

Long, Qianyu (2025) Collaborative Distributed Machine Learning: from
knowledge reuse to sparsification in federated learning. PhD thesis.

https://theses.gla.ac.uk/84846/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

Collaborative Distributed Machine Learning:

From Knowledge Reuse to Sparsification in Federated

Learning

Qianyu Long

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School of Computing Science
College of Science and Engineering

University of Glasgow

July 2024

Abstract

Distributed Machine Learning (DML) leverages distributed computing resources to train
models and perform inference on decentralized datasets efficiently. A high-quality dis-
tributed system ensures optimal Quality of Service (QoS) by delivering low latency, high
reliability, efficient resource utilization, and robust security. However, DML frameworks
face significant challenges with the proliferation of devices generating vast volumes of data
and the increasing complexity of tasks. For instance, heterogeneous feature spaces from
data generated by different users or locations can undermine model reliability. Addition-
ally, the growing size and complexity of models impose substantial burdens on resource-
constrained devices, particularly for inference and storage. Latency becomes a critical
concern in distributed online systems such as intelligent transport systems for autonomous
vehicles.

This work explores leveraging knowledge reuse, a key meta-learning technique, com-
bined with sparsification methods to build efficient and effective distributed learning sys-
tems. To enhance efficiency, we aim to reduce redundant computation and communication,
assuming that distributed data exhibit similarities despite not being identical. Specifically,
we propose identifying reusable models by examining statistical patterns and meta-features
derived from trained models. These reusable models are selected and adapted to local en-
vironments without requiring full retraining. Multi-task learning further improves the
effectiveness of these adaptations, ensuring comparable performance to locally trained
models while significantly reducing the number of models that need to be trained. By
clustering models with shared characteristics, the system reduces the computational and
communication overhead in a network of M devices, where only K ≪ M models need to
be trained, maintaining strong overall performance.

To tackle real-world challenges where data is often non-independent and identically dis-
tributed (non-i.i.d.), we incorporate pruning techniques to enhance both system efficiency
and effectiveness. This approach reduces communication and computation costs while
simultaneously improving model performance and accuracy. Centralized federated learn-
ing (CFL) relies on a central server for model aggregation, while decentralized federated
learning (DFL) operates without central server coordination, enabling direct communica-
tion between clients. In CFL, dynamic pruning strategies with error feedback and adaptive

i

ii

regularization achieve extremely sparse models, reducing computation and communication
costs while accelerating inference. These models retain high sparsity with minimal accu-
racy loss. In DFL, the absence of a central node enhances robustness against adversarial
attacks. Efficiency is further improved through dynamic pruning, allowing progressively
sparser training, and a hybrid approach combining sequential and parallel training to reuse
updates within the same round. Personalized pruning masks address data heterogeneity
across clients, promoting both system efficiency and local model performance.

The proposed framework is validated experimentally across diverse datasets and mod-
els, including air pollution data from weather stations, temperature data from unmanned
surface vehicles, and image classification tasks. The tested models span traditional ap-
proaches such as regression and support vector machines to modern deep learning archi-
tectures like convolutional neural networks. Theoretically, we conduct hypothesis testing
and complexity analysis, including the development of convergence theorems for federated
learning scenarios.

Overall, this thesis presents comprehensive frameworks and algorithms backed by ro-
bust experimental and theoretical results. It addresses key challenges in federated learning
and edge computing through knowledge reuse and sparsification, enhancing the efficiency,
effectiveness, and robustness of modern AI applications.

Contents

Abstract i

Acknowledgements xiii

Declaration xv

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Shift from Centralized to Distributed Learning 1
1.1.2 The Role of Knowledge Reuse and Sparsification in Distributed

Learning . 2
1.2 Thesis Statement . 4
1.3 Contributions . 4
1.4 Publications From This Research . 5
1.5 Thesis Outline . 6

2 Background 8
2.1 Introduction . 8
2.2 Core Concepts . 8

2.2.1 Definitions and Scope . 8
2.2.2 General Formulation for DML . 11

2.3 Key Techniques . 12
2.3.1 Distributed Statistical Learning . 12
2.3.2 Distributed Deep Learning . 13

2.4 Methods For Efficiency . 15
2.4.1 Compression Techniques . 15
2.4.2 Knowledge Reuse in Machine Learning 18

2.5 Notation and Definitions for Future Use 19
2.6 Conclusions . 20

iii

CONTENTS iv

3 Efficient Distributed Learning with Direct Reuse 23
3.1 Introduction . 23
3.2 Related Work . 25

3.2.1 Knowledge Dissemination in EC . 25
3.2.2 Model Reuse Applications . 25

3.3 Methodology . 26
3.3.1 Preliminaries . 27
3.3.2 Similarity Score Calculation . 28
3.3.3 Learning Paradigm . 30

3.4 Theoretical Analysis . 35
3.4.1 MMD Computation with Data Stream 35
3.4.2 Deriviation of τ ∗ . 36

3.5 Experimental Setup . 36
3.5.1 Performance Metrics . 36
3.5.2 Scenarios Description . 38

3.6 Results and Analysis . 42
3.6.1 Analysis for Scenario I . 42
3.6.2 Analysis for Scenario II . 48
3.6.3 Analysis for Scenario III . 50

3.7 Limitations and Future Research . 55
3.8 Conclusions . 56

4 Efficient Distributed Learning with Enhanced Reusability: A Multi-Task
Learning Approach 58
4.1 Introduction . 58
4.2 Related Work . 60
4.3 Methodology . 61

4.3.1 Preliminaries . 61
4.3.2 Initial Stages . 64
4.3.3 Learning Paradigm . 66

4.4 Theoretical Analysis . 69
4.5 Experimental Setup . 70

4.5.1 Datasets . 70
4.5.2 Performance Metrics . 71
4.5.3 Baselines . 72

4.6 Results and Analysis . 74
4.6.1 Complexity Analysis . 74
4.6.2 Synthetic Dataset Experimental Evaluation 75
4.6.3 Real Datasets Experimental Evaluation 77

CONTENTS v

4.7 Limitations and Future Research . 79
4.8 Conclusions . 80

5 Efficient Centralized Federated Learning with Pruning 81
5.1 Introduction . 81
5.2 Related Work . 82

5.2.1 Background . 82
5.2.2 Efficient Distributed Computing with Compression 83

5.3 Methodology . 84
5.3.1 Preliminaries . 84
5.3.2 FedDIP Algorithm . 87

5.4 Theoretical Analysis . 92
5.5 Experiment Setup . 94

5.5.1 Datasets and Models . 94
5.5.2 Baselines . 95
5.5.3 Configurations . 96

5.6 Experimental Analysis . 97
5.6.1 Performance Evaluation . 97
5.6.2 Sparsity Analysis . 99

5.7 Limitations and Future Research . 100
5.8 Conclusions . 102

6 Efficient Decentralized Federated Learning with Pruning 104
6.1 Introduction . 104
6.2 Related Work . 106

6.2.1 Personalized Federated Learning . 106
6.2.2 Decentralized Federated Learning 107
6.2.3 Efficient Federated Learning with Pruning 107

6.3 Methodology . 108
6.3.1 Preliminaries . 108
6.3.2 Dynamic Aggregation with Controlled Delay 111
6.3.3 Dynamic Pruning . 113
6.3.4 DA-DPFL Algorithm . 115

6.4 Theoretical Analysis . 118
6.5 Experiment Setup . 120

6.5.1 Datasets and Models . 120
6.5.2 Baselines . 120
6.5.3 Configurations . 122

6.6 Experimental Analysis . 124

CONTENTS vi

6.6.1 Cost Efficiency . 124
6.6.2 Learning Efficiency . 126
6.6.3 Hyperparameter Analysis . 127

6.7 Limitations and Future Research . 131
6.8 Conclusions . 132

7 Conclusions & Future Research 133
7.1 Conclusions . 133

7.1.1 Summary of Contributions . 133
7.2 Future Research Directions . 138

7.2.1 Efficient Pruning Techniques for Foundation Models in Federated
Learning . 138

7.2.2 Optimizing Ensemble Learning through Pruning in Federated Learning139

A Proofs 141
A.1 Proof for Chapter 3 . 141
A.2 Proof for Chapter 4 . 142

A.2.1 Proof for Lemma 1 . 142
A.2.2 Proof for Lemma 2 . 142

A.3 Proof for Chapter 5 . 142
A.3.1 Proof for Theorem 2 . 142
A.3.2 Proof for Corollary 1 . 147

A.4 Proof for Chapter 6 . 147
A.4.1 Auxiliary Lemmas . 147
A.4.2 Proof for Theorem 3 . 155

List of Tables

2.1 Differences between Distributed Machine Learning and Traditional Machine
Learning . 10

2.2 Notations Table . 21
2.3 Notations Table (Continued) . 22

3.1 Performance Metrics for Knowledge Reuse 38
3.2 Dataset Description for Experimentation Scenario I 39
3.3 Dataset Description for Experimentation Scenario II 40
3.4 Testing Statistics for LR fj Model . 43
3.5 Scenario 1 (α∗): Reusability Efficiency over performance metrics vs cut-off

quality threshold C. 47
3.6 Experiment 1 (β∗): Reusability Efficiency over performance metrics vs cut-

off quality threshold C. 48
3.7 Percentage of similar datasets detected (x=90%) 48
3.8 Scenario 2 (β∗): Reusability Efficiency over performance metrics vs cut-off

quality threshold C. 51
3.9 Scenario 2 (α∗): False positive rate for different performance metrics vs

cut-off quality threshold C. 52
3.10 Scenario 2 (β∗): False positive rate for different performance metrics vs

cut-off quality threshold C. 52

4.1 Communication load for PLC, FedAvg, and DFedAvg. 78

5.1 FedDIP Configuration Table . 96
5.2 Test Accuracy (Top-1) . 99
5.3 Communication Efficiency . 99
5.4 Extension to Non-IID Data . 100

6.1 Comparison between Centralized Federated Learning (CFL) and Decentral-
ized Federated Learning (DFL). 106

6.2 Lesion types and train lengths. 121

vii

LIST OF TABLES viii

6.3 Comparison of Baseline Algorithms. Comp. is the abbreviation for Com-
putational Efficiency; Comm. is the abbreviation for Communication Effi-
ciency; and Heter. denotes whether the method handles data heterogeneity. 121

6.4 Busiest Communication Cost & Final Training FLOPs of All Methods . . . 125
6.5 Accuracy Comparison Across Different Datasets 128
6.6 DFL Performance Comparison for Ring and Fully Connected Topologies . 129

List of Figures

2.1 Comparison of Cloud and Distributed Machine Learning 9
2.2 Compression Techniques in Machine Learning 16

3.1 Flowchart illustrating the Borrower-Lender Matching (BLM) process be-
tween borrower edges i1, i2, i3, i4 and the central loaner edge j. This dia-
gram depicts how statistical synopses are exchanged between the nodes to
determine whether to continue or stop the BLM process based on evaluating
the function f(j), which assesses the reusability of shared models. 31

3.2 Visualization of the loaner’s and borrowers’ datasets of Experimentation
Scenario I. 38

3.3 t-SNE dataset projection in Scenario II (not all datasets are visualized). . . 41
3.4 Pairwise relationships between variables in Scenario II (not all pairs of vari-

ables are visualized). 41
3.5 Comparative heatmaps of MMD and CD metrics. 42
3.6 Density plots of LR for ∆ϵij in Scenario I. 45
3.7 Density plots of LR for ∆R2

ij in Scenario I. 45
3.8 Density plots of SVR for ∆ϵij in Scenario I. 45
3.9 Density plots of SVR for ∆R2

ij in Scenario I. 46
3.10 Density plots of OCSVM for ∆ρij in Scenario I. 46
3.11 Novelty detection data-space boundary (red curve) adopting OCSVM over

m1. 47
3.12 (Upper) CD and (lower) MMD decision values in Scenario II for all datasets

(edge sites). 49
3.13 Density plots of LR for ∆ϵij in Scenario II. 50
3.14 Density plots of LR for ∆R2

ij in Scenario II. 50
3.15 Density plots of SVR for ∆ϵij in Scenario II. 50
3.16 Density plots of SVR for ∆R2

ij in Scenario II. 51
3.17 Density plots of OCSVM for ∆ρij in Scenario II. 51

ix

LIST OF FIGURES x

3.18 (a)(b)(c) MMD and SSE time series plots corresponding to different length
i of sliding window, (a) ni = 100, (b) ni = 150, and (c) ni = 300, in Scenario
III. 53

3.19 (a)(b)(c) Time series plots of ∆SSE corresponding to different length i of
sliding window, (a) ni = 100, (b) ni = 150, and (c) ni = 300, in Scenario III. 54

3.20 (a) Time series plot of bt for HW model based on Zt in Scenario III. (b)
HW model: time series plot of the upper bound of the confidence interval
for Ẑτ0=5 with θ = 20 in Scenario III. 55

4.1 Illustration of the stages in the Distributed Multi-task Machine Learning
(DMtL) framework: (a) PLC estimation shows nodes estimating Partial
Learning Curves to assess model performance; (b) Leader election where
nodes select a leader based on predefined criteria; (c) Clustering where
similar nodes are grouped based on their PLC values; (d) DMtL execution
where designated head nodes coordinate task distribution within clusters. . 62

4.2 Example of Partial Learning Curves (PLCs) for different nodes. Solid lines
represent s

ni
≤ 30%, and the dotted lines indicate the incomplete parts for

learning curve prediction. 65
4.3 SD Dataset. (left) DMtL model reusability metrics; (right) Training costs

comparison between our PLC (DMtL) with L = 4 and full model training
across all tasks for cases a ∈ {0.1, 0.2, 0.25} and M = 100. 76

4.4 Influence of bootstrapping rounds L on (left) µDC and (right) on training
efficiency; a = 0.2 with nodes M = {100, 1000}. 77

4.5 Average classification accuracy α of STL, FR, WP, and PLC on reusable
tailored models; CIFAR-10 (K = 5); Sentiment (K = 4). 78

4.6 Difference in reusable model accuracy metrics (left) ξ∗ and (right) µ∗
in for

PLC, FedAvg, and DFedAvg; CIFAR-10 and Sentiment. 79

5.1 Federated Learning Framework Diagram 86
5.2 Example of Pruning: The diagram illustrates the pruning process in a

neural network model. It shows the connections between different nodes
and layers, highlighting the paths that remain after pruning. The gray
circles represent the pruned nodes, indicating the elements that have been
removed to optimize the network. The remaining paths, represented by
lines connecting various elements, show the network structure after pruning. 87

LIST OF FIGURES xi

5.3 FedDIP Framework: (1) Downlink Phase: The server node broadcasts
the pruned global model (ω′(t)

g) to all participating clients (Devices 1 to M).
(2) Uplink Phase: Each selected client sends its local dense model (ωt

i) back
to the server for aggregation. The global model (ωt

g) is updated based on
the aggregation of these local models, using the formula ωt

g =
∑M

i=1 ρiω
t
i .

(3) Sparse Training Phase: The global mask (mt), derived from the global
model, guides the distributed pruning and fine-tuning (DPF) process across
the clients. This ensures efficient and effective sparse training. 88

5.4 FedDIP achieves extreme sparsity through a process that begins with (1)
an initial sparse model, followed by periodic pruning that incorporates (2)
incremental regularization and (3) error feedback. The width of the red lines
indicates the magnitude of the connections, while the dotted lines represent
connections recovered through error feedback. 91

5.5 Fashion-MNIST experiment with LeNet-5. 98
5.6 CIFAR-10 experiment with AlexNet. 98
5.7 CIFAR-100 experiment with ResNet-18. 99
5.8 Layerwise pruning sparsity; f0w stands for (f)eatures layer, layer index (e.g,

0), and (w)eights, respectively. c stands for the classifier layer (the same
notation is used for other layers). ResNet-18 consists of 18 pruning layers. 101

5.9 FedDIP performance on extreme sparsity values. 102

6.1 Transition from CFL to DFL: An Example The model parameters or
gradients are exchanged from clients to the central cloud in CFL; In DFL,
the information is exchanged among clients without the management of a
central server, where the clients are connected with a ring topology. 105

6.2 Iteration Orders: Examples (a), (b), and (c) correspond to the cycle,
random, and parallel iteration orders, respectively. The number on the
line indicates the iteration steps (i.e. rounds), and the arrow denotes the
direction of model transmission. 108

6.3 Network Topologies: Examples of network topologies in Decentralized
Federated Learning (DFL). (a) line topology, (b) ring topology, (c) fully-
connected (mesh) topology, (d) star topology, and (e) time-varying topology
showing different connections between nodes in subsequent rounds (Round
T and Round T+1). 109

LIST OF FIGURES xii

6.4 Learning Paradigms: Illustrations of learning paradigms in Decentral-
ized Federated Learning (DFL). (a) Continual Learning where models are
updated sequentially, with each client using the model from the previous
client. (b) Aggregate Learning where models from multiple clients are ag-
gregated at each step. The top-right font denotes the round, and the indices
denote the client’s model. 110

6.5 Reuse Index: Examples of generating reuse indexes with posterior and
prior set under waiting threshold N = 1, where M = 6, C = 2, N = 1 and
assume N t

i = Gti for simplicity. 112
6.6 Total cost (energy and time cost, in USD) of DA-DPFL and all baselines

evaluated on CIFAR10 against θ. 125
6.7 Total cost (energy and time cost, in USD) of DA-DPFL and all baselines

evaluated on CIFAR100 against θ. 126
6.8 Total cost (energy and time cost, in USD) of DA-DPFL and all baselines

evaluated on HAM10000 against θ. 127
6.9 Test (top-1) accuracy of all baselines, including CFLs and DFLs, across

various model architectures and datasets. 128
6.10 (Top) Relationship between sparsity and detection score; (Bottom) Im-

pact of C involved in each training round on accuracy (CIFAR10, Dir(0.3),
δpr = 0.03). 129

6.11 Impact of δpr on final prediction accuracy of achieving sparsity s = 0.8 with
CIFAR10 (C = 10) Dir (left) and Pat (right) partitions (where * indicates
DA-DPFL without further pruning, i.e., fixed sparsity s = 0.5). 130

6.12 (a)Impact of neighborhood size C on parallelism and delay; (b)Characteristic
of proposed time-varying connected topology: delay caused by waiting
across neighbor size C and waiting control threshold N 131

6.13 Performance with different waiting threshold N 131

Acknowledgements

It has been almost ten years since I began my journey in higher education, spanning
diverse locations from Macau, SAR, China, to Canberra, Australia, and Glasgow, United
Kingdom. During this time, my academic focus evolved from Math to Statistics and
ultimately to Computer Science, allowing me to apply theoretical knowledge to practical
problems. This journey was not without challenges, but overcoming these setbacks has
led me to become a researcher in Computing Science. I am deeply grateful to everyone
who supported me in achieving these milestones.

First, I would like to express my sincere gratitude to my PhD supervisors, Dr. Christos
Anagnostopoulos and Dr. Fani Deligianni, for their patience and exceptional expertise.
Their support extended beyond research, as they also showed care for my personal well-
being, making my PhD journey both happy and enriching. I am also grateful to Dr.
Yanrong Yang and Dr. Daning Bi, who introduced me to academic research during my
Master’s studies and provided valuable career guidance. Additionally, I would like to
thank Professor Jianwei Zhang for giving me the opportunity to explore Computer Science
through an internship in his group, which ignited my passion for this field.

Secondly, I would also like to thank my colleagues and friends at the University of
Glasgow for their collaboration and company. Specifically, I am grateful for the valuable
suggestions from Dr. Sham Puthiya Parambath and Saleh Abdullah M AlFahad in our
KDES group. The routine dinner gatherings have improved my cooking skills and en-
hanced our friendships. I want to extend my thanks to Dr. Siwei Liu, Kai Feng, Zhaohan
Meng, Cong Fu, Xicheng Li, Qiyuan Wang, Zhuoran Tan, Hong Lin, Xinyu Li, and many
others.

The most important is to express my deep thanks to my loved family members, in-
cluding my parents, Professor Hongyan Wang and Weihong Long, and my grandparents,
Shunying Li, Dexin Wang, Juzhen Yang, and Desheng Long, who have supported me un-
conditionally and brought me into this world. I am also deeply grateful to my girlfriend
and soul mate, Xuexue Zhao, for her patience and love during this challenging period.

To conclude, I would like to share a Chinese poem that reflects my journey:

xiii

xiv

肩鸿任钜踏歌行，功不唐捐玉汝成。

Declaration

With the exception of chapters 1 and 2, which contain introductory material, all work in
this thesis was carried out by the author unless otherwise explicitly stated.

xv

Chapter 1

Introduction

1.1 Motivation

Machine learning is pivotal in the Artificial Intelligence (AI) era. Statistical machine
learning models, such as Support Vector Machines (SVM), Decision Trees (DT), and
Bayesian Models, are widely applied in real-world situations, including spam filtering,
sentiment analysis, anomaly detection, and cybersecurity analysis (Sharifani and Amini,
2023). These models have revolutionized various industries by providing tools to ana-
lyze and interpret complex data, leading to significant advancements in automation and
decision-making.

1.1.1 The Shift from Centralized to Distributed Learning

In recent years, the significant development of deep neural networks, with Stochastic
Gradient Descent (SGD)-based update mechanisms, has laid the foundation for what is
known as Deep Learning (DL). Various model architectures have been developed to fit
different tasks. For instance, convolutional neural networks (CNN) are designed to assist
with computer vision tasks. At the same time, Recurrent Neural Networks (RNN) and
Transformer models are better suited for natural language processing tasks (Dong et al.,
2021). These advancements have enabled breakthroughs in image recognition, speech
processing, and autonomous systems.

The resources and services provided by tech companies such as Amazon, Meta, and
Alibaba rely heavily on Cloud Computing (CC). However, centralized machine learning
or deep learning in Cloud servers cannot meet the increasing complexity of tasks and
neural network architectures, even with hardware acceleration (Verbraeken et al., 2020).
This limitation drives the transition from CC with centralized machine learning to
Edge Computing (EC) with distributed machine learning. The significant issues of
CC are summarized as follows (Liu et al., 2022). First, enormous amounts of data are

1

1.1. Motivation 2

distributed across various locations. Allocating this data to a central server is costly not
only due to the sheer volume but also because of privacy concerns, particularly when deal-
ing with sensitive data such as medical records or financial information. Second, central
servers encounter bottlenecks as computational and storage demands surpass the capac-
ity of centralized hardware. Additionally, there is high latency due to the long distance
between the server and edge devices. Certain applications, such as Virtual Reality (VR),
Autonomous Vehicles (AV), and Smart Home Automation (SHA), require low latency for
timely processing. These constraints necessitate a shift towards more localized processing
solutions.

1.1.2 The Role of Knowledge Reuse and Sparsification in Dis-

tributed Learning

Distributing machine learning tasks across multiple nodes, such as mobile devices and
personal computers, has addressed the aforementioned challenges through collaboratively
distributed learning. This approach ensures data privacy by keeping data local and per-
forming computational tasks close to the data generation points. According to Shi et al.
(2016), such methods are supported by the infrastructure of edge computing (EC), where
edge devices can handle computation offloading, data caching, and query processing. Khan
et al. (2019) summarized research efforts on state-of-the-art EC, highlighting aspects such
as real-time application execution, big data analytics, resource management, and secu-
rity issues. For instance, an effective computation offloading strategy in the mobile EC
paradigm was built on a low-complexity online algorithm (Mao et al., 2016). Additionally,
Luo et al. (2018) addressed task scheduling in EC by solving a latency minimization prob-
lem using dynamic programming. Furthermore, Duan et al. (2022) proposed a minimum
latency scheme with migration loads to ensure quality of service (QoS) and power-aware
resource management in vehicular EC systems. Therefore, efficiency, defined as minimiz-
ing system costs such as computation, communication, and resource usage, has become
a significant and trending direction in research and application within the distributed
computing paradigm.

The machine learning pipeline typically involves three steps: data processing, model
training, and model evaluation, with each component interacting with the others to ensure
efficient learning. Reducing redundancy in this pipeline is crucial for achieving efficiency
in both centralized and decentralized computing environments. The concept of reuse,
introduced by Zhou (2016), involves leveraging pre-trained machine learning models or
learned knowledge to efficiently adapt to new tasks without the need to build models from
scratch or reprocess data extensively. Knowledge or model reuse has been extensively
applied in centralized tasks such as handling concept drift (Zhao et al., 2020), protecting
intellectual property (Li et al., 2021c), and accelerating query inference (Hasani et al.,

1.1. Motivation 3

2019). With the rapid increase in data and devices in EC environments, redundancy in
data and models is inevitable. Limited work applies the concept of reuse in EC systems. A
case study in EC demonstrated the computation of new models by reusing trained models
to save resources (Lee et al., 2019). A service migration scheme supported by reuse was
proposed by Nour et al. (2021). Hence, improving efficiency in distributed computing,
particularly in edge computing environments, with reuse remains an open challenge.

Thanks to the development of end device capabilities, there is an increasing push
to evolve EC into Edge Intelligence (EI), which involves supporting deep neural networks
(DNNs) at the edge. EI refers to the integration of AI and ML into EC environments. One
of the most well-known EI applications is Google’s G-board, which trains a text prediction
model collaboratively on mobile phones using the Federated Learning (FL) paradigm.
Federated Learning was introduced by McMahan et al. (2017) and has emerged as a key
technique in distributed computing environments. It connects data islands by enabling
clients to train machine learning models, especially deep learning models, collaboratively.
FL can be categorized into centralized FL or decentralized FL based on whether a central
server coordinates the process (Beltrán et al., 2023). Regardless of the presence of a
coordinator, core challenges in FL include high communication and computation costs,
system heterogeneity, data or statistical heterogeneity, and privacy concerns (Li et al.,
2020c). In recent years, there has been significant interest in developing efficient FL
methods to address communication and computation costs. The key point is also to
reduce the redundancy in the machine learning pipeline, as stated above. To reduce the
redundancy in model training step, strategies to decrease the required communication
rounds for convergence include innovative client selection methods (Chen et al., 2021;
Yang et al., 2021; Reisizadeh et al., 2020; Wang et al., 2022b; Li et al., 2022; Lai et al.,
2021; Xu et al., 2022) and improved optimizers (Wang et al., 2022a; Zhao et al., 2022;
Shi et al., 2023). Communication efficiency can be achieved by reducing redundancy in
model parameters, especially the size of information exchanged among clients (Konečnỳ
et al., 2016; Jiang and Borcea, 2023; Jiang et al., 2022; Wu et al., 2022). Pruning, a
model compression technique, enhances computation efficiency in centralized training and
has shown promise in improving both communication and computation efficiency in FL.
However, it has been relatively underexplored in the context of FL (Jiang et al., 2022;
Li et al., 2021a; Dai et al., 2022; Bibikar et al., 2022). Challenges remain, such as the
inference performance of pruned models in FL not matching that of centralized pruned
models under high sparsity. Integrating pruning with other techniques to achieve both
efficiency and effectiveness while addressing additional challenges remains a promising
area for research. Effectiveness refers to achieving high model performance metrics (e.g.
accuracy, robustness).

1.2. Thesis Statement 4

1.2 Thesis Statement

This thesis claims that effectiveness can be maintained and efficiency can be enhanced in
collaborative distributed machine learning by leveraging knowledge reuse and sparsification
techniques. Specifically:

• It demonstrates that implementing knowledge reuse and model pruning in dis-
tributed learning frameworks, such as Federated Learning, can substantially improve
model inference performance.

• These improvements come without the necessity for redundant computation and
excessive communication.

The findings show that reusing trained models across nodes with similar datasets signif-
icantly reduces computational redundancy and communication overhead. Additionally,
model pruning effectively decreases the model size, enhancing both computational and
communication efficiency. This thesis concludes that knowledge reuse and sparsification
techniques are crucial for creating efficient, scalable, and robust distributed machine learn-
ing systems.

1.3 Contributions

This thesis makes significant contributions to the field of distributed and federated machine
learning, particularly focusing on enhancing system efficiency and effectiveness through
knowledge reuse and sparsification techniques. The key contributions are summarized as
follows:

• Advancing Distributed Learning with Knowledge Reuse:

– Proposed a novel framework that integrates knowledge reuse into distributed
machine learning, particularly in Edge Computing (EC) environments, enabling
efficient use of previously trained models.

– Demonstrated how leveraging similarity-based model reuse can significantly re-
duce computational redundancy and communication overhead while preserving
data privacy.

– Validated the proposed framework through experiments, showing that knowl-
edge reuse achieves comparable model performance to training from scratch
while reducing system costs.

• Enhancing Reusability in Distributed Learning Frameworks:

1.4. Publications From This Research 5

– Extended the foundational knowledge reuse framework by introducing advanced
reusability techniques, defined as the ability of a machine learning model to be
effectively adapted for diverse tasks and environments.

– Developed methods to systematically construct reusable models, improving
both communication efficiency and computational scalability in distributed sys-
tems.

– Evaluated these techniques through rigorous experimentation, highlighting their
robustness in handling data heterogeneity and their effectiveness in improving
resource utilization.

• Introducing Pruning Techniques for Federated Learning:

– Designed innovative pruning methods to enhance efficiency in Federated Learn-
ing (FL), focusing on reducing model size and optimizing resource usage.

– Proposed and evaluated the FedDIP algorithm, which incorporates dynamic
pruning with error feedback and incremental regularization, achieving high
sparsity without compromising model accuracy.

– Demonstrated the potential of pruning to address communication and com-
putation bottlenecks in centralized FL, making it feasible for large-scale and
resource-constrained environments.

• Optimizing Decentralized Federated Learning:

– Developed the DA-DPFL algorithm, which integrates dynamic aggregation and
pruning in decentralized federated learning, addressing unique challenges like
data and system heterogeneity.

– Demonstrated how dynamic aggregation and pruning can balance computa-
tional efficiency and model accuracy, enabling scalable and robust distributed
learning systems.

– Validated the proposed methods through experiments, showcasing their energy
efficiency, scalability, and adaptability across various scenarios.

These contributions collectively advance the state of the art in distributed and fed-
erated machine learning, demonstrating that efficiency and effectiveness can be achieved
simultaneously through innovative frameworks and techniques. Detailed technical method-
ologies and experimental results are presented in subsequent chapters.

1.4 Publications From This Research

The content of the chapters is derived from the following publications:

1.5. Thesis Outline 6

• Chapter 3: (Long et al., 2022) Knowledge Reuse in Edge Computing Environ-
ments. - Qianyu Long, Kostas Kolomvatsos, Christos Anagnostopoulos. Published
in Journal of Network and Computer Applications (JNCA, IF 7.7, JCR Q1).

• Chapter 4: (Long et al., 2024a) Enhancing Knowledge Reusability: A Distributed
Multitask Machine Learning Approach. - Qianyu Long, Kostas Kolomvatsos, Chris-
tos Anagnostopoulos. Published in IEEE Transactions on Emerging Topics in Com-
puting (TETC, IF 5.5, JCR Q1).

• Chapter 5: (Long et al., 2023)1 FedDIP: Federated Learning with Extreme Dy-
namic Pruning and Incremental Regularization. - Qianyu Long, Christos Anag-
nostopoulos, Shameem Puthiya Parambath, Daning Bi. Published in International
Conference on Data Mining 2023 (ICDM 2023, CORE A*).

• Chapter 6: (Long et al., 2024b)2 Decentralized Personalized Federated Learning
Based on a Conditional Sparse-to-Sparser Scheme. - Qianyu Long, Qiyuan Wang,
Christos Anagnostopoulos, Daning Bi. Under review in IEEE Transactions on Neu-
ral Networks and Learning Systems (TNNLS, IF 14.3, JCR Q1).

1.5 Thesis Outline

This thesis is structured in the following manner:

• Chapter 2: This chapter provides the foundational background for distributed ma-
chine learning. It covers the historical context, definitions, categories, and challenges
associated with distributed statistical learning and federated learning. It provides
the fundamental knowledge of distributed learning and shows the importance of this
thesis.

• Chapter 3: This chapter introduces the concept of knowledge reuse in distributed
computing, particularly within Edge Computing (EC). It details the methodology
for direct model reuse, including similarity score calculation and learning paradigms.
Theoretical analysis and experimental results demonstrate the efficiency and effec-
tiveness of the proposed methods.

• Chapter 4: Building on the previous chapter, this chapter explores techniques to
enhance the reusability of models in distributed learning frameworks. It introduces
advanced methodologies for model reusability, theoretical analyses, and experimental
setups to validate the proposed enhancements.

1Code is available at:https://github.com/EricLoong/feddip
2Code is available at:https://github.com/EricLoong/da-dpfl

1.5. Thesis Outline 7

• Chapter 5: This chapter focuses on sparsification techniques, specifically model
pruning in centralized federated learning. It presents the FedDIP algorithm and
discusses its theoretical foundations. The chapter includes experimental setups and
results, showing how pruning improves computational and communication efficiency.

• Chapter 6: Extending the discussion on federated learning, this chapter examines
decentralized federated learning with dynamic pruning. It introduces the DA-DPFL
algorithm and provides theoretical and experimental analysis to demonstrate its
benefits in decentralized settings.

• Chapter 7: The final chapter summarizes the contributions of the thesis and sug-
gests directions for future research. It recaps the major findings and discusses po-
tential areas for further investigation based on the thesis results.

Chapter 2

Background

2.1 Introduction

Chapter 1 primarily discusses the motivation and challenges associated with distributed
computing in the context of machine learning. To address these challenges, particularly
those related to efficiency (low costs) and effectiveness (high quality of services), we have
proposed leveraging the concepts of reuse with meta-learning and sparsification methods.
This chapter overviews distributed machine learning (DML), key techniques, methods for
efficiency, and current trends.

2.2 Core Concepts

2.2.1 Definitions and Scope

The section highlights the difference between cloud/centralized machine learning (CML)
and distributed machine learning. Figure 2.1 explains the difference, covering both struc-
ture and function. In DML, clients generate and store their own data, reducing the need
for centralized data storage and effectively addressing data distribution challenges. In
contrast, CML relies on data sent from clients to a cloud server or generated by the
server itself. Regarding computation, DML leverages local clients’ computational power,
surpassing cloud servers’ limitations when handling large volumes of data. Furthermore,
clients in DML can perform local inference, enabling real-time processing. Finally, while
data transmission in CML is encrypted, it is more vulnerable than encrypting DML model
updates. Even if encryption on updates is compromised, retrieving sensitive data from
the model updates requires additional effort. Another type of distributed computing in
machine learning focuses solely on accelerating training by evenly partitioning data on the
server, typically referred to as parallel computing. Details of difference are summarized in
Table 2.1. We also illustrate DML with parameter sharing in a single-step pseudo code,

8

2.2. Core Concepts 9

Cloud

(1) (4)

(2)
(2) (2)(3) (3)

(3)

(3)Download Results
(2)Upload Data Packets
(1)Model Training

(4)Model Inference

Client Client Client

(a) Cloud Machine Learning (b) Distributed Machine Learning

Figure 2.1: Comparison of Cloud and Distributed Machine Learning

as shown in Algorithm 1.

Algorithm 1 Distributed Learning with Parameter Sharing (One-Step)
1: Initialize model parameters ωg

2: for each node i in parallel do
3: ωi ← LocalTraining(W, local data)
4: Send ωi to central server
5: end for
6: ωg ← Aggregate(ω1, ω2, . . . , ωi)
7: for each node i in parallel do
8: Receive updated ωg from central server
9: end for

Following the classification of machine learning, Distributed Machine Learning (DML)
can be broadly categorized into Distributed Statistical Learning (DSL) and Dis-
tributed Deep Learning (DDL) (Dehghani and Yazdanparast, 2023). These cate-
gories align with the underlying methods and objectives of the respective models while
acknowledging their interconnected nature.

Statistical Learning (SL) focuses primarily on interpretability, providing clear expla-
nations of model behavior and relationships between input and output variables. Under

2.2. Core Concepts 10

Aspect Distributed Machine
Learning

Traditional Machine
Learning

Data Handling Data is distributed across
multiple nodes or machines.

Data is usually centralized
in a single location.

Computational Re-
sources

Utilizes multiple computa-
tional resources to handle
large-scale computations.

Relies on a single machine
or a small number of ma-
chines.

Scalability Highly scalable, can han-
dle very large datasets and
complex models.

Limited scalability, strug-
gles with very large
datasets and complex mod-
els.

Fault Tolerance Designed to handle failures
in some nodes without sig-
nificant performance degra-
dation.

Less tolerant to failures; a
single point of failure can
disrupt the process.

Communication Over-
head

Requires significant com-
munication between nodes
for synchronization and pa-
rameter sharing.

No communication over-
head since computations
are localized.

Table 2.1: Differences between Distributed Machine Learning and Traditional Machine
Learning

certain assumptions, SL methods can yield analytical solutions, well-constructed confi-
dence intervals, and explicitly interpretable parameters. For example, decision boundaries
in classification tasks can often be directly derived from the model. According to Hastie
et al. (2009), a foundational reference for SL, statistical learning models include tech-
niques such as Regression, Kernel Methods, Support Vector Machines (SVM), K-Nearest
Neighbors, Decision Trees, Random Forests, Ensemble Learning, and Undirected Graphi-
cal Models. These models are typically simpler than deep learning architectures, allowing
for greater efficiency in both computation and communication, particularly in distributed
settings. In the context of DSL, these statistical models are adapted to operate on data
distributed across multiple locations or devices.

Deep Learning (DL), on the other hand, leverages multi-layered neural network archi-
tectures to model complex, high-dimensional, and unstructured data. DL models, often
considered "black-box" methods, excel at tasks like image and speech recognition, natural
language processing, and other domains requiring hierarchical feature learning. Unlike
SL, which emphasizes interpretability, DL focuses on representation learning and scal-
ability. Despite this distinction, DL is inherently a subset of statistical learning, as it
relies on statistical principles for optimization and prediction, a relationship explored in
depth by Bartlett et al. (2021). Examples of deep learning models include Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer models, and
Generative Adversarial Networks (GANs).

2.2. Core Concepts 11

In Distributed Deep Learning (DDL), these deep learning models are trained across
multiple nodes or clients to handle large datasets and complex tasks efficiently. This is
achieved through distributed architectures that partition both data and model computa-
tion, enabling parallelism. Two key forms of parallelism in DDL are:

• Data Parallelism: The same model is trained on different subsets of data across
multiple nodes, with periodic synchronization to update global parameters (e.g.,
federated learning).

• Model Parallelism: Different parts of the model are trained simultaneously on
different nodes, which is beneficial for large models that cannot fit into a single
device’s memory (e.g., split learning).

This thesis focuses on data parallelism within DDL, leveraging techniques like federated
learning to address challenges such as communication overhead, data heterogeneity, and
privacy preservation in distributed systems.

While SL and DL are often discussed separately, they are closely related and com-
plementary. For instance, neural networks, often associated with DL, were historically
described as statistical models (e.g., perceptrons and SVMs) before evolving into deep
architectures through advances in optimization and computational resources. This rela-
tionship underscores the importance of acknowledging the theoretical connections between
the two paradigms while leveraging their unique strengths in distributed learning.

2.2.2 General Formulation for DML

As claimed in Chapter 1, DML is developed to support the computation across distributed
multiple computational nodes or clients. Considering M nodes in a data-distributed sys-
tem, each node possesses a local dataset Di with i ∈ {1, 2, . . . ,M}. The target is to
optimize an optimization function, traditionally, which is a global loss function F (ωg) and
defined as

F (ωg) =
1

M

M∑
i=1

Fi(ωi) (2.1)

, where ωg is the global model and ωi is the local model for client i.
Each local loss function Fi(ωi) is typically of the form:

Fi(ωi) =
1

|Di|
∑
j∈Di

ℓ(ωi;xj,yj) (2.2)

where ℓ(ωi;xj,yj) is the loss incurred by the model ωi on the data point (xj,yj).
The efficiency of a distributed learning system is influenced by the connection topology

of the nodes or clients, particularly in terms of how model updates are propagated. As

2.3. Key Techniques 12

noted by Verbraeken et al. (2020), different topologies exhibit varying degrees of distri-
bution. Detailed discussions on these topologies are provided in Chapter 6. In Chapters
3 and 4, we focus on a fully connected, peer-to-peer topology to select target nodes for
model reuse. Chapter 5 adopts the FedAvg topology, which is a star topology with a
central parameter server. In Chapter 6, we extend the static decentralized peer-to-peer
topology by allowing connections to change randomly at different rounds, enhancing the
dynamic nature of the network.

2.3 Key Techniques

2.3.1 Distributed Statistical Learning

In addition to the advantage stated in Section 2.2, i.e., ’interpretability,’ statistical learning
also possesses another benefit, which is efficiency due to the simplicity of model structures
compared with deep neural networks. However, the simple models used in statistical
learning often struggle with capturing complex patterns and interactions within the data
that deep neural networks excel at modeling. This limitation can result in lower predictive
performance on tasks that require the learning of intricate relationships, such as image and
speech recognition, natural language processing, and other domains where data complexity
and volume are high. A wider understanding of distributed SL can not only be explained as
in Section 2.2 but also be that leverages statistical knowledge in learning models, which are
widely used in finance (e.g., predicting stock prices), healthcare (e.g., estimating disease
progression), marketing (e.g., sales forecasting) Hastie et al. (2009).

Statistical knowledge informs representation learning, particularly the meta-features
and meta-models learned in meta-learning, which is a broader concept than transfer
learning (Vanschoren, 2018). Meta-features include the number of samples, features, and
classes; skewness, correlation, and eigenvectors from variance decomposition; and advanced
metrics like Hessian information, Fisher Information, Kullback-Leibler (KL) Divergence,
and Maximum Mean Discrepancy (MMD). One approach in meta-model learning is rank-
ing the top-K meta-models and selecting the best or multiple models fitting the task data
distribution, akin to ensemble learning, to enhance overall performance. Additionally, to
explain the interpretability of statistic models, we take regression as an example. The
regression models provide apparent insights into the relationship between dependent (Y)
and independent variables (X) under certain assumptions, where (X,Y) is defined in the
following equation. For example, Generalized Linear Models (GLM) are interpretable
because they extend linear models to accommodate non-linear relationships via the link
function while retaining the linearity in the parameters β. The general form of a GLM
can be expressed as follows. The expected value of the response variable Y given the

2.3. Key Techniques 13

explanatory variables X is:
E(Y | X) = µ = g−1(γ) (2.3)

where the linear predictor γ is given by:

γ = Xβ (2.4)

The variance of Y is a function of its mean:

Var(Y | X) = V (µ) (2.5)

According to the concrete explanation of statistical learning, we list the research of
DSL, which offers interpretability and efficiency (computation, communication, and infer-
ence) in distributed systems. Navia-Vazquez et al. (2006) introduce a distributed SVM
aimed at reducing information exchange between nodes while providing privacy-preserving
mechanisms. Dobriban and Sheng (2021) propose an algorithm for data parallelism with
distributed linear regression averaging, using one-step and iterative weighted parameter
averaging. Han and Liu (2016) achieve efficient distributed statistical estimation with
bootstrapping, reducing bootstrap noise variance with a weighted M-estimator method.
To lower computation costs, Yao et al. (2018) develop a two-stream model under MMD
constraints to achieve convergence with fewer communication rounds.

2.3.2 Distributed Deep Learning

Distributed deep learning refers to conducting learning across clients with deep neural
networks to handle complex tasks (Tang et al., 2020; Verbraeken et al., 2020), particularly
in tasks involving high-dimensional and unstructured data. Depending on the property of
parallelism, DDL can be classified as split learning (Vepakomma et al., 2018) and federated
learning (McMahan et al., 2017), which targets model parallelism and data parallelism,
respectively. The pseudo-code of FedAvg (McMahan et al., 2017) is provided in Algorithm
2, which is aligning with the framework depicted in Figure 2.1b. Notably, in federated
learning (FL), data is distributed across different nodes, allowing each node to train the
same model architecture on different subsets of data. In the context of distributed training
or parallel computing, such data partition is usually even. In contrast, FL originally aimed
at training on heterogeneous data distribution. Precisely, FL can be further classified into
vertical FL, horizontal FL, and federated transfer learning, depending on the heterogeneity
of feature space and sample IDs. The objective of split learning is model parallelism, which
splits the model across different nodes, each responsible for a part of the model. This
benefits from the orchestration of the structure of neural networks and the SGD-based
update mechanism.

2.3. Key Techniques 14

Algorithm 2 Federated Averaging (FedAvg)
1: Input: M , Number of clients; T , Number of communication rounds; η, Learning rate;

C: Fraction of clients to be selected each round
2: Output: Global model parameters
3: Initialization: Initialize global model parameters ω0
4: for each communication round t = 1, 2, ..., T do
5: Select a random fraction C of the M clients (denoted as St)
6: Distribute the global model parameters ωt to the selected clients in St

7: for each client i in St do
8: Client i receives the global model parameters ωt
9: Client i performs local training:

10: for each local epoch e = 1, 2, ..., El do
11: Update local model parameters ωt

i using local data Di and learning rate η
12: end for
13: Client i sends the updated local model parameters ωt

i back to the server
14: end for
15: Server aggregates the received local model parameters:
16: ωt+1 ← 1

|St|
∑

i∈St
ωt
i

17: end for
18: Return: Global model parameters ωT

Both FL and split learning allow collaborative model training without sharing raw data,
addressing privacy concerns, and introducing challenges related to computation, commu-
nication efficiency, and system and data heterogeneity. Data heterogeneity refers to the
variations in data distribution across different nodes, which can impact model performance
and generalization. Communication overhead is a significant challenge in distributed sys-
tems, as frequent synchronization between nodes can lead to latency and increased resource
usage. Computation efficiency is particularly vital in resource-constrained environments.
The system heterogeneity results in difficulty coordinating computation; for example, the
stragglers have a huge negative impact on the training efficiency, not only on the sequential
training in split learning or the parallel training in FL. Furthermore, there is also a need
for advanced privacy techniques against adversarial attacks.

