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Abstract

In the rapidly developing field of wireless communication, there is a growing demand for tech-
nologies that can provide flexible deployment, extended coverage, and enhanced performance
in next-generation networks. Traditional networks often struggle with high mobility and en-
vironmental blockages, highlighting the need for innovative solutions like Unmanned Aerial
Vehicles based (UAV-based) dynamic base stations. UAVs offer a promising solution by func-
tioning as dynamic base stations in 5G and 6G networks, with the potential to address these
challenges and improve communication reliability and efficiency.

However, the integration of UAVs into wireless communication presents significant chal-
lenges. Ensuring reliable communication in high-mobility environments, optimizing beam
management techniques, predicting blockages in real time, and managing the latency inherent
in UAV-assisted networks all require innovative solutions. These challenges are combined by
the need to balance power consumption and processing capacity, especially when performing
complex tasks such as on-device machine learning and computer vision-based beamforming.

The first study of this dissertation focuses on the challenge of beam management in milime-
ter wave (mmWave) 5G and beyond networks, where speedy environmental changes in high-
mobility scenarios degrade signal quality. Previous studies have highlighted the limitations of
traditional beamforming approaches, especially in their ability to adjust to dynamic environ-
ments. To enhance this, a novel technique is proposed that integrates computer vision (CV)
with ensemble learning, employing the "you look only once" (YOLO-v5) for precise UAV de-
tection and positioning. By stacking two neural networks to refine a meta-learner, this method
achieves approximately 90% top-1 accuracy in K-beam predictions, significantly enhancing the
signal-to-noise ratio and improving network performance in high-mobility scenarios.

The second study focuses on the problem of proactive blockage prediction and manage-
ment in mmWave communications, where maintaining line-of-sight connectivity is necessary.
Previous studies have stated that traditional reactive handover methods often result in service
disruptions due to unexpected blockages. Computer vision techniques used previously resulted
to a 40% improvement in user connectivity by predicting and managing blockages. Extending
this concept, the study addresses proactive blockage prediction and management in mmWave
communications, employing UAVs not only as base stations but also as proactive agents in han-
dover processes. By leveraging CV to detect potential blockages and monitor user movement,
the system facilitates proactive handovers to maintain line-of-sight connectivity. This approach,
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evaluated using a publicly available dataset and incorporating advanced antenna modeling tech-
niques, has demonstrated a 20% enhancement in network performance.

The third study reveals a new approach that utilizes vision-aided machine learning for effi-
ciently and precisely predicting the optimum beam orientations for UAVs using mmWave and
terahertz (THz) technologies. Previous research has shown that, while utilizing visual data from
UAVs can increase beam prediction accuracy, there are still issues in reducing beam training
overhead and managing real-time mobility. Employing data from UAV cameras, the proposed
method achieves approximately 90% accuracy in predicting the best beam direction for the
top-1, and nearly 100% for the top-3. Performing these computations directly on the UAV
(on-device inference) reduces communication delays by 15% and lowers the cost of commu-
nication by 50% in terms of power consumption in comparison with ground-based processing,
greatly increasing the efficiency of real-time UAV communication. Collectively, these studies
underline the potential of using UAVs to improve wireless communication providing innovative
solutions for network expansion, precise beam management, and proactive blockage prediction.

This thesis emphasizes UAVs as a cornerstone technology for advancing future wireless
communication, setting the stage for more reliable, efficient, and comprehensive communica-
tion systems.
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Chapter 1

Introduction

Cellular networks have undergone multiple phases of evolution, progressing from the initial
first-generation (1G) systems to the present fifth-generation (5G) technologies. This evolution
has been driven by the continuous growth in both the quantity and variety of connected devices,
mobile subscribers, and the emergence of data-intensive applications such as online gaming,
live video streaming, social media platforms, and more [1]. In 2010, the total usage of mo-
bile data worldwide was 7.462 EB per month. However, current projections suggest that by
the year 2030, this figure will increase to 5016 EB per month [2]. These numbers indicate
the urgent need for advancements in communication infrastructure.Our society is steadily ad-
vancing toward greater dependence on fully automated systems for remote management and
control. Self-operating technologies are increasingly becoming a central part in various sectors
such as industry, healthcare, transportation, maritime operations, and space exploration [3]. Fu-
ture wireless communication networks, including 5G and beyond, are anticipated to meet the
ever-growing user requirements by addressing the challenges associated with wireless com-
munication. These challenges encompass the demand for faster data speeds, reduced latency,
improved reliability, and greater connectivity in order to accommodate several devices [4].

Moreover, it is expected that UAV technology will continue to grow and have a signifi-
cant influence on how wireless networks develop in the future. UAVs, also known as drones,
have evolved from their initial use in military applications to become a useful tool in various
civilian and commercial sectors. Their capacity to deliver flexible and cost-efficient commu-
nication solutions, surveillance, and data collection makes them a critical component of future
networks. However, incorporating UAVs into both current and future communication networks
poses unique challenges, such as ensuring seamless communication links, managing the lim-
ited battery life of UAVs, and addressing security concerns [5]. Addressing these challenges
requires the foundation of innovative solutions, this includes leveraging computer vision (CV)
and machine learning (ML) techniques to improve the reliability and performance of UAV
communication systems [6].

Machine learning has proven to be a powerful tool in addressing complex problems within
wireless communications. Its ability to examine large amounts of data and make predictions in

1
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real time provides interesting solutions for optimizing network performance [7]. When com-
bined with vision-aided technologies, machine learning can enable UAVs to autonomously
navigate environments, avoid obstacles, and make smart decisions using real-time visual data.
This combination of machine learning and vision-aided technologies in UAV communications
is expected to revolutionize future networks by providing more efficient, reliable, and secure
communication channels [8].

Furthermore, the integration of UAVs with machine learning and vision-aided technologies
will likely lead to the development of intelligent, adaptive communication systems able of
dynamically adjusting to changing environments and user demands. This will be crucial in
maintaining the the rising demand for applications and devices that future networks will need
to support. The anticipated growth of smart cities, connected vehicles, Internet of Things (IoT),
and other innovations, will further worsen the demand for innovative communication solutions
designed to deliver fast, low-latency, and energy-efficient connectivity [9].

In conclusion, as we advance towards a future where communication networks are more
interconnected and dependent on autonomous technologies, the role of machine learning and
vision-aided UAV communications will become increasingly significant. The development of
these technologies is not only essential for meeting the demands of future networks but also for
driving innovation in various sectors, ultimately leading to smarter, more efficient, and more
flexible communication infrastructures [10].

1.1 Wireless Communication Network Evolution

The initial analog cellular system first-generation (1G) opened the foundation for the evolution-
ary development of wireless communication networks since it emerged in the 1980s. By 1990,
this system was overtaken by the second-generation (2G) digital network, widely known as
the "Global System for Mobile Communications (GSM)." Hence, this system carries features
like voice communication and SMS. Of course, its limited data rates contributed to the shift to
the third generation in 2001 which turned out to offer several times faster data speeds[11, 12].
Considering the evolution of communication technologies throughout the last ten years, it is
evident that this journey is not merely about technological progress. Rather, it is about linking
people and nations, shaping the world into a unified global community [13].

1.1.1 1G, The First Generation Mobile Network

In 1970s, the introduction of 1G mobile communications marked a significant milestone in
wireless technology. 1G networks were primarily analog systems, which facilitated voice
communication by modulating radio signals to transmit data. The primary systems utiliz-
ing 1G technology included It includes the Total Access Communications System (TACS) in
the United Kingdom, the Advanced Mobile Phone System (AMPS) in North America, the
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Figure 1.1: Advancement from 1G to 6G.

Nordic Mobile Telephone (NMT) in Scandinavia, and the Total Access Communications Sys-
tem (JTACS) in Japan [14, 15].

Frequency division multiple access (FDMA) was used by AMPS to operate in the 800
megahertz frequency band and assign unique frequencies to individual calls. This system was
able of accommodating only a small number of simultaneous users due to the restricted amount
of accessible frequencies [16]. Similarly, NMT, developed in Scandinavia, also worked in
the 450 megahertz and then the 900 megahertz bands using FDMA [17]. TACS, a variant of
AMPS, was introduced in the UK and operated in the 900 MHz band, offering higher capacity
by utilizing smaller cell sizes to reuse frequencies more effectively [18]. JTACS, the Japanese
adaptation, further optimized the TACS system by adjusting the channel spacing to accommo-
date the unique demands of the Japanese market [15].

Despite the differences in frequency bands and channel spacing, these systems shared com-
mon technical characteristics, such as the use of analog modulation and FDMA for multiple
access. However, the analog nature of 1G systems meant that they were prone to issues such
as signal interference, limited capacity, and susceptibility to eavesdropping. These limitations
underscored the need for more advanced, digital systems, resulting in the development of 2G
technology over the following ten years [19].

1.1.2 2G, The Second Generation Mobile Network

The early 1990s saw the emergence of 2G technology, introducing digital technology that sig-
nificantly improved voice quality and system capacity. This generation also marked the begin-
ning of mobile data services, enabling text messaging (SMS) and limited data transfer. Key 2G
technologies were Code Division Multiple Access (CDMA) in the US and the Global System
for Mobile Communications (GSM) in Europe, which eventually became the most commonly
used standard. By enabling roaming between countries and providing improved security via
digital encryption,2G networks set the path for the globalization of mobile communication [14,
20].
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1.1.3 3G, The Third Generation Mobile Network

With the emergence of 3G mobile communication in early 2000s, revolutionized the mobile
industry by providing high-speed data transfer and supporting multimedia applications. The
user experience was greatly improved by 3G networks’ capabilities for mobile TV, video
calls, and internet access on the go. Prominent 3G protocols included the Universal Mobile
Telecommunications System (UMTS) in Europe, which was built on WCDMA technology,
and CDMA2000 in the US. 3G technology facilitated the widespread use of mobile broad-
band services and smartphones, which resulted in a rise in mobile data usage and changed how
people communicate and access information [14, 20].

1.1.4 4G, The Fourth Generation Mobile Network

The introduction of 4G mobile communication in the late 2000s, produced a dramatic increase
in data speeds and network capacity, enabling a new era of mobile internet services. 4G tech-
nology, particularly Long-Term Evolution (LTE), supplied data rates enough for online gaming,
streaming high-definition video, and other data-intensive applications. The transition to 4G also
saw the introduction of IP-based networks, which improved efficiency and reduced latency. 4G
networks supported the rapid growth of mobile apps and services, allowing for seamless con-
nectivity and the proliferation of smart devices. This generation of mobile technology laid the
groundwork for the digital economy and the connected world [14, 20].

1.1.5 5G, The Fifth Generation Mobile Network

The late 2010s saw the introduction of the 5G of mobile communication, which marks a sub-
stantial advancement in wireless technology. With its extremely fast data rates, minimal latency,
and extensive connection, 5G networks pave the way for the creation of cutting-edge applica-
tions such as autonomous cars, IoT devices, and smart cities. To enable new use cases and
deliver network performance never seen before, 5G technology uses a wide range of frequency
bands, including mmWave. Having the capacity to link billions of devices and deliver real-time
communication, 5G has the potential to change industries and drive development in a number
of fields, from healthcare to manufacturing and beyond [14, 20].

1.1.6 6G, The Sixth Generation Mobile Network

The 6G of mobile communication, anticipated to be fully deployed in 2030s, is expected to
revolutionize wireless technology beyond the capabilities of 5G. 6G promises to deliver in-
credibly fast data rates, very low latency as well as and seamless connectivity over large-scale
device networks, including those in the Internet of Everything (IoE). It is probable that this
generation will integrate cutting-edge technologies like edge computing, ML, and artificial in-
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telligence (AI) to enable real-time decision-making and automation at unprecedented scales.
6G is envisioned to support holographic communication, immersive extended reality (XR), and
advanced automation in industries such as healthcare, manufacturing, and transportation. With
the capacity to provide 100 times higher data speeds than 5G and to operate at terahertz (THz)
frequencies, 6G will be pivotal in enabling new applications and services that were previously
unimaginable, driving the next wave of digital transformation and innovation [21].

1.2 UAVs Emergence in Wireless Communication

UAV incorporation into wireless communication networks has seen substantial growth, driven
by their increasing range of applications and unique advantages. In todays rapidly evolving
technological landscape, UAVs offer adaptable solutions across various contexts. For instance,
UAVs can function as airborne base stations (BS) during disaster recovery or in situations of
heightened network demand, ensuring crucial connectivity when traditional infrastructure is
compromised. Furthermore, UAVs can operate as aerial user equipment (UE) for tasks such as
delivery services or surveillance. Advances in UAV technology have facilitated the widespread
deployment of UAVs include aircraft, balloons, tiny planes, drones, and more-all operating in
wireless networks. UAVs can offer a wide range of applications with reliable and affordable
wireless communications once they are deployed and controlled effectively. They may serve
as airborne base stations delivering reliable, on-demand wireless connectivity or engage with
ground users as cellular-connected UAVs. This section discusses UAVs applications in wireless
communication [22].

1.2.1 Emergency Services (Pop-up Networks)

UAVs are becoming a major focus for commercial development and research due to their po-
tential across various sectors. A key application is in emergency response. In largescale natural
disasterssuch as floods, earthquakes, fires, or hurricanesthe destruction of cellular infrastruc-
ture often results in the loss of communication services. UAVs can be used to replace lost or
damaged base stations, improving the Quality of Service (QoS) for individuals in the affected
regions and resuming communication services. UAV parameters, such as trajectories and alti-
tude, can be improved according to user traffic demand and distribution to improve coverage
and throughput. For instance, UAVs can create emergency pop-up network to restore con-
nectivity in areas when infrastructure is halted. Reinforcement learning (RL) techniques can
be employed to optimize UAV trajectories, improving coverage and speed for ground users
[23]. In order to connect remote user groups split apart by natural disasters like earthquakes
or floods, UAV base stations (UAV-BSs) can serve as relays. This allows local communica-
tion within communities, even when internet access is unavailable. UAVs can also connect
inaccessible locations to the internet by offering backhaul services to already-existing wireless
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networks. Additionally, UAV-BSs can act as backhaul solutions for D2D (device-to-device)
communications. Equipped with efficient processors, UAVs can aggregate data in real-time
from various devices, aiding in decision-making during emergencies [24]

1.2.2 IoT Devices Data Harvesting

UAVs provide promising IoT application opportunities, particularly in relaying and data har-
vesting, which has attracted significant research interest. UAVs are especially beneficial in
scenarios where IoT devices are placed in remote locations, like offshore regions or rural farm-
lands, that lack wireless network infrastructure. In these instances, UAVs can assist in data
collection and transmission to decision-making centers. The goal of UAV-enabled data har-
vesting research is to maximize UAV throughput and path planning to ensure adequate data
collection before the UAVs battery is depleted. For instance, a deep reinforcement learning
framework has been proposed for multi-UAV data collecting systems’ path planning, adapting
to dynamic network conditions for optimal data collecting from distributed IoT devices, Addi-
tionally, research has focused on optimizing UAV trajectory and power supply to ground nodes
in data collection systems, with the goal of increasing throughput and coverage probability [25,
26].

This is crucial in situations where IoT devices are placed in areas lacking wireless network
infrastructure, including remote farmlands or offshore regions, to help with the data delivery to
the decision-making units. Under such circumstances, UAVs can be dispatched to that region to
assist in gathering data [27, 28]. The primary focus of research on UAV-enabled data harvesting
is on UAV path and throughput optimization to make sure the UAV gathers enough data and
gets back to the data center before its battery runs out [29, 30, 31].

In[29], the authors investigated at how to optimize UAV power distribution and trajectory
to ground nodes simultaneously to improve speed and coverage probability within a distributed
beamforming-based UAV-assisted data collecting system. To achieve optimal performance,
they created heuristic algorithms by utilizing approximations and convex optimization, which
were designed to optimize the power and identify the best trajectory allocation strategies for
maximizing both metrics.

1.2.3 Computation Offloading and Content Caching

These days, content caching is essential to wireless networks, particularly as users can move
from one place to another. This procedure include saving crucial information such as user-
names, locations, and frequently requested contentat multiple base stations to ensure seamless
communication and minimize latency. However, traditional caches are typically stationary,
which may not appropriate for extremely mobile users. In such cases, dynamic caching can be
carried out through UAV-enabled caching, where UAVs follow cellular devices to offer services
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that are required. For instance, UAV-enabled caching has been proposed in vehicular networks
to improve network throughput [32].

Similarly, mobile edge computing (MEC) enables consumer devices to offload and handle
computationally heavy tasks that exceed battery capacity. However, UAV-enabled MEC is a
proposed solution for stationary MEC servers. UAVs with edge servers can help offload com-
putation from ground-based devices. thereby minimizing energy consumption and extending
battery life. For example, a UAV enabled computation offloading system has been designed to
minimize bandwidth costs, energy consumption, and network latency via deep reinforcement
learning [33].

1.2.4 Balancing Load

With users’ increased mobility and fluctuating traffic demands, base station traffic loads are
subject to temporal and spatial variability. This variability can lead to some base stations being
underutilized while others become overloaded, resulting in poor QoS[34]. While small cells
can help reduce traffic imbalance, their static nature prevents them from responding effectively
to sudden traffic surges. UAV-BSs offer a solution by being rapidly deployable to areas experi-
encing high traffic demand, thus ensuring balanced load distribution across base stations.[35].

The authors of [36] suggested a learning-based appraoch to deploy UAVs to congested
network areas during peak traffic times, aiming to assist in load balancing and prevent a deteri-
oration in user QoS. This approach allows for proactive UAV deployment by utilizing both the
extreme gradient boosting (XGBOOST) algorithm and the auto-regressive integrated moving
average (ARIMA) model to predict future high-traffic zones based on previous data. [37] dis-
cusses UAV deployment to facilitate load balancing and reduce the amount of communication
delay that occurs between IoT devices and macro base stations (MBSs) when the MBS is expe-
riencing a high traffic. To decide where UAVs should be deployed and how IoT devices should
be associated, heuristic algorithms were created. Similarly, the study in [38] investigated the
use of UAV base stations for load balancing and enhancing capacity in areas experiencing high
traffic by designing efficient UAV trajectories. To achieve a high spectral efficiency, a deep
reinforcement learning framework was presented for determining ideal UAV trajectories, effi-
ciently balancing the load across UAV-BSs.

1.2.5 Extension of Coverage and Relaying

The rapid expansion of mobile devices has led to a substantial increase in demand for high-
speed wireless connectivity, placing pressure on the capacity and coverage of present cellular
networks. UAVs have been used to expand network capacity and offer more flexible coverage
in order to overcome this problem [22]. Because of their strong LoS link, UAVs can improve
wireless communication performance by reducing propagation loss and enhancing link QoS.
UAVs may expand network capacity and coverage by acting as airborne base stations or relays
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[39]. UAVs, for instance, aren used as a wireless-powered communication networks (WPCNs)
to help send data from sources to locations with blocked communication lines [40]. These
sources don’t have their own energy source and have low power. The UAV functions as a
hybrid access point (AP), serving as a link for data transmission and reception in addition to
offering wireless power transfer (WPT) to recharge user devices.

The dominant LoS and AtG link greatly improves UAV-enabled wireless communications’
efficiency [41], which leads to a low propagation losses and improved QoS. UAVs are there-
fore widely used as aerial base stations (BSs) or relays to expand network capacity or offer
wider coverage options [42, 43, 44]. Similarly, in [45], the authors investigated that by using
non-orthogonal multiple access (NOMA) technology to enhance the coverage of an existing
network, UAVs can be used as relays to serve customers at the edge of the cell, hence improv-
ing QoS.

1.2.6 Improvement in Throughput and Capacity

The exponential rise in information technology and telecommunications has resulted in a no-
table rise in customer requirements for data traffic. Both small and macro base stations are
set deployed to supply coverage in order to meet this demand. However, the continuous fluc-
tuation in data traffic renders terrestrial small base stations alone insufficient. UAVs present
a flexible and adaptable solution, offering reliable coverage and enhancing network capacity.
For instance, UAVs have been deployed in heterogeneous networks to optimize capacity by
determining the most effective geographic locations for deployment [46, 47].

In [48], the authors analyzed the most effective way to deploy UAVs in heterogeneous
networks with the objective to increase network capacity. To identify the best locations for
UAV deployment, a tility function was developed that reflects traffic intensity across different
network regions, followed by the development of a heuristic method to efficiently position
UAVs. The proposed model demonstrated improved capacity, reliability, significantly improved
connection when compared to normal ground-based wireless networks. Similarly, a study in
[49] consider deploying numerous UAVs to collect traffic from a congested terrestrial base
stations, with the purpose of increasing bandwidth for ground users at the cell edge.

1.2.7 Backhauling

In mobile networks, a backhaul is responsible for connecting base stations to the core network,
typically using fiber cables or microwave links. In an emergency with destroyed backhaul
infrastructure, UAVs can establish ad-hoc backhaul connections. UAVs can be used for back-
hauling in high-mobility environments, like high-speed trains, where they enhance coverage
probability by stabilizing the connection[51, 52]. In this regard, [53] presented a backhaul
system that combines UAVs with free-space optical (FSO) communications with the goal of
improving the coverage and efficiency of the high-speed rail network.
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Figure 1.2: UAVs serve various roles, including providing wireless backhaul in remote areas,
restoring networks during outages, extending coverage over obstacles, offloading traffic from
crowded base stations, caching popular content, and harvesting data from ground sensors [50].

1.2.8 Energy Efficiency

UAVs also help cellular networks operate more efficiently in increasing their energy efficiency
(EE) by assisting in capacity enhancement while minimizing power consumption. For example,
in a heterogeneous network, deploying Mmwave UAVs next to macro and small base stations
can increase user throughput at the cell edge thereby enhancing overall network EE. In [54],
the researchers demonstrated this through integrating mmWave UAV with MBS and SBS to
increase user throughput in a three-tier hybrid network at the cell edge, which thus produced an
extensive improvement in the network’s EE. Additionally, UAV-assisted base station sleeping
strategies, where traffic is offloaded to UAVs while lightly loaded base stations enter sleep
mode, have been demonstrated to considerably lower cellular network energy usage [55].

1.3 Problem Description

UAVs are becoming a revolutionary technology in the field of wireless communication net-
works, offering flexible deployment options, extensive coverage, and access to wide band-
widths. However, integrating UAVs into existing wireless communication infrastructures presents
significant challenges. These challenges include optimizing deployment strategies, ensuring
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reliable and efficient communication, minimizing latency, and mitigating potential blockages
caused by environmental factors or physical obstructions.

UAV-assisted communication systems are dynamic and complex in nature, especially in
the context of next-generation networks like 5G and beyond, demands innovative solutions.
Traditional methods for managing communication networks may not fully address the need for
real-time responsiveness and precision in UAV operations. Therefore, this research aims to
explore and develop advanced techniques that enhance network performance, reduce latency,
predict and mitigate blockages, and improve beamforming accuracy through the integration of
vision-based and machine learning approaches.

Specifically, this research will investigate how the integration of real-time computer vision
with UAV networks impacts latency and overall communication performance. By addressing
these challenges, the study seeks to maximize the prospective of UAVs in wireless communi-
cation, leading to more reliable, efficient, and latency-aware communication solutions.

1.4 Aims and Objectives

This thesis investigates the applications of UAV in wireless communication systems to enhance
flexibility, coverage, and bandwidth efficiency while ensuring cost-effectiveness. The specific
objectives are:

1. To Explore UAV Integration with Existing Networks: This involves investigating how
UAVs can augment current wireless communication frameworks, improving efficiency
and coverage.

