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Abstract

The goal of this PhD study is to improve the accessibility of tactile graphics for people with
visual impairments. Tactile graphics provide a means for blind individuals to understand non-
textual information through touch. However, they often require supplementary audio or Braille
text descriptions, which can be time-consuming and create obstacles to learning. For instance,
some individuals may find that reading Braille or listening to a screen reader takes longer be-
cause they have to go through all the text or audio to locate the necessary information. To
address these challenges, this study develops and evaluates TAURIS (Tactile AUdio Responsive
Intelligent System), a novel system that provides real-time audio descriptions that accompany
tactile graphics. TAURIS is comprised of pre-labelled tactile graphics, an interactive web tool
for labelling, and a mobile application. The mobile application relies on a customised deep
learning computer vision model to detect the user’s fingertips as they explore the tactile graph-
ics and provides information about what they are touching. Notably, no system simultaneously
detecting the fingertips of both hands in real-time and under different lighting conditions has
been implemented on a mobile device.

In order to evaluate the efficacy of TAURIS, a mixed-methods approach was employed.
This approach consisted of structured interviews, experiments, and post-experimental feedback
sessions involving a total of 20 participants, including one pilot participant. The structured
interviews were designed to gather information on the participants’ experiences with tactile
graphics and mobile devices. In the subsequent experiments, response times and the number
of correct answers were recorded during end-user testing of the app. The resulting data was
analysed using the Wilcoxon signed-rank test. The analysis revealed three statistically signifi-
cant findings: TAURIS allowed for faster interaction with tactile graphics and higher accuracy
in answering questions compared to both Braille text and screen readers. Additionally, while
no significant difference in memory retention was observed between TAURIS and Braille text,
TAURIS demonstrated a significant advantage in memory retention over screen readers. Addi-
tionally, the participants provided feedback on their impressions, comments, and suggestions for
improving the system. Finally, a mixed-methods approach was used to triangulate the data from
multiple sources and strengthen the validity of these findings.

Based on these findings, TAURIS has the potential to empower individuals with visual im-
pairments by providing an accessible and efficient tool that supports independent learning and
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improves knowledge retention. Further research with a larger number of participants in various
schools for the blind and countries would be valuable for gaining additional insights, increasing
the power of the statistical analysis, and enabling further comparisons.
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Chapter 1

Introduction

1.1 Context

Visual impairment is a significant public health concern that affects millions of people world-
wide. According to the statistics there are 36 million individuals classified as blind and 217
million with moderate to severe vision problems. (Ackland, Resnikoff, and Bourne, 2017). Vi-
sual impairment can have substantial social and economic impacts, but it can also create barriers
to learning and accessing information, especially in educational settings where visual materi-
als are mostly used. These materials can be challenging for Visually Impaired People (VIP) to
access and interpret and thus, can impede their academic progress and limit their future career
opportunities.

While vision impairment can present challenges in daily life, it is important to focus on the
ways in which technology can help overcome these obstacles and promote equal opportunities
for all. In recent years, there has been a significant increase in the development and availabil-
ity of Assistive Technology (AT) for the visually impaired, ranging from smartphone apps and
wearable devices to advanced software programs. These technologies are designed to address a
wide range of needs, such as navigating in unfamiliar environments, reading printed materials
and engaging with the digital world. By acknowledging the benefits of AT and exploring the
latest advances in the field, we can gain a better understanding of how technology can empower
VIP and enrich their lives. This thesis introduces an AT system that improves the accessibil-
ity of educational materials for the visually impaired, thereby providing them with the equal
opportunities to succeed in their academic pursuits.

1.2 Assistive Technology

For people with visual impairments, information encoded in a visual format creates certain barri-
ers. In order to alleviate this, special AT devices and materials are utilised. Assistive technology
systems have been defined as “equipment, devices and systems that can be used to overcome

1
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the social, infrastructure and other barriers experienced by disabled people that prevent their
full and equal participation in all aspects of society” (Hersh and Johnson, 2008). The authors
categorised the AT into different areas based on activities that individuals engage in:

1. Mobility (orientation and navigation),

2. Communication and information

3. Cognitive activities

4. Daily living

5. Education and employment

6. Recreational activities

Education is one of the areas in which this technology can be particularly impactful. With
the advancements in AT, including Tactile Graphics (TG), screen readers and braille displays,
VIP can now access and interact with visual content more independently. In the subsequent
sections of this chapter, detailed descriptions of these tools are provided.

1.2.1 Tactile Graphics

TG usage in AT allows visually impaired individuals to convey non-textual information by touch.
To be more precise, TG is the raised line versions of graphical illustrations which were adapted
for the tactual sense. The usage of these graphics is particularly crucial in the fields of science
technology engineering and mathematics (STEM) and orientation & mobility (O&M) where
most of the data is represented in diagrams, charts, figures and spatial maps. The most widely
used methods for producing TG are:

1. Thermoform (vacuum formed)

2. Swell paper (printed image lines raise after heating)

3. Embossed (printed on Braille paper)

4. Handmade (using the thing from the environment i.e. leaves, spaghetti)

In this study swell paper-based graphics are utilised. The swell, also known as Minolta or
capsule, paper is a cream-coloured paper which contains heat-reactive chemicals in it. When
black ink is applied on its surface and then heated, the chemicals fracture and the area under
the ink inflates. The standard printer can be used for the black ink placement and a special heat
fuser is required for the image to swell up. Figure 1.1 illustrates the TG sample created using
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this method. TG must be carefully designed to convey the intended meaning of the visual infor-
mation, often requiring the use of texture, shape, and spatial relationships to represent objects
and scenes. There are special rules provided by the Braille Authority of North America (BANA)
to assure the standardisation of Braille and TG. Teachers and instructors of VIP should follow
these guidelines when developing the TG samples.

In addition to the challenges of creating meaningful TG, VIP often require additional in-
formation to fully understand the content. Audio descriptions or braille annotations may be
necessary to provide additional context and detail, such as labels, titles, or captions. These
annotations can also help to clarify complex or abstract concepts that may be difficult to rep-
resent solely through TG. My research aims to enhance the accessibility of TG by integrating
accompanying audio feedback.

Figure 1.1: Tactile Graphics printed on a swell paper

1.2.2 Braille text

Braille is a tactile writing system that allows visually impaired individuals to read and write
through touch. It was invented by Louis Braille in 1824 (Sakula, 1998) and has since become
the standard reading and writing system for the blind. In the system, letters, numbers and punc-
tuation marks are represented by raised dots arranged in a variety of patterns (Figure 1.2). Braille
literacy plays a crucial role for individuals with visual impairments as it allows them to acquire
skills in spelling, grammar and punctuation. In addition to facilitating language acquisition, the
Braille literacy has been linked to several positive outcomes. For instance, Ryles (1996) dis-
covered that individuals who rely on Braille as their primary literacy mode have significantly
higher employment rates, are more likely to graduate from educational institutions and achieve
greater financial self-sufficiency compared to their non-Braille reading peers. There are, how-
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ever, certain limitations that must be acknowledged. The primary limitation of utilising Braille
text is its space requirement, which can be up to seven times larger than printed text (Johnson,
1996). In my work, I compare the efficiency of the developed mobile application against Braille
text descriptions for TG. In conclusion, while Braille text has certain limitations, it remains a
vital tool that not only enables individuals to read and write, but also enhances their cognitive
abilities. This, in turn, is essential for achieving academic success and accessing employment
opportunities.

Figure 1.2: Braille text embossed on Braille paper
Note: https://pixabay.com/photos/braille-hands-keys-read-5498805/ accessed 01/03/2023

1.2.3 Screen Readers

Screen readers are software applications that enable VIP to access digital content by convert-
ing text into synthesised speech or braille output. Optical Character Recognition (OCR) and
Text-To-Speech (TTS) technologies have had a significant impact on the development and per-
formance of screen readers. OCR allows the conversion of handwritten or printed texts into
machine-readable digital ones. This technology has made it possible for screen readers to ac-
cess printed and scanned text, expanding the amount of information that is available to blind
individuals. TTS technology has improved the naturalness and quality of synthesized speech,
making screen readers more pleasant and comfortable to use. Together, these technologies have
greatly increased the accessibility of electronic devices for VIP and have transformed the way
they interact with digital content.

In 1986, IBM introduced its first screen reader, which was developed to help VIP access
computers and software applications (Adams et al., 1989). The IBM Screen Reader device
utilised a speech synthesizer to read the text displayed on the computer screen, making it possible
for visually impaired individuals to access digital information independently. The creation of
this device was a pivotal breakthrough in the field of accessibility, as it was the first commercially
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available screen reader to facilitate computer interaction for VIP. The technology utilised in IBM
Screen Reader has since undergone significant advancement and development, and continues to
be utilised by visually impaired individuals today. In addition to the Braille text descriptions, this
study compares the efficiency of the developed application against screen reader descriptions for
TG.

1.2.4 Common limitations of existing Assistive Technology

Number of systems were developed to make educational materials more accessible to VIP
(Fusco and Morash, 2015; Baker et al., 2014; Melfi et al., 2020; Hosokawa, Miwa, and Hashimoto,
2020). Section 2.4 of the thesis reviews these and other systems in more detail. Despite these
advances, there are still numerous challenges when it comes to accessing technology. There are
several issues which may impact the effectiveness of AT in this context. The following examples
are the most common issues associated with this technology:

• Training: AT can be complex and challenging to use for those who are not familiar with
it. Educational institutions may not always provide sufficient training to visually impaired
students, which can limit their ability to use the technology effectively.

• Cost: AT can be expensive, creating financial barriers for visually impaired individuals
who may not have access to the necessary resources to purchase the tools they need.

• Portability: While many of these devices are small and compact, a significant portion
of AT for the blind is not portable. For example, many braille embossers and larger TG
displays are designed to be used in a stationary setting, such as an office or classroom.
This can be a hindrance for those who want to take their devices on the go, whether for
work or leisure.

• Maintenance: Like other tools, AT tools may require regular maintenance or upgrades
to ensure they remain effective. If these requirements are not met, the tools may become
obsolete or stop working correctly, which can impact the student’s learning.

Addressing these issues requires a concerted effort from policymakers, educators and re-
searchers to ensure that visually impaired individuals have access to the necessary tools and
support to succeed in their education. This may involve providing training, ensuring compat-
ibility between tools and software, addressing accessibility concerns, and providing financial
assistance to those in need. One of the aims of this thesis is to explore these challenges and to
propose a potential solution to improve accessibility.
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1.3 TAURIS System

Tactile Audio Responsive Intelligent System (TAURIS) was developed to accompany TG with
audio descriptions. The system consists of three components: the pre-labelled TG, an interactive
labelling web tool and the phone application. The digital version of the graphics first needs to be
labelled by teachers using the developed web tool. Then, the phone app, which is based on the
Android platform, will accompany those graphics with the audio descriptions. The developed
educational mobile application relies on a deep learning computer vision model to detect the
user’s fingertips. The fundamental purpose of the developed app is to allow the user to gain
information without sighted assistance. Chapter 4 of the thesis presents a thorough description
of the system.

1.4 Research Questions

The TAURIS app was developed with the aim of improving accessibility to TG for VIP. In or-
der to assess the effectiveness of the app for use in education for the blind, a series of research
questions were investigated through end-user interviews and testings. The purpose of this inves-
tigation was to evaluate the app’s performance and usability compared to the traditional methods
(Braille text and screen reader). The following questions were explored:

1. What are visually impaired individuals’ perceptions and attitudes toward the use of smart-

phone app in the context of exploring Tactile Graphics (TG)?

2. To what extent does real-time speech output, integrated with tactile exploration, enhance

the comprehension and retention of complex information conveyed through TG for visu-

ally impaired users?

3. What methods can be employed to improve camera aiming in smartphone-based assistive

technology applications designed for exploring TG?

To answer these research questions, the end-user testings of the developed system were
designed. Then, schools for visually impaired individuals in Glasgow were contacted. However,
due to the lockdown measures in Scotland, in-person meetings were prohibited. Consequently,
I decided to conduct end-user testing of the TAURIS in a school located in my home country of
Kazakhstan. It is worth noting that Kazakhstan has a higher prevalence of blindness, with over
330 blind individuals per 100,000 (Atlas, 2020), as compared to approximately 150 per 100,000
in Scotland (Boswell and Kail, 2016). According to the source, there are eight schools for blind
and visually impaired individuals in Kazakhstan (NNPCPK, 2022). After contacting several of
them, one school agreed to participate in the research.

Following the selection of the research methodology and experiment design, ethical approval
was obtained from the university. Then, I travelled to Kazakhstan to conduct the experiments
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and collect data. As stated above, the initial plan to conduct the experiments in Glasgow had
been cancelled, and as such, data collection was shifted to the summer period. This change in
schedule resulted in a smaller number of participants taking part in the research as many students
and school staff were on holiday. The data collection process was divided into three parts: the
first part involved gathering general demographic information from the participants, while the
second part involved conducting actual testing of the app. Finally, participants’ feedback on the
system was recorded. Chapter 5 of the thesis provides a more detailed description of the data
collection process.

1.5 Thesis Structure

The present thesis comprises seven chapters, including the Introduction chapter. The following
is an overview of each chapter:

Chapter 2 - Literature Review

This chapter provides a comprehensive review of the relevant literature in the field. Specif-
ically, it begins by presenting a state-of-the-art of TG and the barriers that have impeded its
widespread utilisation. Additionally, the chapter examines the current state of fingertip detec-
tion methods and evaluates their effectiveness in the context of TG. Finally, the chapter reviews
existing educational systems for individuals with visual impairments, providing a foundation for
the proposed system’s development and implementation.

Chapter 3 - Fingertip Detection

This chapter introduces the fingertip detection and tracking algorithm, a core component of the
TAURIS app. It details the development and implementation of a novel algorithm designed for
real-time, accurate fingertip detection on TG. Furthermore, it explains the enhancements made
to improve the model’s accuracy and tracking stability, including strategies to handle occlusions
and varying lighting conditions.

Chapter 4 - TAURIS System

This chapter provides an overview of the developed system, with a focus on the mobile applica-
tion and algorithms utilised. A detailed description of these components is included. Addition-
ally, the web tool used for annotating the TG is described in detail.

Chapter 5 - Methodology

This chapter presents the research methodology and design used in this study. The data collec-
tion methods and procedures are described in detail to ensure a comprehensive understanding
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of the research process. Additionally, an overview is provided of how the collected data will be
analysed.

Chapter 6 - Results and Discussion

This chapter presents the results of the experiments conducted to address research questions 1
and 2. The Likert scale questions are also analysed to shed light on research question 1. To tri-
angulate the data and confirm the findings, the quantitative and qualitative results are combined.
Additionally, the results of the after experiment interviews are analysed to investigate research
question 3.

Chapter 7 - Conclusions

This chapter provides comprehensive conclusions to the study, summarising the results and their
implications for each research question. The contributions of the work are discussed in detail,
as well as its limitations. Finally, plans for future work are outlined to address any unanswered
questions and further advance the research in this field.



Chapter 2

Literature Review

2.1 Introduction

In recent years, there has been a growing interest in developing innovative technologies that
can assist Visually Impaired People (VIP) in accessing and understanding graphical informa-
tion. This thesis focuses on the development of a system that combines Tactile Graphics (TG)
with audio descriptions to enhance the ability to perceive and comprehend information. In this
literature review chapter1, I examine three key topics related to the development of this system.

First, I provide an overview of the significance of TG in Section 2.2. TG have been widely
used as a means of representing graphical information for VIP, but their effectiveness is limited
without additional information, such as verbal or audio descriptions. I review previous research
on the use of TG for blind individuals and discuss the challenges that must be overcome to de-
velop an effective system. Then, I review the key research on hand use and exploration strategies
in TG. Finally, I review the camera use by blind people is Section 2.2.3.

Second, in Section 2.3 I review existing fingertip detection and tracking algorithms. This
algorithm is an essential component of the developed system, as it allows VIP to interact with
the TG in real-time. Finally, I discuss various educational systems that have been developed for
VIP in Section 2.4. I examine the strengths and weaknesses of these solutions and identify areas
where proposed system can provide additional benefits.

Overall, this section provides a comprehensive overview of the key topics related to the
development of a system that combines TG with audio descriptions. Through a thorough exam-
ination of previous research and existing technologies, this review identifies gaps in the current
body of knowledge and establish a foundation for the development of an innovative and effective
solution.

1Some of the work in this chapter has appeared in Zeinullin and Hersh (2022). Maralbek Zeinullin is the first
author and main contributor to this paper.
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2.2 Tactile Graphics

2.2.1 Importance of Graphic Literacy and Tactile Graphics

Graphic literacy is the ability to convey information presented in the form of shapes, diagrams,
maps, schemes, photos and other 2D formats. Graphics have three main advantages. They are
concise, relatively easily memorable and can clearly represent relationships between data. A
well drawn and labelled image can present detailed information which does not require much
more than a glance to understand. Several studies have demonstrated the ability to remember
visuals better than text (Paivio, 2013; Grady et al., 1998). Charts and graphs can be used to
represent the links between complicated data in an easy-to-understand format (Novak and Cañas,
2008). In summary, graphics can enable the assessment and understanding of a large amount of
information relatively quickly and comprehensively.

Visual graphics and TG both convey information through the use of images, but while visual
graphics are designed to be seen, tactile ones are designed to be touched and felt by individuals
who are blind. Numerous studies have been carried out to investigate the user experience with
TG. In a survey conducted by Zebehazy and Wilton (2014a) visually impaired students (n=59)
were more likely to agree (or strongly agree) that they liked using TG and wanted more access
to the materials. The authors also report (Zebehazy and Wilton, 2014c) that TG help VIP to keep
up with their sighted peers and to feel connected with the class teaching flow. In another research
carried out by Fusco and Morash (2015) all of the participants (n=3) liked TG and pointed out
their versatility in science technology engineering and mathematics (STEM) courses. Prescher,
Bornschein, and Weber (2014) asked the users about their experiences with TG exploration
and 56 out of 76 expressed a positive (medium to very high) attitude. However, more than
half of them preferred descriptions provided along with the graphics. One of the limitations of
this research is the lack of information about participants’ backgrounds, including whether they
attended a school for the blind or a mainstream school.

Almost in all of the surveys conducted on this research topic, participants mentioned that
it is important to provide accompanying descriptions in Braille, audio or other accessible for-
mats. The interview responses collected by Sheppard and Aldrich (2001) support the idea that
TG alone are not self-sufficient especially in a secondary and high-school curriculum. Various
feedback modalities which make TG content more accessible are described in the next section.

Some studies provide information about TG usefulness from the teachers and instructors
perspective. Zebehazy and Wilton (2014b) surveyed more than 200 teachers of students with
visual impairments in Canada and the USA. According to the results, 98% of respondents (n
= 241) agreed (or strongly agreed) that exposure to TG at an early age is crucial. In further
research, the authors found that students who begin learning graphics (including tactile ones)
in early grades are more successful in the later academic curriculum (Zebehazy and Wilton,
2014a). In a recent study conducted by Rosenblum, Cheng, and Beal (2018), one of the teachers
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reported that students with high graphic literacy skills are better at generalising and structuring
information. Sheppard and Aldrich (2001) interviewed 24 teachers who worked with VIP and
all of them reported that there were situations in which TG contributed substantially to effective
course learning. The main limitations of these studies are the lack of information about how
long the teachers have been working with VIP and how many visually impaired students they
teach. To sum up, graphic literacy is very important skill, which is required for the VIP to acquire
information during the education process. Many studies support the theory that TG accompanied
by accessible feedback is useful learning material which helps the users to improve those skills.

2.2.2 Hand Use in Tactile Graphics Exploration

A crucial aspect of designing effective and accessible educational materials for VIP is under-
standing how they interact with TG. Although previous studies have often focused on recog-
nition rates, a more detailed examination of hand movements and their specific roles during
tactile exploration is required for a thorough understanding of the processes. This section sum-
marizes key findings relating to hand dominance, functional asymmetry and the engagement of
individual fingers in tactile exploration tasks.

Contrary to the notion of single-finger dominance, studies consistently reveal that VIP pre-
dominantly employ two hands during tactile exploration. Wijntjes et al. (2008b) demonstrated
that participants utilized both hands in over 83% of their exploration time, a behavior that was
shown to correlate with higher rates of identification. Furthermore, study by Guerreiro et al.
(2015) had also shown that participants prefer two hands to explore TG. These findings high-
light the significance of considering bimanual exploration in the design of TG.