Split Learning has emerged as a promising branch of Distributed Machine Learning
(DML). Thapa et al. (2022) analyzed the relationship between FL and split learning,
claiming that split learning provides a higher degree of privacy and feasibility of deploy-
ment on resource-constrained devices. Wu et al. (2023) propose a Cluster-based Parallel
Split Learning (CPSL) method, which reduces training latency by partitioning devices
into clusters for parallel training and then sequentially aggregating the models, coupled
with a resource management algorithm that optimizes cut layer selection, device cluster-
ing, and radio spectrum allocation to adapt to wireless networks. Samikwa et al. (2022)
present Adaptive REsource-aware Split learning (ARES) for efficient model training in the
Internet of Things (IoT) systems that specifically deal with various operational conditions

2.4. Methods For Efficiency 15

and resource heterogeneity.
One of the particular interests of this thesis is FL, and hence we expand the discussion

in Chapter 5 and 6.

2.4 Methods For Efficiency

Achieving efficiency in machine learning systems, both distributed and centralized, involves
tackling challenges such as resource utilization, latency, and scalability. A variety of state-
of-the-art (SOTA) methods have been explored to address these challenges. Caching and
prefetching techniques are widely used to reduce the bottleneck associated with repeatedly
accessing large datasets by storing most frequently used data closer to the nodes. Task
offloading and delegation methods dynamically transfer computational workloads from
resource-constrained devices to more capable nodes or cloud resources to balance system
efficiency. Learning rate optimization strategies, such as those used in momentum-based
optimizers, improve convergence speed by adjusting the learning process. Fault tolerance
mechanisms ensure efficient recovery and continued operations in distributed systems,
minimizing resource waste due to interruptions or failures.

Among the various methods for improving efficiency, knowledge reuse and model com-
pression techniques are particularly noteworthy due to their ability to address the distinct
challenges inherent to distributed learning systems. Distributed learning environments
frequently encounter high communication costs, primarily resulting from the repeated
synchronization of large model updates across participating nodes. Additionally, compu-
tational redundancy arises when similar datasets are independently processed and trained
on by multiple nodes. These issues are especially pronounced in distributed settings, where
clients often operate under constraints such as limited bandwidth and restricted compu-
tational resources. By directly targeting these bottlenecks, knowledge reuse and model
compression emerge as promising solutions to enhance both the scalability and practicality
of distributed machine learning frameworks.

2.4.1 Compression Techniques

Model compression techniques such as weight pruning, quantization, low-rank factoriza-
tion, and knowledge distillation, shown in Figure 2.2, have primarily been applied in
centralized learning (Cheng et al., 2017). In this section, we discuss the definitions and
current trends of these techniques individually.

2.4. Methods For Efficiency 16

Teacher Model Student Model

Mutual Learning

Knowledge

Distillation

(a) Knowledge Distillation
Before After

(b) Pruning

123.456

-23.456

-12.34534.567-78.91090.123

45.678

78.910 56.123 45.678

12.345 67.890 -34.567

-67.890 89.123 23.456

127

56

-12123.456-78111

56

94 123.456 56

45 123.456 34

-67 123 45

Quantization

Float64 ⅠNT8

(c) Quantization

m * n m * k

k * n
Y A X~~ *

(d) Matrix Factorization

Figure 2.2: Compression Techniques in Machine Learning

Pruning

Pruning reduces the size and complexity of models by removing redundant structures
based on the importance of model components, such as neurons, connections, and layers.
Figure 5.2 illustrates the differences between a neural network before and after pruning,
focusing on neuron pruning. It is evident that the number of connections between neurons
decreases, which reduces computational demands during training and inference, thereby
enhancing efficiency.

Various methods have been proposed to optimize pruning strategies further. SNIP (Lee
et al., 2018) introduced a method for pruning DNN models based on identifying important
connections before training. He et al. (2017) proposed a two-step pruning method for DNN
layers using regression-based channel selection and least squares reconstruction. employed
the Alternating Direction Method of Multipliers (ADMM) for centralized pruning of CNNs.
Following this, Lym et al. (2019) proposed PruneTrain, which utilizes structured group-
LASSO regularization to accelerate CNN training in a centralized setting. The method
called dynamic pruning with error feedback (DPF) was innovated by Lin et al. (2020),

2.4. Methods For Efficiency 17

which dynamically managed model sparsity through a feedback mechanism that reactivates
pruned weights.

Quantization

Quantization, consisting of both post-training and training approaches, reduces storage
and computational requirements by representing model weights in lower precision (mea-
sured in bits). Specifically, achieving b-bit precision means that only 2b quantization levels
are available for the model. Typically, quantization reduces the original model from 64-bit
floating-point precision to 8-bit precision, as exemplified in Figure 2.2c.

This significant reduction in bit precision not only decreases the model size but also
enhances computational efficiency, making it particularly advantageous for deployment in
resource-constrained environments. Wu et al. (2016) introduced a framework for quantiz-
ing convolutional and fully-connected layers of Convolutional Neural Networks, achieving
up to 20 times compression rate with minimal accuracy loss. This approach enables effi-
cient inference on mobile devices by reducing memory and storage requirements. Build-
ing on these principles, Wang et al. (2018a) proposed a Two-Step Quantization (TSQ)
method, optimizing both weight and activation quantization to maintain network perfor-
mance while further decreasing the bit-width. Similarly, Jacob et al. (2018) developed
a quantization scheme tailored for integer-arithmetic-only inference, which enhances the
latency-accuracy tradeoff on mobile hardware, particularly for models like MobileNets.
Lastly, Dong et al. (2019) presented HAWQ, utilizing Hessian-aware quantization to as-
sign different bit-widths across a neural network, balancing precision and computational
efficiency. These advancements underscore the critical role of quantization in enhancing
the feasibility of deploying DNNs in practical, low-resource environments.

Matrix Factorization

Matrix factorization, or low-rank factorization techniques, are pivotal in compressing neu-
ral networks, significantly improving efficiency and reducing computational demands. As
presented in Figure 2.2d, the original matrix Y is decomposed into two smaller matrices,
A and X, with an error matrix often omitted in the plot. This decomposition reduces
dimensionality, thus achieving greater efficiency. In some cases, the rank k can be as small
as 1. The compression rate for such a decomposition is given by m×n

k×(m+n)
, as demonstrated

in Figure 2.2d.
Building on the foundational benefits of matrix factorization, several researchers have

proposed advanced methods to enhance compression and performance. Liebenwein et al.
(2021) investigated optimal layer-wise decomposition strategies, identifying the best fac-
torization methods to maximize both compression and performance. Yang et al. (2020)
introduced a method for learning low-rank deep neural networks by enforcing singular vec-

2.4. Methods For Efficiency 18

tor orthogonality and sparsifying singular values, resulting in more compact and efficient
models. Swaminathan et al. (2020) proposed sparse low-rank factorization, effectively re-
ducing parameters while maintaining model accuracy. Additionally, Ruan et al. (2020)
developed an efficient decomposition and pruning scheme (EDP) that integrates factor-
ization with pruning, achieving substantial compression in convolutional neural networks.
Idelbayev and Carreira-Perpiñán (2021) explored optimal matrix shapes and decomposi-
tion schemes for neural network compression, providing insights into the most effective
strategies for various architectures. Furthermore, Idelbayev and Carreira-Perpinán (2020)
focused on learning the rank of each layer in neural networks, enabling adaptive and
optimal low-rank compression tailored to the specific needs of each layer.

Knowledge Distillation

Knowledge distillation is a powerful technique for shrinking neural networks by transfer-
ring knowledge from big-size teacher model to small -size student model through mutual
learning, as depicted in Figure 2.2a.

This technique has been extensively studied and refined by various researchers. Hinton
et al. (2015) introduced the concept of distilling knowledge from a large, redundant model
into a smaller, more efficient one by using the soft targets generated by the larger model
to train the smaller one. This approach allows the smaller model to retain much of the
performance of the larger one while being significantly less resource-intensive. Building
on this, Li et al. (2020a) proposed a block-wise supervised neural architecture search with
knowledge distillation, optimizing network architectures with a teacher model’s guidance,
improving efficiency and model performance. Similarly, Li et al. (2020b) developed a few-
sample knowledge distillation approach that achieves efficient network compression using
only a limited number of training samples, addressing the challenge of data scarcity. Fur-
ther advancements include Zhu et al. (2018), who presented an on-the-fly native ensemble
(ONE) method for online knowledge distillation, constructing a strong teacher model dur-
ing training, enhancing training efficiency and model generalization. Finally, Zhang et al.
(2021a) explored self-distillation, where a model learns from its own predictions to improve
efficiency and compactness, avoiding the need for a separate teacher model and thereby
reducing the training overhead. These methods highlight the versatility and effectiveness
of knowledge distillation in creating compact, efficient neural networks without sacrificing
performance.

2.4.2 Knowledge Reuse in Machine Learning

The learnware concept, introduced by Zhou (2016), aims to reuse models stored in a
pool of well-established models to adapt to incoming tasks, thereby avoiding the need to

2.5. Notation and Definitions for Future Use 19

train models from scratch. We extend the concept of reuse defined by Zhou (2016) to
provide the following definition of knowledge reuse in the context of machine learning.
Knowledge reuse refers to learning how to utilize complete or intermediate results, such as
models and information generated during previously executed learning processes, including
meta-features defined by Vanschoren (2018), to enhance the learning process for new
tasks. These enhancements can reduce the required computation or improve learning
performance, i.e., efficiency and effectiveness. This concept of reuse can be considered a
subset of meta-learning.

One prominent instance of reuse is Transfer Learning (TL), which is widely applied
in various deep learning areas (Weiss et al., 2016). A key branch of TL involves fine-
tuning a globally pre-trained model for source tasks to address new target personalized
tasks, thus avoiding expensive data-labeling efforts (Pan and Yang, 2009). This process
involves reusing the information contained in the pre-trained model (learned from the
source data distribution) to enhance the learning performance of the new target model. TL
becomes necessary when there is a distinct difference between the source and target data
distributions. In Chapter 6, we adaptively adopt this TL idea by transferring sequential
knowledge from trained to untrained clients within the same training round. Conversely,
if the data distribution and feature space are assumed to be similar in some scenarios, one
can directly reuse the trained model for other tasks. We leverage this idea with statistical
learning methods to achieve efficiency in Chapter 3.

Additionally, Multitask Learning (MtL) is another example of knowledge reuse. Ac-
cording to Caruana (1997), MtL effectively reuses knowledge to enhance learning and
performance across tasks by training models on multiple tasks concurrently and leverag-
ing shared representations. This approach is leveraged to improve efficiency of DML in
Chapter 4.

The related work on knowledge reuse in the context of distributed learning is further
discussed in Chapter 3.2 and Chapter 4.2.

2.5 Notation and Definitions for Future Use

We summarized the notations from Chapter 3 to 6 in Table 2.2 &2.3 orderly. Particu-
larly, the notations used in Chapter 3 and 4 are mainly included in Table 2.2. Table 2.3
summarizes the mainly used notations in Chapter 5 and Chapter 6. The terms "clients,"
"nodes," and "devices" are used interchangeably throughout this work since the focus is
distributed learning. To avoid confusion, this work adopts the following terminology based
on context:

• Node: Refers to general computational units within the distributed system, regard-
less of their specific role or physical characteristics.

2.6. Conclusions 20

• Client: Refers to entities contributing data or participating in the federated learning
process, whether in centralized or decentralized frameworks.

• Device: Refers to the physical hardware, such as smartphones or IoT sensors, high-
lighting constraints, capabilities, or applications in edge computing scenarios.

2.6 Conclusions

This chapter has provided an overview of distributed machine learning, its core concepts,
key techniques, optimization techniques for efficiency, such as pruning and reuse, and
notations, which are primarily utilized in this thesis.

The subsequent chapters will delve deeper into innovative learning paradigms for effi-
ciency under various distributed learning scenarios, highlighting their importance in ad-
vancing distributed machine learning. In addition to the structural explanation in Chapter
1, we outline the following chapter structure based on the discussed content to demonstrate
the consistency of this thesis. In Chapter 3, we leverage the concept of reuse to achieve
efficiency in Edge Computing (EC), avoiding redundant computation by precisely identify-
ing the potential reusable models. Chapter 4 explores leveraging reuse through multitask
learning and the meta-features learned during training, such as partial learning curves,
to enhance efficiency and effectiveness in distributed learning environments. Chapter 5
adapts pruning methods from centralized machine learning to achieve highly sparse mod-
els for resource-constrained clients, benefiting fast inference and conserving computational
resources during training in the context of federated learning. Chapter 6 extends pruning
methods to decentralized federated learning by reusing sequential knowledge from clients
with updated models within the same training round. It addresses challenges such as data
heterogeneity, expensive computation, communication costs, and efficient inference while
preserving privacy and being robust to single points of failure.

2.6. Conclusions 21

Table 2.2: Notations Table

Symbol Definition
M,K Number of nodes, number of head nodes
Ni or Gi set of node i’s neighbors

ni Number of data points in node i’s dataset
d, p Data and PLC dimensionality

(Xi,Yi) Input data and label matrices at node i in Rd×ni

L, B Loaners and borrowers involved in model training and usage
fj(x) ∈ FA Model trained on loaner j

µP Kernel mean with considering embedding P
A Mapping onto randomized feature space

k(·, ·) Kernel function
Σ Covariance matrices

λk,vk k-th largest eigenvalue and eigenvector
(α, β), (α∗, β∗) Decision thresholds for similarity

κ GMM performance indicator
γ Inverse of the RBF kernel bandwidth

mk, sk Real and synthetic datasets
(ν, ρ) Percentage of SVs and novelty accuracy of OCSVM
C Quality of analytics cut-off threshold

t, τ , τ0 Discrete time instances
ζt, bt HW time-series smoothed values and trend
θ Model maintenance threshold over ζt

ω,W Model parameter and its matrix with all nodes
ωi, ω∗

k Local model weight in node i, tailored model weight in cluster Ck
Li Convex loss function for node i
Ω−1 Task relationship matrix
λ1, λ2 Regularization parameters
S Ordered index set for Partial Learning Curves
Ck k-th cluster with mk < m nodes, k = 1, . . . , K
L Number of bootstrapping rounds
η Learning rate
ϵ, γ Similarity tuning parameter, SGD error tolerance
V̂i, v̂i Partial Learning Curve (PLC) and its magnitude on node i
µk,Σk Average PLC and covariance matrix at cluster Ck
ζi, ζmin Election Probability (EP) at node i, minimum EP
ν
(k)
sim Average tasks similarity at cluster Ck

ξ, ξ∗ Difference in reusable model accuracy
µ
(k)
in , µ

(k)
out Model reuse performance degradation inside/outside cluster Ck

µDC Sørensen-Dice coefficient

2.6. Conclusions 22

Table 2.3: Notations Table (Continued)

Symbol Definition
x Input vector

∥x∥p, ∥x∥∞, ∥x∥ ℓp, ℓ∞, ℓ2 norm of vector x
O(.) Big-O notation
f(x) Function of vector x

v,∇f(x) Gradients and Gradient of function f(x)
min f Minimum value of function f
R Reconfiguration interval for mask updates
E[·] Expectation
FA Family of parametric models in parameter space A
P Probability Measurements
Di Local dataset for client i
C Set of selected clients for training
ρi Proportion of data samples of client i

ω̄, ω̃, ω̃t
i, ω̄

t Actual and estimated model aggregation parameters
fi(ω), f(ω) Local and global loss functions

T Number of global/training rounds
e Error term, the difference between the model and its sparse form.
El Number of local training rounds

m,mi Pruning mask and mask for client i
s Sparsity level

λmax Maximum value of regularization parameters
πi Random bijection mapping

Gi(a),Gi(b) Prior and posterior client subsets
N Waiting threshold

σl, σg, σp Bounded variance for local, global, and personalized gradients
Pt,i Selection probability of client i at time t
vt Voting decision for pruning at time t
δpr Pruning threshold
δv Voting threshold for pruning
b, c Pruning interval scaling factor

Chapter 3

Efficient Distributed Learning with
Direct Reuse

In the thesis statement, we claim that efficiency can be achieved by directly reusing the
models at the edge. In addition to Section 2.4.2, this section reviews the concept of
knowledge reuse and its importance in the distributed computing paradigm. Methods are
proposed to realize efficiency by optimizing model reuse across various nodes/clients.

3.1 Introduction

The rapid growth of devices, such as sensors and computing units within the Internet of
Things (IoT), has emphasized the significance of Edge Computing (EC) as an essential
paradigm. For example, in smart cities, sensors on traffic signals and surveillance cameras
generate vast amounts of data that require real-time processing to manage traffic and
ensure public safety effectively. EC is increasingly recognized for its role in addressing the
limitations of Cloud Computing by offloading tasks to EC servers (nodes) that are closer
to end-user devices. Recent research has been developed to overcome the challenges of
Cloud Computing by offloading the tasks to EC servers (nodes) due to the proximity of
EC nodes to end-user devices. For instance, Ti and Le (2017) and Zhang et al. (2017) have
dealt with managing collaborative tasks in EC networks under the perspective of energy
and latency minimization.

However, EC faces significant resource management challenges in the context of Ma-
chine Learning (ML), which involves data preprocessing, model training, model adapta-
tion, and inferential analytics. These challenges are particularly appearing during the ex-
ecution of collaborative tasks such as inferential analytics and predictive modeling within
tight time constraints. EC nodes often struggle to complete these tasks independently
due to heavy data traffic, Quality of Service (QoS) limitations, data privacy concerns, and
insufficient computational power. Moreover, the growing demand for computational tasks

23

3.1. Introduction 24

often exceeds the capabilities of individual nodes, making it impractical to train models
on each device independently. Given the design of EC to process tasks near end-users,
it is crucial to recognize that EC nodes typically lack the computational power found
in cloud servers. This limitation necessitates delegating analytics and modeling tasks to
neighboring edge nodes, particularly when these nodes lack the resources to perform the
required processing activities.

Guo and Hu (2018) notes that many applications frequently utilize similar input data
from camera feeds and share common processing components, both within the same type
of applications and across various ones. Practical applications of these modeling tasks
include outlier detection, nonlinear regression, classification, etc. Specifically, identifying
and detecting objects such as pedestrians, traffic lights, and barriers is crucial in appli-
cations like autonomous driving. The ongoing video data generation crucial for building
object detection models often leads to potential redundancy in the collected data. For
instance, onboard cameras mounted on autonomous vehicles (AVs) frequently capture
similar images when these vehicles traverse identical routes under comparable conditions.
Consequently, exploring the reuse of locally derived knowledge, such as trained machine
learning models, is essential within the Edge Computing framework. Such reuse can sig-
nificantly improve the efficiency of computational resources in developing and maintaining
predictive mechanisms.

Recently, the concept of compute and model reuse introduced by Zhou (2016) has
attracted attention since it has shown the feasibility of accelerating the computation, and
model inference by reusing trained models. However, most of the research leveraged the
concept of reuse, such as Li et al. (2021c); Zhao et al. (2020); Vanschoren (2018) in a
centralized setup. These approaches are not directly applicable to distributed learning
due to several limitations, such as the assumption of direct access to all user data in a
central system, which does not hold in decentralized scenarios where data privacy and
the principles of distributed and collaborative learning are prioritized. Existing studies
have focused on applying this concept within distributed EC scenarios but have assumed
that data is held on edge servers rather than nodes. As stated in Section 2.4.2, we define
knowledge reuse as a broader concept encompassing model reuse, which specifically refers
to reusing pre-trained models without the need to train them from scratch. We present
the following novel contributions:

We introduce a new paradigm termed knowledge reuse for reusing entire models, which
enables efficient reuse of complete computations at the network edge by edge nodes. This
paradigm is organized through two primary mechanisms:

• A decision-making process utilizing pairwise statistical metrics—namely, Maximum
Mean Discrepancy (MMD) and Cosine Dissimilarity—to assess the feasibility of
model reuse across different nodes.

3.2. Related Work 25

• A lightweight monitoring mechanism employs the Holt-Winters forecasting method
to predict potential future violations and accordingly updates the reusable models.

3.2 Related Work

In the following, knowledge dissemination in the distributed computing paradigm is dis-
cussed, and the application of model reuse and statistical machine learning for model reuse
are investigated.

3.2.1 Knowledge Dissemination in EC

Anagnostopoulos (2020) describes knowledge dissemination within Edge Computing (EC)
as the process of sharing trained machine learning models, termed "knowledge diffusion."
This concept, distinct from task allocation, does not necessitate every node’s participa-
tion in model training to complete tasks. Such strategies utilize time-updated models and
selective model engagement to support real-time predictive modeling while maintaining
quality of service (QoS). In enhancing communication efficiency and QoS among collabo-
rative nodes, Anagnostopoulos et al. (2011) and Anagnostopoulos and Kolomvatsos (2018)
contributed to developing context awareness at the edge. Wang et al. (2018b) proposed a
Knowledge Centric Edge Computing (KCE) framework designed to dynamically explore
network structures and manage communication resources by leveraging insights derived
from device-to-device (D2D) communications among mobile users. Additionally, Kolom-
vatsos et al. (2020) applied the optimal stopping theory to determine the optimal timing for
EC nodes to exchange data synopses, optimizing local data processing and task execution
efficiency.

3.2.2 Model Reuse Applications

Zhou (2016) emphasized the importance of model reuse by firstly introducing the concept of
"learnware". Pre-trained machine learning models are designed to be reusable, evolvable,
and understandable, enabling efficient adaptation to new tasks without the need for extra
data or compromising data privacy.

In the centralized setting, research has explored the decision-making around knowl-
edge reuse for specific applications, such as intellectual property protection. For instance,
Li et al. (2021c) introduced ModelDiff, a test-based method for calculating deep neural
network similarities using decision distance vectors to represent model behavior patterns.
Similarly, Zhao et al. (2020) developed a method to adaptively adjust weights for reusing
models to address concept drift based on model performance. Hasani et al. (2019) pre-
sented ApproxML, a framework that constructs approximate machine learning models for

3.3. Methodology 26

new queries by reusing existing models, demonstrating efficient model reuse. Further,
Derakhshan et al. (2022) proposed an optimization strategy to eliminate redundant data
processing by materializing and reusing computational models, effectively creating a reuse
algorithm that integrates various pipelines into a directed acyclic graph. Additionally, Wu
et al. (2021) employed reduced kernel mean embedding (RKME), one of the statistical
specifications, to evaluate the feasibility of reusing pre-trained models from the learning
pool.

Model reuse shares conceptual similarities with computation offloading in edge com-
puting, as both aim to optimize resource utilization by redistributing tasks or leveraging
existing resources. However, while computation offloading primarily involves delegating
tasks to more capable nodes for execution, model reuse focuses on utilizing pre-trained
models to minimize the computational overhead of training from scratch. Studies have
explored leveraging model reuse to boost system efficiency and adaptability across dis-
tributed computing environments. A case study in Lee et al. (2019) advocated reusing
(partly or fully) the trained model among multiple users to compute a new model. Since it
has the potential to significantly reduce resource utilization and accelerate task completion
in edge computing systems. In order to improve the utilization of resources for newly com-
ing tasks, Nour et al. (2021) proposed an adaptive task offloading scheme called Whispering
for migration service with the aid of computation reuse. Moreover, Bellal et al. (2021) de-
veloped CoxNet, an efficient computation reuse architecture that improves task execution
times in edge computing through innovative offloading scheduling strategies. Nour et al.
(2022) applies the concept of computation reuse within a federated learning framework to
address incoming tasks with minimal to no additional computation, effectively reducing
redundant processing and lowering computational costs.

3.3 Methodology

As outlined in Section 3.2.2, although current studies emphasize the utility of knowl-
edge reuse for enhancing system efficiency in edge computing environments, they are not
without their limitations. Primarily, these works presuppose that data is located solely
on edge servers and that end users merely submit task queries without participating in
model training—an assumption that fails to consider advancements in device capabilities.
Sudharsan et al. (2020); Chen and Ran (2019) claimed that modern edge devices, due to
hardware improvements, are now able to train models independently, thereby preserving
data privacy by processing data locally and optimizing resource utilization through task
offloading to edge nodes. Furthermore, the criteria used to decide reusable models, such as
the scoring system described in Bellal et al. (2021), often rely on elementary data statistics
like mean values. This simplistic approach may not provide adequate meta-information

3.3. Methodology 27

for more complex tasks.
Hence, to cope with the scenarios in which data is stored across devices, we provide

one learning paradigm for fully (partially) reusing knowledge. A similarity hypothesis-
driven statistical learning approach is proposed for full knowledge reuse with a lightweight
model reusability monitoring mechanism for stream data. Full knowledge reuse is defined
as utilizing an entire executed model for tasks across different nodes. In contrast, partial
knowledge reuse refers to employing intermediate or immature results, such as meta-
features generated during the training process before model training completion.

3.3.1 Preliminaries

The notations used throughout the chapter are shown in Table 2.2. Note that nodes can be
end users or devices; hence, these terminologies are exchangeable throughout the chapter’s
discussion.

Consider a distributed computing environment comprising M devices or nodes, col-
lectively denoted by the set M = {1, 2, . . . , i, . . . ,M}. These edge devices are typically
connected via a network topology represented by a directed graph, G. In this chapter,
we simplify the model by assuming that the nodes involved in knowledge reuse are fully
connected. This ensures connectivity when computing similarity scores, a key metric for
knowledge reuse. We will further explore network topology’s impact on this model in the
next chapters, particularly in relation to the decentralized federated learning framework.

Each node i in this network collects data represented by Xi,Yi, where Xi ∈ Rni×d

and Yi ∈ Rni . Depending on whether labels are available, the data distribution at node i

could be modeled as a joint probability Pi(Xi,Yi), a conditional probability Pi(Xi | Yi),
or simply Pi(Xi) if labels are not given. This initiates the first hypothesis regarding the
pairwise data similarity between the two devices:

Hypothesis 1. Data Xi on device i is considered similar to Xj on device j if and only if
Pi(Xi) ≃ Pj(Xj) or Pi(Xi | Yi) ≃ Pj(Xj | Yj).

This is important since, intuitively, if two devices’ data, Xi and Xj, are similar, a
model fi(.) trained on Xi is likely to perform similarly when applied to when it is applied
on Xj.

Obtaining such similarity scores requires learning from the task properties, and such
scores are defined as meta-features in Vanschoren (2018). Several metrics can be used to
measure the distance between two density distributions, such as PCA skewness (Feurer
et al., 2014), Kullback-Leibler Divergence (KLD) (MacKay, 2002) and Maximum Mean
Discrepancy (MMD) (Sriperumbudur et al., 2010). Our proposed methods adopt MMD
and Cosine Dissimilarity (CD) and modify them to suit the privacy requirements for

3.3. Methodology 28

distributed computing environments. The details are explained in the following chapter
Section 3.3.2.

Back to the edge computing ecosystem, devices are classified into two classes, the
loaners L ⊂ M and the borrowers B ⊂ M. Loaners are responsible for locally training
and building predictive models over data, and borrowers need to receive trained models
from the loaners because of the inability of the training model. A node is only assigned
to one role simultaneously based on its capability. Given the above, the hypothesis and
corresponding problems for knowledge reuse are as follows.

Hypothesis 2 (Knowledge Reuse). Let a borrower i possess data Xi and a loaner j

possess data Xj. If the similarity between Xi and Xj, as measured by Maximum Mean
Discrepancy (MMD) or the Cosine Dissimilarity (CD) of their first principal components
(1st PC), exceeds a certain threshold, the model fj, trained on the loaner’s data, can be
effectively reused on the borrower’s data for predictive analytics. This reuse negates the
need for the borrower to train a separate model fi while achieving comparable predictive
performance.

Problem 1 (Borrower-Loaner Matching (BLM)). For borrower i and loaner j withinMi,
with datasets Xi and Xj respectively, the goal is to develop a method that is lightweight,
efficient in communication, and scalable. This method should ensure, without transferring
Xi to loaner j, that the model fj trained locally by the loaner provides accuracy and utility
comparable to any model fi that would be trained directly on Xi.

The Borrower-Loaner Matching (BLM) method hypothesizes that a significant sim-
ilarity between datasets Xi and Xj enables the reuse of the loaner’s model fj on the
borrower’s dataset Xi for targeted predictive analytics tasks. This methodology requires
communication efficiency between the borrower and loaner, exchanging sufficient statisti-
cal information to determine the reusability.

Problem 2 (Model Reusability Monitoring (MRM)). Given a borrower i, which has bor-
rowed the model fj from a loaner j in Mi, the challenge is to establish a method to
continuously assess whether the borrowed model remains effective, accurate, and useful as
the data Xi changes over time.

When the borrower i observes that the received model becomes ineffective due to
variations in the data, a new BLM process should be initiated. This proposed approach
aims to identify another new loaner whose model is suitable for reuse on the borrower’s
new data, thereby maintaining the efficacy and accuracy of the analytical tasks.

3.3.2 Similarity Score Calculation

This section details the meta-features as similarity scores to decide model reusability based
on the data across devices, including CD and MMD.

3.3. Methodology 29

Maximum Mean Discrepancy:

According to Tolstikhin et al. (2016), consider a probability measure P in a Reproducing
Kernel Hilbert Space (RKHS) H and a real-valued kernel function k(·,x) defined over a
dataspace X . The measure P is embedded into H as the kernel mean µP , where k and P

must satisfy: ∫
X

√
k(x,x) dP (x) <∞, µP :=

∫
X
k(·,x) dP (x) (3.1)

Calculating this integral directly as Equation (3.1) is impractical. In a resource-constrained
environment, it is more efficient to compute µP using the empirical estimator:

µP :=
1

N

ni∑
ℓ=1

k(·,xℓ) (3.2)

This approach utilizes a Monte Carlo approximation to estimate kernel values, facilitating
a controlled-dimensional mapping of the feature space (Rahimi and Recht, 2007).

Given this framework, we define a distance between two datasets Xi,Xj ⊂ X based
on their kernel means µi and µj. Using the Maximum Mean Discrepancy (MMD) metric,
for two probability measures Pi and Pj embedded into H, the MMD is given by:

MMD(i, j) = ∥µi − µj∥H (3.3)

To maintain data privacy, the computation of kernel means is performed locally at each
node. In scenarios where computational complexity is a concern, we adopt the Radial Basis
Function (RBF) kernel to approximate kernel values. This method significantly reduces
computational requirements, managing complexity within the dimensions D and d, where
D is the dimension of the mapping feature space. According to Rahimi and Recht (2007),
this approximation approach involves computational and storage complexities of O(D+d).

In practice, borrower node i employs this kernel approximation to compute a statistic
necessary for the Borrower-Loaner Matching (BLM) process:

k(·,x) = ϕ(x) ≈ z(x) = A⊤x (3.4)

with A ∈ Rd×D being the mapping matrix. The borrower node i then computes its kernel
mean using this approximation:

µi :=
1

Ni

ni∑
ℓ=1

k(·,xℓ) ≈
1

Ni

ni∑
ℓ=1

A⊤xℓ (3.5)

This method ensures computational efficiency while preserving the predictive accuracy
within a resource-constrained edge computing environment.

3.3. Methodology 30

Cosine Dissimilarity on 1st eigenvector

Considering the properties of eigenvectors and eigenvalues derived from data, knowledge
reuse facilitates lightweight synopsis exchange between loaners and borrowers. By extract-
ing eigenvectors and eigenvalues from a dataset X, we focus on important features through
dimensionality reduction, primarily using Principal Components Analysis (PCA). This
method, by performing eigen-decomposition on the covariance matrix Σ of X, extracts
d principal components, {vk}dk=1, ordered by their corresponding eigenvalues {λk}dk=1 in
descending order.

The largest eigenvalue and its corresponding eigenvector (PC1), v1, projects X onto
the eigenspace, effectively capturing the major variation within the data. This relationship
is crucial for comparing datasets Xi and Xj from borrower and loaner, respectively, by
evaluating the largest eigenvalues λ1,i, λ1,j and eigenvectors v1,i, v1,j. As shown in Tsai and
Yang (2005), eigenvalue distributions can reveal insights about the similarities between
data distributions Pi and Pj.

The Power Method (PM) is utilized to approximate the largest eigenvector by: itera-
tively

v1,t = Σv1,t−1 = Σtv0, (3.6)

converging to the largest eigenvalue λ1, which is approximated by:

λ1,t =
v⊤
1,tΣv1,t

v⊤
1,tv1,t

, (3.7)

The complexity of PM is O((n + T)d2), where n is the number of samples and T is
the required iterative steps. This combines the cost of computing Σ and iterations. We
incorporate the Fast Approximate Power Iteration Method (FAPIM) (Badeau et al., 2005)
for efficiency, which reduces complexity to O(n).

For borrower-loaner matching, the borrower i and loaner j compute their first principal
eigenvectors v1,i and v1,j. Then calculate the Cosine Dissimilarity (CD) to assess data
similarity:

CD(i, j) = 1− v1,i · v⊤
1,j

∥v1,i∥∥v1,j∥
. (3.8)

3.3.3 Learning Paradigm

The chapter introduces the learning paradigms to optimize knowledge reuse within dis-
tributed computing frameworks. It focuses on direct knowledge reuse, assumed on the
availability of pre-trained models to solve Problem 1 & 2 described in Section 2. This
approach leverages existing models to build direct model deployment without the need for
retraining, ideally suited for scenarios where models are maintained across certain tasks.

3.3. Methodology 31

Figure 3.1: Flowchart illustrating the Borrower-Lender Matching (BLM) process between
borrower edges i1, i2, i3, i4 and the central loaner edge j. This diagram depicts how statis-
tical synopses are exchanged between the nodes to determine whether to continue or stop
the BLM process based on evaluating the function f(j), which assesses the reusability of
shared models.

Solving BLM Problem:

Recall that in the paradigm for direct knowledge reuse, a node is assigned the roles between
loaner and borrower. The decisions can be based on the connected topology, hardware
capabilities, or whether the pre-trained model is stored, which is out of the scope of this
chapter since we only consider a statistical learning approach for a learning paradigm.
The framework for the BLM problem is illustrated in Figure 3.1, which necessitates the
similarity score computation based on the statistical synopses.

In the context of calculating similarity scores between datasets from borrower and
loaner nodes, as detailed in Section 3.3.2, a criterion to decide whether data is similar is
essential. While the similarity score based on MMD and CD is designed for edge systems,
it lacks criteria to judge the Hypothesis 1 with privacy preserved.

First, we propose to leverage the bootstrapping method to compute a test statistic,
which decides whether two data are ideally-independently-distributed (i.i.d) across two
devices. The bootstrapping procedures are as follows. At loaner j, we implement a resam-
pling strategy by randomly selecting data vectors from its dataset Xj with replacement
to generate K > 0 bootstrapping datasets, denoted as X

(k)
j for k = 1, . . . , K. Each

dataset maintains the same size as the original dataset, with a typical setting of K = 500.
The MMD or CD is computed for each dataset pair, leading to a sequence of bootstrap-

3.3. Methodology 32

ping CD/MMD values. Following the method outlined in DiCiccio and Efron (1996), the
threshold value α and β are calculated as

α = µmmd + 1.645σmmd, (3.9)

and
β = µcd + 1.645σcd (3.10)

, where µ(.) and σ(.) represent the mean and standard deviation of the MMD or CD values,
respectively. The value 1.645 corresponds to the 95th percentile of the normal distribution,
thereby establishing the upper confidence boundary for a 95% confidence interval. This
choice is predicated on the assumption of a one-tailed hypothesis test, thereby adopting
1.645 instead of the conventional 1.96.

Then, within the framework of Hypothesis 2, we introduce another statistical learn-
ing mechanism designed to suggest computing for the hypothesis test statistic threshold
values α∗ and β∗ for Hypothesis 1. While sufficient data enables optimal estimation of
α and β by clustering similar data distributions, practical limitations due to the scarcity
of similar node-wise data and the restriction against sending real data from borrowers
to loaners necessitate an alternative approach. We employ a Gaussian Mixture Model
(GMM) to address these challenges to generate analogous datasets at the loaner’s site.
The GMM serves both as a clustering tool and a generative model that simulates the
true distribution of the original data, akin to data augmentation techniques. The model’s
parameters, including the number of iterations and the number of Gaussian components,
are optimized via cross-validation. To ease the impact on the augmented GMM-based
datasets for setting threshold values, we propose model-performance-based functions that
incorporate the performance of the loaner’s model fj, formulated as follows:

α∗ = e1+ln(κ)µ(MMDg) (3.11)

and
β∗ = e2+ln(κ)µ(CDg), (3.12)

where κ = QGMM

Qj
represents an elasticity parameter dependent on the relative performance

of the loaner’s model fj. Here, QGMM denotes the performance of fj tested on GMM-
generated datasets, while Qj denotes its performance on the original dataset Xj. These
equations reflect that a perfect fit of the GMM model (κ = 1) implies α∗ = e · µ(MMDg),
signifying high confidence in reusing fj for similar datasets. Conversely, a suboptimal
GMM fit (κ < 1) necessitates stricter thresholds, scaling down α∗ and β∗ to reflect lower
confidence in the model’s reusability. This adaptive mechanism is predicated on the qual-
ity of the GMM fit, allowing for dynamic adjustment of confidence thresholds based on

3.3. Methodology 33

empirical performance. Hence, the algorithms for solving BLM problem are included in
Algorithm 3 and 4.

Algorithm 3 Knowledge Reuse Decision based on MMD
Input: M neighboring nodes (M−1 candidate borrowers B and 1 loaner); MMD similarity

threshold α
Output: Set of properly identified borrowers B0 ⊆ B, which can receive loaner’s model

fj.
1: Loaner j trains model fj over its own data Xj.
2: Loaner j computes the approximation matrix Ad×D and kernel mean µj over Xj.
3: B0 = ∅
4: for each borrower i ∈ B do
5: Loaner j sends A to borrower i;
6: Calculate borrower’s kernel mean µi using (3.5);
7: Borrower i sends µi to loaner j
8: Loaner j computes MMD(i, j) using (3.3)
9: if MMD(i, j) < α then

10: B0 = B0 ∪ {i}
11: Loaner j sends model fj to borrower i for reuse.
12: end if
13: end for
14: return B0

Solving MRM Problem:

The proposed Model Reusability Monitoring (MRM) technique adopts the Sum of Squared
Error (SSE) of the model fj over the sliding window Wt, providing a lightweight yet
powerful metric to ensure the usability of the received model. This methodology is central
to evaluating the average prediction error of fj. As will be shown in Section 3.6, the SSE
is highly correlated with Maximum Mean Discrepancy (MMD), suggesting its suitability
as a substitute for MMD as the monitoring indicator in MRM.

For borrower i which utilizes the model fj, the SSE at any time instance t is calculated
as:

St =

ni∑
n=1

(yn,t − ŷn,t)
2, (3.13)

where {(xn,t, yn,t)}ni
n=1 denotes all input-output pairs in the sliding window Wt, with pre-

dictions ŷn,t = fj(xn,t).
As the sliding window updates to time t + 1, it imports a new data pair (xt+1, yt+1)

while removing the oldest pair (x1, y1), leading to an updated SSE:

St+1 = St − (y1,t − ŷ1,t)
2 + (yni,t+1 − ŷni,t+1)

2, (3.14)

where e21 and e2ni
represent the squared prediction errors for the oldest and the newest

3.3. Methodology 34

Algorithm 4 Knowledge Reuse Decision based on Eigenvector Dissimilarity
Input: M neighboring nodes (M-1 candidate borrowers B and 1 loaner); dissimilarity

threshold β
Output: Set of properly identified borrowers B0 ⊆ B, which can receive loaner’s model

fj.
1: Loaner j trains model fj over its own data Xj.
2: Loaner j computes PC1 eigenvector v1,j over Xj.
3: B0 = ∅
4: for each borrower i ∈ B do
5: Borrower i computes PC1 eigevector v1,i over Xi

6: Borrower i sends v1,i to loaner j
7: Loaner j computes dissimilarity CD(i, j) using (3.8)
8: if CD(i, j) < β then
9: B0 = B0 ∪ {m}

10: Loaner j sends model fj to borrower i for reuse.
11: end if
12: end for
13: return B0

pairs, respectively. The incremental update allows ∆St+1 to reflect instant changes in
prediction accuracy:

∆St+1 = e2ni
− e21, (3.15)

where a positive ∆St+1 indicates an increase in the cumulative prediction error, thus
indicating potential degradation in model performance.

MRM focuses on monitoring changes in SSE to make proactive decisions about the
suitability of continuing with the borrowed model fj. By forecasting future changes in SSE,
denoted Zt, we support the borrower with proactive decision-making regarding whether to
initiate a BLM process. This is particularly crucial when the trend of Zt at time t suggests
a decline in model accuracy:

τ ∗ = inf{τ : Ẑt+τ > θ ∧ τ0 ≤ τ ≤ h}, (3.16)

where τ ∗ identifies the earliest time the predicted error exceeds a predefined threshold θ,
prompting a possible BLM initiation. We employ the Holt-Winters model for forecasting
due to its efficiency in real-time scenarios, where decisions are based on the smoothed
value ζt and trend bt of Zt:

ζt = ξ0Zt + (1− ξ0)(Zt−1 + bt−1), (3.17)

bt = ξ1(ζt − ζt−1) + (1− ξ1)bt−1, (3.18)

where the forecast at t + h is Ẑt+h = ζt + h · bt. This streamlined forecasting mecha-

3.4. Theoretical Analysis 35

nism ensures that decisions to initiate a BLM process are timely and based on reliable
predictions.

3.4 Theoretical Analysis

The section analyzes why MMD is not suitable to be an indicator for the MRM problem
and how to derive the τ ∗ theoretically.

3.4.1 MMD Computation with Data Stream

Evaluating the reusability of received models with respect to incoming data streams is
critical. Because in Edge Computing (EC) environments, the iid assumption may not
hold due to continuous data updates. For handling data streams, borrower nodes utilize
a window-based method to maintain the most recent data for analytics. Let ni be the
sample size, we implement a sliding window mechanism as follows:

Wt+1 = (Wt \ {(x1, y1)}) ∪ {(xni,t+1, yni,t+1)}. (3.19)

This mechanism ensures only the most current data is stored in the borrower’s buffer,
defined at discrete time t ∈ T = {0, 1, . . .}, with a fixed buffer size i.

Let MMDt be an unbiased estimator of the MMD at time t between borrower’s data,
xn,t ∈ Wt, and loaner’s data, x′

n,t ∈ W ′
t. Then with both i number of data in the buffer,

MMDt is calculated as:

MMDt =
1

ni(ni − 1)

(ni∑
n=1

ni∑
l ̸=n

k(xn,t,xl,t) +

ni∑
n=1

ni∑
l ̸=n

k(x′
n,t,x

′
l,t)

− 2

ni∑
n=1

ni∑
l=1

k(xn,t,x
′
l,t)
)
. (3.20)

With (3.20), the incremental estimator of MMD at t+ 1:

MMDt+1 = MMDt −
1

ni(ni − 1)
× (3.21)

[ni∑
l>1

k(x1,t,xl,t)−
ni∑
l>1

k(xni,t+1,xl,t+1) +

ni∑
l>1

k(x′
1,t,x

′
l,t)

−
ni∑
l>1

k(x′
ni,t+1,x

′
l,t+1)− 2

ni∑
l>1

k(x1,t,x
′
l,t) + 2

ni∑
l>1

k(xni,t+1,x
′
l,t)

−2
ni∑
n>1

k(xn,t,x
′
1,t) + 2

ni∑
n>1

k(xn,t+1,x
′
ni,t+1)

]

3.5. Experimental Setup 36

where xni,t and x′
ni,t

denotes the ni-th data point in Wt and W ′
t, respectively. The in-

cremental computation of the MMD, as shown in (3.21), can be executed with O(nid)

time complexity and O(nid) storage requirements. However, this approach does not scale
efficiently with increasing data points and dimensions for real-time applications. Addi-
tionally, this incremental calculation of MMD is impractical in scenarios where the loaner
node j does not send its data to the borrower node i, thus hindering the borrower’s ability
to monitor the MMD evolution independently.

3.4.2 Deriviation of τ ∗

To find the optimal time τ ∗, we propose the following theorem.

Theorem 1. Let Z = {Z1, . . . , Zt} represent a univariate sequence of SSE changes. Given
a threshold θ and the Holt-Winters coefficients (ξ0, ξ1), borrower i should initiate a new
BLM process if and only if the expected horizon τ ∗, where the sequence Zt(τ) exceeds θ

with 95% confidence, satisfies τ ∗ > τ0. The horizon τ ∗ is determined by:

ℓt(τ) = τbt + 4.47
√
Var(et(τ)), (3.22)

where ℓt(τ) = θ − ζt, and et(τ) = Zt+τ − Ẑt(τ) denotes the forecasting error.

Proof. See Appendix A.1.

3.5 Experimental Setup

We have designed three experimental scenarios to evaluate our knowledge reuse paradigm
across diverse real-world datasets in Edge Computing (EC) environments. These sce-
narios assess the performance of our paradigm using various parametric supervised and
unsupervised machine learning models. All experiments were conducted on a computer
with standard computational capabilities, including an Intel Core i7 processor, 16 GB of
RAM, and a GPU (NVIDIA GeForce RTX 2080).

