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Abstract

Although FL is claimed to guarantee privacy protection, semi-honest servers and local
clients can still reconstruct sensitive information from the gradients. Therefore, to enhance
privacy protection, differential privacy (DP) is widely adopted in FL by randomizing the
gradients before transmitting them to other parties. Nevertheless, randomizing gradients
inevitably degrades FL performance in terms of lower accuracy and higher communication
overhead. To solve this problem, this thesis focuses on exploring methods to enhance
privacy protection and improve the overall utility of DP-based FL (DPFL) frameworks.

This thesis begins with the research question on improving the degraded accuracy per-
formance and reducing communication overhead for centralized DPFL while maintaining
a strong privacy protection guarantee. Two different frameworks are proposed to tackle
this question. The first framework combines local DP (LDP) and central DP (CDP) to pre-
vent both central servers and clients from recovering private information by adding noise
to the local gradients before uploading and to the aggregated gradients on the server side
before broadcasting, respectively. To improve the overall utility of the proposed DPFL, a
novel sparse mechanism is adopted on the local gradients before adding noise and a global
momentum gradient descent is introduced on the server side and the client side. For the
second framework, a novel LDP-based FL framework with two performance improvement
modifications is proposed. One modification is to calculate the difference between noisy
and original gradients, and add the difference to the objective function to be minimized.
The other modification is to calculate the expectation of the loss created by noise, which
is also incorporated into the objective function to be optimized. For both modifications,
the privacy protection levels are the same as those for plain DPFL since no modifications
to DP settings have been made. This thesis presents the necessary convergence analysis
for the proposed framework under convex and non-convex settings. A series of simula-
tions is conducted to validate both frameworks’ effectiveness in terms of higher accuracy
and lower communication costs. Specifically, the first framework can outperform other
DPFL frameworks while saving 90% of communication costs since sparse mechanism can
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improve the performance under DP noise. The second framework can save up to 40% of
communication and training rounds while achieving better accuracy than plain LDP-based
FL.

The second research topic in this thesis is to investigate the impact of DP on privacy
protection across various DP noise and clipping settings. To address this, an evaluation
method for privacy leakage in the FL is proposed by utilizing reconstruction attacks to
analyze the difference between the original images and reconstructed ones. Furthermore,
this thesis studies the accumulative privacy loss under two different reconstruction attack
settings and demonstrates that anonymizing local clients can decrease the probability of
privacy leakage. Next, the effects of different clipping methods on privacy protection
are analyzed. Simulations are conducted to characterize the trade-off between privacy
protection and learning accuracy and demonstrate that there is an optimal DP setting to
provide the desired privacy guarantee. The summarized theoretical findings and simulation
results in this work can be utilized to guide heterogeneous DP settings for DPFL.

The third research topic of this thesis explores privacy enhancement and accuracy im-
provement in decentralized DPFL. To address these challenges, a novel anonymous de-
centralized DPFL framework is proposed. Specifically, two decentralized DPFL methods
based on the gossip and fake-centralized manners are first introduced, where the training
clients selection rate (TCSR) in each round for both methods and the model exchange rate
(MER) in the gossip method are researched. To enhance privacy protection, an anonymous
mechanism, is proposed where all clients are unaware of whom they are communicating
with and cannot determine whether they are communicating with the same client across
several rounds. Next, the required noise scale is derived in terms of the DP settings,
TCSR and MER. Subsequently, the convergence bound for the proposed framework is
provided, which suggests that an optimal number of clients for is needed to achieve the
best convergence performance. Finally, a series of simulations is conducted to evaluate
the performance. The simulation results show that the proposed framework only has a
small degradation in accuracy compared to the non-private FL and validate our theoretical
results.

In conclusion, this thesis provides insight into increasing overall utility and enhancing
privacy protection in DPFL. The convergence and privacy analysis of the proposed frame-
works provides a basis for future research focusing on further improving the performance
of DPFL. Moreover, the proposed privacy leakage evaluation method can provide a more
intuitive understanding of privacy loss, which can be utilized to improve accuracy and
promote privacy audits for regulatory compliance and user assurance.
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Chapter 1

Introduction

With the rapid development of Internet of Things (IoT), all kinds of smart devices, in-
cluding mobile phones, autonomous vehicles, IoT sensors, and others, have been de-
ployed [1, 2]. Recent estimates suggest that the current deployment of IoT devices has
surpassed 20 billion worldwide [3]. This number is expected to see a significant rise to
approximately 125 billion by the end of this decade [3]. Concurrently, these devices are
generating an unprecedented volume of data. According to recent research, the total data
output from IoT devices is expected to exceed one yottabyte in the near future [4]. By
utilizing this tremendous amount of IoT data, artificial intelligence (AI), including ma-
chine learning (ML) and deep learning (DL) algorithms, has been rapidly developed in
many fields, such as biomedical, natural language processing, recommendation systems,
auto-driving, and so on [5–8]. Traditional learning algorithms are normally executed on a
central server, requiring extensive data collection. Although these algorithms play a cru-
cial role in enhancing our lives, the centralization of sensitive data has raised significant
privacy concerns.

To be specific, there are two general types of data privacy-related problems. First of
all, application service providers would like to collect users’ data to train their algorithms
for the purpose of enhancing the overall experience for all users. Local users may con-
sider that this data-collecting action violates their privacy, and they refuse to share their
data, which makes the ML training more problematic [9]. Secondly, the issue of data silos
is becoming increasingly serious. Different organizations and even distinct departments
within the same organization usually refuse to exchange their own data due to the lack of
effective privacy-preserving data-sharing methods [9]. This isolation can lead to the delay
of strategic capabilities and the decision-making process of the organizations. For exam-
ple, two hospitals may refuse to share patient histories and laboratory test records, which

1
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can delay the patients’ treatment, leading to fatal consequences. However, exchanging
plain data (unprotected data) is a privacy violation for their customers, making plain data
exchange impossible for different organizations. In addition to the direct disagreements
from the users and organizations, the General Data Protection Regulation (GDPR), Cal-
ifornia Consumer Privacy Act and many other privacy laws have been enacted to force
big companies to legally collect and utilize users’ data only when the users provide clear
consent [10, 11].

With the difficulty of collecting adequate data or synthesizing a large amount of high-
quality data, it becomes impractical for these data-driven learning algorithms to meet ac-
ceptable service performance requirements. Therefore, to overcome the privacy challenges
in training AI models, distributed ML (DML) is introduced [12]. DML allocates the learn-
ing tasks to edge devices. The edge devices ask the server for a pre-trained or new model
and use their own data to train for personalization. Once the training is finished, they can
use the model to infer output for their personal needs. However, the lack of model and
data exchange in DML between local clients and the central server prevents both parties
from using external data to train the model. As a result, the models are less generalized
and may perform poorly on heterogeneous applications and data.

To solve the aforementioned challenges, federated learning (FL) is proposed [13, 14].
A diagram of FL is illustrated in Fig. 1.1. FL is introduced by Google and implemented in
a smart keyboard application for typing recommendations [13]. Unlike traditional learn-
ing, FL allows users to train local models with their personal data for an epoch and upload
their trained model gradients instead of their raw data. The server then averages all the
received gradients to generate a new global model, which is broadcast to the users for the
next round of training. This framework is also known as FedSGD. To reduce the com-
munication overhead of exchanging gradients and accelerate convergence in FedSGD,
FedAvg is proposed to perform multiple epochs of local training before uploading the
gradients [14].

Ever since its introduction, FL has been widely adopted in many applications [15–18].
For example, the authors in [15] adopt FL to learn from electronic health records from
different hospitals to collaboratively train a model. Besides, FL is also used in tumor
classification and other medical areas where privacy protection is very important for pa-
tients [16]. In addition, FL is also adopted to let users train an autonomous driving model
based on their own driving pattern locally and then aggregate the local models to be a new
model [17]. Except for the aforementioned applications, FL is also used for industrial IoT
data sharing, smart home improvement and other areas [18, 19].
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Figure 1.1: An illustration of traditional FL.

Compared to traditional ML, FL has the following advantages:

• Privacy protection: During FL, the local clients only upload their model parame-
ters, and there is no need to collect users’ data and store it in the central server so
that their raw data will never leave local storage [13]. Therefore, data privacy is
preserved. Meanwhile, FL enables different organizations to collaboratively train
models without leaking their data to others [20].

• Low latency and bandwidth requirement: When using traditional ML, all the
model inferences (outputs) are conducted in the central server. Therefore, FL can
reduce the latency of transmitting data to the server to obtain outputs from the ML
models [20, 21]. Meanwhile, transmitting all the IoT data to the server increases
the bandwidth requirements. By storing them locally, FL can reduce the overall
communication costs [20].

• Scalability: FL can be performed on numerous smart devices, which intuitively
increases the scalability of FL [22].

• Reduced computation burden: By distributing the job of training to numerous
smart devices, the computational burden of the central server can be reduced without
bringing too much computation burden for the local user. In Google’s proposal, FL
training can be scheduled during the idle evening time of most IoT devices, which
prevents interference with users’ customary usage [14].
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1.1 Categories of Federated Learning

Reviewing recent FL frameworks, this thesis categorizes FL based on two aspects: data
distribution and topologies.

1.1.1 Data Distribution

The data distributions used in FL can be categorized into three types based on their sample
and feature spaces [9], as illustrated in Fig. 1.2.

Figure 1.2: Different data distributions of FL based on sample and feature spaces [9].
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1.1.1.1 Horizontal Federated Learning

In horizontal FL (HFL), all the local users jointly train the global model using data with
similar feature spaces but from different sample spaces [9,23]. For example, the data used
in HFL can be driving patterns from different groups of users. With HFL, the amount
of training data on the same task-learning algorithm is increased, and the model becomes
more generalized, bringing better performance to all the participants.

1.1.1.2 Vertical Federated Learning

In vertical FL, all the local users have similar sample spaces while having different feature
spaces [24, 25]. For example, an e-commerce company can utilize their clients’ banking
status and browsing histories to deliver more tailored recommendations for products. By
applying vertical FL, the feature spaces of the dataset expand.

1.1.1.3 Federated Transfer Learning

Federated transfer learning is able to transfer cross-domain knowledge among users who
have data with only a few overlapping features and sample spaces [26, 27]. For example,
hospital A, with a larger dataset, has a pre-trained model, and another hospital B, with
a much smaller dataset, would like to contribute to the model. The hospital B can use
transfer learning [28] to utilize the model of A to supervise its local training and transmit
B’s gradients back to hospital A. Hospital A can aggregate the gradients of B with its
model to generate a new model. In this way, both hospitals can have a model benefiting
from each other without sharing their own data.

1.1.2 Federated Learning Topologies

There are three types of general FL topologies [9], which are categorized as described
below.

1.1.2.1 Centralized Federated Learning

Centralized FL, which is introduced in the previous section as FedAvg, requires a server to
collect and aggregate local gradients to form a new global model, which is then broadcast
[14].



CHAPTER 1. INTRODUCTION 6

1.1.2.2 Decentralized Federated Learning

Decentralized FL (DFL) assigns the aggregation tasks to local clients, eliminating the need
for a central server [29]. For example, some DFL frameworks choose a temporary leader
from local clients every round to perform aggregation and broadcast the global model [30].

1.1.2.3 Hierarchical Federated Learning

Hierarchical FL can work in both centralized and decentralized ways, which applies some
intermediate parties to first collect nearby clients’ gradients to aggregate into a new model
[31, 32]. In the next step, the intermediate parties send their aggregated models to the
central server in centralized FL or to the temporary leader in DFL for the final aggregation
and broadcasting. Hierarchical FL can reduce the overall bandwidth burden of transmitting
gradients compared to the other topologies.

1.2 Challenges and Solutions in Federated Learning

Although FL sounds promising, it still faces many challenges, including statistical hetero-
geneity, high communication costs, privacy leakage and other problems [33, 34]. In this
section, some challenges of FL and their corresponding solutions are introduced. Since
this thesis focuses on privacy-preserving FL, a more detailed introduction on the privacy
issues in FL is presented.

1.2.1 Statistical Heterogeneity

FL requires local users to train a local model using their personal data. However, local
users may have different distributions of data [36,37]. Formally, this type of data is defined
as non-independent and identically distributed (non-IID) data. As shown in Fig. 1.3,
different users can have various sizes and classes of data in a ten-class classification task.

When FedAvg is performed on non-IID data, local users have different data distribu-
tions so that their trained model may have different optimization directions. Therefore, the
clients may lead the global model to diverge and degrade the convergence performance.
In this thesis, the degree of non-IID is measured by different classes of data per client,
referred to as cpc. The smaller the cpc is for a fixed number of total classes, the more het-
erogeneously the data is distributed. Therefore, the local models may have very different
optimizing directions, leading the global model to diverge. For example, the performance
of FedAvg with ten clients and different values of cpc from total classes of ten is shown
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Figure 1.3: A possible non-IID data distribution example [35].

in Fig. 1.4, which shows that as the cpc decreases, accuracy also decreases. In some
real-world applications, the degree of non-IID is significant. For example, in some video
recommendation systems, some local users may only prefer one type of video, while there
may be more than twenty types of videos. Therefore, improving the performance of FL
under non-IID data needs to be addressed.

To tackle this problem, the recent works focus on designing different optimization
strategies [39, 40]. For example, the authors in [39] propose adding the Euclidean dis-
tance between the global model and local model in the local optimizer to minimize their
difference.

1.2.2 Heavy Communication Costs

FL does not require local users to upload their data, but it needs frequent model exchange
to train a global model collaboratively. Even though the size of the transmitted model
parameters may be smaller than that of raw data, the frequent model exchange brings
huge communication overhead. Therefore, reducing the cost of transmitting gradients is a
very important topic for FL.

To reduce the communication size of each round, there are two general approaches
[41]. The first approach is to directly reduce the size of transmitted gradients in each
round through compression or quantization after training [41]. The second approach is
to restrict the updates to prefixed structures and train directly on those prefixed updates
using low rank [41]. The low rank method is to express the update to the product of two
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Figure 1.4: Accuracy of FedAvg on MNIST [38] (ten classes of data in total) with different
cpc and ten clients.

low ranks’ matrix and update one matrix while keeping the other constant the whole time.
Both approaches can reduce the update size with an acceptable drop in accuracy.

Other than directly reducing the communication size of each round, a better optimizer
can be proposed to speed up convergence so that fewer communication rounds are needed
to achieve the same accuracy as the one of FedAvg [39, 40].

1.2.3 Single Point of Failure

In centralized FL, the central server is heavily relied upon to perform aggregations and
model broadcasting, which leads to the problem of the single point of failure (SPOF)
[42, 43]. To be specific, if the central server is unable to perform aggregation, the FL
cannot be conducted due to the lack of aggregation after local training, since it will have
a less generalized performance. Therefore, to address this problem, many studies have
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proposed DFL frameworks [44, 45].

1.2.4 Privacy Leakage

While most central servers are honest in performing the FL procedure (collecting, aggre-
gating and broadcasting gradients), some may be curious about users’ original data. This
honest-but-curious server is also defined as the semi-honest server. As mentioned before,
FL is claimed to protect privacy since no data leaves local storage. However, recent studies
have shown that even from transmitted gradients, original inputs can be recovered [46,47],
namely reconstruction attack. To perform the reconstruction attack, most existing research
first generates fake inputs based on the FL tasks and then feeds these inputs into the FL
models to compute gradients [46, 47]. Following that, these works use optimization tech-
niques, such as L-BFGS, to minimize the differences between received local gradients
and generated fake gradients in order to update the fake inputs. Finally, the generated
fake gradients can be very similar to the received gradients after adequate training, which
means the data creating those fake gradients may be similar to the original inputs so that
the privacy is violated.

In privacy-sensitive scenarios, even partially exposed features can significantly com-
promise data privacy. In medical IoT data applications, the patients may not want the
central server to know even part of their medical conditions. Fig. 1.5 shows an exam-
ple of reconstructing an image from the gradients using the work in [48]. The gradients
are obtained by passing an image from the ImageNet dataset [49] through a pre-trained
ResNet18 model [50]. Although the reconstructed image is blurry, it can still be identified
as a bird from the contour of the object. In this example, the partial exposure of the ob-
jective’s contour leads to a full leakage of the image’s class, highlighting the severity of
reconstruction attacks. Therefore, techniques to defend against reconstruction attacks in
FL need further research.

To provide strong privacy protection for FL, three methods are mostly adopted in FL
[51]. The first method is homomorphic encryption (HE) [52]. To be specific, the local
clients first encrypt their local gradients before uploading them to the server. Upon receipt,
the server aggregates the encrypted gradients to create the new global model. Based on the
properties of the additional homomorphic encryption, the sum of encrypted data is equal
to the encryption of the sum of the same data. Therefore, after decrypting the aggregated
encrypted gradients, the global model is the same as the direct aggregation of all the local
gradients, which can be used for further training. In this way, the server can perform
the aggregation tasks without accessing the original gradients. However, original HE-
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Figure 1.5: An example of reconstructed attack [48].

based FL can result in huge computation overload when computing the encryption of the
gradients every round. Additionally, there is also a lack of secure methods of generating
and sharing keys to prevent servers from cooperating with malicious clients to decrypt the
encrypted gradients.

The second method is secure multi-party computation (SMC), which provides a way in
which every participant can use their data to jointly train a model safely when no one can
be trusted. Each user knows only the input and output of the training protocol. Bonawitz
et al. have proposed a practical secure aggregation framework [53]. Their framework re-
lies on Shamir’s T-out-of-N secret sharing [54], which splits a secret into N parts so that
having less than T parts cannot recover the secret. The main idea is to first generate a
pair of public and secret keys for each user and broadcast all the public keys to everyone.
Subsequently, every client splits its secret key into several parts and encrypts and signs
every part with its public key. Next, each client will generate two masks, S, which is re-
lated to the private data, and B, using its secret key and a pseudo-random generator, and
add all the masks to the private data. When aggregation is needed, the server can request
ciphertexts and T parts of the secret keys of each user to reconstruct the text. Furthermore,
the server can only receive enough shares of secret keys for aggregating while the mask
is still maintained to protect privacy. After aggregating, all the masks S are eliminated,
and the aggregated data is sent back to each client to decrypt for the next round. The
framework uses Shamir secret sharing, authenticated encryption, key agreement, pseudo-
random generator and signature scheme to make sure that the central server cannot trick
normal clients into revealing their data. However, this framework introduces significant
computation overheads. Additionally, it still needs a totally trusted server for key genera-
tion.
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The third method is differential privacy (DP), which is adopted in FL [55]. DP is a
rigorous mathematical tool to bound the probabilities of the outputs of two neighboring
distributions (differ at one bit) as similar as each other [56]. As such, no one can tell
which distribution the output is generated from. To be specific, DP is first implemented in
database queries to reduce the impact of whether one certain sample exists in the database.
For example, an attacker wants to know whether a person has a certain disease, but he
cannot directly get the answer. To obtain that, he first asks the database how many patients
of that disease exist in the database and then asks how many patients of that disease exist
in the database without that person. If he gets the same answer, he knows the person does
not have that disease. On the other hand, if the answers are different by one, he will know
the person has the disease. By implementing DP, the attacker would have similar answers
whether the person does or does not have the disease, thereby preserving privacy. In order
to achieve DP, adding noise or permuting the outputs based on different probabilities can
be performed.

As DP provides a strong guarantee in protecting privacy, it is adopted in FL to make
two sets of gradients indistinguishable. There are generally two types of DP usage, based
on where the randomization is applied, which are defined as described below.

1.2.4.1 Central DP

Centralized DP (CDP) for FL has been proposed to add noise to the aggregated gradients
at the central server side [57]. Therefore, the curious clients cannot distinguish a specific
client from the others by analyzing the noisy global models across multiple rounds. How-
ever, the curious server may still try to reconstruct inputs from the received local gradients.

1.2.4.2 Local DP

Local DP (LDP) for FL is achieved by adding noise to the gradients of each training batch
during local training, which is also known as sample-level DP [55]. On the other hand,
LDP can also be achieved by applying randomization to the local gradients over multiple
epochs before uploading the gradients to the server [58], namely user-level DP (UDP).
Both sample-level DP and UDP can prevent privacy leakage against curious servers. Even
though sample-level DP may offer the best privacy protection effect on every sample, it has
much worse accuracy and may be too excessive in privacy protection for FL. Meanwhile,
UDP-based FL can hide whether a client has joined the training from other participants
and prevent the server from recovering private data. Therefore, the LDP implementation
in this thesis mostly focuses on UDP.
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Before applying DP mechanisms for both CDP and LDP, the l2-norm of the gradients
needs to be bounded [57, 59, 60]. This process is known as clipping, which is to limit the
influence of each training sample or client. After clipping, the noise is added to the clipped
gradients and aggregate the noisy gradients to generate a new global model for the next
round of training. If the added noise has suitable variance or the strength of probabilistic
permutation is sufficient, the server and the clients cannot reconstruct identifiable inputs
from the gradients.

Although the noise variance is carefully chosen, randomizing the models inevitably
decreases accuracy [61]. Therefore, effective solutions to improve the overall utility of
DPFL need to be explored.

1.3 Motivations and Objectives

Based on the discussion of the advantages and drawbacks of the existing FL frameworks,
this thesis is driven by the need for improvement in FL. LDP is first integrated into FL in
this thesis to provide a strong privacy guarantee for local users, as SMC and HE may bring
a huge computation cost, which may be impractical for resource-constraint devices. Then,
this thesis focuses on exploring more effective DPFL frameworks to enhance privacy pro-
tection and overall utility. In this section, the motivations of this thesis are outlined below.

The first motivation is the need for utility improvements in DPFL. To improve accuracy
of DPFL, most existing work focuses on relaxing the DP bound for privacy loss so that
they can achieve the same DP guarantee with decreasing required noise variance. How-
ever, the risks of the central server reconstructing identifiable inputs may be increased.
Additionally, more communication rounds may be needed to achieve the same accuracy
in DPFL as in non-private FL. Therefore, improving the overall utility of DPFL while
maintaining the same privacy protection level needs to be considered.

The second motivation is the need for privacy loss measurement for DPFL, which
can be utilized to increase accuracy. Under the first motivation, some techniques have
been proposed to improve the utility and are claimed not to sacrifice privacy protection.
However, they are not proven. Meanwhile, adopting DP in FL may lead to degraded accu-
racy. Choosing an appropriate noise variance for DPFL is worth researching. Meanwhile,
most DP mechanisms require clipping on the gradients, so determining the best clipping
methods for the DPFL also needs to be studied. Therefore, a privacy loss measurement
methodology is needed to select the optimal DP settings in terms of clipping bounds and
noise variances.
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The third motivation is to propose privacy-enhancing decentralized frameworks for
DPFL. Traditional FL relies on the central server to aggregate and broadcast the gradi-
ents, which introduces a heavy burden of bandwidth for the central server and even the
problem of SPOF. Meanwhile, transmitting all the gradients to only one place every time
may increase the success rate of reconstruction attacks. Therefore, a novel decentralized
framework for DPFL needs to be designed. Furthermore, there is a lack of privacy anal-
ysis on relaxed DP bound for the decentralized DPFL framework, which may differ from
the centralized ones. Thus, a privacy-enhanced DP-based DFL (DPDFL) framework with
performance analysis is needed.

This thesis has the following objectives based on the aforementioned motivations. The
first is to explore the area of privacy-preserving FL based on DP and identify the state-of-
the-art (SOTA) solutions and their challenges. Thus, this thesis provides a literature review
of DPFL algorithms. Based on the review, it is recognized that existing research on DPFL
focuses on improving accuracy, reducing communication overhead and enhancing privacy
protection. Building on this foundation, this thesis aims to propose new optimizers and
frameworks to further advance these areas.

1.4 Research Contributions

This thesis focuses on improving privacy protection and overall performance in DPFL. As
such, a privacy leakage measurement framework and three distinct DPFL frameworks are
proposed. Furthermore, theoretical convergence and privacy analysis are derived for the
proposed frameworks. Finally, extensive simulations for each framework are conducted
to evaluate the performance by comparing the results with baselines. The contributions of
this thesis are summarized as follows:

1. An LDP-based FL (LDP-FL) framework is proposed based on the Gaussian mecha-
nism and moments accountant (MA) to track privacy loss and combined with CDP
to enhance privacy protection. A new scheme is also proposed to calculate the DP
noise base variance for the LDP-FL. Moreover, this framework adopts a top-sparse
mechanism and a global momentum gradient descent (MGD) to improve overall
utility. Experimental results show that, for non-IID MNIST data distribution in
clients, the proposed FL framework achieves better performance than other DP-
based FL. Meanwhile, the framework significantly reduces communication costs by
using sparse gradients. This work corresponds to the publication of [62].
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2. A novel LDP-based FL scheme is proposed by adding Gaussian noise to the local
gradients before uploading to satisfy Rényi-DP (RDP). Second, this thesis proposes
two modifications to the local objective function and detailed derivations to improve
the accuracy of the noisy training. The first modification is to minimize the differ-
ence between the noisy and original gradients during training under the same DP
settings. The other one is to calculate the expected change in the loss due to the
noise. By incorporating the expected change into the local objective function, the
FL can also minimize the loss created by noise and converge faster. Finally, multiple
simulations are conducted on a multi-layer perceptron (MLP) and a convolutional
neural network (CNN) to evaluate the effectiveness of the proposed framework and
modifications, which can save up to 40% communication rounds to reach the same
accuracy as the original DPFL. This work corresponds to the publication of [63].

3. A framework for measuring privacy loss is proposed based on reconstruction at-
tacks, and a metric of privacy leakage measurement is designed. This thesis shows
that implementing an anonymous mechanism for local clients can decrease the prob-
ability of data privacy leakage. Extensive simulations are conducted to show the
effect of different DP noise and clipping settings on reconstruction attacks and FL
training. The summarized findings can be used to improve FL utility under the DP
mechanism and guide privacy protection level settings for a personalized privacy
protection scheme. This work corresponds to the publication of [64].