While the use of two hands is the common approach, they often perform different functions.
Bardot et al. (2017) have shown that VIP often use the non-dominant hand (frequently the left)
to maintain contact with the graphic, acting as an "anchor" point. The dominant hand, on the
other hand, engages in more refined explorations. This observation is further supported by Zhao,
Kaixing, et al. (2021), who found that the right hand’s tactile fixations have a significantly longer
duration. This functional asymmetry indicates a sophisticated interplay between the two hands
during tactile tasks.

Specifically focusing on finger use, Symmons and Richardson (2000) have observed that
index fingers are the main tactile sensoring during exploration. This finding is supported by
reports from participants in a study by Bahrin, Yusof, Na’im Sidek, and Ghazali (2024), who
identified the index finger as the dominant one during TG exploration.

In conclusion, the available evidence points towards bimanual exploration, where each hand
performs distinct roles, as the common exploration mode for VIP when using TG. The non-
dominant hand tends to serve as an anchor point, while the dominant hand carries out more
detailed explorations. Therefore, designers should consider this functional asymmetry when
designing tactile graphics. Also, future research should aim to better understand the roles of
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each hand and finger during tactile exploration.

2.2.3 Camera Use by Blind People

With the development of mobile technology, more and more visually impaired users desire to
utilise phone cameras in their daily activities. However, accurate aiming of the camera remains
a challenging task for them. Since proper usage of the TAURIS app requires this skill as well,
it was decided to investigate this subject thoroughly. According to Jayant et al. (2011), 71% of
the visually impaired respondents (out of 118) indicated that they use a phone camera regularly.
The results of a survey conducted within my research showed that more than 83% (out of the
12) of participants use their phone cameras at least once a month. All of them pointed out that
sometimes they experience difficulties with proper camera aiming.

In the recent decade, many researchers have attempted to solve this problem. In the early
2010s, authors such as (Bigham et al., 2010; Vázquez and Steinfeld, 2012; Balata, Mikovec, and
Neoproud, 2015) used classic Computer Vision (CV) techniques to locate objects of interest.
One major drawback of this approach is that the detection was not accurate. Nowadays, AI-
based solutions are widely used, as they are more robust. Lee et al. (2019) designed a mobile
application that provides audio-haptic feedback in real time to navigate the location of the object
of interest in the frame. This was done by utilising a DNN detection model to locate the centre of
the object. The authors have carried out a series of experiments with end users (N = 9). Results
show that desired objects were included completely in 92% of photos taken. However, the main
weakness of the study is that the proposed solution is constrained by the number of objects that
the model was trained to identify. In other words, the app will not be able to detect objects the
model is not familiar with.

In the same vein, Zhao, Wu, et al. (2018) in their work tried to address the issue of proper
camera aiming while taking photos of people. The authors integrated Facebook’s face recog-
nition model into their bot. The developed accessibility bot is capable of providing various
information including face locations, expressions, and identities. Results of their study show
that in general participants found this bot helpful. However, some of them reported that this
bot is suitable only for gathering with close friends and family. Another limitation is related to
privacy concerns. The face recognition algorithm is being processed on the cloud and requires
photos to be uploaded on a server.

A slightly different approach was used by Iwamura et al. (2020). In contrast to previous
works, the proposed system generates an image after the photo was taken. First, the user captures
an image using an omnidirectional camera (360°-degree camera). Then an object detection
algorithm processes the large visual field photo (Figure 2.1) and produces the cropped image of
a selected object. The detection and cropping tasks are performed on the server. The authors
have not conducted an end-user study yet, nor have they provided detection accuracy scores.
However, it is worth mentioning that, as in my study, the YOLO deep learning algorithm was
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Figure 2.1: Image taken by omnidirectional camera
Note: https://pixabay.com/photos/360-degree-spherical-photo-office-1524199/, accessed

13/10/2022

used for object detection. A WiYG system presented by Feiz et al. (2019) utilises a smartphone
and a custom 3D-printed attachment to guide blind users in filling out printed forms. The system
tracks the user’s signature guide and provides audio instructions to navigate to different form
fields. The study reports an accuracy of 89.5% which suggests that the system effectively guided
users to the correct locations on the form.

To sum up, state-of-the-art camera aiming assistive tools are based on AI solutions. Since
object detection is a computationally intensive process and it is quite challenging to implement
it on a mobile device, cloud-based technology is utilised. With this approach, some other issues
related to privacy and the requirement for continuous internet connection arise. After all, con-
tinued efforts are needed to solve this problem and make a camera aiming more accessible to
the VIP.

2.2.4 Combination of Tactile and Audio Feedback

As stated previously, users of TG prefer some form of non-visual feedback to increase acces-
sibility. This section presents the most widely used feedback modalities for annotating TG,
including tactile feedback, audio feedback and their combinations.

The tactile or haptic response is a type of feedback which is sensed by direct touch or applied
to the user in the form of forces, vibrations or motions. An example of this type of feedback
in the context of TG is Braille text legends that are embossed on the surface of the graphics.
Usually the Braille text annotations are placed near the TG elements they correspond to (Figure
2.2). Braille text is a classic method for the labelling of graphics elements and was used for
this purpose since the foundation of TG. One of the limitations of this approach is a decreasing
Braille literacy trend. According to the statistics, the percentage of VIP who can read Braille is
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Figure 2.2: Tactile Graphics with Braille Text Annotations

12% (Institute, 2010). This number is around four times lower than it was in the 1960s when
half of the legally blind population were Braille readers (Brittain, cited in Scheithauer and Tiger
(2012)). However, it is not clear whether this number pertains to the United States or the global
population, as the authors do not provide this information

Speech and non-speech audio annotations is a widely used method for labelling TG. This
approach became more popular with the rise of Text-To-Speech (TTS) synthesizers. The TTS
synthesizers allow computers or other machines to read text out loud in a real or synthetic voice.
These synthesizers also resulted in computer and mobile screen readers advancements. Accord-
ing to statistics, the number of visually impaired computer users has risen from 65% in 2012 to
78% in 2016. Whereas, the number of mobile device users increased from 33% to 69% in the
same years (Ofcom, 2017). These numbers match with the Brulé et al. (2020) findings. In their
survey, the authors report that audio feedback is a primary interaction method for information
acquisition among VIP. Compared to the Braille legends, the audio output does not require any
additional skills to acquire the information and, therefore, is more accessible.

The use of a combination of audio and haptic feedback is a widely accepted method for de-
signing accessible systems. According to research (Ross and Blasch, 2000), the implementation
of tactile cues in conjunction with speech audio output has been found to be the most accessi-
ble interface for VIP. A key limitation of the study was the limited demographic scope of the
participants, with ages ranging exclusively from 62 to 80 years. Multiple authors have used this
method in their systems to enhance accessibility and usability (Gemperle, Ota, and Siewiorek,
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2001; Olmschenk et al., 2015; Shilkrot et al., 2015; Cavazos Quero, Iranzo Bartolomé, and Cho,
2021).

In this section, various feedback tools for TG usage were discussed. The most widely used
ones are Braille texts and pre-defined audio annotations. The combination of audio and haptic
feedback is better than using either modality alone because it allows for a more interactive ex-
perience. While audio feedback can provide access to information, haptic feedback can provide
additional cues about the structure and organisation of the information.

2.2.5 Barriers to the wider use of Tactile Graphics

There are certain barriers which hinder the wider utilisation of the TG in education. First of all,
the process of creating such graphics is labour intensive. Sheppard and Aldrich (2001) report
that according to the responses collected from the teachers (n=24), labour-intensiveness is the
most cited issue associated with TG production. The teachers also claim that it is hard to make
high quality TG to learners. Notably, special skills and experience are required not only to
produce the TG but also to reduce the information overload and clutter within the image. For
example, recent research suggests that the creation of interactive TG is challenging for teachers,
social workers and VIP carers because it requires the knowledge of computer basics and vector-
graphic software in particular (Thévin et al., 2019).

Another limitation related to the graphics is its production cost. Traditionally, the hardware
used for TG production includes Braille embosser with Braille paper or swell paper with heat
fuser. Dias et al. (2010) analysed the market and found that the lowest-cost Braille embosser
is available for $690 (£575). Whereas, the price of the swell form machine (fuser) is $1391
(£1158). Either of the machines could be used depending on the production method. In addition,
TG developers might have to pay for software that enables an easier production process. For
instance, full access to the TactileView Design Software2 costs $295 (£246). This product is
also available for $60 (£50) on a monthly based subscription.

As previously reported in the literature, another concern related to the acceptance of TG is
a mental load and a lack of special reading skills among students. For instance, Berla (1972)
reported that the tactile shapes identification ability of blind students was low in elementary
and middle school. In a further study, Berla and Butterfield Jr (1977) found out that special
training in TG exploration strategies is required for students to achieve better ability and speed
in detecting the objects on a tactile map. As a result, the lack of ability and experience in TG
exploration requires teachers to instruct and preview the graphics with the student individually.
This trend has been explored in the work by Zebehazy and Wilton (2014c), where 75% of TG
users (n=59) find it useful when someone orients them to the tactile image. Consequently, more
time is spent covering the material. Only 22% of the teachers agreed or strongly agreed that they
had enough time to teach students how to use these graphics (Zebehazy and Wilton, 2014b).

2https://thinkable.nl/product/tactileview-software-licence/
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To conclude, a demanding physical and intellectual effort, together with the high production
price, are the main reasons which prevent TG from a wider usage. In addition, deficiency of TG
reading skills and a significant drop in the Braille literacy among the learners, mentioned in the
previous section, contributes to the issue.

2.2.6 Summary

In this section, the significance of the graphic literacy skills for VIP and the role of TG in
their education were reviewed. One of the main limitations observed in the reviewed studies
is the lack of background information provided for participants, including visually impaired
students and their teachers. This missing context could potentially hinder the interpretation and
generalisability of the findings.

Furthermore, various feedback methods designed to facilitate accessible exploration of TG
were evaluated. Notably, the combination of audio and haptic feedback was found to be the
most effective. This study also identified limitations in the existing solutions, including high
production costs and the labour-intensive process of creating TG. A comprehensive review of
TG conducted by Mukhiddinov and Soon-Young (2021) shows that despite significant advances
in technology, the conventional methods for generating TG have persisted for many years. These
findings underscore the need for continued research and development aimed at addressing these
challenges and enhancing the accessibility of TG.

2.3 Existing Fingertip Detection and Tracking Methods

2.3.1 Overview

Fingertip detection is been applied in many fields. Especially, it plays an important role in
facilitating more intuitive human interaction with a machine. Besides the Human-Computer
Interaction (HCI), these solutions are used in the Virtual Reality (VR) object manipulation, hand
gestures, sign language recognition, and the others.

In the classic CV, fingertip detection process generally consists of two steps. First, the al-
gorithm performs hand segmentation. By this, the image area that is going to be processed is
reduced; thus, a fingertip detection stage becomes less computationally expensive. After the
hand region is successfully identified, fingertip detection is initiated. This task is very chal-
lenging due to the fingertip classes’ similar appearance. This section provides a description of
existing fingertip detection algorithms, along with their limitations. By exploring the strengths
and weaknesses of these methods, this study aims to identify opportunities for improvement
and the development of more effective fingertip detection technique. Table 2.1 presents existing
hand segmentation and fingertip detection methods.
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Reference
Year

Hand
region seg-
mentation
method

Fingertip
detection
method

Feature
Vector

Back
ground

Accuracy Application Key fea-
ture

Wu, Li, et
al. (2017)

CNN CNN Color,
shape,
texture

Complex 99% HCI Color

Wu and
Kang
(2016)

YCbCr
value of
skin color

Calculating
maximum
distance

D between
hand cen-
troid and
fingertip

Uniform 90.5% HCI Color

Baldauf et
al. (2011)

RGB value
of skin
color

Calculating
maximum
distance

D between
hand cen-
troid and
fingertip

Complex - Mobile AR
applica-
tions

Color

Mukherjee
et al.
(2019)

Faster
R-CNN,
YCbCr of
skin color

Maximum
Curvature
Points

Coordinates
of MCPs

Complex 73.1% Air-writing Color
and
Features

Kounavis
(2017)

Thresholding Deformable
Template
Matching

Edge map
& distance
map

Complex 82.82% Various ap-
plications

Template
match-
ing

Bhuyan,
Neog, and
Kar (2012)

Bayesian
rule based
skin color

Calculating
minimum
distance

Geometrical
features of
the fingers

Uniform 93.37% HCI Color
based

Kim and
Lee (2008)

RGB value
of skin
color

Template
matching

Shape Complex 90.5% Navigation
in 3D VR
space

Template
match-
ing

Nguyen,
Pham, and
Jeon (2009)

RGB value
of skin
color

Thresholding Shape Complex 90-95% HCI Color
and
Feature

Qin, Zhu, et
al. (2014)

Depth
Threshold-
ing

Convex
hull

Maximum
distance

Complex 91.9% HCI Shape

Fang et al.
(2007)

HSV value
of skin
color

AdaBoost-
based
detector

Scale-space
features

Complex 84-91% HCI Color
and
Feature

Gurav and
Kadbe
(2015)

HSV value
of skin
color

Haar Cas-
cade and
AdaBoost

Haar-like
features

Complex - HCI Color
and
Feature

Zhang, Liu,
Zou, et al.
(2018)

Manually
annotated

HOG and
LBP

Pixels gra-
dients

Uniform 95-98% HCI Feature

Table 2.1: Hand segmentation and fingertip detection methods
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2.3.2 Colour based

Detecting objects through colour or fiducial markers is often considered the simplest method for
object detection. By knowing the boundaries of the marker colour space (RGB, HSV, etc.) or
pattern of the fiducial marker attached to the finger, any fingertip class can be easily tracked. In
the study by Bahrin, Yusof, and Na’im Sidek (2019) each fingertip class was tracked individually
using five different colour markers. The gathered data was used to analyse how VIP explore
tactile images. Zaman et al. (2016) used a glove with markers of three different colours for the
detection of sign language letters. The same method with the gloves and markers was utilised
by Mazumder, Nahar, and Atique (2018). The calculated angle ratios between the fingers were
then used for the gesture recognition task. Chan, Yu, and Wong (2018) proposed a text region
detection algorithm which was based on fiducial markers. The paper ring with an Aruco marker
attached to it, worn on the index finger, helps the system identify the location of the fingertip. To
sum up, the computational cost of this approach is very low, however, poor lighting conditions
and the presence of an object with a similar colour strongly affect its accuracy (Sarkar, Sanyal,
and Majumder, 2013).

2.3.3 Geometrical shape based

Geometrical shape based methods utilise the geometrical properties of the hand to detect the
fingertips. Hand convexity, length, edges and centroid are the most common features which
contribute to such detection. Ayala-Ramirez et al. (2011) used multiple geometrical features of
the hand to recognise gestures in real-time. The coordinates of the fingertips were found by using
geometrical features of the fingers (angle between fingers, distance between fingertips) in the
work done by Bhuyan, Neog, and Kar (2012). In several works (Baldauf et al., 2011; Qin, Zhu,
et al., 2014; Wu and Kang, 2016) fingertips were detected by identifying the maximum distances
between the centroid of the hand and the edges. The primary limitation of this approach is its
inability to effectively handle cluttered backgrounds (Hasan and Mishra, 2012).

2.3.4 Template matching based

Template matching is the process of finding areas in the image that are similar to the predefined
template (patch). This is done by moving the template image over a bigger source image and cal-
culating the differences between the pixels. This approach was used in a work by Yang, Jin, and
Yin (2005). The authors used circular features of the fingertips as a template to detect the point-
ing gesture of the index finger. Same approach was used in the research conducted by Kim and
Lee (2008) to find out the direction pointed by the user’s finger. Similarly, Kounavis (2017) ap-
plies multistage template matching to detect fingertip contours in real-time. Template matching
technique with the k-nearest neighbours (KNN) classifier was used to build a fingertip-writing
character recognition system (Shih, Lee, and Ku, 2016). Similar to the previous approach, a
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significant limitation of this method is its reduced efficacy in accurately detecting objects in
cluttered backgrounds (Hasan and Mishra, 2012).

2.3.5 Motion based

Generally, motion-based analysis follows the object detection step. Granted that the object has
been successfully detected in the frame, the algorithm uses this information to predict its location
on the next one. Since the object detection phase is much more computationally expensive, this
combined approach is more advantageous in mobile and embedded systems where processing
capacities are low. Motion-based fingertip detection has been utilised in a few works. Oka,
Sato, and Koike (2002) calculated the positions and the velocities of each fingertip and then
applied a Kalman filter to foresee their locations on the next frame. Similarly, the positions
and velocities of the fingertips together with the accelerations were taken into account to predict
their locations in a consequent frame by Wang and Yuan (2014). Wu and Kang (2016) estimated
fingertip motions by identifying finger curvature points and then using bidirectional optical flow
algorithm. Prior to this step, fingertip detection was performed through geometrical analysis
method, as described in earlier paragraphs. The primary constraint associated of this approach
is its inability to detect the object once the tracking algorithm loses track of it. Therefore, an
alternative method must be employed to re-detect the object.

2.3.6 3D model based

A kinematic 3D model of the hand is a mathematical representation of the hand’s skeletal struc-
ture, joints, and range of motion. By utilising this model, the position and orientation of the hand
can be accurately estimated in real-time based on the movement of its constituent parts, includ-
ing fingers. This is achieved by comparing characteristic points obtained from depth or stereo
cameras to the 3D model and determining whether they can be fit within the model’s degrees
of freedom. Once a digital model of the real hand is constructed, it is continually compared to
the actual hand for matches, enabling accurate tracking of the hand’s position and motion over
time. This allows a more precise hand and fingertip detection. Liang et al. (2013) used a 3D
model-based approach for hand pose estimation. After the 3D locations of the fingertips are de-
tected, an inverse kinematics solver is applied to reconstruct the hand model. Son et al. (2016)
proposed a fingertip detection method for the human-projector interaction. First, the hand region
is identified and then all extreme points are extracted. Finally, these potential fingertip points
are matched to the 3D complementary fingertip model and algorithm selects best candidates.
This approach was also utilised in the following works (La Gorce, Fleet, and Paragios, 2011; Lu
et al., 2020; Heap and Hogg, 1996). Dependence on specialised hardware is the main limitation
of this approach. Also, this technique can only be used to detect objects for which a 3D model
is available.
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2.3.7 Feature classifier based

Feature classifier-based object recognition consists of two steps. First, various features are being
extracted from the input image. Machine learning techniques such as AdaBoost, Haar Cascade,
histogram of oriented gradients (HOG) and others can be utilised in this step. After that, the ex-
tracted features are fed into the classifier component. There an algorithm can determine which
object classes have been detected and return probability scores along with their locations. These
results can then be filtered based on their level of confidence to reduce the number of false
positive detections. The region proposal component can be added before feature extraction to
enhance the overall performance of the system. AdaBoost is a powerful real-time object recog-
nition method. This algorithm turns weak classification learners into strong ones by constantly
updating the weighted sum of each classifier according to its performance accuracy. Fang et
al. (2007) utilised the AdaBoost algorithm to trigger hand gestures tracking and recognition in
real-time.

Sometimes researchers implement a combination of algorithms, as was done by Gurav and
Kadbe (2015). In their work, Haar-like features were extracted from the input image and an
adaptive boosting algorithm was used to improve the accuracy of the system by choosing strong
classifiers from each cascade of stages. Another example is proposed by Zhang, Liu, Zou, et al.
(2018), where fusion of HOG and local binary patterns (LBP) algorithms was used to recognise
hand gestures. A significant drawback of feature classifiers is their reduced performance in
scenarios where lighting conditions vary (Sarkar, Sanyal, and Majumder, 2013).

2.3.8 Deep learning based

A Deep Learning (DL) model in CV is a neural network architecture designed to learn and
extract meaningful features from visual data, which can be used for tasks such as object detection
or image classification. There are many different DL based algorithms and approaches that are
used for fingertip detection. For instance, the hand tracking component of Google MediaPipe
(Zhang, Bazarevsky, et al., 2020) is a DL model that can be used to detect and track the location
of the hands (including fingertips) in an input video stream. It uses a DL model trained on a
large dataset of labelled images and videos. This model is able to learn the visual appearance
of hands and their movement in space, allowing it to accurately detect and track hands in new
unseen input data. The hand tracking component can be used in a variety of applications, such as
virtual and augmented reality, gaming, and human-computer interaction. Figure 2.3 illustrates
how the hand is tracked using this tool. However, solutions which use this model for fingertip
detection were only able to run on PCs (Bahrin, Yusof, and Na’im Sidek, 2022), and those
designed for mobile devices were unable to operate in real-time (Miwa et al., 2020).

