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Abstract

This thesis studies the price impact of limit order book events and their effects on price discovery.

It consists of three independent essays that begin with examining the relationship between the

shape of the limit order book and price impact.

Chapter 1 introduces the slope of the limit order book as a novel measure of price impact. By

analyzing both the bid and ask sides of the high-frequency limit order book snapshot data,

the study shows that there is a linear relationship between the cumulative size of liquidity

and price impact in the limit order book. In addition, I find that if price impact admits a

nonlinear functional form, under certain circumstances, a profitable round-trip arbitrage exists.

I empirically show the minimum required trading volume for a profitable self-financing arbitrage

and conditions that limit arbitrage.

Chapter 2 proposes a new approach to estimate the flow of this information and the price of

that information (different from the stock price), and thus the total value of that information

for each stock, and then sum up this value across all stocks, obtaining an estimate of the total

value of the dynamic flow of information in the stock market as a whole. The results support

the notion that the cross-correlation of price impact across stocks is consistent with the CAPM:

there is a single systematic component of price impact, and this is driven by the volatility

of the systematic component of the stock market. This result suggests that by separating the

underlying information into two components, systematic and idiosyncratic, informed traders

distinguish between productive assets that have a systematic impact on the economy and those

that can be diversified.
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Chapter 3 presents a two-period model of strategic interactions between a spoofer and a high-

frequency trader (HFT) who employs pattern recognition algorithms to predict the incoming

order. Detecting this strategy, the spoofer submits a spoofing order to mislead the HFT trader

about the incoming order. The HFT protects itself by reducing its market participation. A pure

strategy spoofing equilibrium exists and both spoofer and HFT make positive profits. It is shown

that while spoofing delays price discovery in the short run, price dislocation will be so brief as

to have few economic efficiency implications. Moreover, spoofing improves market liquidity and

market welfare.
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Introduction

Price impact refers to the effect of an incoming order on the price of an asset. It is the extent

to which the price moves against the seller or buyer after their orders are executed. For large

investors, price impact is one of the key considerations before any investment decision, as it

accounts for the vast majority of execution costs. Therefore, monitoring and controlling impact

has been one of the most active domains of research among practitioners and academics. Despite

voluminous amounts of data and many theoretical papers, the interpretation of price impact is

still a matter of debate among researchers.

From the market microstructure perspective, price impact is a result of some private information

incorporated into the price. The arrival of new information encourages new trades, which causes

other market participants to update their valuations, leading to price change. Kyle (1985) de-

veloped a model of strategic insider trading and showed that the insider would split their trade

into small orders and let information gradually incorporate into the price. In this model, market

impact is linear in trading volume and permanent in time. Keim and Madhaven (1996b) presen-

ted a model of the upstairs market with search cost and derived a power law temporary price

impact function. Hasbrouck and Seppi (2001) empirically show that price impact is a concave

function of meta-order size and it is approximately proportional to the square root of meta-order

size across different markets. From the econophysics perspective, price impact is a statistical ef-

fect of order flow variations. J. D. Farmer (2005) assumed that order flow is a random process

and showed that random fluctuations in supply and demand cause the price impact, and this

effect is mechanical and transient.
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Understanding the price impact has essential practical and regulatory implications. For prac-

titioners, the impact of trades can adversely reduce their profit as it increases with trading

size and places limits on fund size. By trading an excess size, large traders can turn a winning

strategy into a losing strategy. This is particularly problematic for high-frequency trading and

is the reason why price impact is one of the most rapidly expanding areas of research within

trading firms. For regulators, price impact provides feedback on supply and demand, which is

an essential component of price discovery. Understanding the price impact can help regulators

design fair and efficient markets.

This thesis aims to undertake a study to shed some light on price impact mechanisms and

reconcile different views from existing literature. First, an essential aspect of this study is the

emphasis on understanding the price impact function form and its relationship with the limit

order book. The functional form of price impact has been a puzzle in finance for a long time.

However, specific function forms that give a good fit to data vary widely from study to study.

Second, the study examines different factors that may drive the price impact of trades and

the underlying information value. The aim is to partition price impacts into two components:

systematic influence and idiosyncratic influence. Based on the findings of the first two chapters,

the last chapter develops a theoretical model to explain the effects of spoofing on market welfare

under the linear price impact setting. The thesis is organized into three chapters as follows.

The first chapter establishes the connections between the shape of the book and the price impact

by using trades and quotes data from 82 Nasdaq-listed stocks. We introduce the slope of the

limit order book as a new measure of price impact. By analyzing both bid and ask sides of high-

frequency limit order book snapshot data, our study shows that there is a linear relationship

between the cumulative size of liquidity and price impact in the limit order book. In addition,

we find that if price impact admits a nonlinear functional form, under certain circumstances,

a profitable round-trip arbitrage exists. We empirically show the minimum required trading

volume for a profitable self-financing arbitrage and conditions that limit arbitrage. We find that

arbitrage requires a large number of shares to the degree that it is impractical, thus providing

evidence in support of Huberman and Stanzl.
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The second chapter contributes to the literature by introducing a new method to estimate the

value of the information. By drawing an analogy between the price impact λ and the slope of

the limit order book, our results confirm the validity of the Kyle [1985] model under the limit

order book settings, which is under question as in the original paper, the market was modeled

as a dealer market with only market orders.

Contrary to the traditional postulation of Kyle’s λ, which suggests its estimation is derived

from execution data, we propose a novel approach by positing that Kyle’s λ is expressed in the

order book. Additionally, we estimated price and volume volatilities through an entirely different

methodology by using execution orders. Although the price impact and volatility estimates are

carried out using entirely different data and methods, they confirm the predictions of the Kyle

model.

We find that the idiosyncratic shocks to fundamental asset values have little impact on cross-

trades and any optimal cross-asset trading strategies would reduce to a diagonal matrix of

trading intensity.

Chapter 3 investigates spoofing from economic, historical, and legal perspectives. By studying

traders courtroom testimony and interviews, it is shown that practices resembling spoofing have

existed for centuries. The recent introduction of electronic trading systems has increased the

anonymity of trading, thus creating a perfect environment for spoofing to thrive, in turn in-

creasing regulatory scrutiny. I study recent spoofing courtroom cases and find that the main

victims of spoofing are HFTs: they get exploited because spoofers can easily detect and trick

their algorithms. Based on those findings, I developed a two-period model of strategic interac-

tions between a spoofer and a high-frequency trader (HFT) who employs pattern recognition

algorithms to predict the incoming order. Detecting this strategy, the spoofer submits a spoofing

order to mislead the HFT trader about the incoming order. The HFT protects itself by reducing

its market participation. I show that that while spoofing delays price discovery in the short

run, price dislocation will be so brief as to have few economic efficiency implications. Moreover,

spoofing improves market liquidity and market welfare.
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Chapter 1

Arbitraging Nonlinear Price Impact:

Testing Huberman and Stanzl

1.1 Literature review

1.1.1 Price impact function form

Current literature shows conflicting views on the form of price impact. From the market micro-

structure’s perspective, Kyle [1985] shows that impact is both linear in the traded volume and

permanent in time. In the model presented by Kyle [1985], informed traders and noise traders

submit their orders to a market maker, and then the price is determined by the market maker

by using a linear pricing rule. One of the most important characteristics of this model is that

the trade signs are serially uncorrelated and symmetric between buys and sells.

In unrelated work, Huberman and Stanzl [2004] show that if there is permanent price impact,

then it should be linear in order sizes under non quasi-arbitrage condition. They also point out

that if a trade has a temporary price impact, only the permanent component must be linear,

while the temporary one can be of more general forms. In the setting of this paper, a trader can

buy and sell subsequently the same security at any amount. The trader can strategically earn a

positive profit by employing such a strategy when the permanent price impact is not linear in

trading volume. Built on Huberman and Stanzl [2004] ’s result, Jusselin and Rosenbaum [2020]

prove that the temporary component of impact function can only be of power-law type when the
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price is diffusive with rough volatility under no-arbitrage assumption. Rough volatility indicates

the temporary impact function is driven by a (rough) fractional Brownian motion, which is of a

short-memory nature. Unlike the aforementioned papers. Keim and Madhaven [1996b] propose

a model of the upstairs market with search cost in which order size, beliefs, and prices are

determined endogenously. The model setting leads to the power law price impact function of

order size.

From the econophysics perspective, price impact is a statistical effect of order flow variations.

Bouchaud, Farmer, and Lillo [2009] do empirical research on thousands of trades and point

out that the autocorrelation of trade sides n decays extremely slowly with time, and the price

fluctuation is persistent and predictable. Therefore, they argue that the price impact should not

be linear and permanent. J. D. Farmer [2005] put forward a model of zero-intelligence agents

with a budget constraint. The model considers price formation and order submission under the

setting of a double auction. As a result, the model produces a highly concave function of price

impact. The concavity of price impact comes from the fact that orders near the market price are

cleared away more rapidly than those far from the market price. In an attempt to reconcile two

perspectives, Kyle and Obizhaeva [2018] presents two methods to obtain price impact function

form from a system of economic equations using trading volume and volatility. They point out

that the price impact may be a linear or strictly concave function under certain conditions.

Another attempt to extend Huberman and Stanzl [2004] ’s and Bouchaud et al. [2009] work

was Gatheral [2010] model of the price update function with market frictions. He argues that

the trading cost should consist of two main components. The first component is market impact,

which may decay over time. The second component is market friction, such as effective bid-ask

spread that affects only the execution price, but he assumes that friction costs are negligible.

Under the no-dynamic-arbitrage condition, where the expected cost of trading should be non-

negative, the shape of the market impact function price should satisfy some conditions that

make manipulation impossible.

The aforementioned literature on price impact has shown that the price impact is a function of

the trade size and the evolution of limit order books. The most universal function form has been

proposed as follows:

∆p = kvβ (1.1)
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Where ∆p is the price impact of a market order of size v, k and β are parameters of the

function. They vary widely in different markets and at different time periods. Even though

many empirical studies show that the market impact is a concave function of trade volume,

there is a disagreement in the specific function form. The following table shows a comparison of

empirical function forms proposed by different studies.

Function type Function form Market Years

Hasbrouck (1991) Concave NYSE 1989
Hausman et al. (1992) Strongly concave NYSE 1988
Keim Madhavan (1996) Concave Upstair market 1985-1992
Torre (1997) ∆p = kvβ β = 0.5 NYSE 1994
Dufour Engle (2000) Nonlinear NYSE (TORQ) 1990-1991
Gabaix et al. (2003) ∆p = kvβ β = 0.5 NYSE 1994-1995
Farmer et al. (2005b) ∆p = kvβ β = 0.25 LSE 2001-2004
Hopman (2007) ∆p = kvβ + ϵ β = 0.37 Paris Bourse 1995-1999
Bouchaud et al. (2009) ∆p = kvβ β = 0.3 LSE 2002
Rama cont et al. (2014) Linear ∆p = kIFO + ϵ NYSE 2010

Table 1.1: Comparison of impact functions

For these studies, price impact is typically measured by the change in mid-price before the order

arrival and mid-price after the order has been executed. This measure of price impact tends to

give an incomplete picture of the limit order book market in at least two ways. First, the price

impact of market orders receives the same treatment regardless of their trading volumes. All

market orders with order sizes smaller than the prevailing quoted depth at the best bid and

ask prices are completely absorbed by the best bid and ask quotes. Therefore, they have no

immediate price impact, and their delayed impact on the price is ignored. Second, other types of

limit order book events than market orders have not been studied extensively or even ignored as

only market orders are concerned. However, limit order book events should have indirect impacts

on the price. For example, adding a sell limit order should exert extra downward pressure on

the price, while canceling a sell limit order should ease this pressure.

Historically, most studies have considered price impact solely as a function of executed orders.

However, the limit order book, including higher-order flows and the interplay between order

flows, can also impact price. By analyzing the slope of the order book, we can capture these

dynamics. For instance, orders at various levels can alter the depth of the limit order book

differently, thereby affecting the slope in distinct ways.
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Zoltán Eisler and Kockelkoren [2012] are among a few papers that provide a theoretical frame-

work to study the impact of all order book events. The paper is built on the assumption that

the price impact is a linear combination of the impact of all past trades.

pt =

∫
t′<t

G(t− t′)ϵtv
θ
t + ηt dt+ p−∞ (1.2)

where vt is the volume of the trade at time t, ϵt is the sign of the trade (+ for buy and - for

sell), ηt is an independent noise term, G(l) is the temporal evolution of the impact of a single

trade. In order to incorporate all limit orders, the arrival of an event is considered a shock. The

average price after the arrival of an event π is defined by the following response function.

R(l) =< (pt+l − pt) · ϵt|πt = π > (1.3)

where R(l) is the price response function at time l as the result of the shock event π. It is the

conditional expectation of the product of return between t and t+ l and the sign of the trade.

1.1.2 Price impact asymmetry

Asymmetric price impacts have been studied in many previous papers. However, its existence

and its cause are a matter of debate. On the one hand, empirical papers such as Kraus and

Stoll [1972], Choe and Wood [1995], Busse and Green [2002], and Cohen, Frazzini, and Malloy

[2008] find that buy-side impacts exceed sell-side impacts in the stock exchanges. More recently,

Frino, Bjursell, Wang, and Lepone [2008] show similar findings for large trades in four Australian

financial futures markets. In contrast, Keim and Madhaven [1996a] find that the price impact of

sell orders in the upstairs market is larger than that of buys. Bikker, Spierdijk, and van der Sluis

[2007] study the price impact of equity trading by one of the world’s largest pension funds and

finds a similar result. Brennan, Chordia, Subrahmanyam, and Tong [2012] show that sell-order

liquidity is priced more strongly than buy-order liquidity.

Saar [2001] is among the first theoretical papers that give an explanation of why block buys

have a larger permanent price impact than block sells. His paper hinges on four observations of

institutional investors behaviors: 1) institutional investors invest substantial resources in gath-

ering and analyzing information, 2) they only use money from shareholders to invest and are

7



limited to using leverage, 3) mutual funds hold relatively diversified portfolios, 3) mutual funds

cannot sell short as a matter of policy. The paper finds that the price impact is strictly positive

when the stock doesn’t experience significant price appreciation, and the longer the run-up, the

less positive the price impact is. The argument is that initially, the probability that informed

investors own the stock is low, and they cannot sell short of the stock; when new information

arrives, all mutual funds buy and create a permanent price impact.

Reiss and Werner [2004] use unique data from the LSE to examine how trader anonymity and

market liquidity in the inter-dealer market. They find evidence that price impact asymmetry

exists but disagree with Saar on the cause of this phenomenon. London dealers have no problem

taking extensive short positions, and short selling (stock loans) is inexpensive. Taking a different

approach, Dierker, Kim, Lee, and Morck [2016] explain the price impact asymmetry based on

information heterogeneity and risk aversion. They explain that informed traders have hetero-

geneous expectations of the value of the stocks. When new private information arrives, some

investors may switch from one side of the market to the other, thus shifting their weight from

one side of the market to the other. Both my model and the model by Dierker et al. [2016] con-

sider inelastic demand and supply curves as a possible explanation for price impact asymmetry

.On the other hand, J.Fleming, Mizrach, and Nguyen [2018] use GovPX data to assess the mi-

crostructure of the U.S. Treasury securities market and show contradicting findings. The paper

points out that there is little evidence to corroborate the existence of price impact asymmetry.

While they find that buy trades generally have a higher price impact than sell trades by a few

percent, most of these differences are not statistically significant.

1.2 Data and measurement

1.2.1 Data

In our research, we collect data from several sources. First, we employ the proprietary database

of US stocks that are trading on the NASDAQ exchange. The database contains message-level

information of all stocks in February 2018. For each stock, there is a raw message file that

contains all trading messages of one stock sent to the market at high speeds in milliseconds within
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a trading day. The file provides a comprehensive record of every trade and order book change

of different stocks on the exchange. Therefore, limit order book reconstruction is needed. As the

dataset records all events that led to state changes to the order book, we can reconstruct the

limit order book for any stock at the full depth level for the specified period. The comprehensive

and full-depth level data allow us to analyze different characteristics of price impact and its

relationship with limit events with higher accuracy. Thus far, the empirical literature in this

field has been limited to the use of pre-constructed LOB data such as Lobster with only the top

of the book.

The message file contains every arriving market and limit orders as well as cancellations and

updates of one stock. The information in the message file has 9 data fields.

1. “Date” provides information regarding the trading day

2. “Timestamp” All entries have timestamp of seconds after midnight with the precision of

milliseconds.

3. “OrderNumber”, each order has a unique ID. Zero reference orders correspond to a hidden

limit market order.

4. “EventType” There are 11 types of market events in the data.

5. “Ticker” provides information regarding the trading stock

6. “Price” the price of the order

7. “Quantity” the quantity of the order

8. “MPID” provides information of Market Participant Identifier. This identifier is used by

FINRA member firms to report trades.

9. “Exchange” There are 2 main exchanges ARCA and NASDAQ. All entries detail which

exchanges the order was sent to.

Generally speaking, the order ID corresponds to the unique order reference number, which we

can use to differentiate messages. However, there are some exceptions that may affect our limit

order reconstruction.

1. All messages classified as“trade bid”and“trade ask”have zero reference orders. Those are

hidden market orders with full information for all other fields except the order number.

As they are market orders, they don’t affect our limit order reconstruction, but we need

to take them into consideration when we look at executed orders.
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2. For big stocks that are trading across trading platforms, there are some order IDs corres-

ponding to multiple different orders sent to different trading venues. One example is the

messages with order ID 6168348 (TSLA, 08 Feb 2018). Essentially, the ID corresponds

to 2 separate messages sent to different exchanges. The first order was a bid order at

08:20:56, which was sent to NASDAQ, then eventually got executed and filled later. The

second order was an ask order at 09:42:40, which was sent to ARCA and then deleted

eventually. In order to differentiate those different orders with the same reference num-

ber, we can look at the exchange and nature of the order. First, these orders were sent to

different exchanges. We can use trading venues to find out and group all related orders.

Second, we can use the nature, such as the order type and price, to map out all related

orders. For example, “Add bid” orders should have related orders of type “execute bid”

and “fill bid”; “Add ask” orders should have related orders of type “execute ask” and “fill

ask.”

Second, we obtain the data for the stock directory with market cap, R2, βCAPM , and variance

from the NYSE and Zoonova. Our directory contains all active stocks during the period between

1 January 2021 and 31 December 2021. We collected the list of active tickers from January to

December 2021, though the sampling period focuses on February 2018. The primary justification

for this period is that February 2018 was relatively stable, falling outside the U.S. earnings season

and unaffected by significant macroeconomic events. All stocks must meet three pre-screening

criteria to be in the directory: (1) it is a common stock, (2) it is active on the first and last day

during the sampling period. Active stocks refer to any stocks with trading activity on public

exchanges during the sampling period. Out of over 6,500 tickers, some stocks were not listed or

did not exist as of February 2018. (3) it has NASDAQ as the primary listing exchange. After

filtering out all duplicates and erroneous entries, we are left with 6,481 stocks. There were 19

trading days in total, and each stock had approximately 10,000 to over 1,000,000 messages for

one trading day. Therefore, the input file size can reach the region of 20 GB for one ticker day,

thus posing technical changes in terms of computation and data storage. We employed stratified

random sampling by partitioning all tickers into subpopulations. The sample stocks were chosen

based on the following sampling characteristics: high R2, low R2, high β, low β, high market

cap, low market cap and low variance, high variance. 12 tickers were randomly selected from

each group, yielding an initial sample of 96 tickers. After removing duplicate entries, 83 unique

tickers (including SPY) remained. The rationale behind this sampling method is that stocks have
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high variances in all those characteristics. Stratified random sampling allows us to effectively

select stocks that represent a diverse range of groups. The statistical summary of those stocks

is illustrated in the table below.

R-squared Marketcap Variance (yearly) Beta

Mean 0.1590 19,300,751,911 6.096 0.93
Standard Error 0.0300 6,811,346,968 1.335 0.18
Median 0.0299 353,644,000 0.970 0.85
Minimum 0.0001 23,198 0.063 (2.47)
Maximum 0.7253 343,970,000,000 35.490 4.81

Table 1.2: Descriptive statistics of the sample

1.2.2 Limit order book reconstruction

The message file contains every arriving market and limit orders as well as cancellations and

updates of one stock. For every entry in the message file, we need to recreate a corresponding

snapshot in the order book file that describes how the order book is updated immediately after

the message file event. In summary, the information contained in the message files has the

following properties

• All entries have timestamps of seconds after midnight with a precision of at least milli-

seconds, the order ID corresponding to the unique order reference number. Zero reference

number corresponds to a hidden limit order

• There are 12 types of market events that are recorded in the data (see Table 2 below). In

this study, a limit order book is the primary focus. Therefore, cross messages are filtered

out as those transactions occurred in a dark pool or an auction. When a market order

is matched against several limit orders, each matching is recorded separately Messages

labeled as “FILL ASK” and “FILL BID” have missing price and quantity fields. We need

to trace back to the original order and other orders of the same IDs to figure out missing

pieces.
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To reconstruct a limit order book from a raw message file, an initial snapshot of LOB is created,

and then next snapshots will be updated when a new message arrives. After handling missing

data and abnormal entries, limit order books are reconstructed with the ask price and the

corresponding volume, as well as the bid price and its volume. The newly constructed limit

order book has a full depth with price and volume at all levels. For “ADD ASK” and “ASK

BID” message types, a new snapshot is updated by adding those new messages to the previous

snapshot. For“CANCEL BID”,“CANCEL ASK”,“EXECUTE ASK”,“EXECUTE BID”message

types, the order ID and exchange of the message are matched against the orders in the previous

snapshot to look for the outstanding order that should be updated by reducing its order size. For

“DELETE BID”, “DELETE ASK”, “FILL ASK”, “FILL BID”message types, the corresponding

orders get processed completely. Therefore, the new snapshot is constructed by deleting all orders

with the same IDs of incoming messages. At any time, there are only “ADD ASK” and “ADD

BID” messages outstanding in a snapshot. Upon the creation of a snapshot, ask and bid order

types are separated, sorted, and grouped by price. The final step is to filter out abnormal entries

and then create the cumulative depths at each price level.

Event Type Description

ADD ASK Submit a new ask order
ADD BID Submit a new bid order
CANCEL BID Cancel the bid order partly
CANCEL ASK Cancel the ask order partly
CROSS Dark pool transactions without price and quantity
DELETE ASK Delete the whole ask order
DELETE BID Delete the whole ask order
EXECUTE ASK Execute the order partly
EXECUTE BID Execute the order partly
FILL ASK Fill the ask order completely
FILL BID Fill the bid order completely
TRADE BID Fill the bid order completely

Table 1.3: Even Type in the message file
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1.2.3 Defining the price impact and model setup

1.2.3.1 Transaction costs

The trading costs generally consist of two main parts. The first component is the impact of an

incoming order on the price of the stock which we refer to as the price impact in this paper. The

second part comes from the market frictions such as effective ask-bid spread, brokerage fees, and

trading fees which also affect our execution price and trading profit.

In this paper, the effective ask-bid spread is calculated as the difference between the best ask and

best bid price in the limit order book after each message gets updated. To measure daily ask-bid

spread, we take an average of ask-bid spreads across snapshots, but we exclude the snapshots

with 30 minutes of market opening and closing.

Spreadt = at − bt (1.4)

where Spreadt, at, bt are the effective ask-bid spread, best ask price, and best bid price, respect-

ively.

Another friction cost that we take into consideration in this paper is trading costs. There are

many different types of trading costs; our main concern here is compulsory charges by the

Nasdaq exchange. Membership is required to participate in most of the U.S. equities and options

exchanges, including Nasdaq. For fixed costs, Nasdaq charges their members a membership fee

of $1,200 per year and a trading rights fee of $200 per month. For variable costs, Nasdaq adopts

the “taker-maker” fee model to attract order flow and encourage market participants to provide

liquidity. The “taker-maker” model dates back to the late 1990s when electronic trading venues

started becoming popular. In this payment scheme, a market generally pays its members a rebate

to provide (“make”) liquidity and charges them a fee to remove liquidity. As a result, market

participants are incentivized to submit competitive quotes at the best bid prices, thus increasing

the market’s liquidity. By the mid-2000s, this model had become the standard pricing model

for most US exchanges. The maker-taker fees in the equities markets are regulated by Rule 610

of Regulation NMS and get capped at $ 0.003 per share. Apart from maker-taker fees, market
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participants have to pay the SEC and FINRA Trading Activity Fee (TAF), which are regulatory

fees charged on the sale of any security. These fees are automatically debited from the proceeds

of any security sale. These fees year by year. Currently, SEC’s fee rates applicable to most

securities transactions will be set at $8.00 per million dollars while FINRA fee is $0.000145 per

share for each sale of a covered equity security.

1.2.3.2 Price impact

Kyle [1985] proposed a seminal model that provides insight into the mechanisms by which private

information is gradually incorporated into prices in an efficient market. The model was then later

extended by Kyle [1989] to take into account competing informed traders. In the original model,

there are 3 main types of market participants: an informed trader with insider information that

gives him greater predictive power about the future value of an asset than other players, noise

traders, and market makers. Under this framework, Kyle suggested a single statistical measure

of the impact that is both linear in traded volume (order size) and permanent in time. λ is

a measure of market impact cost from Kyle (1985), which can be interpreted as the cost of

demanding a certain amount of liquidity over a given time period. λ can also be used as a

measure of market liquidity and can be estimated by the volume required to move the price of

a security by one dollar. It can be interpreted as the elasticity of returns against net order flow

or signed volume (volume times the sign of the return). Khandani and Lo [2011] estimate this

measure on a daily basis by using all transactions during normal trading hours on each day. The

authors obtain the sequences of intraday returns (Rt) , prices (pt), and volume (vt) to estimate

the following equations.

Rt = αt + λSgn(t) ln(vtpt) + ϵt (1.5)

Where Sgn(t) is -1 or + 1 depending on the direction of the trade. Sgn(t) is + 1 for buy orders, -

1 for sell orders. Equation (1.5) implies that the intraday return is a signed logarithmic function

of trading volume in dollars. Any interval with zero return receives the same sign as that of the

most recent transaction with a non-zero return (using returns from the prior day, if necessary).

14



YakovAmihud [2002] proposes a price impact measure that captures the daily price response

associated with one dollar of trading volume. Specifically, they use the following ratio.

Price impact = Average(
|rt|

V olume
) (1.6)

where rt is the stock return on day t and Volume is the dollar volume on day t. The average is

calculated over all positive-volume days since the ratio is undefined for zero-volume days.

Alternatively, following Hasbrouck (2009) and Goyenko, Holden, Trzcinka (2009), a represent-

ative coefficient is estimated as the λ coefficient in the regression. Contrary to Kyle’s lambda,

this measure is a root square function of volume.

∆P = λ (Signed
√
Dollar V olume) + ϵ (1.7)

Using a different approach, Bouchaud et al. [2009], postulate that the simplest quantity, that

can assist in the study of price changes, is the mean squared fluctuation of the prices between

the given trade and the execution of the next one (correspondent to the execution of MOs in

the context of LOB trading). They functionally define this degree of fluctuation as the difference

of mid-price in 2 periods. Then, the price impact function is defined as the signed value of the

average difference between the mid-price just before the arrival of an original market order and

the mid-price just before the arrival of the next market order

D(l) = mt+1 −mt (1.8)

R(t) = ϵt(mt+1 −mt) (1.9)

where mt is the mid-price at the period t. ϵt is the direction of the trade.

While there are a handful of studies that propose different measures for price impact, they

construct price impacts of only market orders by using transaction-level data. The vast majority

of the literature using the measure employs them on message-level (or finer) data for the limit

order book. Kaniel and Liu [2006] study the private information flows into prices through both

limit orders and market order executions and conclude that limit order events convey more

information to stocks than market order executions. This means the usual way of measuring

information content as the trade-correlated permanent component of price impact omits the
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information content of limit orders. Therefore, estimates of price impact by using market order

executions may be understated. Furthermore, from practitioners’ perspective, there is a lack

of price impact measures that allow them to estimate their trading costs in a high-frequency

trading environment even before they submit their orders.

In this study, we propose a new measure of price impact based on standard Kyle’s λ. The new

measure is the derivative of the cost of demanding a certain amount of liquidity when a new

limit event is submitted. In other words, price impacts are the slopes of demand and supply

curves implicit in the limit order book. We calculate this price impact (λ) as the coefficient of

the regression.

Pbid,i,t = λbid,t Vbid,i,t + P0 + ϵt (1.10)

Pask,i,t = λask,t Vask,i,t + P0 + ϵt (1.11)

Where Pbid,i,t and Pask,i,t are bid and ask prices of the limit orders at the level ith at time t.

Vbid,i,t and Vask,i,t are cumulative depths at the level ith at time t, ϵt is the error term. da,it is the

market depth at the l-th best ask after the t-th event, db,it is the market depth at the l-th best

bid after the t-th event.

Vbid,i,t =
i∑

n=1

db,it (1.12)

Vask,i,t =
i∑

n=1

da,it (1.13)

The proposed measure of price impact is the slopes of price against cumulative depths, thus

making it fit well in Kyle’s framework as the inverse of λ in the limit is the depth at the specific

price level.

lim
i→j

1

λi
= lim

i→j

Vi − Vj

Pi − Pj
≈ vj (1.14)
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1.2.3.3 Order flow imbalance and market depth

Order flow imbalance is the changes in supply and demand of a stock over a given period. In

Kyle’s model, the author suggests that the price change is driven by the order flow imbalance.

The empirical implementation of order flow imbalance for a limit order book is a big challege.

Hopman [2007] proposed two measures of order flow imbalance. The first natural measure is to

add the volume of all buy orders and subtract all sell orders in a given period.

OFIi =
∑

vbuyi −
∑

vselli (1.15)

Where OFIi, v
buy
i , vselli are the order flow imbalance, the volume of all buy orders, and the

volume of all sell orders in the i period. Assuming that the price impact is a square root function

of volume, Hopman [2007] used another SQRT measure to represent the order flow imbalance.

OFIi =
∑

(vbuyi )0.5 −
∑

(vselli )0.5 (1.16)

In Hopman [2007]’s paper, the author showed that most of the stock price changes can be

explained by the imbalance between buy and sell orders. However, these measures have two

shortcomings. First, they do not take other effects of limit order events on order flow imbalance.

For example, cancellation of an order at the best ask can lead to a decrease in supply, while

adding a new order at the best ask price may result in supply. Second, they require access to

limit order data to ensure that order flow imbalance reflects the imbalance in investors intention

to trade.

