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Abstract

We show that all three golden ratio Thompson’s groups Fτ , Tτ and Vτ embed in the asynchronous
rational group. We prove properties of the Cayley graph of the monoid M = ⟨L,R : LR2 = RL2⟩,
whose topological full group is Vτ . Particularly we compute a distance function for the Cayley graph of
the monoid M . Additionally, we prove that this Cayley graph is hyperbolic in the sense of Gromov. Our
analysis reveals that the horofunction boundary of this graph is homeomorphic to a space resembling a
Cantor-like set, with additional isolated points situated between each pair of breakpoints.
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Chapter 1

Introduction

1.1 Overview

In 1965 R. Thompson introduced three groups F , T , V , which were used in [27] for construction of
finitely-presented groups with unsolvable word problems. In [34] Thompson showed that the groups T
and V are finitely-presented, infinite simple groups and used the group V to prove that a group with
finitely many generators has a solvable word problem if and only if it can be embedded into a finitely
generated simple subgroup of a finitely presented group. The group F was used in a number of works
related to homotopy idempotents [16, 19]. In [20] it was proven that F is the first known example of a
torsion-free infinite-dimensional FP∞ group. Later on it was proven in [29] that F is simply connected
at infinity, hence showing that the group does not have any homotopy at infinity.

Thompson’s group F can be defined in several equivalent ways:

• a group of piecewise linear homeomorphisms of the unit interval [0,1], where each homeomorphism
has finitely many breakpoints at dyadic rational points and slopes that are powers of 2, formally
F = G([0, 1];Z[1

2
], ⟨2⟩);

• a group of tree pair diagrams, where elements are represented by pairs of finite binary trees with
the same number of leaves;

• a finitely presented group with two generators and two relations.

The Thompson’s groups F, T , and V can be seen as groups of piecewise linear homeomorphisms of the
unit interval, the unit circle and the Cantor set respectively, that map dyadic rational numbers to dyadic
rational numbers, and are differentiable everywhere except for a finite number of dyadic numbers, and
the derivative of the interval of differentiability is always a power of 2. For a detailed introduction on
Thompson’s groups we refer the reader to [12] and [9].

In 2000 S. Cleary in his paper [13] introduced irrational slope Thompson’s groups. These irrational
slope Thompson’s groups are a variation of the classic Thompson’s group, with the breakpoints being now
in Z[τ ] and slopes being power of τ , where τ =

√
5−1
2

is the positive square root of the equation x2+x = 1

1



CHAPTER 1. INTRODUCTION 2

and is called the small golden ratio. In [8] and [10] J. Burillo, B. Nucinkis, and L. Reeves proved that
the commutator subgroup of Fτ is simple but Tτ and Vτ have index-2 normal subgroups; they also gave
a finite presentation of these groups and represented them in terms of binary trees.

The approach we adopt for rationality builds on the work of R. I. Grigorchuk, V. V. Nekrashevych,
and V. I. Sushchanskii [21], who employed finite state machines to describe sets, relations, and functions.
A central objective of this framework is to define homeomorphisms on the Cantor set {0, 1}ω using
asynchronous machines, where a single symbol is read as input and a finite string, composed of elements
of {0, 1}, is produced as output during each step of computation. These homeomorphisms correspond
to rational functions.

A homeomorphism of the Cantor set {0, 1}ω is called rational if it can be realized by an asyn-
chronous transducer (or asynchronous Mealy machine) that acts on infinite binary strings. In [21], R.
I. Grigorchuk, V. V. Nekrashevych, and V. I. Sushchanskii observed that the collection of all rational
homeomorphisms of {0, 1}ω form a group R under the operation of composition, which they called the
rational group. Additionally, they point out that the group of rational homeomorphisms of Aω, for any
finite alphabet A with at least two symbols, is isomorphic to R.

Over the last few decades relatively low focus has been directed towards the class of groups generated
by asynchronous transducers, particularly the full asynchronous rational group R. It is established that
the group R is simple but not finitely generated [6]. Furthermore, finitely generated subgroups of R
have a solvable word problem, however there is no solution to the periodicity problem for elements
of R [3, 21]. Additionally, R contains several well-known groups: the Thompson groups F , T , and V ,
the Brin-Thompson groups nV and groups like the Röver group VΓ [3, 21, 33]. Furthermore, any group
generated by synchronous automata can be embedded into R.

In 2023 J. Belk, C. Bleak, F. Matucci and M. Zaremsky proved that all hyperbolic groups satisfy
the Boone–Higman conjecture in [4]. The Boone–Higman conjecture was proposed in 1973 and states
that a finitely generated group with a solvable word problem can be embedded in a finitely presented
simple group. The authors proved that hyperbolic groups meet this criterion by demonstrating that each
hyperbolic group embeds within a finitely presented simple group. In their proof they introduced a new
class of groups, which they called rational similarity groups. Rational similarity groups generalize self-
similar groups by allowing for rational, “canonical similarity” transformations within subshifts of finite
type. Specifically, the authors showed that each hyperbolic group embeds in a full, contracting rational
similarity group, which embeds in a finitely presented simple group. Additionally, rational similarity
groups emerged as fundamental objects in the study of asynchronous group actions, suggesting their
potential broader applicability in embedding problems within geometric and combinatorial group theory.

In [5], J. Belk, C. Bleak and F. Matucci proved that every Gromov hyperbolic group G embeds in
the rational group R, where by Gromov hyperbolic group we mean a group with a Cayley graph Γ

that is hyperbolic in Gromov sense. This embedding uses a framework where elements of G act on a
boundary space (horofunction boundary ∂hG) of binary sequences by asynchronous transducers. In the
same paper the authors proved that for any hyperbolic group G, the action of G on its horofunction
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boundary ∂hG is rational. In the construction, the authors introduce a specific tree structure within
the hyperbolic graph Γ, which they call the tree of atoms. They observed that when a group G acts
properly and cocompactly on Γ then the tree of atoms has a self-similar structure and in addition is
naturally homeomorphic to the horofunction boundary ∂hΓ (also known as the metric boundary). It
was shown in [36] that the horofunction boundary ∂hΓ is compact, totally disconnected and has the
Gromov boundary ∂Γ as a quotient.

1.2 Summary of main results

In section 3 we prove the following theorem. Let {0, 1}ω be the set of all binary sequences. LetXi, Yi, Ci+1

and Πi, for i = {0, 1} be rational homeomorphisms of the Cantor set {0, 1}ω defined by the automata
shown in Figure 3.1 (which differ only in their initial states).

Theorem 1.2.1. The group G of homeomorphisms of {0, 1}ω generated by X0, X1, Y0, Y1, C1, C2, Π0

and Π1 is isomorphic to the golden ratio Thompson group Vτ . Moreover Vτ is a rational similarity group.

The first part of the theorem is proven directly in Theorem 3.1.1. First, we identify a quotient map from
the space of binary sequences {0, 1}ω to the unit interval [0, 1]. We then establish that an isomorphism
exists between the two groups. The second part is proven in Theorem 3.2.5. The proof heavily relies on
the ideas presented by J. Belk, C. Bleak, F. Matucci and M. Zaremsky in [4]. They stated the conditions
for a set of maps to be a nucleus of injections (Definition 3.2.3) and the conditions for a group to be
a rational similarity group with a given nucleus (Theorem 3.2.4). We adapt these ideas to find the
nucleus N for G, this lays a background in proving that Vτ is a rational similarity group.

From this, we derive a corollary: Fτ and Tτ are isomorphic to subgroups of G formed by the gener-
ators Xi, Yi and Xi, Yi, Ci+1 respectively. This provides insight into the interaction of irrational slope
Thompson groups within the context of automata and geometric representations.

Section 4 is heavily based on studying the properties of the Cayley graph of the monoid M = ⟨L,R :

LR2 = RL2⟩, whose topological full group is Vτ . Let M be the respective Cayley graph, see Figure 4.1.
Observe that the monoid M acts as the vertex set in M, on which we impose with the path metric.
Let x, m be vertices in M, we say that x ∈ Cone(m), if there is a word for x that starts with m. The
main result of the section is the following theorem:

Theorem 1.2.2. Let x, y be any given pair of vertices in the Cayley graph M of the monoid M =

⟨L,R : LR2 = RL2⟩. Then the distance between x and y is given by:

d(x, y) =


d(x′, y′), when x = mx′, y = my′ for some nontrivial m ∈M ;

|x|+ |y| − 2, when x ∈ Cone(LR), y ∈ Cone(RL) and x, y /∈ Cone(LR2);

|x|+ |y|, else.

The proof is presented in Theorem 4.3.1. The first step we make is to observe that every cone in M is
strongly geodesically convex, where by strongly geodesically convex we mean that if x, y ∈ Cone(m) then
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any geodesic between x and y is fully contained in Cone(m). The remaining proof involves manipulating
possible paths that a geodesic between x and y can take. The key idea here is to observe that if x starts
with L and y starts with R then a geodesic either visits the root 1 or passes though the Cone(LR2),
which is self-similar to the whole graph itself.

This theorem provides a useful distance function in a Cayley graph, which has a complicated struc-
ture. It is not only a profound tool in Sections 5 and 6 of this paper, but also it lays a solid background
in further study of the monoid M .

Section 5 explores the horofunction boundary of the graph M, introducing a Cantor-like set Dτ .
This set includes additional isolated points between each pair of breakpoints, as shown below.

· · · · · ·
x+1 x−2 x2 x+2 x−3 x3 x+3 x−4 x4 x+4 x−5 x5 x+5 x−6

where every breakpoint xi belongs to the ring Z[τ ] ∩ (0, 1), and each interval above represents a similar
Cantor set with extra isolated points.

Theorem 1.2.3. The horofunction boundary ∂hM of the Cayley graph M of the monoid M = ⟨L,R :

LR2 = RL2⟩ is naturally homeomorphic to Dτ .

The proof is presented in Theorem 5.3.2. Our proof heavily relies on the ideas presented by J. Belk, C.
Bleak, and F. Matucci in [5]. The main idea of the proof is to construct a tree of atoms. This tree’s
boundary is shown to be homeomorphic to the horofunction boundary (Theorem 5.1.8). We start by
considering vector fields, where each vector corresponds to a distance function between the two vertices,
on the set of edges contained in balls of radius n ≥ 0 around the root of M. Since M is a locally finite
graph, for every n, there is a finite number of possible vector fields. For each distinct vector field we
associate a set of vertices from the whole graph, for which the vector field coincides with the distance
function. Whenever the set is infinite, we call it an atom. With each increment of n, the previous atoms
decompose into new ones. Eventually we observe a pattern in atoms and construct a tree of atoms.
This tree has a self-similar structure and can be represented as a directed multi-graph. We show that
the path space of this graph is Dτ . Then, following [5], we conclude that the horofunction boundary of
the graph M is homeomorphic to Dτ .

This result establishes a solid understanding of the horofunction boundary of the Cayley graph
of the monoid M = ⟨L,R : LR2 = RL2⟩ potentially leading to discovering new properties of the
monoid M . This case raises an interesting question: could the horofunction boundary of all monoids
of type ⟨L,R : LRn = RLn⟩ for n > 1, also be a Cantor-like space with additional isolated points
between each pair of breakpoints? Exploring this could unveil a broader, underlying structure in the
horofunction boundaries of monoids.

In Section 6 we embed the graph M into M′, which is the same graph but with additional edges
between every pair of adjacent vertices. We prove that these two graphs are quasi-isometric. Relying on
the work of S. Kong, K. Lau and X. Wang [25] we prove certain proprieties (Theorem 6.1.4) of M′ that
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are equivalent of it being a hyperbolic graph, thus resulting in the following theorem, which is proved
in Theorem 6.3.1.

Theorem 1.2.4. The Cayley graph M of the monoid M = ⟨L,R : LR2 = RL2⟩ is δ-hyperbolic.



Chapter 2

Background

2.1 Word spaces

In this section, we recall the fundamental concepts of alphabets and the languages they generate. We
rely on the definitions stated in [21, Section 2.1]. Our goal is to construct a background to produce
infinite sequences from finite sets, which will be used throughout this paper.

Let X be a finite set with at least two elements, we refer to it as an alphabet. From X, we construct
the set X∗, known as the free monoid generated by X. Elements of X∗ are finite sequences of symbols
from X, which are called words. The set also includes the empty word ϵ. If v = a1a2 . . . an ∈ X∗,
then |v| = n represents the length of v. The length of the empty word ϵ is 0.

In addition to finite words, we also consider infinite sequences a1a2a3 . . ., where ai ∈ X. The
set of all such infinite sequences is denoted by Xω. For any v ∈ X∗ and u ∈ X∗ ∪ Xω, we can
define the concatenation (product) vu ∈ Xω in a natural way. A word v ∈ X∗ is a prefix of another
word u ∈ X∗ ∪Xω if u = vy for some y ∈ X∗ ∪Xω. For any given set of words X ⊆ X∗ ∪Xω, there
exists a unique longest common prefix of all words in X, this prefix is infinite if and only if X consists
of a single infinite word.

We endow the set X with the discrete topology, and Xω with the product topology. This space is
homeomorphic to the Cantor set, which implies that its topological type does not depend on the choice
of X. For any finite word v ∈ X∗, the set c(v) = {vu : u ∈ Xω} is both open and closed in this
topology. The family {c(v) : v ∈ X∗} forms a basis for the topology on Xω. The sets c(v1) and c(v2)

have a nonempty intersection if and only if one of v1 or v2 is a prefix of the other. In such case, the set
corresponding to the longer word is a subset of the other.

2.2 Automaton and rational groups

In this section we recall the concepts of automata theory formulated in [21, Section 2]. We state the
definitions for automata, rational groups and how they are connected from [5, Section 1.1]. Our goal is
to build up the language that connects graph theory with a special variation of Thompson’s groups.

6
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Definition 2.2.1. [5, Definition 1.1] An automaton has the following components:

1. Two finite sets Xin and Xout, which are called the input and output alphabet.

2. A finite set of states Q, where each element represents a distinct state.

3. An initial state q0 that belongs to the set Q.

4. A transition function t that maps a state q ∈ Q and an input symbol a ∈ Xin to a new state
q′ ∈ Q, represented as t : Q×Xin → Q.

5. An output function o that maps a state q ∈ Q and an input symbol a ∈ Xin to a string of output
symbols s ∈ Xout, represented as o : Q×Xin → X∗

out.

The automaton is classified as synchronous if the output mapping o generates a single symbol from
the output alphabet Xout for each state q ∈ Q and input symbol a ∈ Xin. If this condition is not met,
the automaton is called asynchronous.

An automaton can be graphically represented as a finite directed graph. Each state is depicted as a
node in the graph. The transitions and outputs are illustrated by directed edges. Specifically, for each
state q ∈ Q and input symbol a ∈ Xin, there is a directed edge from the node representing q to the node
representing t(q, a), labeled with a/o(q, a).

If the reader is unfamiliar with directed graphs, a formal definition appears in Section 5.
Given an automaton T = (Xin, Xout, Q, q0, t, o), an input word for T is an infinite sequence a1a2a3... ∈

Xω
in. The corresponding output word is the concatenation of the outputs produced by the output mapping

o for each state transition, expressed as:

o(q0, a1)o(q1, a2)o(q2, a3)...,

where {qn} is the sequence of states starting from the initial state q0, defined recursively as qn =

t(qn−1, an).
It’s worth noting that the output word may be finite if the output function o(q, a) is the empty

word for all but finitely many input symbols a in a given state q. However, our focus is on automata
whose output words are always infinite. Such automata are called nondegenerate, otherwise we call them
degenerate. A nondegenerate automaton defines a mapping from infinite input words to infinite output
words over the respective alphabets.

Example 2.2.2. Observe the automaton X shown in Figure 2.1, where f is the initial state. When an
infinite input word consisting of 1s (represented as 111 . . .) is processed through the automaton starting
from state f , the output is 01. In other words, f(111 . . .) = 01. Note that if an automaton contains a
cycle that produces empty output words, it is degenerate.

Definition 2.2.3. [5, Definition 1.2]A function f : Xω
in → Xω

out is called rational if there exists a
non-degenerate automaton X over the alphabets Xin and Xout such that f(ψ) = X (ψ) for all ψ ∈ Xω

in.
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ida

f

b

0/1

1/01

0/1

0/11/ϵ 1/ϵ

0/0

1/1

Figure 2.1: An automaton that is degenerate.

Rational functions possess several key properties [5, Proposition 1.3]:

1. Rational functions are continuous with respect to the product topologies on Xω
in and Xω

out.

2. The composition of two rational functions is again a rational function.

3. If f : Xω
in → Xω

out is a rational bijection, then the inverse function f−1 : Xω
out → Xω

in is also rational.

Definition 2.2.4. [5, Definition 1.4] Let X be a finite alphabet, consisting of at least two symbols, we
define the rational group RX . This group consists of all rational homeomorphisms of Xω. All rational
groups RX are isomorphic to each other, we refer to a single rational group R without specifying the
alphabet.