Alam, Islam, and Rahman (2022) employed a Convolutional Neural Network (CNN) method
to identify gestures and detect fingertips in their work. Specifically, the authors utilised the
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Figure 2.3: Hand tracking using Mediapipe
Note: https://google.github.io/mediapipe/solutions/hands.html, accessed 02/02/2023

YOLO9000 algorithm (Redmon and Farhadi, 2017) to train their model, using the EgoGesture
dataset (Wu, Li, et al., 2017) as a source of training data. The results indicate a high level of
accuracy for the developed model, and it is capable of real-time performance on a PC. However,
it would have been more relevant if the authors had tested the model on a mobile device.

The Airpen model (Jain and Hebbalaguppe, 2019) is specifically designed for use with smart-
phones and hand-mounted devices. To train the model, the authors utilised the MobileNetV2
architecture (Sandler et al., 2018) and the mentioned EgoGesture dataset. While the authors
assert that the model can operate in real-time, it is important to note that its current speed of 9
frames per second falls short of the typical minimum requirement of 15 fps for real-time per-
formance (Angelova et al., 2015). Furthermore, the model’s main drawback is its limitation to
single-finger detection, as its performance degrades when multiple fingers are within its field of
view.

2.3.9 Summary

Fingertip detection is the process of identifying the locations of the fingertips in an image or
video of a hand. This can be useful for a variety of applications, such as virtual and aug-
mented reality, gaming, and human-computer interaction. There are many different methods
and algorithms that can be used for fingertip detection, including classic CV techniques and DL
approaches.

Classic CV techniques involve manually extracting features from the input images and using
these features to determine the locations of the fingertips. These techniques can be effective,
but they often require careful design and tuning of feature extraction and detection algorithms.
Additionally, these techniques can be sensitive to variations in the quality or appearance of input
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Detection
Method Advantages Disadvantages

Colour based
Computationally inexpensive
and easy to implement

Low accuracy in poor light-
ing conditions and in the pres-
ence of an object with a simi-
lar colour

Geometrical
shape based

Computationally inexpensive
and easy to implement

Low accuracy in cluttered
backgrounds and occlusions

Template match-
ing based

Easy to implement, works
well for simple patterns

Sensitive to variations in
lighting and cluttered back-
ground, computationally
expensive

Motion based Effective for moving objects
Limited to moving objects,
requires consistent back-
ground

3D model based
High accuracy in different
lighting conditions

Requires special hardware
and 3D model, computation-
ally expensive

Feature classifier
based

Fast detection speed

Sensitive to variations in
lighting and cluttered back-
ground, requires labelled
training data

Deep learning
based

Robust to changes in appear-
ance, works well for com-
plex scenes, can detect multi-
ple objects

Computationally very expen-
sive, requires a large amount
of labelled data

Table 2.2: Pros and cons of various detection methods

images, making them less robust than DL approaches.
DL techniques involve training large, complex neural networks on a dataset of labelled im-

ages of hands. These networks can learn to automatically extract features from input images and
use these features to identify the locations of the fingertips. DL techniques can achieve better
performance and more robust results than classic CV, especially when working with complex,
real-world data. Additionally, DL techniques can be more efficient and scalable, making them
well-suited for large-scale applications such as fingertip detection in video streams. Table 2.2
presents advantages and disadvantages of the methods mentioned above.
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2.4 Educational Systems for Visually Impaired

2.4.1 Overview

In this section different types of educational systems for VIP are presented. The systems com-
prise solutions that facilitate the acquisition of information mainly through the sense of touch.
On the basis of the hardware requirements, these systems were divided into four sections. First,
touch screen based tools are evaluated. Then systems which require computers with a web cam-
era are described. After that, depth camera based solutions are assessed. Finally, mobile phone
and tablet based approaches are discussed.

2.4.2 Touch screen based

Nomad (Parks, 1988) audio-tactile tool was developed in 1988 and the system was the first-
of-its-kind. The device was connected to the computer, and a touch-sensitive surface was used
to trigger corresponding predefined audio descriptions. The system was commercialised the
following year but was not very popular among users. The poor acceptance of the device was
not directly associated with its design but was rather determined by the overall technological
state of that time. The screen resolution and user-friendliness of the speech synthesizers back
then were not as high as they are nowadays. The Nomad system laid the foundation of the
audio-tactile based technology era and some of its most successful descendants are described in
the next paragraphs.

TTT (Talking Tactile Tablet ) (Landau and Gourgey, 2001) is one of the first audio-tactile
systems which has been used in educational institutions. First, the user has to place the printed
TG on the tablet display. After that finger press events are sensed and a signal is being sent to
the computer. The special program uses this information to trigger predefined audio information
about TG based on the touch coordinates. This device was developed in the 2000s and was
successfully commercialised. The current market price of the TTT is $7993 (£665).

ViewPlus IVEO (Gardner and Bulatov, 2006) is another proprietary system that initially
started as a research project at Oregon State University and then was commercialised by View-
Plus. The overall hardware design is similar to TTT and the user interacts with the TG through
the high-resolution touchpad. Complementary software editor for Scalable Vector Graphics
(SVG) creation is provided as well. Both components are available online and cost $1129
(£939). High cost and portability are the main limitations of these proprietary devices.

Refreshable Tactile Graphics Applied to Schoolbook Illustrations (Petit et al., 2008).
Researchers from the University of Montreal developed a system based on a refreshable tactile
graphics device called STReSS2 (Stimulator of Tactile Receptors by Skin Stretch). This device
produces tactile feedback by creating small surface vibrations. Furthermore, the authors utilised

3http://touchgraphics.com/portfolio/ttt/
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the MaskGen application to transpose the images from the school books to the STReSS2 tactile
display. They have conducted experiments with twenty visually impaired and twenty sighted
people with blindfolds to test the system. The participants explored three types of tactile images
and answered questions related to their contents. Overall, the scores for the correct answers
were between 70 and 80 percent. Limitations of the system are: cost of the refreshable device
and the small size of the exploration area.

Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

Nomad
(Parks,
1988)

Electronic
touchpad
connected
to a com-
puter

Nomad
Kernel,
CAD, In-
formation
Access
System,
Walkabout
System

Swell paper Direct
touch

High
cost, not
portable

TTT (Talk-
ing Tactile
Tablet)
(Lan-
dau and
Gourgey,
2001)

Electronic
tablet con-
nected to a
computer

World
Map, TTT
Match
Game, TTT
Snakes &
Ladders,
TTT Tool

Swell paper Direct
touch

High
cost, not
portable

IVEO by
ViewPlus
(Gard-
ner and
Bulatov,
2006)

Electronic
touchpad

IVEO
Player Pro

Braille pa-
per

Direct
touch

High cost

Refreshable
Tactile
Graphics
(Petit et al.,
2008)

STRESS
Refresh-
able tactile
display
(Pasquero
and Hay-
ward,
2003)

Xenomai,
MaskGen,
Photoshop

Refreshable
tactile dis-
play

Direct
touch

High cost,
exploration
area small
size
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Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

IMG (In-
teractive
Multimodal
Guide)
(Cavazos
Quero,
Iranzo Bar-
tolomé, and
Cho, 2021)

Enclosure
display,
Arduino,
proxim-
ity touch
sensor

ZW3D 3D
drawing
software

3D printed
model

Direct
touch

High cost

Table 2.3: Touch screen based systems

2.4.3 Computer and web camera based

Tactile Graphics Helper (TGH) is a system that utilises CV algorithms to track a user’s finger-
tips (Fusco and Morash, 2015). The prototype runs on a computer and uses a mounted camera
to acquire images. In addition, researchers developed Matlab-based Graphical User Interface
(GUI), which allows to create a tactile image accompanying a file. The list of all objects and
their descriptions are stored in this file. After the data is uploaded to the TGH system the user
can start exploring tactile image and listen to TTS generated audio information. In addition to
finger-pointing feature, voice commands are available as well. The limitations of the project
are its portability issues (computer and camera) and the CV dependence on a surroundings light
condition.

Access Lens (Kane, Frey, and Wobbrock, 2013) enables users to read texts from physical
objects by pointing the index finger upon them. CV software detects the fingertip and recognises
the text via a web camera. The system has three different interaction modes: direct touch, virtual
edge menus and voice commands. The direct touch mode detects the text which is closest to the
fingertip and speaks it out loud. When edge menus are activated AL adds virtual buttons with
lists of recognised texts in alphabetical order so it is more convenient for the user to access them.
In the third mode, the AL is controllable via various voice commands. For instance, command
“List” lets the AL speak out the list of all detected texts. Overall, users were satisfied with the
system and its different modes. The disadvantages of the system are its portability constraints
and strong CV and OCR (Optical Character Recognition) dependence on the lighting conditions.

Shamsul Bahrin, Md Yusof, and Na’im Sidek (2022) present a laptop-based TG reading
device that uses the Google MediaPipe algorithm (Zhang, Bazarevsky, et al., 2020) to track the
user’s hands and provides audio feedback to VIP. Although the proposed system offers signifi-
cant advantages, such as natural and real-time interaction with TG, its main limitation is the lack
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of portability. Additionally, the system has not yet been tested with end-users, highlighting the
need for further research to evaluate its effectiveness.

Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

The Tactile
Graphics Helper
(TGH) (Fusco
and Morash,
2015)

Laptop and
webcam

Matlab Swell
paper

Finger
pointing
and voice
commands

Not
portable,
sensitive to
variations
in lighting

Access Lens
(AL) (Kane,
Frey, and Wob-
brock, 2013)

Laptop and
webcam

OpenCV,
Mi-
crosoft
NET
speech
library,
ABBY
Fine
Reader

Regular
paper

Finger
pointing,
virtual
edge menus
and voice
commands

Not
portable,
sensitive to
variations
in lighting

Tactile Graphics
Reading As-
sistive Device
(Shamsul Bahrin,
Md Yusof, and
Na’im Sidek,
2022)

Laptop and
webcam

MediaPipe
(Zhang,
Bazarevsky,
et al.,
2020)

Swell
paper

Finger
pointing

Not
portable

Table 2.4: Computer and web camera based systems

2.4.4 Depth camera based

Markit and Talkit (Shi, Zhao, and Azenkot, 2017) is a system which allows the user to create
audio annotations and then interact with 3D-printed models. Markit is a user interface that is
developed for instructors and teachers of VIP and is used for creating, designing and annotating
3D models. Talkit is an associated toolkit that is used for the information interpretation. RGB
camera senses the spatial locations of the sticker that is attached to the user finger and the special
marker. The marker, mounted on the model, acts as a reference for the CV algorithm and helps
it to correctly identify the relative positions of the sticker and the 3D object’s labelled regions.
The experimental results showed that interaction with 3D models is very intuitive for VIP and
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on average it takes less than 8 seconds for them to find a specific annotation. The limited
viewing angle of the camera and its performance under poor lighting conditions are the main
disadvantages of the system.

CamIO (Camera Input-Output) (Shen et al., 2013) is a system which utilises a Microsoft
Kinect camera to track the spatial positions of a user’s fingers, enabling the detection of their
interaction with physical objects. The objects must be placed on a flat surface with fiducial
markers, which serve as a reference for the CV algorithm. The system triggers TTS-synthesised
audio feedback upon touch events. While the system has demonstrated the potential for effective
interaction between users and physical objects, it also has some limitations. The primary draw-
backs include a lack of portability and high cost associated with the required hardware (Kinect
camera and laptop).

IAG (Interactive Audio Guide) (Reichinger et al., 2016) employs an RGB-D camera,
specifically the Intel RealSense F200, to detect users hand gestures. The depth value recorded
by the camera allows for tracking of both on- and off-object interactions, enabling the system to
recognise multiple combinations of gestures and trigger various audio feedback accordingly. Re-
searchers evaluated the system in a ’museum-like’ setting where potential users interacted with
the tactile reliefs of paintings. While the system shows promising results, limitations include the
high cost of the depth camera and the system’s lack of portability.

Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

CamIO
(Camera
Input-
Output)
(Shen et al.,
2013)

Microsoft
Kinect
Camera

Computer
vision
algorithms

3D-printed
model

Direct
touch

Not
portable,
high cost

IAG (In-
teractive
Audio
Guide)
(Reichinger
et al., 2016)

Intel Re-
alSense
F200

Computer
vision
algorithms

3D relief
surface

Finger
pointing

Not
portable,
high cost
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Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

Markit and
Talkit (Shi,
Zhao, and
Azenkot,
2017)

RGBD
camera

OpenCV 3D-printed
model

Direct
touch

Not
portable,
limited
viewing
angle of
the camera,
sensitive to
variations
in lighting

Table 2.5: Depth camera based systems

2.4.5 Mobile phone and tablet camera based

TPad (Melfi et al., 2020) is a mobile educational application based on the tablet (IPad Pro)
that allows users to explore tactile images. Users must place a printed tactile image over a
tablet screen and start exploring it with their hands. The system will provide audio clarifying
feedback by detecting touch instances. Also, a 3D-printed plastic frame is required to hold the
A4-sized paper still. The TPad uses SVG files with information about the image and objects it
includes to provide audio descriptions. Different modes allow users to download preprocessed
SVG files easily. For example, by scanning QR codes located on the backside of the image. In
addition, researchers developed a special web interface for instructors. There, they can upload
and organise the graphics and send them to the server to where all the TPads are connected.
During the experiments, the system showed that its users acquire information about TG in a
faster manner with a 70% accuracy. The drawbacks of the system are the cost of the tablets
and potential difficulties with the frame 3D printing since some educational organisations do not
have them.

Tactile Graphics with a Voice (Baker et al., 2014) is an application that runs on the smart-
phone and provides feedback by scanning QR codes placed on the TG. The main motivation
of the study was to replace large Braille texts with more compact codes; thus, providing more
information about TG. There are three different modes available to help the user properly aim
a phone camera: silent, audio instructions and finger pointing. Instructions navigate the user
to a QR code by sensing the phone orientation whereas finger pointing mode helps an app to
identify the correct QR code when multiple labels are visible. Overall, users were satisfied with
the system, but aiming a smartphone camera properly remains a challenging task for VIPs.

THATS (Touch and Hear Assistive Teaching System) is a mobile app that allows the user
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to explore predefined tactile images by providing accompanying audio descriptions. In addition
to the app, the THATS team developed an online editor and linked it to the digital library. In
this way, instructors can either create TG from scratch or download ready-to-use ones. THATS
implements widely used CV algorithms (background subtraction, image thresholding, etc) to
detect the fingertip. To sum up, THATS is a very promising project which is designed to give
visually impaired community free access to easy-to-use educational materials but the app has
not launched yet and there are no experimental results publicly available.

Researchers from Cornell University created a Molder (Shi, Zhao, Gonzalez Penuela, et
al., 2020) - an accessible tool for tactile maps design and exploration. This tool has four main
components: a physical frame, a website for the model’s creation, a mobile app for the model
exploration and a server. The Molder was tested by the end users and results showed that par-
ticipants with different vision abilities were able to create tactile models using this tool. The
main disadvantage of the Molder is that it only supports a single-finger exploration. In addition,
production of the 3D models is time-consuming and has a high cost.

TARS (Hosokawa, Miwa, and Hashimoto, 2020) is another mobile application which pro-
vides audio descriptions whilst the user explores a tactile image. This app utilises Google’s
MediaPipe (Zhang, Bazarevsky, et al., 2020) hand-tracking system for fingertip detection. Ac-
cording to their experimental results, the app detects fingertips with 85.5% accuracy. However,
it was not clearly stated whether this result is for all five fingertips or just the index one. In
addition, a single-frame processing time was not specified. In the further work conducted by
the same authors (Miwa et al., 2020), it took two seconds to process a single frame. Whereas
real-time execution expects at least 15 fps (frames per second) (Angelova et al., 2015). An-
other limitation of the study is that the authors have not described how the tactile images and
corresponding annotations are created.

Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

Tactile
Graph-
ics with
a Voice
(Baker
et al., 2014)

IPod touch
and IPhone

QR code
reader

Braille pa-
per

Finger
pointing
guidance
and voice
guidance

Aiming the
phone cam-
era

TPad sys-
tem (Melfi
et al., 2020)

Tablet non-CV Regular pa-
per

Direct
touch

High cost
of 3D
printing
and Braille
embosser
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Name Hardware Software Tactile
Output

Interaction
Modes

Limitations

Touch and
Hear Assis-
tive Teach-
ing System
(THATS)

IPhone Computer
vision
algorithm

Swell paper Finger
pointing

Aiming the
phone cam-
era

Molder
(Shi, Zhao,
Gonzalez
Penuela,
et al., 2020)

IPad, 3D
printer

OpenCV,
SpeechRec-
ognizer

3D printed
object

Finger
pointing
and voice
commands

Single
finger ex-
ploration,
High cost
of 3D
printing

TARS
(Hosokawa,
Miwa, and
Hashimoto,
2020)

IPhone MediaPipe
(Zhang,
Bazarevsky,
et al.,
2020),
AVSpeech-
Synthesizer

Swell paper Finger
pointing

Slow fin-
gertip
detection
speed

Table 2.6: Mobile phone and tablet camera based systems

2.4.6 Summary

I have described various Assistive Technology (AT) solutions designed to make TG more acces-
sible. Five of these systems run on a mobile devices. TPad, Molder and the Tactile Graphics
with a Voice devices have already been tested and shown promising results. However, there
are still some drawbacks, i.e. the high price of 3D printers or failure to detect multiple fingers.
There are indications that work on the THATS device may have been discontinued and TARS is
not able to process in real-time on a mobile device yet.

In light of the conducted review, I have identified four key criteria that characterise the design
of the developed system. These criteria encompass:

• High accuracy under low light conditions

• Implementation on a mobile device

• Real-time execution

• Allow two handed exploration
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It is essential to prioritise these criteria in the development process to ensure that the fi-
nal product is optimised to meet the desired performance standards. It is worth noting that
implementing the system on a mobile device offers several benefits, including portability and
cost-effectiveness.

2.5 Conclusion

This chapter begins with a review of the literature regarding the importance of TG in VIP educa-
tion. Also, various feedback modes for the TG exploration and their acceptance by the end-users
are presented. This includes audio feedback, tactile feedback, and the combination of both. The
section then explores the limitations and barriers which inhibit the wide usage of TG in educa-
tion. According to the literature, labour-intensiveness and cost of TG production together with
mental load on the reader are the main barriers which hinder a wider TG utilisation.

In addition, this section presents a review of recent literature on existing fingertip detection
and tracking methods. A closer look at the literature on classic CV algorithms for fingertip de-
tection revealed a number of limitations. For instance, methods which rely on colour markers
or geometrical shapes perform poorly when lighting conditions change or in cluttered environ-
ments. On the other hand, existing DL based solutions lack the ability to perform real-time
detection on mobile devices.

Finally, this chapter provides a review of the literature on educational systems for VIP. The
advancements in technology have led to the increased computational capabilities of edge de-
vices, shifting the focus of research from large, PC-based systems to small, mobile devices with
integrated computing and cameras. After examining existing assistive systems that enhance ac-
cessibility to TG and allow for independent information acquisition without sighted assistance,
their limitations were identified. This formed the basis for proposing a novel system that ad-
dresses these limitations.



Chapter 3

Fingertip Detection

3.1 Introduction

Fingertip detection is a crucial part of my research because it enables users to interact with
Tactile Graphics (TG) in real time. This process involves identifying the position of the fingertips
in an image or video and is essential for the effective use of the TAURIS system. The app
I have developed tracks the movements of the user’s fingers as they explore the image and
provides information about what they are touching. Accurate fingertip detection is therefore
a key component of the app’s functionality. The technical background for the development of
this Computer Vision (CV) algorithm can be found in Appendix A. In Section 3.2, I describe
the development process of a model that was used in my app for detection. Finally, the whole
chapter1 is summarised in a conclusion section.

