the Complexity of Defeasible Reasoner

In this section, we have analyzed the time complexity of the most important stages of the rea-
soner (i.e., grounding, argument generation, and dialectical tree) that affect the overall complex-
ity of the reasoner. In contrast, the time complexity of the remaining stages of the reasoner is
linear and does not significantly impact the reasoner’s overall complexity.

5.4.1 Grounding

In our DeLP system, both strict and defeasible rules initially use "schematic rules" with vari-
ables [135]. Before grounding, these variables represent undetermined entities. During ground-
ing, variables are replaced with specific facts from the knowledge base, merging GDPR rules
with system-specific facts into a unified format. This integration forms a comprehensive set of
arguments to assess GDPR compliance.

The grounding process, as outlined in Algorithm 1, Generate Ground Instances, provides
the implementation details for the grounding process used in Algorithm 2: Grounding a De-
feasible Logic Program. Algorithm 1 focuses on the generation of grounded rules by sub-



CHAPTER 5. DEFEASIBLE LOGIC PROGRAMMING FOR GDPR-COMPLIANCE 64

Alg. 1: Generate Ground Instances
Input rule (a rule in the defeasible logic program), constants (a set of constants)
Output groundInstances (a set of grounded rules with variables replaced by constants)

1: Function generateGroundInstances(rule, constants)
2: groundInstances← /0
3: combinations← generateCombinations(rule.variables, constants)
4: for all combination in combinations do
5: groundedRule← substitute(combination, rule)
6: groundInstances.add(groundedRule)
7: end for
8: return groundInstances =0

Alg. 2: Grounding a Defeasible Logic Program
Input DELP (Defeasible Logic Program)
Output groundedDELP

1: Function groundDELP(DELP)
2: f acts← DELP.getFacts()
3: groundedDELP← new DefeasibleLogicProgram()
4: if DELP is ground then
5: return copyDELP(DELP)
6: end if
7: for all rule in DELP do
8: groundInstances← generateGroundInstances(rule, facts.getArguments())
9: for all groundedRule in groundInstances do

10: groundedDELP.add(groundedRule)
11: end for
12: end for
13: return groundedDELP =0
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stituting variables in a given rule with constants derived from the defeasible logic program’s
facts. The process begins by initializing an empty set, groundInstances, to store all grounded
rules. It then generates all possible combinations of constants for the rule’s variables using the
generateCombinations() function (line 3). For each combination, the algorithm substitutes the
constants into the rule’s variables using the substitute() function (line 5), producing a grounded
rule. Each grounded rule is added to the set groundInstances (line 6). Once all combinations
are processed, the algorithm returns the complete set of grounded rules.

Algorithm 2, on the other hand, integrates the functionality of Algorithm 1 within the broader
process of grounding an entire defeasible logic program. It begins by retrieving facts from the
input program and initializing an empty grounded program, groundedDELP. If the program
is already grounded, it directly returns a copy of the program (lines 4–6). Otherwise, it iter-
ates over each rule in the program (line 7), invoking generateGroundInstances() (Algorithm
1) to create all grounded instances of the current rule (line 8). For each grounded rule re-
turned by Algorithm 1, the algorithm adds it to groundedDELP (lines 9–11). This process is
repeated for all rules in the program, ensuring that every possible grounded instance is gener-
ated and incorporated into the new grounded defeasible logic program. For example, if the fact
"GiveConsent(customer,serviceProvider)" is present, and a rule contains the variables ’C’ and
’S’, Algorithm 1 would generate all possible grounded rules by substituting combinations of
constants like ’customer’, and ’serviceProvider’. Algorithm 2 uses these grounded rules to con-
struct the final grounded logic program. Together, these algorithms enable effective reasoning
by transforming abstract rules into their concrete grounded counterparts.

The time complexity of the whole grounding process is calculated by multiplying the number
of rules by the permutations of constants from the facts, allowing for repetitions. This results in
the formula O(n× cr), where n is the number of rules in the DeLP, c is the number of distinct
constants, and r is the number of variables in each rule. This formula helps gauge how the
grounding scales with the complexity of the knowledge base. The following example illustrates
a simple knowledge base before and after grounding:

Before:

r1: ValidConsent(C,S) -< GiveConsent(C,S)

f1: GiveConsent(customer,serviceProvider)

After:

r1: ValidConsent(customer,customer)-<

GiveConsent(customer,customer).

r2: ValidConsent(serviceProvider,customer)-<

GiveConsent(serviceProvider,customer).

r3: ValidConsent(customer,serviceProvider)-<

GiveConsent(customer,serviceProvider).

r4: ValidConsent(serviceProvider,serviceProvider)-<

GiveConsent(serviceProvider,serviceProvider).
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f1: GiveConsent(customer,serviceProvider).

This knowledge base example demonstrates that rule r1 is transformed into four grounded state-
ments by replacing variables with all possible constant permutations. Each rule generates cr

instances, with both c and r equal to 2, leading to four instances. Despite the grounding for-
mula suggesting exponential growth, in practice, especially in the GDPR knowledge base, rules
typically involve no more than two variables. This suggests that grounding can be efficiently
completed in a linear time frame when the values of c and r are small.

5.4.2 Argument Generation

The argument generation algorithm, as outlined in Algorithm 3, processes a grounded DeLP to
identify all valid arguments for a given query. It starts by initializing a stack with an initial entry
containing the query’s conclusion and all applicable rules (line 4). The algorithm then iterative
processes this stack, expanding each partial derivation by applying rules to unresolved formulas
and avoiding cyclical reasoning (lines 5-20). Once a derivation has no remaining formulas, it
is added to the set of finalized arguments. This process repeats until all possible derivations are
explored, ensuring a comprehensive validation of arguments that support the query.

Before analyzing this algorithm’s complexity, we define two key terms: vertical complexity

and horizontal complexity. Vertical complexity refers to the number of distinct rules related to a
query, while horizontal complexity refers to the number of facts needed to satisfy a single rule.
An example knowledge base illustrates these concepts:

r1: A(C,S) -< B1(C,S),B2(C,S),B3(C,S).

r2: X(C,S) -< Y1(C,S).

r3: Y1(C,S) -< Y2(C,S).

r4: Y2(C,S) -< Y3(C,S).

In the example, rule r1 has a horizontal complexity of 3 because it requires three facts (B1,
B2, B3) to satisfy A, and a vertical complexity of 1 as it is not linked to other rules. Conversely,
rule r2 has a vertical complexity of 3 due to its connections with two additional rules, rule r3
and rule r4, but a horizontal complexity of 1, needing only Y 1 to satisfy X .

Our time complexity analysis for the argument generation algorithm focuses on grounded
rules related to our query, recursively exploring derivations starting from the query in the initial
stack. When horizontal complexity exceeds 1 for a rule, the algorithm evaluates all permutations
according to the following formula:

horizontal complexity

∑
i=0

P(horizontal complexity, i)

This results in a time complexity of O(h!), where h represents the horizontal complexity. Ex-
tending this to all related rules, or the vertical complexity, the overall time complexity becomes
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Alg. 3: Generating all valid arguments
Input rules (Collection of rules), conclusion (Conclusion to be proven)
Output derivations (Set of all derivations)

1: Function AllDerivations(rules, conclusion)
2: stack← empty stack
3: initial← (empty list, {conclusion}, rules)
4: stack.push(initial)
5: derivations← empty set
6: while stack is not empty do
7: derivation← stack.pop()
8: if derivation.second is empty then
9: no more formulas to be proven

10: derivations.add(derivation. f irst)
11: else
12: for formula in derivation.second do
13: for rule in derivation.third.getRulesWithConclusion(formula) do
14: new_derivation← copy of derivation
15: new_derivation.first.append(rule)
16: new_derivation.second.remove(formula)
17: new_derivation.second.add(rule.getPremise())
18: new_derivation.third.remove(rule)
19: if no cycles in new_derivation.first then
20: stack.push(new_derivation)
21: end if
22: end for
23: end for
24: end if
25: end while
26: return derivations =0
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O(v×h!), where v is the vertical complexity.
Unlike scenarios described in Section 5.4.1 where linear time complexity may be achievable

by optimizing constants, reducing complexity in rules with high horizontal complexity is more
challenging due to their inherent "AND" relationships, which generally resist simplification.

5.4.3 Dialectical Tree

After generating all valid arguments, the dialectical tree is created, marked, and evaluated to
determine if the query is warranted, assessing the validity of arguments within the tree structure.

Alg. 4: Get Defeaters
Input delp (a defeasible logic program), comparisonCriterion (a comparison criterion)
Output children (a set of dialectical tree nodes representing defeaters)

1: Function getDefeaters(delp, comparisonCriterion)
2: if del p == NULL then
3: throw IllegalArgumentException("Cannot compute defeaters for NULL DeLP")
4: end if
5: attackOpportunities← argument.getAttackOpportunities(del p)
6: attacks← /0
7: for all lit ∈ attackOpportunities do
8: attacks.addAll(DelpReasoner.getArgumentsWithConclusion(delp, lit))
9: end for

10: de f eaters← /0
11: de f eaters← attacks.stream()
12: .filter(attack→ isAcceptable(attack, delp, comparisonCriterion))
13: .collect(Collectors.toSet())
14: children.clear()
15: children.addAll(de f eaters.stream()
16: .map(defeater→ new DialecticalTree(this, defeater, this.depth + 1))

17: .collect(Collectors.toSet()))return children = 0

Alg. 5: Process Arguments and Construct Dialectical Trees
18:1: for each arg in args do
2: args← allDerivations
3: Create dtree with arg
4: Initialize stack as an empty dequeue
5: Add dtree to stack
6: while stack is not empty do
7: dtree2← pop from stack
8: Add all defeaters of dtree2 to stack using

getDefeaters(groundDelp, comparisonCriterion) method
9: end while

10: if dtree.getMarking() equals DialecticalTree.Mark.UNDEFEATED then
11: Set warrant to true
12: Break
13: end if
14: end for=0

The process of constructing the Dialectical tree starts by initially identifying the defeaters.
Algorithm 4 is responsible for identifying defeaters for a given argument within a dialectical
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tree structure. A defeater is an argument or set of rules that conflicts with or overrides the
current argument in the defeasible logic program (delp). The algorithm begins by validating the
input delp (line 2), throwing an exception if it is null. It then retrieves the attack opportunities
(line 5), which represent the points where the current argument can be challenged. For each
attack opportunity (lines 7–9), the algorithm identifies potential attacking arguments using the
knowledge base (Del pReasoner.getArgumentsWithConclusion()).

The algorithm proceeds to filter the attacking arguments by determining their acceptability
(lines 11–13), based on a predefined comparison criterion (comparisonCriterion). Only accept-
able attackers are retained in the defeaters set. For each defeater, a new dialectical tree node is
created, which represents the defeater in the tree structure (lines 15–16). These nodes are added
to the children set of the current argument node and returned as the output of the algorithm (line
17). This step-by-step process ensures that all relevant and acceptable defeaters are identified,
making the dialectical tree ready for evaluation.

Algorithem 5 uses the getDe f eaters() subroutine (4) to construct and evaluate dialectical
trees, which determine whether a query is warranted (justified). The algorithm starts by iterating
over all valid arguments (args) in the defeasible logic program (line 1). For each argument, a
dialectical tree node (args) is created (line 2), and a deque stack is initialized to manage further
exploration of the tree (line 3). The root node is then added to the stack (line 4).

While the stack is not empty, the algorithm pops a tree node (dtree2) from the stack (line
6) and computes its defeaters using the getDe f eaters() method (line 7). These defeaters are
added as children to the current tree node, effectively growing the dialectical tree structure. The
algorithm continues to process all child nodes until the stack is empty. At this point, it evaluates
the marking of the dialectical tree (lines 9–12). If the tree is marked as UNDEFEATED, meaning
no defeaters can invalidate the root argument, the query is deemed warranted, and the evaluation
halts (line 13). Otherwise, the tree is further processed or evaluated as DEFEATED.

This results in a complexity of O(n2), where n is the size of the valid arguments. However,
for "YES" and "NO" outcomes, we can approximate the complexity to O(n), as we do not need
to exhaustively search through all possible valid arguments as in "UNDECIDED" query.

To resolve the query’s outcome, the algorithm assesses whether the query or its comple-
ment is warranted without defeaters. If neither is warranted, it returns "UNDECIDED," which
generally takes longer to process than "YES" or "NO" outcomes. Once a query is warranted,
displaying the dialectical tree can provide detailed insights into GDPR compliance by illustrat-
ing the exact rules and facts that influenced the decision. The time complexity of this process
is O(a ∗ n), where a is the number of valid arguments and n is the size of the knowledge base,
allowing for a comprehensive yet efficient analysis to identify potential defeaters.
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5.4.4 Complexity of the Reasoner

Combining the above-mentioned three important stages of Reasoner, we conclude that for a
knowledge base with low horizontal complexity, the time complexity can be approximated as
O(n), where n is the size of the knowledge base for “YES”/“NO” queries, and O(n2) for “UN-
DECIDED” queries. However, with high horizontal complexity, the factorial time complexity
becomes dominant, leading to a time complexity of O(h!) where h represents the horizontal
complexity. This assumes a low count of variables and constants in the grounding process,
which is a practical approach to adopt.

5.5 Summary

This chapter describes why the characteristics of DeLP are more suitable for modeling non-
compliance threats to GDPR compliance and how we convert a Rule-based knowledge base
into a DeLP knowledge base. It further provides an in-depth explanation of the system design,
outlining the structure of the logic formulas and the implementation of the DeLP reasoner. Ad-
ditionally, the complexities of each stage of the reasoner are analyzed, introducing the concepts
of vertical and horizontal complexity to better understand the challenges and performance met-
rics of the system. These complexities are crucial for optimizing the reasoner’s efficiency and
effectiveness in various scenarios.