4. This thesis proposes a DPDFL framework and integrates a novel anonymous mecha-
nism into it. It considers two decentralized methods and uses the local training client
selection rate (TCSR), as well as the model exchange rate (MER), to control the de-
centralized topology. Based on the proposed framework, a detailed privacy analysis
is provided to ensure the DP guarantee and the necessary noise base variance is de-
rived for different decentralized methods. Next, this thesis derives the convergence
bound for the proposed framework in terms of the DP budget and two different client
selection rates. Finally, extensive simulations are conducted to present the effective-
ness of the proposed framework under different client selection rates, which further
validates the theoretical results. This work corresponds to the publication of [65].

1.5 Thesis Outline

The remainder of this thesis is organized as follows:
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Chapter 2 starts with the basic procedures and formulas of traditional ML and FL.
The basic workflow of the reconstruction attack is presented. Next, it reviews the defini-
tions and theorems of common DP mechanisms and DPFL. Finally, a literature review on
reconstruction attacks and various frameworks of FL, especially DPFL, is introduced.

Chapter 3 proposes two different frameworks of DPFL to improve the convergence per-
formance. It starts with the combination of LDP and CDP-based FL framework, which in-
troduces two novel techniques to improve accuracy. Furthermore, a novel LDP-FL frame-
work with two modifications on the local optimizer is introduced, along with derivations
of the modifications. In addition, a convergence and complexity analysis is given. Finally,
the evaluation and discussion of both the proposed frameworks are presented.

Chapter 4 presents a methodology for evaluating privacy loss in DPFL based on re-
construction attacks. The detailed evaluation methodology is introduced in four aspects,
followed by the convergence analysis of the reconstruction attacks on the noisy gradients.
Finally, it presents the simulation results and summarizes the theoretical and empirical
findings.

Chapter 5 proposes a novel anonymous DPDFL framework under two decentralized
methods. It first provides detailed procedures of the framework and an essential privacy
analysis of the framework for both settings, followed by the convergence analysis of the
proposed framework for both decentralized methods. Finally, it evaluates the effectiveness
of the proposed framework and summarizes this chapter.

Chapter 6 concludes the proposed works in this thesis and discusses the challenges and
potential future work in the area of DPFL.
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Chapter 2

Background and Related Work

To address the challenges of DPFL, it is essential to review the basic knowledge of DPFL
and its related fields before introducing the proposed frameworks in this thesis. Therefore,
as DL is the fundamental model for local training in FL, the general background of DL,
especially the feedforward neural network (FNN) and backpropagation, is first introduced
in this chapter, followed by the procedures of FL and reconstruction attacks. Subsequently,
the definitions and principles of different DP mechanisms are introduced. In addition, the
general process of DPFL is demonstrated. Finally, the literature on DPFL is reviewed in
this chapter.

2.1 Background

2.1.1 Deep Learning

Since the key idea of FL is to allow local clients to train DL models locally, DL is first
introduced in this subsection.

DL constitutes a significant subset within the field of ML and has emerged as the
most important and popular research area in AI and ML. DL follows the principles of
artificial neural network (ANN), which is inspired by the human brain’s structure [66]. It
consists of multiple layers of fully connected artificial neurons to process data sequentially.
Each neuron receives inputs, computes outputs, and sends the outputs to the next layer
for further computation with other neurons’ outputs. The outputs from the final layer’s
neurons will be utilized based on the tasks. Three general types of DL are introduced in
the remainder of this subsection.

17
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2.1.1.1 Feedforward Neural Network

The FNN, also known as the MLP, is a fundamental model for DL, as most other DL
models are based on FNNs [67]. The FNN only allows the data to flow directly from input
to output without any recurrent operations. There are three types of layers in FNN:

• Input layer: The input layer is the first layer of the FNN to receive the input data.

• Final layer: The final layer, also known as the output layer, processes the final
outputs based on the tasks, such as classification tasks.

• Hidden layers: The intermediate layers between the input layer and the final layer
process the most important computations to extract features from the inputs for
learning. Multiple hidden layers can be implemented, leading to a deep neural net-
work (DNN).

Figure 2.1: An example of an FNN with two hidden layers.

A typical FNN framework with two hidden layers is shown in Fig. 2.1. After passing
the input layer, the computation follows:

z = w∗ x+b, (2.1)
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a = gact(z), (2.2)

where a,z are intermediate parameters for training, gact(z) is the activation function to
provide a non-linear computation for the FNN, w is the weights between neurons to control
the input’s strength, and b is the bias to help improve the fit of the predicted value to the
true value. For the subsequent layers, the computation is similar to (2.1) and (2.2), while
x is replaced by a from the previous computation. As regards the activation functions for
hidden layers, there are many choices, including Sigmoid, Tanh and rectified linear unit
(ReLU), where ReLU is the most widely used since it brings higher accuracy of learning in
most cases. Meanwhile, the activation function of the output layer depends on the learning
tasks. For example, Softmax is used for multi-class classifications, and Sigmoid is used
for binary and multi-label classifications. Finally, by integrating the computations of all
layers, the system can generate an output based on the current input. In other words, the
purpose of an FNN is to construct a complex non-linear multi-variable representation to
map the input to the correct output by combining simple computations [68].

After passing the input through the model to infer a predicted value, which is often
different from the true value at the beginning of the training, the distance between the
predicted value and the true value needs to be minimized in order to provide a better
outcome. Therefore, training mechanisms are proposed to adaptively adjust the weights
and biases of the model, enabling it to produce predicted values that are more similar to
the true ones. To evaluate the model, a loss function is needed to measure the difference
between the predicted and true values, which are chosen based on the tasks. Common loss
functions include mean square error, cross-entropy, etc. In order to minimize the loss, L,
backpropagation is introduced [69]. The basic idea of backpropagation is to compute the
partial derivatives (gradients) of the parameters from the loss and update the parameters
with the gradients in the direction that reduces the loss. To compute each layer’s gradients,
the chain rule of computing derivatives for complex functions is primarily used. The
gradients of the final output ∇aK after the activation function are first calculated, where
K is the final layer’s index. Then, the gradients of the intermediate parameters ∇zK can
be computed following the chain rule. Subsequently, the gradients of weights wK can be
computed as:

∂L
∂wK

=
∂L
∂aK

∂aK

∂ zK

∂ zK

∂wK
. (2.3)

The gradients for b are also computed similarly. By extending the chain rule, all the
previous layers’ gradients can be computed. As regards the activation function of the
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output layer, this thesis focuses on multi-class classification so that Softmax is used, which
is defined to output the probability of each class for every input as:

ao
K = So f tmax(zo

K) =
ezo

K

∑
Nc
o=1 ezo

K
, (2.4)

where Nc is the total number of classes, and zo
K is the output of the o-th class before

activation based on the input. This thesis focuses on multi-class classification, where
categorical cross-entropy is the most suitable choice for the loss function. The categorical
cross-entropy is defined as:

L=−
Nc

∑
o

Yo log(ao
K), (2.5)

where Yo is the true output of o-th class.
In summary, the overall process of backpropagation can be computed by taking the

derivatives of each feedforward computation as follows:

dzK = aK−Y, (2.6)

dzk = dak×g′actk(zk), (2.7)

dwk =
1
n′

dzk · (ak−1)
T , (2.8)

dbk =
1
n′

j=n′

∑ dz j
k,

(2.9)

dak−1 = (wk)
T ·dzk, (2.10)

where d represents the gradients for the corresponding parameters, k is the index of the
layer, n′ is the number of the inputs,×means matrix-wise multiplication and (ak−1)

T ,(wk)
T

is the transpose operation of ak−1,wk, respectively.
After computing the gradients for every layer, the parameters are updated as follows:

wt = wt−1− γdwt , (2.11)

bt = bt−1− γdbt , (2.12)

where wt and bt are the model parameters of the t-th training round, γ is the learning rate
and dwt ,dbt are the gradients of all layers. The training will continue for multiple rounds
until the model converges, meaning it reaches the lowest loss or the largest accuracy.

The aforementioned training process is also known as gradient descent (GD) [70].
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Typically, the training rounds for GD are measured in epochs, during which the entire
dataset is iterated to compute the gradients. Initially, the entire dataset is used as input
for the feedforward in one step, which leads to complex computation and long training
time. In order to speed up training, stochastic GD (SGD) is proposed, which uses one
sample in every step to train, compute gradients, and update parameters until the whole
dataset is iterated. In SGD, there are n steps of training in every epoch for a dataset with n

samples [70]. Nevertheless, using only one sample for training may cause the gradients to
descend in various directions so that the convergence of the training is slowed. Therefore,
mini-batch SGD is proposed, where the whole dataset is split into multiple batches, and
the gradients are computed from every batch in one epoch of training [70]. The mini-batch
SGD is mostly used in training DL since it normally achieves faster convergence than the
other two. For convenience, this thesis will use the term SGD to refer to mini-batch SGD
in the following chapters, aligning with its common use in current research.

In addition to different input data settings, many different optimizers are proposed to
improve the convergence performance of FNN. For example, MGD is proposed by adding
a fraction of the previous update to the current update, also known as momentum, helping
to smooth out oscillations and speed up learning [70]. To be specific, the gradients of each
training step are the exponentially weighted moving average of all previous gradients.
Besides, Adam optimizer introduces the second-order momentum into the MGD to adapt
the learning rates, speeding up convergence [71].

2.1.1.2 Convolution Neural Network

In order to improve the performance of FNN on images, CNN is proposed, which is de-
signed to automatically and adaptively learn spatial hierarchies of features through con-
volutional layers [72]. The convolutional layers are computed by applying a set of filters
(kernels) to the input data, performing element-wise multiplications, sliding the filters over
the inputs and finally summing up all the multiplication results to form the feature maps.
This process can be viewed as computing the discrete convolution between the input data
and the filters. The feature maps are fed into pooling layers to reduce the dimension by
splitting the feature maps into multiple small areas and choosing the averages or maxi-
mum values in every small area of the feature maps. Multiple convolution layers can be
added based on the needs. Finally, the feature maps are first flattened and fed into a FNN
for classification.
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2.1.2 Federated Learning Workflow

In this subsection, the basic workflow and formulas of FL are introduced. The goal of the
traditional FL is to train a global model based on the following objective [14]:

argmin
W t

M

∑
i=1

1
M
L(W t

i ), (2.13)

where W t is the global model in the t-th round, W t
i is the local model of the i-th client in

the t-th round and M is the number of the local clients.
FL is performed by the following steps:
Step 1: The server starts the FL process and initializes a global model W 0, which is

broadcast to all the clients.
Step 2: Every client i trains the W t for multiple epochs with its local data to obtain a

new local model and compute the local gradients ∇W t
i =W t−W t

i in the t-th round, which
are sent back to the server.

Step 3: The server computes the average of the received local gradients and generates
the new global model as W t+1 =W t−∑

M
i=1

1
M ∇W t

i .
Step 4: The server broadcasts the new global model W t+1 to clients for the next round

of training.
Steps 2-4 may be repeated until the global model achieves acceptable accuracy on the

test data.

2.1.3 Reconstruction Attacks

In this subsection, the reconstruction algorithm in [48] is introduced, which will be imple-
mented and used to derive theoretical results in Chapter 4. The algorithm first generates
some random images, namely dummy inputs, which are input into the FL model to gen-
erate dummy gradients. It calculates the cosine similarity between the dummy gradients
and the true gradients. Following that, the algorithm defines the objective function for the
dummy inputs based on the cosine similarity and total variation (TV) [73] as follows [48]:

J = arg min
x∈(0,1)n

1− < g(x),g(x∗)>
||g(x)||||g(x∗)||

+α1TV (x), (2.14)

where J is the objective function of the attack, g(x) is the dummy gradients, g(x∗) is the
transmitted gradients, and α1 is used to control TV. The objective function is optimized
using the signed Adam optimizer, which means the first order of the momentum of the
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Adam optimizer is either 1 or−1, and the second order of the momentum is 1. Meanwhile,
the accumulative moment is still unsigned. The unsigned Adam optimizer is defined as
follows:

vt
1 = (1−β1)vt−1

1 +β1g(t), (2.15)

vt
2 = (1−β2)vt−1

2 +β2g(t)2, (2.16)

v̂t
1 =

vt
1

1−β1
, (2.17)

v̂t
2 =

vt
2

1−β2
, (2.18)

xt+1 = xt−
γ ∗ v̂t

1√
v̂t

2 + st
, (2.19)

where v0
1 and v0

2 are zero, vt
1 is the first order momentum, vt

2 is the second order momentum,
g(t) is the gradients of the t-th round, β1 and β2 are factors to control the momentum, and
st is a small term, typically set to 10−8, to prevent the denominator from being zero.

2.1.4 Differential Privacy

In this subsection, the basic concepts, theorems and lemmas of DP mechanisms are intro-
duced.

The DP mechanism guarantees privacy protection when sharing data. To be specific,
two adjacent databases, D and D′, differ from each other at only one data point. Applying
a DP scheme to perturb the original values can make the output of these two databases
indistinguishable [56]. To measure the difference between two output distributions, Max-
divergence is used, which is formalized as:

Definition 1 (Max-divergence [56]).

D∞(Y ||Z) = max
y∈Y

ln[
Pr[Y = y]
Pr[Z = y]

], (2.20)

where Pr is the probability, y is the output, and Y,Z are two distributions.

If the Max-divergence between two distributions is bounded by ε (where ε ≥ 0) and
e is introduced on both sides of the Max-divergence, as shown in Fig. 2.2, ε-DP can be
ensured between these two distributions. The formal definition of an ε-DP mechanism is
given as follows:
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Figure 2.2: The probability of outputs from two distributions.

Definition 2 (ε-DP [56]). A randomized mechanism R achieves ε-DP if for any two

neighbouring distributions, D,D′, and any possible output, S′ ⊂ R, it satisfies the fol-

lowing constraints:

Pr
[
R(D) ∈ S′

]
≤ eεPr

[
R(D′) ∈ S′

]
. (2.21)

To achieve ε-DP, l1-sensitivity first needs to be computed, which represents the maxi-
mum change in the outputs between two datasets differing at one sample. It is defined as
follows:

Definition 3 (l1-sensitivity [56]). For two neighbouring datasets D,D′, the l1-sensitivity

∆ f of a function f is defined as ∆ f = supD,D′|| f (D)− f (D′)||1.

After calculating the l1-sensitivity, the Laplace mechanism and exponential mecha-
nism can be applied. For the Laplace mechanism, Laplace noise can be added to the data,
which follows the Laplace distribution with its probability density function as Lap(x|b1) =

1
2b1

exp(− |x|b1
), where b1 =

∆ f
ε

. For the exponential mechanism, a score function score must
first be introduced, which assigns scores to the input based on the tasks. Subsequently, the
exponential mechanism creates the output based on a probability that is proportional to
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exp( ε∗score(x,r)
2∆score ), where x is the input, r is a possible output, and ∆score is the sensitivity

of the score function.
However, this general ε-DP is too strict to be applied in certain cases while maintain-

ing acceptable utility. Therefore, an approximate mechanism, (ε,δ )-DP, is proposed. In
(ε,δ )-DP, for two neighboring datasets D,D′, the difference between their outputs can
also be bounded by eε , while δ represents the probability that the difference cannot be
bounded by eε . (ε,δ )-DP is formalized as follows:

Definition 4 ((ε,δ )-DP [56]). For any ε > 0 and 0≤ δ ≤ 1, a randomized mechanism R

achieves (ε,δ )-DP if ∀D,D′,∀S′ ⊂ R and satisfies the following constraints:

Pr
[
R(D) ∈ S′

]
≤ eεPr

[
R(D′) ∈ S′

]
+δ . (2.22)

To satisfy (ε,δ )-DP, it first needs to compute l2-sensitivity as follows:

Definition 5 (l2-sensitivity [56]). For two neighbouring datasets D,D′, the l2-sensitivity

∆ f of a function f is defined as ∆ f = supD,D′|| f (D)− f (D′)||2.

With l2-sensitivity, (ε,δ )-DP is generally achieved by adding Gaussian noise N(0,σ2),
where σ is a base noise variance and needs to satisfy σ ≥ c∆ f/ε for c >

√
2ln(1.25/δ ).

Some basic properties and theorems of applying DP are also introduced. The first one
is the post-processing, which is defined as:

Lemma 1 (Post-processing [56]). Let M : X→ Y be a mechanism satisfying (ε,δ )-DP

and let f : Y→ Z be any random function. Then, f ◦M : X→ Z also satisfies (ε,δ )-DP.

Due to this property, privacy protection is not affected by any post-processing. In
LDP-FL, the noisy gradients first need to be aggregated, and a new model is computed
with the noisy gradients and the global model from the previous round. All these opera-
tions are post-processing of the DP, which guarantees that LDP-FL has the desired privacy
protection level after FL training.

In many applications, including FL and ML, where DP needs to be applied multiple
times, the privacy loss is accumulated. To record accumulative privacy, the composition
theorem is introduced.

Theorem 1 (Composition theorem [56]). Let Ri be εi-DP for i ∈ [1,k′]. Then, if a mecha-

nism is defined to be R = (M1,M2, ..Mk′), R is (∑k′
i=1 εi)-DP.
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Next, to provide a tighter bound for calculating the privacy loss of the Gaussian mech-
anism, an advanced composition theorem has been proposed, which is defined as follows:

Theorem 2 (Advanced composition theorem [56]). For all ε,δ ,δ ′ ≥ 0, k′-fold multiple

usage of the (ε,δ )-DP satisfies (ε ′,k′δ +δ ′)-DP if:

ε
′ =

√
k′ ln(1/δ ′)ε + k′ε(eε −1). (2.23)

To provide a tighter bound under k′-fold usage than the above composition theorems,
zero-concentrated-DP and RDP are proposed. Unlike traditional DP, they rely on Rényi
divergence to measure the difference of the output distributions, which is formalized as
follows:

Definition 6 (Rényi Divergence [74]).

Dα(Y ||Z)∼=
1

α−1
lnEy∈Y [

Pr(Y = y)
Pr(Z = y)

]α , (2.24)

where α ∈ (1,∞) and E is the expectation.

RDP is proposed by focusing on one moment at a time, which is formally defined as
follows:

Definition 7 (RDP [75]). A randomized mechanism R achieves (α,ε)-RDP if ∀D,D′,∀S′⊂
R, it satisfies the following constraints:

Pr
[
R(D) ∈ S′

]
≤ (eεPr

[
R(D′) ∈ S′

]
)

α−1
α , (2.25)

where ε > 0 and α ∈ (1,+∞). It is also proved that if a mechanism satisfies (α,ε)-RDP,

it also satisfies (ε +
log 1

δ

α−1 ,δ )-DP.

Next, some useful lemmas for RDP are introduced, which will be used to derive key
theoretical results for privacy analysis in Chapter 5.

Lemma 2 (Gaussian mechanism for RDP [75]). Given a function f : D→ R, the Gaus-

sian mechanism R = f (D)+N(0,σ2∆2 f ) satisfies (α, α

2σ2 )-RDP.

Lemma 3 (Subsampling mechanism for RDP [76, 77]). If R is applied to a subset of

samples using uniform sampling at a rate r without replacement and R satisfies (α,ε)-DP,
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the new randomized mechanism Rsample satisfies (α,ε ′)-RDP, where

ε
′ ≤ 1

α−1
log((1+ r2(α

2

)
min{4(eλ (2)−1),2eλ (2)}

α

∑
j=3

r j(α

j

)
2e( j−1)λ ( j))), (2.26)

and λ ( j) = j/2σ2. If σ2 ≥ 0.7 and α ≤ (2/3)σ2∆2R(x)log(1/rα(1+σ2))+ 1, Rsample

satisfies (α,3.5r2α/σ2)-RDP.

Lemma 4 (Composition theorem for RDP [75]). For any randomized mechanism R1 and

R2 applied on the same dataset, if R1 satisfies (α,ε1)-RDP and R2 satisfies (α,ε2)-RDP,

the composition of R1 and R2 satisfies (α,ε1 + ε2)-RDP.

2.1.5 Differential Privacy-based Federated Learning Implementation

In this subsection, the general implementation of DP in FL algorithms is introduced. To
satisfy DP in learning algorithms, the gradients first need to be clipped. The clipping
mechanism varies for CDP-based FL (CDP-FL), and LDP-FL, which are introduced in
the remainder of this subsection. An overview of the LDP-FL and CDP-FL framework is
given in Fig. 2.3 to demonstrate where the DP is applied.

2.1.5.1 Central Differential Privacy-based Federated Learning

In CDP-FL [57], the authors aim to protect the clients from being identified as participating
in training in FL, where all clients are assumed to be semi-honest. Therefore, CDP-FL
clips each client’s gradients W t

i as follows:

Ŵ t
i =

W t
i

max(1, ||W t
i ||2

median(||W t
i ||2)

)
, (2.27)

where median(||W t
i ||2) is the median value of all the received gradients in each round. The

required noise is added to the gradients after aggregating the clipped gradients. Then, the
noisy gradients are broadcast to participants for training.

2.1.5.2 Local Differential Privacy-based Federated Learning

In LDP-FL, the authors aim to protect the private data and participation of every client
from a curious server, where UDP is applied to satisfy LDP. Before applying DP, each
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Figure 2.3: An overview of DPFL frameworks.

client also needs to clip its gradients as follows:

Ŵ t
i =

W t
i

max(1, ||W
t
i ||2

Ci
)
, (2.28)

where Ci can be the median of the gradients of the i-th client during training or a fixed
constant. The noise is added to the local gradients before uploading them to the server for
aggregation.
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2.2 Related Work

2.2.1 Federated Learning

With the emerging development of ML and the increasing attention on privacy, FedAvg has
been proposed [14]. However, it still has drawbacks, including poor convergence perfor-
mance under heterogeneous data distribution and even privacy leakage. In this subsection,
the development of fundamental FL frameworks is introduced.

Zhao et al. show that the decrease in the accuracy of FL on non-IID data is caused
by the divergence of the model, and they propose improving the accuracy by sharing a
small global dataset for local clients to train on [78]. To further improve the convergence
performance of FL, Fed-Prox [39] has been proposed to achieve faster convergence un-
der heterogeneous systems by adding a proximal term related to the difference between
the global model and the local model. Furthermore, it considers the devices’ heterogene-
ity and proposes an adaptive training setting scheme for local devices to obtain optimal
performance according to their capability of computing and power. The authors in [40]
present the issue of local updates drifting from the global model and propose SCAFFOLD
to force the local update to move towards the global model by using Control Variate. Wang
et al. propose a layer-wise FL algorithm called Matched Averaging by matching similar
neurons for MLP, matching filters for CNN and matching hidden states for RNN in local
clients before averaging them [79]. Li et al. propose a model-contrastive FL framework
by using the similarity among the models to manage the local training [80]. Acar et al.
propose a novel dynamical regularization method for FL by dynamically updating the risk
objective for each local client to ensure that the local model converges to the stationary
points of the global model [81].

In addition, the authors in [82] adopt MGD in local training to accelerate FL training.
Mills et al. adopt the Adam optimizer in FedAvg along with a compression mechanism,
which not only reduces the convergence time but also reduces communication sizes in
each round [83]. Reddi et al. introduce several adaptive optimizers into FL, including
Adagrad, Adam, and Yogi, and derive the corresponding convergence bound with non-IID
data for non-convex settings in these FL frameworks [84]. Their work also characterizes
the trade-off between client heterogeneity and communication efficiency. In addition to
using different optimization, several personalized FL frameworks are proposed to improve
the local test accuracy by separately designing local and global models [85, 86].
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2.2.2 Gradients Reconstruction

Although FL is claimed to protect data privacy, several studies have shown important in-
formation can be obtained from the gradients [87–91]. The authors in [87] use a generative
adversarial network (GAN) to generate images similar to real ones. However, their algo-
rithm only works when all the classes are similar to each other, such as face recognition
or number classification tasks. Melis et al. conduct membership attacks in collaborative
learning and demonstrate that their work can also reveal unimportant features, such as
whether a person wears glasses in a human gender classifier [88]. The authors in [89] not
only successfully recover the exact true samples using GAN but also reveal specific local
clients’ data, breaching identity-level privacy.

In [90], the authors propose Deep Leakage from gradients (DLG) to first generate
dummy images and compute the dummy gradients through the same learning model. By
optimizing the Euclidean distance between the dummy gradients and true gradients, they
successfully recover the true images. In addition to DLG, the authors in [91] propose
improved-DLG to recover the ground truth label of the true data. However, the aforemen-
tioned works rely on an L-BFGS optimizer, which is computationally expensive. More-
over, these works may fail because of a bad initialization and may also perform poorly,
when the training batch size is larger than one and the model is deeper.

The authors in [48] suggest that previous works mostly focus on the magnitude of the
difference between the true and dummy gradients, while the high-dimensional direction
of the difference is also important. Therefore, they propose using cosine similarity to
measure the difference and a signed Adam optimizer for optimization, which can recover
most true images even if the model has a large number of layers. However, their work
fails to recover images with high quality when the size of the batch is larger than eight,
and they assume that the attacker knows the BatchNorm statistics.

Huang et al. make two strong assumptions for existing reconstruction attacks: 1)
the attackers do not know the BatchNorm statistics, and 2) they do not have the private
labels [92]. They demonstrate that these statistics and labels are not necessary to transmit
during FL training but can greatly improve the quality of the reconstructed images. They
also systematically evaluate the effectiveness of defense for privacy leakage, including
gradient pruning and weak encryption on the existing reconstruction attacks under those
two assumptions.

Therefore, Yin et al. propose DeepInversion by inferring the BatchNorm statistics of
the original gradients with the noisy gradients’ mean and variance and minimizing the
difference between the inferred BatchNorm statistics of the fake and real gradients [46].
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In addition to DeepInversion, they propose adaptive DeepInversion by introducing a new
loss term to encourage disagreement on the synthesized images for GAN-based recon-
struction attacks, which can improve the attack performance. The authors in [47] propose
GradInversion, which allows the attack algorithm’s gradient descent in various directions
at a time and bound all the directions by adding a group consistency regularization term.
Their method can reconstruct high-quality images from gradients obtained from a very
large batch of data. Additionally, they propose a novel batch label restoration mechanism
by using the gradients of the final fully connected layer, achieving more than 97% of label
recovery accuracy for both the training set and validation set.