When G is a group, any injective homomorphism G→ RX is a rational representation of this group.
The rational group R can be studied through an infinite rooted tree X∗ of finite strings over X. The
boundary ∂X∗ of this tree is homeomorphic to Xω, and the action of R on Xω can be understood by
analyzing the restrictions of rational functions to the subtrees of X∗. See section 5.1 for the definitions
of trees and boundaries.

It has been shown in [5] that every finitely generated group, whose Cayley graph is delta-hyperbolic,
embeds in the rational group R. This result creates a bridge between geometric group theory and the
theory of automata. This opens questions about what properties of hyperbolic groups are preserved by
this embedding.

Definition 2.2.5. [21, Definition 2.3] Let f : Xω
in → Xω

out be a continuous non-constant function
and w ∈ X∗

in be a finite word. The local action of f at the word w is denoted by f |w, is the mapping f |w :

Xω
in → Xω

out defined as:
∀u ∈ Xω

in, f(wu) = vf |w(u),
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where v is the longest common prefix of the sets of words {f(wu) : u ∈ Xω
in}. If this set has only a

single word, then the largest common prefix is infinite, in which case f |w is undefined.
In other words, the local action f |w describes how f acts on infinite words that begin with the finite

prefix w. If the output of f on words with prefix w is independent of the infinite suffix after w, then
the local action at w is undefined. It is not allowed for f to be a constant function, because a constant
function may map two distinct input words to the same output word, which is not allowed.

Theorem 2.2.6. [21, Theorem 2.5] A continuous mapping f : Xω
in → Xω

out is rational if and only if it
has a finite number of local actions.

Definition 2.2.7. [5, Definition 2.1] Let Γ be a finite directed graph, then the subshift of finite type is
assosiated to Γ is the set ΣΓ of all infinite directed paths in Γ.

Let α be a finite path in a directed graph Γ, then a cone is the set Cα ⊆ ΣΓ containing all infinite
paths that start with the prefix α. When v is a vertex in Γ, then cone Cv is the of all infinite directed
paths that start from v. We denote C∅ as the set of all infinite paths in Γ. Every cone C is a clopen
subset of ΣΓ with the product topology, in addition they for a basis for a topology. [5, Section 2.1]

Definition 2.2.8. [4, Definition 2.19] A subshift ΣΓ has an irreducible core if there exists an induced
subgraph Γ0 of Γ such that the following conditions hold:

1. the graph Γ0 is irreducible;

2. for every vertex v ∈ Γ0, there is a directed path in Γ from v to a vertex in Γ0;

3. there exists n ≥ 0 such that every directed path in Γ of length n terminates in Γ0.

Proposition 2.2.9. [5, Proposition 2.12] Let ΣΓ be a subshift of finite type with no isolated points or
empty cones, and E ⊆ ΣΓ be a nonempty clopen set. Then the set RΓ,E of rational homeomorphisms E →
E forms a group under composition.

Definition 2.2.10. [5, Section 2.1] A canonical similarity

Lα : Ct(α) → Cα

is a homeomorphism defined by the formula Lα(ω) = α · ω, where α is a finite path. Generally when α
and β are finite paths with t(α) = t(β), the composition Lβ◦L−1

α defines the canonical similarity Cα → Cβ,
which maps α · ω to β · ω, for all ω ∈ Cα.

Definition 2.2.11. [5, Definition 2.32] Let ΣΓ be a subshift of finite type with no isolated points or
empty cones. Let E ⊆ ΣΓ be a nonempty clopen set, and let RΓ,E be the associated rational group.
A subgroup G ≤ RΓ,E is called a rational similarity group if, for every pair of cones Cα, Cβ neither of
which are contained within E with t(α) = t(β), there exists an element g ∈ G that maps Cα to Cβ via
the canonical similarity.
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2.3 Irrational slope Thompson groups

In this section, we introduce the Thompson group Fτ , which is an interesting variant of the Thompson
group F that was introduced by S. Clearly in 2005 in [13]. The group Fτ shares many structural
properties with the original Thompson group F , but with a key difference: the slopes and breakpoints
of the group elements are tied to the golden ratio

√
5−1
2

, also known as the small golden ratio. This
group has been extensively studied by J. Burillo, B. Nucinkis, and L. Reeves, who provided a finite
presentation for Fτ and explored its combinatorial structure in terms of binary trees in [8]. In [30] L.
Molyneux, B. Nucinkis, and Y. Rego calculated the BNSR-invariants for Fτ .

Let τ =
√
5−1
2

≈ 0.6180339887... be the small golden ratio, which is a root of the polynomial x2+x−1.
This value of τ is a unit in the ring Z[τ ], which consists of elements of the form a + bτ , where a and b

are integers.
One crucial property of τ is that τ + τ 2 = 1. This allows us to subdivide the unit interval into

two subintervals of length τ and τ 2 in two different ways: [0, 1] = [0, τ 2] ∪ [τ 2, 1] and [0, 1] = [0, τ ] ∪
[τ, 1] respectively. Observe that since τn = τn+1 + τn+2, every subdivision of the unit interval can be
subdivided into two subintervals of lengths of some powers of τ . Therefore every end-point of a sequence
of subdivisions will belong to Z[τ ], see [13] for a detailed proof. Taking this into account, we define the
following group:

Definition 2.3.1. Fτ is the group of homeomorphism from the unit interval to itself such that:

• they are piecewise linear and orientation-preserving;

• is non-differentiable at a finite number of points that belong to Z[τ ] ∩ [0, 1];

• where differentiable, the slope is a power of τ .

Formally:
Fτ = G([0, 1];Z[τ ], ⟨τ⟩)

Here we adopt the standard notation for representing the Thompson’s group F , where [0, 1] represents
the domain and range of the functions, Z[τ ] represents the set of non-differentiable points, and ⟨τ⟩
represents the set of possible slops for the differentiable segments.

Like Thompson’s group F , elements of Fτ can be represented by pairs of binary trees. Each binary
tree encodes a subdivision of the interval into subintervals, and the leaves of the trees correspond to
these subintervals. However, unlike in F , we must distinguish between two types of subdivisions in Fτ

one of length τ and one of length τ 2. This is represented in the tree diagram by carets with edges of
different lengths, where the longer edge corresponds to the shorter interval and vice versa, to encode the
length as a power of τ . Following [8], we define two types of carets in Fτ :

Definition 2.3.2. [8, Definition 1.1] For the group Fτ , we define two types of carets:
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[0, τ 2]

[τ 2, 1] [0, τ ]

[τ, 1]

Figure 2.2: A pair of tree diagrams representing the domain and range of a function in Fτ , where the
domain caret is of x-type and range caret is of y-type

• an x-type caret has a long left edge and a short right edge. It subdivides an interval [x, y] into [x, x+

τ 2(y − x)] ∪ [x+ τ 2(y − x), y].

• a y-type caret has a short left edge and a long right edge. It subdivides an interval [x, y] into [x, x+

τ(y − x)] ∪ [x+ τ(y − x), y].

See Figure 2.3 for a visual representation of these caret types.

A pair of tree diagrams has a non-trivial application. Whenever both trees have the same number
of leaves they can be used to represent the domain and range. Let’s view a short example.

Example 2.3.3. Take the function f : [0, 1] → [0, 1] defined by:

f(x) =

xτ when 0 ≤ x < τ 2;

xτ−1 − τ when τ 2 ≤ x ≤ 1.

Let’s verify that f belongs to Fτ .

Proof. The function f is piecewise-linear and since 0 = f(0) and 1 = f(1), it is orientation preserving.
The derivative of f is:

f ′(x) =

τ when 0 ≤ x < τ 2;

τ−1 when τ 2 < x ≤ 1.

Hence, the slopes of f are powers of τ and f is not differentiable only at a finite number of points that
belong to Z[τ ]. Hence, f belongs to Fτ .

We can express a function that belongs to Fτ as a pair of tree diagrams, where the left tree represents
the domain and the right tree represents the range. See Figure 2.2 for the representation of f . The
general rule for reading a tree diagram is that the nth interval in the domain tree, counting from the
left, is mapped to the nth interval in the range tree, unless specified otherwise. The length of intervals
in a tree diagram corresponds to τn, where n is the distance from the root to the end of the caret of the
respective interval. Short carets have a length of 1, while long carets have a length of 2.

The distinction between the two types of carets reflects the relationship between the depth of a node
in the tree and the length of the associated interval. The tree depth corresponds to powers of τ , with
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[0, τ 2]

[τ 2, τ ]

[τ, 1] [0, τ 2]

[τ 2, τ ]

[τ, 1]

Figure 2.3: Interchangeable tree patterns

[0, τ 4]

[τ 4, τ 2]

[τ 2, 1]

[0, τ 3]

[τ 3, τ ] [τ, 1]

Figure 2.4: Adding carets to the tree diagram without changing the element of Fτ

shorter intervals being represented by carets with longer edges, as this encodes the exponential scaling
of interval lengths.

One interesting property of Fτ is that there exist subdivisons that correspond to multiple tree dia-
grams. Observe, a subdivision of [0, 1] into three subintervals of lengths τ 2, τ 3, and τ 2 can be represented
by two distinct trees, as shown in Figure 2.3. This process of interchanging subtrees, while preserving
the overall structure, is called a basic move. Note that the first tree is constructed by 2 x-type carets,
whereas the second is made of 2 y-types. Such patterns are always interchangeable even if they appear
as subtrees, while preserving the overall structure of the interval subdivision.

This property leads to interesting algebraic consequences, such as the fact that two different reduced
diagrams may represent the same element in Fτ , unlike in the classical Thompson group F , where such
diagrams can always be reduced further. This flexibility plays an important role in defining opera-
tions within the group, such as composition, which is performed by combining tree pair diagrams after
expanding them to a common subdivision.

Since there are an infinite number of binary tree representations for the same element of Fτ , one can
further subdivide the n-th subinterval of the domain and range tree by adding carets of the same type
to corresponding leaves in both trees. See Figure 2.4 for an example of how a caret can be added to
the tree diagrams without altering the element of Fτ . Therefore carets of the same pair can be canceled
without the risk of changing the element. This leads to the conclusion of [8, Theorem 7.3], which states
that every element of Fτ has a unique representation without cancellative carets.

Theorem 2.3.4. [8, Theorem 4.4] The group Fτ is generated by four key elements: x0, x1 and y0, y1
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[0, τ 4]

[τ 2, 1]

[τ 4, τ 2]

[0, τ 2]

[τ 2, τ ]

[τ 2, 1]

[0, τ 2]

[τ 2, τ 2 + τ 5]

[τ, 1]

[τ 2 + τ 5, τ ] [0, τ 2]

[τ 2, τ ]

[τ, τ + τ 4]

[τ + τ 4, 1]

Figure 2.5: The generators x0 and x1 as tree diagrams.

(see Figures 2.5, 2.6 for the generators).

These generators are analogous to the generators x0 and x1 of Thompson’s group F , but the presence
of both x and y type carets introduces additional complexity. These generators satisfy relations similar
to those in F :

xjxi = xixj+1, xjyi = yixj+1, yjxi = xiyj+1, yjyi = yiyj+1, y2i = xixi+1.

This finite presentation provides a framework for constructing any element of Fτ as a product of these
generators. Figure 2.7 represents the infinite generators of the group Fτ .

The group Tτ is the group of piecewise-linear, orientation-preserving homeomorphisms of the circle,
such that it is not differentiable only at a finite number of points in Z[τ ], and having derivatives of the
differentiable intervals as powers of τ .

Thompson’s group Tτ can be constructed by considering maps on the unit circle. We identify the
two endpoints of the unit interval [0, 1], hence we can consider the maps of the interval in such a way
that the images of 0 and 1 are equal. For a more detailed introduction to Tτ , we refer the reader to [10].

Theorem 2.3.5. [10, Theorem 2.2] The Thompson group Tτ is generated by the generators of the
Thompson group Fτ and, in addition, c1 and c2. See Figure 2.8 for these generators.

The rules for Tτ are identical to those for Fτ with the only difference being that we allow permutation
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[0, τ 4]

[τ 2, 1]

[τ 4, τ 2]

[0, τ 2]

[τ 2, τ ]

[τ 2, 1]

[0, τ 2]

[τ 2, τ 2 + τ 4]

[τ, 1]

[τ 2 + τ 4, τ ] [0, τ 2]

[τ 2, τ ]

[τ, τ + τ 4]

[τ + τ 4, 1]

Figure 2.6: The generators y0 and y1 as tree diagrams.

of the order of the range intervals. For example, the range intervals of the cn generators are shifted once
anticlockwise.

The group Vτ is the group of piecewise-linear, orientation-preserving bijections of the interval, such
that it is not differantiable only at a finite number of points in Z[τ ], and having derivatives of the
differential intervals as powers of τ . We consider two elements of Vτ to be the same if they agree
everywhere but on a finite set of points. For a more detailed introduction to Vτ , we refer the reader
to [10].

Theorem 2.3.6. [10, Section 4] The Thompson group Vτ is generated by the generators of the Thompson
group Tτ and, in addition, π0 and π1. See Figure 2.8 for these generators.

The rules for Vτ are identical to those for Fτ . The only difference is that Vτ has additional generator
that permute the penultimate and ultimate intervals in the range tree.

We will now present a construction of the Cantor set on which Vτ acts. For a detailed introduction
on the Cantor set we refer the reader to [37, Section 30].

Definition 2.3.7. Let E be a countable dense subset of (0, 1). The blowup of [0, 1] along E is the set

([0, 1] \ E) ∪ {x− : x ∈ E} ∪ {x+ : x ∈ E}.
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n carets

. . .

n carets

. . .

n carets

. . .

n carets

. . .

Figure 2.7: The generators xn and yn as tree diagrams.
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a

b

c c

a

b

a

b

c

d

d

a

b

c

Figure 2.8: The generators c1 and c2 as tree diagrams. The labels on the leaves determine which domain
intervals map to which range intervals.

a

b

c b

a

c

a

b

c

d

a

c

b

d

Figure 2.9: The generators π0 and π1 as tree diagrams.
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We endow this blowup with the order topology, where a < x− < x+ < b for any x ∈ E and a, b ∈ [0, 1]\E
such that a < x < b.

Theorem 2.3.8. [24, Cantor’s isomorphism theorem. Theorem 4.3] Any two countable, dense, un-
bounded linear orders are order-isomorphic

We can now prove that a blowup along [0, 1] is an efficient tool in construction of a Cantor set.

Theorem 2.3.9. Any blowup of [0, 1] along a countable dense subset E of (0, 1) is homeomorphic to the
Cantor set.

Proof. By Cantor’s theorem we have an order isomorphism f : E → D, where D = Z
[
1
2

]
∩ (0, 1). This

extends continuously to a homeomorphism f : [0, 1] → [0, 1] that maps E to D, and it follows that the
blowup of [0, 1] along E is homeomorphic to the blowup of [0, 1] along D. But the latter is obviously
homeomorphic to the usual Cantor set.

Definition 2.3.10. Let Iτ = Z[τ ] ∩ (0, 1), where Z[τ ] = {a + bτ : a, b ∈ Z}. Then Cτ is a Cantor set
defined by a blowup along Iτ .

Let xi ∈ Iτ then the Cantor set Cτ is depicted as:

· · · · · ·
x+1 x−2 x+2 x−3 x+3 x−4 x+4 x−5 x+5 x−6

Where each interval above represents a similar Cantor set. The Thompson’s group Vτ acts on this Cantor
set. Specifically, if f ∈ Vτ maps an interval (a, b) to (c, d) for some a, b, c, d ∈ Z[τ ], then f maps [a+, b−]
homeomorphically to [c+, d−]. It can be seen as the group of all possible permutations of non-dividable
intervals contained in Cτ ,



Chapter 3

Irrational slope Thompson groups as an
asynchronous automaton

In this section, we explore the Thompson groups Fτ , Tτ , and Vτ and their representation as asynchronous
automata. This connection between group theory and automaton theory provides valuable insights into
the structure and properties of Vτ . We begin by recalling the generators of Vτ and then proceed to
construct an automaton that captures its behavior.

3.1 Thompson groups Fτ , Tτ and Vτ as group homeomorphisms

of the Cantor set

In this section we use the automaton theory to explore the dynamical properties of the Thompson
groups Fτ , Tτ and Vτ . Particularly we prove that the Thompson groups Fτ , Tτ and Vτ are isomorphic to
a certain groups of rational homeomorphisms of the Cantor set. Let X0, X1, Y0, Y1, C1, C2,Π0 and Π1 be
rational homeomorphisms of the Cantor set {0, 1}ω defined by the automata shown in Figure 3.1 (which
differ only in their initial states). We prove the following theorem.

Theorem 3.1.1. The group G of rational homeomorphisms of {0, 1}ω generated by X0, X1, Y0, Y1, C1,

C2, Π0 and Π1 is isomorphic to Vτ . Formally, G = ⟨X0, X1, Y0, Y1, C1, C2,Π0,Π1⟩ ≃ Vτ . See Figure 3.1
for the automata that generate the group G.