The next chapter will elaborate on the implementation of reasoning outputs handling and
threat mitigation.



Chapter 6

Outputs Handling and Implementation

This chapter firstly describes how our GDPR-compliance threat modelling tool resolves "UN-
DECIDED" query results which are the consequences of conflicting rules or missing infor-
mation. This is crucial because any system should be either compliant (i.e., "YES") or non-
compliant (i.e., "NO") with the GDPR; but not "UNDECIDED". To tackle this challenge, we
ask users (i.e., modellers) to provide more information, either explicit priorities for some rules
or more knowledge to describe their systems (i.e., facts). Secondly, we implemented the "UN-
DECIDED" results handlers by developing the conflicting information handler and the missing
information handler. Finally, if a system is not compliant with the GDPR, we carry out the non-
compliance Threat Mitigation by providing insights into the system to unveil the reasons for its
non-compliance and how to potentially mitigate the threat of non-compliance.

The proposed DeLP-based modelling tool for handling the "UNDECIDED" results consists
of key components such as User Interface, Knowledge Base, Reasoner, and Results Handlers
as illustrated in Figure 6.1. The User Interface enables users to query and interact with the
system; the Knowledge Base contains facts and a combination of defeasible and strict rules;
the Reasoner employs a structured reasoning process, and the Result Handler tackles the issue
of "UNDECIDED" query results and recommends mitigation strategies for potential threats of
non-compliance.

6.1 Handling "UNDECIDED" Results

As discussed in Section 3.3.2, the DeLP-based Reasoner executes the reasoning algorithm to
determine whether or not the query (or the negation of the query) is warranted ("YES" or "NO").
If there are no valid or sufficient supporting arguments for the query, the reasoner yields an
"UNDECIDED" result. To address this, we customise the reasoning algorithm proposed in
[135] and integrate an "UNDECIDED" query results handler. As can be seen in Figure 6.1,
if the query result is "UNDECIDED" then the reasoner will identify the reasons (conflicting
arguments & missing information) and pass them to the Handler to re-evaluate the query for a
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warrant (i.e., "YES" or "NO").

Figure 6.1: System architecture for GDPR compliance modelling system integrated with "UN-
DECIDED" result handler.

Suppose we have two defeasible rules in the knowledge base for data access:

r1: GrantAccess(X,Y) -< ConsentProvided(Y,X)

r2: DenyAccess(X,Y) -< nonComplianceThreat(Y,X)

Now, if a data subject requests access and we know they have provided consent (satisfying
r1) but lack information on whether there is a security risk, the system may return an "UNDE-
CIDED" result due to missing information. Alternatively, if it’s determined that there is both
consent and a potential security risk, the conflicting rules (grant vs. deny) will also lead to an
"UNDECIDED" result.

In both cases, the DeLP system marks the query as "UNDECIDED" until more information
is available or a priority rule is set to resolve conflicts. This ensures that the system only provides
a conclusive result when conditions are clear, preventing unauthorized access.

In the next section, we will discuss that how the conflicting information and missing infor-
mation handlers has been implemented.



CHAPTER 6. REASONING OUTPUTS HANDLING AND THREATS MITIGATION 73

6.1.1 Conflicting Rules

Conflicting rules arise when two or more rules lead to contradictions or opposing directives
during reasoning over a knowledge base, potentially resulting in an "UNDECIDED" query out-
come. For instance, under GDPR’s Article 17, individuals have the right to erasure. This right
applies when the personal data is no longer necessary for the purpose for which it was collected.
However, legislation requiring data retention for specific periods may also apply to organiza-
tions, which could lead to a conflict between individual rights and legal obligations. Without
predefined rules or priorities to resolve such conflicts, the reasoner might be unable to conclu-
sively decide whether to comply with the erasure request or deny it based on legal obligations.
Consequently, this leads to the "UNDECIDED" query result due to the two contradictory rules.

The system is unable to identify conflicting rules and to decide which rule should take prece-
dence resulting in "UNDECIDED" outcomes. As a result, the lack of clarity complicates GDPR
compliance, undermines data protection, and creates uncertainty about rights and responsibili-
ties for both individuals and organizations.

6.1.2 Incomplete Knowledge Base

The DeLP-based GDPR knowledge base often has an "UNDECIDED" query result on com-
pliance when important information is missing. The important information is system-related
facts, if they are missing, leads to an incomplete knowledge base. For example, the compliance
requirements regarding data processing activities, consent records, or data sharing agreements
missing from the set of facts. Similarly, the knowledge base may not contain comprehensive
records of DS requests, such as requests for data access, rectification, or erasure etc. Without
this information, it becomes challenging to ensure that the organization processes DS requests
in compliance with GDPR requirements. Thus such gaps in the knowledge base lead to the
"UNDECIDED" query result.

6.1.3 Rule Priorities for Conflicting Arguments

We handle the "UNDECIDED" outcomes by applying rule priorities on conflicting arguments
that occurred during the reasoning process. The main purpose of incorporating rule priorities is
to efficiently resolve ambiguities caused by conflicting rules. This is particularly important for
our DeLP-based GDPR knowledge base where compliance to the GDPR requirements is crucial.
This mechanism is also beneficial for complex knowledge bases with hundreds of thousands of
rules and facts, where manually identifying and prioritizing conflicting rules can be challeng-
ing. Additionally, the rule-priority approach facilitates effective reasoning within the complex
knowledge base. It enables the system to navigate through complex GDPR requirements sce-
narios by focusing on the most pertinent rules, thus allowing desired derivations and resolving
the issue of "UNDECIDED" query results.
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Rule prioritization in our system efficiently resolves contradictions and speeds up query pro-
cessing by preventing unwanted inferences. The priorities are assigned to the two strictly driven
defeasible rules. This implies that an explicit priority for strict derivation will always prevail over
arguments based on defeasible rules. We regard priority not just as a contradiction-resolution
mechanism, but also as a tool to restrict undesired derivations. By blocking lower-priority rules
when a higher-priority rule is activated, the system eliminates the need for unnecessary compu-
tations that arise from evaluating conflicting rules. This results in a more efficient processing of
queries and faster generation of outcomes.

Our DeLP-based GDPR compliance model deals with "UNDECIDED" query outcomes by
(i) identifying conflicting arguments and then (ii) assigning priorities to them to resolve the
conflict. As shown in Fig 6.2, our proposed mechanism first identifies the conflicting arguments
and then prompts the user to explicitly prioritize these identified conflicting arguments. If arg1
is assigned priority ’2’ and arg2 is assigned priority ’1’, then arg2 will be considered to have
a higher priority than arg1, and the reasoner will consider it as a supporting argument for re-
evaluation to warrant the query. In our proposed system, assigning priorities is practical due
to simple rules and automatic conflict identification displayed on the console, allowing user-
friendly and efficient priority management. Therefore, by prioritising conflicting arguments, it
guarantees that the final query output is either "YES" or "NO" but not "UNDECIDED".

Consequently, the system checks if a priority rule exists, which may rank certain rules (like
complaince-based rules) higher than others (like consent-based rules) to automatically resolve
the conflict.

6.1.4 Supplement Additional Knowledge for Missing Information

Generally, to overcome the "UNDECIDED" query results caused by missing information, our
developed modelling tool provides a list of possible facts that can be inserted into the knowledge
base for logically deriving a conclusion of "YES" or "NO". The primary aim of supplementing
these facts is to efficiently fill the information gaps in the knowledge base. Based on these
suggested facts, system modellers can then choose some of the facts which are appropriate for
their systems.

The completeness of the information within our DeLP-based GDPR model directly influ-
ences the accuracy and reliability of our customized reasoning mechanism. By providing the
missing information, the system is capable of generating either a "YES" or "NO" outcome. In
addition, our system’s ability to identify and handle missing information is essential for mitigat-
ing threats of non-compliance. Because the system must first identify the information causing
a threat of non-compliance before recommending a potential mitigation measure. The required
addition of facts to the knowledge base ensures that all pertinent elements are taken into account
when making decisions, hence reducing "UNDECIDED" outcomes.

As illustrated in Figure 6.3, our proposed solution is practical because the handling mecha-
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Figure 6.2: Defeasible Reasoning with handling mechanism for Conflicting information.

nism offers an interactive and methodical solution for resolving "UNDECIDED" query results
caused by missing information in the proposed DeLP system. If the evaluation of query (q) re-
turns a "UNDECIDED" result, the reasoner will first determine which required facts are missing
from the defeasible rules. The user will then be prompted to add the relevant facts to fill any
gaps in the knowledge base. The reasoner will re-evaluate the query and determine whether it
warrants a query (i.e., "YES" or "NO") after adding the missing facts to the knowledge base.
Ultimately, this method systematically resolves "UNDECIDED" outcomes caused by missing
information in our system.

In this section, we have provided a critical analysis of the conflicting arguments and the
missing information in the knowledge base. In the following section, we will detail the imple-
mentation of the conflicting information handler and the missing information handler.
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Figure 6.3: Defeasible Reasoning with handling mechanism for Missing information.

6.2 Implementation of "UNDECIDED" Results Handlers

We have implemented the "UNDECIDED" handling mechanisms proposed in Section 6.1 and
integrated them with the DeLP reasoning mechanism introduced in Section 3.3.2. This task
involves two key handlers: (1) the conflicting information handler and (2) the missing informa-
tion handler. When an "UNDECIDED" result occurs, our reasoner first identifies the underly-
ing cause, which may be the consequence of conflicting arguments or missing facts within the
knowledge base. This dual approach ensures the effective resolution of "UNDECIDED" results,
thereby enhancing the decision-making process’s reliability and comprehensiveness. Thus, by
allowing users to intervene, supplement missing information, and prioritise conflicts, we en-
hance the system’s flexibility and reliability while ensuring deterministically accurate outcomes.

6.2.1 Conflicting Information Handler

We have implemented the conflicting information handler for the GDPR compliance modelling
tool through the application of rule priorities. This handler is crucial in scenarios where contra-
dictory arguments occur during the decision-making process, which could lead to indecision or
"UNDECIDED" outcomes.

We implemented Algorithm 6 to resolve ambiguities by identifying conflicting arguments
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within the DeLP program. Firstly, the algorithm grounds the DeLP program for clarity (line
6) and constructs a stack for managing the argument analysis process (line 7). Each argument
generates a dialectical tree, illustrating argument interactions, and is placed on the stack (lines
8-10). The subroutine createDialecticalTree() builds a dialectical tree to evaluate arguments
and counterarguments. Algorithm 5 illustrates the process of constructing the dialectical tree.
Furthermore, the algorithm processes each tree, identifying "Defeaters" or opposing arguments
(line 14). An undefeated defeater marks its argument as conflicting, adding it to the conflict
list (lines 16-17), while defeated ones are re-examined. This loop continues until the stack is
empty (lines 12-22), ensuring all argument relations are scrutinized. The end result is a detailed
list of arguments that have been identified as conflicting within the context of the provided
DeLP program (line 23), thus highlighting areas of potential logical contradiction. This function
ensures that potential conflicts have been identified in the decision-making process; thus, this
step is essential because it establishes the basis for further analysis and resolution of conflict.

Following this, Algorithm 7 processes queries by incorporating explicit priorities assigned
to arguments by the user. It begins by determining the argument with the highest priority, based
on the lowest numerical value in the provided priorities list (lines 4-8). The algorithm then iden-
tifies whether this highest-priority argument aligns with or contradicts the query in question. If
the argument’s conclusion matches the query (line 12), the algorithm returns "YES" (line 13),
indicating compliance. Conversely, if the highest-priority argument opposes the query (line 14),
it returns "NO" (line 15), signifying non-compliance. This process ensures that the evaluation
of queries is directly influenced by the prioritization of arguments (lines 6-16), enabling a struc-
tured approach to resolving queries based on the priority assigned to each argument.

The runtime priority assignment significantly simplifies managing rule-based contradictions
and system complexity. Our implementation of applying priorities at runtime offers several ad-
vantages. First, it eliminates the need for users to anticipate which rules require prioritization,
a task that can be both challenging and unnecessarily burdensome. In a complex knowledge
base, determining which set of rules might lead to a contradiction is challenging, as it depends
on the given facts and specific queries. Second, this approach offers a simpler implementation
compared to assigning priorities directly within the knowledge base. By allowing priority as-
signment at runtime, the need to modify the parser is eliminated, simplifying the system and
reducing the overall complexity.

By identifying conflicts, evaluating their significance, selectively prioritising them, and ul-
timately basing decisions on the highest-priority arguments, we ensure a logical resolution to
potential "UNDECIDED" outcomes. This approach highlights the value of a structured and
hierarchical decision-making process within the DeLP-based GDPR knowledge base.
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Alg. 6: Identifying conflicting arguments
1: Input delp (DeLP program), arguments(List of arguments)
2: Output conflictingArguments(List of conflicting arguments)
3: Function FindConflictingArguments(del p, arguments)
4: con f lictingArguments←{}
5: f oundSupport← false
6: groundedDel p← ground(del p)
7: stack← createStack()
8: for each argument in arguments do
9: tree← createDialecticalTree(argument)

10: stack.push(tree)
11: end for
12: while stack is not empty do
13: currentTree← stack.pop()
14: de f eaters← currentTree.getDe f eaters
15: for each de f eater in de f eaters do
16: if de f eater.getMarking() is UNDEFEATED then
17: add de f eater.getArgument() to con f lictingArguments
18: else
19: stack.push(de f eater)
20: end if
21: end for
22: end while
23: return con f lictingArguments =0

Alg. 7: Re-evaluating query with explicit priorities
1: Input delp (DeLP program), priorities(List of arguments with priorities), query(Query

formula)
2: Output result (YES,NO)
3: Function ReevaluateWithPriority(del p, priorities, query)
4: minPriority←min(priorities.values())
5: highPriorityArguments←{}
6: for each entry in priorities do
7: if entry.value is minPriority then
8: Add entry.key to highPriorityArguments
9: end if

10: end for
11: highestPriorityArgument← highPriorityArguments[0].getConclusion()
12: if highestPriorityArgument equals query then
13: return YES
14: else if highestPriorityArgument equals query.complement then
15: return NO
16: end if=0
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6.2.2 Missing Information Handler

Another mechanism we have implemented to address the "UNDECIDED" query results involves
the development of a missing information handler. This mechanism identifies required miss-
ing facts and introduces a method for integrating these missing facts into the knowledge base.
This step is vital as it ensures the identification of all potentially relevant yet missing facts,
thus suggesting system modellers to fill the gaps in the knowledge base to eventually derive a
"YES"/"NO" query outcome.