Cont [2014] proposed a model describing the relationship between order flow imbalance and price

changes. Their study shows a linear relation between order flow imbalance and price changes,

with a slope inversely proportional to the market depth. Given two consecutive snapshots of a

limit order book, they define the bid OFm.b
n and ask order flows OFm.a

n at level m at time n as

follows

OFm.b
n :=


qm.b
n if Pm.b

n ≥ Pm.b
n−1

qm.b
n − qm.b

n−1 if Pm.b
n = Pm.b

n−1

−qm.b
n if Pm.b

n < Pm.b
n−1

(1.17)
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OFm.a
n :=


−qm.a

n if Pm.a
n ≥ Pm.a

n−1

qm.a
n − qm.a

n−1 if Pm.a
n = Pm.a

n−1

qm.b
n if Pm.a

n < Pm.a
n−1

(1.18)

where Pm,a
n , qm,a

n , Pm,b
n , qm,b

n denote the ask price, ask size, the bid price, bid size at the level m

at time n, respectively. Essentially, the equations (1.17) and (1.18) state that the order flow is

the change in the ask and bid size at each price level. The order flow imbalance is defined by.

OFIm,T
n :=

h+T∑
n=h

(OFm,a
n −OFm,b

n ) (1.19)

The order flow imbalance OFIm,T
n is defined by the sums of differences between the order flow

of the ask and bid side at the level m. The shortcoming of this measure is that the ask and bid

prices at level m are different, and they grow wider as they move far away from the top of the

book.

In this paper, we use the market depth dynamics as an indicator of the order flow. The full

market depth with corresponding prices forms a snapshot (a state) of the limit order book. By

studying the relationship between the market depth dynamic and the price, we assume that the

price impact depends on both incoming orders and the state of the order book. Furthermore, the

change in market depth at each level can fully capture the order flow imbalance at that specific

price level. If we consider Cont [2014]’s model within a high-frequency time frame when there

is at most one order sent to the market, the order flow imbalance by collapses into the order

flow only from the bid or ask side. If there is only one order from the ask side, the order flow

imbalance by is the change in cumulative market depth defined by (1.13).

OFIm,δT
n,a := OFm,a

n = ∆Vask,m (1.20)

1.2.3.4 Model specification

There is a consensus that the price impact should be a function of the trade size and the limited

order book dynamics. The most popular function of price impact in the literature takes the form.

∆p = αvβ (1.21)
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Where ∆p is the price impact of a market order of size v, α and β are parameters of the function.

In order to test the relationship between the price, cumulative depth, and price impact, we

conjecture that the price change is a power function of a depth change.

|∆Pi,t|= α|∆Vi,t|β (1.22)

Where ∆Pi,t, ∆Vi,t are the differences of the bid price of the limit orders at the level ith,

cumulative depths at the level ith at time t and the best bid price, depth at the best bid price

respectively.

The cumulative depth is only calculated at the price level where there is an active order. There-

fore, zero changes in cumulative depth and price levels are trivial cases that are not possible

in this scenario due to the model settings. Moreover, each limit order book event results in a

non-zero change in cumulative depth at its price level. It is, therefore, reasonable to assume that

|∆Vi,t| and |∆Pi,t| are positive. If we take logs on both sides (1.22), we have the empirically

testable relationship.

ln|∆Pi,t|= lnα+ β ln|∆Vi,t| (1.23)

In order to test the linear relationship between the change in price and depth, we estimate the

regression (1.22) and test the hypothesis β = 1.

1.2.4 Results

1.2.4.1 Overview

This section reports the statistics summary result for average price impact cross stocks. Detailed

results for each stock in our sample are presented in the Appendix A.1. For the first part of the

report, we estimate the price impact as the coefficient of the regression given by (1.11), (1.10).

Table 1.4 presents the summary of estimated λ cross stocks for both bid and ask sides. Our study

found that the coefficients λbid and λask are statistically significant for more than 95% of the

sample. The absolute value of λbid and λask of the same snapshot show a positive relationship,

and they are close to each other. The goodness of fit is surprisingly high for most stocks with
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R2, which is close to 0.89 on average. It is also notable that λ varies significantly across stocks

in different groups on both the bid and ask sides, indicating substantial variation in liquidity

within the stock market.

−λbid λask R2
ask R2

bid

Average 1.84E-03 1.27E-03 0.883 0.871
Median 2.72E-04 1.54E-04 0.892 0.921
Min 3.66E-06 4.38E-07 0.53 0.49
Max 4.81E-02 3.68E-02 0.973 0.987
Std 0.00681 0.00445 0.11 0.0845

Table 1.4: Descriptive Statistics of the average daily price impact

Table 1.5 provides an overview of the average β and lnα across stocks in Feb 2018. βbid and

βask are the average estimates of β from the bid and ask sides respectively. Both of them covary

positively in the sample across stocks and time in the same magnitude. βbid has an average cross-

sectional value of 1.259 and a median of 1.11, while βbid has an average cross-sectional value of

1.14 and a median of 1.09. Both have means and medians surprisingly close to 1. Furthermore,

the values of R2 are significantly high for both bid and ask sides, and R2 are greater than 80%

for a majority of regressions. This supports the idea that price impact is a linear function of

trading volume.

βbid βask lnα lnα R2
ask R2

bid

Average 1.259 1.136 -12.918 -10.802 0.865 0.881
Median 1.116 1.090 -11.179 -10.217 0.889 0.9118
Variance 0.151 0.169 90.801 16.336 0.0088 0.0071
STD 0.3887 0.411 9.52 4.041 0.0942 0.0845
Max 2.767 2.424 -4.501 -2.985 0.9636 0.9609
Min 0.723 0.3196 -88.297 -25.425 0.4657 0.4821
Standard deviation 0.388 0.411 9.528 4.041 0.0942 0.0846

Table 1.5: Descriptive Statistics of the average daily ln α and β

Current literature shows conflicting views on the values of α and β. While Saar [2001] is among

the first theoretical papers that support the price impact asymmetry, Huberman and Stanzl

[2004] shows that the price impacts should be the same for both bid and ask sides; otherwise,

traders can use arbitrage strategies to make a free-risk profit. In this section, we test whether

the average βbid and βask are different from each other and from 1 by running a t-test. Let

β′ = βbid − βask, our null hypothesis is to test β′ = 0 with the t-test:

task−bid =
β̄′

s(β′)/
√
n

(1.24)

task =
¯βask − 1

s(βask)/
√
n

(1.25)
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Where β̄′ is the average of cross-sectional differences between 2 parameters. s(β′) is the standard

deviation of differences. In order to implement the test, we need to estimate daily bid and ask’s

β across stock, then compute the pairwise differences. There are 82 stocks, with 19 trading days

for each stock. We assume that differences are i.i.d. over time and across stocks and test whether

the average difference is different from zero. The task−bid value is 2.3. So, βbid and βask are not

statistically different from each other. However, the task value is 3.3. In the next section, we will

examine whether arbitrage is possible if the price impact admits a non-linear relationship.

1.2.4.2 Round trip strategy

Following Huberman and Stanzl’s definitions, we define vn as a round trip trade if its sum is

zero or
∑

vn = 0. We assume that (1.22) is a correctly specified model of the price impact and

depth. We consider the following round-trip strategies and study their opportunities.

Strategy 1: Buy M shares (M a big number) in 1 trade, then sell M
k shares in k subsequent

periods. M and k are integers.

Strategy 2: Buy M
k shares (M a big number) in k consecutive trades, then sell M shares in the

last period. M and k are integers.

The profit of a round trip trade is given by (1.26). By analogy with another of Huberman and

Stanzls definitions, a risk-neutral manipulation is a round trip trade with a positive expected

profit.

π(vn) =

N∑
n=1

−pnvn (1.26)

where pn, vn are price and trading volume in the nth period.

Now we consider a limit order book in which the relationship between change in the limit order

book depth and the price is described as |∆Pt|= α|∆Vt|β . This equation holds true for both

the bid and ask sides. We assume that purchases are expected to have a positive impact on the

price of the stock, and sell orders are expected to have a negative price on a stock. We denote

f(x) as the price impact function, where x is a change in the volume. Assume that a trader buy

x shares, that moves the price from p0 to p1. By the model’s setup, the new price is given by
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p1 = p0 + αxβ . The trader needs to pay.

C(x) =

∫ p1−p0

0
(p0 +∆p)(f−1)′(∆p)d(∆p) (1.27)

As the trader market buys x shares, he walks the book and depletes all outstanding limit orders

between p0 and p1. His realized cost is the sum of all outstanding limit orders between p0 and

p1. By the setting up of the model, the cumulative depth at the price level pi is vt = f−1(∆pi).

Therefore, the depth or order size at that price level is the derivative of f−1(∆pi).

Simplifying the equation (1.27), we can get the cost

C(x) = xP0 +
αxβ+1

β + 1
(1.28)

Applying the equation (1.28) to the first strategy, the expected profit for the first round trip

strategy is as follows

π1 = −αMβ+1

β + 1
+

(
αMβM

k
k − (k − 1)k

2
α

(
M

k

)β M

k

)
− k

α

(1 + β)

(
M

k

)β+1

− cM (1.29)

Where c is the trading cost per share, which includes the ask-bid spread and other trading fees.

For the purpose of this paper, we estimate c = spread + 0.006, where $ 0.006 comes from the

Nasdaq fee per share.

Order No Starting Price Ending Price V Cost/profit

Buy 1 0 αMβ M αMβ+1

β+1

Sell 1 αMβ αMβ − α
(
M
k

)β M
k (αMβ)Mk − α

(
M
k

)β+1 1
β+1

Sell 2 αMβ − α
(
M
k

)β
αMβ − 2α

(
M
k

)β M
k (αMβ − α

(
M
k

)β
)Mk − α

(
M
k

)β+1 1
β+1

Sell
...

...
...

...
...

Sell i αMβ − (i− 1)α
(
M
k

)β
αMβ − iα

(
M
k

)β M
k (αMβ − (i− 1)α

(
M
k

)β
)Mk − α

(
M
k

)β+1 1
β+1

Table 1.6: Breakdown of cost/profit
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The first term −αMβ+1

β+1 comes from the cost of buying M share at once, thus pushing the price

from p0 to p1 = p0+f(M). On average, the trader pays αMβ

β+1 more as the cost of price impact. The

second term is the net revenue from selling M
k shares over k periods. The first chunk of M

k shares

is sold at the price of p1 and the ith chunk of M
k shares is sold at the price of (i− 1)αMβ

kβ
. The

third term is the price impact of selling M
k shares in k periods. By (1.28), the price impact cost

of selling M
k is αMβ+1

(1+β)kβ+1 . Therefore, the price impact of k sell orders of M
k shares is k αMβ+1

(1+β)kβ+1 .

The trader chooses the number of trades k to maximize his profit given by π1. If β < 1, π1 is a

decreasing function in k. If If β > 1, π1 is an increasing function in k. The first order condition

of π1 with respect to k is given by

π′
1 =

αMβ+1(β − 1)

2(1 + β)kβ+1
((1 + β)k − β) = 0 (1.30)

There are two cases. In the case that β < 1, the derivative of π1 with respect to k is negative.

Therefore, the profit function is decreasing in k. The maximum profit is π1(1), which means the

trader should sell all shares in one trade. This makes sense as β < 1, the price impact function

is concave, and the price impact of selling all shares is less than splitting up the order into small

orders. The profit function at k = 1 is given by π1(0) = −αMβ+1( 1−β
(1+β)) − cM < 0 which is

negative. In other words, there are no arbitrage opportunities when β < 1. 1

In the case that β > 1 the derivative of π1 with respect to k is positive and the profit function

is increasing in k. The profit function attains its maximum value at k = M . Therefore, the best

strategy for the trader is to sell one share in each of M periods to minimize the price impact

when β > 1. The profit function at k = M is given by

π1 =
αβMβ+1

β + 1
− αM

(
1

1 + β
+

M − 1

2

)
− cM (1.31)

Now, the trader chooses the optimal number of shares that he should trade. The derivative of

π1 with respect to M

π′
1 = α

(
βMβ − 1

1 + β
−M +

1

2

)
− c (1.32)

1. In the case, we allow traders to trade futures and options in order to minimize the price impact, the cost of
trading (excluding premiums) for one future contract or options contract is around $2, that is more than 10 times
the average ask-bid spread in our sample.
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The second derivative of π1 with respect toM is π′′
1 = α(β2Mβ−1−1). As β is strictly greater than

one and M > 1, the second derivative of π1 with respect to M is strictly positive. Furthermore,

we have π′
1(0) =

α(β−1)
2(1+β) − c < 0 as α is very small, and limM→+∞ π′

1(M) = +∞. Therefore, π′
1

has a unique solution, denoted by M0. The profit π1 at M0 is

π1(M0) = αM0
(1− β)((1 + β)M0 + 1− β)

2(1 + β)2
− β

β + 1
cM0 (1.33)

As β > 1, the profit π1 attains its minimum at M0 and π1(M0) is negative.

Figures 1.1 - 1.3 illustrates the round trip strategy when β > 1. The trading costs, such as

funding fees, ask-bid spread, and other trading costs, are excluded for simplicity. Each figure

shows the evolution of the limit order book after a trade. Figure 1.1 presents the change in the

limit order book after the trader buys ∆Q shares. The trade depletes the ask side and moves

the price of the stock from P0 to P1. By our assumption, the trader needs to pay Cbuy, which is

the green area. After a big buy order, the trader gradually liquidates the position by splitting it

into a series of small orders. Figure 1.2 shows the revenue, the yellow area, which the trader can

obtain by selling ∆Q1 shares. Figure 1.3 presents the profit of the round trip strategy without

trading costs when β > 1. The profit is the area between the curve P1Q1 and P1P2P3P4Q1.

When β > 1, P1P2P3P4Q1 lies above P1Q1 and the trader makes a positive profit. When β = 1,

P1P2P3P4Q1 collapses into P1Q1 and the trader makes a zero profit. When β < 1, P1P2P3P4Q1

lies below P1Q1 and the trader incurs a loss.

To achieve a positive profit, the number of M shares should exceed a threshold M1 at which

π1(M1) is zero. As we cannot find a closed-form solution for π1, we will solve it numerically by

using our empirical estimations. Out of 83 stocks, there are 47 stocks with β > 1. The reason

for this is that those stocks have most of their resting orders at the top of the book. Therefore,

the shape of the book tends to be steep near the top of the book and becomes flat when moving

far away from the best bid and ask. We solve M1, the volume the trader needs to trade to break

even for those stocks.
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Ask0

Ask1

Bid1

P1

P0

Cbuy

∆Q

∆P

Q

P

Figure 1.1: The cost of buying ∆Q when β > 1.

Table 7 provides an overview of the solutions M1. The average M1 is 11,488, the maximum

value for M1 is 238484. On average, the trader needs to trade 11488 shares with a trade value

of $222,794 in order to break even. The number of trades required is about 27.3 times the

daily average number of executed orders and 29 times the average size of executed orders. Even

though there are arbitrage opportunities, there are some limits to arbitrage. First, in this model,

we assume that the bid-ask spread is constant across time, requiring that the limit order book

be highly resilient. However, when a big market order is submitted, the liquidity of one side

gets depleted, and the spread between ask and bid sides widens. It may take a long time for the

spread to return to a normal level. Second, the arbitrage strategy requires initially buying a large

number of shares and subsequently selling one share at a time over many periods. The trader

can fall victim to predatory trading if their strategy gets detected: other market participants

can front-run their strategy. Furthermore, employing the strategy requires a sufficiently long

horizon, thus exposing the trader to inventory risks if the price moves against his strategy.
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P1
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P2

∆Q∆Q1

∆P

Q

P

Figure 1.2: The revenue of selling ∆Q1 when β > 1

Now, we examine the self-financing strategy in which the trader borrows money at an interest

rate ( Fed fund rate r % daily) to finance his round-trip trades. The interest he needs to pay

is r(MP0 + αMβ+1

β+1 ). When β < 1, the profit attains its maximum at k = 1 and π1(0) =

−αMβ+1( 1−β
(1+β))− cM − r(MP0+

αMβ+1

β+1 ) < 0. As a result, there are no arbitrage opportunities.

When β > 1 the profit function at k = M is given by

π1 =
αβMβ+1

β + 1
− αM

(
1

1 + β
+

M − 1

2

)
− cM − r

(
MP0 +

αMβ+1

β + 1

)
(1.34)

Similarly, we solve M sf
1 , the minimum volume the trader needs to trade to break even. For

simplicity, we calibrate the model with r = 0.013% and P0 as the average executed price. We

find that the trader needs to trade approximately 4.6% more shares than the baseline case to

break even.

M1 M sf
1 Price Volume Trade value M/ Exe. message M/Volume

Average 11488.2 12026.6 6552.7 170.3 222794.7 27.3 29.2
Median 1717.3 1920.8 2760.7 94.3 48916.0 0.3 15.1
Min 495.1 530.9 27.7 30.2 8354.1 0.1 6.8
Max 238,484 240,383 124741.7 985.7 5414125.0 850.8 937.6
Std 37937.3 38304.4 20876.9 148.0 1139721.6 148.4 136.9

Table 1.7: Descriptive Statistics of M1
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Figure 1.3: The profit of the strategy without the trading costs when β > 1

Applying the equation (1.28) to the second strategy, the expected profit for the second round

trip strategy is as follows

π2 = −

(
k

α

(1 + β)

(
M

k

)β+1

+
(k − 1)k

2
α

(
M

k

)β M

k

)
+ kα

(
M

k

)β

M − αMβ+1

β + 1
− cM (1.35)

The trader chooses the number of trades k to maximize his profit given by π2. If β < 1, π1 is an

increasing function in k. If β > 1, π2 is a decreasing function in k. The first order condition of

π2 with respect to k is given by

π′
2 =

αMβ+1(1− β)

2(1 + β)kβ+1
((1 + β)k + β) = 0 (1.36)

Similarly, there are two cases. When β < 1, the optimal value of k is M and the profit is

π2(M) =
αMβ+1

β + 1
− αM

(
1

1 + β
+

M − 1

2

)
− cM (1.37)
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Now, the trader chooses the optimal value ofM to maximize his profit. The derivative of π′
2(M) =

α(Mβ − M) + β−1
2(1+β) < 0. The function π2(M) is decreasing in M and π2(M) ≤ π2(0) = 0.

There are no arbitrage opportunities.

When β > 1, the optimal value of k is M and the profit is α(β−1)Mβ+1

β+1 −cM . The optimal strategy

for the trader is to buy all in one trade and then sell after that. However, if the trader sells right

after the first trade, the ask-bid spread is high because after the trade, the spread increases

by αMβ . The expected profit π2 = α(β−1)Mβ+1

β+1 − cM = α(β−1)Mβ+1

β+1 − (spread + 0.006)M <

α(β−1)Mβ+1

β+1 −αMβ+1 < 0. If the trader waits until the trader also needs to trade a high minimum

threshold to break even, he faces the risk of the pricing moving against his strategy.

1.2.5 Conclusion

This paper investigates the relationship between the cumulative size of liquidity and the price

impact of order book events by using trades and quotes data from 82 Nasdaq-listed stocks.

We propose the slope of the limit order book as a new measure of price impact. By analyzing

both bid and ask sides of high-frequency limit order book snapshot data, our study shows that

there is a linear relationship between the cumulative size of liquidity and price impact in the

limit order book. In addition, we find that if price impact admits a nonlinear functional form,

under certain circumstances, a profitable round-trip arbitrage exists. We empirically show the

minimum required trading volume for a profitable self-financing arbitrage and conditions that

limit arbitrage. We find that arbitrage requires a large number of shares to the degree that it is

impractical, thus providing evidence in support of Huberman and Stanzl.
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Chapter 2

The value of information flows in the stock

market

2.1 Introduction

Capital must be allocated to myriad investments, properly balancing the relative risks and

returns associated with each investment; this is done in stock markets, with information about

each investment constantly flowing in and being weighed against information about competing

investments.

This problem is important because the tens of thousands of individual traders in stock markets

who have information have the incentive to keep that information private and to profit from it

in trading, and it is important to understand whether their activities result in the efficient and

proper allocation of investment resources when interacting in stock markets, as this determines

the growth of the economy.

The literature has proposed a theory, the Kyle [1985] model, that shows how the equilibrium

behavior of traders processing this information results in a relationship between the information,

the price of assets, and the volatilities of the prices and trade volume of equities traded in the

market. A fundamental quantity of interest in the Kyle [1985] model, λ, the slope of the supply

curve reflects the fundamental forces driving the stock value; λ reflects the marginal effect of

trading on the price, and so is known as the price impact parameter.
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While Kyle [1985] predicts how λ is determined and quantitatively links it to the volatilities of

price and trading volume, it was developed within the context of a dealership market without

any reference to the limit order book. Furthermore, previous studies have not examined the re-

lationship between λ and the limit order book, typically estimating price impact using execution

data rather than LOB data. By drawing an analogy between λ and the slope of the order book,

we observe that the limit order book has a visible structure: the set of unexecuted orders forms

a pattern—essentially a supply curve—with a slope that is driven by the underlying incentives

created by the information possessed by some of the traders.

In contrast to the traditional interpretation of Kyle’s λ, which assumes its estimation originates

from execution data, we propose an innovative approach by hypothesizing that Kyle’s λ is

expressed within the order book. Furthermore, we estimated price and volume volatilities through

a different methodology focused on execution orders. While the price impact and volatility

estimates are carried out using entirely different data and methods, they confirm the predictions

of the Kyle model.

To test the hypothesis that price impact—Kyle’s λ—is embodied in the limit order book, we run

a simple regression of price against quantity in each updated instance of the limit order book

to recover an estimate of λ, and relate it to our estimates of the volatilities. But because of the

immense number of messages and the hundreds of trading days for each stock this is in itself a

huge task. Notably, previous studies estimating λ from execution data did not incorporate limit

order book data, making our data approach both novel and distinctive.

We carried out our analysis using a data set containing the complete set of transactions over a

three-year period.1 Order information is typically in extremely raw form: each order submitted

by traders to buy or sell shares of stocks is recorded as a message in the so-called limit order

book (LOB), with the stock ticker label, price, quantity, time of initiation, and time of execution

or cancellation, and these orders and terminations occur on a rolling basis.

1. We thank AlgoSeek corporation for generously donating this data.
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To carry out the analysis, the limit order book needs to be retrospectively reconstructed from

this data, whilst handling the asynchrony of orders, that is, looking ahead and backward to link

messages with their subsequent execution or cancellation. For a typical stock on a typical day,

the number of messages will be in the tens of thousands, and for a few actively traded stocks, it

is hundreds of thousands.

It is an important detail of market trading that the vast majority of messages—orders generated

by computerized trading algorithms that are placed in the limit order book, waiting for a coun-

terparty to agree to the trade a pre-specified price and quantity—are cancelled by those same

algorithms before they are executed, often lasting just a few milliseconds. Using a small sample

of 82 stocks over a one-month period, this starkly comes to the fore: 97 percent of all orders are

cancelled before being filled. Theory predicts this; to test the theory it is essential to have the

full limit order book data, as executed trades are only a small part of the story.

A key facet of the Kyle model, as outlined in Boulatov and Taub [2014], is that in addition to

the original interpretation of λ as a measure of price impact, the inverse of λ, 1/λ, is a Lagrange

multiplier for the constraint characterizing the how information is dynamically resolved for the

optimization problem solved by traders with private information. It is, therefore, a shadow price,

and when expressed in conjunction with the constraint to which it is associated, it is the shadow

price of information.

Information has a precise definition in the Kyle model: it is the forecast error variance of the

traders in the market who are not in possession of private information, and who must therefore

glean information from the flow of orders that come to them in the market; these traders are

designated as market makers in the Kyle model. Information is thus the ignorance of these

market makers.

Combining the notion of information and a notion of the price of information, one can state the

value of the information flowing into the market. This is our central aim, examined under both

single-asset and multi-asset Kyle models.
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Multiple assets

Multi-asset extensions of the Kyle model show how informed traders use information about

multiple assets to trade a specific asset, using information they have about the correlation

of the fundamental characteristics of these assets. Uninformed traders—market-makers in the

terminology of the Kyle model—are aware of the informed traders use of correlation information

and price stocks with this in mind. This literature includes papers by Caballe and Krishnan

[1994], Hasbrouck and Seppi [2001], Back, Cao, and Willard [2000], Seiler and Taub [2008] and

Bernhardt and Taub [2008a].

The optimal strategies in these theoretical models boil down to a matrix of coefficients that

are applied to the signals that traders observe: in the case of informed traders, the matrix is of

trading intensities: for each stock, they choose an amount to trade based on the direct observation

of the true value of the stock, but their trade is augmented by correlated information from the

direct observation of other stocks. The pricing coefficient, Λ, similarly takes a matrix form, using

information from order flow from correlated stocks when pricing each individual stock. In each

instance of the literature, however, the cross-asset correlation structure was left abstract and

unstructured.

There is a completely different theory, the capital asset pricing model (CAPM), which accounts

for correlation—the correlation of returns—across assets. The central conclusion of the CAPM

is that in equilibrium, the correlation across assets is due to a single factor, systematic risk, with

all other returns being idiosyncratic and uncorrelated across all individual assets and thus fully

diversifiable. It, therefore, makes sense to conjecture that a similar division can be made when

characterizing the cross-asset correlation of the fundamentals of stocks in the Kyle model; if this

conjecture is correct, then all cross-asset correlation would boil down to common systematic

risk. If one could separate the systematic and idiosyncratic influences in the Kyle model, then it

would be an immediate prediction that idiosyncratic shocks to fundamental asset values would

be of no use in cross-asset trades, and so any optimal cross-asset trading strategies would reduce

to diagonal matrix, and this would also be reflected in pricing that is, the equilibrium matrix

describing Λ—the multi-asset version of Kyle’s price impact measure λ—would be diagonal.
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This is what we find. Our results support the notion that the cross-correlation of price impact

across stocks is consistent with the CAPM: there is a single systematic component of price

impact, and this is driven by the systematic component as captured by the volatility of the

systematic component of the stock market.

The nature of private information

The information in the Kyle model is the forecast error variance of the uninformed market

makers. This information can be measured, and its value can also be measured; we provide the

estimate of this value, which, when normalized, is consistent across stocks.

What is the purpose of the information flow? Our results confirming the single source of correla-

tion, systematic risk, suggest that by separating the underlying information into two components,

systematic and idiosyncratic, informed traders distinguish between productive assets that have a

systematic impact on the economy and those that can be diversified. From a CAPM perspective,

this is the only information that matters, as any non-systematic value can be diversified away.

The structure of this chapter is as follows. We first review relevant findings on the price impact

(Section 2.2) and establish the framework for analyzing our order book event data (Section 2.3).

We also relate the Kyle framework to dimensional analysis and invariance. Then, we present the

details of the data and computation methods employed in our analysis (Section 2.4). Section

2.5 examines the price impact on the limit order book under both single-asset and multi-asset

Kyle models. In Section 2.6, we explore the relationship between price impact and the value of

information. The final section investigates the relationship between price impact and business

cycles.
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2.2 Related literature

There is a large literature focusing on price impact and, equivalently, liquidity. YakovAmihud

[2002] used daily and monthly trading data of stocks traded in the New York Stock Exchange

(NYSE) in the years 19631997 to examine the effect of illiquidity. In his paper, he measured the

illiquidity ratios as the time-series average of the daily ratios of the absolute value of percentage

returns to dollar volume and found out that expected stock returns are an increasing function

of expected illiquidity. Alternatively, following Hasbrouck [2009] and Goyenko, Holden, and Trz-

cinka [2009], a representative coefficient is estimated as the λ coefficient in the regression of the

root square of dollar volume against the price. They show that their estimation and effective cost

are moderately positively correlated. Bisias and Valavanis [2012] estimates this measure daily

by using all transactions during normal trading hours on each day. The authors estimate λ as

the coefficient of regression of the natural logarithm of volume in dollars against the sequence

of intraday returns.

Our study contributes to a growing body of literature on cross-asset price impact. The related

theoretical work includes papers by Caballe and Krishnan [1994], Back et al. [2000], Seiler and

Taub [2008] and Bernhardt and Taub [2008a]. The multi-asset Kyle model was first studied by

Caballe and Krishnan [1994] under the general setting with n assets and m informed traders.

The generality of the model makes only a partial analysis of the solution possible. Back et al.

[2000] considers the univariate Kyle model with n informed traders with correlated signals. They

find that when signals of informed traders are perfectly correlated, there is no linear equilibrium.

Bernhardt and Taub [2008a] presents a one-period model of n risk-neutral informed traders and

m assets. They allow informed traders to internalize how their trades impact the prices and

trades of other speculators. They show that the covariance structure of asset fundamentals is

the driver of prices, while the covariance of liquidity trade drives that of order flows. Seiler and

Taub [2008] extend the analysis of Bernhardt and Taub [2008a] to an infinite horizon model in

which informed investors receive private long-lived information repeatedly.
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A number of empirical studies show evidence of significant cross-price impact in stock markets,

including Hasbrouck and Seppi [2001], Pasquariello and Vega [2015], Wang, Schafer, and Guhr

[2016], Garcia del Molino, Mastromatteo, Benzaquen, and Bouchaud [2020], Mehdi Tomas and

Benzaquen [2022]. Hasbrouck and Seppi [2001] decompose multi-asset order flows and returns,

and find that two-thirds of the commonality in returns can be explained by commonality in

order flows. Pasquariello and Vega [2015] investigate the trading activity in the New York Stock

Exchange (NYSE) and the National Association of Securities Dealers Automated Quotation

System (NASDAQ) stocks between 1993 and 2004 found that the cross-price impact is often

negative and both direct and absolute cross-price impact are smaller when there are many

speculators. Wang et al. [2016] use the intraday data of AAPL, GS, and XOM from the NASDAQ

stock market in January 2008 and empirically show that cross-asset price impacts are small and

appear to be transient instead of permanent. They also find the cross-correlation of the trade

signs has a short memory.

Similar to our approach, Garcia del Molino et al. [2020] uses the multiple asset Kyle framework

to estimate different price impact measures and shows that the Kyle estimator performs better in

the market with heterogeneous volatility. Methodologically, our paper is closely related to papers

that decompose the information in stock prices based on the CAPM, such as Hasbrouck and

Seppi [2001]. However, unlike the prior papers that study information decomposition of stock

returns, our paper aims to partition price impacts into two components: systematic influence

and idiosyncratic influence. We find that the idiosyncratic shocks to fundamental asset values

have little impact on cross-trades, and any optimal cross-asset trading strategies would reduce

the trading intensity to a diagonal matrix.

Finally, this paper is consistent with an extensive body of literature studying the value of in-

formation flow and order flow in the stock market. Berk and van Binsbergen [2015] uses the

Center for Research in Security Prices (CRSP) survivorship bias-free database of mutual funds

to study the skill in the mutual fund industry. They find that each mutual fund has used its skills

to generate about $3.2 million per year and in the aggregate, mutual funds in the US markets

made over $19 billion per year. Yang and Zhu [2019] presents a model of the strategic interaction

between fundamental investors and back-runners. They calibrate their model and estimate that

the potential institutional investors daily profits in the U.S. equity market are in the order of

$150 million per day. The results of these papers are in line with our empirical result as the
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institutional investors profit is somewhat equivalent to the value of information. Even though

our results are in the same order of magnitude as these estimations, we take a different approach.