2. To Develop Vision-Assisted Beam Prediction:We aim to develop a beam prediction
method that utilizes machine learning and computer vision to determine optimal beam
directions for UAV-based communication in 5G and beyond.

3. To Implement Proactive Blockage Prediction: The objective is to integrate UAVs with
vision-based technologies to create a proactive blockage prediction mechanism for han-
dover processes in future wireless networks. This approach aims to boost signal strength
and ensure seamless connectivity.

4. To Enhance Latency-Aware Vision-Aided Wireless Network: Investigating the poten-
tial for integrating vision-based technology with UAV networks to analyze how real-time
computer vision impacts the latency and overall communication performance in UAV-
assisted networks.
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1.5 Contributions

Using the above outlined goals as a guide, this study aims to develop novel UAV-assisted frame-
works and lightweight models designed to enhance beam management, blockage prediction,
and overall network efficiency in future-generation wireless systems. Through the integration
of computer vision and machine learning techniques, this work addresses the critical challenges
in maintaining reliable communication in high-mobility and obstacle-prone environments. The
main contributions of this thesis are listed below:

• Development of a Novel Beam Management Technique for UAV-Assisted Networks:
This dissertation introduces a novel beam management technique adapted for mmWave
5G and beyond networks. By integrating computer vision (CV) with ensemble learn-
ing, the technique utilizes the YOLO-v5 model for accurate detection and positioning
of UAVs, enhancing signal-to-noise ratio and beamforming accuracy. Two neural net-
works are trained for optimal K-beam predictions, achieving approximately 90% top-1
accuracy. This contribution demonstrates significant improvements in signal strength for
high-mobility scenarios and has been critical in advancing the field of dynamic beam
management in UAV-assisted networks.

• Proactive Blockage Prediction and Handover Management Framework for mmWave
Communications:

A new framework for proactive blockage prediction and management in UAV-assisted
mmWave networks is presented. By leveraging computer vision to detect environmental
blockages and track user movement, this approach assists proactive handovers (PHO) to
maintain uninterrupted line-of-sight (LOS) connectivity. The proposed solution achieves
a 20% improvement in network performance, particularly in maintaining robust connec-
tions in high-mobility environments. This contribution marks a significant advancement
by using UAVs for improving the reliability and efficiency of mmWave communications.

• Lightweight Vision-Aided Machine Learning Model for UAV Beam Prediction in
mmWave Technologies:

An advanced machine learning approach is proposed to efficiently and accurately predict
optimal beam orientations for UAVs using mmWave and terahertz (THz) technologies.
By utilizing real-time visual data from UAV cameras and performing on-device infer-
ence, this method achieves approximately 90% accuracy in predicting the best beam
direction for the top-1, and nearly 100% accuracy for the top-3. On-device processing
reduces communication delays by 15% and lowers energy consumption by 50%, demon-
strating extensive improvements in real-time UAV communication efficiency.



CHAPTER 1. INTRODUCTION 12

1.6 Thesis Outline

Below is a brief outline of the structure of the subsequent sections of this thesis:
Chapter 2 offers an extensive review of the relevant literature related to Wireless Commu-

nication Networks. It covers various aspects like the integration of UAV in Communication
Networks, the role of UAVs in Communication Infrastructure, previous research and practical
applications in this domain, the importance of Vision-Assisted Beam Prediction, its relevance
in the context of 5G and beyond UAV Communication, and the collaborative integration of
UAVs and Computer Vision for Blockage Prediction. Chapter 3 is dedicated to the practi-
cal implementation of Vision-Assisted Beam Prediction in 6G UAV Communication. This
chapter focuses on the methodology and techniques involved in this process. It presents the
experimental setup, data collection process, and the results obtained from real-world scenar-
ios. Additionally, the chapter discusses the implications of vision-assisted beam prediction in
enhancing communication reliability and efficiency for UAV networks. It compares this ap-
proach with existing methods and suggests potential future directions. In Chapter 4, we delve
into proactive blockage prediction techniques designed specifically for UAV-assisted handover
in future wireless networks. We examine the difficulties that arise in predicting blockages in
UAV communication scenarios and explore proactive methods for reducing the risk of commu-
nication handover disruptions. Our findings emphasize the effectiveness of proactive blockage
prediction in ensuring seamless UAV-assisted handover in future wireless networks.

Chapter 5 of this thesis, focuses on the differences in latency for communication systems
assisted by UAV. It compares the effectiveness of two approaches - onboard and on-ground
training methods. The chapter investigates the effect of various methods on communication
efficiency by looking at the latency implications of training machine learning models onboard
UAVs versus on the ground. It offers an in-depth evaluation of the latency characteristics, tak-
ing into account various factors such as computation complexity and data transmission delays.
Chapter 6 wraps up the thesis by summarizing the significant contributions achieved throughout
the course of the research. It highlights the main findings, insights, and advancements achieved
in research on communication networks assisted by UAVs. Furthermore, it provides recom-
mendations for future research directions to further enhance the understanding and practical
implementation of UAV-assisted communication technologies.



Chapter 2

Background and Literature Review

As technology continues to evolve and our reliance on wireless communication grows, sev-
eral significant challenges have arisen that make it harder to maintain effective and reliable
networks. Issues like the limited availability of radio frequencies [56], interference from other
devices [57], and concerns about security and energy efficiency [58] are becoming more promi-
nent. Additionally, problems such as high latency [59], maintaining connectivity while moving
[60], and handling increasing amounts of data [61] put additional strain on current systems. To
address these problems, innovative solutions are needed. One such solution is the use of UAVs,
which can offer flexible and efficient ways to improve wireless communication by enhancing
coverage, managing spectrum use, and reducing interference. The ability to widely use UAVs,
including tiny planes, balloons, and airplanes, for wireless communication has been made pos-
sible by recent advancements in UAV technology [62]. UAVs, in For instance, when properly
configured and managed, offer reliable and affordable wireless communication services for a
range of practical applications. UAVs, on the one hand, can serve as airborne base stations
(BSs), providing reliable and cost-effective, and on-demand wireless access to specific places.
On the other hand, it can interact with ground users as aerial user equipment (UE), also known
as cellular-connected UAVs [22].

When used as flying base stations, UAVs can connect to existing terrestrial wireless net-
works such as cellular and broadband networks. UAVs have several advantages over typical
terrestrial base stations, including the ability to adjust altitude, avoid obstructions, and es-
tablish line-of-sight (LoS) communication links with ground users. Indeed, because of their
inherent characteristics such as mobility, agility, and flexible altitude, UAV base stations may
efficiently enhance present cellular networks by providing additional bandwidth to hotspot ar-
eas and providing network coverage in difficult-to-reach areas [63]. According to [22], UAVs
are also useful in Internet of Things (IoT) scenarios [64, 65], where devices often have little
transmitting power and are unable to connect over long distances. UAVs may also be used as
wireless relays to improve the connection and coverage of ground wireless devices, as well as
for surveillance situations, which is a crucial IoT use case.

In situations where there are unusual crowd gatherings, at events like music concerts, sports

13
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Figure 2.1: UAV-BS Communication with Ground Users.

games, or fairs, crowds often gather around a central hotspot or event area. This poses major
challenges for the current cellular network infrastructure, which is generally not built to handle
such rare, high-density events. Even beyond these special events, base stations (BSs) experi-
ence spatio-temporal fluctuations in traffic loads. For any given BS, the traffic load fluctuates
dynamically throughout the day and across different days of the week, as highlighted in previ-
ous studies [66, 67, 68]. This leads to an interesting pattern: peak hours are often confined to
specific time frames, indicating that BSs are not always running at full capacity.

Inspired by the insights from [22], a comparison between fixed BSs and UAV BSs is pre-
sented in Table 5.2.

Table 2.1: A Comparison between Fixed BS and UAV-BS

UAV Base Station Fixed Base Stations
Deployment is always three-
dimensional.

Two dimensional deployment

Deployment last for a short time
and change often.

There are mostly long-term, fixed
deployments.

UAV-BS are often deployed in un-
restricted areas.

Deployed in specific places.

Mobile, Flexible and Portable in na-
ture.

Immovable and fixed in nature.

The upcoming content will delve into the current challenges faced in wireless communi-
cation, such as spectrum scarcity, interference, security issues, and energy efficiency. It will
then explore how UAV networks offer a promising solution by improving network flexibility,
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coverage, and performance. The discussion will also cover design considerations for UAV net-
works and introduce advanced techniques like vision-assisted beam prediction, highlighting
their potential to address the complex issues in modern wireless communication.

2.1 Current Challenges in Wireless Communication

Wireless communication is facing several major issues as technology and demand evolve. Here
are some of the current challenges:

2.1.1 Spectrum Scarcity

A limited resource is the radio frequency spectrum, and with the rise in wireless devices, the
demand for spectrum has surged. Allocating enough bandwidth to different services while
avoiding interference is a significant challenge [69, 70].

2.1.2 Interference and Noise

Interference from other devices, whether intentional or unintentional, can degrade signal qual-
ity. Additionally, noise from electronic devices and environmental factors can impact commu-
nication reliability [71, 72].

2.1.3 Security Concerns

Compared to wired networks, wireless networks are typically more susceptible to security
breaches. Ensuring data integrity, confidentiality, and proper authentication is critical, espe-
cially with the increasing number of IoT devices [73, 74].

2.1.4 Energy Efficiency

Many wireless devices, like cellular phones and IoT sensors, rely on battery power. Improving
energy efficiency to extend battery life while maintaining performance is an ongoing challenge
[75, 76].

2.1.5 Latency

Low latency is crucial for applications like online gaming, virtual reality, and autonomous vehi-
cles. Achieving ultra-low latency communication requires advanced technologies and efficient
protocols [77, 78].
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2.1.6 Mobility and Coverage

Maintaining a seamless connection and consistent performance while users are on the move,
particularly at high speeds or across various network areas, remains a technical challenge [79,
80].

2.1.7 Capacity and Throughput

The need for high-speed data and the growing number of connected gadgets, ensuring sufficient
network capacity and high throughput is essential. This involves optimizing network infrastruc-
ture and utilizing technologies like MIMO (Multiple Input Multiple Output) and beamforming
[81].

2.1.8 Scalability

As the quantity of connected gadgets increases, networks must scale efficiently. This includes
managing increased signaling overhead and ensuring robust performance under high load con-
ditions [82].

2.1.9 Infrastructure Deployment

Deploying infrastructure for new technologies like 5G requires significant investment and plan-
ning. This includes installing new base stations, upgrading existing ones, and ensuring back-
haul connectivity [83].

2.1.10 Environmental Impact

The deployment and operation of wireless networks have environmental implications, such as
energy consumption and electronic waste. Developing sustainable practices and technologies
is increasingly important [84, 85].

2.2 UAVs as a Promising Solution

One promising solution to these challenges is the deployment of UAV (Unmanned Aerial Vehi-
cle) networks. UAV networks offer flexibility in establishing temporary communication links,
especially in remote or disaster-affected areas where traditional infrastructure may be lacking
or damaged. They can provide on-demand network coverage and capacity enhancement, im-
proving mobility and coverage issues. UAVs can be quickly deployed and repositioned to offer
coverage in areas where it is most required, making them particularly useful in emergency
situations where rapid response is critical [86, 87].
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In addition to their flexibility, UAVs can optimize spectrum usage and mitigate interference
by dynamically adjusting their positions and operating frequencies. This dynamic adaptability
allows UAV networks to avoid congested frequencies and minimize interference, leading to
more reliable communication. By leveraging advanced algorithms and real-time data, UAVs
can continuously monitor and adapt to the spectrum environment, ensuring efficient use of
available resources. This capability is particularly valuable in urban environments where spec-
trum congestion is a significant challenge [88, 89, 90].

Furthermore, UAV networks can improve the overall robustness and efficiency of wireless
communication by acting as relays or intermediate nodes, thus extending the range and cover-
age of ground-based networks. This can be especially beneficial in enhancing connectivity in
rural or underserved areas. Incorporating UAVs into the current terrestrial networks can also
improve data throughput and reduce latency by offloading traffic and optimizing routing paths.
Overall, the deployment of UAV networks represents a versatile and innovative approach to
addressing the multifaceted challenges facing wireless communication today [87, 90].

2.2.1 Design Considerations for UAV Networks

Designing UAV networks involves various critical considerations to ensure their effectiveness.
Communication reliability is crucial, necessitating the implementation of robust protocols to
manage signal loss and interference [91]. Scalability is also important, requiring architectures
that can efficiently handle large numbers of UAVs and adapt to dynamic network conditions
[92]. Energy efficiency plays a significant role, as UAVs are typically battery-powered; thus,
optimizing energy consumption through efficient routing algorithms is essential [93]. Addition-
ally, minimizing latency and ensuring real-time data processing are key to supporting applica-
tions that demand immediate response [94]. Other important design considerations include
security and privacy, which can be enhanced through strong encryption and authentication
mechanisms [86]. Interference management is vital, and dynamic frequency selection tech-
niques can help mitigate disruptions [95]. Autonomous operation and coordination must be
supported by sophisticated algorithms to avoid collisions and optimize flight paths [96]. Reg-
ulatory compliance is necessary to adhere to local laws and airspace rules [97], while mini-
mizing environmental impact through sustainable practices and noise reduction is also essential
[98].

2.2.2 Vision-Assisted Beam Prediction

Vision-assisted beam prediction represents a significant advancement in managing UAV net-
works by improving communication reliability [99, 100]. By leveraging visual data, UAVs can
accurately predict and adjust beam directions, ensuring stable and high-quality communication
links. This technology enhances the ability to maintain a focused connection, reducing signal
loss and improving overall network performance. Real-time adjustments based on visual inputs
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enable UAVs to dynamically adapt to changing conditions, which is crucial for maintaining reli-
able connectivity in various environments. In addition to improving communication reliability,
vision-assisted beam prediction enhances energy efficiency and reduces interference. Precise
beam targeting minimizes the need for broad-spectrum transmission, conserving battery life
and extending operational range [101, 102]. This approach also helps manage interference by
adjusting beams to avoid overlapping frequencies with other communication systems. Over-
all, integrating vision-assisted beam prediction into UAV networks leads to more effective and
adaptive operations, supporting scalability, real-time processing, and regulatory compliance
while minimizing environmental impact [100, 103].

2.2.3 Approaches for Vision-Assisted Beam Prediction in UAVs

Hur et al. [99] proposed a design framework introducing a hierarchical, tree-structured code-
book for adaptive beamforming that efficiently adjusts beam width and steering direction. This
framework uses a three-level codebook with different subarray sizes to control beam widthlevel
1 with 32 subarrays, level 2 with 8, and level 3 with 1 subarray. The top-level codebook
(W1) achieves a broad beam with a power gain of 5.09 dB, while the bottom-level codebook
(W3) provides a narrow beam with a power gain of 15.05 dB. The framework uses squint-
ing subarrays and spectral windowing to handle beam directional and gain fluctuations, with
windowing applied to smooth overlapping beams. Simulation results using a 32-element array
and a K-factor of 10 dB in an urban street channel model show that the multilevel codebooks
joint search method provides a beamforming gain (GBF) significantly higher than the one-
sided search method, which uses a steered narrow beam codebook. Specifically, the exhaustive
search method achieves the highest gain but with a complexity of 4096 training steps and 6 bits
of feedback. In contrast, the proposed joint search method, with 48 training steps and 6 bits
of feedback, demonstrates a substantial gain improvement over the one-sided search method,
which also requires 48 training steps but with slightly less feedback (5 bits). This confirms
that the proposed framework effectively balances performance and complexity, achieving high
beamforming gains with reduced training overhead.

AlKhateeb et al. [101] evaluated hybrid precoding and channel estimation methods through
simulations in both point-to-point and mmWave cellular scenarios. In the point to point setup,
the system features a BS with 64 antennas and 10 RF chains, and a mobile station (MS) with 32
antennas and 6 RF chains. Using a channel model with three paths and uniform AoAs/AoDs,
the simulations show that the proposed algorithms achieve near-optimal spectral efficiency with
significantly fewer iterations compared to exhaustive search methods. For instance, with 96
training steps, the performance degradation is minimal compared to exhaustive search, demon-
strating the efficiency of the proposed algorithms. In a mmWave cellular setting with out-of-cell
interference, the results highlight the robustness of the proposed hybrid precoding algorithm.
Despite interference and lowcomplexity algorithms, the system maintains good performance,
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achieving reasonable gains in spectral efficiency and coverage probability. The simulations in-
dicate that the proposed algorithms effectively manage inter-stream interference and RF hard-
ware constraints, with minimal performance loss even with limited quantization bits. This
demonstrates the practicality and effectiveness of the algorithms in real-world mmWave cellu-
lar networks.

In [103], a new three-dimensional (3D) beam training technique for UAV-assisted mmWave
communications is introduced. This method uses the inverse discrete-space Fourier transform
to create a flat-topped training beam. Additionally, the hybrid beamforming (BF) system is
incorporated, utilizing the greedy geometric (GG) approach to determine the optimal beam.
While these traditional approaches have been effective in reducing beam training overhead,
the reduction is limited to one order of magnitude, which remains insufficient for handling
multi-user scenarios involving high mobility.

Morais et al. [102] addresses the challenge of beam selection in mmWave communications
by predicting the optimal beam based on real-time position information, rather than relying on
explicit channel knowledge. The goal is to select the beam that maximizes received power P =

E[|y|2]. The paper introduces three machine learning approaches for beam prediction: a Lookup
Table (LT), K-Nearest Neighbors (KNN), and a Neural Network (NN). The LT approach maps
positions to cells in a grid and assigns beams based on the mode of reported beams within
each cell. KNN estimates the best beam based on the most frequent beam among the nearest
neighbors. The NN approach uses a fully connected network to learn the complex relationship
between position and beam. Experimental results using the DeepSense dataset show that while
LT and KNN provide reasonable performance, the NN consistently outperforms them in terms
of accuracy and generalization, demonstrating its effectiveness for real-world beam prediction
tasks.

Charan et al. [100] presents a multi-modal beam prediction approach for mmWave com-
munications that integrates visual and positional data to enhance beam selection accuracy. The
solution addresses the high training overhead of traditional beamforming by transforming the
beam prediction into a classification task, where a beam index is assigned based on the users lo-
cation in a visual scene. The proposed method leverages advances in object detection and GPS
positioning to derive user location from images and position data. Three machine learning mod-
els are introduced: (i) a vision based model using a fine-tuned ResNet-50 for image data, (ii)
a position-based model using a Multi-Layer Perceptron (MLP) for GPS coordinates, and (iii)
a multi-modal model that combines both visual and positional inputs. The multi-modal model
demonstrates superior performance, achieving over 75% top-1 accuracy and nearly 100% top-
3 accuracy, compared to vision-only and position-only approaches. The proposed solution is
tested using a real-world multi-modal dataset, showing that integrating visual and positional
data significantly improves beam prediction accuracy, making it a promising approach for
mmWave/THz communication systems.

Jiang et al. [104] investigates the use of LiDAR data for beam management in mmWave and



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

THz communications, focusing on beam prediction and tracking. The motivation is to address
the high beam training overhead associated with narrow beam adjustments required for efficient
communication in these frequency bands. By leveraging LiDAR sensory data, the paper aims to
reduce this overhead and improve beam management. The proposed solution integrates a ma-
chine learning model that processes sequences of LiDAR images to predict the most promising
beams. This model uses Recurrent Neural Networks (RNNs), specifically Gated Recurrent
Units (GRUs), for sequential feature extraction and classification. The system can either select
the top beam directly or refine it through over-the-air beam training. Experimental evaluations
using the DeepSense 6G dataset show that the LiDAR-based approach achieves high accuracy
in beam prediction and tracking with a top-5 accuracy of 95.6%, while significantly reduc-
ing beam training overhead compared to baseline methods. This demonstrates the potential of
LiDAR data to enhance beam management in dynamic communication environments.

Demirhan et al. [105] introduces and validates radar-aided mmWave beam prediction
approaches using real-world datasets for the first time. The proposed methods, leveraging
deep neural networks and radar domain knowledge, significantly enhance prediction accu-
racy while reducing computational complexity. Evaluations with the DeepSense 6G dataset,
which integrates radar and mmWave beam training data, reveal that the deep learning-based
solution achieves a top-1 beam prediction accuracy of 45%, outperforming the 33% accuracy
of the baseline look-up table approach. Additionally, deep learning methods reach approxi-
mately 80% top-3 and 93.5% top-5 prediction accuracy, compared to the baselines 56% and
63%. Among the radar pre-processing techniques, range-angle maps with 4-point angular FFT
processing offer a notable balance, achieving a 92% top-5 accuracy with just 15 ms of pre-
processing and inference time. These findings demonstrate the practical advantages of radar-
aided prediction for high-mobility mmWave and sub-THz communication. Khan et al. [106]
perfored a study that shows that the Vision-aided Federated Wireless Network (VFWN) ap-
proach for beam blockage prediction is highly effective in maintaining seamless connectivity
in high-frequency communications. By using a distributed learning approach, the study trained
a convolutional neural network (CNN) with decentralized data, enabling proactive beam block-
age prediction using vision and wireless sensing data (RGB images and mmWave beams).
This method shares model parameters with a centralized server instead of raw data, ensuring
privacy, on-device inference, low communication costs, and collaborative intelligence. When
compared to a centralized model training approach using a publicly available synthetic dataset,
the proposed scheme achieved an accuracy of approximately 98.5%, closely matching the 99%
accuracy of the centralized approach. This demonstrates the effectiveness of federated learning
(FL) in achieving similar accuracy levels without data sharing. Additionally, the proposed tech-
nique showed an 81.31% reduction in communication costs and a 6.77% reduction in latency,
highlighting significant improvements in energy efficiency and overall performance. The study
suggests future research directions, including proactive handover and extending the framework
to support multiple users in more complex environments.
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Skondras et al. [107] presents a novel clustering and selection algorithm for Flying Ad
Hoc Networks (FANETs) in fifth-generation (5G) UAV-aided networks, combined with an effi-
cient Group Handover (GHO) scheme. The proposed algorithm elects a Cluster Head (CH) for
each cluster of UAVss, which manages the mobility and handover processes within the cluster.
This involves orchestrating handover initiation, network selection, and handover execution, en-
suring that all cluster members are informed and can establish new communication channels.
The algorithms efficiency is evaluated through extensive simulations and a real-world testbed,
demonstrating its superiority over existing handover algorithms. The real-world evaluation of
the proposed GHO scheme utilized a controlled laboratory testbed, integrating TP-Link Omada
Cloud SDN platform components and a Huawei RH2288H V3 rack server for cloud infras-
tructure. The testbed included TPLINK EAP225 MU-MIMO outdoor PoAs, VMs supporting
video streaming services, and up to five Pixhawk Raspberry Pi UAVs. Experimental results
showed that the proposed enhanced Cluster-Based Routing in Software Defined Networking
(eCBRSDN) scheme significantly reduced the average number of CH elections compared to
the original CBRSDN scheme. Specifically, the eCBRSDN elected an average of three CHs
per PoA, while the original CBRSDN elected eight, highlighting the proposed schemes reduced
overhead and improved efficiency in managing UAV mobility and communication.