3.5.1 Performance Metrics

We introduce quality of analytics metrics to evaluate the applicability of loaners’ models
when reused by borrower nodes. These metrics are applicable to a range of widely used
parametric supervised models (such as multivariate linear and nonlinear regression) and
unsupervised models (specifically for novelty detection tasks).

3.5. Experimental Setup 37

Supervised Learning Metrics

In the initial experimental scenarios, we focus on regression models to explore the reusabil-
ity of the loaner’s models. The metrics for these models include:

• Normalized Root Mean Square Error (NRMSE) for assessing prediction accuracy.

• Coefficient of Determination (R2) for evaluating model fit.

Given a model fj developed by a loaner on its dataset Xj, and reused by a borrower
on dataset Xi, we define the NRMSE for the loaner’s and borrower’s datasets respectively
as:

ϵj =
1

σj

√√√√ 1

nj

nj∑
n=1

(yj,n − ŷj,n)2, (3.23)

ϵij =
1

σi

√√√√ 1

Ni

ni∑
n=1

(yi,n − ŷi,n)2, (3.24)

where σj and σi are the standard deviations of the actual outputs yj and yi, respectively.
The difference in NRMSE between the borrower’s and the loaner’s datasets is given

by:
∆ϵij = |ϵij − ϵj|, (3.25)

which quantifies the change in prediction accuracy when the model is transferred from the
loaner to the borrower.

Similarly, the coefficient of determination for both contexts is computed and the dif-
ference is:

∆R2
ij = |R2

ij −R2
j |, (3.26)

indicating the variation in model fit when applied to borrower’s versus loaner’s data.

Unsupervised Learning Metrics

For unsupervised learning tasks, such as novelty detection, we employ the One-Class
SVM (OCSVM). This model’s effectiveness in detecting outliers is quantified using the
classification accuracy ratio ρ, which measures the proportion of correctly identified inliers
within the boundary established by the OCSVM. The difference in classification accuracy
when the model is applied to new borrower data is:

∆ρij = |ρij − ρj|, (3.27)

where ρj and ρij are the classification accuracies on the loaner’s and borrower’s datasets,
respectively.

3.5. Experimental Setup 38

Note: All metrics are evaluated using a robust 10-fold cross-validation approach to
ensure the reliability of our findings across diverse EC configurations. This methodology
ensures that the performance differences (∆ϵ, ∆R2, and ∆ρ) reflect genuine variations in
model effectiveness due to dataset characteristics rather than random fluctuations in data
sampling.

Table 3.1 provides a summary of the performance metrics utilized to assess the efficacy
of the knowledge reuse paradigm per learning model and task.

Table 3.1: Performance Metrics for Knowledge Reuse

ML Model (Learning Paradigm) Metric
LR (supervised; predictability, model fitting) ∆R2

ij, ∆ϵij
SVR (supervised; predictability, model fitting) ∆R2

ij, ∆ϵij
OCSVM (unsupervised; novelty detection) ∆ρij

3.5.2 Scenarios Description

Experimentation Scenario I

Figure 3.2: Visualization of the loaner’s and borrowers’ datasets of Experimentation Sce-
nario I.

We assess our mechanisms using a real dataset1 referenced in (Harth and Anagnostopou-
los, 2018). This dataset comprises sensor measurements from four Unmanned Surface

1archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2

3.5. Experimental Setup 39

Vehicles (USVs) engaged in environmental monitoring on the sea surface at a naval base
in Athens, Greece. Each USV, denoted as an edge node, is equipped with sensors and com-
putational capabilities. The dataset includes four distinct sets of environmental attributes
such as humidity and temperature, each corresponding to a different USV and denoted as
m1,m2,m3, and m4. Figure 3.2 provides a visual representation of these datasets. Table
3.2 summarizes their characteristics.

Table 3.2: Dataset Description for Experimentation Scenario I

Detail Value
Number of Real Datasets (mk) 4

Data Dimensionality (d) 6
Total Data Points (i) 10190

Number of Synthetic Datasets (skl) 32 (8 per mk)
Machine Learning Models LR, SVR, OCSVM

Number of Borrowers / Loaners 44 / 4 (11 borrowers per loaner)

In this scenario, we explore how our knowledge reuse mechanisms perform with datasets
that exhibit inherent similarities. We generate eight synthetic datasets for each original
dataset mk, denoted as {sk1, sk2, . . . , sk8}. The first synthetic dataset, sk1, incorporates
white noise ε ∼ M(0, 0.2σ2

min) where σ2
min is the minimum variance among the features.

Each subsequent dataset, skl for l = 2, . . . , 8, is created by blending data from mk with a
bivariate normal distribution, resulting in synthetic datasets progressively diverging from
the original by replacing (l − 1)× 12.5% of mk.

Figure 3.2 also compares the original dataset m1 with both the borrower’s original
datasets m2,m3,m4, and the synthetic dataset s11, visually highlighting similarities and
differences. Algorithms 3 and 4 are employed in this context to compute decision values
(α, β) and (α∗, β∗) for identifying datasets that are identical or merely similar, respectively.

Parameter Setup: The experiments involve regression models (LR and SVR) and a
novelty detection model (OCSVM). We configure the kernel parameters as follows: γMMD =

0.001 and γSVR = 1
d
, with ν = 0.05 set for the OCSVM, reflecting the average outlier

proportion.
This generated synthetic data tests our Hypotheses 2 under the assumption that

datasets can be grouped as identical, similar, or dissimilar. For instance, dataset m1

is presumed similar to m3 and dissimilar to m2 and m4. We simulate 10, 000 synthetic
datasets by resampling from m1, . . . ,m4, assigning them to nodes under varying conditions
to analyze the effectiveness of our knowledge reuse algorithms. This robust simulation al-
lows us to evaluate the practical applicability of our methodologies in real-world scenarios,
supporting our theoretical claims.

3.5. Experimental Setup 40

Experimentation Scenario II

We extend our analysis to another real-world application by utilizing a dataset (S. et al.,
2017), which comprises hourly air pollutant measurements from 12 monitoring sites in
Beijing, China. The dataset features 18 attributes related to air quality. Each monitoring
site’s data, denoted as {m1, . . . ,m12}, is assigned to a corresponding edge node, where
m1 is designated as the loaner node and the rest as borrowers. This setup allows us
to explore the feasibility of applying our knowledge reuse framework in scenarios where
data similarities are implicit and not pre-defined. The loaner node builds LR, SVR, and
OCSVM models, aiming for potential reuse by the borrowers based on the decision criteria
derived from α∗, β∗, α, and β parameters as described in previous sections.

To adapt the dataset and the non-trivial task of evaluating similarity in a nonlinear
setting, we adopt the kernel function recommendation from (Gretton et al., 2006), set-
ting γmmd = 1

σi
= 0.0014 as justified in Section 3.3.2, where σi is the median value of

σ. The parameters for the machine learning models remain consistent with those set in
Experimentation Scenario 3.5.2.

In this experimental scenario, we lack prior knowledge about the relationships between
the datasets of loaners and borrowers—whether they are similar, identical, or distinct. To
facilitate a robust performance evaluation, we employ t-distributed Stochastic Neighbor
Embedding (t-SNE) to project the original high-dimensional data into a two-dimensional
space. This projection allows us to visually examine the datasets without distorting the
inherent patterns embedded within the original data.

The performance of t-SNE is influenced by the choice of perplexity; a higher perplexity
value generally improves the distinction between different datasets. To prevent overfitting
and ensure a practical convergence rate, we set the perplexity to dP = 20 and the learning
rate to η = 500. The visualizations, as shown in Figure 3.3, enable us to discern the
similarities between pairs of datasets corresponding to different edge nodes. Additionally,
to illustrate the underlying correlations among the features of the datasets from various
edge nodes, we present pairwise correlation matrices and associated density plots in Figure
3.4.

Table 3.3: Dataset Description for Experimentation Scenario II

Detail Value
Number of Real Datasets (mk) 12

Data Dimensionality (d) 18
Total Data Points (i) 420768

Machine Learning Models LR, SVR, OCSVM
Number of Borrowers, Number of Loaners 11, 1 (Total n = 12)

3.5. Experimental Setup 41

100

50

0

50

100

Di
m

en
sio

n_
2

Data = m1 Data = m2 Data = m3

100

50

0

50

100

Di
m

en
sio

n_
2

Data = m4 Data = m5 Data = m6

100 50 0 50 100
Dimension_1

100

50

0

50

100
Di

m
en

sio
n_

2
Data = m7

100 50 0 50 100
Dimension_1

Data = m8

100 50 0 50 100
Dimension_1

Data = m9

Figure 3.3: t-SNE dataset projection in Scenario II (not all datasets are visualized).

0

500

PM
2.

5

0

500

PM
10

0

100SO
2

0

200

NO
2

0

5000

CO

0

1000

O3

0 500
PM2.5

0

25

TE
M

P

0 500
PM10

0 200
SO2

0 200
NO2

0 5000
CO

0 1000
O3

0 25
TEMP

Data
m1
m2
m3
m4
m5
m6

Figure 3.4: Pairwise relationships between variables in Scenario II (not all pairs of variables
are visualized).

Experimentation Scenario III

To evaluate the monitoring system for the Model Reusability Mechanism (MRM) as dis-
cussed in Section 3.3.3, we analyze its performance in monitoring the Sum of Squared
Errors (SSE) in relation to the Maximum Mean Discrepancy (MMD) across streaming
datasets. This study utilizes a linear regression (LR) model applied to time-stamped data
derived from Scenario 3.5.2.

Initially, we train the LR model using the first 200 samples from the loaner’s dataset m1,
alongside the corresponding borrowers’ datasets mk ̸=1. Our experiment considers varying
lengths of the sliding window ni ∈ {100, 150, 300}, capturing the dynamics of incoming
data and its impact on model performance. As new data entries arrive and older entries
exit, we continually calculate both the instantaneous MMD (to establish a ground truth)

3.6. Results and Analysis 42

and the SSE for each borrower, thus verifying if the correlation between MMD and SSE
accurately reflects the obsolescence of the loaner’s model in the borrower’s environment.

The kernel parameter γmmd = 0.001 is adopted for the MMD approximation, con-
sistent with prior scenarios. Furthermore, to maintain robust monitoring aligned with
instantaneous decision-making risks, we compute the SSE difference ∆St = e2ni,t+1− e21,t =

e2t+ni
−e2t , as defined in (3.15). We assume the model from the loaner m1 remains constant

during the ∆S computation and that both MMD and SSE are evaluated at each timestep
t for comparative analysis.

Lastly, we assess the trend effect bt based on Zt. Given the complexities potentially
arising in solving the Holt-Winters (HW) based expected horizon τ ∗ as described in (3.16),
we set τ0 directly and examine whether the predicted upper bound exceeds the predefined
warning level θ. This process aids in determining whether to initiate a new Borrower-
Loaner Matching (BLM) process, based on the sequence Z = {Z1, ..., ZT}, where T =

ni = 300.

3.6 Results and Analysis

The experimental results are analyzed with the order of scenarios. The analysis for the
first two scenarios proves the usefulness of the proposed statistical learning technique for
the BLM problem, and the results of the last scenario show the efficiency of the proposed
monitoring mechanism for the MRM problem.

3.6.1 Analysis for Scenario I

BLM Decisions based on MMD and CD

m1 m2 m3 m4 s1 s2 s3 s4 s5 s6 s7 s8

m
1

m
2

m
3

m
4

s1
s2

s3
s4

s5
s6

s7
s8

MMD Heatmap

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) MMD Heatmap

m1 m2 m3 m4 s1 s2 s3 s4 s5 s6 s7 s8

m
1

m
2

m
3

m
4

s1
s2

s3
s4

s5
s6

s7
s8

CD Heatmap

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) CD Heatmap

Figure 3.5: Comparative heatmaps of MMD and CD metrics.

3.6. Results and Analysis 43

The threshold values are computed according to the proposed method in Section 3.3.3
with Equation (3.9)-(3.12), which is shown in Table 3.4 with keeping 4 decimal points.

Table 3.4: Testing Statistics for LR fj Model

Dataset α β α∗ β∗

m1 0.021443 0.000005 0.079761 0.000080
m2 0.016278 0.000044 0.067161 0.000899
m3 0.020115 0.000022 0.079831 0.000302
m4 0.011548 0.001575 0.044610 0.006993

The heatmaps, shown in Figure (3.5a) and (3.5b), present a comparative assessment
of {m1,m2,m3,m4} and datasets (comprising 1 loaner and 11 borrowers as discussed
in Section 3.5.2). It is important to note that CD and MMD are directionless due to
our approximation to the kernel matrix A, which depends on D and d. Notably, D

equals d when considering datasets with identical features, thus ensuring MMD(Xi,Xj) =

MMD(Xj,Xi). This symmetry guarantees that both the loaner and borrower agree on
the (dis)similarity of their datasets and the model reusability decision without further
communication.

Given the MMD-/DC-dataset similarity between the loaner and borrowers, it is evident
that CD increases as the amount of noisy data increases. This is because CD computes the
cosine dissimilarity between PC1 for the borrower’s Xi and the loaner’s Xj, where PC1 is
a linear combination of the features that maximizes variance at the first step of the PM.
With an increase in variance in a dataset Xi, CD(Xj,Xi) will correspondingly increase.
This property of CD makes it a suitable metric for sensitively differentiating two datasets
based on variance differences, thereby suggesting model reusability with high confidence,
as demonstrated later.

By analyzing Figure 3.5 along with Table 3.4, we draw the following conclusions re-
garding the capability of the proposed BLM for reusing models across the edge network:

• According to the β estimated threshold, we conclude that only the first synthetic
dataset sk1 is IID to its original mk for k ∈ {1, . . . , 4}, which verifies the efficiency
of the statistical learning approach.

• Considering the β∗ threshold, the loaner considers only s11 as similar to its dataset
m1. The datasets {sk1, sk2} are similar to mk for k = {2, 4}, and {s31, s32} are tagged
as similar to m3, indicating a failure in correctly classifying the similar relationship
between m3 and m1. However, this allows more elasticity than the condition of IID.

Given the decision thresholds α and α∗, we observe the following:

3.6. Results and Analysis 44

• The α threshold works, as all sk1 datasets are classified as identical to mk as expected,
while all sk2 are labeled as similar with the aid of α∗. Additionally, s23 is also
classified as similar to m2, which is acceptable.

• Utilizing α∗, the loaner can successfully detect that m1 is similar to m3, as evidenced
in Figure 3.2.

Based on the above, the estimation and adoption of the decision thresholds indicate
that the loaner, using the MMD and CD metrics, can successfully determine whether
a candidate borrower can be provided the loaner’s model for reusability based on the
similarity of the corresponding datasets. This statistical-based decision-making on model
reusability denotes an essential component of knowledge reuse. The next step in assessing
the performance of the reused models on borrowers’ data is to study the discrepancy of
the quality analytics metrics introduced in Section 3.5.1.

Performance Metrics Evaluation

We report on the performance metrics outcomes for models built on the loaner’s data when
evaluated on the borrower’s datasets (refer to Table 3.1). Notably, a positive expected
E[∆ϵij] indicates that the borrower’s performance exceeds that of the original loaner.
Conversely, negative E[∆R2

ij] and E[∆ρij] suggest superior performance by the borrower’s
models.

To ensure the quality of analytics, we discourage results where E[∆ϵij] < −C for a
specific cut-off analytics threshold, which varies by application and performance metric.
Similarly, we do not reuse models whose E[∆R2

ij] or E[∆ρij] exceed C.
As an illustration, consider the dataset m1 as the loaner j’s dataset Xj, while other

datasets are associated with borrower nodes Xi. To investigate discrepancies in reusing su-
pervised regression models, we examine the model fitting difference ∆R2

ij and predictability
difference ∆ϵij. Figures 3.6 and 3.7 show the distribution (density) of these metrics after
reusing the loaner’s LR models with successfully matched borrowers’ datasets.

The observed patterns align with our hypothesis that reusing models over similar
datasets yields satisfactory analytics quality. This confirms the applicability of the BLM
process in identifying loaner-borrower pairs that can share/reuse models, achieving promis-
ing model-fitting analytics. Specifically, the distributions of s1-s8 show distinct separation,
with performance metrics degrading as error percentages increase. Notably, m3 demon-
strates the best quality of analytics, with ∆R2

ij → 0 and ∆ϵij → 0. We observe similar
results for SVR model reusability, as evidenced in Figures 3.8 and 3.9.

For unsupervised/novelty detection models reused by matched borrowers, we report
the discrepancy in novelty detection accuracy of OCSVM (refer to Table 3.1). Figure 3.10
shows that |∆ρij| increases with the proportion of noisy data. However, ∆ρij for m4 is

3.6. Results and Analysis 45

(a) (b)

Figure 3.6: Density plots of LR for ∆ϵij in Scenario I.

(a) (b)

Figure 3.7: Density plots of LR for ∆R2
ij in Scenario I.

(a) (b)

Figure 3.8: Density plots of SVR for ∆ϵij in Scenario I.

closer to 0 compared to m3, indicating better results due to learned boundaries shown in
Figure 3.11. Specifically, a ∆ρij < 0 but close to zero for m4 suggests fewer outliers than

3.6. Results and Analysis 46

(a) (b)

Figure 3.9: Density plots of SVR for ∆R2
ij in Scenario I.

m1, despite m3 being more similar to m1. Figure 3.11 illustrates that inlier data points
(marked purple) are mostly concentrated around the red data points. Nevertheless, for
similar datasets, reused OCSVM over m4 performed better than on m3, though ∆ρij < 0.1

for m3.

(a) (b)

Figure 3.10: Density plots of OCSVM for ∆ρij in Scenario I.

We evaluate the efficiency of reusability for different performance metrics given specific
cut-off thresholds C ∈ {0.1, 0.2, 0.4}, summarized in Tables 3.5 and 3.6. The reusability
efficiency is defined as the ratio of detected borrowers with similar/identical datasets under
threshold values α∗ or β∗ to the total number of candidate borrowers suggested in set B0
(see Algorithms 3 and 4). NaN indicates cases where the denominator is zero.

As observed, the number of detected similar datasets remains fixed for specific α∗ and
β∗ values. To improve efficiency, enlarging the boundaries of α∗ and β∗ increases the

3.6. Results and Analysis 47

Figure 3.11: Novelty detection data-space boundary (red curve) adopting OCSVM over
m1.

likelihood of detecting more similar borrowers. False positive rates are not discussed in
Scenario 1, as we focus on optimizing borrower detection satisfied with quality analytics.
For instance, with ∆ϵij(LR) and C = 0.2, three datasets (m3, s11, s12) are considered
similar, though s12 is a false positive as its performance metrics exceed 0.2. No false
positives occur for β∗, as it only considers s11 similar, a white-noise version of the original
source.

On average, at least 75% of borrower nodes can reuse regression models from loaners,
indicating significant model reusability impact at the network edge, while up to 50% of
borrower nodes can reuse unsupervised learning models.

Table 3.5: Scenario 1 (α∗): Reusability Efficiency over performance metrics vs cut-off
quality threshold C.

Metrics 0.1 0.2 0.4
∆ϵij(LR) NaN 100%(2

2
) 100%(3

3
)

∆R2
ij(LR) 100%(2

2
) 100%(2

2
) 75%(3

4
)

∆ϵij(SVR) NaN 100%(1
1
) 100%(3

3
)

∆R2
ij(SVR) 100%(1

1
) 100%(2

2
) 75%(3

4
)

∆ρij(OCSVM) 50%(3
6
) 37.5%(3

8
) 27.3%(3

11
)

Table 3.7 shows the efficiency of decision values. In this experiment, 90% edge nodes
holing i.i.d data are obtained by subsampling from m1. The α and β values successfully
detect identical data distributions. With the α∗ threshold, we cluster similar datasets
more sensitively as the portion labeled as similar increases across 1000 edge nodes. Using
α and β decision values, we achieve 90% of IID edge nodes regardless of changes in y% and
z%, indicating the effectiveness of the estimated threshold values in BLM decision-making.

3.6. Results and Analysis 48

Table 3.6: Experiment 1 (β∗): Reusability Efficiency over performance metrics vs cut-off
quality threshold C.

Metrics 0.1 0.2 0.4
∆ϵij(LR) NaN 50%(1

2
) 33.3%(1

3
)

∆R2
ij(LR) 50%(1

2
) 50%(1

2
) 25%(1

4
)

∆ϵij(SVR) NaN 100%(1
1
) 33.3%(1

3
)

∆R2
ij(SVR) 100%(1

1
) 50%(1

2
) 25%(1

4
)

∆ρij(OCSVM) 16.7%(1
6
) 12.5%(1

8
) 9.1%(1

11
)

The α∗ threshold is more sensitive to changes in y, which can be exploited to adjust
the degree of acceptable model performance degradation. Depending on the application
and desired trade-off, some dissimilar datasets may be considered similar. In our settings,
we ensure that model performance degradation remains within [−0.2, 0.2], reflecting the
flexibility of the α∗ threshold in balancing resource utilization efficiency and analytics
quality.

Table 3.7: Percentage of similar datasets detected (x=90%)

y% α IID (%) α∗ Similar (%) β IID (%) β∗ Similar (%)
0 89.99 90.00 90.00 90.01
2 89.98 92.00 90.00 90.00
4 90.00 94.00 90.00 90.00
6 89.97 95.99 89.99 90.00
8 89.98 97.98 89.99 90.00

3.6.2 Analysis for Scenario II

We report on the performance of the knowledge reuse mechanism, focusing on the scenario
where m1 is the dataset of the loaner node at Site 1. Figure 3.12 illustrates the similarity
measurements (CD and MMD) between the loaner’s m1 and the borrowers’ datasets with
decision values, which indicates that all mk datasets (k ∈ {2, . . . , 12}) are not IID to m1.

3.6. Results and Analysis 49

(a) (b)

Figure 3.12: (Upper) CD and (lower) MMD decision values in Scenario II for all datasets
(edge sites).

The proposed methods for determining dataset similarity do not always agree due to
differing statistical synopses. Figure 3.12 shows that α∗ suggests all mk datasets are similar
based on MMD, while β∗ identifies {m3,m4,m10,m12} as dissimilar. The nature of the
ML models under reusability influences these decisions. For example, m12 has the least
∆ϵij in Figure 3.13, yet β∗ excludes it from the candidate borrowers.

Adopting α∗ may include less similar datasets like m12, leading to varied reusability
decisions. Figures 3.13 and 3.14 show that ϵij for m3 is the largest, and R2

ij is the smallest,
suggesting acceptable model fitting but varied predictability for LR models.

For SVR models, Figures 3.15 and 3.16 show m6 has poor outcomes, with the smallest
∆ϵij and the largest ∆R2

ij. Given |∆R2
ij| < 0.1, all borrowers associated with {m2, . . . ,m12}

are similar to loaner’s m1, although decisions differ between LR and SVR models. Using
β∗ for SVR models can successfully detect dissimilar datasets such as m12, ensuring higher
reusability accuracy.

For novelty detection, Figure 3.17 shows that borrowers of m3 and m7 have the highest
∆ρij, correctly excluding them from the BLM process. Most ∆ρij values for other bor-
rowers range from 0 to 0.1, indicating effective reusability of classification models at the
network edge, with 63.6% of borrower nodes reusing the loaner’s model confidently.

We also examine reusability efficiency by observing performance metrics at different
thresholds (C ∈ {0.05, 0.1, 0.2}) in Table 3.8. The number of detected similar datasets
under α∗ is consistently high, and we differentiate the performance of α∗ and β∗ based on
false positive rates in Tables 3.9 and 3.10. For instance, with C = 0.05 for ∆ϵij(LR), α∗

detects all similar datasets with zero false-positive rate, illustrating the robustness of the
knowledge reuse paradigm.

3.6. Results and Analysis 50

(a) (b)

Figure 3.13: Density plots of LR for ∆ϵij in Scenario II.

(a) (b)

Figure 3.14: Density plots of LR for ∆R2
ij in Scenario II.

(a) (b)

Figure 3.15: Density plots of SVR for ∆ϵij in Scenario II.

3.6.3 Analysis for Scenario III

In this experiment, we examine the feasibility of SSE as a lightweight indicator of the
Model Reusability Mechanism (MRM). We first investigate the relationship between SSE

3.6. Results and Analysis 51

(a) (b)

Figure 3.16: Density plots of SVR for ∆R2
ij in Scenario II.

Figure 3.17: Density plots of OCSVM for ∆ρij in Scenario II.

Table 3.8: Scenario 2 (β∗): Reusability Efficiency over performance metrics vs cut-off
quality threshold C.

Metrics 0.02 0.05 0.1
∆ϵij(LR) 83.3%(5

6
) 63.6%(7

11
) 63.6%(7

11
)

∆R2
ij(LR) 85.7%(6

7
) 63.6%(7

11
) 63.6%(7

11
)

∆ϵij(SVR) 66.7%(6
9
) 63.6%(7

11
) 63.6%(7

11
)

∆R2
ij(SVR) 66.7%(6

9
) 63.6%(7

11
) 63.6%(7

11
)

∆ρij(OCSVM) NaN NaN 75%(3
4
)

and MMD metrics. We denote the MMD between the loaner’s m1 and one of the borrowers’
datasets {m2,m3,m4} as ’vs mk’. The left results in Figure 3.18 shows that MMD is
informative for guiding knowledge reuse and monitoring the quality of analytics of the
reused model. Specifically, SSE is a direct performance indicator of the borrowed model,
where a relatively small MMD generally corresponds to a relatively small SSE.

3.6. Results and Analysis 52

Table 3.9: Scenario 2 (α∗): False positive rate for different performance metrics vs cut-off
quality threshold C.

Metrics 0.02 0.05 0.1
∆ϵij(LR) 45.5%(5

11
) 0.0%(0

11
) 0.0%(0

11
)

∆R2
ij(LR) 36.4%(4

11
) 0.0%(0

11
) 0.0%(0

11
)

∆ϵij(SVR) 18.2%(2
11

) 0.0%(0
11

) 0.0%(0
11

)
∆R2

ij(SVR) 18.2%(2
11

) 0.0%(0
11

) 0.0%(0
11

)
∆ρij(OCSVM) 100%(11

11
) 100%(11

11
) 63.6%(7

11
)

Table 3.10: Scenario 2 (β∗): False positive rate for different performance metrics vs cut-off
quality threshold C.

Metrics 0.02 0.05 0.1
∆ϵij(LR) 28.6%(2

7
) 0.0%(0

7
) 0.0%(0

7
)

∆R2
ij(LR) 14.3%(1

7
) 0.0%(0

7
) 0.0%(0

7
)

∆ϵij(SVR) 14.3%(1
7
) 0.0%(0

7
) 0.0%(0

7
)

∆R2
ij(SVR) 14.3%(1

7
) 0.0%(0

7
) 0.0%(0

7
)

∆ρij(OCSVM) 100%(7
7
) 100%(7

7
) 57.1%(4

7
)

Observations indicate that the SSE of m2 is relatively low at the beginning, with MMD
at acceptable levels, suggesting that m2 has the best model reusability among the datasets
{m2,m3,m4}. The SSE of m3 is even lower than that of m1 itself, with a relatively low
MMD. While the initial MMD values of the three datasets are close, the average MMD
and SSE for m3 are the lowest over the entire time range, confirming that m3 is the most
similar to m1.

Another pattern observed is that changes in SSE almost predict MMD changes, with
increases or decreases in SSE occurring before MMD. The average values for ’vs m2’ and
’vs m4’ suggest that MMD trends coordinate with SSE trends. The time-series plot of
∆SSE in Figure 3.19 shows that m3 closely aligns with m1, indicating that m3 is the best
candidate for model reusability.

With model maintenance or replacement in MRM under data streams, SSE can be
adopted to locally and efficiently monitor the entire knowledge reuse process on the bor-
rower side (with O(1) time and space complexity, as discussed in Section 3.4). Figure 3.19
shows that the sliding window length i does not significantly affect the ∆SSE evolution.
The ∆SSE for m3 achieves a stable state with variance var(∆SSE)→ 0 progressively.

Figure 3.19 shows that most ∆SSE values for m2 are positive, indicating increasing
SSE, while most ∆SSE values for m3 are negative. Accumulation of positive ∆SSE

values can degrade model reusability, triggering a new BLM process based on proactive
forecasting.

Analyzing ∆St = Zt, the trend level bt is significant when ζt > 0 since bt determines
the scale of Zt. Trends and level coefficients bt and ζt of the HW model are considered

3.6. Results and Analysis 53

(a)

(b)

(c)

Figure 3.18: (a)(b)(c) MMD and SSE time series plots corresponding to different length i
of sliding window, (a) ni = 100, (b) ni = 150, and (c) ni = 300, in Scenario III.

constants when predicting Zt. Figure 3.20 (a) shows that the trend effect b(m1)
t lacks high

peaks, indicating no significant future change for m1. However, high peaks for b
(m2)
t and

b
(m4)
t suggest that their forecasting may exceed acceptable ∆SSE expectations, triggering

3.6. Results and Analysis 54

(a)

(b)

(c)

Figure 3.19: (a)(b)(c) Time series plots of ∆SSE corresponding to different length i of
sliding window, (a) ni = 100, (b) ni = 150, and (c) ni = 300, in Scenario III.

a new BLM process if the excess times surpass predefined tolerance levels.
Using Equation (3.16), we calculate Ẑt+τ0 , estimating Zt+τ0 . Setting τ0 = 5 to balance

3.7. Limitations and Future Research 55

prediction accuracy and steps ahead, and choosing θ = 20 as the threshold, Figure 3.20(b)
shows Ẑ(m2)

t+τ0 and Ẑ
(m4)
t+τ0 often exceed the threshold, indicating the need for a BLM process.

The prediction interval is significantly affected by historical dataset variance.

(a) (b)

Figure 3.20: (a) Time series plot of bt for HW model based on Zt in Scenario III. (b) HW
model: time series plot of the upper bound of the confidence interval for Ẑτ0=5 with θ = 20
in Scenario III.

3.7 Limitations and Future Research

The paradigm of knowledge reuse in edge computing (EC) environments presents signifi-
cant promise, but several limitations must be addressed to realize its full potential. Key
challenges include system heterogeneity and the non-stationary nature of data streams.

System Heterogeneity: EC environments are characterized by a high degree of
heterogeneity among devices, which vary significantly in computational power, energy
capacity, and network connectivity. The current paradigm does not fully account for
how these differences impact the performance and feasibility of knowledge reuse. Future
research should focus on developing adaptive mechanisms that can dynamically adjust
to the diverse capabilities and constraints of individual edge devices. This would ensure
efficient and equitable utilization of resources across heterogeneous environments.

Non-stationary Data Streams: EC environments frequently handle dynamic and
non-stationary data streams, which can lead to concept drifts that render reused models
obsolete. Although the proposed Model Reusability Monitoring (MRM) mechanism pro-
vides some mitigation, there is a need for more sophisticated and proactive approaches to
model adaptation. Future work should explore continuous learning and online adaptation
techniques that can rapidly respond to changes in data distribution, thereby maintaining
model accuracy over time.

Limitations in Handling Complex Data: The current method performs well

3.8. Conclusions 56

for linear regression and support vector regression, as the Maximum Mean Discrepancy
(MMD) and Cosine Distance (CD) metrics are effective in capturing statistical patterns
in relatively simple datasets. However, for more complex data types such as images or
text, these methods may fall short due to their inability to extract hierarchical features.
One potential solution is the integration of neural networks to extract meaningful features
before applying MMD and CD, thereby extending the applicability of the method to com-
plex data scenarios. Future work should investigate such hybrid approaches to overcome
the constraints of model usability in diverse data contexts.

Addressing these limitations through targeted research will be crucial for advancing
the knowledge reuse paradigm and enhancing the efficiency, scalability, and effectiveness
of edge computing environments.

3.8 Conclusions

In this chapter, we introduce the knowledge reuse paradigm based on the premise that
locally trained ML models on certain edge nodes can be reused by other nodes with similar
datasets. We propose two dataset similarity algorithms based on minimum sufficient
statistical knowledge derived from a modified kernel-driven maximum mean discrepancy
metric and cosine dissimilarities of principal components. These synopses are exchanged
among edge nodes to facilitate the knowledge reuse paradigm and provide a decision-
making framework for feasible model reusability.

Our experimental evaluations over real and synthetic datasets demonstrate that the
proposed algorithms require minimal information (statistical synopses) to be exchanged
among nodes, resulting in a resource-aware lightweight BLM process. We showcase the
advantage of reusing trained models over nodes with similar datasets through three experi-
mental scenarios, eliminating the need to build models anew, thereby saving computational
resources and communication overhead locally. Our algorithms ensure acceptable analyt-
ics quality via model reusability, as evidenced by the defined discrepancy performance
metrics over widely adopted supervised and unsupervised learning models. This indicates
the applicability of the knowledge reuse paradigm in resource-constrained environments,
where borrower nodes can exploit and reuse models from loaners to support their predic-
tive modeling and inferential analytics applications without expending resources on model
retraining and verification.

In addition, given potential data changes in dynamic EC environments, we introduced a
lightweight monitoring mechanism (MRM) over edge nodes that can autonomously assess
whether reused models become obsolete or useless in terms of quality of analytics. In
such cases, nodes can proactively forecast when to initiate the process of finding more
appropriate models to be reused/adopted with high confidence. These results demonstrate

3.8. Conclusions 57

the practicality of deploying knowledge reuse mechanisms in real-world edge computing
systems. By ensuring computational efficiency and scalability, the proposed approach
supports the deployment of predictive models in resource-constrained environments while
maintaining acceptable accuracy.

Therefore, we conclude that reusable models can be effectively identified using the pro-
posed hypothesis test, and any violation of reusability can be detected by the monitoring
system. This approach ensures that redundant model computation is avoided, assuming
that the distributed data shares a similar distribution and that executable models on
loaners exist. In Chapter 4, we will explore how to efficiently build a distributed learning
paradigm in the absence of pre-trained models.

Chapter 4

Efficient Distributed Learning with
Enhanced Reusability: A Multi-Task
Learning Approach

This section relaxes the prevailing assumption of the model existing to reuse in Chapter
3, proposing a novel methodology for constructing models from scratch instead. This
methodology leverages the concept of knowledge reuse in distributed computing envi-
ronments, discussed in Section 2.4, to enhance both communication and computational
efficiency. We assert that model reusability can be significantly enhanced through knowl-
edge reuse, particularly by employing multi-task learning, thereby reducing the necessary
computation for all clients.

4.1 Introduction

Recently, the field of distributed predictive modeling and analytics has garnered substan-
tial interest, especially when these analytics are executed at the network edge, a concept
commonly referred to as the Edge Computing paradigm. Simultaneously, there has been
an emergence of distributed learning paradigms, which introduce several challenges. These
challenges include task offloading, service migration (Kolomvatsos and Anagnostopoulos,
2022), and managing distributed data heterogeneity in devices that are constrained by
their resources (Li et al., 2020c). The rapid expansion of computing nodes and the explo-
sive growth in data volume in these environments necessitate analytics mechanisms that
can substantially reduce computational and communication resource utilization. These
mechanisms, particularly predictive and exploratory analysis, must leverage and reuse
existing models and derived knowledge whenever feasible.

Section 3.2 discussed the application of the model reuse. However, these methods do
not focus on enhancing the generalization capacity of reused models over complex data

58

4.1. Introduction 59

structures, limiting their direct applicability to nodes with similar tasks. Additionally,
some assume an ideal environment where reusable models can be applied directly by
applications (Lee et al., 2019) without even training and adaptation to specific tasks. The
challenges lie in differentiating between reusable and non-reusable models, significantly
impacting the quality of analytics, such as prediction accuracy and generalization capacity;
and how to improve the local model performance through collaborative training.

Multitask Learning (MtL) is a machine learning paradigm that aims to improve gen-
eralization by learning multiple related tasks simultaneously, rather than independently.
The core idea behind MtL is that certain tasks share commonalities or statistical prop-
erties, which can be leveraged to improve the performance of all tasks involved. This is
achieved by optimizing multiple loss functions together within a unified framework, en-
abling shared learning across tasks. By doing so, MtL encourages the model to learn
generalized features that are beneficial for all tasks, rather than overfitting to specific task
datasets.

MtL can be categorized into two primary variants based on the nature of the tasks.
Homogeneous Multitask Learning deals with tasks of the same type or family, such as
multiple classification or regression tasks (Zhang and Yang, 2021). In this setting, tasks
are expected to have consistent input and output types, and the shared learning process
is often more straightforward. Heterogeneous Multitask Learning focuses on tasks that
are fundamentally different in nature, such as a combination of classification, regression,
or clustering tasks (Li et al., 2014). Heterogeneous MtL introduces additional complexity
due to the diverse requirements of each task type and is beyond the scope of this thesis.

In this thesis, we focus on homogeneous MtL to tailor reusable models in distributed
computing environments, as evidenced by our experimental evaluation. Instead of train-
ing independent models locally on nodes with limited generalizability, the MtL paradigm
enables collaboratively trained models that can learn and complete tasks across all nodes.
These tailored models leverage the data from all nodes, allowing them to generalize effec-
tively by capturing shared patterns and representations across tasks.

While data redundancy among similar edge devices is a known issue, it is important to
recognize the limitations of homogeneous data in improving generalization. Training on
data that is too similar can lead to overfitting and limit the model’s adaptability to unseen
tasks or nodes. To address this, incorporating learning from devices with relatively dissim-
ilar data can help mitigate overfitting and foster more robust performance. This introduces
a key challenge in the MtL framework: determining which tasks should be jointly learned
in a distributed way to generate reusable models with improved generalization capacity.

By addressing this challenge, MtL offers a promising approach for building efficient,
scalable, and reusable models in distributed environments, making it a cornerstone of
modern distributed machine learning research.

4.2. Related Work 60

To address the above challenges, we develop an innovative two-phase Distributed Multi-
task Learning (DMtL) framework involving clustering and dissemination. The framework
consists of the following components:

• Clustering Phase: This phase uses Partial Learning Curves (PLC) to assess and
group similar tasks from different nodes based on their performance metrics.

• Dissemination Phase: In this phase, selected head nodes carry out distributed multi-
task learning to improve and finalize model training.

4.2 Related Work

Multitask Learning (MtL) is employed when learning over multiple tasks simultaneously,
with its fundamental component being the learning of task similarities (Zhang and Yang,
2021; Pan and Yang, 2009). The method in Thrun and O’Sullivan (1998) grouped tasks
into classes of mutually related processing activities using the ϵ-optimal distance metric to
determine which tasks should be involved in learning. The multitask clustering presented
in Cao et al. (2018) exploited correlations among task features based on the similarity
between relative means over tasks, assuming that data follow similar distributions. Ad-
ditionally, the method proposed in Shui et al. (2019) learned task relationships using the
Wasserstein distance between data distributions.

Recent works have demonstrated the efficiency of MtL in a centralized mode, such as in
cloud data centers. A perceptron-based centralized approach for MtL has been proposed in
Cavallanti et al. (2010), introducing the task similarity/relationship matrix among different
data distributions, where each entry represents the similarity between tasks. Hereinafter,
we denote the task relationship matrix by Ω−1 for notation compatibility with related
work. In Cavallanti et al. (2010), Ω−1 is assumed to be known in advance, an assumption
that does not hold in distributed computing environments where tasks and data are not
entirely or even partially shared or known in advance. The possibility of having exactly
the same task-relatedness is rare. Unlike Cavallanti et al. (2010), we contribute to the field
with a distributed learning approach that learns the task relationship matrix entries via
local training of the nodes’ models based on Learning Curves (LCs). Our method achieves
task relationship matrix learning before the DMtL process, relaxing the assumption of
known task relationships and becoming practical as this information is extracted directly
from nodes’ data rather than being set manually or known in advance.

The approaches in (Wang et al., 2016; Liu et al., 2017; Smith et al., 2017) achieved task
relationship learning using regularized objective functions for MtL in a distributed manner.
Wang et al. (2016) referred to a communication-efficient Lasso-based DMtL comparable
to its centralized counterpart. The framework in Liu et al. (2017), DMTRL, introduced a

4.3. Methodology 61

dual form of the general MtL problem. In the same context, Federated Learning is adopted
to reduce communication costs in DMtL. The FL-MtL framework in Smith et al. (2017)
(MOCHA) solved general MtL problems by updating the models’ weights (parameters),
hereinafter denoted as W for notation compatibility. Both DMTRL and MOCHA updated
the task relationship matrix Ω−1 after updating the model parameters matrix W under
the assumption that tr(Ω−1) = 1. Here, tr(A) denotes the trace of a square matrix A,
defined as the sum of elements on its main diagonal. In our approach, this assumption
does not hold true as Ω−1 arbitrarily reflects information captured by the models’ LCs to
estimate task relationships.

The MtL approach in (Li et al., 2019a) addressed the challenge of new nodes joining the
system, incrementally updating and extending the matrices Ω−1 and W for newly incoming
nodes. Compared with centralized MtL approaches, which update and aggregate model
parameters in a centralized location (e.g., cloud), our PLC-based DMtL method spans
across only selected nodes in a decentralized manner. Our task relationship matrix learning
relies on communication only among selected nodes rather than exchanging model weights
among all nodes without requiring a centralized location. In our method, communication
costs are significantly reduced, as cloud/data servers are traditionally far from distributed
nodes (e.g., Edge Computing), while short-distance routes ensure less communication cost
in decentralized learning.

4.3 Methodology

4.3.1 Preliminaries

Table 2.2 and 2.3 summarize the notation used in this chapter. The hypothesis-related
problem and the fundamentals of the learning paradigm are explained as follows.

Hypothesis 3 (Data Sufficiency). Assuming sufficient data availability for training local
models, significant improvements in model generalization performance are not expected
when the data distributions of the two nodes are similar.

Considering a specific scenario stated in Hypothesis 3, the challenge can be defined as
follows:

Problem 3 (Model Reuse Optimization (MRO)). Considering that models are not trained,
is it possible to train them from scratch using the concept of knowledge reuse? While the
models are selected to be reused, the challenge is to enhance the borrowed model’s predictive
performance without increasing computation and communication costs.

Without executed results/models, an efficient approach is to select as few nodes as
possible to train the models without compromising performance. The proposed method

4.3. Methodology 62

focuses on determining which intermediate results are sufficient for reuse, enabling only a
subset of nodes to complete the full model training process.

PLC

node PLC

PLC

PLC leader

non-leader

(a): PLC estimation (b): Leader election

(d): DMtL (c): Clustering

clusterhead

head

head

Figure 4.1: Illustration of the stages in the Distributed Multi-task Machine Learning
(DMtL) framework: (a) PLC estimation shows nodes estimating Partial Learning Curves
to assess model performance; (b) Leader election where nodes select a leader based on
predefined criteria; (c) Clustering where similar nodes are grouped based on their PLC
values; (d) DMtL execution where designated head nodes coordinate task distribution
within clusters.

The paradigm addresses situations where no pre-trained models are available or where
the existing models may not be entirely applicable to new tasks, i.e., Problem 3. Specifi-
cally, we introduce a two-phase Distributed Multi-task Machine Learning (DMtL) frame-
work designed to address this challenge effectively. Similar tasks are identified and grouped
in the Clustering Phase based on performance meta-features extracted from locally
trained models. This clustering leverages Partial Learning Curves (PLC) to assess and
categorize task similarity efficiently. In the subsequent phase, Dissemination Phase, we
utilize the insights gained from the PLC-driven analysis within the DMtL paradigm to
enhance the performance of candidate reusable models. This approach is specifically tai-
lored for distributed computing environments, where it significantly boosts the efficiency
and efficacy of task-specific model reuse. The details are depicted in Figure 4.1, which
will be further explained in the following.

Distributed Multitask Learning:

Consider a distributed system consisting of M nodes denoted by M = {1, 2, . . . ,M}.

4.3. Methodology 63

These nodes are interconnected based on a network topology described by a directed
graph G(M, E). The connections between nodes are captured by the adjacency matrix E =

[ei,j] ∈ RM×M , which has specific null space and spectral properties. The neighborhood of
a node i, represented asMi = {j ∈M : ei,j > 0}, consists of all nodes j that can directly
communicate with node i. If ei,j = 0, it indicates that there is no communication link
between nodes i and j, meaning j /∈Mi. Note that ei,j ̸= ej,i may occur for i ̸= j, reflecting
asymmetrical communication. The adjacency matrix E remains constant throughout the
distributed machine learning (DMtL) process. Each node i acquires data {Xi,Yi} ∼ Pi

from its local environment, where Xi ∈ Rni×d represents the input features and Yi ∈ Rni

represents the corresponding outputs, sampled from a joint probability distribution Pi.
For any two distinct nodes i and j (i.e., i ̸= j), their joint probability distributions Pi

and Pj can either be similar (Pj ≈ Pi) or different (Pj ̸= Pi), indicating that the data
distributions across nodes can vary.We present a Multi-task Learning (MtL) framework
that is formulated on a regularization-based approach, enabling effective learning across
distributed nodes as in Problem 4.

Problem 4. Given a local dataset for each node i ∈M, denoted as Xi ×Yi ∈ Rni×(d+1),
the objective is to determine model weights ωi ∈ Rd for all M nodes and optimize the
task relationship matrix Ω−1. The goal is to minimize the following regularized objective,
incorporating various convex loss functions Li, for i = 1, . . . ,m:

min
W,Ω

{ n∑
i=1

ni∑
t=1

Li(ω
⊤
i , (x

t
i, y

t
i)) +

λ1

2
tr(WΩ−1WT) +

λ2

2
∥W∥2F

}
(4.1)

with λ1, λ2 > 0 as regularization parameters controlling the complexity of W and Ω−1.
When Ω−1 = Ii×m and λ1+λ2 = λ, the multi-task learning framework reduces to indepen-
dent single task learning, involving only the squared Frobenius norm of W.