3.2 TAURIS Fingertip Detection Algorithm

In this section, a novel fingertip detection method that is specifically tailored to meet the needs of
my research is described. The review of the existing methods was presented in Section 2.3 of the
thesis. The developed algorithm facilitates more accurate and efficient detection of fingertips.
I will provide a detailed description of the method, including its key components and the chal-
lenges it addresses. The experimental results demonstrating the effectiveness of the approach
are provided as well. Overall, this novel fingertip detection method represents a significant
advancement in the field with potential applications in a wide range of tasks.

After reviewing the literature, it was found that state-of-the-art Deep Learning (DL) models
were capable of running on mobile devices and detecting objects accurately even in real-time
(Howard et al., 2017; Sandler et al., 2018; Qin, Li, et al., 2019). Thus, it was decided to create a

1Some of the work in this chapter has appeared in Zeinullin and Hersh (2022). Maralbek Zeinullin is the first
author and main contributor to this paper.

32
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DL model tailored to meet our needs. There are three main components required to build a DL
object detection model: training dataset, pre-trained model, and appropriate hardware.

Training dataset. Labelled images are the building blocks of any object detection model.
Usually, the more images are fed into the model during the training process, the more capable
model is produced. Most of the time, researchers utilise ready-to-use datasets from the inter-
net. As a matter of fact, there are plenty of high-quality labelled images available online. For
example, the ImageNet project is considered the largest visual dataset (Deng et al., 2009). This
project is a crowd-sourced database containing more than 14 million labelled images for 20,000
different object classes. Other well known datasets used for the pre-trained model creation are:
Open Images (Krasin et al., 2017), Microsoft Common Objects in Context (COCO) (Lin, Maire,
et al., 2014) and PASCAL VOC (Everingham et al., 2010).

A pre-trained (or parent) model is a Deep Neural Network (DNN) trained on a large
dataset for relatively long period of time. For example, it takes 14 days to train a ResNet-50 ob-
ject detection model on a NVIDIA M40 Graphical Processing Unit (GPU) using the mentioned
ImageNet dataset for 90 epochs (You et al., 2018). (Usually, it takes less than a day to train a
customised model on top of the parent model). These models have the ability to generalise well
on the images outside of the training set and are used as a starting point for customised model
training. Pre-trained models are capable of detecting common object classes such as people,
cars, animals, etc. If a customised model is required, researchers produce the datasets them-
selves and train a new model on top of the pre-trained model. The logic behind this approach
is that the parent model is already capable of detecting basic features like angles, edges, shapes,
etc. Therefore, there is no need to train the model to detect them again and instead enable
the researcher to focus on training the model on more unique features. As a result, less time
and resources are required to train a new model. This process is called transfer learning and is
considered preferable to training a neural network from scratch.

Hardware. Depending on the task and the type of neural network architecture, the hardware
requirements may differ. The training of a machine learning model can be done on a Central
Processing Unit (CPU), but DL models with multiple layers require GPU. Shi, Wang, et al.
(2016) in their work show that CPU training is about ten times slower than a GPU one. GPUs
are designed to execute multiple calculations simultaneously, which makes them well-suited to
the matrix calculations used in DL. As a result of increased demand, graphic cards have been
in short supply in recent years2. Fortunately, there are services that provide free cloud servers.
Google Colab, Kaggle, Amazon, and others give access to their GPU and Tensor Processing
Unit (TPU) resources at zero cost. On the other hand, cloud computing involves storing and
processing data on remote servers, which can make it more vulnerable to data breaches. There
always will be privacy and security issues associated with it (Sun, 2020).

2https://www.forbes.com/sites/forrester/2021/05/06/the-global-chip-shortage-wont-ease-soon/
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3.2.1 Detection Models

Overview

Object detection models are a type of DL models that are used to identify and localise objects
within an image or video. In this section different Convolutional Neural Network (CNN) object
detection model architectures are compared. Our main criteria for selecting models was their
ability to detect objects in real-time while running on a mobile device. A substantial amount of
research has recently been devoted to the development of such network architectures. Mainly,
this trend was sparked by the exponential growth of self-driving cars, augmented reality applica-
tions and CCTV cameras. In an original YOLOv3 paper, SSD, RetinaNet and YOLOv3 family
architectures showed the fastest detection rate with a tolerable accuracy trade-off (Redmon and
Farhadi, 2018). Thus, these three models were selected for initial training and testing in my re-
search. First, an overview of each model and its neural network architecture is presented. Then,
their performances are compared and the model which best suits the research requirements is
selected. Across all models, the same image set was used for training and evaluation. The train-
ing parameters for each model are presented in Table 3.1. Furthermore, inference times for all
models were compared using the same hardware (NVIDIA Quadro RTX 5000 GPU).

Model # of con-
volutional
layers

Pooling
Layer

Activation
Function

Optimization
Method

Learning
Rate

# of
epochs

# of
train-
ing
hours

MobileNet
v2

28 Average
Pool-
ing

ReLU Momentum 0.08 100 20

RetinaNet 50 Average
Pool-
ing

ReLU Momentum 0.04 100 14

Tiny-
YOLOv3

13 Max-
pooling

Leaky
ReLU

Momentum 0.01 100 8

Table 3.1: Models training parameters

SSD MobileNet V2

MobileNet (Sandler et al., 2018) is a CNN model designed to perform well on mobile devices.
Although it has a deep network structure, the model is considered fast and efficient. This is
achieved by utilising depthwise separable convolutions. The main difference of this convolution
method from the standard one is that it splits the computation into two steps: depthwise and
pointwise. Each input channel is convolved by a single filter in depthwise convolution. Whilst
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in pointwise one, the output of the depthwise convolution is combined linearly. This allows Mo-
bileNet to achieve good accuracy while using fewer parameters and requiring less computation
than traditional convolutional neural networks. The model architecture is presented in Figure
3.1. An input image with dimensions of 224x224x3 is 224 pixels wide, 224 pixels tall, and
has three colour channels (red, green, blue). Each pixel is represented by three 8-bit integers,
resulting in a total of 224x224x3 = 150,528 bytes of data for the entire image.

Figure 3.1: MobileNet V2 architecture
Note: Modified from source: Wang, Hu, et al. (2020), p.3

RetinaNet

RetinaNet is an SSD model that uses focal loss to address class imbalance during the training
process (Lin, Goyal, et al., 2017). In other words, this model focuses on hard examples and
ignores easy negatives, thus not hindering the detector during training. For instance, if you need
a model to detect people, dogs and cats, the model will focus on the features which differentiate
dogs and cats. These two look alike and their appearance is very distinct from that of humans.
By this, fast and more accurate detection is achieved. The architecture of this model is based
on a unified network consisting of a Feature Pyramid Network (FPN) (Lin, Dollár, et al., 2017)
backbone and two task-specific subnetworks (Figure 3.2). The FPN backbone is used to compute
feature maps and build a multi-scale feature pyramid. Afterwards, the first subnetwork performs
classification and outputs the probabilities for each object class presented in the image. Lastly,
the second subnetwork applies convolutional bounding-box regression to calculate the offset
from ground-truth object boxes.
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Figure 3.2: RetinaNet architecture
Note: Modified from source: Lin, Goyal, et al. (2017), p.5

YOLOv3

YOLO is a family of Computer Vision (CV) algorithms first introduced in 2016 (Redmon, Div-
vala, et al., 2016). YOLOv3 (Redmon and Farhadi, 2018) is the descendant of the YOLO
algorithm. The main advantage of this model architecture is that it can process images in real-
time. This is achieved by a unified architecture of the network. Tiny-YOLOv3 is a compact and
accelerated version of YOLOv3 which was designed for embedded and mobile systems. The
smaller architecture size makes the tiny-YOLOv3 extremely fast, the number of convolutional
layers in YOLOv3 and its tiny version is 24 and 13 respectively. The architecture of the model
can be found in Figure 3.3. Higher detection speed comes with the price of lower accuracy.
Redmon, Divvala, et al. (2016) show that the smaller version works 3.5 times as fast with just a
10% accuracy trade-off.

Figure 3.3: Tiny-YOLOv3 architecture
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Comparison

After training and testing the mentioned models, Mean Average Precision (mAP) values and
inference speeds were recorded. Table 3.2 summarises all the results. Average Precision (AP) is
a metric that is used to calculate the performance of a detection model. We must first determine
these four entities in order to calculate the model’s accuracy value.

• Confusion matrix. A table summarising the performance of the object classifier. Figure
3.4 illustrates different instances used in this sub-metric.

• Precision . This sub-metric shows how accurate the model estimate was when it predicted
the object. The formula 3.1 shows how it is calculated.

• Recall. It measures the proportion of positive instances that were correctly identified by
the model. This sub-metric is determined using Formula 3.2.

• Intersection over Union (IoU). It measures the overlap between ground truth and de-
tected bounding boxes. See Figure 3.5.

Figure 3.4: Confusion matrix
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Figure 3.5: Intersection over Union

Precision =
TruePositive

TruePositive+FalsePositive
(3.1)

Recall =
TruePositive

TruePositive+FalseNegative
(3.2)

In a few words, it takes into account the trade-off between precision and recall at different
IoU threshold values and calculates the AP. Mean Average Precision, as its name suggests, is
just the mean of AP values of the total number of classes (Equation 3.3).

mAP =
1
N

N

∑
i=1

APi (3.3)

According to Table 3.2, all three models have almost similar mAP scores. On the other
hand, their single-frame detection rates are very different. As was expected, tiny-YOLOv3
showed the fastest inference speed- more than 10x better than the second fastest model. It
is worth mentioning that in the context of my research, the index finger detection is crucial.
This is related to the fact, that most blind users prefer to use this finger to read Braille texts
(Wong, Gnanakumaran, and Goldreich, 2011). From this, I assumed that the index finger will be
leading the whole TG exploration process and it would be logical to track this fingertip. From
the same table, it can be seen that tiny-YOLOv3 performance on this finger detection is 2.5
times lower than in the other two. However, considering the speed and accuracy trade-off, it was
decided to continue the project using the tiny-YOLOv3 and build all future models on top of this
lightweight model. So, it was important to boost the detection accuracy by improving the model
with additional images and tweaking the overall detection algorithm. All these enhancements
will be thoroughly discussed in the next sections. Again, the three models were trained using
exactly the same images and tested on the same hardware.
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Class MobileNet V2 RetinaNet Tiny-YOLOv3

Thumb 24.9 13.3 39.9

Index 50.11 57.08 22.04

Middle 44.37 66.80 39.61

Ring 60.7 59.88 71.95

Little 87.2 77.55 89.63

mAP@50 (%) 53.46 54.92 52.63

Inference speed (ms) 24.3 33.8 2.13

Table 3.2: Models accuracy and speed comparison

3.2.2 Datasets

The goal of our model was to identify the fingertips of both hands in images. We searched for
datasets that could be used to train and evaluate the model and found the EgoGesture dataset
(Wu, Li, et al., 2017). This dataset includes approximately 59,000 first-person view images.
These images are divided into 16 different gesture categories, with approximately 3700 images
in each category.

First, I experimented with the index finger pointing gesture. The drawback of this approach
was that the algorithm often confused the index finger with other fingers due to their very similar
appearances. Therefore, robust and accurate performance was achieved only when the index
finger alone was visible on the frame. Since it is not very advantageous for the user to explore
a tactile image with one finger (Leo, Cocchi, and Brayda, 2016), another model was trained
using images of one hand only. This set was called SingleFive and can be found on Figure 3.7.a.
The produced model was able to accurately detect the fingertips when only one hand was in the
field of view. However, it was performing poorly when two hands were visible. Therefore, it
was decided to train another model using the PairTen set. This set contained the images of both
hands (Figure 3.7.b). In contrast to the previous model, it detected the fingertips correctly in
cases where two palms are visible and failed when only one was present. Because I wanted the
app to be flexible and convenient for the users, a model which can perform well in both situations
was essential (when either one or two hands were present). Therefore, it was decided to merge
the two image sets and train a third model. Third model successfully detected the fingertips
during both scenarios and, thus, was used by the app during the experimental sessions.

TAURIS Dataset

The performance of the model trained on the EgoGesture dataset was effective during both tests
(Table 3.3) and actual experimental sessions. However, it was clear that its performance could
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Figure 3.6: Image annotation

be improved with more images. For this purpose, the experimental sessions were video recorded
for further labelling and model training. I informed all participants about this and they gave their
consent. It is important to note that I recorded only their hands when they explored the TG. I
did not capture images of faces or other parts of the body that could reveal their identity. From
the recorded videos, 2000 frames were selected for annotation. While it is generally true that a
larger number of images can improve the performance of a detection model, only 2000 images
were selected due to the time-consuming nature of the annotation process. By annotation, I mean
manually reviewing and labelling the images by drawing bounding boxes around each fingertip
(as shown in Figure 3.6). The CVAT video annotation tool was used for this process (Sekachev
et al., 2020). The training set contained 1000 images of SingleFive and another 1000 of PairTen
gestures (Figure 3.7.c). By extending the existing dataset with new images, the model accuracy
increased significantly (results presented in the next section). The whole process of datasets
selection is illustrated in Figure 3.8.

Tiny-YOLOv3 Evaluation

Evaluation is an essential part of ML model development. This process is conducted using the
test set. Usually, this set is produced by randomly splitting the whole dataset into two parts, 10%
(test set) and 90% (training set) (Joseph, 2022). To obtain unbiased results, it is important that
the images in the test set are different from those in the training one. In other words, the model
should not see these images when it is being trained. In my research, it was crucial to create
a test set which would act as a benchmark for the models trained during the whole research
process. This test set is different from the TAURIS dataset and was created almost one year
before. The use of this test set allowed the researcher to monitor the performance changes of the
models produced throughout all stages. To create a test set that is close to the real-life setting,
the researcher recorded himself while exploring the TG. In total, 200 images were collected and
annotated. Results presented in Table 3.2 and Table 3.3 are obtained by running the models
through this test dataset.
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Figure 3.7: Hands datasets

Figure 3.8: Dataset selection process

Dataset used Thumb Index Middle Ring Little

EgoGesture SingleFive 7.17% 16.59% 12.28% 19.17% 37.86%

EgoGesture PairTen 28.48% 30.27% 32.08% 54.12% 83.29%

EgoGesture SingleFive + PairTen 59.29% 78.54% 25.63% 47.29% 94.05%

SingleFive + PairTen + TAURIS dataset 84.10% 92.45% 79.37% 99.09% 85.10%

Table 3.3: Tiny-YOLOv3 model evaluation results
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Gamma value Thumb (%) Index(%) Middle(%) Ring(%) Little(%)

Original (∼600 lux) 84.1 92.4 79.4 99.1 85.1

80% (∼500 lux) 84.6 89.7 74.9 98.9 87.0

60% (∼380 lux) 78.2 78.3 68.4 87.3 81.9

40% (∼220 lux) 61.2 55.5 64.6 64.9 83.2

20% (∼40 lux) 0.1 0 3.5 1.4 4.5

Table 3.4: Fingertip detection accuracy under different lighting conditions

3.2.3 Detection under varying lighting conditions

While the primary focus of this research lies in fingertip detection, comparing the developed sys-
tem with existing hand gesture recognition systems, particularly concerning their performance
under varying lighting conditions, offers valuable insights. This comparison not only sheds light
on the broader field of gesture-based interaction but also highlights potential areas for future
exploration.

To assess the robustness of the TAURIS fingertip detection model under diverse lighting
conditions, the brightness of images within the test set was systematically controlled using the
gamma correction algorithm. This algorithm allows for the adjustment of image brightness
through the following formula:

Oimage = 255∗ (
Iimage

255
)

1

γ

where:

Oimage = = output pixel value [0, 255]
Iimage = = input pixel value [0, 255].
γ = = gamma value

Figure 3.9 illustrates the samples of the images produced. Original images were collected
under 600 lux illumination. The ideal lighting level requirement for schools in the UK is 5003

lux and higher. Whereas, 300 lux is considered to be an acceptable illumination. This method-
ology aligns with previous research that utilised gamma correction for data augmentation and
model testing (Casado-Garcıa and Heras, 2020; Kachouane et al., 2012; Galdran et al., 2017).
Table 3.4 presents the results of the conducted tests.

Several studies have explored hand gesture recognition techniques with varying degrees of
success in handling lighting fluctuations:

3https://www.lyco.co.uk/advice/lighting-for-schools-colleges-and-universities
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Figure 3.9: Image under different lighting conditions

• Wijayawardana (2021) employed OpenCV and a pre-trained model for hand gesture recog-
nition to control a wheelchair, achieving recognition rates of 0%, 75%, and 100% at 250,
350, and 450 lux, respectively.

• Verdadero, Martinez-Ojeda, and Cruz (2018) utilized an AI model for static hand ges-
ture recognition to control home appliances. While achieving a 100% recognition rate
on a Samsung Galaxy S4 under controlled lighting conditions (minimum 120 lux), the
authors emphasize the need for adequate illumination and contrast, suggesting potential
limitations in real-world scenarios.

• Exploring the use of ambient light and photodiodes, Duan et al. (2020) leveraged an RNN
to process data from an 8-photodiode array, achieving an impressive 99.31% accuracy for
seven predefined hand gestures. However, a minimum illuminance level of 200 lux was
required, and the potential impact of lighting changes on performance was acknowledged.

• Venkatnarayan and Shahzad (2018) introduced LiGest, a system utilizing a grid of light
sensors to recognize gestures based on shadow patterns. Incorporating denoising, stan-
dardization, and rasterization techniques, LiGest achieved an average accuracy of 96.36%
across diverse lighting conditions and user positions. However, the system’s reliance on up
to 6 light sources contrasts with the single light source employed in the TAURIS system,
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Gamma value 200 lux 500 lux 600 lux

TAURIS (average for 5 fingers) 65.9 87.02 88.1

Wijayawardana (2021) 0 75 100

Verdadero, Martinez-Ojeda, and Cruz (2018) - - 100

Duan et al. (2020) 99.31 - -

Venkatnarayan and Shahzad (2018) 65 - 96.36

Li et al. (2018) - - 96.36

Table 3.5: Systems detection accuracy under different lighting conditions

highlighting potential challenges in low-light environments.

• Li et al. (2018) presented a self-powered gesture recognition module utilizing photodi-
odes for both energy harvesting and sensing. Their system, based on a CFAR algo-
rithm, demonstrated robustness against ambient light fluctuations, achieving high accu-
racy (above 96%) in normal office conditions (600 lux).

Table 3.5 offers a comparative evaluation of the TAURIS system’s accuracy alongside other
gesture recognition systems under varying illumination levels. Despite the inherent challenge of
differentiating fingertips due to their similar appearance, the TAURIS system shows acceptable
robustness, maintaining relatively high accuracy even at lower lux levels compared to some
systems designed for pre-defined hand gestures. However, it is crucial to acknowledge that direct
comparison between these systems is limited due to the differences in methodologies and tasks
employed in each study. Further investigation is necessary to comprehensively understand the
impact of diverse lighting conditions on the performance of various gesture recognition systems,
particularly those focused on the intricate task of fingertip detection.

3.2.4 Detection in complex scenarios

To further assess the robustness and generalisability of the fingertip detection model, a new
dataset, called the "Complex Scenarios", was created. This dataset consisted of 200 images cap-
tured challenging real-world conditions that might impact fingertip detection accuracy. These
conditions included:

• Occlusions: A significant source of occlusions in the dataset were primarily due to the
natural interaction of the two hands, where fingers from the right and left hands frequently
overlapped or partially obscured each other. While occlusions by external objects like
books or pencils were also considered, the emphasis was placed on capturing the hand-to-
hand occlusions that are particularly prevalent during two-handed tactile graphic explo-
ration.
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Thumb Index Middle Ring Little

55.12% 60.34% 58.13% 63.01% 50.57%

Table 3.6: Fingertip detection in complex scenarios

• Shadows: In addition to the variations in illumination intensity investigated in Section
3.3.3, this dataset specifically incorporated images captured under lighting conditions de-
signed to cast distinct shadows across the hands. The aim was to assess the model’s ro-
bustness to the presence of shadows, which can obscure fingertip features and potentially
lead to inaccurate detections.

• Diverse Hand Shapes and Sizes: The dataset included images of hands from individuals
of different ages and hand sizes to capture a wider range of potential variations.

The Complex Scenarios dataset was used to evaluate the performance of the Tiny-YOLOv3
model trained on the original EgoGesture and TAURIS datasets. Table 3.6 presents a breakdown
of the model’s performance on the Complex Scenarios dataset for each fingertip class.