We extract the value of information separately for each stock from price and quote data, then

find normalized information flow averaged across trading days.

2.3 LOB approach to price impact

Econophysics has gained traction by asserting that price impact is a consequence of executions

and that this impact is inherently nonlinear. This view diverges sharply from traditional finance,

primarily because econophysicists approach price impact in a purely phenomenological way,

largely omitting the role of information and equilibrium from their models. Bouchaud et al.

[2009] do empirical research on thousands of trades and point out that the autocorrelation

of trade sides decays extremely slowly with time, and the price fluctuation is persistent and

predictable. Therefore, they argue that price impact should not be linear and permanent. Jean-

Philippe Bouchaud and Wyart [2004] demonstrate that order flow is autocorrelated: trades often

cluster in the same direction, creating herding behaviors among traders. This autocorrelation

magnifies price impact and contributes to increased volatility and substantial deviations from

price equilibria assumed in classical models.

Another school of thought is the mainstream finance literature on market microstructurewhich

views price impact with greater emphasis on informational trading, equilibrium, transaction

costs, and arbitrage opportunities. Hasbrouck [2004] shows that price impact is not uniform

across assets or time periods. He considers price impact as a dual indicator: temporary price im-

pact (associated with liquidity costs) and permanent price impact (associated with informational

effects). Hasbrouk [1991] introduced innovative econometric techniques to isolate the impact of

informed trading.
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A primary model in this traditional literature is the Kyle [1985] model, which assumes that

total order flow, from the perspective of a market maker, represents pure noise without price

impact. However, the Kyle model also predicts that price impact will emerge from the perspect-

ive of the informed trader, whose filtration of information allows them to predict and benefit

from subsequent price movements. This assumption would require econophysicists to argue for

an ex-post understanding of this informational filtrationsomething often unaddressed in their

phenomenological framework.

The Kyle model also makes clearer predictions about how price impact manifests. Under the

Kyle framework, price impact is in the minds of market makers, yet it is realized in the LOBs

structure, specifically in the slope. By measuring the LOB’s slope, we can quantify price impact,

expecting it to exhibit stationarity and even constancy if underlying variances remain fixed and

persistent. Despite shifts in the LOB, the price impact should appear linear across different

timestamps. Additionally, this slope will likely differ across various tickers, reflecting how price

impact can vary by asset characteristics.

The hypothesis that price impact is expressed in the LOB rather than purely in transaction

data (TAQ), presents a substantial econometric challenge. The sheer volume of data in the LOB

vastly exceeds that in transaction logs, as approximately 97% of all LOB orders are ultimately

canceled without execution. The Kyle model and the hypothesis that λ is realized in the LOB

suggest that orders get canceled as new information arrives or as prices shift. This reflects traders’

adjustments based on updated information or perceived changes in asset value. This abundance

of order activity in the LOB, combined with the relative sparsity of executed trades, requires

sophisticated statistical techniques to parse meaningful price impact data.

2.3.1 The elementary Kyle model

In this section, we analyze the basic static Kyle model. The model has three ingredients: (i)

the variance of the fundamental value per share of the security that is being traded, Σ, for a

Gaussian distributed value and from which the realized value is drawn; (ii) the variance of the

order flow of the so-called“noise” traders, σ2; and (iii) the price impact of any trade on the price,

λ, which is determined by rational traders—“market makers”—who are not informed about the
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true value of the security as determined by fundamentals, and who are in competition with each

other. The realized value of the security is privately observed by a single trader who then exploits

this information in his trade. The noise traders’ trades are treated as entirely exogenous; that

is, they do not react to observations about price in any way.

In equilibrium, the following relationship holds:

λ =
1

2

√
Σ

σ
(2.1)

This formula concerns the underlying structure of the model, but Σ and σ2 are not directly

observable. Defining ΣP and the variance of observable price and σ2
V as the volatility of executed

transaction volume, the following proposition establishes that formula (2.1) can be restated in

terms of observables:

Proposition 2.3.1.

λ =
1

2

√
Σ

σ
=

√
ΣP

σV
(2.2)

Proof. See Appendix B.1.

A brief aside concerning dimensional analysis and invariance

In any model in which the stock price and trading volume are functions of the volatilities of prices

and volumes, then they must satisfy a homogeneity property. This is an instance of Buckingham’s

theorem and is also reflected in the papers of Kyle and Obizhaeva [2016] and Obezhayeva and

Kyle [2017].

The argument is straightforward. Suppose that we posit that the price impact of trades is as

follows:

λ ≡ ∆P

∆V
= f(σP , σV )
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Because the volatilities are constructed from the differences of the levels of price and volume,

if we apply a multiplicative factor k to the price, as would occur for example, in a stock split,

then the volatilities must also reflect this scale factor:

k∆P

∆V
= f(kσP , σV )

Now, choose the scale factor to, in fact, equal the inverse of the volatility:

∆P
σP

∆V
= f(1, σV )

The same argument holds for the volume:

∆P
σP

∆V
σV

= f(1, 1)

Thus, any statistical test would reasonably construct the left-hand side, which we can think of as

normalized price impact, and then look for a constant on the right-hand side (if the theory has

no further ingredients beyond price impact and volatilities). In the Kyle model, the predicted

right-hand side constant is 1 (applying Proposition 2.3.1 to the Kyle model).

An additional observation is that if the underlying true model is linear, which the log of Kyle’s

ratio is, then it will be entirely vacuous to obtain regression coefficients of 1/2 and −1/2 (using

logs of the variances on the right-hand side). The only relevant result in such a regression is the

intercept term.

Does this reasoning, that is, that it is trivial that the estimated coefficients are 1/2, apply to the

limit order book? In the limit order book model, the estimated volatilities come from executed

prices and volumes, whilst, in the limit order book, the price impact is derived from the shape

of the limit order book and need not be driven by the pattern of executions; most of the orders

in the limit order book messages are, in fact, never executed. There is no theoretical a priori

reason to expect the price impact in the limit order book to follow the Kyle model structure.

39



2.4 Data and computational details

We collected data from several sources. Our primary data source is a proprietary database of

US stocks that are trading on the NASDAQ exchange. The database contains message-level

information of all stocks from 2016 to 2018. For each stock, there is a raw message file that

contains all trading messages of one stock sent to the market at high speeds in milliseconds

within a trading day. The file provides a comprehensive record of every trade and order book

change of all stocks on the exchange; there are approximately 6,500 stocks in all.

The first step in the empirical analysis is the reconstruction of the limit order book, moment by

moment. As the dataset records all events that led to state changes to the order book, we can

reconstruct limit order book for any stock at each moment in the trading day and at full depth

for the specified period. The comprehensive and full-depth level data allow us to analyze different

characteristics of price impact and its relationship with limit events with high accuracy.2

The message file contains every arriving market and limit orders as well as cancellations and

updates of one stock. The information of the message file has 9 data fields.

1. “Date” provides information regarding the trading day

2. “Timestamp” All entries have a timestamp of seconds after midnight with the precision

of milliseconds.

3. “Ordernumber”, each order has a unique ID; subsequent actions such as execution, deletion

or partial execution are indexed by the same number. Zero reference orders correspond

to a hidden limit market order.

4. “EventType”There are 11 types of market events in the data. Provided details in a table

in the additional appendix, Appendix B.3.1]

5. “Ticker” provides information regarding the trading stock

6. “Price” the price of the order

7. “Quantity” the quantity of the order

8. “MPID” provides information of Market Participant Identifier. This identifier is used by

FINRA member firms to report trades.

2. Thus far, the empirical literature in this field has been limited to the use of pre-constructed LOB data such
as Lobster with only a few layers of top-of-the-book information.
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9. “Exchange” There are two main exchanges, ARCA (the electronic order book of the

NYSE) and NASDAQ. All entries detail which exchanges the order was sent to.

Generally speaking, the order ID corresponds to the unique order reference number, which we

can use to differentiate messages. However, there are some exceptions that may affect our limit

order reconstruction.

1. All messages classified as“trade bid”and“trade ask”have zero reference orders. Those are

hidden market orders with full information for all other fields except the order number.

As they are market orders, they don’t affect our limit order reconstruction, but we need

to take them into consideration when we look at executed orders.

2. For big stocks that are trading across trading platforms, there are some order IDs cor-

responding to multiple different orders sent to different trading venues. One example is

the messages with order ID 6168348 (TSLA, 08 Feb 2018). Essentially, the ID corres-

ponds to 2 separate messages sent to different exchanges. The first order was a bid order

at 08:20:56, which was sent to NASDAQ, then eventually got executed and filled later.

The second order was an ask order at 09:42:40, which was sent to ARCA, then deleted

eventually. To differentiate those different orders with the same reference number, we can

look at the exchange and nature of the order. First, these orders were sent to different

exchanges. We can use trading venues to find out and group all related orders. Second,

we can use the nature, such as the order type and price, to map out all related orders.

For example, “Add bid” orders should have related orders of type “execute bid” and “fill

bid”; “Add ask” orders should have related orders of type “execute ask” and “fill ask.”

Second, we obtain the data for the stock directory with market cap, R2
CAPM , βCAPM and variance

from the NYSE 3 and Zoonova 4.

Our sample data directory contains all active stocks during the period between 1 January 2021

and 31 December 2021. All stocks must meet three pre-screening criteria to be in the directory:

(1) it is a common stock (2) it is active on the first and last day during the sampling period. Active

stocks refer to any stocks with trading activity on public exchanges during the sampling period.

Out of over 6,500 tickers, some stocks were not listed or did not exist as of February 2018, (3)

it has NASDAQ as the primary listing exchange. After filtering out all duplicates and erroneous

3. Stock directory, https://www.nyse.com/listings directory/stock
4. Stock market watch,https://www.zoonova.com/Home/Markets
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entries, we are left with 6,481 stocks. In our initial study, we obtained a sample from February

2018; there were 19 trading days in total for each stock, and each trading day had between

approximately 10,000 to over 10,000,000 messages for one stock. The primary justification for

selecting this period is that February 2018 was a calm month, falling outside the U.S. earnings

season and unaffected by major macroeconomic events.Therefore, the input file size can reach

the region of 20 GB for one ticker on each trading day, thus posing technical challenges in terms

of computation and data storage. We employed stratified random sampling by partitioning all

tickers into subpopulations. The sample stocks were chosen based on the following sampling

characteristics: high R2, low R2, high β, low β, high market cap, low market cap and low

variance, high variance. 12 tickers were randomly selected from each group, yielding an initial

sample of 96 tickers. After removing duplicate entries, 82 unique tickers remained. The rationale

behind this sampling method is that stocks have high variances in all those characteristics.

Stratified random sampling allows us to effectively select stocks that represent a diverse range

of groups. The statistical summary of those stocks is illustrated in Table 2.1.

R-squared Marketcap Yearly Price Beta
Variance

Mean 0.1590 19,300,751,911 6.096 0.93
Standard Error 0.0300 6,811,346,968 1.335 0.18
Median 0.0299 353,644,000 0.970 0.85
Minimum 0.0001 23,198 0.063 (2.47)
Maximum 0.7253 343,970,000,000 35.490 4.81

Table 2.1: Descriptive statistics of the sample

2.5 Testing Kyle model

This section empirically tests the Kyle model framework using the LOB data introduced in

Section 2.4. We also discuss the relationship between price impact, volatilities, and the slope of

the order book within both the static single-asset model and the multi-asset model.
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2.5.1 Testing the univariate static model

To carry out tests of the model, we estimated three fundamental quantities: λ, σP and σV .

We estimate λ by calculating the slope of the LOB, yielding an estimate λ̂, using a sample of

82 stocks for the 19 trading days in February 2018. The algorithm reconstructs the sequence

of limit order books by parsing and sorting the raw file of messages for the days trades for a

single stock. Each trading message results in an update of the limit order book; each updated

limit order book is called a snapshot. Each stock typically has tens of thousands of messages, so

consequently, there are tens of thousands of snapshots; for the most heavily traded stocks, there

are hundreds of thousands of snapshots.

We denote the collection of snapshots a ticker-day. These snapshots for each ticker-day are then

statistically analyzed, with three key estimates being generated. First, the slope of each ticker

is estimated with an OLS regression; we separately estimate the bid side (downward-sloping

demand curve) and the ask side (upward-sloping supply curve); theory predicts that these slopes

should be the same in absolute value. We re-estimate λ for each snapshot using OLS, compiling

a list of estimated λ̂s for later averaging. We ignore the spread at the top of the book. Figure

2.1 depicts the estimated λs (back lines) of an example of 4 tickers APDN, PSA, PZZA, THS

on 01 September 2018 for both ask and bid sides. The blue bands are 95% confidence intervals

of estimated λs. The yellow lines are price volatilities during the trading day, estimated as price

quadratic variations by minute. Among all stocks, estimated λs are higher at the beginning and

the end of the trading day. The main reason behind this trend is that at the beginning of the

trading daily, the market makers start making the market, and at the end of the trading day,

all market participants cancel their resting orders. Therefore, the LOB liquidity is low, and the

price impact is bigger. If excluding the first half hour of the trading day and the last half hour

of the trading day, the estimated λs are highly stable for all stocks.

Second, we estimate the variances of executed price and of executed order flow. Estimating the

volatilities is challenging because trades occur at random times. We compute (∆Pt)
2 for each

interval, normalize by dividing by ∆t for that interval, and then take the moving average to

estimate each variance.
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Figure 2.1: The estimated λs of APDN, PSA, PZZA, THS on 01/02/2018
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Empirical tests

Our first test implements the notion that invariance holds, even though any price impact that

appears in the limit order book need not follow the invariance requirement. If invariance holds,

then as we articulated in (2.3.1), the normalized price impact must equal a constant; for the

Kyle model specifically, the normalized price impact is equal to 1. In our first test of the model,

conjecturing that the Kyle invariance relationship holds in the limit order book, not just in

executed prices, we calculated the normalized price impact ratio σP
σV

/λ using our λ estimates

from the slope of the order book and the volatility estimates, obtaining values of .7 (bid side)

and 1.1 (ask side) from a sample of about 82 tickers.

Comparisons with direct price impact

Conceptually, price impact concerns the impact of executed orders on price, that is, direct price

impact, as this is a central concern of real traders. It is conceivable that direct price impact is

driven by structure outside of the ken of the Kyle model. It, therefore, behooves us to compare

the direct price impact with the impact we have measured in the limit order book.

In order to measure direct price impact we calculated the ratio Pt−Pt−1

yt−yt−1
for each instance t of an

executed trade, and calculated the average for each ticker for our February 2018 sample. The

resulting value, calculated in the same way as in the discussion of invariance, is 2.04, double that

of the ratio using the slope of the order book to estimate price impact.

In scrutinizing this result further, we found that the results were widely scattered: some tickers

had a direct price impact as high as 80 times as high as the LOB estimate of the ratio, some

were a fraction, but the average ratio was 11.3 times higher in our sample. It is apparent that

the tickers with the highest discrepancy were thinly traded, while for heavily traded stocks, the

direct price impact and the LOB estimated λs were essentially the same.
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To test this observation, we used market capitalization as a proxy for trading intensity, and

indeed, we found that low-capitalization stocks have higher direct-versus-LOB price impact

ratios. We also measured trading intensity directly, as the volume of executed order flow per

minute for our sample of stocks, with identical results: high-order flow stocks had significantly

lower executed price impact. In a regression of the ratio of executed price impact to LOB

estimated λ versus the log of executed order flow per minute. the estimated coefficient for the

dependent variable is −1.1 (R2 : .18, t-statistic: −4.4.)

Our explanation is as follows. For thinly traded stocks, executions occur only infrequently relative

to LOB order messages; therefore, for thinly traded stocks, there is significant LOB activity in

between executions. The LOB activity reflects up-to-date information, whilst executions happen

after a long evolution of information; therefore, execution is more likely to reflect new private

information, and pricing reflects this.

More specifically, consider the LOB at times t, t+1, and t+2. At times t, the LOB has a specific

slope, driven by the dictates of the private information volatilities underlying the fundamentals

of the stock. At t+1 new information arrives and, if it is positive information, moves the entire

LOB up; however, reflecting the thin trading, no execution takes place. At t + 2 there is an

execution—for the sake of discussion, a buy. The starting point for this execution is the new top

of the book, which has moved up due to the cumulative arrival of information at time t+1 and

also at t+ 2, but then, in addition, the order walks up the book. The walk up the book has the

impact of the λ from the slope of the book, but the effect of the prior movement of the entire

book is added to the impact, thus seeming to magnify it. The cumulative effect of the earlier

arrival of the new information is combined with the book walk—so the price impact is bigger.

The effect is bigger for thinly traded stocks because there are longer delays between executed

trades. A technical argument is provided in Appendix B.3.3.
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Regression tests

Our next statistical test consists of a simple linear regression of the logarithm of the averaged

λ̂ on the logarithmic transform of the formula (2.2) for 82 stocks, with the estimates of λ, ΣP

and σV averaged over 19 trading days in February 2018, treating each ticker as an observation.

This yielded the results in Table 2.2:

R2 = .88 Predicted Coefficient Standard t-statistic P -value
N=82 value error

F: 315.7

Intercept 0 1.13 0.41 2.75 .007
ln(Σ) 1

2 .57 .023 24.56 9.61E-39
ln(σ2) −1

2 -.336 .032 -10.40 1.83E-16

Table 2.2: Basic univariate static model regression results. (82 stocks, 19 trading days 2018)

The predicted values of the coefficients are 0 for the intercept term, 1
2 and −1

2 respectively for

the price volatility and volume volatility; basic statistical theory suggests that when explanatory

variables are measured with error, as λ̂, must be, the estimated coefficients are biased toward

zero; the coefficients here thus reflect this bias; the intercept term is less successful; however,

the P -value is weak. These results thus strongly support the Kyle model formulation and, more

generally, an informational interpretation of stock market trading.

Given the panel structure of the dataset, a more robust approach than averaging λ over 19 trading

days is to apply panel regression analysis. To determine whether fixed or random effects are more

appropriate, a Hausman test is conducted, with the null hypothesis favoring the random effects

model over the alternative, fixed effects model. The resulting p-value of 5.8 × 10−16 strongly

suggests that the fixed effects model is more consistent. Additionally, to assess the presence of

time effects, we perform a Lagrange Multiplier Test, which yields a p-value of 0.008416, indicating

significant time effects.

We then estimated the model with both individual ticker and time effects, and the results are

presented in Table 2.3
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R2 = .891 Predicted Coefficient Standard t-statistic P-value
N =82 value error
T = 19
F: 5965.7

ln(Σ) 1
2 .523 .0055 94.518 2.2E-16 ***

ln(σ2) −1
2 -.2267 .00132 -22.141 2.2E-16 ***

Table 2.3: Static model panel regression results. (82 stocks, 19 trading days 2018)

In comparison to the previous model, the coefficient of ln(Σ) shows a slight decrease, approaching

the theoretical value of 1
2 , while the coefficient of ln(σ2) increases to -0.23. Overall, the estimated

coefficients remain statistically significant and closely align with the predicted values. These

findings provide further support for the validity of the Kyle model framework

2.5.2 Cross-asset correlation and the CAPM

As discussed in the introduction, a number of theoretical extensions of the Kyle model explore

cross-asset effects. This literature does not ascribe the cross-asset correlations to particular

causes, however the logic of the CAPM would point to a single cause of correlation, with stocks

otherwise uncorrelated.

The CAPM perspective thus leads to a sharp prediction: that the cross-asset effects in the pricing

matrix Λ are driven only by systematic factors. If there is a way to filter out these systematic

factors, then the residual Λ matrix should be diagonal. We test this idea in two distinct ways.

First method: extraction from regression

For the first test of the correlation structure we enhance the regression of the logarithm of λ̂ on

the logarithms of the volatilities as in Table 2.2 above by including the CAPM R2, displayed in

Table 2.4:
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R2 = .89 Predicted Coefficient Standard t-statistic P -value
N=82 value error

F: 223.70

Intercept 0 0.44 0.50 0.88 0.38
ln(Σ) 1

2 0.53 0.03 17.65 5.62E-29
ln(σ2) −1

2 -0.34 0.03 -10.78 3.96E-8
CAPM R2 0.9 0.39 2.30 .024

Table 2.4: Basic univariate static model including CAPM R2.

These results are still in accord with the underlying model in the sense that the coefficients on

the volatility terms are consistent with the values of 1
2 and −1

2 predicted by theory; the CAPM

R2 coefficient is statistically significant.

Second method: covariance matrices

The second method uses cross-asset information. As shown in Bernhardt and Taub [2008a], one

can express the equilibrium matrix Λ in terms of the cross-asset price and volume covariance

matrices:

Λ = Σ1/2 · σ−1

where Σ1/2 and σ are the Cholesky factors for the cross-asset price and volume covariance

matrices, respectively; we can generalize this as with Proposition 2.3.1, we can demonstrate that

the relationship holds for the covariance matrices of price and executed volume.5

One of the assets included in the portfolio of assets (again, the 19 trading days in February 2018)

is SPY, the index fund tracking the S&P500, which is a widely accepted proxy for the systematic

asset. We eliminate the rows and columns corresponding to SPY from the price and covariance

matrices and calculate the resulting Λ for the remaining tickers. The resulting estimate of Λ

should, in principle, have the influence of SPY removed and, if the CAPM intuition is correct, be

driven solely by heterogenous fundamentals across the remaining assets. If the CAPM intuition is

correct, the resulting residual matrix should be diagonal, as cross-asset information is irrelevant.

The diagonal of the matrix is then the proper estimate of the Λ associated with idiosyncratic

firm value.

5. The derivations for the two-asset version of the model are set out in Appendix B.6.
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Norm comparisons

If the hypothesis that the cross-correlation between the λ values is due entirely to correlation

with the systematic market process, then when we remove the SPY rows and columns from the

Λ matrix, the matrix should be essentially diagonal, that is, each stock’s λ value should not

be affected by any other stock, other than SPY. Therefore, the matrix norm of the reduced Λ

matrix should be driven solely by the diagonal. Carrying out this experiment using the trace

norm yields a sum of the absolute values of the eigenvalues of the idiosyncratic matrix of 0.0395,

whereas the similar sum with the diagonal removed is 0.000545, that is, essentially zero.

Alternatively, we can compare the matrix norms of the two matrices, where the matrix norm

is the maximum singular value; in this case, the norms with and without the diagonals are

0.021576 and 0.0153497 respectively, again demonstrating that the off-diagonal correlation is

reduced relative to the diagonal. These calculations support the hypothesis of CAPM-driven

correlation.

Comparing the two methods

One can roughly calculate the correlation of the idiosyncratic λ values calculated using the first

method and the second method. We carried this out with the sample of 82 tickers, again limited

to the 19 trading days in February 2018. Using the first method, we calculated a predicted-

λ series in which the effect of the R2 term was dropped; intuitively, this series would roughly

capture the non-systematic element of the variances. We then calculated the correlation between

the forecasted idiosyncratic series with the diagonal of the Λ matrix with the SPY elements

removed. The correlation between these two measures is .52; that is, there is a significant degree

of correlation, suggesting that both methods at least partially succeed in isolating and extracting

the idiosyncratic component of Λ.

The conclusion we draw is that, using two different approaches, that there appears to be a

single factor driving cross-asset correlation, and that the two approaches yield measures of the

correlation that are very closely correlated.
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2.6 Measuring information flows

New information is constantly brought to the market. Traders keep the information private to

preserve their advantage. Nevertheless, traders impart their information, and prices reflect it

after trading. The Kyle model quantifies this process. In Kyle’s framework, price impact is a

result the incorporation of private information into asset prices.

Can this information be measured? Yes, it is the market makers’ forecast error variance Σt. It

is related to the variance of price.

Does the information have a price, and can it be measured? Yes: it is related to λ: the shadow

price is 1/λ. Boulatov and Taub [2014] provides the theoretical justification for price interpret-

ation: 1/λ is the Lagrange multiplier for the constraint facing the informed trader, expressing

how the market maker’s forecast error variance decays as a result of trade, with the “income”

in the constraint equal to the forecast error variance. Therefore, we can use the estimates of λ,

and also the price volatility estimates, to estimate the quantity and price of information.

Using the Boulatov-Taub interpretation of the inverse 1/λ as the shadow value of information

and the variance of price Σ as a proxy for the market makers forecast error variance as a measure

of the information, one can then calculate the value of information on a per-share basis as the

product of these two quantities.

Using the basic structure of the Kyle model, this information value flow can be shown to be

equivalent to the profit for the informed trader, which is equal to the product of the volatilities

of price and order flow.

Σ

λ
=

√
Σσ

Using the estimates of λ and volatilities for 82 tickers in February 2018 from the previous section,

the correlation between these two measures is 0.944.
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Normalized information flow

Using 82 tickers over the month of February 2018, we can analyze information flow value. The

information flow is per unit of value for each ticker; thus, by dividing the value of information by

the value of shares traded (price times volume, each averaged over the trading day), one obtains

the normalized information flow; this average value is about 0.024, and the median value is of

0.0021, but with a wide variance. Another way to calculate the average normalized information

value is to divide the total value of information of all stocks by the total trading volumes. Using

this method, we yield the normalized information flow of 7.5×10−5. For the longitudinal data for

Wednesday trading over three years, 2016, 2017, and 2018, the estimated normalized information

flow values are 1.6× 10−4, 1.6× 10−4, and 1.79× 10−4 respectively.

Define this information flow parameter as ω. We can multiply the normalized flow by the value

of all stocks traded to obtain an estimate of the value of all information flowing in the economy,

divided into systematic and idiosyncratic elements. Multiplying the total daily Nasdaq trading

value of about $300 billion 6 by the normalized information flow ω ∼ .00016, you obtain $48

million per day. This is in close accord with the estimate of Yang and Zhu [2019] as discussed

in the introduction.

2.7 Business cycle effects

Given the support for the CAPM-driven correlation hypothesis in section 2.5, a natural conjec-

ture is that the systematic component of λ might be correlated with the business cycle. This

influence could be driven by changes in the systematic part of the volatility of fundamental asset

values, that is, volatility of returns seems to rise in recessions.

6. Nasdaq, https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary
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To test this hypothesis, we calculated the value of information flows over the business cycle. We

again used a sample of stocks for every Wednesday spanning the three years 2016-2018. After

winnowing the sample to exclude tickers that did not span the whole period,7 out of an initial

sample of 49 tickers, this left a sample of 29 tickers.

We then carried out the similar exercise of estimating the slope of the bid side of the LOB for each

ticker on each day by averaging the calculated OLS slopes for each snapshot and also estimating

the price volatility and executed-volume volatility for each ticker-day. We then calculated the

normalized information value flow,
ΣP
λ

PV
that is, the value of information flow relative to the

average value of trade for that ticker and day. This yields a dimensionless constant. We regressed

this constant against the volatility of the SPY.8 The coefficients, t-statistics, R2, and P -values

were then averaged. The results are displayed in Table 2.5.

Coefficient t-statistic |t-statistic|
estimate average

Intercept average 8.60× 10−4 1.8 2.78

|Intercept| average 1.34× 10−3

ΣSPY average 8.86× 10−2 4.06 4.1
R2 average .12

Table 2.5: Normalized information flow versus ΣSPY . (Mean(ΣSPY ) = .0078)

The average of the absolute value of the t-statistics is included to reflect the fact that many

of the estimated intercept terms in the regressions are negative, whereas most of the estimated

coefficients of the SPY volatility are positive. Thus, there appears to be a systematic component

of normalized information flow value.

The magnitudes of the information flow value from the systematic part, which can be roughly

estimated as the product of the coefficient on ΣSPY with the mean of ΣSPY, yields 0.0886×.0078 =

6.91× 10−4; the magnitude from the absolute values of the idiosyncratic parts are 1.34× 10−3,

which is of similar magnitude. The average of the signed values of the intercept terms is 8.6×10−4,

an even smaller number.

7. This potentially biases the results due to survivorship biases.
8. The volatility of the SPY is similar in spirit to the VIX volatility index for the S&P500 index. However, the
VIX is the volatility of the return to the S&P500 index, whereas the SPY volatility is the volatility of the level of
the index.
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We can conclude that the value of information increases during times of high systematic return

volatility, that is, during recessions, as reflected in the countercyclicality of the VIX and the

SPY volatility.

Information flow and CAPM variables

Given the correlation of the normalized information flow with the volatility of the SPY (analog

of the VIX), is there a relationship with the CAPM? We regressed the normalized information

value, averaged over the three years for each ticker, against the CAPM beta and the CAPM R2

for each ticker. The result is in Table 2.6. (The regressions on the CAPM beta did not yield

significant results.)

R2: .22 Coefficient t-statistic P -value
value

Intercept 6.2× 10−4 0.97 .337
CAPM R2 0.000976 2.055 0.049

Table 2.6: Normalized information flow (three-year average, each ticker) versus CAPM R2.

The results strongly support the hypothesis that systematic information flows are strongly cor-

related with the business cycle, as high-R2 stocks have higher information flows.

There is an additional conclusion: because, like the VIX, the ΣSPY is strongly correlated with

the business cycle, it is a proxy for the underlying systematic process. CAPM reasoning suggests

that investors and traders care only about the systematic component of the value of any stock.

The statistical significance of the coefficient on the ΣSPY suggests that the only information

that matters for traders for any stock is the systematic component, and the value of the inform-

ation is the value of unearthing and isolating the information about the systematic part of the

information.
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2.8 Conclusion

By treating the Kyle model’s price impact parameter, λ, as the slope of the limit order book,

our results strongly support the validity of the Kyle [1985] model.

While the theory literature has developed a number of models analyzing how cross-asset cor-

relation of the underlying fundamental asset values influences the cross-asset correlation of the

corresponding price impacts, our results support the notion that the cross-correlation of price

impact across stocks is consistent with the CAPM: there is a single systematic component of

price impact, and this is driven by the systematic component as captured by the volatility of

the systematic component of the stock market, that is, the SPY volatility, and this system-

atic component of the underlying value is responsible for any cross-asset correlation, and any

concomitant correlation of the price impact measures, that is, the λs.

The information in the Kyle model is the forecast error variance of the uninformed market

makers. This information can be measured, and its value can also be measured. When normalized

by the value of trade in each ticker, the value of the information flow per unit of value is on

the order of .0005. This number accords well with the overall income of firms engaging in stock

market trading.

The normalized information flow value is strongly countercyclical, that is, it is strongly correlated

with the volatility of the overall market. The connection of the information flow with the SPY

volatility is strongly confirmed by the strong correlation of the normalized information flow,

averaged over time, with the degree to which the stock is influenced by the aggregate market,

that is, the CAPM R2 value of the stock.