2.2.4 Overview of UAVs in Communication Infrastructure

Collaborative UAV Networks

Collaborative UAVs are specifically designed to work together towards a common goal, such as
generating high-resolution images for disaster relief or monitoring agriculture. By collaborat-
ing, these UAVs can perform tasks like trajectory formation, cooperative localization, and data
collection, which are essential for urban and smart city applications. However, there are sev-
eral challenges in these networks, including communication, control, and cooperation among
UAVs. To overcome these challenges, advanced collaborative communication mechanisms and
control strategies are necessary to ensure efficient operation and mission completion [108].

UAV Communication Channels

UAVs communication, especially in UAV-to-UAV links, relies mainly on Line-of-Sight (LoS)
conditions. This means that direct connectivity is highly important and the impact of mul-
tipath fading is minimal. This situation suggests the use of mmWave communications for
high-capacity UAV-UAV backhaul links. However, the high Doppler shift associated with UAV
mobility and mmWave frequencies can be a challenge [5].



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

5G-and-Beyond Networks with UAVs

Integrating UAVs into 5G-and-beyond networks presents opportunities to overcome signal
blockages caused by obstacles such as high-rise buildings, using intelligent repositioning of
UAV-based stations (UAV-BSs). This integration also enables wider coverage for IoT and sen-
sor networks by using UAVs as mobile data collectors, which minimizes energy consumption
while maximizing connectivity [109].

2.3 Handover Management in UAV Networks

Handover (HO) is a crucial process in wireless communication systems that ensures uninter-
rupted connectivity for mobile users by transitioning their connection from one cell to another
while maintaining QoS. This process is necessary in various scenarios, such as when a user
moves between cells, experiences poor signal quality, or when load balancing between cells is
required [110]. The primary goals of HO include maintaining strong signals, balancing the net-
work load, improving throughput, reducing radio link failures, minimizing interruptions, and
lowering energy consumption.

HO management presents significant challenges in 5G networks, primarily because of the
common and often random placement of small cells and will also be a critical issue in 6G
networks, which are expected to be highly dynamic, multi-layered, and expansive. Most HO
algorithms utilized in 4G networks are ineffective for 5G due to the differing requirements of
5G networks. Therefore, a thorough reassessment of existing algorithms is necessary to achieve
optimal HO performance. High packet error rates, load balancing requirements, and serving
signal loss are some of the factors that could trigger HO, necessitating a switch to a different
network if any of these factors reaches to unfavorable levels [111].

The handover process is divided into three key stages: detection, decision, and execution.
During the detection phase, the system continuously observes the quality and strength of the
present cell’s signal as well as those of nearby cells. In the decision-making phase, the system
assesses neighboring cells to identify the best target based on signal quality. Finally, in the ex-
ecution phase, the handover procedure is initiated [112]. Figure 2.2 presents a visual overview
of the HO management procedure. Vision-assisted beam prediction significantly advances han-
dover management in UAV networks by enhancing communication reliability and efficiency.
This technology leverages visual data to predict and adjust beam directions, ensuring stable
connections and reducing signal loss. Real-time visual input allows UAVs to dynamically adapt
to changing conditions, crucial for maintaining reliable connectivity in various environments.
By minimizing broad-spectrum transmissions and precisely targeting beams, energy efficiency
is improved, and interference is reduced. Additionally, integrating machine learning models for
beam prediction based on positional and visual data further enhances the accuracy and adapt-
ability of UAV communications. The implementation of hierarchical codebooks and hybrid
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Figure 2.2: Handover Management Process.

precoding techniques in beamforming optimizes performance while reducing complexity and
training overhead. These advancements in vision-assisted beam prediction not only enhance
network performance but also facilitate scalability, real-time processing, and regulatory com-
pliance necessary for effective handover management in UAV networks.

2.3.1 Factors effecting Handover in 5G and Beyond

This section outlines the critical factors that affect HO’s performance and requirements in 5G
and 6G networks [111]. Although 6G is expected to deliver lower latency, it will also intro-
duce challenges such as higher operating frequencies, a greater density of connected users, and
more latency-sensitive applications, all combined with increased mobility. These changes will
require more frequent and faster HOs between cells. To maintain a smooth user experience in
6G, the development of advanced HO management strategies will be critical [113].

1. Operating Frequency:

(a) 5G: Operates at 700 MHz and Sub-6 GHz frequencies.

(b) 6G: Operates at 26, 28 GHz, and frequencies above 100 GHz.

(c) Relationship with HO: The challenges associated with HO increase as the operat-
ing frequency rises.

2. Connection Densification:

(a) 5G: Supports a density of 106 devices per square kilometer.

(b) 6G: Expected to support a density of 107 devices per square kilometer.

(c) Relationship with HO: As the density of devices in an area increases, the com-
plexity of handling HO likewise escalates.

3. Latency Sensitivity:

(a) 5G: Latency is around 1 millisecond.
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(b) 6G: Latency is expected to be less than 1 millisecond.

(c) Relationship with HO: Faster HO processes are necessary in 6G networks to meet
the lower latency requirements.

4. High-Speed Mobility:

(a) 5G: Capable of supporting mobility speeds of up to 500 km/h.

(b) 6G: Expected to support mobility speeds of up to 1000 km/h.

(c) Relationship with HO: As mobility speed increases, the demand for quicker and
more efficient HO also increases.

2.3.2 Handover types

Hard Handover (Break-Before-Make)

In hard handover, the connection to the current cell is fully terminated before a new connection
is made with the target cell. This type of handover is typically used in 2G (GSM) networks
where the mobile device momentarily loses connection as it switches from one cell to another.
This approach is simpler and less resource-intensive but can lead to a brief service interruption.
A common use case is during rapid movement, such as driving through urban areas with densely
packed cell sites, where the device must frequently switch connections [114].

Soft Handover (Make-Before-Break)

In soft handover, the mobile device is allowed to maintain connections with multiple cells si-
multaneously during the transition period, ensuring a seamless switch without any noticeable
interruption to the user. This method is widely used in 3G (UMTS) networks, where overlap-
ping coverage areas allow for this redundancy. A typical use case is in suburban or rural areas
where cell towers are further apart, and maintaining multiple connections ensures consistent
service as the user moves [115].

Softer Handover

Softer handover is a variant of soft handover that takes place between different sectors within
the same cell site. This is commonly found in CDMA-based systems where the transition
happens within the same base station, providing a smooth switch without loss of connection.
An example use case is in large public venues like stadiums or shopping malls where multiple
antennas serve different sectors of the same area, ensuring continuous connectivity as users
move within the venue [116].
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Horizontal Handover

Horizontal handover refers to the transition between two base stations of the same network
type, such as from one 4G LTE cell to another. This type of handover is crucial for maintaining
service continuity in dense urban environments where users frequently move through overlap-
ping cell coverage areas. For instance, a person walking through a city center may experience
multiple horizontal handovers to maintain a stable connection as they move from one cells
coverage area to another [117].

Vertical Handover

Vertical handover involves transitioning between different types of networks, such as moving
from a Wi-Fi network to a 4G cellular network. This type of handover is essential for ensuring
seamless connectivity when a user moves out of a Wi-Fi hotspots range and into an area covered
by cellular service. A typical use case is a person leaving their home or office Wi-Fi network
and continuing their online activities via the cellular network without any interruption [118].

Intra-cell Handover

Intra-cell handover occurs within the same cell but involves switching to a different channel
or frequency. This type of handover is used to manage interference or load balancing within
a cell. For example, if a specific frequency within a cell becomes congested or experiences
interference, the network can perform an intra-cell handover to switch the user to a clearer
channel, thus maintaining call quality and data throughput [119].

Inter-cell Handover

Inter-cell handover is the transition of a call or data session between different cells, ensuring
continuous service as the user moves from one coverage area to another. This is the most
common type of handover in mobile networks and is crucial for maintaining connectivity during
movement. A typical scenario is a person driving along a highway, moving through various cell
coverage areas, and requiring seamless transitions to avoid dropped calls or data sessions [119].

Inter-frequency Handover

Inter-frequency handover involves a change in the operating frequency during the handover
process, which is necessary when moving between cells that operate on different frequencies.
This type of handover is often required in heterogeneous network environments where different
frequency bands are used for different coverage areas. For instance, a mobile user moving from
a macro cell to a small cell may experience an inter-frequency handover to utilize the optimal
frequency for each cell type [120].
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Inter-system Handover

Inter-system handover occurs between different types of networks, such as transitioning from
an LTE network to a 3G or 2G network. This type of handover is critical when moving out of
the coverage area of a higher-generation network into an area only served by older networks.
An example use case is when a user travels from a city with extensive LTE coverage into a rural
area where only 3G or 2G networks are available, ensuring that the connection is maintained
without interruption [121].

Forced Handover

Forced handover is initiated by the network to prevent call drops due to poor signal quality
or network congestion. This type of handover is crucial for managing network resources and
ensuring quality of service, especially in high-traffic areas. For instance, during a large event
such as a concert or sports game, the network may perform forced handovers to distribute the
load more evenly across available cells, preventing any single cell from becoming overloaded
and ensuring continuous service for all users [122].

2.3.3 Handover Challenges in UAVs Network

Ensuring continuous connectivity in UAV networks is vital as UAV move across different cov-
erage areas. The process of switching connections from one UAV BS to another poses unique
challenges because of the changing nature of UAV movements. Addressing these challenges is
essential for maintaining seamless communication and network reliability.

1. Characterization of Mobility Models for UAV Cellular Networks Regarding Handovers:
In UAV cellular networks, handovers occur when the serving UAV base station (UBS)
changes for a typical usereven static users can experience handovers. Researchers have
explored various mobility models to understand displacement probability and flight du-
ration of UAVs. The choice of mobility model significantly impacts handover probability
and rate in UAV networks [123].

2. Handover Management for Connected UAVs: Effective handover management in con-
nected UAVs is a major challenges in UAV networks. Researchers have extensively
studied this area to address the difficulties associated with transitioning UAVs smoothly
between base stations during flight. The primary focus is on overcoming mobility-related
issues to ensure that UAVs maintain continuous and reliable connectivity as they move
through various network cells [124].

In summary, handover challenges in UAV networks are critical for maintaining seamless con-
nectivity as UAVs fly across different coverage areas. Researchers continue to explore innova-
tive solutions to enhance handover performance and reliability.
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2.3.4 Handover Procedure in UAVs

The handover process is a crucial aspect of 5G networks, involving various steps, algorithms,
and techniques that enable User Equipment (UE) to transition its connection from one cell to
another. The specific procedural steps can vary depending on the technology in use. While the
procedures used for terrestrial UEs can be applied to UAVs, they may not ensure optimal han-
dover performance due to the unique characteristics of UAVs. This section gives an overview
of the HO process for a particular handover system scenario, as shown in Figure 2.3 [124].

Figure 2.3: A Handover Procedure.

The Mobility Management Entity (MME) has been replaced by the Access and Mobil-
ity Management Function (AMF) in the 5G handover process, which is similar to the LTE-
Advanced system with a few enhancements [124]. The User Plane Function (UPF), on the other
hand, continues to serve the same role as the Serving Gateway (SGW). The HO begins with
the User Equipment (UE) periodically sending measurement reports to the Source Base Station
(S-BS). Following these reports, the S-BS configures the UE’s measurement procedures. Once
sufficient data has been gathered, the S-BS evaluates the measurements and decides if a HO is
necessary. Upon making this decision, the S-BS sends a HO request to the Target Base Sta-
tion (T-BS). The T-BS then assesses its resources and responds with an acknowledgment to the
S-BS, indicating whether it can accommodate the handover.

The UE receives the necessary data from the Target Base Station (T-BS) to establish a con-
nection to the target cell once the HO is initiated. The T-BS then provides the UE with uplink
allocation and timing details. Later, the T-BS updates the Access and Mobility Management
Function (AMF) about the UEs cell alteration, prompting the User Plane Function (UPF) to up-
date the UEs path. Once these updates are made, the AMF informs the T-BS of the path update,
and the T-BS, in turn, notifies the Source Base Station (S-BS) to complete the handover.
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2.4 Handover Techniques in UAV Networks

2.4.1 Mobility Model Characterization for UAV Cellular Networks Re-
garding Handovers

Researchers have explored various mobility models to analyze the probability of displacement
and flight duration of UAVs. Some commonly used models include:

1. Straight Line (SL) Mobility Model: Drawing inspiration from the simulation model
used in 3GPP, this model is straightforward and widely employed due to its simplicity.

2. Random Walk (RW): Nodes choose random angles of movement and travel unplanned
lengths between each stop.

3. Random Waypoint (RWP): Similar to RW but with added pause time (hovering) at each
stop.

4. Random Direction (RD): Nodes can change their direction only at the boundaries of
the environment, which helps prevent node clustering.

5. Modified Random Direction (M-RD): An improved version of RD that integrates in-
termediate stops within the nodes path, ensuring coverage across the entire environment.

The choice of mobility model significantly impacts handover probability and rate in UAV
networks.

2.5 Handover Management for Connected UAVs

1. Predictive Handover Techniques: Predictive handover methods utilize algorithms to
forecast a UAVs future position and determine the optimal time to initiate handover.
These techniques improve handover efficiency by reducing latency and preventing con-
nection drops. For instance, employing machine learning models to predict the UAVs
trajectory can enhance the timing and accuracy of handovers [103].

2. Seamless Handover Protocols: Seamless handover protocols focus on minimizing the
disruption during the handover process. Techniques such as buffering data or preestab-
lishing connections with the target base station can reduce service interruptions. The
integration of seamless handover protocols ensures that UAVs experience minimal down-
time as they switch between base stations [100].

3. Network-assisted Handover Management: Network-assisted approaches involve the
base stations and network infrastructure in the handover process. This can include coor-
dinating handovers between base stations to ensure a smooth transition or using network
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resources to support handover decisions. Such techniques leverage network intelligence
to optimize the handover process [107].

4. Hybrid Handover Strategies: Hybrid strategies combine multiple handover techniques
to address different aspects of the handover challenge. For example, combining predic-
tive models with network-assisted protocols can enhance the robustness and efficiency of
the handover process. This approach ensures that various scenarios and challenges are
managed effectively [104].

2.6 Network Optimization Challenges

In UAV networks, optimizing handovers involves addressing several key challenges [125].
These include managing the Automatic Neighbouring Relation (ANR), dealing with frequent
handovers, and preventing UAV disconnects. Several solutions and approaches have been pro-
posed to tackle these issues:

1. Automatic Neighbouring Relation (ANR): Advanced techniques can be used to control
the number of neighbors in the Neighbour Relation Table (NRT) and deal with possible
deletions or block-listing. Techniques such as adaptive neighbor management and pre-
dictive caching can optimize the NRT by dynamically adjusting the list based on UAV
movement patterns and historical connectivity data. To effectively manage the NRT, for
example, ML algorithms can be used to predict which neighbors are likely to be relevant
in the near future [126].

2. Frequent Handovers: To address the challenge of frequent handovers due to UAVs
moving in three dimensions and traversing multiple cells, several strategies can be imple-
mented. These include the use of predictive handover algorithms that forecast the UAVs
movement and pre-emptively establish connections with upcoming base stations. Ad-
ditionally, implementing hierarchical handover management schemes, where handovers
are managed in tiers, can reduce the frequency and impact of handovers by grouping
multiple UAVs and handling their transitions more efficiently [127].

3. UAV Disconnects: Ensuring that handovers do not cause UAVs to disconnect from the
network requires robust handover protocols and network design. Techniques such as
pre-connection establishment, where a secondary connection is set up before the han-
dover occurs, and seamless handover protocols, which include buffering and retransmis-
sion strategies, can help mitigate disconnects. Employing network-assisted handover ap-
proaches, where base stations coordinate and assist in the handover process, can further
enhance continuity and reduce the likelihood of disconnects [124].
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Effective handover management in UAV networks, which involves seamlessly transitioning
UAVs between base stations, can be significantly enhanced by integrating computer vision tech-
nologies.Mobility models like Random Waypoint (RWP) and Straight Line (SL) provide foun-
dational predictions of UAV trajectories, but incorporating real-time visual data from onboard
cameras can refine these models by offering environmental context and predicting blockages
more accurately. Predictive handover techniques benefit from computer vision by enhancing
trajectory forecasts, while seamless handover protocols are improved through better obstacle
detection and avoidance. Network-assisted management and hybrid strategies also leverage
computer vision to support more informed handover decisions and mitigate issues related to
frequent transitions and potential UAV disconnects. Overall, integrating computer vision into
handover management addresses network optimization challenges by providing detailed envi-
ronmental insights, thus ensuring more reliable and efficient UAV operations.

2.7 Literature Review on UAV Connectivity and Handover
Management

In the context of advancing UAV technology and its integration into existing cellular networks,
a comprehensive review of the existing literature is critical. The following table 2.2 describes a
summary of key studies that have explored various aspects of UAV connectivity and handover
management. The reviewed literature covers a wide range of topics, including mobility man-
agement, coverage enhancement, the impact of UAV altitude on network performance, and the
application of machine learning models for optimizing UAV operations. Each study is analysed
with respect to its research focus, employed methodology, primary objectives, and the specific
environment in which the research was conducted. This structured review serves as the founda-
tion for identifying current trends, challenges, and gaps in the research, guiding the subsequent
analysis and discussion in this dissertation.

Table 2.2: Literature Review on UAV Connectivity and Handover Management.

Ref
Research
Focus

Methodology Objective Limitation Future Work

[128]

Using

CoMP

transmission

for UAV

connectivity

Evaluation of

static and

mobile

UAV-UE with

clustered base

stations

Enhance

connectivity

and coverage

probability for

UAV-UE

Limited

empirical

validation; most

results are

based on

simulations

Conduct real-world

experiments to

support the

proposed models

and frameworks

Continued on next page
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Table 2.2 – continued from previous page

Ref
Research
Focus

Methodology Objective Limitation Future Work

[129]

Mobility

management

for UAVs in

cellular

networks

Model-based

and deep

Q-network

approaches for

handover

optimization

To improve

service

availability and

minimize

handovers for

UAVs utilizing

model-based

and

learning-based

mobility

management

schemes

Dependence on

simulations

without

real-world

validation

Run real-world

experiments to

validate the

proposed

algorithms in

diverse

environments

[130]

Seamless

connectivity

challenges

for UAV-UE

Simulation of

UAV-UE

coverage

probability

and handover

rate for static

and mobile

UAVs using

realistic

antenna

models

Analyze UAV

performance

under practical

antenna

configurations

for both static

and mobile

UAVs

The study is

based on

simulations

without

real-world

validation

Conduct real-world

experiments to

validate the

findings in diverse

environments

[131]

Integrating

aerial users

into cellular

networks

Field trial with

a commercial

LTE network

To investigate

how different

UAV

performance

indicators on

commercial

LTE networks

are affected by

flying altitude

The study

focuses on field

experiments in

specific urban

areas, limiting

generalizability

to other

environments

Conduct field

testing in diverse

environments to

validate the

findings and

enhance UAV

connectivity

strategies

Continued on next page
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Table 2.2 – continued from previous page

Ref
Research
Focus

Methodology Objective Limitation Future Work

[132]

Delay

performance

of UAVs in

LTE and 5G

networks

Real-world

measurements

of delay in

suburban and

urban

environments

Analyze delay

performance

linked to SINR

and handover

frequency

The study is

restricted to

specific

suburban and

urban settings,

which may not

represent all

real-world

conditions

Expand testing to a

wider variety of

environments to

increase

generalizability of

delay performance

outcomes

[133]

UAVs as

base stations

and user

equipment

Study of

coverage

probability

and

throughput in

VHetNets

In order to

assess the

effectiveness of

UAVs linked to

cellular

networks,

focusing on

UAV-UE and

UAV-BS in

vertical

heterogeneous

networks

(VHetNets)

Limited

exploration of

practical

deployment

challenges of

UAV-BSs in

dense urban

environments

Examine

real-world

deployment

scenarios in urban

areas, focusing on

interference

management and

reliable

connectivity

[134]

Predicting

QoS for

UAV com-

munications

in 5G

networks

Field tests and

machine

learning

models

Improve UAV

operations

through QoS

prediction

Limited to

suburban

environments,

which may not

represent all

UAV use cases

Expand field tests

to urban and rural

conditions to

improve QoS

predictions for

various UAV

operations

Continued on next page
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Table 2.2 – continued from previous page

Ref
Research
Focus

Methodology Objective Limitation Future Work

[135]

Optimizing

handovers

using

Q-learning

Evaluation of

scenarios in

rural,

semi-rural,

and urban

areas

To optimize the

number of

handovers for

UAVs using a

Q-learning-

based algorithm

in various

network

environments

The study

applies

simulated

environments

(rural,

semi-rural,

urban) without

real-world

validations

Incorporate

real-world analysis

and expand the

model to include

3D UAV mobility

and multi-operator

networks

[136]

UAV

connectivity

optimization

using

REQIBA

Regression

and deep

Q-learning for

BS association

To propose an

intelligent

UAV-to-BS

association

using

regression and

deep Q-learning

for maximizing

data throughput

The study is

restricted to

simulated

environments

and lacks

real-world

validation of

the suggested

approaches

Conduct real-world

experiments to

support the

performance of

REQIBA in

various

environmental

conditions

[137]

UAV

trajectory

and

handover

management

optimization

Dueling

double deep

Q-network

(D3QN)

algorithm

To optimize

UAV trajectory

and handover

using a D3QN

algorithm

The study is

limited to

simulated

environments,

which may not

fully portray

real-world

complications

Test in real-world

network

environments to

validate the

suggested D3QN

model

[138]

Enhancing

UAV com-

munication

reliability

Simulations of

UAV commu-

nication in

urban

environments

using real

network and

3D models

To improve

UAV

communication

using

multi-operator

diversity

Relies on

simulations,

lacks real-world

validation

Validate with

real-world UAV

deliveries in urban

areas

Continued on next page
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Table 2.2 – continued from previous page

Ref
Research
Focus

Methodology Objective Limitation Future Work

[139]

Mobility and

handover

management

in future

networks

Studies

current

solutions for

UAV mobility

management

and suggests

enhanced

handover

techniques

To focus

mobility and

handover

challenges for

UAVs in

ultra-dense

heterogeneous

networks

Depend on

theoretical

models and

lacks real-world

validation

Assess mobility

solutions in

real-world

ultra-dense

networks to

validate practical

applicability

2.7.1 Findings from the Literature on UAV Connectivity and Handover
Management

The literature review conducted on UAV connectivity and handover management in cellular
networks has revealed several critical insights and trends that are helpful in understanding the
current state of research in this domain. The findings are categorized into key areas, highlight-
ing the contributions, methodologies, and objectives of various studies.

Enhancement of UAV Connectivity and Coverage

A significant amount of research focuses on enhancing UAV connectivity and coverage within
cellular networks. Methods such as Coordinated Multipoint (CoMP) transmission, realistic 3D
antenna configurations, and the analysis of practical system parameters have been employed
to address the unique challenges posed by UAV mobility and varying altitudes. Studies such
as those by [128] and [130] highlight the importance of improving coverage probability and
reducing the likelihood of handover failures as UAVs navigate through clustered base station
networks and urban environments. These advancements are critical for maintaining reliable
UAV operations, particularly in scenarios where uninterrupted connectivity is essential.

Mobility Management and Handover Optimization

The optimization of handovers and effective mobility management for UAVs within cellular
networks are significant topics across several studies. Research employing model-based ap-
proaches, deep Q-networks, and reinforcement learning algorithms, such as [129], demonstrate
the potential to reduce the frequency of handovers and improve service availability. These
methodologies are particularly relevant[137] in complex network environments where UAVs
need to maintain seamless connectivity while transitioning between different cells. The devel-
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opment of these techniques marks a significant step further in ensuring that UAVs can operate
efficiently in various network conditions without compromising connectivity.