Algorithm 8 provides a comprehensive implementation for identifying missing information
in a DeLP with respect to a query. The algorithm begins by gathering all available facts from
the DeLP program by iterating over its rules and collecting their conclusions into the allFacts

set (lines 6–8). This ensures that the algorithm has a complete set of known facts for further
evaluation. Next, the extractBodyLiterals() subroutine is invoked (line 9) to identify relevant
literals from the body of the rules associated with the query. This step isolates the conditions
required for the query to hold, providing a focused list of conditions to validate against the
available facts.

The extractBodyLiterals() function (Algorithm 9) works by iterating through all rules in the
DeLP program and extracting the literals from the body (premises) of these rules. For a specified
query formula, it retrieves the corresponding rule(s) and collects all their body literals. These
literals represent the conditions that need to be satisfied for the query to be valid. The function
outputs these conditions as bodyLiterals, a set of premises directly relevant to the query.

Once bodyLiterals are retrieved, Algorithm 8 compares each literal against the gathered
allFacts set to check whether it is missing (lines 10–13). A literal is considered "missing" if it is
neither present in allFacts nor negated (i.e., its complement is not present). Any such missing
literals are added to the missingFacts set, which represents the specific pieces of information
absent from the knowledge base and necessary for fully evaluating the query.

The algorithm outputs this concise list of missingFacts (line 14), effectively highlighting the
information gaps that need to be addressed for the query to hold. This process not only identifies
missing knowledge but also isolates the conditions crucial for reasoning and evaluation, ensuring
that the DeLP program is complete with respect to the specified query.

Following this, Algorithm 10 provides a dynamic mechanism for updating a DeLP with user-
supplied facts to re-evaluate an undecided query. It begins by checking for potential missing
facts, identified as potentialFacts (line 4). If there are missing facts, the algorithm invokes
Algorithm 11 (askUserForFacts), which prompts the user to select the facts they wish to add to
the program (line 5). The askUserForFacts() function interacts with the user, presenting a list
of missing facts and allowing them to select the relevant ones by their assigned numbers.

The selected facts, returned as user_added_ f acts, are then incorporated into the DeLP pro-
gram, effectively updating the knowledge base (line 6). With the updated program, the algorithm
re-evaluates the query to determine its final result: "YES," "NO," or "UNDECIDED" (line 8).
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This process ensures that queries previously unresolved due to insufficient information can be
dynamically reassessed in light of new evidence. By allowing user interaction and seamlessly
integrating the provided facts, Algorithm 10 offers a flexible and adaptive approach to reasoning
within a DeLP system.

Algorithm 11 is a subroutine that supports Algorithm 10 by gathering additional knowledge
from the user in an interactive manner. It begins by checking if the missingFacts set is empty
(line 2). If no missing facts are found, the function notifies the user and terminates (lines 3–4).
If there are missing facts, it presents a numbered list of these facts to the user for easy reference
(lines 6–11). Each fact is displayed with an assigned number, allowing the user to identify and
select the relevant facts.

The user is then prompted to input the number corresponding to the fact they wish to add or
type "done" to finish (line 12). The algorithm initializes an empty set, userAddedFacts, to store
the user’s selections. In a loop (lines 14–23), the algorithm processes the user’s input:

1. If the input is valid (a number corresponding to a fact in the list), the selected fact is re-
trieved and added to userAddedFacts (lines 16–19). A confirmation message is displayed
for each added fact.

2. If the input is invalid, the algorithm displays an appropriate error message and prompts
the user again (lines 20–22).

When the user indicates they are done by typing "done," the algorithm exits the loop and returns
the set of selected facts (line 24). These facts are then integrated into the DeLP program by
Algorithm 10 for further reasoning. By combining the interactive fact-gathering of Algorithm
11 with the knowledge-enhancement and re-evaluation capabilities of Algorithm 10, the system
achieves a robust, user-centric reasoning framework.

The implementation of such systematic and comprehensive algorithms underscores the sig-
nificance of interactive and incremental refinement of the knowledge base in our DeLP-based
GDPR compliance model, ensuring each query receives a decisive answer backed by supporting
data.

After implementing the "UNDECIDED" results handler, our reasoner will yield a result of
either "YES" (compliant) or "NO" (non-compliant). For non-compliance (NO), we introduce a
strategy for threat mitigation. In the following section, we will elaborate on how we customized
the DeLP reasoner to integrate threat mitigation.

6.3 Threat Mitigation Integration into Defeasible Reasoning
Mechanism

Upon resolving the issue of "UNDECIDED" query results, the reasoning mechanism will even-
tually return a query output as either compliant ("YES") or non-compliant ("NO"). In the case
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Alg. 8: Identifying missing information
1: Input delp (DeLP program), potentialFacts(List of , query(Query formula)
2: Output filteredFacts(Missing facts)
3: Function identifyMissingFacts(del p, query, potentialFacts)
4: allFacts←{}
5: missingFacts←{}
6: for each f ormula in del p do
7: Add f ormula to allFacts
8: end for
9: bodyLiterals← extractBodyLiterals(del p,query)

10: for each literal in bodyLiterals do
11: if literal is not in allFacts and its complement is not in allFacts then
12: Add literal to missingFacts
13: end if
14: end for=0

Alg. 9: Extract Body Literals
Input delp (a defeasible logic program)
Output bodyLiterals (a set of all body literals from the premises of rules in the delp program)

1: Function extractBodyLiterals(del p)
2: bodyLiterals← /0
3: for all rule ∈ del p do
4: bodyLiterals.addAll(rule.getPremise())
5: end for
6: return bodyLiterals =0

Alg. 10: Re-evaluating query with added facts
1: Input delp (DeLP program), query(Query formula)
2: Output result (YES,NO,UNDECIDED)
3: Function ReevaluateLogic(del p, query, potentialFacts, f ilteredFacts)
4: if potentialFacts is not empty then
5: user_added_ f acts← askUserForFacts()
6: del p← del p+user_added_ f acts
7: end if
8: return query(del p,query) =0
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Alg. 11: Ask User for Facts
Input missingFacts (a set of potential missing facts)
Output userAddedFacts (a set of facts selected by the user)

1: Function askUserForFacts(missingFacts)
2: if missingFacts.isEmpty() then
3: print "No missing facts identified."
4: return /0
5: end if
6: print "Possible missing facts identified:"
7: counter← 1
8: for all f act ∈ missingFacts do
9: print counter+ ”.”+ f act

10: counter← counter+1
11: end for
12: print "Enter the number of the fact you wish to add or type ’done’ to finish:"
13: userAddedFacts← /0
14: while userInput ̸= ”done” do
15: userInput← read user input
16: if userInput is a valid number and 1≤ userInput ≤ missingFacts.size() then
17: selectedFact← fact at position userInput in missingFacts
18: userAddedFacts.add(selectedFact)
19: print "Fact added: " + selectedFact
20: else
21: print "Invalid input. Please enter a valid number or type ’done’."
22: end if
23: end while
24: return userAddedFacts =0
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of non-compliance (i.e., "NO"), we incorporate threat mitigation strategies into the reasoning
mechanism to model the system effectively. Providing insights into the system and severity of
mitigation measures during instances of non-compliance has significantly enhanced our model’s
decision-making process. Our proposed solution enables organizations to more effectively man-
age the threats of non-compliance, ensuring that the measures implemented are both appropriate
and efficient.

For example, when a query results in "NO", the reasoner identifies the specific facts and rules
that lead to this outcome of non-compliance. During the reasoning process, a dialectical tree is
constructed based on the supporting argument (root) to identify its potential defeaters (leaves).
If the supporting argument (A) for query (q) encounters potential defeaters (e.g., ∼A1 & ∼A2),
it is marked as defeated (D), as illustrated in Figure 6.4. Because the supporting argument is
marked as (D), the reasoner concludes that the query cannot be warranted. Consequently, the
reasoner constructs a dialectical tree for the negation of the query (q) to determine if the negation
could be warranted. If the supporting argument for the negation of the query gets no defeaters
and is marked as undefeated (U), then the query is considered unwarranted, resulting in a "NO"
outcome. As a result, the system generates a supporting argument for the negation of the query
that illustrates the cause of non-compliance, which is displayed on the console. Based on this
supporting argument, our threat mitigation analysis suggests that the system does not meet the
specific query’s compliance requirements due to the conditions displayed on the console. If the
conditions leading to non-compliance, as outlined in the supporting argument, are addressed,
then the threats of non-compliance will be mitigated.

Figure 6.4: Dialectical tree construction: A supporting argument (A) with potential defeaters.

In our proposed DeLP-based GDPR-compliance model, the reasoning process adopts a
proactive approach by incorporating threat mitigation strategies for instances of non-compliance.
This enhances the system’s applicability in real-world scenarios by not only identifying in-
stances of non-compliance but also offering measures to resolve and mitigate these threats.
Consequently, with the incorporation of threat mitigation into the reasoning mechanism, our
DeLP-based GDPR-compliance model becomes more relevant in real-world scenarios.



CHAPTER 6. REASONING OUTPUTS HANDLING AND THREATS MITIGATION 84

6.4 Summary

This chapter presents how our GDPR-compliance threat modelling tool addresses "UNDE-
CIDED" query results caused by conflicting rules or missing information. Resolving these
uncertainties is crucial, as systems should be classified as either compliant ("YES") or non-
compliant ("NO") with GDPR. To address this, we prompt users to provide additional infor-
mation, such as explicit rule priorities or more detailed system descriptions. We implemented
handlers for "UNDECIDED" results to manage conflicting and missing information. For non-
compliant systems, we provide insights into reasons for non-compliance and suggest mitigation
strategies.

In the next chapter, we will elaborate on the system implementation and demonstrate the
experiments for dealing with "UNDECIDED" query results.



Chapter 7

System Experiments and Demonstration

This chapter demonstrates how our system identifies and mitigates non-compliance threats within
the TSS use case. This use case exemplifies the challenges faced by healthcare systems in com-
plying with stringent data protection laws and showcases the effectiveness of our solution in ad-
dressing these challenges. First, we demonstrated how non-compliance threats can be inferred
from a combined knowledge base of STRIDE (security threats), LINDDUN (privacy threats),
and GDPR (requirements and legal obligations) for the TSS use case. Second, we illustrated how
non-compliance threats can be inferred solely from the DeLP-based GDPR knowledge base for
the Fitbit use case.

Moreover, this chapter presents experiments conducted to validate the effectiveness of our
approach in managing conflicting rules and missing information. These experiments are crucial
for demonstrating how our solution handles real-world complexities and enhances decision-
making reliability. Specifically, we focus on the use case involving data collection and process-
ing in Fitbit wearable devices, where the accuracy and completeness of information are vital for
user privacy and compliance with regulations.

Through these demonstrations and experiments, we aim to show the versatility and relia-
bility of our DeLP-based modeling technique in various scenarios, highlighting its potential to
improve compliance and decision-making in data-driven applications.

7.1 Telehealth Service Use-case Demonstration

We have already discussed the background of the TSS use case in Chapter 4. Here, we will
elaborate on how the DeLP-based modeling technique can be applied to demonstrate GDPR
compliance in the real-world scenario of the TSS use case. In this demonstration, we conducted
experiments to evaluate system performance across various scenarios, using 29 distinct knowl-
edge bases with varying complexities. Each knowledge base ranged from 16 to 128 facts and
rules, and we tested multiple queries to assess the computational demands associated with all
three possible outcomes: "NO," "YES," and "UNDECIDED." This experimentation included

85
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various GDPR principles, such as the right to rectification, accountability, and consent, ensur-
ing comprehensive testing for GDPR compliance. We also incorporated security threat models
using STRIDE and privacy threat models using LINDDUN to construct robust knowledge bases
that address potential vulnerabilities. Each query was evaluated to determine response time and
computational load, providing insights into how efficiently the system handles different types of
queries. Further experimental details, including in-depth analysis and performance metrics, are
available in Chapter 8.

As mentioned in Section 4.2, STRIDE and LINDDUN have been utilized to identify poten-
tial security and privacy threats in TSS, revealing that non-compliance threats could arise from
various security and privacy issues within the system, including unauthorized data sharing and
lack of accountability. In this section, we will demonstrate how we converted STRIDE and
LINDDUN security/privacy requirements into a DeLP knowledge base and combine them to
infer non-compliance threats to GDPR.

7.1.1 Security Threats Obtained from STRIDE

There is a direct connection between security threats and non-compliance threats [191]. The
instances of unauthorised data access, integrity breaches, or service disruption, all fall within the
domain of both security breaches and non-compliance threats, making STRIDE an apt choice
due to its comprehensive coverage. In this project, we use the STRIDE knowledge base to
extract the system-related information and translate that information into DeLP. As a practical
illustration, we convert a security threat knowledge base (i.e., information disclosure) into DeLP,
tailored to our specific use case of TSS, as depicted below. The converted rules and facts illustrate
the information disclosure threat in DeLP, capturing the conditions under which the threat may
occur and the exceptions that can prevent it.

r1: information_disclosure(I) -< privacy_breach(I),

data_leak(I).

r2: ~information_disclosure(I) -<

PreserveConfidentiality(I).

r3: data_leak(I) ← accidental_exposure(I),

sensitive_information(I).

r4: privacy_breach(I) ← planned_cyberattack(I),

sensitive_information(I).

f1: sensitive_information(patient_data).

f2: accidental_exposure(patient_data).

f3: planned_cyberattack(patient_data).