What is the purpose of the information flow? By separating the underlying information into

two components, systematic and idiosyncratic, the traders distinguish between productive as-

sets that have a systematic impact on the economy and those that can be diversified. From a

CAPM perspective, this is the only information that matters, as any non-systematic value can

be diversified away.
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Chapter 3

Spoofing and market confidence

3.1 Introduction

Over the last decade, the US Commodity Futures Trading Commission (CFTC), the U.S. Se-

curities and Exchange Commission (SEC), and the Department of Justice (DOJ) have stepped

up their efforts to crack down on the type of disruptive trading called “spoofing”. This emphasis

coincides with a similarly increasing focus by the UK Financial Conduct Authority (FCA). Over

50 cases involving spoofing have been filed against individuals and companies by US regulators,

while over 5 enforcement actions have been taken in the UK. One of the largest fines was JP-

Morgan Chase’s case 1 in which they entered an agreement to pay regulators USD 920 million

as part of a settlement admitting to spoofing precious metals futures and US government bonds.

Spoofing is the practice of submitting big limit orders to the markets with the intention of avoid-

ing their completion by canceling them before they are executed. Spoofing is considered illegal

in many jurisdictions. On the topic concerning spoofing, Aitan Goelman 2, the CFTCs Director

of Enforcement, commented: “Spoofing seriously threatens the integrity and stability of futures

markets because it discourages legitimate market participants from trading”. The question of

whether spoofing is harmful to market integrity and efficiency is a matter of debate among

regulators and industry practitioners.

1. Press release 8260-20,https://www.cftc.gov/PressRoom/PressReleases/8260-20
2. Press release 7264-15, https://www.cftc.gov/PressRoom/PressReleases/7264-15
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In this paper, we investigate the effects of spoofing from historical, regulatory, and market

microstructure perspectives. We find that spoofing is not a disruptive practice; the spoofing

resemblance strategies have existed for centuries. By looking at different legal cases on spoofing,

we point out that the primary victims of spoofing are HFTs that employ order anticipation

strategies. Contrary to criticism expressed by regulators and industry practitioners, we show

that while spoofing delays price discovery in a short horizon, price divergence will be so brief as

to have little economic efficiency implications. Furthermore, spoofing improves market liquidity

and fosters uninformed traders’ welfare.

Our investigation into this matter builds on a two-period Kyle model with two additional market

participants: a spoofer and an anticipatory trader. The informed trader trades on proprietary

information regarding the value of the traded asset, but his order is delayed by one period. The

order anticipation HFT uses pattern recognition algorithms to detect the incoming order and

trades on this signal. However, the spoofer detects his trading strategy. The spoofer exploits the

anticipatory trader by pretending to be a large trader and submitting two orders, one real order

and another big spoofing order from the opposite side of the market, then cancels the spoofing

order. In this way, the spoofer can add more noise to the anticipatory trader’s signal and give a

false sense of market demand.

The irrationality of the anticipatory trader primarily drives our results. Order anticipators study

trades and quotes to find traces of informed trades, then trade ahead of such orders to profit from

expected price changes. Computers play an important role in the successful implementation of

order anticipation strategies because they can often perform pattern recognition faster and more

accurately than humans do. However, these algorithmic trading strategies follow a rigid set of

rules, thus making them vulnerable to other market participants in the ever-changing markets.

Exploiting this feature, spoofers can trick those trading algorithms and make profits.

To study the effects of spoofing, we consider 4 different economies based on Kyle’s model with: a

spoofer and an order anticipator, only a spoofer, only an order anticipation HFT, and a standard

Kyle model. We find that without an order anticipation algorithm, the spoofer falls victim to

his own strategy and incurs a loss as he is uninformed and loses money to the informed trader.

In the economy with both traders, a spoofing equilibrium exists, and both the spoofer and the
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anticipatory trader make profits. When the spoofer increases his trading intensity, the signal

of the anticipation HFT becomes noisier. The anticipatory trader strategically responds to the

spoofer by reducing his participation. Therefore, he becomes less active in the market. As a

result, the uninformed traders benefit from spoofing.

3.2 An overview of spoofing

This section provides a regulatory and market structure overview of spoofing. We will discuss

the history of spoofing, how spoofing works, and how it is regulated under different jurisdictions.

3.2.1 What constitutes spoofing

While there is no universally accepted definition of what constitutes spoofing, some common

practices are generally considered as spoofing. A simple spoofing scheme involves a trader placing

one or more highly visible orders but has no intention of keeping. It is designed to create a false

sense of investor demand in the market, thereby changing the behavior of other traders and

allowing the spoofer to profit from these changes. Apart from simple spoofing, there are some

other popular spoofing resemblance practices 3.

• Layering: A trader places a small order on the intent side of the market and orders at

multiple price levels on the spoof side of the market to increase the depth of the spoof

side.

• Vacuuming: A trader places a small order on one side of the market and a larger order on

the same side of the market. The larger spoofing order is then canceled to entice market

movement toward the smaller order.

• Collapsing of layers: A trader places a small order on one side of the market and several

spoof orders at different price points on the other side of the market. The spoof orders

are then changed into a single price point to give the appearance of a large volume.

3. Automated spoofing,https://library.tradingtechnologies.com/tt-score/inv-automated-spoofing.html
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• Flipping: A trader places orders on one side of the market with the intent of switching,

or flipping, to the other side of the market.

• Spread squeezing: A trader places an order on the spoof side at successively higher or lower

prices with the spread to squeeze it in one direction, enticing other market participants

to join or beat the newly established top of the book. The trader then switches sides and

executes against those participants.

Chapter 1 studies the dynamics of the limit order book and the information value of order flow.

By examining the limit orders of over 80 US stocks in February 2018, we find that over 90% of all

limit orders got canceled eventually. Therefore, it is challenging to distinguish between normal

cancellation orders and spoofing orders. The most important aspect of classifying whether it

constitutes spoofing is the trader’s intention to cancel the order before execution, which is hard

to identify. Based on previous cases in the US, enforcement authorities may offer the following

evidence.

• For algorithmic trading, the contents of the algorithms are examined for evidence of

intent.

• For manual trading, emails, instant messages, and phone recordings may help to establish

intent. Witness testimony may be offered.

• For some cases, trading data is used to identify an individual’s trading pattern and then

compare it to the market trend.

3.2.2 Who are victims of spoofing

Based on previous cases, victims of spoofing are principally high-frequency trading firms that

used price quotes for their trading strategies. In the Igor B. Oystacher case (2016), CFTC claimed

that Mr. Oystacher used spoofing to create false book pressure as he knew that algorithmic

trading firms like CGTA and Citadel had programmed their algorithms to rely primarily upon

book pressure when making trading decisions in particular markets. During the trial, The CFTC

presented 2 victim witnesses 4, Richard May of Citadel and Matthew Wasko of HTG Capital

Partners. Mr May testified that.

4. Case: 1 15−cv−09196, U.S. District Court - Northern District of Illinois, https://www.govinfo.gov/
content/pkg/USCOURTS−ilnd− 15−cv−09196/pdf/USCOURTS−ilnd−1 15−cv−09196−.pdf
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“Specifically, Citadels trading strategies tend to look at three key factors: 1) relative value, 2)

book pressure, and 3) trade flow...In 2013, Mr. May and his team observed what they believed

was spoofing in the ES market. Around this time, they noticed a significant decline in Citadels

profitability...Immediately, Citadel scaled back its participation in the ES market by over fifty

percent.”

Mr. Matthew Wasko gave his testimony that “Beginning around July 2012, Mr. Wasko and his

team began to observe suspicious trading they believed was spoofing in the ES market. After

noticing a decline in profitability, they began reviewing historical trading data from market

replays of losing trades...This trading activity was detrimental to CGTAs trading because the

initial large orders appeared to its algorithms as genuine interest from multiple market parti-

cipants, leading CGTA to join that movement and enter orders it intended to trade.”

At the recent spoofing trial in which two ex-Deutsche Bank traders were prosecuted for spoofing,

the government testified on behalf of just two victims of the alleged spoofing by the two defend-

ants on trial: one was a representative from Citadel Securities, and the other was a company

called Quantlab. Both of them are among the most secretive and highly profitable high-frequency

trading firms.

Obviously, some HFTs are vulnerable to spoofers. However, HFT strategies vary considerably,

and only predatory HFTs can fall victim to spoofers easily. Following Harris [2013], there are

three main types of HFTs.

• Valuable HFT High-frequency traders who use dealing and arbitrage strategies that make

markets more liquid. Spoofers have little effect on this type of HFT trader as spreads

across markets, or exchanges are their concerns.

• Harmful HFT High-frequency traders use computers to monitor and interpret electronic

news feeds. Obviously, with information acquisition, the HFTs become informed traders

and know the true value of the stocks. Therefore, spoofers cannot influence their strategies.

• Very Harmful HFT A few high-frequency traders examine trades and quotes (book pres-

sure and order flow) to detect when traders are using algorithms to split up large orders

that will move the market. They then trade ahead of such orders to profit from expected

price changes. Some market participants refer to this practice as “front-running,”. But
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this conduct is legal and different from “traditional front-running,” which is defined as

entering a trade with advance knowledge of a block transaction that will influence the

price of the asset and the trader improperly obtain such information. In this case, HFTs

use public information; they are just faster and better at transmitting and processing

data. To differentiate it from “traditional front-running”, I refer to this practice as ”or-

der anticipation or anticipation strategy.” This type of strategy is highly vulnerable to

spoofers as spoofers can add more noise to quotes which are used as their main indicators.

From the witnesses’ testimony and our reasonings, we can deduce that victims of spoofing are

primarily HFTs which used order anticipation strategies. Their strategies were detected and

exploited by spoofers. They only noticed that their strategies were exploited when they saw a

significant decline in profitability and immediately scaled back their participation. This resonates

with our results in the next section, as in equilibrium, with the spoofer, the anticipatory traders

make less profit and scale back their trading activities when there is a spoofer.

3.2.3 Brief history of spoofing

Spoofing may have been occurring since the establishment of formal financial markets in Europe

during the 1600s-1700s. The earliest recording of spoofing incidents was from Daniel Defoe in

his essay “Anatomy of Exchange Alley. In a passage recounting the trading practice of Sir Josiah

Child, an English economist, merchant, and governor of the East Indian Company, Daniel Defoe

gave a glimpse into a spoofing-resemblance trick.

“If Sir Josiah had a mind to buy, the first thing he did was to commission his brokers to look

sower, shake their heads, suggest bad news from India; and at the bottom, it followed, I have

commission from Sir Josiah to sell out whatever I can, and perhaps they would actually sell ten,

perhaps twenty thousand pounds. Immediately, the Exchange was full of sellers; nobody would

buy a shilling”, “till perhaps the stock would fall six, seven, eight, ten percent, sometimes more;

then the cunning jobber had another set of men employed on purpose to buy.”
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Hundreds of years later, spoofing became a common practice in the trading pits during the

twentieth century. MacKenzie [2022] interviewed different floor traders and recorded their re-

counts of spoofing “It sounds like a normal day in the pit. We spoofed all the time.”. On the

trading floor, traders and brokers communicated by shouting out bids and offers or using hand

signals to indicate the prices and quantities. Their behaviors were under the scrutiny of all other

traders. Many brokers wanted to hide their trading intentions. When they want to buy, they

might shout or hand signal offers to sell without an intention of selling. Such practice would be

labeled as spoofing nowadays but well regarded as “good brokerage” among market participants.

However, those employing this practice might face reputation risks. Even though verbal deals

were not legally enforceable, constant spoofing might freeze the traders out of future trades as

other traders knew who often regened their deals.

The adoption of electronic trading systems in the late 1990s and early 2000s created a perfect

environment for spoofing to thrive. A computer-powered system was first introduced in the

financial markets in 1969 but did not take off until the late 1990s. The new advent of technology

brought in an anonymous trading mechanism, thus eradicating the need for social interactions

and the reputation risks of spoofing in the pits. Zaloom [2003] documented the trading activities

in the early 2000s“The most recurring character was called the“Spoofer.”The Spoofer used large

quantities of bids or offers to create the illusion that there was more demand to buy or pressure

to sell than the “true” bids and offers represented.” Most market participants considered this

practice legitimate. “Although there would be nothing illegal about the Spoofer’s maneuver of

supplementing the numbers with the weight of his bid or off...”. With the changes from face-to-

face trading to electronic trading, there was a gradual shift in moral and regulatory treatments

of spoofing. From a highly regarded practice, spoofing became a serious criminal conduct when

New Jersey trader Michael Coscia became the first person to be convicted of spoofing and

sentenced to 3 years in prison in 2016. Since then, regulators in many countries have intensified

their crackdowns on this type of practice.
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3.2.4 Regulations of spoofing

3.2.4.1 United States

Spoofing is prosecuted according to civil and criminal law in the US. Regulators are required

to prove the traders’ intention to spoof the market by canceling the orders before execution.

Depending on markets and the severity of the cases, the SEC, CFTC, FINRA, and the DOJ

(Department of Justice) enforce spoofing under different laws. In the US, regulators must provide

evidence of traders’ intention to cancel bids or ask before execution. Civil cases can brought in

case of act with with some degree of intent, or scienter, beyond recklessness. while criminal cases

are for individuals who knowingly engage in Spoofing.

In the commodity markets, manipulative conduct is enforceable by the CFTC. Before the en-

actment of the Dodd-Frank Act in 2010, the CFTCs authority to regulate spoofing was limited

to the Commodity Exchange Act (CEA) (Section 6c 9(a)(2)). Section 6(c) of the CEA gave

the CFTC authority to take administrative enforcement action against traders who manipu-

lated or attempted to manipulate the market price, while Section 9(a)(2) made it unlawful to

manipulate or attempt to manipulate the price of a commodity or future. This rule vaguely

defines what“market manipulation” is, thus making it almost impossible to prove manipulation.

Therefore, the agency is believed to have successfully brought only one market manipulation

case to final judgment from 1975 to 2010. After the Dodd-Frank Act in 2010, Section 747 of

the Dodd-Frank Act added Section 4c(a)(5)(C) to the Commodity Exchange Act (CEA) to ban

three types of transactions labeled as disruptive trading. One of those transactions is spoofing

in commodity markets and this is the first time spoofing was expressly prohibited by a federal

statute. Not until 2013 did the CFTC take the first enforcement action under the amended CEA

by settling with Panther Energy Trading, LLC (Panther). Since then, the CFTC has stepped

up enforcement against spoofing. The 2020 Division of Enforcement Annual Report 5 showed

that the CFTC has intensified its crackdowns on spoofing. Nearly 10% number of cases filed by

CFTC in 2020 involved spoofing.

5. FY 2020 Division of Enforcement Annual Report https://www.cftc.gov/media/5321/
DOE FY2020 AnnualReport 120120/
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Unlike the Commodity Exchange Act, the federal securities statutes do not expressly prohibit

spoofing by name. Instead, the Securities and Exchange Commission (SEC) has taken action

against spoofing by characterizing it as a manipulative practice. The SEC has been investigating

and prosecuting alleged spoofing in the securities markets since the early 2000s. The full lists of

civil and criminal cases against spoofing are in Appendix C.9.
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3.2.4.2 The UK

UK law does not include any specific anti-spoofing provisions; rather, spoofing behavior is gener-

ally construed to be a form of market manipulation that may result in civil or criminal liability.

The UKs MAR is modeled on the EUs Regulation No 596/2014 (Reg 596), which was passed

on April 16, 2014. While the FCA made some changes to UK MAR as it adopted the regulation

following Brexit, the UK regime is still primarily based on the EU Market Abuse Regulation.

In Europe and the UK, prosecutions can be made where the regulator deems that Spoofing took

place, and they don’t need to prove that spoofers have the intention of canceling the orders. While

there have not yet been any criminal spoofing cases in Britain, the Financial Conduct Authority

(FCA) and Office of Gas and Electricity Markets (Ofgem)22 used their powers to impose stiff fines

on those who engage in market manipulation practices in the UK. This intensified crackdown

coincides with a similarly increasing focus by the US Commodity Futures Trading Commission

and the US Department of Justice. In 2015, the Financial Conduct Authority (FCA) fined Da

Vinci Invest Ltd, Mineworld Ltd, Mr Szabolcs Banya, Mr Gyorgy Szabolcs Brad and Mr Tamas

Pornye č7,570,000 for spoofing. The case was instigated in 2011. The defendants were accused of

using manipulative behavior, which consisted of an abusive trading strategy known as layering,

involving the entering and trading of orders in relation to shares traded on the electronic trading

platform of the London Stock Exchange (LSE) and multi-lateral trading facilities (MTFs)[2] in

such a way as to create a false or misleading impression as to the supply and demand for those

shares and enabling them to trade those shares at an artificial price.

3.2.4.3 Europe

Article 12 of EU MAR gives definitions of what constitutes market manipulations, including

entering into a transaction, placing an order to trade or any other behavior which gives, or is

likely to give, false or misleading signals as to the supply of, demand for or price of a financial

instrument; or secures, or is likely to secure, the price of one or several financial instruments at

an abnormal or artificial level. Article 15, thereafter states that a person shall not engage in or

attempt to engage in market manipulation such as those defined in Article 12.
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While EU MAR doesnt provide any specific provisions regarding spoofing, the regulation clearly

defines the indicators that firms should monitor and detect potential market manipulation. One

of the indicators is for Spoofing. MAR Article 16 highlights that firms must have effective ar-

rangements, systems, and procedures to prevent and detect insider dealing, market manipulation,

and attempted insider dealing and market manipulation.

3.2.4.4 Asia

While regulations on spoofing take different forms across Asia, spoofing is deemed illegal in most

countries. There is a big gap between emerging and developed markets in spoofing regulation

and enforcement processes. While developed markets have clear regulations and streamlined en-

forcement processes, emerging markets lack clarity in spoofing definitions and strict enforcement

actions against market manipulators.

We study the regulatory measure and enforcement system in 2 advanced markets, namely Japan

and South Korea, and Hong Kong. In Japan, a market surveillance system has been imple-

mented to oversight the market. Trading data from 2 exchanges, the spot market (Tokyo Stock

Exchange) and derivatives market (Osaka Exchange), is analyzed daily to detect any abnormal

activities. Any transactions that are suspected of spoofing are reported to the Securities and Ex-

change Surveillance Commission. Spoofing is classified as a market manipulation under Article

159, Paragraph 2, Item 1 of the Financial Instruments and Exchange Act6 and the Securities

and Exchange Surveillance Commission. Spoofing has issued administrative fines to some market

participants for their alleged spoofing activity. In 2019, the market regulator fined Citi Group

$ 1.2 million for spoofing in the future market. In 2022, an administrative penalty order was

issued to Atlantic Trading London Limited for their involvement in spoofing 10-year Japanese

Government Bond Futures. In South Korea, the regulating authority is The Financial Service

Commission (FSC), which is responsible for overseeing the securities and futures industry. Reg-

ulation on market disturbances was introduced on December 30, 2014, and went into effect on

July 1, 2015, which is intended to enhance regulations on market manipulations. Article 178-2

of this provision bans market participants from engaging in ”An act that adversely affects, or

is likely to, adversely affect the market price by submitting a large volume of asking prices at

6. The Financial Instruments and Exchange Act,https://www.fsa.go.jp/common/law/fie01.pdf
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which deals are unlikely to be concluded, or by repeatedly correcting or canceling asking prices

after submitting them” 7. Using these regulations, The Financial Service Commission has im-

posed a fine of 11.88 billion won on Citadel Securities for their distortion of stock prices by using

immediate-or-cancel (IOC) buy market orders to exhaust the best ask prices and submitting

buy limit orders on any remaining unfilled quantity, then cancel these orders.

For comparison, we examine the regulations governing spoofing in two Asian emerging markets,

namely, India and China. In the case of India, the regulatory body which is in charge of the

development and supervision of the Indian capital market is the Securities and Exchange Board

of India. Section 12A of the Securities and Exchange Board of India Act, 1992 (SEBI Act) bans

market participants from engaging in fraudulent and unfair trade practices through the use of

any manipulative device, insider trading. However, there was a lack of clarity regarding spoofing

until SEBI issued a circular on Order-based Surveillance Method-Persistent Noise Creators. 8 to

address the issue of excessive cancellation of orders in 2021. The circular proposed a surveillance

mechanism to deter excessive order modifications and cancellations with the intent to avoid

execution. Various parameters, such as order-to-trade ratio and cancellation ratio, are examined

daily to detect any potential market manipulation. In 2023, the Securities and Exchange Board

of India issued an order 9 to investigate the trading activities of Nimi Enterprises for alleged en-

gagement of spoofing. This was the first time, the term spoofing was introduced in a regulatory

document in India to describe the actions undertaken by Nimi Enterprises. In the case of China,

the stock market was closed in 1950 and reopened in December 1990. The official regulation of

market manipulation began in 1993. Spoofing came into the spotlight in 2015 when Chinas secur-

ities regulator targeted high-frequency traders following the stock market turbulence. Article 55

of the Securities Law of the People’s Republic of China (2019 Revision) 10 officially banned any

person from “placing and canceling orders frequently or in large numbers, not for the purpose

of the consummation of trades.”

7. Disturbance of capital market, http://www.koreanlii.or.kr/w/index.php/Disturbance of capital market?ckattempt=2
8. Order Based Surveillance Measure: Persistent Noise Creators, https://www.bseindia.com/markets/MarketInfo
/DispNewNoticesCirculars.aspx?page=20210326-55
9. Order in the matter of trading activities of Nimi Enterprises, https://www.sebi.gov.in/enforcement/orders/apr-
2023/order-in-the-matter-of-trading-activities-of-nimi-enterprises 70718.html
10. Securities Law of the People’s Republic of China (2019 Revision), https //www.lawinfochina.com
/display.aspx?id=31925&lib=law
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3.3 Literature review

There is a paucity of social science literature on spoofing. To our knowledge, our paper is the

first paper to show that spoofing restricts the market participation of very harmful HFTs and

doesn’t impede price discovery. Our finding is in contrast to that of Williams and Skrzypacz

[2020], who studies spoofing equilibrium under the Glosten-Milgron framework. They show that

spoofing can occur in equilibrium, slowing price discovery and raising spreads and volatility. A

novel prediction is that the prevalence of equilibrium spoofing is single-peaked in the measure

of informed traders. However, they only allow spoofers to trade one unit of share in each period,

which deviates from the true sense of spoofing, in which traders trade high volumes to give a

false picture of supply and demand. In our model, spoofers use large orders to mislead other

traders.

Our paper is closely related to papers that study front-running in the market. We adopt similar

two-period settings to Bernhardt and Taub [2008b], Xu and Cheng [2023]. However, our paper

allows traders not to trade and cancel their orders. Compared to front-running papers, another

type of trader was added: a spoofer who can submit a big order to manipulate other HFTs’

beliefs. Without a spoofer, our model collapses into a front-running model. Therefore, the results

of these papers and our results are complementary.

Most empirical papers have difficulties in identifying traders’ intentions and spoofing activities.

Lee and Park [2013] use the complete intraday order and trade data of the Korea Exchange

(KRX) (data with customer number) to study the possibility of spoofing activities in general.

They define a spoofing order as a bid/ask with a size at least twice the previous day’s average

order size and with an order price at least 6 ticks away from the market price, followed by an

order on the opposite side of the market, and subsequently followed by the withdrawal of the

first order. They show that price disclosure leads to a dramatic decrease in spoofing frequency. In

contrast, Kong and Wang [2014] investigate a specific spoofing case in the Chinese stock market.

Using a unique dataset of a spoofing case, they found that spoofing affects investors’ behaviors

in the short term, but this effect disappears rapidly in the long run. Their findings are consistent

with our result that the impact of spoofing is short-lived as the spoofer is a short-term trader,

and their net trading position is zero over a long time horizon.
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3.4 Modelling spoofing

In this section, we present a variant of the dynamic Kyle model. As mentioned in the second

section’s analysis, spoofer and their “victims” are either HFTs or really fast traders who can

take advantage of their speeds to capture short-term movements of the price. Sometimes, they

are labeled as “scalpers” by other market participants. We modeled them as fast traders.

3.4.1 Traders and market

Similar to Kyle [1985], the model has two types of slow traders who can submit orders to the

market with latency: i) noise traders whose trades are treated as entirely exogenous, that is,

they do not react to observations about price in any way. Their trade is normally distributed

u ∼ N(0, σ2
u) and σu > 0; ii) one monopolistically informed trader who has private information

of the stock v ∼ N(0, σ2). The realized value of the security is privately observed by the informed

trader, who then exploits this information in his trade.

Apart from slow traders, there are three types of fast traders who employ different high-frequency

strategies. First, a spoofer who can observe the trading activities with a low latency uses spoofing

strategies. Second, an HFT who depends on a pressure book to anticipate other traders’ strategies

is labeled as an “anticipatory trader”. Third, competitive market makers set the price to absorb

the order flow imbalance and make zero expected profit.

There are trading periods that are denoted by t = 1, 2. In the period, the informed trader

submits an order of volume x with a latency. The spoofer can submit an order of −z1 with low

latency to get an immediate execution and an order of z2 with high latency with an option to

cancel the order just before the period 2 execution. The anticipatory trader can observe a noisy

private signal about the incoming big order flow in the second period ĩ+ z2 = x+ z2 + ϵ with,

and he can trade m shares. In the second period, the spoofer can cancel the order of z2 and

submit an order of z1. The order of the informed trader arrives in the market. The anticipatory

trader trades an order of −m to liquidate all his positions. We allow the possibility that spoofers

and anticipatory traders choose not to trade.
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The noise orders during the period 1 and 2 are respectively denoted by u1 and u2. Both of

them have the same distribution as u, and they are independent of each other and other random

variables. The noise term ϵ is normally distributed, ϵ ∼ N(0, σ2
ϵ ) and independent of other

random variables. z2 is independent of each other and other random variables and z2 ∼ N(0, σ2
z2).

This assumption implies that the spoofer is an uninformed trader; he has no private signal, and

his spoofing order is uncorrelated with all other random variables.

3.4.2 Information sets and model discussion

No matter what type of spoofing strategies the spoofers employ, the main tenet is to give a false

sense of supply and demand (false signal) to the anticipatory trader. In this way, spoofers can

manipulate HFTs which use anticipatory algorithms. In this model, we model it as the signal ĩ,

which is analogous to “pressure book”. One interpretation of i is that the anticipatory trader can

observe the limit order book. By spotting the big limit orders, the trader can deduce the incoming

order flow from the big traders (informed traders) in the second section. Spoofers may have

used trading data or “ping orders” to detect anticipatory traders. For example, Mizuho Bank11

was fined a $250,000 civil monetary penalty by the CFTC for using spoofing strategies to test

the markets reaction to his spoof orders. When anticipatory traders’ strategies get detected, the

spoofer pretends to be an informed trader and sends a big order of z2 to mislead the anticipatory

trader. The big order is canceled immediately after the real order z1 gets executed.

Both the spoofer and anticipatory trader hold no inventory at the end of the second period.

The main reason for this assumption is that both of them are short-term traders and have no

information about the fundamental value of the stock. Their strategy is to capture short-term

movements of the price. Therefore, they are risk-averse to holding inventory and tend to hold

no inventory at the end of the day. Recounting the Navinder Sarao’s trading strategy, Liam

Vaughan12 gave a short description in his book “At the end of almost every session, he made

sure he had no outstanding positionsthat he was flat, in the idiom of the trader. The next day,

he started afresh.” This assumption is also consistent with empirical findings of Kirilenko, Kyle,

Samadi, and Tuzun [2017].

11. CFTC press release 7800-18,https://www.cftc.gov/PressRoom/PressReleases/7800-18
12. Liam Vaughan, Flash Crash: a trading Savant, a Global Manhunt and the Most Mysterious Market crash in
History
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Informed trader faces execution latency. There are several ways to interpret this assumption.

First, the informed trader may have a private signal about the asset fundamentals, but he is a

slow trader. Second, informed trades tend to be a big order and can move the market equilibrium.

The informed trader may chop his meta order into many small orders, thus slowing down his

execution. Third, the informed trader may submit only limit orders and wait for a better price

instead of market orders. Therefore, he faces a delay in execution.

We capture spoofing by allowing spoofers to submit and cancel under the Kyle [1985] framework,

which in practice usually takes place with limit orders rather than market orders, as we do not

find any existing limit order book models that allow tractable modeling of spoofing. However,

in Duong and Taub [2023], we draw an analogy between the limit order book and Kyle [1985]

model. The limit order book has a visible structure: the set of resting orders forms a pattern,

essentially a supply curve, with a slope that is driven by the underlying incentives created

by the information possessed by some of the traders. A fundamental theory, the Kyle [1985]

model, explains this structure and predicts that the slope, λ, of the supply curve reflects the

fundamental forces driving the stock value; λ reflects the marginal effect of trading on the price,

and so is known as the price impact parameter. This analogy plays an important role in our

model estimation in the next section.

Under the high-frequency setting, the time horizon is short. Therefore, we assume that once all

market participants choose their trading strategies they are committed to their strategies at the

beginning of the first periods. The timeline of the two-period model is as follows.

t=1 t=2

• Informed trader observes v
and submits a slow order x.

• The spoofer sells −z1 shares
and submits a slow spoofing
order of z2.

• The anticipatory trader ob-
serves ĩ+z2 and submit order
flow m.

• Noise traders submit order
flow u1

• Order flow x arrives.
• The spoofer cancels a slow spoofing order of z2
and submits order flow z1.

• The anticipatory trader liquidates his position
m.

• Noise traders submit order flow u2

Table 3.1: Model timeline

The information available to different market participants is as follows:
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• Informed trader can observe a private signal of the true fundamental value of the asset

v.

• Spoofer he’s aware of the anticipatory HFT and his strategies, but he doesn’t know

whether the anticipatory HFT will trade or not.

• Anticipatory trader can observe a private signal of ĩ, but he’s not able to distinguish

between the true signal and the spoofed volume. One of the interpretations of ĩ is that the

front runner can observe the limit order book. By spotting the big limit orders, the trader

can deduce the incoming order flow from the big traders (informed traders). Knowingly,

the spoofer submits a spoofing trader z2 to manipulate the anticipatory trader’s belief.

Therefore, instead of observing the true signal of ĩ, the anticipatory only observes ĩ+ z2.

• Market maker is aware of the informed trader, spoofer, and anticipatory trader. He can

observe the total order flow for each period, but he doesn’t know exactly how much

informed trader, spoofer, or anticipatory trader trade.