Note that G is a subgroup of Homeo({0, 1}ω). The rest of the section is dedicated to the proving this
theorem.

Let’s recall the generators of the Thompson group Vτ . It has been shown in [10, Section 4] that Vτ
has an infinite generating set {xi, yi, ci+1, πi}, where i ∈ Z, and a finite generating set {x0, x1, y0, y1,
c1, c2, π0, π1}, see Figures 2.5, 2.6, 2.8 and 2.9 for the generating elements. Our goal is to demonstrate
that there exists an asynchronous automaton with initial states corresponding to the generating set
{x0, x1, y0, y1, c1, c2, π0, π1}.

18
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X1 X0 α

id

0/0

1/1 0/ϵ

1/11
0/0

1/100/0

1/1

Y0Y1 β

γ
0/0

1/1 0/ϵ

1/11

0/0

1/ϵ

0/011

1/10

C1 δ1

id

1/ϵ

0/10
0/11

1/0

0/0

1/1

C2 δ2

δ3

1/ϵ

0/10 0/110

1/ϵ

0/111

1/0Π0

γ

0/10

1/ϵ
0/0

1/11

Π1

0/0
1/1

Figure 3.1: Automata that generate the Thompson group Vτ .
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LL

R

LL

L

RR

R

0

1

0

11

1

Figure 3.2: Carets of the y1 generator addressed by pairs L’s,R’s and 0’s, 1’s

To accurately interpret the domain and ranges in trees using binary sequences, we need to establish
a standardized notation for caret addresses. Let a left caret be denoted as L and a right caret as R
to provide clarity in representation. In this context, two letters of the same kind represent a long
caret, while one letter symbolizes a short caret. Consistently, we assign values 0 and 1 to LL and R

respectively, ensuring a precise and coherent portrayal of caret addresses in binary sequences.

Example 3.1.2. Figure 3.2 demonstrates the intuition behind the notation we use to address carets in
a tree representation. Note that a small left caret denoted by L is not defined in the binary {0, 1}
representation. However this is not a problem as we are allowed to add additional carets and perform
basic moves.

Remark 3.1.3. Recall that the tree diagrams for the xn and yn generators are read by following a sequence
of carets that start from the root and, at each step, slide down the tree until reaching a caret that does
not have any children. Note that a finite tree has at most m such sequences, where m is the total number
of carets in the tree.

Our proof that the generators of G are rational homeomorphisms will use the golden ratio base for
numbers, where a base τ expansion of x ∈ R is 0.α1α2 · · · , where αi ∈ {0, 1} and

∑∞
i=1 αiτ

i = x. See [7]
for a general introduction to irrational bases. Every x ∈ R has many different base τ expansions. For
example, since τ = τ 2+τ 3, it follows that τ has expansions 0.1000 · · · and 0.011000 · · · , additionally τ =

τ 2+τ 4+τ 5, so τ has also expansion 0.01011000 · · · . However, we can make the base τ expansion unique
for most numbers in [0, 1] if we impose the rules that α1 = 0 and all finite strings of 0’s in α2, α3, . . .

have even length. If we use these rules, then any number is Z[τ ]∩ (0, 1) has 2 expansions and any other
number in [0, 1] has a unique expansion. By applying these rules we obtain that two base τ expansions
represent the same x if they have forms 0.β00111 · · · and 0.β1000 · · · for some finite β ∈ {0, 1}∗. For
example, imposing these rules limits the possible expansions of τ to 0.1000 · · · and 0.00111 · · · .

The following propositions follows immediately from the golden-ratio base.
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Proposition 3.1.4. Let q : {0, 1}ω → [0, 1] be defined as q = q2q1(ω), where:

q1(ω1) =

00q1(ω2), when ω1 = 0ω2

1q1(ω2), when ω1 = 1ω2

;

q2(ω) = 1−
∞∑
n=1

τn+1(1− ωn) =
∞∑
n=1

τn+1ωn.

Note that q is an order preserving surjection, where each point in Z[τ ]∩ (0, 1) has 2 preimages and every
other point in [0, 1] has 1 preimage; that is, q is an almost one-to-one surjection. Moreover, q commutes
with the rational map generating Vτ . We check this for the X0 and x0 generators in Proposition 3.1.6

The function q1 performs a simple operation. It replaces every occurrence of 0 with 00. Whereas q2
mimics the behavior of the left L or right R operations. Observe that L only changes the upper bound
of the interval by a power of τ , whereas R only changes the lower bound. Take a finite sequence RRR...
At each sequential R the interval is shrunk from the left by τn+1. This representation forces the lower
bound to converge with the upper bound when the sequence is infinite. As a result, there are exactly
two formulas that can convert the infinite sequence to a point in the interval. Either by summing up
powers of τ at the positions of 1’s or by subtracting from 1 the powers of τ at the 0’s positions.

To illustrate how the formula works let’s consider an example. Let ωex = 010100 . . .

q(ωex) = q(010100 . . . ) = q2q1(010100 . . . ) = q2(0010010000 . . . )

=
∞∑
n=1

τn+1(ωn) = τ 4 + τ 7.

The following corollary follows from Proposition 3.1.4.

Corollary 3.1.5. There exists a homeomorphism h such that the following diagram commutes.

{0, 1}ω

Cτ

[0, 1]

h

q

π

Since q is order-preserving, the fiber over each x in [0, 1] consist of 2 points if the x is in Z[τ ] and one
point otherwise.

Proposition 3.1.6. The map q makes the following diagram commute, where X0 is a generator of G
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X0 α

id

0/ϵ

1/11
0/0

1/100/0

1/1

Figure 3.3: The X0 generator

and x0 is a generator of Vτ .

{0, 1}ω {0, 1}ω

{0, 1}ω {0, 1}ω

[0, 1] [0, 1]

X0

q1 q1

q2 q2

x0

q q

Proof. We will verify that x0q = qX0. Let’s recall the x0 generator and the X0 generator, see Figures 2.5
and 3.3. From reading the diagram that describes the generator x0, we introduce two linear functions fL,
fR : [0, 1] → [0, 1], defined by:

fL(t) = τt;

fR(t) = (1− τ) + τt.

For simplicity we denote fx◦fy = fxy. Due to being linear these functions satisfy the following equations:
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x0fL4(ω1) = fL2(ω1);

x0fL2R(ω1) = fRL2(ω1);

x0fR = fR2(ω1);

fLq2(ω1) = q2(0ω1);

fRq2(ω1) = q2(1ω1).

We distinguish 3 cases when the input word starts with 00, 01 and 1, corresponding to all possible
inputs.

x0q2q1(00ω) = x0q2(0000ω2) = x0fL4q2(ω2) = fL2q2(ω2)

= q2(00ω2) = q2q1(0ω) = q2q1X0(00ω);

x0q2q1(01ω) = x0q2(001ω2) = x0fL2Rq2(ω2) = fRL2q2(ω2)

= q2(100ω2) = q2q1(10ω) = q2q1X0(01ω);

x0q2q1(1ω) = x0q2(1ω2) = x0fRq2(ω2) = fR2q2(ω2)

= q2(11ω2) = q2q1(11ω) = q2q1X0(1ω).

Hence, q is in fact maps X0 to x0.

It is similarly straightforward to check that this rational map acts the same on other pairs of generators.
We now have enough material to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. For each g ∈ G, let ϕ(g) be the unique element of Vτ that makes the following
diagram commute:

{0, 1}ω {0, 1}ω

Cτ Cτ

g

h h

ϕ(g)

Let v ∈ {0, 1}ω, then by construction it will be mapped to [0, 1] in two different ways q ◦ g(v) and
ϕ(g) ◦ q(v), thus ϕ is well defined. We will now show that ϕ is a homomorphism. Let g1, g2 ∈ G,
then g2 ◦ g1 is also an element of G. Hence, by the definition of ϕ the following holds:

q ◦ g1 = ϕ(g1) ◦ q;

q ◦ g2 = ϕ(g2) ◦ q;

q ◦ g2 ◦ g1 = ϕ(g2 ◦ g1) ◦ q.
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By manipulating the first two equations we obtain:

q ◦ g2 ◦ g1 = ϕ(g2) ◦ ϕ(g1) ◦ q.

And thus:
ϕ(g2 ◦ g1) ◦ q = ϕ(g2) ◦ ϕ(g1) ◦ q.

Therefore, ϕ is a homomorphism. Figure 3.4 represents a diagram of this homomorphism for an arbitrary
pair g1, g2 ∈ G. Combining this with Lemma 3.1.5 makes ϕ an isomorphism from G to Vτ .

{0, 1}ω {0, 1}ω {0, 1}ω

Cτ Cτ Cτ

g1 g2

h h h

ϕ(g1) ϕ(g2)

g2 · g1

ϕ(g2 · g1)

Figure 3.4: A diagram representing the homomorphism of ϕ

Since by Theorems 2.3.5 and 2.3.6 the generators of both Tτ and Fτ are contained in Vτ we obtained
the following two corollaries.

Corollary 3.1.7. The group of homeomorphisms of {0, 1}ω generated by X0, X1, Y0 and Y1 is isomorphic
to Fτ . See Figure 3.1 for the automata.

Corollary 3.1.8. The group of homeomorphisms of {0, 1}ω generated by X0, X1, Y0, Y1, C1 and C2 is
isomorphic to Tτ . See Figure 3.1 for the automata.

3.2 Nucleus of the automata that generates Vτ

Having established the automaton representation of Vτ , we now turn our attention to the nucleus, which
is a crucial concept in automata theory. The nucleus of an automaton provides a compact representation
of its essential states and transitions. In this section, we will identify the nucleus for the automaton
generating Vτ , which will offer deeper insights into the group’s structure.
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Definition 3.2.1. [4, Section 2.6] Let f ∈ RX,E be a non-degenerate map and α, β be finite paths in X,
then f has only a finite number of local actions f |α. The set of all local actions that occur infinitely
many times is called the nucleus and is denoted by Nf . Formally Nf = {f |α : f |α = f |β for infinitely
many β}. As a consequence f |α /∈ Nf only for a finite number of different α.

Definition 3.2.2. [4, Definition 2.41] Let G ≤ RX , then the nucleus NG of G is defined as the union
of all Ng for g ∈ G. Hence, NG is the smallest set of functions such that for any g ∈ G, g|α ∈ NG holds
for all but for a finite number of α ∈ X∗. We call G ≤ RX contracting whenever NG is finite and ΣX

has an irreducible core.

Definition 3.2.3. [4, Definition 2.43] A set of maps N is the nucleus of injections if it satisfies the
following conditions:

1. The identity map belongs to N ;

2. For every map x ∈ N , x|α ∈ N .

3. For every map x ∈ N there exists f ∈ N such that x ∈ Nf ;

4. For every map x ∈ N , Nx−1 ⊆ N ;

5. For every pair of maps x and y ∈ N , Nxy ⊆ N .

Theorem 3.2.4. [4, Theorem 2.46] Let N be a nucleus of injections over ΣX and E ⊆ ΣX be an
nonempty clopen set, then

G = {f ∈ RX,E : Nf ⊆ N}

is a rational similarity group with nucleus N .

Theorem 3.2.5. The nucleus of the automaton that generates the Thompson group Vτ is given by the
states {β, γ, id}.

Proof. To identify the nucleus of the automaton that generates the Thompson group Vτ , we make an
educated guess based on the properties of the nucleus. It is known that every map in the nucleus must
occur for infinitely many words. The only maps that could potentially satisfy this condition are β, γ,
id since nucleus elements must follow a cycle in the automaton diagram, see Figure 3.1. Let us denote
the set of these maps as N = {β, γ, id}.

We now proceed to verify that the set N satisfies the required conditions for being the nucleus of
injections.

The first condition follows since the identity map id belongs to N .
The second condition is satisfied, as for every map x ∈ N , x|α ∈ N for all α, by observation of

Figure 3.1.
The third condition is immediate since {β, γ, id} ⊆ Nβ by observation of Figure 3.1.



CHAPTER 3. IRRATIONAL SLOPE THOMPSON GROUPS 26

id−1

β−1

t

β

γ

0/1

0/ϵ

1/1

0/0

1/ϵ

0/011

1/10

0/0

1/1

γ−1u

v

1/ϵ

0/0

1/ϵ

1/ϵ

Figure 3.5: Automata of the the inverse maps of β, γ and id of the Thompson group Vτ

The fourth condition is verified through direct computation of the inverse maps of β, γ, and id, as
shown in Figure 3.5. Observe that β−1 is defined for words that start with 10 or 0, and β−1|10 = id,
and β−1|0 = β. Whereas γ−1 is defined only for words that start with 011 or 10, and γ−1|011 = γ−1|10 =
id. Therefore, Nβ−1 = {β, γ, id}, Nγ−1 = {id} and Nid−1 = Nid. Thus, the fourth condition is satisfied.

The fifth condition is the most complex, as it requires us to consider all possible compositions of
maps in the nucleus. We will analyze these compositions case by case, showing that they always result
in maps within our proposed nucleus. Verifying that the nucleus of a product with the identity state id
belongs to the set N is trivial. Therefore, we only need to confirm that the nuclei of γ2, γβ, βγ, and β2

are contained in the set N . We can verify this by considering the following eight possible scenarios:

γ2(0ω) = γ(1ω) = 0ω;

γ2(1ω) = γ(0ω) = 1ω;

γβ(0ω) = γ(0)β(ω) = 1β(ω);

γβ(1ω) = γ2(ω);

βγ(0ω) = β(1ω) = 1γ(ω);

βγ(1ω) = β(0ω) = 0β(ω);

β2(0ω) = β(0)β(ω) = 0β2(ω);

β2(1ω) = β(1)γ(ω) = 1γ2(ω).

See Figure 3.6 for the automaton diagram of these maps. Observe that the maps γ2 and β2 act as
the identity. Whereas the maps γβ and βγ map all possible sequences to the maps γ, β and γ2 = id.
Therefore, since every possible sequence gets mapped back to a state in the set N , the fifth condition is
also satisfied.

Therefore, the set N = {β, γ, id} satisfies all five conditions required for being the nucleus of the
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Figure 3.6: The composition of states of N

automaton that generates the Thompson group Vτ .
Furthermore, given that the binary alphabet is irreducible and the nucleus N is finite, we conclude

that the nucleus is contracting.

Remark 3.2.6. It is not hard to see that Vτ is precisely this group G, in particular Vτ is a rational
similarity group.



Chapter 4

The monoid M

This section introduces the reader to the main object of study in this thesis: the monoid M = ⟨L,R :

LR2 = RL2⟩. We start by building up the necessary language to talk about graphs, after which we
introduce the monoid M and its associated Cayley graph. We end the section by presenting the distance
formula for the Cayley graph of M and by introducing an intriguing representation of M in terms of
the real line.

4.1 Preliminary on graphs

In this section we restate some graph background definitions stated in [25, Section 2]. We will define
what a graph is, impose a partial order relation on it and induce a metric and a topology on it.

An undirected graph Γ = (V,E) consists of a countable set V , elements of which are called vertices,
and a symmetric subset E ⊆

{
{x, y} : x, y ∈ V and x ̸= y

}
, whose elements are unordered pairs

and are called edges. We represent edges as pairs of vertices, we do not allow loops, and we allow at
most one edge between any given pair of vertices. The graph is said to be locally finite if for every
vertex x ∈ V , deg(x) := #{y : {x, y} ∈ E} <∞, in other words, if every vertex emits a finite number of
edges. A path of length n is a sequence of edges {x0, x1}, {x1, x2} . . . {xn−1, xn}, where paths of length 0

are vertices.
A geodesic is a shortest path between two vertices. For x, y ∈ V , a geodesic from x to y is denoted

by π(x, y). The distance between x and y is the length of the geodesic and is denoted by d(x, y). In
case no geodesic exists then d(x, y) = ∞. If for all x, y ∈ V , d(x, y) is finite then the graph Γ = (V,E)

is connected ; in such case d is a word metric on V .
A root of a connected graph is a fixed vertex from which there exists a least one geodesic to every

other vertex in the graph. When a graph (V,E) is a locally finite connected graph and there exists a
vertex r ∈ V that acts as a fixed root then the triple (V,E, r) is called a rooted graph. From now on we
reserve the variable r for the root of a given graph. Note that for a given connected graph any vertex
can be chosen as its root. For x, r ∈ V we denote |x| := d(v, r) and let Vn := {x ∈ V : |x| = n}.
Then V =

⋃∞
n=0 Vn. We introduce a partial order relation ⪯ on V with y ⪯ x if and only if y belongs

28
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to some π(r, x).
Let’s briefly check that ⪯ is indeed a partial order relation.
Let x ∈ V , then x ∈ π(r, x) then x ⪯ x, hence, the relation ⪯ in reflexive.
Let x, y ∈ V be such a pair that x ⪯ y and y ⪯ x. Then x ∈ π(r, y) implies that |x| ≤ d(r, y) =

|π(r, y)| = |y|. And y ∈ π(v, x) implies that |y| ≤ d(v, x) = |π(r, x)| = |x|. Hence, |x| = |y|, but x ∈
π(r, y), therefore x = y. This shows that the relation ⪯ is antisymmetric.