2.2.3 Differential Privacy-based Federated Learning

As introduced previously, FL alone cannot protect data privacy, and HE and SMC gen-
erates a heavy computation workload, which may be unsuitable for local devices with
limited resources. Therefore, DP is applied in FL to ensure strong data privacy protec-
tion. In this subsection, the implementations and improvements of DPFL frameworks are
introduced, with a sole focus on HFL.

With regard to privacy protection for learning algorithms, Martin et al. [93] have ap-
plied DP into single-end DL, namely DP-SGD. To record the accumulative privacy loss
during the multiple DP procedures, they propose MA, which has a tighter bound on pri-
vacy loss for DP-based learning, compared to the DP advanced composition theorem [56].

Geyer et al. [57] propose a general CDP-based FL framework to add noise on the
aggregated clipped gradients on the server side, aimed at hiding every client’s participation
in training from curious local clients. Additionally, their work has a significant accuracy
decrease. Yang et al. propose a novel method that adds noise, which is positive and can
be arbitrarily large, to the global models to provide a strong privacy guarantee [94]. To
improve accuracy, they propose a novel technique to allow the central server to remove
the added noise on the aggregated gradients while maintaining a high level of privacy
protection under reconstruction attacks from curious clients.

However, the CDF-FL framework cannot prevent curious servers from recovering the
original data. As a result, LDP is adopted to randomize local gradients to protect data
privacy [59, 95]. For instance, Sun et al. propose an LDP framework that perturbs the
gradients within an adaptive range with different probabilities in terms of the DP noise and
clipping settings [59]. In addition, they implement a novel parameter-shuffling mechanism
by splitting the gradients into multiple parts and shuffling the gradients part-wise. Aside
from perturbing the gradient with probabilities, the authors in [95] propose adding Laplace
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noise to the local gradients before uploading them. However, their frameworks satisfy the
ε-DP, which may be too strict to guarantee feasibility in real-world applications.

On the other hand, the Gaussian mechanism is widely adopted in DPFL by clipping
the local gradients and adding Gaussian noise to them before uploading to the server [55].
McMahan et al. also propose a LDP-FL framework, which combines the DP-SGD and
FedAvg, known as DP-FedAvg [96]. Their work adopts gradient clipping during client
training and investigates two different types of clipping: per-layer clipping and flat clip-
ping (applied to the whole model). The primary focus of their work is on differential
private natural language processing tasks, where they achieve acceptable accuracy, com-
pared to non-private learning models. In addition to adding Gaussian noise, the authors
in [97] introduce a multiplicative perturbation mechanism to obfuscate the local gradients
by multiplying the noise with the gradients.

To prevent privacy leakage from both curious servers and clients, many studies have
combined LDP and CDP in FL by adding noise to the local gradients on the client side and
aggregated gradients on the server side [61,98,99]. Bernau et al. empirically show that the
noise added on the local gradients provides a weak level of privacy protection for CDP,
as demonstrated through a white-box membership inference attack [100]. Therefore, a
smaller noise scale is needed for aggregated gradients to achieve the given CDP guarantee
[61,98,99]. Based on this finding, several studies investigate how to compute the essential
noise scale and derive the corresponding convergence bound under the privacy settings
[61,98,99]. Additionally, Wei et al. [61] present the convergence bound for different client
selection rates for centralized DPFL and prove that there is an optimal communication
round for the largest accuracy under specific noise parameters. Zhou et al. also derive
the optimal number of training rounds for local clients, given the DP guarantee and total
FL communication rounds [99]. To reduce communication costs, they propose a novel
scheduling mechanism for local client participation.

Even though DP can protect private data from adversaries, the DPFL frameworks have
a degraded convergence in terms of longer convergence time and lower accuracy due to
the randomization of the gradients [55]. Therefore, improving the performance of DPFL
is worth researching.

Extensive studies have evaluated the privacy protection of DPFL and researched the
relationship between privacy protection and utility [61, 101–103]. Wei et al. propose
a framework to evaluate the gradient leakage of non-private FL under different settings
based on reconstruction attacks [104]. They also study how different compression ratios
to transmitted gradients affect privacy leakage. The studies [61, 101] have characterized
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the trade-off between privacy protection and accuracy under different privacy protection
levels to show insight into DP budget selection. Zhang et al. propose a framework to
formulate the trade-off from the information-theoretic perspective between privacy and
utility loss in FL under multiple privacy protection mechanisms, including DP, sparsity
and HE [102]. Moreover, some work has evaluated the impact of other attacks on DPFL.
Lu et al. quantify the accuracy-privacy trade-off based on membership inference attacks
[103]. In addition, Naseri et al. have demonstrated that applying CDP and LDP in FL can
prevent the models from backdoor attacks, while none of them can stop property inference
attacks [101].

Current research also focuses on the relaxation of privacy guarantees in order to re-
duce privacy loss and the required noise scale. Based on (ε,δ )-DP, some studies have
implemented various DP guarantees in FL to provide tighter privacy guarantees and more
flexible trade-offs between utility and privacy, especially in scenarios involving continuous
usage. For instance, Triastcyn et al. improve the DPFL framework by utilizing Bayesian
DP, which focuses on the prior distribution of data [98]. By relaxing the privacy bud-
get allocation to obtain more FL training rounds, their work can improve the accuracy of
DPFL. The authors in [105–107] propose a DPFL framework with relaxed privacy bound
based on RDP, which measures the privacy loss using Rényi divergence instead of Max-
divergence in the standard DP guarantee. The authors also derive the convergence bound
for their proposed frameworks.

Some research proposes adaptive DP mechanisms for DP-based learning in order to
improve accuracy [108–114]. For example, Pichapati et al. propose a coordinate-wise
adaptive gradient clipping mechanism for DP-SGD to reduce the necessary noise and im-
prove the convergence performance [108]. In addition, the authors in [109] propose a
personalized DPFL framework to allow local clients to choose their own privacy budget
based on their needs. By decreasing their own required privacy budget, accuracy can
be improved. Hu et al. utilize the clustering technique and an objective function based
on standard deviation to adaptively tune the clipping bound [111]. Golatkar et al. pro-
pose a novel DPFL framework by incorporating cross-modal zero-shot learning on pub-
lic data prior to private fine-tuning, which can significantly decrease the training loss of
DPFL [110]. The authors in [112] propose a novel DPFL mechanism, which derives the
importance factors for the gradients based on analyzing the value of the size of the gradi-
ents, the absolute value of the model parameters, and the difference between the direction
of the global and local updates. The important factors are then used to compute the DP
noise. The authors in [113] design a novel method to adaptively adjust the value of the
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clipping bound by tracking a given quantile of the update norm distribution during DPFL
training. Yang et al. propose a novel personalized DP-FL framework, which utilizes fisher
information to retain more important information for the local personalized model and
only uploads less important information to the server so that less noise can be introduced
and local accuracy can be enhanced [114]. To further improve the accuracy degradation
caused by the clipping, they propose two constraints for the l2-norm of local models.

Furthermore, some studies propose different mechanisms to enhance privacy protec-
tion and provide a relaxed bound on privacy budget. The authors in [115, 116] adopt
sub-sampling of clients in each round, where a subset of data is sampled uniformly from
the entire dataset for each round’s training. This sampling mechanism can reduce the pri-
vacy budget, ε , by a factor proportional to the sample rate, which is theoretically proven
for Laplace, Gaussian and RDP mechanisms in DP-based learning. In DPFL, the server
can choose a subset of clients uniformly in each training round, which is similar to the
sub-sampling mechanism if each client is regarded as a data unit [76]. Therefore, client-
level sampling has also been proven to decrease the privacy budget in proportion to the
sample rate. In addition, the authors in [117,118] propose using a trusted server to shuffle
the noisy gradients of all clients before sending them to the central server. The shuffling
mechanism is theoretically proven to decrease the privacy budget by a factor proportional
to the square root of the total number of clients in the Laplace mechanism. In addition,
several studies have combined secure multi-party computation with DP in FL [119, 120],
and the study in [121] applies HE along with DP. By implementing other techniques to
protect privacy, the noise can be decreased, leading to better accuracy.

Overall, the existing frameworks for DPFL still face challenges related to accuracy
degradation and significant communication overhead, particularly when striving to main-
tain equivalent levels of privacy protection. To address these issues, this thesis proposes
two novel frameworks aimed at enhancing utility without compromising privacy. Ad-
ditionally, a privacy loss evaluation methodology is introduced to optimize differential
privacy (DP) noise and clipping settings for better privacy auditing. Furthermore, as most
current DPFL frameworks with privacy analysis are centralized, this thesis identifies the
need for and develops a decentralized DPFL framework with integrated privacy analysis,
offering greater flexibility for real-world applications.
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2.3 Summary

This chapter presents an overview of DPFL with the fundamental concepts and formulas.
It begins with an introduction to the principles of DL and FL. Next, a reconstruction attack
method is presented, followed by a detailed background on DP, including its mechanisms,
categorizations, and properties. Moreover, the methodologies of DP-based learning, with
a focus on the clipping technique, are covered. Finally, a literature review of FL, re-
construction attack and DPFL is presented to explore the existing frameworks and their
issues. The fundamental knowledge provided in this chapter is crucial for understanding
the proposed frameworks and theoretical results discussed in the following chapters.



Chapter 3

Improving Communication Efficiency
and Accelerating Convergence in DPFL

In this chapter, two different frameworks of DPFL to improve the utility are proposed. The
first proposed framework focuses on reducing communication costs by reducing the size
of the uploaded gradients, while the second one focuses on speeding up the convergence
and reducing the communication rounds. Both frameworks improve accuracy performance
and save communication costs compared with plain DPFL.

3.1 Introduction

With the enormous amount of data generated by the IoT, AI has been broadly developed
and deployed in recent years in many sectors, including finance, industries, network ser-
vice applications, etc. Since AI relies on a large amount of data to achieve acceptable
performance, there is a privacy problem causing great attention in public during data col-
lection. In addition, with the new GDPR law [10], it has become more difficult to collect
raw data to train a good ML model. To solve this issue, Google first proposes FL in
the smart keyboard application for typing recommendation [14]. The key idea of FL is
to allow local users to train models with their data and upload the gradients, which will
be aggregated to obtain a global model. Since the private data never leaves local users’
devices, it is claimed that FL can preserve privacy during model training.

A baseline FL model, FedAvg, is proposed to train local models to reduce the commu-
nication rounds between the server and clients [14]. However, when training with non-IID
data, FedAvg has unsatisfactory convergence performance [122]. Several local optimizers
for FL are proposed to improve the FL convergence performance with non-IID data and

36
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are proven to converge much faster than FedAvg [39, 40].
Even though FL is proposed for privacy protection, several studies have shown that

useful information can be recovered even from the gradients of the trained model to violate
user privacy [48, 89]. In many FL settings, the servers are considered to be semi-honest.
To be specific, they finish the FL tasks honestly, but sometimes they are curious about the
users’ private data and try to recover them from the gradients. Therefore, further studies
are essential to protect user privacy when FL servers are not fully trusted. For example,
HE can be used by each client to encrypt the gradients before they are uploaded to the
server [52]. However, this requires that all the clients are trustworthy to protect the secret
key. Furthermore, performing HE on the gradients needs strong computational capability,
which is normally unavailable for resource-constrained IoT devices.

Therefore, as a mathematical tool, DP is widely adopted in FL by perturbing original
gradients before uploading to the server to provide a strong privacy guarantee [55], also
known as LDP. Although DP is a strong privacy protection tool, perturbing gradients in-
evitably decrease the convergence performance, causing longer training time and lower
accuracy. To solve this issue, some studies have proposed adaptive DP frameworks to
improve accuracy [108–114]. However, their works are achieved by reducing the required
noise. Thus, improving the convergence performance while preserving the same DP noise
settings still needs to be researched.

In addition, frequent gradient exchanges between clients and servers are required to
achieve an acceptable accuracy performance of FL, bringing expensive communication
costs. This issue is more serious in DPFL since the noise brings more divergence on the
global model, leading to longer training time. Therefore, reducing the communication
costs in DPFL is also worth researching. In general, there are two main research direc-
tions for reducing communication costs. The first one is to reduce the communication
overhead in each round by reducing the size of the transmitted gradients, which can be
achieved by quantification or sparsification. The second direction is to design different
optimizers to reduce the convergence time, which can reduce the communication rounds.
Even though some research has considered using sparsification in sample-level LDP-FL
to save communication costs [123], there is a lack of work to save communication costs
for user-level LDP-FL frameworks.

Therefore, in this chapter, two different frameworks are proposed to solve the afore-
mentioned issues. The first framework is a novel Privacy-Preserving FL (PPFL) frame-
work, which achieves both LDP and CDP by adding noise and keeps track of the privacy
loss by the MA scheme. Furthermore, to improve the performance, sparse gradients are
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applied to the local gradients before uploading, and MGD on both the server side and client
side is implemented. This framework is introduced in Section 3.2, whose contributions are
listed as follows:

• First, the Gaussian mechanism is applied on the client side to achieve (ε,δ )-LDP
and CDP is introduced to the LDP-FL to further protect privacy, namely LCDP-FL.

• Second, as the noise is scaled to the l2-norm of the gradients, the sparse gradients
technique is applied to upload only a part of the gradients to the server, which can
reduce noise scale and save communication costs.

• Third, MGD is adopted on the clients’ side and the servers’ side to speed up the
training process under the influence of the added noise.

• Finally, extensive simulations with different settings are conducted and the results
are compared with other frameworks to show the proposed PPFL’s effectiveness.

The second framework is an LDP-based framework and two novel strategies for mod-
ifying the local objective function to reduce the convergence time and improve the accu-
racy performance while maintaining the same privacy protection level, namely Federated
Noise Reduction 1&2 (Fed-Nore-1&2). An LDP-based FL framework is first proposed by
adding Gaussian noise before uploading their gradients and using RDP to keep track of
the privacy loss. This framework is introduced in Section 3.3, whose main contributions
are listed as follows:

• The first proposed strategy is to compute the difference between the gradients with
and without DP noise and add the difference values to the loss function to limit the
effect of the noise. On the other hand, by adding noise to the gradients, it is con-
sidered that noisy gradients will generate an additional term to the loss. The second
proposed strategy is to calculate the additional term due to the noise in the gradients
and then incorporate the term into the local objective function. Detailed formulas for
deriving modifications to the local objective function for different learning models
are provided.

• A Theoretical convergence bound on the first modified local objective function is
developed for convex and non-convex settings, which presents the expected incre-
ment in the loss function of one round and then the upper convergence bound after
multiple rounds.
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• A series of simulations of the proposed framework is performed, and the results
present that the proposed framework can spare up to 40% training rounds to reach
the same performance as plain DPFL under certain settings. Besides, the proposed
work also achieves higher accuracy performance compared with other DPFL frame-
works.

3.2 Privacy-Preserving Federated Learning based on Dif-
ferential Privacy and Momentum Gradient Descent

In this section, the first proposed DPFL framework, along with the simulations, is intro-
duced.

3.2.1 The Proposed Differential Privacy-based Federated Learning
Framework

In this subsection, the LCDP-FL framework is proposed to enhance privacy protection.
To reduce the total communication overhead and improve the overall performance, only
a part of the gradients are sent to the central server. Besides, in this framework’s setting,
MGD is used to train the local models to speed up training, as well as on the central server
to help stabilize the training process under the effect of DP noise.

3.2.1.1 Local Differential Privacy and the Combination of Differential Privacy Tech-
niques

In most existing DPFL frameworks, central servers are assumed to be honest and not try
to infer sensitive information so they only adopt CDP. To achieve CDP, artificial noise is
only added after the aggregation in the central server. This prevents malicious clients from
identifying whether a certain client joins the training process or not [57]. However, the
central servers are not totally trustworthy in reality and may try to recover useful data from
gradients. Therefore, an LDP mechanism of adding LDP noise on the client side should
be implemented on top of CDP to further protect clients’ data privacy. To enhance privacy
protection, in the proposed method, the Gaussian Mechanism is used on each client to
achieve (ε,δ )-DP.

After computing the gradients on each client locally, clients add Gaussian noise to
them, which is scaled to the l2-norm of the gradients. In the LDP settings, the local data
of each client is referred to as a small subset of the entire data set involved in FL. To keep
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track of the accumulative privacy loss, MA [93] is used for a tighter bound of the privacy
loss. Based on MA, the privacy loss is related to a proportion q of the batch in the whole
dataset, ε , δ , the noise scale and communication rounds. As the noise is added to every
client’s gradients separately, it has q = 1

M , where M is the total number of clients. Besides,
the total privacy loss in a single round can be defined as the sum of the privacy loss of all
participants in this round. After applying LDP, the gradients of the i-th client sent to the
server are:

∇W t
i =W t−1−W t

i +N(0,S2
LDPi

σ
2
LDP), (3.1)

where SLDPi is the sensitivity for LDP for the i-th client, W t−1 is the model in the previous
round, W t

i is the i-th client’s model in this round, N denotes a zero-mean Gaussian distri-
bution for the LDP noise, and σLDP denotes the base noise scale. Besides, SLDPi needs to
be chosen properly so that it can protect privacy without seriously hindering the model’s
performance too much [93]. Therefore, to protect each single data point in the training
stage, SLDPi is computed as:

SLDPi =
||∇W t

i ||2
ni

=
||W t−1−W t

i ||2
ni

, (3.2)

where ni is the number of data in the i-th client.
As mentioned in Chapter 2, the gradients are usually clipped before aggregating each

data sample and adding noise to alleviate the influence of each data sample. In this section,
it is assumed that all clients are honest and have similar computing capabilities, leading
to that their gradients have a similar scale and sensitivity. Hence, there is no need to limit
each sample’s influence on the global model so that the process of clipping in the proposed
LDP is omitted, but the sensitivity is still used to control the scale of the noise.

After the central server receives all the clients’ gradients, it clips all the received gra-
dients as (2.27) and assigns each client a weight for their contribution. In this framework,
the weight is ni

m , where m is the number of the total data samples of every client involved
in this round. The server aggregates weighted gradients and adds Gaussian noise to them
to hide each client’s contribution as introduced in [57]. Finally, the aggregated gradients
with the combination of two differential privacy implementations are used to compute a
new global model W t in the t-th communication round as follows:

∇W t = ∑
i∈Mt

ni

m
∇W t

i +N(0,S2
CDPσ

2
CDP), (3.3)

W t =W t−1−∇W t , (3.4)
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SCDP = median{||∇W t+1
i ||2}i∈Mt , (3.5)

where ∇W t
i is the gradients of the i-th client in the t-th communication round with DP

noise, SCDP is the sensitivity in CDP, and σCDP is the scale for CDP noise.
To calculate the privacy loss of the proposed combination of two DPs in this frame-

work, two separate accountants for LDP and CDP are used. In this way, whichever ac-
countant runs out of budget, the FL stops.

3.2.1.2 Gradients Sparsification

Although the noise scale is well-chosen to preserve useful information for the model, it
can still degrade the overall performance. The added Gaussian noise has a mean of zero
so that when the number of clients increases, the noise can be offset to a certain degree
after aggregation. However, it is impossible to have a massive number of clients joining
the FL in some cases. To improve the performance, as the noise is scaled to the l2-norm
of the gradients, by only sending a part of the gradients, the l2-norm value is smaller. This
means that DP noise can have less effect on gradients while still preserving data privacy at
the same level. Besides, as the FL is usually performed on smart devices that have limited
power and communication resources, sparsifying the gradients can save a large proportion
of communication costs.

Furthermore, the method of sparsifying gradients is considered. To save as many com-
munication costs as possible while reducing the effect of DP on the performance, the
sparse percentage should be as large as possible. On the other hand, sending a small part
of the original gradients slows down the training process, resulting in degraded perfor-
mance. In ML, the magnitude of the gradients stands for each point’s influence on the
final loss. Therefore, in this scheme, a percentage of gradients with the largest absolute
values are maintained, which are mathematically more significant than the smaller ones.
Then, Gaussian noise is computed according to the sparse gradients’ l2-norm and added
to them. In this way, the proposed framework can improve the models’ performance and
also save communications costs.

3.2.1.3 Applying Momentum Gradient Descent on Central Server and Clients

The accuracy performance can be very unstable due to the noise, which may slow down
the training process or result in poor performance. To speed up and help stabilize training
steps, MGD is not only used during local training to speed up gradient descent but also
applied to the central server after aggregation, referred to as Global-MGD. In a traditional
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single-end ML, MGD is applied between batches of data to accelerate training. To be
specific, every communication round of FL can be seen as a batch of the combination of
selected users’ data. After the first communication round, the previous round’s aggregated
gradients (V∇W t−1) are used as the next one’s momentum. By applying the MGD formu-
lation, every round’s gradient is calculated as a combination of the recursion of previous
rounds and the current one, which is:

V∇W t = β1 ∗V∇W t−1 +(1−β1)∗∇W t , (3.6)

W t =W t−1− γ ∗V∇W t , (3.7)

where V∇W 0 = 0, β1 is a preset constant, γ is the learning rate, and ∇W t is calculated in
(3.3).

3.2.1.4 The Overview of the Proposed Framework

Algorithm 3.1 outlines the proposed LCDP-FL framework, and the implementation of
sparse gradients and Global-MGD. At the beginning of the algorithm, a global model and
two privacy accountants for LDP and CDP, respectively, are first initialized. For the t-th
communication round, accountants check whether the privacy loss exceeds the budget. If
not, the server chooses a set Mt of clients and sends them the current global model. If any
budget remains, each client in Mt performs local training, computes the sparse gradients,
adds LDP noise on the gradients, and sends the noisy gradients and their norm values
to the server. Next, the server clips and aggregates all the received gradients. Finally, the
server computes a new global model through Global-MGD and adds CDP noise to the new
model which is broadcast for future training. A diagram of the proposed work is shown in
Fig. 3.1

3.2.2 Simulation Results

In this subsection, a set of simulations is conducted to show the proposed framework’s per-
formance on the MNIST dataset, which is a hand-written digit image dataset and consists
of 60,000 training images and 10,000 test images. Besides, this subsection also com-
pares the framework to some classical schemes, called vanilla-FL, which is non-private
FedAvg using MGD in local training [14, 82]. The training dataset is divided into shards,
where each shard contains data with the same label, and each client is assigned two shards.
The proposed framework runs with 100 and 1,000 FL clients, while for 1000 clients, the
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Figure 3.1: The diagram of the proposed LCDP-FL framework.

MNIST is repeated for ten times, leading to a dataset with 600,000 training data. The LDP
privacy budget is set as ε = 0.5 and δ = 1e−6, and the CDP privacy budget is set to the
same as in [57], where ε = 0.5, δ = 1e−3 for 100 clients and δ = 1e−5 for 1,000 clients.
For each client, the local training model is an MLP, which consists of two hidden layers
with 200 units per layer and the ReLU activation is employed for each layer except the
output layer. Each local client performs ten epochs of MGD per communication round.
The LCDP-FL stops when the privacy budget runs out.

The proposed PPFL is compared with some well-known algorithms, DP-SGD [93],
LDPFL [59] and CDP-FL [57] in terms of accuracy in Table 3.1, where CR is the number
of total communication rounds, TC is the number of total clients, CSR is the fraction of
users to be selected per round and Acc is the accuracy performance. In this table, all the
proposed schemes are implemented with Global-MGD (β = 0.5), and they update only
10% of the gradients with the largest absolute values.
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Algorithm 3.1 LCDP-FL with sparse gradients and MGD
1: procedure CENTRAL SERVER

2: Initialize a global model W0 and privacy accountants for server, PAserver, and
clients, PAclients, V∇W0 = 0

3: for communication round t = 0,1,2...T do
4: if δserver ≤ PBserver or δclients ≤ PBclients then return current model
5: end if
6: Choose a random set of m clients as Mt

7: for Client i in Mt do
8: ∇ W t+1

i , ||∇W t+1
i ||2← ClientDP(i,W t)

9: end for
10: SCDP = median{||∇W t+1

i ||2}i∈Mt

11: Clip gradients
12: ∇W t+1 = ∑

Mt

i=1
ni
m ∇W t

i
13: V∇W t+1 = β ∗V∇W t +(1−β )∗∇W t+1

14: W t+1 =W t− (V∇W t+1 +N(0,S2
CDPσ2

CDP))
15: end for
16: end procedure
17: procedure CLIENTDP(i,W t)
18: W t

i ← E epochs of MGD
19: ∇W t+1

i =W t−W t
i

20: ∇W t+1
i ← the largest top-rate% absolute values of the ∇W t+1

i
21: ∇W t+1

i = ∇W t+1
i +N(0,S2

LDPi
σ2

LDP)

22: return ∇W t
i ,||∇W t+1

i ||2
23: end procedure

3.2.2.1 Evaluation of the Proposed Local Differential Privacy-only Framework

This section first investigates the proposed LDP-FL’s performance and the impact of the
sparse gradients and MDG at the server’s side on accuracy performance. For the proposed
LDP-FL, the learning rate for the local model optimizer begins at 0.1, decays by 0.96
for the first 20 rounds and is fixed at 0.044 after 20 rounds. The noise scale is σ100 = 8
for 100 clients and σ1000 = 2 for 1,000 clients. Fig. 3.2 shows the results for the vanilla
and the proposed FL framework with 100 clients. It is shown that although the PPFL has
degraded accuracy performance when compared with the vanilla one, the sparse gradients
and central MGD can alleviate the performance degradation caused by the added noise.
To be specific, the final accuracy of the FL with these techniques outperforms the others
and reaches 96.31%. As shown in Table 3.1, the proposed LDP-FL framework has a
higher accuracy performance than the one in [59], while the proposed framework has a
more general and easily achieved privacy settings by adding δ in DP. For 1,000 clients, the
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Table 3.1: Maximum accuracy comparison between the proposed LDP-FL and LCDP-FL
and other well-known DP-based learning.