For instance, there is in f ormation_disclosure(I) threat if both privacy_breach(I) and
data_leak(I) occur (rule r1). The privacy_breach(I) and data_leak(I) can be considered as
sub-threats or contributing factors that collectively lead to the information disclosure threat.
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In rule, r2, ∼ in f ormation_disclosure(I) indicates that information disclosure is negated if
PreserveCon f identiality(I) happens. PreserveCon f identiality(I) represents a condition or ac-
tion taken to preserve the confidentiality of the information, which serves as a defeater to the
information disclosure threat. The other rules (r3 and r4) are strict rules for data_leak(I)
and privacy_breach(I). Finally, the facts related to the TSS use case are represented with
f 1, f 2, and f 3. Based on the above-provided knowledge base, the reasoning mechanism pro-
vides the result as ’YES’ for the query information_disclosure(patient_data).

7.1.2 Privacy Threats Obtained from LINDDUN

We opt for LINDDUN threat modelling technique due to its close alignment with GDPR’s com-
pliance aspects. LINDDUN comprehensively covers privacy and non-compliance threats such
as the GDPR legal basis for data processing. We extract LINDDUN’s knowledge base from
additional threat trees defined in its specification1. This knowledge is then translated into DeLP
and seamlessly integrated into our system. This approach enables us to effectively tackle privacy
concerns and ensure GDPR compliance while keeping data privacy intact.

r1: DataDisclosure(X, Y) -< DS(Y), DC(X),

DP(T), Share(X, T, "data").

r2: ~DataDisclosure(X, Y) ← DS(Y), DC(X),

DP(T), ~Share(X, T, "data"),

inform(X, Y, "ShareData").

r3: ~DataDisclosure(X, Y) ← DS(Y), DC(X),

DP(T), ~Share(X, T, "data"),

Consent(X, Y, "ShareData").

f1: DS(patient_P).

f2: DC(TSS_Server).

f3: DP(advertiser_T).

f4: Share(TSS_Server, advertiser_T, "data").

f5: ~inform(TSS_Server, patient, "ShareData").

For instance, above knowledge base extracted from LINDDUN to reason about Data Disclo-
sure threats is converted into DeLP for the TSS use case. This knowledge base consists of a set of
logical rules that define the conditions under which Data Disclosure threat occurs. For instance,
r1 asserts that there is the threat of Data Disclosure if DC(X) shares DS(Y)’s data with
a third-party advertiser (i.e., a DP) [DP(T)]. On the other hand, r2 and r3 indicate the instances
where a Data Disclosure threat will not occur when DC(X) informs DS(Y) about sharing the
data with third parties given that the associated consent allows to share data with a third-party.
f1-f5 are facts to specify instances and provide system-specific information for the TSS use

1https://downloads.linddun.org/linddun-trees/tree-examples/v20230802/Data
Disclosure.pdf
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case. For instance, there is a DS specified as ’patient_P’, a DC as ’TSS_Server’,
DP as ’advertiser_T’, and information about sharing data between DS(Y) and DP(T).
Given these facts and rules, the conclusion to query q: DataDisclosure(TSS_Server,
patient_P) is ’YES’.

7.1.3 Combination of Three Knowledge Bases

The process of combining DeLP knowledge bases from STRIDE and LINDDUN to infer GDPR
non-compliance threats follows a well-structured methodology. It begins with semantic align-
ment to ensure that terminologies match GDPR principles, enabling the mapping of security and
privacy threats. These mapped threats are then converted into a DeLP-compatible format, such
as rules or facts. The inference is rule-based, utilizing DeLP’s deductive reasoning to identify
non-compliance threats.

The GDPR non-compliance threats can only be sufficiently identified by harmonising the
GDPR principles with security and privacy threats. As already mentioned in Section 5.4 re-
garding system overview there is a strong relationship between security and privacy threats with
non-compliance threats. The STRIDE security threats and LINDDUN privacy threats are trans-
lated into DeLP for inferring GDPR threats. Thus the integration of the knowledge obtained
from STRIDE and LINDDUN (and is then converted into DeLP) is crucial to the success of our
solution.

r1: ~Accountability(X, R) -< DC(X),

ReportingMechanism(R), ~Report(X, R, "DataBreach").

r2: ~Accountability(X, R) -< DC(X),

ReportingMechanism(R), ~Report(X, R, "DataBreach"),

information_disclosure(I).

r3: ~Accountability(X, R) -< DC(X),

ReportingMechanism(R), ~Report(X, R, "DataBreach"),

~PreserveConfidentiality(I).

r4: ~Accountability(X, R) -< DC(X), DP(T),

ReportingMechanism(R), ~Report(X, R, "DataBreach"),

Share(X, T, "data").

r5: ~Accountability(X, R) -< DC(X),

ReportingMechanism(R), ~Report(X, R, "DataBreach"),

DataDisclosure(X, Y).

r6: ~Accountability(Y, R) -< DS(Y),

ReportingMechanism(R), ~Complain(Y, R, "DataBreach").

r7: Accountability(X, R) -< DC(X),

ReportingMechanism(R), Report(X, R, "DataBreach").

r8: Accountability(Y, R) -< DS(Y),

ReportingMechanism(R), Complain(Y, R, "DataBreach").

r9: ReportSupervisoryAuthority(R, S) ←
ReportingMechanism(R), Report(R,S, "DataBreach").
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r10: ReportSupervisoryAuthority(R, S) ←
ReportingMechanism(R), Complain(R,S, "DataBreach").

f1: DS(patient_P).

f2: DC(TSS_Server).

f3: DP(advertiser_T).

f4: ReportingMechanism(reportingbody).

f5: ~Report(TSS_Server, reportingbody,

"DataBreach").

f6: Complain(patient_P, reportingbody, "DataBreach").

f7: Share(TSS_Server, advertiser_T, "data").

f8: inform(TSS_Server, patient, "ShareData").

f9: sensitive_information(patient_data).

f10: accidental_exposure(patient_data).

f11: planned_cyberattack(patient_data).

We provide a simple demonstration of how to combine such knowledge by scrutinising the
relationships between a non-compliance threat (i.e., non-Accountability), a security threat ob-
tained from STRIDE (i.e., Information Disclosure) and a privacy threat obtained from LIND-
DUN (i.e., Data Disclosure) as depicted in above combined knowledge base. In this combined
knowledge base, the conditions for complying with the GDPR ’Accountability’ princi-
ple are determined. Accountability and non-Accountability requirements (defined
by rules r1 to r8) are inferred based on factors like reported data breaches, complaints of data
breaches, Information Disclosure (security threat) and Data Disclosure (privacy threat). Two
rules r9 and r10 address the reporting of incidents to the Supervisory Authority implying that in
case of an incident, such as data breaches or complaints, it should be reported to the Supervisory
Authority through a ’ReportingMechanism’.

The knowledge base also contains some facts ( f 1− f 11) for specific entities such as ’DS’,
’DC’, and ’ReportingMechanism’, as well as their interactions and attributes, such as
data breach reporting for the default knowledge base. Similarly, for the system-specific system
use case (i.e., TSS), the ’patient_P’ and ’TSS_Server’ are also defined in some facts.
A query q like ’Accountability (TSS_Server, reportingbody)’ can pass to the
reasoning mechanism upon the combined knowledge base to get the answer, in this case, is
’NO’.

In this section, we presented how non-compliance threats can be inferred from the combined
DeLP-based knowledge base of STRIDE and LINDDUN. In the following section, we will
demonstrate the Fitbit use case to infer non-compliance threats from the DeLP-based knowledge
base for GDPR requirements and legal obligations.
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7.2 Case Study: Fitbit Demonstration

In our demonstration, we inferred non-compliance threats from the DeLP-based knowledge base
for GDPR. Furthermore, we tackled unresolved queries in our use case (Fitbit) through two
key experiments: addressing conflicting rules by assigning rule priorities and resolving missing
information by identifying and supplementing missing facts. This demonstration highlighted
our system’s capability to effectively manage "UNDECIDED" query outcomes and recommend
threat mitigation measures in instances of non-compliance, thus enhancing the reliability of our
GDPR compliance modelling. The implementation data and demonstration results are publicly
available on GitHub2 for reproducing, validating, and further improving the work.

7.2.1 Fitbit Use-case

Fitbit devices are widely recognised for their ability to track users’ health and fitness by collect-
ing a variety of personal data, such as location, heart rate, physical activity levels, and sleeping
patterns [192]. Once gathered, Fitbit platforms process this data, using advanced algorithms to
analyse it and provide users with personalized feedback, trends, and health improvement sug-
gestions. This comprehensive process of data collection, storage, management, and analysis
necessitates a robust framework to safeguard user privacy and data security.

To protect user data and ensure compliance with GDPR rights, Fitbit has implemented sev-
eral measures3. These include allowing users to access, edit, and delete their data, employing
data encryption, and conducting security evaluations to safeguard personal information against
breaches and unauthorized access [193]. Moreover, the company conducts periodic security au-
dits and implements extra measures to protect confidential information, thus adhering to GDPR’s
requirement for data security and privacy by design and by default.

However, there are concerns that Fitbit may not fully comply with GDPR, raising questions
about user consent, right to be informed, right of access, and the sharing of data with third par-
ties4. Specific allegations suggest that Fitbit’s practices for obtaining consent might not meet
GDPR standards, as they may not be freely given, sufficiently explicit, or fully informed. Addi-
tionally, the adequacy of data anonymization before sharing of personal data with third parties
without explicit user consent5 have been questioned. Serious privacy concerns and potential
GDPR violations have been highlighted due to the collection of highly sensitive personal and
potentially identifying data, such as health and menstruation tracking information [194].

Moreover, in the Fitbit use case demonstration, we conducted experiments to evaluate the
DeLP-based system’s performance across a highly complex scenario involving 1,000 rules and

2https://github.com/nailaazam/Efficient_DeLP_GDPR-Project/tree/master
3https://www.fitbit.com/global/us/legal/privacy-policy
4https://cybernews.com/news/fitbit-violates-gdpr/
5https://www.cpomagazine.com/data-protection/schrems-continuing-international-data-transfer-crusade-with-

gdpr-complaint-against-fitbit/
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facts. We tested various queries to gauge the computational complexities associated with the
three possible outcomes: "NO," "YES," and "UNDECIDED." This experiment incorporated
nearly all GDPR principles listed in Table 2.4, providing a comprehensive assessment of com-
pliance requirements. We evaluated the results for different types of queries by examining both
vertical and horizontal complexity, with and without the "UNDECIDED" result handler. This
allowed us to analyze how the presence of the result handler impacts computational efficiency.
We measured response times to determine the system’s performance under these conditions.
Further details on experimental setup, metrics, and results can be found in Chapter 8.

7.2.2 Knowledge-base Construction for the Use-case

We build a knowledge base specifically for the Fitbit use case to illustrate the application of
DeLP in modelling GDPR compliance and addressing "UNDECIDED" query results. During
this process, for the system-default knowledge base, we translated the GConsent ontology into
DeLP using strict and defeasible rules to capture Fitbit’s consent as depicted in Appendix 9.4.
For the system-specific knowledge base, we utilized relevant facts specific to Fitbit.

The developed DeLP knowledge base example demonstrates the implementation of the Fitbit

use case to comply with the GDPR’s lawful basis of consent under Article 7. Core concepts from
the GConsent6 ontology (Data Subject, Status, Purpose, Personal Data, Processing Personal
Data, etc.) are translated into a DeLP knowledge base. This knowledge base contains strict
and defeasible rules (r1-r95) and facts (f1-f3). The rules for consent compliance in GDPR are
established by Rule r1, which sets the general condition (i.e., GivenConsent), while Rules r2-r9,
r12, r22, r25, r34, r43, r48, r53, and r73 address specific conditions for assessment. Rules r2
to r9 detail how consent must be given and validated, including explicit and implicit consent.
Rules r10 and r11 cover consent given by guardians for minors. Consent statuses are defined
by Rules r12 to r21, detailing valid and invalid statuses. Rules r22 to r24 ensure consent is
linked to specific purposes. Validity of consent, such as being freely given and informed, is
detailed in Rules r25 to r33. Personal data is specified in Rules r43 to r47. The context of
consent is addressed in Rules r48 to r52, while consent for various data processing activities
is covered by Rules r53 to r72. Finally, Rules r73 to r84 focus on Fitbit’s consent specifics as
defined in its privacy policy7, particularly regarding external data processing and the sharing of
sensitive personal data. These rules include conditions for valid consent for external processing
(r73), third-party data transfers (r74), ensuring consent is freely given (r75), providing specific
purposes (r78), and handling the right to data erasure (r79-r81). They also stipulate conditions
for sharing sensitive personal data, such as health information (r84). Moreover, Rules r87 to
r89 provide the consent requirements related to informed consent, and Rules r90 to r92 outline

6https://openscience.adaptcentre.ie/ontologies/GConsent/docs/ontology#Sha
ringOfPersonalData

7https://www.fitbit.com/global/us/legal/privacy-policy#how-info-is-shared
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the conditions for the freely given consent obligation. Finally, Rules r93 to r95 specify the
requirements related to the right of access.