Let x, y, z ∈ V such that x ⪯ y and y ⪯ z. Then y ∈ π(r, x) and z ∈ π(r, y). Since y ∈ π(r, x) then
a geodesic π(r, x) can be decomposed into π(r, y) and π(y, x). But z ∈ π(r, y), hence, z ∈ π(r, x). This
shows that ⪯ is transitive.

Hence, ⪯ is indeed a partial order relation.
Let m ≥ 0 and x ∈ V , then

Jm(x) := {y ∈ V : x ⪯ y, |y| = |x|+m}

is called the m-th descendant set, and

J−m(x) := {z ∈ V : x ∈ Jm(z)}

is called the m-th predecessor set of x respectively. In principle we allow Jm(x) to be empty.

4.2 The monoid M and its Cayley graph M

In this section we define the monoid M , properties of which we will analyse in the remaining sections of
this paper. A major goal of this paper is to study the geometric properties of M , such as horofunction
boundary and hyperbolicity. Therefore we will also present the Cayley graph M .

Let M = ⟨L,R : LR2 = RL2⟩ be the monoid generated by 2 elements L and R with the action being
multiplication by the right with the relation LR2 = RL2. As like any other monoid, M satisfies the
following properties:

• closure, i.e., if x, y ∈M then x · y ∈M ;

• associativity, i.e., if x, y, z ∈M then (x · y) · z = x · (y · z);

• presence of the identity element, i.e., there exists 1 ∈M such that for all x ∈M , 1 · x = x · 1 = x.

Note that unlike some other monoids, M lacks right cancellation, except for the identity element.
The Cayley graph of M is an undirected locally finite rooted graph denoted by M = (M,E, 1),

where:

• the vertex set M is in a bijection with the set of elements of the monoid M , i.e., every vertex in
M represents a unique element in M ;
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1
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L2 LR RL R2

LR2 = RL2

M

Figure 4.1: The Cayley graph M of the monoid M

• the edge set E consists of all pairs of vertices x, y ∈ M such that x = yL or x = yR, i.e., there
exists an edge between two vertices if one of their corresponding elements in M can be obtained
from the second one by right multiplication by L or R;

• the root of the graph is the identity element 1 of the monoid M .

In the case of the monoid M , the defining relation LR2 = RL2 imposes specific self-similarity constrains
on the structure of the Cayley graph M. For a visual representation of the Cayley graph M refer to
Figure 4.1. Note that the picture does not accurately represent the bottom layer, we expect the reader
to imagine a fractal structure at the boundary of the graph.

Definition 4.2.1. For any pair of vertices x, y ∈ M in the graph M = (M,E, 1), a code for a path
between x and y is a word w = w1w2 · · ·wn, where each wi ∈ L,R, L−1, R−1, with L and R being the
generators of the monoid M , and L−1 and R−1 being their formal inverses. The code for a path w from x

to y satisfies the equation xw = xw1w2 · · ·wn = y in the free group generated by L and R. The length
of w is defined as n corresponding to the number of elements in the word w. We denote the code of a
geodesic between x and y by c(x, y).
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While L−1 and R−1 are used in the representation, they do not exist in the monoid M itself, but rather
represent backtracking in the Cayley graph. In the actual graph M, each step of the path corresponds
to an edge, which is always a right multiplication by either L, R L−1 or R−1 with inverses indicating
moving “backwards” along an L or R edge, respectively.

The cone of an element x ∈ M , denoted by Cone(x), is the set of all elements in M that can be
obtained by multiplying x on the right by any element of the monoid M , formally,

Cone(x) = {x ·m : m ∈M},

in other words m ∈M is in the cone of x when x is a prefix of m.

Proposition 4.2.2. If x, y ∈M then Cone(x) ⊆ Cone(y) if and only if x ∈ Cone(y).

Proof. We will start from the forward condition, let x, y ∈M such that Cone(x) ⊆ Cone(y). Then x ∈
Cone(x) ⊆ Cone(y).

For the opposite direction let x ∈ Cone(y). Then there exists m ∈ M such that x = ym,
then Cone(x) = Cone(ym) ⊆ Cone(y).

We end this section with a small lemma, which is clear from Figure 4.1.

Lemma 4.2.3. Cone(L) ∩ Cone(R) = Cone(LR2) = Cone(RL2).

4.3 The distance formula for the graph M

In this section we introduce the distance formula for the graph M. We start by proving that every cone
in M is geodesically convex and then through a number of lemmas we introduce a geodesic formula for
any given pair of elements in M. The main purpose of this section is to prove the following theorem,
which will be used later in multiple sections.

Theorem 4.3.1. Let x, y be any given pair of vertices in the graph M. Then the distance between x

and y is given by:

d(x, y) =


d(x′, y′), when x = mx′, y = my′ for some nontrivial m ∈M ;

|x|+ |y| − 2, when x ∈ Cone(LR), y ∈ Cone(RL) and x, y /∈ Cone(LR2);

|x|+ |y|, else.

This formula offers a straightforward approach to calculating the distance between any given pair of
vertices x, y in M . There is a total of three steps to follow. The first step is to remove the common prefix,
resulting in obtaining x′ and y′. The next step is to identify the first pair of prefixes of x′ and y′. Finally,
if x′ ∈ Cone(LR) and y′ ∈ Cone(RL), then the distance is |x′|+ |y′| − 2; if not, it is simply |x′|+ |y′|.

We will prove this theorem by a number of lemmas throughout this section.
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Figure 4.2: Cone(L) of the graph M

Definition 4.3.2. Let S ⊆ X be a subset of a metric space X. The set S is said to be geodesically
convex if for any two elements x, y ∈ S, there exists at least one geodesic joining x and y that is entirely
contained in S.

In addition when every geodesic joining any two elements x, y ∈ S is entirely contained in S, the set
is called strongly geodesically convex.

Proposition 4.3.3. Each cone of M is strongly geodesically convex.

Proof. Let x, y ∈ Cone(L) (represented by the red triangle in Figure 4.2). Let’s assume, for the sake
of contradiction, that a geodesic π(x, y) at some point leaves Cone(L). Then π(x, y) can be decom-
posed into 3 subgeodesics π(x, y) = π(x, LRm) · π(LRm, LRn) · π(LRn, y). We will focus on the second
subgeodesic π(LRm, LRn), as it represents the portion of the path that supposedly leaves Cone(L).

We will now show that unique code c(LRm, LRn) is Rm−n (without loss of generality let m > n).
Any deviation from the direct ascending path, whose code is Rm−n, would introduce additional steps,
making the path longer. Therefore, Rm−n is the unique code of the geodesic from LRm to LRn.

This shortest path from LRm to LRn lies entirely within Cone(L). This contradicts the assumption
that a geodesic π(LRm, LRn) leaves Cone(L). Hence, Cone(L) is strongy geodesically convex.
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Rm

Ln

Figure 4.3: The graph M with the L−nRm code and Cone(LR2) highlighted

Due to symmetry, we apply the same argument to Cone(R) by interchanging the roles of L and R.
Observe that M is isometric to Cone(L) and Cone(R). Now since Cone(LL) and Cone(LR) are

strongly geodesically convex in Cone(L) they are also strongly geodesically convex in M. By induction
everything is Cone(L) and Cone(R) is strongly geodesically convex.

Suppose Cone(m) is strongly geodesically convex, then Cone(m) is isometric to M. Since Cone(L)
and Cone(R) are strongly geodesically convex in M, then Cone(mL) and Cone(mR) are strongly
geodesically convex in Cone(m). Thus, Cone(mR) are strongly geodesically convex in M. Hence,
every Cone(m) ∈ M is strongly geodesically convex.

Proposition 4.3.4. Let n,m ≥ 0, then the code of the unique geodesic π(Ln, Rm) is L−nRm.

See Figure 4.3 for an illustration of the unique geodesic π(Ln, Rm) in blue and Cone(LR2) in red.
This visualization will aid in understanding the subsequent proof by contradiction.

Proof. We will prove this by induction on k. For k ≥ 0, let n,m ≥ 0, then n + m ≤ k implies
that d(Ln, Rm) = n + m. Let k ≤ 1, then the statement holds trivially. Now let’s assume that the
statement holds for k − 1. We will now prove it for k.
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Suppose, for contradiction, that L−nRm is not the code of a geodesic c(Ln, Rm), and does not visit
the root 1. Then this geodesic must pass through Cone(LR2). In this case, a code c(Ln, Rm) can be
decomposed into 2 subcodes:

c(Ln, Rm) = c(Ln, RL2La) · c(RL2La, Rm),

where a ≤ n − 2. If a ≥ n − 2, we will end-up with a code longer than L−nRm, contradicting the
assumption that c(Ln, Rm) is not the code of a geodesic.

Let’s look at the second subcode c(RL2La, Rm). Due to the convex property of the monoid M , a
code c(RL2La, Rm) cannot leave Cone(R), hence c(RL2La, Rm) = c(L2La, Rm−1).

Note that (a + 2) + (m − 1) ≤ n +m − 1 = k − 1. Then by our induction hypothesis, the length
of a code c(RL2La, Rm) is a + m + 1. The code L−2L−aRm−1 is of such length, this implies that a
code c(Ln, Rm) visits LR2.

Given that a code c(Ln, Rm) visits LR2, we observe that it can be decomposed as:

c(Ln, Rm) = c(Ln, LR2) · c(LR2, Rm).

Consider the subcode c(Ln, LR2). From the convex property of M, we observe that c(Ln, LR2) =

c(Ln−1, R2). Since n− 1 + 2 < k, by our inductive hypothesis, d(Ln−1, R2) = n+ 1.
This gives d(Ln, LR2) = n+ 1 and similarly, d(LR2, Rm) = m+ 1. Hence,

d(Ln, Rm) = (n+ 1) + (m+ 1) = n+m+ 2.

But this is greater than n+m, which is the length of the code L−nRm. This contradicts that assumption
that c(Ln, Rm) does not pass through the root 1.

It is left to prove uniqueness. Observe that c(Ln, Rm) = c(Ln, 1) · c(1, Rm), where both subgcodes
have unique ascending and descending respective codes. Therefore, the unique code c(Ln, Rm) must
be L−nRm.

Proposition 4.3.5. Let x ∈
(
Cone(L) \ Cone(LR)

)
, then d(x,Rn) = |x|+ n.

Proof. The distance d(x,Rn) depends on the geodesic π(x,Rn), which on its half has two possibilities:
either it visits the root 1 or it does not. If it does we are trivially done. If n = 0 we are also trivially
done, let n > 0.

For the purpose of contradiction let’s assume that there exists a geodesic π(x,R) that does not visit
the root and has length at most |x|+ n− 1. If such a geodesic exists, then at some point it must enter
and leave Cone(LR). Then Proposition 4.3.4 implies that it must visit LR.

We can split the assumed geodesic into two subgeodesics in the following way:

π(x,R) = π(x, LR) · π(LR,Rn).
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Following Proposition 4.3.4, we observe that d(LR,Rn) = n + 2 and has two possible geodesics, one
that travels through the root and another one that goes through LR2. Then d(x,Rn) = d(x, LR) +

d(LR,Rn) = d(x, LR) + n+ 2 ≤ |x|+ n− 1 implies that d(x, LR) ≤ |x| − 3.
But this means that

d(x, 1) = d(x, LR) + d(LR, 1) ≤ |x| − 3 + 2 = |x| − 1.

This is a contradiction as there is no path from x to the root of length |x|−1. Therefore, if x ∈
(
Cone(L)\

Cone(LR)
)
, then every geodesic π(x,Rn) must pass through the root, consequently, d(x,Rn) = |x| +

n.

We now have enough tools to introduce a geodesic code formula for the graph M. Before we formally
state it, we will explain how it works.

This geodesic code formula offers a straightforward approach to finding a code of a geodesic between
any pair of vertices x and y. This is done in a number of steps:

1. identify the smallest Cone(m) such that x, y ∈ Cone(m), note that m can be the empty word;

2. remove the common prefix m from x and y, obtaining elements x′ and y′ respectively. Without
loss of generality let x′ start with L and y′ start with R;

3. if x′ ∈ Cone(LR) and y′ ∈ Cone(RL), then one of the geodesics from x to y starts from x, takes
the ascending path to mLR, then through mLR2 travels to mRL, and finally takes the descending
path to y. We denote the code of such geodesic as c(x, y) = (x′−1RL)(R−2L−1y);

4. if x′ /∈ Cone(LR) or y′ /∈ Cone(RL), then there may exist multiple geodesics from x to y. One of
these takes the ascending path from x to the root of Cone(m) (the vertex m) and then takes the
descending path to y. We denote the code of such geodesic as c(x, y) = x′−1y′.

Proposition 4.3.6. Let x, y be any given pair of vertices in the graph M, and let x′ and y′ be elements
obtained from x and y by removing their common prefix m. Then the code of a geodesic between x and y
is given by the following equation:

c(x, y) =


c(x′, y′), if x, y ∈ Cone(m) for some nontrivial m ∈M ;

(x−1RL2)(R−2L−1y), if x ∈
(
Cone(LR) \ Cone(LR2)

)
, y ∈

(
Cone(RL) \ Cone(LR2)

)
;

x−1y, else.

Before proving Proposition 4.3.6 we would like to invite the reader to view Figure 4.4. This figure
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Figure 4.4: The areas A1 - A5 on the Cayley graph M

demonstrates 5 subsets of vertices of the graph M.

A1 = Cone(L) \ Cone(LR);

A2 = Cone(LR) \ Cone(LR2);

A3 = Cone(LR2);

A4 = Cone(RL) \ Cone(LR2);

A5 = Cone(R) \ Cone(RL).

Essentially if x′ and y′ are in the Cone(m), then a geodesic will not pass through the root of Cone(m)

only if both x′ and y′ belong to the areas A2 and A4 respectively. If only one of them belongs to its
respective area then a geodesic has a choice of passing through the root or not. In case none of them
are, then every geodesic passes through the root m.

Proof. Suppose x, y are in Cone(m), where m is not the root, then the first case follows immediately
from Proposition 4.3.3.

Now suppose x and y are not in any nontrivial Cone(m). Clearly x and y cannot belong to
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Cone(LR2). Without loss of generality, let x start with L and y start with R. Let’s assume that a
geodesic π(x, y) passes through Cone(LR2). From Proposition 4.3.4 it is know that such a geodesic
must travel along the boundary of Cone(LR2). Hence, if π(x, y) passes though Cone(LR2) it must
visit LR2.

Therefore to pass from Cone(L) to Cone(R) a geodesic π(x, y) must visit 1 or LR2. This implies
that

π(x, y) = min{π(x, 1) · π(1, y), π(x, LR2) · π(LR2, y)}.

We only need to find the codes for π(x, 1) and π(x, LR2), as codes for y will be analogous cases.
Let’s start with the geodesic that passes though the root:

π(x, 1) = x−1 and d(x, 1) = |x|.

We now analyse the second possible geodesic π(x, LR2). We will split this into 2 cases, when x ∈(
Cone(LR) \ Cone(LR2)

)
(area A2 of Figure 4.4) and when x ∈

(
Cone(L) \ Cone(LR)

)
(area A1).

Then by Proposition 4.3.5:

π(x, LR2) =

|x| − 1, when x ∈ Cone(LR);

|x|+ 1, else.

Due to symmetry we obtain the following:

π(y, LR2) =

|y| − 1, when y ∈ Cone(RL);

|y|+ 1, else.

This is enough to conclude the following three statements:

1. If x ∈
(
Cone(LR) \ Cone(LR2)

)
and y ∈

(
Cone(RL) \ Cone(LR2)

)
, then a geodesic π(x, y)

passes though LR2 and has length |x| + |y| − 2. One of the possible codes of a geodesic is
(x−1RL2)(R−2L−1y);

2. If only one of the elements is in Cone(LR) \ Cone(LR2) or Cone(RL) \ Cone(LR2) respectively,
then a geodesic has a choice of visiting either the root or LR2, both resulting in the same length.
One of the possible codes for such geodesic is (x−1y)

3. When neither of the elements is in these regions, a geodesic π(x, y) will always pass thorough the
root.

Recall from Proposition 4.3.3 that every cone in M is strongly geodesically convex. Hence combining
this with the initial reduction to the smallest common Cone(m) concludes the proof.

We can now prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. Following Proposition 4.3.6 we take the length of a code between x and y.

Let x, y be a pair of vertices in M and let w ∈ {L,R}∗. Observe that multiplying x and y from the
left by w does not alter their distance. This means that the left multiplication is an isometry. We end
this section with a small but important consequence of Theorem 4.3.1.

Corollary 4.3.7. The monoid M is left cancellative.