Algorithm CR TC CSR Acc DP
DP-SGD [93] 700 1 1 97% (8,1e-5)-DP

The proposed LDP-FL 52 100 0.5 96.3% (0.5,1e-6)-DP
The proposed LDP-FL 63 1000 0.22 97% (0.5,1e-6)-DP

LDPFL [59] 10 100 1 95.36% (0.5)-DP
CDP-FL [57] 11 100 0.5 78% (8,1e-3)-DP
CDP-FL [57] 54 1000 0.22 92% (8,1e-5)-DP

The proposed LCDP-FL 11 100 0.5 80.24%
(8,1e-3)-CDP &

(8,1.07e-107)-LDP

The proposed LCDP-FL 54 1000 0.22 94.3%
(8,1e-5)-CDP &
(8,4e-111)-LDP
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Figure 3.2: Accuracy of vanilla-FL and the proposed LDP-FL with 100 clients.

proposed framework outperforms the plain LDP-FL (without sparse gradients and Central-
MGD) and obtains almost the same accuracy of 97%, compared with vanilla FL, as shown
in Fig. 3.3.
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Figure 3.3: Accuracy of vanilla-FL and the proposed LDP-FL with 1000 clients.
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Figure 3.4: Accuracy of the proposed LCDP-FL with 100 clients.

3.2.2.2 Evaluation of the Proposed Combined Differential Privacy Framework

The performance of the proposed LCDP-FL is studied. In the LCDP-FL, εLDP = 8. As the
noise is scaled to the norm of the gradients, the learning rate needs to be chosen properly.
When training with 100 clients, the initial learning rate is set to 0.0025, decays by 0.78
for the first ten rounds and is fixed at 0.000267 after ten rounds since the experiments
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Figure 3.5: Accuracy of the proposed LCDP-FL with 1000 clients.

show that for learning rates larger than 0.0025, the DP noise destroys the training while
having a smaller one will make the training process too slow. In addition, when training
with 1,000 clients, the initial learning rate is set to 0.1, decays by 0.78 for the first ten
rounds and is fixed at 0.0107. The noise scale for LDP is set as σ = 2, while for CDP,
it is set as σ100 = 1.18 for 100 clients and σ1000 = 1.43 for 1,000 clients on the purpose
of comparison with the CDP-FL [57]. For the PPFL with LCDP with 100 clients, Fig.
3.4 shows that the proposed method achieves the highest accuracy performance, 80.24%,
among all the LCDP-FL. At the same time, it can reduce 90% of the total communication
costs. As shown in the Fig. 3.4, it has much worse accuracy than that of the vanilla
FL, which suggests that a more delicate CDP mechanism may be needed. Meanwhile, It
outperforms the CDP-FL [57] with 100 clients, as presented in Table 3.1. Besides, the
performance of only updating 1% of the gradients is also introduced, which has the worst
performance, as only very little useful information is updated for the center server each
round.

Furthermore, Fig. 3.5 shows that the proposed LCDP-FL with 1,000 clients also
reaches the highest accuracy performance, 94.2%, which also outperforms the one for the
CDP-only FL framework in [57], as shown in Table 3.1. However, when adopting CDP,
the LCDP-FL has slightly worse accuracy than LDP-FL, caused by the small learning rate
value.
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3.2.2.3 Discussion of Privacy Loss

The privacy loss of the LCDP-FL is discussed, where two accountants for LDP and CDP
are used separately. However, according to the MA calculation in [93], and that CDP has a
much larger q than LDP, CDP has relatively higher loss than the one of LDP. Therefore, the
FL always stops when the CDP accountant exceeds the privacy budget. Through MA, the
difference between the privacy loss of LDP and CDP is very large, as shown in Table 3.1.
Even though as small privacy loss for each client as possible is desired, the FL controlled
only by CDP’s accountant can train for very few rounds, resulting in poor performance.
In this case, the privacy protection for LDP is more important, and with LDP, CDP can
be achieved to a certain degree [100]. Thus, the CDP privacy budget can be loosened in
further research to achieve better performance.

3.3 Faster Convergence on Differential Privacy-based Fed-
erated Learning

In this section, the second proposed DPFL framework is introduced, along with a theoret-
ical analysis and simulations.

3.3.1 The Proposed Federated Noise Reduction Framework

In this subsection, an LDP-FL scheme is proposed by adding Gaussian noise. Based on the
scheme, two modifications on the local cost function F(W ) are introduced to improve the
convergence under noise. The first modification can work on universal models, while the
second one slightly varies for different DL models. In this section, the CNN and the DNN
are used as the training models along with the two modifications, and the corresponding
derivations of the modifications on the local objective function are provided.

3.3.1.1 Threat Model and Problem Formulation

Even though in FL, only gradients are uploaded, and the data is stored locally, useful
information can still be recovered. In this section, the reconstruction attack is considered
as the threat model, where it is assumed that the server is semi-honest. To be specific,
they execute the FL honestly, but they try to infer the private data from the transmitted
data. Therefore, this section aims to prevent the server from obtaining the real data while
reducing the accuracy performance degradation caused by the noise.
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3.3.1.2 The Plain Differential Privacy-based Federated Learning Model

LDP is first adopted to protect sensitive data from revealing. Before applying DP mecha-
nisms, each layer of the gradients needs to be clipped element-wise as:

∇W t
i = ∇W t

i /max(1,
||∇W t

i ||2
Ci

), (3.8)

so that it can eliminate their effect on average value to make them close to the global
gradients, where Ci is the clipping bound of the i-th client. Ci is set to the median value
of the l2-norm gradients of the i-th clients across the training. The DP noise is generated
as N(0,S2

i σ2), where Si is the sensitivity of the i-th client. The σ is a preset base noise
variance and Si is computed as follows:

Si =
Ci

ni
=

median||∇W t
i ||2

ni
=

median||W t−W t
i ||2

ni
, (3.9)

where ni is the size of the involved data samples in the i-th client, and Si is calculated for
each layer separately and by taking the median value of all unclipped gradients in each
client. Following that, the noise is added to the local gradients as

∇W t
i = ∇W t

i +N(0,S2
i σ

2), (3.10)

where ∇W t
i is the clipped noisy gradients. Finally, the new global model can be aggregated

as follows:
W t+1 =W t− ∑

i∈mt

1
m

∇W t
i . (3.11)

To track the privacy loss, this framework uses RDP [75] to calculate the final privacy
loss (ε,α) with a fixed δ and the total training rounds. In the LDP scheme, each client
records their privacy loss locally and individually. Once the client has reached the pre-
set privacy budget (ε,δ ), it drops out. The server can abort the training process when
there are inadequate clients for training. Since the clients are chosen randomly for every
round, the client drop-out pattern satisfies a uniform distribution, which will not lead to an
unbalanced FL model.

3.3.1.3 The Proposed Modifications on Local Objective Function

Two different modifications are proposed to improve the convergence performance under
DP noise while maintaining the same protection level, namely as Fed-nore-1&2.
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In the proposed framework, a modification term related to the noise is added to the
local objective function, which can offset the training loss caused by the noise through op-
timization. Meanwhile, the privacy protection level is not degraded since no changes are
made to the DP mechanism settings. The proposed Fed-nore-1 and Fed-nore-2 share the
same general FL protocol and the proposed LDP mechanism. However, they are different
at the local training optimizer, where Fed-nore-1 is proposed to minimize the distance be-
tween the noisy gradients and the original ones, while Fed-nore-2 is proposed to minimize
the expected loss created by the noise.

For Fed-nore-1, the difference Jnore_i between the noisy and the original gradients is
considered, which is computed as:

Jnore_i = ||∇W t
i −∇W t

i ||2
= ||∇W t

i − (∇W t
i +N(0,S2

i σ
2))||2

= ||N(0,S2
i σ

2)||2, (3.12)

where Jnore_i can be simplified to Siσ . By adding the difference between the original
gradients and noisy ones into the local objective function, the local optimizer can reduce
the distance between them in order to improve the accuracy performance. Meanwhile, as
no changes are made to the DP mechanisms, the privacy protection level remains the same.
The formal implementation of Fed-nore-1 is given, where the difference term is added to
the local objective function h as follows:

argmin
W t

i

h(W t
i ;W t) = F(W t

i )+λnore1 ·Siσ , (3.13)

where λnore1 is used to control the size of its effect.
Before introducing Fed-nore-2, the change in the loss is considered. When the noise is

added to the gradients, it is assumed that the loss is added with a value, and the noisy gra-
dients can be directly derived through the gradient descent from the new loss. In order to
calculate the change, the backpropagation process of training is reversed. A normal DNN
with ReLU as the activation function for hidden layers and the Softmax as the activation
function for the output layer is first considered. During the backpropagation, the gradients
are computed by taking the partial derivatives of the loss with respect to each parameter in
the forward propagation as shown in (2.6)-(2.10).

The gradients are used to update the model. Based on the (2.6), to calculate the ex-
pected change in the final loss, the proposed framework needs to calculate the expected
change on each layer’s dz. According to (2.7)-(2.10) during the backpropagation, dzk are
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used to obtain dzk−1 (only when k > 1), dwk and dbk. Therefore, if the backpropagation is
reversed, dzk is computed with the expected change on dzk−1 (only when k > 1), and the
noise on dwk and dbk, which are computed in Lemma 5.

Lemma 5

dzk = dwk ·ak−1 +dbk +wk ·dzk−1×g′actk(zk−1), (3.14)

dwk = N(wk), (3.15)

dbk = N(bk), (3.16)

dzk = N(wk) ·ak−1 +N(bk)+wk ·dzk−1×g′actk(zk−1), (3.17)

where N(wk),N(bk) are the noisy gradients of the layer k, the (3.14) describes the proce-

dure of reversing the original gradients (without noise), and (3.17) is the expression of the

expected change on the noisy gradients.

The proof of the Lemma 5 is presented in Appendix A.
Then, the Theorem 3 of calculating the expected change on the final loss is proposed.

Theorem 3 If DP is applied through the Gaussian mechanism on FL, the noise added to

the gradients can be regarded as an expected change added to the loss, which can directly

derive the noisy gradients during the backpropagation. For a DNN with ReLU as the

hidden layer’s activation function and Softmax as the output layer’s activation function,

the expected change to the loss is scaled to itself, which is obtained by dividing (3.14) by

(3.17) and the noise generation method discussed in Section 3.3.1.2. Finally, the expected

change on the loss is simplified to:

daK =
(aK−Y ) ·σ
√

ni
. (3.18)

The proof of the Theorem 3 is presented in Appendix B.
With Theorem 3, Fed-nore-2 is proposed. To improve the accuracy performance, the

proposed framework assumes that by incorporating the expected change term into the orig-
inal loss function, the new gradients with noise addition can reach the same performance
as the original ones. Since this framework focuses on the modification term as one term
related to the parameters, the term of Y is discarded in the final notation. Therefore, as
categorical-cross-entropy is used as the local loss function, the formal definition of the
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local objective function in Fed-nore-2 is modified as:

argmin
W t

i

h(W t
i ;W t) =−ln(ap

K ∗ (1−λnore2(
σ
√

ni
)), (3.19)

where p is the index of the correct label and λnore2 is used to scale the proposed modifica-
tion terms.

Furthermore, this section considers a CNN model with several convolutional layers
followed by max pooling (the hyper-parameters of these layers do not affect the results)
and a final output layer. The output layer uses Softmax as the activation function while
ReLU is used for convolutional layers. Similar to DNN, the backpropagation needs to be
reversed. For the CNN model, the gradients of the fully connected layer are the same as
those of the hidden layer in the DNN. With regards to the convolution layer and pooling
layer, the gradients are obtained as follows:

dzk−1 = dzconv
k ∗ rot180(ak)×g′k(zk−1), (3.20)

dwk = dzconv
k ∗ak−1, (3.21)

dzk−1 = upsample(dzpool
k ), (3.22)

where dzconv
k is the gradients of the k-th convolutional layer, rot180 is to rotate the ak

by 180 degree, dzpool
k is the gradients of the k-th pooling layer, the upsampling process

means that the gradients dzk−1 of the largest parameter in every sub-region created in
down-sampling is the same with dzk, while the others are zeros. Based on (3.20)-(3.22),
this subsection proposes Corollary 1 to compute the expected change in the loss due to the
noise on the convolution layers.

Corollary 1 If DP is applied through the Gaussian mechanism on a regular CNN model,

there is an expected change in the final loss. With Theorem 3, the expected change on the

convolution layer is computed as follows:

dzk

dzk
=

σ
√

ni
. (3.23)

The proof of the Corollary 1 is presented in Appendix C.
The expected change of the max pooling layer is the same with the added noise, and

the one of the fully connected layers is similar to DNN. Therefore, with Theorem 3 and
Corollary 1, the expected change in the loss of CNN can be formalized as the same with
(3.18). And the Fed-nore-2 on CNN is formalized as the same with (3.19).
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Algorithm 3.2 LDP-FL with Fed-nore-1&2
1: procedure SERVER

2: Generate a global model W 0, the number of remaining clients M0 and privacy
budget for clients (ε,δ )

3: for round t = 0,1,2... do
4: Mt ← DP-Client
5: if Mt ≤ m then
6: return W t

7: end if
8: Select a list of m clients as mt

9: for all Client i in mt do
10: ∇W t

i ← Fed-nore-client(t,i,W t)
11: end for
12: W t+1 =W t−∑i∈mt

1
m∇W t

i
13: end for
14: end procedure
15: procedure DP-CLIENT

16: for every client i′ in M do
17: Calculate its privacy loss based on the number of its participated communica-

tion rounds
18: if the privacy loss ≤ ε then
19: Client i′ drops out the training
20: end if
21: end for
22: return remaining clients Mt

23: end procedure
24: procedure FED-NORE-CLIENT(t,i,W t)
25: if Fed-nore-1 then E epochs of
26: W t

i = argminW t
i
F(W t

i )+λnore1 ∗Siσ

27: end if
28: if Fed-nore-2 then E epochs of
29: W t

i = argminW t
i
[−ln(ap

K ∗ (1−λnore2(
σ√
ni
)))]

30: end if
31: ∇W t

i =W t−W t
i

32: Gradients clipping
33: ∇W t

i = ∇W t
i +N(0,S2

i σ2)

34: return ∇W t
i

35: end procedure

3.3.1.4 The Overview of the Proposed Fed-nore Framework

The proposed framework with DP through Gaussian Mechanism and Fed-nore-1&2 is
introduced in Algorithm 3.2. At first, the server initializes the FL training and creates an
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initial model W 0. In this framework, every client can choose their privacy budget and base
noise variance σ on the purpose of personalized privacy protection level. Second, in each
round, all the clients check for their remaining privacy budget and drop out of training if
it runs out. Third, the server randomly selects m clients from the remaining clients and
broadcasts the model to the selected clients. Fourth, the selected clients use their local
data to train the global model with Fed-nore. To be specific, the local clients train the
global model with the local optimizer following (3.13) in Fed-nore-1 or following (3.19)
in Fed-nore-2. The clients calculate the gradients ∇W t

i , clip the gradients, add noise and
upload the noisy gradients ∇W t

i to the server. After receiving all the noisy gradients, the
server aggregates and averages the gradients to obtain a new model. Finally, the server and
clients repeat the above procedures until the global model reaches an acceptable accuracy
or the server cannot find enough clients with remaining privacy budgets for the training
process.

3.3.1.5 Complexity Analysis

The difference in complexity among the proposed frameworks, traditional FL (FedAvg)
and traditional DPFL (without Fed-nore), for one local client is discussed. In this work,
the time complexity of the proposed algorithm is derived using Big-O notation, which
provides an upper bound on the growth rate of the running time as a function of the input
size.

First, compared with FedAvg, the major changes in traditional DPFL are gradient clip-
ping and noise computing. As for gradients clipping, the weights need to be clipped
element-wise as ∇W t

i = ∇W t
i /max(1, ||∇W t

i ||2
Ci

) so that the complexity is O(size(∇W t
i )).

Meanwhile, the Ci is computed as Ci = median||W t −W t
i ||2, which brings O(size(∇W t

i ))

time. Second, the noise generates as N(0,S2
i σ2), which takes O(size(∇W t

i )) time. Third,
adding the noise to the gradients as ∇W t

i = ∇W t
i +N will take O(size(∇W t

i )) time. In
addition, the difference between the proposed work and traditional DPFL is only the mod-
ification of the local objective function, which only takes O(1) time.

In summary, the complexity of the proposed algorithm is dominated by the size of the
model parameters, represented as O(size(∇W t

i )).

3.3.2 Convergence Analysis

In this subsection, the theoretical convergence guarantee for the proposed framework is
presented, which analyzes the expectation of the decrease in the loss function and the
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convergence bound for the models. For the Fed-nore-2, as the expectation of the effect
of the noise on the loss is computed and eliminated during optimizing, the convergence
bound of Fed-nore-2 is expected to be the same with FL without noise. Therefore, this
subsection only focuses on the convergence bound for the Fed-nore-1.

For the derivation, Assumption 1 is first provided for the proposed framework:

Assumption 1 (a) Fi(W ) is β −Lipschitz, implying that ||∇Fi(W )|| ≤ β ;

(b) F(W ) satisfies Polyak-Lojasiewicz condition with the positive parameter µ , imply-

ing that F(W )−F(W ∗)≤ 1
2µ
||∇F(W )||2, where W ∗ is the optimal solution;

(c) Fi(W ) is ρ−Lipschitz smooth, implying that ||∇Fi(W )−∇Fi(W ′)|| ≤ ρ||w−w′||,

in which F(W ) is the global loss function and computed as F(W ) = ∑
Fi(Wi)

m .
Based on Assumption 1, the expected decrease in the global loss function for one round

of training can be first obtained.

Lemma 6 The expected decrease of the loss for the global loss function in one round is

given as follows:

E{F(W t+1
)−F(W t

)} ≤ (
ρl2

1
2
− l1)||∇F ||2

+(1− l1ρ)||∇F ||E{||N||}+ ρ

2
E{||N||2},

(3.24)

where

l1 =
1

1+ λσ
√

n
S

. (3.25)

The proof of Lemma 6 is presented in Appendix D.
Then, this framework assumes the noise generated in all the rounds shares the same

bound value since they are generated in the same and independent way, and the F(W ) is
convex. By using Lemma 6 and Assumption 1, the convergence of Fed-nore-1 is upper
bounded after T communication rounds by:

Theorem 4 After T communication rounds of FL training with noise and Fed-nore-1 as

local loss function, the convergence upper bound of the proposed framework is presented

as:

E{F(W t+1
)−F(W ∗)} ≤ lT

3 (F(W 0)−F(W ∗))

+(βq1(1− l1ρ)+
ρ

2
q2

1)∗
(1− lT

3 )

1− l3
,

(3.26)
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where

l3 = (µρl2
1−2l1µ +1), (3.27)

q1 =
σ√

n
(λ ∗σn

3
2 −β ). (3.28)

The proof of Theorem 4 is presented in Appendix E.
In addition, it is considered that F(W ) is non-convex, which brings the following con-

vergence analysis:

Theorem 5 If F(W ) is non-convex and ρ-Lipschitz smooth, this framework can have the

following bound after T communication rounds of FL:

E{||∇F ||2} ≤ F(W 0)−F(W ∗)

(l1−
ρl2

1
2 )∗T

+
βq1(1− l1ρ)+

ρq2
1

2

(l1−
ρl2

1
2 )

. (3.29)

The proof of Theorem 5 is shown in Appendix F.

3.3.3 Simulation Results

In this subsection, to validate the convergence performance of the proposed frameworks,
multiple simulations of both Fed-nore-1&2 are performed mostly with the MNIST (a
dataset hand-written number image with 60000 training data and 10000 testing data) [38].
In this subsection, the FL with 100 simulated clients is performed, and the training data is
categorized by class and divided through a non-IID way into 200 shards, while each shard
contains the data with the same label. Then, each client is assigned two shards with dif-
ferent classes. To evaluate the performance, Fed-nore-1&2 with different initial learning
rates and different λ values is deployed, where all the learning rate will decay by 0.96
for the first 20 round and be fixed after that. The initial learning rate is set to 0.1 in most
cases unless otherwise specified. For the DP mechanism, δ = 1e− 6 is used for all the
simulations. An RDP-based privacy analysis framework [124] is used to keep tracking
privacy loss and calculate the final privacy parameters.

The Fed-nore is studied on two models. The first is an MLP with two hidden layers
(each layer has 200 hidden units) with ReLU activation and an output layer with Softmax
activation, which is optimized by SGD. The MLP shares the same feedforward and back-
propagation rules with basic DNN, which makes the proposed Fed-nore-2 of DNN work
on MLP. The second one is a CNN model with two 5×5 convolution layers (the first one
with 32 channels and the second with 64 channels, both followed by a 2×2 max-pooling
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layer) and a fully connected layer with Softmax activation. In each communication round,
50% of the clients are selected, and each client optimizes the global model with the corre-
sponding local loss function for ten epochs. Besides, due to the randomness of the noise
generation and training, the data in all the figures is the smoothed averages of multiple
simulations of the same hyper-parameters. To show the effectiveness of the Fed-nore, the
results of the plain DPFL as a baseline model are provided, which is the original DPFL
model without the improvements. The training curve after 52 rounds is truncated, where
the increase in accuracy is marginal.

3.3.3.1 Evaluation of the Proposed Framework with Multi-Layer Perceptron
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Figure 3.6: Accuracy of the Fed-nore-1 on DNN with different scaling factors (λ ) com-
pared with the plain DPFL.

The performance of Fed-nore-1 on the MLP is first presented, where Fed-nore-1 with
different λnore1 values (0.1,1,25) is evaluated. The results of the Fed-nore-1 are compared
with the plain DPFL under the same hyper-parameters settings, where the plain DPFL
has an accuracy performance of 95.8% around 50-th round. The results in Fig. 3.6 show
that when the λnore1 value is larger than zero, the proposed framework can improve the
accuracy performance under DP-noise. In addition, when the λnore1 is one, its accuracy
performance reaches the highest, 96.2%. However, when λnore1 is getting larger, the per-
formance is the same with the plain DPFL and even worse.
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Figure 3.7: Accuracy of the Fed-nore-2 on DNN with different scaling factors (λ ) com-
pared with the plain DPFL.

The performance of the Fed-nore-2 on the DNN is also evaluated where the model
is tested with λnore2 in (0.1,25,200). As shown in Fig. 3.7, the accuracy performance
of Fed-nore-2 outperforms the plain DPFL when the selected λnore2 is larger than zero.
Meanwhile, as λnore2 is increased, the improvement of the Fed-nore-2 on the accuracy
performance becomes better, and the overall training accuracy is more stable, which means
that the noise has a smaller effect on the accuracy performance. It is shown that the Fed-
nore-2 has the best accuracy performance of 96.3% when λnore2 is 200. Meanwhile, it can
reach 95.8% in the 38-th round, which means that the proposed Fed-nore-2 can save up
to 30% of the communication and computation costs compared with the plain DPFL and
5% compared with Fed-nore-1. The simulations show that when the λnore2 is larger than
200, the accuracy performance decreases. Since the FL is deployed on many IoT devices
having limited bandwidth, computational capability and power [31, 125], the Fed-nore-2
can converge faster and reach an acceptable accuracy performance while saving a huge
amount of communication and computation costs.

Meanwhile, Fed-nore-1&2 with different base noise variance are evaluated to show
their robustness by choosing σ in the range of (4,6,10,12,16,24,40). After calculating
the communication round using RDP for corresponding σ , the number of communication
rounds exceeds 52 when the noise is larger than eight. For these settings, only the first
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Figure 3.8: Accuracy of the Fed-nore-1 on DNN with different base noise variance and
scaling factors (λ ) compared with the plain DPFL.
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Figure 3.9: Accuracy of the Fed-nore-2 on DNN with different base noise variance and
scaling factors (λ ) compared with the plain DPFL.

52 rounds of the training results are presented for comparison with the previous results
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(where the base noise variance is eight). When the base noise variance is smaller than
eight, the communication round for FL is much smaller, leading to bad accuracy. It is
shown in Fig. 3.8 that under a small noise, the Fed-nore-1 can not improve the accuracy
performance. Besides, it is shown that with a larger base noise variance and an optimal
scaling factor, Fed-nore-1 can perform much better than the plain DPFL. For Fed-nore-2,
it is shown in Fig. 3.9 that the proposed Fed-nore-2 can greatly improve the accuracy
performance compared with the plain DPFL when the base noise variance is smaller than
24. However, the Fed-nore-2 performs worse with an increasing base noise variance than
the Fed-nore-1, while it is still better than the plain DPFL.

3.3.3.2 Evaluation of the Proposed Framework with Convolutional Neural Network
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Figure 3.10: Accuracy of the Fed-nore-1 on CNN with a scaling factor of ten and different
learning rates compared with the plain DPFL.

The performance of the Fed-nore-1&2 on the CNN model is demonstrated. Since the
noise is positively related to the learning rate (a larger learning rate brings a larger l2-
norm value), the Fed-nore-1&2 with different learning rates are conducted to show their
performance. In this simulation, the learning rate is chosen from (0.01,0.1,1). The results
for the Fed-nore-1 on CNN with the learning rates of (0.01,1) are first presented. As
shown in Fig. 3.10, Fed-nore-1 can slightly improve the convergence performance and
accuracy performance for CNN with all the initial learning rates when the scaling factor
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Figure 3.11: Accuracy of the Fed-nore-1 with different scaling factors (λ ) compared with
the plain DPFL.

is set to ten. In addition, the simulation with an initial learning rate of 0.1 and different
scaling factors is performed to further test its effectiveness. It is shown in Fig. 3.11 that
the Fed-nore-1 has a limited effect on the CNN model by only improving the accuracy
performance by 0.07% with the optimal settings.