Impact of UAV Altitude on Network Performance

Another important area of interest is the effect of UAV altitude on network performance. Stud-
ies like those by [131] and [132] have conducted field tests and real-world measurements to
assess how altitude influences network metrics such as delay and Signal-to-Interference-plus-
Noise Ratio (SINR). The findings imply that UAV altitude plays a vital role in determining
the reliability of the network and the probability of handovers. These insights are particularly
valuable for the design and deployment of cellular networks intended to support UAV opera-
tions at different altitudes, as they highlight the need for altitude-aware network planning and
management.

Predictive Quality of Service (QoS) Models for UAV Communications

Predictive models, particularly those leveraging machine learning, have appeared as powerful
tools for predicting Quality of Service (QoS) in UAV communications. Study in [134] has
demonstrated the potential of these models to improve UAV operations by predicting through-
put and other critical performance indicators in 5G networks. The ability to predict QoS prob-
lems before they effect UAV performance is crucial for maintaining the reliability and efficiency
of UAV missions, especially in suburban and urban settings where network conditions tend to
be highly dynamic.

UAVs in Vertical Heterogeneous Networks (VHetNets) and Future Networks

The integration of UAVs into Vertical Heterogeneous Networks (VHetNets) and the exploration
of future network architectures, such as 5G and beyond, are also important areas of research.
Studies like [133] and [139] focus on enhancing coverage and capacity for both aerial and
terrestrial users by leveraging the unique capabilities of UAVs as both user equipment and base
stations. This research is critical for the future of UAV operations, as it explores how next-
generation networks can support the growing need for UAV services in a variety of scenarios,
from urban delivery systems to disaster recovery operations.

Trajectory Management and Environmental Considerations

Finally, the optimization of UAV trajectories and the management of environmental factors
are key considerations in the research. Advanced algorithms, such as the Dueling Double
Deep Q-Network (D3QN) used in [137], are employed to refine UAV trajectory management,
reducing the incident of handovers and minimizing interference. This field of research is very
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important for UAVs that operate in dynamic situations, where factors such as building topology
and weather conditions can significantly impact connectivity and operational efficiency.

2.7.2 Trends and Gaps in Current Research

The literature uncovers a clear trend towards the adoption of advanced machine learning tech-
niques and the integration of UAVs into increasingly complex network environments. As net-
works evolve towards 5G and beyond, the need for sophisticated models and algorithms to
manage UAV connectivity and mobility becomes more evident.

However, despite the progress made, several gaps remain. Notably, there is a need for real-
time adaptive models that can dynamically respond to the rapidly changing conditions in UAV
operations. Additionally, further investigation is required to explore the impact of environmen-
tal variables on UAV connectivity and how these can be mitigated through innovative network
design and management strategies.

2.8 Integration of UAVs and Computer Vision for Blockage
Prediction

The introduction of extremely dense networks and the rapid adoption of 5G technologies re-
quire innovative approaches to address infrastructure and environmental issues that affect con-
nectivity. Using UAVs (UAVs) alongside with computer vision technology is one such innova-
tive method for anticipating and reducing wireless network traffic.

The main research articles that examine this integration are compiled and summarized in
this literature review table, which focuses on the potential for UAVs with computer vision
capabilities to improve blockage prediction and, consequently, network reliability.

Table 2.3: Literature Review Integration of UAVs and Computer Vision for Blockage Prediction

Ref Objective Methodology Key Findings Limitations Future Work

[140]

Use CV and

NN to predict

beam

blockages and

perform

proactive

handovers in

UDNs

CV for

environment

awareness, NN

for predicting

RSS drops,

introduction of

BLK event for

proactive

handover

Accurate

blockage

prediction,

improved

handover

timing,

maintains

seamless

connectivity

Dependency on

high-quality

visual data,

complexity in

predicting

moving objects

Enhance

real-time

processing,

reduce

dependency on

visual data

Continued on next page
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Table 2.3 – continued from previous page
Ref Objective Methodology Key Findings Limitations Future Work

[141]

Develop

dynamic

blockage

prediction

solutions using

CV for

high-frequency

wireless

networks

Dynamic

blockage

prediction

using CV, im-

plementation

in 6G wireless

communication

scenarios

Effective

blockage

prediction,

timely

handover

facilitation

Early-stage

research, needs

real-world

validation

Real-world

testing,

integration

with existing

6G

infrastructure

[142]

Leverage CV

to enhance

beam

alignment and

predict

blockages in

V2X commu-

nications

Use of CV for

beam

alignment,

prediction of

blockages in

vehicle-to-

everything

(V2X)

scenarios

Improved

beam

alignment

accuracy,

enhanced

blockage

prediction

Limited to

V2X scenarios,

high

computational

requirements

Expand to

other wireless

communication

scenarios,

optimize

computational

efficiency

[143]

Solve blockage

and energy

efficiency

issues using

RIS and

federated deep

learning in

UAV networks

Integration of

RIS with

UAVs, use of

federated deep

learning to

enhance

blockage

prediction and

spectral

efficiency

Enhanced

spectral

efficiency,

significant

improvement

in blockage

prediction

Initial setup

complexity,

dependency on

RIS technology

Simplify

deployment,

broaden

applicability to

diverse

environments

[144]

Address

proactive

blockage

prediction

using deep

learning and

fusion of

wireless and

vision data

Deep learning

algorithms to

predict

blockages

using wireless

and vision

sensory data

High accuracy

in blockage

prediction,

improved

network

reliability

Requires

extensive data

collection, high

computational

resources

Develop

lightweight

models, test in

various

real-world

scenarios

Continued on next page
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Table 2.3 – continued from previous page
Ref Objective Methodology Key Findings Limitations Future Work

[106]

Improve

latency in

blockage

prediction for

wireless

networks using

federated

learning

Federated

learning with a

focus on

latency

reduction, use

of multi-modal

data including

vision and

wireless

signals

Reduced

latency,

improved

prediction

accuracy

Complexity in

federated

learning imple-

mentation,

need for

diverse data

Enhance

federated

learning

models,

expand dataset

variety

[145]

Enhance

ultra-reliable

low-latency

(URLL) com-

munications

using computer

vision

Use of CV to

identify

services and

coexist in

URLL

communication

environments

Improved

service

identification,

better

coexistence in

dense networks

High

dependency on

visual data

quality, com-

putationally

intensive

Optimize CV

algorithms for

URLL, reduce

computational

load

[146]

Enable

proactive

handover and

accurate

blockage

prediction in

indoor

mmWave and

THz networks

Use of

RGB-depth

(RGB-D)

information

and beam

index to detect

and localize

users, predict

their trajectory,

and foresee

blockages

High blockage

prediction

accuracy

(97%),

significant

improvement

over

conventional

schemes

Processing

latency and

power

consumption

due to frequent

object

occlusions and

diversity of

obstacles

Optimize

processing

techniques,

extend to

various indoor

environments

Continued on next page
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Table 2.3 – continued from previous page
Ref Objective Methodology Key Findings Limitations Future Work

[147]

Develop

computer

vision-aided

wireless beam

prediction for

mmWave

UAVs

Use of RGB

images and

beam indices,

pruning

redundant

filters in deep

neural

networks to

meet ultra-low-

latency

requirements

Reliable

performance,

reduced

computation

cost, enhanced

mmWave

communication

High

dependency on

visual data

quality, need

for extensive

simulation and

validation

Further

simulation and

validation,

optimize for

different

mmWave

scenarios

[148]

Develop a

dataset

framework for

vision-aided

wireless

communication

research

Creation of a

comprehensive

dataset

combining

visual and

wireless data

for deep

learning

applications

Useful dataset

for research,

enhances the

development of

CV and ML

solutions

Dataset may

not cover all

scenarios,

requires

continuous

updates

Expand dataset

to include

more diverse

scenarios,

regular updates

[149]

Focus on

predicting

latency

probabilities in

wireless

networks using

data-driven

approaches

Use of

data-driven

models to

predict latency

probabilities,

focusing on tail

probabilities in

wireless

communication

Enhanced

latency

prediction,

better network

performance

High data

requirements,

complex

modeling

techniques

Simplify

modeling

techniques,

reduce data

dependency

[150]

Explore the

convergence of

wireless com-

munications

and computer

vision in

beyond 5G

networks

Integration of

CV and

wireless

communication

techniques to

enhance

network

performance

Improved

network

performance,

better

integration of

CV and

wireless

technologies

Early-stage

research, needs

practical

validation

Practical im-

plementation

and testing,

further

integration

development

Continued on next page
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Table 2.3 – continued from previous page
Ref Objective Methodology Key Findings Limitations Future Work

[151]

Propose a

UAV-assisted

ISAC system

for blockage

prediction and

improved

communication

Radar and

wireless

integration for

sensing and

communica-

tion,

beamforming

optimization,

simulations

Improved

ISAC

performance,

manageable

trade-offs

between

sensing and

communication

Reduced radar

detection with

high

communication

power, need for

trade-off

optimization

Explore

machine

learning for

better blockage

prediction and

beam design,

study optimal

trade-offs

2.8.1 Findings from the Literature of UAV Integration with Computer
Vision

The integration of UAVs and CV technologies in wireless communication systems has been increasingly

studied to address issues such as blockage prediction, handover management, and network reliability.

This section summarizes the key findings from the literature reviewed on this topic, highlighting both

the progressions made and the existing gaps that offer opportunities for further research.

Blockage Prediction and Proactive Handover Management

Recent studies have demonstrated the potential of using computer vision and neural networks to predict

beam blockages and facilitate proactive handovers in ultra-dense networks (UDNs) and next-generation

wireless communication systems such as 5G and beyond. For instance, Al-Quraan et al. [140] devel-

oped a system that utilizes computer vision for environment awareness and neural networks for predict-

ing signal strength reductions, introducing the concept of a blockage event (BLK) to initiate proactive

handovers. This approach has been shown to significantly improve the timing of handovers, thus main-

taining seamless connectivity. However, the effectiveness of these systems is often constrained by their

dependence on high-quality visual data and the inherent complexity in accurately predicting the be-

haviour of moving objects.

Enhancing Beam Alignment in High-Frequency Networks

The application of computer vision in high-frequency wireless networks, particularly in mmWave and

THz bands, has been another focus of research. Xu et al. [142] and Liu et al. [146] have explored the

use of computer vision to enhance beam alignment and predict blockages in vehicle-to-everything (V2X)

communications and indoor mmWave environments, respectively. These studies report significant im-

provements in blockage prediction accuracy, with Liu et al. achieving up to 97% accuracy. Despite these

advancements, these methods are often limited to specific scenarios, such as V2X, and are challenged by

the high computational requirements needed to process frequent object blocking and diverse obstacles.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 41

Energy Efficiency and Spectral Management

Spectral management and Energy efficiency are critical concerns in UAV-enabled communication net-

works. Park et al. [143] integrated Reconfigurable Intelligent Surfaces (RIS) with UAV networks and

utilized federated deep learning to improve both blockage prediction and spectral efficiency. While this

integration offers enhanced performance, it also introduces complexities, particularly in the initial setup

and dependency on RIS technology. These findings indicate that while UAV and CV integration can

prominently improve network efficiency, there remains a need for simplified deployment processes and

wider applicability to various environmental conditions.

Latency Reduction and Real-Time Processing

Latency in blockage prediction is another critical area addressed in the literature. Khan et al. [106]

utilized federated learning with multi-modal data to focus on reducing latency in prediction models,

which is crucial for real-time processing in dynamic wireless environments. Similarly, Mostafavi et

al. [149] utilized data-driven models to predict latency probabilities in wireless networks, emphasizing

the importance of managing tail probabilities to improve overall network performance. Despite their

successes in reducing latency, these approaches face challenges related to the complexity of federated

learning implementation and the high data requirements necessary for accurate predictions.

Dataset Development for Vision-Aided Wireless Communication

The development of comprehensive datasets that combine visual and wireless data has been acknowl-

edged as critical for advancing research in vision-aided wireless communication. Alrabeiah et al. [148]

created a dataset framework designed to support the development of computer vision and machine learn-

ing solutions for wireless communication. While this dataset is a valuable resource, it does not cover all

potential scenarios, highlighting the need for continuous updates and expansions to include more diverse

and challenging environments.

2.8.2 Future Research Directions

The literature identifies numerous key areas for future research. These include enhancing real-time

processing capabilities, reducing the dependency on high-quality visual data, expanding the application

of these technologies beyond specific scenarios such as V2X, and validating these methods in real-world

environments. Additionally, there is a need for further development of lightweight models that can

operate efficiently in diverse and complex environments, as well as the exploration of machine learning

techniques to optimize the trade-offs between sensing and communication in UAV-assisted integrated

sensing and communication (ISAC) systems.

2.9 Chapter Summary

This chapter has given a thorough overview of the challenges in wireless communication, such as spec-

trum scarcity, interference, and latency, alongside emerging security and energy efficiency concerns. It
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has highlighted the potential of UAV networks as a flexible and efficient solution to these issues, with

a focus on design considerations and advanced techniques like vision-assisted beam prediction. The

literature also addresses the complexities of handover management within UAV networks, highlight-

ing the need for innovative approaches to ensure seamless connectivity. Furthermore, the integration

of UAVs with computer vision technologies for blockage prediction has been discussed as a promising

direction for enhancing the reliability and performance of future wireless networks. This review puts

the groundwork for the following research by identifying key gaps and opportunities for innovation in

UAV-assisted communication systems.



Chapter 3

Vision-Assisted Beam Prediction for Real
World 5G and Beyond UAV
Communication

The next era of wireless communications, specifically 5G and beyond, will be expected to deliver low-

latency, ultra-reliable links for handheld devices, including UAVs, also known as drones. UAVs are

increasingly recognized for their potential in offering mmWave wireless coverage in areas where tra-

ditional base stations are not feasible, such as disaster zones and rural environments. However, the

highly directional nature of mmWave signals, combined with the mobility of UAVs, makes maintaining

a stable connection challenging. Beamforming offers a solution to improve signal quality, but exist-

ing beam management techniques, which rely on comprehensive searches over a pre-defined codebook,

introduce significant latency and incompetence, especially in high-mobility environments like UAV net-

works [152]. As noted by [50], UAVs have attracted considerable interest in both military and civilian

fields due to their adaptability in applications such as surveillance, emergency response, and cargo de-

livery. When equipped with mmWave communication technologies, UAVs provide an effective solution

for flexible, on-demand network coverage. This is largely due to their easy deployment and ability to

LoS connections, which are vital for high-frequency communications like mmWave [153]. MmWave

communications using aerial platforms have garnered significant research attention because AtG links

offer LoS communications. UAVs provide benefits like flexible network reconfiguration, on-demand

deployment, and a high likelihood of preserving LoS communication links. Because of this, UAVs are

widely used as relays or BSs to increase network capacity and provide flexible coverage options [154].

In order to manage high-speed data transfer, UAVs may be integrated with millimeter wave commu-

nication technologies to fulfill these advanced operational demands. However, in order to maintain a

sufficient SNR, narrow directional beams and large antenna arrays are required which limits the use

of mmWave communications system in UAVs. The significant overhead associated with beam training

due to these requirements makes it tough to support extremely mobile UAVs. Alternative solutions are

required to fix these issues and improve mmWave communications for mobile UAVs [155].

However, one of the major problems in UAV-enabled mmWave technology is the overhead associ-

ated with beam training. Traditional beam management techniques usually involve extensive searches

43
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through large codebooks, which is computationally intensive and introduces significant latency, making

it impractical for UAVs moving at high speeds. Furthermore, existing solutions, such as those rely-

ing solely on GPS or other positional data, often fall short in predicting the optimal beam direction in

real-time, specifically in complex, dynamic environments [103].

The growing demand for high-speed, reliable UAV communication has driven research into mmWave

frequency bands, despite their challenges like high path loss and low penetration. This work introduces

a novel beam prediction framework that combines computer vision and ensemble learning to optimize

beamforming in dynamic UAV scenarios. By integrating multi-modal data, including vision and posi-

tion sensing, the study demonstrates the effectiveness of a stacked model for predicting optimal beam

directions, validated using the DeepSense 6G dataset.

This chapter’s remaining sections are organized as follows: An overview of the system architecture,

the scenario, the dataset, beam prediction: problem formulation, and the proposed vision-assisted beam

prediction approach are all covered in Section 3.1. The simulation setup and a thorough analysis of

the outcomes are covered in the 3.2 section. Section 3.3, which highlights possible areas for further

research, brings the chapter to its conclusion.

3.0.1 Related Work

In recent years, the issue of overhead beam training in mmWave systems has received widespread at-

tention. Two methodologies were the focus of early efforts: (i) channel estimation utilizing compressed

sensor data to exploit channel sparsity and (ii) adaptive beam codebook-based training. The technique

that combines exhaustive and adaptive beam training is presented in [99] to aobtain ideal beams at the

Tx and Rx. Alternatively, it is believed that mmWave channel estimation is a sparse reconstruction

problem, taking advantage of the channels’ inherent sparsity in [101]. A new three-dimensional beam

training technology for UAV-assisted mmWave communications is proposed in [103]. It builds train-

ing beams with a flat-topped characteristic by applying the Fourier transform in inverse discrete space.

Moreover, hybrid beamforming (BF) systems are investigated, which find the best beams by applying

greedy geometry (GG) techniques. As beam training overhead is reduced using these conventional tech-

niques, the reduction is only an order of magnitude, which is not sufficient in scenarios with multiple

users moving around a lot.

The inability of conventional systems to adjust to highly mobile scenarios with multiple users has

raised interest in solutions based on machine learning. These systems leverage past observations and

additional sensing information, such as camera/vision data [100], user location [156], [157], radar data

[105] and LiDAR data [104]. The integration of mmWave technologies and cameras with UAVs to im-

prove wireless communications was covered in [155]. The authors present a system using deep learning

that utilizes computer vision for predicting the direction of wireless beams, allowing UAVs to maintain

a steady connection even when moving.

Similarly, using dual-mode data from visual and wireless sensing, [106] proposed a novel technique

named "latency-aware visually assisted joint wireless network (VFWN)" that seeks to predict beam

blockage. The global model aggregates data using a joint average technique, whereas the VFWN archi-

tecture perform data processing and model training using distributed learning at edge nodes. In addition

to significantly lowering communication costs by 81.31% and delays by 6.77%, the approach obtained
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a 99% accuracy. Furthermore, [107] proposed an innovative solution presenting an effective algorithm

to overcome the challenges in UAV-assisted networks for UAV clustering. The method incorporates

group HO and cluster head (CH) selection processes, combined with network initiation and execution.

However, most of the existing beam prediction systems are designed for scenarios where the UE is a

person, vehicle, or robot, with movement primarily occurring in two dimensions, which simplifies the

prediction process. Integrating multiple beam prediction modalities can offer a more thorough aware-

ness of the surroundings, allowing for more accurate predictions, as noted in [158]. By combining inputs

from various sensors, prediction accuracy is enhanced, and by dynamically adjusting the weight of each

modality, the fusion algorithm can optimize performance and further improve prediction accuracy.

3.0.2 Motivation and Contributions

The requirement for rapid and reliable communication systems has generated interest in mmWave fre-

quency ranges for UAV communications. But these high frequency bands have significant path loss and

limited penetrating capabilities, which complicates maintaining a stable link between UAVs and ground

stations. Beamforming has become a promising approach for enhancing these communication links.

Nevertheless, identifying the optimal beam direction in a dynamic UAV setting remains challenging

because of the highly directional and mobile characteristics of mmWave signals.

This chapter introduces an innovative approach for beam prediction utilizing multimodal data inte-

gration that minimizes the overhead of mmWave beam training. This method combines CV algorithm

YOLO-v5 with ensemble learning, which use stacks approach for model training. Additionally, the

study focuses on stacked neural network models to improve beam prediction in UAV communications.

Stacked models are developed by integrating neural network (NN) architectures trained on different data

types, such as vision and location data, and their performance is evaluated using the DeepSense 6G

dataset publicly available. The primary outcomes of the chapter are given below:

• This study presents an innovative beam prediction appraoch that employs computer vision and

integrative learning stacks to fuse multimodal data from vision and position sensors for train-

ing models in mmWave UAV communication, specifically customized for real-world application

scenarios.

• YOLO-v5 is optimized with real-time annotations to extract relevant data, such as object classi-

fications and the bounding box coordinates for objects detected using visual sensor information

(e.g., drones or distractors).

• To achieve optimal beam prediction, a meta-learner was trained using the combined outputs of

neural network modelsfor both position sensing and vision. The efficacy of the proposed appraoch

was evaluated using the DeepSense 6G dataset [159].

3.1 System Architecture

This research investigates real-world wireless communication system where a mmWave base stations

provide services for high-mobility UAV at a different heights. The scenario, formulation of the beam



CHAPTER 3. VISION-ASSISTED BEAM PREDICTION 46

Unit2 (RX) is an RC drone with
 a mmWave transmitter, GPS

 receiver, and IMU

Unit1 (RX) has a 60GHz-band
 phased array and an RGB camera.

Distractor

Figure 3.1: A real-world wireless communication setup, a mmWave base station connects
with a UAV (radio-controlled drone) thats outfitted with GPS and an inertial measurement unit
(IMU). To guarantee smooth, continuous connectivity, the base station intelligently leverages
various sensory inputs, including vision data and precise GPS coordinates, enabling it to dy-
namically select the most effective beam for communicating with the UAV.

prediction problem, and dataset description of the framework utilized in the wireless communication

system are covered in this section.

The wireless communication environment illustrated in Figure3.1 is examined in this study. In this

arrangement, millimeter-wave base stations connect with extremely mobile UAV outfitted with GPS

receivers capable of giving real-time location data. The base station has an RGB camera and an M-unit

Uniform Linear Array (ULA), while the UAV has a single antenna transmitter. The communication

system makes use of a base station with a predefined codebook z= fnn = 1N , where each f n ∈ CM×1,

and orthogonal frequency division multiplexing (OFDM) with K subcarriers and a cyclic prefix of length

D. OFDM technology improves the efficiency of UAV data transmission by splitting signals into multiple

subcarriers, while the cyclic prefix mitigates inter-symbol interference caused by multipath propagation.

In a downlink situation, the received signal at the UAV can be described as follows: if the wireless

channel between the drone and the base station at time t is represented by hk[t] ∈ CM×1, then for the kth

subcarrier, the UAV receiving signal can be written as follows:

yk[t] = hT
k [t] fn[t]x+ zk[t], (3.1)

where the noise level is denoted by zk[t] and the beamforming vector is represented by f ∈z. Here,
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f ∗[t] ∈ z represents the optimal beamforming vector at time t, optimized to maximize the average SNR.

The variable z denotes the set of all predefined codebook beamforming vectors [152]:

f ∗[t] = arg max
fn[t]∈z

1
K

K

∑
k=1

SNR|hT
k [t] fn[t]|2. (3.2)

High-frequency electromagnetic waves are used in mmWave technology to facilitate fast commu-

nications over a short distance. Beamforming techniques are used by mmWave base stations to direct

signals to UAVs, resulting in reliable and steady communication connectivity. The UAV’s position,

movement trajectory, and different environmental conditions are only a few of the characteristics that

the base station considers optimizing the beamforming process.