While the model’s overall performance on the Complex Scenarios dataset was satisfactory,
the results highlight the need for further improvement, especially in handling occlusions. The
challenges posed by occlusions, particularly those arising from the interaction of the two hands,
highlight the need for robust techniques to mitigate their impact on fingertip detection accuracy.
Data augmentation, a widely used strategy in deep learning, offers a potential solution by artifi-
cially introducing occlusions into the training images, thereby enhancing the model’s ability to
generalise to such scenarios. Additionally, the implementation of a Kalman filter, which will be
discussed in detail in the subsequent section, can further improve fingertip tracking stability by
leveraging temporal information to predict and smooth fingertip trajectories.

3.2.5 Algorithm improvement

All or nothing

Even though a comparatively high detection rate for each fingertip was achieved, there still
were some cases when the model confused the fingers and which were affecting the overall
performance of the app. This was primarily due to similar appearances between fingertips. In
order to minimise the number of such instances, a modified algorithm was implemented. I called
it the "all or nothing" algorithm, i.e the coordinates of the index finger (in our case) were returned
when all of the fingers, except the thumb, were detected. The thumb was neglected because its
appearance differs a lot from the rest of the fingers and the detector almost never detected it as a
different finger. The piece of pseudocode which describes the algorithm is presented below:
1: IF (indexDetected == True && middleDetected == True && ringDetected == True
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2: && littleDetected == True) THEN
3: return indexPosition

4: ELSE
5: do nothing

Median filter

In addition, there was one issue that was encountered when the user was exploring TG with both
hands- the detection algorithm was identifying the left-hand index finger instead of the right
one. The number of such cases was minimal because the model was trained on a dataset that
contained images of both hands. However, it had a negative impact on the performance of the
entire application. To address this problem, a median filter was applied to smooth the input data.
As a result, even if there was a case of misdetection, the algorithm was able to filter it out. After
running the final model on a test set, it was found that the number of false detections for the
index finger was less than 5%. This meant that the model was incorrectly detecting a fingertip in
one of the 20 frames. Therefore, the window size of 5 consecutive values was more than enough
to ensure that those detections were removed. The implemented algorithm is presented below:
1: IF indexPosition size >= 5 THEN
2: FOR indexPosition[i] from 0 to 5 DO
4: window[] += indexPosition[i]

5: i = i + 1

6: sort entries in window[]

7: median = window[3]

8: ELSE
9: do nothing

Kalman filter

To further enhance the robustness and stability of fingertip tracking, a Kalman filter was inte-
grated into the TAURIS system. This widely used algorithm leverages temporal information
from consecutive video frames to predict the future location of a fingertip, effectively smooth-
ing its trajectory and mitigating the impact of spurious or missing detections. The Kalman filter
operates through a two-step process of prediction, based on the fingertip’s previous state and
a motion model, followed by an update that incorporates the current measurement from the
YOLOv3 detector to refine the prediction. See Appendix C for the details.

To evaluate the impact of the Kalman filter, a test was conducted using 100 frames of video
footage. The initial detection model correctly identified the index finger in 89 out of 100 frames.
After incorporating the Kalman filter, the accuracy improved to 95 out of 100 frames, demon-
strating the filter’s effectiveness in enhancing detection stability.
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The computational load introduced by the Kalman filter is generally negligible compared to
the processing time required for the YOLOv3 object detection. The filter’s calculations primarily
involve matrix operations on relatively small matrices, and modern mobile devices are capable
of executing these operations efficiently. The addition of the Kalman filter did not impact the
overall inference speed of the system, ensuring that real-time performance is maintained.

Figure 3.10 illustrates the whole fingertip detection process. The described "all-or-nothing",
median filter and Kalman Filter algorithms are highlighted in green.

Figure 3.10: Fingertip detection algorithm overview

3.3 Conclusion

In this chapter, I first provided a technical background on developing CV algorithms. The pur-
pose of this section was to introduce the fundamental concepts that were necessary for fingertip
detection in my research. Accurate and fast fingertip detection is a very important part of the
functionality of the developed app. In fact, this was also the most challenging part to achieve. To
the best of my knowledge, there is no system that was implemented on a mobile device capable
of simultaneously detecting the fingertips of both hands in real-time and under different lighting
conditions. This chapter has provided a deeper insight into the procedures which were intro-
duced to develop a better (more accurate and faster) detection model. After comprehensively
evaluating the most suitable state-of-the-art object detection models, a tiny version of YOLOv3
was selected. As expected, this DL model architecture has shown poor accuracy performance -
around 22% at the beginning (opposing to 57% and 50% achieved by the competitors). How-
ever, its detection speed was exceptional - 2.13 ms to process a single frame (vs 24.3 ms and
33.8 ms in the other two). Real-time execution was essential for the developed app. Thus, it was
decided to carry on the research with a tiny-YOLOv3 and try to improve its detection accuracy.
After enhancing a training dataset with more images, the model detection accuracy increased to
92% (for the index finger). On top of this, the "all-or-nothing", median filter and Kalman Filter
algorithms were applied to minimise the number of wrong detections and smoother tracking. All
evaluations were implemented in the same testing set and using the same hardware. Overall, it
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can be concluded that the researcher achieved the goal of creating a robust model which allowed
him to carry out the experiments and gather meaningful results.

While this research primarily focuses on fingertip detection, a comparative analysis with ex-
isting hand gesture recognition systems, particularly concerning their performance under vary-
ing lighting conditions, offers valuable insights. The TAURIS system, employing a customized
Tiny-YOLOv3 deep learning model, demonstrates high accuracy for fingertip detection under
ideal lighting conditions (600 lux) but experiences performance degradation as illumination di-
minishes. Alternatively, hand gesture recognition systems utilizing OpenCV often require con-
trolled lighting and high contrast for optimal accuracy. Approaches leveraging ambient light and
photodiode arrays, along with self-powered systems employing algorithms like CFAR, present
promising avenues for handling diverse lighting conditions. Furthermore, shadow-based recog-
nition systems, such as LiGest, exhibit robustness against illumination changes by interpreting
shadow patterns created by hand movements.



Chapter 4

TAURIS System

4.1 Introduction

The main purpose of the TAURIS system is to allow Visually Impaired People (VIP) to explore
tactile images without needing the help of a sighted person. The system consists of three main
components: an Android mobile app, a Tactile Graphics (TG) online annotation tool, and pre-
labelled TG. The mobile app is specifically designed for VIPs to use, allowing them to navigate
and interact with tactile images on their own. On the other hand, the TG annotation tool is
intended for teachers and instructors to use, enabling them to add labels and annotations to the
tactile images. In this way, the TAURIS system aims to provide VIPs with a self-sufficient means
of accessing and understanding tactile images, whilst also providing a means for educators to
enhance the learning experience for visually impaired students. A thorough description of these
instruments is presented in this chapter. The chapter1 starts by discussing the phone app in
Section 4.2, including its overview and the CV algorithms it uses. Section 4.3 then focuses on
the description of the TG annotation tool and design requirements for TG production. Finally, a
summary of the entire chapter can be found in Section 4.4.

4.2 Mobile Application

4.2.1 Overview

The main purpose of the developed app is to give users information about TG. It does this by
tracking the user’s finger positions as they explore the TG and providing information on what
they touch in real-time. The previous chapter provided a detailed explanation of the fingertip
detection process. This section will discuss the processes that take place before the detection
step. The flowchart with the processing steps of the app can be found in Figure 4.1. The App

1Some of the work in this chapter has appeared in Zeinullin and Hersh (2022). Maralbek Zeinullin is the first
author and main contributor to this paper.

49
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Figure 4.1: App working algorithm

was installed and tested on a Samsung Galaxy A52 device running the Android 11 operating
system. This mobile device was used during the experiments. A capable camera of the device, a
good chipset driver, and most importantly a moderate selling price (under £3002) were the main
criteria for the researchers. It was crucial to test the application on a mobile phone that would
be affordable for all potential users.

First, a QR code located at the back of the printed TG must be scanned (Figure 4.2). Using
this method, the system will download the information about the TG to the device’s memory.
After users receive a notification that the code is successfully scanned, they can turn over the
TG and start exploring it. The TG were printed on A4 ZYTEX2 swell paper. To explore TG
with both hands, a phone holder, as shown in Figure 4.3, could be used. First, the app will look
for the square markers located at the corners of the TG and will proceed if at least three of them
are in the camera view of the phone. These markers are required to construct a "birds-eye" view
of the image (Figure 4.4). Using this method, the app continuously updates the input image and
calibrates it if the phone and/or TG positions are changed. The markers are called ARUCO and
will be briefly discussed in the following section of this chapter. After markers are detected, the
app will summarise the content of the visual information and its key features. TG is divided
into 2400 (60x40) cells, each of which contains a predefined piece of information (see Section
4.2.4). As the Deep Learning (DL) model detects all visible fingers, it outputs the position of
the default finger, which has been initially set as the index finger (this can be changed in the
app’s settings). Finally, the location of the fingertip is mapped onto the image cells and the data
corresponding to it is read out to the user. It should be noted that the app uses both square QR
codes and square ARUCO markers but their functions are different. It utilises a QR code to link

2https://www.pricerunner.com/Mobile-Phones/Samsung-Galaxy-A52-128GB-Compare-Prices



CHAPTER 4. TAURIS SYSTEM 51

Figure 4.2: QR code printed on the back of the tactile graphics

Figure 4.3: Phone mounted on a special holder
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Figure 4.4: Four points birds-eye view image transformation
Note: Corners used to construct a new image pointed out inside red circles. Index 95% means

that the app is 95% confident that the detected object is an index finger

to the data to be downloaded from the server and ARUCO markers to determine the location of
the image. Information about these two algorithms will be presented in Sections 4.2.2 and 4.2.3
respectively.

On average, the app is capable of processing ∼15 frames per second3 but it will not trigger
feedback on every instance. Once the finger is moved, the system will play an audio output and
wait for it to change location again. If the location does not change significantly or remains
within the single TG area it will remain silent. To hear the audio output again, the user must
remove their hand from the camera’s view and then place it back in the TG area of interest.
One of the advantages of the developed DL algorithm is its high accuracy in detecting each
finger. This was discussed in more detail in the previous chapter in Section 3.2.2. Therefore,
the user can explore an image with the whole hand and an algorithm will return the position
of the desired finger only. This approach was chosen to avoid confusion because the size of a
user’s whole palm is quite large and the user might be covering multiple objects in one instance.
Whereas the area of a single fingertip is much smaller and the users know what exactly they
are touching at a given moment. In other studies, it is required to point with the index finger
only (Baker et al., 2014; Fusco and Morash, 2015; Reichinger et al., 2016), OrCam4, which is
inconvenient, as discussed in the previous chapter. I will present the tools and algorithms that
are used to ensure the app’s proper functionality in the following sections.

4.2.2 QR code

QR (Quick Response) codes are specially designed two-dimensional arrays of black and white
squares (Figure 4.5). The information stored in the codes can be easily read by QR scanner or
a smartphone camera. Similar to Braille legends, text encoded into the QR code can be placed
near the TG element. The advantage of the QR label is the amount of data it is capable of
storing. According to the online source, it can handle up to 4296 alphanumeric characters (QR-

3Android FpsMeter function was used to measure the app image processing rate
4http://www.orcam.com
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Figure 4.5: QR code sample

code-generator.com, 2020). This number varies depending on the size of the QR code array.
The study conducted by Baker et al. (2014) reports that QR codes store up to 45% more text
than Braille legends of the same size. The limitation of this method is the process of proper
camera aiming to scan the code. Vázquez and Steinfeld (2012) analysed various approaches
to mitigate this issue. According to the results, VIP preferred speech instructions for accurate
camera focalisation. In my work, the QR code is used to download predefined information to the
phone app. When the app starts running, it instructs the user to scan the QR code that has already
been generated and placed on the other side of the TG automatically by the web tool. The QR
code contains the URL link to the cloud server where the information about TG is stored. To
reduce friction for the user when scanning, the generated QR code has a larger size. Finally,
the app notifies the user if the code was scanned successfully so the exploration process can be
initiated. To sum up, QR codes can be used as a supplementary tool for TG labelling, provided
that the user is comfortable with code scanning.

4.2.3 ARUCO Markers

ARUCO is an open-source library that is used to detect square markers (Figure 4.6). The main
advantage of the ARUCO is its fast and robust marker detection. The experimental results show
that this algorithm works faster compared to other marker detectors maintaining the same accu-
racy (Romero-Ramirez, Muñoz-Salinas, and Medina-Carnicer, 2018). After successful marker
detection, an algorithm returns a marker ID number with four corner coordinates. The library is
based on OpenCV (Bradski and Kaehler, 2008) and its code is written in C++. In the context of
the developed system, I use markers with IDs: 0, 1, 2, and 3 which are placed in clockwise order
starting from the top left. First, the coordinates of each marker corner that is closest to the centre
are detected. In total, sixteen corners are detected (4 corners x 4 markers) but in this project I
use only four of them. Figure 4.7 highlights the corners used in the detection algorithm. Since
it is known which ID corresponds to each of the corners, it is easy for the app to detect if one of
the corners is not visible and then to estimate its location by utilising the information about the
remaining three points (Equations 4.1 - 4.4).

Ptop_rightxy
= Ptop_le f txy

+Pbottom_rightxy
−Pbottom_le f txy

(4.1)
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Figure 4.6: ARUCO markers

Figure 4.7: Tactile image with ARUCO markers
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Figure 4.8: Input image perspective transformation

Pbottom_rightxy
= Ptop_rightxy

+Pbottom_le f txy
−Ptop_le f txy

(4.2)

Pbottom_le f txy
= Pbottom_rightxy

+Ptop_le f txy
−Ptop_rightxy

(4.3)

Ptop_le f txy
= Pbottom_le f txy

+Ptop_rightxy
−Pbottom_rightxy

(4.4)

where:

top− right,bottom− le f t,etc.= corner locations
xy = x and y coordinates of the corner point

Afterward, these four points are used to build a top-down view of the image. A top-down
view is a type of perspective in which an image is depicted as if the viewer is looking down
at the scene from above. One advantage of this process is that it only provides information
about what is inside the rectangle of interest. Figure 4.8 illustrates how the algorithm focuses
only on the area enclosed by the ARUCO markers. This process updates the input image in
real-time, allowing the app to calibrate itself if the phone or TG orientation slightly changes.
Figure 4.9 shows how the app deals with the situation when the TG orientation was changed.
Since the app knows the coordinates of the four points in the source and destination images, a
perspective transformation matrix can be easily determined using equation 4.6. To clarify, the
four coordinate points of the source image are identified through the ARUCO markers. Four
points of the destination image are selected, with the coordinates of the top left corner being
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Figure 4.9: Example of input image perspective transformation

0,0 and the image dimensions being 900 by 600 pixels. Consequently, the coordinates of the
detected finger will be translated accordingly.

After that, this matrix is used to transfer all enclosed points from the source image to the
destination one using formula 4.5. OpenCV library was used to calculate a perspective transform
matrix and then create a new image. It is worth highlighting that at least three markers should
be in the field of view of the camera for the app to function properly.

Again, it is absolutely crucial to maintain consistent use of marker IDs. If markers with
different IDs are used or their order is changed, the app will not be able to apply the perspective
transform algorithm. By implementing these steps, the app will accurately detect the user’s
fingertip position (described in the previous chapter) with respect to the tactile image even if the
phone orientation is continuously changing.sx’

sy’
s

=
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1
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 (4.6)

where:

s = scaling factor
x’,y’ = transformed points (destination image points)
x,y = initial points (source image points)
a1,a2,a3,a4 = rotation, scaling matrix
b1,b2 = translation vector
c1,c2 = projection vector
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Research work Camera aiming
success rate (%)

Notes

TAURIS 100 Based on user study with vibration alerts
for missing markers.

Lee et al. (2019) 92 Based on user study with audio-haptic
feedback.

Feiz et al. (2019) 89.5 Based on user study with audio instruc-
tions for form filling.

Table 4.1: Comparison of camera aiming techniques

The rotation matrix is used to rotate a point around a fixed origin and the scaling matrix is
used to stretch or shrink the size of a geometric object along the x-axis and y-axis.

In this work, ARUCO markers help the users to accurately aim the phone camera. This in-
volves adjusting the camera’s position, composition, and angle to get the best possible image.
As described above, the marker is placed at each of the four corners of the TG. Thus, the whole
area of interest is enclosed by these markers. The phone notifies the user if, during the explo-
ration process, more than two markers are not visible by making short vibrations. This helps the
user to readjust the angle and position of the phone and to make sure that the whole image is
in the field of camera view. This feature was acknowledged by the participants and was partic-
ularly helpful during the experimental study. Notably, all participants in the study successfully
achieved proper camera aiming using this method. Since this approach requires preparing and
printing the graphics with the markers in advance, it cannot be easily transferred to other sys-
tems and solve the problem of an accurate camera capturing real-time activities. In the future,
an active navigation feature will be added. This feature will give explicit instructions to the user
if the camera is not aimed correctly. Since the app knows the marker with which ID is missing,
it can navigate the user and say that "top left" or "left side" (if two markers are not visible) is not
in the field of view.

Table 4.1 presents a comparison of camera aiming success rates across different studies
and systems. While direct comparison is limited due to variations in methodologies and tasks,
the TAURIS approach, demonstrates a 100% success rate in achieving proper camera aiming
within the context of its specific application and user study. This high success rate may be
attributed to several factors, including the explicit spatial referencing provided by the markers
and the active guidance through vibration alerts. However, it is important to acknowledge that
the studies employed different performance metrics and involved participants with varying levels
of experience and visual impairments, which can influence the observed outcomes.

The challenge of accurate camera aiming remains a persistent issue for visually impaired
users of mobile technology. While various approaches have been explored, the ARUCO marker-
based system employed in the TAURIS app demonstrates promising results, achieving a 100%
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success rate in guiding participants towards proper camera alignment within the context of the
study. The system’s effectiveness can be attributed to its explicit spatial referencing, active
guidance mechanisms, and combined use of visual and haptic modalities. Further research and
development in this area hold the potential to enhance accessibility and empower visually im-
paired individuals to fully utilise the capabilities of mobile camera technology in their daily
lives.

4.2.4 Mapping algorithm

The final rectangular image is divided into 2400 cells, each cell having a unique ID and the
description associated with it. Whenever the user touches a particular cell, a linked predefined
audio feedback is triggered. The destination image has dimensions of 900 pixels in width and
600 pixels in height. Each cell in the grid has dimensions of 15x15 pixels. This means that the
grid has 60 cells horizontally and 40 cells vertically, resulting in a total of 60 * 40 = 2400 cells.

The specific design choices for the grid size and number of cells are based on both the
physical dimensions of the TG and ergonomic considerations. The TG enclosed by four ARUCO
markers has an actual physical size of 24 × 16 cm, which translates to individual cell dimensions
of 4 × 4 mm. This cell size is smaller than the average width of the human index fingertip,
reported to vary between 16 and 20 mm (Dandekar, Raju, and Srinivasan, 2003). Additionally,
Johnson and Blackstone (2007) found the mean width of the index fingertip to be 20.3 ± 2.4
mm across participants. The smaller cell size ensures precise mapping and avoids ambiguity
when the fingertip interacts with the TG. Furthermore, research suggests that many visually
impaired people prefer using their index finger as the leading one for tactile exploration (Wong,
Gnanakumaran, and Goldreich, 2011).

The cell IDs are assigned sequentially starting from the top left corner, with the first cell
having an ID of 1 and the last cell having an ID of 2400. The cells are numbered by going
from left to right, then top to bottom. After the fingertip is detected, its coordinates are linked
to the individual cell. Equation 4.7 is used to associate the location of the fingertip with the cell
ID. Note that when the coordinate values of the fingertip bounding box are divided by the cell
dimensions, the result is rounded up to the closest integer. For instance, if the fingertip is located
right in the middle of the image, its coordinates are cx, cy = 450, 300. Assuming that the image
width is 900 pixels and the dimensions of an individual cell are 15x15, the corresponding cell
number can be easily calculated. After applying all values to the equation, the corresponding
cell ID is equal to 1170. Figure 4.10 demonstrates how the fingertip coordinates are mapped
onto the individual cell. The algorithm uses the centre coordinates of the bounding box and then
associates it with the cell closest to it. In the figure, the target cell has a red circle inside.