Next, Fed-nore-2 with an initial learning rate of 0.1 and different scaling factors are
evaluated. As shown in Fig. 3.12, the Fed-nore-2 can improve the accuracy performance
than the plain one when the scaling factor is larger than 0.1. Meanwhile, it is found that
when the scaling factor is set to ten, the improvement is the best, and it can save 40% of
communication rounds to achieve the same results with the plain DPFL. The Fed-nore-
2 with different initial learning rates is also tested. The results in Fig. 3.13 show that
the Fed-nore-2 can also improve the accuracy performance with an initial learning rate of
0.01 compared with the plain one. However, when the learning rate is larger than 0.1, the
Fed-nore-2 performs worse than the plain DPFL.

In addition, simulations with CIFAR10 on the same CNN model are also performed.
The data is assigned to 100 clients in the same way as MNIST. The best accuracy of the
proposed frameworks and plain DPFL within 50 communication rounds with different
settings is presented in Table 3.2, which shows that the proposed framework can increase
the test accuracy from 48.7% for plain DPFL to 52.0% for Fed-nore-1 and to 53.7% for
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Figure 3.12: Accuracy of the Fed-nore-2 with different scaling factors (λ ) compared with
the plain DPFL.
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Figure 3.13: Accuracy of the Fed-nore-2 with a scaling factor of ten and different learning
rates compared with the plain DPFL.

Fed-nore-2. Meanwhile, both Fed-nore-1&2 reach the highest accuracy with at least 10%
fewer communication rounds than plain DPFL. Therefore, the proposed Fed-nore-1&2
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show a greater accuracy improvement on more complicated dataset.
Moreover, two strategies are implemented on CNN with CIFAR10 at the same time

with an initial learning rate of 0.1, base noise variance of eight and several scaling factors.
However, the accuracy performance is worse than using only one, as shown in Table 3.2.
A possible reason for this phenomenon is that they may interfere with each other during
local training.

Table 3.2: Accuracy comparison among the plain DPFL and the proposed frameworks on
CIFAR10.

Algorithm Scaling factor Accuracy
1 49.6%

Fed-nore-1 10 49.9%
20 52.0%

200 50.9%
0.1 51.1%

Fed-nore-2 1 52.4%
10 53.7%

200 50.9%
Fed-nore-1&2 10 49.0%

20 50.5%
Plain DPFL 0 48.7%

3.3.3.3 Performance Comparison and Discussion

The performance of the proposed framework is compared with the plain DPFL (the DPFL
framework without the Fed-nore-1&2 modification), FedAvg, and some well-known DP-
based learning in Table 3.3, where R means the communication rounds in FL and epochs
in ML, SR means the rate of clients selected in each round and ACC means the accuracy
performance. The best accuracy performance results of the proposed framework are pro-
vided, where the results in the blankets in the column R show the communication round
to reach the same accuracy performance (the blankets in the column ACC) with the plain
DPFL. Meanwhile, unlike the average results in all figures, Table 3.3 contains the best
results under the optimal settings, where the base noise variance is eight. It is shown in
Table 3.3 that the proposed Fed-nore-1 can slightly improve the accuracy performance for
the MLP and CNN while the Fed-nore-2 can save up to 40% of the training time to reach
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the same results for both models and also provides a much better accuracy performance
compared with Fed-nore-1.

By comparing the presented figures, it is found that the Fed-nore-1 works better when
the noise variance is large (large base noise variance and large learning rate), while Fed-
nore-2 has much better performance when the value of the noise variance is moderate.

Table 3.3: Maximum accuracy comparison among other FL, DP-SGD, the plain DPFL
and the proposed framework on MNIST.

Framework R SR ACC DP budget
FedAvg 380 1 97%
DP-SGD(MLP) [93] 700 97% (8,1e-5)-DP
LDP-FL(CNN) [59] 10 1 95.36% (0.5)-DP
Plain DPFL(MLP) 52 0.5 95.9% (0.27,63)-RDP
Plain DPFL(CNN) 52 0.5 98.7% (0.27,63)-RDP
Fed-nore-1(MLP) 52(42) 0.5 96.4%(96%) (0.27,63)-RDP
Fed-nore-2(MLP) 52(33) 0.5 96.7%(96%) (0.27,63)-RDP
Fed-nore-1(CNN) 52(49) 0.5 98.77%(98.7%) (0.27,63)-RDP
Fed-nore-2(CNN) 52(32) 0.5 99%(98.7%) (0.27,63)-RDP

3.4 Summary

In this chapter, two DPFL frameworks are proposed to improve accuracy and reduce com-
munication costs.

First of all, a new DP-based framework for PPFL by adding sparse gradients and
Global-MGD is proposed in order to improve its convergence performance. To be spe-
cific, an LDP framework is proposed based on the Gaussian Mechanism and MA, which
also implements CDP to enhance privacy protection. This framework also proposes a new
scheme to calculate the DP noise scale for the LDP-FL. Experimental results show that
for MNIST, the proposed FL framework achieves better performance than other DP-based
FL. Besides, the framework can also reduce massive communication costs using sparse
gradients.

Secondly, a novel FL framework is proposed to enhance convergence performance in
FL in terms of accuracy and time consumption. An LDP-FL scheme is first designed
by adding Gaussian noise on the local gradients before uploading to satisfy RDP. Sec-
ond, to improve its performance, two modifications on the local objective function and
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detailed derivations are proposed to improve the accuracy performance of the noisy train-
ing, namely Fed-nore-1&2. The first one is to calculate the difference between the noisy
gradients and the original ones and add the difference value to the local objective function,
hence minimizing the difference during the training under the same DP protection level.
The other one is to calculate the expected change in the local loss due to the noise. By
integrating the expected change into the local objective function, the FL can also min-
imize the loss created by noise and converge faster. Besides, both modification terms
are controlled by a scale value. Finally, multiple simulations on DNN and CNN with
the corresponding modification are conducted to show the effectiveness of the proposed
frameworks. For both CNN and DNN, the results show that, compared with the original
DPFL, the Fed-nore-1&2 can both increase the accuracy performance and greatly reduce
the convergence time under different magnitudes of the noise with an appropriate scale
value. To be specific, Fed-nore-2 can save up to 40% communication rounds to reach the
same accuracy results with the plain DPFL under optimal settings. On the other hand,
when using CNN as the training model, Fed-nore-2 has a higher accuracy performance
than Fed-nore-1 for most scenarios. Besides, the accuracy improvement of CIFAR10 is
greater than that of MNIST. Furthermore, it is found that Fed-nore-1 works better with a
relatively larger noise, while Fed-nore-2 works better when the noise is moderate.



Chapter 4

Evaluating Privacy Loss in Differential
Privacy-based Federated Learning

4.1 Introduction

Even though FL has a great promise to protect data privacy by transmitting only gradients,
several studies have shown that FL is still vulnerable to privacy leakage [93,126]. Specif-
ically, the servers perform the FL process honestly, but they may still be curious about the
original data. This curiosity can lead to reconstruction attacks, where sensitive information
can be recovered from the received gradients [47, 48, 89, 90]. The authors in [89, 90] have
successfully reconstructed the real images on a small batch size of training data, where
they generate some dummy images, which are fed into the FL models to compute dummy
gradients. The dummy images are updated with an L-BFGS by minimizing the difference
between the dummy gradients and true gradients. In addition, the authors in [47, 48] have
shown that the true labels of the images can be recovered.

To enhance the privacy protection of FL, HE and DP can be adopted. For the HE appli-
cation in FL [52], the local gradients are encrypted by the local clients before transmitting
to the server. The server aggregates these encrypted gradients to create an encrypted global
model, which is dispatched to local users for decryption and further training. However, a
malicious client may collude with the server and share the HE key with the server to de-
crypt the gradients. Thus, a reliable key-sharing scheme is required. In addition, due to the
large size of gradients in effective DL models, encrypting the gradients is computationally
expensive.

On the other hand, DP is used to enhance FL’s privacy protection by adding artificial
noise on the gradients [57,59]. The noise can be either added to the local gradients to pro-
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tect data privacy [61] or on the aggregated gradients to protect identity-level privacy [57].
Given that privacy loss accumulates with repeated use of the DP mechanism, and FL may
require many rounds to achieve acceptable performance, it is essential to develop a method
to accurately calculate cumulative privacy loss [93]. Some studies have proposed tighter
bounds for calculating privacy loss, enabling smaller privacy loss under the same number
of DP mechanism usage. This allows more rounds and smaller noise scale in DPFL to
achieve better accuracy before the privacy budget is exhausted [75]. Nevertheless, the ac-
curacy of FL is degraded due to the randomization of the gradients. Thus, it is important
to balance the trade-off between privacy protection and accuracy. Moreover, the existing
works measure the privacy loss with the theoretical DP parameters, ε and δ , which makes
it hard to reflect an intuitive privacy loss in real-world applications. To address this issue,
reconstruction attacks may be applied to provide a more intuitive measurement of privacy
loss, as they directly show how much useful information can be recovered.

While most existing studies have performed reconstruction attacks on gradients with
random noise, they typically apply noise at the sample-level [104]. However, most DP-
based FL methods apply noise following UDP [55]. Additionally, no study has directly
examined the relationship between DP settings and reconstruction attacks. With the rapid
growth of data and the increasing use of smart applications, a more practical privacy loss
scheme is needed, allowing users to select their desired level of privacy protection based
on their specific applications. Furthermore, although many studies have explored the clip-
ping effect on learning performance [127, 128], more detailed research is needed on how
clipping affects privacy leakage.

As such, s methodology is designed to evaluate the privacy leakage in DPFL by con-
ducting reconstruction attacks on DPFL’s gradients. A new metric is proposed to quantify
the practical privacy leakage under different DP settings based on the reconstruction at-
tacks. This chapter empirically shows the accumulative privacy loss under two different
reconstruction attack settings (the sum of all rounds’ gradients and each round’s gradi-
ents) and proposes several findings on DPFL. The contributions of this chapter are listed
as follows:

• Reconstruction attacks are conducted on gradients modified with DP, namely noisy
gradients, to demonstrate the effectiveness of DP in protecting privacy. Additionally,
this chapter proposes a two-factor metric for measuring privacy leakage based on
similarities.

• This chapter investigates and characterizes the relationship between DP mechanisms
and privacy leakage through reconstruction attacks. The findings in this chapter
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demonstrate that implementing an anonymous mechanism for local clients can re-
duce the probability of data privacy leakage. It analyzes how the gradient clipping
term impacts both the level of privacy protection and learning accuracy.

• The convergence bound is derived for two reconstruction strategies with DP noise
by computing the expected impact of the DP mechanism on the reconstruction loss.

• Extensive simulations are performed to evaluate the effects of various DP settings on
reconstruction attacks and FL training. A cross-analysis between privacy protection
and accuracy is conducted to provide a direct trade-off between privacy protection
and FL learning performance. The findings in this chapter can be used to enhance FL
utility under the DP mechanism and guide personalized privacy protection settings.

4.2 Privacy Loss Evaluating Methodology

In this section, the threat model and the detailed privacy loss evaluating methodology are
presented.

4.2.1 Threat Model and Problem Formulation

This chapter only considers protecting privacy from reconstruction attacks, where it as-
sumes all the clients honestly perform local training and updating, and the server honestly
performs the aggregating and broadcasting of the global model, while they may be curious
about the sensitive information carried in the gradients and try to reconstruct it. This kind
of clients and servers is also known as semi-honest adversaries. Even though DP is widely
adopted to enhance privacy protection in FL, the accuracy is degraded. Therefore, in the
following subsections, a method for evaluating the privacy loss of DPFL is proposed by
first inverting gradients to recover the noisy gradients and analyzing the difference be-
tween the recovered and true gradients. The proposed evaluation method consists of four
focal points. Additionally, a new metric is designed to estimate the privacy loss under
different reconstruction settings. The results can be used to evaluate the effect of DP in
FL and show how much privacy protection FL needs.

4.2.2 Differential Privacy-based Federated Learning Procedure

This subsection introduces the UDP-based FL framework, where the reconstruction at-
tacks are launched. To begin with, the central server generates an initial model W 0 and
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Figure 4.1: Reconstructed images with different noise scales compared with the true im-
ages.

broadcasts it to m chosen clients from M total clients. Then, each client optimizes the
received model with their local data and computes the gradients. In order to meet the UDP
guarantee of privacy protection, the local gradients will be clipped as follows:

ĝ(x∗) = g(x∗)/max(1,
||g(x∗)||2

C
), (4.1)

where ĝ(x∗) is the clipped gradients, x∗ is the true images, C is the clip bound of the DP
mechanism. Two methods of choosing clipping bound are mostly used: the median value
of the norm of the gradients over all rounds or a fixed constant. The noise is added to the
clipped gradients as follows:

g(x∗) = ĝ(x∗)+N(0,σ2(
C
n
)2), (4.2)

where n is the total number of data in every client, σ is a preset base noise scale. Next, the
clipped noisy gradients g(x∗) are sent to the server for aggregation. The server averages
all the received gradients to compute the new global model. In this DPFL framework,
each local client will compute their own privacy loss with RDP [75], where they will abort
training when they run out of their privacy budget (ε is larger than the preset threshold).
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The FL training is stopped by the server when a certain amount of clients abort training.

4.2.3 Privacy Leakage Evaluating Main Procedure

This subsection focuses on designing the main procedure for evaluating the privacy pro-
tection level of the DP mechanism in FL via reconstruction attack, where the work [48] is
used to reconstruct the initial images.

An MLP is first considered for local training, which has three hidden layers, each
having 1024 units. The hidden layer uses ReLU activation and the model is optimized by
Adam optimizer [129]. Each client has been assigned 100 random images. In this chapter,
the CIFAR100 is mostly used to decrease the probability of a reconstruction attack to
output the correct label by guessing. The size of batches of each local client in one round
is 25.

Table 4.1: The average PSNR, cosine similarity (Cos-sim) and Euclidean distance (Euc-
dis) between the reconstructed images and the real images with different base noise scales
(σ ) and the fixed clipping bound (C).

Parameters PSNR Cos-sim Euc-dis

σ=0.001, C=0.1 21.47 0.97 18.14

σ=0.001, C=0.4 28.52 0.99 8.09

σ=0.001, C=1 28.61 0.99 7.99

σ=0.01, C=0.1 21.63 0.97 17.80

σ=0.01, C=0.4 23.66 0.95 13.89

σ=0.01, C=1 17.84 0.81 26.77

σ=0.1, C=0.1 15.92 0.70 33.51

σ=0.1, C=0.4 10.22 0.14 64.54

σ=0.1, C=1 9.29 0.03 71.96

σ=1, C=0.1 9.12 0.02 73.35

σ=1, C=0.4 8.97 0.01 74.64

σ=1, C=1 8.95 0.00 74.81

One round of local training is first investigated by performing gradient reconstruc-
tion attacks with different base noise scales and a fixed clipped bound of one, and the
first ten images are presented in Fig. 4.1, which shows that the images are more blurry
when the base noise scale increases. To measure the quality of the recovered images, peak
signal-to-noise ratio (PSNR), cosine similarity and Euclidean distance are used, which are
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presented in Table 4.1. From the results, the following observations can be obtained: a)
when the total noise scale σ ∗C increases from 0.01 to 0.04, it can be observed that all the
metrics change greatly, leading to the quality of reconstructed images drops sharply; b)
the value of the clipping bound is not monotonous related to the privacy loss under same
noise variance, while most studies claim increasing clipping bound can enhance privacy
protection [61, 93]. Specifically, larger clipping bound has a weaker privacy protection
level when the base noise variance is smaller since more useful information can be recov-
ered. On the other hand, when the base noise variance increases, larger clipping bounds
provides a better privacy protection. These observations first motivate the idea that the
choice of C should be further studied to enhance privacy protection, which will be inves-
tigated in the remainder of this section. In addition, since a certain scale of privacy can
prevent attackers from reconstructing great images, whether larger noise is needed should
be studied, which motivates that the trade-off between privacy and accuracy should be
more precisely quantified in order to achieve a good overall performance of DPFL.

4.2.4 Privacy Loss Measurement Metric

Even though images are undistinguished by sight when the base noise scale is large, it
is worth investigating whether some useful information can still be extracted. Thus, this
subsection investigates the privacy leakage in a white-box manner and assumes the re-
construction attacks are launched on the local side. The recovered and original images
are fed into five pre-trained models including Resnet56, VGG, RepVGG, Shufflenet and
Mobilenet [50, 130–133] and the average cosine similarity and Euclidean distance (nor-
malized to [0,1]) of the average outputs of the five models between the recovered and
original images are computed. This subsection proposes to measure a practical privacy
loss pl j of the j-th image based on its weighted deviation of the similarities as follows:

pl j = α2 ∗ (CS j−avg(CS)−ρcs)

− (1−α2)∗ (ED j−avg(ED)+ρed)),
(4.3)

where α2 is the weighting coefficient of cosine similarity and Euclidean distance, the CS j

is the cosine similarity of the j-th image, CS is the set of the cosine similarity of the local
dataset, ED j is the Euclidean distance of the j-th image, ED is the set of the Euclidean
distance of local dataset, ρcs,ρed are bias factors related to the base noise scale σ and avg

is the average operation. ρcs,ρed are set to σ ∗C when the result is smaller than 0.1 and set
to 0.1 when it is larger. In this case, when pl j is larger than zero, it suggests that the j-th
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reconstructed image is very likely to infer similar results compared with the true image.
Based on this result, a practical privacy leakage measuring metric P(pl) for the local user
is quantified by counting the number of images with pl j > 0.

4.2.5 Two Reconstruction Manners

To study the privacy loss of multiple rounds of DP-based learning, the reconstruction
attack is also performed along with local client training. The local client will train for
multiple epochs and reconstruct the gradient in every epoch, where the reconstruction
attack on the gradients of every round respectively (one-round-manner) and on the sum of
the gradients of all rounds (all-round-manner) is studied.

The privacy leakage is also evaluated in DPFL in both two manners, where the FL
will follow the procedure described in subsection 4.2.2. By conducting the privacy loss
evaluation in DPFL, it is aimed to study whether the aggregation and average of the gra-
dients will lead to a different outcome for the privacy leakage and also study the trade-off
between the accuracy and privacy leakage through the evaluation method.

4.2.6 Clipping Impacts on Privacy Leakage

In addition, the gradient clipping is essential to ensure DP guarantee [128], and the value
of the clipping bound needs to be chosen properly since a large clipping bound increases
the noise magnitude and a small clipping bound causes the gradients to have less useful
information. In some works, the clipping bound is set to a constant value [61, 93], and
the noise addition mechanism follows the (4.2). However, some works choose the median
l2 norm values of the unclipped gradients to be its clipping bound in each local client
[58, 134]. By implementing two different clipping methods into one local client training,
the privacy leakage under the reconstruction attack in two manners is studied in order to
provide some insights into choosing clipping bound for a better overall performance in
terms of privacy and accuracy.

4.3 Reconstruction Attack Convergence Analysis

In this section, the convergence of the reconstruction attacks under DP mechanisms is
analyzed. Before derivation of the convergence, this section provides an assumption as
follows:
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Assumption 2 J(x) is L−Lipschitz smooth, implying that ||∇J(x)−∇J(x′)|| ≤ L||x−x′||,
where L is a positive number.

It is first derived, for one round of reconstruction attack, how much change on the
gradient update is created by the noise addition. To achieve that, the difference between
noisy (and clipped) and original gradients is computed to obtain the following lemma.

Lemma 7
||g(x∗)|| ≤ k1 ∗ ||g(x∗)||, (4.4)

where,

k1 = min(1,
C

||g(x∗)||
)+

σ√
n
∗ C
||g(x∗)||

. (4.5)

The proof of Lemma 7 is presented in Appendix G.
Based on Lemma 7, the attack loss on noisy gradients can be expressed as follows:

J = arg min
x∈(0,1)n

1− < g(x),g(x∗)>
k1 ∗ ||g(x)||||g(x∗)||

+α1TV (x), (4.6)

where <> is the inner product of two matrices, α1 is a preset constant and TV is the total
variation introduced in Section 2.1.3.

If the maximum effect of the noise is considered, which leads to a smaller cosine
similarity of the gradients, the maximum value of ||g(x∗)|| is taken. The derivative of
noisy reconstruction attacks can be expressed as follows:

∇J =− 1
k1

∇(
< g(x),g(x∗)>
||g(x)||||g(x∗)||

)+α1∇TV (x). (4.7)

Theorem 6 It is considered an approximate expected difference in the updates of the

attack with noise. As this attack uses signed-Adam to optimize, whether the noise on

the transmitted gradients will flip the sign of the gradients of the attack model needs to

be considered. However, since learning is a black box, a proper value cannot be di-

rectly achieved. Therefore, it is considered that the probability of −∇( <g(x),g(x∗)>
||g(x)||||g(x∗)||) and

α1∇TV (x) have same sign to be s. Besides, if they have different signs, it is considered

that the probability that the noise on the gradients can flip the sign is related to the noise.

Theoretically, the larger the noise is, the larger the probability of the gradients’ sign flip-

ping. Meanwhile, if σ increased, 1
k1

decrease. Therefore, it approximates the probability

of the sign of the gradients flipping to be (1− 1
k1
), while an assumption that 1

k1
is smaller

than one is made. Finally, by taking the expectation of the updates with probability s and

(1− 1
k1
), it can have:
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After passing signed-Adam, the expected difference in the updates of the attack in each

training round is estimated as follows:

E{U}= (s∗1+(1− s)∗ (−1)∗ (1− 1
k1
)+(1− s)∗1∗ ( 1

k1
))U

= (1−2k2 +2k2s)U, (4.8)

where,

k2 =
k1−1

k1
, (4.9)

and U is the original update of one round of reconstruction attack.

Then, it is derived that after T rounds, the changed update can be bounded by recurrent
using Theorem 6 as follows.

Corollary 2 Each round of updates of the attacks is affected not only by the added noise

but also by the changes in the updates of the previous round. Therefore, by considering

both factors and recurrent computation, it can achieve the following:

E{||∇J||2}= L(J(x0)− J(x∗))
2T k3

, (4.10)

where,

k3 = (1−2k2 +2k2s). (4.11)

The proof of Corollary 2 is shown in Appendix H.
Meanwhile, this section also considers other Euclidean distance-based reconstruction

attacks, whose local objective function is expressed as follows:

J = arg min
x∈(0,1)n

||g(x)−g(x∗)||+Re, (4.12)

where Re is the regularization term, varying for different algorithms [47,89]. For this local
objective function, the attack loss on noisy gradients can be expressed as follows:

Lemma 8
J = J+

√
2(1− k1)∗g(x)g(x∗). (4.13)

The proof of Lemma 8 is shown in Appendix I.
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While it is assumed that the FL model has a second-order derivative, the derivative of
noisy reconstruction attacks can be expressed as follows:

∇J = ∇J+ k4g′(x), (4.14)

where,

k4 =

√
2g(x∗)(1− k1)

g(x)
. (4.15)

Finally, Theorem 7 is proposed.

Theorem 7 The convergence of the l2 distance-based reconstruction attack on noisy gra-

dients is computed as follows:

E{||∇J||2}= L(J(x0)− J(x∗))
2T k2

5
, (4.16)

where,

k5 = 1+
k4

(β3±1)
, (4.17)

β3g′(x) = ∇Re. (4.18)

The proof of Theorem 7 is presented in Appendix J.
As can be seen in Corollary 2 and Theorem 7, increasing the noise scale and clip-

ping bound may lead to a higher bound on the convergence, and when there is no DP,
the convergence bound is the same as that of the noise-free reconstruction attack. The
above results can be utilized to compute a theoretical privacy leakage in a black-box man-
ner by comparing it with the original convergence bound (without noise) and to compute
a multi-task loss along with the DPFL convergence bound, which can further guide for
selecting DP settings and support personalized privacy protection level choosing. Addi-
tionally, different orders and multipliers of the noise scale and clipping bound imply that
two reconstruction strategies may perform better than each other under different DP and
clipping settings.
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4.4 Empirical Results

In this section, a series of simulations are performed on the proposed privacy leakage
evaluation framework. This section investigates it in two scenarios: a single-end (SE) DL
to mainly study how clipping and DP mechanisms perform against reconstruction attacks,
and an FL scenario to show the trade-off between accuracy and DP effect. The SE follows
the learning procedure similar to a single-user DPFL introduced in Section 4.2.2. The
reconstruction attacks algorithm in [47, 48] is adopted.

In this section, simulations are conducted on CIFAR10 and CIFAR100, where the first
one contains 60000 32x32 colour images in ten classes, and the second one contains 60000
32x32 colour images in 100 classes, including different animals, tools, etc. Two learning
models are used in this section. The first one is the MLP introduced in Section 4.2.3. And
the second model is a CNN with six convolutional layers, represented as CNN6, where
each convolution layer is followed by a leaky-ReLU with a negative slope of 0.2. The
detailed architecture is shown in Table 4.2.

Table 4.2: The CNN6 architecture.

layer index Type Input Channels Kernel Size Stride Padding
layer 1 Conv2d channels 4x4 2 2
layer 2 Conv2d 12 3x3 2 1
layer 3 Conv2d 36 3x3 1 1
layer 4 Conv2d 36 3x3 1 1
layer 5 Conv2d 36 3x3 2 1
layer 6 Conv2d 64 3x3 1 1
layer 7 Flatten - - - -
layer 8 Linear 3200 - - -

In the SE scenario, the client will have 100 data (one of each kind), and the batch size
is 25. The client first trains the model for one epoch and computes the noisy gradients.
After that, the attacker conducts the reconstruction attack on each epoch’s gradients for the
two manners (one-round and all-round). Meanwhile, during the simulations, this section
uses MLP since the attacker can recover the most visible images from its gradients. In the
FL scenario, this section uses the CNN model and CIFAR10 to show the accuracy under
DP. The FL has 40 training clients, where each has 100 random local data (4000 training
data in total) and a batch size of 20. The size of the test dataset is 1000. Every local client
trains the local model for five local epochs before they add DP noise and send it to the
server. In every FL round, the attacker conducts an attack on one fixed client’s gradients.
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As for the learning and attack settings for both scenarios, the attack learning rate, the local
learning rate and the TV regularization are all 0.01, and the attacker performs 2500 epochs
of the reconstruction attack on the SE/FL’s gradients of every epoch for the two manners.
Since the trend and comparison of the FL accuracy is mostly studied, this section only
performs 15 rounds of FL training and reconstruction for efficiency. In the figures, A_r is
the all-round-manner reconstruction, and O_r is the one-round-manner reconstruction. cp

is clipping bound and nv is the base noise scale. The uneven curves in all the figures are
caused by one-time simulation and random noise. Since this chapter only focuses on the
comparison of the trend of the results, the simulations of every setting are conducted only
once.