The reasoner evaluates a query (q): ConsentCompliance(fitbit,user) using the available Fit-

bit specific information (i.e., facts f1 to f3) in the knowledge base. These given facts high-
light the compliance challenges that Fitbit faces regarding consent, leading to the result=NO
(indicating non-compliance) due to DeletionPeriodUpTo90Days (f3). Fitbit’s privacy policy
states that users can delete their account to exercise their right to erasure, which may take
up to 90 days to fully delete personal data (r79-r80). However, users are unable to easily
withdraw consent for external data processing instead deleting their account (r82), which re-
sults in losing all tracked workouts. This essentially penalizes Fitbit users for revoking con-
sent, as they must sacrifice their product experience to do so, which is contrary to GDPR
requirements that consent should be easily withdrawable. Based on this scenario, our rea-
soner processes the query where the supporting argument= <∼ConsentCompliance(fitbit,user) -
<∼ConsentForProcessingPersonalData(fitbit,user).,∼ConsentCompliance(fitbit,user)>. The re-
sult ("NO") of the query (q) illustrates that Fitbit does not comply with consent lawful basis of
data processing.

7.2.3 Conflicting Rules Demonstration

We implemented a mechanism to resolve conflicting rules using a Fitbit use case. This example
focuses on consent requirements related to the informed consent obligation and requirements
of exercising right to be informed (Articles 13 & 14) for data transfer, as outlined in the Fitbit

DeLP knowledge base. Under GDPR Article 7, informed consent requires that data subjects are
provided with clear and accessible information about data processing activities, including the
purpose, legal basis for processing, and recipients of the data.

The rules (r87-r89) mentioned in Appendix 9.4 demonstrate the scenario of conflicting rules
when applying the facts f4: GivenConsent(user, fitbit) and f5: ~ProvideDetailsOfTransfersOf-
PersonalDataToThirdParties(fitbit, user). Rules r87 to r89 establish a hierarchy of requirements
for validating consent for external processing. Rule r87 states that consent for external process-
ing is not valid if the informed consent obligation is not met. Rule r88 specifies that the informed
consent obligation includes informing recipients of personal data. Rule r89 further clarifies that
informing recipients must include providing details of data transfers to third parties. According
to Fitbit’s privacy policy, the shared data includes not only a user’s email address, date of birth,
and gender, but also logs related to food, weight, sleep, water intake, female health tracking,
alarms, and messages on discussion boards or to friends on the Services. The policy states that
this collected data may be shared with third-party companies, without specifying their loca-
tions. Additionally, users are unable to determine which specific data is being shared and what
are the implications of sharing such information to third parties. Therefore, on one hand, fact
(f4) indicates that the user has given consent to the DC for processing their data. On the other
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hand, fact (f5) highlights that Fitbit does not provide details about the transfer of personal data
to third parties. The conflict arises when both rules (r1 & r89) are applicable simultaneously
because of the existing facts(f4 & f5), leading to an "UNDECIDED" outcome for the query (q):
ConsentCompliance(fitbit,user). Notably, Rule r89 is linked to r88 and r87, while
rule r87 is linked to r73, making r73 the main supporting argument. Therefore, to address the
issue of "UNDECIDED" query results, we implement a priority mechanism that evaluates the
precedence of one rule on the other.

As discussed in Section 6.1.3, our reasoner first identifies the conflicting arguments within
the knowledge base and then prompts the user to assign explicit priorities to these conflicting
arguments for further processing. For example, consider the following structure of arguments
with assigned priorities: if the user assigns a higher priority (i.e., 1) to arg2 and a lower priority
(i.e., 2) to arg1, this indicates that the consent requirement for processing personal data takes
precedence over the given consent.

2 arg1 = <{ConsentCompliance(fitbit,user) -<

GivenConsent(user,fitbit),DataSubject(user),

DataController(fitbit)}, ConsentCompliance(fitbit,user)>

1 arg2 = <{∼ConsentCompliance(fitbit,user) -<

∼ConsentForProcessingPersonalData(fitbit,user)},
∼ConsentCompliance(fitbit,user)>
Ultimately, our system resolves the conflict in favor of arg2 (r73), which prioritizes the

consent requirement for external processing over the user’s given consent. After re-evaluation,
the reasoner responds to the query (q) with "NO", indicating non-compliance with the consent
requirements.

7.2.4 Missing Information Demonstration

We implemented a mechanism to identify missing information in the Fitbit use case. For demon-
stration purposes, we refer to the consent requirements of data transfer under Article 44. Due to
uncertainties or incompleteness in the data, Fitbit’s data processing operations might not fully
comply with the consent requirements.

The rules (r90-r92) mentioned in Appendix 9.4 demonstrate the example of missing informa-
tion when applying the facts: f6: ThirdParty(processor), f7: ProcessingForDataTransfer(fitbit,
processor), and f8: DeletePersonalInformation(fitbit, user). Rules r90 and r92 state that there
will be consent compliance when the requirements for deleting personal information by exer-
cising the right to erasure, freely given consent obligation, and processing for data transfer are
satisfied. Rule r91 describes a counter-scenario where consent compliance is not fulfilled if the
user is not allowed to delete their personal data and the requirements for processing data trans-
fers are not met. Additionally, facts f7 and f8 demonstrate that Fitbit processing for data transfer
and allows users to delete their account if they do not want their personal data to be transferred.



CHAPTER 7. SYSTEM EXPERIMENTS AND DEMONSTRATION 94

After applying these rules to the provided facts, the reasoner yields an "UNDECIDED" out-
come regarding Fitbit’s compliance with the query ConsentCompliance(fitbit, user).
This uncertainty arises because the knowledge base does not specify whether Fitbit fulfilled the
freely given consent obligation. Fitbit8 does not provide the required opt-out option for users
who do not want to transfer their data, effectively enforcing a ‘take it or leave it’ approach. To
resolve this, our system identifies the need for additional information to fully assess compli-
ance with consent requirements. The reasoner determines that the freely given consent for data
processing, as outlined in Rule r90 and Rule r92, is missing from the provided facts.

Upon identifying this gap, the system prompts for the addition of relevant facts, such as
FreelyGivenConsentObligation, to allow users the option to consent to data transfer.
For instance, if users are provided with freely given consent option, they may choose the option
of not to allow data transfer while still using the app for health and fitness tracking purposes.
This information is then added to the knowledge base as a new fact (f9):
FreelyGivenConsentObligation(fitbit, user).

With the addition of the previously missing fact (f9), our system re-evaluates Fitbit’s data
processing activities against the consent compliance requirements. Considering the facts such as
ProcessingForDataTransfer (f7), DeletePersonalInformation (f8), and now
the FreelyGivenConsentObligation (f9), the system can conclude that Fitbit is com-
pliant with the consent requirements. As a result, our reasoner returns "YES" for the query
ConsentCompliance(fitbit, user).

In the following section, we will demonstrate how we mitigated non-compliance threats in
our GDPR threat model after resolving the issue of "UNDECIDED" query results.

7.2.5 Threat Mitigation Demonstration

We address non-compliance threat mitigation by offering insights into the system. This helps
explain the reasons for non-compliance and potential mitigation strategies, particularly for the
Fitbit use case. We focus on the requirements of the right of access (i.e., Article 15) to illustrate
this process.

The rules (r93-r95) mentioned in Appendix 9.4 illustrate the example of threat mitigation by
applying the fact f10: ~GivesRightToObtainCopyOfPersonalData(fitbit, user). For this part of
knowledge base scenario, query (q):
ConsentForExternalProcessing(fitbit,user) is decided unwarranted, resulting
in a "NO" outcome (i.e., non-compliance). This is due to the facts within the knowledge base
(i.e., f10), which serve as the basis for the Reasoner to process the query. In the reasoning algo-
rithm, after receiving a query (q) and completing the grounding step, the reasoner identifies the
augments with the conclusion: ConsentForExternalProcessing(fitbit,user) from

8https://techcrunch.com/2023/08/30/fitbit-gdpr-data-transfer-complaints-n
oyb/
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the rule set and iterates until the supporting argument is found (i.e., (r93). The reasoner con-
structs the dialectical tree based on the supporting argument once it has been identified. The rea-
soner identifies a potential defeater (r94) for the supporting argument (r93), hence it is marked
as defeated (D). Since the supporting argument is marked as (D), the reasoner concludes that the
query cannot be warranted. Therefore, the reasoner constructs a dialectical tree for the support-
ing argument (i.e., (r94)) of the negation of the query (i.e.,
∼ConsentForExternalProcessing(fitbit,user)). The reasoner does not iden-
tify any defeaters for the supporting argument (r94) of the negation of the query and thus it
is marked as Undefeated (U). Rule r95 is linked to and specifies Rule r94. As the supporting
argument (r94) of the negation of the (q) is marked as Undefeated (U), the query is deemed
Unwarranted. Based on this process, the query result is returned as "NO".

The system generates a supporting argument (i.e., the negation of the query) that illustrates
the cause of non-compliance, displayed on the console as:

<{∼ConsentForExternalProcessing(X, Y) ← ∼RightForAccess(X, Y)},

∼ConsentForExternalProcessing(X, Y)>

This output is crucial because it highlights a case of non-compliance within the system:
Fitbit does not provide access to personal data used for external processing. According to Fitbit’s
privacy policy9, the company shares sensitive user data, including health-related data, with third-
party companies whose locations are unspecified. Furthermore, users cannot determine which
specific categories of personal data are shared, and despite exercising their right of access to
obtain a copy of this information from Fitbit10, the complainants never received a response.
Consequently, our threat mitigation analysis concludes that the system fails to comply with the
Right of Access principle. This non-compliance is due to Fitbit’s inability to provide user access
to information, which is vital for ensuring transparency in processing. Allowing users to exercise
their right of access would let them know where their information is being transferred, including
to third countries.

7.3 Summary

This chapter demonstrated how our system identifies and mitigates non-compliance threats
within the TSS use case, addressing the challenges healthcare systems face in complying with
stringent data protection laws. We showed how non-compliance threats can be inferred from
a combined knowledge base of STRIDE (security threats), LINDDUN (privacy threats), and
GDPR (requirements and legal obligations). Additionally, we illustrated how non-compliance
threats can be inferred solely from the DeLP-based GDPR knowledge base in the Fitbit use case.
Moreover, we conducted experiments to validate the effectiveness of our approach in managing

9https://www.fitbit.com/global/us/legal/privacy-policy#info-we-collect
10https://techcrunch.com/2023/08/30/fitbit-gdpr-data-transfer-complaints-noyb/
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conflicting rules and missing information. These experiments are crucial for demonstrating how
our solution handles real-world complexities and enhances decision-making reliability. Specif-
ically, we focused on the Fitbit use case, where the accuracy and completeness of information
are vital for user privacy and regulatory compliance.

In the next chapter, we will present the results of experiments conducted for various query
outcomes and provide a comparative analysis.



Chapter 8

Results, Analysis and Discussion

In this chapter, detailed experimental results obtained by applying the novel threat modelling
techniques to the TSS and Fitbit use cases are provided. This chapter offers a comprehensive
analysis and discussion aimed at demonstrating the effectiveness of the proposed solutions in
addressing GDPR compliance within these applications.

Initially, the chapter demonstrates the developed DeLP-GDPR Project for the TSS use case
and provides detailed performance results by comparing the execution time and complexity of
the knowledge base for different queries (i.e., "YES," "NO," and "UNDECIDED"). The chapter
further offers a comparative analysis and extensive discussion of each query result.

The chapter then presents the detailed results and analysis of the modelling technique for
GDPR compliance in the Fitbit use case, evaluating the "UNDECIDED" results handlers. These
handlers are crucial for managing cases where the system cannot make a clear decision due to
conflicting rules or missing information. The discussion includes how these handlers operate
within the system and assess their impact on overall performance. This involves a detailed
examination of system behaviour under varying levels of horizontal and vertical complexities,
illustrating how the system scales and maintains performance despite increased complexity and
potential data ambiguities.

Through these analyses, the chapter aims to validate the robustness and adaptability of the
GDPR compliance modelling techniques, demonstrating their practical applicability to real-
world scenarios in the healthcare and wearable technology sectors.

8.1 Results and Analysis of DeLP-based Modelling for GDPR
in Telehealth Services

This section presents the findings from the demonstration for the proposed modelling technique
tailoring to the TSS use case including performance results and insightful discussion.
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Figure 8.1: Implementation of the DeLP-GDPR project in JAVA showing packages structure
and a DeLP reasoner

8.1.1 Demonstration and Experiment

For the demonstration, we have built a DeLP-GDPR compliance knowledge base for the TSS

use case. The designed reasoning algorithm performs the inference for the specific query on the
developed knowledge base (i.e., system-default knowledge base and system-specific knowledge
base). By passing the queries to the inference algorithm as input the reasoner yields outcomes
that are displayed either in a console or written in an output file. The implementation with data
and demonstration results are publicly available on GitHub1 for reproducing and validating the
work and further improvement.

Fig. 8.1 shows the implementation of the DeLP-GDPR Project in JAVA with some pack-
ages shown in the left panel and the DeLP reasoner in the right panel. We have performed the
DeLP_GDPR project for different types of queries with "YES"/"NO"/"UNDECIDED" answers
over different knowledge bases taking complexity (i.e., total number of facts and rules in the
knowledge bases) into consideration.

To evaluate the practical implications and efficiency of our proposed solution, we carry out
experiments to measure the execution time of different types of queries over varying complexi-
ties of knowledge bases. In this demonstration, we ran experiments on a 64-bit Windows 11 Pro
OS with an x64-based Intel(R) Core(TM)-i7 10th Gen processor running at 1.80GHz, equipped
with 32GB RAM. We have run the experiment for all three possible results over 29 knowledge
bases, ranging from 16 to 128 total numbers of facts and rules with different queries to gauge the
computational complexities of three outcome results (i.e., "NO", "YES", and "UNDECIDED").
For each combination of query and knowledge base, we have run 100 times the same experi-
ments to get the average as well as the standard deviation. In the next section, the experimental

1https://github.com/nguyentb/DeLP_GDPR/tree/main
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results will be analysed and discussed in detail.