In distributed learning environments, the Equation (4.1) is decentralized and solved
collaboratively across nodes. This setup allows for the exchange of model parameters
rather than raw data, preserving data privacy and improving training performance re-
gardless of whether data across nodes are non-i.i.d. While tasks at different nodes may
differ, collaborative learning can reveal latent information, enhancing overall model gen-
eralization. If Hypothesis 3, discussed in Section 4.3.1, holds, our Distributed Multi-task
Learning (DMtL) framework strategically can involve only the head nodes (selected as K
out of M) during the learning process, thus excluding redundant or similar tasks to opti-
mize computational resources and learning efficiency. Note that this approach aligns with
the decentralized nature of distributed computing, where model parameters are exchanged
to enhance local computations without central data aggregation.

4.3. Methodology 64

Partial Learning Curves:

Learning Curves (LCs) are pivotal for comparing model performance across experiences,
particularly for evaluating how models generalize from historical data to new, unseen
datasets. Following Leite and Brazdil (2005), we utilize LCs to predict model performance
on new data by analyzing trends over historical data. Our framework extends this concept
to assess the similarity between nodes’ local models, facilitating their grouping based on
shared performance characteristics.

LCs not only depend on the training data but also on the model configuration (Viering
and Loog, 2022), capturing the model’s learning behavior through generalization perfor-
mance against training examples. Consider a local Support Vector Machine (SVM)-based
classifier on node i, defined as:

fi : sign(Ŵ⊤
i Φ(X

train
i) + bi)→ Ŷi, (4.2)

where fi maps input Xi to output Yi, Ŵi represents the normal to the hyperplane, and
Φ(Xi) denotes the transformed data space mapping.

The classification error, measured by cross-entropy loss, for this model is:

Li = −
1

nT
i

nT
i∑

l=1

[
yTl log(ŷTl) + (1− yTl) log(1− ŷTl)

]
, (4.3)

where nT
i = ni−nTest

i denotes the training set size. This leads to an expected generalization
error EPi

[Li], indicative of the model’s ability to predict new data.

4.3.2 Initial Stages

The initial stages (a) and (b) depicted in Figure 4.1 outline the preprocessing steps essential
to our framework.

PLC Computation

Stage (a) involves the computation of Partial Learning Curves (PLCs). We define a Partial
Learning Curve (PLC) that summarizes model performance over a spectrum of training
set sizes, denoted by an index set S. Each PLC element is computed as:

V̂
(Ss)
i =

1

L

L∑
ℓ=1

L(Ss)(ℓ)
i , (4.4)

where V̂i = [V̂
(S1)
i , . . . , V̂

(Sp)
i]⊤ represents the PLC vector in Rp, providing a comprehen-

sive measure of model reliability and generalization capability across different training

4.3. Methodology 65

conditions. Then the similarity score is to compute distance calculation between V̂i and
V̂j with devices i and j are connected.

The example of partial learning curves (PLCs) for training an SVM on five nodes is
illustrated in Figure 4.2. The data for the five nodes are simulated, with nodes 1 and 2
sharing a more similar distribution. From Figure 4.2, it is evident that the PLCs for nodes
1 and 2 are closer to each other than the others, highlighting and verifying the clustering
efficiency of PLCs. The details of PLC computation are as follows.

0.2 0.4 0.6 0.8 1.0
Proportion of Training Data

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

Er
ro

r R
at

e

Partial Learning Curves (PLCs)
Node 1 PLC
Node 2 PLC
Node 3 PLC
Node 4 PLC
Node 5 PLC

Figure 4.2: Example of Partial Learning Curves (PLCs) for different nodes. Solid lines
represent s

ni
≤ 30%, and the dotted lines indicate the incomplete parts for learning curve

prediction.

Considering the variability of loss functions and the need for practical error estimation
methods, we employ bootstrapping (Efron, 1983) to approximate the LC for a local model.
Given the dataset Xi ∈ Rni×d, bootstrapping involves:

1. Randomly resampling the data with replacement to construct several subsets {X(s)(ℓ)
i }

of size s ≤ ni.

2. Training the model on each subset and computing the training error L(s)(ℓ)
i .

3. Averaging these errors to estimate the generalization performance.

The procedure of PLC computation is shown in Algorithm 5

Leader Election

Stage (b) in Figure 4.1 concerns the election of a leader node, which is typically selected
based on criteria such as device capabilities or statistical meta-features extracted during

4.3. Methodology 66

Algorithm 5 Bootstrapped PLC estimation on node i

Input: Node i with data Xi; training sample sizes set S; bootstrapping L.
Output: PLC estimated vector V̂i

1: for each Ss ∈ S do
2: for each round ℓ = 1 . . . L do
3: X

(Ss)(ℓ)
i ← Resample Xi w. replacement in size Ss

4: Compute training error L(Ss)(ℓ)
i on X

(Ss)(ℓ)
i

5: end for
6: Compute V̂

(Ss)
i using (4.4)

7: end for
8: V̂i ← Rearrange V̂

(Ss)
i orderly using (4.4)

the PLC calculation. Specifically, after nodes exchange their v̂i values to all nodes, the
node exhibiting the highest generalization error, indicated by values of v̂i, is chosen as the
leader.

4.3.3 Learning Paradigm

Clustering Phase

While a leader is selected, we introduce a distributed learning paradigm where a leader
node coordinates the learning process across non-leader nodes by leveraging their Partial
Learning Curves (PLCs). The leader node computes the task relationship matrix Ω−1

entries based on the PLC-derived distances between nodes.

Ω−1
i,j =

2

M
· 1

1 + exp(ϵ · di,j)
, (4.5)

where di,j = ∥V̂i− V̂j∥2 is the Euclidean distance between nodes’ PLC vectors, and ϵ > 0

is a tunable parameter to scale the sensitivity of the interaction.Note that Equation (4.5)
captures the similarity between the predictive performance of models trained on different
nodes, making it well-suited for identifying related tasks in distributed multitask learning
environments. By leveraging the PLCs, this method effectively presents the inherent
similarities in tasks, which are crucial for optimizing distributed learning and enhancing
model generalizability.

The leader then clusters nodes into K groups using a Gaussian Mixture Model (GMM),
where each node i with its PLC V̂i is probabilistically assigned to a cluster Ck based on
the highest posterior probability:

P (Ck|V̂i) = max
κ=1,...,K

{P (Cκ|V̂i)} (4.6)

4.3. Methodology 67

P (Ck|V̂i) =
ϕkG(V̂i|µk,Σk)∑K
κ=1 ϕκG(V̂i|µκ,Σκ)

(4.7)

The clustering parameters, including the mixture weights {ϕκ}, mean vectors {µκ}, and
covariance matrices {Σκ}, are optimized using the Expectation-Maximization algorithm.
The clustering results are utilized to designate head nodes for each cluster, facilitating the
DMtL process as outlined in DP. The nodes’ PLC-based relationships and task alignments
are represented in the ΩK×K matrix:

Ω−1
K×K(i, j) = Ω−1

M×M(i, j), i ∈ Ck, j ∈ Cκ (4.8)

ensuring that each head node receives all necessary parameters to synchronize the learning
activities across the distributed network effectively. The details of CP are summarized in
Algorithm 6.

Algorithm 6 The PLC-based Clustering Phase
Input: M nodes; number of clusters K; PLC dimension p
Output: K clusters with heads; cluster-based matrix Ω−1

K×K

1: for each node i ∈M do
2: Send PLC V̂i in (4.4) to leader.
3: end for
4: /*Leader Side*/
5: Calculate matrix Ω−1

M×M in (4.5)
6: Group nodes using GMM in K clusters over {V̂i}.
7: Assign K heads to clusters using (4.6).
8: Send matrix Ω−1

K×K in (4.8) to heads.

Dissemination Phase

In DP, we propose a PLC-based DMtL process based on decentralized SGD optimization
to solve Problem 3 in a distributed manner. Our DMtL engages only the heads obtained
by Algorithm 7 to solve the distributed version of Equation (4.1). Unlike Smith et al.
(2017), Zhang and Yeung (2010), and Li et al. (2019a), which iteratively update the
task relationship matrix Ω−1, we construct this matrix using existing knowledge of the
performances of local models (PLCs).

Given that K ≪ M , the cluster-based task relationship matrix Ω−1
K×K obtained from

the CP is a compressed version of the entire matrix Ω−1
M×M . We formulate our DMtL

problem across K heads as follows:
Given K heads from clusters {Ck}Kk=1, their corresponding datasets Zk = {Xk,Yk} of

sizes nk, and the cluster-based task relationship matrix Ω−1
K×K , we seek the model weight

4.3. Methodology 68

matrix W = [ω1, . . . ,ωK] ∈ Rd×K that minimizes the regularized objective:

J (W) = min
W

{
K∑
k=1

nk∑
t=1

Lk(ω
⊤
k , (x

t
k, y

t
k)) +

λ1

2
tr(WΩ−1

K×KW
⊤) +

λ2

2
∥W∥2F

}
(4.9)

In Equation (4.9), the heads do not exchange any data during learning. The optimal
model weights in W correspond to the tailored models f ∗

k of the heads, which can be reused
by cluster members for future analytics tasks. These members have not been engaged in
this learning process.

Each tailored model f ∗
k captures the generalization characteristics of both the local

models of members in cluster Ck via their representative head and the models outside of
that cluster, i.e., the local models from nodes in external clusters Cκ with κ ̸= k. This
significantly differs from other MtL methodologies, which do not consider the PLC model
performances for model re-usability and generalization. For instance, the approach in Liu
et al. (2017) updates the task relationship matrix by assuming Ω is fixed as 1

K
IK×K . The

solution is Ω−1 = (WTW)
1
2

tr((WTW)
1
2)

with the constraint tr(Ω−1) = 1, reducing from MtL to Single

Task Learning (StL) without exploiting local model (PLC) information for enhancing the
generalizability of trained models.

Our DMtL initializes the model weight matrix W with the initially trained models
{ωk}Kk=1 of the head nodes from the CP at round t = 0, i.e., Wt=0 = [ωt=0

1 , . . . ,ωt=0
K].

Each head model ωk, k = 1, . . . , K, is the optimal existing model with error tolerance γp.
Thus, we decrease training rounds and save storage without tuning the cluster-based task
relationship matrix Ω.

To engage the K head nodes in distributed training, we split Equation (4.9) into local
quantities, one per head node. The local updates in each head node yield the global
minimization of (4.9).

Without loss of generality, we experiment with binary SVM classification adopting the
hinge loss. The gradient of (4.9) with respect to the model weight of the head node is
given by:

∂J
∂ω

(t)
k

= −
nk∑
t=1

1[y
(t)
k ω⊤

k x
(t)
k < 1]y

(t)
k x

(t)
k + λ1(WΩ−1

K×K)k + λ2ωk. (4.10)

The second term in (4.10) allows the head node of Ck to acquire information from its
peer head nodes outside its cluster, supporting model re-usability. The term (WΩ−1

K×K)k

in (4.10) refers to the kth column of the product matrix, a Rd×1 weight vector. Rewriting

4.4. Theoretical Analysis 69

the product matrix as a summation of products, we obtain:

ωkΩ
−1
kk +

K∑
κ̸=k

ωκΩ
−1
kκ . (4.11)

This indicates that the model weight for the head node of Ck is updated with the sum
of the model weights of head nodes outside Ck, weighted by the task relationship matrix
entries (PLC-wise similarity quantities).

At round t, each head of clusters Ck shares the model weight ω
(t)
k with its peer heads.

After receiving model weights from its peers {ωκ}, κ ∈ {1, . . . , K} \ {k}, the head node
updates its model weight ω

(t)
k using (4.10) as:

ω
(t)
k = ω

(t−1)
k − η · ∂J

∂ω
(t−1)
k

(4.12)

where η ∈ (0, 1) is the learning rate. The details of the PLC-based DMtL process are
provided in Algorithm 7.

Algorithm 7 The PLC-based DMtL Process using Ω−1
K×K

Require: K heads; compressed matrix Ω−1
K×K

Ensure: DMtL-tailored models {f ∗
k}Kk=1

1: Each head initializes its model weight ωt=0
k from CP.

2: for round t = 1, . . . , T at head k do
3: Share ω

(t)
k among K heads;

4: Aggregate and update ω
(t)
k using (4.11), (4.10), and (4.12)

5: end for
6: Each head of cluster Ck returns its tailored model f ∗

k .

Any analytics task, such as regression or multi-class classification (the latter easily
transformed to multiple binary problems adopting a one-vs-rest strategy), and various
loss functions, such as square loss, can be used for Equation (4.9).

4.4 Theoretical Analysis

In this section, we provide a rigorous theoretical analysis of our proposed DMtL framework.
We first demonstrate the convergence properties of the decentralized SGD optimization
process for solving the multi-task learning objective. We then extend our analysis to the
convergence of SVM model parameters using mini-batch SGD, establishing the conditions
under which our approach ensures reusable model parameters.

Lemma 1. The training process for solving Equation (4.9) using the objective J (W) in
(4.9) converges with SGD.

4.5. Experimental Setup 70

Proof. See Appendix A.2.2

Lemma 2. The training process for SVM model parameters using mini-batch SGD con-
verges to a set of reusable parameters ωi+1 following the update rule:

ωi+1 = (1− ηiλ)ωi +
ηi
|Z∗

i |
∑
j∈Z∗

i

yjxj, (4.13)

where Z∗
i = {j ∈ Zi : yjω

T
i xj < 1}.

Proof. See Appendix A.2.2

4.5 Experimental Setup

This section introduces the dataset, performance metrics, and baseline used for experi-
ments. In the synthetic dataset (SD), we assess the performance of PLC-based clustering
for model reusability. For the CIFAR-10 and Sentiment datasets, the heads are formed
based on Algorithm 6. We investigate whether the PLC-based DMtL models are compa-
rable with other multi-task learning (MtL) and federated learning (FL) approaches. In
the Sentiment and CIFAR-10 datasets, our DMtL employs K = 4 and K = 5 clusters,
respectively. The value of K in all the experiments is determined through hyperparameter
tuning (see Section 4.5.3). Each experiment is run 100 times per case using GeForce RTX
3090 GPUs. Note that the use of a desktop GPU (RTX 3090) in our simulations serves as
a proxy to evaluate the feasibility and performance of the proposed methods in edge com-
puting (EC) scenarios. While real-world EC nodes have limited computational resources
compared to high-end GPUs, the simulations provide an environment where the algorith-
mic behaviors and interactions can be rigorously tested under controlled conditions.

4.5.1 Datasets

Synthetic Dataset

The binary classification local models were trained on a synthetic dataset (SD) within
scikit-learn package 1 for clustering, consisting of 2×105 data points in d = 20 dimensions.
The class labels y ∈ {0, 1} were assigned to data points with probabilities p′ and 1 − p′,
respectively.

We define a step size a > 0 to evenly divide the interval [0, 1] and obtain different
configurations of {p′, 1−p′}. For example, with a = 0.2, we obtain assignment probabilities

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
blobs

4.5. Experimental Setup 71

p′ ∈ {0.2, 0.4, 0.6, 0.8} and 1 − p′ for labeling data as 0 and 1, respectively, resulting in
class imbalanced cases. Each task is assigned a different p′ randomly.

We re-sampled 104 points from the SD to create M ∈ {100, 1000} local datasets dis-
tributed across M ∈ {100, 1000} nodes. The number of clusters was set to K = 8 and
K = 22 for M = 100 and M = 1000, respectively.

Real and Benchmark Datasets

For image classification tasks, we use the CIFAR-102 dataset. CIFAR-10 consists of 6 ×
104 color images (each image is 32 × 32 pixels), each assigned to one of the 10 class
labels y ∈ {0, . . . , 9}, with 6000 images per class. Each node contains 3000 images,
distributed across M = 20 nodes. For the SGD-based SVM classifier model, we adopted
the VGG16 Convolutional Neural Network (CNN) (Simonyan and Zisserman, 2015) for
feature extraction, resulting in d = 512 features per image.

We also experimented with the Sentiment dataset3, which consists of four sub-datasets
corresponding to products: books, electronics, kitchens, and DVDs from Amazon.com.
Each dataset contains 1000 positive (0) and 1000 negative (1) observations with different
features. We summarized the word frequencies and obtained the total number of unique
words (or short sentences) for each category as follows: 196,598 for books, 112,126 for
electronics, 94,191 for kitchens, and 189,502 for DVDs. We unified all the features to
build a Bag-of-Words model (Ko, 2012) for all data, resulting in a total feature dimension
of d = 473, 856. Based on the overall frequency of these features, we selected those with a
frequency greater than 36, referred to as pivot features. The final size of each (complete)
dataset is R2000×5035 (d = 5035). The number of nodes for Sentiment data is M = 40.

4.5.2 Performance Metrics

We choose the classification accuracy αi ∈ [0, 1] of a classifier fi trained on Xi of node i as
a comparison metric with the baseline and comparison models . We introduce the model
reuse performance metrics of fi reused for classification over other nodes’ tasks. For each
pair of nodes (i, j) with i ̸= j, αij ∈ [0, 1] is the classification accuracy of fi, which is
trained on node i over Xi and used by node j being tested on Xj. If the data of nodes in
a cluster are i.i.d., we expect αij to be the same as the generalization performance of fi
built over Xi.

We define ξ ∈ R as the average difference in reusable model accuracy between two
factors when we randomly select a pair of nodes for model reuse: ξ = µout − µin =

2Publicly available at: https://www.cs.toronto.edu/~kriz/cifar.html
3Publicly available at: https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

4.5. Experimental Setup 72

1
K

∑K
k=1 ξk with

ξk = µ
(k)
out − µ

(k)
in =

1

Mk(M −Mk)

Mk∑
i=1

M−Mk∑
l=1

(αl − αil)−
1

M2
k

Mk∑
i=1

Mk∑
j=1

(αj − αij), (4.14)

where index l runs over all the nodes which do not belong to cluster Ck, k = 1, . . . , K.
µout indicates the average model reuse accuracy degradation outside each cluster. It mea-
sures the average performance drop of a reusable model when used by nodes outside its
originating cluster. µin is the average model reuse performance degradation within each
cluster, indicating the average prediction performance drop of a model used by any other
node in the same cluster.

The µ
(k)
in and µ

(k)
out in (4.14) represent model reuse performance degradation inside and

outside cluster Ck, respectively. We denote with µ∗
in and µ∗

out the versions where we se-
lect the heads’ tailored models {f ∗

k}Kk=1 only for reuse, corresponding to µin and µout,
respectively, and obtain ξ∗.

Note: (i) The smaller the µin, the better the model reuse performance due to the
reusability of models from nodes within clusters. (ii) A small µout indicates the effectiveness
and applicability of our DMtL in offering reusable models to nodes outside the cluster that
provides these models. (iii) A positive and small ξ > 0 indicates that reusing models within
clusters suffers less performance degradation compared to reusing models by nodes outside
clusters. When all nodes share similar i.i.d. data, we expect ξ ≈ 0 due to µin ≈ µout ≈ 0.

We adopt the Sørensen-Dice coefficient Dice (1945), µDC , to evaluate the PLC-driven
clustering efficiency, as it measures the similarity between datasets. A µDC = 0 between
datasets suggests zero similarity; µDC = 1 indicates two identical datasets. µDC reflects
the similarity among tasks of nodes within the same cluster and the dissimilarity among
tasks of nodes in different clusters. This supports our approach of reducing unnecessary
model training over similar tasks while addressing the non-i.i.d. cases in model reusability
from different clusters. Therefore, appointing a head per cluster is deemed appropriate
and effective in training tailored models when µDC is high, e.g., µDC > 0.7.

4.5.3 Baselines

We conduct a comparative assessment of our DMtL with other MtL and FL models. To
ensure fairness, we focus on the Ω−1 matrix of each MtL approach under comparison,
which represents the relatedness among tasks. Our DMtL is a generalization of STL;
DMtL reduces to STL when the non-diagonal elements in Ω−1 are equal to zero, i.e.,
Ω−1

1 = 1
K
IK×K . In STL, which serves as the baseline, the models are not trained jointly.

Each node trains and tunes its model locally over its own data without collaborating with
other nodes.

4.5. Experimental Setup 73

We also compare our DMtL against the model presented in Cavallanti et al. (2010),
which is an MtL perceptron for binary classification with a fixed task relationship matrix
Ω−1

2 = 1
K(b+1)

QK×K . The off-diagonal and diagonal entries in QK×K are set to b and
b+K, respectively, with b ≥ 0 as suggested in Cavallanti et al. (2010).

Moreover, we compare against the approaches in Smith et al. (2017) and Zhang and
Yeung (2010), which introduce the task relationship matrix, Ω−1

3 . This matrix is updated
at each training iteration with respect to model weight W. The method in Smith et al.
(2017) solves the optimization problem in (4.2) using the primal-dual method in Boyd et al.
(2004), requiring a relatively large n =

∑K
k=1 nk dimensional vector, which depends on the

size of all nodes’ datasets. This size equals the total number of samples across all involved
datasets needed to be exchanged among all nodes via a centralized node (e.g., Cloud data
center) in each iteration. Due to the significant communication and data transfer overhead
in Smith et al. (2017), the model under comparison in Zhang and Yeung (2010) adopted
the methodology of the approach in Smith et al. (2017) for MtL in a centralized mode
only.

Our task relationship matrix in DMtL, hereinafter denoted as Ω−1
4 for notation com-

patibility with the models under comparison, is trained in a distributed SGD-based MtL
fashion. Ω−1

4 captures the PLC-driven similarity for distributed MtL with tuning parame-
ter ϵ, whose value is discussed in Section 4.5.3. For consistency, Ω−1

1 is associated with the
STL mechanism, Ω−1

2 refers to the Fixed Relationship (FR) method in Cavallanti et al.
(2010), Ω−1

3 is referred to as the Weighted Parameters (WP) method in Smith et al. (2017)
and Zhang and Yeung (2010), and ours (PLC) is referred to as Ω−1

4 in the experimental
evaluation.

For reasons of completeness, we investigate the behavior of centralized FL (FedAvg,
McMahan et al. (2017)) and decentralized FL (DFedAvg, Sun et al. (2022)) in model
reusability. Both approaches train holistic models across the network. FedAvg engages
a central server that aggregates local models of O(K) randomly selected nodes during
horizon T . At each round, each selected node i locally trains its model ωi using SGD for
E epochs and sends it to the server, which aggregates all models {ωi} (see Appendix D).
Model aggregation in FedAvg is agnostic to PLCs, thus, the final model is unaware of the
statistical properties of nodes’ data and tasks, and is unable to tackle non-i.i.d. cases.
DFedAvg is a fully distributed version of FedAvg, where nodes communicate based on the
adjacency matrix E . At each round, node i sends its parameters ωi to its neighbors Ni,
receives, aggregates their parameters {ωj : j ∈ Ni}, and trains using SGD.

The details of hyperparameter tuning are as follows:

• Estimation of PLCs: Selecting an optimal PLC dimension, which represents the
number of elements in the ordered index set S, is influenced by factors such as
computational costs of the models and storage capabilities of the nodes. It is essential

4.6. Results and Analysis 74

to consider both constraints for determining a p value. Here, p = 6 as suggested in
Leite and Brazdil (2005). For the number of data required to calculate the PLC set
S, we ensured that sp ≤ 1

2
ntrain as in Leite and Brazdil (2005). The bootstrapping

rounds are experimentally set to L = 10.

• PLC-based Clustering and Model Training: The number of clusters K in all experi-
ments is obtained using the BIC method for GMM in the leader. All the initial local
model parameters ω0 in the CP are zero d-dimensional vectors. To fairly conduct
comparative experiments with all approaches, we adopt early stopping to decide the
number of training rounds T until convergence. The schedule for the learning rate
ηt = O(1

t
), ηt ∈ (0, 1) is chosen as in Bottou (2012).

• Hyperparameters per Model: The decision of hyperparameters varies with the exper-
iments and the models. For STL, we leverage the SGD classifier in sklearn, where
the default setting α is equivalent to λ2. Based on our experimental results, we
select for DMtL the best regularization parameters λ1, λ2 ∈ {1e − 05, 5e − 05, 1e −
04, 5e− 04, 1e− 03, 5e− 03, 1e− 02, 5e− 02, 0.1, 0.5, 1, 5, 10} and tuning parameter
ϵ ∈ {exp (β) : β ∈ [−3, 6]}. Because all the off-diagonal entries in the FR are the
same, it is not necessary to tune the parameter b in Ω−1

2 , which are equivalently
tuned by the selection of λ2.

4.6 Results and Analysis

4.6.1 Complexity Analysis

We first present the complexity of the proposed two-phase DMtL learning framework,
and additional experiments are tested in the following sections. The clustering phase
complexity is clarified as follows. The network communication cost for nodes sending their
p-dimensional PLCs to the leader is O(Mp). At the leader node, the Gaussian Mixture
Model (GMM) used for PLC-based node grouping into K clusters requires O(KMp3)

(Reynolds, 2009). The number of clusters K can be determined either by prior knowledge
about tasks or by selecting the number that minimizes the Bayesian Information Criterion
(BIC) (Bishop, 2007). The average pairwise similarity computation in each cluster Ck
with Mk nodes is O(Mkp), while computing PLC distances in the ΩM×M matrix requires
O(M2) time. Therefore, the overall cost for the Clustering Phase (CP) at the leader node
is:

O

(
LM

p∑
s=1

1

γs
+Mp

(
Kp2 +

1

K

)
+M2

)
. (4.15)

As for the complexity of communication during DP, the communication cost per round
t is O(K2d), involving the exchange of K ≪ M model weights among head nodes in

4.6. Results and Analysis 75

Algorithm 7. The total communication cost is O(TK2d) for T rounds, where T depends
on the convergence rate. Since Ω−1

K×K consists of constants obtained from CP, the required
T for convergence is T = O(Kη∗) with η∗ ∈ [1

K
, 1] (Liu et al., 2017). The convergence

rate T is linearly related to the number of tasks, and based on CP’s complexity, T =

O
(
K
(

1
γ
− 1

γp

))
for PLC-based DMtL convergence over K tasks.

4.6.2 Synthetic Dataset Experimental Evaluation

We experiment with three cases having step size a ∈ {0.1, 0.2, 0.25}. Each case has 1
a
− 1

types of combinations of assigning the {0, 1} class labels in the data points. Note: sp = 500

in SD experiments.
Figure 4.3(left) shows the model reuse metrics gained by our DMtL with µDC =

(0.74, 0.92, 0.97) for a = (0.1, 0.2, 0.25), respectively. As a increases, µDC increases since a
larger step size means a larger discrepancy in the proportion of the binary class datasets
indicating highly non-i.i.d. cases. This leads to generating more discriminated data, thus,
each formed cluster driven by the models’ PLCs contains relatively highly similar tasks,
which tackles the non-i.i.d. challenge.

Given the three generated datasets, whose probabilities of class label 0 are p′ ∈
{0.25, 0.3, 0.5}, we observe in Fig. 4.3(left) that the difference between the first and
third datasets is larger than that of the second. GMM clustering efficiently exploits PLC
information by adding similar tasks within the same clusters. This is consistent with the
trend of µin (with consistently low values as a increases), indicating that PLC clustering
ensures less degradation on model reuse performance within a cluster even with non-i.i.d.
data.

Considering the model reuse performance degradation, even if we get a relatively good
clustering result measured by µDC (e.g., µDC = 0.74 for a = 0.1), our DMtL benefits from
the fact that ξ > 0 is positive and small (see Fig.4.3(left)). Our reuse policy decreases the
model reuse degradation compared with one reusing models entirely randomly. Our head
selection criterion yields tailored models f ∗

k reusable from any cluster member for all the
cases indicated by µ∗

in < µin (see Fig. 4.3(left)). This denotes that: (i) f ∗
k have successfully

captured all tasks/data characteristics of members within clusters, thus, decreasing the
prediction loss and (ii) PLC clustering successfully separates similar from dissimilar tasks.
Especially, clustering achieves very high efficiency (µDC > 0.9 in cases a ∈ {0.2, 0.25})
having model reuse performance degradation within each cluster very low (µin < 0.005).

Moreover, given that ξ and ξ∗ are relatively small, positive and decrease with a, it
suggests that we can always reuse models for analytics tasks from nodes belonging to
different clusters even with larger data heterogeneity. For instance, given the case where
a = 0.2 (achieving high clustering efficiency w.r.t. µDC), we obtain a relatively small
degradation in the model reuse accuracy outside of any cluster (µout = ξ − µin = 0.04

4.6. Results and Analysis 76

(a) (b)

Figure 4.3: SD Dataset. (left) DMtL model reusability metrics; (right) Training costs
comparison between our PLC (DMtL) with L = 4 and full model training across all tasks
for cases a ∈ {0.1, 0.2, 0.25} and M = 100.

for a = 0.2). This suggests that nodes can reuse tailored models from other clusters
rather than that of their head obtaining a relatively low degradation in accuracy. This
signifies the effectiveness of our DMtL in reusing models over data heterogeneity within
and without clusters alike.

Figure 4.3(right) shows the achieved training efficiency of our DMtL for the three
cases w.r.t. a against the scenario where all nodes fully train their models (i.e., without
PLC estimation and PLC clustering). The total training cost of DMtL includes the PLC
estimation time, PLC clustering on the leader, and training of head nodes’ tailored models.
It is evident that even for classifiers/models whose complexity does not scale with the size
of training data, our DMtL can still benefit from less total execution time.

Furthermore, in Fig. 4.4, we investigate the influence of the bootstrapping rounds
L in PLC estimation on the training efficiency (training time) and clustering efficiency
expressed by µDC for different numbers of nodes M . One can observe a trade-off between
training efficiency and clustering efficiency for the case a = 0.2; similar results are obtained
for other a values. A relatively small number of bootstrapping rounds, L ∈ {2, 4}, can
achieve low PLC estimation time at the expense of sacrificing PLC clustering efficiency.
However, for even L ∈ {6, 8}, we obtain an average µDC = 0.827, indicating clusters of
nodes with very high similar tasks. This denotes the statistical capacity and effectiveness
of PLC to represent models’ performances, successfully grouping nodes guaranteeing they
have similar tasks with high confidence. This is the fundamental property of our DMtL
to tackle data heterogeneity, aiming at learning tailored models to be reused from nodes
of the same clusters and potentially from nodes outside clusters.

4.6. Results and Analysis 77

(a) (b)

Figure 4.4: Influence of bootstrapping rounds L on (left) µDC and (right) on training
efficiency; a = 0.2 with nodes M = {100, 1000}.

4.6.3 Real Datasets Experimental Evaluation

We compare our DMtL against all comparison approaches in Section 4.5.3 over the bench-
marks CIFAR-10 (Krizhevsky et al., 2009) and Sentiment (Blitzer et al., 2007). The cor-
responding results are provided in Figs. 4.5 and 4.6 and Table 4.1. Similar to Blitzer et al.
(2007), in Sentiment we devise three cases of training percentages Cp = {0.1, 0.3, 0.5}
for Cases 1, 2, and 3, respectively. In CIFAR-10, we devise training percentages Cp =

{0.01, 0.1, 0.5}, e.g., Cp = 0.3 refers to a 30% − 70% training-testing split. The results
correspond to classification accuracy, reusable metrics, and communication load averaged
over 100 runs for all methods STL (Ω−1

1), FR (Ω−1
2), WP (Ω−1

3), PLC (Ω−1
4), FedAvg, and

DFedAvg.
One can observe from Fig. 4.5 that the average performance of PLC outperforms

STL for all cases, while in Fig. 4.6, PLC achieves significantly lower inter-cluster µin

and intra-cluster ξ∗ reuse metrics across all methods and cases in both benchmarks. This
indicates that our PLC-based DMtL achieves higher classification accuracy and effective
model reusability by jointly training models across only the heads incorporating PLC
information, thus avoiding redundancy due to inherent task similarity.

The tailored f ∗
k are effectively reusable for other nodes compared against FR and WP

due to the fact that the relationship matrices of FR and WP do not take into account
any model performances of nodes, while PLC explicitly relies on these performances to
selectively choose heads to learn reusable models. Especially, FR adopts a fixed task
relationship matrix, whose entries do not capture any variability of the (dis)similarities
of model performances across nodes, making this method unsuitable for data and task
heterogeneity.

4.6. Results and Analysis 78

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Average classification accuracy α of STL, FR, WP, and PLC on reusable
tailored models; CIFAR-10 (K = 5); Sentiment (K = 4).

We also compare PLC-based DMtL with the FL-driven methods FedAvg and DFedAvg
in terms of communication load (messages exchanged) to achieve convergence (adopting
early stopping to all methods for fairness) and capability of reusing the optimal mod-
els assessed via ξ∗ and µ∗

in metrics under the same setting. Table 4.1 summarizes the
communication complexity and load (messages exchanged) per node until convergence for
FedAvg, DFedAvg, and PLC-based DMtL, respectively, for Sentiment and CIFAR-10.

Method Complexity Sentiment CIFAR-10
PLC O((T + 1) logK) 33 77
DFedAvg O(T logM) 96 257
FedAvg O(TM) 320 480

Table 4.1: Communication load for PLC, FedAvg, and DFedAvg.

As evidenced in Fig. 4.6, the models of FedAvg and DFedAvg are not suggested for
being reused due to relatively high ξ∗. The one-model-fits-all principle of FL is unsuitable

4.7. Limitations and Future Research 79

(a) (b)

Figure 4.6: Difference in reusable model accuracy metrics (left) ξ∗ and (right) µ∗
in for PLC,

FedAvg, and DFedAvg; CIFAR-10 and Sentiment.

in model reusability due to the inherent statistical heterogeneity of tasks and data across
nodes. On the contrary, PLC-based DMtL tackles such heterogeneity by building tailored
models that are reused effectively, as evidenced by small ξ∗ (intra-cluster) and µ∗

in (inter-
cluster) in Fig. 4.6. PLC-based DMtL achieves lower load compared to DFedAvg because
of not only involving K < M heads, but these chosen heads convey the minimum sufficient
knowledge to build reusable models due to PLC clustering. PLC-based DMtL is deemed
appropriate for tackling the model reusability problem in an effective and efficient way
and is even more favored in non-i.i.d. cases where heads hold dissimilar tasks whilst
unnecessary and similar models are excluded.

4.7 Limitations and Future Research

Despite the promising outcomes of this study, several limitations need to be addressed:
Data and Task Heterogeneity: One significant limitation pertains to the varying

degrees of heterogeneity across distributed nodes. Our findings suggest that while PLC
clustering can enhance model reusability, its effectiveness decreases as the data becomes
more homogeneous (i.e., independent and identically distributed). In scenarios where data
is i.i.d., the advantages of DMtL and clustering are minimal, offering negligible improve-
ment over traditional methods. Future research could focus on developing techniques that
dynamically adjust to the level of data heterogeneity. Such methods would involve de-
tecting heterogeneity to determine the optimal number of clusters during the clustering
phase, thereby avoiding the unnecessary training of multiple models in i.i.d. scenarios.

Model Complexity and High-Dimensional Data: The models in our experiments

4.8. Conclusions 80

were classifiers applied to high-dimensional data or extracted features. The complexity of
these models and the characteristics of the data can limit the tuning and overall perfor-
mance of DMtL. This limitation implies that the results may not be easily generalizable
to other types of models or data with different features. Future research could explore
other meta-features that can be used for clustering tasks when employing deep neural net-
works, such as model updates or gradients. This exploration could lead to more effective
clustering strategies and improved model performance.

4.8 Conclusions

In this section, we introduce a novel Distributed Multi-task Learning (DMtL) framework
to address the challenges of model reusability and efficiency in edge computing environ-
ments characterized by non-i.i.d. data and constrained resources. Our approach leverages
Partial Learning Curves (PLC) for clustering tasks based on performance metrics and en-
gages selected head nodes to train tailored models, thereby enhancing generalization and
reusability collaboratively.

Our extensive experimental evaluation of both synthetic and real datasets demonstrates
the effectiveness of the proposed DMtL framework. Specifically, we show that our method
slightly outperforms Single Task Learning (STL) and other Multi-task Learning (MtL)
approaches by achieving higher classification accuracy and lower performance degradation,
both within and outside clusters. The results highlight the robustness of PLC-based
clustering in handling data heterogeneity and the efficiency of our two-phase framework
in reducing computational and communication costs.

Our investigation into the impact of bootstrapping rounds on training efficiency and
clustering effectiveness further validates the scalability of our framework. The ability to
maintain high clustering efficiency with varying numbers of nodes underscores the po-
tential of DMtL to scale in dynamic distributed environments. In conclusion, our DMtL
framework presents a significant advancement in distributed learning by effectively lever-
aging reusable models to enhance predictive performance and resource efficiency. The
proposed approach not only reduces the communication load by engaging only head nodes
in the training process but also offers flexibility and scalability by seamlessly accommo-
dating new nodes. These contributions position our framework as a valuable solution for
distributed predictive modeling in edge computing environments.

The next chapter will focus on the federated learning paradigm, which supports the
training of deep neural networks. Also, the target is to provide efficient solutions to
reduce the computation and communication costs during training and faster inference for
resource-constrained devices.

Chapter 5

Efficient Centralized Federated
Learning with Pruning

5.1 Introduction

We explored distributed statistical learning techniques in previous chapters, including
the concept of reuse and their applications in edge computing environments. Chapter
3 introduced methods for efficient model reuse in edge computing environments. Chap-
ter 4 extended these concepts by presenting enhanced reusability techniques tailored for
distributed learning frameworks, focusing on improving the scalability and robustness of
distributed training. While these advancements improved the performance of distributed
learning systems, the increasing complexity of tasks and the computational demands of
neural network training necessitate further optimization strategies(Li et al., 2020c; Kairouz
et al., 2021).

Federated learning (FL) has emerged as a promising paradigm to address these chal-
lenges by enabling collaborative model training across decentralized data sources while
preserving data privacy (McMahan et al., 2017; Wang et al., 2020; Li et al., 2020c). How-
ever, system and data heterogeneity in FL introduces new complexities, particularly re-
garding computational overhead and communication costs. These issues become even
more unignorable as the size and depth of neural networks increase (Konečnỳ et al., 2016).

To tackle the above challenges, this chapter proposes an efficient centralized FL frame-
work incorporating pruning techniques to reduce computational and communication costs.
Pruning, a technique for compressing neural networks, involves removing redundant pa-
rameters and structures from the model without significantly compromising its perfor-
mance (Han et al., 2015). By leveraging pruning into the federated learning process, we
target to balance model accuracy and efficiency (i.e., the ratio of pruned model param-
eters), making FL more suitable for large-scale and resource-constrained environments
(Sattler et al., 2019).

81

5.2. Related Work 82

In this chapter, we will:

• Provide an overview of the current state of FL and discuss compression methods for
neural networks within the context of FL.

• Present our proposed framework for efficient centralized FL with extreme pruning,
detailing the algorithmic strategies and convergence analysis.

• Evaluate the performance of our framework through extensive experiments, compar-
ing it against baseline federated learning models and demonstrating its effectiveness
in reducing costs while maintaining model accuracy.

Our approach aims to extend the capabilities of federated learning by leveraging prun-
ing techniques to address the critical challenges of efficiency and scalability. By reducing
the size of the neural network models during the federated learning process, we aim to
facilitate a similar convergence rate and lower communication overhead, making federated
learning more practical for real-world applications.

This chapter aims to offer a comprehensive solution for efficient and scalable model
training in decentralized environments with pruning.

5.2 Related Work

This section starts with the necessity of federated learning and efficient distributed learning
methods. Recall that the discussion about federated learning is in Chapter 2.

5.2.1 Background

As discussed in Chapter 2, traditional distributed machine learning distributes compu-
tational tasks across multiple machines or nodes, which is fundamental to achieving the
same goal. However, traditional methods have become insufficient as demands evolve.

Firstly, as highlighted by Liu et al. (2022), it is challenging to bring data together.
Privacy and security concerns of data, such as facial images or healthcare records, are
gaining attention, resulting in impermissible data centralization. Besides, data protection
regulations have been strengthened globally. For instance, the General Data Protection
Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the
United States set high standards for data privacy (ISACA, 2023). Additionally, China’s
Personal Information Protection Law (PIPL) closely follows the GDPR, underscoring the
importance of personal data protection and imposing strict requirements (Law, 2023).
Secondly, as the complexity of tasks increases, deep neural networks (DNNs) have proven
more practical for distributed training than support vector machines (SVMs) or decision
trees (Verbraeken et al., 2020).

5.2. Related Work 83

McMahan et al. (2017) defined FL as a model that relies on a central server to aggregate
model weights or gradients from various clients or nodes, offering a more advanced solution
for distributed machine learning. It obeys regulations such as GDPR to ensure data
security and privacy and provides a flexible framework to balance the communication
and computation costs for distributed computing under DNN architectures. Since the
introduction of Federated Learning (FL) by McMahan et al. (2017), the field has seen
extensive research and development. Liu et al. (2022) have summarized the life cycle of
FL into four distinct phases: the composition phase, the training phase, the evaluation
phase, and the deployment phase. Our focus is on the training phase, following this life
cycle to evaluate and deploy the computed models. This section provides an overview of
the research work related to algorithms for federated learning. Technical details, such as
formulations, will be expanded and discussed in Section 5.3.

The main challenges in federated learning can be summarized as three aspects, includ-
ing heterogeneity (data and system), security issues, and scalability. The details have been
explained in Chapter 2. To answer the research question about efficiency in Section 1, our
scope is around the efficient FL.

5.2.2 Efficient Distributed Computing with Compression

Expensive and redundant sharing of model weights presents a significant challenge in
distributed learning (Li et al., 2020c). Hence, recent work shows a trend in leveraging
compression techniques to improve the efficiency of distributed learning. Various methods
have been proposed to reduce the size of exchanged information through compression and
sparsification to address this. Alistarh et al. (2018) introduced magnitude selection on
model gradients to achieve sparsification in Stochastic Gradient Descent (SGD). Aji and
Heafield (2017) proposed a distributed SGD method that retains only 1% of gradients by
comparing their magnitudes. Similarly, Strom (2015) enhanced SGD training of DNNs by
controlling the update rate per individual weight. Konečnỳ and Richtárik (2018) developed
an encoding mechanism for SGD-based vectors to reduce communication overhead. Jiang
and Agrawal (2018) introduced periodic quantized averaging SGD, which achieves similar
predictive performance while reducing shared model gradients by 95%. Lin et al. (2018)
demonstrated that 99% of gradients are redundant and proposed deep gradient compres-
sion, achieving compression rates of 270-600 without sacrificing accuracy. Building on
this, the gTop-k gradient sparsification method by Shi et al. (2019) reduces communica-
tion costs based on the Top-k method. Further, Sun et al. (2019) developed a method
based on Chen et al. (2018) that adaptively compresses model gradients via quantization.
Reisizadeh et al. (2020) proposed FedPAQ, a framework integrating gradient sparsification
and quantization to reduce communication costs. Amiri et al. (2020) combined gradient
sparsification with quantized global model updates to enhance convergence. Wangni et al.

5.3. Methodology 84

(2018) investigated error-compensated gradient sparsification, maintaining model accuracy
while significantly reducing communication overhead. Abdi and Fekri (2020) introduced a
compression technique based on compressed sensing for efficient gradient communication.
Lastly, Han et al. (2020) developed an adaptive gradient sparsification method using an
online learning approach for efficient federated learning.

Our focus is pruning since it reduces communication and computation costs without
manual design. Specifically, in contrast to gradient sparsification, reducing the entire
model size is crucial in distributed learning. This eliminates communication redundancy
during training and enables reduced storage and inference time, enhancing the applicabil-
ity of federated learning (FL) in distributed systems. Limited work has applied pruning
in a distributed learning paradigm, but recent methods like Complement Sparsification
(CS)(Jiang and Borcea, 2023), Federated Dynamic Sparse Training (FedDST)(Bibikar
et al., 2022), and PruneFL (Jiang et al., 2022) have shown promise. CS involves collabo-
rative pruning at the server and client levels, significantly cutting bidirectional communi-
cation costs while maintaining model performance. FedDST uses dynamic sparse training
to adaptively prune models during FL, effectively addressing non-i.i.d. data distributions
and reducing both communication and computation overhead. PruneFL integrates adap-
tive and distributed parameter pruning, dynamically adjusting model size throughout the
FL process to optimize efficiency. These findings highlight the potential of pruning to
boost the efficiency and scalability of FL.

5.3 Methodology

5.3.1 Preliminaries

This section brings forward the formulation of federated learning and the concepts of
model pruning.

In this chapter, we adopt specific notational conventions for scalars, vectors, and ma-
trices to ensure clarity and consistency. Scalars are denoted by lowercase letters (e.g., x),
while vectors are represented by lowercase boldface letters (e.g., x). Matrices are indicated
by uppercase boldface letters (e.g., X). Details of notations are concluded in Table 2.2
and 2.3.

For a vector x = (x1, · · · , xd) ∈ Rd, the ℓp norm (p ≥ 1) is defined as ∥x∥p =(∑d
i=1 |xi|p

)1/p
. The ℓ∞ norm is defined as ∥x∥∞ = max1≤i≤d |xi|, and the ℓ2 norm is

simply ∥x∥2. For a function f(x) : Rd → R, its gradient is represented as ∇f(x) and
its Hessian as ∇2f(x). The minimum value of the function is denoted by min f . The
expectation with respect to the underlying probability space is denoted by E[·].

5.3. Methodology 85

Federated Learning

Consider a system consisting of a set of M clients and one central server. Assume that the
task is for supervised learning. Let matrix Di = {(x, y)}ni×(d+1) denote the data owned by
client i with ni data samples, where i ∈ |M | with |M | = {1, 2, . . . ,M}, x ∈ X ⊂ Rni×d,
and y ∈ Y ⊂ Rni .