3.1.1 Beam Prediction: Problem Formulation

In order to determine which beam f ∗[t] is optimal from the predetermined codebook z, the transmitted

symbol x in equation 3.1 needs to comply with the constraint E[|x|2] = P. The average power of each

symbol is denoted by P, and equation 3.2 maximizes P. In traditional mmWave systems, obtaining the

ideal beam involves extensively scanning a specific codebook or using explicit channel state data. Al-

though a thorough search will result in a significant training overhead, obtaining channel information

in high-frequency communication situations is extremely challenging. As a result, this study uses CV

and ensemble learning (particularly stacking) to combine multimodal visual and position sensor infor-

mation collected by uavs or base stations. With the multimodal data set, the corresponding RGB set is

represented as X [t] ∈ RHXWX3, where H, W , and 3 represent height, width, and color channel number,

respectively. The transmitter’s height, distance, in a 2-D position vector at time t are all included in the

position data g[t]. Determining the mapping function fΘ for the ideal beam index prediction ˆf [t] from

the codebook z is the aim of this problem. It may be represented mathematically as:

fΘ : D [t]−→ ˆf [t], (3.3)

where D [t] indicates the aggregated dataset that includes position and visual sensing.

3.1.2 Proposed Vision-Assisted Beam Prediction Model with Stacked Ar-
chitecture

An ensemble stacked classifier intended to take advantage of two distinct data modalities is presented in

this section: RGB images and GPS information. The objective is to create a model that can accurately

execute the mapping described in equation 3.3. The procedure is to stack the YOLO-v5 outputs with the

outputs of a subsequent NN. More specifically, YOLO-v5 outputs (bounding boxes and class probabil-

ities for items spotted in an image) are fed into another NN. Based on these inputs, the subsequent NN

processes the data further and generates predictions.

The motivation behind stacking YOLO with NN is to enhance the overall performance of the sys-

tem. By adjusting the bounding box dimensions, the secondary neural network can improve its object

identification capabilities or produce accurate final predictions using the detailed information provided
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Figure 3.2: An overview of the stacking model architecture developed to optimize wireless
communication between the UAV and its environment. To detect objects and generate bounding
boxes around the UAV, the architecture uses YOLO-v5 to process UAV images. Based on these
bounding boxes, along with wireless and positional data, a stacking model is subsequently
employed to determine the optimal beam for efficient wireless communication.

by YOLO-v5. This synergistic approach aims to harness the strengths of both components to achieve

optimal prediction accuracy and system efficiency. To summarize, stacking YOLO-v5 with a NN is

an effective appraoch for developing advanced systems capable of object detection and other opera-

tions. This approach takes advantage of the combined capabilities of YOLO-v5 and neural networks

to outperform the accuracy and performance possible with either technology alone. The combination

of YOLO-v5’s precise object detection and neural networks’ adaptive processing power enables the de-

velopment of extremely efficient and accurate prediction models. Figure 3.2 depicts the architecture

and operational dynamics of this proposed stacking approach, demonstrating how different technologies

interact to improve system capabilities.

Algorithm 1: Optimal Beamforming Prediction
Data: Training data {(ximg

(i),xpos
(i),y(i))}N

i=1, where ximg
(i) and xpos

(i) are the image and

position vector inputs respectively for the i-th sample, and y(i) is the corresponding true

label vector.

Result: Meta learner f (·)
begin

Train a model based on images to produce predictions. yimg
(i) for each input ximg

(i);

To make predictions, train a position-based model ypos
(i) for each input xpos

(i);

for i = 1 to N do
Combine the predictions to form the input vector x(i) = [yimg

(i),ypos
(i)];

Obtain the prediction vector ŷ(i) using the meta learner f (·);

Train the meta learner by minimizing the cross-entropy loss;

L =− 1
N ∑

N
i=1 ∑

64
j=1 y(i)j log(ŷ(i)j );
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3.2 Simulation and Results Analysis

To evaluate the proposed beam prediction methodology within a millimeter-wave (mmWave) drone com-

munication framework, the DeepSense 6G dataset [159] is employed. The simulation system utilized in

this study is fully summarized in the following section.

3.2.1 Description of the Dataset

The freely available DeepSense 6G dataset contains a wide variety of multimodal data sources, such

as GPS data, LiDAR, radar, and vision sensing (images). Acquired from an actual wireless commu-

nication testbed, this dataset is particularly applicable for investigating the practicality and efficacy of

the proposed beam prediction solution. This section aims to briefly review the scenario covered by the

DeepSense 6G dataset and delve into the composition of the final dataset employed for the development

and validation of the sensing-assisted beam prediction methodology. For exploring high-frequency wire-

less communications with UAVs, Scenario 23 from the DeepSense 6G dataset has been selected. This

scenario features a stationary base station (Unit1 - RX) equipped with a 60GHz band phased array and

an RGB camera of standard resolution. The phased array, designed to capture signals, is configured with

an oversampled set of 64 predefined beams (Q=64) and 16 elements (M=16), enhancing its capability to

receive a wide range of signals accurately.

To broaden the FoV of the base station, both the RGGB cameras and the mmWave phase array are

positioned on a surface with purpose, about 1.5 meters above the ground, oriented upwards. This setup

ensures comprehensive coverage and signal reception from various angles. Unit2 (RX), an RC drone, is

equipped with GPS, a mmWave transmitter, and IMU. The UAV Tx, featuring a quasi-omnidirectional

antenna, consistently operates at the 60 GHz frequency, ensuring continuous communication with the

base station. The scenario is specifically designed to augment the dataset’s diversity, allowing the UAV to

operate at varying heights, distances, and speeds relative to the base station. This variability introduces a

wide range of conditions and challenges typical of real-world UAV operations in high-frequency wireless

communication settings, making it an invaluable resource for testing and validating the proposed beam

prediction solution.

3.2.2 Configuration for Simulation

The simulation of the sensing-aided beam prediction model leverages the diverse data collected across

different sensing modalities, including position, height, distance, and visual information. For analytical

purposes, data related to position, height, and distance are amalgamated into a single modality, while

visual data is treated as an independent modality. The data set, which comprises multimodal data, was

split 70/30 for training and validation. The training set was used to develop the prediction model, while

the validation set assessed its generalization capability. The YOLO-v5 and stacked model was trained in

the Google Colab environment, which uses free-tier hardware resources. The system included a NVIDIA

Tesla T4 GPU with 15 GB of VRAM, two virtual CPU cores, and 12-15 GB of shared RAM. This setup

provided sufficient processing capacity to efficiently handle the training processes, ensuring that deep

learning experiments could be carried out within the limits of a cloud platform.
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Figure 3.3: The YOLO-v5 model, trained to predict the UAV location, is shown in this figure
along with its recall and precision curves. Based on object detection and bounding box data,
the model can consistently predict the UAV position.

YOLO-v5 Training: The YOLO-v5 framework is employed to recognize the UAV and pinpoint its

location (via bounding boxes) within the input imagery, which also features distractor elements. These

input images are standardized to dimensions of 960 x 540 pixels. For the training phase, YOLO-v5 is

configured with a batch size of 8 and undergoes 100 epochs of training. The dataset earmarked for this

process comprises 600 images for the training segment and 29 images dedicated to validation purposes.

Post-training, the YOLO-v5 model is tasked with identifying the UAV and its bounding boxes across the

entirety of the DeepSense image dataset, ensuring a comprehensive application of the trained model for

drone detection and localization.

With an overall precision of 0.98% and a recall of 0.98%, the YOLO-v5 model can identify UAVs

from aerial images. Figure refyo displays the recall and precision of the YOLO-v5. These results

show that the YOLO-v5 model can localize and identify UAVs with high reliability even in difficult

outdoor environments, which makes it a useful tool for a range of applications such as search and rescue

operations and surveillance.

Training Neural Network: Bounding box coordinates, altitude, GPS (latitude, longitude), and the
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distance from the wireless sensor are the inputs used to train the neural network. The neural network uses

a modified linear unit activation function and is composed of two dense layers, each with 512 neurons.

The output layer employs sparse categorical cross-entropy as the loss function and softmax activation

with 64 categories. The neural network was trained with a batch size of 32 and 90% train to 10% test

over 100 epochs. LR decays by a factor of 0.1 at epochs 20, 40, and 80, with the learning rate set at 0.01.

We adjust the network’s hyperparameters in accordance with the values listed in the table 3.1. Using the

same set of training and validation data as the prior modality-specific model, we employ a stacked model

for the vision-assisted approach, which combines YOLO-v5 with a neural network model to predict the

optimal beam index.

We utilize a remained data that was not utilized for training or validation in order to assess the

proposed model. We evaluate the proposed model’s efficacy by comparing it with the state of the art

methods. We use standard metrics like accuracy, recall, precision, and F1 score for this analysis. The

overall goal of the simulation scenarios is to assess how well the suggested model works to improve the

accuracy of beam predictions for different sensing modes.

Table 3.1: Hyper-parameters in Training and Design

Parameters YOLO-v5 Training Neural Network
Input 960 x 540 Images Bounding box

Batch size 8 32
Epochs 100 100

Learning rate 0.01 0.01

3.2.3 Results Discussion

The evaluation of the proposed model’s performance reveals noteworthy results in relation to accuracy

overall, recall, F1 score, and precision. Specifically: The model exhibits a precision rate of 0.8888,

signifying that its positive predictions are accurate 88.88% of the time. This high precision underscores

the model’s effectiveness in correctly identifying true positive instances among all positive predictions.

With a recall rate of 0.8855, the model demonstrates its capability to correctly identify 88.55% of all

actual positive cases. This measure is critical for instances where ignoring a positive occurrence may

have major effects, indicating the model’s robustness in detecting relevant signals. The model’s F1 score

stands at 0.8853, as detailed in Table 3.2. The F1 score, which is the harmonic mean of recall and

precision, provides a fair assessment of the model’s performance, particularly when it is important to

have recall and precision in balance. The overall accuracy of the model is reported at 0.8910, meaning

it correctly classifies 89.10% of all instances. This metric highlights the model’s general effectiveness

across a variety of conditions and instances.

These results, visualized in Figure 4.8, collectively demonstrate that the proposed beam prediction

model is both reliable and efficient. Its high precision and recall rates suggest that it can serve effectively

in various practical applications, such as monitoring, surveillance, and search-and-rescue operations, by

reliably locating and identifying drones in challenging outdoor environments. The F1 score and accuracy
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further reinforce the model’s robustness and its potential as a valuable tool in the context of mmWave

drone communication systems.

Table 3.2: Comparison of the Different Evaluation Metrics

Model Precision Recall F1-Score Top-1 Accuracy
Vision 0.8567 0.8549 0.8587 0.8632

Position 0.5803 0.5603 0.5788 0.6034
Proposed 0.8888 0.8855 0.8853 0.8910

The proposed model has accuracy and recall scores of 0.8888 and 0.8855, respectively, indicating

that it performs extremely well in predicting instances of the target variable. The model’s excellent

predictive abilities are further highlighted by its F1 score of 0.8853 and accuracy score of 0.8910. Com-

pared to baseline vision-only and position-only models, the proposed stacked model improves accuracy

by 4.5% and recall by 3%, demonstrating its advantage in integrating multimodal data, with recall scores

as 0.5603 and 0.8549, as well as accuracy values of 0.6034 and 0.8632.

These results underscore the proposed model’s enhanced predictive power and its ability to accu-

rately classify instances of the target variable with a high degree of reliability. Particularly, the model

achieves higher precision, recall, F1 score, and accuracy compared to both vision-based and position-

based models. This dominance implies that the suggested framework is more effective in detecting

instances of the target variable, making it a more dependable option for accurate predictions in a wide

range of applications.

In conclusion, the assessment metrics given for the proposed model demonstrate its high effective-

ness in predicting target variable occurrences, significantly outperforming vision-based and position-

based models. This shows the model’s potential as a highly reliable approach to accurate beam prediction

in mmWave drone communication systems, with important implications for monitoring, surveillance,

and search-and-rescue missions.

The proposed model achieves significantly better results than both vision and wireless-based ap-

proaches on all four assessments. In particular, the model outperforms the other two appraoches in

terms of accuracy, F1 score, precision, and recall. These findings suggest that the proposed framework

is more proficient at accurately identifying instances of the desired variable, making its accurate predic-

tions more reliable. To sum up, the proposed model outperforms vision and wireless-based approaches

in terms of prediction of the target variable, according to the evaluation metrics.

Figure3.5 presents a graph that utilizes four distinct techniques; actual beam power, position, vision,

and the proposed stacking technique shows significant enhancements in beam gains when applying the

stacking approach over other single-modality strategies such as vision and position alone. This analysis

underscores the efficacy of the proposed stacking method, although it also points out minor discrepancies

between the estimated beam gains and those initially designed for various UAV positions.

Figure 3.5 depicts a graph that shows the power levels of both the predicted and actual beams.

It demonstrates that predictions with improved top-1 accuracy closely match the actual beam power.

However, lower top-1 accuracy results in large differences between the predicted and actual power,

which can lead to undesirable performance decreases
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Figure 3.4: Top K-beam predictions using the stacked method. The graph depicts the accuracy
scores of the position, vision and proposed stacking model.

These insights are particularly compelling, emphasizing the advantage of integrating position and

vision-based methods to refine beam prediction in UAV operating within mmWave communication

frameworks. By adopting such sophisticated techniques, it’s possible to enhance the precision and de-

pendability of the communication process, thereby facilitating more effective data transmission and re-

ception. This advancement holds significant promise for applications requiring high-speed, low-latency

connectivity, such remote healthcare systems and driverless cars, and automated manufacturing pro-

cesses.

The variations observed in low-accuracy predictions can be attributed to a variety of technical issues

that influence the alignment of the predicted and real power levels. One key problem is UAV height

changes, which can change the propagation environment and effect signal attenuation, resulting in power

estimation errors. Furthermore, interference from adjacent UAVs or other wireless devices can produce

unexpected variations in received power, which contributes to predicting mismatches. Environmental

variables such as obstacles in the line-of-sight path, weather impacts (e.g. rain or fog), and multipath

reflections all contribute significantly to signal power distortion. These factors add complications to the

model’s forecast accuracy, especially in dynamic or uncertain environments.

Leveraging the combined strengths of mmWave technology and drones through these innovative

methods opens a plethora of new possibilities, setting the stage for groundbreaking developments in

the future. This approach not only optimizes the utilization of mmWave technology but also paves the

way for exploring new horizons in various high-tech applications, ensuring that the potential of such

advanced communication systems is fully realized.
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Figure 3.5: Top-1 normalized power between the position model, the vision model, and the
proposed approach in comparison to the codebook’s actual power values.

3.3 Chapter Summary

This chapter explored the enhancement of UAV communication in 5G and beyond networks using

millimeter-wave (mmWave) technology. The study addressed the challenge of high overhead in beam

training for highly mobile UAVs by introducing a novel beam prediction framework that combines com-

puter vision and multi-modal data fusion through ensemble learning.

The proposed method significantly outperformed traditional models, achieving a top-1 accuracy of

approximately 90% and near 100% for top-3 and top-5 predictions. This improvement is crucial for

applications requiring high-speed, low-latency communication, such as autonomous vehicles and smart

manufacturing.

This chapter proposes an innovative solution for dynamic beam prediction, achieving near-perfect

accuracy in top-3 predictions. Future work could explore real-time deployment in highly dynamic envi-

ronments, enhancing autonomous vehicle and smart factory operations.



Chapter 4

UAV-Assisted Handover with Proactive
Blockage Prediction for Future Wireless
Communication

The previous chapter introduced an innovative Mmwave beam prediction technique that uses stacking

to combine ensemble learning with CV. The technique integrates multi-modal visual sensing and loca-

tion data to accurately estimate UAV positions and orientations. Building on these beam management

techniques, this chapter presents a proactive blockage prediction mechanism using UAVs as base sta-

tions for HO. Proactive HO is essential to maintain LoS and ensure reliable mmWave communication.

The technique requires continuous knowledge of the surrounding wireless network and employs CV for

detecting possible blocking objects, user speed, and location.

Using publicly available datasets for blockage prediction, the proposed scheme evaluates the effi-

cacy of proactive HO. By combining vision wireless (ViWi) and uav channel modeling scenarios, this

work produces significant wireless data samples. Furthermore, polarization matching scenarios are in-

corporated into UAV antenna modeling to optimize signal reception.

The findings demonstrate that in addition to ensuring uninterrupted connectivity, UAV-assisted han-

dover improves overall network performance by 20%. This blockage prediction mechanisms have

greatly contributed to the development of proactive blockage mitigating solutions in wireless networks.

This study demonstrates that UAVs have the potential to increase Mmwave communication reliability

and efficiency by serving as dynamically flexible base stations.

These findings highlight the practical benefits of leveraging UAVs for proactive handover, demon-

strating a clear pathway toward more resilient and efficient communication networks. By integrating

advanced CV techniques and proactive strategies, this approach significantly enhances the capabilities

of mmWave communication systems, ensuring uninterrupted connectivity and improved performance.

4.1 Introduction

It is believed that THz and mWave communication technologies would be critical in meeting the increas-

ing demand for greater data transfer capabilities [160]. These advanced technologies facilitate extensive
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connectivity, more bandwidth and ultra-reliable low-latency communications (URLLC) are required for

complex operations like intelligent healthcare systems, the Industrial 4.0 revolution, holographic telep-

resence, augmented and virtual reality (AR/VR), and autonomous vehicles[161, 162]. Furthermore,

the concept of ultra-dense networks (UDNs) is established by the adoption of higher frequency bands,

which encourage the development of small coverage cells [163]. Next-generation networks will use

multi-array antennas with MmWave and THz frequencies, allowing for beamforming that directs radio

signal power precisely toward the receiving device through LoS communication [164]. Despite their var-

ious advantages, mmWave and THz technologies generally experiencing significant penetration losses;

adapt to mobility problems and increased sensitivity to obstacles. For example, when the communica-

tion channel is blocked by obstacles such as vehicles or people, the link budget may result in a power

attenuation of 20 dB or more [165]. Thus, these sophisticated approaches mainly depend on the LoS

communications between the BS and the designated users [160, 166].

It is possible to properly handle the problem of link congestion through a better understanding of the

wireless network environment, enabling prediction of potential congestion. The conventional methodol-

ogy for tackling this issue involves the integration of machine learning techniques with wireless sensor

data (for instance, channel information and received signal strength metrics). Recent research demon-

strates both proactive and reactive blockage prediction methods leveraging data from sensors [167]. Al-

though reactive blockage predictions do not meet the strict low-latency requirements, proactive blockage

prediction is still in its early stages and requires further investigation. This chapter explores future de-

velopments in blockage prediction capabilities, emphasizing the integration of UAVs as dynamic base

stations to improve decision-making and maintain seamless connectivity in high-mobility scenarios.

UAVs are acknowledged as crucial facilitators for various services, including smart city projects,

health care, real-time surveillance, disaster reply, and wireless communication infrastructure [152]. Be-

cause of their installation and airborne positioning capabilities, UAVs are conceptualized as airborne

BSs that are amenable to facilitating massive MIMO,3D MIMO and mmWave communication network

[168, 169, 170]. UAVs are frequently used as aerial BSs or relays to expand network capacity and offer

flexible coverage options [154]. Motivated by the potential for UAV-aided communication, this chapter

highlights proactive blockage prediction in UAV-assisted HO using visual and wireless data. Users who

have performance concerns switch to alternative base stations during the HO process that offer higher

signal strength. Nevertheless, the efficacy of handover processes is contingent upon the availability of

environmental data and proactive blockage predictions. Moreover, erroneous or excessive handover oc-

currences result in increased latency, diminished throughput, and a reduction in the overall QoS. As

a result, blockage prediction has emerged as a dynamic field of inquiry aimed at identifying new and

flexible strategies to maintain the reliability as well as the efficiency of wireless networks.

4.1.1 Related Works

Despite the myriad advantages associated with Mmwave and THz communication, utilization of these

elevated frequency bands raises a plethora of challenges, particularly increased training overhead and

increased sensitivity to LoS obstacles [171, 172]. Consequently, such obstacles lead to a notable decline

in QoS. One viable strategy to mitigate this issue is the implementation of multi-connectivity, which

enables users to establish simultaneous links with multiple BS [173]. In this framework, A central con-
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Figure 4.1: A UAV-based vision-assisted wireless communication infrastructure with three
RGB-camera-equipped base stations, a UAV base station that covers areas where signals are
blocked, and central control.

trol unit receives a measurement report from each base station, which assesses the connectivity quality

for the user it is connected to. This central unit then coordinates an optimal scheduling system that

maintains the communication link’s quality. Yet, it is noteworthy that multi-connectivity algorithms

predominantly exhibit a reactive nature, being activated in response to obstructions. Moreover, these

algorithms exacerbate the scheduling overhead and induce undesirable latency [160].

An alternative approach to ensure uninterrupted connectivity in high-frequency communication is

the employment of HO. Nevertheless, the efficacy of the HO mechanism is contingent upon the acqui-

sition of prior knowledge regarding the environment and real-time information concerning link obstruc-

tions. Consequently, an array of investigations has been undertaken to address the challenge of predicting

link obstructions. Predictive methodologies, particularly those focused on beam prediction tasks, have

garnered increasing attention in the context of ML applications in recent years. These methodologies

predominantly aim to harness supplementary information to enhance comprehension of the wireless en-

vironment [152]. For instance, various studies have supported the use of ML techniques to forecast link

obstructions by utilizing wireless sensor data, such as received signal strength (RSS) and channel charac-

teristics [173, 174]. .However, these investigations typically engage in reactive measures that adversely

affect the execution of the communication notwork.The authors of [175] propose a proactive blocking

prediction technique designed for Mmwave communications, drawing inspiration from the capabilities

of ML models. The suggested method trains gated recurrent units (GRUs) to predict link congestion

using beamforming sequences. Although this technique is characterized by its simplicity and efficacy,

it is especially vulnerable to unexpected changes in channels, mainly because of its reliance on one

data modality. The article in [176] suggested the employment of sub-6GHz channels to anticipate forth-

coming link obstructions, thereby enabling foresight regarding future dynamic or mobile blockages.

Furthermore, within the domain of mmWave and THz networks, the anticipation of signal blockages

continues to represent a formidable challenge due to the inherently dynamic nature of environmental

transformations. A recent investigation [177] introduces a framework intended to address this challenge
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by amalgamating computer vision with distributed on-device learning. This framework capitalizes on

semantic information extracted from images to enhance the precision of obstruction predictions.

The utilization of multi-modal data in conjunction with the integration of DL and CV are innova-

tive methods that seek to solve the high-frequency communications systems link congestion problem.

Merging of multimodal data enables wireless communications to enhance awareness of surrounding

environments, which is anticipated to assume a critical function in the future landscape of wireless

communication, particularly concerning blockage, HO, and network resource distribution. Several pre-

liminary studies exploiting the combined potential of multimodal CV and DL have been reported in the

academic articles. For example, [178] introduced a vision-aided proactive HO approach that uses depth

images in combination with wireless data. Using multi-modal data, a deep learning model is carefully

trained to reveal a relationship between measured throughput and depth images. This method is useful

for estimating future link quality offering timely insights for effective handover decisions. In the same

way, [171] train deep learning models to predict congestion ahead of time using RGB images and beam

forming vectors. The growing adoption of ML based solutions is increasingly evident, resulted from

the limitations of conventional methods for handling extremely dynamic, multi-user settings. These

advanced systems are thoughtfully designed to leverage past research findings and utilize a range of

sensing modalities, such as user positioning [102], camera-based visual imagery [100], LiDAR scans

[104], and radar information [105].