8.1.2 Performance Results

Figure 8.2: Comparative Analysis of Execution Time for DeLP-based GDPR Compliance: NO
vs. YES

Fig. 8.2 illustrates the execution time versus the complexity of the knowledge base for
queries with "NO" or "YES" answers. Specifically, the knowledge bases are designed for
the TSS use case and the queries are tailored to assess the compliance of a TSS_Server (i.e.,
DC) with the Consent legal basis granted by various patients (i.e., DS). For instance, query q1:
ConsentCompliance(TSS_Server,patient1) and query q2:
ConsentCompliance(TSS_Server,patient2) always yield answers of "NO" and "YES"
for all 27 knowledge bases, respectively.

It is evident that the execution time increases as the complexity of knowledge bases in-
creases, which adheres to a linear pattern. It only takes less than 18ms for both Y ES/NO queries
with knowledge bases up to 128 no of rules and facts. The standard deviation is reasonable
showing acceptable variability for the experimental results, implying that the reasoner works
stably. It is worth noting these are expected results supported by previous studies [195, 196].
Due to the way the reasoning algorithm is implemented in our project (i.e., the reasoner searches
for the warrantability of a query q before searching the warrantability of its negation form (i.e.,
q.complement)), generally, the execution time for "NO" answer queries is higher than "YES"
ones, as clearly depicted in Fig. 8.2.
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Figure 8.3: Comparative Analysis of Execution Time for Different DeLP-based GDPR Compli-
ance Response Types

Conversely, the answer to the query q3: ConsentCompliance(TSS_Server,
patient3) is "UNDECIDED" due to the absence of explicit rules and facts that substantiate
the query. The provided rules and facts in the knowledge bases for q3 do not provide sufficient
grounds for the reasoner to warrant the query. To confirm the answer, the reasoner has to go
through all combinations of grounded facts and rules in the knowledge base, similar to a brute-

force search. As a consequence, the elapsed time for this type of query is up to 100 times
higher than that of "NO" and "YES" but still linear in nature, for instance, it takes 1050ms in
knowledge bases for the 128 total of facts and rules. Fig. 8.3 visually represents the notably
extended execution time for query q3 compared to q1 and q2 nicely, obviously showing that
"YES"/"NO" queries are executed much faster compared to "UNDECIDED" ones.

In the upcoming section, we will delve deeper into our analysis and discussion of the ob-
tained results.

8.1.3 Analysis and Discussion

For the analysis, we delve into the execution time versus the knowledge base complexity ob-
tained from the experiments taking into account our implementation of the algorithms, particu-
larly the reasoning mechanism, in the DeLP-GDPR Project as well as the defeasible theory
in DeLP and Argumentation reasoning.

Upon scrutinising "YES" responses, intriguing patterns emerge concerning execution time
for different complexity levels. The execution time generally increases with higher complexity.
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Moreover, the increase is uniform, as observed from the execution time values. This observation
indicates that simplifying the rules leads to a uniform increase in the execution time. This
efficiency can also be attributed to the type of query. Furthermore, the relatively higher standard
deviations accompanying execution time values signify response variability within the system.

In comparison with "YES" queries, the execution time for "NO" ones is generally higher.
This disparity highlights the computational demands inherent in assessing negative outcomes,
again, due to the way we implement the reasoning algorithm that looks for the warrantability of
a query before its negation form. Additionally, the standard deviations for "YES" responses are
typically on par with those of "NO" responses. This implies a certain consistency in the system’s
behaviour across query types. This linear complexity in the "YES"/"NO" queries is attributed
to the utilisation of propositional defeasible theory that the consequences of a defeasible theory
can be computed in O(N) time, where N is the complexity of theory (i.e., the number of sym-
bols). This has been investigated by previous research works and the inference problem within
propositional defeasible logic has been demonstrated to exhibit linear complexity [135, 196].

The analysis of "UNDECIDED" queries offers valuable insights into scenarios where the
knowledge base system encounters ambiguities or conflicting information. The execution time
for "UNDECIDED" queries is notably higher compared to both "NO" and "YES" ones. To suc-
cessfully confirm an "UNDECIDED" query, the algorithm reckons all combinations of grounded
facts and rules in the knowledge base to construct dialectical trees. Thus, this prolonged exe-
cution time can be attributed to the system’s attempt to resolve uncertainties by considering
multiple pathways and potential resolutions. Nevertheless, the behaviour of the algorithm is
linear to the size of the KBs, making it still suitable for a large-scale expert system. As the
system uses more resources attempting to reach definitive conclusions, it signifies the growing
resource-intensity of resolving uncertainties. Thus, the elevated standard deviations accompany-
ing "UNDECIDED" responses underscore the intricate nature of managing uncertain scenarios.
Gaining a nuanced understanding of "UNDECIDED" response patterns informs enhancements
in the system’s handling of ambiguity.

From this system performance analysis, with the linear complexity for all types of queries,
the proposed approach offers promising solutions for a variety of real-world services and ap-
plications, particularly when gathered information for decision-making is incomplete and/or
conflicted. In the case of an "UNDECIDED" query, the analysis also suggests a nice trick to
stop performing the reasoning algorithm by introducing an execution time upper bound θ for
each knowledge base. After θ , which implies that there is a very high probability the response is
not "YES" and "NO", the reasoning algorithm can stop and yield the result of "UNDECIDED".

In the next section, we will provide the results and analysis of the "UNDECIDED" results
handlers for various queries in the Fitbit use case.
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8.2 Results and Analysis of DeLP-based Modelling for GDPR
in Fitbit Use-case

In this section, we demonstrate the system’s performance across different scenarios, including
scenarios with and without the "UNDECIDED" results handlers in various complexities of the
knowledge base. We then analyse the experimental results and provide an insightful discussion
on the complexity of the knowledge base and the effectiveness of the "UNDECIDED" results
handlers.

8.2.1 Experimental Settings

Empirical experiments are carried out to evaluate the impact of incorporating Conflicting and
Missing Information Handlers on query execution times. These tests take place on a 64-bit
Windows 11 operating system, utilizing an Intel(R) Core(TM) i9-10900KF CPU at 3.7GHz
with 32 GB of RAM. Knowledge bases designed to produce three possible outcomes ("YES",
"NO", and "UNDECIDED") are created. "UNDECIDED" outcomes are further divided into two
categories: one due to conflicting information and the other due to missing information.

We assess the complexity of a knowledge base through two metrics: vertical and horizontal
complexity, as detailed in Section 5.4.2. In the experiments, vertical complexity is adjusted in all
scenarios except for the "UNDECIDED-missing-information" case. This exception is because
the "UNDECIDED" results handlers only intervene when a rule with horizontal complexity
greater than 1 indicates missing information.

The experiments are conducted using identical knowledge bases across scenarios of similar
complexity to ensure a fair comparison. Since our "UNDECIDED" results handlers require
human input, the algorithm’s execution time is measured by recording the total query execution
time and then subtracting the time spent awaiting human input. The error bars in all graphs
within this paper represent the standard deviation, calculated from the average execution times
of 30 runs for each data point.

Comparative Analysis

In this section, we discuss our experimental results, showcasing system performance compar-
isons both with and without the "UNDECIDED" results handlers. We have categorized the query
outcomes for better clarity in the presentation of results.

Figure 8.4 shows a increase in query execution times as the complexity of the knowledge
base increases. The complexity on the x-axis represents the “Vertical or Horizontal Complexity
of the Knowledge Base (facts & rules),” respectively. Implementing "UNDECIDED" results
handlers causes a slight and consistent rise in execution times for both "YES" and "NO" out-
comes, yet the increase is moderate across all levels of complexity, indicating that the handlers’
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Figure 8.4: Execution Time vs. Vertical Complexity for YES/NO results.

impact on performance is minimal and well-managed. Queries are processed within 2000 mil-
liseconds, even at the highest tested complexity of 1000 rules and facts. This suggests that the
introduction of "UNDECIDED" results handlers does not significantly affect the performance
for "YES" and "NO" outcomes. The system’s stability is evidenced by reasonable standard de-
viations, suggesting acceptable variability in experimental outcomes. As previously mentioned,
our findings align with those of earlier research [195, 196]. Similarly, In Figure. 8.5, in cases
of high horizontal complexity, factorial time complexity dominates. "NO" responses generally
take longer than "YES" because the reasoner verifies the query’s truth before its negation.

In contrast, Figure 8.6 demonstrates that "UNDECIDED" outcomes, resulting from conflict-
ing information, show a significant increase in execution time as the complexity of the knowl-
edge base increases with the use of a conflicting information handler. The performance approx-
imately doubles in time, likely due to the necessity to re-evaluate the query and the associated
increase in processing overhead. Initially, execution times with the conflicting information han-
dler align with those for "YES" or "NO" outcomes. However, as complexity increases, the time
required to resolve conflicting information with the handler escalates sharply. This suggests that
at higher complexities, the execution time for resolving conflicts may exceed that for straightfor-
ward "YES" or "NO" outcomes, with the increase becoming more pronounced as the knowledge
base complexity grows. The small error bars on the graph indicate a low standard deviation,
confirming that the execution times are consistently near the average, thereby showcasing the
system’s reliable performance across various complexity levels.

Likewise, Figure 8.7 demonstrates a substantial rise in execution times as horizontal com-
plexity in the knowledge base increases (as cen be seen on x-axis ), particularly when the missing
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Figure 8.5: Execution Time vs. Horizontal Complexity for YES/NO results.

information handler is active. The graph, displayed on a logarithmic scale, illustrates a signifi-
cant rise in execution time, escalating from milliseconds to hours as the complexity multiplies by
roughly a factor of 10. The graph’s leftward shift is due to re-evaluating queries when additional
facts are included. This rise is steeper than the execution times for "YES" or "NO" outcomes,
indicating that processing missing information takes considerably more time. Furthermore, the
small error bars on the graph demonstrate that query execution times are consistent across dif-
ferent levels of knowledge base complexity, showcasing the system’s reliability in managing
"UNDECIDED" queries due to missing information.

In the next section, we will thoroughly analyze and discuss the results we have obtained.

8.2.2 Analysis and Discussion

When the query results in "YES" or "NO," the execution times are comparable with or without
"UNDECIDED" results handlers, as the system experiences minimal alterations. The "UNDE-
CIDED" results handlers are triggered only if the reasoning process initially yields an "UNDE-
CIDED" outcome. Any slight increase in execution time is due to the added overhead involved
in handling an "UNDECIDED" result.

When dealing with conflicting information, execution time doubles as the system requires
two evaluations: initially, when the query yields an "UNDECIDED" result and conflicting ar-
guments are identified increase time from the dialectical tree; and secondly, after the user prior-
itizes the conflicting rules for re-evaluation. Although this process extends the execution time,
its increase in time complexity ensures that the increased duration remains manageable.
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Figure 8.6: Performance comparison of queries resulting in "UNDECIDED-Conflicting Infor-
mation".

However, significant performance disparities are observed during demonstrations involving
missing information. Initially, without the missing information handler, the relationship between
complexity and execution time increases at low horizontal complexity but becomes factorial at
high horizontal complexity. With the missing information handler activated, execution times
increase in both low and high-horizontal complexity scenarios. At lower horizontal complexi-
ties, the primary cause of increased execution time is the overhead associated with the handler.
At higher complexities, the main factor driving increased execution time is the need for query
re-evaluation; in our tests, this was effectively demonstrated by increasing the horizontal com-
plexity by one level. This observation is supported by a one-unit leftward shift in horizontal
complexity shown in Figure 8.7, indicating that detecting and re-evaluating queries due to miss-
ing information takes roughly the same time as when no information is missing.

The minimal error bars in Figures 8.4, 8.6, and 8.7 reflect low standard deviation, indicating
the consistent performance of our system for "YES", "NO", and "UNDECIDED" queries across
different complexity levels. Given the deterministic behaviour of our reasoner and the "UN-
DECIDED" results handlers, variations in execution times are primarily attributed to hardware
differences.

In the above, we have analyzed and discussed our four-fold contributions: firstly, the con-
struction of a Defeasible Logic knowledge base that seamlessly integrates facts and rules de-
rived from GDPR requirements with existing security and privacy knowledge; secondly, the
development of a sophisticated inference engine designed to discern GDPR non-compliance
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Figure 8.7: Performance comparison of queries resulting in "UNDECIDED-Missing Informa-
tion".

threats within this knowledge base; thirdly, the creation of the "UNDECIDED" results handler
to address uncertainties; and fourthly, the integration of threat mitigation in the reasoner to sug-
gest strategies for mitigating threats. Finally, we provided a compelling demonstration of the
proposed solution’s feasibility and performance efficiency through the Telehealth Services and
Fitbit use cases. This holistic approach not only advances the field of GDPR compliance but
also exemplifies the practical applicability and robustness of the devised modeling technique.

Our findings/results and use case experiments successfully achieved our research objectives.
We developed a novel modeling technique that effectively identifies and models GDPR non-
compliance threats, demonstrating scalability and adaptability across different data-driven con-
texts. The technique addresses limitations of current models by handling incomplete and con-
flicting information, thereby improving applicability in real-world scenarios. Additionally, our
approach enhances compliance risk management, providing a robust framework for identifying
and mitigating risks as regulatory requirements evolve. Finally, we validated the technique’s
practical applicability by demonstrating its effectiveness in complex, real-world systems involv-
ing sensitive personal data.

8.3 Summary

In this chapter, detailed experimental results from applying the novel threat modelling tech-
niques to the TSS and Fitbit use cases are presented. The chapter demonstrates the effectiveness
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of the proposed solutions in addressing GDPR compliance. It includes a comparative analysis of
different query results ("YES," "NO," and "UNDECIDED") for the TSS use case, highlighting
the performance in terms of execution time and complexity. For the Fitbit use case, the chap-
ter evaluates the "UNDECIDED" results handlers, essential for managing conflicting rules and
missing information. This discussion covers system behaviour under varying complexities and
illustrates how the system scales and maintains performance.