4.4 A representation of the monoid M in terms of the real line

This section introduces a set of subintervals IM that will allow us to study the properties of M in terms
of the real line. Particularly, for every element of M we associate a closed subinterval from the unit
interval of the real line.

Definition 4.4.1. Let Ic be the set of all closed intervals [x, y] ⊆ [0, 1], such that x, y ∈ R and x < y.

If [x, y] ⊆ IC then we define the subinterval as follows:

[x, y]1 := [x, y];

[x, y]L := [x, y − (y − x)τ 2];

[x, y]R := [x+ (y − x)τ 2, y].

(4.1)

Recall that τ is the positive root of the equation x+ x2 = 1, approximately 0.618034.
If w = w1w2 · · ·wn is a word in {L,R}∗, we define [x, y]w recursively by [x, y]w = ([x, y]w1w2···wn−1)wn .

Definition 4.4.2. Let w = w1w2 · · ·wn be a word in {L,R}∗, then we define IM ⊆ Ic to be the collection
of all subinterval [0, 1]w.

Lemma 4.4.3. Let [x, y] ∈ IM , then the following equality holds:

[x, y]LR2 = [x, y]RL2 .

Proof. We will verify this rule by direct computation:

[x, y]LR2 = [x, xτ 2 + y − yτ 2]R2

= [x− xτ 2 + xτ 4 + yτ 2 − yτ 4, xτ 2 + y − yτ 2]R

= [x− 2xτ 2 + 3xτ 4 − xτ 6 + 2yτ 2 − 3yτ 4 + yτ 6, xτ 2 + y − yτ 2]

= [x− xτ 2 + yτ 2, xτ 2 + y − yτ 2];

[x, y]RL2 = [x− xτ 2 + yτ 2, y]L2

= [x− xτ 2 + yτ 2, xτ 2 − xτ 4 + y − yτ 2 + yτ 4]L

= [x− xτ 2 + yτ 2, 2xτ 2 − 3xτ 4 + xτ 6 + y − 2yτ 2 + 3yτ 4 − yτ 6]

= [x− xτ 2 + yτ 2, xτ 2 + y − yτ 2].
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The final simplification in both cases relies on the property τ = τ 2 + τ 3. Both computations give the
same result, thus proving the lemma.

Lemma 4.4.4. If x, y ∈ M then Cone(x) ⊆ Cone(y) if and only if [0, 1]x ⊆ [0, 1]y. See Figure 4.5 for
an illustration.

Proof. We will start by proving the forward direction. Let x, y ∈ M such that Cone(x) ⊆ Cone(y).
Then there exists m ∈M such that x = ym. Therefore,

[0, 1]x = [0, 1]ym = ([0, 1]y)m ⊆ [0, 1]y.

We will prove the opposite direction by induction on the length of x. Let x, y ∈ M such that |y| ≤
|x| ≤ n, then [0, 1]x ⊆ [0, 1]y implies Cone(x) ∈ Cone(y).

Let’s verify the base case for |x| = 1. Then Cone(y) is either equal to Cone(x) or to the whole
monoid Cone(1). Hence, for x, y ∈ M such that |y| ≤ |x| = 1, Cone(x) ⊆ Cone(y) implies y being a
prefix of x or the empty word. This forces [0, 1]x ⊆ [0, 1]y.

Assume the statement holds for all x such that |x| ≤ n. Now let |x| = n+ 1. We point out the key
property of IM :

[0, 1]L ∩ [0, 1]R = [0, 1]LR2 = [0, 1]RL2 .

Without loss of generality, let x and y have no common prefix, let x start with R, and y start with L.
Then [0, 1]Rx′ ⊆ [0, 1]Ly′ for some x′, y′. This implies [0, 1]Rx′ ⊆ [0, 1]L, which is only possible if x′ starts
with L2. Therefore,

[0, 1]Rx′ ⊆ [0, 1]RL2 = [0, 1]LR2 ⊆ [0, 1]L.

Hence, [0, 1]x′ ⊆ [0, 1]R2 ⊆ [0, 1]R. By the induction hypothesis, Cone(x′) ⊆ Cone(R), this forces
Cone(x) ⊆ Cone(RL2) = Cone(LR2) ⊆ Cone(L). But this means that x and y have a common prefix
that can be canceled. Then by the induction hypothesis Cone(x2x3 · · ·xn) ⊆ Cone(y2y3 · · · yn), which
forces Cone(x) ⊆ Cone(y).

Lemma 4.4.5. Let x, y, z ∈ M . Then [0, 1]x ∩ [0, 1]y = [0, 1]z if and only if Cone(x) ∩ Cone(y) =

Cone(z).

Proof. We will first prove the forward condition. Let [0, 1]x∩ [0, 1]y = [0, 1]z, then there exists m,n ∈M

such that [0, 1]xm = [0, 1]z = [0, 1]yn. This implies:

[0, 1]z = [0, 1]xm ⊆ [0, 1]x and [0, 1]z = [0, 1]yn ⊆ [0, 1]y

By Lemma 4.4.4, this is equivalent to:

Cone(z) ⊆ Cone(x) and Cone(z) ⊆ Cone(y)

Therefore, Cone(z) ⊆ Cone(x) ∩ Cone(y).
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1 ≃ [0, 1]

L ≃ [0, τ) R ≃ (τ 2, 1]

L2 ≃ [0, τ 2) LR ≃ (τ 3, τ) RL ≃ (τ 2, 1− τ 3) R2 ≃ (τ, 1]

M ≃ IM

Figure 4.5: The Cayley graph M with labeled elements of IM
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To show the reverse inclusion, let w ∈ Cone(x) ∩ Cone(y). Then [0, 1]w ⊆ [0, 1]x ∩ [0, 1]y = [0, 1]z,
which implies w ∈ Cone(z). Thus, Cone(x) ∩ Cone(y) ⊆ Cone(z). Now by combining both inclusions,
we conclude Cone(x) ∩ Cone(y) = Cone(z).

For the opposite direction, let Cone(x) ∩ Cone(y) = Cone(z). Then there exist m,n ∈ M such
that Cone(xm) = Cone(z) = Cone(yn). This implies:

Cone(z) ⊆ Cone(x) and Cone(z) ⊆ Cone(y)

By Lemma 4.4.4, this is equivalent to:

[0, 1]z ⊆ [0, 1]x and [0, 1]z ⊆ [0, 1]y

Therefore, [0, 1]z ⊆ [0, 1]x ∩ [0, 1]y.
It is left to check the reverse inclusion, let t ∈ [0, 1]x∩ [0, 1]y. Then by Lemma 4.4.4 the element of M

corresponding to t is in Cone(x)∩Cone(y) = Cone(z), which implies t ∈ [0, 1]z. Thus, [0, 1]x ∩ [0, 1]y ⊆
[0, 1]z. By combining both inclusions, we conclude [0, 1]x ∩ [0, 1]y = [0, 1]z.



Chapter 5

The horofunction boundary of M

This section presents one of the main results of this paper: the horofunction boundary of M. We will
start by briefly introducing the reader to the geometric concept of horofunction boundaries, introduced
by M. Gromov in [22]. This will build a solid background for finding new properties of the monoid M .

5.1 Preliminary on horofunctions

This section introduces key definitions and properties of horofunctions in the context of graph theory. We
briefly restate some modified definitions stated in [5, Section 1] and introduce an alternative approach
in finding the horofunction boundary using equivalence classes relying on J. Belk, C. Bleak, and F.
Matucci paper [5, Section 1.3].

Let Γ = (V,E) be a locally finite connected graph. We impose the path metric on V . We de-
fine F (V,Z) as the abelian group of all integer-valued functions on V . Let F (V,Z) be the quotient
of F (V,Z) by the subgroup of constant functions. This means that within F (V,Z) two functions f
and g from F (V,Z) are equivalent if their difference f − g is a constant function. This construction
allows us to focus on the variations of functions over V , where F denotes the equivalence classes of F .
If f ∈ F (V,Z) we let f denote its image on F (V,Z).

Observe that F (V,Z) = ZV is a topological space under the product topology. Consequently, F (V,Z),
being a quotient of F (V,Z), naturally inherits a quotient topology.

Definition 5.1.1. [5, Definition 1.22] Let Γ = (V,E) a locally finite connected graph. Let x ∈ V then
for all y ∈ V the corresponding distance function dx : V → Z is defined by:

dx(y) = d(x, y).

The function i : V → F (V,Z) defined by
i(x) = dx

for all x ∈ V , is called the canonical embedding.

42
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Definition 5.1.2. [5, Definition 1.23] Let ∂hV be the set of accumulation points of i(V ) in F (V,Z),
this set is called the horofunction boundary of V .

We call a function f : V → Z a horofunction when f ∈ ∂hV .

The horofunction boundary ∂hV is equipped with the topology of pointwise convergence. Specifically,
for a sequence of functions fn ∈ F (V,Z) and a function f ∈ F (V,Z), we say fn → f if and only if for
every v ∈ V , fn(v) → f(v) as n → ∞. This topology can be alternatively described as the subspace
topology inherited from the product topology on ZV , where Z is given the discrete topology, additionally
this give us the quotient topology on F (V,Z).

The definition of the horofunction boundary given above, while mathematically precise, may not
provide intuitive insight into its structure. Following [5], we will adopt an alternative characterization of
the horofunctions introduced by Belk, Bleak, and Matucci. This approach uses combinatorial methods
that are more aligned with the graph-theoretic context presented in this paper and provides a less
complex realization of horofunctions.

A vector field on a locally connected graph Γ = (V,E) with respect to a chosen distance function d
is a function F : E → E ∪ E±, where E± =

{
(x, y) : {x, y} ∈ E

}
, such that for all pairs x, y ∈ E:

F ({x, y}) =


{x, y} if d(x) = d(y);

(x, y) if d(y) < d(x);

(y, x) if d(y) > d(x);

where {x, y} denotes an unordered pair, and (x, y) denotes an ordered pair of vertices.
Essentially the graph ΓF =

(
V, F (E)

)
has the same set of vertices as Γ, however now we allow some

or all edges to be directed.
For any vertex x ∈ V , we can define a principal vector field Fx such that for all pair or vertexes y, z ∈

E the following holds:

Fx({y, z}) =


{y, z} if dx(y) = dx(z);

(y, z) if dx(z) < dx(y);

(z, y) if dx(z) > dx(y).

In a principal vector field Fx all oriented edges point along geodesics towards the given vertex x. Essen-
tially Fx depicts the distance function dx from all vertices to x. For simplicity we refer to ΓF =

(
V, Fx(E)

)
as the principal vector field Fx, as it is rather simple to depict vectors on a graph than to formally express
all relations.

Let’s consider a simple example to illustrate how the principal vector field are constructed.

Example 5.1.3. Let Γ = (V,E) be the following graph with the a fixed vertex x:
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x

Then principal vector field Fx corresponding to the vertex x, is the following:

x

Definition 5.1.4. Fix B ⊆ E a subset of edges. We say x ∼
B
y if Fx|B = Fy|B. Note ∼

B
is an equivalence

relation. We denote this equivalence class by [x]B.

A set Bn = {x ∈ V : dr(x) ≤ n} is called a ball, where r denotes the root of the graph. The corresponding
equivalence class is denoted by A(Bn) and is called an atom [5, Definition 3.1].

Example 5.1.5. Let Γ = (V,E, r) be a locally finite connected rooted graph and B0 ⊆ E. Then its 0-level
atom A(B0) is the whole graph V itself.

We call a graph Γ = (V,E) a tree whenever there exists a unique geodesic for every pair of vertices
in V , consecutively Γ = (V,E, r) is called a rooted tree when this condition is met.

A geodesic ray is an infinite sequence of edges in which every finite subsequence of edges acts
as a geodesic for the corresponding pair of vertices, in other words, it is an infinite sequence of
geodesics π(x0, x1), π(x1, x2), . . . such that for any n,m ≥ 0 the sequence of geodesics

π(xn, xn+1), π(xn+1, xn+2), . . . , π(xm−2, xm−1), π(xm−1xm)

is a geodesic from xn to xm.
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Let Γ = (V,E, r) be a rooted tree, then the set of equivalence classes of infinite geodesic rays is called
the boundary of a tree.

Definition 5.1.6. [5, Definition 3.4] For every n ≥ 0, we denote An(V ) as the set of infinite atoms
in A(Bn), i.e, an atom is in An(V ) if and only if its cardinality is infinite. The disjoint union

A(V ) =
∞⊔
n=0

An(V )

is called the tree of atoms of V .

The tree of atoms A(V ) is equipped with the following topologies:

• for each n ≥ 0, An(V ) has the discrete topology;

• the topology on A(V ) =
⊔∞

n=0An(V ) is the disjoint union topology;

• the boundary of the tree of atoms ∂A(V ) inherits the subspace topology of the product topology
on A(V )N, where elements of the boundary are identified with infinite descending paths in the
tree.

Note that, since A(V ) is as a disjoint union, each element in A(V ) can be represented as an ordered
pair (n,A), where n ≥ 0 and A ∈ An(V ). This distinction is important, as it is possible for the same
atom A to be in An(V ) for multiple values of n. Observe that in the tree of atoms there exists an edge
from (n,A) to (n+ 1, A′) if and only if A′ ⊆ A.

Definition 5.1.7. [5, Definition 3.7] A morphism from [x]Bm to [y]Bn is a bijection ϕ : [x]Bm → [y]Bn

such that:

1. if u, v ∈ [x]Bm and p ∈ {L,R}∗, then u = pv if and only if ϕ(u) = pϕ(v);

2. for all z ∈ [x]Bm and all k ≥ 0, ϕ([z]Bm+k
) = [ϕ(z)]Bn+k

.

This definition of morphism is weaker modification than the one presented in [5], as we have to use
arbitrary graph isomorphisms since there aren’t group elements. Last comment was here.

The corresponding morphism is a pair of isomorphisms ϕ1 : [x]Bm → [y]Bn and ϕ2 : [y]Bn → [x]Bn .
We say that [x]Bm ∼

T
[y]Bn have the same equivalence type if such a morphism exists. We will briefly

check that ∼
T

is an equivalence relation.

Proof. We will first check reflexivity. Let [x]Bm ∼
T
[x]Bm , we choose ϕ : [x]Bm → [x]Bm to be the identity

map:

• let u, v ∈ [x]Bm and p ∈ {L,R}∗, then u = pv ⇐⇒ ϕ(u) = u = pv = pϕ(v);

• for all z ∈ [x]Bm and k ≥ 0, ϕ([z]Bm+k
) = [z]Bm+k

= [ϕ(z)]Bm+k
.
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Hence, ∼
T

is reflexive.
We will now check symmetry. Let [x]Bm ∼

T
[y]Bn , then ϕ : [x]Bm → [y]Bn is a morphism, we will show

that ϕ−1 : [y]Bn → [x]Bm is also a morphism:

• let u, v ∈ [y]Bn and p ∈ E, then u = pv ⇐⇒ ϕ
(
ϕ−1(u)

)
= pϕ

(
ϕ−1(v)

)
⇐⇒ ϕ−1(u) = pϕ−1(v);

• for all z ∈ [y]Bn and k ≥ 0, ϕ−1([z]Bn+k) = ϕ−1
(
[ϕ
(
ϕ−1(z)

)
]Bn+k

)
= [ϕ−1(z)]Bm+k

.

Hence, is ∼
T

is symmetric.
It is left to check transitivity. Let [x]Bm ∼

T
[y]Bn and [y]Bn ∼

T
[z]Br , then ϕ : [x]Bm → [y]Bn and

ψ : [y]Bn → [z]Br are morphisms. We will now show that ψ · ϕ : [x]Bm → [z]Br is also a morphism:

• let u, v ∈ [x]Bm and p ∈ {L,R}∗, then u = pv ⇐⇒ ϕ(u) = pϕ(v) ⇐⇒ ψ
(
ϕ(u)

)
= pψ

(
ϕ(v)

)
⇐⇒

(ψ · ϕ)(u) = p(ψ · ϕ)(v);

• for all z ∈ [x]Bm and k ≥ 0, (ψ · ϕ)([z]Bm+k
) = ψ

(
ϕ([z]Bm+k

)
)
= ψ

(
[ϕ(z)]Bn+k

)
= [ψ

(
ϕ(z)

)
]Br+k

=

[(ψ · ϕ)(z)]Br+k
.

Hence, ∼
T

is transitive. Since all there conditions are met, we conclude that ∼
T

is indeed an equivalence
relation.

Theorem 5.1.8. [5, Theorem 3.6] The boundary of the tree of atoms A(V ) is homeomorphic to the
horofunction boundary ∂hV of V .

This theorem plays a key role in this section. It not only provides the necessary tools to find the
horofunction boundary using a combinatorial approach but also allows us to visualize the horofunction
boundary.