C =
Wimage

Wcell
(⌈

cy

Wcell
⌉−1)+ ⌈

cx

Hcell
⌉ (4.7)
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Figure 4.10: Fingertip location mapped on the image grid cells

where:

C = Cell ID
Wimage = Image width
Wcell = Cell width
Hcell = Cell height
cx,cy = x and y coordinates of the centre of the bounding box

4.2.5 Description modes

Depending on the type of information users need, different descriptions can be requested. There
are three types of descriptions available: overview, basic, and detailed.

• Once the QR code is scanned and the TG is turned over, the overview is activated. This
provides general information about the content of a TG. Turning over the graphics in both
directions again will allow the user to hear this information one more time.

• The app provides a basic description as soon as the user begins exploring the TG and the
algorithm detects their fingers. When the app is in this mode, it tells the user which object
their index finger is touching without providing any further information.
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• The detailed description mode can be activated by the user if they would like more de-
tailed information. This can be achieved by holding the index finger still for three seconds
above the target object.

To clarify the differences between what type of information is presented in each mode, ex-
amples of descriptions for the map of Australia are provided below.

• Overview: This is the map of Australia. It consists of six states and two territories.

• Basic: New South Wales

• Detailed: Capital city of this state is Sydney. Australian Capital territory is also located
in this state.

To obtain a quality description, it is essential to provide accurate and concise information.
Long text can exhaust the user, while irrelevant information can confuse them and waste their
time. It is also crucial to provide the most important information. "How to Write Alt Text and
Image Descriptions for the Visually Impaired"5 created by the Perkins School for the Blind is a
useful guide.

4.2.6 Implementing Kazakh TTS

To improve the accessibility of the TAURIS app for use in Kazakhstani schools for the blind, it
was necessary to incorporate a Kazakh language text-to-speech (TTS) synthesiser. According
to the latest census data6 in Kazakhstan, over 80% of the population understands the Kazakh
language. Additionally, during the interview phase, several participants highlighted the need
for a Kazakh language option (See Chapter 6). Given the absence of a native Kazakh language
TTS on Android devices, the integration of a third-party API was required. The Scientific and
Practical Center named after Sh. Shayakhmetov (2024) “Til-Qazyna” released a Kazakh TTS
recently and this synthesiser was successfully integrated into the TAURIS app through their
API. I conducted preliminary testing of the TTS and it has demonstrated stable performance.
However, further testing with end-users is required to comprehensively evaluate its effectiveness.

4.2.7 Computational Demands of Real-time Fingertip Detection

The implementation of real-time fingertip detection on a mobile device presents inherent chal-
lenges due to the computational resources required for neural network inference. This section

5https://www.perkinselearning.org/technology/blog/how-write-alt-text-and-image-descriptions-visually-
impaired

6https://stat.gov.kz/ru/national/2021/
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presents the performance characteristics of the TAURIS app, specifically focusing on its resource
utilisation. The profiling tests were conducted on a Samsung Galaxy A52 device equipped with
4GB of RAM and a 4500 mAh battery, providing a representative evaluation of the app’s per-
formance on a mid-range smartphone.

Profiling Results and Analysis

The TAURIS app was profiled using Android Studio to analyse its resource consumption. The
profiling data encompassed CPU usage, memory allocation, and battery consumption during the
fingertip detection process.

• CPU Usage: The average CPU utilisation during continuous fingertip detection was
measured at 37%, with peak usage reaching 61%. This moderate level of CPU utili-
sation suggests efficient use of processing power, allowing for concurrent execution of
other app components and background processes without significant performance degra-
dation.Although the chosen tiny YOLO lightweight model architecture prioritises efficient
inference, the computational complexity inherent in deep learning models can still intro-
duce delays, particularly on less powerful mobile devices.

• Memory Usage: Memory allocation exhibited an average of 30 MB, while peak usage
reached 245 MB. This encompasses the memory footprint of the neural network model
itself, as well as other app components and data structures involved in image processing
and audio output generation.

• Battery Usage: Battery consumption was measured at 0.3% per minute during active fin-
gertip detection. This relatively low energy consumption ensures prolonged usage of the
TAURIS app without causing excessive battery drain, a crucial consideration for mobile
accessibility tools.

Table 4.2 provides a comparative analysis of TAURIS’s resource consumption against the
performance benchmarks of WhatsApp during a video call and YouTube during a live stream on
the same mobile device.

4.3 Web Tool for Annotations Creation

4.3.1 Overview

In addition to the phone application, an online tool to create annotations for the tactile images
was developed. The website interface is presented in Figure 4.11. For now, this tool is designed
for sighted users (parents, teachers, instructors, etc.) but in the future, the website might be
adapted for the VIP as well. First, the user has to upload a sample of a tactile image in JPG
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App CPU Usage Memory Usage Battery Usage

TAURIS 37% (Average)
61% (Peak)

30 Mb (Average)
245 Mb (Peak)

0.3% per minute

WhatsApp 49% (Average)
73% (Peak)

79 Mb (Average)
251 Mb (Peak)

0.4% per minute

YouTube 42% (Average)
77% (Peak)

34 Mb (Average)
328 Mb (Peak)

0.2% per minute

Table 4.2: Comparison of TAURIS resource consumption against other Apps

Figure 4.11: TAURIS web tool
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Figure 4.12: Image annotated by the TAURIS web tool.

or PNG formats. There are many online libraries that contain multiple sets of TG. The list of
some online repositories can be found in Table 4.3. Instructors may need to create their own
images if they are not available online. Next, the image needs to be divided into the regions
of interest (ROI) and the corresponding descriptions should be prepared. After that, ROIs have
to be highlighted and annotated with descriptions. The user can cancel the highlighting if a
selection mistake was made. It is also possible to edit information about highlighted regions
(Figure 4.13). Once all ROIs are marked, the user has to press the “finish” button for the tool to
save all information to the server. At the same time, a PDF version of the tactile image will be
created with the ARUCO marker frame. In addition, a QR code will automatically be generated
and placed on the second page of the PDF file. Lastly, the final document can be downloaded to
local memory and printed (double-sided mode). Figure 4.12 demonstrates the image annotated
with the web tool. An automatically generated QR code is also shown.

4.3.2 Guidelines for Effective Tactile Graphic Design

Creating effective TG requires careful consideration of design principles that prioritize acces-
sibility and clarity for the reader. The following key requirements, based on the guidelines
established by the Braille Authority of North America (Miller et al., 2010), outline essential
considerations for producing meaningful and usable TG. These principles emphasize conveying
information efficiently, minimizing clutter, and adapting the design to the reader’s specific needs
and abilities. Following these guidelines ensures that tactile graphics serve as effective learning
tools, providing equal access to information for Braille readers.
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Figure 4.13: TAURIS web editing options

Link Resource description
http://www.tactilelibrary.com/ Library of diagrams used in the education

of the blind and with low vision
http://www.tactilegraphics.org/ A website with the information on de-

signing and making TG created by Lucia
Hasty

https://imagelibrary.aph.org/aphb/ Educational resources for visually im-
paired created by American Printing
House for the blind

https://www.heardutchhere.net/ Manual on editing graphics for the blind
https://tactileimages.org/en/library/ Library of the TG created for the Tactile

Images7 app.

Table 4.3: Tactile Graphic Resources
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• Meaningful Representation: Prioritize clear meaning over exact reproduction.

• Effective Production: Choose the best production method, not the cheapest.

• Consistent Braille: Maintain Braille code consistency with the main text.

• Essential Elements: Include only necessary visual elements.

• Clear Layout: Ensure a clear and uncluttered layout.

• 2D Preference: Use 2D views unless depth is crucial.

• Unified Dimensions: Use consistent page dimensions for tactile graphics and Braille text.

• Informative Notes: Use transcriber’s notes to explain changes and clarify content.

• Reader Consideration: Adapt design for the reader’s age and skill level.

• Orientation Cues: Include tactile orientation cues on independent graphics.

4.4 Conclusion

One of the main aims of the research is to identify current gaps in the field of assistive technology
for VIP and propose a solution that will help to fill those gaps and thus benefit the visually
impaired community. To achieve this, a special educational system was designed. Limitations
of the available methods were considered before the system development. The proposed system
will meet present limitations in the following ways:

Labour-intensiveness: The special online web tool was developed that will allow the user
to easily upload and label images. Furthermore, processed images can be saved on the website
server so that other users can view and download them. Using this method, knowledge transfer
and collaboration between teachers and instructors will be established. In the future, it is planned
to add a feature that will allow users of the web tool to rate the created images, so the most
successful ones can be easily recognised. In short, users will be able to contribute and utilise the
best samples of TG which were created and assessed by the whole community.

Mental load on the reader: A developed system will accompany the TG with predefined
audio descriptions. The previous study has emphasised the effectiveness of an audio-tactile ap-
proach (Melfi et al., 2020). Their experimental results show that users acquire information faster
compared to other methods and show more than 70% accuracy while answering the questions.
The authors have used an iPad that was programmed to trigger the audio output when a user
touches the swell paper image placed on the tablet screen. In the phone app, I have implemented
the same strategy but the technical execution is different. The app uses a phone camera to track
fingertip locations in order to trigger the corresponding audio descriptions. Additionally, the
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app can provide general information about graphics and give preliminary cues for the location
of key elements. The conducted experiments also prove the effectiveness of this approach.

Production cost: Unfortunately, there is no way to reduce the production cost of the TG
itself. Instructors have to use a regular swell paper and a fuser in order to produce a traditional
tactile image. The reduction of these expenses and the optimisation of printing hardware is
beyond the scope of my research. However, I propose a solution that decreases the labour
effort for teachers and minimises the mental load for the students with an additional price of the
smartphone with a camera only (which many users already possess). According to the survey
(n=259, average age = 44.51), 95.4% of VIP use smartphones on a daily basis (Griffin-Shirley
et al., 2017).

To sum up, a detailed description of the TAURIS system was presented in this chapter. The
major component of the system is a mobile app. The app involves many features including
ARUCO markers and QR code detection, image transformation and audio output generation. In
addition, the application uses the object detection model described in Chapter 3. The web tool
for TG annotations is a second component of TAURIS. General information about this online
tool was provided in this chapter as well. In conclusion, the developed system differs from the
existing solutions in several ways. First, as it is capable of detecting all ten fingers separately,
it enables two-handed exploration for users. Second, the ARUCO markers placed at the corners
make the camera aiming process more accessible. Third, a compact architecture of the neural
network allows real-time execution even on a mid-range mobile device. To conclude, my system
still relies on traditional TG production methods. But, on the other hand, it offers a solution that
is advantageous in terms of ease of use and, in contrast to other assistive technology systems,
requires a smartphone only.



Chapter 5

Methodology

5.1 Introduction

In this chapter1, a methodological framework of the research is introduced. In section 5.2, the
list of the research questions are presented. The appropriate research method is introduced and
justified in this section as well. Next, in Section 5.3 the data collection procedures are described.
Finally, the data analysis steps are discussed in section 5.4.

5.2 Research design

5.2.1 Research questions

This study investigates the usability and effectiveness of the TAURIS app as an educational tool
for visually impaired individuals. Specifically focusing on its novel approach to Tactile Graphics
(TG) exploration using a smartphone. This involved evaluating user experience, including the
ease of camera aiming, and comparing the app’s performance with traditional methods (Braille
and screen readers) in terms of accuracy and speed of information access. The research questions
guiding this investigation are:

1. What are visually impaired individuals’ perceptions and attitudes toward the use of smart-

phone app in the context of exploring Tactile Graphics (TG)?

2. To what extent does real-time speech output, integrated with tactile exploration, enhance

the comprehension and retention of complex information conveyed through TG for visu-

ally impaired users?

3. What methods can be employed to improve camera aiming in smartphone-based assistive

technology applications designed for exploring TG?
1Some of the work in this chapter has appeared in Zeinullin and Hersh (2022). Maralbek Zeinullin is the first

author and main contributor to this paper.
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5.2.2 Mixed-methods design

Answering the research questions requires the collection of both quantitative and qualitative
data. Therefore, a mixed-method research design was used. In this section, the advantages and
disadvantages of this approach are reviewed.

In the context of my study, a major advantage of this method is not only the possibility
to determine if the proposed system works better but also to understand how participants feel
about using it. A mixed method approach is used to corroborate the findings and obtain thorough
and unbiased results (Creswell, Plano Clark, et al., 2003). Additionally, combining the results
of quantitative experiments with qualitative end-user interviews led to a more comprehensive
understanding of the topic as well as a more extensive approach to the analysis (Denscombe,
2008). In my research, this methodological approach was used to evaluate the effectiveness of
the proposed system and to obtain in-depth information on the perception of the end-user.

Furthermore, during this approach, a triangulation technique can be applied. This technique
allows examining the same phenomenon by different methods. In our case, the experimental
results showed how accurately the participants responded to the questions while using different
exploration modes. Whereas a post-experimental session was conducted to gain a better under-
standing of how the novel method impacted the exploration process. Lastly, this method allows
us to mitigate the impact of a small number of participants by gathering multiple types of data.
Unfortunately, there are certain challenges associated with the use of this method as well. In
particular, performing a mixed method analysis can be more difficult than either qualitative or
quantitative analysis alone. This is because it requires combining data from both qualitative and
quantitative sources and then interpreting them in the same context. To sum up, by introducing
this approach the credibility, variation and quality of the data can be dramatically increased,
given that the researcher knows how to effectively use this “mixture”.

5.2.3 Mixed-methods: The convergent design

There are three core designs of mixed methods research (Creswell and Clark, 2017):

1. A convergent design combines qualitative and quantitative data collection and analysis
techniques to build a more comprehensive understanding of a research problem. It is often
used to validate the findings of one method with those of another.

2. The explanatory sequential design. In this approach, quantitative data is collected and
analysed first. Then qualitative data collection and analysis is performed to explain and
expand the findings of the quantitative data.

3. The exploratory sequential design. The design involves the collection and analysis of
qualitative data first, which is then followed by the collection and analysis of quantita-
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tive data. This allows researchers to explore the research question in depth, while also
gathering quantitative data to support their findings.

The main reason why a convergent design is often selected before explanatory and ex-
ploratory sequential designs is due to its ability to provide a comprehensive understanding of
the research topic. The main goal of this approach is "to obtain different but complementary
data on the same topic" (Morse, 1991). One advantage of this method is that it juxtaposes the
strengths and weaknesses of the quantitative and qualitative approaches (Patton, 1990). This
method is also named a concurrent triangulation where two databases (quantitative and qualita-
tive) are used to corroborate findings and get a full understanding of a single topic (Creswell,
Plano Clark, et al., 2003). After taking everything into account, it was decided that a convergent
design is the most appropriate option for this study.

Following the procedures for carrying out a convergent mixed-method design, I performed
the steps described below (Creswell and Clark, 2017). First, after obtaining ethical approval,
structured interviews were conducted to gather participants’ demographic information and data
about their experience with TG & mobile devices. Next, quantitative measurements were ob-
tained through a series of experiments. Subsequently, qualitative post-experimental interviews
were carried out to record the participants’ thoughts and opinions about the proposed system.
In the final phase, teachers of visually impaired students were asked to provide feedback and
insights on the TAURIS app, exploring its potential impact on pedagogical approaches and stu-
dent comprehension. The quantitative and qualitative data from the initial phases and the teacher
feedback were then analysed separately using the techniques discussed in Section 5.4. Finally,
findings from all data sources were merged, compared, and interpreted in the Discussion section
of this manuscript. Figure 5.1 summarises the described procedures.

5.3 Data collection methods and procedures

5.3.1 Participants

Initially, it was planned to carry out the experiments in one of the Glasgow schools. I have
contacted multiple schools including the Hazelwood2 but due to the COVID-19 situation at that
time, the school administration advised to get back when the lockdown measures are eased.
Therefore, I decided to gather data in my home country - Kazakhstan, where educational or-
ganisations were operating without major restrictions. Shymkent regional boarding school for
visually impaired children agreed to take part in the study and permitted the investigator to con-
duct the experiments given that all safety and health measures are taken. This school provides
educational services in a variety of subjects from the first (primary) to the eleventh (secondary)
grade. The ethical approval to conduct this study was approved by the Ethics Committee of the

2Local School for children and young people with sensory impairment and complex learning needs
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Figure 5.1: Convergent Mixed-Method Design Procedures
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Glasgow College of Science and Engineering (Application Number: 300200167). In addition,
the following ethical aspects were strictly considered:

1. Ensuring anonymity, privacy, confidentiality and compliance with data protection regula-
tions

2. Assuring the ongoing consent

3. Assuring the safety of participants during experiments

4. Providing information in an accessible format

I recruited participants for my study with the help of the Shymkent school IT teacher, who
recruited and coordinated with potential participants on my behalf. Since it was during the
summer holidays, only a few students were available to participate, and the majority of the
participants were visually impaired school library staff. The IT teacher was instrumental in
helping me to reach out to and connect with these individuals. To further strengthen the study’s
findings and gather a more comprehensive dataset, an additional nine secondary school students
and five school teachers were recruited and interviewed during the school term. Overall, the
participant group was considered to effectively represent the main stakeholders relevant to the
study.

All COVID-19 safety measures were taken into account during the experiments to ensure
the health and well-being of all parties involved. This included wearing masks, using hand
sanitisers, and thoroughly cleaning the experiment site after each session. By implementing
these precautions, the transmission risk was minimised and a safe and productive environment
was maintained for all participants.

The school library was chosen for conducting experimental sessions because it was a safe and
familiar place for all visually impaired participants. They were able to navigate to the library
safely and comfortably as they were already familiar with the layout and surroundings. This
helped to ensure that the experiments could be conducted smoothly and without any unnecessary
disruptions.

To ensure the session information sheet and consent forms were accessible, digital versions
were sent to participants in advance. Before starting the experimental session, all consent forms
were read out loud to the participants and signed by them. Some chose to use government-
issued rubber stamps with their signatures to sign the documents. This helped to ensure that all
participants were fully informed and gave their consent before the study began.

5.3.2 Pilot study

A pilot study was conducted with a single participant before carrying out the experiments to
check whether all the materials were accessible and whether the design of the experiment was
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feasible. As a result, three changes were made to the experimental protocol and the investigator
obtained a good idea of session duration which facilitated scheduling subsequent sessions.

The main change was giving the participants time to familiarise themselves with the descrip-
tions first, and only subsequently asking the question and starting to record the time for all three
exploration modes. This was to avoid the response time for the first question being much longer
than that for the remaining ones and the results not being normally distributed, as the pilot par-
ticipant was found to require a significant amount of time to read the general TG descriptions in
Braille.

Another insight that was revealed is the type of text-to-speech synthesiser (TTS) preferred
by the participant. It turned out that most visually impaired users find the Google TTS more
pleasant to the ear. With respect to this, the default Samsung TTS on the device was changed to
Google TTS.

In addition, the pilot study gave the investigator an understanding of the duration of a single
session. The pilot session took around 75 minutes to complete. This information was then used
to schedule the following meetings. Lastly, it was found out that one of the Braille embossed
texts was not fully readable, so it was replaced.

5.3.3 Phase 1 – Interview

As mentioned in 5.3.1, informed consent was obtained before the start of the study. The inter-
views were divided into two main parts. The first covered general demographic information and
the second participants’ experiences with the TG. This included questions about whether they
had used TG in school and how it affected their learning. The final question asked about their fa-
miliarity with Assistive Technology (AT) applications for smartphones, including whether they
had used apps that require the use of the phone’s camera. The questions used are listed in
Appendix B.

5.3.4 Phase 2 – Device testing (Quantitative)

Apparatus

The TAURIS app was installed and tested on a Samsung Galaxy A52 device running the Android
11 operating system. This mobile device was used in the experiments with all participants. The
capable camera of the device, a decent chipset, and most importantly a moderate price (under
£3003) were the main criteria for the research. It was crucial to test the application on a mobile
phone that would be affordable to all potential users.

The TG were printed on A4 ZYTEX2 swell paper. Each TG had two versions: one with
Braille labels and one without. The Braille labelled version was used by the participants during

3https://www.pricerunner.com/Mobile-Phones/Samsung-Galaxy-A52-128GB-Compare-Prices
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the Braille text and screen reader modes sessions. The version without labels was used for the
TAURIS App exploration mode. The quality of the TG and the Braille texts were assessed by
the library staff before production to ensure that the printed graphics were readable. Participants
were given up to ten minutes to familiarise themselves with the app before starting the actual
testing session.