It is evident from the research findings published in the literature that using multimodal data can

greatly increase the performance of wireless network. Nonetheless, most methods that leverage mul-

timodal data are capable of predicting potential blocking but not sufficient to perform the necessary

actions to ensure uninterrupted connectivity.

4.1.2 Motivation and Contributions

As previously discussed, the implementation of mmWave presents numerous complex challenges. How-

ever, the obstruction of communication links represents a critical impediment for high-frequency trans-

mission. The prospective evolution of wireless communication necessitates enhanced QoS accompa-

nied by uninterrupted connectivity to accommodate real-time applications. Consequently, proactive HO

emerges as a promising strategy to uphold connectivity by transitioning the user over to an alternative

LoS connection. Nevertheless, proactive HO effectiveness depends on the having the prior knowledge

regarding link obstructions to facilitate timely interventions. The integration of multi-modal techniques,

it is expected that, when combined with CV and DL, wireless networks will operate more smoothly in

this environment.

A previous research study presented a novel CV-aided HO technique that uses multi-modal data,

integrating wireless data (RSSI) with vision (RGB pictures) [164]. This approach introduced a new type

of handover event, called a blockage event (BLK), which identifies potential blockages when the user

falls within the vision sensors field-of-view (FoV). By combining CV with multi-variate regression, a

handover metric, called time to block (Tblk), is determined, allowing proactive actions to ensure continu-

ous connectivity. However, path loss during user mobility between base stations may lead to a reduction

in signal strength.

To tackle this problem, this chapter present a UAV-assisted handover approach that employs a syn-
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thesis of RGB images and wireless data as indicated by the RSSI. To find users, possible obstacles,

user localization, and clearance from obstacles, the suggested approach makes use of object detection

and localization (ODL) algorithms. Moreover, a neural network has been used to predict the handover

time, Tblk, and appropriate corrective actions are carried out if conditions permit sufficient time for the

handover process.

To improve coverage in obstructed areas, a UAV deployed at a specific altitude serves as a BS. When

an obstruction is identified (triggering the BLK event), the proposed algorithm the proposed method

sends a handover request to ensure that the user’s transition to the UAV occurs smoothly. This process

guarantees uninterrupted connectivity while enhancing the signal quality. This chapter’s key contribu-

tions are outlined as follows:

• The chapter presents UAV-assisted handover using CV and ML to address the problems result-

ing from connection blockages in high-frequency communications. Multimodal data is used for

proactive blockage prediction, which helps to ensure a successful handover with little perfor-

mance degradation. The combination of CV and multimodal data increases the network’s aware-

ness of its environment significantly, which raises the accuracy of blockage prediction.

• We have formulated an analytical framework for dipole antennas that can be used for UAV-ground

communication, as well as a channel model for UAV base stations. Furthermore, a detailed

evaluation is undertaken to examine how path loss affects RSSI, taking into account the UAV’s

position at different altitudes.

• Lastly, comparative evaluation of UAV-assisted versus traditional non-UAV handover processes

illustrate the efficiency of the proposed approach. According to the empirical results, UAV-

assisted HO mechanism accounts for an approximate 20% boost in RSSI.

4.2 System Model

This research leverage visual data and wireless signals in conjunction with DL methodologies to an-

ticipate potential blockages and facilitate pro-active handover procedures. The premise is to integrate

diverse technologies such as CV, DL, and UAV-supported communication to enhance wireless transmis-

sion within elevated frequency spectrum. The subsequent subsections offer a comprehensive exposition

of UAU-assisted vision-enhanced wireless communication.

4.2.1 Scenario Description

This study considers a high frequency wireless network framework designed to encompass a city street

with a length of 90 meters and a width of 15 meters, as shown in Figure 4.1. The architecture includes

3 SBS, a central unit, and UAV-BS positioned at a designated altitude "h," which collectively address

the obstruction zone. A uniform linear array (ULA) antenna with M elements is installed on each

SBS. Beamforming is used for establishing a LOS link that enhances the signal. In the unlicensed

60 GHz frequency spectrum, the communication system exploits OFDM. For 60 GHz multi-antenna

OFDM systems, a codebook-based beamforming technique is described in [179]. Additionally, standard
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RGB cameras are installed in every SBS to monitor the surroundings and gather visual information for

predicting possible obstacles. To facilitate efficient HO, UAV serves as a substitute to the SBS and

extends network coverage to blockage regions. To facilitate efficient HO, the UAV serves as a substitute

to the SBS and extends network coverages to blockage regions. To simplify the scenario, As illustrated

in Figure. 4.1, we take into account, one stationary obstruction (a bus), one mobile user (a car), three

SBSs that cover the whole length of the road, and a fixed UAV above the blocked region. Sensors

at the SBSs gather wireless and visual environmental data, which is subsequently sent to the control

unit (CU) via a point-to-point 10 Gbps mmWave backhaul connection [180]. The CU functions as the

system’s central processing unit, collecting and analyzing relevant information to develop the ML model

for proactive obstruction prediction. Additionally, the CU leverages real-time data to ensure a seamless

handover process after the model was successfully trained.

4.2.2 UAV Channel Modelling

To understand air-to-ground channel characteristics of communication involving UAVs, this study inves-

tigates LOS communication. When a mobile vehicle enters the designated area, visual sensors track the

user and detect possible obstructions. The UAV is strategically positioned in response to the presence

of an obstructing entity, as illustrated in Figure 4.1. An omnidirectional antenna is recommended for

AtG communications in UAV operations to reduce alignment issues between the transmitter and receiver

(Tx/Rx) that can arise because of the rapid speed of driving cars. In comparison, directional antennas

may be appropriate when both the Tx and Rx are static or experience minimal movement, provided the

antenna patterns can be adjusted in real time.

In situations where UAV operation is clear, the crucial role of the LOS component in the elevation

plane for determining the power received by the co-polarized antenna is determined by the antenna

gain. We have developed an analytical path loss model that considers antenna gain in the elevation

plane to address this issue. Our study includes an in-depth analysis of various UAV altitudes, antenna

orientations, and the influence of angle of elevation on received power.

A significant factor in network communication is antenna polarization. Establishing a communica-

tion link becomes impossible even in LOS conditions, for example, if the transmitting (TX) antenna on a

UAV is vertically polarized (V) while the receiving antenna is horizontally polarized (H), or vice versa.

Improper alignment of antenna orientations can result in significant losses due to polarization mismatch

in received signal strength, even when the UAV is close to the ground receiver [181]. As a result, precise

antenna polarization alignment is important. Figure 4.2 shows the reduction in received power caused

by polarization mismatch. In cases where antennas are aligned with vertical-horizontal (V-H) polariza-

tion, complete signal loss occurs. V-V or H-H alignments provide the strongest signal possible; a signal

loss of 0 dB indicates the highest received power. When receiving a linearly polarized signal with a

circularly polarized antenna, a loss of 3 dB (or the equivalent in reverse) may be experienced, but this is

generally manageable. Using orthogonal antenna polarization leads to the highest power loss, as atten-

uation exceeds theoretical limits. However, since most antennas have minimal polarization decoupling,

practically speaking, the loss will never reach infinity.

This work present a comprehensive analytical framework addressing the scenario of a dipole (or

monopole) antenna utilized for the connection between a ground terminal and a UAV. Both antenna
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Figure 4.2: A conceptual diagram illustrating the different scenarios of polarization misalign-
ment and the resulting mismatch losses. The direction of the highest vector of the electric field
is referred to as polarization. If the direction of an incoming electromagnetic signal doesn’t
match the receiving antenna’s orientation, it can make communication links completely inop-
erable.

types display similar radiation characteristics; consequently, the identical mathematical model is ap-

plicable in both instances.As a result, subsequent analyses will concentrate on the dipole antenna. In

three-dimensional space, a dipole antenna produces a radiation pattern resembling a doughnut shape,

while in a two-dimensional E-plane view, the pattern appears as an 8-shaped pattern. Understanding

the antenna’s radiation patterns is paramount, as the LOS scenario is naturally paired with the antenna’s

connectivity within a specified direction. The three-dimensional radiation patterns are also represented

in two dimensions, as illustrated in Fig. 4.3. Depending on the orientation, it is possible to obtain the

dipole, an elevation cross-section (y-z or x-z planes, referred as E-plane), or a horizontal cross-section

(x-y plane). In [181], a sinusoidal function was used to model the elevation gain of the antenna, as

the UAV was maintained in a hovering position while the receiver (RX) remained stationary. In this

particular context, the bore-sight direction of the antenna, θ = 0◦, results in null radiation, as sin(θ)

or cos(90◦−θ) equals zero, whereas the maximum radiation is achieved at angles of 90◦and 270◦. In

contrast, the present study examines a dynamic user scenario, specifically a car, as the UAV is imagined

as stationary. This scenario requires optimal gain along the LOS, meaning that the antenna’s radiation

pattern should demonstrate maximum directivity at 0 and 180 degree angles, respectively. The horizon-

tal placement of the dipole antenna results in ideal configuration, as illustrated in Figure. 4.3 (b). The

horizontal (x-y) plane in this configuration forms a directed plane, offering a two-dimensional, 8-shaped

radiation pattern, whereas the vertical (y-z) plane shows an omnidirectional pattern, represented by a

circle in 2D.

According to the recognized linear scale Friis’ transmission equation:

PRx = PT x×GT x(α)×GRx(α)× (
4πd

λ
)

γ

(4.1)

Here, α denotes the angular displacement between the Tx and Rx, and γ is the route loss exponent, as

Figure shows 4.4. As the horizontal distance between the car and UAV decreases, the angle of elevation
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Figure 4.3: Rx and Tx Antenna Orientations and Radiation Patterns.

α between the Tx (UAV) and Rx (car) increases. As the car and UAV are positioned perpendicularly,

the angle α reaches its apex, leading to alignment of the nulls (VV alignment), thereby resulting in

the loss of connectivity for the vertical-vertical orientation. Consequently, it is imperative to utilize a

horizontal-horizontal alignment to attain maximum gain in the LOS direction when the UAV and car are

perpendicular, specifically while α equals 90◦, and sin(90◦) equals 1 or cos(0) equals 1, since sin(α) is

equivalent to cos(90◦−α).

Received Signal Modeling for LOS Scenario
The signal received at the receiving antenna for the transmitted signal T (n) is often defined as the

combination of the signal being transmitted with a channel impulse response, as depicted in [182]:

R(n) = T (n)∗H(n) (4.2)

where H(n) denotes the channel’s impulse response. A generalized representation of the received signal,

accounting for all multipath components, can be presented as follows:

Ri(n) =
λΓi(θ ,φ)

4πdi
∗
√

GT (φ
(T X)
i ,θ

(T X)
i )GR(φ

(RX)
i ,θ

(RX)
i )

s(n− τi)exp(
− j2φdm

λ
|ψT X

i .ψRX
i |),

(4.3)

where θ and φ represent the azimuth and elevation angles between the Tx and Rx, respectively, and

i = 0,1,2 indicates the multi-path component. Γi indicates the reflection coefficients associated with the

ith multi-path component. φi indicates the polarization mismatch loss factor.The variable d represents

the distance between Tx and Rx, while the variable τi denotes the ith multi-path component’s delay.

It is essential to remember that efforts have been taken to simplify the situation. Specifically, for the
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Figure 4.4: A 2D Conceptual Model of a Moving Car and a UAV.

line LOS scenario, it is assumed that the path loss exponent γ is "2", as shown in (4.1). It is believed

that the coefficient of polarization mismatch value is 1 (equal to 0 dB), and any reflections caused by

multipath or ground reflection are omitted in the modelling of the UAV channel. Consequently, under

these assumptions, in the LOS scenario, i = 0,Γ = 1,τo = 0, and φo = 1, and GT x and RT x are linked to

a sinusoidal function, we arrive at the following simple mathematical equation for the LOS component

of the received signal:

Ro(n) =
λ

4πdo
∗ sin(θ ,φ)∗T (n). (4.4)

We can write Ptx = |T (n)|2 because the power level of a signal can be found using the modulus

squared. The LOS component’s received power can therefore be represented as follows:

PRX =
PT X sin2(θ)λ 2

(4πdo)2 , (4.5)

where (θ = tan−1(x/d)) represents the elevation angle between the UAV and the vehicle; if the UAV is

higher, this angle decreases as the vehicle moves farther away from it, or vice versa (it is noteworthy that

angles θ and α exhibit inverse relationships, and our focal point is α). At the instant when the vehicle

is positioned directly in front of the UAV, θ = 0◦, resulting in the attainment of maximum received
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power. However, as the vehicle aligns with the UAV, the received power is expected to reach its peak,

this happens when the sinusoidal function’s angle is 90 degrees, or α = 90. By adding the actual angle α

to the equation, the appropriate trigonometry angle in 4.5 becomes α = 90−θ , satisfying this condition.

As a result, the highest RSSI is indicated by sin(90◦−0◦) = sin(90◦) = cos(0◦) = 1.

4.3 Handover Mechanism Assisted by UAV

In proactive HO, a UAV is considered as a BS, CV and DL methods are used for predicting potential

beam blockage. In the context of real-world wireless connectivity, predicting future obstructions poses

significant challenges, as it is dependent on the velocity of the user and the environmental factors sur-

rounding them. Our prior investigation utilized bimodal datasets (visual and wireless) for the prediction

of beam obstructions, which facilitated the initiation of optimal handover processes [183]. The CV-

assisted obstruction prediction is categorized into two distinct sub-tasks, namely: (i) object detection

and localization (ODL), which identifies the position and classification of the obstructing entity from

the images to ascertain the velocity of user’s; (ii) forecasting the time to blockage (Tblk) utilizing the

information procured from the RGB images.

In the proposed framework, the occurrence of a BLK event is triggered if both the user and the

obstructing entity fall within the FoV. The main concept aims to identify the user’s position and the ob-

struction simultaneously with the detection of the BLK event. The velocity of the user and position data

are subsequently employed to compute the Tblk, thereby enabling the execution of proactive handover

prior to any service interruption. The specifics of the proactive handover mechanism have been elabo-

rated upon in our prior work [164]. Nonetheless, the essential steps involved in the handover process are

summarized as follows:

• The BLK event is identified using the ODL algorithm, which also offers more precise location

and speed data.

• The prediction of Tblk is carried out using the data collected via ODL.

• In the final phase, if the execution time of the handover (Texec) is more than Tblk, the central unit

(CU) performs the handover.

The minimal amount of time Texec that the proposed method needs to finish a successful handover is

represented. It has been divided into four components and can be mathematically expressed as follows

[164]:

Texec = TRGB +TODL +Tin f +THO, (4.6)

where TODL denotes the time required for object detection and localization, and TRGB denotes the time

required to send RGB images to the CU. The regression model’s inference time is shown by Tin f , and THO

represents the time required for the completion of the handover. Moreover, a new temporal parameter

called waiting time (Tw) is introduced, with its maximum value defined as the difference between Tblk

and Texec, which is mathematically expressed as:

T max
w = Tblk−Texec (4.7)
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It is important to mention that each and every parameter in 4.6 are fixed, however Tw depends on

Tblk, which is determined by the velocity and location of the user. The following key safety assumption

were established in this study before getting into the details of each component:

• Wireless sensors and cameras on SBSs continuously transmit data to the CU for the real time

processing.

• The ODL model correctly estimates Tblk and identifies the coordinates of possible obstructions;

all processing is done at the CU.

• The UAV is positioned at an optimal altitude, covering the entire blocked area effectively.

• Tblk exceeds Texec, ensuring that there is enough Tw to successfully complete the HO.

4.3.1 ODL and Prediction of Time to Block

In the context of this HO mechanism, the role of the ODL is pivotal as it accurately identifies the user’s

location and any potential obstructing entities. The derived location coordinates facilitate the calculation

of the user’s velocity. The specifics regarding the ODL’s role in identifying obstruction events are not

within the scope of this chapter, as they have been comprehensively addressed in preceding research

[164]. To summarize concisely, The ODL procedure is divided into two main sub tasks: (i) to identify

the user’s pixel coordinates and any possible obstacles, using a pre-trained YOLOv3 model. (ii) To

determine the user’s velocity, the two-dimensional pixel coordinates generated by YOLOv3 are then

translated into displacement coordinates. Because the success of the HO depends on the execution time,

represented as Texec, it is crucial to identify all the temporal parameters outlined in equation (4.6) to help

in making a HO successful.

A neural network model that has been trained is used to estimate Tblk when the position coordinates

and user speed are obtained from the ODL. RGB images are used to generate the dataset for the model’s

initial training that include the location coordinates and user velocity. To simplify the process, the

blocking entity’s position is kept constant while changing the user’s speed and position. Although the

model is trained offline, our proposed method uses real-time inference to identify Tblk. As indicated

in the analysis from [164], the processing duration for ODL, TODL, is approximately 102 milliseconds,

while the inference time, Tin f , is about 1 millisecond.

4.3.2 Ideal Trigger Zone and Handover Completion

The parameters of user speed, position coordinates, and Tblk help calculate the appropriate distance for

executing the HO. The ideal trigger distance, labelled as "D," has been established through detailed

analysis using a threshold distance-based framework, as expressed in the equation below:

D≤ Su(Tblk−Texec), (4.8)

where Su represents the known user speed, and Texec is the sum of four sub-times described in

equation (4.6). The analysis is conducted across various user velocities to establish the waiting time,
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denoted as Tw [164]. Moreover, the premature HO’s effects on on the QoS are also examined. The last

stage of our proposed system is the HO, wherein the parameter THO ascertains the feasibility of execut-

ing a successful handover. For the HO to be deemed successful, it is requisite that Tblk exceeds Texec,

thereby guaranteeing sufficient Tw. The Texec in our case is calculated to be roughly 153 milliseconds;

consequently, if the CU identifies the blocking event; Tblk must surpass 153 milliseconds to achieve a

successful HO. In the event of adverse conditions, the user is likely to encounter a failure in connectivity

if the Tblk is lesser than Texec.

Algorithm 2: UAV-Assisted Proactive Handover Algorithm
Result: Decision-making and execution regarding handover
Initialisation;
BLK← False;
Initialise Su, Lu;
while True do

BLK, Lu, Su← ODL_Module();
if BLK then

Tblk← Tblk(Lu,Su);
Texec← Texec();
if Tblk > Texec then

RSSIBS← RSSIBS();
RSSIuav← RSSIUAV ();
if RSSIuav > RSSIcurr then

Switch connection to UAV;
else

Maintain connection with BS;
end

end
else

Keep observing (No Handover necessary);
end

end

4.4 Simulation Setup and Results Analysis

For the purpose of simulating and performing a comprehensive analysis of UAV-assisted HO, this work

utilized a publicly accessible ViWi dataset [183]. The ViWi platform serves as a parametric and scalable

framework for generating datasets that amalgamate visual and wireless data. This platform can generate

high-fidelity synthetic datasets by combining a 3D game environment (using Blender particularly for

visual data) with Wireless InSite software, which employs ray tracing methods to generate visual data.

The dataset encompasses a multitude of scenarios that are contingent upon the positioning of vision

sensors and the view of the user. The positioning of cameras is examined under two configurations:

distributed (where cameras are positioned across multiple base stations) and co-located (where cameras

are situated at a singular base station). Furthermore, with respect to the user’s perspective, two distinct
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situations (direct visibility and obstructed visibility) are considered. Given that this investigation em-

phasizes proactive blockage prediction, the two scenarios have been incorporated, namely, co-located

camera with direct visibility and an obstructed view. The rationale behind combining these situations is

to accurately configure the dataset crucial for the blockage prediction problem.

4.4.1 Simulation Setup

The simulated framework is based on a simple scenario with one user, an obstructing object, and a UAV

positioned above the obstruction zone, as illustrated in Figure. 4.1. The user pass through from the

right to the left while receiving service from SBS1. However, the potential presence of an obstructive

object may disrupt the LoS communication, thereby causing a disconnection in service. Consequently,

the implementation of HO is essential to prevent any service disruptions. In a prior study, a successful

handover was accomplished by proactively transitioning the user from SBS1 to SBS2 to ensure uninter-

rupted connectivity. Nonetheless, this HO led in a decrease in the RSSI, that is deemed unfavourable.

Therefore, to address such problem, we introduce a UAV-assisted handover approach aimed at sustaining

seamless connectivity while minimizing performance degradation.

4.4.2 Impact of Channel Model on RSSI

Given that UAVs operate at diverse altitudes, it is crucial to comprehend the extent to which commu-

nication performance is influenced by signal propagation dynamics. The utilization of various channel

models, which forecast the behavior of radio waves across different scenarios, constitutes the founda-

tional basis for this comprehension. This paper offers a analysis of the comparison of the RSSI outcomes

derived from two widely employed channel modeling methodologies: the Two-Ray Ground Reflection

(TRGR) and the Free Space Path Loss (FSPL) model [184], assessed at varying UAV altitudes.

The investigation predominantly concentrates on the manner in which these models predict the dy-

namics of communication signals, which fluctuate in accordance with the UAV’s altitude and the hor-

izontal distance from the terrestrial user in UAV-to-ground contexts. The FSPL and the TRGR model

represent two widely acknowledged frameworks that provide essential insights into the principles of ra-

dio frequency communication within UAV applications. The FSPL model is particularly straightforward

to implement and is critical for ascertaining the fundamental attenuation of radio waves in relation to

frequency and distance, as it assumes that between Tx and Rx there is a clear LOS. In the evaluation of

UAV communications during high-altitude operations where the LOS component prevails, this model

emerges as a vital instrument.

The following presents the path loss L in decibels:

The path loss L in decibels is given by:

L = 20log10(d)+20log10( f )+20log10

(
4π

c

)
(4.9)

where:

• d = Distance between the Tx and Rx

• f = Signal Frequency
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Figure 4.5: Illustration showing different UAV altitudes relative to a moving car.

Figure 4.6: Impact of different UAV altitudes
on RSSI in the FSPL model. Results are ana-
lyzed using the curve corresponding to h= 20
m..

Figure 4.7: Impact of different UAV altitudes
on RSSI in the TRGR model. Results are ana-
lyzed using the curve corresponding to h= 20
m.

• c = Speed of light

In non-logarithmic form, the received power Pr is:

Pr =
PtGtGrλ

2

(4πd)2 (4.10)

where:

• λ = Wavelength of the signal ( λ = c
f )
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However, for low-altitude UAV operations, a more thorough analysis is provided by the TRGR model.

The TRGR model, unlike FSPL, incorporates interference effects from ground-reflected paths, which

vary significantly with changes in UAV altitude and user position, leading to greater fluctuations in

RSSI. Understanding how ground reflections can improve or degrade the signal according to the di-

rect and reflected channels’ phase differences is crucial for understanding the connections between the

surroundings and the signal that is being transmitted.

The primary challenge involved acquiring UAV channel parameters specific to mobile users. To

generate UAV sample data, we integrated two different scenarios using the ViWi dataset. We used the

co-located cameras with a direct view to map the RSSI according to the user’s position. Using the

UAV model analysis presented in Section 4.2.2, we present different RSSI values for altitudes of 15m,

20m, 25m, and 30m. Figure in 4.6 and 4.7 illustrates these results for the TRGR model and the FSPL

model. When the height increases between 15 to 30 meters, the RSSI value drops from -48 to -54 db.