3.5 Model equilibrium

We use the subscripts I, A, S, M, U for the variables or parameters of informed trader, an-

ticipatory trader, spoofer, market maker, and uninformed traders. We denote the order flows

of the first and second periods, y1, y2 respectively. Let the strategy functions of the spoofer,

anticipatory trader, and informed trader be S(.), A(.), I(.), and the market maker commits to a

pricing function P (.). The equilibrium is defined by four functions S(.), A(.), I(.), P (.) such that

the following conditions hold:

1. Informed trader’s profit maximization. Given I(.), A(.), P (.) and his signal about the true

value of the assets v, he chooses x∗ to maximize his expected profit πI = x(v − p2).

x∗ = X(v, S(.), A(.), P (.)) = argmax
x

E[πI |v, S(.), A(.), P (.)] (3.1)

Where p2 is the execution price in the second period.
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2. The spoofer’s profit maximization. The optimal strategy of the spoofer, S(.) is a set of

real-valued functions S(.) = {(PS(.)Z1(.))}, PS is the probability that the anticipatory

trader chooses not to trade, Z1(.) is the optimal trading volume function if he decides to

trade. The optimal strategy of the anticipatory trader. Given I(.), A(.), P (.), his signal

ĩ about the informed trades and spoofing order z2 , he chooses (p∗S , z
∗
1) to maximize his

expected profit πS = z1(p1 − p2).

(p∗S , z
∗
1) = S(v, I(.), A(.), P (.)) = argmax

pS ,z1
E[πS |I(.), A(.), P (.)] (3.2)

3. Anticipatory trader’s profit maximization. The optimal strategy of the anticipatory trader,

A(.) is a set of real-valued functions A(.) = {(PA(.)M(.))}, PA is the probability that the

anticipatory trader chooses not to trade, M(.) is the optimal trading volume function if

he decides to trade. Given I(.), P (.) and his signal ĩ+z2, he chooses (p
∗
A,m

∗) to maximize

his expected profit πA = m(p2 − p1).

(p∗A,m
∗) = argmax

pA,m
E[πA |̃i+ z2, I(.), P (.)] (3.3)

4. Market efficiency. By the model’s setting, the market maker observes only the total order

flow at each period y1, y2. Given the strategies of the spoofer, anticipatory trader, and

inform trader, the market maker sets the price p1, p2, equal to the posterior expectations

of v

p1 = E[v|y1, S(.), A(.), I(.)] (3.4)

p2 = E[v|y1, y2, S(.), A(.), I(.)] (3.5)

Note that in the perfect Bayesian equilibrium, we allow mixed strategies, that is, in prin-

ciple pA, pS are distributions over strategies of the anticipatory trader and the spoofer (Trade,

Not trade) respectively. These 4 possibilities: (Trade, Trade), (Not Trade, Trade), (Trade, Not

trade),(Not trade, Not trade), which represent different economies. The first economy corres-

ponds to one in which the spoofer can trick the anticipatory trader into trading a big order.

The second possibility represents one in which the anticipatory trader can extract signals about

informed orders from the order book. The third one is the model in which the spoofer falls victim

to his own strategy. The fourth possibility is the standard Kyle model. We use superscripts AS,

”0S”, ”A0” and Kyle to indicate these economies

73



Obviously, the strategy function S(.), A(.), I(.), P (.) can take any forms. For the model’s tractab-

ility, we will focus on linear equilibria, i.e., the trading strategies and pricing functions are linear.

Formally, a linear equilibrium is defined as a perfect Bayesian equilibrium in which there exist

constants (pA, pS) and 4 sets of (λ1, λ12, λ22, β, β1, β2) corresponding to 4 above possibilities,

such that:

p1 = λ1y1 (3.6)

p2 = λ12y1 + λ22y2 (3.7)

x = βv (3.8)

m = β1(̃i+ z2) (3.9)

z1 = β2z2 (3.10)

Following Bernhardt and Taub [2008b]’s setting, we allows the possibility that λ1 ̸= λ12. In this

way, the market maker can reevaluate the information content of period-1 order flow in period-2

pricing.

The values of the net order flow depend primarily on the strategies of the spoofer and the

anticipatory trader. We only allow these two types of traders not to trade. This assumption

comes from the fact that the noise traders trades are treated as entirely exogenous in the model,

and they always trade. At the same time, the private signal of informed traders is short-lived.

His optimal is to trade on his information’s advantages. He makes zero profit if not trade, while

he makes a positive profit if he chooses to trade.

If both the spoofer and anticipatory trader choose not to trade, the model turns into the standard

Kyle [1985] model. In the first period, there are only noise traders. As there is no informed trade,

the market maker sets the price p1 = v0 = 0. In the second period, there are only the informed

trader and noise traders.

If both spoofer and anticipatory trader decide to trade, they need to choose optimal trading

volume to maximize their expected profits. The total net order flow y1 and y2 executed at t =

1 and t = 2 are

y1 = −z1 +m+ u1 (3.11)
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y2 = z1 −m+ x+ u2 (3.12)

If only the anticipatory trader chooses to trade, the model collapses into the Xu and Cheng

[2023] model. The total net order flow y1 and y2 executed at t = 1 and t = 2 are

y1 = m+ u1 (3.13)

y2 = −m+ x+ u2 (3.14)

If only the spoofer chooses to trade, the total net order flow y1 and y2 executed at t = 1 and t

= 2 are

y1 = −z1 + u1 (3.15)

y2 = z1 + x+ u2 (3.16)

3.5.1 Anticipatory trader’s problem

The anticipatory trader is a short-term fast trader who has speed advantages over other slow

traders. Due to these advantages, he can trade twice in the model. He opens his position in the

first period and liquidates it entirely in the second period. As a short term trader, he holds no

inventory at the end. Unlike the informed trader, whose profit is determined by the difference

between the entry price and the fundamental value, the anticipatory trader’s profit depends

on the difference between his entry and exit prices. Therefore, his main focus is to predict the

short-term price dynamics based on his signal, not the fundamental value of the asset.

If the anticipatory trader does not trade, his profit is zero. Therefore, we only need to consider

his optimization problem if he decides to trade. Given the strategies of the informed trader, the

spoofer, and the pricing rule of the market maker, the anticipatory trader chooses trading volume

m to maximize his profit. In the anticipatory trader’s belief, there may be only the informed

trader and uninformed traders, or he may be aware of the spoofer but do not know the spoofer’s

strategy. In this case, we assume that the order anticipation HFT misinterprets the spoofing order

as the noise in his signal. This assumption is consistent with Richard May’s testimony 13 “In 2013,

13. Case: 1 15−cv−09196, U.S. District Court - Northern District of Illinois,
https://www.govinfo.gov/content/pkg/USCOURTS−ilnd− 15−cv−09196/pdf/USCOURTS
−ilnd−1 15−cv−09196−.pdf
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Mr. May and his team observed what they believed was spoofing in the ES market. Around this

time, they noticed a significant decline in Citadels profitability...Immediately, Citadel scaled back

its participation in the ES market by over fifty percent. Mr. Mays team began investigating the

market data to determine why Citadel was experiencing such a decline...Eventually, Mr. Mays

team developed a program to detect this behavior on a more automated basis in an effort to

determine whether this was a new phenomenon or something that had always been there that

[they] hadnt previously seen”. Anticipatory trader is only aware of the existence of spoofing when

their profit declines. Therefore, in his optimization problem, the total net order flow y1 and y2

executed at t = 1 and t = 2 are

y1 = m+ u1 (3.17)

y2 = −m+ x+ u2 (3.18)

If the anticipatory trader wants to trade, his optimization problem is to choose m to maximize

his expected profit.

max
m

E[m(p2 − p1)|̃i+ z2, P (.), I(.)] (3.19)

Plug equations (3.6), (3.7), (3.17), (3.18) into the equation (3.19) and simplify

max
m

E[m(λ22x− (λ1 + λ22 − λ12)m))|̃i+ z2, I(.)] (3.20)

For tractability, we also conjecture that the informed trader’s strategy admits a linear function of

his signal x = βv. By using the projection formula, we can obtain E[x|̃i+z2] =
β2σ2

β2σ2+σ2
ϵ+σ2

z2

(̃i+z2)

.Therefore, the first-order condition for the anticipatory problem is

m =
λ22

2(λ1 + λ22 − λ12)

β2σ2

β2σ2 + σ2
ϵ + σ2

z2

(x+ ϵ+ z2) (3.21)

As the second order condition is λ1+λ22−λ12 > 0. Compare equation (3.21) and the conjectured

strategy (3.9), we have

β1 =
λ22

2(λ1 + λ22 − λ12)

β2σ2

β2σ2 + σ2
ϵ + σ2

z2

(3.22)

In the next section, we will also consider the problem in which the anticipatory trader can extract

the informed trade perfectly from the noisy signal even when the spoofer adds more noise to the

market.
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3.5.2 Spoofer’s problem

Similar to the anticipatory trader, the spoofer is a fast trader with a short-term trading horizon.

He also has no inventory holding at the end of the second period. The main difference between

the anticipatory and the spoofer lies in their trading strategies. While the anticipatory trader

uses pattern recognition algorithms to examine trades and quotes to extract trading signals, the

spoofer’s focus is to add more noise to the limit order book by submitting a big spoofing order.

In this way, the spoofer can mislead the anticipatory trader.

When the spoofer opts to trade, he needs to choose to submit a real order flow z1 and a spoofing

order z2 to maximize his expected profit. For the model’s simplicity, in this section, we only

allow the spoofer to choose the optimal z1 explicitly. Even though only z1 is chosen optimally

in the spoofer’s optimization problem, z2 implicitly faces some constraints. First, z2 faces the

upper bound of his inventory of the asset or his ability to borrow the asset. Second, the spoofer

is a fast trader who does not want to hold inventory at the end. The higher the spoofing order

z2 is, the higher volume is exposed to the risk of execution. Even though the spoofing order only

rests for a short period in the limit order book, it faces the same risk of execution as other open

orders when it is there. The execution risk can leave the spoofer holding the inventory at the end

of the second period, thus deviating from his trading strategy. The spoofer’s signal optimization

problem is presented in the next section.

We only need to consider the spoofer’s optimization problem when he opts to trade. Formally, the

spoofer chooses z1 to maximize his expected profit, given his signal, strategies of the anticipatory

trader, the informed trader, and the market maker.

max
z1

E[z1(p1 − p2)|z2, I(.), A(.), P (.)] (3.23)

Inserting (3.11), (3.12), (3.6), (3.7) into (3.23) yielding

max
z1

E[z1(λ1(m− z1)− λ12(m− z1)− λ22(x+ u2 −m+ z1))|z2, I(.), A(.), P (.)] (3.24)
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By our assumption, z1 = β2z2 and z2 is mutually independent of u1, u2, x. Therefore, E[z1x] =

0, E[z1u2] = 0, E[z1m] = β2z
2
2 . Substituting this expression into (3.24), we obtain

max
β2

β2(λ1 + λ22 − λ12)(β1 − β2)z
2
2 (3.25)

Taking the first-order-condition (FOC) results in the solution as follows:

β2 =
1

2
β1 (3.26)

The second-order condition for the spoofer’s problem is the same as the order anticipation HFT’s

problem λ1 + λ22 − λ12 > 0.

3.5.3 Market maker’s problem

From the equilibrium definition, the market maker sees the aggregate order flow in each period

and sets the prices efficiently. However, these aggregate order flows vary according to the spoofer

and the anticipatory’s strategies. There are 4 possibilities:

1. Both traders choose to trade. By combining equations (3.9),(3.10), (3.11), (3.12), and

(3.26), we can obtain the total net order flow y1 and y2 executed at t = 1 and t = 2 as

follows:

y1 = −1

2
β1z2 + β1(̃i+ z2) + u1 = β1ĩ+

1

2
β1z2 + u1 (3.27)

y2 = x− β1ĩ−
1

2
β1z2 + u2 (3.28)

2. Only the anticipatory trader trades. In this case, the real order z1 and spoofing order z2

of the spoofer are both zero. By inserting the equation (3.9) into (3.13), (3.14), we arrive

at the aggregate order flows

y1 = β1ĩ+ u1 (3.29)

y2 = x− β1ĩ+ u2 (3.30)

3. Only the spoofer trader trades. As the anticipatory opts out of the trade, his trading

volume is zero. By using the equations (3.26) into (3.15), (3.16), we arrive at the aggregate

order flows

y1 = −1

2
β1z2 + u1 = −1

2
β1z2 + u1 (3.31)
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y2 = x+
1

2
β1z2 + u2 (3.32)

4. If both traders do not trade. In the first period, there are only noise traders. Therefore

p1 = p0 = 0. In the second period, the economy collapses into the standard Kyle model.

We can rewrite these aggregate order flows under different circumstances into a unified general

form

y1 = a1ĩ+ t+ u1 (3.33)

y2 = a2x− a1ϵ− t+ u2 (3.34)

Where we denote a1 = kβ1, a2 = 1− a1 and t is independent of u1, u2, v, ϵ. k and t for each case

are as follows:

(k, t) =



(1, 12β1z2) Both trade

(1, 0) Only the anticipatory trades

(0,−1
2β1z2) Only the spoofer trades

(0, 0) Both do not trade

In the first period, the market maker can observe the order flow y1 and set the price p1 = E[v|y1].

By using the project theorem, we can derive λ1

λ1 =
Cov(v, y1)

V ar(y1)
=

a1βσ
2

a21(β
2σ2 + σ2

ϵ ) +
1
4β

2
1σ

2
z2 + σ2

u

(3.35)

Similarly, the market maker see the aggregate order flow y1, y2 in the second period and set the

price p2 = E[v|y1, y2]. By combining equations (3.32), (3.33), (3.7) and applying the projection

theorem, we obtain:

λ12 =
Cov(y1, v)V ar(y2)− Cov(y1, y2)Cov(v, y2)

V ar(y1)V ar(y2)− Cov2(y1, y2)

=
σ2β(a21σ

2
ϵ +

1
4β

2
1σ

2
z2 + a1σ

2
u)

σ2
u(2a

2
1σ

2
ϵ +

1
2β

2
1σ

2
z2 + σ2

u) + σ2β2(a21σ
2
ϵ +

1
4β

2
1σ

2
z2 + (a21 + a22)σ

2
u)

(3.36)

λ22 =
Cov(y2, v)V ar(y1)− Cov(y1, y2)Cov(v, y1)

V ar(y1)V ar(y2)− Cov2(y1, y2)

=
σ2β(a21σ

2
ϵ +

1
4β

2
1σ

2
z2 + a2σ

2
u)

σ2
u(2a

2
1σ

2
ϵ +

1
2β

2
1σ

2
z2 + σ2

u) + σ2β2(a21σ
2
ϵ +

1
4β

2
1σ

2
z2 + (a21 + a22)σ

2
u)

(3.37)
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3.5.4 Informed trader’s problem

Unlike the anticipatory trader and the spoofer, the informed trader is a slow trader who can

only trade in the second period. He submits his order in the first period, and the order only

arrives in the exchange in the second period. The latency allows the anticipatory trader to

use pattern recognition algorithms to detect the informed trader. Even though our model only

allows market orders, we can interpret the latency under the limit order settings in the following

way. The informed trader may have submitted a big limit order, and it will take time until the

order gets executed. During that time, by using algorithms, the anticipatory trader can detect

informed trading intentions.

Based on his signal about the true value of the assets v, The informed trader chooses x∗ to

maximize his expected profit. Using equations (3.33), (3.34), we can obtain his expected profit.

E[x(v − p2)|v, I(.), A(.), P (.)] = x(v − (a1λ12 + a2λ22)x) (3.38)

Taking the first-order-condition (FOC) results in the solution as follows:

x =
1

2(a1λ12 + a2λ22)
v (3.39)

The second order condition is 2(a1λ12 + a2λ22) > 0. Combining with the conjectured strategy,

we have

β =
1

2(a1λ12 + a2λ22)
(3.40)

Inserting the equations (3.37), (3.36) into (3.40) to obtain:

β2 =
σ2
u(2a

2
1σ

2
ϵ +

1
2β

2
1σ

2
z2 + σ2

u)

σ2(a21σ
2
ϵ +

1
4β

2
1σ

2
z2 + (a21 + a22)σ

2
u)

(3.41)
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3.5.5 Equilibrium Characterization and Properties

We denote θϵ =
σ2
ϵ

σ2
u
and θz2 =

σ2
z2
σ2
u
.From the above analysis, there are 4 possibilities depending

on the strategies of the spoofer and the anticipatory trader. The following proposition formally

specifies a linear equilibrium when both traders opt to trade.

Proposition 3.5.1. In the economy where both the spoofer and the anticipatory trader choose to

trade, there exists a unique linear strategy equilibrium. The equilibrium is characterized by a

tuple of (λ1, λ12, λ22, β, β1, β2) through the system of equations:

λ12 =
σ2β(a21θϵ +

1
4β

2
1θz2 + a1)

2σ2
u(2a

2
1θϵ +

1
2β

2
1θz2 + 1)

(3.42)

λ22 =
σ2β(a21θϵ +

1
4β

2
1θz2 + a2)

2σ2
u(2a

2
1θϵ +

1
2β

2
1θz2 + 1)

(3.43)

λ1 =
a1βσ

2

a21(β
2σ2 + σ2

ϵ ) +
1
4β

2
1σ

2
z2 + σ2

u

(3.44)

β2 =
1

2
β1 (3.45)

β2 =
σ2
u(2a

2
1θϵ +

1
2β

2
1θz2 + 1)

σ2(a21θϵ +
1
4β

2
1θz2 + (a21 + a22))

(3.46)

β1 =
λ22

2(λ1 + λ22 − λ12)

β2σ2

β2σ2 + σ2
ϵ + σ2

z2

(3.47)

Where a1 = β1, a2 = 1− a1. Thus, the profit of each trader is given by

e[πAS
A ] = E[m(p2 − p1)] = (λAS

1 + λAS
22 − λAS

12 )(βAS
1 )2(

3

2
σ2
z2 + (βAS)2σ2 + σ2

ϵ ) (3.48)

E[πAS
S ] = E[z1(p1 − p2)] =

λAS
1 + λAS

22 − λAS
12

4
(βAS

1 )2σ2
z2 (3.49)

E[πAS
I ] = E[x(v − p2)] =

βAS

2
σ2 (3.50)
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In the cases of both traders trading, the second order condition from the optimization problem

indicates that λAS
1 + λAS

22 − λAS
12 > 0. Therefore, E[πAS

A ] > 0 and E[πAS
A ] > 0. In other words, in

the economy where both the spoofer and the anticipatory trader choose to trade, both of them

make positive profits.

Proposition 3.5.1 reveals that in equilibrium, the spoofer only uses part of the signal that he sent

to the anticipatory trader. The anticipatory trader loses money from trading against the spoofer

but makes a positive profit from anticipating the informed order. As the anticipatory trader can

deduce the informed order, he protects himself from the spoofer by reducing the trading intensity

when there is the spoofer who adds more noise to the anticipatory trader’s signal. On average,

the anticipatory trader still makes a positive profit as the loss from the spoofer is compensated

by profit from exploiting the informed trader.

Now, we consider the economy where only the anticipatory trader trades. Similarly, the equilib-

rium of this economy is characterized by a tuple of (λ1, λ12, λ22, β, β1, β2). As the spoofer opts

out of the market, his real and spoofing orders are zero. Therefore, we do not need to consider

the spoofer problem or β2 = 0. The following proposition formally specifies a linear strategy

equilibrium of this economy.

Proposition 3.5.2. In an economy where only the anticipatory trader trades, there exists a unique

linear strategy equilibrium. The equilibrium is characterized by a tuple of (λ1, λ12, λ22, β, β1, β2)

through the system of equations:

λ12 =
σ2β(a21θϵ + a1)

2σ2
u(2a

2
1θϵ + 1)

(3.51)

λ22 =
σ2β(a21θϵ + a2)

2σ2
u(2a

2
1θϵ + 1)

(3.52)

λ1 =
a1σ

2β(a21θϵ + (a21 + a22))

a21σ
2
u(2a

2
1θϵ + 1) + σ2

u(a
2
1θϵ + 1)(a21θϵ + (a21 + a22))

(3.53)

β2 = 0 (3.54)

β2 =
σ2
u(2a

2
1θϵ + 1)

σ2(a21θϵ + (a21 + a22))
(3.55)
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β1 =
λ22

2(λ1 + λ22 − λ12)

β2σ2

β2σ2 + σ2
ϵ

(3.56)

Where a1 = β1, a2 = 1− a1. Thus, the profit of each trader is given by

E[πA0
A ] = E[m(p2 − p1)] = (λ1 + λ22 − λ12)(β

A0
1 )2((βA0)2σ2 + σ2

ϵ ) (3.57)

E[πA0
S ] = 0 (3.58)

E[πA0
I ] = E[x(v − p2)] =

βA0

2
σ2 (3.59)

The result is immediate using the proof of the proposition 3.5.1. The proposition 3.5.2 is the

special case of the the proposition 3.5.1 with θz2 = 0. Similarly, the expected profit E[πA0
A ] of

the anticipatory trader is positive.

If the order anticipation HFT does not participate in the market, his trading volume is zero or

β1 = 0. However, the spoofer still expects the HFT’s order. We denote β̃1 the trading intensity

of the HFT under the spoofer’s belief. As a result of the false anticipation of HFT’s strategy, the

spoofer loses money. The following proposition formally specifies a linear strategy equilibrium

of this economy.

Proposition 3.5.3. When only spoofer opts to trade, there exists a unique linear strategy equilib-

rium (λ1, λ12, λ22, β, β1, β2) specified by the system of equations:

λ12 =
σ2β 1

4 β̃1
2
θz2

2σ2
u(

1
2 β̃1

2
θz2 + 1)

(3.60)

λ22 =
σ2β(14 β̃1

2
θz2 + 1)

2σ2
u(

1
2 β̃1

2
θz2 + 1)

(3.61)

λ1 = 0 (3.62)

β2 =
1

2
β̃1 (3.63)

β2 =
σ2
u(

1
2 β̃1

2
θz2 + 1)

σ2(14 β̃1
2
θz2 + 1)

(3.64)
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β̃1 =
λ22

2(λ1 + λ22 − λ12)

β2σ2

β2σ2 + σ2
ϵ + σ2

z2

(3.65)

β1 = 0 (3.66)

Thus, the profit of each trader is given by

E[π0S
A ] = 0 (3.67)

E[π0S
S ] = E[z1(p1 − p2)] = −λ1 + λ22 − λ12

4
(β̃1

0S
)2σ2

z2 (3.68)

E[π0S
I ] = E[x(v − p2)] = β0Sσ2 (3.69)

When there is only the spoofer, all orders in the first period are uninformed. Therefore, the

market maker sets λ1 = 0. However, in the second period, he adjusts the price impact λ12 of the

first-period order flow as he learns that order flows of two periods are correlated. As there is no

anticipatory trader to be preyed upon, the spoofer suffers from a loss to the informed trader.

Proposition 3.5.4. There exists a unique linear pure strategy equilibrium in which both the spoofer

and the anticipatory trader use pure strategies and make positive profits.

The payoff matrix for both players is presented in table 3.2. Obviously, ”Trade” is the dominant

strategy for the anticipatory trader as he makes zero profit if he chooses not to trade. When the

anticipatory trader plays ”trade,” the optimal strategy for the spoofer is to trade. Therefore, in

equilibrium, both traders opt to trade and make positive profits. Order anticipation strategies

are profitable against traditional orders entered by big players. But with spoofers in the mix,

the game looks quite different. When the order anticipation HFT wants to jump ahead of the

spoofer, the HFT falls prey to the spoofer and loses money. In short, spoofing poses the risk of

making order anticipation strategies unprofitable. However, spoofing is only profitable if order

anticipation algorithms are active. When the anticipatory traders choose not to trade, the spoofer

gets fooled by his own strategy and loses money. Zaloom [2003] documented the incidence in

which the spoofer falls prey to his own strategy and gets fooled by other traders. “ Traders

learned to identify a spoofer by watching changes in the aggregate number of bids or offers on

the screen, creating a novel strategy for profit. By riding the tail of a spoofer, a small trader

could make money in the market direction. Traders who dealt in large contract sizes aspired
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Table 3.2: Payoff matrix for anticipatory trader and spoofer.

Spoofer

Trade No trade

Anticipatory trader
Trade (E[πAS

A ], E[πAS
S ]) (E[πA0

A ], 0)

No trade (0, E[π0S
S ]) (0, 0)

to ”take out” the Spoofer by calling his bluff, selling into his bid, and waiting for him to balk.

There was great symbolic capital attached to ”taking out” a spoofer by matching wits with this

high-risk player. Taking out the Spoofer showed the prowess of a trader in one-to-one combat”.

The spoofer and the anticipatory trader are two sides of the same coin; the existence of one

keeps the other in check.

Proposition 3.5.5. In equilibrium, the optimal intensities of the anticipatory trader and the in-

formed trader decrease with θz2 and θϵ. Mathematically,

∂β

∂θz2
< 0,

∂β

∂θϵ
< 0 (3.70)

∂β1
∂θz2

< 0,
∂β1
∂θϵ

< 0 (3.71)

The proposition 3.5.5 shows that the anticipatory trader strategically responds to the spoofer by

reducing his participation when the spoofer increases spoofing intensity. When θz2 is higher, the

signal of the anticipation HFT becomes noisier. Therefore, he becomes less active in the market.

This result is consistent with the testimony of Mr.May in the second section. Surprisingly,

spoofing affects the informed trader unfavorably. However, the informed trader is less responsive

to spoofing than the anticipatory trader. In other words, spoofing only has indirect effects on

the informed trader’s strategy as a result of changes in other traders’ strategies. This argument

is clearly illustrated in Section 8.
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3.6 The spoofer’s signal optimization problem

In the previous section, z2 is treated as a given random variable. In this section, the spoofer is

allowed to optimally choose z2 to maximize his ex-ante expected profit. z2 is characterized by

the variance σ2
z2 , which can be interpreted as the spoofing intensity of the spoofer. From the

previous section, σ2
z2 has a mixed effect on the spoofer’s profit. The higher the spoofing intensity,

the lower the trading intensity of the anticipatory trader, thus reducing the real trading volume

of the spoofer. However, the higher the spoofing intensity, the higher the profit per share. From

the equation (3.49), the spoofer’s expected profit is given by.

E[πS ] = E[z1(p1 − p2)] =
λ1 + λ22 − λ12

4
(β1)

2σ2
z2 (3.72)

The spoofer’s signal optimization problem is to choose σ2
z2 to maximize his expected profit E[πS ]

subject to constraints (3.42), (3.43), (3.44), (3.45), (3.46), (3.47), and λ1 + λ22 − λ12 > 0.

Proposition 3.6.1. Given σ2, σ2
ϵ , σ

2
u, the spoofer’s signal optimization problem has a global max-

imum.

From the proof in the Appendix C.5, we can see that not spoofing or σz = 0 is not the optimal

solution to the spoofer’s signal optimization problem as he makes a zero profit. Too high spoofing

variance σz is also not optimal, as the higher the spoofing intensity is, the lower the anticipatory

trader order flow is. When σz2 approaches infinity, β1 goes to zero as the order anticipation

HFT protects himself by reducing his market participation. As a result, the profit of the spoofer

approaches zero.
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3.7 Market quality

3.7.1 Market efficiency

Two important aspects of market efficiency are price accuracy (or price discovery) and the

liquidity of the market. First, liquidity is a multi-dimensional concept, with most measures only

capturing one of its many aspects. Under the Kyle framework, market liquidity is defined as the

inverse of the Kyle lambdas λ1, λ12, λ22, which are price impacts of trading. Those λs measure

how much the price moves with one unit of share. The lower the price impact, the deeper and

more liquid the market is. Second, price discovery is measured by how much information is

incorporated into the price of an asset. More accurate pricing stocks can generate more efficient

capital allocations and foster investor’s sense of fairness. For Kyle’s setting, price discovery is

measured by the market maker’s forecast error variance.

Σ1 = E[(v − p1)
2] (3.73)

Σ2 = E[(v − p2)
2] (3.74)

Proposition 3.7.1. In equilibrium, the price impacts of the first period λ1 and λ12 are decreasing

in σz2 while the price impact of the second period of the second period is increasing in σz2.

Mathematically

∂λ1

∂θz2
≤ 0,

∂λ12

∂θz2
≤ 0 (3.75)

∂λ22

∂θz2
≥ 0, (3.76)

In the first period, price impacts are decreasing in the spoofing intensity. The more the spoofing

variance, the lower the price impact. As the spoofer adds more noise to the order anticipation

HFT’s signal, the anticipatory trader reduces his trading activities in the first period. This

makes aggregate order in the first period less informed. Therefore, spoofing leads to a lower

price impact in the first period. However, in the second period, spoofing increases the price

impact. If we consider each period separately, spoofing has a mixed effect on liquidity. But if we

combine them, the best measure is λ1 + λ22, which is the proxy for the welfare of uninformed

traders. We will consider this one in the next section.
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Proposition 3.7.2. In equilibrium, the price discovery measure of the first period Σ1 is increasing

in σz while the price discovery measure of the second period Σ2 is the same for all different

models (AS, A0, 0S, Kyle). Mathematically

∂Σ1

∂θz2
≤ 0 (3.77)

Σ2 =
σ2

2
(3.78)

In the first period, the market maker’s forecast error variance is decreasing in spoofing intensity.

As the result of a proposition 3.7.2, we can have ΣKyle
1 ≥ ΣAS

1 ≥ ΣA0
1 . Compared to the standard

Kyle model, both spoofing and order anticipation speed up the price discovery. However, the

improvement of price discovery is at the expense of the informed trader in the form of information

leakage. In a short duration, spoofing delays price discovery by adding more noise to the order

anticipation HFTs’ signal, thus reducing information leakage. In the second period, the market

maker’s forecast error variances are the same across models. The reason is that both the spoofer

and anticipatory trader are short-term traders; they tend to close their positions within a short

timeframe, and their net positions are zero within two periods.

3.7.2 Wealth transfer and market welfare

Trading is a zero-sum game, so if someone has expected profits from the trade, the other has

to suffer the loss. To understand how spoofing affects market welfare, we need to study how

this practice affects the wealth positions of all market participants and the implications of these

effects.

Proposition 3.7.3. In equilibrium, the expected profit of the anticipatory trader and the loss to

uninformed traders are decreasing in σz. Mathematically

∂E[πI ]

∂θz2
≤ 0 (3.79)

∂E[πU ]

∂θz2
≥ 0 (3.80)
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For the uninformed trader, the higher the spoofing intensity, the lower the loss to the uninformed

trader. From proposition 3.5.5, when the spoofer increases the spoofing variance, the trading

intensities of the anticipatory trader and the informed trader decrease. As a result, uninformed

traders are less likely to be exploited by other traders. In other words, uninformed traders

indirectly benefit from spoofing.

3.8 Model calibration

The main purpose of this section is to simulate the model numerically to ensure that the cal-

ibrated model is consistent with our findings. From the previous section, we have proved that

the model can be solved numerically if a set of σ2, σ2
u, σ

2
ϵ , σ

2
z2 is given. We interpret the traded

asset as a typical stock in the US stock market. Specifically, we choose SPY (SPDR S&P 500

ETF Trust), as it tracks the S&P 500 index. Chapter 2 used trading data in February 2018 and

estimated σ2 = 0.00039 and σ2
u = 731, 957. In order to reduce the computation, we convert the

unit of σu to thousand shares, σu = 0.8555. The only remaining parameter σ2
ϵ which is hard

to observe but an important one that determines the nature of the equilibrium. We start our

analysis with θϵ = σ2
ϵ

σ2
u
= 0.4, then we explore the variation in θϵ in subsequent analysis. The

optimal signal σ2
z2 can be recovered from the spoofer’s signal optimization problem.