A finite directed multigraph is a graph Γ = (V,E), satisfying the conditions of a finite directed
graph with the only difference of allowing to have multiple edges between the same pair of vertices. The
corresponding path language L(γ, r) ⊆ E∗ is the set of all finite paths e1e2 · · · en ∈ Γ that begin with a
fixed vertex r, since the graph is directed we do not allow a path a vertex v to move along edges that
enter v. The set L(γ, r) has a natural structure of a locally finite tree, where the root acts as the empty
path ϵ, and the boundary ∂L(γ, r) is the set of all infinite paths in Γ starting from the root r [5, Section
2.1].

Let’s see a short example, which demonstrates the intuition behind the path language.

Example 5.1.9. Figure 5.1 demonstrates such a tree.
A self-similar structure [5, Section 2.1] on L(Γ, r) can be defined by the following statements:

• if two paths p, q ∈ L(Γ, r) end up in the same vertex of Γ, then we say that they have the same
type;
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Figure 5.1: A directed multigraph Γ and its corresponding path language tree L(Γ, r)

• let two paths p, q ∈ L(Γ, r) end up in the same vertex v, then for every finite directed path r

staring from v, we define single morphism γpq : L(Γ, r)p → L(Γ, r)q by

γpq(pr) = qr.

call γpq a prefix replacement morphism.

According to [5, Proposition 2.21], every self-similar tree T is isomorphic to a path language. We
define define the type graph Γ of a self-similar tree T as follows:

• for every vertex type in T there is exactly one vertex in Γ;

• for every pair of vertices x, y ∈ T , the number of edges in Γ between x and y corresponds to the
number of children of type y that every vertex of type x has in T .

By [5, Proposition 2.21], the tree of atoms A(V ) is isomorphic to the set all finite directed path
starting form the root. Hence, the horofunction boundary ∂hV is naturally homeomorphic to the space
of all infinite paths that start from the root in its corresponding type graph.

5.2 The relationship between cones and distances in the graph M

This section builds up the required tools to study atoms of M. In particular we will introduce the
connection between the cones of M and the distance functions. Although intuitively the structure of
the cones of M seem complicated, by the end of the section we will see that the structure is understood
through 4 statements.

Lemma 5.2.1. Let x ∈M , then the following hold:

1. x ∈ Cone(L) ⇔ d(x, L) < d(x, 1);

2. x ∈ Cone(R) ⇔ d(x,R) < d(x, 1);

3. x /∈ Cone(L) ⇔ d(x, L) > d(x, 1);
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4. x /∈ Cone(R) ⇔ d(x,R) > d(x, 1);

5. x ∈ Cone(LR2) ⇔ d(x,R), d(x, L) < d(x, 1);

6. x ∈
(
Cone(LR) ∪ Cone(RL)

)
⇔ d(x, LR) < d(x, L) ⇔ d(x,RL) < d(x,R).

Proof. We begin by proving the first equivalent statement.

1. We will start from the forward direction. Let x ∈ Cone(L). By definition of the graph M,
d(x, 1) = |x|. Since x ∈ Cone(L), there exists x′ ∈ M such that x = Lx′. For d(x, L), we apply
Proposition 4.3.3 that states that every cone of M is convex and Theorem 4.3.1 that tells us
that d(x, L) = d(x′, 1) = |x′|. Note that |x′| < |x| because x = Lx′. Hence, x ∈ Cone(L) ⇒
d(x, L) < d(x, 1).

For the opposite direction let x ∈M such that d(x, L) < d(x, 1). Then d(x, 1) = |x|, which implies
that d(x, L) ≤ |x| − 1. By Theorem 4.3.1 this possible only when x ∈ Cone(L).

2. The second equivalent statement is proven analogously to the first by interchanging the roles of L
and R.

3. We will show that for all x ∈ M d(x, 1) ̸= d(x, L). Observe that d(x, 1) = |x|. Now by Theo-
rem 4.3.1 d(x, L) is either |x| − 1 or |x|+ 1 depending on x.

Hence the statement x /∈ Cone(L) ⇔ d(x, L) > d(x, 1) is the contrapositive of the first equivalence,
and thus follows directly from it.

4. The fourth equivalent statement is a symmetric case of the third one.

5. The fifth equivalent statement is a direct consequence of the first two.

For the forward direction, let x ∈M such that x ∈ Cone(LR2). Then x ∈ Cone(LR2) ⊆ Cone(L)

and x ∈ Cone(LR2) = Cone(RL2) ⊆ Cone(R). This implies that x ∈ Cone(L) and x ∈ Cone(R).
Now we apply equivalences 1 and 2 to conclude that d(x, L) < d(x, 1) and d(x,R) < d(x, 1).

For the opposite direction, let x ∈ M such that d(x, L) < d(x, 1) and d(x,R) < d(x, 1). Then
by equivalences 1 and 2, x ∈ Cone(L) and x ∈ Cone(R). Hence, x ∈ Cone(L) ∩ Cone(R) =

Cone(LR2), thus proving the equivalence.

6. The last equivalent statement follows from Theorem 4.3.1. We will prove x ∈
(
Cone(LR) ∪

Cone(RL)
)
⇔ d(x, LR) < d(x, L). As the last equivalence is an analogous case of the second one.

We will start with the forward direction. Let x ∈
(
Cone(LR) ∪ Cone(RL)

)
. We have two cases

corresponding to the first symbol of x. If x begins with L, we are trivially done. Let x start
with R, then by Theorem 4.3.1 d(x, LR) = |x| − 2, whereas d(x, L) = |x| − 1.

We will now prove the opposite direction. Let d(x, LR) < d(x, L), then following the proof
of Proposition 4.3.6, we observe that the set of points for which this inequality holds is pre-
cisely Cone(LR) ∪ Cone(RL).
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M \ Cone(L)

Cone(L)

Figure 5.2: A hyperedge in red, splitting the set of vertices

Definition 5.2.2. A hyperedge is a line that splits a space into 2 disjoint half-planes.

In the context of the graph M, where the space is the set of vertices M , a hyperedge selects a specific
subset of vertices. To visualize this concept, see to Figure 5.2, where the hyperedge, depicted in red,
divides the set of vertices into two parts:

• the left half satisfies the first equivalent statement of Lemma 5.2.1;

• the right half satisfies the negation of this statement, i.e., the third statement of Lemma 5.2.1.

The orientation of a vector field from L to 1 indicates the direction towards a half-plane where the vertices
are closer to 1 than they are to vertex L. Note, every hyperedge crosses at least 2 edges. Whenever
a vector field is imposed on one edge that is crossed by a hyperedge it automatically predetermines
the orientations of all other edges that this hyperedge crosses. See Figure 5.3 for a visualisation of a
vector-field imposed on a hyperedge that satisfy statement 2 of Lemma 5.2.1.

Lemma 5.2.3. Let x,m ∈ M . Then x ∈
(
Cone(mLR) ∪ Cone(mRL)

)
⇔ d(x,mLR) < d(x,mL) ⇔

d(x,mRL) < d(x,mR). See Figure 5.4 for visualisation.
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M \ Cone(R)

Cone(R)

Figure 5.3: A vector field pointing towards the half-plane, whose elements are closer to R than to 1
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m

mL mR

mLR mRL

Figure 5.4: A hyperedge showing Cone(mLR) ∪ Cone(mRL)
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Proof. We will start from the forward direction. Let x ∈
(
Cone(mLR)∪Cone(mRL)

)
, then by Propo-

sition 4.3.3 we know that d(x,mLR) = d(x′, LR) and d(x,mL) = d(x′, L), where x = mx′. Now by
Theorem 4.3.1 d(x′, L) < d(x′, LR). An analogous argument is applied to prove d(x′, R) < d(x′, RL).

Now let d(x,mLR) < d(x,mL), now assume that there exist x /∈ Cone(m) that satisfies this condi-
tion. Then there exists a geodesic from mL to x that passes through mR but by Proposition 4.3.6 this
is not possible as a geodesic first takes the ascending path until it reaches the root n, nLR or nRL of
the smallest Cone(n) containing both mL and x.

Hence, the condition d(x,mLR) < d(x,mL) only makes sense when x ∈ Cone(m). Now we remove
the common prefix m and apply part 6 of Lemma 5.2.1. Hence, d(x,mLR) < d(x,mL) implies x ∈(
Cone(mLR) ∪ Cone(mRL)

)
.

To prove that d(x,mRL) < d(x,mR) implies x ∈
(
Cone(mLR) ∪Cone(mRL)

)
, we apply an analo-

gous argument by interchanging the roles of L and R.
Hence, the statement x ∈

(
Cone(mLR) ∪ Cone(mRL)

)
⇔ d(x,mLR) < d(x,mL) ⇔ d(x,mRL) <

d(x,mR) is indeed valid.

Corollary 5.2.4. Let x,m ∈M , such that there exists m′ ∈M that satisfies m = m′L then d(x,mR) <
d(x,m) ⇔ x ∈

(
Cone(mR) ∪ Cone(m′RL)

)
.

Proof. The proof requires studying two cases, when m′ exists and not. When m′ /∈ M , the conclusion
follows trivially.

Let’s look at the first case when m′ ∈ M . We apply Lemma 5.2.3 to Cone(m′), see Figure 5.5.
Hence, d(x,mR) < d(x,m) ⇔ x ∈

(
Cone(mR) ∪ Cone(m′RL)

)
follows immediately.

Corollary 5.2.5. Let x,m ∈M , then d(x,mLR2) < d(x,mLR) ⇔ d(x,mR) < d(x,m).

Proof. This is another consequence of Theorem 4.3.1. Observe that the element mR satisfies the relation
d(x,mLR2) < d(x,mLR). This implies that every element of Cone(mR) satisfies the inequality, which
implies d(x,mR) < d(x,m).

These corollaries have non-trivial results that play key roles in understanding the atoms of M. Observe
that whenever m = m′L, d(x,mR2) < d(x,mR) triggers a recursive effect as d(x,m′LR2) < d(x,m′LR)

implies d(x,m′R) < d(x,m′). This will continue to recurse until it hits the boundary of the graph
or a state d(x, nLR) < d(x, nL). This means that the set of points corresponding to the inequal-
ity d(x,mR) < d(x,m) will be the greatest cone containing mR but not m, and the cone m′RL.

Bringing it together gives us the following equivalent statements.

Proposition 5.2.6. Let x,m ∈M , then there exists n ∈M such that mL = nRi, where i is as large as
possible. There exists n′ ∈M such that nL = n′Rj, where j = max{0, 1}.

Then the following equivalent statements are valid:

1. d(x,mL) < d(x,m) ⇔ x ∈
(
Cone(n) ∪ Cone(n′)

)
;



CHAPTER 5. THE HOROFUNCTION BOUNDARY OF M 53

m′

m m′R

mR m′RL

Figure 5.5: A hyperedge picking out elements that satisfy the inequality d(x,m) < d(x,mR)
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n′
n

nL = n′Rj m

mL = nRi

Figure 5.6: Visualisation of statements 1 and 2 of Proposition 5.2.6

2. d(x,mL) > d(x,m) ⇔ x /∈
(
Cone(n) ∪ Cone(n′)

)
.

By interchanging the roles of L and R we get the following.
Let x,m ∈ M , then there exists n ∈ M such that mR = nLi, where i is as large as possible. There

exists n′ ∈M such that nR = n′Lj, where j = max{0, 1}.
Then the following equivalent statements are valid:

3. d(x,mR) < d(x,m) ⇔ x ∈
(
Cone(n) ∪ Cone(n′)

)
;

4. d(x,mR) > d(x,m) ⇔ x /∈
(
Cone(n) ∪ Cone(n′)

)
.

Note that it is possible for Cone(n′) ⊂ Cone(n). See Figure 5.6 for a visualisation of this process.
Although this proposition alone may not appear immediately insightful, it has promising consequences.
If x is an element in Cone(m) then knowing the signs of the inequalities d(x,m) ̸= d(x,mL) and
d(x,m) ̸= d(x,mR), tells all the distances between every element n /∈ Cone(m) and its offsprings. In
other words for every x ∈ Cone(m), the distance vectors {m,mL} and {m,mR} determine the distance
vectors outside Cone(m).
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We end this section with a theorem that is a final consequence of these propositions. For any m ∈M

we call set the Cone(pLR) ∪ Cone(pRL) a triangle in M. We call the sets Cone(Ln) and Cone(Rn)

side cones for any n > 0.

Theorem 5.2.7. Let S be a triangle or a side cone in M. Let p, q ∈M be adjacent vertices with p ∈ S

and q ∈ Sc. Then the following statements hold:

1. if x ∈ S then d(x, p) < d(x, q);

2. if x ∈ Sc then d(x, q) < d(x, p).

This theorem implies that for every edge in the Cayley graph M there is exactly one hyperedge
that crosses it. As a consequence we say that two atoms A and B are of the same type if there exist
Cone(m) ⊇ A and Cone(n) ⊇ B such that the following hold:

• for every vertex a ∈ A there exists a vertex b ∈ B such that m−1a = n−1b, i.e., the atoms have
same shapes;

• FA|Cone(m) = FB|Cone(n), i.e., the cones that contain A and B have the same vector fields.

5.3 The horofunction boundary of M

This section presents one of the main results of this thesis, in particular demonstrating the connection
between the horofunction boundary ∂hM of the Cayley graph M of the monoid M and the small golden
ratio τ =

√
5−1
2

. We start by introducing the space Dτ , followed by a number of lemmas building up the
connection between the horofunction boundary ∂hM and Dτ .

Let Iτ = Z[τ ] ∩ (0, 1), where Z[τ ] = {a+ bτ : a, b ∈ Z} and τ = 1+
√
5

2
≈ 0.618034 is the small golden

ratio. Recall that by Definition 2.3.10 a blowup of [0, 1] along Iτ is a Cantor set denoted by Cτ .

Definition 5.3.1. Let Dτ be the set

Dτ = ([0, 1] \ Iτ ) ∪ {x− : x ∈ Iτ} ∪ {x : x ∈ Iτ} ∪ {x+ : x ∈ Iτ}

equipped with a linear order ≺ satisfying the following conditions:

• ≺ agrees with the standard order < on [0, 1] \ Iτ ;

• for all x ∈ Iτ , x− ≺ x ≺ x+;

• if x ∈ Iτ and y ∈ [0, 1] \ Iτ , then x+ ≺ y ⇐⇒ x ≺ y ⇐⇒ x− ≺ y;

• if x, y ∈ Iτ and x < y, then x− ≺ x ≺ x+ ≺ y− ≺ y ≺ y+.



CHAPTER 5. THE HOROFUNCTION BOUNDARY OF M 56

The topology on Dτ is the order topology induced by ≺. The set Dτ can be viewed as a “double-blowup”
of [0, 1] along Iτ , in other words every point in Iτ is replaced by three points instead of two points.

While Dτ is not itself a Cantor set, it contains Cτ as a subset, which is homeomorphic to the Cantor
set. The key difference is that Dτ contains additional isolated points (the elements x ∈ Iτ ) between each
pair of blowup points in Cτ .

Let xi ∈ Iτ then the Cantor set Cτ is depicted as:

· · · · · ·
x+1 x−2 x+2 x−3 x+3 x−4 x+4 x−5 x+5 x−6

However Dτ has additional isolated points in between every pair of non-dividable intervals. The following
depicts the Cantor-like set Dτ .

· · · · · ·
x+1 x−2 x2 x+2 x−3 x3 x+3 x−4 x4 x+4 x−5 x5 x+5 x−6

Recall that by Lemma 4.4.4 there is a one-to-one correspondence between the elements of the monoid M
and subintervals of the unit interval IM , where x ∈ M can be represented by [0, 1]x ∈ IM . The system
of equations 4.1 represent the actions of L and R on the interval.

We claim that these equations must be slightly modified to be able to use them in terms of infinite
paths of M:

[x, y]1 := [x, y];

[x, y]L := [x, (y − (y − x)τ 2)−];

[x, y]R := [(x+ (y − x)τ 2)+, y].

(5.1)

The logic behind this step is motivated by first 2-level decompositions of atoms of M presented in
Propositions 5.3.3 and 5.3.4. In these propositions we will see that the same element RLLL · · · =

L2RRR · · · = LRLRLR · · · of the monoid, depending on the chosen path belongs to distinct atoms.
This is not allowed by the definition of atoms. To solve this issue we introduce a double-blowup along
elements of Z[τ ] ∩ (0, 1), resulting in the introduced modified equations above.

Theorem 5.3.2. The horofunction boundary ∂hM of M is naturally homeomorphic to Dτ .

The rest of the section is dedicated to proving this theorem. To understand the structure of the ho-
rofunction boundary ∂hM, we will decompose infinite atoms in sequential infinite atom levels until no
new infinite atom types appear.

Proposition 5.3.3. Let A1(M) be the set of 1-level infinite atoms of M. Then A1(M) = a1 ∪ b1 ∪ c1,
where

a1 = Cone(L) \ Cone(LR2);

b1 = Cone(LR2);

c1 = Cone(R) \ Cone(LR2).
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b1 = [τ 2
+
, τ−]a1 = [0, τ 2] c1 = [τ, 1]

Type M1Type L1 Type R1

Figure 5.7: Partition of 1-level infinite atoms A1(M) in the graph M

In other words, the graph M is decomposed into 3 infinite sets by different vector fields of the unit ball
centered at the root. See Figure 5.7 for a visualisation.