This drop results from the fact that when the UAV’s height grows, there is an impact on the antenna

gain and coverage beamwidth in addition to an increase in path loss. Similarly, because of the inverse

square variation in path loss with that of the distance, RSSI decreases as the horizontal distance between

the UAV and the car increases. Following a thorough examination, the ViWi scenario’s results were

recreated at a height of 20 meters using a smooth, bell-shaped RSSI curve. As a result, after the BLK

incident is identified, the UAV uses the RSSI of 20 meters in height as a dataset to perform HO.

The received power Pr is given by:

Pr =
PtGtGrh2

t h2
r

d4 (4.11)

where:

• Pt = Transmitter power

• Gt and Gr = Gains of the Rx and Tx antennas, Rx and Tx respectively

• ht and hr = Heights of the Rx and Tx antennas, respectively

• d = Distance between the transmitter and receiver

The following is an expression for the phase difference between the reflected and direct paths:

∆φ =
2πd

λ
(4.12)

where the signal’s wavelength is represented by λ .

The RSSI metric exhibits a decrement for the FSPL model, ranging from -61.5 dBm to -67.5 dBm,

while for the TRGR model, the RSSI reduces from -64 dBm to -71 dBm as the height escalates from

15 to 30 meters. This reduction go down due to the influence of antenna gain and coverage beamwidth,

compounded by a rise in path loss associated with the UAV’s elevation.

4.4.3 Findings and Analysis

The suggested system for UAV-assisted HO ensures the preservation of seamless connectivity with mini-

mal degradation in performance. The users performance during the HO process is quantitatively assessed
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using the normalized RSSI metric. Initially, the user receives service from SBS1; however, service in-

terruption happens in the presence of a obstruction.When a Blockage (BLK) event is identified, the HO

algorithm calculates the required time, represented as Tblk. If the execution time, Texec, falls below Tblk,

a HO request is made. The final HO is carefully completed, taking into account the correct trigger area.

Within this setting, it is presumed that a UAV is situated at a designated altitude, facilitating coverage

over the obstructed region.

Power gain

Figure 4.8: Results of UAV-assisted HO. The user is served by SBS1 and experiences service
discontinuation without HO.

The findings of the final HO is shown in Figure. 4.8. Specifically, during the optimal Handover,

when the user transitions from SBS1 to SBS2, a considerable decrease in RSSI is noticed, which is not

desirable. The decrease in RSSI is due to path loss, as SBS2 is positioned far away from the user.

During the HO process, a UAV acts as a BS in the proposed solution. In the UAV-BS model, a

decrease in the RSSI occurs due to path loss. However, despite this decrease, UAV-assisted Handover

(UAV-HO) outperforms HO scenarios in general without UAV assistance. Specifically,when compared

to HO scenarios without the use of a UAV, UAV-HO provides a 20% improvement in RSSI at the optimal

trigger location, as illustrated in Figure. 4.8. This demonstrates how effectively using a UAV as a base

station may improve user experience during the HO process.
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4.4.4 Quality of Experience (QoE)

In the following section, we analyze how the PHO algorithm improves the reliability of high-frequency

communication networks. This section focuses at how the PHO algorithm improves high-frequency

wireless network dependability as evaluated by real-time applications that are naturally susceptible to

disruption in service and latency within the network. A pertinent illustration of this scenario is the mobile

user engaged in a video call, with the metric employed being the Mean Opinion Score (MOS). The MOS

assess the user’s QoE and is determined by human perception of the overall service quality, with scoring

ranging from 1 to 5 with scores between 1 and 5 (1: bad, 2: poor, 3: fair, 4: good, and 5: excellent) [164].

The RSS values are correlated to the corresponding MOS via the reference table provided in [185]. The

outcomes shown in Figure. 4.9 illustrate the comparative analysis of the MOS for both proactive and

reactive handover (HO). Specifically, in the context of PHO, Fig. 4.9(a) presents the MOS for UAV-HO

and Small Base Station Handover (SBS-HO). UAV-HO sustains a superior RSSI level, yielding a high

MOS, except in cases where excessive UAV altitude (>30m) reduces beamforming accuracy and signal

strength, as reflected by MOS dips. Conversely, in the scenario of SBS-HO, the MOS diminishes below

4 during the handover process, thereby detrimentally affecting the user’s experience. Moreover, in the

event of reactive HO, a disconnection in service occurs, as illustrated in Fig. 4.9(b), until a re-connection

is successfully established.
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(a) MOS comparison for UAV-HO and SBS-HO
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(b) MOS comparison for UAV-HO vs reactive HO
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Figure 4.9: Comparison of UAV-HO, SBS-HO and reactive, measured by MOS. The users have
a lower MOS when shifted to SBS1 and experiences service disconnection for reactive H0.



CHAPTER 4. UAV-ASSISTED HANDOVER WITH PROACTIVE BLOCKAGE PREDICTION 72

4.5 Chapter Summary

This chapter discusses an innovative technique to addressing problems in MmWave communication,

especially in terms of future wireless systems that require seamless communication, high speed, and

low latency. The chapter focuses on the use of UAVs as dynamic BS to assist in HO processes, aiming

to mitigate communication blockages caused by environmental changes and obstacles. The chapter

introduces a proactive blockage prediction method that integrates CV and ML with UAV networks. This

method leverages vision-based data and wireless signal information to predict potential blockages before

they occur, enabling timely handovers that maintain connection quality. The UAVs act as base stations

that provide alternative LoS links when primary links are disrupted, ensuring continuous and reliable

communication.

A significant contribution of this work is the development of a vision-assisted, multi-modal handover

framework. This framework uses Object ODL techniques to identify potential blockages and assess user

speed and location. A NN model predicts the time required for HO, allowing the system to perform

a proactive handover if a blockage is predicted. The use of UAVs in this context is shown to enhance

overall network performance by 20%, as validated by simulation results using the Vision-based Wireless

(ViWi) dataset.

The chapter also explores the modeling of UAV communication channels, considering factors such

as antenna polarization and elevation angles, which are critical for optimizing signal reception in air-to-

ground communication. The effect of UAV altitude and distance on signal strength is analyzed using

both FSPL ans TRGR models.

This chapter concludes by emphasizing how UAV-assisted proactive handovers improve QoE, with

potential applications in autonomous driving, smart cities, and disaster response. Future research could

explore adaptive UAV altitude control and the integration of additional modalities like LiDAR for en-

hanced blockage prediction.



Chapter 5

Enhancing Latency-Aware Vision-Aided
Wireless Communication in UAV-Assisted
Networks: Analysing Onboard and
On-Ground Training

Building on the proactive handover and blockage prediction mechanisms discussed in previous chapter,

this chapter focuses on minimizing latency and cost in beam management for UAVs using mmWave and

THz technologies. These technologies are essential for extending coverage, enhancing security surveil-

lance, and supporting disaster relief operations. However, they require large antenna arrays and narrowly

focused beams, posing significant challenges, particularly in maintaining effective communication links

while the UAVs are in motion.

To tackle the challenge of accurately adjusting narrow beams during motiona traditionally time-

consuming and resource-intensive processthis chapter introduces a novel vision-aided machine learning

approach. By utilizing data from UAV cameras and wireless signals, this method efficiently predicts

the optimal beam orientations, significantly reducing latency and costs associated with beam training.

Building on the proactive blockage prediction mechanism discussed previously, where UAVs serve as

dynamic base stations for seamless handover (HO) and enhanced connectivity, this chapter integrates

advanced vision-based learning for more precise beam management. Previously, a proactive blockage

prediction mechanism was introduced, using CV to detect potential obstacles, location and speed of the

user ensuring seamless connectivity and enhancing network performance by 20%. The current chap-

ter extends this framework by incorporating on-device inference capabilities, reducing dependency on

ground-based processing.

The proposed vision-aided beam management method was evaluated on an extensive dataset com-

prising visual and wireless communication data from UAVs and ground communication infrastructure.

The results indicates that the Mobilenet-based approach achieves approximately 88% accuracy in pre-

dicting the best beam direction for the top-1 prediction and nearly 100% accuracy for the top-3 predic-

tions. Additionally, performing these computations directly on the UAV (on-device inference) signif-

icantly reduces communication delays by 13% and lowers communication costs by 49% compared to

73
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on-ground inference.

These studies emphasize the practical advantages of the proposed machine learning approach in

managing highly mobile mmWave/THz UAV communications effectively. By improving the precision

of beam orientations and reducing the latency and costs associated with beam training, this research

contributes to the development of more reliable and efficient communication systems for UAVs, ulti-

mately enhancing their operational capabilities in various critical applications. The integration of ad-

vanced vision-aided techniques in beam management highlights the potential of UAVs equipped with

mmWave/THz technologies to transform wireless communication landscapes, particularly in scenarios

demanding high mobility and rapid adaptability.

5.1 Introduction

The widespread use of wireless technology has led to a significant increase in congestion in the low-

frequency RF bands. Therefore, it has become apparent that moving into higher frequency ranges is

crucial to ensure high transmission speeds and wide bandwidth. This shift is necessary to meet the

growing demand for data transmission [153, 186]. As a result, communication in the millimeter-wave

(mmWave) spectrum and higher frequencies has gained interest from academia and industry [187]. On

the one hand, UAVs can serve as aerial communication platforms, such as relays, base stations, and

data aggregators. This enables them to offer communication services when needed for ground-based

users or expand the coverage area of established terrestrial cellular networks. This approach is known

as UAV-assisted wireless communications [188]. On the flip side, UAVs can also be incorporated into

cellular networks as new aerial users, carrying out functions such as goods delivery, aerial surveillance,

monitoring, remote sensing, and so forth. This is performed through interaction with the terrestrial base

stations [128]. Given their potential applications, UAVs present numerous challenges such as planning

trajectories and paths, avoiding collisions, controlling mobility, addressing cost and security concerns,

managing data offloading, dealing with latency, and optimizing energy consumption [189]. The design

of UAV trajectories, resource distribution, and the inherent delay associated with the communication

link between UAVs and ground users are some of the elements that affect latency in UAV-assisted net-

works. In order to reduce latency and improve overall network performance, it has been determined that

optimizing UAV trajectory and communication strategies are crucial [190]. Article in [191] focus on

the use of UAVs as base stations for wireless communication with the objective of energy management.

Instead, the researchers adopt a new strategy in which the UAVs land on designated areas called landing

stations and save energy by not to simply flying around or hovering in the air, waiting for any new tasks.

Lastly, network-level performance was analytically evaluated via a mathematical model in the paper,

which demonstrated that a significant amount of energy can be saved to UAVs with only a negligible

degradation of coverage and throughput.

Although UAV-assisted networks have great potential, current approaches frequently fail to effec-

tively address the latency problem. This is mainly because of the complex connections between UAV

mobility, communication dynamics, and the varying demands of ground users. For example, trajectory

design for multiple-UAV aided wireless networks needs to take into account the interference between

UAVs as well as the spatial-temporal dynamics of user demand, as these factors can have a substantial
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impact on the network’s latency and throughput [192]. Comparably, in order to satisfy the Quality of

Service (QoS) criteria, including latency, of various applications, the distribution for resources, such as

bandwidth and power, must be carefully handled [193].

Millimeter wave (mmWave) technology, when combined with UAVs and cameras, offers a novel

solution to tackling issues in wireless communications and object identification, particularly in au-

tonomous systems. This integration primarily aims to improve the accuracy and effectiveness of beam

prediction, blockage prediction, and self-localization in complex scenarios. Deep learning techniques,

such as convolutional neural networks (also known as CNNs) and recurrent neural networks (RNNs),

are critical in processing visual input from UAVs for wireless communication purposes. For example,

adapting pre-trained ResNet-18 models for beam and blockage prediction demonstrates the potential of

transfer learning to leverage existing architectures for new tasks [194][195]. These models are fine-tuned

using images labeled with matching beam indices, providing a successful way of image-to-beam indices

classification.

In this regard, our work presents a framework that combines the state-of-the-art MobileNet archi-

tecture with a vision-assisted beamforming system for UAV. This integration enhances the UAV’s ability

to make decisions in real-time based on visual inputs by utilizing MobileNet’s effective convolutional

neural network (CNN) design, which is designed for mobile and embedded vision applications. Due to

this, UAVs are able to dynamically modify their beamforming strategies in order to maximize commu-

nication linkages with ground users, taking into account factors like user density, terrain, and obstacles

that might affect signal quality. This new method makes a substantial contribution to the field of UAV-

assisted wireless communication by improving adaptive communication, increasing network efficiency,

reducing latency, while encouraging energy efficiency. This research leverages lightweight MobileNet

architectures to achieve real-time beamforming, addressing limitations in prior vision-aided methods

such as high latency and computational overhead.

5.2 Related Work

To fully capitalize on the era of the Internet of Everything (IoE), a strong communication infrastructure

is required that supports low latency and high reliability. Hence, the introduction of 5G technology has

brought about the idea of URLLC as a major performance indicator [196]. According to [197], wireless

communication technologies such as 5G Advanced and 6G are expected to handle highly mobile devices

like UAVs and autonomous vehicles in the coming years. Drones, also known as UAVs, are considered

crucial in driving future technological advancements. They can help extend the range of mmWave wire-

less networks, enable low-latency applications, and enhance security surveillance systems. These UAV-

linked mmWave wireless networks can be split into two groups, The first group involves using UAVs as

aerial Access Points (APs) or relays to improve the performance of the ground-based cellular network.

The second group involves UAVs operating as aerial User Equipment (UEs) connected to the terres-

trial cellular network. In situations that require quick communication responses, such as emergencies

or hotspot areas, UAVs can serve as aerial APs, establishing temporary data connections with ground

users. This is one of the most popular communication scenario for UAV-assisted cellular networks [198].

Using UAVs has improved wireless communication by establishing direct connections between the air-
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Figure 5.1: UAV as a Mobile Base Station in an Urban Environmen

borne and ground-based components (AtG). This innovation has reduced signal loss during transmission

and improved the QoS for these connections. Moreover, the mmWave communication technology has

shown remarkable effectiveness in situations characterized by emergencies, unfamiliar terrain, or dy-

namic topological environments[153]. UAVs are expected to have mmWave/THz transceivers to meet

the high data rate requirements of modern applications [172]. This is because mmWave/THz commu-

nication systems provide a large bandwidth. However, these systems need extensive antenna arrays and

use narrow beams to maintain a good signal-to-noise ratio (SNR). Choosing the most suitable beams in

high-frequency systems with large antenna arrays involves significant overhead in beam training.

Latency-aware communication in UAV networks have gained a lot of interest because of their criti-

cal significance in real-time applications including emergency response and traffic control. Researchers

have investigated several ways to reduce latency, such as optimizing UAV flight patterns and developing

efficient data routing systems. Mozaffari et al. [22] investigate techniques for optimizing UAV deploy-

ment and resource allocation to improve network performance while maintaining low latency. Zou et

al. proposed a vision-assisted 3-D predictive beamforming architecture that provides a substantial ad-

vancement in UAV communications. It offers a practical solution to the issues provided by high mobility

and energy constraints, opening the way for more efficient and effective UAV-to-vehicle communication

systems [199].

The application of computer vision and deep learning in wireless communication, notably in UAV

networks, has shown potential in terms of enhancing signal transmission model accuracy and beam-

forming algorithms. Therefore, the use of AI techniques for computer vision in UAV networks attempts

to enhance beam alignments and blockage prediction, which are critical for mmWave communications.

Alzenad et al. investigate how UAVs equipped with cameras can utilize visual information to predict

ideal communication beams and identify potential blockages, hence increasing mmWave communica-
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tion reliability [200]. Charan et al. developed a machine learning system that uses images taken by the

UAV’s cameras to determine the optimal beam index for the mmWave signal [147]. Notably, another

study provides a multi-modal machine learning architecture that combines positional and visual data

to improve beam prediction. This approach takes advantage of the synergy between GPS data, camera

pictures, and mmWave beam training datasets to improve the accuracy of beamforming decisions in dy-

namic situations [100]. Similarly, Zarei et al. utilize a Squeeze-and-Excitation ResNet50 (SE-ResNet50)

model to demonstrate a unique method for reducing beam training overhead in UAV-enabled mmWave

communications. The SE network prioritizes useful features through channel-wise feature recalibration,

allowing it to adapt to changing conditions and maximize predictions across several scenarios. This so-

lution uses visual data captured by UAV-mounted cameras to improve the accuracy of beam prediction

in dynamic scenarios [201]. Building on this, another study proposed a vision-assisted beamforming

framework tailored to millimeter-wave (mmWave) communications. Their approach takes advantage

of the inherent vision functionality of UAVs to assist beamforming, lowering the overhead caused by

frequent beam tracking updates in high mobility conditions. The proposed framework detects vehicles

using a YOLO-based deep learning network and guides the beamforming process based on the positions

discovered. Experiments and simulations on the UAVDT dataset demonstrated notable performance

gains in terms of received signal-to-interference-plus-noise ratio (SINR), emphasizing the efficiency of

integrating visual information for beam prediction in UAV-to-vehicle connections [202].

5.3 Methodology

This research explores a communication system deployed in a bustling downtown scenario. The primary

components of the system include a millimetre-wave (mmWave) base station, mobile users, and a UAV

designed to operate in dynamic urban environments.A classic cellular tower (Ground-BS) operates as

a typical base station, providing a wide-area signal. This highlights its importance in enabling broad

cellular connectivity. In contrast, the UAV (UAV-BS) can be used as a mobile base station to dynami-

cally improve network capacity and coverage, which is especially advantageous in highly populated or

difficult-to-reach places as shown in figure 5.1. This configuration indicates a flexible and adaptable

communication network capable of addressing high data demands while maintaining reliable connectiv-

ity in a variety of urban areas. The base station, strategically located to optimize coverage, communi-

cates directly with a flying UAV. This model is pivotal in understanding the real-world applications and

challenges of mmWave communications in urban settings.

5.3.1 System Elements

Basestation: At the heart of this system is a basestation equipped with an M-element ULA. This config-

uration allows for advanced directional beamforming capabilities, crucial for mmWave communication’s

high-frequency spectrum.

UAV: The recipient of the basestation’s signal is a uniquely designed UAV. It carries a single-antenna

mmWave receiver, enhancing its receptivity to the basestation’s signal. Additionally, it is equipped with

three RGB cameras, an innovative feature that enables the UAV to capture comprehensive data about
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the surrounding wireless environment. The UAV’s RGB cameras provide high-resolution visual data

critical for environmental analysis, enabling the detection of obstacles and user density for adaptive

beamforming decisions.

Users: The network users comprise a diverse group, each equipped with advanced mobile devices.

Every individual carries a versatile smartphone, enhancing connectivity to both terrestrial and UAV base

stations. These devices also feature high-resolution cameras, allowing users to capture and share high-

quality photos and videos. Moreover, sensors on these smartphones provide extensive environmental

data, facilitating augmented reality applications and improved situational awareness.

5.3.2 Signal Propagation

The communication between the basestation and the UAV leverages OFDM with K subcarriers. This

approach is beneficial for handling the high bandwidth requirements of mmWave communication. Fur-

thermore, a cyclic prefix of length D is employed to mitigate inter-symbol interference, a common

challenge in urban communication scenarios.

5.3.3 Signal Reception and Processing

The UAV’s received signal, yk[t], is modeled as yk[t] = hT
k [t] fq[t]x+ vk[t], where f ∈ F represents the

best beamforming vector at time t, and vk[t] is a noise sample from a complex Gaussian distribution

N (0,σ2). The transmitted complex symbol x ∈ C follows the power constraint E[|x|2] = P, where P

represents the average symbol power.

5.3.4 Beamforming Vector Selection

Selecting the beamforming vector, f ∗[t], at each time step is crucial for maximizing the average receive

SNR.

The formula is f ∗[t] = argmax fq[t]∈F
1
K ∑

K
k=1 SNR|hT

k [t] fq[t]|2, where SNR is the transmit signal-to-noise

ratio, SNR = P
σ2 .

5.3.5 UAV Trajectories and Data Samples

UAV Specifications: The UAV, central to this dataset, is equipped with three cameras oriented in differ-

ent directions, enabling a comprehensive visual coverage of the street. The visual data range spans the

x-axis from -100 to 300 meters. Additionally, the UAV features a half-wave dipole receiver antenna for

precise wireless data acquisition.

Basestation Configuration: Two basestations are positioned precisely 100 meters apart on either

end of the main street. Each station has a half-wave dipole antenna array oriented along the z-axis, with

128 antennas extending along the x-axis.

Trajectory Modeling: The dataset comprises 6,735 samples, representing 17 distinct UAV trajecto-

ries. These trajectories, primarily varying in the x and y-axes, maintain a constant altitude of 50 meters.

The UAVs’ linear paths, either in the positive or negative x direction, are meticulously designed above

the street, with y-axis variations from -5.625 to 1.875 meters.
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Onboard Training and Testing: The Mobilenet model is trained and tested directly on the UAV.

This approach is instrumental in handling the computational constraints typical of UAV platforms,

thereby optimizing the system’s overall efficiency. By processing data onboard, the system minimizes

latency, which is critical in dynamic urban environments.

Data Transmission and Beam Prediction: In a significant departure from traditional methodolo-

gies, only the inference data, rather than the entire data set, is transmitted back to the basestation for

beam prediction. This strategy substantially reduces the volume of data that needs to be transmitted,

further minimizing latency and enhancing the responsiveness of the communication system. The effi-

cient prediction of the optimal beamforming vector is vital for maintaining robust and reliable mmWave

communications between the basestation and the UAV.

5.4 System Model and Problem Formulation

In this study, we consider a mobile communication system where a mmWave base station, equipped

with a N-ULA, communicates with a high-mobility UAV. The UAV is equipped with a single-antenna

mmWave receiver and an advanced visual sensor array, primarily an RGB camera. This setup captures

real-time environmental data crucial for beamforming vector selection.

The transmission employs OFDM with J subcarriers. A predefined beamforming codebook, B =

{bm}M
m=1, where bm ∈ CN , is utilized to facilitate communication. The downlink channel on the j-th

subcarrier at time t is represented by g j[t] ∈ CN , and the noise is modeled as a sample from a complex

Gaussian distribution n j[t]∼NC(0,σ2).

The received signal on the j-th subcarrier at time t is defined as:

y j[t] = g j[t]†bmx+n j[t] (5.1)

where x is the transmitted symbol adhering to the power constraint |x|2 =P. The objective is to maximize

the SNR, which is given by:

SNR j[t] =
|g j[t]†bm|2P

σ2 (5.2)

To address the challenge of dynamic beam selection without direct channel state information, we propose

using a MobileNet-based architecture due to its efficiency in processing high-dimensional image data

onboard. The UAV’s camera captures RGB images V [t] ∈ RW×H×3, which serve as the input to our

predictive model.

Machine Learning Model for Beam Prediction

The predictive model M, parameterized by θ , aims to estimate the optimal beamforming vector from

the image data. The training dataset D comprises image-beam pairs (Ii,Bi) for i = 1,2, . . . , |D|. The

model minimizes the loss function L, which measures the prediction error against the ground truth beam

information:

θ
∗ = argmin

θ

1
|D|

|D|

∑
i=1

L(M(Ii;θ),Bi) (5.3)
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Post-training, the optimized model is employed for real-time inference to predict the beam information

B̂new from a new image Inew:

B̂new = M(Inew;θ
∗) (5.4)

5.5 Proposed Vision Assisted Lightweight Beam-forming Frame-
work

Our proposed framework integrates the cutting-edge MobileNet architecture into a vision-assisted beam-

forming system for UAV networks as shown in figure 5.2. This integration is engineered to exploit the

lightweight and efficient nature of MobileNet, enabling high-performance on-device vision processing

within the constraints of edge computing.