To avoid the stragglers problem, FedAvg (McMahan et al., 2017) select out a subset of
C ⊂ M clients for collaborative training with a central server, where |C| = C. Then the
local loss is computed:

fi(ω) =
1

ni

∑
(x,y)∈Di

L(ω⊤x, y) (5.1)

where ω is the model parameter and L is a loss function that measures the quality of the
prediction. Then the global optimization function for all the selected nodes C is:

f(ω) =
∑
i∈C

ρifi(ω), where ρi =
ni∑
i∈C nj

. (5.2)

The optimization process is continuous over T global rounds with El local epochs. Let
t ∈ {0, 1, . . . , T − 1} denote a discrete-time instance during the training process. Then,
τ =

⌊
t
El

⌋
L is the start time of the current global epoch. At τ , the clients receive updated

aggregated weights ω̄τ from the server node responsible for aggregating the clients’ model
parameters. The local training at client m during local epoch l = 1, . . . , El proceeds as
follows:

ω
(τ+l)+1
i = ωτ+l

i − ητ+l∇fi(ωτ+l
i), (5.3)

where ητ+l ∈ (0, 1) is the learning rate. The aggregation policy on the side of the central
server can be expressed as:

ω̄τ =
∑
i∈C

ρiω
τ
i . (5.4)

An instance of FL framework is shown in Figure 5.1.

Model Pruning

In centralized learning systems, where all data is stored centrally, pruning aims to sparsify
the weight matrices of deep neural network (DNN) models by setting a significant pro-
portion of weights to zero while maintaining model performance (Zhu and Gupta, 2017).
Pruning techniques can be classified as either structured or unstructured depending on
whether entire sub-structures, such as channels, filters, and layers, are pruned. Another
important concept is sparsity, denoted as s ∈ [0, 1], which represents the proportion of
non-zero weights in the model. For instance, a model with s = 1 is fully sparse with all
weights equal to zero, whereas s = 0 represents the original model with no pruning. Figure

5.3. Methodology 86

Download

Download Global Updates

Upload Local Updates

Client 1
Client 2 Client 3 Client 4

Local
Training

Model
Aggregation

Figure 5.1: Federated Learning Framework Diagram

5.2 depicts one example of pruning for neural networks.
Pruning typically involves using mask functions that act as indicator functions, decid-

ing whether a weight should be zero based on a criterion, often the absolute value of the
weight. Weights below a predefined threshold are pruned, effectively reducing the model’s
complexity and improving computational efficiency.

In federated learning (FL), pruning is essential for reducing communication costs dur-
ing training. High sparsity, s ≥ 0.8 (Hoefler et al., 2021), are desirable to minimize
communication overhead while ensuring that the global model remains effective with only
a marginal loss in prediction accuracy. Distributed and adaptive pruning methods are
employed to achieve these high compression rates, making FL more feasible and efficient
(Jiang et al., 2022).

According to pruning time, pruning techniques can be categorized into three main
types:

• Pruning Before Training: Techniques such as SNIP (Lee et al., 2018) determine
important weights before the actual training begins.

• Pruning During Training: Methods like PruneTrain (Lym et al., 2019), DPF
(Lin et al., 2020), and FedDST (Bibikar et al., 2022) prune weights iteratively as the

5.3. Methodology 87

training progresses. This category also includes PruneFL (Jiang et al., 2022), which
integrates pruning into the FL process to enhance efficiency.

• Pruning After Training: This approach is less useful in distributed settings as it
requires centralized retraining to fine-tune the pruned model.

Among the most common techniques are:

• Regularization-based Pruning (RP): Utilizes sparsity-inducing properties of
norms like L1 (Manhattan distance) and L2 (Euclidean distance) to limit the impor-
tance of parameters, effectively pushing unimportant weights towards zero during
training.

• Importance-based Pruning (IP): Prunes parameters based on their significance,
determined by predefined criteria such as weight magnitude or contribution to overall
model performance (Wang et al., 2021).

While RP techniques are generally superior due to their ability to induce sparsity
adaptively, they face challenges in controlling the exact sparsity level and dynamically
tuning the regularization parameter λ. Improper tuning can lead to excessive pruning or
insufficient sparsity, affecting model performance (He et al., 2017; Zhang et al., 2018).

Prhbubf

Pruning

Figure 5.2: Example of Pruning: The diagram illustrates the pruning process in a
neural network model. It shows the connections between different nodes and layers, high-
lighting the paths that remain after pruning. The gray circles represent the pruned nodes,
indicating the elements that have been removed to optimize the network. The remaining
paths, represented by lines connecting various elements, show the network structure after
pruning.

5.3.2 FedDIP Algorithm

The proposed FedDIP framework integrates extreme dynamic pruning with error feedback
and incremental regularization in distributed learning environments. Figure 5.3 provides
a schematic representation of FedDIP, which will be elaborated upon in this section.

5.3. Methodology 88

...

Device 1

Server Node

Device 2 Device M

Figure 5.3: FedDIP Framework:
(1) Downlink Phase: The server node broadcasts the pruned global model (ω′(t)

g) to all
participating clients (Devices 1 to M).
(2) Uplink Phase: Each selected client sends its local dense model (ωt

i) back to the server
for aggregation. The global model (ωt

g) is updated based on the aggregation of these local
models, using the formula ωt

g =
∑M

i=1 ρiω
t
i .

(3) Sparse Training Phase: The global mask (mt), derived from the global model, guides
the distributed pruning and fine-tuning (DPF) process across the clients. This ensures
efficient and effective sparse training.

Dynamic Pruning with Error Feedback

The dynamic pruning method (DPF) introduced by Lin et al. (2020) demonstrates im-
proved performance under high sparsity. Given the SGD update scheme, the model gra-
dient in DPF is computed on the pruned model as:

ωt+1 = ωt − ηt∇f(ωt(′)) = ωt − ηt∇f(ωt ⊙mt), (5.5)

5.3. Methodology 89

considering the error feedback:

ωt+1 = ωt − ηt∇f(ωt + et), (5.6)

where et = ωt(′)−ωt. In (5.5), ⊙ represents the Hadamard (element-wise) product, ωt are
the model parameters, ωt(′) are the pruned model parameters, and m is the pruning mask
function used in Jiang et al. (2022), Lym et al. (2019), and Lin et al. (2020). The mask
eliminates weights based on their magnitude, producing the pruned ωt(′). This gradient
application helps recover from errors due to premature masking of important weights,
ensuring the update rule in (5.5) best suits the pruned model.

In contrast, other pruning methods in FL, such as Jiang et al. (2022), adopt the rule:

ωt+1 = ωt(′) − ηt∇f(ωt(′)). (5.7)

The update rule in (5.5) retains more information by only computing gradients of the
pruned model, which is expected to yield superior performance under high sparsity.

Incremental Regularization

Wang et al. (2021) proves that growing regularization, the proposed GReg algorithm, ben-
efits pruning. However, our approach significantly differs from Wang et al. (2021). While
GReg applies structured pruning only on convolutional layers and uses growing regulariza-
tion during the pruning of pre-trained models, we adopt incremental regularization during
model training and apply unstructured pruning to both convolutional and fully connected
layers.

Learning Framework

FedDIP combines dynamic pruning and incremental regularization to maintain predictive
model performance under extreme sparsity. We denote our algorithm directly applying dy-
namic pruning as ’FedDP’ and the variant adding incremental regularization as ’FedDIP.’
The FedDIP process is summarized in Algorithm 8, where only pruned models are ex-
changed from the server to nodes, while clients train sparse models, saving computational
costs.

Each node m ∈ M first trains a local sparse DNN model with weights of relatively
small magnitudes. Then, node n optimizes the local incrementally regularized loss function
at round t:

fi(ω
t) =

1

ni

∑
(x,y)∈Di

L(ω(t)⊤x, y) + λt

B∑
b=1

∥ωt(b)∥2, (5.8)

where λt controls the degree of model shrinkage and B is the number of DNN layers.

5.3. Methodology 90

Algorithm 8 The FedDIP Algorithm
Input: M nodes; T global rounds; El local rounds; initial and target sparsity s0 and sp;

maximum regularization λmax; quantization step Q; reconfiguration horizon R
Output: Global pruned DNN model weights ω′

g

1: // Server initialization
2: if s0 > 0 then
3: Server initializes global mask m0 (ERK distribution)
4: end if
5: // Node update and pruning
6: for global round τ = 1 to T do
7: Server randomly selects C nodes C ⊂ M
8: for all selected node i ∈ C in parallel do
9: Receive pruned weights ω

′(τ−1)
g from server node

10: Obtain mask mτ−1 from ω
′(τ−1)
g

11: Train ωτ
i over El rounds on data Di using (5.10)

12: if incremental regularization is chosen then
13: Optimize (5.8) with incremental λτ in (5.9)
14: else
15: Optimize (5.1)
16: end if
17: end for
18: // Server update, aggregation, and reconfiguration
19: Server receives models and aggregates ωτ

g in (5.13)
20: if τ mod R == 0 then
21: Reconfigure global mask mτ based on pruning ωτ

g

22: end if
23: Server prunes global model with mτ and obtains ω

′(τ)
g

24: Server node returns ω
′(τ)
g to all nodes

25: end for

5.3. Methodology 91

The incremental regularization over λt follows the schedule:

λt =


0 if 0 ≤ t < T

Q

λmax·(j−1)
Q

if (j−1)T
Q
≤ t < iT

Q

λmax(Q−1)
Q

if (Q−1)T
Q
≤ t ≤ T

(5.9)

with quantization step size Q > 0. The regularization parameter space is divided from
λmax

Q
to λmax, gradually increasing regularization every T

Q
rounds. Each node n dynamically

prunes its local model weights ωτ+L
i to optimize (5.8) as:

ωτ,l+1
i = ωτ,l

i − ητ∇fi(ω′(τ,l)
i), (5.10)

where ω
′(τ+l)
i is pruned based on a global mask function mτ generated by the server.

Our gradual pruning policy modifies the sparsity update from Li et al. (2020d) by
incrementally updating the sparsity as:

st = sp + (s0 − sp)

(
1− t

T

)3

, (5.11)

where st represents the sparsity at round t, s0 is the initial sparsity, and sp is the target
sparsity. In our approach, s0 is strictly non-zero, incrementing sparsity from moderate to
extreme levels. If s0 > 0, the initial mask’s layer-wise sparsity follows the ERK distribution
as described in Evci et al. (2020). Specifically, the sparsity sb0 for layer b is given by

sb0 ≃
nb−1 + nb + wb + hb

nb−1 × nb × wb × hb
, (5.12)

,where nb denotes the number of neurons, w stands for the width, and h represents the
height. The procedure of our proposed pruning policy is shown in Figure 5.4.

Sparse Model After Regularization After Pruning After Error Feedback

Figure 5.4: FedDIP achieves extreme sparsity through a process that begins with (1)
an initial sparse model, followed by periodic pruning that incorporates (2) incremental
regularization and (3) error feedback. The width of the red lines indicates the magnitude
of the connections, while the dotted lines represent connections recovered through error
feedback.

5.4. Theoretical Analysis 92

At the end of a local epoch El, the central server collects C model weights ωτ+l
i from

selected nodes i ∈ C and calculates the global weights average as:

ω̄τ+l
g =

∑
i∈C

ρiω
τ+l
i . (5.13)

The mask function mτ is generated based on pruning ω̄τ+l
g with current sparsity sτ . Fed-

DIP achieves data-free initialization and generalizes the DPF Lin et al. (2020) in the
dynamic pruning process. When s0 = 0 and no incremental regularization (λt = 0, ∀t),
FedDIP reduces to distributed version of DPF.

5.4 Theoretical Analysis

This section provides theoretical support for the proposed FedDIP algorithm, including a
convergence analysis. We present the assumptions and Theorem 2.

At each global round t ∈ {1, . . . , T}, C out of M clients participate, each selected
with probability ρi as in Haddadpour and Mahdavi (2019); Li et al. (2019b), ensuring∑M

i=1 ρi = 1.
Let ωt

i and ω
′(t)
i be the weights and pruned weights at round t on client i, respectively:

ω
′(t)
i = ωt

i ⊙mt. (5.14)

Let vt
i and ṽt

i be the expected and estimated gradients at t, respectively, on client i.
Based on ω

′(t)
i , we have:

v
′(t)
i = ∇f(ω′(t)

i), (5.15)

and ṽ
′(t)
i is the estimated gradient. The global aggregated model for FedAvg is:

ω̄t =
1

C

∑
i∈C

ωt
i, (5.16)

which is pruned before being sent by the server as:

ω̄′(t) =
1

C

∑
i∈C

ωt
i ⊙mt. (5.17)

The global estimated aggregated gradient and expected global gradient are:

ṽt =
1

C

∑
i∈C

ṽt
i, v̄t =

1

C

∑
i∈C

vt
i. (5.18)

5.4. Theoretical Analysis 93

For DPF, we have:

ṽ′(t) =
1

C

∑
i∈C

ṽ
′(t)
i , v̄′(t) =

1

C

∑
i∈C

v
′(t)
i . (5.19)

In FedAvg, ω̄t is updated as:

ω̄t+1 = ω̄t − ηtṽ
t, (5.20)

while the update rule based on DPF at client i is:

ωt+1
i = ωt

i − ηtṽ
′(t)
i , (5.21)

where ωt
i = ω̄′(t). Similarly, ω̄t+1 is updated as:

ω̄t+1 = ω̄′(t) − ηtṽ
′(t). (5.22)

Definition 1. The quality of pruning is defined by the parameter δt ∈ [0, 1] as:

δt :=
∥ωt − ω′(t)∥2F
∥ωt∥2F

, (5.23)

where ∥ ·∥2F is the square of the Frobenius matrix norm. δt indicates the degree of informa-
tion loss by pruning in terms of magnitude, with a smaller δt representing less information
loss.

Definition 2. Following Wan et al. (2021a), a measurement γ of non-i.i.d. (non-independent
and identically distributed) data is defined as:

γ =

∑M
i=1 pi∥∇fi(ω)∥2

∥∑M
i=1 pi∇fi(ω)∥2

, (5.24)

with γ ≥ 1; γ = 1 holds in the i.i.d. case.

We list our assumptions for proving the convergence of FedDIP during the learning
phase.

Assumption 1. L-Smoothness. For all ωt1 ,ωt2 ∈ Rd and L ∈ R:

f(ωt1) ≤ f(ωt2) + (ωt1 − ωt2)⊤∇f(ωt2) +
L

2
∥ωt1 − ωt2∥2. (5.25)

Assumption 2. µ-Lipschitzness. For all ωt1 ,ωt2 ∈ Rd and µ ∈ R:

∥f(ωt1)− f(ωt2)∥ ≤ µ∥ωt1 − ωt2∥. (5.26)

5.5. Experiment Setup 94

Assumption 3. Bounded variance for gradients. Following Li et al. (2019b), the
local model gradients on each client i are self-bounded in variance:

E[∥ṽt
i − vt

i∥2] ≤ σ2
i . (5.27)

Assumption 4. Bounded weighted aggregation of gradients. Following Wan et al.
(2021a), the aggregation of local gradients at time t is bounded as:

∥
M∑
i=1

ρiv
t
i∥2 ≤ G2, (5.28)

where
∑M

i=1 ρi = 1 and
∑M

i=1 ρiv
t
i stands for the weighted aggregation of local gradients;

G ∈ R.

We provide the convergence of FedDIP with the following theorem.

Theorem 2 (FedDIP Convergence). Under Assumptions 1, 2, 3, and Lemmas 3, 4, 5,
with ηt ≤ 1

tL
, L > 0, the convergence rate of FedDIP is bounded by:

1

T

T∑
t=1

∥∇f(ω̄′(t))∥2 ≤ 2LE(f(ω1) − f ∗) + 2L
T∑
t=1

[µE[
√
δt+1∥ω̄t+1∥] + π2

3L2
χ], (5.29)

where f(ω1) and f ∗ denote the initial and final convergent loss, respectively, with χ =
(γ−1)L2+L

2C

∑M
i=1 ρiσ

2
i +

(γ−1)γE2
l L

2G2

2
, and γ is defined in Definition 2.

Proof. See Appendix A.3.1.

Corollary 1. Under the conditions of Theorem 2, with a constant learning rate η, the
convergence rate of min ∥∇f(ω̄′(t))∥2 is O(1

T
), assuming δt = o(1

T
).

Proof. See Appendix A.3.2.

5.5 Experiment Setup

5.5.1 Datasets and Models

We conducted experiments using the Fashion-MNIST (Xiao et al., 2017), CIFAR-10, and
CIFAR-100 (Krizhevsky et al., 2009) datasets. Fashion-MNIST comprises 60, 000 training
images and 10, 000 test images, all 28x28 grayscale images classified into 10 categories.
Both CIFAR datasets contain 50, 000 training images and 10, 000 test images of 32x32
color images; CIFAR-10 has 10 classes (6000 images per class) while CIFAR-100 has
100 classes (600 images per class). We consider the i.i.d. (independent and identically
distributed) case for comparing algorithms and extending FedDIP to non-i.i.d. scenarios.

5.5. Experiment Setup 95

To evaluate the performance of FedDIP, we utilized several well-known CNN architec-
tures as the backbone (dense or unpruned) models: LeNet-5 (LeCun et al., 2015), AlexNet
(Krizhevsky, 2014), and ResNet-18 (He et al., 2016).

5.5.2 Baselines

We compared the performance of FedDIP with the following baselines:

• FedAvg (McMahan et al., 2017): It is the standard federated learning algorithm,
and details can be referred to Section 2.3.2. Since pruning is not considered, the
models are dense during the communication and training process.

• PruneFL (Jiang et al., 2022): A federated learning algorithm that incorporates
pruning during training. PruneFL is the first work to integrate adaptive and pa-
rameter pruning with federated learning, initially pruning the model at the central
server or a trusted client. This requires several rounds to train the central model
from dense to sparse. Further pruning is based on the importance score calculated
by gradient magnitude using Taylor expansion and time sensitivity.

• PruneTrain (Lym et al., 2019): A pruning algorithm that prunes during training
and incorporates regularization. PruneTrain is a centralized pruning technique that
accelerates training through a cost-efficient mechanism that gradually reduces train-
ing costs. The group-regularization lasso aids the pruning method in reconfiguring
high-accuracy models.

• FedDST (Bibikar et al., 2022): A dynamic sparse training method for federated
learning. Unlike PruneFL, FedDST avoids the initial training to obtain the masks;
instead, the mask is initialized using the ERK distribution as stated in Equation
5.12. During client training, each client performs layerwise pruning periodically to
update the mask through weight drop and regrowth, similar to RigL (Evci et al.,
2020).

• DPF (Lin et al., 2020): A dynamic pruning method with error feedback, used as a
baseline in our comparisons. DPF creates a sparse model without additional over-
head by enabling (i) dynamic allocation of the sparsity pattern and (ii) incorporating
a feedback signal to reconnect prematurely pruned weights, resulting in an efficient
sparse model in a single training pass.

• SNIP (Lee et al., 2018): A single-shot network pruning method that identifies and
removes less important weights before training. SNIP computes the importance of
each weight based on the sensitivity of the loss function to changes in the weight.

5.5. Experiment Setup 96

Weights with the lowest importance scores are pruned in a single step, leading to a
more efficient training process with reduced model size and computational cost.

For the non-i.i.d. case, we adopted the pathological data partitioning method from (McMa-
han et al., 2017), assigning only two classes per node. Additionally, we combined FedDIP
with FedProx (Li et al., 2020d)—a generalization and re-parametrization of FedAvg to
handle data heterogeneity—termed as FedDIP+Prox. We compared this combination
with the baseline FedAvg and FedProx.

5.5.3 Configurations

Table 5.1 outlines our experimental configurations. For PruneFL, FedDST, and Prune-
Train, we empirically determined the optimal reconfiguration intervals R to be 20, 20, and
1 respectively, to ensure optimal model performance. The same applies to the step size
Q for all models, with an annealing factor of 0.5 for FedDST. As SNIP prunes the model
prior to training, the global mask achieves the target sparsity sp via one-shot pruning.
We employed grid-search to set the penalty factor for PruneTrain, ranging from 10−1 to
10−5, depending on the experiment. Other hyperparameters were adjusted to match our
settings where necessary. For the non-i.i.d. case, the penalty for the proximal term in
FedProx was determined via grid search within the same range. FedDIP+Prox adopts the
optimal combination of penalty values for both FedDIP and FedProx.

Our experiments were designed to comprehensively evaluate FedDIP in various FL
environments, focusing on its adaptability to extreme sparsity while maintaining high
model performance.

Datasets Fashion-MNIST CIFAR-10 CIFAR-100
Model LeNet-5 AlexNet ResNet-18
Pruning Layers (Z) 5 8 18
Learning Rate (η0) 0.01 0.1 0.1
Clients per Round (K) 5/50 5/50 5/50
Batch Size 64 128 128
Initial Sparsity (s0) 0.5 0.5 0.05
Global Rounds (T) 1000 1000 1000
Reconfiguration Interval (R) 5 5 5
Step Size (Q) 10 10 10
Local Rounds (El) 5 5 5
Max Penalty (λmax) 10−3 10−3 5 · 10−3

Table 5.1: FedDIP Configuration Table

5.6. Experimental Analysis 97

5.6 Experimental Analysis

5.6.1 Performance Evaluation

To evaluate the performance of FedDIP and other baseline methods under extreme sparsity,
we set the target sparsity sp = 0.9 for Fashion-MNIST and CIFAR-10, and sp = 0.8 for
CIFAR-100. Due to training divergence with SNIP at sp = 0.9 for AlexNet, we adjust sp

to 0.8 for SNIP in this case.

Accuracy

As clarified in the baseline discussion, FedAvg serves as the baseline with a dense model.
Beyond FedAvg, Figures 5.5a, 5.6a, and 5.7a show that FedDIP consistently achieves the
highest top-1 accuracy compared to other baseline methods under extreme sparsity. While
the performance is comparable during the initial training phases when sparsity levels are
low, FedDIP’s advantage becomes more explicit as sparsity increases. Table 5.2 shows that
FedDIP only slightly reduces the accuracy of LeNet-5 and ResNet-18 by 1.24% and 1.25%,
respectively, at sp = 0.9 and sp = 0.8. For AlexNet, FedDIP maintains and even improves
performance by 0.7% compared to FedAvg at sp = 0.9, highlighting its robustness and
efficiency.

Cumulative Communication and Training Cost

Efficient communication is a key factor in the success of distributed learning systems,
particularly in bandwidth-constrained environments like edge computing and federated
learning. To evaluate our approach under realistic constraints, we focus on balancing
communication cost and model accuracy. With a fixed budget, we analyze the relation-
ship between communication cost and accuracy. Figures 5.5b, 5.6b, 5.7b, and Table 5.3
provide an overview. The results show that FedDIP effectively prunes the model across
all experiments and outperforms other methods, maintaining communication efficiency
comparable to other pruning methods.

Pruning typically decelerates convergence due to the reduction in informational con-
tent available during training. However, Table 5.3 indicates that FedDIP achieves similar
communication efficiency to other baselines with minimal performance reduction. For ex-
ample, in the Fashion-MNIST experiment with LeNet-5, FedDIP achieves an accuracy of
86.62% within a communication budget of 4 · 103 MB, outperforming FedAvg and other
methods. In the CIFAR-10 experiment with AlexNet, FedDIP attains 82.58% accuracy
within a 1.8 · 106 MB budget. In the CIFAR-100 experiment with ResNet-18, FedDIP
achieves 69.57% accuracy within a 2 ·106 MB budget, balancing performance and commu-
nication cost effectively.

5.6. Experimental Analysis 98

Sparse training, utilizing dynamic model pruning with error feedback, significantly
reduces computational costs from approximately 50% initially to 90% at the target. While
FedDIP incurs minimal computational overhead due to incremental regularization, this
overhead is negligible when considering the superior accuracy achieved compared to other
pruning baselines. The sizes of the pruned models at target sparsity levels are detailed in
Table 5.2.

0 200 400 600 800 1000
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p

1
Ac

cu
ra

cy

LeNet5 on FashionMNIST

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain
FedDST

(a) Test accuracy.

0 1000 2000 3000 4000 5000
Communication Cost (in MBs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p

1
Ac

cu
ra

cy

LeNet5 on FashionMNIST

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain
FedDST

(b) Test accuracy vs. communication budget.

Figure 5.5: Fashion-MNIST experiment with LeNet-5.

0 200 400 600 800 1000
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p

1
Ac

cu
ra

cy

AlexNet on CIFAR10

FedAvg
FedDP
FedDIP
PruneFL
SNIP (sp = 0.8)
PruneTrain
FedDST

(a) Test accuracy.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Communication Cost (in MBs) 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p

1
Ac

cu
ra

cy

AlexNet on CIFAR10

FedAvg
FedDP
FedDIP
PruneFL
SNIP (sp = 0.8)
PruneTrain
FedDST

(b) Test accuracy vs. communication budget.

Figure 5.6: CIFAR-10 experiment with AlexNet.

Experiments with Non-IID Data

Table 5.4 highlights FedDIP’s robustness in handling non-i.i.d scenarios effectively, even
under extreme sparsity. It shows that FedDIP adapts well to FL frameworks that address
non-i.i.d challenges, such as FedProx, without significant performance loss on non-i.i.d
data. Compared with FedAvg, the proposed method retains comparable performance
even with a 10× compression rate. Especially at sp = 0.8 in ResNet-18, FedDIP achieves
the highest top-1 accuracy,

5.6. Experimental Analysis 99

0 200 400 600 800 1000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p

1
Ac

cu
ra

cy

ResNet18 on CIFAR100

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain
FedDST

(a) Test accuracy.

0.0 0.5 1.0 1.5 2.0 2.5
Communication Costs (in MBs) 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p

1
Ac

cu
ra

cy

ResNet18 on CIFAR100

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain
FedDST

(b) Test accuracy vs. communication budget.

Figure 5.7: CIFAR-100 experiment with ResNet-18.

Table 5.2: Test Accuracy (Top-1)

Model Performance (%) with target sparsity sp
Model LeNet ; sp = .9 AlexNet ; sp = .9 ResNet ; sp = .8
FedAvg 89.50 (0.09) 85.07 (0.13) 70.92 (0.10)
FedDP 88.06 (0.08) 84.81 (0.18) 69.23 (0.14)
FedDIP 88.26 (0.09) 85.14 (0.22) 69.67 (0.10)
PruneFL 86.00 (0.10) 81.64 (0.17) 68.17 (0.20)

SNIP 86.08 (0.15) 80.10 (0.15) 51.46 (0.11)
PruneTrain 84.36 (0.10) 79.73 (0.10) 69.39 (0.08)

FedDST 80.37 (0.20) – 68.06 (0.20)
param. (FedAvg) 62K 23.3M 11.2M
param. (pruned) 6.1K 2.3M 2.2M
1 Mean accuracy; standard deviation in ‘()’.

Table 5.3: Communication Efficiency

Model Performance (%) with communication budget
Case LeNet-5 (1) AlexNet (2) ResNet-18 (3)

FedAvg 86.76 78.98 70.06
FedDP 86.54 82.29 69.10
FedDIP 86.62 82.58 69.57
PruneFL 85.57 81.73 68.4

SNIP 86.32 80.11 51.63
PruneTrain 82.68 78.16 69.42

FedDST 80.37 – 68.06
Communication budget (1)4 · 103MB, (2)1.8 · 106MB, (3)2 · 106MB

5.6.2 Sparsity Analysis

Layerwise Sparsity

Under different target overall sparsity for ResNet-18 (sp = 0.8), LeNet-5 (sp = 0.9), and
AlexNet (sp = 0.9), Figure 5.8 shows the sparsity per layer.

5.7. Limitations and Future Research 100

Table 5.4: Extension to Non-IID Data

Model Performance (%) (Non-IID Case)
Case LeNet-5 AlexNet ResNet-18

FedAvg 76.42 (0.28) 61.59 (0.73) 16.44 (0.49)
FedProx 76.63 (0.34) 65.74 (0.26) 18.48 (0.91)

FedDIP+Prox 74.49 (0.09) 60.47 (0.52) 19.22 (0.8)
1 Mean of the highest five top-1 test accuracy during T rounds.

Because of the function of general feature extraction, the first layers of all models are
the least pruned (0.1 ≤ s ≤ 0.4).

Furthermore, the initialization of sparsity distribution matters. According to Figure
5.8, the dependency of layerwise sparsity on the number of weights per layer relies on the
ERK distribution in FedDIP’s initialization, despite global magnitude pruning in a later
process. The correlation between the number of weights per layer and the corresponding
sparsity level stems from the initial ERK distribution, which allocates a higher degree of
sparsity to layers containing more weights. Such correlation is remarkable in both convo-
lutional and fully-connected layers of the models. In convolutional layers, the correlations
are found to be perfectly linear for LeNet-5 with a correlation coefficient ϱ ≃ 1, for AlexNet
we obtain ϱ = 0.86, while for ResNet-18 ϱ = 0.8. For fully-connected layers, since only
one exists in ResNet-18, we obtain ϱ = (0.91, 0.82) for LeNet-5 and AlexNet, respectively.

FedDIP in Extreme Sparsity

The efficiency of FedDIP is examined under more extreme sparsity. For Fashion-MNIST
and CIFAR10 experiments, we investigate two additional extreme sparsity levels sp = 0.95

and sp = 0.99, and for CIFAR100 experiments, we investigate sp = 0.9 and sp = 0.95.
These conditions provide a robust assessment of FedDIP’s performance across a range of
extreme sparsity. As shown in Figure 5.9, under extreme sparsity like 0.95 and 0.99, the
largest drops ∆ in classification accuracy are only ∆ = 6.97%, ∆ = 5.03%, and ∆ = 8.08%,
respectively. This also comes with further 100×, 100×, and 20× compression rate on
LeNet-5, Alex-Net, and ResNet-18 model sizes, respectively. This indicates (i) FedDIP’s
efficiency in storing and managing models as well as (ii) in inference tasks for subsequent
low memory devices. All in all, the pruned DNN models’ performance is relatively high
with small accuracy drops and high model compression across different tasks.

5.7 Limitations and Future Research

Two primary limitations request attention and investigation in future research.

5.7. Limitations and Future Research 101

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18
Layers of ResNet-18

0

20

40

60

80

Sp
ar

si
ty

 (
%

)

Layerwise Sparsity of ResNet-18

(a) Distribution of layer sparsity; ResNet-18.

f0w f3w f6w f8w f10
w c1w c4w c6w

Layers of AlexNet

0

20

40

60

80

100

Sp
ar

si
ty

 (
%

)

Layerwise Sparsity of AlexNet

(b) Distribution of layer sparsity; AlexNet.

f0w f3w c0w c2w c4w
Layers of LeNet-5

0

20

40

60

80

Sp
ar

si
ty

 (
%

)

Layerwise Sparsity of LeNet-5

(c) Distribution of layer sparsity; LeNet-5.

Figure 5.8: Layerwise pruning sparsity; f0w stands for (f)eatures layer, layer index (e.g,
0), and (w)eights, respectively. c stands for the classifier layer (the same notation is used
for other layers). ResNet-18 consists of 18 pruning layers.

First, the current framework is specifically tailored to Convolutional Neural Networks
(CNNs) for image classification tasks using unstructured pruning. However, it should be
noted that unstructured pruning often requires high sparsity levels and specific method-
ologies to achieve performance gains, which may not be feasible or efficient on small
NPUs or other embedded platforms. This limitation highlights that current unstructured

5.8. Conclusions 102

LeN
et

s p
= . 9 LeN

et

s p
= . 95 LeN

et

s p
= . 99 Alex

Net

s p
= . 9

Alex
Net

s p
= . 95 Alex

Net

s p
= . 99 Re

sN
et

s p
= . 8

Re
sN

et

s p
= . 9

Re
sN

et

s p
= . 95

Model and Sparsity Level

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (
%

)

 -1.24 -1.66

 -6.97

 0.07

 -3.74
 -5.03

 -1.25

 -5.37

 -8.08

Model Performance at Different Sparsity Levels

Figure 5.9: FedDIP performance on extreme sparsity values.

pruning approaches, including what we implemented, are not directly applicable to such
devices without further adaptation. Additionally, the efficacy of FedDIP in other types of
neural networks, such as Recurrent Neural Networks (RNNs) or Transformer models, re-
mains unexplored, thus limiting the generalizability of the proposed approach. Expanding
the application of FedDIP to include RNNs and Transformer models could significantly
broaden its scope. Moreover, incorporating structured pruning methods, which are better
suited for many embedded devices, could provide more practical and efficient solutions for
resource-constrained platforms.

Second, although the proposed FedDIP framework addresses dynamic pruning and
incremental regularization, its adaptation to algorithms like FedProx for handling hetero-
geneous data distributions shows potential but does not enhance performance. Non-i.i.d.
data distributions can lead to uneven model updates and slower convergence rates, im-
pacting overall model efficacy. Future research should focus on extending the FedDIP
framework to effectively manage highly non-i.i.d. data distributions, potentially through
model personalization. Developing adaptive mechanisms that dynamically adjust pruning
and regularization parameters based on data heterogeneity could improve the framework’s
performance.

5.8 Conclusions

In this chapter, we have presented FedDIP, an innovative Federated Learning (FL) frame-
work that integrates dynamic pruning and incremental regularization to enhance the ef-
ficiency and scalability of deep neural networks in decentralized environments. Our ap-

5.8. Conclusions 103

proach leverages the ERK distribution for data-free initialization, ensuring a balanced
sparsity distribution across different layers of the network. Through comprehensive the-
oretical analysis and extensive empirical evaluations, FedDIP has demonstrated its capa-
bility to achieve significant reductions in computational and communication costs while
maintaining high model accuracy.

The results from our experiments on benchmark datasets, such as Fashion-MNIST,
CIFAR-10, and CIFAR-100, validate the effectiveness of FedDIP in both i.i.d. and non-
i.i.d. scenarios. FedDIP consistently outperforms traditional federated learning methods
and state-of-the-art pruning techniques, achieving superior accuracy even under extreme
sparsity conditions. The layerwise sparsity analysis further highlights the importance of
the initial sparsity distribution and its impact on model performance.

By reducing the size of neural network models during the federated learning process,
FedDIP not only facilitates a similar convergence rate but also lowers the communication
overhead, making federated learning more practical for real-world applications. Addition-
ally, FedDIP’s ability to handle extreme sparsity levels underscores its potential for de-
ployment in resource-constrained environments. Hence, this chapter verifies that pruning
optimizes the efficiency of distributed machine learning, particularly in federated learning.

The next Chapter will focus on addressing the heterogeneity in personalized and de-
centralized FL environments and exploring the integration of other model compression
techniques to further enhance the efficiency and scalability of federated learning systems.
The promising results of FedDIP open new avenues for efficient and scalable model training
in decentralized settings.

Chapter 6

Efficient Decentralized Federated
Learning with Pruning

6.1 Introduction

In Chapter 5, we substantiated the hypothesis that efficiency in distributed deep learning
can be achieved through dynamic extreme pruning. The impressive performance of this
pruning method in centralized federated learning (CFL)—where coordination with a cen-
tral server is essential—motivates us to explore its potential to enhance efficiency within
a more robust scenario: decentralized federated learning (DFL). The comparison between
CFL and DFL is summarised in Table 6.1 and Figure 6.1

Decentralized Federated Learning (DFL), as introduced by Lalitha et al. (2018), op-
erates by enabling communication and model sharing without the management of central
servers. Compared to CFL, DFL is more diverse and flexible, allowing information ex-
change among clients under various topologies, such as ring and fully-connected, which
will be elaborated on in Section 6.3.1. Additionally, DFL is resilient to central server
failures, attacks, and drop-out issues. Specifically, most DFL paradigms continue to func-
tion even if a proportion of nodes, including servers, lose connections. However, as noted
by Yuan et al. (2024), DFL faces extreme challenges, including high communication vol-
ume per round, computational and storage burdens, cybersecurity vulnerabilities, and the
absence of incentive mechanisms. For example, following the notation in Chapter 5, we
denote the number of parameters to send as |ω| and the total number of clients as M .
The total communication volume for CFL per round is M |ω|, but for DFL, it is M2|ω|
if the fully-connected topology is considered. Due to the flexibility of DFL, it is often
used for cross-device FL, which is a more resource-constrained scenario than CFL. This
chapter primarily addresses the first two challenges. Moreover, data heterogeneity remains
a significant issue within the learning framework.

The aforementioned challenges raise the question: Can we efficiently learn under the

104

6.1. Introduction 105

From Centralized Federated Learning to Decentralized Federated Learning

(1)
(1)

(1)

(1)
(1)(1)(1)

(1)

(1)

Figure 6.1: Transition from CFL to DFL: An Example The model parameters or
gradients are exchanged from clients to the central cloud in CFL; In DFL, the information
is exchanged among clients without the management of a central server, where the clients
are connected with a ring topology.

decentralized federated learning framework while simultaneously enhancing model perfor-
mance using compression techniques such as pruning? Our answer is an emphatic yes. We
propose the Dynamic Aggregation Decentralized Personalized Federated Learning (DA-
DPFL) framework, which incorporates a dynamic sparse to sparser training procedure.
Across various tasks and degrees of data heterogeneity, DA-DPFL achieves superior energy
efficiency (i.e., communication and computation efficiency) compared to state-of-the-art
methods. This chapter contributes the following:

• A dynamic aggregation framework that reuses previous clients’ models within the
same communication round.

• An advanced pruning strategy that prunes models based on their compressibility,
effectively extending existing pruning methods in DFL.

• Comprehensive experiments demonstrating the learning efficiency of DA-DPFL com-
pared to both CFL and DFL baselines across various tasks, data heterogeneity levels,
and model architectures.

• Achievement of the target model’s highest energy efficiency and minimal storage
requirements.

6.2. Related Work 106

• A theoretical convergence analysis that supports the proposed learning framework,
consistent with experimental findings.

Aspect Centralized Federated
Learning (CFL)

Decentralized Federated
Learning (DFL)

Communication
Clients communicate di-
rectly with the central
server.

Clients communicate di-
rectly with each other in
certain protocols.

Robustness
Prone to the single point of
failure due to dependence
on a central server.

More robust as there is no
central server

Scalability Face scalability issues as the
number of clients increases.

High scalability due to
distributed nature, but
increases communication
overhead.

Security and pri-
vacy

Central servers can be tar-
gets for attacks,

Improved privacy as data
is distributed and resilient
against central attacks.

Table 6.1: Comparison between Centralized Federated Learning (CFL) and Decentralized
Federated Learning (DFL).

6.2 Related Work

This section details existing work on leveraging personalized Federated Learning (FL)
to address non-i.i.d. problems, the evolution of decentralized FL frameworks, and the
utilization of compression techniques to achieve efficiency in FL. Each approach has its
own advantages and challenges.

6.2.1 Personalized Federated Learning

The data distribution across different clients and organizations is inherently heteroge-
neous, posing a fundamental challenge for federated learning (FL). Personalized FL is the
technique that aims to tailor the global model or directly learn a personalized model to
fit local data distributions (Tan et al., 2023) for individual clients, i.e., dealing with data
heterogeneity issues. Li et al. (2020d) underscored the importance of personalization by
proposing FedProx, a generalization, and re-parametrization of FedAvg (McMahan et al.,
2017). Ditto (Li et al., 2021b) offered a fair personalization framework through globally
regularized multitask FL, while FOMO (Zhang et al., 2021b) focused on first-order opti-
mization for personalized learning. FedABC (Wang et al., 2023) employed a ’one-vs-all’

6.2. Related Work 107

strategy and binary classification loss to address class imbalance and unfair competition.
Conversely, FedSLR (Huang et al., 2022b) integrated low-rank global knowledge for effi-
cient communication. However, these methods often increase training costs, highlighting
the need for more efficient training approaches. Wang et al. (2024) introduced the pFedHR
framework, which tackles model heterogeneity in FL by leveraging heterogeneous model
reassembly to generate personalized models for clients dynamically and automatically
with minimal human intervention. Recent research suggested that generating personalized
masks through pruning can enhance communication efficiency and manage data hetero-
geneity. Techniques such as FedMask (Li et al., 2021a), FedSpa (Huang et al., 2022a), and
DisPFL (Dai et al., 2022) achieved this using personalized masks.

6.2.2 Decentralized Federated Learning

Decentralized federated learning (DFL) has emerged as a robust paradigm for distributed
learning, enabling clients to collaboratively train models with their neighbors, thereby en-
hancing privacy and reducing reliance on central servers (Beltrán et al., 2023). Increased
client interaction in DFL has led to methods like DFedAvgM (Sun et al., 2022), which
extends FedAvg to decentralized contexts with momentum SGD. Based on the committee
mechanism, Che et al. (2022) provided a serverless FL framework, which involves two
client selection strategies to be robust to Byzantine attacks. To enhance communication
efficiency in DFL, Zhao et al. (2022) designed a better compression for decentralized opti-
mization method called BEER, which enhances convergence in non-convex optimization
through communication compression and gradient tracking. GossipFL (Tang et al., 2022)
is a gossip learning framework that utilizes connection bandwidth information to create
a gossip matrix for sparsified gradient communication. Addressing the non-i.i.d chal-
lenge, DFedSAM (Shi et al., 2023) employed the Sharpness-Aware Minimization (SAM)
optimizer, while DisPFL (Dai et al., 2022) leveraged RigL-like pruning for decentralized
sparse training with personalization, thus reducing generalization error and communica-
tion costs.

6.2.3 Efficient Federated Learning with Pruning

One of the core challenges in this thesis is addressing the significant communication and
training costs in distributed machine learning, specifically in federated learning (FL), as
discussed in Chapters 5 and 6. Various techniques have been proposed to mitigate these
issues. As outlined in Section 5.2, efficient distributed computing through compression
has been explored. This section focuses on more recent advancements specifically related
to pruning in FL. pFedGate, proposed by Chen et al. (2023), tackled these challenges
by adaptively learning sparse local models with a trainable gating layer, enhancing both

6.3. Methodology 108

model capacity and efficiency. Additionally, Isik et al. (2023) introduced federated prob-
abilistic mask training, coined as FedPM, to optimize model communication with sparse
random networks based on a new Bayesian aggregation policy. The FedMask (Li et al.,
2021a) utilized heterogeneous binary masks to improve communication and computation
efficiency in personalized federated learning. Each device learns a sparse, personalized
model by applying a binary mask to the fixed parameters of its local model, and only
these binary masks are communicated between the server and devices, significantly reduc-
ing communication costs while maintaining model performance.

Although significant progress has been made in reducing communication costs, as afore-
mentioned, only a few methods (Jiang et al., 2022; Chen et al., 2023; Li et al., 2021a) have
also effectively addressed the reduction of training costs through sparse training.

6.3 Methodology

This section first introduces the definition and formulation of decentralized personalized
federated learning (DPFL) and then clarifies the rationale and key components in our
proposed method DA-DPFL; it concludes the learning framework in detail.

6.3.1 Preliminaries

Taxonomy in Decentralized Federated Learning

In this section, we present the concept and description of taxonomy in DFL, includ-
ing iteration order, communication protocols, network topology, and learning
paradigms according to (Beltrán et al., 2023; Yuan et al., 2024). All the notations are
included in Table 2.3.

1
2

3

4

5

6

(a) Cycle

1
1

1

1

1

1

(c)Parallel

1

2

34 5

6

(b) Random

Figure 6.2: Iteration Orders: Examples (a), (b), and (c) correspond to the cycle, ran-
dom, and parallel iteration orders, respectively. The number on the line indicates the
iteration steps (i.e. rounds), and the arrow denotes the direction of model transmission.

As stated in Section 5.1, centralized FL requires one central server to coordinate clients’
training in parallel. The random selection, as one type of iteration order in CFL, has little

6.3. Methodology 109

impact on the convergence of the system. In DFL, the iteration order is critical and can be
classified into parallel, semi-parallel, and sequential. Parallel computing in FL means that
all clients communicate simultaneously. A related concept is parallel, where coordination
ensures that participating devices complete local training at the same time. Specifically,
the coordinator waits for all updates before proceeding to the next communication round.
Sequential learning, as used in other computer science areas, involves clients communi-
cating one by one in a certain order, which can be based on additional information such
as device capabilities or network conditions. Figure 6.2 illustrates the random, cycle, and
parallel iteration orders.

In CFL, the central server broadcasts the model to the clients. In DFL, the client
can also broadcast models, referred to as the broadcast protocol. The gossip protocol is
well-established in DFL, allowing clients to disseminate and receive models in a one-to-one
random strategy. The current popular protocol is the hybrid protocol, combining broadcast
and gossip to suit different scenarios.

In CFL, aggregation happens at the central server, which is the primary method to
learn from all clients. However, DFL is diverse and flexible due to the different topologies
supporting the communication protocol and iteration order. Figure 6.3 illustrates five
commonly used topologies, showing client connection status.

(a)Line

(c)Fully-Connected (Mesh)

(b)Ring

(d)Star (e)Time-Varing

T

T+1

Figure 6.3: Network Topologies: Examples of network topologies in Decentralized
Federated Learning (DFL). (a) line topology, (b) ring topology, (c) fully-connected (mesh)
topology, (d) star topology, and (e) time-varying topology showing different connections
between nodes in subsequent rounds (Round T and Round T+1).