4.4.1 Evaluation of Privacy Leakage in Single-End Learning

This subsection studies the privacy loss under reconstruction attack under two different
clipping settings, where the MLP and CIFAR100 are used for the training.
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(b) clip bound is 0.4
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(c) clip bound is 1.0
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(d) clip bound is median

A_r: nv=0.001
O_r: nv=0.001
A_r: nv=0.01
O_r: nv=0.01
A_r: nv=0.1
O_r: nv=0.1
A_r: nv=1
O_r: nv=1

Figure 4.2: Attack loss on SE learning with different base noise scales and the same
clipping bound.

It is first shown that, under the same clipping bound, the attack loss of different base
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noise scales in Fig. 4.2. It is shown that the increase in the base noise scale also increases
the attack loss, which generally fits the principle of DP. However, there is an interesting
finding that all-round-manner attacks have a smaller attack loss than that of the one-round
manner, which means that combining all the received gradients in FL can increase the
probability of privacy leakage. Therefore, methods that ensure the receiver cannot tell
whom the gradients are coming from can increase privacy protection levels.
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(a) base noise scale is 0.001
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(b) base noise scale is 0.01
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(c) base noise scale is 0.1
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(d) base noise scale is 1

A_r: cp=0.1
O_r: cp=0.1
A_r: cp=1.0
O_r: cp=1.0
A_r: cp=4.0
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A_r: cp=median
O_r: cp=median

Figure 4.3: Attack loss on SE learning with different clipping bounds and the same base
noise scale.

Then, it is present that, under the same base noise scale, the attack loss of different
clipping bounds in Fig. 4.3. It shows that as the clipping bound increases, the attack loss
decreases since the total noise scale increases, which is similar to the existing literature.
Nevertheless, comparing different clipping bounds under the same noise scale cannot fully
illustrate the effect of clipping on privacy protection. Meanwhile, the attack loss of the
median clipping bound method is similar to a smaller fixed clipping bound. Hence, the
median clipping bound may lead to weaker privacy protection under a smaller base noise
scale since the total noise scale is not large enough. However, when the base noise scale
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is large, which can bring a larger total noise scale, the median clipping bound method can
be chosen in order to save time when choosing the proper fixed clipping bound.
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(a) total noise scale is 0.001
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(b) total noise scale is 0.004
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(c) total noise scale is 0.01
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(d) total noise scale is 0.1

A_r: cp=0.1
O_r: cp=0.1
A_r: cp=1.0
O_r: cp=1.0
A_r: cp=10.0
O_r: cp=10.0

Figure 4.4: Attack loss on SE learning with different clipping bounds and the same total
noise scale.

Furthermore, to further study the effect of clipping bound, this subsection further
shows the attack loss of different fixed clipping bounds under the same total noise scale,
whose results are shown in Fig. 4.4. It is shown that under a relatively small base noise
scale, when increasing the clipping bound, the loss first decreases and increases. This is
due to that larger clipping allows the gradients to bring more information so that the at-
tacker can recover more information. However, increasing the clipping bound scale will
bring a large total noise scale, which is proportional to the base noise scale times clipping
bound, and will increase the attack loss as expected.

In addition, other metrics for measuring the effect of reconstruct attack are provided
in Table 4.3, which also characterizes how different clipping bounds and noise scales
affect privacy protection levels. Specifically, for most settings, when the total noise scale
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Table 4.3: Different metrics of attack loss of SE (on CIFAR100 and MLP).

Clipping bound Noise scale PSNR Prob leak LPIPS
0.1 0.001 20.8497 0.59 0.0322
0.1 0.01 20.7342 0.58 0.0329
0.1 0.04 19.6833 0.54 0.0498
0.1 0.1 16.2349 0.53 0.1052
0.1 1 9.0808 0.24 0.4034
0.4 0.001 25.4005 0.56 0.0253
0.4 0.01 23.6943 0.55 0.0140
0.4 0.1 11.4474 0.4 0.2770
0.4 1 8.8907 0.23 0.4105
1 0.001 26.9651 0.57 0.0079
1 0.01 19.3725 0.52 0.0436
1 0.1 9.2355 0.23 0.3874
1 1 9.1147 0.23 0.4104
4 0.001 23.6943 0.55 0.0143
4 0.01 11.4474 0.4 0.2777
4 0.1 8.8907 0.23 0.4105
4 1 8.5518 0.24 0.3995
10 0.0001 25.4504 0.57 0.0113
10 0.0004 22.9730 0.56 0.0246
10 0.001 20.1703 0.54 0.0439
10 0.01 10.4285 0.26 0.3385

median 0.001 28.3672 0.59 0.0078
median 0.01 26.7709 0.57 0.0080
median 0.1 17.1509 0.53 0.0856
median 1 8.9232 0.23 0.4054

increases, the attack has a degraded performance as it has a smaller probability of leak,
larger LPIPS and smaller PSNR. Meanwhile, when the total noise scale is the same, a
larger clipping bound leads to a better-reconstructed image quality. For example, when
the total noise scale is 0.01, the PSNR is 16.23, 19.37 and 20.17 for the clipping bound
of 0.1,1,10, respectively. Besides, two sets of reconstructed images under the same total
noise scale of 0.01 with different clipping bounds are shown in Fig. 4.5. They also shows
that larger clipping bound under the same total noise scale can weaken privacy protection
since the images with the smaller clipping bound are more blurry. Based on the results,
this chapter can show insight to choose the optimal value of clipping bound and noise
scale for privacy protection.
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Figure 4.5: Reconstructed images with the same total noise scale.

4.4.2 Evaluation of the Performance of Federated Learning

In this subsection, the trade-off between the FL accuracy and DP settings is studied, where
CIFAR10 and CNN6 are used for the local training to show the accuracy and privacy loss
characteristics. Besides, the pattern for privacy leakage under two manners of reconstruc-
tion attacks is similar to the one in SE learning. Therefore, this subsection only focuses
on the all-round-manner.

To begin with, the privacy loss under reconstructed attacks for SE learning and FL are
compared. Some metrics are presented to compare the reconstructed images and original
images in Fig. 4.6 and Table 4.4, where most metrics show that FL may have a higher
probability of privacy leakage than SE learning. Meanwhile, for SE learning, the attack
loss has a great increase after a few rounds, while FL has a mild one. The possible reason
is that under FL training, the global model may be more generalized, so local training may
still generate a relatively large gradient to force the model closer to its personal require-
ments, while the noise of SE may be too larger to its gradients, making it containing less
information. Therefore, as FL training continues, the probability of privacy leakage may
still be higher compared with that of SE learning. As multiple DP usage also leads to the
increased probability of privacy leakage, reducing the probability of privacy leakage as
the training rounds increase should be considered.

Table 4.4: Different metrics of attack loss of SE and FL (on CIFAR100 and MLP).

Model clipping bound PSNR Prob leak LPIPS
0.1 12.56 0.57 0.1916

FL 1 12.76 0.54 0.1991
10 11.00 0.21 0.2332
0.1 12.42 0.55 0.2202

SE 1 12.40 0.51 0.2224
10 10.69 0.25 0.2330

This subsection also presents the accuracy under different clipping settings for FL in
Fig. 4.7. Since the total noise scale is proportional to the multiplication of the base noise
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Figure 4.6: Attack loss of SE and FL.
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Figure 4.7: FL test accuracy with different DP settings.

scale and clipping bound, the accuracy under the same total noise scale is studied. It is
shown in Fig. 4.7 that when the total noise scale is small, increasing the clipping bound
can improve the accuracy. For example, when the total noise scale is one, the accuracy
increases from 34% to 44% as the clipping bound increases from 0.1 to 10. Meanwhile,
when increasing the clipping bound after the noise scale is larger than 10, the FL accuracy
can be destroyed due to the large total noise scale. The results may suggest that when
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comparing different clipping bounds for FL, the total noise scale cannot be neglected,
while most existing studies compare the learning and attack results under different clipping
bounds and different total noise scales [61], which may be inappropriate.

Finally, the corresponding privacy budget for DPFL is calculated by using RDP ac-
counting with the noise variance and δ = 1e−5. It is observed that when the base noise
scale is one, the ε is derived to be eight. Besides, when the base noise scale is smaller than
one, the ε is much larger than 100. However, it is shown in Table 4.4 that the noise scale of
0.1 can lead to bad attack results. Additionally, most existing DPFL frameworks choose
a ε smaller than ten. The results in this subsection suggest that a smaller privacy budget
(larger ε) for DPFL may be needed to provide the required privacy protection level, which
can also improve accuracy.

4.4.3 Comparison on Reconstruction Strategies

Table 4.5: Different metrics of attack loss with cosine similarity and Euclidean distance-
based reconstruction (on CIFAR100 and MLP).

Reconstruction C nvar PSNR Prob leak LPIPS
Euclidean distance 0.1 0.01 17.1171 0.54 0.1146
Cosine similarity 0.1 0.01 20.7342 0.58 0.0329

Euclidean distance 0.1 0.1 16.6834 0.54 0.1164
Cosine similarity 0.1 0.1 16.2349 0.53 0.1052

Euclidean distance 1.0 0.01 20.0328 0.5 0.0829
Cosine similarity 1.0 0.01 19.3725 0.52 0.0436

Euclidean distance 1.0 0.1 12.1396 0.21 0.2525
Cosine similarity 1.0 0.1 9.2355 0.23 0.3874

Euclidean distance 10.0 0.01 12.1396 0.21 0.2525
Cosine similarity 10.0 0.01 10.4285 0.26 0.3385

Euclidean distance 10.0 0.1 7.8497 0.21 0.4113
Cosine similarity 10.0 0.1 7.2322 0.20 0.4675

In this subsection, the comparison of the two most used reconstruction strategies, co-
sine similarity and Euclidean distance with the same regularized term, is introduced. As
shown in Table 4.5, when the total noise scale is smaller than 0.01, the cosine similarity-
based reconstruction is able to generate images with better quality than the Euclidean
distance-based one. For example, the LPIPS of Euclidean distance-based attack is 0.1146,
which is larger than 0.0329, the one of cosine similarity. However, when the total noise in-
creases, the Euclidean distance generates better quality images as the PSNR and probabil-
ity of leakage is larger and the LPIPS is smaller. In summary, the Euclidean distance-based
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reconstruction attacks can generate better images when the total noise scale is large, and
the cosine similarity-based reconstruction attacks generate better images when it is small.
Therefore, combined with methods of approximating the noise scale of the received gradi-
ents, this chapter shows how to choose more effective reconstruction attack strategies from
the attacker’s perspective, which can also promote the selection of more targeted defenses.

4.5 Summary

In this chapter, reconstruction attacks are conducted on DPFL and then based on the re-
constructed images, the relations between DP settings, including noise scale and clipping
bound choosing, are characterized. To be specific, a privacy loss evaluation method is pro-
posed by using different pre-trained models to infer the output on reconstructed images
and true images and compare the distance between them to measure the privacy leakage.
To evaluate the privacy loss, extensive simulations are conducted on reconstructed attacks
on DP-based learning under different DP settings. Based on the results, this chapter em-
pirically studies the relations among clipping bound, noise scale and privacy protection
level for FL and SE learning. Meanwhile, several findings are summarized, which can be
utilized to choose better DP settings for FL, including that the anonymous clients mecha-
nism can improve DP protection level by studying two manners of gradients reconstruction
(reconstruct from the sum of all gradients and every round gradients) and how clipping
bound actually affects privacy protection. Besides, the difference between reconstruction
attacks under FL and SE learning is studied. Finally, the difference between the two re-
construction strategies, cosine similarity and Euclidean distance, is compared empirically
on privacy protection and their corresponding theoretical convergence bound under noise.
With the calculation of the privacy budget by using RDP, the findings in this chapter can
be utilized to guide the selection of the proper privacy protection level for DP-based FL.



Chapter 5

Anonymous Differential Privacy-based
Decentralized Federated Learning with
Performance Analysis

5.1 Introduction

Traditional ML typically requires the centralized storage of all data to train a global model.
However, uploading a massive amount of data to a central server not only imposes a huge
communication burden but also raises an increasing awareness of privacy protection. Ad-
ditionally, data collection and processing have been regulated and restricted by data pro-
tection regulations such as the EU/UK GDPR [10]. To protect data privacy in ML, an
emerging ML training technique called FL has been proposed, where the training tasks
are assigned to local devices, and the trained local models are then sent to a central server
to form a global model [14]. Since all the data is trained locally at clients’ devices and
never leaves the local storage, it is expected that FL can protect data privacy. However,
traditional FL still suffers from significant challenges, including huge communication,
SPOF, and privacy leakage.

Traditional FL relies on a central server to perform model aggregating and broad-
casting, which introduces the problem of SPOF and requires the server to be completely
trusted. To address these issues, the concept of DFL has been proposed, in which the
local clients directly transmit gradients with each other in a peer-to-peer manner, and the
gradients aggregation is performed at local clients [135, 136]. For example, the authors
in [31,137] propose a gossip-based method for the DFL framework to exchange the model.
In addition, the work [135] proposes a voting consensus-based DFL framework by apply-

85
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ing a leader-candidate-follower method, while the work [30] proposes a committee-based
DFL framework by letting a committee select clients and assign weights based on their
models. Except for different topologies, blockchain technology can be adopted in DFL as
an effective coordination tool [138,139]. A blockchain-based DFL can supervise the DFL
procedure to ensure that all participants perform honestly and apply a reward mechanism
to local clients to encourage them to attend FL [140].

Although DFL and FL are claimed to protect data privacy, studies have demonstrated
that reconstruction attacks can be carried out on transmitted local training gradients to
recover sensitive information [47, 92, 122]. To achieve the recovery, these reconstruction
attacks typically involve synthesizing data to compute gradients, followed by optimization
based on either the cosine similarity [92] or Euclidean distance [47] between the synthe-
sized gradients and the transmitted local gradients. To guarantee privacy, some research
has implemented an anonymous mechanism in (D)FL in order to protect the identity of lo-
cal clients [141]. However, the reconstructed data may still reveal private information that
shows the identity. Another way to protect privacy is by adopting HE to encrypt gradients
before aggregation, which can be computationally expensive due to the large size of the
gradients [142].

As a result, DP, a rigorous mathematical tool, is widely employed in FL by adding
noise to local gradients before they are transmitted [58]. However, the introduction of
noise inevitably degrades accuracy. Therefore, some studies have investigated the trade-
off between accuracy and privacy protection to improve overall performance [61,101]. Al-
though some work has proposed different relaxed bounds for DP in centralized FL in order
to increase the accuracy, there is a gap in the literature on DPDFL with a relaxed bound for
DP privacy loss or a relaxed noise scale while maintaining the privacy protection, leading
to that the accuracy for DPDFL is much worse than that of non-private DFL due to un-
necessary noise strength. Meanwhile, the work in [117, 118] suggests that an anonymous
mechanism designed for gradients in FL training can reduce privacy leakage. Several
works have implemented an anonymous mechanism into centralized DPFL by shuffling
the gradients at a trusted third party before sending them to the central server [117, 118],
which increases the communication bandwidth requirement and risks of privacy leakage
in decentralized settings.

To address these challenges, this chapter proposes a novel anonymous DPDFL, namely
ADPDFL, to improve privacy protection and accuracy. To be specific, every client will
train the local model and add noise to the computed gradients locally, where the noisy
gradients will be exchanged peer-to-peer anonymously. Furthermore, it investigates the
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privacy guarantee and the convergence bound for ADPDFL. The main contributions of
this chapter are summarized as follows:

• This chapter proposes a DPDFL framework under two decentralized methods, the
gossip and pseudo-central. In the gossip settings, every local clients broadcasts
its local gradients to a subset of the local clients and aggregates the received the
gradients to be its new local model. In the pseudo-central settings, a temporary
leader is randomly chosen from the training clients in every round to collect all
the local gradients, aggregate them into a new global model and broadcast the new
model.

• This chapter introduces an anonymous communication protocol via hashed addresses
which are changed every round, for the DPDFL to enhance the privacy protection.
The anonymous mechanism ensures that no local client can know who they are ex-
changing models with, and they can not tell whether every two models come from
the same client.

• Based on the proposed ADPDFL, a relaxed DP bound is proposed, where under the
same privacy budget, every local client can have a smaller noise scale, leading to
better accuracy. Furthermore, the corresponding base noise variance is derived for
both two decentralized methods.

• The non-convex convergence bound for the proposed ADPDFL under two decen-
tralized methods is derived in terms of the DP budget, TCSR and MER. The theo-
retical results show that there is an optimal number of TCSR and MER to balance
convergence improvements and loss created by noise.

• Extensive simulations are conducted to present the effectiveness of the proposed
framework. The results demonstrate how to select appropriate client settings for
decentralized DPFL to achieve higher utility and also validate the theoretical results.

5.2 The Proposed Anonymous Differential Privacy-based
Decentralized Federated Learning Framework

This section first presents the problem formulation and threat model for this chapter. Next,
the proposed framework is introduced along with the decentralized topology, the DP mech-
anism, and the anonymous method. An overview of the ADPDFL is illustrated in Fig. 5.1.
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Figure 5.1: The illustration of the proposed ADPDFL framework.

5.2.1 System Model

In the DFL framework, a synchronized initial model is broadcast to distributed clients
(DC) by a central server, such as a smart home manufacturer, and the central server will
not participate in the future training. Then, DCs perform local training and exchange
models in a peer-to-peer manner. After that, new models are aggregated at DCs, which
are used for the next round of training. The DFL procedure can be formalized to solve an
empirical risk minimization problem as follows:

argmin
W

F(W ) =
m

∑
i=1

1
m

Fi(Wi,Di), (5.1)

where W is the model parameters, F(W ) is the global loss, Fi(W ) is the loss function for
the i-th DC, Di is the data in the i-th DC, and m is the number of the aggregated local
gradients in each round.

5.2.2 Threat Model and Assumption

This chapter considers a two-fold threat model. First, it examines the threat model in
the context of semi-honest adversaries, which means that the local clients and the central
server will perform the FL protocol correctly, but they may try to infer the original private
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data from the gradients via privacy-related attacks, such as reconstruction or membership
inference attacks [47, 48]. To overcome this threat, DP is employed in FL to protect
privacy. Second, combining multiple-round gradients from one user for a reconstruction
attack can increase the risk of privacy leakage from DP. Ensuring the unlinkability of
gradients across different rounds for DPDFL requires further research.

In this respect, ADPDFL is proposed to solve the aforementioned challenges effec-
tively.

5.2.3 Differential Privacy-based Updating and Anonymous Decen-
tralized Communication Protocol

In this subsection, the proposed ADPDFL framework is introduced, which incorporates
a DP-based updating mechanism and an anonymous communication protocol, under two
different decentralized methods.

Since the gossip algorithm provides strong robustness of clients drop-out and scal-
ability for distributed clients, the first decentralized method for DCs follows the gossip
method, based on which two factors, TCSR rtcs and MER rmer, are implemented to con-
trol the FL training procedure and derive the privacy loss. In every communication round,
the number of DCs joining the FL training is mtcs, where mtcs = rtcs ∗M. They train
their model with their local data and compute the gradients with SGD. The gradients are
transmitted to me = rmer ∗M, DCs who have joined the local training in this round. Each
DC aggregates their received gradients with their own, which becomes their new local
model for the next round of training. Finally, the server can randomly collect one local
aggregated model or aggregate all the local models to be the global model in the final
round. This chapter will investigate how mtcs and me affect the convergence performance
of gossip DFL and privacy loss.

The second one follows a pseudo-central procedure, in which one DC is randomly
chosen as a temporary leader in each round and each training DC transmits its gradients
to the chosen DC. The chosen DC aggregates the received gradients and broadcasts them
to the training DCs. Finally, the DC chosen in the final round uploads the final aggregated
model to the central server after the training is aborted. This chapter will investigate how
mtcs affects the convergence performance and privacy loss of pseudo-central-based DFL.

To protect data privacy, DP is adopted by adding Gaussian noise to local gradients
before sending them to others to achieve UDP. In every round, each training DC i first
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bounds the l2 norm of its local gradients gt
i to a threshold C as follows:

ĝt
i = gt

i/max(1,
||gt

i||2
C

). (5.2)

After clipping, Gaussian noise is added to the clipped gradients as follows:

gt
i = ĝt

i +N(0,∆ f 2
i σ

2), (5.3)

where t is the index of the current round, σ is a preset noise scale and ∆ fi is the sensitivity
of the i-th client. The required noise scale for the proposed framework is derived in Sec-
tion 5.3.1. Given DP settings, each local DC has a maximum number of training rounds
without privacy leakage. When the FL has an inadequate number of DCs with remaining
training rounds, the training is stopped.

To enhance the privacy protection of DPDFL, this chapter designs an anonymous com-
munication protocol between DCs. To formalize the gradient transmission paths, a trusted
proxy server (TPS) is adopted. At the beginning of FL, the TPS collects the initial ad-
dresses of all DCs, which will be used as the destination for transmitting gradients in the
FL system for each DC. In every round, the TPS will request DCs to join the training, and
DCs who want to join the training will notify the TPS. After reaching mtcs DCs joining, the
TPS performs the same random computation on the current addresses, performs a hashing
function on the new addresses of training DCs and sends the corresponding hashed address
to each training DC.

The protocol of anonymous gradient transmission is introduced. For the gossip-based
framework, it is assumed that every DC receives the same amount of noisy gradients. TPS
randomly creates a graph with the hashed address and links between the DCs based on
rmer. The graph is broadcast to all the training DCs in each round. Then, DCs can transmit
their noisy gradients to corresponding receivers anonymously. In the proposed anonymous
protocol, who is exchanging gradients and whether they have received gradients from the
same DC are unknown for every local DC. For the fake central-based framework, the role
of the TPS is to randomly choose a temporary leader in each round from training DCs
and broadcast the hashed address of the temporary leader to every joining DC. The tem-
porary leader finishes the task of aggregating and broadcasting the gradients to the hashed
addresses of other training DCs. Since the proposed frameworks only require the trans-
mission of gradients from one DC to another DC without sending them to a third party, and
the size of transmitting addresses and graphs are negligible compared to the gradients, the
proposed framework can mitigate the communication burden of trusted third-party server
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and reduce privacy risks compared to the shuffling anonymous mechanisms.

Algorithm 5.1 ADPDFL: Anonymous differential privacy-based decentralized federated
learning (1)

1: procedure FL-TRAINING
2: Generate a global model W 0, broadcast W 0, rmer, rtcs, and M to all the DCs and

TPS
3: TPS collects initial addresses for all DCs
4: Each DC calculates its maximum training rounds for given DP settings.
5: for t=0 , 1 , 2,..., T do
6: TPS broadcasts the training requests to ask for participants
7: DCs that have remaining training rounds send joining requests to TPS
8: TPS counts the number of joining DCs and asks DCs to train after having mtcs

DCs, where the set of joining DCs is denoted as St

9: for every DC i in St in parallel do
10: Asks TPS for its new hashed ID
11: gt

i ← DC-COMPUTE(W t
i )

12: if distr is gossip then
13: W t+1

i ← GOSSIPCOMM
14: end if
15: if distr is f ake_central then
16: W t+1

i ← FAKECENCOMM
17: end if
18: end for
19: end for
20: Abort FL training when inadequate DCs have remaining training round
21: if distr is gossip then
22: The central server randomly selects one model or aggregates noisy models to

be the final model
23: end if
24: if distr is f ake_central then
25: The server asks the temporary leader for the current noisy model to be the final

model
26: end if
27: end procedure
28: procedure DC-COMPUTE(W t

i )
29: Train W t

i with SGD for E epochs
30: Compute the gradients gt

i

31: Clip the gradients as ĝt
i = gt

i/max(1, ||g
t
i ||2
C )

32: Add DP noise as gt
i = ĝt

i +N(0,σ2∆ f 2
i )

33: return gt
i

34: end procedure
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Algorithm 5.2 ADPDFL: Anonymous differential privacy-based decentralized federated
learning (2)

1: procedure GOSSIPCOMM(W t+1
i )

2: TPS generates a random graph with DCs in St and rmer for gradient transmission
while ensuring every DC can receive the same number of gradients

3: TPS broadcasts the graph to St

4: for every DC i in St do
5: Transmits gt

i to its communicating DCs via the given hashed addresses
6: Computes the average of the received gradients gt

7: Computes the new local model W t+1
i =W t

i −gt

8: end for
9: return W t+1

i
10: end procedure
11: procedure FAKECENCOMM(W t+1

i )
12: TPS randomly chooses a DC j from St to be the pseudo-central DC and broadcasts

the hashed address of DC j to every training DC in this round
13: Every DC in St except DC j transmits its gradients to DC j via the hashed ID
14: DC j computes the averaged received gradients gt

15: Compute the new local model W t+1
i =W t

i −gt

16: DC j broadcasts W t+1
i to DCs who send gradients to it

17: return W t+1
i

18: end procedure

In this chapter, the implementation of TPS in the gossip-based framework is to ensure
that every DC can receive the same number of gradients for fairness. For the pseudo-
central-based framework, the implementation of TPS is to ensure that the temporary leader
in each round is not the same in an anonymous way. Therefore, a failing TPS can be easily
replaced, given that it performs lightweight computation and communication tasks. For
example, numerous trusted edge servers could effectively serve as TPS. Since communi-
cating between hashed addresses is not the focus of this chapter, and it can be achieved
by existing techniques, such as proxy networks and trusted routers, this chapter will not
elaborate more details of the communication between the hashed addresses further.