Figure 5.2: Schematic of the Proposed Vision-Assisted Beamforming Framework in UAV
Networks, leveraging MobileNet for real-time edge computing. The system captures high-
resolution vision data, which is processed on-board using the MobileNet architecture for swift
feature extraction. This data informs an inference model that dynamically adjusts the UAV’s
beam direction for optimal communication efficiency and robustness.

At the core of our framework is a UAV equipped with high-resolution cameras, tasked with the

collection of real-time visual data from its operating environment. This visual data is pivotal for the

beamforming mechanism, providing a rich context that includes dynamic object detection, environmen-

tal analysis, and spatial orientation. To process this influx of vision data, we employ the MobileNet

model, renowned for its efficiency in handling high-fidelity images with a minimal computational foot-

print. MobileNet’s architecture leverages depthwise separable convolutions, drastically reducing the

model size and computational complexity. This design choice is instrumental in facilitating on-board

processing, eliminating the need for data offloading to centralized servers, and thereby reducing latency

significantly.

The UAV’s computational unit is augmented with edge computing capabilities, ensuring immediate

processing of the captured vision data. The integration of MobileNet into this unit enables the extraction

of relevant features directly on the UAV. The model’s compact structure is optimized for the limited

computational resources available on UAVs, ensuring that real-time processing demands are met without

compromising the efficacy of the data analysis.
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The processed data, rich with environmental context, feeds into an advanced inference model that

underpins the beamforming process. This model harnesses machine learning algorithms to predict the

most effective beam orientation, ensuring robust and optimal communication links. The real-time infer-

encing capabilities provided by MobileNet allow for dynamic adjustment of beam parameters, respond-

ing to the continuously evolving conditions captured by the UAV’s cameras.

In the final stage of our framework, the output from the inference model is utilized for intelligent

beam management. The UAV’s communication system employs this information to adaptively shape and

steer the communication beam, enhancing signal quality and strength towards targeted receivers. This

adaptive mechanism is critical for maintaining high-quality communication channels in complex and

changing environments, such as urban landscapes or during disaster response operations. By leveraging

the MobileNet architecture within this UAV-based system, we enable a new paradigm for real-time,

on-device processing, critical for the next generation of intelligent UAV networks.

Algorithm 3: Vision-Assisted Beamforming Using MobileNet
Data: UAV Camera, Edge Compute Unit, Inference Model, Comm System, Wireless Data

Result: Optimal Beam Direction

Initialize UAV system with MobileNet and Inference Model on Edge Compute Unit;

while UAV is in operation do
Capture Image← UAV_Camera.capture();

Collect Wireless Data← Comm_System.collect_wireless_data();

Processed Features← Edge_Compute_Unit.process(Capture_Image, Wireless_Data,

MobileNet);

Beam Prediction← Inference_Model.predict(Processed_Features);

Optimal Beam Direction← determine_optimal_direction(Beam_Prediction);

Comm_System.adjust_beam(Optimal_Beam_Direction);

if environmental changes detected then
goto capture_image;

The step by step explanation of our proposed vision assisted beamforming algorithm is stated as

follows:

1. The UAV system is initialized with MobileNet, a pre-trained convolutional neural network Model

deployed on the Edge Compute Unit (UAV). This setup includes configuring the UAV camera,

the communication system, and loading the necessary machine learning models. This ensures the

system is ready to capture, process, and infer data in real-time.

2. The main loop begins and continues to run as long as the UAV is operational. This loop ensures

continuous data capture and processing.

3. The UAV camera captures an image of the surrounding environment. This visual data provides

contextual information that can be used to enhance the beamforming process.

4. Concurrently, the communication system collects wireless data, including signal strength, inter-

ference levels, and other relevant metrics.
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5. The captured image and the collected wireless data are sent to the Edge Compute Unit. Here,

MobileNet processes the image to extract features, while the wireless data is preprocessed and

combined with the image features.

This step leverages the computational power of edge devices to perform complex data processing

tasks close to the data source, reducing latency and improving response times.

6. The processed features are fed into the Inference Model, which predicts the optimal beam direc-

tion. The model has been trained to interpret the combined features and provide accurate beam

orientation predictions.

7. The predicted beam direction is analyzed to determine the optimal beam orientation. This step in-

volves evaluating the models output to ensure it aligns with the current environmental conditions

and communication requirements.

8. The communication system adjusts the beam orientation based on the determined optimal direc-

tion. This adjustment ensures that the communication link maintains high quality and reliability.

9. The system continuously monitors for any environmental changes that may impact beam orien-

tation. This includes detecting obstacles, changes in signal interference, or any other factors that

could degrade communication quality.

5.5.1 Utilization of the ViWi Framework

The research leverages the publicly available ViWi framework [148], specifically tailored to create the

ViWi-Drone scenario[147]. This rich dataset uniquely combines wireless and visual data, integral to

the study. Each data sample encompasses an RGB image paired with a corresponding beam index.

These samples are products of a detailed simulation, replicating a dynamic downtown street scene with

multiple moving objects. This approach differs notably from the ViWi-BT scenario, as the user in the

ViWi-Drone dataset is a UAV positioned at a 50-meter altitude.

Figure 5.3: The diagram illustrates the various sections of the street as recorded by the three
cameras at a specific moment and depicts the two base stations, BS1 and BS2, as observed by
cameras 2 and 3, respectively. These images are sourced from the ViWi_Drone Dataset.
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5.5.2 Data Handling and Scenario Modeling

Dataset Division: The data samples are categorized into two main groups for in-depth analysis: (i)

The BS1 scenario, consisting of image and beam pairs exclusively from basestation 1, and (ii) The BS2

scenario, comprising samples from basestation 2 only.

Training and Validation Sets: For each scenario (BS1, BS2, and the combined scenario), the

dataset is segregated into training and validation sets, adhering to a 70-30% split. This division facilitates

a robust training regime while ensuring comprehensive validation of the model’s efficacy.

5.5.3 Model Training and Validation

DL Mobilenet Implementation: To enhance the efficiency and reduce latency in the communication

system, the UAV or drone is equipped with DL Mobilenet for onboard processing. This deep learning

model is a crucial component for real-time data analysis and decision-making in the UAV’s operation.

Mobilenet’s lightweight architecture makes it an ideal choice for onboard computational tasks, offering

a balance between performance and computational overhead. The hyperparameters used to fine-tune the

model are listed in Table 5.1. The proposed framework is trained using a Tesla T4 GPU provided by

Google Cloud Platform.

Table 5.1: Training Parameters

Training Parameter Value

Batch Size 64
Learning Rate 1×10−3

Learning Decay 1×10−4

No of Epochs 40

5.5.4 Performance Evaluation

Beam Prediction Accuracy

This study addresses beam prediction as a binary classification problem. Accuracy serves as the main

performance indicator, representing the proportion of correct predictions to all predictions made. Nonethe-

less, depending exclusively on accuracy can be deceptive due to the accuracy dilemma. This dilemma

occurs when a model achieves high accuracy mainly by predicting the majority class in an imbalanced

dataset, thereby missing the genuine patterns within the data.

To provide a more comprehensive evaluation, additional metrics such as precision (specificity), re-

call (sensitivity), and F1-score are considered. These metrics are defined as follows:

Precision =
TP

TP+FP
(5.5)

Recall =
TP

TP+FN
(5.6)
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F1-Score = 2× Precision×Recall
Precision+Recall

(5.7)

where TP denotes true positives, FP denotes false positives, and FN denotes false negatives.

Latency and Communication Cost

UAV systems transmit large amounts of raw visual data to a base station. Due to the immense volume

of data and the fundamental limitations of communication channels, this data transmission, especially

via wireless networks, can introduce significant latency. Since there is no longer a requirement for the

data to travel between the UAV and the ground station, we can completely eliminate these transmission

delays by integrating MobileNet directly on the UAV. This method makes sure that data processing

happens on the UAV in real time by taking advantage of MobileNet’s ability to process images efficiently

even when the UAV’s onboard computer capabilities are limited. The proposed approach utilizes on-

device inference, resulting in a considerable reduction in beam prediction inference latency. This study

considers a camera frame rate of 26 frames per second (fps) and a mmWave backhaul link operating at

10 Gbps [180].

The total inference latency, Ltotal, is a cumulative measure calculated as follows:

Ltotal = Tcapture +Ttransmit +Tinference (5.8)

The energy efficiency of the proposed model is assessed based on two primary factors: the compu-

tation time needed for local training and the transfer of parameters during each communication round.

This efficiency metric is expressed mathematically as follows [203]:

Eeff = E[(κ× tcomp)+(δ ×Ptransfer)] (5.9)

In this equation, κ is the computation constant with units of energy per second, and δ is the com-

munication constant with units of energy per kilobyte. E denotes the number of epochs, tcomp is the

computation time which varies with the device type, and Ptransfer represents the size of the parameters

transferred in each communication round. For the sake of simplifying our analysis, the constants κ and

δ are set to 0.003 and 0.0001, respectively, as referenced in [203].

5.6 Results and Analysis

This section presents the performance evaluation of the MobilenetV2 model based on different eval-

uations, for example, beam prediction accuracy, latency, and received power for scenarios BS-1 and

BS-2.

5.6.1 Beam Prediction

In this study, beam prediction is approached as a binary classification problem. Therefore, accuracy is

used as the primary metric to evaluate performance, representing the proportion of correct predictions
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among all predictions made. this study evaluates the efficacy of different MobileNet architecturesMo-

bileNet_V1, MobileNet_V2, and MobileNet_V3in predicting the optimal beam direction as a binary

classification task. The average Top-1, Top-2, and Top-3 accuracies for two diferent base staion BS1

and BS2 serve as metrics for assessment, denoting the probability that the correct beam direction is

within the top N predictions made by the model. The results are compared with the baseline Resnet-18

presented in [147].

Table 5.2: Top-k Beam Prediction Accuracy for BS1

Model Top-1 Beam Predic-
tion Accuracy

Top-2 Beam Predic-
tion Accuracy

Top-3 Beam Predic-
tion Accuracy

Mobilenet V1 58% 67% 74%
Mobilenet V2 89% 94% 97%
Mobilenet V3 92% 98% 99%
Resnet-18 92% 99% 99%

The results for BS1 and BS2 beam prediction accuracy are shown in figure 5.4 and 5.5 respectively.

The initial version, MobileNet_V1, demonstrates moderate predictive accuracy. With an average Top-1

accuracy of 58%, the model correctly identifies the optimal beam direction less than half the time on

the first prediction. However, the accuracy improves to 67% and 74% for Top-2 and Top-3 predictions,

respectively for BS1. This increment indicates that while MobileNet_V1 may not often predict the op-

timal beam direction initially, the correct prediction is likely within its first three guesses. This level of

performance may be suitable for non-critical applications where delays in achieving the optimal commu-

nication link can be tolerated. The figure in 5.4 depicts the beam prediction accuracy for MobileNet_V2

for BS-1 as well. The figure shows the top1, top2, and top3 beam accuracy. It is observed from the

figure that the top 1 accuracy for BS-1 is more than 89%. It means that the proposed lightweight model

predicted the top1 beam with 89% accuracy. The performance improves further when we consider top3

and top5 beam accuracies. The results show that, while ResNet-18 excels at Top-1 accuracy, MobileNet

models, particularly V2 and V3, perform comparably or better in Top-2 and Top-3 accuracies. This

shows that, while ResNet-18 is best suited for applications that need high precision, MobileNets provide

greater flexibility and reliability, constantly placing the correct beam among the top predictions. This

feature is useful in dynamic or resource-constrained contexts where a balance of accuracy and comput-

ing efficiency is required. The beam prediction accuracies for BS1 and BS2 are presented in 5.2 and 5.3

respectively.

Table 5.3: Top-k Beam Prediction Accuracy for BS2

Model Top-1 Beam Predic-
tion Accuracy

Top-2 Beam Predic-
tion Accuracy

Top-3 Beam Predic-
tion Accuracy

Mobilenet V1 57% 66% 74%
Mobilenet V2 88% 97% 98%
Mobilenet V3 90% 98% 99%
Resnet-18 90% 97% 99%
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Figure 5.4: This figure depicts the top-k (k = 1, 2, 3) beam prediction accuracies of the proposed
lightweight beam prediction model. The picture compares the top-k accuracies of various Mo-
bileNet models with the baseline ResNet-18 model for Base Station 1 (BS1).

We additionally presented the precision, recall, and F1 scores for the Mobilenet models under both

scenarios, BS1 and BS2, to further confirm the efficacy of our proposed method. The precision achieved

was 0.6425647, recall was 0.66445696, and the F1 score reached 0.83048433 for the top1 beam predic-

tion. These findings are detailed in Table 5.5.

Table 5.4: Performance Metrics for MobilenetV2 and Resnet-18 in Scenarios BS1

Scenario Precision Recall F1 Score
MobilenetV2 0.898671 0.882042 0.880208
Resnet-18 0.877772 0.871358 0.869700
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Figure 5.5: This figure depicts the top-k (k = 1, 2, 3) beam prediction accuracies of the proposed
lightweight beam prediction model. The picture compares the top-k accuracies of various Mo-
bileNet models with the baseline ResNet-18 model for Base Station 1 (BS2).

Table 5.5: Performance Metrics for MobilenetV2 and Resnet-18 in Scenarios BS2

Scenario Precision Recall F1 Score
MobilenetV2 0.881725 0.884050 0.876170
Resnet-18 0.864743 0.873699 0.864025

5.6.2 Confusion Matrix Analysis

In this study, we assess the performance of two deep learning models, MobileNetV2 and ResNet-18, for

predicting optimal beam indices in scenario BS-1. The performance of these models is illustrated using

confusion matrices, as shown in Figure 5.6 and 5.7.

• Model Accuracy: Both MobileNetV2 and ResNet-18 demonstrate strong predictive capabilities,

as demonstrated by the prominent diagonal in their respective confusion matrices. This diagonal

dominance shows that the models correctly predict the beam indices with high accuracy. A per-
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fect prediction scenario would demonstrate as an entirely diagonal confusion matrix, where each

predicted label matches the true label.

• Mispredictions and Their Closeness: While there are some off-diagonal elements indicating

mispredictions, these instances are thin and, importantly, close to the diagonal. This indicates

that even when the models do not predict the exact beam index, the predicted indices are still near

the correct ones. Such closeness in mispredictions could be critical in applications where near-

optimal beam selection is sufficient, thus ensuring that the overall system performance remains

vigorous despite minor prediction errors.

Figure 5.6: This figure illustrates the confu-
sion matrices for the top-1 predicted beam in-
dices with MobileNetV2 in Scenario BS-1

Figure 5.7: This figure illustrates the confu-
sion matrices for the top-1 predicted beam in-
dices with Resnet-18 in Scenario BS-1

5.6.3 Latency Analysis

The study investigates the latency differences between off-device and on-device inference. The graph

presented in Figure 5.8 and 5.9 illustrates a comparison of overall latency for both methods, showcasing

significant improvements when employing on-device inference. Latency components are derived from

empirical measurements from equation 5.8:

where:

• Tcapture is the time taken to capture an image, which is 38.5 milliseconds (ms),

• Ttransmit is the time required to transmit the image for processing, which is negligible due to the

direct on-device processing,

• Tinference = 19.29ms, based on MobileNet processing benchmarks for edge devices.

Applying these values, the overall inference latency is calculated as:

Ltotal = 38.5 ms+0 ms+19.29 ms = 57.79 ms
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There is a significant decrease in overall latency as compared to the conventional inference method,

which involves conducting inference off the UAV. Previously, when the inference was processed off-

device, the system measured a delay of 68.52 ms. By implementing inference capabilities on-device,

this delay is reduced to 59.5 ms. The figures in 5.8 and 5.9 demonstrates significant efficiency improve-

ments for BS-1 and BS-2, respectively. It shows a latency reduction of 15.29% for on-device MobileNet

inference and 6.45% for on-device ResNet-18 compared to off-device inference. This reduction is im-

portant for real-time applications such as beam prediction in UAV communication systems.
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Figure 5.8: Comparison of inference latency
for MobileNetV2 and ResNet18 during on-
board and on-ground training in Scenario BS-
1.
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Figure 5.9: Comparison of inference latency
for MobileNetV2 and ResNet18 during on-
board and on-ground training in Scenario BS-
2.

The reduction in latency not only enhances the responsiveness of the system but also improves the

adaptability and reliability of the network in dynamic environments. By minimizing the time spent on

image capture, transmission, and processing, the proposed framework ensures that the UAV communi-

cation systems can swiftly respond to changing conditions, an essential feature for mmWave communi-

cations which are susceptible to rapid changes in environmental dynamics.

5.6.4 Communication Cost Analysis

The comparative analysis of energy efficiency, based on the energy estimates given in equation (9). For

on-device learning, equation (9) is adjusted as described in [177]:

Eest = [E(κ× tc)+1+(δ ×Dtrn)] (5.10)

where E represents the number of epochs during the training process. In centralized learning, E is

set to 40, while κ and δ are maintained at 0.003 and 0.0001, respectively, for simplicity. The addition

of 1 in the equation accounts for the model-sharing cost from the edge to the off-device server, such as

a ground base station. For MobilenetV2 the computation time tc per epoch is recorded as 304 seconds,

and the data size Dtrn is 147 KB. The calculation is given by:

Eest = 40(0.003×304)+1+(0.0001×147)
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Therefore, the estimated energy Eest for centralized learning is approximately 37.4947 W and 40.3747

W for resnet-18 .

For off-device learning, equation (17) is modified to:

Eest = [E(κ× tc)+(δ ×Dtrn)] (5.11)

where E is the number of epochs. The calculation is given by:

Eest = 40(0.003×328)+(0.0001×360738)

Consequently, the energy estimates Eest for resnet-18 off-device learning is approximately 75.4338 W.
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Figure 5.10: This figure shows the energy estimation for MobilenetV2 and resnet-18 on-device
and off-device learning.

These results demonstrate a 50.29% reduction in energy consumption using on-device MobileNet in-

ference compared to centralized ResNet-18 processing, making the proposed approach viable for energy-

constrained UAV operations.
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5.7 Chapter Summary

This chapter presents a cutting-edge approach to enhancing latency-aware vision-aided wireless commu-

nication in UAV-assisted networks. By integrating Mobilenet models (MobilenetV2 and MobilenetV3)

with visual and communication data, the research achieves a significant improvement in beam prediction

accuracy for UAVs. The results illustrate an impressive nearly 90% accuracy for top-1 beam predictions

and near-perfect accuracy for top-3 and top-5 beams. A key innovation of this study is the use of

onboard training directly on UAVs, which reduces latency by 15.29% compared to traditional ground-

based training methods. This reduction marks a substantial improvement in real-time communication

efficiency. The method’s effectiveness is further validated through comparative analysis with the base-

line Resnet-18 model using the ViWi_Drone dataset, demonstrating its potential to significantly enhance

the performance of mmWave UAV communication networks.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The research presented in this dissertation addresses critical challenges in the field of 5G and beyond

wireless communication, particularly in the context of UAVs. Through the development of innovative

vision-assisted and machine learning-based techniques, this work contributes to enhancing the reliability,

accuracy, and efficiency of UAV communication networks.

Chapter 3 introduced a novel vision-assisted beam prediction model that significantly improves the

accuracy of beam selection in UAV communication. The research explored the integration of multi-

modal data fusion techniques to enhance beam prediction accuracy, a critical factor in maintaining re-

liable communication links between UAVs and ground stations. The proposed model, which leverages

computer vision (YOLO-v5) and ensemble learning (stacking), demonstrated significant improvements

in precision, recall, F1 score, and accuracy compared to traditional vision-based and position-based

models. By employing a stacking methodology, the proposed model achieved an impressive 90% accu-

racy for top-1 beam predictions and nearly 100% accuracy for top-3 and top-5 beam predictions. This

development is an essential step forward in providing UAVs with strong and reliable communication

links for UAVs, particularly in dynamic and challenging environments.

In Chapter 4, the focus shifted to proactive blockage prediction for UAV-assisted handovers in fu-

ture wireless networks. The integration of machine learning and computer vision has made it possible

to develop a multi-modal handover framework capable of predicting and mitigating potential communi-

cation blockages before they occur. The proactive handover mechanism, validated through simulations,

demonstrated a 20% improvement in overall network performance, highlighting its potential to maintain

seamless connectivity and enhance the Quality of Experience (QoE) for users.

Chapter 5 further advanced the research by analyzing latency-aware vision-aided wireless commu-

nication in UAV-assisted networks. The study found that onboard training, where the model is trained

directly on UAVs, reduced latency by 15.29% compared to conventional ground-based methods that in-

volve sending data to a ground station for processing. This reduction in latency is crucial for real-time

communication applications, ensuring that UAVs can operate efficiently even in time-sensitive scenarios.

Collectively, these chapters highlight the potential of integrating vision-based techniques with ma-

chine learning to address some of the most critical challenges in UAV communication. The proposed

92
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methods not only enhance the accuracy of communication predictions and the robustness of handover

processes but also contribute to reducing latency and energy, which is critical for the future of real-time

wireless networks.

6.2 Future Work

While the results presented in this dissertation are promising, there remain several areas for future re-

search that could further enhance the capabilities of UAV-assisted communication systems in mmWave

frequency bands:

6.2.1 Scalability and Real-Time Implementation

Future research should focus on scaling the proposed model for real-time implementation in large-scale

UAV networks. This will involve optimizing the computational efficiency of the model and ensuring it

can handle the high data throughput and processing demands required for real-time applications. Explor-

ing hardware acceleration techniques, such as the use of GPUs or FPGAs, could be a valuable direction

for this effort.

6.2.2 Generalization Across Diverse Environments

The current model was evaluated simulations and datasets like ViWi, which may limit its generalizability

to other environments. Future work should explore the model’s performance across diverse scenarios,

including urban, rural, and disaster-stricken areas. This could involve collecting and incorporating addi-

tional datasets that capture a wider range of environmental conditions and UAV operating scenarios.

6.2.3 Integration with 6G Networks

As the world moves towards the adoption of 6G technology, there is a need to investigate how the

proposed vision-assisted and machine learning models can be adapted and optimized for 6G networks.

This includes exploring new frequency bands and communication protocols that will be introduced with

6G.

6.2.4 Cross-Disciplinary Applications

The techniques developed in this research have the potential to be applied beyond UAV communication,

in areas such as autonomous vehicles, smart cities, and the IoT. Future work could explore these cross-

disciplinary applications, leveraging the strengths of the proposed models in various contexts.

6.2.5 Real-World Testing and Validation

Future research should focus on evaluating the proposed energy and latency-efficient model in real-world

settings. This includes using UAVs in real-world scenarios to actively detect blockages, monitor user
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mobility, and assess the overall impact on QoE). Researchers can improve the models’ applicability for

practical applications by comparing actual results to simulations.

6.2.6 Robustness Against Adverse Conditions

Finally, future work should address the robustness of the model against adverse conditions such as

extreme weather, signal interference, and high-speed mobility. Developing strategies to mitigate the

impact of these factors on beam prediction accuracy will be crucial for ensuring reliable communication

in challenging environments.

In conclusion, while this dissertation has made significant contributions to the field of UAV-assisted

communication, there remains substantial potential for further research and development. By continuing

to refine and expand upon the models presented here, future researchers can contribute to the ongoing

evolution of wireless communication technologies, ensuring that UAVs and other advanced systems can

operate with the highest levels of efficiency and reliability.
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