Experiments

The aim of the experimental session was to investigate how different modes affect the perfor-
mance of the participants and therefore to answer research questions 2. Due to the small number
of participants, a within-group design method was chosen to analyse the data. This method in-
volves testing more than one treatment on the same participant. In our case, the same person
was exploring TG with two different modes (app and either Braille or screen reader).

The independent and dependent variables in the experiments were:

• Independent variables: Mode (App and Braille / Screen reader)

• Dependent variables: Time and accuracy

My objective was to find out how different modes affected performance while exploring TG.
One of the disadvantages of the within-group approach is the learning effect. Since each partic-
ipant used the app three times in one session, he/she was gaining more experience throughout
the experiment. Another issue associated with this method is fatigue. Each participant had to
explore six different tactile images using the two modes. According to research, the appropriate
length of one experiment session should be between 60 and 90 minutes (Nielsen, 2005). I tried
to finish the sessions within the suggested time constraint and none of the sessions exceeded 90
minutes. Additionally, I examined how the participants’ ages and level of vision loss affected
their performance.

During the experimental session, each participant explored six different tactile images. Three
tactile images were explored using the app and the remaining three with their choice of mode
(Braille text or screen reader). Ten participants used Braille and another ten used a screen reader
mode. The TG were divided into three categories: object, map and graph, with each category
having a different type of associated graphics. Examples of TG used in the experiments are
illustrated in Figure 5.2. Brief descriptions of the modes and the object and graphic types are
provided below.

Exploration Modes
(1) App mode. The TAURIS app was used by participants in this mode. Before each test,

I asked participants whether they prefer to explore TG with one or both hands. All of them
preferred to use both hands to explore the images. Thus, the phone was mounted on a holder
for all sessions. The app used a phone camera to track the user’s fingertip locations in order to
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trigger the corresponding audio description. Figure 5.3 shows an example of TG used in app
exploration mode.

(2) Braille mode. In this mode, the embossed Braille text descriptions were provided with
the TG. The user had to switch back and forth between the TG and the description sheet to read
the description. For convenience, Braille legends were placed next to the objects illustrated on
the TG (Figure 5.4).

(3) Screen reader mode. For this mode, text descriptions for the TG were printed on standard
(rather than swell) paper. Participants used their own mobile phones and their preferred apps to
capture the document and convert printed text to speech. Two participants used a standalone
device4 with optical character recognition (OCR) and audio output which converts printed text
into speech since they did not have an appropriate document reader app installed. Response
times were not affected by the choice of device, since all measurements were taken after the text
was captured and spoken aloud once. Since the users who selected this mode were able to read
Braille numbers (but were not fluent Braille readers), the TG with the Braille legends were used
in this mode for their convenience (Figure 5.4).

Graphic Types
In addition, the TG were divided into three different categories according to the task type:
Object. The images of the frog lifecycle and the space shuttle were used in this part. First,

participants had to listen/read the general information about the object presented on the TG.
They then explored the object thoroughly and answered questions about it. This type of task
was considered the most difficult due to the amount of information provided.

Graph. Two different histograms were used. The associated tasks were the easiest, as most
of the information could have been acquired by touch, e.g. the length and location of the bar.

Map. The maps of Australia and Kyrgyzstan were used and the participants used the same
exploration algorithms as described in the "Object" type.

Procedure
A tactile image was placed in front of the participant at the beginning of each task as shown

in Figure 5.5. Then, a short summary of the image was presented in the appropriate exploration
mode. In the app mode, the summary was provided in an audio format as soon as the QR code
was scanned. A large QR code was placed on the other side of the paper at a point corresponding
to the centre of the TG. The dimensions of the QR code in this study are much larger than in
previous works. This makes it much easier for visually impaired users to locate and scan the
code. Correspondingly, none of the participants experienced any difficulties in scanning the
code during the experiments. In the screen reader mode, a text document with the summary was
first scanned by the text reader app and then spoken out loud by the device. In Braille mode, a
sheet with the corresponding Braille text was used.

4Standalone machine with a camera. Similar to this one https://www.visionaid.co.uk/standalone-reading-
machines/readeasy-evolve
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Figure 5.2: Examples of object (A), map (B) and graph (C) TG.
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Figure 5.3: Example of TG used in the app exploration mode. No legends.

Figure 5.4: Example of TG used in the Braille and SR modes. With Braille legends
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Figure 5.5: Participants exploring TG using the TAURIS app
Note: This photograph was taken for demonstration purposes only and was not taken whilst the

participant was conducting an actual experiment
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After the participants had familiarised themselves with the summary, the researcher read
each question out loud and recorded the answers and response times. There were three general
questions and one memory question for each object. The participants were free to continue
exploring the graphic while answering the first three questions. The final memory question was
used to assess how different exploration modes affect the participant’s ability to remember the
information. Since it was a test of memory, participants were not allowed to use the TG, Braille
text information, or the App whilst answering this question. Participants were not told whether
their answers were correct, as this is what happens in, for instance, an examination.

The following example shows the ordering of the questions from one session.

1. Object 1 (App)

2. Object 2 (SR/Braille)

3. Map 1 (App)

4. Map 2 (SR/Braille)

5. Graph 1 (App)

6. Graph 2 (SR/Braille)

The order of the questions in each task was the same for all participants. The order of the
exploration modes always started with the app mode and was followed by the screen reader or
the Braille mode. This was done because the order of the tasks in which the experiments were
conducted could influence the performance, attitudes, and perceptions of the participants. For
example, if a particularly difficult or time-consuming task was performed early in the study, it
could tire the participants and affect their performance on subsequent tasks. On the other hand,
if an easier task was conducted first, it could create a positive attitude that carried over to the rest
of the study. This approach was used to ensure that all participants completed the tasks under
the same conditions. The general design of the experiments is illustrated in Figure 5.6.

Memory Questions
The tasks and memory questions designed in this study serve to assess how effectively the

proposed system supports visually impaired users in processing and retaining spatial and seman-
tic information. An illustrative example includes a task where participants are required to recall
and reconstruct the layout of a tactile map of Australia. This task not only demands an under-
standing of spatial relationships between states but also incorporates key geographic features,
aligning with Petridou (2014) emphasis on interactive environments to sustain engagement and
promote active learning. By fostering exploration, these tasks are intended to enhance cognitive
engagement.



CHAPTER 5. METHODOLOGY 79

Figure 5.6: Experiments design

Memory questions were further designed to evaluate the integration of tactile and auditory
information encountered during exploratory tasks. For instance, in the frog lifecycle task, par-
ticipants were tasked with identifying developmental stages and reconstructing their sequence.
This approach tests both retention and synthesis of multimodal inputs and is inspired by the
methodology of Melfi et al. (2020), who demonstrated the efficacy of recall-based evaluation in
assessing tactile graphics for educational purposes.

The design of these tasks is consistent with the broader objective of advancing accessible
learning technologies for visually impaired individuals. By drawing from established frame-
works in interactive environments and cognitive assessment, the study integrates tactile and au-
ditory modalities to address the unique challenges faced by this demographic. This aligns with
the aims of the TAURIS system, which leverages audio-tactile interactions to provide more intu-
itive and effective learning experiences. The descriptions of the tasks and the list of all questions
can be found in Appendix B.

5.3.5 Phase 3 – End-user feedback (Qualitative)

The qualitative analysis was used to answer the first research question "What are visually im-

paired individuals’ perceptions and attitudes toward the use of smartphone app in the context of
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exploring Tactile Graphics (TG)?". A detailed understanding of user experience was gained by
conducting structured interviews with open-ended questions. In addition, Likert scale questions
were used to measure participants’ attitudes and opinions.

Likert-scale questions

Following the experiments, the participants were asked to answer six Likert-scale questions
(Likert, 1932). The answers ranged from 1 to 5, with 5- strongly agreeing and 1- strongly
disagreeing. The corresponding statements were as follows:

1. The phone app helped me to understand concepts better than Braille or text descriptions
alone

2. I found it easy and intuitive to use the app

3. I found it easy to properly aim the camera

4. I am satisfied with the app response time

5. I liked the detailed description app feature

6. I would be interested in using this app to get better quality information during my classes
on a daily basis

Semi-structured interviews

Interviews are extremely helpful during product development. (Lazar, Feng, and Hochheiser,
2017, p. 195). As they allow a deeper insight into users’ opinions about the product interface,
information flow and other important features. There are three types of interviews:

• Structured interviews follow a predetermined set of questions and are designed to be
more formal and standardised. The interviewer asks the same set of questions to all par-
ticipants, and the responses are recorded verbatim.

• Semi-structured interviews also follow a set of predetermined questions, but the inter-
viewer has the flexibility to ask follow-up questions or to deviate from the predetermined
questions if necessary.

• Unstructured interviews do not follow a predetermined set of questions. The interviewer
has the flexibility to ask any questions they see fit and to follow the conversation wherever
it leads.

The semi-structured interview method was selected because it offers a balance between the struc-
ture of a structured and the flexibility of an unstructured interview. Also, it allows the interviewer
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to probe more deeply into the participants’ responses and to gather additional information. The
addressed questions are listed below:

1. Please share any thoughts on your experience using the app.

2. Name at least three things you like about using the app.

3. Name at least three things you did not like about using the app.

4. Do you have any specific suggestions on which features might be added?

5. Do you feel like you can explain the concepts from the tactile graphic better now that
you’ve used the app?

Semi-structured approach gave me room to ask interviewees to elaborate on some points. For
instance, one of the participants said that he found the app very interactive. I asked him to
comment on this and give an example. He replied that he particularly enjoyed exploring the
maps, as it was easy to understand and remember the relative positions of the objects on a map.
The answers to all questions were audio-recorded for further analysis.

5.3.6 Phase 4 – Interviews with teachers (Qualitative)

Phase 4 of the study aimed to gather valuable insights and feedback from teachers of visually
impaired students regarding the potential integration and impact of the TAURIS system within
educational settings. Five teachers who possessed a diverse range of expertise across different
subject areas and grade levels were recruited.

Semi-structured interviews were conducted with each teacher, exploring their experiences
and perspectives on utilising tactile graphics and assistive technologies in their classrooms. The
interviews commenced by exploring the teachers’ current practices and challenges associated
with incorporating tactile graphics into their lessons. Specific examples were encouraged, such
as difficulties encountered when conveying complex scientific concepts like optics in physics or
intricate anatomical structures in biology. Further exploration focused on the potential benefits
and applications of the TAURIS app within their teaching practices. Teachers were asked to re-
flect on how the app’s features, such as real-time audio descriptions and interactive exploration,
could enhance student engagement, comprehension, and independent learning. Additionally,
feedback was sought on the TAURIS web tool, specifically its practicality and effectiveness in
creating and annotating tactile images for classroom use. The interview concluded by inviting
teachers to share any suggestions or recommendations they might have for further improving the
TAURIS system to better cater to the diverse needs of visually impaired students and educators.
The addressed questions are listed below:

1. Can you share your experiences with using tactile graphics in your classroom.
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2. What are the challenges you face in using tactile graphics with visually impaired students?
(Give particular examples, i.e. optics concept from physics)

3. How do you think the TAURIS app could benefit your teaching and your students’ learning
experience?

4. What are your thoughts on the TAURIS web tool for creating and annotating tactile im-
ages?

5. Do you have any suggestions for improving the TAURIS app and web tool?

5.4 Analysis

The quantitative and qualitative data analysis in my research was based on the procedures rec-
ommended by Creswell and Clark (2017, p. 210-212). According to the authors, there are six
steps to follow: data preparation, data exploration, data analysis, analysis representation, results
interpretation and results validation. The actions described below highlight the key elements of
both quantitative and qualitative analyses used in this research.

1. Data preparation

Preparing data for quantitative analysis involved transferring the numerical results of the exper-
iments to Excel charts. I separated the response times and the percentages of correct answers
into different files. Within the files, values were stored in different charts depending on the type
of mode, level of vision loss, and age of the participant.

Data preparation in a quantitative strand took longer because the interviews were carried out
in local languages: either Kazakh or Russian. After the interview, recordings were transcribed
verbatim by myself. I translated these transcriptions into English.

2. Data exploration

In order to explore quantitative data, descriptive statistics were used, with all statistical analyses
being performed in Python. One of the main challenges was to identify the right statistical
method for the data analysis. After performing a series of Shapiro-Wilk tests (Shapiro and Wilk,
1965), it was verified that most of the data were not normally distributed.

Qualitative data was explored by thoroughly reading the transcriptions and taking notes in
the margins. This was necessary to develop the initial codes for further analysis.

3. Data analysis

Since quantitative data was not normally distributed, non-parametric statistics were used. In
particular, the Wilcoxon signed rank test was used for the within-subjects design to test the
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significance of the differences between the means of two groups. On the other hand, the Mann-
Whitney U test was used for the between-subjects designs to test the effect of age and vision
loss. SciPy STATS module was used to find the significance scores (Virtanen et al., 2020).

The qualitative analysis process began with deductive coding. Deductive coding is a top-
down approach, where codes are derived from a pre-existing theoretical framework or research
question. The Delve5 online tool was used for data indexing and categorising. This helped
me develop theories and concepts and then group them into themes and sub-themes in a more
efficient way.

4. Data representation

Data representation for quantitative analysis involved summarising the results of statistical tests
in statements and tables.

For qualitative data representation, I provided quotes from the interview transcriptions. The
cited quotes were organised into themes and sub-themes.

5. Results interpretation

This step involved analysing the quantitative results to directly address the research questions
and assess the validity of the corresponding hypotheses. It also involved investigating the
sources of uncertainties and biases in the results.

Qualitative data interpretation also involved comparing results with research questions. In
addition, I have performed a personal assessment of the findings and related them to the exist-
ing literature. Overall, data interpretation in both quantitative and qualitative research involves
making sense of the data collected and using it to draw conclusions and develop insights about
the research topic.

6. Data and results validation

Data validation is one of the essential components of good research practice (Denscombe, 2017).
It helps to ensure the reliability and validity of the data and to improve the trustworthiness of
the research findings. Triangulation is one of the techniques used in mixed-methods research to
strengthen the credibility of the data and results. This technique involves "the use of multiple
data sources with similar foci to obtain diverse views about a topic or a purpose of validation"
(Kimchi, Polivka, and Stevenson, 1991, p. 365). The forthcoming chapter will present side-
by-side comparisons of the outcomes obtained from the quantitative and qualitative research
strands. Additionally, the principles outlined in the "Good Research Practice Guide" (Den-
scombe, 2017) were followed throughout the research process.

5https://delvetool.com/
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5.5 Conclusion

In this chapter, the problem definition, methodological approach, and data collection procedures
were presented. To evaluate the performance of the TAURIS App, an initial phase of data col-
lection involved 12 experimental sessions (including one pilot session) with visually impaired
individuals. Participants were first asked about their general demographic information (age,
gender, level of sight loss, etc.) and their prior experience with TG. They were then given time
to familiarise themselves with the app before proceeding to explore tactile graphics using two
different methods: the TAURIS app and either Braille texts or a screen reader. The number
of correct responses and the time spent on each task were recorded for analysis. To enhance
the statistical power of the findings and gather a more comprehensive dataset, an additional 9
secondary school students were recruited and interviewed during the school term, resulting in
a total sample size of 20 participants. The next stage of the study involved gathering feedback
from both the initial participant group and the additional students through Likert-scale ques-
tionnaires and open-ended interviews, focusing on their experiences with the app. Furthermore,
Phase 4 of the study involved engaging with teachers of visually impaired students to gather
their insights and perspectives on the potential integration and impact of the TAURIS system
within educational settings.

A convergent design mixed-method data analysis approach was employed to interpret the
results, allowing for a deeper and complementary understanding of the topic. The quantitative
and qualitative data from the initial phases and the teacher feedback were analysed separately to
ensure a comprehensive examination of the findings. The subsequent chapter will present and
discuss these findings in detail.



Chapter 6

Results and Discussion

6.1 Introduction

In this chapter1, the key findings of the research are presented and discussed. The participant
demographics and background information are provided in Section 6.2. In Section 6.3, the
outcomes of the interviews, in which participants shared their experience with Tactile Graphics
(TG) and mobile devices, are reported. The quantitative results of the app testing with end-users
are presented in Section 6.4. In Section 6.5, the end-user session results, including Likert-scale
question responses and open-ended interview findings, are presented. Additionally, the results
of merging the two data strands are described in this section. Section 6.6 presents the findings
obtained from teachers’ interviews. Following the presentation of the results, the chapter moves
to a comprehensive discussion in Section 6.7. Finally, the chapter is summarised and concluded
in Section 6.8.

6.2 Participants

The initial phase of the study involved 11 participants (excluding the pilot study participant)
who were interviewed during the summer holidays. To enhance the statistical power of the find-
ings and gather a more comprehensive dataset, an additional 9 secondary school students were
recruited and interviewed during the school term. This resulted in a total sample size of 20 par-
ticipants (11 males and 9 females) with ages ranging from 17 to 65 years (average = 27.62 years,
SD = 12.54). The decision to include participants over the age of 162 was made in consideration
of the practical constraints imposed by the lockdown measures in place during the initial phase
of data collection. Furthermore, the inclusion of school staff and alumni alongside students

1Some of the work in this chapter has appeared in Zeinullin and Hersh (2022). Maralbek Zeinullin is the first
author and main contributor to this paper.

2The threshold for the young participants recruitment in the University of Glasgow is 16 years and the inclusion
of younger individuals necessitates the fulfilment of additional legal obligations.
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allowed for a broader representation of experiences within the visually impaired community.
Nine participants were secondary school students, and three were university students. Six

participants were employed at the school library (Shymkent regional boarding school for visu-
ally impaired children), one was a teacher at the same school and one was working as a masseur.
Information about the schools they attended was collected as well. Nine participants currently
attended the school, six had attended it in the past, four participants previously attended main-
stream school and one participant attended both schools.

Nine participants identified themselves as blind and eleven had low vision. Five participants
had been visually impaired from birth, six lost their vision in childhood, and the remaining after
the age of eleven. Sixteen participants were Braille literate and four said they understood some
Braille but were not fluent. Table 6.1 summarises the participant information.

ID Gender Age Occupation Vision Braille literate School attended

1* Male 27 Library worker Visually impaired Yes School for the blind

2 Female 42 Library worker Blind Yes Mainstream school

3 Male 36 Library worker Visually impaired No Mainstream school

4 Female 28 University student Visually impaired No Both

5 Female 35 Library worker Blind Yes Mainstream school

6 Female 45 Library worker Visually impaired Yes School for the blind

7 Male 28 School worker Blind Yes School for the blind

8 Male 35 Masseur Blind No School for the blind

9 Male 18 School student Visually impaired Yes School for the blind

10 Male 18 School student Visually impaired Yes School for the blind

11 Male 37 Library worker Visually impaired Yes Mainstream school

12 Female 65 Library worker Blind Yes School for the blind

13 Male 21 University student Blind Yes School for the blind

14 Male 22 University student Blind Yes School for the blind

15 Male 17 School student Visually impaired Yes School for the blind

16 Male 18 School student Visually impaired No School for the blind

17 Female 17 School student Blind Yes School for the blind

18 Female 19 School student Visually impaired No School for the blind

19 Male 18 School student Visually impaired Yes School for the blind

20 Male 17 School student Blind Yes School for the blind

21 Female 17 School student Visually impaired Yes School for the blind

Table 6.1: Participants information
*Note: Pilot study participant was not included in the analysis
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Figure 6.1: In which subjects TG were used

6.3 Phase 1 - Interview

6.3.1 Experience with the tactile graphics

Regarding their experience with the TG, twelve participants said that they used such graphics
at school and eight have not. TG was used primarily in science technology engineering and
mathematics (STEM), geography and history subjects and were labelled with Braille text. More
detailed information is presented in Figure 6.1. All of those who had an experience with the
TG reported that it was easier to understand the subject when such graphics were used in class.
For example, TG helped them learn the computer keyboard. In particular, they used the tactile
version of the keyboard to learn the spatial location of the keys. Also, during chemistry classes,
a tactile version of the periodic table was used to present the material in an easier-to-understand
format. One of the disadvantages was that it required a teacher to show and navigate through
the TG individually to each student first.