The proposed ADPDFL framework is illustrated in Algorithms 5.1 and 5.2. The proce-
dure FL-T RAINING introduces the overall FL training and the procedure DC-COMPUT E

introduces how each DC computes its noisy gradients. Meanwhile, the proposed anony-
mous decentralized transmission of gradients is provided in the procedures GOSSIPCOMM

and FAKECENCOMM.
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5.3 Theoretical Results

This section provides a detailed derivation of the privacy guarantee analysis and the con-
vergence bound for the proposed framework.

5.3.1 Privacy Analysis

In this subsection, the privacy analysis for the proposed ADPDFL framework is presented,
and the required noise scale for the proposed framework is computed based on RDP. Since
all gradients are clipped as (5.2), the l2-sensitivity for the i-th local client is computed as
follows:

∆ fi =
supgi,g′i

||gi−g′i||2
ni

=
2C
ni

, (5.4)

where ni is the number of data that the i-th client uses for training. In this chapter, it is
assumed all the clients have the same amount of training data. n will be used to denote ni

in the rest of this chapter.
The privacy guarantee and required noise can be formalized in Theorem 8.

Theorem 8 Suppose that the probability of clients joining FL training in each round fol-

lows a uniform distribution, after T communication rounds, the proposed ADPDFL satis-

fies a global (ε,δ )-DP for any ε < 2log(1/δ ) and δ > 0, if σ2 is chosen as follows:

σ
2 ≥ 7s1T (ε +2log(1/δ ))

m2ε2 , (5.5)

where s1 = r2
tcsme for gossip-based framework and s1 = r2

tcs for pseudo-central framework.

When the added noise to each local client is at least N(0,4C2σ2/m2) where σ2 needs to

satisfy (5.5), the proposed ADPDFL can satisfy the guarantee of (ε,δ )-DP for the entire

system.

The proof of Theorem 8 is presented in Appendix K.

5.3.2 Convergence Analysis

In this subsection, the convergence analysis for the proposed algorithm is proposed, which
studies the convergence bound for the expectation of the global loss function F(w) after T

FL communication rounds.
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First, F(w) = ∑i∈St
1

mtcs
Fi(w) is defined, and some common assumptions for the anal-

ysis of FL are introduced.

Assumption 3 (Smoothness) Each local objective function ∇Fi(W ) is L-Lipschitz smooth,

i.e, for any w and w′ ∈ R, the following can be obtained:

||∇F(w)−∇F(w′)|| ≤ L||w−w′||. (5.6)

Assumption 4 (Bounded local divergence) The local divergence of the stochastic gradi-

ent is bounded as follows:

E||∇Fi(w)−∇F(w)||2 ≤ ζ
2. (5.7)

When the Fi(W ) is non-convex, the convergence results of the proposed framework are
formalized as follows:

Theorem 9 (Convergence bound of ADPDFL in non-convex settings) Under Assumption

3 and 4, if the proposed ADPDFL can satisfy (ε,δ )-DP with the required noise shown

in Theorem 8, the proposed gossip-based ADPDFL framework can have the convergence

upper bound after T communication rounds as follows:

E||∇F(w)||2 ≤ 2(F(W 0)−F(W ∗))
T (ρ2 +ρ2L−L+2)

− ζ 2

(ρ2 +ρ2L−L+2)︸ ︷︷ ︸
Decentralized FL

+
ζ 2(L−1)(1−ρ2)(mtcs−me)

me(ρ2 +ρ2L−L+2)(mtcs−1)︸ ︷︷ ︸
client sampling error

+
4LC2σ2(1−ρ2)

n2me(ρ2 +ρ2L−L+2)︸ ︷︷ ︸
privacy error

,

(5.8)

where ρ2 is the second largest eigenvalue of the decentralized communication graph ma-

trix, and W ∗ is the optimal model.

Similarly, the pseudo-central-based ADPDFL can have the convergence upper bound

after T communication rounds as follows:

E||∇F(w)||2 ≤ 2(F(W 0)−F(W ∗))
T (2−L)

− ζ 2

(2−L)︸ ︷︷ ︸
Decentralized FL

+
ζ 2(L−1)(m−mtcs)

mtcs(2−L)(m−1)︸ ︷︷ ︸
client sampling error

+
4LC2σ2

n2mtcs(2−L)︸ ︷︷ ︸
privacy error

,

(5.9)
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where,

σ
2 ≥ 7s1T (ε +2log(1/δ ))

m2ε2 , (5.10)

The proof of Theorem 9 is presented in Appendix L.
The convergence bound in (5.8) and (5.9) can be divided into three parts. The first

two terms are the general convergence error bound for decentralized FL. The third term is
the client sampling error from only aggregating part of the clients’ gradients, also referred
to as local drift. The final term is the privacy error caused by adding DP noise to the
gradients.

From the above results, a relationship among the client choosing rates rtcs, rmer, privacy
error, and convergence bound can be observed. For the gossip-based framework, when
increasing either rtcs or rmer, the final term also increases. In addition, if increasing either
rtcs or rmer, the connectivity of the transmitting graph of each round also increases (a
smaller ρ2), causing the second term and the third term to decrease. Therefore, there is
also an optimal rtcs and rmer, which can balance the trade-off between convergence and
privacy to obtain a smaller convergence bound. For the pseudo-central framework, when
increasing the rtcs, it is found that the privacy error increases since more clients send
out their gradients, and the third term decreases since more sufficient aggregations are
performed. Therefore, there is an optimal choice for rtcs to have the minimum convergence
bound.

5.4 Empirical Results

In this section, extensive simulations are performed to evaluate the performance of the
proposed ADPDFL and to study the impact of rtcs and rmer on the models in terms of the
corresponding number of clients, mtcs and me.

5.4.1 Experimental Setup

Two datasets, both of which have ten classes in total, are used for FL training and testing.
The first dataset is MNIST, which contains handwritten grayscale images, including 60000
training data and 10000 testing data [38]. The second is CIFAR10, which is a dataset
of different colorful animals and tools, including 50000 training data and 10000 testing
data [129]. The proposed framework is performed with 100 clients in total. When training
MNIST, an MLP with two hidden layers, where each layer has 200 hidden units, is used
as the local model. When training CIFAR10, a CNN is used as the local model. The
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CNN model has two 5× 5 convolution layers, both followed by a 2× 2 max-pooling
layer, where the first convolution layer has 16 channels and the second has 32 channels.
After convolution layers, there is an additional fully connected layer with 512 hidden units
before the output layer. For both models, ReLU is used as the activation for the hidden
layers.

In this section, simulations are first performed with IID data to evaluate the impact
of the parameters. For the IID setting, the data is randomly shuffled and assigned to
each client in a balanced way. In addition, simulations are also conducted to show the
performance on non-IID data. For the non-IID settings, each class of data is split into 20
shards (200 shards in total), and each client is assigned two shards of different classes.
The simulation data settings are denoted to IID-MNIST, IID-CIFAR10, non-IID-MNIST
and non-IID-CIFAR10, respectively.

The learning rate is fine-tuned to 0.001, where a higher value brings too much noise,
and a lower value slows the convergence. With regard to the settings of the DP mechanism,
ε = 8 and δ = 1e−5 are chosen for most of the simulations in this section. Since different
mtcs and me may have different optimal clipping bound values, simulations with mtcs of
70 on pseudo-central-based framework are first performed with different clipping bounds
for 20 rounds to choose the clipping bounds for other mtcs and me. As shown in Table 5.1,
the clipping bound of one produces the highest accuracy performance, while the smaller
ones preserve less information and the larger ones bring too much noise. Hence, a clipping
bound of one is chosen for all the other simulations in this section.

Table 5.1: Accuracy of the pseudo-central-based framework on IID-MNIST and IID-
CIFAR10 with different clipping bounds.

dataset
clipping bound

0.5 1 2 4

IID-MNIST 0.3855 0.4123 0.1849 0.1253
IID-CIFAR10 0.3776 0.3840 0.3836 0.3724

In all simulation figures and tables, mtcs is denoted as mt, and me is denoted as me.
Most of the results in the figures and tables are the averaged results from multiple simu-
lations under the same settings due to the randomness of the training and DP noise. To
evaluate the performance of the decentralized FL without global model synchronization,
the local test accuracy at each round is measured based on the global test dataset before
and after local aggregation. The largest value in all training clients’ local test accuracy in
each round is recorded as the test accuracy for that round, which is used for all tables and
figures in this section.
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Although the simulations aim to study the best client selection rates for the proposed
ADPDFL, the results of DP-FedAvg and a Non-Private version framework, which is the
proposed ADPDFL without DP noise and clipping, are provided for comparison, where
the base noise variance of DP-FedAVG is set to two with other unchanged. The imple-
mentation of the anonymous mechanism is not considered in the simulation since this
chapter focuses on the accuracy performance under DP, and the implementation of it does
not affect the accuracy performance. However, the calculation of the required noise base
variance still involves the anonymous mechanism.

5.4.2 Evaluation of IID-MNIST

In this subsection, the performance of the proposed framework on IID-MNIST is pre-
sented.

40 50 60 70 80 90
Mt

0.3

0.4

0.5

Ac
cu
ra
cy

Figure 5.2: Accuracy of the pseudo-central-based framework on IID-MNIST with differ-
ent mt for 20 rounds.

The pseudo-central-based framework with different parameter settings is studied, in-
cluding mtcs, ε and T . The performance under different numbers of training clients for
20 communication rounds is presented in Fig. 5.2, where it is observed that accuracy
increases as the number of training clients increases to 80. When mtcs is greater than
80, the accuracy performance becomes worse since the noise is greatly increased. This
observation shows that there is an optimal number of training clients to achieve the best
performance, which is consistent with the theoretical results. The performance under dif-
ferent ε is also evaluated. As shown in Fig. 5.3, when ε increases, accuracy performance
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Figure 5.3: Accuracy of the pseudo-central-based framework on IID-MNIST with differ-
ent ε .

is improved as the noise variance decreases.
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Figure 5.4: Accuracy of the pseudo-central-based framework on IID-MNIST with differ-
ent total FL communication rounds.

Furthermore, the performance of different total FL communication rounds is studied
in Fig. 5.4. It is shown that as the number of total communication rounds increases
from 20 to 30, the accuracy performance decreases, while increasing T after 30 brings a
better accuracy performance. This finding is caused by increasing the total communication
round, which can bring a larger noise variance, and more total training rounds can also
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improve the accuracy performance, which demonstrates that there is a balance between
the number of training rounds and the accuracy performance for the proposed ADPDFL.
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Figure 5.5: Accuracy of the gossip-based framework on IID-MNIST with different mt .
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Figure 5.6: Accuracy of the gossip-based framework on IID-MNIST with mt = 70 and
different me.

The performance of the gossip-based framework is studied to evaluate the impact of
me and mtcs, where the framework is carried out with 50 communication rounds. As shown
in Fig. 5.5, the accuracy performance increases when mtcs increases from 60 to 80 and me

is 50. Although the accuracy performance of mtcs = 90 is almost the same as that of 80, it
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generates additional computation and communication overheads, which means that there
is also an optimal number of mtcs in the proposed gossip-based framework.

The performance of different me is also studied as presented in Figs. 5.6, 5.7 and 5.8.
As shown in Figs. 5.6 and 5.7, the optimal number of me is 50 while other values produce
worse accuracy performance. However, Fig. 5.8 shows that when me is 50, the accuracy
performance is worse than other values. Therefore, there are different optimal numbers of
me under different mtcs for the proposed ADPDFL.
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Figure 5.7: Accuracy of the gossip-based framework on IID-MNIST with mt = 80 and
different me.

5.4.3 Evaluation of IID-CIFAR10

In this subsection, the performance of the proposed framework with IID-CIFAR10 is eval-
uated. The pseudo-central-based framework is first studied, where the number of commu-
nication rounds is 50. The impact of different mtcs is evaluated in Fig. 5.9. The proposed
framework is shown to have an increase in accuracy performance when mtcs increases
from 20 to 60 except 30, which brings a worse accuracy performance than the one with 20
and 40.

In addition, the impact of me and mtcs on the performance of the proposed gossip-
based framework for 50 communication rounds is evaluated. As shown in Figs. 5.10, 5.11
and 5.12, different me have different optimal numbers of mtcs to achieve the best accuracy.
Specifically, when mtcs is 70, me = 40 provides the best accuracy performance. For mtcs =

80, the accuracy performance of mtcs = 30 is the largest. Finally, when mtcs is 90, even
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Figure 5.8: Accuracy of the gossip-based framework on IID-MNIST with mt = 90 and
different me.

0 5 10 15 20
Rounds

0.0

0.1

0.2

0.3

Ac
cu
ra
cy

mt = 20
mt = 30
mt = 40
mt = 50
mt = 60

Figure 5.9: Accuracy of the pseudo-central-based framework on IID-CIFAR10 with dif-
ferent mt .

though me = 40 and me = 50 produce similar results, me = 50 has more communication
costs, making me = 40 the optimal setting.

5.4.4 Evaluation of Non-IID-MNIST

This subsection evaluates the impact of mtcs and me on the performance of the proposed
framework under non-IID-MNIST, where the number of communication rounds is 50. The
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Figure 5.10: Accuracy of the gossip-based framework on IID-CIFAR10 with mt = 70 and
different me.
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Figure 5.11: Accuracy of the gossip-based framework on IID-CIFAR10 with mt = 80 and
different me.

proposed pseudo-central-based framework is first performed. In Fig. 5.13, it is shown that
there is an optimal number of mtcs, which is 80, to achieve the best accuracy performance
in these settings. Then, the impact of mtcs and me on the proposed gossip-based framework
is studied. Table 5.2 shows that for every mtcs, there is an optimal number of me to achieve
the best accuracy performance and vice versa. Overall, when mtcs is 90 and me is 50, the
accuracy performance is the largest.
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Figure 5.12: Accuracy of the gossip-based framework on IID-CIFAR10 with mt = 90 and
different me.
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Figure 5.13: Accuracy of the pseudo-central-based framework on non-IID-MNIST with
different mt .

5.4.5 Evaluation of Non-IID-CIFAR10

In this subsection, the impact of mtcs and me is evaluated on the performance of the pro-
posed framework under non-IID-CIFAR10, where the number of communication rounds
is 50. The proposed pseudo-central-based framework is performed and shown in Fig. 5.14.
The accuracy performance increases as mtcs increases from 60 to 90. In addition, the per-
formance of the gossip-based framework is explored. As shown in Table 5.3, increasing
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Table 5.2: Accuracy of the gossip-based framework on non-IID-MNIST with different mt
and me.

mt

me 40 50 60

70 0.6261 0.6103 0.6105
80 0.5821 0.6240 0.6081
90 0.5714 0.6297 0.6266

me leads to a higher accuracy performance most of the time. However, for different me,
there is a different relationship between mtcs and the accuracy performance. For example,
when me is 40 and 50, mtcs = 80 has the worst accuracy performance. On the other hand,
when me is 30, mtcs = 70 has a poorer accuracy performance than the others.
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Figure 5.14: Accuracy of the pseudo-central-based framework on non-IID-CIFAR10 with
different mt .

Table 5.3: Accuracy of the gossip-based framework on non-IID-CIFAR10 with different
mt and me.

mt

me 30 40 50

60 0.2572 0.2842 0.3058
70 0.2564 0.2917 0.3017
80 0.2661 0.2830 0.3003
90 0.2717 0.2974 0.3042
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5.4.6 Discussions and Comparisons

This subsection first summarizes the impact of mtcs and me on the proposed framework.
For most settings, there is an optimal number of training clients or exchange clients to
achieve the best accuracy, which is consistent with the theoretical results that the optimal
number of mtcs and me has a larger effect on reducing convergence loss than the corre-
sponding noise loss. On the other hand, there are some cases in which certain values of
mtcs and me bring the worst performance while increasing or decreasing the number of cor-
responding clients can improve the accuracy performance. Meanwhile, in most cases, it
is found that pseudo-central-based frameworks outperform the gossip-based frameworks
with lower communication costs, which is caused by gossip-based frameworks requir-
ing larger noise since each client needs to send out multiple gradients in every round.
However, in some large-scale real-world scenarios, the local devices may have limited re-
sources to be the pseudo-central leader to aggregate and broadcast a large amount of gradi-
ents, necessitating the gossip-based framework. Meanwhile, in a gossip-based framework,
even though different me and mtcs can deliver a similar accuracy performance, they may
have very different communication costs, and smaller values have a smaller probability
of privacy leakage, which means that for a gossip-based framework, it needs to choose
the smallest me×mtcs of the ones that bring the highest accuracy. Therefore, more effec-
tive solutions for improving the accuracy with minimum communication and computation
costs for gossip-based framework needs further optimization.

In addition, the performance of the centralized DP-FedAvg and the proposed DFL
framework of a Non-Private version is presented in Table 5.4, where the number of training
clients is 70 for all frameworks, and the number of exchange clients is 30 for gossip-based
frameworks. As shown in Table 5.4, the proposed ADPDFL only has a small accuracy
degradation compared to centralized DPFL and Non-Private DFL with greater privacy
protection.

Table 5.4: Accuracy of different frameworks on different datasets, where Non-Private is
the proposed DFL framework without implementing DP and Fake-cen denotes the pseudo-
central-based framework.

Dataset
Framework

Gossip ADPDFL Fake-cen ADPDFL Gossip Non-Private Fake-cen Non-Private DP-FedAvg

IID MNIST 0.6701 0.6814 0.6812 0.7005 0.7237
IID CIFAR10 0.4849 0.4971 0.4872 0.5012 0.5369

non-IID MNIST 0.5375 0.6723 0.5624 0.6998 0.7213
non-IID CIFAR10 0.2634 0.3365 0.2705 0.3477 0.3872
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5.5 Summary

This chapter first proposes a DPDFL framework based on pseudo-central and gossip
topology. Second, to enhance privacy protection, a novel anonymous mechanism for the
DPDFL is designed by implementing a TPS to randomly generate and broadcast the gra-
dients exchange graph for the decentralized clients. The TPS only sends the correspond-
ing address to every training client for their gradients transmission, where the address is
changed every round. Therefore, no client can know who they are communicating with
or whether every two gradients from two rounds are coming from the same clients. The
proposed anonymous mechanism can reduce the bandwidth burden, computation over-
head and privacy risks compared to the shuffling mechanism. Third, based on the pro-
posed framework, the required base noise variance for both the proposed gossip-based
and pseudo-central-based frameworks is derived to satisfy the RDP guarantee. Fourth, the
non-convex convergence bound for the proposed frameworks is derived in terms of the DP
budget and the number of training and exchanging clients, which shows that there is an op-
timal number of training and exchanging clients to achieve the best accuracy performance.
Finally, extensive simulations are conducted to evaluate the performance of the proposed
frameworks on MNIST and CIFAR10 with both IID and non-IID settings, which validate
the theoretical results and also show that there is an optimal number of communication
rounds.



Chapter 6

Conclusion and Future Work

This chapter outlines the main contributions of this thesis, which focuses on enhancing
the utility and privacy protection level of DPFL and provides correspondingly detailed
framework designs, performance and privacy analysis, and simulations. In addition, an
introduction to challenges and possible future work is provided.

6.1 Conclusion

This thesis first reviews the background and literature to identify the existing challenges
in DPFL, including degraded accuracy and expensive communication costs. To solve
these challenges, three DPFL frameworks are proposed to improve accuracy and reduce
communication costs while enhancing privacy protection. Additionally, a privacy loss
evaluation methodology is proposed to guide optimal noise scale selection for DPFL. The
previous chapters are concluded in the following of this section.

In Chapter 1, an introduction to FL is presented, covering its fundamental principles
and classification. This chapter highlights the challenges in existing FL frameworks, with
a particular focus on privacy leakage issues, which motivates the research conducted in
this thesis.

In Chapter 2, the foundational concepts and formulas of FL, DP, DP-based learning
and reconstruction attacks are presented. In addition, a literature review of DPFL and
related fields is introduced.

In Chapter 3, two DPFL frameworks are proposed to improve the convergence perfor-
mance under DP noise in two sections. Section 3.2 introduces a new FL framework by
applying DP both locally and centrally in order to strengthen the protection of participants’
privacy. To improve accuracy of the model, this framework also applies sparse gradients

107
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before adding noise and MGD on both the server side and the client side. Moreover, us-
ing sparse gradients can reduce the total communication costs. This section provides the
experiments to evaluate the proposed framework, and the results show that the framework
not only outperforms other DP-based FL frameworks in terms of model accuracy but also
provides a stronger privacy guarantee. Besides, the framework can save up to 90% of
communication costs while achieving the best accuracy.

Section 3.3 proposes two strategies to improve the convergence performance of the
LDP-FL. Both methods are achieved by modifying the local objective function to limit the
effect of LDP noise on convergence without compromising the privacy protection level.
The first one is to minimize the difference between the noisy gradients and original gradi-
ents, and the second one is to minimize the expected loss due to the noise by incorporating
the corresponding values to the objective function. A detailed framework that adopts the
LDP scheme and two strategies is then introduced. This section also presents the theoret-
ical convex and non-convex convergence guarantees of the proposed framework. Finally,
simulations on the framework show that the framework can accelerate the convergence
up to 40% faster and improve accuracy under different noise compared with other DPFL
frameworks.

In Chapter 4, a privacy leakage evaluation methodology consisting of four key aspects
is proposed. The first aspect is the basic evaluation procedure, which utilizes reconstruc-
tion attacks. To evaluate the privacy leakage, the second aspect is to propose a new metric
by using different pre-trained models to infer the outputs of reconstructed and true images.
The distance between these outputs is explored to measure the privacy leakage. Third, two
different attack manners are designed: one targeting the sum of all rounds’ gradients and
the other targeting gradients from each individual round. By studying them, it is empiri-
cally demonstrated that anonymous mechanisms can enhance privacy protection. Finally,
two common clipping methods for DPFL are studied to evaluate their impacts on privacy
protection. The simulation results show the optimal settings for noise and clipping to
guarantee privacy. All the findings in this chapter are summarized to guide choosing DP
settings for personalization, enhancing privacy protection and improving accuracy.

In Chapter 5, an anonymous decentralized DPFL framework, called ADPDFL, is pro-
posed along with an insightful analysis of privacy protection and the convergence bound.
Specifically, this chapter first considers two decentralized DPFL methods based on gos-
sip and pseudo-central topologies. In addition, this chapter investigates the impact of the
TCSR in each round for both methods and MER in the gossip-based method on the conver-
gence performance. To enhance privacy protection, an anonymous mechanism, in which
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clients do not know who they are communicating with and cannot determine whether they
are communicating with the same client across training, is introduced. Next, this chapter
proposes a relaxed DP mechanism for ADPDFL satisfying RDP guarantee and derives the
required noise in terms of DP settings, TCSR and MER. After that, the theoretical con-
vergence bound for the proposed ADPDFL under non-convex settings is derived, which
suggests that there is an optimal number of TCSR and MER to achieve the best accuracy
performance. Finally, a series of simulations are conducted to evaluate the performance of
the proposed ADPDFL and validate the theoretical results.

6.2 Future Work

Even though this thesis has proposed several DPFL frameworks to tackle some existing
challenges, there are still problems for DPFL that need to be further researched. In this
section, the open issues and future research topics for DPFL are introduced.

6.2.1 Industrial Applications

While this thesis focuses on developing and analyzing theoretical frameworks of DPFL,
future work should integrate real-world industrial applications. For example, the proposed
DPFL frameworks can be implemented in smart homes or healthcare monitoring systems.
After collecting IoT data, local clients can train local models using their phones or com-
puters, which are then sent to the central server for aggregation. During training, the
proposed frameworks in this thesis can be implemented to prevent central servers from
revealing clients’ living patterns or health conditions. Meanwhile, a comparative anal-
ysis with existing frameworks on industrial IoT data will be conducted to highlight the
improvements.

Beyond integrating the proposed work into Industrial IoT applications, further exten-
sions to the work should be explored. To achieve practical industrial applications of DPFL,
the scalability of DPFL should be explored. In industrial settings, a massive number of
devices may join the training, which may introduce a significant communication and com-
putation burden for central servers. Therefore, an effective method to manage those clients
for training and aggregation is a crucial research direction.

Additionally, many recent industrial scenarios focus on large-scale models. Although
the DP noise is well-designed, the accuracy becomes more degraded due to the high-
dimension embedding, which is common in large-scale models. Therefore, further re-
search should investigate techniques to improve accuracy in large-scale DPFL systems
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[55].
These extensions and implementation can enhance the significance and practical utility

of the research, effectively connecting theoretical developments with practical needs.

6.2.2 Privacy Budget Allocation

Even though extensive literature and this thesis have proposed various frameworks to im-
prove the performance degradation due to the DP noise, the accuracy performance of
DPFL is still worse than non-private FL [55,143]. The majority solution to this problem is
to design different privacy budget allocation mechanisms to achieve a more relaxed privacy
loss calculation, which leads to lower required noise [55, 143]. Therefore, a tighter bound
than the most popular solution, RDP, in k-fold use of the DP mechanism is worth research-
ing to further improve accuracy. Additionally, while most existing privacy loss derivations
provide a lower bound, an upper bound on privacy loss may also be necessary [144]. Since
current approaches often assign a fixed privacy budget to each local client during training,
a more adaptive privacy budget allocation method is needed throughout the training pro-
cess to better balance the trade-off between privacy and accuracy [145].

6.2.3 The Trade-off between Fairness and Privacy

Fairness in FL can be defined as two aspects [145,146]. The first aspect is to eliminate bias
among different groups of data, as FL systems might show bias toward certain population
groups based on sensitive attributes such as gender, race, or age. The second aspect is
to mitigate the unfairness due to weights assignment. Traditional FL normally assigns
greater weights to the clients with larger datasets [14]. However, this may drive the global
model to contain more knowledge for those clients, which not only brings unfairness for
the clients with smaller datasets but also leads to a less generalized global model. In FL,
fairness and privacy protection are two conflicting objectives [145,146]. For example, the
unfairness between groups due to the accuracy difference may be enlarged, as local clients
requiring stronger privacy have larger accuracy degradation than others, which leads to
being treated unfairly for poor performance. On the other hand, ensuring fairness may
require the server to access more sensitive information to mitigate the bias in the clients’
data distribution, raising more privacy concerns. Therefore, more effective methods for
providing required privacy protection for each local client without bringing unfairness
need to be further researched [145, 146].
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6.2.4 Heterogeneous Privacy Protection Level

Most DPFL frameworks have not accounted for privacy heterogeneity, often assuming that
all local clients require the same level of privacy protection [147]. However, in real-world
scenarios, different local clients may have varying privacy requirements [55, 147]. For
example, patients in a hospital database may be more concerned about the privacy of their
medical records compared to others, necessitating stronger privacy protections for them.
Furthermore, regulations and laws often impose stricter protections on certain types of
data [10, 11]. Therefore, designing an effective heterogeneous privacy protection scheme
for DPFL is an important research direction that better aligns with diverse privacy needs.