Proof. Let B1 be a unit ball centered at the root of M = (M,E, 1). Observe that there is a total of 4
possible principal vectors in B1. We will denote them as:

1. F1({1, L}) = (L, 1) and F1({1, R}) = (R, 1);

2. FL({1, L}) = (1, L) and FL({1, R}) = (R, 1);

3. FR({1, L}) = (L, 1) and FR({1, R}) = (1, R);

4. FLR2({1, L}) = (1, L) and FLR2({1, R}) = (1, R).

To ease the understanding of the complicated representations of the possible vector fields in B1 we invite
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the reader to take a look at their scaled graphic representation:

Recall that a vector F ({n,m}) = (n,m) is equivalent to the statement d(x, n) > d(x,m).
We will now analyse the four cases corresponding to the possible vector fields in B1. We start from

the first case.
Let x ∈ M such that d(x, L) > d(x, 1) and d(x,R) > d(x, 1), following Lemma 5.2.1 we observe

that x /∈ Cone(L) and x /∈ Cone(R). Hence, x ∈ {1}. This is a finite set, hence by definition it does
not contribute to the horofunction boundary.

We move to the second case. Let x ∈ M be such that d(x, L) < d(x, 1) and d(x,R) > d(x, 1).
Following Lemma 5.2.1 we observe that x ∈ Cone(L) and x /∈ Cone(R). Hence, x ∈ Cone(L) \
Cone(LR2). Let this atom be denoted as a1. This is an infinite set, hence it contributes to the
horofunction boundary.

The third case is similar to the second one. Let x ∈ M such that d(x, L) > d(x, 1) and d(x,R) <

d(x, 1), following Lemma 5.2.1 we observe that x /∈ Cone(L) and x ∈ Cone(R). Hence, x ∈ Cone(R) \
Cone(LR2). Let this atom be denoted as c1

We are left with the last case. Let x ∈M such that d(x, L) < d(x, 1) and d(x,R) < d(x, 1), following
Lemma 5.2.1 we observe that x ∈ Cone(L) and x ∈ Cone(R). Hence, x ∈ Cone(LR2). Let this atom
be denoted as b1

The following is a scaled visualisation of these 4 sets, for a full size picture we refer the reader to
Figure 5.7.

Let atoms a1, b1 and c1 be of types L1, M1 and R1 respectively.

Following Lemma 4.4.4 we should be able to represent the atoms a1, b1 and c1 in terms of the real
line. However we immediately encounter a problem. The atom a1 = Cone(L) \Cone(LR2) corresponds
to the interval [0, τ 2] and the atom b1 = Cone(LR2) corresponds to the interval [τ 2, τ ]. Observe that
the point τ 2 belongs both to a1 and b1. This is due to the fact that τ 2 corresponds to multiple elements
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of M in particular L2RRR · · · and RLLL · · · . When studying atoms we do not allow such constructions
as infinite paths of atoms must lead to distinct elements. Hence, there is a blowup of τ 2 in such a way
that τ 2 ̸= τ 2

′, τ 2 < τ 2
′, and τ 2 ∈ a1, τ 2

′ ∈ b1.
However the statement above is not true when studying the atoms of M. In order to not repeat

ourselves we would like the reader to believe that the atom a1 will decompose in such a way that the
point τ 2 will blowup again. This will be seen in the next proposition.

Hence, the equations 5.1 can be used to represent atoms. We will now state the atoms a1, b1 and c1
in terms of intervals.

We start from a1. The condition a1 ⊆ Cone(L) is equivalent to a1 ⊆ [0, 1]L = [0, τ−] and a1 ̸⊆
[0, 1]R = [τ+, 1], hence a1 is the set [0, τ 2].

For the atom b1 the condition b1 ⊆ Cone(LR2) is equivalent to b1 = [0, 1]LR2 = [τ 2
+
, τ−].

We invite the reader to verify that c1 = [τ, 1].

Proposition 5.3.4. The atom a1 decomposes into three disjoint infinite atoms in A2(M), denoted as a2,
b2 and c2. These infinite atoms correspond to the following subsets of M:

a2 = Cone(L2) \ Cone(L2R2);

b2 = Cone(L2R2);

c2 = Cone(LR) \
(
Cone(LRL2) ∪ Cone(LR2)

)
.

Moreover, a1 = {L} ∪ a2 ∪ b2 ∪ c2. See Figure 5.8 for a visualisation.

Proof. Let’s consider the a1 atom, whose vector field in B1 points towards Cone(L), see case 2 of
Proposition 5.3.3 for an illustration. Following Proposition 5.2.6 we know that the vectors in Cone(L)

determine the decomposition of the atoms in Cone(L), therefore we ignore the vectors of Cone(L) \
Cone(R) as they will be predetermined by the ones in Cone(L). Hence, there will be a total of 4 cases:

1. FL({L,L2}) = (L2, L) and FL({L,LR}) = (LR,L);

2. FL2({L,L2}) = (L,L2) and FL2({L,LR}) = (LR,L);

3. FLR({L,L2}) = (L2, L) and FLR({L,LR}) = (L,LR);

4. FL2R2({L,L2}) = (L,L2) and FL2R2({L,LR}) = (L,LR).
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b2 = [τ 3
+
, τ 2

−
]a2 = [0, τ 3] c2 = {τ 2}

Type M1Type L1 Type PL

Figure 5.8: Decomposition of the atom a1 into a2, b2, and c2 in the second sequential level of the A2(M)
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We leave it to the reader to check that the cases 1, 2 and 4 are analogous to the corresponding cases
analysed in Propositions 5.3.3 subject to scaling.

However we will check the decomposition of the third case, as it has an nontrivial result. Let x ∈M

such that d(x, LR) < d(x, L) < d(x, 1) < d(x,R) and d(x, LR) < d(x, L2). By Lemma 5.2.1 this is
equivalent to x /∈ Cone(R), x ∈ Cone(L), x /∈ Cone(L2) and x ∈ Cone(LR). Hence, x ∈ Cone(LR) \(
Cone(L2R2) ∪ Cone(LR2)

)
. Let this atom be denoted as c2.

Translating this in terms of intervals c2 ⊆ [0, 1]LR = [τ 3
+
, τ−], b2 ̸⊆ [0, 1]L2R2 = [0, τ 2

−
] and b2 ̸⊆

[0, 1]LR2 = [τ 2
+
, τ−]. Hence, c2 = {τ 2} is a point.

Observe that the pairs of atoms a1, a2 and b1 and b2 have the same shape and type. Let c2 be an atom
of type PL.

Proposition 5.3.5. The 1-level infinite atom b1 does not decomposes in A2(M).

To prove this propositions one can apply the same method presented above and see that there is only
one possibility for the 2-level atom vector field configuration and that it does not decompose b1. We will
refer to this infinite atom as d2.

Note that b1 and d2 are atoms of different types. Let d2 be of type M2.
From now on we will omit the formal proofs of atom decomposition, as essentially they follow the

same format presented above. However, we invite the reader to convince themselves that the stated
propositions are valid.

Corollary 5.3.6. The graph M contains 7 infinite atoms in A2(M). See Figure 5.9 for visualisation.

Proposition 5.3.7. The 2-level infinite atom d2 decomposes into three disjoint infinite atoms in A3(M),
denoted as f3, g3 and h3. These infinite atoms correspond to the following subsets of M:

f3 = Cone(LR2L2);

g3 = Cone(L2R2) \ {Cone(LR2L2) ∪ Cone(LR4)};

h3 = Cone(LR4).

Moreover, d2 = f3 ∪ g3 ∪ h3. See Figure 5.10 for visualisation.

The proof follows the same logic as for the previous decompositions.
Note that f3 and h3 are atoms of type M1, this can be seen by looking at Cone(LR) and Cone(RL)

and observing that the regions of atoms f3, h3 and b1 within their respective cones are the same.
Whereas g3 is an infinite atom of a new type, let it be denoted by M3.
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d2a2 g2b2 f2e2c2

[τ 2
+
, τ−][0, τ 3] [1− τ 3, 1][τ 3

+
, τ 2

−
] [τ+, (1− τ 3)+]{τ}{τ 2}

Figure 5.9: Partition of 2-level infinite atoms A2(M) in the graph M
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g3 h3f3
[τ 2 + τ 4, τ − τ 4] [(τ − τ 4)+, τ−][τ 2

+
, (τ 2 + τ 4)−]

Figure 5.10: Decomposition of the atom d2 into f3, g3, and h3 in the second sequential level of the A3(M)
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LR2

LR2L LR3

k4 l4j4
[(τ 2 + τ 4)+, (τ − τ 4)−] {τ − τ 4}{τ 2 + τ 4}

Figure 5.11: Representation of the decomposition of the atom f3 into j4, k4, and l4 in the second
sequential level of the A4(M)

Proposition 5.3.8. The 3-level infinite atom g3 decomposes into three disjoint infinite atoms in A4(M),
denoted as j4, k4 and l4. These infinite atoms correspond to the following subsets of M:

j4 = Cone(LR2L) \
(
Cone(LR2L2) ∪ Cone(LR2LR2)

)
;

k4 = Cone(LR2LR2);

l4 = Cone(RL2R) \
(
Cone(RL2R2) ∪ Cone(RL2RL2)

)
.

Moreover, f3 = j4 ∪ k4 ∪ l4 ∪ {LR2}. See Figure 5.11 for visualisation.

The proof follows the same logic as before.
Note that j4 is an atom of type PR, k4 is of type M1 and l4 is of type PL. Since no new infinite atom

types have appeared, we obtain the following corollary.

Corollary 5.3.9. The tree of infinite atoms A(M) has only finite number of atom types. See Figure
5.12 for the type graph T and Figure 5.13 for the tree of infinite atoms A(M).
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T

L1

M1

R1

M2

M3

PL PR

0

1

2

0

1
2

2

1
0
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1

1

2 0

0

0

Figure 5.12: The type graph T of the infinite atoms in M with labeled edges

The path space P (T ) of the graph T (Figure 5.12) is the set of all infinite sequences of labels of infinite
directional paths starting from the vertex T . The topology on P (T ) is generated by cylinder sets of the
form Cα = {w ∈ P (T ) : w starts with α} for finite paths α.

Proposition 5.3.10. The path space of the graph T depicted by Figure 5.12 is naturally homeomorphic
to Dτ .

Proof. We will construct a homeomorphism f : P (T ) → Dτ recursively as follows:

f(w) = [0, 1]Tw,

T

L1

L1 M1 PL

PR

M1

M2

M1 M3

PR M1 PL

M1

R1

PR

PL

M1 R1

Figure 5.13: The tree of atoms A(M)
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where [x, y]Aw is defined for atoms A ∈ {T, L1,M1, R1,M2,M3, PL, PR} by:

[0, 1]T0ω = [0, τ 2]L1
ω ;

[0, 1]T1ω = [τ 2
+
, τ−]M1

ω ;

[0, 1]T2ω = [τ, 1]R1
ω ;

[x, y]L1
0ω = [0, τy]L1

ω ;

[x, y]L1
1ω = [(τy)+, y−]M1

ω ;

[x, y]L1
2ω = {y};

[x+, y−]M1
0ω = [x+, y−]M2

ω ;

[x, y]R1
0ω = {x};

[x, y]R1
1ω = [x+,

(
y − τ(y − x)

)−
]M1
ω ;

[x, y]R1
2ω = [y − τ(y − x), y]R1

ω ;

[x+, y−]M2
0ω = [x+, (x+ τ 2(y − x))−]M1

ω ;

[x+, y−]M2
1ω = [x+ τ 2(y − x), y − τ 2(y − x)]M3

ω ;

[x+, y−]M2
2ω = [

(
y − τ 2(y − x)

)+
, y−]M1

ω ;

[x, y]M3
0ω = {x};

[x, y]M3
1ω = [x+, y−]M1

ω ;

[x, y]M3
2ω = {y}.

(5.2)

Although this function is written in a complicated form it is not difficult to understand, as it just rep-
resents recursive atom decompositions. This definition of f means that it takes an infinite path w =

w1w2 · · · ∈ P (T ) and produces a sequence of nested intervals in [0, 1], each corresponding to a sub-
division of an atom according to the choices of w1, w2, · · · . At each step, the function f applies a
transformation to the interval [0, 1] based on the current value of wi, as specified by the recursive rules.
Formally,

⋂∞
n=1[0, 1]

T
w1w2···wn

= {f(w1w2 · · · )}. Note the width of [0, 1]Tw1···wn
is less than τ

n
2 , we add a

factor of 1
2

to compensate the [x+, y−]M1
0ω action that does not alter the interval.

By construction, for any w ∈ P (T ), f(w) ∈ Dτ . Therefore, f is well-defined.
The inverse map g : Dτ → P (T ) is defined as follows. Given x ∈ Dτ , we express x as a sequence of

nested intervals, and recover the sequence w = (w1, w2, w3, . . . ) in P (T ) such that:

wn =


0 when x ∈ [0, 1]Tw1w2···wn−10

;

1 when x ∈ [0, 1]Tw1w2···wn−11
;

2 when x ∈ [0, 1]Tw1w2···wn−12
.

This defines a sequence w = (w1, w2, w3, . . . ) that corresponds to x. Since g is the inverse of f , we
have g

(
f(w)

)
= w for all w ∈ P (T ). Hence, f is a bijection.

We will now show that open sets U ∈ P (T ) are mapped to open sets f(U) ∈ Dτ . By construction
every open set in P (T ) is a cylinder set. Recall that a cylinder set is defined by Cα = {w ∈ P (T ) :

w starts with α} for finite paths α. Hence, we only need to show that every finite path in P (T ) is mapped
by f to an open set in DT . Due to the structure of DT , every point and closed interval contained in DT

can be expressed as an open interval. We will change the representation of equations 5.2 to show that
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every image of a finite path α ∈ P (T ) under f is an open set:

[0, 1]T0ω =
(
−∞, (τ 2)+

)L1

ω
;

[0, 1]T1ω = (τ 2, τ)M1
ω ;

[0, 1]T2ω = (τ−,+∞)R1
ω ;

[x, y]L1
0ω =

(
−∞, (τy)+

)L1

ω
;

[x, y]L1
1ω = (τy, y)M1

ω ;

[x, y]L1
2ω = (y−, y+);

[x+, y−]M1
0ω = (x, y)M2

ω ;

[x, y]R1
0ω = (x−, x+);

[x, y]R1
1ω =

(
x, y − τ(y − x)

)M1

ω
;

[x, y]R1
2ω =

((
y − τ(y − x)

)−
,∞

)R1

ω
;

[x+, y−]M2
0ω =

(
x, x+ τ 2(y − x)

)M1

ω
;

[x+, y−]M2
1ω =

((
x+ τ 2(y − x)

)−
,
(
y − τ 2(y − x)

)+)M3

ω
;

[x+, y−]M2
2ω =

(
y − τ 2(y − x), y

)M1

ω
;

[x, y]M3
0ω = (x−, x+);

[x, y]M3
1ω = (x, y)M1

ω ;

[x, y]M3
2ω = (y−, y+).

(5.3)

Formally, if α is a finite path in P (T ) and f(α) transforms the interval [0, 1] n times, then we use 5.2
for first n − 1 transformations and 5.3 for the last nth transformation. This approach guarantees that
the function remains well-defined and the resulting interval is open. Hence, the inverse g is a continuous
function.

By [35, Theorem 2.1], that states that the path space of any directed graph is a locally compact
Hausdorff space, we conclude that P (T ) is a Hausdorff space.

Since the Cantor-like space DT is a union of a Cantor set and isolated points, it is closed and
bounded, and hence compact.

Finally, we use the fact that a bijective continuous function from a compact space to a Hausdorff space
is a homeomorphism. The map f : P (T ) → DT is such a function, hence f is indeed a homeomorphism.

We now have all the necessary tools to prove Theorem 5.3.2. This proof brings together our analysis of
the tree infinite atom A(M), the limit behavior of infinite sequences in A(M), and the unique properties
of the small golden ratio.

Proof of Theorem 5.3.2. By Proposition 5.3.10 the space of the path space P (T ) of the type graph T
(see Figure 5.12) is homeomorphic to Dτ . According to [5, Proposition 2.21] the boundary of the tree of
atoms A(M) (see Figure 5.13) is isomorphic to the path space of the type graph T . Finally, by Theo-
rem 5.1.8 the boundary of the tree of atoms A(M) is homeomorphic to the horofunction boundary ∂hM
of M.

Hence, horofunction boundary ∂hM of M is homeomoprhic to Dτ .

This result reveals intricate large-scale geometry properties of the monoid M . The horofunction
boundary of its Cayley graph is homeomorphic to a Cantor-like space union a countable set of isolated
points. This duality suggests that, while the space exhibits self-similar properties at large scales, local
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variations near the isolated points influence the geometric behavior at infinity. The resulting horofunc-
tion boundary captures this complexity, offering new insights into the asymptotic structure of M and
its associated Cayley graph.