Parameter σ2 σ2
u σ2

ϵ

Value 0.00039 0.732 0.2927

Unit Dollar squared Thousand
shares squared

Thousand
shares squared

Table 3.3: Parameter values

Using these parameters, we solve 2 separate models numerically. The baseline model is the

economy with only the anticipatory trader σz2 = 0. The second model is the economy with both

the spoofer and the order anticipation HFT. In this model, we allow the spoofer to choose its

optimal spoofing strategy. The solutions of the two models are given as follows
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Baseline (A0) Spoofer’s optimization

σz2 0 1.072

β1 0.3181 0.1797

β 57.83 51.96

λ1 0.0083 0.00464

λ12 0.0051 0.0027

λ22 0.01029 0.0111

Table 3.4: Solutions to AS and A0 models

The solutions to AS and A0 models are consistent with the findings of Chapter 2. In that

paper, we measure the slope of the book by running a simple regression of price against quant-

ity in each snapshot of the limit order book and recover an estimate of λ. The estimated

λ = 0.0000394/share or 0.0394/thousands shares for SPY. It is in the same magnitude as our

calibrated λ22. Furthermore, Chapter 2 also presents that the average and median volumes of

SPY per message are 169.5 shares and 100 shares. The optimal spoofing deviation for the spoofer

is 1072 shares, which is over 10 times the median volume per message and 6.3 times the average

volume per message. This scale is in line with the spoofing orders recorded in many spoofing

cases. For example, in the complaint against Igor B.Oystacher 14, the CFTC presented evidence

that Igor B.Oystacher used big orders to give the false sense of market depth. At 8:02:34.360 a.m.

on November 30, 2012, he was alleged to have opened a short position of 10 futures contracts in

natural gas while placing seven visible orders of 103 contracts. His strategy led to an 11 times

increase in the visible market depth. Unsurprisingly, even though the spoofer needs to send a

big order to mislead the order anticipation HFT, it is not optimal to send an order that is too

big. The optimal variance of the spoofing order, in this case, is about 1.23 times more than the

variance of noise trade. The big order exposes the spoofer to the risk of execution and detection

by other traders.

In order to help intuition, we study the variation of σ2
z2 and its effects on other traders’ strategies.

We also compare the results with the baseline model above.

Figure 3.1 presents the numerical solutions to different models for the various values of σz2 .

The green dashed line is the outcome for the economy (AS) with both traders and the spoofer

maximizing his signal. The red dashed line represents the solutions to the baseline model with

only the anticipatory trader. The solid blue line is the outcome of the AS models with various

14. Complaint Case: 1:15-cv-09196 https://www.cftc.gov/sites/default/files/idc/groups/public/
@lrenforcementactions/documents/legalpleading/enfigorcomplnt101915.pdf
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Figure 3.1: Numerical solutions to the models when θϵ = 0.4

values of σz2 . Looking across panels of Figure 1, it is obvious that λ1, λ12, β1, β are decreasing in

σz2 and lie below the red line of the baseline model which indicates those values of AS models

is less than those of the baseline model. It can be explained that when the spoofer adds more

noise to the market, there is more buffer liquidity in the market, thus leading to a decrease

in the price impact of the first period. At the same time, the spoofer makes the anticipatory

trader’s signal less accurate. The order anticipation HFT protects itself by reducing its trading

intensity. Contrarily, λ22 is an increasing function of σz2 and lies above the baseline line. It is

notable that λ22, β are also relatively insensitive to changes in σz2 while σz2 variations affects

β1, λ1, λ12 significantly. This is due to the fact that the spoofer directly influences the strategies

of the anticipatory HFT but has indirect effects on the informed trader. In all panels of Figure

3.1, the green dashed lines cross the blue line at the optimal value of σz2 = 1.072.

Figure 3.2 shows the ex-ante profits(loss) of all traders in the model. In the case of the spoofer,

his profit is a concave function in σz. The green dashed line is tangent to his profit curve at the

optimal value of σz2 = 1.072. The profits of the informed trader and the anticipatory trader are

decreasing in spoofing intensity and lie below the red dashed line. However, the profit of the

anticipatory HFT is more sensitive to σz than that of the informed trader. It is understandable
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Figure 3.2: Ex-ante profits of traders when θϵ = 0.4

as the order anticipation trader has a noisier signal as the spoofer increases his spoofing intensity.

The anticipatory trader reduces his trading intensity rapidly to avoid the loss, thus leading to

the sensitivity of his trading strategy to the spoofer’s strategy. In the case of the informed trader,

he has private information therefore, he is less sensitive to the spoofer’s strategy.

Figure 3.3 and figure 3.4 present how the model solution is sensitive to variations in θϵ. Looking

across panels of Figure 3, it is obvious that the dependencies of λ1, λ12.β1, β, λ22 on θϵ is similar to

those dependencies on θz2 . It is understandable as both θϵ and θz2 are noises to the anticipatory’s

trader. The only difference between them is the sources of noise. The optimal spoofing deviations

for the spoofer range from above 1000-1700 shares, which are over 10 times the median volume

per message. This scale is in line with the spoofing orders recorded in many spoofing cases we

presented above. If we examine Figure 3, the profit of the spoofer is decreasing in θϵ. As θϵ

increases, the signal of the anticipatory traders becomes noisier. As a result, he scales back his

trading participation, thus reducing the profit of the spoofer. In other words, the more accurate

the signal of the anticipatory trader, the more easily he can be exploited.
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Figure 3.3: Numerical solution for different values of θϵ

Figure 3.4: Ex-ante profits of traders for different values of θϵ
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3.9 Policy discussion

There are many reasons that regulators cited to justify the prohibition of spoofing. However,

the most common ones are to protect market integrity and fairness. The DOJ15 has stated

that spoofing “poses a significant risk of eroding confidence in U.S. markets” and “ protecting

the integrity of our markets remains a significant priority in our fight against economic crime.”

James McDonald, the CFTCs Director of Enforcement, also has commented, “Spoofing under-

mines the integrity of our markets and gives those engaging in the unlawful conduct an unfair

advantage over law-abiding market participants”16. Even though market integrity is one of the

main missions of securities and commodities regulators, it is poorly defined by regulators. Al-

though this approach can give regulators more flexibility to interpret what they perceive as

challenges when they arise, the lack of clarifications makes it impossible to assess the progress

of securities regulators toward achieving these goals. This also leads to different interpretations

of market integrity by market participants. Austin [2017] presents different definitions of what

market integrity should encompass. In a narrow sense, the market integrity is often defined as

the ability of investors to transact in a fair and informed market where prices reflect information.

This definition is close to market efficiency. Austin [2017] also suggests that market integrity

and market fairness may be equivalent. Shefrin and Statman [1993] defined market fairness as a

claim to 7 entitlements: freedom from coercion, freedom from misrepresentation, equal informa-

tion, equal processing power, freedom from impulse, efficient prices, and equal bargaining power.

Apart from market efficiency, this definition extends to equal access to information and equal

information processing. In this paper, we adopt the framework from Fox, Glosten, and Guan

[2022] to evaluate spoofing through 3 main aspects: efficiency considerations, wealth transfer

from an ex-ante perspective, and fairness considerations.

15. Press release. U.S. Dept of Justice, Eight Individuals Charged with Deceptive Trading Practices Executed on
U.S. Commodities Markets (Jan. 29, 2018) https://www.justice.gov/opa/pr/eight-individuals-charged-deceptive-
trading-practices-executed-us-commodities-markets
16. Release Number 7686-18, https://www.cftc.gov/PressRoom/PressReleases/7686-18
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3.9.1 Efficiency

For price accuracy, we find that in a very short time frame, spoofing delays the price discovery.

The main driver of this result is that spoofing makes the anticipatory trader less active in the

market, thus delaying the information dissipation in the market. The improvement in price dis-

covery caused by the order anticipation strategies is at the expense of informed traders in the

form of information leakage. while order anticipation strategies can foster price discovery in the

short term, the widespread order anticipation HFTs will harm price discovery in the long run

as they discourage informed traders from researching and finding mispricing assets. Informed

traders will have less incentive to create information. With spoofing, the participation of anticip-

atory traders can be kept in check. In the longer timeframe, both spoofing and order anticipation

strategies have a limited effect on price discovery, as both spoofers and order anticipators are

short-term traders. Their daily net positions are usually zero.

Contrary to Fox et al. [2022]’s arguments, our above model shows that spoofing has positive im-

pacts on liquidity and market welfare. From our above analysis, with spoofing both anticipatory

traders and informed traders reduce their trading intensities. As an indirect effect, uninformed

traders suffer less loss, and the market liquidity improves.

Another aspect is to examine how spoofing affects market confidence. Our results are consistent

with Fox et al. [2022]’s arguments that spoofing does not decrease the wealth position of ordinary

investors, and any additional risk-related spoofing can be diversified away. However, we disagree

with their arguments that misperceptions that spoofing occurs may harm ordinary investors can

reduce their participation.
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3.9.2 Wealth transfer

To evaluate spoofing, we need to consider how spoofing affects different members of our society.

From the above analysis, spoofing has no or little impact on HFTs that use arbitrage and

market-making strategies. For informed traders, they benefit from spoofing as spoofing reduces

the participation of anticipatory traders. Uninformed traders also indirectly benefit from spoofing

as they suffer less loss. The only victims of spoofing, in this case, are those order anticipation

HFTs. The higher the spoofing intensity is, the lower the profit order anticipators can make.

3.9.3 Fairness considerations

From our above analysis, legalizing spoofing doesn’t harm informed traders, and they actually

benefit from spoofing. For informed traders, even though they reduce their trading intensity,

they also benefit from less active anticipatory traders.

To study the fairness of spoofing, we examine the arguments put forward by the Department of

Justice in the cases against Andre Flotron 17 and B. Oystacher. First, regulators tend to paint

HFTs as the innocent targets of spoofing, at least in part, to give the jury a reason to care about

the crime it was trying to prove. However, if we examine HFTs’ testimony, we find that the

only harmful HFTs that use order anticipation strategies are vulnerable to spoofing. Other good

HFTs using market-making, arbitrage, and news feed strategies are not harmed by spoofing.

Order anticipation HFTs are sophisticated traders with pattern recognition algorithms. They

only fall victim to spoofing as their algorithms get detected. Therefore, the argument that HFTs

are the innocent targets of spoofing seems far from the truth. Second, a spoofer is claimed to

have conducted fraudulent misrepresentation of the price. According to regulators, a spoofer

fraudulently induces other traders into filling its real orders using the spoof order. For example,

if an HFT trades against a spoofer, the terms of that transaction are fully and accurately

disclosed in the market. No one forces the HFT to trade, and the transactions are executed with

17. Court Docket No.:3:17-cr-00220-JAM, https://www.justice.gov/criminal/criminal-vns/united-states-v-andre-
flotron
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the exact terms disclosed. Furthermore, the limit order book is the second order information.

There is no law to require traders to fully disclose their trade intentions. One of these examples

is iceberg orders are legal in most jurisdictions. The responsibility for that error should come

with anticipatory algorithms, not spoofers.

3.10 Conclusion

In recent years, spoofing has become a main target of manipulative crackdowns by regulators.

This paper provides a two-period model of strategic interactions between a spoofer and an

anticipatory trader who employs pattern recognition algorithms to predict the incoming order.

Detecting this strategy, the spoofer submits a spoofing order to mislead the anticipatory trader

about the incoming order. The order anticipation HFT protects itself by reducing its market

participation. A pure strategy spoofing equilibrium exists and both traders make positive profits.

We show that while spoofing delays price discovery in a short horizon, price dislocation will be

so brief as to have little economic efficiency implications. Moreover, spoofing improves market

liquidity and market welfare. By studying different recounts of traders, we find that spoofing

resemblance practice has existed for centuries. The introduction of electronic trading systems

has altered regulators’ ethical judgments of spoofing. Furthermore, we study different legal cases

on spoofing and find that the main victim of spoofing is order anticipation HFTs. They get

exploited because their algorithms are detected and easy to get tricked by spoofers.
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Appendices

A Appendix for chapter 1

A.1 Cross-section estimated βs

Table 6 represents the daily average values of the parameters βbid , βask, lnαbid, lnαask, tβbid
,

tβask
,tlnαbid

,tlnαask
, R2

bid ,R2
ask . The result comes from estimating the regression (1.23) both

ask and bid sides snapshot by snapshot for all stocks across 19 trading days, then take average

cross snapshot and trading days.

Tickers βbid βask lnαbid lnαask tβbid
tβask

tlnαbid
tlnαask

R2
bid R2

ask

ACN 1.35 1.46 -9.93 -10.71 -24.58 -28.51 27.31 31.01 0.92 0.94

ADT 1.18 1.15 -11.84 -11.66 -20.63 -22.98 19.75 22.09 0.89 0.90

AEM 1.68 1.69 -14.34 -14.25 -28.19 -33.35 29.28 35.33 0.93 0.95

AGD 1.38 1.80 -11.96 -15.70 -6.40 -6.04 6.32 6.01 0.74 0.74

AME 1.44 1.24 -10.99 -9.87 -23.42 -20.12 24.16 20.37 0.94 0.91

AMZN 1.10 1.14 -7.98 -8.45 -162.57 -46.26 268.62 71.91 0.95 0.83

APDN 0.96 0.79 -11.39 -9.42 -11.15 -24.87 9.23 21.13 0.72 0.91

APH 1.32 1.37 -9.91 -10.56 -23.30 -25.53 24.80 26.21 0.94 0.94

AWR 1.42 1.38 -10.46 -10.21 -19.74 -18.83 21.56 20.24 0.91 0.90

AWX 1.08 0.93 -9.21 -7.67 -5.82 -6.84 4.66 5.44 0.63 0.66

BBW 0.85 0.80 -8.32 -7.83 -8.57 -8.56 8.00 8.02 0.77 0.75

BDR 1.92 0.57 -19.97 -6.82 -8.93 -18.40 6.80 11.57 0.81 0.87

BIOC 1.60 0.71 -20.84 -11.29 -10.21 -20.55 8.53 15.34 0.87 0.93
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BLCM 0.79 0.97 -8.57 -9.85 -33.00 -26.60 31.56 25.19 0.92 0.91

CDXC 0.86 0.79 -9.49 -8.72 -26.74 -36.74 24.83 35.28 0.90 0.94

CEI 1.26 1.26 -88.30 -18.96 -4.77 -11.41 4.20 8.71 0.87 0.93

CERN 1.49 1.04 -12.84 -9.01 -43.88 -38.29 47.20 45.34 0.94 0.92

CL 1.55 1.50 -13.13 -12.52 -35.16 -37.66 35.24 38.70 0.95 0.96

CLWT 0.84 0.46 -7.86 -4.53 -11.74 -16.38 10.77 15.04 0.70 0.73

CLX 1.16 1.35 -8.59 -9.87 -28.65 -29.80 33.12 33.63 0.92 0.94

COGT 1.04 1.00 -12.46 -11.70 -8.39 -11.25 7.62 10.73 0.78 0.79

DG 1.36 1.37 -10.57 -10.56 -33.29 -34.10 36.61 36.21 0.94 0.94

DGLY 0.72 0.53 -7.98 -5.84 -10.47 -14.64 8.86 12.48 0.81 0.85

DLPN 1.15 0.32 -9.81 -2.99 -5.22 -5.74 4.40 4.72 0.47 0.48

DVN 1.68 2.00 -16.15 -18.84 -38.20 -31.00 37.54 31.01 0.94 0.92

EXPR 1.36 1.37 -14.20 -14.30 -15.70 -16.51 14.38 15.31 0.87 0.88

EYES 1.05 0.97 -13.13 -11.77 -21.78 -29.22 19.39 25.91 0.87 0.92

FAT 1.03 0.77 -8.47 -6.46 -10.63 -18.79 10.22 20.14 0.78 0.91

FB 1.08 1.05 -11.28 -11.02 -120.28 -116.98 148.24 144.01 0.93 0.94

FNGD 0.97 0.94 -4.50 -4.41 -6.00 -5.61 8.82 8.45 0.90 0.90

FTFT 1.08 0.71 -11.28 -7.50 -15.18 -20.83 13.36 19.04 0.84 0.88

GBR 0.94 1.26 -9.13 -12.73 -13.59 -16.38 10.56 13.41 0.85 0.86

GME 1.35 1.46 -14.01 -14.70 -28.39 -49.62 26.87 49.97 0.92 0.96

GOOGL 1.03 1.11 -6.55 -7.28 -90.99 -65.36 155.83 103.44 0.95 0.94

GORO 1.12 1.09 -11.40 -11.39 -16.53 -16.49 14.63 14.84 0.88 0.86

GSAT 1.31 1.37 -16.78 -17.54 -7.01 -11.47 5.92 10.03 0.66 0.76

HRL 1.58 1.64 -14.87 -15.28 -41.63 -38.69 41.37 39.09 0.96 0.95

INTU 1.58 1.53 -12.32 -11.97 -51.59 -37.65 60.61 42.49 0.95 0.94

ISIG 0.82 0.81 -9.61 -8.83 -10.95 -18.95 8.48 15.85 0.74 0.86

JAKK 0.90 0.66 -10.77 -7.80 -8.24 -11.16 7.03 9.84 0.83 0.86

JNJ 1.63 1.59 -13.91 -13.45 -44.26 -46.99 49.05 52.08 0.94 0.95

JPM 1.82 1.86 -17.06 -17.33 -44.02 -28.40 46.82 28.79 0.94 0.89

JRJC 1.00 0.87 -10.83 -9.61 -16.34 -24.67 14.23 22.14 0.83 0.90

MA 1.57 1.37 -11.80 -10.22 -39.14 -29.13 44.11 31.28 0.95 0.92

MARA 1.03 0.73 -11.41 -8.72 -23.11 -31.50 20.73 28.54 0.89 0.91

MCO 1.24 1.31 -8.25 -8.98 -21.92 -22.59 26.10 25.53 0.93 0.93

MMP 1.10 1.03 -8.71 -7.38 -17.75 -27.53 20.54 34.43 0.85 0.93
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MS 1.91 1.86 -18.18 -17.85 -42.20 -44.49 42.84 44.82 0.95 0.95

MTG 1.79 1.67 -18.59 -17.49 -16.49 -23.09 15.61 22.20 0.87 0.91

MTR 0.84 0.52 -5.91 -3.28 -5.16 -6.21 5.44 7.26 0.56 0.57

NAKD 2.01 1.47 -21.54 -17.18 -33.37 -55.86 27.57 46.06 1.00 1.00

NBRV 0.92 0.76 -9.13 -7.19 -18.18 -20.62 16.69 20.03 0.87 0.90

NCTY 0.97 0.91 -13.10 -11.85 -19.81 -22.21 15.98 18.50 0.91 0.88

NNDM 1.07 1.53 -10.38 -14.11 -12.82 -10.23 11.04 8.82 0.85 0.82

NRP 0.87 0.94 -6.17 -6.94 -6.30 -8.61 7.38 10.03 0.77 0.82

NURO 1.08 0.81 -12.22 -9.36 -13.31 -31.00 10.91 26.49 0.82 0.92

NVDA 1.00 0.92 -9.41 -8.77 -165.61 -64.30 224.05 84.01 0.95 0.88

NVFY 0.85 0.58 -9.41 -6.99 -16.53 -37.30 13.66 32.38 0.85 0.92

OTEX 1.92 1.88 -17.63 -16.96 -28.01 -31.01 28.76 32.13 0.91 0.94

PSA 1.19 1.21 -7.78 -7.92 -23.05 -27.73 28.32 32.77 0.92 0.93

PZZA 1.54 1.30 -12.56 -10.57 -36.57 -43.57 39.59 50.93 0.93 0.94

RHE 2.77 0.89 -30.71 -11.25 -11.48 -11.61 6.47 7.07 0.86 0.86

RIOT 0.92 0.94 -9.45 -9.65 -43.23 -49.38 45.88 52.72 0.91 0.92

RSG 1.40 1.45 -11.02 -11.70 -28.25 -28.12 29.44 28.24 0.95 0.94

SAFE 1.29 1.19 -10.58 -9.60 -12.96 -12.12 12.77 12.09 0.89 0.87

SCKT 1.63 1.09 -16.51 -11.03 -13.76 -13.96 12.72 12.96 0.79 0.82

SGOC 0.75 0.58 -9.00 -6.98 -17.87 -17.31 13.81 13.66 0.84 0.82

SIEB 1.00 0.93 -8.79 -8.32 -11.74 -12.50 11.46 12.45 0.81 0.82

SLGN 1.49 1.49 -12.98 -12.92 -26.70 -28.97 25.66 28.18 0.94 0.94

SLP 0.92 0.74 -8.31 -7.07 -14.14 -15.03 14.42 15.05 0.84 0.84

SNOA 1.11 0.66 -10.57 -6.22 -11.25 -12.48 9.85 12.07 0.81 0.83

SOGO 1.11 1.08 -12.06 -11.30 -25.36 -38.49 23.87 38.40 0.90 0.93

SPCB 0.93 0.68 -9.31 -6.86 -11.46 -15.48 9.70 13.94 0.79 0.86

SPY 2.52 2.42 -26.46 -25.43 -51.18 -25.91 55.77 27.29 0.86 0.75

SQBG 1.00 1.02 -12.32 -12.19 -16.31 -27.31 13.82 24.05 0.84 0.92

THS 1.28 1.37 -10.27 -10.91 -22.62 -20.85 22.83 20.97 0.94 0.93

TNK 1.10 1.14 -14.60 -14.78 -9.11 -14.29 7.61 12.46 0.74 0.84

TSLA 0.97 0.92 -7.74 -7.58 -109.67 -82.45 159.57 118.92 0.95 0.92

TSM 1.86 2.00 -17.69 -18.85 -53.91 -34.93 56.16 35.64 0.96 0.94

USAU 0.94 0.73 -11.18 -8.29 -33.31 -28.91 30.03 25.61 0.92 0.91

V 1.34 1.25 -11.67 -11.16 -62.03 -42.46 71.73 47.07 0.95 0.93
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Average 1.26 1.14 -12.92 -10.80 -28.66 -27.38 32.47 28.91 0.87 0.88

Median 1.12 1.09 -11.18 -10.22 -19.81 -24.87 19.75 24.05 0.89 0.91

Table 6: Daily average cross-sectional results

A.2 Threshold M1

Table 7 presents the minimum thresholds the trader needs to trade to break even. M1, M
sf
1 are

the thresholds for the baseline model and the self-financing model. “Ex. msg”, “A. vol”, “MP”,

“M/Ex. msg”, “M/A.vol” are the daily average number of executed messages, the average order

size, the minimum threshold in dollars, the ratio between M1 and the daily average number of

executed messages, the ratio between M1 and the average order size

Tickers M1 M sf
1 Ex. msg A. vol MP M/ Ex. msg M/A. vol

ACN 582.5 639.0 4214.7 63.5 92548.4 0.1 9.2

ADT 1794.8 1920.8 1648.2 143.2 21674.9 1.1 12.5

AEM 962.7 1033.4 2516.8 86.1 41276.7 0.4 11.2

AGD 2681.5 2696.7 27.7 101.5 29248.8 96.9 26.4

AME 636.9 703.8 2898.8 70.7 48207.1 0.2 9.0

AMZN 3703.8 4354.0 47931.3 38.3 5357025.2 0.1 96.6

APH 553.6 608.7 2612.1 65.5 49503.1 0.2 8.5

AWR 712.3 732.7 533.7 62.1 38059.9 1.3 11.5

CEI 113154.3 113342.2 374.6 985.7 12419.1 302.1 114.8

CERN 1311.6 1648.7 7848.6 86.3 83761.2 0.2 15.2

CL 694.7 800.1 5531.3 86.2 48916.0 0.1 8.1

CLX 511.9 563.2 3482.6 61.4 66464.6 0.1 8.3

COGT 238484.1 240383.4 280.3 254.4 767430.2 850.8 937.6

DG 617.0 676.4 5383.8 66.7 60013.3 0.1 9.2

DVN 2217.1 2444.7 12576.0 106.5 77511.8 0.2 20.8

EXPR 2734.0 2834.0 1235.3 119.4 19211.7 2.2 22.9

FB 12020.1 16390.5 60643.4 101.8 2171755.7 0.2 118.0

GBR 5549.8 5560.9 37.7 179.0 8354.1 147.3 31.0

GME 2211.6 2381.0 3347.4 116.4 35395.8 0.7 19.0
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GOOGL 1611.6 1846.9 25574.8 30.2 1761867.4 0.1 53.3

GORO 3717.5 3788.5 301.6 119.3 16368.4 12.3 31.2

GSAT 19965.2 20135.9 1133.7 327.1 18916.8 17.6 61.0

HRL 1428.4 1598.3 4595.9 94.5 47361.6 0.3 15.1

INTU 986.4 1083.8 7946.5 67.3 163393.5 0.1 14.7

JNJ 1120.9 1309.2 12605.8 82.0 147597.4 0.1 13.7

JPM 1997.7 2542.0 26781.5 98.8 228220.7 0.1 20.2

MA 606.1 680.9 9923.1 65.4 104173.3 0.1 9.3

MCO 561.1 595.1 2760.7 54.4 91537.0 0.2 10.3

MMP 2341.1 2414.5 1062.6 74.2 156668.6 2.2 31.5

MS 2306.1 2703.1 14756.2 109.5 126713.8 0.2 21.1

MTG 4157.5 4423.7 2154.4 130.1 59606.2 1.9 31.9

NAKD 25625.4 25676.3 51.1 232.6 35927.6 501.4 110.2

NNDM 3706.4 3713.0 98.8 294.8 9861.5 37.5 12.6

OTEX 1648.3 1777.6 2668.7 94.3 58334.7 0.6 17.5

PSA 495.1 530.9 3380.7 50.0 93841.4 0.1 9.9

PZZA 801.8 862.1 4188.5 81.8 46653.8 0.2 9.8

RSG 543.0 611.2 4000.6 80.4 35455.7 0.1 6.8

SAFE 1040.5 1056.5 193.6 85.9 17482.3 5.4 12.1

SCKT 4355.8 4399.5 88.4 307.7 16971.4 49.3 14.2

SLGN 819.7 884.3 1932.3 91.9 23473.1 0.4 8.9

SOGO 2520.4 3540.2 937.9 178.3 23689.4 2.7 14.1

SPY 20000.0 13096.5 124741.7 169.5 5414125.0 0.2 118.0

SQBG 25329.9 35724.2 262.8 176.8 44388.7 96.4 143.3

THS 584.9 664.0 2312.7 84.2 24127.4 0.3 6.9

TNK 17529.1 25822.5 219.1 356.9 20670.0 80.0 49.1

TSM 1717.3 2373.0 6555.7 116.7 74187.3 0.3 14.7

V 1291.9 1681.0 14818.5 77.0 155975.9 0.1 16.8

Average 11488.2 12026.6 6552.7 170.3 222794.7 27.3 29.2

Median 1717.3 1920.8 2760.7 94.3 48916.0 0.3 15.1

Table 7: The minimum required trading volume M1
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B Appendix for Chapter 2

B.1 Proofs and derivations

Proof of Proposition 2.3.1. Notation:

V underlying value of asset

x informed trader’s trade = βV

u “noise” trade

y total order flow x+ u

β informed trader’s trading intensity with solution 1
2λ

Proof.

var (y) = var (x+ u) = var (x) + var (u)

= β2Σ+ σ2 =
1

4λ2
Σ+ σ2

=
4σ2

4Σ
Σ + σ2 = 2σ2

Also,

var (P ) = var (λy) = λ22σ2 =
Σ

4σ2
2σ2 =

1

2
Σ

→

√
var(executed price)

var(executed volume)
=

√
1
2Σ

2σ2
=

1

2

√
Σ

σ
= λ

B.2 Cross-section estimated λs

Table 7 presents the estimated values for λ across different stocks. λbid , λask, P. V , Vol. V, A.