The learning paradigm can be categorized as aggregate and continual learning, depend-
ing on whether the client aggregates the received model. The aggregate paradigm follows
the CFL aggregation strategy, where received models are aggregated with subsequent lo-

6.3. Methodology 110

cal training. The continual learning, or incremental learning, is suitable for DFL and is
designed for sequential topologies such as cycles, allowing one client to receive one model
from previous clients and perform direct local training without aggregation. Figure 6.4
details the differences, where ωj

i means the model parameters of client index i at time step
j.

1
1

3
3

2
2

4
4

(a) Continual Learning

(b) Aggregate Learning

Figure 6.4: Learning Paradigms: Illustrations of learning paradigms in Decentralized
Federated Learning (DFL). (a) Continual Learning where models are updated sequentially,
with each client using the model from the previous client. (b) Aggregate Learning where
models from multiple clients are aggregated at each step. The top-right font denotes the
round, and the indices denote the client’s model.

DPFL Formulation

As the CFL discussed in Section 5, we introduce a general distributed system with M

clients to explain the decentralized, federated learning framework, followed by the formu-
lation of mask-based personalized DFL.

The clients form a network represented by a graph G(M,V), where the adjacency
matrix V = [vi,j] ∈ RM×M delineates the communication links between clients. Specifi-
cally, client j communicates with client i if vi,j > 0, forming the neighborhood Gi = {i ∈
M : vi,j > 0}. A zero entry vi,j = 0 indicates no direct communication. The symmetry
vi,j = vj,i does not necessarily hold, implying potential asymmetry in communication.

We focus on dynamic topologies, where the communication structure evolves over time.

6.3. Methodology 111

At each discrete time step t ∈ T = {1, 2, . . .}, the adjacency matrix Vt updates to reflect
the current network state. This dynamic nature introduces a time-varying, non-symmetric
topology, represented as Vt = [vti,j] ∈ RM×M , which defines the temporal neighborhood
Gti for each client i.

In our scalable decentralized federated learning (DFL) setup, each client i ∈M has its
own local dataset Di = {(x, y)}, where x represents input features and y denotes the out-
put labels. Clients communicate with their neighbors Gti to exchange model updates. The
goal is to learn personalized models ωi for each client i by minimizing a global objective:

min
{ωi}Mi=1

1

M

M∑
i=1

Fi(ωi), (6.1)

where Fi(ωi) = E[L(ωi; (x, y)) | (x, y) ∈ Di] and L(·; ·) denotes the loss function.
We introduce model pruning to enhance efficiency and realize personalization, where a

binary mask m is applied to each model to eliminate unnecessary weights. This modifies
the objective to:

min
ω,{mi}Mi=1

1

M

M∑
i=1

Fi(ω ⊙mi), (6.2)

where Fi(ω ⊙mi) = E[L(ω ⊙mi; (x, y)) | (x, y) ∈ Di]and ⊙ represents the element-
wise multiplication. Each mask mi is specific to client i and indicates which weights are
retained. The sparsity level si of mask mi quantifies the proportion of non-zero weights.

The objective is to determine a global model ω and individual masks mi such that
the resulting personalized models ωi = ω ⊙ mi are optimized for each client m ∈ M.
Communication between clients at time t is limited to their immediate neighbors Gti as
defined by the dynamic topology Vt.

6.3.2 Dynamic Aggregation with Controlled Delay

This section details the scheduling policy used for client participation in our framework,
which accommodates various topologies such as ring or fully-connected networks. DA-
DPFL is particularly effective for dynamic, time-varying topologies but can also adapt
to static topologies, represented as Gi. At the beginning of each communication round
t, reuse indexes, N t

i , for neighborhood sets are assigned randomly to C clients. Here,

|Gti | = |N t
i | = C < M , and Gti

πt
i↔ N t

i , where πt
i is a random bijection mapping. For

discrete sets Gti and N t
i ,

i = πt
i(j), (6.3)

6.3. Methodology 112

with index i ∈ N t
i and j ∈ Gti . It is possible for N t

i to match Gti if the sets are randomly
generated. For simplicity, we assume N t

i = Gti in Fig. 6.5, where client i is identified by
reuse index i. The introduction of N t

i highlights the independence in generating reuse
indexes, crucial for guiding the dynamic aggregation process.

Figure 6.5: Reuse Index: Examples of generating reuse indexes with posterior and prior
set under waiting threshold N = 1, where M = 6, C = 2, N = 1 and assume N t

i = Gti for
simplicity.

While the criteria for establishing Gti include factors like network bandwidth, geograph-
ical location, and link availability, N t

i is independent of these factors. Client indices are
reassigned for each training round.

In DA-DPFL, a client i might delay receiving models from some neighbors based on
N t

i . We split N t
i into two subsets for each client i: (a) the prior client subset N t

(a)i =

{nt
i ≤ i : nt

i ∈ N t
i }, and (b) the posterior client subset N t

(b)i = {nt
i > i : nt

i ∈ N t
i }. If

N t
(b)i = ∅, implying N t

(a)i = N t
i , client i waits for the slowest client within N t

i before
starting model aggregation and local dataset training Di. To improve scalability, we
introduce a threshold allowing the client to wait for, at most, N of the fastest clients in
N t

(a)i, where |N (∗)t
(a)i | = N ≤ C. Then, N (∗)t

(a)i ∪N
(∗)t
(b)i = N t

i . Conversely, if no prior client set
exists (N (∗)t

(a)i = ∅), client i receives models from N (∗)t
(b)i without delay, as shown by nodes

1, 2, and 4 in Fig. 6.5. Based on the bijection mapping between N t
i and Gti , G(∗)t(a)i is

determined.
DA-DPFL’s learning schedule significantly differs from traditional FL paradigms, im-

6.3. Methodology 113

plementing a semi-parallel approach. This hybrid scheme combines two iteration orders,
sequential and parallel, as discussed in Section 6.3.1. Specifically, it involves sequential
learning with delayed aggregation and immediate parallel aggregation, known as dynamic
aggregation. Continual learning is achieved by sequentially learning models from clients
in the prior set of client i, benefiting from sequential knowledge transfer. This may delay
client i in aggregating models from G(∗)ti(a) . Conversely, models from posterior clients are
sent to client i independently, enabling training parallelism. At time t, nodes {1, 2, 4}
engage in simultaneous (parallel) training, while nodes {3, 5, 6} await model reuse from
preceding clients. This allows subsequent nodes to train concurrently with earlier ones,
as shown by nodes {5, 6} training alongside node 3. By introducing a cutoff value N , our
waiting policy gains controllability. When N = 0, DA-DPFL functions as a parallel FL
system with sparse training; when N = C = M , it transitions to a sequential FL.

6.3.3 Dynamic Pruning

To innovate a pruning strategy, three critical questions must be addressed: what to prune,
how to prune, and when to prune. For the first question, similar to the method discussed
in Section 5, we employ unstructured pruning, which involves pruning model weights on
an entry-wise basis. The distinctions between structured and unstructured pruning are
detailed in Section 5.3.

Regarding how to prune, extensive research has been conducted, as discussed in Sec-
tions 5.2and 6.2, Before introducing the main technique employed in DA-DPFL, which is
adapted and modified from centralized pruning, we provide a brief overview of a signif-
icant hypothesis that motivates pruning. The Lottery Ticket Hypothesis (LTH, Frankle
and Carbin (2018)) posits that winning tickets, or properly pruned networks, enhance
the learning performance of the original unpruned network. Evci et al. (2020) proposed
an algorithm called RigL, which identifies all the winning tickets. This method dynam-
ically trains sparse neural networks from scratch, maintaining a fixed number of model
parameters and, consequently, a fixed computational burden, which is essential for fed-
erated learning. This is achieved through proper initialization, parameter dropping, and
regrowth. RigL involves the following steps:

• Initialize with the Erdos-Renyi-Kernel (ERK) distribution.

• Update with a Cosine Annealing Schedule.

• Drop the top-k weights based on their magnitude.

• Grow the top-k connections based on gradient magnitude.

6.3. Methodology 114

The update schedule follows a decay function fdecay, which quantifies the fractions of
updated connections. fdecay is defined as:

fdecay(t, α, T) =
α

2
(1 + cos

tπ

T
) (6.4)

Updates occur every R configuration rounds, hence t ∈ [0, R, 2R, . . . , T], where T repre-
sents the total training rounds in a centralized setup and also the communication rounds
in decentralized training. α denotes the initial fraction to be updated. It decays from the
initial fraction α to 0 when cos π = −1 at t = T . The details of the extension for RigL to
DA-DPFL are discussed in the next section (Algorithm 11).

While the sparse model training with a fixed computation budget is promising, is it
possible to further reduce the size of the sparse model to achieve greater efficiency? We
propose a sparse-to-sparser pruning strategy. We define compressibility as the degree to
which neural networks can be reduced without significantly decreasing performance. The
PQ-Index used in the Sparsity-informed Adaptive Pruning (SAP) algorithm, proposed by
Diao et al. (2022), provides the technique to measure "compressibility". The PQ-Index,
i.e., the ratio of prunable weights, is formulated as:

I(wt) = 1− d
1
q
− 1

p

t

∥ωt∥p
∥ωt∥q

(6.5)

where dt is the density of the model and p < q are numerical values. The details of the
adapted usage of PQI are clarified in the next section, Algorithm 10.

The final question is when to prune. Most research on pruning, such as (Evci et al.,
2020; Diao et al., 2022; Ruan et al., 2020; Jiang et al., 2022), updates the pruning mask at
constant configuration rounds, i.e., the mask is updated every R training/communication
rounds. Considering two extreme cases underscores the importance of pruning timing.
If R is sufficiently large, dynamic pruning during training will resemble post-training
pruning, which forfeits the advantages of reducing computational overhead in centralized
training and both computational and communication overhead in decentralized training.
Conversely, if R is sufficiently small and initialization is improper, the short-term learned
information cannot sufficiently guide the pruning based on the importance of connections
or weights, resulting in model training divergence. Therefore, DA-DPFL modifies the
criteria used in EarlyCrop (Rachwan et al., 2022) to decide when to prune further. The
pruning time detection score is:

|∆t
0 −∆t−1

0 |
|∆1

0|
< δpr; ∆

t
0 := ∥ωt − ω0∥2 (6.6)

where δpr is a threshold to detect time to prune.

6.3. Methodology 115

Algorithm 9 The DA-DPFL Algorithm
1: Input: M clients; T,El rounds; PQI hyper-param. {p, q, γ, ηc}, pruning thr δpr; voting

threshold δv; factors b, c; target sparsity s∗;
2: Output: Personalized aggregated models {ω̃T

i }Mi=1.
3: Initialization: Initialize {m0

i }Mi=1, {ω0
i }Mi=1, T ← ∅

4: for round t = 1 to T do
5: for each client i do
6: Generate a random reuse index set {N t

i }Mi=1.
7: Generate a random bijection πt

i between N t
i and Gti

8: Form prior and posterior set {N (∗)t
i(a) ,N

(∗)t
i(b) }

9: Form {G(∗)ti(a) ,G
(∗)t
i(b) } by {N (∗)t

i(a) ,N
(∗)t
i(b) , π

−1(t)
i }

10: if G(∗)t(a)i ̸= ∅ then

11: do Wait models from neighbors G(∗)t(a)i

12: end if
13: Receive neighbor’s models ωt

j, j ∈ Gti
14: Obtain mask-based aggregated model ω̃t

i.
15: Compute ω̃t

i,τ for El local rounds.
16: Calculate ∆t

0(i) and vt(i) based on δpr.
17: Broadcast vt(i) to all clients; derive t∗.
18: if t ∈ T and si < s∗ then
19: Call Algorithm 10 to obtain ω̃t′

i,El
,mt′

i

20: Update sparsity si
21: else
22: Set (ω̃t′

i,El
,mt′

i)← (ω̃t
i,El

,mt
i)

23: end if
24: Call Algorithm 11 to update mt+1

i

25: Set ωt+1
i = ω̃t′

i,El

26: end for
27: if t == t∗ then Update T .
28: end for

6.3.4 DA-DPFL Algorithm

According to the aforementioned, the DA-DPFL leverages the dynamic aggregation to
reduce the required communication rounds to achieve convergence because of the reuse of
models from clients in prior set; achieves communication and computation efficiency by
further reducing the size of models, which is supported by the innovative pruning strategy
for decentralized training. This section details the DA-DPFL algorithm, where further
details are explained in Algorithm 9.

The reuse index generation to navigate dynamic aggregation has been introduced in
Section 6.3.2. To adapt the pruning methods used in centralized training for decentralized
federated learning, we give the following clarification about the time-optimized dynamic
pruning policy.

6.3. Methodology 116

A dynamic pruning policy is introduced to complement the scheduling of local training
and gradual model aggregation via prior and posterior neighbors for each client. Initially,
each client’s mask m0

i is configured using the Erdos-Renyi Kernel (ERK) distribution
Evci et al. (2020). These masks are then dynamically adjusted by pruning and regrowing
connections based on importance scores derived from the magnitudes of model weights
and gradients. This approach extends the centralized RigL method (Evci et al., 2020) to
DA-DPFL, as elaborated Algorithm 11.

The proposed method operates orthogonally to other fixed-sparsity training techniques,
such as RigL, enabling further pruning stages. The Sparsity-informed Adaptive Pruning
(SAP) algorithm (Diao et al., 2022) introduces the PQ Index (PQI) to measure the "com-
pressibility" of a deep neural network (DNN), as detailed in Algorithm 10. DA-DPFL
incorporates PQI within DFL, addressing the heterogeneity of various local models by
adaptively pruning each model according to its characteristics.

In centralized learning contexts, EarlyCrop (Rachwan et al., 2022) bases its pruning
schedule on critical learning periods, while CriticalFL Yan et al. (2023) emphasizes the
early doubling of information transmission. EarlyCrop leverages gradient flow and neural
tangent kernel dynamics to ensure a smooth transition into pruning. Specifically, the
pruning time detection score is calculated according to Equation (6.6). In DA-DPFL,
with M clients, a voting majority rule is implemented to determine the pruning times.
Each client’s vote at time t is defined as:

vt(i) =

1 if |∆t
0(i)−∆t−1

0 (i)|
|∆1

0(i)|
< δpr,

0 otherwise.
(6.7)

The initial pruning time t∗ is then determined by:

t∗ = min

{
t :

1

M

M∑
i=1

vt(i) < δv

}
, (6.8)

where δv is the voting threshold.
Following the determination of the initial pruning time t∗, DA-DPFL sets the frequency

of subsequent pruning events. This strategy is informed by the early training phase, known
as the critical learning period (Jastrzebski et al., 2021), which impacts the local curvature
of the DNN’s loss function. During the initial stages, a lower pruning frequency is per-
mitted, which intensifies as the model converges. This balance minimizes communication
overhead while maintaining model performance, resulting in an optimal pruning frequency
that adapts to different tasks and model architectures.

The pruning frequency, or the interval between pruning events, is defined by non-

6.3. Methodology 117

uniformly dividing the remaining training horizon T − t∗:

Iτ :=

⌈
t∗ + b

cτ−1

⌉
, τ ∈ Z≥1, (6.9)

where parameter b > 0 delays the initial pruning time, and c > 0 is a scaling factor
adjusting the pruning frequency. The p-th pruning time tp, for tp > t∗, is calculated as
tp =

∑p
τ=1 Iτ , resulting in the set of pruning times T = {t1, . . . , tp : t∗ < tp < T}.

Since personalization is achieved through each client’s personalized mask for the global
model, a mask-based model aggregation policy is appropriate, even though the masks may
be obtained through different methods. Therefore, the aggregation policy from DisPFL
Dai et al. (2022) and FedDST Bibikar et al. (2022) is adopted. The aggregated model ω̃t

i

for client i is derived from the models of its neighbors in Gti at round t using a mask-based
approach:

ω̃t
i =

(∑
j∈Gt

i+
ωt

j∑
j∈Gt

i+
mt

j

)
⊙mt

i, (6.10)

where Gti+ = Gti ∪ {m} represents the neighborhood of client i including itself. The local
training rounds, denoted by τ ∈ El, based on the obtained ω̃t

i are defined as follows:

ω̃t
i,τ+1 = ω̃t

i,τ − η(gt
i,τ ⊙mt

i), (6.11)

where gt
i,τ is the gradient of the local loss function Fi(·) with respect to ω̃t

i,τ .

Algorithm 10 PQI-driven pruning (Layerwise)

1: Input: ω̃t
i,El

, mask mt
i, norm index 0 < p ≤ 1 < q, compression hyper-parameter ηc,

scaling factor γ, pruning threshold β, further pruning time T .
2: Output: ω̃t′

i,El
, corresponding mask mt′

i

3: for t ∈ T do
4: for each layer l ∈ |L| do
5: Compute dimensionality of ω̃l,t

i,El
: dlt = |ml,t

i |

6: Compute PQ Index I(ω̃l,t
i,El

) = 1−
(

1
dlt

) 1
q
− 1

p ∥ω̃l,t
i,El

∥p
∥ω̃l,t

i,El
∥q

7: Compute the lower boundary required model parameters to keep rlt = dlt(1 +

ηc)
− q

q−p

[
1− I(ω̃l,t

i,El
)
] p

q−p

8: Compute the number of model parameters to prune
9: clt =

⌊
dlt ·min

(
γ
(
1− rlt

dlt

)
, β
)⌋

10: Prune clt model parameters with the smallest magnitude based on ω̃l,t
i,El

and ml,t
i

11: Find new layer mask ml,t′
i and pruned model ω̃l,t′

i,El
at layer l

12: end for
13: Obtain ω̃t′

i,El
and corresponding mask mt′

i

14: end for

6.4. Theoretical Analysis 118

Algorithm 11 RigL mask generation

1: Input: ω̃t′
i,El

, corresponding mask mt′
i , global rounds T, initial annealing ratio α0

2: Output: New mask mt+1
i

3: Compute prune ratio αt =
α
2

(
1 + cos

(
tπ
T

))
4: Sample one batch of local training data to calculate dense gradient g(ω̃t′

i,El
)

5: for each layer l ∈ |L| do
6: Update mask m

l,t+ 1
2
′

i by pruning αt percentage of weights based on weight magni-
tude.

7: Update mask ml,t+1
i via regrowing weights with gradient information g(ω̃t′

i,El
).

8: end for
9: Find new mask mt+1

i .

Note that we exclusively utilize the PQ index to assess compressibility. The differences
between the SAP algorithm proposed by Diao et al. (2022) and our method are as follows.
First, the SAP algorithm begins with a dense mask, whereas our models are initially
sparse across different clients. Second, our proposed strategy functions as an further
pruning technique within the federated learning (FL) framework. Third, we emphasize
the importance of pruning time, particularly the critical learning period, in contrast to the
regular pruning frequency used in the SAP algorithm. Finally, our method implements
dynamic pruning during training rather than post-training pruning.

6.4 Theoretical Analysis

Section 5.4 gives the theory support for the pruning with error feedback in the context of
CFL, where the quality of pruning is defined by δt in Equation (5.23). This section adopts
a different pruning method and leverages mask for global model personalization. Then
such a quality of pruning can be regarded as the discrepancy between local and global
models since different clients hold different masks, as in Equation (6.2). Hence, specific
assumptions to quantify the variance for the global and personalized global gradients are
provided as in Assumption 5 and 6.

Assumption 5. Bounded variance for gradients: Follow (Sun et al., 2022), ∀m ∈
|M | and ω ∈ Rd:

E[∥∇f̂i(ω)−∇fi(ω)∥2] ≤ σ2
l , (6.12)

1

M

M∑
k=1

∥∇fi(ω)−∇f(ω)∥2 ≤ σ2
g , (6.13)

1

M

M∑
k=1

∥∇f̃i(ω ⊙ mi)−∇f(ω)∥2 ≤ σ2
p, (6.14)

6.4. Theoretical Analysis 119

f̂(·) is the estimated gradients from training data; f̃(·) is personalized global gradients.

Assumption 6. The aggregated model ω̃t
k for client k at iteration t is given by:

ω̃t
i =

(∑
j∈Gt

i
ωt

j∑
j∈Gt

i
mt

j

)
⊙mt

i =

(∑
j∈Gt

i
ωt

j

C

)
⊙mt

i (6.15)

where Gti is neighborhood of client m with size |Gti | = C; all local models are sparse, i.e.,
ωt

j = ωt
j ⊙mt

j.

The following theorem supports the convergence of DA-DPFL under the time-varying
connected topology.

Theorem 3. Under Assumptions 2, 5 and 6, when T is sufficiently large and the stepsize
η for SGD for training client models satisfies η ≤

√
1

12µ2(C−1)(2C−1)
for C > 1,

minE∥∇f(ω̃t)∥2 ≤ 2

T (η − 6S1(µ− η))

(
E[f(ω̃0)]−min f

)
+ S3, (6.16)

where S1 = 2η2C(C − 1)
(
exp

(
(3C+2)El

4(C2−1)

)
− 1
)
, S2 = 1

2C−1
σ2
l + 3(2σ2

g + σ2
p), and S3 =

2
η−6S1(µ−η)

·
[
(µ− η)S1S2 +

3µ2η3(3C+2)El

2(C+1)C
(σ2

l + σ2
g)
]
. f(ω̃0) represents the initial global model

loss, min f is the minimum of loss, and C is the neighborhood size.

Proof. See details in Appendix A.4

Findings from Theorem 3 indicate that, with sufficiently large T , the error due to
initial model loss and bounded variance for gradients becomes negligible. Specifically,
choosing η = O(1

µ
√
T
) results in the convergence boundary being dominated by the rate of

O
(

1√
T
+

σ2
l +σ2

g+σ2
p√

T
+

σ2
l +σ2

g

T

)
.

Additionally, Theorem 3 aligns with two key empirical observations: (i) The number
of communication rounds required to achieve a specified error level ε is lower compared
to the DisPFL model. This efficiency gain is attributed to the term S1 >

(
e

El
(2C−2) − 1

)
,

indicating that no scheduling is involved, which arises from the proposed scheduling strat-
egy. Dividing the left-hand side (first and third item) of the inequality by S1 results in a
reduced error boundary. (ii) The modified ratio is 3C+2

2C+2
. When C = 2, the ratio simplifies

to 4
3
. As C increases, this ratio approaches 3

2
. This suggests that while increasing C

enhances error-bound reduction, the improvement rate diminishes, indicating a limit to
the benefits offered by DA-DPFL scheduling.

6.5. Experiment Setup 120

6.5 Experiment Setup

6.5.1 Datasets and Models

In addition to the CIFAR10 and CIFAR100 datasets used in Chapter 5 (refer to Section
5.5), experiments were also conducted on the medical image dataset HAM10000 (Tschandl
et al., 2018). Detailed information about this dataset is provided at the end of this
section. The feasibility of the proposed method was verified through experiments on
different model architectures, specifically AlexNet (Krizhevsky et al., 2012), ResNet18
(He et al., 2016), and VGG11 (Simonyan and Zisserman, 2015), tested on HAM10000,
CIFAR10, and CIFAR100, respectively.

Recall the challenges mentioned in Section 2; data heterogeneity in federated learning
(FL) is a significant challenge. To address this, two widely used data partition methods
from (Dai et al., 2022) were employed to simulate the non-i.i.d. scenario. The first method,
Dirichlet partition, uses a Dirichlet distribution with a hyper-parameter α to control the
degree of heterogeneity in the local data’s label distribution. A larger α results in a more
even distribution of data. For example, α = 100 approximates an i.i.d. partition, while
α = 0.1 represents an extreme non-i.i.d. case. The second method, Pathological partition,
controls the label distribution by defining the exact number of classes (ncls) held by each
client. For example, in the CIFAR10 dataset, if ncls = 2, some clients have only 2 out of
10 classes. Experiments were conducted with α = 0.3 for CIFAR10 and CIFAR100, and
α = 0.5 for HAM10000. For Pathological partitioning, ncls values were set as follows: 2
for CIFAR10 and HAM10000, and 10 for CIFAR100.

Note: HAM10000 consists of 10,015 dermatoscopic images intended to assist in diag-
nosing pigmented skin lesions. Each image has a resolution of 600 x 450 pixels and covers
a wide range of diagnostic categories related to pigmented lesions. The dataset, sourced
from diverse populations using different modalities, is characterized by its comprehensive
representation and notable class imbalance. To address this imbalance, an oversampling
data augmentation technique was applied, enhancing the representation of minority classes
within a training set of 8,000 samples. This approach ensured that each category was ap-
proximately equalized to around 6,000 images. Specifically, the minority classes in the
randomly split training set (comprising 80% of the data) were augmented, as shown in
Table 6.2. This augmentation involved increasing the size of minority classes to integral
multiples of their original count, aligning them with the training size of the majority class.

6.5.2 Baselines

The proposed DA-DPFL algorithm is compared with various state-of-the-art baseline al-
gorithms from Centralized Federated Learning (CFL), Personalized Federated Learning

6.5. Experiment Setup 121

Lesion Type Original Train Size Augmented Train Size
Actinic keratoses 297 5346
Basal cell carcinoma 479 5748
Benign keratosis-like lesions 1011 6066
Dermatofibroma 107 5671
Melanocytic nevi 5822 5822
Vascular lesions 129 5676
Melanoma 1067 6402

Table 6.2: Lesion types and train lengths.

(PFL), and Decentralized Federated Learning (DFL). The details are summarized below:

Algorithm Comp. Comm. Heter.
FedAvg × × ×
Ditto × × ✓

FedDST ✓ ✓ ×
GossipFL × ✓ ×
DFedAvgM × ✓ ×
DisPFL ✓ ✓ ✓

BEER × ✓ ×
DFedSAM × × ✓

DA-DPFL (ours) ✓ ✓ ✓

Table 6.3: Comparison of Baseline Algorithms. Comp. is the abbreviation for Compu-
tational Efficiency; Comm. is the abbreviation for Communication Efficiency; and Heter.
denotes whether the method handles data heterogeneity.

• FedAvg (McMahan et al., 2017): The traditional centralized federated learning
method lacks computational efficiency, communication efficiency, and adaptability
to data heterogeneity.

• Ditto (Li et al., 2021b): A centralized personalized federated learning framework
designed to handle data heterogeneity by training both global and local models
with regularization techniques. This approach enhances robustness and adaptability
to the non-i.i.d. challenge but does not improve computational or communication
efficiency.

• FedDST (Bibikar et al., 2022): A communication and computation-efficient feder-
ated learning framework managed by a central server. Clients share models with the
same layer-wise sparsity distribution and perform dynamic pruning on the central
server. More details are clarified in Section 5.5.

6.5. Experiment Setup 122

• GossipFL (Tang et al., 2022): A decentralized gossip learning framework with a
central coordinator that shares the seed for pruning masks collaboratively. It uses a
mixing or adjacency matrix based on communication information such as bandwidth
to achieve efficient peer-to-peer communication without improving computational
efficiency or adaptability to data heterogeneity.

• DFedAvgM (Sun et al., 2022): A decentralized version of FedAvg with momentum,
using the Adam optimizer with quantization to achieve communication efficiency
but lacking computational efficiency and adaptability to data heterogeneity.

• DisPFL (Dai et al., 2022): A reduced version of DA-DPFL, without new scheduling
and further pruning methods, serving as a significant competitor to the proposed
method. It achieves personalization with communication and computation efficiency
through mask-based aggregation on the aggregator. The pruning strategy is similar
to FedDST.

• BEER (Zhao et al., 2022): A decentralized stochastic learning framework with gra-
dient tracking and compression, which accelerates convergence but does not improve
computational efficiency or adaptability to data heterogeneity.

• DFedSAM (Shi et al., 2023): A decentralized federated learning method with the
SAM (Sharpness-Aware Minimization) optimizer, searching for models with uni-
formly low loss values to accelerate aggregation and handle data heterogeneity with-
out enhancing computational or communication efficiency.

6.5.3 Configurations

System Configuration

Experiments are performed on a system with M = 100 clients, each possessing sufficient
computational power to train the specified models locally, representing more capable edge
devices such as IoT sensors or smartphones. These clients are assumed to have intermittent
yet reliable network connectivity, as determined by the chosen topology for model updates,
while securely storing data locally to ensure privacy. Following the methodologies in (Shi
et al., 2023; Dai et al., 2022), DFL is configured to mirror the highest communication bur-
den on the central server. Specifically, the number of connected clients in CFL (neighbor
size C = 10) is set to 10, and in DFL, each client acts as a central server, connecting with
C = 10 other clients. Unlike CFL, all DFL baselines except DFedSAM are configured
to have half the communication cost. The sparse training methods, including DA-DPFL,
FedDST, and DisPFL, are initialized with a sparsity s0i = 0.5 for all clients i ∈ [M].
The main experiments are conducted using a randomly time-varying connected topology

6.5. Experiment Setup 123

(Figure 6.3.e). Additional experiments are conducted using ring (Figure 6.3.b) and fully-
connected (Figure 6.3.c) topologies to verify the robustness of the proposed method. The
total number of communication rounds varies across experiments: T = 300 for HAM10000
and T = 500 for the other two datasets.

Training Details

To ensure fair comparisons, experimental hyperparameters are aligned with the setups in
(Dai et al., 2022; Shi et al., 2023). Unless otherwise specified, the number of local epochs
is fixed at 5 for all approaches, and a Stochastic Gradient Descent (SGD) optimizer with
a weight decay of 5 × 10−4 is used. The learning rate is initialized at 0.1 and decays
exponentially by a factor of 0.998 after each global communication round. The batch
size is consistently set to 128 for all experiments. Global communication rounds are set
to 500 for CIFAR10 and CIFAR100, and 300 for HAM10000. Parameters are set as
δv = 0.5, b = 0, c = 1.3, and {p, q, γ, ηc} = {0.5, 1, 0.9, 1} following Diao et al. (2022), with
δpr values in {0.01, 0.02, 0.03} for all experiments.

In the CFL baseline implementation, Ditto’s local training is divided into two phases:
a global model training phase for 3 epochs and a personalized model training phase for 2
epochs. Additionally, the update mask reconfiguration interval in FedDST is determined
by a grid search over [1, 5, 10, 20]. In the DFL setup, when compression techniques are
incorporated, the busiest communication load is halved. GossipFL utilizes a Random
Match approach, randomly clustering clients into groups. Momentum SGD is used in
DFedAvgM and DFedSAM, with a momentum factor β = 0.9. A grid search determines
the ρ value for DFedSAM from [0.01, 0.02, 0.05, 0.1, 0.2, 0.5], based on the SAM optimizer
configuration.

Energy Cost Simulation

For cost analysis, an NVIDIA 4090 GPU with 80 TFLOPS and 450 W TDP serves as the
standard to evaluate clients’ computational power and energy consumption. The system
configuration assumes a bandwidth of 1 Gbps, with each client network card consuming
1 W, as referenced from (Feeney and Nilsson, 2001). The metric Ctime is extracted from
Table 6.4, and both Cenergy and Ctime are converted to monetary units using the formu-
las (1 − θ)$/s and θ$/J . To reconcile the discrepancy between theoretical and actual
GPU execution times, real-world algorithm executions are conducted on the GPU. These
executions reveal that actual times are five times longer than theoretical predictions, ne-
cessitating a correction factor of 5 for computation time, calculated as Tcomp = 5× DFLOP

VFLOPS
,

and for energy, Ccomp = Tcomp × Pcomp. For communication time estimation, the formula
Tcomm = Dcomm

B
is used, where Dcomm represents the data volume to be transferred and

B indicates the system’s total bandwidth. Consequently, the communication energy cost

6.6. Experimental Analysis 124

Ccomm is calculated as Ccomm = Tcomm × Pcomm, with Pcomm representing the transmission
power of the wireless network card.

6.6 Experimental Analysis

This section presents a comprehensive analysis of the experimental results, focusing on
cost efficiency and learning efficiency.

6.6.1 Cost Efficiency

The efficiency of the proposed algorithm is assessed by examining two primary metrics: the
Floating Point Operations (FLOP) needed for inference and the communication overhead
during convergence rounds. To ensure a consistent baseline, the initialization protocol
from DisPFL is used, which standardizes the initial communication costs and FLOP values
during the early pruning phase of training.

The pruning stages in DA-DPFL significantly reduce these costs. The final sparsity
levels achieved are (0.61, 0.56) for HAM10000, (0.65, 0.73) for CIFAR10, and (0.70, 0.73)

for CIFAR100 under Dir. and Pat. partitioning, respectively. These results are achieved
within the specified communication rounds. Notably, the busiest communication costs and
training FLOPs for DA-DPFL are lower than those of the most efficient DFL baseline,
DisPFL.

Table 6.4 on busiest communication cost and final training FLOPs highlights the effi-
ciency of DA-DPFL. For HAM10000, CIFAR10, and CIFAR100, DA-DPFL achieves sig-
nificantly lower communication costs and FLOPs compared to other methods, indicating
its superior efficiency in both communication and computation.

To evaluate potential delays in DA-DPFL, the total cost Ctotal is computed as defined
in Luo et al. (2021) and Zhou et al. (2022):

Ctotal = (1− θ)Ctime + θCenergy,

where θ ∈ [0, 1] is set to 0 for highly time-sensitive applications and to 1 for energy-sensitive
tasks; this metric unifies time and energy costs into monetary units (USD $).

To provide a realistic perspective on DA-DPFL’s introduction, communication and
computation costs (FLOP) are combined into energy expenditure:

Cenergy = Ccomm + Ccomp,

where Ccomm and Ccomp represent communication and computational costs, respectively.
Figures 6.6 and 6.7 depict the cost-effectiveness of DA-DPFL compared to other DFL

6.6. Experimental Analysis 125

baselines. When θ → 0 initially, DA-DPFL incurs higher time costs. However, as θ in-
creases beyond 0.2, DA-DPFL shows substantial advantages over other DFL algorithms
(represented by solid lines), with its benefits growing as θ increases further. CFLs, due
to system configuration, exhibit significantly lower communication (1%) and computa-
tion (10%) costs compared to DFL, which overall shows better cost efficiency but slower
convergence. Even considering waiting time, DA-DPFL achieves both cost efficiency and
learning efficiency (convergence speed).

Table 6.4: Busiest Communication Cost & Final Training FLOPs of All Methods

HAM10000 CIFAR10 CIFAR100

Algorithm Com. (MB) FLOP (1e12) Com. (MB) FLOP (1e12) Com. (MB) FLOP (1e12)

FedAvg 887.8 3.6 426.3 8.3 353.3 2.3
Ditto 887.8 3.6 426.3 8.3 353.3 2.3
FedDST 443.8 2.0 223.1 7.1 176.7 1.6

GossipFL 443.8 3.6 223.1 8.3 176.7 2.3
DFedAvgM 443.8 3.6 223.1 8.3 176.7 2.3
DisPFL 443.8 2.0 223.1 7.1 176.7 1.6
BEER 443.8 3.6 223.1 8.3 176.7 2.3
DFedSAM 887.8 7.2 426.3 17.0 353.3 4.6
DA-DPFL_Dir 346.2 1.9 149.1 4.1 107.7 1.0
DA-DPFL_Pat 394.4 2.0 115.1 3.8 94.8 0.9

0.0 0.2 0.4 0.6 0.8 1.0

θ

0.0

0.5

1.0

1.5

2.0

2.5

C
to
ta
l(

$)

×107

FedAvg

Ditto

FedDST

GossipFL

DFedAvgM

DisPFL

BEER

DFedSAM

DA-DPFL Dir

DA-DPFL Pat

0.0 0.2
0

2

4

×106

Figure 6.6: Total cost (energy and time cost, in USD) of DA-DPFL and all baselines
evaluated on CIFAR10 against θ.

6.6. Experimental Analysis 126

0.0 0.2 0.4 0.6 0.8 1.0

θ

0

1

2

3

4

5

6

7

C
to
ta
l(

$)

×106

FedAvg

Ditto

FedDST

GossipFL

DFedAvgM

DisPFL

BEER

DFedSAM

DA-DPFL Dir

DA-DPFL Pat

0.0 0.2
0

1

×106

Figure 6.7: Total cost (energy and time cost, in USD) of DA-DPFL and all baselines
evaluated on CIFAR100 against θ.

6.6.2 Learning Efficiency

DA-DPFL surpasses all baselines in top-1 accuracy in five out of six scenarios, demon-
strating robustness under extreme non-iid conditions (ncls = 2) (Fig. 6.9, Table 6.5).
It outperforms the next best DFL baselines (DisPFL and GossipFL) by 2 − 3%, with a
slight shortfall in HAM10000 (ncls = 2) by 0.5% compared to DFedAvgM. DA-DPFL con-
sistently exceeds DisPFL in sparse model training and generalization while maintaining
efficient convergence. In contrast, CFL lags in convergence due to limited client partici-
pation per round. Momentum-based methods like DFedAvgM accelerate initial learning,
while BEER, with gradient tracking, shows rapid convergence but does not necessarily
reduce generalization error. DA-DPFL balances convergence rate and generalization per-
formance, outperforming other baselines and achieving target accuracy with reduced costs.

Additional experiments using ring and fully-connected (FC) topologies provide further
evidence of DA-DPFL’s adaptability. As shown in Table 6.6, DA-DPFL achieves the high-
est accuracy and sparsity levels compared to other methods in both topologies. In the ring
topology, DA-DPFL attains an accuracy of 69.83% with a sparsity of 0.65, significantly
outperforming DisPFL (67.65%) and other baselines. Similarly, in the fully-connected
topology, DA-DPFL reaches an accuracy of 89.11% with a sparsity of 0.68, surpassing
DisPFL’s 86.54% and other baselines. These results highlight DA-DPFL’s superior per-

6.6. Experimental Analysis 127

0.0 0.2 0.4 0.6 0.8 1.0

θ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
to
ta
l(

$)

×107

FedAvg

Ditto

FedDST

GossipFL

DFedAvgM

DisPFL

BEER

DFedSAM

DA-DPFL Dir

DA-DPFL Pat

0.0 0.2
0

1

2

×106

Figure 6.8: Total cost (energy and time cost, in USD) of DA-DPFL and all baselines
evaluated on HAM10000 against θ.

formance and efficiency in different network configurations.
The accuracy comparison across different datasets (Table 6.5) further reinforces the

superior performance of DA-DPFL. It achieves the highest accuracy in most cases, particu-
larly excelling in CIFAR10 and CIFAR100 datasets under both Dir. and Pat. partitioning.
This demonstrates the robustness and effectiveness of DA-DPFL in handling diverse and
challenging data distributions.

In summary, DA-DPFL maintains a significant lead in performance across various
scenarios, demonstrating both high accuracy and efficient model sparsity within 500 com-
munication rounds.

6.6.3 Hyperparameter Analysis

Analysis on Neighborhood Size C

The impacts of the hyper-parameter C on the training efficiency of DA-DPFL are investi-
gated by training ResNet18 on CIFAR10. The neighborhood size parameter C significantly
affects the scheduling efficiency, where a higher C value enhances convergence by increas-
ing the reuse of trained models throughout the training process, although it introduces
the risk of potential delays. As depicted in Fig.6.10 (Bottom), C = 20 slightly surpasses

6.6. Experimental Analysis 128

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

HAM10000, AlexNet, Dirichlet (0.5)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

CIFAR10, ResNet18, Dirichlet (0.3)

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

CIFAR100, ResNet18, Dirichlet (0.3)

0 50 100 150 200 250 300
Communication Rounds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

HAM10000, AlexNet, Pathological (2)

0 100 200 300 400 500
Communication Rounds

0.2

0.4

0.6

0.8

CIFAR10, ResNet18, Pathological (2)

0 100 200 300 400 500
Communication Rounds

0.0

0.2

0.4

0.6

CIFAR100, ResNet18, Pathological (10)

FedAvg Ditto FedDST GossipFL DFedAvgM DisPFL BEER DA-DPFL DFedSAM

Figure 6.9: Test (top-1) accuracy of all baselines, including CFLs and DFLs, across various
model architectures and datasets.

Table 6.5: Accuracy Comparison Across Different Datasets

Method HAM10000 CIFAR10 CIFAR100

Dir. (0.5) Pat. (2) Dir. (0.3) Pat. (2) Dir. (0.3) Pat. (10)

FedAvg 65.92 ± 0.3 55.68 ± 0.4 79.30 ± 0.2 60.09 ± 0.2 46.21 ± 0.4 41.26 ± 0.3
Ditto 65.19 ± 0.2 80.17 ± 0.1 73.21 ± 0.2 85.78 ± 0.1 34.83 ± 0.2 64.41 ± 0.3
FedDST 66.11 ± 0.3 55.07 ± 0.4 78.47 ± 0.2 56.32 ± 0.3 46.01 ± 0.2 41.42 ± 0.2

GossipFL 72.92 ± 0.1 88.05 ± 0.1 66.43 ± 0.1 86.60 ± 0.1 45.09 ± 0.1 66.03 ± 0.1
DFedAvgM 68.30 ± 0.1 88.89 ± 0.1 65.05 ± 0.1 85.34 ± 0.2 24.11 ± 0.1 57.41 ± 0.1
DisPFL 71.56 ± 0.1 80.09 ± 0.1 85.85 ± 0.2 90.45 ± 0.2 51.05 ± 0.3 72.22 ± 0.2
BEER 69.80 ± 0.1 88.75 ± 0.2 62.94 ± 0.1 85.48 ± 0.1 27.79 ± 0.1 58.71 ± 0.1
DFedSAM 73.74 ± 0.2 88.47 ± 0.3 75.74 ± 0.2 83.51 ± 0.1 47.86 ± 0.2 71.76 ± 0.1
DA-DPFL (Ours) 76.32 ± 0.3 88.36 ± 0.3 89.08 ± 0.3 91.87 ± 0.1 53.53 ± 0.2 74.91 ± 0.1

C = 10 in performance, but it incurs nearly double the time delays.

Threshold δpr

Extending the total communication rounds from 500 to 1000, it is found that a target
sparsity of s = 0.8 is achievable without sacrificing accuracy, with DA-DPFL achieving
89% accuracy compared to DisPFL’s 83.27%. This result challenges the generalization
gap assumption, indicating that precise initial sparsity ratio selection in fixed sparsity
pruning is less critical as DA-DPFL achieves comparable or lower generalization error
at higher sparsity levels through further pruning. Fig.6.10(Top) shows pruning decisions
based on average detection scores across clients and their sparsity trajectories. The initially
high detection score indicates a significant disparity between the random mask and the
RigL algorithm-derived mask, contrasting with EarlyCrop’s centralized, densely initialized
model approach. After t∗, client models in DA-DPFL undergo incremental pruning, with
the scale of pruning decreasing due to reduced model compressibility, as shown by changes

6.6. Experimental Analysis 129

Table 6.6: DFL Performance Comparison for Ring and Fully Connected Topologies

Topology Method Acc (%) Sparsity (s)

Ring

GossipFL 66.12 ± 0.1 0.00
DFedAvgM 65.89 ± 0.1 0.00
DisPFL 67.65 ± 0.2 0.50
BEER 62.92 ± 0.1 0.00
DFedSAM 66.61 ± 0.2 0.00
DA-DPFL 69.83 ± 0.3 0.65

FC

GossipFL 71.22 ± 0.2 0.00
DFedAvgM 69.89 ± 0.1 0.00
DisPFL 86.54 ± 0.2 0.50
BEER 68.77 ± 0.1 0.00
DFedSAM 79.63 ± 0.3 0.00
DA-DPFL 89.11 ± 0.2 0.68

0 200 400 600 800 1000

Communication Rounds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Sp
ar

sit
y

0 100 200 300 400 500
Communication Rounds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C=1
C=2
C=5
C=10
C=20

0.00

0.05

0.10

0.15

0.20

0.25

De
te

ct
io

n
Sc

or
e

Sparsity Curve
Detection Score
Threshold r

t *

Figure 6.10: (Top) Relationship between sparsity and detection score; (Bottom) Impact
of C involved in each training round on accuracy (CIFAR10, Dir(0.3), δpr = 0.03).

in sparsity at each pruning phase.
To examine the effect of the early pruning threshold δpr, experiments were conducted

using CIFAR10 and ResNet18. Fig.6.11 highlights the importance of pruning timing,

6.6. Experimental Analysis 130

revealing optimal thresholds vary for different data partitions and their corresponding
detection score differences. Early pruning, while accelerating sparsity achievement, ham-
pers crucial learning phases, whereas excessively delayed pruning is akin to post-training
pruning, which incurs higher costs. Results suggest early-stage further pruning between
30-40% of total communication rounds, with a threshold range of 0.02− 0.03, to balance
model performance and energy efficiency.

.02 .03 .04 .05 .06 .07 .08 *
Early Pruning Threshold

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

0.
88

86
0.

89
44

0.
87

17
0.

86
79

0.
86

65
0.

84
92

0.
84

92 0.
88

78
.02 .03 .04 .05 .06 .07 .08 *
Early Pruning Threshold

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

0.
92

73
0.

91
77

0.
91

18
0.

90
89

0.
90

89
0.

90
89

0.
90

89 0.
93

01

Figure 6.11: Impact of δpr on final prediction accuracy of achieving sparsity s = 0.8 with
CIFAR10 (C = 10) Dir (left) and Pat (right) partitions (where * indicates DA-DPFL
without further pruning, i.e., fixed sparsity s = 0.5).

Parallelism and Delay Analysis and Threshold N

This section presents the impact of C on parallel computing without a constraint N and
then analyzes the effect of N subsequently.

To estimate the average impact on parallelism and latency due to waiting times, 10,000
iterations were conducted. Parallelism is defined as the proportion of clients starting
training concurrently. Figure 6.12a shows a decline in parallelism as the neighborhood
size C increases (with K = 100 clients). Figure 6.12b presents delay against C. The black
line, representing N = C, delineates the outcome of waiting for the most delayed clients,
scaling almost linearly with the neighborhood size C. Figure 6.12b also demonstrates the
effectiveness of the constraint N ≤ C in reducing delays while increasing C.