The next chapter discusses the bluefuture directions of the threat modelling technique for
GDPR-compliance.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

The main purpose of this thesis is to develop a threat modelling technique for GDPR compliance
based on logical reasoning capable of modelling non-compliance threats in real-world scenarios.
The thesis details the current literature in the field of existing threat modelling techniques and
highlights their limitations. For example, data privacy modelling techniques like LINDDUN
have been implemented in the design phase of systems [31, 32], the suitability and effectiveness
in determining and mitigating threats of non-compliance with complex data protection laws,
including the GDPR [197], is often found to be insufficient [181]. Modelling non-compliance
threats of GDPR is important because in the modern digital landscape, personal data undergoes
frequent processing and sharing through diverse applications, spanning sectors like finance, au-
tomotive, and healthcare services. The widespread adoption of these data-intensive applications
exposes our information to elevated risks of privacy breaches and data theft.

To address this challenge, this thesis presents a novel threat modelling technique for GDPR
non-compliance leveraging logical reasoning. This solution is an expert system based on DeLP
converted from Rule-based language that consists of a knowledge base designated specifically
for GDPR compliance with an inference engine reasoning over the knowledge base. DeLP’s
ability to model real-world knowledge makes it ideal for scenarios where the knowledge base
is incomplete, information can be conflicting or subject to change [136, 139]. These unique
advantages enable DeLP to effectively model the complexity of real-world reasoning such as
handling the varied exceptions and conditions found in the GDPR [198, 11] productively.

The thesis chapters elaborate on how the reasoner infers the threats over the DeLP knowledge
base and resolves the problem of "UNDECIDED" queries when conflict or missing information
occurs during the defeasible reasoning process. The developed modelling program is distin-
guished by its capacity to manage contradictions by incorporating explicit prioritisation among
conflicting rules in the knowledge base. This allows for a more sophisticated analysis of a mod-
elled system to mitigate non-compliance threats, enabling it to comply with the intricate GDPR
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requirements. Furthermore, to improve the reasoning abilities and resilience of the proposed
technique, we also resolve the scenarios of incomplete knowledge, allowing users (i.e., sys-
tem modellers) to add relevant information suggested by our modelling program to successfully
determine the compliance outputs.

The work investigates how the DeLP-based modelling technique outperforms previous threat
modelling techniques and introduces the novel concepts of handling the "UNDECIDED" query
results. It opens the door for future advances in modelling data protection regulations. It demon-
strates the experiments and evaluates the performance of our proposed modelling tool with con-
sistent results.

To summarize, this thesis introduces a novel threat modeling technique specifically for
GDPR non-compliance, using DeLP to address the complexities of real-world scenarios where
information may be incomplete or conflicting. Unlike traditional models such as LINDDUN,
which are limited in addressing dynamic regulatory requirements, this approach enables nuanced
compliance analysis by resolving “UNDECIDED” outcomes through prioritized rule conflicts
and user-input mechanisms when additional data is required. The developed system includes a
GDPR-specific knowledge base and an inference engine, which together support robust reason-
ing for key GDPR principles, including consent, accountability, and rectification. Additionally,
it integrates threat modeling standards like STRIDE and LINDDUN to enhance both security
and privacy. Experimental results demonstrate that the model is effective, scalable, and con-
sistent in handling diverse compliance queries across different knowledge base complexities,
making it a valuable advancement in data protection modeling.

9.2 Limitation

Herein, there are some limitations of logical reasoning-based modelling tool, such as those listed
in the following section.

1. Binary nature of query results: One significant limitation is the binary nature of the
answers. The system’s ability to provide only three distinct responses might not capture
the full complexity of certain real-world scenarios. In cases where the compliance deter-
mination requires nuanced reasoning, the system’s binary responses may not fully address
the intricacies of the situation.

2. Explicit priorities in the knowledge base: Another limitation is that users cannot di-
rectly set priorities while building the knowledge base because of the system’s inability
to parse priorities within the DeLP knowledge base. The prioritisation process can be
enhanced by allowing users to assign priorities directly within the knowledge base. This
approach eliminates the need for users to specify priorities each time a conflict arises dur-
ing reasoning. This approach could greatly improve the system’s re-usability, making it
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more robust and adaptable. Since predicting "UNDECIDED" queries is challenging, the
main goal here is to simplify the process of storing priorities and minimize the need for
user input.

3. "UNDECIDED" result due to human error: When users are asked to provide missing
facts from an identified list to support a query, they might still fail to include all relevant
facts, leading to an "UNDECIDED" result. However, this issue often results from human
error rather than a flaw in the system’s implementation. This highlights the challenge of
ensuring that users fully understand and respond to the system’s requirements for complete
and accurate data input.

4. Exponential rise in complexity: The exponential increase in complexity from rules with
numerous conditions can significantly impact the practicality of applying defeasible logic
to legal reasoning. This challenge primarily arises due to the implementation approach:
if the knowledge base is constructed with high horizontal complexity (i.e., high number
of conditions) of any relevant rule, it amplifies computational demands. Simplifying rules
and keeping horizontal complexity to a minimum can mitigate this issue, making the ap-
plication of defeasible logic more feasible for legal reasoning tasks.

9.3 Future Work

Future research efforts will focus on the many aspects of future threat modelling techniques for
GDPR-compliance, such as the following.

1. Advancing Legal Rule Modeling with DeLP: This study establishes a foundational
framework for applying DeLP (Defeasible Logic Programming) in legal rule modeling,
demonstrating its potential in complex legal decision-making. To address the limitations
noted, particularly the challenge of adapting to ongoing GDPR updates, future work could
explore the integration of machine learning to enable dynamic rule updates and enhanced
conflict resolution, ensuring that the system can adapt to new regulations as they emerge.
Testing these techniques in real-world compliance monitoring across various industries
could also expand DeLP’s applicability for automated legal reasoning in regulatory pro-
cesses. Integrating natural language processing tools to automate the interpretation of reg-
ulatory changes could further support dynamic updates [199, 200]. These enhancements
would improve DeLP’s responsiveness to evolving compliance requirements, making it a
robust solution for regulatory environments.

2. Enhancing the performance of the developed modelling tool in highly complex envi-
ronments: To enhance the performance of the developed modeling tool in highly com-
plex environments, future work should focus on developing more robust algorithms and
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employing advanced optimization techniques to efficiently handle and reason with large-
scale rule sets [195]. This approach is essential for domains requiring management of
extensive, intricate rule systems, such as financial regulations, large-scale enterprise poli-
cies, and complex legal compliance environments [201]. Specific strategies could in-
clude leveraging parallel processing to reduce computational time and exploring heuristic
optimization methods to improve reasoning efficiency [202]. Additionally, integrating
machine learning and artificial intelligence could automate parts of the decision-making
process, enabling real-time analytics and insights, even under high complexity. Applying
reinforcement learning could further refine decision pathways, improving accuracy and
adaptability in dynamic, rule-intensive contexts.

3. Exploring the Integration of DeLP with Other Logical Frameworks for Enhanced
Decision-Making: Future research could focus on enriching DeLP by integrating it with
various other logical frameworks that offer unique benefits for specific contexts. This in-
cludes exploring the synergies between DeLP and deontic logic, which is pivotal for nor-
mative reasoning in legal contexts [203]. Additionally, the integration with argumentation
frameworks [204] [205], could enhance the robustness of decision-making processes by
structuring interactive reasoning. Another promising area is the incorporation of negation-
as-failure techniques, which offer a powerful tool for handling incomplete information as
detailed [206]. By merging these methodologies with DeLP, future work could yield more
adaptable and effective tools for tailored application scenarios, significantly advancing the
capacity of systems to handle the complexity and specificity of regulatory compliance and
other domain-specific reasoning tasks [207].



Bibliography

[1] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science 349.6245 (2015), pp. 255–260.

[2] Nguyen Binh Truong et al. “Gdpr-compliant personal data management: A blockchain-
based solution”. In: IEEE Transactions on Information Forensics and Security 15 (2019),
pp. 1746–1761.

[3] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine
learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[4] Mike Ananny and Kate Crawford. “Seeing without knowing: Limitations of the trans-
parency ideal and its application to algorithmic accountability”. In: new media & society

20.3 (2018), pp. 973–989.

[5] Frederik Harder, Matthias Bauer, and Mijung Park. “Interpretable and Differentially
Private Predictions.” In: AAAI. 2020, pp. 4083–4090.

[6] Amina Adadi and Mohammed Berrada. “Peeking inside the black-box: a survey on ex-
plainable artificial intelligence (XAI)”. In: IEEE access 6 (2018), pp. 52138–52160.

[7] Dimitri Van Landuyt and Wouter Joosen. “A descriptive study of assumptions made in
LINDDUN privacy threat elicitation”. In: Proceedings of the 35th Annual ACM Sympo-

sium on Applied Computing. 2020, pp. 1280–1287.

[8] Peter Torr. “Demystifying the threat modeling process”. In: IEEE Security & Privacy

3.5 (2005), pp. 66–70.

[9] Howard Michael and Lipner Steve. The Security Development Lifecycle: SDL: A Process

for Developing Demonstrably More Secure Software. 2006.

[10] Samuel Greengard. “Weighing the impact of GDPR”. In: Communications of the ACM

61.11 (2018), pp. 16–18.

[11] Chris Jay Hoofnagle, Bart Van Der Sloot, and Frederik Zuiderveen Borgesius. “The
European Union general data protection regulation: what it is and what it means”. In:
Information & Communications Technology Law 28.1 (2019), pp. 65–98.

[12] Orlando Amaral et al. “Nlp-based automated compliance checking of data processing
agreements against gdpr”. In: IEEE Transactions on Software Engineering (2023).

112



BIBLIOGRAPHY 113

[13] J Fruhlinger. “Threat modeling explained: A process for anticipating cyber attacks”. In:
Tersedia pada: https://www.csoonline.com/article/3537370/threat-modeling-explained-

a-process-for-anticipating-cyber-attacks.html (2020).

[14] Wenjun Xiong and Robert Lagerström. “Threat modeling–A systematic literature re-
view”. In: Computers & security 84 (2019), pp. 53–69.

[15] Gerald Kotonya and Ian Sommerville. Requirements engineering: processes and tech-

niques. John Wiley & Sons, Inc., 1998.

[16] Julia H Allen et al. Software security engineering. Pearson India, 2008.

[17] Hideaki Takeda, Paul Veerkamp, and Hiroyuki Yoshikawa. “Modeling design process”.
In: AI magazine 11.4 (1990), pp. 37–37.

[18] Amy Poh Ai Ling and Mukaidono Masao. “Selection of model in developing informa-
tion security criteria on smart grid security system”. In: 2011 IEEE Ninth International

Symposium on Parallel and Distributed Processing with Applications Workshops. IEEE.
2011, pp. 91–98.

[19] Umar Zakir Abdul Hamid et al. “A review on threat assessment, path planning and
path tracking strategies for collision avoidance systems of autonomous vehicles”. In:
International Journal of Vehicle Autonomous Systems 14.2 (2018), pp. 134–169.

[20] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[21] Vineet Saini, Qiang Duan, and Vamsi Paruchuri. “Threat modeling using attack trees”.
In: Journal of Computing Sciences in Colleges 23.4 (2008), pp. 124–131.

[22] Tony UcedaVelez. “Real world threat modeling using the pasta methodology. Technical
report”. In: OWASP App Sec EU 1.0 (2012). URL: https://www.owasp.org/
images/a/aa/AppSecEU2012_PASTA.pdf.

[23] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. “A descriptive study of Mi-
crosoft’s threat modeling technique”. In: Requirements Engineering 20.2 (2015), pp. 163–
180.

[24] Rafiullah Khan et al. “STRIDE-based threat modeling for cyber-physical systems”. In:
2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).
IEEE. 2017, pp. 1–6.

[25] Sergej Japs and Harald Anacker. “Resolution of safety relevant security threats in the
system architecture design phase on the example of automotive industry”. In: Proceed-

ings of the design society 1 (2021), pp. 2561–2570.

[26] Syed Ghazanfar Abbas et al. “Identifying and mitigating phishing attack threats in IoT
use cases using a threat modelling approach”. In: Sensors 21.14 (2021), p. 4816.



BIBLIOGRAPHY 114

[27] J Howell and B Kess. “Baldwin”. In: Microsoft Threat Modeling Tool. Available online:

https://docs. microsoft. com/en-us/azure/security/develop/threat-modeling-tool (accessed

on 12 June 2021) ().

[28] Simon Parkinson et al. “Cyber threats facing autonomous and connected vehicles: Future
challenges”. In: IEEE transactions on intelligent transportation systems 18.11 (2017),
pp. 2898–2915.

[29] Andreas Jacobsson, Martin Boldt, and Bengt Carlsson. “A risk analysis of a smart home
automation system”. In: Future Generation Computer Systems 56 (2016), pp. 719–733.

[30] Dimitri Van Landuyt and Wouter Joosen. “A descriptive study of assumptions in STRIDE
security threat modeling”. In: Software and Systems Modeling (2021), pp. 1–18.

[31] Kim Wuyts, Laurens Sion, and Wouter Joosen. “Linddun go: A lightweight approach to
privacy threat modeling”. In: 2020 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW). IEEE. 2020, pp. 302–309.

[32] Kim Wuyts and Wouter Joosen. “LINDDUN privacy threat modeling: a tutorial”. In:
CW Reports CW685 (July 1, 2015). URL: https://lirias.kuleuven.be/
retrieve/331950.

[33] Dimitri Van Landuyt and Wouter Joosen. “A descriptive study of assumptions made in
LINDDUN privacy threat elicitation”. In: Proceedings of the 35th Annual ACM Sympo-

sium on Applied Computing. 2020, pp. 1280–1287.