Vol, M. Vol, Ex. rate are the estimated λ for the bid side, the estimated λ for the ask side, price

variance, volume variance, average volume, median volume, and execution rate, respectively. The

execution rate is calculated by the ratio between the total number of executed messages and the

total number of messages.
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Ticker λbid λask P. V Vol. V A. Vol M. Vol Ex. rate

APDN 4.30E-05 2.60E-05 5.76E-08 7.72E+02 200 100 4%

ADT 1.36E-04 9.47E-05 3.18E-06 7.70E+03 143 100 3%

AGD 4.32E-04 4.54E-04 4.06E-07 6.71E+00 101 100 3%

AWX 3.08E-04 2.78E-04 3.07E-08 2.22E+01 189 100 1%

AWR 2.84E-03 1.87E-03 2.40E-05 9.89E+01 62 65 4%

BBW 1.23E-04 1.18E-04 2.15E-06 2.75E+02 102 100 2%

BDR 4.87E-05 3.11E-05 2.82E-08 2.08E+02 269 100 1%

HRL 1.99E-04 2.58E-04 6.47E-06 1.51E+03 95 100 3%

AEM 8.60E-04 7.12E-04 1.63E-05 1.11E+03 86 100 1%

PZZA 1.87E-03 6.82E-04 8.13E-05 4.66E+03 82 100 5%

BIOC 4.36E-06 6.49E-07 5.30E-08 2.42E+05 742 200 7%

BLCM 4.10E-05 5.64E-05 2.83E-06 5.44E+03 132 100 5%

CDXC 3.35E-05 1.96E-05 1.68E-06 4.56E+03 156 100 5%

NVFY 1.02E-04 3.03E-05 3.56E-07 8.72E+02 174 100 5%

CEI 3.64E-06 4.40E-07 2.46E-08 8.16E+04 986 200 4%

CLX 1.82E-03 1.80E-03 1.13E-04 7.09E+02 61 54.5 7%

COGT 2.95E-05 2.36E-05 1.31E-06 2.75E+03 254 100 5%

DGLY 2.31E-04 5.38E-05 1.21E-06 6.91E+02 237 100 4%

DLPN 2.51E-04 7.59E-05 1.10E-06 4.97E-01 89 100 1%

EYES 1.47E-05 1.18E-05 4.46E-07 1.05E+04 318 100 1%

FAT 4.94E-04 2.12E-04 1.86E-06 1.23E+02 88 55 2%

FTFT 1.18E-04 5.54E-05 4.22E-06 2.44E+03 186 100 9%

GBR 1.18E-04 1.03E-04 4.96E-07 6.05E+02 179 100 4%

GORO 6.42E-05 5.94E-05 4.89E-07 5.01E+02 119 100 2%

GSAT 5.66E-06 3.61E-06 1.42E-07 4.11E+04 327 100 3%

ISIG 3.67E-05 4.12E-05 5.83E-08 1.25E+02 209 100 3%

JAKK 1.39E-04 2.52E-05 2.51E-07 2.12E+03 280 100 2%

DVN 4.06E-04 4.36E-04 2.37E-05 1.05E+04 106 100 2%

JRJC 5.03E-05 4.30E-05 4.14E-07 1.62E+03 305 100 4%

MARA 8.07E-05 1.70E-05 1.39E-06 4.84E+03 217 100 6%

MCO 2.91E-03 2.41E-03 2.77E-04 2.89E+02 54 50 7%

MTG 9.55E-05 6.43E-05 1.51E-06 3.79E+03 130 100 1%

MMP 9.65E-04 1.27E-03 3.04E-05 3.98E+02 74 69 5%
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MTR 1.50E-03 1.36E-03 4.47E-06 3.67E+00 106 100 1%

NAKD 5.14E-05 2.68E-05 1.80E-07 3.61E+02 233 100 3%

NBRV 8.32E-05 8.85E-05 1.98E-06 6.38E+03 123 100 5%

NNDM 1.11E-04 1.50E-04 1.18E-06 3.96E+03 295 100 4%

NRP 1.23E-03 1.19E-03 9.68E-06 4.10E+01 123 50 1%

PSA 2.72E-03 4.45E-03 2.71E-04 3.94E+02 50 40 9%

RHE 1.58E-05 9.35E-06 4.84E-08 1.73E+03 490 100 3%

RIOT 1.80E-04 8.71E-05 6.71E-05 2.09E+04 157 100 14%

SAFE 6.25E-04 6.90E-04 3.31E-06 1.29E+02 86 100 4%

SCKT 1.54E-04 1.23E-04 6.04E-07 1.78E+03 308 100 8%

SGOC 2.63E-05 2.89E-05 1.16E-07 2.26E+02 203 100 2%

SIEB 4.92E-04 3.89E-04 2.60E-04 1.82E+02 118 100 5%

SLGN 3.23E-04 3.61E-04 5.03E-06 1.63E+03 92 100 4%

SLP 4.52E-04 1.45E-04 5.40E-06 1.82E+02 86 94 2%

SNOA 2.67E-04 1.07E-04 1.72E-06 3.38E+02 133 100 3%

SOGO 4.03E-05 5.36E-05 3.45E-06 6.49E+03 178 100 2%

SPCB 9.88E-05 6.03E-05 4.06E-07 8.08E+02 158 100 3%

SQBG 1.17E-05 1.23E-05 1.78E-07 1.94E+03 177 100 5%

THS 6.93E-04 8.31E-04 2.72E-05 9.20E+02 84 100 6%

TNK 4.11E-06 3.95E-06 9.00E-08 5.64E+03 357 100 2%

USAU 3.95E-05 4.05E-05 4.45E-07 2.14E+03 286 100 6%

AME 1.23E-03 5.23E-04 3.65E-05 5.88E+02 71 100 5%

EXPR 5.32E-05 5.27E-05 1.32E-06 9.62E+02 119 100 2%

APH 1.21E-03 9.53E-04 3.60E-05 5.61E+02 65 88 4%

ACN 1.90E-03 1.84E-03 3.22E-04 9.26E+02 63 69 4%

DG 1.36E-03 1.24E-03 7.97E-05 1.15E+03 67 79 4%

CERN 9.12E-04 3.41E-04 3.99E-05 2.64E+03 86 100 5%

CL 1.73E-03 1.28E-03 2.15E-05 1.58E+03 86 100 3%

RSG 8.97E-04 6.39E-04 1.62E-05 1.57E+03 80 100 7%

GME 1.70E-04 1.17E-04 4.06E-06 5.56E+03 116 100 0%

INTU 2.70E-03 1.91E-03 3.97E-04 1.93E+03 67 70 6%

MA 5.14E-03 4.16E-03 4.87E-04 2.30E+03 65 65 5%

OTEX 4.95E-04 4.00E-04 9.62E-06 1.39E+03 94 100 2%

FB 2.83E-04 2.27E-04 5.12E-04 1.41E+05 102 100 7%
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TSLA 3.97E-03 3.72E-03 2.87E-03 2.03E+04 61 40 10%

TSM 3.58E-04 3.63E-04 1.69E-05 1.09E+04 117 100 2%

V 1.19E-03 7.25E-04 2.39E-04 6.90E+03 77 100 5%

JNJ 2.12E-03 1.44E-03 2.02E-04 5.90E+03 82 100 4%

NAKD 5.14E-05 2.68E-05 1.80E-07 3.61E+02 233 100 3%

FNGD 1.01E-02 8.91E-03 1.63E-04 1.64E+01 177 100 1%

CLWT 1.79E-04 1.11E-04 4.38E-07 6.39E+01 214 100 2%

NCTY 5.57E-06 4.66E-06 1.45E-07 7.30E+03 569 200 5%

NURO 2.55E-05 2.81E-05 2.88E-07 3.14E+03 287 100 6%

MS 5.73E-04 3.39E-04 3.63E-05 1.72E+04 110 100 2%

AMZN 3.93E-02 1.46E-02 1.40E-01 1.07E+04 38 15 9%

GOOGL 5.01E-02 4.40E-02 2.45E-02 2.82E+03 30 10 3%

JPM 1.01E-03 5.77E-04 1.68E-04 3.93E+04 99 100 2%

NVDA 1.42E-03 8.04E-04 3.12E-03 1.24E+05 80 54 9%

SPY 5.80E-04 3.94E-04 3.91E-04 7.32E+05 170 100 4%

Average 1.87E-03 1.36E-03 2.13E-03 1.99E+04 1.71E+02 9.47E+01 4%

Table 8: The daily estimated λs

B.3 Details of the message data

B.3.1 Data structure

Twelve types of market events are recorded in the data (see Table 6 below). As the limit order

book is a primary focus, “cross messages that occurred in a dark pool or an auction are filtered

out. When a market order is matched against several limit orders, each matching is recorded

separately. Messages labeled as “FILL ASK” and “FILL BID” have missing price and quantity

fields. We need to trace back to the original order of the same IDs to figure out the missing

pieces.

To reconstruct a limit order book from a raw message file we follow the following procedure.
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Event Type Description

ADD ASK Submit a new ask order
ADD BID Submit a new bid order
CANCEL BID Cancel the bid order partly
CANCEL ASK Cancel the ask order partly
CROSS Dark pool transactions without price and quantity
DELETE ASK Delete the whole ask order
DELETE BID Delete the whole ask order
EXECUTE ASK Execute the order partly
EXECUTE BID Execute the order partly
FILL ASK Fill the ask order completely
FILL BID Fill the bid order completely
TRADE BID Fill the bid order completely

Table 9: Even Type in the message file

1. Step 1. Eliminate abnormal messages that aren’t with the active region. As we observed,

messages with a price above or under 1.5 times the average price were normally not within

the active region. We filtered out those messages out of the sample. We also handle missing

data from “FILL ASK” and “FILL BID” as mentioned above.

2. Step 2 Construct a first snapshot with only the first order book event.

3. Step 3 Iterate over all new events to construct all snapshots and store them in an ar-

ray. The newly constructed limit order book snapshot has a full depth with price and

volume at all levels. For “ADD ASK” and “ASK BID” message types, a new snapshot

is updated by adding those new messages to the previous snapshot. For the “CANCEL

BID”, “CANCEL ASK”, “EXECUTE ASK”, and “EXECUTE BID” message types, the

order ID and exchange of the message are matched against the orders in the previous

snapshot to look for the outstanding order that should be updated by reducing its order

size. For the “DELETE BID”, “DELETE ASK”, “FILL ASK”, and “FILL BID” message

types, the corresponding orders get processed completely. Therefore, the new snapshot is

constructed by deleting all orders with the same IDs of incoming messages. At any time,

there are only “ADD ASK” and “ADD BID” messages outstanding in a snapshot. Upon

the creation of a snapshot, ask and bid order types are separated, sorted, and grouped

by price. The final step is to filter out abnormal entries and then create the cumulative

depths at each price level.

To illustrate the above procedure, we assume that the initial snapshot of a stock (ACN) has 2

outstanding orders as follows.
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Timestamp OrderNumber EventType Ticker Price Quantity Exchange

00:00.0 120 ADD BID ACN 60.02 50 ARCA

00:00.0 129 ADD ASK ACN 68 4 ARCA

In the next period, a new“ADD BID”message of 40 shares arrives at the price of 61, the snapshot

will be updated by adding the new message to the new snapshot.

Timestamp OrderNumber EventType Ticker Price Quantity Exchange

00:00.0 120 ADD BID ACN 60.02 50 ARCA

00:00.0 129 ADD ASK ACN 174.7 4 ARCA

00:00.0 138 ADD BID ACN 62 40 ARCA

Right after, the trader of order ID 120 wants to reduce his order size, so he submits a ‘CANCEL

BID” message of 20 shares. The new snapshot will updated by reducing his outstanding order

size by 20 shares.

Timestamp OrderNumber EventType Ticker Price Quantity Exchange

00:00.0 120 ADD BID ACN 60.02 30 ARCA

00:00.0 129 ADD ASK ACN 174.7 4 ARCA

00:00.0 138 ADD BID ACN 62 40 ARCA

B.3.2 Sample covariance matrices

For the univariate model, we use quadratic variations for volume and price variance to capture

all market variances. For multi-asset models, each asset has a different execution pattern and

time frame. In order to calculate the quadratic covariance matrices for price and volume, we

divide the trading into a uniform grid in time t0, ..., tn with a timescale tk − tk−1 = 600 seconds.

In this way, price and volume changes of all assets have the same dimensions. The price at tk

(ptk)is defined as the executed price of the closet execution order before tk. The volume at tk

(vtk)is defined as the cumulative volume between tk−1 and tk.
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B.3.3 Direct price impact

We assume that between 2 executed orders at times t0 = 0, tn+1 = T , there are n limit order

book events at 0 < t1 < ... < tn < T with the volume ∆Vti . The price change between 0 and T

can be defined as

∆p = pT − p0 =

n+1∑
i=1

(pti − pti−1) =

n+1∑
i=1

∆pti (81)

Where pti is the contribution components of events i to the direct price impact.

In the case of no execution order, we can interpret the ∆pti as the change of the shadow price

or the change in the fundamental values of the asset because of the arrival of the limit order

event at ti. If the event at ti is an executed order, we have ∆pti = ∆Vtiλ. If the event at ti is

not an executed order, we define ∆pti = αti∆Vtiλ. The reason for this definition is that an ∆pti

increasing function of ∆Vti . For example, a market maker should react more strongly to the big

order at the top of the book. Second, we can justify this assumption by considering αti as a

function of the probability of execution. Another way is to interpret αti as a discount factor of

the information content of the order. If we substitute those equations into the equation (81) and

obtain.

pT − p0
∆VT

=
n∑

i=1

αti

∆Vti

VT
λ+ λ = (

n∑
i=1

αti

∆Vti

VT
+ 1)λ (82)

If we define ati = αti
∆Vti
VT

, we can rearrange and arrive at the following expression.

pT−p0
∆VT

λ
= (

n∑
i=1

ati + 1) (83)

The absolute value of the right-hand side of the above equation is greater than 1 if
∑n

i=1 ati ≥ 0.

If we assume the limit order book events are symmetric. For any limit order book event type on

the ask side, there is a corresponding type on the bid side. For example, “add bids” and “add

ask” are corresponding pairs. The effects of these 2 corresponding orders on the price impact are
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exactly opposite. If the assumption that the limit order events are symmetric holds, on average

ai = −a−i for all (i,−i) which are corresponding event types. In other words, the average of
pT−p0
∆VT
λ = 1. Therefore, the effects of all limit order events converge to the direct price impact for

a sufficiently long time.

B.4 Converting CAPM returns to prices

The paper Boulatov and Taub [2014] sets out a dynamic version of the Kyle model in which

there are multiple stocks, the underlying value of which, and also the prices, can be correlated.

There is a completely separate literature on the correlation across stocks, the CAPM, but this

is a theory of stock returns, not prices. The purpose of this note is to demonstrate that one can

compute the correlations of stock prices if one is given the βs of the stocks, and importantly,

also the R2 attached to the stock by the CAPM structure.

In the CAPM the correlation across stocks is driven entirely by the market return, which they

share, as the residuals in the CAPM return equation are inherently mutually independent. The

magnitude of the correlation is then determined by the βs and the R2s, but the magnitude

requires some calculations, which are presented here.

The calculations use an approximation result as a key step, and this approximation result is

outlined in Appendix B.5.

Main derivations

From the CAPM we have the following characterization of the returns for asset i:

Ri
t = r + βi(RM

t − r) + eit (84)
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We want to convert this equation into an equation relating the prices to the aggregate prices.

Begin by taking logs:

ln

(
P i
t

P i
t−1

)
= r + βi

(
ln

(
St

St−1

)
− r

)
+ eit (85)

It is worth noting that even though eit and ejt are independent, they don’t necessarily have the

same variance, that is, we need to keep in mind that σ2
ei ̸= σ2

ej is possible.

Taking the exponential yields

P i
t = e(1−βi

t)r+eit

(
St

St−1

)βi

P i
t−1 (86)

The market price itself is a process:

St

St−1
=

St−1 + dS

St−1
= 1 +RMdt+ σMdZt (87)

where dZt is the systematic risk process. The price level equation becomes

P i
t = e(1−βi

t)r+eit
(
1 +RMdt+ σMdZt

)βi

P i
t−1 (88)

Expressing this in level terms yields

P i
t = e(1−βi

t)r+eit
(
1 +RM + σMζt

)βi

P i
t−1 (89)

where ζt is the innovation of the systematic return process. This can now be decomposed into

idiosyncratic and systematic parts. Taking logs,

ln(P i
t ) = ln(P i

t−1) + (1− βi
t)r + eit + βi

(
1 +RM + σMζt

)
= ln(P i

t−1) + (1− βi
t)r + βi

(
1 +RM

)
+ eit + βiσMζt

(90)

However the systematic coefficient is a mixture of the idiosyncratic and systematic shocks.

The next question is how the decomposition of the shocks into idiosyncratic and systematic

parts translates into the multi-asset Kyle model. But this has a known answer from the model

in Seiler and Taub [2008]. That paper does not decompose the value shocks into idiosyncratic

and systematic parts, however it does treat correlation across prices. The main issue however is

the fact that equation (90) is in logs, whereas the model is in terms of levels. The correlation
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structure can however be calculated by using equation (89).

(
P i
t , P

j
t

)
=

(
ee

i
t
(
1 +RM + σMζt

)βi

, ee
j
t
(
1 +RM + σMζt

)βj
)

var
(
ee

i
t (1 +RM + σMζt)

βi
)1/2

var
(
ee

j
t (1 +RM + σMζt)

βj
)1/2 (91)

(Note that the terms P i
t−1 and P j

t−1 cancel in the correlation formula.) Thus, if we can estimate

the CAPM elements for a particular stock ticker, and also estimate the systematic ζt process,

then we can calculate the correlation and apply using the model from Boulatov and Taub [2014].

Thus, we can develop the correlation simply from the CAPM residuals for the tickers. The

variances of the residuals can in turn be calculated from the R2 statistics of the CAPM equations,

which are given along with the βi coefficients for each of the tickers. Specifically, we have

varRi
t = var

(
r + βi(RM − r) + ei

)
= β2

i σ
2
M + σ2

ei → R2
i =

β2
i σ

2
M

β2
i σ

2
M + σ2

ei

(92)

Therefore

σ2
ei =

β2
i σ

2
M

R2
i

− β2
i σ

2
M =

(1−R2
i )

R2
i

β2
i σ

2
M (93)

and this can then be used to calculate var
(
ee

j
t

)
. (Notice that because the βi and R2

i are different

across tickers, the expected values can also differ.) Specifically,

E [eei ] = e
1
2
σ2
ei var [eei ] = E

[
e2ei
]
− (E [eei ])2 =

(
eσ

2
ei − 1

)
eσ

2
ei

Similarly, (
ee

i
t , ee

j
t

)
= E

[
eei+ej

]
− (E [eei ]E [eei ]) = 0

To calculate the covariance we need to calculate the expected value of the product

E
[(

ee
i
t
(
1 +RM + σMζt

)βi)(
ee

j
t
(
1 +RM + σMζt

)βj)]
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and subtract the product of the expectations. The product of the expectations is direct from the

calculations already done. The expected value of the product is

E
[(

ee
i
t
(
1 +RM + σMζt

)βi)(
ee

j
t
(
1 +RM + σMζt

)βj)]
=E

[
ee

i
tee

j
t

]
E
[((

1 +RM + σMζt
)βi)((

1 +RM + σMζt
)βj)]

=E
[
ee

i
t

]
E
[
ee

j
t

]
E
[((

1 +RM + σMζt
)βi)((

1 +RM + σMζt
)βj)]

=
[
e

1
2
σ2
eie

1
2
σ2
ej

]
E
[((

1 +RM + σMζt
)βi)((

1 +RM + σMζt
)βj)]

≈
[
e

1
2

(
σ2
ei
+σ2

ej

)]
e(β

i+βj)RM
e

1
2
(βi+βj)2σ2

M

where the first equality follows from the independence of the ei from ζ, and the second equality

comes from the independence of the ei, and finally the approximation result from the appendix

is used.

The product of the expectations is more straightforward:

E
[(

ee
i
t
(
1 +RM + σMζt

)βi)]
=
[
e

1
2
σ2
]
E
[(
1 +RM + σMζt

)βi]
≈
[
e

1
2
σ2
] [

eβ
iRM+ 1

2
β2
i σ

2
M

]
Yielding the product

[
e

1
2
σ2
ei

] [
eβ

iRM+ 1
2
β2
i σ

2
M

] [
e

1
2
σ2
ej

] [
eβ

jRM+ 1
2
β2
j σ

2
M

]
=

[
e

1
2

(
σ2
ei
+σ2

ej

)] [
e(βi+βj)R

M+ 1
2
(β2

i +β2
j )σ

2
M

]
The covariance is then the difference[

e
1
2

(
σ2
ei
+σ2

ej

)]
e(β

i+βj)RM
e

1
2
(βi+βj)2σ2

M −
[
e

1
2

(
σ2
ei
+σ2

ej

)] [
e(β

i+βj)RM+ 1
2
(β2

i +β2
j )σ

2
M

]
=e

1
2

(
σ2
ei
+σ2

ej

)
e(β

i+βj)RM
e

1
2
(βi+βj)2σ2

M

(
1− e(−βiβj)σ

2
M

)
=e

1
2

(
σ2
ei
+σ2

ej

)
e(β

i+βj)RM
e

1
2
(β2

i +β2
j )σ

2
M

(
e(βiβj)σ

2
M − 1

)
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The variance is not a simple variation on the covariance. The expectation of the product is

E

[(
ee

i
t
(
1 +RM + σMζt

)βi)2]
=E

[
e2e

i
t

]
E

[((
1 +RM + σMζt

)βi)2]
≈e2σ

2
ei

[
e2β

iRM+2β2
i σ

2
M

]
The square of the expectation is

eσ
2
eie2(β

iRM+ 1
2
β2
i σ

2
M )

So the variance is the difference

e2σ
2
eie2β

iRM+2β2
i σ

2
M − eσ

2
eie2(β

iRM+ 1
2
β2
i σ

2
M )

=eσ
2
eie2β

iRM
eβ

2
i σ

2
M

(
eσ

2
eieβ

2
i σ

2
M − 1

)
Thus, there is an interaction between the two variances such that the variance does not cleave

into two separate parts.

Combining to form the correlation, and using the approximation of the ratio for the terms

involving ζt from the appendix, we have the reduced expression

(
P i
t , P

j
t

)
=

e
1
2

(
σ2
ei
+σ2

ej

)
e(β

i+βj)RM
e

1
2
(βi+βj)2σ2

M

(
1− e(−βiβj)σ

2
M

)
(
eσ

2
eie2βiRM eβ

2
i σ

2
M

(
eσ

2
eieβ

2
i σ

2
M − 1
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e
σ2
ej e2βjRM eβ

2
j σ

2
M

(
e
σ2
ej eβ

2
j σ

2
M − 1

))1/2
=

e(β
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e
1
2
(βi+βj)2σ2

M

(
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e2βiRM eβ

2
i σ
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2
eieβ

2
i σ

2
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2
j σ
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=
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2
M

)
(
eβ

2
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eieβ
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2
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e
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ej eβ

2
j σ

2
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=

e
1
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(β2

i +β2
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2
M

(
e(βiβj)σ

2
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)
(
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2
i σ
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(
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eieβ

2
i σ

2
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eβ

2
j σ
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ej eβ
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j σ

2
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=
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2
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eieβ

2
i σ
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ej eβ
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j σ
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eσ
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i σ
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σ2
ej
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j σ
2
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(94)

where the last equality emphasizes that the σ2
ei term is added in the exponent, not multiplied.

Evidently the ei terms reduce the correlation, which is intuitively sensible in that the idiosyn-

cratic error reduces the effect of the systematic risk, equivalent to reducing the R2.
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B.5 Approximation

We want to compute

var
[(
1 +RM + σMζt

)βi]
Use an approximation:

E
[(
1 +RM + σMζt

)βi]
= E

[
eβ

i ln(1+RM+σM ζt)
]

≈ E
[
eβ

i(RM+σM ζt)
]

= eβ
iRM+ 1

2
β2
i σ

2
M

Thus the variance approximation is the expectation of the square minus the squared expectation:

e2β
iRM+4 1
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i σ

2
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2
β2
i σ

2
M) = e2β

iRM+β2
i σ

2
M

(
eβ

2
i σ

2
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)

The covariance approximation calculations will be similar. A reminder that

(x, y) = E[xy]− E[x]E[y]

Thus,

E
[(
1 +RM + σMζt

)βi (
1 +RM + σMζt

)βj]
= E

[
eβ

i ln(1+RM+σM ζt)eβ
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]
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[
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]
= e(β
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E
[
e(β
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]

= e(β
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e
1
2
(βi+βj)2σ2

M

Thus,

(x, y) ≈ e(β
i+βj)RM

e
1
2
(βi+βj)2σ2
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2
β2
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2
M eβ
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j σ
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)
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The correlation ratio is then
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M

(
eβ

iβjσ2
M − 1

)
(
e2β

iRM+β2
i σ
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=
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2
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=
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2
j σ

2
M − 1

))1/2
Notice that this is equal to 1 if βi = βj .

A more precise calculation can be carried out using the Taylor series approximation of
(
1 +RM + σMζt

)βi

.

B.6 Two-asset correlation model

Bernhardt and Taub [2008a] sets out a static model of a multi-asset Kyle model in which asset

values are cross-correlated, exploring how informed speculators with differential information

about the spectrum of assets exploit that information in trading correlated assets. Informed

speculators use cross-asset information to trade strategically if they can observe prices. If prices

are unobserved before trade, they do not use the information.

The purpose of this note is to translate the cross-asset speculation models (CAM) into a slightly

simpler setting in which there are just two assets, one of which is the systematic asset (in

practice, the S&P 500 index fund, SPY), and the other of which is an ordinary stock with

positive correlation driven by CAPM considerations.
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Main derivations

There are N informed traders and M assets. In the basic model of interest, N = 1 and M = 2.

The value of asset 1 is

v1 = v11e1

v2 = v21e1 + v22e2

(95)

so

v = V e, V ≡

v11 0

v21 v22

 (96)

Thus, v1 is the systematic asset value, and v2 is the heterogeneous asset; moreover with this

interpretation,

v11 = 1 (97)

To maintain the spirit of the basic static Kyle model, we can assume that there is only a single

informed speculator, and so the signal structure is

s11

s12

 =

A1
11 A1

12

A1
21 A1

22

e1

e2

 (98)

Because it is a CAPM-driven model we can assume that the informed trader has full information

about the systematic asset, that is,

A =

 1 0

A1
21 A1

22

 (99)

which implies that he has full information about the second asset as well after netting out the

systematic part, leaving

A =

1 0

0 1

 (100)

The trading strategy for the informed trader is

x11 = b111s
1
1 + b112s

1
2 +B1

11(X1 + u1) +B1
12(X2 + u2)

x12 = b121s
1
1 + b122s

1
2 +B1

21(X1 + u1) +B1
22(X2 + u2)

(101)

or x11

x12

 =

b111 b112

b121 b122

s11

s12

+

B1
11 B1

12

B1
21 B1

22

X1 + u1

X2 + u2

 (102)
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The pricing rule is given by

p1

p2

 =

λ11 λ12

λ21 λ22

X1 + u1

X2 + u2

 (103)

Define

Γ ≡ I +
N∑
k=1

γk

Recalling that N is the number of informed traders, in the basic Kyle model N = 1; here we are

assuming two assets, so M = 2.

Equilibrium formulas

Defining the total order flow covariance matrix

Ψ ≡
(
bA I

)Σe 0

0 Σu

A′b′

I

 (104)

and skipping to Proposition 2 in Bernhardt and Taub [2008a], we have

bi = A1ΣeV
′(I + γi)

γi
′
= −Ψ−1bAΣeA

i′bi
′

Γ′λ′ = Ψ−1bAΣeV
′

(105)

where Σe is the variance-covariance matrix of the fundamentals, and V is the vector of realized

asset fundamental values.

Next, we can state Proposition 4, which provides a formula for the direct trading intensities:

b ∼ (AΣeA
′)−1/2Σ1/2

u (106)

Notice that this reduces to the fundamental static Kyle model formula if there is one trader and

one asset,

b =
σu

Σ
1/2
0

(107)
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However, the key measurable quantity is λ:

λ = V ΣeAb
′Ψ−1′Γ−1 (108)

The quantities on the right-hand side need to be related to the observables, namely price and

total order flow. First, substituting from (106),

λ ∼ V ΣeAΣ1/2
u (AΣeA

′)−1/2Ψ−1′Γ−1 (109)

(noting the “∼” rather than “=”).We can also substitute from (106) into (104):

Ψ ∼
(
(AΣeA

′)−1/2Σ
1/2
u A I

)Σe 0

0 Σu

A′Σ
1/2
u (AΣeA

′)−1/2

I

 (110)

so that

λ ∼ V ΣeAΣ1/2
u (AΣeA

′)−1/2

((AΣeA
′)−1/2Σ

1/2
u A I

)Σe 0

0 Σu

A′Σ
1/2
u (AΣeA

′)−1/2

I

−1

Γ−1

(111)

Also, we can reduce Γ:

Γ = I +

N∑
k=1

γk = I −
N∑
k=1

bAΣeA
i′bi

′
Ψ−1

= I −
N∑
k=1

(AΣeA
′)−1/2Σ1/2

u AΣeA
i′bi

′

Σe 0

0 Σu

A′Σ
1/2
u (AΣeA

′)−1/2

I

−1

(112)

where bi has been left unreduced.

The covariance matrix of prices is as follows:

λΓΨΓ′λ′ (113)

Because Ψ is the covariance matrix of total order flow, we can, in principle, recover λΓ by

factoring the observed Ψ and also calculating the price covariance matrix. The tricky part is Γ.

From Proposition 7, the covariance matrix of total order flow is ΣuΓ
′ [See proof of Proposition

7, p. 41 of Bernhardt and Taub [2008a].]
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Multiple-asset trading

The logic of the cross-asset paper Bernhardt and Taub [2008a] presupposes an environment in

which there are just a few relevant stocks. However, there are thousands of stocks, and to capture

the appropriate λΓ for a single stock i, we would need to add up the cross-asset λijΓ for all

stocks j. What makes more sense is to treat SPY as the cross-asset ticker and isolate the effect

of SPY on the λΓ of each of the smaller stocks.

By subtracting the influence of SPY, we can isolate the trade on private information unique to

each ticker. This information, and also its value, can then be added up.

C Appendix for Chapter 3

C.1 Proof of Proposition 3.5.1

Combining the equations (3.44) and (3.46), we can arrive at the following expression:

λ1 =
a1σ

2β(a21θϵ +
1
4β

2
1θz2 + (a21 + a22))

a21σ
2
u(2a

2
1θϵ +

1
2β

2
1θz2 + 1) + σ2

u(a
2
1θϵ +

1
4β

2
1θz2 + 1)(a21θϵ +

1
4β

2
1θz2 + (a21 + a22))

(114)

Inserting this expression and equations (3.42) and (3.43) and (3.46) into (3.47), we can obtain

the following equation.

F (β1, θϵ, θz2 , k) = 0 (115)
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Given (θϵ, θz2 , k), the function F (β1, θϵ, θz2 , k) is a 6th polynomial defined as follows:

F (β1, θϵ, θz2 , k) = 32+β1(−64− 64k− 64θϵ− 64θz2)+β2
1(64k+96k2+192kθϵ+128k2θϵ+

32θz2 + 192kθz2) + β3
1(−128k2 − 576k2θϵ − 192k3θϵ − 128k2θ2ϵ − 48θz2 −

48kθz2−384k2θz2−32θϵθz2−128k2θϵθz2−32θ2z2)+β4
1(384k

3θϵ+320k4θϵ+

64k3θ2ϵ+160k4θ2ϵ+80k2θz2+384k3θz2+16kθϵθz2+80k2θϵθz2+64k3θϵθz2+

10θ2z2 +16kθ2z2)+β5
1(−512k4θϵ−128k4θ2ϵ −128k5θ2ϵ −64k4θ3ϵ −64k2θz2 −

256k4θz2 − 64k2θϵθz2 − 64k3θϵθz2 − 32k2θ2ϵ θz2 − 64k4θ2ϵ θz2 − 8θ2z2 −

8kθ2z2 − 4θϵθ
2
z2 − 32k2θϵθ

2
z2 − 4θ3z2)+β6

1(−512k5θ2ϵ +256k6θ2ϵ − 128k5θ3ϵ +

64k6θ3ϵ −192k3θϵθz2 +128k4θϵθz2 −256k5θϵθz2 −64k3θ2ϵ θz2 +48k4θ2ϵ θz2 −

128k5θ2ϵ θz2−16kθ2z2+16k2θ2z2−64k3θ2z2−8kθϵθ
2
z2+12k2θϵθ

2
z2−64k3θϵθ

2
z2+

θ3z2 − 8kθ3z2)
(116)

Assume that β1 ≤ 0. From the second order condition of the spoofer problem, we have λ1+λ22−

λ12 > 0. Combining this condition and equation (3.47), λ22 is not positive. From the equation

(3.43), a2 ≤ 0 or β1 > 1, contradicting with our assumption. So β1 > 0. Now, we will prove that

F (β1, θϵ, θz2 , 1) have a unique equation β1 in (0, 12). We have

F (0, θϵ, θz2 , 1) = 32 > 0 (117)

F (
1

2
, θϵ, θz2 , 1) = −8− 20θϵ − 14θ2ϵ − 3θ3ϵ − 17θz2 − 19θϵθz2 −

21θ2ϵ θz2
4

−
31θ2z2
8

−
33θϵθ

2
z2

16
−

15θ3z2
64

< 0

(118)

As F (β1, θϵ, θz2 , 1) is a continuous function in β1, there must exist at least one solution of (115)

in (0, 12). Now, we take first derivative of F (β1, θϵ, θz2 , 1) and obtain:

F ′(β1, θϵ, θz2 , 1) = −28 − (10 − 16β1)
2 − 128β2

1 − 64θϵ(1 − 10β1 + 36β2
1 − 44β3

1 + 40β4
1) −

128θ2ϵβ
2
1(3 − 7β1 + 10β2

1) − 1536β5
1θ

2
ϵ − 320β4

1θ
3
ϵ − 384β5

1θ
3
ϵ − 32θz2(2 −

14β1 + 45β2
1 − 56β3

1 + 50β4
1)− 160θz2β

2
1θϵ(2 + (1− 2β1)

2)− (1920β5
1θϵ +

480β4
1θ

2
ϵ +864β5

1θ
2
ϵ )θz2 − 8θ2z2β

2
1(12− 13β1+10β2

1)− (384β5
1 +180β4

1θϵ+

360β5
1θϵ)θ

2
z2 − (20β4

1 + 42β5
1)θ

3
z2

(119)

For any β1, F
′(β1, θϵ, θz2 , 1) < 0. Therefore, F (β1, θϵ, θz2 , 1) is an decreasing function in β1 on

(0,+∞). So F (β1, θϵ, θz2 , 1) = 0 has unique solution β1 and 0 < β1 <
1
2 .
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C.2 Proof of Proposition 3.5.2

When the spoofer does not trade, his real trading volume and spoofing volume are both zero.