In cases where C = N = 100, DA-DPFL transitions to sequential learning, while with
C = 100 and N = 2, DA-DPFL maintains high parallelism with opportunities for model
reuse. With N = 0, DA-DPFL reverts to DisPFL with our pruning strategy.

For a fair comparison, different waiting thresholds N = {0, 2, 5} are evaluated with
the same experimental setup as in 6.5.3 for the Dirichlet partition. Results in Fig. 6.13
demonstrate that increasing N consistently enhances model accuracy across CIFAR10 and
CIFAR100 datasets, with CIFAR10 showing up to a 1.87% increase and CIFAR100 a 1.41%

6.7. Limitations and Future Research 131

0 20 40 60 80 100
Number of Clients

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ra

lle
lis

m

(a)

0 20 40 60 80 100

Neighbor Size (C))

0

20

40

60

80

100

M
ea

n
M

ax
im

um
W

ai
ti

ng
T

im
e

Waiting Threshold N:

N=1

N=2

N=5

N=10

N=20

N=100

y=x

(b)

Figure 6.12: (a)Impact of neighborhood size C on parallelism and delay; (b)Characteristic
of proposed time-varying connected topology: delay caused by waiting across neighbor
size C and waiting control threshold N .

increase in accuracy from N = 0 to N = 10. Interestingly, the HAM10000 dataset shows
no significant improvement beyond N = 5, suggesting that task-specific characteristics
influence the optimal N selection. Even the performance for N = 0 cases surpasses
DisPFL, demonstrating the effectiveness of our further pruning strategy. Additionally,
model reuse redundancy can occur, especially with large C. Selecting N allows for a
trade-off between waiting time and model performance.

N=0
N=2

N=5
N=10

DisP
FL

Experiment

80

82

84

86

88

90

92

Ac
cu

ra
cy

 (
%

) 87.21% 87.73%
88.34%

89.08%

85.85%

CIFAR10 - Dir(0.3)

N=0
N=2

N=5
N=10

DisP
FL

Experiment

50

51

52

53

54

55

56

57

58

Ac
cu

ra
cy

 (
%

)

52.12%
52.77% 53.13%

53.53%

51.05%

CIFAR100 - Dir(0.3)

N=0
N=2

N=5
N=10

DisP
FL

Experiment

70

72

74

76

78

80
Ac

cu
ra

cy
 (

%
)

73.46%

75.58%

76.88%
76.32%

71.56%

HAM10000 - Dir(0.5)

Figure 6.13: Performance with different waiting threshold N

6.7 Limitations and Future Research

While DA-DPFL presents a significant advancement in decentralized federated learning,
it is not without limitations. Below, we discuss these limitations and corresponding future
research directions to address them.

Most federated learning (FL) algorithms, including DA-DPFL, primarily focus on time-
invariant data distributions, limiting their applicability in environments where data dis-
tributions evolve over time. Extending DA-DPFL to handle non-stationary data distri-
butions is crucial. Developing algorithms that can dynamically adjust model parameters

6.8. Conclusions 132

and pruning levels in response to changing data distributions is essential. Techniques from
continual learning and meta-learning could be particularly useful in this context.

Additionally, the assumption of uniform client availability and stable communication
links is often unrealistic. Although the decentralized federated learning framework of
DA-DPFL is robust, the contributions of dynamic pruning and aggregation might be in-
fluenced by client variability and unstable communication links. Clients may frequently
join and leave the network, and communication links may be unstable, adversely affecting
DA-DPFL’s performance. Therefore, developing adaptive mechanisms to handle client
variability and unstable communication links is imperative. Alongside the reuse index,
incorporating dynamic client selection strategies based on network conditions can help
tolerate communication disruptions and client dropouts, ensuring the framework’s robust-
ness and effectiveness.

6.8 Conclusions

This chapter extends the utilization of pruning to achieve efficiency in centralized feder-
ated learning, which is in Chapter 5, to optimize the efficiency in decentralized federated
learning, i.e., a more flexible and robust framework. The DA-DPFL algorithm comprises
two main components. The innovative dynamic aggregation strategy facilitates the reuse
of knowledge from other clients within the same training round, creating a hybrid (paral-
lel and sequential) learning paradigm. This approach accelerates training by reducing the
number of rounds needed to achieve target accuracy. Additionally, the further pruning
method, orthogonal to the fixed pruning strategy, reduces training costs related to com-
munication and computation. It balances pruned model performance and energy efficiency
by automatically determining the optimal pruning time.

As demonstrated in Section 6.6, and compared against competitive baselines ranging
from centralized to decentralized federated learning across various tasks (data, model,
and topology), DA-DPFL achieves energy efficiency while enhancing model generalization
performance. It does this by finding effective masks to achieve personalization, thereby
addressing data heterogeneity challenges. Furthermore, the proposed learning paradigm
is supported by a solid theoretical analysis of convergence.

Thus, it can be concluded that efficiency and effectiveness can be enhanced through
pruning in distributed machine learning. The successful application of pruning to im-
prove efficiency in regular-sized neural networks motivates us to explore its potential for
foundation models, i.e., larger-scale models. The next Chapter 7 investigates the benefits
and challenges of integrating federated learning with diffusion models and other statistical
learning techniques as future work and concludes the whole thesis.

Chapter 7

Conclusions & Future Research

7.1 Conclusions

This thesis explores the development and optimization of collaborative distributed machine
learning frameworks, with a particular focus on knowledge reuse and model sparsification
in distributed computing paradigms, including edge computing and federated learning.
By addressing critical challenges such as computational overhead, communication costs,
data heterogeneity, and privacy concerns, this work significantly advances the state of the
art in distributed machine learning.

The contributions of this research extend beyond purely technical domains. The
proposed frameworks and methodologies are critical in enabling intelligent systems for
energy-sensitive, privacy-preserving, and resource-constrained environments, such as IoT
networks, healthcare systems, and smart city applications. By improving the efficiency
of distributed systems and reducing resource consumption, this work supports the de-
ployment of sustainable and scalable AI solutions in diverse real-world scenarios. These
advancements empower broader access to AI capabilities, particularly in areas with limited
computational resources, fostering more equitable technological growth.

Through these contributions, the research bridges technical innovation and societal
impact, paving the way for more efficient, accessible, and responsible distributed machine
learning frameworks. We summarize the contributions of this work in detail:

7.1.1 Summary of Contributions

• Knowledge Reuse in Edge Computing: We introduce innovative methods
for reusing pre-trained models in edge computing environments, specifically the
Borrower-Loaner-Matching (BLM) mechanism and the Model-Reusability-Monitoring
(MRM) system.

– Due to privacy concerns, sending data from the data owner to other parties is

133

7.1. Conclusions 134

prohibitive. The feasibility of reusing models relies on the assumption of task
similarity, i.e., data similarity. To measure this similarity privately, we pro-
pose using statistical synopses, including Maximum Mean Discrepancy (MMD)
and Cosine Dissimilarity on the largest eigenvector. This approach transforms
the building of BLM into two statistical hypothesis tests in edge computing
environments.

– Data is not always static; therefore, we also propose the MRM system to ensure
the effectiveness of source models, which are labeled as still reusable for target
tasks under data streams. We empirically find that the Sum of Squares Error
(SSE) is highly correlated with MMD and theoretically show that the online
computation of SSE is more lightweight than MMD. Additionally, we transform
the MRM model into a statistical hypothesis test with statistics calculated for
Holt-Winter Models.

– Extensive results from various scenarios validate the predictions of BLM, which
avoids redundant computation in edge computing and ensures scalability since
the reusable model achieves accuracy comparable to independently trained
models locally. Concurrently, the MRM system correctly identifies concept
drift, violating the source model’s reusability assumption. Hence, maintenance
and efficiency in distributed computing systems can be achieved through the
proposed approaches.

• Enhanced Reusability in Distributed Multi-task Learning (DMtL): We
extended the concept of reuse to multi-task learning scenarios, which introduces a
two-phase framework that clusters tasks based on performance metrics derived from
Partial Learning Curves (PLC) with Gaussian Mixture Models (GMM) and assigns
tasks to representative head of groups to conduct DMtL. The assumption of the
existence of a pre-trained model might not always hold. This motivates us to derive
an efficient method for distributed machine learning with the concept of knowledge
reuse. Then, considering a distributed system with several M clients, the objective
is to train only K ≪ M reusable models efficiently, and such reusable models have
comparable or better predictability. Then the questions raise that (1) firstly how
can we decide K models are reusable for M clients and (2) subsequently how can
we enable the K trained models to perform better than their local trained models?

– In the clustering phase, inspired by meta-learning, we select Partial Learning
Curves (PLC) as meta-features to determine the similarity among tasks of dif-
ferent clients. This approach aids in selecting the most representative client
for subsequent training and answering the first question above. The following
assumptions support our methodology (as stated in Chapter 4.3.1): (1) Data

7.1. Conclusions 135

Sufficiency: We assume that the data from a single client is sufficient for
training the model. This implies that a model trained on the data from one
client will exhibit performance comparable to a model trained on the aggre-
gated data from the entire group of clients, i.e., EDi

[f(x)] ≈ EDgroup [f(x)] for
a model f , indicating that the expected performance of the model trained on
client i’s data is comparable to that trained on the group’s data; (2) Data Dis-
tribution Similarity: We assume that the data distribution of the selected
client is representative of the entire group. This ensures that the model trained
on this client’s data is reusable across the group, maintaining performance con-
sistency, i.e., Di ≈ Dgroup, indicating that the statistical properties of the data
held by the representative client are similar to those of the entire group, thus
ensuring model reusability. These assumptions facilitate the effective selection
of a representative client, thereby enhancing the efficiency and scalability of the
distributed training process.

– In the dissemination phase, driven by multitask learning, we develop the Dis-
tributed Multi-task Learning (DMtL) framework to enhance model reusability
by improving model performance through joint learning from distinct data dis-
tributions. This addresses the second problem, as stated above. Note that,
after clustering, each client holds an intermediate model where the training
epochs/rounds are only conducted for a partial segment of the entire process.
Based on the clustering results and the selection of representative heads, mod-
els can be safely trained collaboratively among K heads rather than N clients.
Hence, this approach achieves efficiency by (1) reducing the number of clients
required in distributed multi-task learning and (2) avoiding redundant training
of models under our assumptions.

– We simulate scenarios under our assumptions and conduct experimental evalua-
tions on real datasets. Specifically, the proposed two-phase learning framework
outperforms both single-task learning and other multi-task learning approaches
regarding model accuracy and the newly defined reusability metrics within and
outside clusters. As discussed above, computation and communication effi-
ciency are achieved by reducing the number of required clients during training.
Overall, extensive results showed that the proposed two-phase DMtL framework
improves model performance in classification tasks, reduces training costs, and
accelerates the whole training process in scale, even under non-i.i.d. data par-
tition settings.

• Pruning in Federated Learning: To address the challenges of high computa-
tional demands for resource-constrained devices, we integrate pruning techniques in
federated learning to obtain extremely sparse models. This approach reduces model

7.1. Conclusions 136

sizes by eliminating redundant parameters and decreasing computational and com-
munication costs without compromising model performance. The proposed FedDIP
integrates dynamic pruning with error feedback and incremental regularization in
federated learning. Traditional one-shot pruning to achieve high sparsity before
training often results in significant model degradation despite offering computa-
tion and communication efficiency. Conversely, post-training pruning lacks these
efficiency advantages. Hence, a method is required to balance model performance
with communication and computation efficiency, termed dynamic pruning. Existing
dynamic pruning techniques either maintain a fixed sparsity with consistent mask
updates to find the lottery ticket, i.e., the optimal mask, or prune the dense model
from initialization, sometimes necessitating initial training on certain devices. The
first method shares the drawbacks of one-shot pruning, particularly at high spar-
sity levels, while the second method’s reliance on dense model initialization can be
prohibitive in some cases.

– To address information loss in the first method, we propose dynamic pruning
with error feedback. This technique allows pruned connections to be recovered
by adding back error terms, providing more information than methods with
fixed sparsity, thus facilitating extreme pruning.

– Magnitude-based pruning methods guide which components, such as weights
or neurons, are important. However, the diverse value ranges across different
layers are problematic. Regularization-based pruning methods address this
by shrinking the feature space, forcing unimportant values to approach zero.
Wang et al. (2021) demonstrated that growing regularization exploits Hessian
information for more accurate pruning without knowing their values. This
accurate pruning from the growing penalty term is, therefore, beneficial for
extreme pruning in federated learning. The integration of dynamic pruning
with error feedback and growing regularization has the potential to find a mask
with extreme sparsity in federated learning.

– The efficiency of FedDIP is verified through various experiments. Compared
with state-of-the-art methods, FedDIP maintains the highest accuracy when
the target sparsity exceeds 0.8. Accurate pruning enables the pruning of the
first and last layers, often left unpruned by other methods, thus enhancing
opportunities for extreme pruning. Within the same communication budget,
FedDIP achieves comparable model performance. Consequently, FedDIP effi-
ciently prunes neural networks through distributed training, maintaining model
performance while reducing computation, communication, and storage require-
ments.

7.1. Conclusions 137

• Dynamic Aggregation and Pruning in Decentralized Federated Learn-
ing: We expand the utilization of pruning in centralized federated learning (CFL)
to decentralized federated learning (DFL). CFL and DFL share the same common
challenges, which are the core issues in this thesis, including expensive communi-
cation and computation costs and statistical heterogeneity. Compared with CFL,
DFL offers several advantages such as high maintenance and robustness against ad-
versarial attack due to the avoidance of the orchestration of a central server; various
topologies of DFL increase the flexibility to be deployed on heterogeneous system
architectures; faster convergence speed because of all clients participating in training
(DFedAvgM, Sun et al. (2022)) unlike the CFL that select a subset of clients partic-
ipate in training. However, such increased client participation results in higher total
communication and computation costs. Does the question raise that can the chal-
lenges of decentralized, federated learning be mitigated while retaining its advantages?
To address such a question, we propose a DA-DPFL algorithm, which leverages the
dynamic aggregation policy and an innovative, dynamic sparse-to-sparser training
scheme conditioned on the model compressibility.

– The data heterogeneity is solved with personalization with personalized masks,
which is another advantage of pruning.

– Since all clients participate in training, the redundancy in computation for
clients exists. Sequential federated learning (SFL) accelerates the training by
transferring sequential knowledge from one to another. However, the fixed
order in SFL induces the problem considering data heterogeneity (Yuan et al.,
2024). We propose to leverage the concept of knowledge reuse to create a hybrid
scheme of sequential and parallel federated learning for model aggregation, i.e.,
dynamic aggregation. The mechanism is controlled by the random reuse index
and a waiting threshold to control the delay caused by the waiting, which often
appears in SFL. The required round to achieve convergence is reduced because
of reusing model updates from the previous clients in the same training round.

– The question discussed in pruning in CFL also holds in DFL that the pruning
strategy balances the trade-off between the model performance and efficiency.
To relax the careful selection of initial sparsity for the fixed sparsity pruning
method in DFL, we provide a sparse-to-sparser training method by (1) measur-
ing the model compressibility and (2) computing the detection score for optimal
pruning time.

– The efficiency of DA-DPFL is validated through comprehensive experiments.
Compared with existing work, DA-DPFL achieves superior accuracy across var-
ious datasets and topologies, demonstrating its robustness and scalability. The

7.2. Future Research Directions 138

dynamic adjustment of both aggregation and pruning processes ensures efficient
utilization of computational resources and maintains high model performance.
In experiments with ring and fully-connected topologies, DA-DPFL outper-
formed other methods in accuracy and achieved higher sparsity levels. The
algorithm’s ability to handle diverse data distributions further highlights its
effectiveness. Within the same communication rounds, DA-DPFL delivers bet-
ter model performance and less energy costs, making it suitable for large-scale
distributed energy-sensitive applications. Therefore, DA-DPFL balances effec-
tiveness and energy efficiency, reducing computational, communication, and
storage costs.

7.2 Future Research Directions

In this section, we outline potential research directions to further enhance efficiency in
distributed machine learning by leveraging knowledge reuse and sparsification.

7.2.1 Efficient Pruning Techniques for Foundation Models in Fed-

erated Learning

Foundation Models (FMs), such as Large Language Models (LLMs) and Diffusion Models
(DMs), have demonstrated remarkable performance on complex tasks due to their large
scale and capacity for capturing extensive knowledge. As stated in Zhuang et al. (2023),
integrating FMs with Federated Learning (FL) offers a promising avenue to address chal-
lenges such as data scarcity, non-i.i.d. data distributions, and computational scalability.
However, this integration presents several pressing challenges: (i) high communication
and computational costs due to the size of FMs, (ii) inherent data heterogeneity in FL
environments, and (iii) the need to adapt to continuously streaming data in a continual
learning context.

Future research can address the outlined challenges by exploring innovative strategies
aimed at enhancing efficiency and performance in federated learning frameworks. Adaptive
sparsification protocols could play a pivotal role by dynamically identifying and removing
less significant components, such as weights, neurons, or layers, during FL training. By
leveraging sparsity-aware optimization techniques or reinforcement learning, these proto-
cols can strike a balance between model accuracy and computational efficiency.

Additionally, hierarchical FL frameworks that utilize multi-tiered architectures—spanning
clients, edge servers, and cloud infrastructure—offer a promising solution. For example,
sparsified foundation models (FMs) could be trained locally on clients, aggregated at edge
servers, and fine-tuned globally, thereby reducing communication costs while maintain-

7.2. Future Research Directions 139

ing robust model performance. Enhancing the quality of synthetic data generated by
FMs through adaptive generative techniques, such as distribution-aware GANs or diffu-
sion models, could further ensure alignment with client data distributions, mitigating the
challenges posed by non-i.i.d. data.

Finally, integrating pruning methods with continual learning frameworks could en-
able FMs to efficiently adapt to streaming data. This approach minimizes memory and
computational overhead while maintaining model relevance and performance in dynamic
environments.

These directions aim to enable scalable and efficient FL training for FMs, addressing
both system and data heterogeneity.

7.2.2 Optimizing Ensemble Learning through Pruning in Feder-

ated Learning

The proliferation of heterogeneous devices, such as mobile edges, edge servers, and cloud
infrastructures, presents a need for distributed machine learning frameworks that optimize
both latency and predictive performance. Current strategies face a trade-off: local models
reduce latency but often lack predictive power, while cloud-based models achieve higher
accuracy at the cost of increased latency.

Future work can explore innovative strategies to optimize ensemble learning within
federated learning (FL), incorporating concepts such as transfer learning and knowledge
reuse to further enhance efficiency and adaptability.

Pruned sub-model ensembles can be developed to create lightweight models tailored
for ensemble learning. Pruning techniques could focus on the statistical contributions
of individual sub-models to the ensemble’s overall performance, eliminating redundant
components while reducing computational and communication overhead. By leveraging
transfer learning, pre-trained models can serve as a starting point for ensemble members,
accelerating convergence and improving generalization across diverse tasks.

Task-aware ensemble optimization could further refine ensemble learning by integrat-
ing task-specific metrics into the pruning and aggregation processes. Models could be
prioritized based on their performance on specific applications, such as low-latency tasks
or high-accuracy scenarios, ensuring that the ensemble adapts effectively to the needs of
diverse FL environments. Knowledge reuse mechanisms can also facilitate the transfer of
learned representations between tasks, enabling efficient adaptation to new tasks or client
data distributions.

Efficient aggregation algorithms that combine the strengths of traditional paradigms
like bagging, boosting, and stacking could also be proposed. For example, dynamic stack-
ing algorithms can adaptively select and combine pruned sub-models based on their per-
formance across heterogeneous client data, enhancing robustness and predictive accuracy.

7.2. Future Research Directions 140

Finally, cross-tier ensemble models could be explored to leverage the unique capabili-
ties of client, edge, and cloud levels. These models could distribute computational tasks
intelligently across the tiers, optimizing latency, accuracy, and scalability. Incorporating
transfer learning principles would allow knowledge gained at higher tiers (e.g., cloud-level
models) to be effectively reused and adapted at lower tiers (e.g., client-level models),
ensuring resource-efficient model development.

By addressing these directions, ensemble learning in FL can achieve greater resource
efficiency, enhanced knowledge transfer, and high predictive performance across diverse
applications and device capabilities.

Appendix A

Proofs

A.1 Proof for Chapter 3

The following is the proof for Theorem 1

Proof. Utilizing the prediction interval approach, which reflects the statistical likelihood
of Zt, we define the prediction interval for the HW model as follows:

Var(et(τ)) =

[
1 +

1

6
(τ − 1)ξ20(1 + τξ1 + τ(2τ − 1)ξ21)

]
Var(et(1)). (A.1)

Given the threshold θ, the non-activation of BLM is upheld if:

ζt + τbt + 4.47
√
Var(et(τ)) ≤ θ. (A.2)

This inequality reflects the need to accommodate prediction intervals; thus, we employ
4.47 (Chebyshev’s inequality) instead of the usual 1.96. The solution τ ∗ is found when:

yt(τ) = θ − ζt, (A.3)

where yt(τ) = τbt + 4.47
√

Var(et(τ)). The function yt(τ) is approximated using the
Newton-Raphson method to find τ ∗ efficiently. The decision rule is implemented by adjust-
ing ξ0, ξ1 to minimize the squared forecasting error across the observed data:

∑t
τ=1(Zτ −

Ẑτ)
2.

141

A.2. Proof for Chapter 4 142

A.2 Proof for Chapter 4

A.2.1 Proof for Lemma 1

Proof. According to Smith et al. (2017) and Theorem 1 in Zhang and Yeung (2010), the
objective J (W) in Equation (4.9) is jointly convex with respect to W and Ω, ensuring
convergence via the SGD algorithm.

A.2.2 Proof for Lemma 2

Proof. Consider a mini-batch SGD formula:

min
ω
H(ω,Zi) :=

λ

2
∥ω∥2 + 1

|Zi|
∑
j∈Zi

L(ω, (xj, yj)) (A.4)

where j ∈ Zi with L(ω, (xj, yj)) = max{0, 1− yjω
Txj}. The (sub-)gradient of weight ωi

with respect to l is:
∆i = λωi − 1[yjω

T
i xj < 1]yjxj, (A.5)

where 1[yjω
T
i xj < 1] is the indicator function. Hence, the update rule is:

ωi+1 = ωi − ηi∆i. (A.6)

At time i, we select the batch Zi and set Z∗
i = {j ∈ Zi : yjω

T
i xj < 1}. For the next epoch

i+ 1, with learning rate ηi and substituting (A.5) into (A.4), we obtain:

ωi+1 = (1− ηiλ)ωi +
ηi
|Z∗

i |
∑
j∈Z∗

i

yjxj, (A.7)

which completes the proof.

A.3 Proof for Chapter 5

A.3.1 Proof for Theorem 2

Before presenting the proof of Theorem 2, we emphasize the following relation:

E[f(ω̄′(t+1))− f(ω̄′(t))] = E[f(ω̄′(t+1))]−E[f(ω̄(t+1))] +E[f(ω̄(t+1))]−E[f(ω̄′(t))], (A.8)

where the mask update occurs only at the server, and ω̄′(t) is the global model received
by the nodes at time t, marking the start of the local model training phase.

A.3. Proof for Chapter 5 143

Lemma 3. Given any mask function m ∈ {0, 1}n×p for pruning, the Frobenius norm of
the model weight/gradients matrix ω is greater than or equal to that of the pruned one
m⊙ ω, i.e.,

∥ω∥ ≥ ∥m⊙ ω∥. (A.9)

Proof. According to the definition of the Frobenius norm, we have:

∥m ⊙ ω∥2 = Tr([m ⊙ ω]T · [m ⊙ ω]) =
n∑

i=1

p∑
j=1

|mijωij|2 ≤
n∑

i=1

p∑
j=1

|ωij|2 = ∥ω∥2.

Lemma 3 establishes that the quality of pruning δt is within the range [0, 1].

Lemma 4. Given Definition 1 and Assumption 2, the effect of pruning on pruned model
weights at the server (δt+1) is bounded as:

E[f(ω̄′(t+1))]− E[f(ω̄t+1)] ≤ µE[
√

δt+1∥ω̄t+1∥]. (A.10)

Proof. According to Assumption 2, we have:

E[f(ω̄′(t+1))] − E[f(ω̄t+1)] ≤ µE[∥ω̄′(t+1) − ω̄t+1∥] = µE[
√
δt+1∥ω̄t+1∥]. (A.11)

Lemma 5. Under the definitions provided in Section 5.4 and Assumptions 1 and 4,
E[f(ω̄t+1)]− E[f(ω̄′(t))] is bounded by:

E[f(ω̄t+1)]− E[f(ω̄′(t))] ≤ (γ − 1)L2η2t + η2tL

2C

M∑
i=1

ρiσ
2
i

+
(γ − 1)γElη

2
tL

2

2

tc+El∑
k=tc+1

∥
M∑
i=1

ρiv
′(k)
i ∥2 −

ηt
2
∥∇f(ω̄′(t))∥2 + γη2tL− ηt

2
∥

M∑
i=1

ρiṽ
′(t)
i ∥2.

(A.12)

Proof. Firstly, according to Assumption 1, we have:

E[f(ω̄t+1)]− E[f(ω̄′(t))] ≤ E[⟨ω̄t+1 − ω̄′(t),∇f(ω̄′(t))⟩] + L

2
E∥ω̄t+1 − ω̄′(t)∥2

=
η2tL

2
E∥ṽ′(t)∥2 − E[⟨ηtṽ′(t),∇f(ω̄′(t))⟩], (A.13)

where the equality holds because of (5.22).

A.3. Proof for Chapter 5 144

Using the variance formula and the definition of v̄′(t), we can expand E∥ṽ′(t)∥2 as
follows:

E∥ṽ′(t)∥2 = E∥ṽ′(t) − E(ṽ′(t))∥2 + [E(ṽ′(t))]2 = E∥ṽ′(t) − v̄′(t)∥2 + ∥v̄′(t)∥2. (A.14)

Considering the selection probability of clients Pt, we have:

∥v̄′(t)∥2 =
∥∥∥∥∥ 1CEPt

[∑
i∈Pt

v
′(t)
i

]∥∥∥∥∥
2

≤ 1

C
EPt

[∑
i∈Pt

∥v′(t)
i ∥2

]
, (A.15)

where the last inequality holds due to Jensen’s Inequality.
Similarly, based on the definitions in (5.19), we have:

E[∥ṽ′(t) − v̄′(t)∥2] = E

∥∥∥∥∥EPt

(
1

C

∑
i∈Pt

ṽ
′(t)
i −

1

C

∑
i∈Pt

v
′(t)
i

)∥∥∥∥∥
2


=
1

C2

{
E

(
EPt

[∑
i∈Pt

∥ṽ′(t)
i − v

′(t)
i ∥2

])
+
∑
i ̸=j

⟨ṽ′(t)
i − v

′(t)
i , ṽ

′(t)
j − v

′(t)
j ⟩
}

=
1

C
E

[
M∑
i=1

ρi∥ṽ′(t)
i − v

′(t)
i ∥2

]
. (A.16)

Substituting (A.15) and (A.16) into (A.14), and using Lemma 3, Definition 2, and
Assumption 4, we get:

E∥ṽ′(t)∥2 ≤ 1

C
E

[∑
i∈Pt

∥v′(t)
i ∥2

]
+

1

C2
E

[∑
i∈Pt

∥ṽ′(t)
i − v

′(t)
i ∥2

]

≤
M∑
i=1

ρi∥v′(t)
i ∥2 +

1

C
E

[
M∑
i=1

∥ṽ′(t)
i − v

′(t)
i ∥2

]

≤
M∑
i=1

ρi∥v′(t)
i ∥2 +

1

C

M∑
i=1

ρiσ
2
i

≤ γ

M∑
i=1

∥ρiv′(t)
i ∥2 +

1

C

M∑
i=1

ρiσ
2
i . (A.17)

A.3. Proof for Chapter 5 145

Next, we provide the boundary for −E[⟨ηtṽ′(t),∇f(ω̄′(t))⟩]:

−E[⟨ṽ′(t),∇f(ω̄′(t))⟩] = −⟨E[1
C

∑
i∈Pt

ṽ
′(t)
i],∇f(ω̄′(t))⟩ = −⟨E[

M∑
i=1

ρiṽ
′(t)
i],∇f(ω̄′(t))⟩

≤ −1

2
∥∇f(ω̄′(t))∥2 − 1

2
∥

M∑
i=1

ρiṽ
′(t)
i ∥2 +

1

2
∥∇f(ω̄′(t))−

M∑
i=1

ρiṽ
′(t)
i ∥2

= −1

2
∥∇f(ω̄′(t))∥2 − 1

2
∥

M∑
i=1

ρiṽ
′(t)
i ∥2

+
1

2
∥

M∑
i=1

ρi(∇fi(ω̄′(t))−∇fi(ω′(t)
i))∥2

≤ −1

2
∥∇f(ω̄′(t))∥2 − 1

2
∥

M∑
i=1

ρiṽ
′(t)
i ∥2 +

L2

2

M∑
i=1

ρi∥(ω̄′(t) − ω
′(t)
i)∥2

(A.18)

Our approach to the proof utilizes a similar structure to the one found in Wan et al.
(2021a), given that the global mask mt remains consistent throughout the local training
process. Let tc =

⌊
t
El

⌋
El be the start time of local training. Then, ω̄′(t) and ω

′(t)
i can be

written as:

ω̄′(t) =

(
ω̄′(tc) − 1

C

∑
i∈Pt

t−1∑
k=tc+1

ηkṽ
′(k)
i

)
⊙mt, (A.19)

ω
′(t)
i =

(
ω̄′(tc) −

t−1∑
k=tc+1

ηkṽ
′(k)
i

)
⊙mt. (A.20)

According to Lemma 3, Assumption 3, Definition 2, and Eqs. (50)-(54) in Wan et al.
(2021a), while taking the expectation over Pt, we get:

M∑
i=1

ρi∥(ω̄′(t) − ω
′(t)
i)∥2 ≤ (γ − 1)

[
1

C

M∑
i=1

t−1∑
k=tc+1

η2kρiσ
2
i + γEl

t−1∑
k=tc+1

η2k∥
M∑
i=1

ρiv
′(k)
i ∥2

]
.

(A.21)

Considering the decreasing learning rate η2k ≤ ηt with tc + 1 < k < t and substituting
Eq. (A.21) into (A.18), we have:

− E[⟨ṽ′(t),∇f(ω̄′(t))⟩] ≤ (γ − 1)L2ηt
2C

M∑
i=1

ρiσ
2
i

+
(γ − 1)γElηtL

2

2

tc+El∑
k=tc+1

∥
M∑
i=1

ρiv
′(k)
i ∥2 −

1

2
∥∇f(ω̄′(t))∥2 − 1

2
∥

M∑
i=1

ρiṽ
′(t)
i ∥2. (A.22)

A.3. Proof for Chapter 5 146

Substituting (A.17) and (A.22) into (A.13) completes the proof.

Then we finally comes to prove the Theorem 2.

Proof. Recall (A.8), we sum up the results of Lemmas 4 and 5:

E[f(ω̄′(t+1))]− E[f(ω̄′(t))] ≤ (γ − 1)L2η2t + η2tL

2C

M∑
i=1

ρiσ
2
i −

ηt
2
∥∇f(ω̄′(t))∥2

+
(γ − 1)γE2

l η
2
tL

2G2

2
+ µE[

√
δt+1∥ω̄t+1∥]. (A.23)

Considering ηt ≤ 1
tL

and Assumption 4, Eq. (A.23) can be expressed as:

E[f(ω̄′(t+1))]− E[f(ω̄′(t))] ≤ (γ − 1)L2η2t + η2tL

2C

M∑
i=1

ρiσ
2
i −

ηt
2
∥∇f(ω̄′(t))∥2

+
(γ − 1)γE2

l η
2
tL

2G2

2
+ µE[

√
δt+1∥ω̄t+1∥]. (A.24)

Denoting χ = (γ−1)L2+L
2C

∑M
i=1 ρiσ

2
i +

(γ−1)γE2
l L

2G2

2
, Eq. (A.24) can be written as:

ηt
2
∥∇f(ω̄′(t))∥2 ≤ E[f(ω̄′(t))]− E[f(ω̄′(t+1))] + χη2t + µE[

√
δt+1∥ω̄t+1∥]. (A.25)

Taking the average of (A.25) over time T and rearranging, we obtain the following
result, assuming that the model will converge to a stable point regarded as the optimum
f ∗:

1

T

T∑
t=1

1

tL
∥∇f(ω̄′(t))∥2 ≤ 2

T
E(f(ω1)− f ∗) +

2

T

T∑
t=1

[µE[
√
δt+1∥ω̄t+1∥] + χη2t]. (A.26)

Since min 1
T

∑T
t=1

1
T
∥∇f(ω̄′(t))∥2 ≤ 1

T

∑T
t=1

1
t
∥∇f(ω̄′(t))∥2, Eq. (A.26) can be expressed

as:

1

T

T∑
t=1

∥∇f(ω̄′(t))∥2 ≤ 2LE(f(ω1) − f ∗) + 2L
T∑
t=1

[µE[
√
δt+1∥ω̄t+1∥] + π2

3L2
χ], (A.27)

where it is known that
∑T

t=1
1
t2
= π2

6
.

A.4. Proof for Chapter 6 147

A.3.2 Proof for Corollary 1

Proof. Based on Equation (A.23), if the learning rate η is constant, then it is expressed
as:

E[f(ω̄′(t+1))]− E[f(ω̄′(t))] ≤ (γ − 1)L2η2 + η2L

2C

M∑
i=1

ρiσ
2
i −

η

2
∥∇f(ω̄′(t))∥2

+
(γ − 1)γE2

l η
2L2G2

2
+ µE[

√
δt+1∥ω̄t+1∥]. (A.28)

Using the same logic in Theorem 2, after averaging and rearranging, Equation (A.26) can
be reformulated as:

1

T

T∑
t=1

∥∇f(ω̄′(t))∥2 ≤ 2

Tη
E(f(ω1)− f ∗) +

2

Tη

T∑
t=1

[µE[
√
δt+1∥ω̄t+1∥]] + 2χη. (A.29)

Since min ∥∇f(ω̄′(t))∥2 ≤ 1
T

∑T
t=1 ∥∇f(ω̄′(t))∥2, one can choose δt = o(1

T
) which is faster

than the chosen η = O(1
T
) (Lin et al., 2020), then min ∥∇f(ω̄′(t))∥2 converges at the speed

of O(1
T
).

A.4 Proof for Chapter 6

A.4.1 Auxiliary Lemmas

Firstly, note that in a time-varying connected topology, both Gti and N t
i are randomly

generated. For the purposes of theoretical analysis, we assume N t
i = Gti , as our scheduling

policy functions as a type of client selection policy.

Proposition 1. Assume M = {1, 2, . . . ,M} clients. Then, exactly c neighbors in N t
i

have a reuse index less than i, following a hypergeometric distribution:

P(c, i) = P(|N(a)i| = c) =

(
i−1
c

)(
M−i
C−c

)(
M−1
C

) , (A.30)

where c < C and |N(a)i| is a subset of N t
i with an index less than i.

Proof. Consider a system with i clients indexed from 1 to i, and let i be a particular client.
We have:

1. There are M − 1 potential clients to select from.

2. Among these M − 1 clients, m− 1 clients have an index less than i.

3. We aim to select C clients as neighbors of client i in each sample.

A.4. Proof for Chapter 6 148

Thus, |N(a)i| is a hypergeometric random variable. The probability P(c, i) = P(|N(a)i| =
c) that exactly c of the selected clients have an index less than i is given by

P(c, i) =
(
i−1
c

)(
M−i
C−c

)(
M−1
C

) , (A.31)

where
∑

0≤c≤min(C,i−1) P(c, i) = 1, which follows from Vandermonde’s identity.

After introducing the property of reusing index as a client selection policy, we review
the local updates mechanism. The local update follows as in FedAvg:

ω̃t
k,τ+1 = ω̃t

k,τ − ηgt
k,τ ⊙mt

k, (A.32)

where gt
k,τ = ∇Fk(ω̃

t
k,τ). This implies that

η

El−1∑
τ=0

gt
k,τ ⊙mt

k = (ω̃t
k,0 − ω̃t

k,El
)⊙mt

k. (A.33)

Note that ωt+1
k = ω̃t

k,El
and ω̃t

k = ω̃t
k,0. Hence, we first derive the upper bound for the

local updates, as in Lemma 6.

Lemma 6. Under Assumptions 2 and 5, for some neighbor size C > 1 and η such that
η2 ≤ 1

12Cµ2(C−1)(2C−1)
,

1

M

M∑
i=1

E∥ωt+1
i − ω̃t

i∥2 ≤
(
e

El
2C−2 − 1

)
(2C − 2)

(
2C

2C − 1
η2σ2

l + 6Cη2σ2
g

+6Cη2
∑M

i=1 E∥∇f(ω̃t
i)∥2

M

)
. (A.34)

Proof. Since the mask mt
i remains consistent during training, the expression involving the

corresponding model is omitted for brevity. Initially, consider the traditional weighted
average aggregation where

E∥ω̃t
i,τ+1 − ω̃t

i∥2 = E
∥∥∥ω̃t

i,τ − ω̃t
i − η

(
gti,τ ⊙mt

i

−∇fi(ω̃t
i,τ) +∇fi(ω̃t

i,τ)−∇f(ω̃t
i) +∇f(ω̃t

i)

−∇fi(ω̃t
i) +∇fi(ω̃t

i)
)∥∥∥2. (A.35)

Define a := E
∥∥ω̃t

i,τ−η
(
g̃ti,τ⊙mt

i−∇fi(ω̃t
i,τ)
)
−ω̃t

i

∥∥2 and b = η2E∥∇fi(ω̃t
i,τ)−∇f(ω̃t

i)+

∇f(ω̃t
i)−∇fi(ω̃t

i)+∇fi(ω̃t
i)∥2. Using Cauchy’s inequality with an elastic variable 2C > 1,

A.4. Proof for Chapter 6 149

it follows that
E∥ωt+1

i − ω̃t
i∥2 ≤ (1 +

1

2C − 1
)a+ 2Cb. (A.36)

By Assumptions 2 to 5 and the triangle inequality,

a ≤ E∥ω̃t
i,τ − ω̃t

i∥2 + η2E∥g̃ti,τ ⊙mt
i −∇fi(ω̃t

i,τ)∥2

= E∥ω̃t
i,τ − ω̃t

i∥2 + η2σ2
l , (A.37)

and

b ≤ 3η2
[
E∥∇fi(ω̃t

i,τ)−∇fi(ω̃t
i)∥2 + E∥∇f(ω̃t

i)∥2 + E∥∇fi(ω̃t
i)−∇f(ω̃t

i)∥2
]

≤ 3η2
[
E∥∇fi(ω̃t

i,τ)−∇fi(ω̃t
i)∥2 + E∥∇f(ω̃t

i)∥2 + E∥∇fi(ω̃t
i)−∇f(ω̃t)∥2

+ E∥∇f(ω̃t
i)−∇f(ω̃t)∥2

]
≤ 3η2

[
µ2E∥ω̃t

i,τ − ω̃t
i∥2 + E∥∇f(ω̃t

i)∥2 + σ2
g

]
. (A.38)

Substituting Eqs.(A.37) and (A.38) into Eq.(A.36) with some η such that η2 ≤ 1
12Cµ2(C−1)(2C−1)

,
yields

E∥ω̃t
i,τ+1 − ω̃t

i∥2 ≤ (1 +
1

2C − 1
+ 6Cη2µ2)E∥ω̃t

i,τ − ω̃t
i∥2 + 6Cη2(σ2

g + E∥∇f(ω̃t
i)∥2)

+ (1 +
1

2C − 1
)η2σ2

l

≤ (1 +
1

2C − 2
)E∥ω̃t

i,τ − ω̃t
i∥2 + (1 +

1

2C − 1
)η2σ2

l + 6Cη2(σ2
g + E∥∇f(ω̃t

i)∥2) (A.39)

Let D = 1 + 1
2(C−1)

, E =
(
1 + 1

2C−1

)
η2σ2

l + 6Cη2σ2
g , and F = 6Cη2E∥∇f(ω̃t

i)∥2, then
the recursive inequality Eq.(A.39) becomes

E∥ω̃t
i,τ+1 − ω̃t

i∥2 ≤ DE∥ω̃t
i,τ − ω̃t

i∥2 + E + F. (A.40)

When τ = 0, the initial condition is E∥ω̃t
i,0 − ω̃t

i∥2 = 0. For τ = 1 to El, applying the
inequality Eq.(A.40) El times, summing up the constants multiplied by their respective
powers of D gives

E∥ω̃t
i,El
− ω̃t

i∥2 ≤ DElE∥ω̃t
i,0 − ω̃t

i∥2 + E

El−1∑
j=0

Dj + F

El−1∑
j=0

Dj. (A.41)

The sums of the series can be simplified by the sum of a geometric series as follows

El−1∑
j=0

Dj =
1−DEl

1−D
. (A.42)

A.4. Proof for Chapter 6 150

Hence the inequality can be further simplified as

E∥ω̃t
i,El
− ω̃t

i∥2 ≤ 0 + (E + F)
DEl − 1

D − 1
. (A.43)

When C > 1, D = 1 + 1
2C−2

< e
1

2C−2 hence DEl < e
El

2C−2 , which provides the final
bound for E∥ωt+1

i − ω̃t
i∥2 as in Eq.(A.34).

Then, before proving the theorem, we give the next lemma to see the contribution of
the proposed dynamic aggregation policy.

Lemma 7. Consider the proposed scheduling strategy. Let ω̃t(†)
i denote the local person-

alized aggregated model for the i-th client at time t. The global aggregated model at time
t, ω̃t(†), is defined as the average of the local models, i.e., ω̃t(†) = 1

M

∑M
i=1 ω̃

t(†)
i , where i

is the total number of clients. Let C represent the number of clients in the neighborhood.
With the support of Lemma 1 in Wan et al. (2021b), the expected value of the global model
at time t+ 1, denoted as E(ω̃t+1(†)), is given by

E(ω̃t+1(†)) = E(ω̃t(†))− η
E
(∑M

i=1

∑E∗
l −1

τ=0 gτ,i(ω̃
t(†))
)

M
, (A.44)

where E∗
l = 3C+2

2(C+1)
El, and El is the number of steps of local updates. Here, gτ,i represents

the gradient computation for the i-th client at local update step τ .

Proof. Consider the effect of the proposed dynamic aggregation policy. Rewrite the mask
element aggregation with the sequential appointment as

ω̃
t(†)
i =

(∑
j∈N t

(a)i
ωt

j +
∑

j∈N t
(b)i

ωt
j + ωt

i∑
j∈N t

(a)i
mt

j +
∑

j∈N t
(b)i

mt
j +mt

i

)
⊙mt

i (A.45)

=

(∑
j∈N t

(a)i
ωt

j +
∑

j∈N t
(b)i+

ωt
j

C + 1

)
⊙mt

i, (A.46)

where N t
(b)i := N t

i \ N t
(a)i, N t

(b)i+ := N t
(b)i ∪ {m}, and the last equation holds under

Assumption 6.
Similar to Eq.(A.33), the term mt

i is omitted for convenience since the mask is consis-
tent during local training. For the j-th client at time t, the local personalized aggregated
model is

ω
t(†)
j =

ω̃t
j − η

∑El−1
τ=0 gt

j,τ ⊙mt
j, if j ∈ N t

(a)i;

ωt
j, otherwise.