Remark 5.3.11. It was an open question if any non-elementary hyperbolic groups have isolated points
in their horofunction boundaries. In the next chapter we show that M is hyperbolic, so this gives an
example of a hyperbolic monoid whose horofunction boundary has isolated points.



Chapter 6

Gromov hyperbolicity

This section provides proof of one of the main results of this paper, Theorem 6.3.1, which states that
the Cayley graph M of the monoid M = ⟨L,R : LR2 = RL2⟩ is hyperbolic in the Gromov sense. We
start by recalling some background on graphs and quasi-isometries. After this is done, we begin the
proof by introducing a modified graph and proving that it is a quasi-isometry of the graph M . Relying
on Theorem 6.1.4 from the results of Kong, Lau and Wang [25], we prove that the newly introduced
graph is hyperbolic.

6.1 Preliminary on Horizontal Graphs

In this section, we restate some background definitions and properties following [25, Sections 1-2]. We
introduce the reader with the notion of horizontal edges, which play a key role in the subsequent sections.

Let Γ = (V,E, r) be a rooted graph. The vertical edge set Ev ⊆ E is defined as:

Ev = {{x, y} ∈ E : |x| − |y| = ±1}.

The horizontal edge set Eh ⊂ E is defined as:

Eh = {{x, y} ∈ E : |x| = |y|}.

Therefore, the edge set E can be partitioned as E = Ev∪Eh. Note that in a connected graph with E ̸= ∅,
Eh may be empty, but Ev is always non-empty.

For Γ = (V,E, r), we define horizontal distance dh(·, ·) as the graph distance on the subgraph
induced by (V,Eh). For any pair of vertices x, y ∈ V , dh(x, y) = ∞ whenever |x| ̸= |y|. Moreover, the
inequality d(x, y) ≤ dh(x, y) holds for all x, y ∈ V . When the equality occurs, i.e., d(x, y) = dh(x, y),
there exists a geodesic π(x, y) that is entirely contained in (V,Eh). We refer to it as the horizontal
geodesic of Γ denoted by πh(x, y).

Let’s briefly recall from Section 4.1 the notation for descendant and predecessor sets. Let m ≥ 0

69
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and x ∈ V , then
Jm(x) := {y ∈ V : x ⪯ y, |y| = |x|+m};

J−m(x) := {z ∈ V : x ∈ Jm(z)};

are the m-th descendant and m-th predecessor sets of x respectively.

Definition 6.1.1. [25, Definition 2.1] A rooted graph Γ = (V,E, r) is called expansive if it satisfies the
following condition:

∀x, y ∈ V, ∀u ∈ J1(x), ∀v ∈ J1(y), dh(x, y) > 1 =⇒ dh(u, v) > 1.

Definition 6.1.2. [25, Definition 2.5] A rooted graph Γ = (V,E, r) is called (m, k)-departing if there
exist m, k ∈ N such that:

∀x, y ∈ V, dh(x, y) > k =⇒ ∀u ∈ Jm(x), v ∈ Jm(y), dh(u, v) > 2k.

Let’s consider a short example of an expansive graph.

Example 6.1.3. Let Γn = (V,E, r) be an infinite n-ary tree (where each vertex has exactly n descendants)
with additional horizontal edges between every pair of vertices in lexicographic order on the same level.

This family of graphs Γn is expansive. To prove this, consider any two vertices x, y ∈ V such
that dh(x, y) > 1, and let u ∈ J1(x) and v ∈ J1(y). If |x| = |y|, then |u| = |v| = |x|+1, and dh(u, v) > 1

because the horizontal distance between parents/children of non-adjacent vertices at the same level is
always greater than 1. If |x| ≠ |y|, then dh(u, v) = ∞ > 1 by the definition of horizontal distance.
Therefore, Γn satisfies the expansive condition for all n ≥ 2.

Let Γ = (V,E) be a locally finite connected graph. Let x, y and z be vertices in V , then the three
geodesics joining them are called sides and form a geodesic triangle. If each of the sides of geodesic
triangle is contained in δ-neighbourhood of the union of the other two sides, for some non-negative δ,
then such triangle is called δ-thin. A locally finite connected graph is called δ-hyperbolic if each geodesic
triangle in Γ is δ-thin. We call the smallest such δ ≥ 0 the hyperbolicity constant of Γ. A graph is called
hyperbolic in the Gromov sense or simply hyperbolic if there exists a δ ≥ 0 such that each subgraph of Γ
is δ-hyperbolic. [22].

Theorem 6.1.4. [25, Theorem 1.1] Let Γ = (V,E, r) be an expansive rooted graph. The following
statements are equivalent:

1. (V,E, r) is hyperbolic;

2. There exists a constant P <∞ such that the lengths of all horizontal geodesics are bounded by P ;

3. (V,E, r) is (m, k)-departing for m, k ∈ N .
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6.2 Preliminary on quasi-isometries

We now state some definitions and key properties of quasi-isometries, as referenced from various sources.
These concepts are fundamental in geometric group theory and play a crucial role in understanding
large-scale geometry and spaces with hyperbolic properties.

Definition 6.2.1. [14, Definition 3.11] Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y

be a map. We say that f is a quasi-isometry if there exist constants A ≥ 1, B ≥ 0 and C ≥ 0 such that
the following conditions hold:

1. ∀x, y ∈ X : 1
A
dX(x, y)−B ≤ dY

(
f(x), f(y)

)
≤ AdX(x, y) +B;

2. ∀z ∈ Y : ∃x ∈ X : dY
(
z, f(x)

)
≤ C.

The constants A and B are called the quasi-isometric constants of the embedding f . When only the
first condition is satisfied f is called a quasi-isometric embedding.

Remark 6.2.2. [26, Definition 3.1.1] Let f be a surjective quasi-isometric embedding from X to Y then
f is a quasi-isometry.

Theorem 6.2.3. [26, Theorem 1.2.3] Let X and Y be geodesic metric spaces. Let f : X → Y be a
quasi-isometry. Then X is hyperbolic if and only if Y is hyperbolic.

6.3 Hyperbolicity of the Cayley Graph M

Hyperbolicity in graphs is a fundamental concept in geometric group theory. It indicates tree-like
properties on a large scale and often leads to efficient solutions to word problems [22]. In the context of
monoids, a hyperbolic Cayley graph suggests negatively curved geometry. This has profound implications
for the structure’s behavior, including efficient word problems and connections to finitely generated
groups. This section proves the following.

Theorem 6.3.1. The Cayley graph M = (V,E, r) of the monoid M = ⟨L,R : LR2 = RL2⟩ is hyperbolic.

We will prove this theorem by a number of lemmas. The first step is to construct a modified graph M′

that includes additional horizontal edges between every pair of adjacent vertices, that are not present
in M. The next step will be establish that the two graphs are quasi-isometric. Then using Theorem 6.2.3,
we show that M is hyperbolic by proving that M′ is hyperbolic.

We will now introduce the modified graph M′. Since there are no horizontal edges in M = (M,E, 1),
we allow M = (M,Ev, 1). Let M′ = (M,Ev ∪Eh, 1), where Eh is the set of horizontal edges defined by:

Eh = {(x, y) : ∃m ∈ V, x = mL, y = mR} ∪ {(x, y) : ∃m ∈ V, x = mLR, y = mRL}.

See Figure 6.1 for an illustration.
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M M′

Figure 6.1: The graphs M and M′

Observe that the graph M is contained in M′. We now have enough tools to prove that the large-
scale geometry of the graphs M and M′ are essentially the same.

Proposition 6.3.2. Let f : M → M′ be the natural inclusion map, then f is a quasi-isometry.

Proof. Let f : M → M′ be the natural inclusion map. Since M′ contains every path of M, we conclude
that for any pair of vertices x, y ∈ M, the following holds:

dM′
(
f(x), f(y)

)
≤ dM(x, y).

On the other hand, every added horizontal edge in M′ decreases the minimal distance between the
points it connects by a factor of 2. Hence, for every pair of vertices x, y ∈ M, we have

1

2
dM(x, y) ≤ dM′

(
f(x), f(y)

)
.

Combining these two inequalities, we obtain

1

2
dM(x, y) ≤ dM′

(
f(x), f(y)

)
≤ 2dM(x, y),

which shows that the natural inclusion map f : M → M′ is a quasi-isometric embedding with quasi-
isometric constants A = 2 and B = 0. Therefore, M quasi-isometrically embeds into M′. Since f is
surjective we conclude that it is a quasi-isometry.

Having established the existence of a quasi-isometry between the spaces M and M′, we can now
investigate certain large-scale geometric properties of M by studying their counterparts in M′. This
approach is justified by the fact that quasi-isometries preserve many coarse geometric features, allowing
us to transfer certain structural insights from one space to the other.

Proposition 6.3.3. The graph M′ = (V,Ev ∪ Eh, r) is expansive.
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Proof. We will prove this using the contrapositive statement

∀u, v ∈ V, and ∀x ∈ J−1(u), ∀y ∈ J−1(v) s.t. dh(u, v) ≤ 1 ⇒ dh(x, y) ≤ 1.

We will consider two possible cases corresponding to the possible horizontal distances between u

and v.
Let dh(u, v) = 0, i.e. u and v are the same vertex. In this case u and v have the same predecessors

due to the monoid property LR2 = RL2. If for some predecessor pair x and y, dh(x, y) > 1, the
restriction LR2 = RL2 would force dh(u, v) > 1, contradicting our assumption that dh(u, v) = 0.

Now let dh(u, v) = 1. Due to the monoid property LR2 = RL2, within the next two levels above u
and v, there always exists a common ancestor w ∈ J−2(u), w ∈ J−2(v). This common ancestor w ensures
that all predecessors x and y are at most 1 apart, as any greater distance would contradict the existence
of the common ancestor within two levels.

Both cases show that dh(u, v) ≤ 1 =⇒ dh(x, y) ≤ 1. Hence, this proves the contrapositive statement,
which is equivalent to the definition of expansiveness. Hence, the graph M′ is expansive.

Our next goal is to prove that the graph M′ is (m, k)-departing. But first we need some definitions.
In the graph M′, we define two types of horizontal edges of length 1:

• let U be a horizontal edge where the right predecessor of the left vertex and the left predecessor
of the right vertex coincide;

• let D be a horizontal edge where the right descendant of the left vertex and the left descendant of
the right vertex coincide.

U

D

In the graph M ′, the following properties hold:

1. an edge cannot be both U and D simultaneously;

2. the pattern of U and D edges follows a specific structure:

• Level 1 (from the root): U

• Level 2: UDU

• Level 3: UDUUDU

• Level 4: UDUUDUDUUDU

The patterns above are obtained from substitution structure. By analyzing the structure we obtain the
following substitution rules:
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1. a single edge U , that is not adjacent to any other U ’s, at level n is transformed into a sequence
of UDU edges at level n+ 1;

2. a sequence of UU edges at level n is transformed into a sequence of UDUDU edges at level n+1;

3. an edge D is ignored in the transformation to the next level. The purpose for D’s is to separate U ’s
into singles and doubles.

D DU

U UD D

U

D

U

U UUD

DD

We invite the reader to expand these pictures with various combinations of types of horizontal edges.
Note that we can define U and D for the graph M by considering the same pairs of vertices.

Proposition 6.3.4. The graph M′ is (m, k)-departing.

Proof. We will show that M ′ is at most (3, 2)-departing, i.e.

∀x, y ∈ X and ∀u ∈ J3(x), v ∈ J3(y) s.t. dh(x, y) > 2 ⇒ dh(u, v) > 4,

We will prove by proving the contrapositive statement:

∀u, v ∈ X and ∀x ∈ J−3(u), y ∈ J−3(v) s.t. dh(u, v) ≤ 4 ⇒ dh(x, y) ≤ 2,

Without loss of generality, let u be located to the left of v on the graph, such that dh(u, v) ≤ 4. Due
to lexicographic order we only need to consider the extreme case when dh(u, v) = 4. There are 3 possible
horizontal edge combinations of length 4: UDUD, UUDU , and DUUD. We ignore cases like UDUU
due to symmetry.

We start from analyzing the UDUD case. The key here is to observe that in recovering the predeces-
sors an horizontal edge of type U contributes is the appearance of 2 vertical edges, whereas type D lacks
contribution. Note the adjacent edges of the sequence UDUD may also contribute in the formation
of the horizontal edges at the level above, hence we have to look at all possible combinations in which
a UDUD can appear. By analyzing the substitution structure we observe there is a total of 3 such
subcases: UUDUDU , UDUDU , and DUDUDU .
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The following picture shows two levels of edges above the sequence of edges UDUD inside UUDUDU :

D

UU

D

U

U U UU

D

DD

U

x y

u v

Let x and y be the extreme vertices in the sequence of edges UDUD. Then the distance between the
extreme predecessors J−2(x) = u and J−2(y) = v is 2. By the monoid property the the distance of J−1(u)

and J−1(v) cannot be greater than 2. Note the sequence UDUD is always followed by a U , however it
may or may not have a prefix of a U or a D. The absence or the presence of a D in front of the sequence
will not contribute in edges in the previous level. The UDUDU , and DUDUDU subcases are proven
in a similar way.

The next case is UUDU . Once again we only look at UUDU is inside: DUUDUU , UUDUU ,
UUUDUD, UUDUD, DUUDU and UUDU . The following picture shows two levels of edges above the
sequence of edges UUDU inside DUUDUU :

D

UU D

U U U

D

D

U

D U

u v

x y

Observe that we obtain the same situation for the extreme predecessors J−2(x) = u and J−2(y) = v as
before. The subcases UUDUU , UUUDUD, UUDUD, DUUDU and UUDU are proven in a similar
way.

We are left with the DUUD case. Since D’s are not allowed to be adjacent to each other or at the
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boundary, we look at DUUD inside UDUUDU .

D

UUU D

U U U

D

UD

U

D

U

U U

U D

u v

x y

For the extreme case J−3(x) = u and J−3(y) = v we obtain that the distance is at most 2.
Note that we proved only the extreme cases. All other cases are proven in a similar way, moreover

most of them are contained in the pictures provided above. Hence, this proves the contrapositive
statement, which implies that M′ is at most (3, 2)-departing.

Corollary 6.3.5. The graph M′ is hyperbolic.

Proof. Proposition 6.3.3 shows that M′ is expansive. Hence, we can apply of Theorem 6.1.4 to Propo-
sition 6.3.4, which concludes that M′ being (m, k)-departing is equivalent to M′ being hyperbolic.

We can now prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Proposition 6.3.2 states that f : M → M′ is a quasi-isometry. Corollary 6.3.5
shows that M′ is hyperbolic. Then by Theorem 6.2.3 M must also be hyperbolic.

The proof that the Cayley graph M of the monoid M = ⟨L,R : LR2 = RL2⟩ is hyperbolic establishes
its underlying negative curvature and tree-like structure. This result opens the door to applying hyper-
bolic geometric techniques and provides a strong foundation for further exploration of the algebraic and
geometric properties of the monoid.



Chapter 7

Conclusion

In this thesis, we have investigated several key properties of the golden ratio Thompson group Vτ and
the monoid M = ⟨L,R : LR2 = RL2⟩, focusing on their geometric and algebraic structures through
automata theory, Cayley graphs, and horofunction boundaries.

We proved that the group G of homeomorphisms on the Cantor set {0, 1}ω, generated by the rational
homeomorphisms X0, X1, Y0, Y1, C1, C2,Π0,Π1, is isomorphic to the golden ratio Thompson group Vτ .
Further, we explored the monoid M by examining the Cayley graph M and establishing an important
distance function between vertices. This result lays the groundwork for understanding the geometry
of M, showing that it has a highly nontrivial structure that involves self-similar cones and geodesically
convex regions. We also proved that the horofunction boundary of the Cayley graph is homeomorphic
to a Cantor-like set with additional isolated points between every pair of breakpoints Dτ , expanding
our understanding of the boundary of such graphs. In our last section we proved the hyperbolicity of
the Cayley graph M. This finding is significant because it indicates that M shares the properties of
hyperbolic spaces, which have well-understood geometric and algebraic characteristics.

These results not only bring important insights but also raise a number of questions to be answered:

1. Are all irrational slope Thompson’s groups rational similarity groups? If not, then what are the
criteria for a Thompson’s group to be one?

2. Are all horofunction boundaries of the Cayley graphs of the family of monoids Mn = ⟨L,R :

LRn = RLn⟩, for n > 1, Cantor-like sets with additional isolated points in between every pair of
breakpoints?

3. Are all Cayley graphs of the family of monoids Mn = ⟨L,R : LRn = RLn⟩, for n > 1, hyperbolic?

4. What is the Gromov boundary of the Cayley graphs of the family of monoids Mn = ⟨L,R : LRn =

RLn⟩, for n > 1?
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