Therefore, β2 = 0 and σ2
z = 0. This problem is a special case of the proposition 3.5.1 with σ2

z = 0.

C.3 Proof of Proposition 3.5.3

Similar to the proof of the proposition 3.5.1, β̃1 is the solution to the following equation

F (β1, θϵ, θz2 , 0) = 0 (120)

Inserting k = 0 into equation (116) to arrive at the following 5th polynomial

F (β1, θϵ, θz2 , 0) = 32+ β1(−64− 64θϵ − 64θz2) + 32β2
1θz2 + 10β4

1θ
2
z2 + β6

1θ
3
z2 + β3

1(−48θz2 −

32θϵθz2 − 32θ2z2) + β5
1(−8θ2z2 − 4θϵθ

2
z2 − 4θ3z2)

(121)

Taking derivatives of equation (121) and obtaining

F ′(β1, θϵ, θz2 , 0) = −64− 64θϵ + (−64+ 64β1 − 144β2
1 − β2

1θϵ)θz2 + (−96β2
1 +40β3

1 − 40β4
1 −

20β4
1θϵ)θ

2
z2 + (−20β4

1 + 6β5
1)θ

3
z2

(122)

We have F (0, θϵ, θz2 , 0) = 32, and F (12 , θϵ, θz2 , 0) = −32θϵ−30θz2−4θϵθz2−
29θ2z2

8 − θϵθ2z2 )

8 − 7θ3z2
64 ≤ 0.

It is easy to see that F ′(β1, θϵ, θz2 , 0) ≤ 0 for all β1 in (0,1). Therefore, F (β1, θϵ, θz2 , 0) has unique

solution in (0, 12).

C.4 Proof of Proposition 3.5.5

Using equation (115) with the case in which both traders choose to trade or k = 1

F (β1, θϵ, θz2 , 1) = 0 (123)
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From the proposition 3.5.1, , the optimal β1 is an implicit function in θϵ and θz2 . Taking derivative

of (123) with respect to θz2 .

∂F

∂β1

∂β1
∂θz2

+
∂F

∂θz2
= 0 (124)

The partial derivative of F (β1, θϵ, θz2 , 1) is given by the following equation

∂F

∂θz2
= −16β1(4−14β1+30β2

1−29β3
1+20β4

1)−32β3
1θϵ(5−5β1+4β2

1)−(320β6
1θϵ+

96β5
1θ

2
ϵ + 144β6

1θ
2
ϵ ) − 4θz2((4 − 2β1)

2 + 3β1 + 2β2
1) − (128β6

1 + 72β5
1θϵ +

120β6
1θϵ)θz2 − (12β5

1 + 21β6
1)θ

2
z2

(125)

As 4−14β1+30β2
1 −29β3

1 +20β4
1 > 0 for any β1 and β1 > 0 , ∂F

∂θz2
< 0. Combining this condition

with (3.71) and ∂F
∂β1

< 0, we can conclude that ∂β1

∂θz2
< 0.

Inserting a1 = β1, a2 = 1− β1 into the equation (3.47) and obtaining

β2 =
σ2
u(2β

2
1θϵ +

1
2β

2
1θz2 + 1)

σ2(β2
1θϵ +

1
4β

2
1θz2 + (β2

1 + (1− β1)2))
(126)

We denote the right side of equation (126) as G(β1, θz2). Taking derivative both sides of (126)

∂β2

∂θz2
=

∂G

∂β1

∂β1
∂θz2

+
∂G

∂θz2
(127)

Combining equations (127) and (124) to arrive at the following expression

∂F

∂β1

∂β2

∂θz2
= − ∂G

∂β1

∂F

∂θz2
+

∂G

∂θz2

∂F

∂β1
(128)

We need to prove that ∂β2

∂θz2
≤ 0. This condition is equivalent to:

4(1− 2β1)
2(β2

1)
∂F

∂β1
+ 8(−1 + 2β1)(4 + β1(4θϵ + θz2))

∂F

∂θz2
≥ 0 (129)

Inserting equations (125) and (119) into the above the inequality and simplify

−16β1(−1 + 2β1)(N0 +N1θz2 +N2θ
2
z2 +N3θ

3
z2) ≥ 0 (130)

Where N0, N1, N2, N3 are defined as follows:

N3 = β5
1 + 10β6

1 + 21β7
1 (131)
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N2 = 8β3
1 + 72β4

1 − 14β5
1 + 8β6

1 + 192β7
1 + 15β5

1θϵ + 102β6
1θϵ + 180β7

1θϵ (132)

N1 = 16β1+160β2
1−448β3

1+1016β4
1−912β5

1+800β6
1+(88β3

1+360β4
1−112β5

1+

256β6
1 + 960β7

1)θϵ + (72β5
1 + 336β6

1 + 432β7
1)θ

2
ϵ

(133)

N0 = 128−480β1+1104β2
1−1184β3

1+832β4
1+(112β1+64β2

1−256β3
1+1184β4

1−

768β5
1+1280β6

1)θϵ+(224β3
1+288β4

1−224β5
1+896β6

1+768β7
1)θ

2
ϵ+(112β5

1+

352β6
1 + 192β7

1)θ
3
ϵ

(134)

As β1 lies in [0, 12 ], −1 + 2β1 ≤ 0 and it easy to see that N0, N1, N2, N3 are non-negative.

Therefore, β is decreasing in σz2 .

C.5 Proof of Proposition 3.6.1

We can rewrite the optimization into another form by inserting equation (3.47) into equation

(3.49) to obtain

E[πS ] =
λ1 + λ22 − λ12

4
(β1)

2σ2
z2 = σ2

z2

λ22

8

β1β
2σ2

β2σ2 + σ2
ϵ + σ2

z2

(135)

Combining equations (3.43) and (135) to arrive at the following expression:

E[πS ] = θz2
σ2β(β2

1θϵ +
1
4β

2
1θz2 + 1− β1)

16(2β2
1θϵ +

1
2β

2
1θz2 + 1)

β1β
2σ2

β2σ2 + (θϵ+ θz2)σ
2
u

(136)

We denote H(β1, θϵ, θz2) =
β2σ2

β2σ2+(θϵ+θz2 )σ
2
u
. Substituting equation (3.46) into this expression to

get

H(β1, θϵ, θz2) =
(2β2

1θϵ +
1
2β

2
1θz2 + 1)

(2β2
1θϵ +

1
2β

2
1θz2 + 1) + (θϵ+ θz2)(β

2
1θϵ +

1
4β

2
1θz2 + (β2

1 + (1− β1)2))
(137)

With a1 = β1, a2 = 1 − a1, we have the inequality a21 + a22 = a21 + (1 − a1)
2 ≥ 1

2 . By using this

inequality and (3.46), we arrive at the following upper bound of β

β2 ≤ 2σ2
u

σ2
(138)
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Combining this inequality and β1 in (0, 12), we have

σ2β(β2
1θϵ +

1
4β

2
1θz2 + 1− β1)

16(2β2
1θϵ +

1
2β

2
1θz2 + 1)

≤ σuσ

8
√
2

(139)

Using the same inequality a21 + a22 = a1 + (1− a1)
2 ≥ 1

2 , we can have the following inequality

H(β1, θϵ, θz2) ≤
2

2 + θϵ + θz2
(140)

Combining the inequalities (139), (140) and equation (136) to obtain

E[πS ] ≤
σuσ

4
√
2

θz2
2 + θϵ + θz2

β1 ≤
σuσ

4
√
2
β1 (141)

From the proposition 3.5.5, β1 is a decreasing continuous function of σz2 and β1 in (1, 12), there

exists a constant β0 in [0, 1] such that limσz2→+∞ β1 = β0 and β0 is the lower bound of β1. We

consider the case β0 > 0. From the proposition 3.5.1, we have

F (β1, θϵ, θz2 , 1) = 32− 128β1 + 160β2
1 − 128β3

1 − 64β1θϵ + 320β2
1θϵ − 768β3

1θϵ + 704β4
1θϵ −

512β5
1θϵ − 128β3

1θ
2
ϵ +224β4

1θ
2
ϵ − 256β5

1θ
2
ϵ − 256β6

1θ
2
ϵ − 64β5

1θ
3
ϵ − 64β6

1θ
3
ϵ +

(−64β1+224β2
1−480β3

1+464β4
1−320β5

1−160β3
1θϵ+160β4

1θϵ−128β5
1θϵ−

320β6
1θϵ−96β5

1θ
2
ϵ −144β6

1θ
2
ϵ )θz2+(−32β3

1+26β4
1−16β5

1−64β6
1−36β5

1θϵ−

60β6
1θϵ)θ

2
z2 + (−4β5

1 − 7β6
1)θ

3
z2 = 0

(142)

If β0 > 0, the left side of (138) goes to infinity when σz2 goes to infinity. This contradicts with

the equation. So, limσz2→+∞ β1 = 0. If we take limit the both sides of (140), we have

0 ≤ lim
σz2→+∞

E[πS ] ≤ lim
σz2→+∞

σuσ

4
√
2
β1 = 0 (143)

So, we have limσz2→+∞E[πS ] = 0. When σz2 = 0, then E[πS ] = 0. From the proposition 3.5.1,

we can deduce E[πS ] is a continuous function in σz2 , 0 ≤ E[πS ] ≤ σuσ
8
√
2
and limσz2→+∞E[πS ] =

limσz2→0E[πS ] = 0. Therefore, E[πS ] has the global maximum.
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C.6 Proof of Proposition 3.7.1

From the equation (3.42), we have the equation for λ12 as follows

λ12 =
σ2β(β2

1θϵ +
1
4β

2
1θz2 + β1)

2σ2
u(2β

2
1θϵ +

1
2β

2
1θz2 + 1)

(144)

We denote the right side of equation (144) as R12(β, β1, θz2). Taking derivative both sides of

(144)

∂λ12

∂θz2
=

∂R12

∂β1

∂β1
∂θz2

+
∂R12

∂β

∂β

∂θz2
+

∂R12

∂θz2
(145)

The partial derivatives of R12(β, β1, θz2) are given by

∂R12

∂β1
=

βσ2(2 + β1(1− β1)(4θϵ + θz2))

σ2
u(2 + β2(4θϵ + θz2))

2
(146)

∂R12

∂β
=

σ2(β2
1θϵ +

1
4β

2
1θz2 + β1)

2σ2
u(2β

2
1θϵ +

1
2β

2
1θz2 + 1)

(147)

∂R12

∂θz2
= − ββ2

1(−1 + 2β1)σ
2

2σ2
u(2 + β2

1(4θϵ + θz2))
(148)

Based on the results of the proposition 3.5.1, 0 ≤ β1 ≤ 1
2 . Therefore,

∂R12
∂β1

≥ 0, ∂R12
∂β ≥ 0 and

∂R12
∂θz2

≤ 0. Combining with the proposition 3.5.5, ∂λ12
∂θz2

≤ 0.

From the equation (3.43), we have the equation for λ22 as follows

λ22 =
σ2β(β2

1θϵ +
1
4β

2
1θz2 + 1− β1)

2σ2
u(2β

2
1θϵ +

1
2β

2
1θz2 + 1)

(149)

Squaring both sides of equation (149), then combining with equation (3.47)

λ2
22 =

σ2(β2
1θϵ +

1
4β

2
1θz2 + 1− β1)

2

4σ2
u(2β

2
1θϵ +

1
2β

2
1θz2 + 1)(β2

1θϵ +
1
4β

2
1θz2 + β2

1 + (1− β1)2)
(150)

We denote the right side of equation (150) as R22(β1, θz2). Taking derivative both sides of (149)

∂λ2
22

∂θz2
=

∂R22

∂β1

∂β1
∂θz2

+
∂R22

∂θz2
(151)
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We need to prove that
∂λ2

22
∂θz2

≥ 0. Substituting the partial derivatives of R22, then simplify to

obtain the following condition

−2
∂F

∂θz2
(−16 − 16β2

1θ
2
ϵ + 4(−1 + 3β1 − 8β2

1 + 4β3
1)θz2 −

β2
1θ

2
z2 + 8θϵ(−2 + 6β1 + 8β3

1 − β2
1(16 + θz2))) +

∂F

∂β1
β1(−1 +

2β1)
(
4− 4β1 + 2β3

1(4θϵ + θz2) + β2
1(8 + 4θϵ + θz2)

)
≤ 0

(152)

Inserting equations (125) and (119) into the above the inequality and simplify

M0 +M1θz2 +M2θ
2
z2 ++M3θ

3
z2 +M4θ

4
z2 ≤ 0 (153)

Where M0,M1,M2,M3,M4 are defined as follows

M0 = −1536β1 + 4352β2
1 − 7936β3

1 + 3072β4
1 + 1024β5

1 − 6144β6
1 + (−1792β1 +

9984β2
1 − 39936β3

1 + 80128β4
1 − 119808β5

1 + 93184β6
1 − 61440β7

1)θϵ +

(−5376β3
1 + 16896β4

1 − 48640β5
1 + 43008β6

1 − 43008β7
1 − 16384β8

1 −

24576β9
1)θ

2
ϵ + (−5376β5

1 + 3840β6
1 − 15360β7

1 − 13312β8
1 − 8192β9

1 −

24576β10
1 )θ3ϵ + (−1792β7

1 − 3072β8
1 − 5120β9

1 − 6144β10
1 )θ4ϵ

(154)

M1 = −256β1 + 768β2
1 − 3072β3

1 + 64β4
1 + 6144β5

1 − 22016β6
1 + 18432β7

1 −

15360β8
1+(−2112β3

1+5760β4
1−22784β5

1+21504β6
1−39168β7

1+16384β8
1−

39936β9
1)θϵ + (−3456β5

1 + 2688β6
1 − 20736β7

1 − 7680β8
1 − 9216β9

1 −

36864β10
1 )θ2ϵ + (−1600β7

1 − 2304β8
1 − 8960β9

1 − 15360β10
1 )θ3ϵ

(155)

M2 = −192β3
1+384β4

1−2656β5
1+2688β6

1−7104β7
1+5120β8

1−8448β9
1+(−720β5

1+

624β6
1 − 7488β7

1 − 1344β8
1 − 3072β9

1 − 13824β10
1 )θϵ + (−528β7

1 − 576β8
1 −

4800β9
1 − 9216β10

1 )θ2ϵ

(156)

M3 = −48β5
1 + 48β6

1 − 816β7
1 − 64β8

1 − 320β9
1 − 1536β10

1 + (−76β7
1 − 48β8

1 −

1040β9
1 − 2112β10

1 )θϵ

(157)

M4 = −4β7
1 − 80β9

1 − 168β10
1 (158)

For 0 ≤ β1 ≤ 1
2 and θϵ ≥ 0, it is easy to prove that M0,M1,M2,M3,M4 are non-positive.

Therefore the inequality (153) holds or
∂λ2

22
∂θz2

≥ 0.
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From the proposition 3.7.3, λ1 + λ22 is decreasing in σϵ while λ22 is increasing in σϵ . Therefore

λ1 is decreasing in σϵ.

C.7 Proof of Proposition 3.7.2

By the definition, the forecast error variance of the market maker is defined by

Σ1 = E[(v − p1)
2] = (1− λ1β1β)σ

2 (159)

From the propositions (3.5.5), (3.7.1), λ1, β1, β are decreasing in σu. Therefore, Σ1 is increasing

in σu. Similarly, the forecast error variance of the market maker in the second period is defined

by

Σ2 = E[(v − p2)
2] =

1

2
σ2 (160)

C.8 Proof of proposition 3.7.3

The expected profit to uninformed traders is given by E[πU ] = −(λ1+λ22)σ
2
u. Now we will prove

that λ1 + λ22 is decreasing in σz2 . Similar to the proof of 3.7.1, we consider (λ1 + λ22)
2

(λ1 + λ22)
2 = B3(B1 +B2)

2σ
2

σ2
u

(161)

Where B1, B2, B3 are defined as follows

B1 =
β2
1θϵ +

1
4β

2
1θz2 + 1− β1

2(2β2
1θϵ +

1
2β

2
1θz2 + 1)

(162)

B2 =
β1(β

2
1θϵ +

1
4β

2
1θz2 + (β2

1 + (1− β1)
2))

β2
1(2β

2
1θϵ +

1
2β

2
1θz2 + 1) + (β2

1θϵ +
1
4β

2
1θz2 + 1)(β2

1θϵ +
1
4β

2
1θz2 + (β2

1 + (1− β1)2))
(163)

B3 =
2β2

1θϵ +
1
2β

2
1θz2 + 1

β2
1θϵ +

1
4β

2
1θz2 + (β2

1 + (1− β1)2)
(164)
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We denote K(β1, θϵ, θz2) = B3(B1 + B2)
2. We can factorize K into K(β1, θϵ, θz2) = (B1 +

B2)(B3B1 +B3B2) . Taking the first derivative of K with respect to θz2 , we have the following

expression.

∂(λ1 + λ22)
2

∂θz2
= (

∂K

∂β1

∂β1
∂θz2

+
∂K

∂θz2
)
σ2

σ2
u

(165)

If we rearrange the terms of B1, we have

B1 =
1

4
+

1− 2β1

4(2β2
1θϵ +

1
2β

2
1θz2 + 1)

(166)

As 0 ≤ β1 ≤ 1
2 , 1−2β1 ≥ 0. Therefore, given β1, B1 is decreasing in θz2 or the partial derivative of

B1 with respect to θz2 is nonpositive. Now we consider the partial derivatives of B1B3, B1B2, B2

with respect to θz2
∂(B1B3)

∂θz2
= − 2β3

1(1− 2β1)

(4− 8β1 + β2
1(8 + 4θϵ + θz2))

2
(167)

∂(B2B3)

∂θz2
= − 8β4

1(16− 16β1 + 4xβ1 + β3
1x

2)

(16− 32β1 − 8β3
1 + 8β2

1(6 + x) + β4
1(x+ 16)x)2

(168)

∂(B2)

∂θz2
= −4β3

1(16(1− 2β1)
2 + 8β2

1x(1− 2β1) + 8β2
1(1 + (3− 4β1)

2) + β4
1x(16 + x))

(16− 32β1 − 8β3
1 + 8β2

1(6 + x) + β4
1(x+ 16)x)2

(169)

Where x = 4θϵ + θz2 With 0 ≤ β1 ≤ 1
2 , it is easy to see that ∂(B2)

∂θz2
≤ 0, ∂(B2B3)

∂θz2
≤ 0 and

∂(B1B3)
∂θz2

≤ 0. Combining with B1, B2, B3 are non negative, we arrive at the conclusion ∂K
∂θz2

) ≤ 0.

Similarly, now we will prove that ∂K
∂β1

≥ 0. Using x = 4θϵ + θz2 . The partial derivative of K with

respect to θz2 can be written as

∂K

∂β1
=

T0 + T1x+ T2x
2 + T3x

3 + T4x
4 + T5x

5 + T6x
6 + T7x

7 + T8x
8 + T9x

9

(2(2 + β2
1x)

2(4− 8β1 + β2
1(8 + x))2(16− 32β1 − 8β3

1x+ 8β2
1(6 + x) + β4

1x(16 + x))3

(170)

Where T0, T1, T2, T3, T4, T5, T6, T7, T8, T9 are defined as follows

T0 = 524288 − 3407872β1 + 10223616β2
1 − 18612224β3

1 + 20709376β4
1 −

13369344β5
1 + 1310720β6

1 + 3932160β7
1 − 3407872β8

1

(171)

T1 = −65536β1 + 1835008β2
1 − 9895936β3

1 + 26476544β4
1 − 44367872β5

1 +

45350912β6
1 − 26542080β7

1 − 1310720β8
1 + 11927552β9

1 − 10485760β10
1 +

1310720β11
1

(172)
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T2 = −131072β3
1 + 2228224β4

1 − 10108928β5
1 + 22790144β6

1 − 32145408β7
1 +

24215552β8
1 − 5980160β9

1 − 13385728β10
1 + 14155776β11

1 − 9895936β12
1 +

1310720β13
1

(173)

T3 = −114688β5
1 + 1359872β6

1 − 5124096β7
1 + 9158656β8

1 − 10444800β9
1 +

4734976β10
1 − 45056β11

1 − 4046848β12
1 + 1228800β13

1 − 1245184β14
1 −

262144β15
1

(174)

T4 = −57344β7
1 + 462848β8

1 − 1420288β9
1 + 1786880β10

1 − 1719296β11
1 +

367616β12
1 −839680β13

1 +487424β14
1 −1343488β15

1 +458752β16
1 −262144β17

1

(175)

T5 = −17920β9
1+84992β10

1 −210176β11
1 +101376β12

1 −114944β13
1 −126976β14

1 −

87040β15
1 − 122880β16

1 − 16384β17
1 − 65536β18

1

(176)

T6 = −3584β11
1 + 5632β12

1 − 12992β13
1 − 25280β14

1 + 11776β15
1 − 59648β16

1 +

21504β17
1 − 36864β18

1

(177)

T7 = −448β13
1 − 704β14

1 + 240β15
1 − 5568β16

1 + 2368β17
1 − 5888β18

1 (178)

T8 = −32β15
1 − 152β16

1 + 48β17
1 − 368β18

1 (179)

T9 = −β17
1 − 8β18

1 (180)

With 0 ≤ β1 ≤ 1
2 , it is easy to see that the denominator of (170) is positive. We only need to

prove that the numerator of(170) which we denote as D(β1, x) is positive. From the equation

(116), we have F (β1, θz2 , θϵ, 1) = 0. With θz2 = x−4θϵ, we can write the equation in the following

way.

32−128β1+160β2
1−128β3

1−64β1x+224β2
1x−480β3

1x+464β4
1x−320β5

1x−

32β3
1x

2+26β4
1x

2−16β5
1x

2−64β6
1x

2−4β5
1x

3−7β6
1x

3+θϵ(48β1(2−3β1)
2+

144β3
1(5−8β1)+768β5

1+96β3
1x−48β4

1x+192β6
1x+12β5

1x
2+24β6

1x
2) = 0

(181)

With 0 ≤ β1 ≤ 1
2 , it is obvious that 48β1(2− 3β1)

2+144β3
1(5− 8β1)+ 768β5

1 +96β3
1x− 48β4

1x+

192β6
1x + 12β5

1x
2 + 24β6

1x
2 ≥ 0. As the coefficient of θϵ is nonnegative , We substitute x

4 ≥ θϵ

into the equation (180) and simplify to obtain the following inequality.

32−128β1+160β2
1−128β3

1+(−16β1+80β2
1−192β3

1+176β4
1−128β5

1)x+

(−8β3
1 + 14β4

1 − 16β5
1 − 16β6

1)x
2 + (−β5

1 − β6
1)x

3 ≥ 0

(182)

As 0 ≤ β1 ≤ 1
2 , we can verify that all coefficients of x, x2, x3 are not positive. Therefore we can

have 2 below inequalities.

32−128β1+160β2
1−128β3

1+(−16β1+80β2
1−192β3

1+176β4
1−128β5

1)x ≥ 0 (183)
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32− 128β1 + 160β2
1 − 128β3

1 ≥ 0 (184)

Solving the inequality (184), we have a stricter condition for β1

β1 ≤
1

12

5− 23

3

√(
12
√
87− 19

) + 3

√(
12
√
87− 19

) = β∗
1 (185)

Using the inequality (183), we can rewrite the coefficient of x in the right side of (183) as follows

−16β1+80β2
1 − 192β3

1 +176β4
1 − 128β5

1 = −5β1− 11β1+80β2
1 − 192β3

1 +

176β4
1 − 128β5

1 ≤ −5β1

(186)

As 0 ≤ β1 ≤ β∗
1 , we can verify that −11β1 + 80β2

1 − 192β3
1 + 176β4

1 − 128β5
1 ≤ 0. Therefore, the

inequality (186) holds. Combining inequalities (183), (184),(186), we have the constraint for x

as follows

32− 128β1 + 160β2
1 − 128β3

1 − 5β1x ≥ 0 (187)

We can computationally verify that T4, T5, T6, T7, T8, T9 are not positive for all 0 < β1 ≤ β∗
1 . Now,

we consider T2, T3. Using the equations (173), (174), we can obtain the following expressions.

T2 − 50000β3
1 = 16β3

1(−11317 + 139264β1 − 631808β2
1 + 1424384β3

1 − 2009088β4
1 +

1513472β5
1−373760β6

1−836608β7
1+884736β8

1−618496β9
1+81920β10

1 ) ≤ 0

(188)

T3 − 20000β5
1 = −32β5

1(4209−42496β1+160128β2
1 −286208β3

1 +326400β4
1 −147968β5

1 +

1408β6
1 + 126464β7

1 − 38400β8
1 + 38912β9

1 + 8192β10
1 ) ≤ 0

(189)

Similarly, we can verify that both inequalities (186) and (187) hold for all 0 < β1 ≤ β∗
1 . Therefore,

we have the following inequality

D(β1, x) ≥ T0+T1x+(T2− 50000β3
1)x

2+(T3− 20000β5
1)x

3+T4x
4+T5x

5+T6x
6+

T7x
7 + T8x

8 + T9x
9

(190)

If β1 = 0, D = 524288 > 0, now we only need to consider the case when β1 > 0. We denote the

right side of (190) as D1(β1, x) We consider 2 following cases:

1. T1 < 0
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When T1 < 0, it is obvious thatD1(β1, x) is a polynomial of x with almost all of coefficients

T1, T2, T3, T4, T5, T6, T7, T8, T9 nonpositive. Combining with the inequality (187), we have

that

D1(β1, x) ≥ D1(β1,
32− 128β1 + 160β2

1 − 128β3
1

5β1
) (191)

We can verify that D1(β1,
32−128β1+160β2

1−128β3
1

5β1
) > 0 for all 0 < β1 ≤ β∗

1 .

2. T1 ≥ 0, we have the following inequality

D(β1, x) ≥ T0+(T2−50000β3
1)x

2+(T3−20000β5
1)x

3+T4x
4+T5x

5+T6x
6+T7x

7+

T8x
8 + T9x

9

(192)

We denote the right side of (192) as D2(β1, x). Similarly, we can see that D2(β1, x) is a

polynomial of x with almost all of coefficients except T0 nonpositive. Combining with the

inequality (187), we have that

D2(β1, x) ≥ D2(β1,
32− 128β1 + 160β2

1 − 128β3
1

5β1
) (193)

We can verify that D2(β1,
32−128β1+160β2

1−128β3
1

5β1
) > 0 for all 0 < β1 ≤ β∗

1 .

So we can conclude that the loss to uninformed traders is decreasing in σz2 .

C.9 List of legal cases on spoofing
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Defendant Year Market Spoofing period Victim Penalty

Joseph R. Blackwell 2001 Stocks 2000 Fined $3,212.67

Robert Monski 2001 Stocks 1997 Fined $15,000,

Igor Oystacher 2016 E-mini S&P 500 2011-2014 Citadel, HTG Capital Fined $2.5 million

Michael Coscia 2015 CME. NYMEX 2011 D.E. Shaw, Citadel 36 months

Navinder Sarao 2017 E-mini S&P 500 2010-2014 Home confinement

David Liew 2017 Metal contracts 2009-2012 Pending

Jiongsheng Zhao 2018 E-mini S&P 500 2012 -2016 Time served

Andre Flotron 2018 Metal contracts Acquitted

John Edmonds 2018 Metal contracts 2009-2015 Pending

Kamaldeep Gandhi 2018 EMini S&P 500 2012-2014 Pending

Krishna Mohan 2018 EMini S&P 500 2012-2014 Pending

Edward Bases 2018 COMEX. NYMEX 2008-2014 1 year in prison

John Pacilio 2018 COMEX. NYMEX 2008-2014 1 year in prison

Jitesh Thakkar 2019 E-mini S&P 2011-2015 Dismissed

Corey Flaum 2019 Metal contracts 2007-2016 Pending

Christian Trunz 2019 Metal contracts 2006-2010 Pending

Xiasong Wang 2019 Stocks Pending

Jiali Wang 2019 Stocks Pending

Gregg Smith 2019 Metal contracts 2008 -2016 Citadel , Quantlab 2 years in prison

Michael Nowak 2019 Metal contracts 2008 -2016 Citadel , Quantlab 1 year in prison

Christopher Jordan 2019 Metal contracts 2006-2010 Citadel , Quantlab Pending

Jeffrey Ruffo 2019 Metal contracts 2008 -2016 Citadel , Quantlab Acquitted

James Vorley 2020 Metal contracts 2008-2013 Quantlab Financial Pending

Cedric Chanu 2020 Metal contracts 2008-2013 Quantlab Financial Pending

Merrill Lynch Commodities 2019 Metal contracts 2008-2014 $25 million

Tower Research Capital LLC 2019 E-Mini S&P 500 2012-2013 $67.4 million

Propex Derivatives Pty Ltd. 2020 EMini S&P 500 2012-2016 $1 million

Bank of Nova Scotia 2020 Metal contracts 2008-2016 $60.4 million

JP Morgan Chase & Co. 2020 Metal contracts 2008 -2016 Citadel , Quantlab $920 million

Nielsen 2020 Arrayit 2020 3 years supervision

Nicholas Mejia Scrivener 2020 Stocks 2015-2016 $205,270

Xuepeng Xie 2021 Stocks $2,708,778
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