6.2.5 Unified Privacy Auditing Frameworks

Due to the various applications in the IoT environment, there may be different require-
ments for privacy protection levels and targets, such as LDP, CDP, approximate DP and
RDP [57, 59]. Many recent studies use different DP mechanisms and composition theo-
rems, which may have very different bounds for privacy loss. The most commonly used
method for evaluating privacy is the privacy budget ε , which is a theoretical guarantee and
varies based on the DP mechanisms. In addition, some regulations may require auditing
the privacy during FL [55]. Therefore, a unified privacy auditing framework should be
explored to provide a more practical and intuitive privacy measurement in order to ensure
compliance with the regulation and to help researchers improve DPFL [55].

6.2.6 Adaptive Defense of Privacy

The current PPFL literature focuses on the passive defense of privacy [143]. To be specific,
they normally first assume that clients or servers are curious about the sensitive data and
implement corresponding defenses for local clients. Moreover, the clients and servers
adopt the privacy protection techniques on the gradients over the training, which may
cause unnecessary utility degradation since attackers may not always be active. Another
challenge for privacy protection is that privacy attacks also keep evolving, necessitating
stronger privacy protection techniques. To tackle the aforementioned problems, a more
comprehensive and proactive privacy protection framework is essential to identify privacy
attacks or risks across various scenarios, enabling better implementations of appropriate
DP settings and timing [143].

While both DP and HE have been proven to ensure privacy protection in FL, DP can
lead to accuracy degradation, and HE may introduce heavy computation overhead. There
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are a few studies that have already combined DP and HE to improve privacy protection and
overall utilities, but these methods may still perform worse than the non-private FL [121].
The combination of DP and HE can be further optimized to reduce computational costs
and improve accuracy while maintaining strong privacy guarantees [51]. In addition, the
existing works assume that HE and DP will be applied together at the same time across the
FL training, which may be unnecessary. A novel technique to automatically choose the
proper privacy-preserving technique, either alone or in combination, based on the current
environment and models, can be designed.

6.2.7 Security and Robustness

Most existing DPFL frameworks assume that the local clients are semi-honest. However,
FL is vulnerable to Byzantine faults and malicious clients, which can interfere with the
training process. Detecting anomalous clients often requires the collection of additional
information, potentially increasing the risk of privacy leakage [122]. The accuracy degra-
dation due to the noise may cause the system to identify the local users as malicious clients.
Although a few works have proposed Byzantine-robust DPFL, these works sacrifice the
privacy protection level, and they only work against a smaller proportion of Byzantine
clients than that in non-private FL [148]. Therefore, robust aggregation methods in DPFL
that ensure resilience against adversarial behaviors while maintaining privacy protection
need to be further researched.



Appendices

A Proof of Lemma 5

To obtain the expected change on dzk, dzk is first obtained by reversing the backpropa-
gation. Then, the expected change dzk generated by dwk and dbk are computed corre-
spondingly, which is noted as ddwkzk and ddbkzk. Based on (2.8), the following can be
obtained:

dwk =
1
n′

dzk · (aT
k−1), (A.1)

dwk ·ak−1 =
1
n′

dzk · (aT
k−1) ·ak−1, (A.2)

ddwkzk = dwk ·ak−1. (A.3)

Then, as (2.9) is a vectorization implementation for the DNN training and ddbkzk can-
not be directly obtained, an approximate value as ddbkzk = dbk is computed. Therefore, for
the first layer, its dzk through reverse backpropagation is computed as

dzk = ddwkzk +ddbkzk

= dwk ·ak−1 +dbk.
(A.4)

After that, for all the following layers, to compute the reversed dzk, it also needs to
consider the derivative part of the dzk−1. Based on (2.7)-(2.10), the following can be
obtained:

dzk−1 = dak−1×g′actk−1
(zk−1)

= (wk)
T ·dzk×g′actk−1

(zk−1),
(A.5)

wk ·dzk−1 = dzk×g′actk−1
(zk−1). (A.6)
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Next, the multiplication term g′actk−1
(zk−1) needs to be simplified, where gactk−1(zk−1)

is the activation function of the (k−1)-th layer. For all the hidden layers (except the first
one), ReLU activation is used in this thesis. Therefore g′act(z) is a function of following:

g′act(z) =

{
0 z < 0,
1 others.

(A.7)

In this case, for all the elements in zk−1, whose values are not larger than zero, the
dzk has no effect on these elements so that the reversed dzk from dzk−1 is zero. Then,
for all the elements in zk−1, whose values are larger than zero, the reversed dzk of these
elements are the same as the values of the corresponding elements of dzk−1. To formalize,
the expected changes dzk from dzk−1, noted as ddzk−1zk is computed equivalent as follows:

ddzk−1zk = wk ·dzk−1×g′actk−1
(zk−1). (A.8)

Then, for all the hidden layers (except the first one), the dzk is computed:

dzk = ddzk−1zk +dwkzk +dbkzk

= dwk ·ak−1 +dbk +wk ·dzk−1×g′actk−1
(zk−1).

(A.9)

Finally, to obtain the expected change in the noisy gradients on the loss, it needs to
substitute the expected changes of dwk, dbk and dzk−1 into (A.9), where the expected
changes of dwk and dbk are the noise added on the gradients and the expected changes of
dzk−1 is obtained by iterative calculation. This completes the proof.

B Proof of Theorem 3

To find the expected change in the final loss function, the relation between (3.14) and
(3.17) is computed as follows:

dzk

dzk
=

dwk ·ak−1 +dbk +wk ·dzk−1×g′actk−1
(zk−1)

N(dwk) ·ak−1 +N(dbk)+wk ·dzk−1×g′k(zk−1)
. (A.10)

Then, the noise is generated as follows:

N(∇W ) = N(0,S2
i σ

2), (A.11)
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where Si is calculated as ||∇W ||
ni

for every layer. Therefore, the following can be obtained:

N(dwk)

dwk
=
||N(dwk)||
||dwk||

=

||dwk||∗σ√
ni

||dwk||
=

σ
√

ni
. (A.12)

With the (2.6) and the constant label value Y , the expected change is computed as
daK = σ√

ni
∗ (aK−Y ), which completes the proof.

C Proof of Corollary 1

Similar to Lemma 5 and Theorem 3, the expected change, dzk, is also generated with the
expected changes on dzk−1, dbk and dwk. The properties of the convolution process are
used, a ∗ b× c = a ∗ (b× c) = (a ∗ b)× c, to obtain the corresponding expected change
dzk−1zk from the expected changes on dzk−1 as follows:

dzk−1 = dzk−1 ·
dzk−1

dzk−1

=
dzk−1

dzk−1
·dzconv

k ∗ rot180(ak)×g′k(zk−1),

(A.13)

dzk−1zconv
k =

dzk−1

dzk−1
·dzconv

k . (A.14)

Similarly, the corresponding expected change dwkzk from the expected changes on dwk

can be computed as follows:

dconv
wk

zk =
dzk−1

dzk−1
·dwk. (A.15)

Finally, by combining (A.10), (A.12) and (A.15), the following can be obtained:

dzk =
σ
√

ni
·dzk. (A.16)

This completes the proof.

D Proof of Lemma 6

As shown in Algorithm 3.2, in one round of the training, the following can be obtained:

h(wt
i;wt) = Fi(Wi)+λ ∗Siσ , (A.17)
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∇h(wt
i;wt) = ∇Fi(Wi)+λ ∗σ∇Si, (A.18)

W t
i =W t−∇h(wt

i;wt), (A.19)

∇W t
i =W t−W t

i , (A.20)

W t+1 =W t−∑
1
m
(∇W t

i +Ni). (A.21)

By substituting (3.9) into (A.18), the following can be obtained:

∇h(wt
i;wt) = ∇Fi(Wi)+λ ∗σ

W t−W t
i

Si
. (A.22)

Since Fi(W ) is ρ-Lipschitz smooth as in Assumption 1, the following can be obtained:

Fi(W t+1)≤ Fi(W t)+(∇W t)T (W t+1−W t)+
ρ

2
||W t+1−W t ||2, (A.23)

for all the W t+1 and W t . Then, for the global loss function, since the global model is the
average of the local models, it has F(W t) = E{Fi(W t)} and ∇F(W t) = E{∇F(W t

i )}.
Then, the following can be obtained:

E{F(W t+1)−F(W t)} ≤ E{∇(F(W t))T (W t+1−W t)}+E{ρ

2
||W t+1−W t ||2}. (A.24)

Based on (A.18), (A.19) and (A.21), the following can be obtained:

W t+1−W t = E{−(∇Fi(W )+λ ∗Sσ
√

n)}

=−((∇F(W t)−E{λ ∗σ
√

n
W t−W t

i
S

})

=− ∇F

1+ λσ
√

n
S

,

(A.25)

where S = E{Si} and n = E{ni}.
By substituting (A.21) and (A.25) into (A.24), the following can be obtained:

E{F(W t+1)−F(W t)} ≤ E{∇FT (− ∇F

η + λσ
√

n
S

+N)}+ ρ

2
E{||− ∇F

1+ λσ
√

n
S

+N||2}.

(A.26)
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Then, using triangle inequation, the following can be obtained:

E{F(W t+1)−F(W t)} ≤ (
ρl2

1
2
− l1)||∇F ||2 +(1− l1ρ)||∇F ||E{||N||}+ ρ

2
E{||N||2},

(A.27)

where
l1 =

1

1+ λσ
√

n
S

, (A.28)

which completes the proof.

E Proof of Theorem 4

By subtracting E{F(W ∗)} on both sides of (A.27), the following can be obtained:

E{F(W t+1)−F(W ∗)} ≤ E{F(W t)−F(W ∗)}+(
ρl2

1
2
− l1)||∇F ||2

+(1− l1ρ)||∇F ||E{||N||}+ ρ

2
E{||N||2}.

(A.29)

It is known that ||∇F(W )|| ≤ β and with (3.9), ||W t+1−W t || can be bounded as

||W t+1−W t ||= ||−∇F(W t)−E{λ ∗σ
√

n
W t−W t

i
S

}||

≤ −β +λ ∗σ
√

n
||W t+1−W t ||

S
≤ (λ ∗σn

3
2 −β ).

(A.30)

Then, with the noise generating method in Algorithm 3.2, the following can be ob-
tained:

E{||N||} ≤ σ√
n
(λ ∗σn

3
2 −β ). (A.31)

Then, by substituting (A.25), (A.26), (A.30) and (A.31) into (A.29) and with F(W )−
F(W ∗)≤ 1

2µ
||∇F(W )||2, the following can be obtained:

E{F(W t+1)−F(W ∗)} ≤ l3 ∗E{F(W t)−F(W ∗)}+βq1(1− l1ρ)+
ρ

2
q2

1, (A.32)



APPENDIX . PROOFS 118

where

l3 = (µρl2
1−2l1µ +1), (A.33)

q1 =
σ√

n
(λ ∗σn

3
2 −β ). (A.34)

Finally, since the noise is generated in the same and independent way, it is assumed
the noise for all the communication rounds shares the same expected bound value. By
repeating (A.32) for T communication rounds, the convergence can be upper bounded as

E{F(W t+1)−F(W ∗)} ≤ lT
3 E{F(W 0)−F(W ∗)}+(βq1(1− l1ρ)+

ρ

2
q2

1)∗
(1− lT

3 )

1− l3
,

(A.35)

which completes the proof.

F Proof of Theorem 5

Based on (A.27) and (A.31), the following can be obtained:

F(W t+1)≤ F(W t)+(
ρl2

1
2
− l1)||∇F ||2 +βq1(1− l1ρ)+

ρ

2
q2

1. (A.36)

By taking T iterations of (A.36), the following can be obtained:

(l1−
ρl2

1
2

)∑ ||∇F ||2 ≤ F(W 0)−F(W ∗)+T βq1(1− l1ρ)+T
ρ

2
q2

1, (A.37)

which implies:

E{||∇F ||2} ≤ F(W 0)−F(W ∗)

(l1−
ρl2

1
2 )∗T

+
βq1(1− l1ρ)+

ρq2
1

2

(l1−
ρl2

1
2 )

. (A.38)

This completes the proof.
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G Proof of Lemma 7

By considering the gradients clipping, noise addition in Section 4.2 and triangle inequality,
the noisy gradients can be expressed as follows:

||g(x∗)||= ||g(x∗)∗min(1,
C

||g(x∗)||
)+N(0,σ2(

C
n
)2)||

≤ ||g(x∗)∗min(1,
C

||g(x∗)||
)||+ ||

√
n∗σ

C
n
||

≤ ||g(x∗)∗min(1,
C

||g(x∗)||
)||+ ||g(x∗)|| ∗ σ√

n
∗ C
||g(x∗)||

.

(A.39)

Then, the following can be obtained:

||g(x∗)|| ≤ k1∗ ||g(x∗)||, (A.40)

where,
k1 = min(1,

C
||g(x∗)||

)+
σ√

n
∗ C
||g(x∗)||

. (A.41)

This completes the proof.

H Proof of Corollary 2

Since F(W ) is L-Lipschitz smooth as in Assumption 2, and if the learning rate is set as
1/L, the following can be obtained:

J(xt+1)− J(xt)≤ ∇(J(xt))T (W t+1−W t)+
L
2
||W t+1−W t ||2

≤ ∇(J(xt))T (−1
L
∗ k3∗∇J)+

L
2
||− 1

L
∗ k3∗∇J||2

≤− k3

2L
||∇J||2.

(A.42)

Then, by computing T times iteratively and rearranging the formulas, the following
can be obtained:

∑
k3

2L
||∇J||2 ≤ J(x0)− J(x∗), (A.43)

E{||∇J||2} ≤ L(J(x0)− J(x∗))
2T k3

, (A.44)
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which completes the proof.

I Proof of Lemma 8

By expanding the l2-norm, the following can be obtained:

J−Re = arg min
x∈(0,1)n

||g(x)−g(x∗)||

= arg min
x∈(0,1)n

√
(g(x)−g(x∗))2

= arg min
x∈(0,1)n

√
g(x)2−2∗g(x∗)+g(x∗)

2

= arg min
x∈(0,1)n

√
(g(x)−g(x∗))2−2g(x)g(x∗)+2g(x)g(x∗)+g(x∗)

2−g(x∗)2.

(A.45)

Then, by taking triangle inequalities, the following can be obtained:

J−Re≤
√

(g(x)−g(x∗))2 +

√
g(x∗)

2−g(x∗)2 +

√
−2g(x)g(x∗)+2g(x)g(x∗) (A.46)

J ≤ J+
√

2g(x)(g(x∗)−g(x∗))+
√

g(x∗)
2−g(x∗)2. (A.47)

Next, it is considered that if the derivatives of x are computed in J, the term g(x∗) is
discarded. Therefore, for the purpose of simplifying the presentation, the final item of
(A.47) is discarded. With Lemma 7, the following can be obtained:

J = J+2
√
(1− k1)∗g(x)g(x∗), (A.48)

which completes the proof.

J Proof of Theorem 7

The following can be obtained:

∇J = g′(x)
g(x)−g(x∗)
||g(x)−g(x∗)||

+∇Re = (β3±1)g′(x), (A.49)

where
β3g′(x) = ∇Re. (A.50)
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Then, the following can be obtained:

∇J = (β3±1)g′(x)+ k4g′(x) = (1+
k4

(β3±1)
)∇J. (A.51)

Since J(x) is L-Lipschitz smooth as in Assumption 2, and the learning rate is set as
1/L, the following can be obtained:

J(xt+1)− J(xt)≤ ∇(J(xt))T (W t+1−W t)+
L
2
||W t+1−W t ||2

≤ ∇(J(xt))T (−1
L
∗ (∇J))+

L
2
||− 1

L
∗ (∇J)||2

≤−||∇J||2

2L

≤−
k2

5||∇J||2

2L
,

(A.52)

where,

k5 = 1+
k4

(β3±1)
. (A.53)

Then, by taking T iterations of (A.52), the following can be obtained:

∑
k2

5||∇J||2

2L
≤ J(x0)− J(x∗), (A.54)

E{||∇F ||2}= L(F(x0)−F(x∗))
2T k2

5
, (A.55)

which completes the proof.

K Proof of Theorem 8

To compute the DP bound of the proposed ADPDFL, it is considered the privacy am-
plification for sampling and anonymous mechanisms. Collecting training clients is con-
sidered a sampling procedure with a sampling rate rtcs for two proposed frameworks in
one aggregation. Then, the proposed framework without anonymous mechanism satisfies
(α,3.5r2

tcsα/σ2)-RDP based on Lemma 3.
Combining the results in [117,118,149], shuffling all the gradients before aggregation

can reduce the ε by a factor of the number of total clients in an RDP-based centralized FL
framework. In the proposed anonymous framework, it can seen that all the gradients are
shuffled. Therefore, privacy amplification with a factor of m can be achieved. Meanwhile,
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since the framework is decentralized and the gradient receiver is also anonymous, the
proposed framework can achieve an extra privacy amplification factor of m. Therefore,
the proposed framework satisfies (α,3.5r2

tcsα/m2σ2)-RDP.
Then, by Lemma 4, the proposed fake-central framework satisfies (α,3.5Tr2

tcsα/m2σ2).
However, for the gossip-based framework, each client needs to send out me gradients.
Therefore, it satisfies (α,3.5T mer2

tcsα/m2σ2)-RDP. Then, it sets s1 = r2
tcsme for gossip-

based and s1 = r2
tcs for fake-central.

Next, in order to guarantee (ε,δ )-DP, the following can be obtained

3.5T s1α

m2σ2 +
log(1/δ )

α−1
= ε, (A.56)

where α = 1+2log(1/δ )/ε , and the following can be obtained:

3.5T s1

m2σ2 (1+
2log( 1

δ
)

ε
)+

log(1/δ )

2log( 1
δ
)

ε

= ε, (A.57)

3.5T s1

m2σ2 (1+
2log( 1

δ
)

ε
) =

ε

2
, (A.58)

σ
2 =

7s1T (ε +2log(1/δ ))

m2ε2 , (A.59)

where s1 = r2
tcsme for gossip-based framework, and s1 = r2

tcs for fake-central framework.
Meanwhile, if α = 1+2log(1/δ )/ε and α ≥ 2, the following can be obtained:

ε ≤ 2log(
1
δ
). (A.60)

This completes the proof.

L Proof of Theorem 9

Considering at tth round FL of gossip-based in Algorithm 5.1 and 5.2 and one client’s
model is randomly chosen to be the global model, the following can be obtained:

W t+1
i =W t

i − ∑
j∈St

i

pi(∇Fi(W t
j )+Nt

j), (A.61)

where S is the the set of received gradients at client i at tth round, pi is the weight of the
aggregation.
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Since F(w) is L-Lipschitz smooth, the following can be obtained:

F(W t+1)≤ F(W t)+< ∇F(W t),(W t+1−W t)>+
L
2
||W t+1−W t ||2. (A.62)

Meanwhile, the following lemma is needed.

Lemma 9 For gossip-based learning, the aggregated model parameters W t+1
i in client i

have the following properties [150, 151],

E||W t+1
i −W t

i ||2 ≤
1

1−ρ2
||W t+1−W t ||2, (A.63)

where W t+1 is the assumed aggregation model parameters of all clients and ρ2 is the

second largest eigenvalue of the graph matrix.

Based on (A.61), Lemma 9 and 2∗ < a,b >= ||a||2 + ||b||2−||a−b||2, the following
can be obtained:

F(W t+1)≤ F(W t)+< ∇F(W t),−( ∑
j=m

p j(∇F(W t
j )+Nt

j))>+
L
2
|| ∑

j=m
p j(∇F(W t

j )+Nt
j)||2

F(W t+1)≤ F(W t)+< ∇F(W t),− ∑
j=m

p j(∇F(W t
j )>+

L
2
|| ∑

j=m
p j(∇F(W t

j )+Nt
j)||2

F(W t+1)≤ F(W t)− 1
2
||∇F(W t)||2− 1

2
||(1−ρ) ∑

j∈St
i

p j(∇F(W t
j )||2

+
1
2
||∇F(W t)− ∑

j=m
p j(∇F(W t

j )||2

+
L(1−ρ)

2
(|| ∑

j∈St
i

p j(∇F(W t
j ))||2 + || ∑

j∈St
i

p j(Nt
j)||2),

(A.64)

where Nt
i is the added noise on the client i at round t, St

i is the aggregation set in client i.
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The expectation of both sides of the above formula is taken to have

E{F(W t+1)−F(W t)} ≤ −E{1−ρ

2
|| ∑

j∈St
i

p j(∇F(W t
j )||2︸ ︷︷ ︸

A1

−1
2
||∇F(W t)||2

+
1
2
||∇F(W t)− ∑

j=m
p j(∇F(W t

j )||2

+
L(1−ρ)

2
(|| ∑

j∈St
i

p j(∇F(W t
j ))||2 + || ∑

j∈St
i

p j(Nt
j)||2)}.

(A.65)

Based on Assumption 4, the term A1 is bounded as follows:

|| ∑
j∈St

i

p j(∇F(W t
j )||2 ≤

1
mtcsme

∑
j∈St
||∇Fj(W t

j )||2

+
me−1

mtcsme(mtcs−1) ∑
j, j′∈St

j ̸= j′

(∇Fj(W t
j ))

T
∇F ′j(W

′t
j )

≤ (
1

mtcsme
− me−1

mtcsme(mtcs−1)
) ∑

j∈St
||∇Fj(W t

j )||2

+
me−1

mtcsme(mtcs−1)
(∑

j∈St
∇Fj(W t

j ))
2

≤ mtcs(me−1)
me(mtcs−1)

||∇F(W t)||2 + mtcs−me

mtcsme(mtcs−1) ∑
j∈St
||∇Fj(W t

j )||2

≤ mtcs(me−1)
me(mtcs−1)

||∇F(W t)||2 + mtcs−me

mtcsme(mtcs−1) ∑
j∈St
||∇F(W t)||2

+
mtcs−me

mtcsme(mtcs−1) ∑
j∈St
||∇Fj(W t

j )−∇F(W t)||2

≤ ||∇F(W t)||2 + mtcs−me

mtcsme(mtcs−1) ∑
j∈St
||∇Fj(W t

j )−∇F(W t)||2

≤ ||∇F(W t)||2 + ζ 2(mtcs−me)

me(mtcs−1)
. (A.66)

Then, with Assumption 4 and Theorem 8 and by substituting (A.66) into (A.65), the
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following can be obtained:

E{F(W t+1)−F(W t)} ≤ (L−1)(1−ρ)−1
2

||∇F(W t)||2

+
ζ 2(L−1)(1−ρ)(mtcs−me)

2me(mtcs−1)
+

ζ 2

2
+

2LC2σ2(1−ρ)

n2me
.

(A.67)

By rearranging (A.67) and recursive computation, the following can be obtained:

−(L−1)(1−ρ)−1
2 ∑

T
||∇F(W t)||2 ≤ F(W 0)−F(W ∗)− T ζ 2

2
+

2T LC2σ2(1−ρ)

n2me

+
T ζ 2(L−1)(1−ρ)(mtcs−me)

2me(mtcs−1)
.

(A.68)

Finally, the following can be obtained:

E{||∇F(W t)||2} ≤ 2(F(W 0)−F(W ∗))
T (ρ +ρL−L−2)

− ζ 2

(ρ +ρL−L+2)

+
ζ 2(L+1)(1−ρ)(mtcs−me)

me(ρ +ρL−L+2)(mtcs−1)
+

4LC2σ2(1−ρ)

n2me(ρ +ρL−L−2)
.

(A.69)

On the other hand, for the fake-central framework, the following can be obtained:

F(W t+1)≤ F(W t)− 1
2
||∇F(W t)||2− 1

2
|| ∑

j∈St
i

p j(∇F(W t
j )||2

+
1
2
||∇F(W t)− ∑

j=m
p j(∇F(W t

j )||2

+
L
2
|| ∑

j∈St
i

p j(∇F(W t
j ))||2 +

L
2
|| ∑

j∈St
i

p j(Nt
j)||2.

(A.70)

By following the similar derivation, it can substitute me and mt to mt and m in (A.66)
to have

|| ∑
j∈St

i

p j(∇F(W t
j )||2 ≤ ||∇F(W t)||2 + ζ 2(m−mtcs)

mtcs(m−1)
. (A.71)
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By substituting (A.71) into (A.70), the following can be obtained:

E{F(W t+1)−F(W t)} ≤ L−2
2
||∇F(W t)||2 + ζ 2(L−1)(m−mtcs)

2mtcs(m−1)
− ζ 2

2
+

2LC2σ2

n2mtcs
.

(A.72)

By rearranging (A.72) and recursive computation, the following can be obtained:

−L−2
2 ∑

T
||∇F(W t)||2 ≤ F(W 0)−F(W ∗)− T ζ 2

2
+

T ζ 2(L−1)(m−mtcs)

2mtcs(m−1)
+

2T LC2σ2

n2mtcs
.

(A.73)

Finally, the following can be obtained:

E{||∇F(W t)||2} ≤ 2(F(W 0)−F(W ∗))
T (2−L)

− ζ 2

(2−L)
+

ζ 2(L+1)(m−mtcs)

mtcs(2−L)(m−1)
+

4LC2σ2

n2mtcs(2−L)
.

(A.74)

This completes the proof.
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