[34] Kim Wuyts, Riccardo Scandariato, and Wouter Joosen. “Empirical evaluation of a privacy-
focused threat modeling methodology”. In: Journal of Systems and Software 96 (2014),
pp. 122–138.

[35] Nancy Mead, Eric Hough, and Ted Stehney II. “Security Quality Requirements Engi-
neering Technical Report”. In: Tech. Rep. CMU/SEI-2005-TR-009 (2005).

[36] F Shull. “Evaluation of threat modeling methodologies”. In: Software Engineering In-

stitute, Carne-gie Mellon University (2016).

[37] Nataliya Shevchenko, Brent R Frye, and Carol Woody. Threat modeling for cyber-

physical system-of-systems: Methods evaluation. Tech. rep. AD1084209. Carnegie Mel-
lon University Software Engineering Institute Pittsburgh United . . ., Sept. 1, 2018. URL:
https://apps.dtic.mil/sti/pdfs/AD1084209.pdf.

[38] Tony UcedaVelez and Marco M Morana. Risk Centric Threat Modeling: process for

attack simulation and threat analysis. John Wiley & Sons, 2015.

[39] Jane Cleland-Huang. “How well do you know your personae non gratae?” In: IEEE

software 31.4 (2014), pp. 28–31.



BIBLIOGRAPHY 115

[40] Nancy R Mead et al. “A hybrid threat modeling method”. In: Carnegie MellonUniversity-

Software Engineering Institute-Technical Report-CMU/SEI-2018-TN-002 (2018).

[41] Nancy R Mead and Ted Stehney. “Security quality requirements engineering (SQUARE)
methodology”. In: ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–7.

[42] Peter Mell, Karen Scarfone, and Sasha Romanosky. “Common vulnerability scoring
system”. In: IEEE Security & Privacy 4.6 (2006), pp. 85–89.

[43] Peter Mell, Karen Scarfone, Sasha Romanosky, et al. “A complete guide to the common
vulnerability scoring system version 2.0”. In: Published by FIRST-forum of incident

response and security teams. Vol. 1. 2007, p. 23.

[44] Laurens Sion et al. “Solution-aware data flow diagrams for security threat modeling”.
In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 2018,
pp. 1425–1432.

[45] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pp. 21–29.

[46] Jesus Luna, Neeraj Suri, and Ioannis Krontiris. “Privacy-by-design based on quantita-
tive threat modeling”. In: 2012 7th International Conference on Risks and Security of

Internet and Systems (CRiSIS). IEEE. 2012, pp. 1–8.

[47] Sri Murugarasan Muthukrishnan and Sellapan Palaniappan. “Security metrics maturity
model for operational security”. In: 2016 IEEE Symposium on Computer Applications

& Industrial Electronics (ISCAIE). IEEE. 2016, pp. 101–106.

[48] Paul Saitta, Brenda Larcom, and Michael Eddington. “Trike v. 1 methodology document
[draft]”. In: URL: http://dymaxion. org/trike/Trike v1 Methodology Documentdraft. pdf

(2005).

[49] Ashley Aitken. “Dual Application Model for Agile Software Engineering”. In: 2014

47th Hawaii International Conference on System Sciences. IEEE. 2014, pp. 4789–4798.

[50] Nancy R Mead et al. “A hybrid threat modeling method”. In: Carnegie MellonUniversity-

Software Engineering Institute-Technical Report-CMU/SEI-2018-TN-002 (2018).

[51] Shiho Kim and Rakesh Shrestha. “Security and Privacy in Intelligent Autonomous Ve-
hicles”. In: Automotive Cyber Security. Springer, 2020, pp. 35–66.

[52] Christopher Alberts et al. Introduction to the OCTAVE Approach. Tech. rep. ADA634134.
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, Aug. 1, 2003. URL:
https://apps.dtic.mil/sti/pdfs/ADA634134.pdf.

[53] Christopher J Alberts and Audrey J Dorofee. Managing information security risks: the

OCTAVE approach. Addison-Wesley Professional, 2003.



BIBLIOGRAPHY 116

[54] Nataliya Shevchenko et al. Threat modeling: a summary of available methods. Tech.
rep. AD1084024. Carnegie Mellon University Software Engineering Institute Pittsburgh
United . . ., July 1, 2018. URL: https://apps.dtic.mil/sti/pdfs/AD1084024.
pdf.

[55] S. Sharma. Data Privacy and GDPR Handbook. Wiley, 2019. ISBN: 9781119594253.
URL: https://books.google.co.uk/books?id=4XnADwAAQBAJ.
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Appendix A

9.4 GConsent Ontology converted into DeLP Knowledge Base
r1: ConsentCompliance(X, Y) -< DataSubject(Y), DataController(X),

GivenConsent(Y, X).

r2: ~GivenConsent(Y, X) ← ~ExplicitlyGiven(Y, X).

r3: ~ExplicitlyGiven(Y, X) ← ~ConsentStatusExplicitlyGiven(Y, X).

r4: ~ConsentStatusExplicitlyGiven(Y, X) ← ~StatusValidForProcessing(X, Y).

r5: ~StatusValidForProcessing(X, Y) ← ~ExplicitlyGiven(Y, X).

r6: ~StatusValidForProcessing(X, Y) ← ~ImplicitlyGiven(Y, X).

r7: ~ImplicitlyGiven(Y, X) ← ~IConsentStatusImplicitlyGiven(Y, X).

r8: ~StatusValidForProcessing(X, Y) ← ~GivenByDelegation(Y, X).

r9: GivenByDelegation(Y, X) ← ConsentStatusGivenByDelegation(Y, X).

%DataSubject

r10: ConsentCompliance(X, Y) -< MinorDataSubject(M), Guardians(G),

GivenConsentByGuardians(G, X).

r11: ~GivenConsentByGuardians(G, X) ← ~ConsentForProcessingPersonalData(X, M).

%Status

r12: ConsentCompliance(X, Y) -< ConsentStatus(X, Y).

r13: ConsentStatus(X, Y) -< StatusValidForProcessing(X, Y).

r14: ConsentStatus(X, Y) -< StatusInvalidForProcessing(X, Y).

r15: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusExpired(X, Y).

r16: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusInvalidated(X, Y).

r17: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusNotGiven(Y, X).

r18: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusRefused(Y, X).

r19: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusRequested(X, Y).

r20: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusUnknown(X, Y).

r21: ~StatusInvalidForProcessing(X, Y) ← ~ConsentStatusWithdrawn(Y, X).

%Purpose

r22: ConsentCompliance(X, Y) -< PurposeForConsent(X, Y).

r23: ~PurposeForConsent(X, Y) ← ~SpecifySpecificInstanceOfPurpose(X, Y).

r24: ~PurposeForConsent(X, Y) ← ThirdParty(Z),

~SpecifyPurposeAssociatedWithThirdParties(X, Z).
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%ValidConsent

r25: ConsentCompliance(X, Y) -< ValidConsent(X, Y).

r26: ~ValidConsent(X, Y) ← ~FreelyGiven(Y, X).

r27: ~FreelyGiven(Y, X) ← ~FreelyGivenConsentObligation(X, Y).

r28: ~ValidConsent(X, Y) ← ~Informed(X, Y).

r29: ~Informed(X, Y) ← ~InformedConsentObligation(X, Y).

r30: ~ValidConsent(X, Y) ← ~Specific(X, Y).

r31: ~Specific(X, Y) ← SpecificConsentObligation(X, Y).

r32: ~ValidConsent(X, Y) ← ~VoluntaryAndoptIn(X, Y).

r33: ~VoluntaryAndoptIn(X, Y) ← ~VoluntaryOptInConsentObligation(X, Y).

r34: ConsentCompliance(X, Y) -< ConsentActivity(X, Y),

ObligationForObtainingConsent(X, Y).

r35: ~ConsentActivity(X, Y) ← ~ObtainingConsentFromDataSubject(X, Y).

r36: ~ConsentActivity(X, Y) ← ~WithdrawingGivenConsent(Y, X).

r37: ~ObligationForObtainingConsent(X, Y) ←
~CanBeWithdrawnEasilyConsentObligation(Y, X).

r38: ~ObligationForObtainingConsent(X, Y) ←
~ClearExplanationOfProcessingConsentObligation(X, Y).

r39: ~ObligationForObtainingConsent(X, Y) ← ~ShouldBeDemonstrable(X, Y).

r40: ~ObligationForObtainingConsent(X, Y) ←
~ShouldBeDistinguishableFromOtherMatters(X, Y).

r41: ~ObligationForObtainingConsent(X, Y) ←
~NotFromSilenceOrInactivityConsentObligation(X, Y).

r42: ~ObligationForObtainingConsent(X, Y) ← ~ValidConsent(X, Y).

%PersonalData

r43: ConsentCompliance(X, Y) -< PersonalDataForConsent(Y, X).

r44: ~PersonalDataForConsent(Y, X) ← ~hasPersonalData(Y).

r45: hasPersonalData(Y) ← hasName(Y), hasContactInformation(Y).

r46: hasPersonalData(Y) ← SensitivePersonalData(Y).

r47: SensitivePersonalData(Y) ← hasHealthData(Y).

% ConsentContext

r48: ConsentCompliance(X, Y) -< ContextForConsent(X, Y).

r49: ~ContextForConsent(X, Y) ← ~SpecifyConsentLocation(X, Y).

r50: ~ContextForConsent(X, Y) ← ~SpecifyConsentMedium(X, Y).

r51: ~ContextForConsent(X, Y) ← ~SpecifyConsentTime(X, Y).

r52: ~ContextForConsent(X, Y) ← ~SpecifyConsentExpiry(X, Y).

% ConsentForProcessingPersonalData

r53: ConsentCompliance(X, Y) -< ConsentForProcessingPersonalData(X, Y).

r54: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataAdaptation(X, Y).

r55: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataAlignment(X, Y).

r56: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataAlteration(X, Y).

r57: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataCollection(X, Y).

r58: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataCombination(X, Y).
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r59: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataConsultation(X, Y).

r60: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataDestruction(X, Y).

r61: ~ConsentForProcessingPersonalData(X, Y) ←
~ConsentForDataDisclosurebyTransmission(X, Y).

r62: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataDissemination(X, Y).

r63: ~ConsentForProcessingPersonalData(X, Y) ← ~DataOrganisation(X, Y).

r64: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataErasure(X, Y).

r65: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataRecording(X, Y).

r66: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataRestriction(X, Y).

r67: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataRetrieval(X, Y).

r68: ~ConsentForProcessingPersonalData(X, Y) ← ~DataSharingConsent(X, Y).

r69: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataStorage(X, Y).

r70: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataStructuring(X, Y).

r71: ~ConsentForProcessingPersonalData(X, Y) ← ~ConsentForDataUse(X, Y).

r72: ~ConsentForProcessingPersonalData(X, Y) ← ThirdParty(Z),

~SpecifyRoleOfThirdPartiesForProcessingData(X, Z).

%Capturing FitbitConsent

r73: ~ConsentForProcessingPersonalData(X, Y) -<

~ConsentForExternalProcessing(X, Y).

r74: ConsentForExternalProcessing(X, Y) -< ThirdParty(Z),

ProcessingForDataTransfer(X, Z).

r75: ~ConsentForExternalProcessing(X, Y) ← ~FreelyGivenConsentObligation(X, Y).

r76: ~FreelyGivenConsentObligation(X, Y) ←
~AllowSeparateConsentToBeGivenForSpecificDataProcessing(X, Y).

r77: ~ConsentForExternalProcessing(X, Y) ← ~DataSharingConsent(X, Y).

r78: ~ConsentForExternalProcessing(X, Y) ←
~SpecifySpecificInstanceOfPurpose(X, Y).

r79: ~ConsentForExternalProcessing(X, Y) ← RightToDataErasure(X, Y).

r80: RightToDataErasure(X, Y) ← DeletePersonalInformation(X, Y).

r81: RightToDataErasure(X, Y) ← DeletionPeriodUpTo90Days(X, Y).

r82: ~CanBeWithdrawnEasilyConsentObligation(Y, X) ←
DeletePersonalInformation(X, Y), DeletionPeriodUpTo90Days(X, Y).

r83: ~ConsentForExternalProcessing(X, Y) ←
~CanBeWithdrawnEasilyConsentObligation(Y, X).

r84: ~ConsentForExternalProcessing(X, Y) ←
~ConsentForSharingSensitivePersonalData(Y, X).

r85: ConsentForSharingSensitivePersonalData(Y, X) ← hasHealthData(Y).

r86: ~ConsentForExternalProcessing(X, Y) ← ~RightToAccessPersonalData(Y, X).

r87: ~ConsentForExternalProcessing(X, Y) ← ~InformedConsentObligation(X, Y).

r88: ~InformedConsentObligation(X, Y) ← ~InformRecipientsOfPersonalData(X, Y).

r89: ~InformRecipientsOfPersonalData(X, Y) ←
~ProvideDetailsOfTransfersOfPersonalDataToThirdCountries(X, Y).

r90: ConsentCompliance(X,Y) -< DeletePersonalInformation(X, Y),

FreelyGivenConsentObligation(X, Y).

r91: ConsentCompliance(X,Y) -< ~DeletePersonalInformation(X, Y),
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~ProcessingForDataTransfer(X, Z).

r92: ConsentCompliance(X,Y) -< FreelyGivenConsentObligation(X, Y),

ProcessingForDataTransfer(X, Z).

r93: ConsentForExternalProcessing(X, Y) -< PersonalData(Y),

ConsentForProcessingPersonalData(X, Y).

r94: ~ConsentForExternalProcessing(X, Y) <- ~RightForAccess(X, Y).

r95 ~RightForAccess(X, Y) <- ~GivesRightToObtainCopyOfPersonalData(X, Y).

%Facts

f1: DataSubject(user).

f2: DataController(fitbit).

f3: DeletionPeriodUpTo90Days(fitbit, user).
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