(A.47)

When j ∈ N t
(a)i, ω

t(†)
j is equivalent to ωt+1

j , reflecting the scenario where all partici-
pating clients perform an equal number of local training iterations within a single commu-

A.4. Proof for Chapter 6 151

nication round, analogous to traditional FL. The superscript (†) explicitly signifies that
although the local gradients gt

j,τ are computed under varying aggregation models, they are
distinct from those in a parallel FL framework. Denote I{j∈N t

(a)i
} as an indicator function

for the event that the j-th client is selected in the delayed neighborhoods of client i.
Using the results of Proposition 1, it can be shown that

E(
∑

j∈N t
(a)i

ωt+1
j) = E(E(

∑
j∈N t

(a)i

ωt+1
j ||N t

(a)i|)) = E(E(
∑
j∈N t

i

ωt+1
j I{j∈N t

(a)i
}||N t

(a)i|))

= E(E(
∑
j∈N t

i

ωt+1
j I{j∈N t

(a)i
||N t

(a)i
|})) = E(

∑
j∈N t

i

ωt+1
j E(I{j∈N t

(a)i
||N t

(a)i
|}))

= E(
∑
j∈N t

i

ωt+1
j P(j ∈ N t

(a)i||N t
(a)i|)) = E(

∑
j∈N t

i

ωt+1
j

|N t
(a)i|
C

)

= E(|N t
(a)i|)

E(
∑

j∈N t
i
ωt+1

j)

C
=

(i− 1)C

M − 1
E(ω̄t+1), (A.48)

where |N t
(a)i| follows a hypergeometric distribution. Similarly,

E(
∑

j∈N t
(b)i+

ωt
j) = E(E(

∑
j∈N t

(b)i+

ωt
j||N t

(b)i+|)) = E(E(
∑
j∈N t

i+

ωt
jI{j∈N t

(b)i+
}||N t

(b)i+|))

= E(E(
∑
j∈N t

i+

ωt
jI{j∈N t

(b)i+
||N t

(b)i+
|})) = E(

∑
j∈N t

i+

ωt
jE(I{j∈N t

(b)i+
||N t

(b)i+
|}))

= E(
∑
j∈N t

i+

ωt
jP(j ∈ N t

(b)i+||N t
(b)i+|)) = E(

∑
j∈N t

i+

ωt
j

|N t
(b)i+| − 1

C
)

= E((|N t
(b)i+| − 1))

E(
∑

j∈N t
i+
ωt

j)

C
=

(M − i)(C + 1)

(M − 1)
E(ω̄t). (A.49)

Therefore, E(ω̃t(†)
i) can be written as

[
(i− 1)C

(M − 1)(C + 1)
E(ω̄t+1) +

(M − i)

(M − 1)
E(ω̄t)]⊙mt

i

= E(ω̄t)⊙mt
i − [

(i− 1)C

(M − 1)(C + 1)
E(

η
∑

j∈N t
i+

∑El−1
τ=0 gtj,τ

C + 1
)]⊙mt

i, (A.50)

where one can verify that when i = 1, E(ω̃t(†)
i) reduces to E(ω̃t

i). Recall that ω̃t(†) =

A.4. Proof for Chapter 6 152

1
M

∑M
i=1 ω̃

t(†)
i , then

E(ω̃t(†)) =
1

M

M∑
i=1

(E(ω̄t − (i− 1)C

(M − 1)(C + 1)
η
∑
j∈N t

i+

El−1∑
τ=0

gtj,τ (ω̄
t))⊙mt

i)

=
1

M

M∑
i=1

(E(ω̄t)− (i− 1)C

(M − 1)(C + 1)
ηE(g̃ti)⊙mt

i) (A.51)

= E(ω̄t)− 1

M

M∑
i=1

(
(i− 1)C

(M − 1)(C + 1)
ηE(g̃ti))⊙mt

i, (A.52)

where g̃ti =

∑
j∈N t

i+

∑El−1
τ=0 gtj,τ

C+1
and the last equality holds according to the definition of ω̄t.

gtj,τ (ω̄) indicates the gradient at local epoch τ = 0 is with respect to ω̄.
Let g̃t(†) = 1

M

∑M
i=1[

(i−1)C
(M−1)(C+1)

g̃ti ⊙mt
i], then

E(ω̃t(†)) = E(ω̄t)− ηE(g̃t(†)). (A.53)

To find the boundary for the difference between the global model at time t and t+ 1,
and according to Assumption 2, we have

E[f(ω̃t+1(†))]− E [f(ω̃t(†))]

≤ E
[〈
f(∇ω̃t(†)), ω̃t+1(†) − ω̃t(†)〉]

+
µ

2
∥ω̃t+1(†) − ω̃t(†)∥2. (A.54)

Lemma 1 in (Wan et al., 2021b) ensures that ∀m ∈ |M |, E
(∑M

i=1

∑El−1
τ=0 gτ,i(ω̃

t(†))

M

)
=

E[g̃t
i] since N t

i is selected randomly. According to the definition and Eq. (A.53),

E(ω̃t+1(†)) = E(ω̄t+1)− ηE(g̃t+1(†))

= E(ω̃t(†))− η
E
(∑M

i=1

∑El−1
τ=0 gτ,i(ω̃

t(†))
)

M
− ηE(g̃t+1(†)) (A.55)

= E(ω̃t(†))− η
E
(∑M

i=1

∑E∗
l −1

τ=0 gτ,i(ω̃
t(†))
)

M
, (A.56)

where E∗
l = El +

C
2(C+1)

El. Here, the starting weights of g̃t+1(†) are with respect to

E(ω̄t+1) = E(ω̃t(†)) − η
∑M

i=1 E
∑El−1

τ=0 (gτ,i(ω̃
t(†)))

M
. One can think of just continuing C

2(C+1)

more steps of local training, where 1
M

∑M
i=1[

(i−1)C
(M−1)(C+1)

] = C
2(C+1)

. E∗
l might not be an

integer, but this concludes the effect of sequential aligning for convergence analysis.

Our objective is now to establish the bounds for E⟨f(∇ω̃t(†)), ω̃t+1(†) − ω̃t(†)⟩ and

A.4. Proof for Chapter 6 153

µ
2
∥ω̃t+1(†) − ω̃t(†)∥2.

Lemma 8. Under Assumptions 2 to 5 and Lemma 7, suppose ω̃t+1(†) and ω̃t(†) are global
models learned by the proposed strategy. For some C > 1 with η ≤

√
1

12Cµ2(C−1)(2C−1)
,

E
[
µ
2
∥ω̃t+1(†) − ω̃t(†)∥2

]
is upper bounded by

E
[µ
2
∥ω̃t+1(†) − ω̃t(†)∥2

]
≤ µS1(S2 + 3E∥∇f(ω̃t(†))∥2),

where S1 = 2η2C(C − 1)
(
exp

(
(3C+2)El

4(C2−1)

)
− 1
)

and S2 =
1

2C−1
σ2
l + 3(2σ2

g + σ2
p).

Proof. Lemma 6 provides the boundary for the local updates. Equation (A.55) and Lemma
7 indicate that the scheduling increases the local epochs El to E∗

l with the expectation for
the (aggregated) global model. Hence,

E
[
∥ω̃t+1(†) − ω̃t(†)∥2

]
= E

∥∥∥∥∥ 1

M

M∑
i=1

ω̃
t+1(†)
i − 1

M

M∑
i=1

ω̃
t(†)
i

∥∥∥∥∥
2


≤ E

[
1

M

M∑
i=1

∥ω̃t+1(†)
i − ω̃

t(†)
i ∥2

]
. (A.57)

The last inequality holds due to Jensen’s Inequality where the defined function ϕ(·) = ∥·∥2
is convex.

Therefore, substituting the results of Lemma 6 and replacing El with E∗
l +1, then the

boundary with
∑M

i=1 E∥∇f(ω̃
t(†)
i)∥2

M
is remained to be proved. Using the triangle inequality

again and Assumption 5,

∑M
i=1 E∥∇f(ω̃

t(†)
i)∥2

M
≤ 1

M

M∑
i=1

E
(
∥∇fi(ω̃t(†)

i)−∇f(ω̃t(†)
i)∥2

+ ∥∇f(ω̃t(†))∥2

+ ∥∇fi(ω̃t(†)
i)−∇f(ω̃t(†))∥2

)
≤ E∥∇f(ω̃t(†))∥2 + σ2

p + σ2
g . (A.58)

Lemma 9. Under Assumptions 2 to 5 and Lemma 8, E
[〈
∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†)〉] is

upper bounded by

−η

2
∥∇f(ω̃t(†))∥2 − η

2
E∥ĝt(†)∥2 + 3µ2η3E∗

l

C
(σ2

l + σ2
g), (A.59)

where E∗
l = 3C+2

2(C+1)
El.

A.4. Proof for Chapter 6 154

Proof. According to Eq. (A.55), let ĝt(†) =
∑M

i=1

∑E∗
l

τ=0 gτ,i(ω̃
t(†))

M
,

E
[〈
∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†)〉] = −ηE [〈∇f(ω̃t(†)),E

(
ĝt(†))〉] . (A.60)

To bound −E
[〈
∇f(ω̃t(†)),E

(
ĝt(†))〉],

− E
[〈
∇f(ω̃t(†)),E

(
ĝt(†))〉]

= −1

2
∥∇f(ω̃t(†))∥2 − 1

2
E∥ĝt(†)∥2 + 1

2

∥∥∇f(ω̃t(†))− E[ĝt(†)]
∥∥2 , (A.61)

where the equality follows from the identity ⟨a,b⟩ = ∥a∥2+∥b∥2−∥a−b∥2
2

. The bounds for the
first two terms are established in Lemma 8. For the third term, using Assumption 2 and
denoting tc as the start of the communication round of t:

1

2
∥∇f(ω̃t(†))− E[ĝt(†)]∥2 ≤ µ2

2M

M∑
i=1

E∥ω̃t(†) − ω̃
t(†)
i ∥2

=
µ2

2

M∑
i=1

E
[
1

M

∥∥∥∥ω̃tc(†) − 1

M

M∑
j=1

EPt,j

(
η

C

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,j

)

− ω̃tc(†) + EPt,i

(
η

C

∑
i∈Pt,i

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,i

)∥∥∥∥2]

=
µ2η2

2

M∑
i=1

E
[
1

M

∥∥∥∥EPt,i

(
1

C

∑
i∈Pt,i

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,i

)

− 1

M

M∑
j=1

EPt,j

(
1

C

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

g̃
tc(†)
τ,j

)∥∥∥∥2]

=
µ2η2

2

M∑
i=1

E
[
1

M

∥∥∥∥EPt,i

(
1

C

∑
i∈Pt,i

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,i −∇fi(ω̃tc(†)

i,τ))

)

− 1

M

M∑
j=1

EPt,j

(
1

C

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,j −∇fj(ω̃tc(†)

j,τ))

)

+ EPt,i

(
1

C

∑
i∈Pt,i

tc+E∗
l∑

τ=tc

∇fi(ω̃tc(†)
i,τ)

)

− 1

M

M∑
j=1

EPt,j

(
1

C

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ)

)∥∥∥∥2]

A.4. Proof for Chapter 6 155

(b)

≤ 3µ2η2

2M

M∑
i=1

[
EPt,j

∥∥∥∥ 1C ∑
i∈Pt,i

tc+E∗
l∑

τ=tc

(g̃
tc(†)
τ,i −∇fi(ω̃tc(†)

i,τ))

∥∥∥∥2

+
1

M

M∑
j=1

EPt,j

∥∥∥∥ 1C ∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ)

∥∥∥∥2

+

∥∥∥∥EPt,i

(
1

C

∑
i∈Pt,i

tc+E∗
l∑

τ=tc

∇fi(ω̃tc(†)
i,τ)

)

− 1

M

M∑
j=1

EPt,j

(
1

C

∑
j∈Pt,j

tc+E∗
l∑

τ=tc

∇fj(ω̃tc(†)
j,τ)

)∥∥∥∥2]
(c)

≤ 3µ2η2

2M

[
E∗

l

C
σ2
l +

E∗
l Mσ2

l

CM
+

E∗
l

C
σ2
g +

E∗
l Mσ2

g

CM

]
=

3µ2η2E∗
l

C
(σ2

l + σ2
g) (A.62)

In the above formulation, the variable j serves to distinguish from i, ensuring clarity
in the representation of individual client contributions. Here, Pt,i denotes the selection
probability of client i at time t. The inequality marked as (b) derives from the application
of the Cauchy-Schwarz inequality, exemplified by the relation ∥a + b + c∥2 ≤ 3(∥a∥2 +
∥b∥2 + ∥c∥2). The step labeled as (c) leverages a similar analytical technique, focusing on
the aggregation of global gradients, thereby facilitating the derivation of σ2

g , which is in
conjunction with Assumption 5.

Substitute the results from Lemma 8 into Eq.(A.61) and multiply by η to conclude the
proof for Lemma 9.

A.4.2 Proof for Theorem 3

Proof. Combining the bounds from Lemma 8 and Lemma 5, the following is obtained:

E[f(ω̃t+1(†))]− E[f(ω̃t(†))] ≤ E
[µ
2
∥ω̃t+1(†) − ω̃t(†)∥2

]
+ E[⟨∇f(ω̃t(†)), ω̃t+1(†) − ω̃t(†)⟩]

= −η

2
∥∇f(ω̃t(†))∥2 + µ− η

2
E∥ĝt(†)∥2 + 3µ2η3E∗

l

C
(σ2

l + σ2
g) (A.63)

≤ 6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2 + (µ− η)S1S2+

3µ2η3
(

3C+2
2(C+1)

El − 1
)

C
(σ2

l + σ2
g). (A.64)

It is a fact that min ∥∇f(ω̃t(†))∥2 ≤
∑T−1

t=0 ∥∇f(ω̃t(†))∥2
T

. Summing up Eq. (A.63) from
t = 0 to a large t = T concludes the proof. In detail, given the inequality for each iteration

A.4. Proof for Chapter 6 156

t:
E[f(ω̃t+1(†))]− E[f(ω̃t(†))] ≤ 6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2

+ (µ− η)S1S2 +
3µ2η3

(
3C+2
2(C+1)

El − 1
)

C
(σ2

l + σ2
g).

(A.65)

Summing this inequality from t = 0 to t = T − 1 yields:

E[f(ω̃T (†))]− E[f(ω̃0(†))] ≤
T−1∑
t=0

(
6S1(µ− η)− η

2
∥∇f(ω̃t(†))∥2

)

+ T ·

(µ− η)S1S2 +
3µ2η3

(
3C+2
2(C+1)

El − 1
)

C
(σ2

l + σ2
g)

 (A.66)

To isolate the cumulative gradient norm terms across T iterations, divide the inequality
by the coefficient of the gradient norm term:

T−1∑
t=0

∥∇f(ω̃t(†))∥2 ≤ 2

η − 6S1(µ− η)

(
E[f(ω̃0(†))]− E[f(ω̃T (†))]

)
+ S3T, (A.67)

where S3 = 2
η−6S1(µ−η)

·
[
(µ− η)S1S2 +

3µ2η3(3C+2)El

2(C+1)C
(σ2

l + σ2
g)
]
. When T is large, the de-

nominator η − 6S1(µ− η) is dominated by η. Then, when η ∝ O(1√
Tµ

) and as T is large
enough, S3 diminishes closely to 0.

Bibliography

Abdi, A., Fekri, F., 2020. Quantized compressive sampling of stochastic gradients for
efficient communication in distributed deep learning, in: Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 3105–3112.

Aji, A.F., Heafield, K., 2017. Sparse communication for distributed gradient descent, in:
EMNLP’17, pp. 440–445.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat, S., Renggli, C., 2018.
The convergence of sparsified gradient methods. NeurIPS’18 31.

Amiri, M.M., Gunduz, D., Kulkarni, S.R., Poor, H.V., 2020. Federated learning with
quantized global model updates. arXiv preprint arXiv:2006.10672 .

Anagnostopoulos, C., 2020. Edge-centric inferential modeling & analytics. Jour-
nal of Network and Computer Applications 164, 102696. URL: https:

//www.sciencedirect.com/science/article/pii/S1084804520301703,
doi:https://doi.org/10.1016/j.jnca.2020.102696.

Anagnostopoulos, C., Hadjiefthymiades, S., Zervas, E., 2011. Information dissemination
between mobile nodes for collaborative context awareness. IEEE Transactions on Mobile
Computing 10, 1710–1725. doi:10.1109/TMC.2011.19.

Anagnostopoulos, C., Kolomvatsos, K., 2018. Predictive intelligence to the edge through
approximate collaborative context reasoning. Applied Intelligence 48. doi:10.1007/
s10489-017-1032-y.

Badeau, R., David, B., Richard, G., 2005. Fast approximated power iteration subspace
tracking. IEEE Transactions on Signal Processing 53, 2931–2941. doi:10.1109/TSP.
2005.850378.

Bartlett, P.L., Montanari, A., Rakhlin, A., 2021. Deep learning: a statistical viewpoint.
Acta numerica 30, 87–201.

Bellal, Z., Nour, B., Mastorakis, S., 2021. Coxnet: A computation reuse architecture at
the edge. IEEE transactions on green communications and networking 5, 765–777.

157

BIBLIOGRAPHY 158

Beltrán, E.T.M., Pérez, M.Q., Sánchez, P.M.S., Bernal, S.L., Bovet, G., Pérez, M.G.,
Pérez, G.M., Celdrán, A.H., 2023. Decentralized federated learning: Fundamentals,
state of the art, frameworks, trends, and challenges. IEEE Communications Surveys &
Tutorials .

Bibikar, S., Vikalo, H., Wang, Z., Chen, X., 2022. Federated dynamic sparse training:
Computing less, communicating less, yet learning better, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 6080–6088.

Bishop, C.M., 2007. Pattern Recognition and Machine Learning (Information Science and
Statistics). 1 ed., Springer.

Blitzer, J., Dredze, M., Pereira, F., 2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification, in: Proceedings of the 45th
annual meeting of the association of computational linguistics, pp. 440–447.

Bottou, L., 2012. Stochastic gradient descent tricks, in: Neural networks: Tricks of the
trade. Springer, pp. 421–436.

Boyd, S., Boyd, S.P., Vandenberghe, L., 2004. Convex optimization. Cambridge university
press.

Cao, W., Wu, S., Yu, Z., Wong, H.S., 2018. Exploring correlations among tasks, clusters,
and features for multitask clustering. IEEE transactions on neural networks and learning
systems 30, 355–368.

Caruana, R., 1997. Multitask learning. Machine learning 28, 41–75.

Cavallanti, G., Cesa-Bianchi, N., Gentile, C., 2010. Linear algorithms for online multitask
classification. The Journal of Machine Learning Research 11, 2901–2934.

Che, C., Li, X., Chen, C., He, X., Zheng, Z., 2022. A decentralized federated learning
framework via committee mechanism with convergence guarantee. IEEE Transactions
on Parallel and Distributed Systems 33, 4783–4800.

Chen, D., Yao, L., Gao, D., Ding, B., Li, Y., 2023. Efficient personalized federated
learning via sparse model-adaptation, in: Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., Scarlett, J. (Eds.), Proceedings of the 40th International Conference
on Machine Learning, PMLR. pp. 5234–5256. URL: https://proceedings.mlr.
press/v202/chen23aj.html.

Chen, J., Ran, X., 2019. Deep learning with edge computing: A review. Proceedings of
the IEEE 107, 1655–1674.

BIBLIOGRAPHY 159

Chen, M., Shlezinger, N., Poor, H.V., Eldar, Y.C., Cui, S., 2021. Communication-efficient
federated learning. Proceedings of the National Academy of Sciences 118, e2024789118.

Chen, T., Giannakis, G., Sun, T., Yin, W., 2018. Lag: Lazily aggregated gradient for
communication-efficient distributed learning. NeurIPS’18 31.

Cheng, Y., Wang, D., Zhou, P., Zhang, T., 2017. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282 .

Dai, R., Shen, L., He, F., Tian, X., Tao, D., 2022. Dispfl: Towards communication-efficient
personalized federated learning via decentralized sparse training, in: International Con-
ference on Machine Learning, PMLR. pp. 4587–4604.

Dehghani, M., Yazdanparast, Z., 2023. From distributed machine to distributed deep
learning: a comprehensive survey. Journal of Big Data 10, 158.

Derakhshan, B., Rezaei Mahdiraji, A., Kaoudi, Z., Rabl, T., Markl, V., 2022. Material-
ization and reuse optimizations for production data science pipelines, in: Proceedings
of the 2022 International Conference on Management of Data, Association for Comput-
ing Machinery, New York, NY, USA. p. 1962–1976. URL: https://doi.org/10.
1145/3514221.3526186, doi:10.1145/3514221.3526186.

Diao, E., Wang, G., Zhang, J., Yang, Y., Ding, J., Tarokh, V., 2022. Pruning deep neural
networks from a sparsity perspective, in: The Eleventh International Conference on
Learning Representations.

Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology
26, 297–302.

DiCiccio, T.J., Efron, B., 1996. Bootstrap confidence intervals. Statistical Science 11, 189
– 228. URL: https://doi.org/10.1214/ss/1032280214, doi:10.1214/ss/
1032280214.

Dobriban, E., Sheng, Y., 2021. Distributed linear regression by averaging .

Dong, S., Wang, P., Abbas, K., 2021. A survey on deep learning and its applications.
Computer Science Review 40, 100379.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer, K., 2019. Hawq: Hessian aware
quantization of neural networks with mixed-precision, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302.

Duan, W., Gu, X., Wen, M., Ji, Y., Ge, J., Zhang, G., 2022. Resource management
for intelligent vehicular edge computing networks. IEEE Transactions on Intelligent
Transportation Systems 23, 9797–9808. doi:10.1109/TITS.2021.3114957.

BIBLIOGRAPHY 160

Efron, B., 1983. Estimating the error rate of a prediction rule: improvement on cross-
validation. Journal of the American statistical association 78, 316–331.

Evci, U., Gale, T., Menick, J., Castro, P.S., Elsen, E., 2020. Rigging the lottery: Making
all tickets winners, in: International Conference on Machine Learning, PMLR. pp. 2943–
2952.

Feeney, L.M., Nilsson, M., 2001. Investigating the energy consumption of a wireless net-
work interface in an ad hoc networking environment, in: Proceedings IEEE INFOCOM
2001. Conference on computer communications. Twentieth annual joint conference of
the IEEE computer and communications society (Cat. No. 01CH37213), IEEE. pp.
1548–1557.

Feurer, M., Springenberg, J.T., Hutter, F., 2014. Using meta-learning to initialize bayesian
optimization of hyperparameters., in: MetaSel@ ECAI, pp. 3–10.

Frankle, J., Carbin, M., 2018. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 .

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A., 2006. A kernel method
for the two-sample-problem. Advances in neural information processing systems 19.

Guo, P., Hu, W., 2018. Potluck: Cross-application approximate deduplication for
computation-intensive mobile applications, in: Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Languages and Op-
erating Systems, pp. 271–284.

Haddadpour, F., Mahdavi, M., 2019. On the convergence of local descent methods in
federated learning. CoRR abs/1910.14425. URL: http://arxiv.org/abs/1910.
14425, arXiv:1910.14425.

Han, J., Liu, Q., 2016. Bootstrap model aggregation for distributed statistical learning.
Advances in Neural Information Processing Systems 29.

Han, P., Wang, S., Leung, K.K., 2020. Adaptive gradient sparsification for efficient feder-
ated learning: An online learning approach, in: 2020 IEEE 40th international conference
on distributed computing systems (ICDCS), IEEE. pp. 300–310.

Han, S., Pool, J., Tran, J., Dally, W., 2015. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems 28.

Harth, N., Anagnostopoulos, C., 2018. Edge-centric efficient regression analytics, in: 2018
IEEE International Conference on Edge Computing (EDGE), pp. 93–100. doi:10.
1109/EDGE.2018.00020.

BIBLIOGRAPHY 161

Hasani, S., Ghaderi, F., Hasan, S., Thirumuruganathan, S., Asudeh, A., Koudas, N.,
Das, G., 2019. Approxml: efficient approximate ad-hoc ml models through materializa-
tion and reuse. Proc. VLDB Endow. 12, 1906–1909. URL: https://doi.org/10.
14778/3352063.3352096, doi:10.14778/3352063.3352096.

Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., 2009. The elements of statis-
tical learning: data mining, inference, and prediction. volume 2. Springer.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition,
in: IEEE CVPR, pp. 770–778.

He, Y., Zhang, X., Sun, J., 2017. Channel pruning for accelerating very deep neural
networks, in: IEEE ICCV, pp. 1389–1397.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 .

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A., 2021. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J.
Mach. Learn. Res. 22, 1–124.

Huang, T., Liu, S., Shen, L., He, F., Lin, W., Tao, D., 2022a. Achieving personalized
federated learning with sparse local models. arXiv preprint arXiv:2201.11380 .

Huang, T., Shen, L., Sun, Y., Lin, W., Tao, D., 2022b. Fusion of global and local knowledge
for personalized federated learning. Transactions on Machine Learning Research .

Idelbayev, Y., Carreira-Perpinán, M.A., 2020. Low-rank compression of neural nets:
Learning the rank of each layer, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8049–8059.

Idelbayev, Y., Carreira-Perpiñán, M.Á., 2021. Optimal selection of matrix shape and
decomposition scheme for neural network compression, in: ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE.
pp. 3250–3254.

ISACA, 2023. Practical data security and privacy for gdpr and ccpa. https://www.

isaca.org.

Isik, B., Pase, F., Gunduz, D., Weissman, T., Michele, Z., 2023. Sparse random net-
works for communication-efficient federated learning, in: The Eleventh International
Conference on Learning Representations.

BIBLIOGRAPHY 162

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko,
D., 2018. Quantization and training of neural networks for efficient integer-arithmetic-
only inference, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2704–2713.

Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G.B., Wang, H., Xiong, C., Socher, R.,
Cho, K., Geras, K.J., 2021. Catastrophic fisher explosion: Early phase fisher matrix
impacts generalization, in: International Conference on Machine Learning, PMLR. pp.
4772–4784.

Jiang, P., Agrawal, G., 2018. A linear speedup analysis of distributed deep learning with
sparse and quantized communication. NeurIPS’18 31.

Jiang, X., Borcea, C., 2023. Complement sparsification: Low-overhead model pruning for
federated learning, in: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 8087–8095.

Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tassiulas, L., 2022.
Model pruning enables efficient federated learning on edge devices. IEEE TNNLS .

Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz,
K., Charles, Z., Cormode, G., Cummings, R., et al., 2021. Advances and open problems
in federated learning. Foundations and trends® in machine learning 14, 1–210.

Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A., 2019. Edge computing: A
survey. Future Generation Computer Systems 97, 219–235.

Ko, Y., 2012. A study of term weighting schemes using class information for text classi-
fication, in: Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval, pp. 1029–1030.

Kolomvatsos, K., Anagnostopoulos, C., 2022. A proactive statistical model supporting
services and tasks management in pervasive applications. IEEE Transactions on Network
and Service Management 10.1109/TNSM.2022.3161663, 1–1.

Kolomvatsos, K., Anagnostopoulos, C., Koziri, M., Loukopoulos, T., 2020. Proactive time-
optimized data synopsis management at the edge. IEEE Transactions on Knowledge
and Data Engineering , 1–1doi:10.1109/TKDE.2020.3021377.

Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D., 2016.
Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 .

BIBLIOGRAPHY 163

Konečnỳ, J., Richtárik, P., 2018. Randomized distributed mean estimation: Accuracy vs.
communication. Frontiers in Applied Mathematics and Statistics 4, 62.

Krizhevsky, A., 2014. One weird trick for parallelizing convolutional neural net-
works. CoRR abs/1404.5997. URL: http://arxiv.org/abs/1404.5997,
arXiv:1404.5997.

Krizhevsky, A., Hinton, G., et al., 2009. Learning multiple layers of features from tiny
images .

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25.

Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M., 2021. Oort: Efficient federated
learning via guided participant selection, in: 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21), pp. 19–35.

Lalitha, A., Shekhar, S., Javidi, T., Koushanfar, F., 2018. Fully decentralized federated
learning, in: Third workshop on bayesian deep learning (NeurIPS).

Law, B., 2023. Consumer data privacy: Eu’s gdpr vs. china’s pipl. https://pro.

bloomberglaw.com.

LeCun, Y., et al., 2015. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet 20, 14.

Lee, J., Mtibaa, A., Mastorakis, S., 2019. A case for compute reuse in future edge sys-
tems: An empirical study, in: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.
doi:10.1109/GCWkshps45667.2019.9024587.

Lee, N., Ajanthan, T., Torr, P., 2018. Snip: Single-shot network pruning based on con-
nection sensitivity, in: International Conference on Learning Representations.

Leite, R., Brazdil, P., 2005. Predicting relative performance of classifiers from samples,
in: Proceedings of the 22nd international conference on machine learning, pp. 497–503.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., Chen, Y., 2021a. Fedmask: Joint computation
and communication-efficient personalized federated learning via heterogeneous masking,
in: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems,
pp. 42–55.

Li, C., Peng, J., Yuan, L., Wang, G., Liang, X., Lin, L., Chang, X., 2020a. Block-wisely
supervised neural architecture search with knowledge distillation, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1989–1998.

BIBLIOGRAPHY 164

Li, C., Zeng, X., Zhang, M., Cao, Z., 2022. Pyramidfl: A fine-grained client selection
framework for efficient federated learning, in: Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing And Networking, pp. 158–171.

Li, R., Ma, F., Jiang, W., Gao, J., 2019a. Online federated multitask learning, in: 2019
IEEE International Conference on Big Data (Big Data), IEEE. pp. 215–220.

Li, S., Liu, Z.Q., Chan, A.B., 2014. Heterogeneous multi-task learning for human pose esti-
mation with deep convolutional neural network, in: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp. 482–489.

Li, T., Hu, S., Beirami, A., Smith, V., 2021b. Ditto: Fair and robust federated learning
through personalization, in: International Conference on Machine Learning, PMLR. pp.
6357–6368.

Li, T., Li, J., Liu, Z., Zhang, C., 2020b. Few sample knowledge distillation for efficient
network compression, in: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 14639–14647.

Li, T., Sahu, A.K., Talwalkar, A., Smith, V., 2020c. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine 37, 50–60.

Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V., 2020d. Federated
optimization in heterogeneous networks. PMLR 2, 429–450.

Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z., 2019b. On the convergence of fedavg
on non-iid data, in: ICLR.

Li, Y., Zhang, Z., Liu, B., Yang, Z., Liu, Y., 2021c. Modeldiff: Testing-based dnn similarity
comparison for model reuse detection. arXiv preprint arXiv:2106.08890 .

Liebenwein, L., Maalouf, A., Feldman, D., Rus, D., 2021. Compressing neural networks:
Towards determining the optimal layer-wise decomposition. Advances in Neural Infor-
mation Processing Systems 34, 5328–5344.

Lin, T., Stich, S.U., Barba Flores, L.F., Dmitriev, D., Jaggi, M., 2020. Dynamic model
pruning with feedback, in: ICLR.

Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J., 2018. Deep Gradient Compression:
Reducing the communication bandwidth for distributed training, in: ICLR.

Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., Dou, D., 2022. From distributed
machine learning to federated learning: A survey. Knowledge and Information Systems
64, 885–917.

BIBLIOGRAPHY 165

Liu, S., Pan, S.J., Ho, Q., 2017. Distributed multi-task relationship learning, in: Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 937–946.

Long, Q., Anagnostopoulos, C., Kolomvatsos, K., 2024a. Enhancing knowledge reusability:
A distributed multitask machine learning approach. IEEE Transactions on Emerging
Topics in Computing , 1–14doi:10.1109/TETC.2024.3390811.

Long, Q., Anagnostopoulos, C., Parambath, S.P., Bi, D., 2023. Feddip: Federated learning
with extreme dynamic pruning and incremental regularization, in: 2023 IEEE Interna-
tional Conference on Data Mining (ICDM), IEEE. pp. 1187–1192.

Long, Q., Kolomvatsos, K., Anagnostopoulos, C., 2022. Knowledge reuse in edge com-
puting environments. Journal of Network and Computer Applications 206, 103466.
doi:https://doi.org/10.1016/j.jnca.2022.103466.

Long, Q., Wang, Q., Anagnostopoulos, C., Bi, D., 2024b. Decentralized personalized
federated learning based on a conditional sparse-to-sparser scheme. arXiv preprint
arXiv:2404.15943 .

Luo, B., Li, X., Wang, S., Huang, J., Tassiulas, L., 2021. Cost-effective federated learning
design, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
IEEE. pp. 1–10.

Luo, J., Deng, X., Zhang, H., Qi, H., 2018. Ultra-low latency service provision in edge
computing, in: 2018 IEEE International Conference on Communications (ICC), pp. 1–6.
doi:10.1109/ICC.2018.8422645.

Lym, S., Choukse, E., Zangeneh, S., Wen, W., Sanghavi, S., Erez, M., 2019. Prunetrain:
fast neural network training by dynamic sparse model reconfiguration, in: SC’19, pp.
1–13.

MacKay, D.J.C., 2002. Information Theory, Inference and; Learning Algorithms. Cam-
bridge University Press, USA.

Mao, Y., Zhang, J., Letaief, K.B., 2016. Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE Journal on Selected Areas in
Communications 34, 3590–3605.

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017. Communication-
efficient learning of deep networks from decentralized data, in: Artificial intelligence and
statistics, PMLR. pp. 1273–1282.

BIBLIOGRAPHY 166

Navia-Vazquez, A., Gutierrez-Gonzalez, D., Parrado-Hernández, E., Navarro-Abellan, J.,
2006. Distributed support vector machines. IEEE Transactions on Neural Networks 17,
1091–1097.

Nour, B., Cherkaoui, S., Mlika, Z., 2022. Federated learning and proactive computation
reuse at the edge of smart homes. IEEE Transactions on Network Science and Engi-
neering 9, 3045–3056. doi:10.1109/TNSE.2021.3131246.

Nour, B., Mastorakis, S., Mtibaa, A., 2021. Whispering: Joint service offloading and
computation reuse in cloud-edge networks, in: ICC 2021-IEEE International Conference
on Communications, IEEE. pp. 1–6.

Pan, S.J., Yang, Q., 2009. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22, 1345–1359.

Rachwan, J., Zügner, D., Charpentier, B., Geisler, S., Ayle, M., Günnemann, S., 2022.
Winning the lottery ahead of time: Efficient early network pruning, in: Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (Eds.), Proceedings of the
39th International Conference on Machine Learning, PMLR. pp. 18293–18309. URL:
https://proceedings.mlr.press/v162/rachwan22a.html.

Rahimi, A., Recht, B., 2007. Random features for large-scale kernel machines, in: Proceed-
ings of the 20th International Conference on Neural Information Processing Systems,
Curran Associates Inc., Red Hook, NY, USA. p. 1177–1184.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R., 2020. Fedpaq: A
communication-efficient federated learning method with periodic averaging and quanti-
zation, in: International conference on artificial intelligence and statistics, PMLR. pp.
2021–2031.

Reynolds, D.A., 2009. Gaussian mixture models. Encyclopedia of biometrics 741, 659–663.

Ruan, X., Liu, Y., Yuan, C., Li, B., Hu, W., Li, Y., Maybank, S., 2020. Edp: An efficient
decomposition and pruning scheme for convolutional neural network compression. IEEE
Transactions on Neural Networks and Learning Systems 32, 4499–4513.

S., Z., B., G., A., D., J., H., Z., X., X., C.S., 2017. Cautionary tales on air-quality improve-
ment in beijing., in: Proceedings. Mathematical, physical, and engineering sciences,
Royal Society. p. 473(2205). doi:https://doi.org/10.1098/rspa.2017.0457.

Samikwa, E., Di Maio, A., Braun, T., 2022. Ares: Adaptive resource-aware split learning
for internet of things. Computer Networks 218, 109380.

BIBLIOGRAPHY 167

Sattler, F., Wiedemann, S., Müller, K.R., Samek, W., 2019. Robust and communication-
efficient federated learning from non-iid data. IEEE transactions on neural networks
and learning systems 31, 3400–3413.

Sharifani, K., Amini, M., 2023. Machine learning and deep learning: A review of methods
and applications. World Information Technology and Engineering Journal 10, 3897–
3904.

Shi, S., Zhao, K., Wang, Q., Tang, Z., Chu, X., 2019. A convergence analysis of distributed
sgd with communication-efficient gradient sparsification., in: IJCAI, pp. 3411–3417.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: Vision and challenges.
IEEE internet of things journal 3, 637–646.

Shi, Y., Shen, L., Wei, K., Sun, Y., Yuan, B., Wang, X., Tao, D., 2023. Improving
the model consistency of decentralized federated learning, in: Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (Eds.), Proceedings of the 40th
International Conference on Machine Learning, PMLR. pp. 31269–31291. URL: https:
//proceedings.mlr.press/v202/shi23d.html.

Shui, C., Abbasi, M., Robitaille, L.E., Wang, B., Gagné, C., 2019. A principled approach
for learning task similarity in multitask learning, in: Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, AAAI Press. p. 3446–3452.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image
recognition, in: 3rd International Conference on Learning Representations (ICLR 2015),
Computational and Biological Learning Society.

Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S., 2017. Federated multi-task learn-
ing. Advances in neural information processing systems 30.

Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Schölkopf, B., Lanckriet, G.R., 2010.
Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res.
11, 1517–1561.

Strom, N., 2015. Scalable distributed dnn training using commodity gpu cloud computing,
in: 16th Intl Conf Speech Comm. Assoc.

Sudharsan, B., Breslin, J.G., Ali, M.I., 2020. Edge2train: A framework to train machine
learning models (svms) on resource-constrained iot edge devices, in: Proceedings of the
10th International Conference on the Internet of Things, pp. 1–8.

BIBLIOGRAPHY 168

Sun, J., Chen, T., Giannakis, G., Yang, Z., 2019. Communication-efficient distributed
learning via lazily aggregated quantized gradients. Advances in Neural Information
Processing Systems 32.

Sun, T., Li, D., Wang, B., 2022. Decentralized federated averaging. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 4289–4301.

Swaminathan, S., Garg, D., Kannan, R., Andres, F., 2020. Sparse low rank factorization
for deep neural network compression. Neurocomputing 398, 185–196.

Tan, A.Z., Yu, H., Cui, L., Yang, Q., 2023. Towards personalized federated learning. IEEE
Transactions on Neural Networks and Learning Systems 34, 9587–9603. doi:10.1109/
TNNLS.2022.3160699.

Tang, Z., Shi, S., Li, B., Chu, X., 2022. Gossipfl: A decentralized federated learning
framework with sparsified and adaptive communication. IEEE Transactions on Parallel
and Distributed Systems 34, 909–922.

Tang, Z., Shi, S., Wang, W., Li, B., Chu, X., 2020. Communication-efficient distributed
deep learning: A comprehensive survey. arXiv preprint arXiv:2003.06307 .

Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L., 2022. Splitfed: When federated
learning meets split learning, in: AAAI, pp. 8485–8493.

Thrun, S., O’Sullivan, J., 1998. Clustering learning tasks and the selective cross-task
transfer of knowledge, in: Learning to learn. Springer, pp. 235–257.

Ti, N.T., Le, L.B., 2017. Computation offloading leveraging computing resources from edge
cloud and mobile peers, in: 2017 IEEE International Conference on Communications
(ICC), pp. 1–6. doi:10.1109/ICC.2017.7997138.

Tolstikhin, I., Sriperumbudur, B.K., Schölkopf, B., 2016. Minimax estimation of maximum
mean discrepancy with radial kernels, in: Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, Curran Associates Inc., Red Hook,
NY, USA. p. 1938–1946.

Tsai, D., Yang, R., 2005. An eigenvalue-based similarity measure and its application in
defect detection. Image Vis. Comput. 23, 1094–1101. URL: https://doi.org/10.
1016/j.imavis.2005.07.014, doi:10.1016/j.imavis.2005.07.014.

Tschandl, P., Rosendahl, C., Kittler, H., 2018. The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data
5, 1–9.

BIBLIOGRAPHY 169

Vanschoren, J., 2018. Meta-learning: A survey. arXiv preprint arXiv:1810.03548 .

Vepakomma, P., Gupta, O., Swedish, T., Raskar, R., 2018. Split learning for
health: Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 .

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer, J.S.,
2020. A survey on distributed machine learning. Acm computing surveys (csur) 53,
1–33.

Viering, T., Loog, M., 2022. The shape of learning curves: a review. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 7799–7819.

Wan, S., Lu, J., Fan, P., Shao, Y., Peng, C., Letaief, K.B., 2021a. Convergence analysis
and system design for federated learning over wireless networks. IEEE JSAC 39, 3622–
3639. doi:10.1109/JSAC.2021.3118351.

Wan, S., Lu, J., Fan, P., Shao, Y., Peng, C., Letaief, K.B., 2021b. Convergence analysis
and system design for federated learning over wireless networks. IEEE Journal on
Selected Areas in Communications 39, 3622–3639.

Wang, D., Shen, L., Luo, Y., Hu, H., Su, K., Wen, Y., Tao, D., 2023. Fedabc: targeting fair
competition in personalized federated learning, in: Proceedings of the Thirty-Seventh
AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth Symposium on Educational Ad-
vances in Artificial Intelligence, AAAI Press. URL: https://doi.org/10.1609/
aaai.v37i8.26203, doi:10.1609/aaai.v37i8.26203.

Wang, H., Qin, C., Zhang, Y., Fu, Y., 2021. Neural pruning via growing regularization,
in: ICLR.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y., 2020. Federated
learning with matched averaging, in: International Conference on Learning Represen-
tations. URL: https://openreview.net/forum?id=BkluqlSFDS.

Wang, H.P., Stich, S., He, Y., Fritz, M., 2022a. Progfed: Effective, communication,
and computation efficient federated learning by progressive training, in: International
Conference on Machine Learning, PMLR. pp. 23034–23054.

Wang, J., Kolar, M., Srerbo, N., 2016. Distributed multi-task learning, in: Artificial
intelligence and statistics, PMLR. pp. 751–760.

BIBLIOGRAPHY 170

Wang, J., Yang, X., Cui, S., Che, L., Lyu, L., Xu, D.D., Ma, F., 2024. Towards per-
sonalized federated learning via heterogeneous model reassembly. Advances in Neural
Information Processing Systems 36.

Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J., 2018a. Two-step quantization
for low-bit neural networks, in: Proceedings of the IEEE Conference on computer vision
and pattern recognition, pp. 4376–4384.

Wang, R., Yan, J., Wu, D., Wang, H., Yang, Q., 2018b. Knowledge-centric edge computing
based on virtualized d2d communication systems. IEEE Communications Magazine 56,
32–38. doi:10.1109/MCOM.2018.1700876.

Wang, Y., Lin, L., Chen, J., 2022b. Communication-efficient adaptive federated learning,
in: International Conference on Machine Learning, PMLR. pp. 22802–22838.

Wangni, J., Wang, J., Liu, J., Zhang, T., 2018. Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems
31.

Weiss, K., Khoshgoftaar, T.M., Wang, D., 2016. A survey of transfer learning. Journal of
Big data 3, 1–40.

Wu, C., Wu, F., Lyu, L., Huang, Y., Xie, X., 2022. Communication-efficient federated
learning via knowledge distillation. Nature communications 13, 2032.

Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J., 2016. Quantized convolutional neural
networks for mobile devices, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4820–4828.

Wu, W., Li, M., Qu, K., Zhou, C., Shen, X., Zhuang, W., Li, X., Shi, W., 2023. Split
learning over wireless networks: Parallel design and resource management. IEEE Journal
on Selected Areas in Communications 41, 1051–1066.

Wu, X.Z., Xu, W., Liu, S., Zhou, Z.H., 2021. Model reuse with reduced kernel mean
embedding specification. IEEE Transactions on Knowledge and Data Engineering ,
1–1doi:10.1109/TKDE.2021.3086619.

Xiao, H., Rasul, K., Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 .

Xu, Y., Liao, Y., Xu, H., Ma, Z., Wang, L., Liu, J., 2022. Adaptive control of local
updating and model compression for efficient federated learning. IEEE Transactions on
Mobile Computing 22, 5675–5689.

BIBLIOGRAPHY 171

Yan, G., Wang, H., Yuan, X., Li, J., 2023. Criticalfl: A critical learning periods augmented
client selection framework for efficient federated learning, in: Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2898–2907.

Yang, H., Tang, M., Wen, W., Yan, F., Hu, D., Li, A., Li, H., Chen, Y., 2020. Learning low-
rank deep neural networks via singular vector orthogonality regularization and singular
value sparsification, in: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pp. 678–679.

Yang, Z., Chen, M., Saad, W., Hong, C.S., Shikh-Bahaei, M., 2021. Energy efficient fed-
erated learning over wireless communication networks. IEEE Transactions on Wireless
Communications 20, 1935–1949. doi:10.1109/TWC.2020.3037554.

Yao, X., Huang, C., Sun, L., 2018. Two-stream federated learning: Reduce the communi-
cation costs, in: 2018 IEEE Visual Communications and Image Processing (VCIP), pp.
1–4. doi:10.1109/VCIP.2018.8698609.

Yuan, L., Wang, Z., Sun, L., Yu, P.S., Brinton, C.G., 2024. Decentralized federated
learning: A survey and perspective. IEEE Internet of Things Journal , 1–1doi:10.
1109/JIOT.2024.3407584.

Zhang, K., Mao, Y., Leng, S., Maharjan, S., Zhang, Y., 2017. Optimal delay constrained
offloading for vehicular edge computing networks, in: 2017 IEEE International Confer-
ence on Communications (ICC), pp. 1–6. doi:10.1109/ICC.2017.7997360.

Zhang, L., Bao, C., Ma, K., 2021a. Self-distillation: Towards efficient and compact neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 4388–
4403.

Zhang, M., Sapra, K., Fidler, S., Yeung, S., Alvarez, J.M., 2021b. Personalized federated
learning with first order model optimization, in: International Conference on Learning
Representations.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., Wang, Y., 2018. A systematic
dnn weight pruning framework using alternating direction method of multipliers, in:
ECCV, pp. 184–199.

Zhang, Y., Yang, Q., 2021. A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering , 1–1doi:10.1109/TKDE.2021.3070203.

Zhang, Y., Yeung, D.Y., 2010. A convex formulation for learning task relationships in
multi-task learning, in: Proceedings of the Twenty-Sixth Conference on Uncertainty in
Artificial Intelligence, AUAI Press, Arlington, Virginia, USA. p. 733–742.

BIBLIOGRAPHY 172

Zhao, H., Li, B., Li, Z., Richtárik, P., Chi, Y., 2022. Beer: Fast o(1/t) rate for decen-
tralized nonconvex optimization with communication compression. Advances in Neural
Information Processing Systems 35, 31653–31667.

Zhao, P., Cai, L.W., Zhou, Z.H., 2020. Handling concept drift via model reuse. Machine
Learning 109, 533–568.

Zhou, X., Zhao, J., Han, H., Guet, C., 2022. Joint optimization of energy consumption and
completion time in federated learning, in: 2022 IEEE 42nd International Conference on
Distributed Computing Systems (ICDCS), IEEE. pp. 1005–1017.

Zhou, Z.H., 2016. Learnware: on the future of machine learning. Frontiers Comput. Sci.
10, 589–590.

Zhu, M., Gupta, S., 2017. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878 .

Zhu, X., Gong, S., et al., 2018. Knowledge distillation by on-the-fly native ensemble.
Advances in neural information processing systems 31.

Zhuang, W., Chen, C., Lyu, L., 2023. When foundation model meets federated learning:
Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546 .

	Thesis cover sheet
	2024LongPhD