6.3.2 Experience with mobile devices and applications

During the study, participants were asked about their usage of mobile devices. Thirteen partic-
ipants had Android and seven had iOS smartphones. Nine participants reported using a phone
camera on a daily basis, while five participants stated they used it once or twice per week. Ad-
ditionally, two participants reported using a phone camera once a month, and the remaining four
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Figure 6.2: Apps used by participants

participants stated they never used it. Most of the participants (16/20) used a camera to take
photos. Apps which required a camera, and which were used by the participants were: currency
and barcode readers, colour and photo identifiers and light detectors. Other popular apps were
BeMyEyes, TapTapSee and Google Translate (Figure 6.2). The primary challenge identified in
relation to these apps was proper camera aiming. All participants who reported using a phone
camera noted difficulties with this task. The proper utilisation of a phone camera by individuals
who are blind has been a longstanding issue and various researchers have attempted to address
it. This problem is discussed in greater detail in Section 2.2.3 of this thesis.

6.4 Phase 2 - Device testing

6.4.1 Comparison of App and Braille text

Mode App Braille

Average time (sec) 43.49 72.05

Average accuracy (%) 93.67 86.10

Memory accuracy (%) 88.00 81.86

Table 6.2: App vs Braille text
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As mentioned above, sixteen participants said that they were Braille literate. Ten of them
were randomly selected to utilise Braille texts during the experiments. Participants explored the
TG and were asked questions about it. On average, participants were able to provide answers
quicker and with greater accuracy while exploring the TG using the app compared to Braille
(Table 6.2).

The results of the non-parametric Wilcoxon signed-rank test indicated that the TG explo-
ration mode had a statistically significant impact on both the time spent answering the questions
(W = 6.0, p = 0.0002, N = 10) and the average accuracy achieved (W = 5.0, p = 0.023, N = 10).
However, the difference in memory accuracy between the two groups remained statistically
insignificant (W = 35.0, p = 0.361, N = 10).

I also analysed the impact of participants’ ages on their performance. Their average age
was about 27 years. They were therefore divided into two groups: over 27 (n = 9, mean = 35)
and under 27 (n =11, mean = 18). From Table 6.3 it can be seen that the under 27 age group
was answering faster but showed worse performance in remembering the information in both
exploration modes. In the app exploration mode, the under 27 age group demonstrated a slightly
higher percentage of correct answers. Conversely, in the Braille mode, the over 27 age group
exhibited a slight advantage in accuracy. A series of non-parametric Mann-Whitney U tests were
conducted to examine the impact of age on time, accuracy, and memory accuracy. The results
indicated that the observed differences were not statistically significant. Specifically:

• For time, the Mann-Whitney U test yielded U = 45.0, p = 0.260.

• For accuracy, the test produced U = 50.5, p = 0.937.

• For memory accuracy, the test reported U = 44.0, p = 0.262.

These findings suggest that age did not have a statistically significant effect on any of the
measured outcomes.

Nine participants indicated that they were blind, either totally blind or blind and have light
perception. Eleven participants stated that they were able to distinguish shapes and read very
large print texts, classified as partially sighted. A comparative analysis of the two groups re-
vealed following findings regarding the impact of visual impairment on performance. In the
app exploration mode, the time spent answering questions was nearly identical for both blind
and visually impaired participants (Table 6.3). However, a contrasting trend emerged in the
Braille mode, where visually impaired individuals demonstrated faster response times. Accu-
racy remained consistent across both groups and exploration modes. Interestingly, the visually
impaired group exhibited slightly higher memory accuracy in the Braille mode. Despite these
observed trends, the Mann-Whitney U tests indicated no statistically significant differences be-
tween the groups for any of the measured variables. Specifically:

• For time, U = 48.5, p = 0.88.
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• For accuracy, U = 46.0, p = 0.70.

• For memory accuracy, U = 50.0, p = 0.99.

Mode App Braille

Age Under 27 Over 27 Under 27 Over 27

Time spent (sec) 38.80 50.52 68.89 72.29

Average accuracy (%) 95.00 91.67 84.82 88.00

Memory accuracy (%) 85.56 91.67 79.56 85.33

Vision VI Blind VI Blind

Time spent (sec) 43.82 43.16 62.13 81.97

Average accuracy (%) 94.98 92.35 86.08 86.10

Memory accuracy (%) 87.20 88.80 79.33 84.40

Table 6.3: Comparison of different age and vision impairment groups

6.4.2 Comparison of App and Screen Reader

Mode App SR

Average time (sec) 50.75 62.54

Average accuracy (%) 96.35 82.12

Memory accuracy (%) 92.47 75.53

Table 6.4: App vs Screen Reader

Table 6.4 illustrates that participants exhibited faster response times and achieved higher
accuracy, including memory accuracy, during the app exploration mode compared to the screen
reader mode. The Wilcoxon signed-rank tests confirmed the statistical significance of these
differences for all three measured variables: time spent (W = 2.0, p = 0.02, N = 10), average
accuracy (W = 1.0, p = 0.004, N = 10), and memory accuracy (W = 1.0, p = 0.03, N = 10).

As in the previous section, after running the Mann-Whitney U tests, it was found that differ-
ences between age and vision loss groups were not statistically significant. Specifically, for the
impact of age:

• Time: U = 43.0, p = 0.367.

• Accuracy: U = 47.5, p = 0.797.
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Mode App SR

Age Under 27 Over 27 Under 27 Over 27

Time spent (sec) 52.15 38.17 65.80 33.25

Average accuracy (%) 96.42 95.83 85.28 97.17

Memory accuracy (%) 93.48 83.33 74.07 88.67

Vision VI Blind VI blind

Time spent (sec) 56.18 45.94 62.28 60.02

Average accuracy (%) 96.27 96.48 83.89 79.48

Memory accuracy (%) 91.16 93.75 70.28 83.42

Table 6.5: Comparison of different age and vision impairment groups

• Memory Accuracy: U = 45.0, p = 0.544.

For the impact of vision loss:

• Time: U = 44.0, p = 0.380.

• Accuracy: U = 48.0, p = 0.773.

• Memory Accuracy: U = 42.5, p = 0.414.

6.5 Phase 3 - End-user feedback

The outcomes of the qualitative analysis are presented in this section. The audio recordings of
the open-ended interviews were transcribed. The obtained data was analysed with deductive
coding approach. Since the interviews were conducted in Russian and Kazakh languages, they
were translated before the analysis.

6.5.1 Likert-scale questions

An evaluation utilising a Likert scale was conducted to investigate respondents’ attitudes toward
the app. According to the results presented in Table 6.6, a majority of the users were satisfied
with the application. The overwhelming majority, 18 of 20 (90%) either agreed or strongly
agreed that they would be interested in using this app on a daily basis. Also, 12 out of 20 (60%)
agreed that it was easy to aim the camera while using the app.
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Statement Strongly
agree

Agree Neutral Disagree Strongly
disagree

The app helped me to understand
concepts better than Braille or
text descriptions alone

13 2 2 3 0

I found it easy and intuitive to
use the app compared to Braille
or text descriptions alone

5 12 1 2 0

I found it easy to properly aim
the camera

5 7 2 6 0

I am satisfied with the app re-
sponse time

5 10 1 4 0

I liked the detailed description
app feature

13 4 1 1 1

I would be interested in using
this app to get better quality in-
formation during my classes on
a daily basis

15 3 1 0 1

Table 6.6: Results of the Likert scale question

6.5.2 Semi-structured interviews

Participants commented on app effectiveness in response to the open-ended interview questions.
I have employed a deductive coding approach in alignment with the research questions. Through
this analysis, four main themes emerged: speed and ease of use, ability to remember, users
perceptions of the app and comprehension of the concept. Finally, users’ suggestions were
recorded to improve the existing system.

Speed and ease of use

P2 stated:
"I liked the speed of working with the app and the QR code image identification feature. This

makes the whole process very convenient and fast."

This view was echoed by P7 who said:
"I really liked the app because it makes it very convenient to use tactile images. The user

doesn’t have to spend time and read or look for the descriptions. The app tells everything in

real-time."

P5 supported this as well:
"For instance, if we compare this to Braille text descriptions, it was much faster to explore

the TG by using the app."
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There were also some negative comments about the application. P8 said:
"Sometimes the app failed to detect the finger. So, I had to wait for the audio descriptions. I

noticed that this occurred when the finger was located on the border between two objects so the

app kept jumping between two descriptions. However this happened very rarely."

The qualitative data demonstrates the app’s potential to significantly enhance the TG explo-
ration experience. Users consistently highlighted its speed, convenience, and real-time infor-
mation delivery. The ability to quickly access information through QR code and tactile image
recognition proved particularly valuable, streamlining the process compared to traditional meth-
ods.

While the occasional finger detection issue raised by P8 recommends further investigation
and refinement, the overall feedback strongly suggests that the app effectively addresses the
needs of VIP seeking a faster and more intuitive way to engage with TG.

Ability to remember

The comments below illustrate how the app affects the users’ ability to remember information.
For instance, P11 stated:

"I think the app helps the user to develop his/her spatial thinking. Thus, it is easier to draw

the connections between objects and remember the information provided."

This statement echoed by P10: "It was also very convenient to explore maps with the app. It

helped me to construct a 2D image in my mind. I think this will be very helpful for the learners

in schools."

The qualitative data indicates that the app’s interactive nature and ability to provide simul-
taneous tactile and auditory feedback contribute to improved spatial understanding and memory
retention. Users reported feeling more confident in their ability to recall information after ex-
ploring TG through the app, particularly when it came to understanding relationships between
objects on a map.

Users’ perceptions

The following participant comments provide insights into their perceptions of the app and thus
contribute to addressing Research Question 1. P2 commented:

"The first impression is very positive. Despite the fact that this is just a beta version of the

app, it works smoothly. I want this app to be widely used as soon as possible."

This echoed in P4:
"I really liked the app. I think it will definitely benefit the visually impaired community."

P5 said:
"App is very good and works fast. I like that this system was built on a mobile platform, it is

very convenient. In addition, I liked the app’s interactivity. It makes the learning process more

exciting"
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Figure 6.3: Interviews transcriptions word cloud

P6 shared his thoughts as well:
"The application is very convenient. Many blind people cannot read Braille. Especially the

ones who became blind in adulthood. Since it is much more difficult to learn Braille at that age,

the only way for them to acquire information is through audio format. Also, not everyone among

VIP can properly read the tactile images. Therefore, real-time audio descriptions provided by

the app are a very handy solution."

Some participants also saw a need for changes, P8 said:
"The app works well but there is certainly room for improvement."

The interview results reveal a strong sense of optimism and enthusiasm surrounding the
app’s potential. Users mentioned its accessibility, ease of use, and ability to provide valuable
information in a format that is readily understandable. The app’s mobile platform and interactive
features were particularly well-received, suggesting a strong alignment with user needs and
preferences.

Concept comprehension

P14 said:
I think so. The frog lifecycle was tough. I knew there were several stages, but I couldn’t

really explain how a tadpole changes into a frog. The app helped me understand that. Now,

when I touch the tadpole, I hear the app describing its features and then how it develops legs

and loses its tail. I can explain that process much more clearly now.

P17 commented: I can now explain the map with more confidence. Before, I’d just say,

’Australia is a big island with lots of states.’ Now, I can talk about the different states and know

the relative location of Tasmania and even its capital. Before I had to go back and forth and

check the names. So, I would definitely forget the capital by the time I got back to the tactile

map.

P19 had mixed feelings about the app" "The app was great for getting a general understand-



CHAPTER 6. RESULTS AND DISCUSSION 95

ing of the space shuttle. And this was what I knew already. I could feel the wings and engines

and hear what they were, and it helped me picture the whole thing. But I think it will be more

challenging to incorporate a smaller details, like the parts of engine. The exploration area on

the tactile graphic is too limited to effectively represent those smaller parts."

The qualitative results suggest that the app’s multi-sensory approach can significantly en-
hance understanding, particularly for complex concepts with multiple stages or intricate details.
Users reported feeling more confident in their ability to explain and recall information after in-
teracting with the app. However, the feedback also highlights the importance of considering the
scale and complexity of the TG.

Users’ suggestions

P2 had several suggestions:
I think it will be better if the app will be capable of detecting a new QR code automatically.

So, the user does not have to close and open the app again in order to start working with a new

tactile image. Also, I propose to use a universal frame with markers in the corners and where

the tactile image can be placed. Also, it would be great to develop IOS and Windows versions

of the app.

P7 proposed:
Finger-pointing feature would be helpful. For instance, I’d like the app to say move left if

the object is there. Also, I think it will be helpful to notify the user if the level of illumination in

the room is too low.

P9 had comments on the audio output:
Add Kazakh language and switch to the Google voice synthesizer instead of the Samsung

one.

P10 said:
Option to increase the speed of speech. Utilisation of the wider angle camera, so a bigger

image can be explored. Adding the Kazakh language

Finally, P12 suggested:
I think the objects’ properties, like colour and textures should be added to the object descrip-

tions. Also, it would be helpful to fill the objects with different lines and dashes

The user feedback provides a valuable roadmap for future development, highlighting areas
where the app can be further improved to enhance its usability, accessibility, and overall user
experience. The suggestions cover a range of functionalities, from technical improvements like
automatic QR code detection and platform expansion to content enhancements like object prop-
erty descriptions and tactile differentiation.

Addressing these suggestions will not only improve the app’s functionality but also demon-
strate a commitment to user-centered design, ultimately leading to a more valuable tool for the
VIP.
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6.5.3 Merging Quantitative and Qualitative Data

The merging of qualitative and quantitative data is a widely used research method that provides
an in-depth understanding of the research topic. Qualitative data is often used to provide a
comprehensive understanding of a phenomenon by giving context and background information.
Quantitative data, on the other hand, is used to identify trends and patterns in the information.
Merging the two types of data allows to draw more meaningful conclusions.

The joint display is a useful approach that enables the merging of qualitative and quantita-
tive data and thus provides a more comprehensive view of the study results (Creswell and Clark,
2017, p. 228). It is used to display the results of both quantitative and qualitative stands together
in a single display, providing an integrated perspective of the research findings. In a tables pre-
sented below the quantitative data is presented in boxplots to provide a comprehensive view of
the data distribution. Boxplots allow for analysis beyond central tendency, as they display mea-
sures of spread, skewness, and potential outliers. This provides a more informed understanding
of the data compared to relying on a single summary statistic, such as the mean. Qualitative data
is represented in the form of quotes from interviews. This method has the potential to reduce
bias in the interpretation of the results and allows for a clearer comparison of the two different
types of data. Legocki et al. (2015) and Beck, Eaton, and Gable (2016) used this technique to
represent mixed data in their research as well. In my research, I have used this method to answer
the first two research questions.

Research Question #1

What are visually impaired individuals’ perceptions and attitudes toward the use of smart-
phone app in the context of exploring Tactile Graphics (TG)?

Figure 6.4 presents a joint analysis of quantitative Likert-scale data and qualitative insights
from participant interviews, specifically addressing the question of visually impaired individu-
als’ perceptions and attitudes toward using a smartphone app for TG exploration. The left panel
illustrates the distribution of Likert-scale responses to key statements about the app, where a
range of 1 to 5 indicates levels of agreement, from ’Strongly Disagree’ to ’Strongly Agree’. The
analysis shows a clear trend: a majority of participants expressed a positive attitude towards the
app, viewing it as a superior method for TG exploration compared to Braille text and screen
readers. Furthermore, a significant portion of users indicated that they were satisfied with the
real-time nature of the system. This preference was supported by participants’ enthusiasm to-
wards using the app, with many expressing an interest to utilize it in their daily learning. The
qualitative data, presented in the right panel through representative participant quotes, reinforces
these findings. Users highlighted the app’s perceived convenience and speed, noting that real-
time audio feedback eliminated the need to spend time searching for the descriptions. They
also emphasized the interactive nature of the app and their feeling that the app promotes a more
convenient and less cumbersome approach to TG access. These consistent findings from both
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Figure 6.4: Joint Display of QUANT and QUAL data of what mode users prefer

quantitative and qualitative data confirm that, on the whole, visually impaired individuals per-
ceive smartphone-based apps as having positive attributes in terms of usability, convenience and
the promotion of independence when exploring TGs.

Research Question #2

To what extent does real-time speech output, integrated with tactile exploration, enhance
the comprehension and retention of complex information conveyed through TG for visually
impaired users?

The effectiveness of real-time speech output in enhancing comprehension and retention was
evaluated by examining task completion time, accuracy, and memory recall. Figure 6.5 displays
the distribution of task completion times using boxplots. These plots depict the lower quartile,
median, upper quartile, and range of completion times. The results clearly show that participants
using the TAURIS app, which integrates real-time audio descriptions, consistently completed
tasks faster than when using Braille texts or screen readers (p < 0.05). This was supported by the
participants’ opinions that the real-time nature of the app enabled faster information acquisition,
as illustrated by their quotes in the figure’s right-hand panel.

The impact on comprehension was evaluated through accuracy scores, as shown in Figure
6.6. The boxplots reveal that users of the TAURIS app provided more accurate answers to the
questions about the TG than those using traditional methods. These findings were statistically
significant as well (p < 0.05). Qualitative comments further highlight that audio feedback that
is directly linked to the exploration, which allows participants to navigate and gain information
more effectively. Furthermore, as shown in Figure 6.7 participants who explored TGs using the
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Figure 6.5: Joint Display of QUANT and QUAL data of time analysis

Figure 6.6: Joint Display of QUANT and QUAL data of accuracy analysis

TAURIS app responded with greater accuracy when asked to answer memory based questions
compared to other approaches. However, the difference between the app and Braille text modes
did not reach statistical significance (p=0.361). To support the observed quantitative results,
associated participant quotes are added on the right side of Figure 6.7. They provide insight into
the app’s facilitation of users to form a ’2D image’ of the information and how the information is
retained more effectively through combining audio and tactile exploration modes. Overall, these
results suggest that the integration of real-time speech output with tactile exploration not only
leads to faster learning but also improves comprehension and retention of complex information
for visually impaired individuals.

Research Question #3

What methods can be employed to improve camera aiming in smartphone-based assistive
technology applications designed for exploring TG?
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Figure 6.7: Joint Display of QUANT and QUAL data of memory accuracy analysis

The implementation of ARUCO markers combined with vibration feedback in the TAURIS
app yielded the following results regarding camera aiming for visually impaired users. Prior
to conducting the experiments, the participants were instructed to mount the mobile phone on
a phone holder and align its camera accurately with the tactile graphic (TG) placed in front of
them. The results of the Likert-scale questions indicated that 12 out of 20 participants found it
easy to align the camera using this setup. Furthermore, the study achieved a 100% success rate
in proper aiming. All participants in the user study successfully achieved proper camera align-
ment using the ARUCO markers integrated with the app’s real-time vibration feedback feature.
Subjective user feedback from interviews further validated these results, with participants indi-
cating that the markers and vibration feedback provided clear cues for camera aiming and that
they were confident in their ability to align the TG properly with the phone camera. These re-
sults show the effectiveness of the proposed system in ensuring accurate and efficient camera
aiming for the participants.

6.5.4 Summary

The findings of this study offer key insights into the use of mobile assistive technology for TG
exploration. Specifically, a combined analysis of Likert-scale and qualitative interview data re-
vealed a positive user perception of the TAURIS app, with participants expressing a preference
for its convenience, speed, and interactivity compared to traditional Braille or screen readers.
Furthermore, incorporating real-time audio descriptions with tactile exploration resulted in sta-
tistically significant improvements (p<0.05) in response time, accuracy, and memory retention
compared to screen reader mode, and significantly faster response times and higher accuracy in
compared to Braille text mode (p<0.05) while showing similar memory retention. Qualitative
feedback showed users found real-time audio particularly helpful for building spatial under-
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standing and articulating complex concepts with confidence. Finally, a camera-aiming system,
leveraging ARUCO markers and vibration feedback, proved fully effective, with all users in the
study achieving correct alignment using this method.

6.6 Phase 4 - Interviews with teachers

This section presents the results obtained from interviews with teachers of visually impaired
students. I believe these finding will provide valuable insight on the potential integration and
impact of the TAURIS system within educational settings. Five teachers, each with a diverse
range of expertise across different subject areas and grade levels, were recruited for this phase of
the study. Information about teachers can be found in Table 6.7. All interviews were conducted
in Russian, as this language was most comfortable for the participating teachers. Subsequent
to the completion of the interviews, all recordings were transcribed verbatim and translated into
English. Using a deductive coding approach several themes emerged from the analysis. These
themes, representing the core insights gained from the teachers’ interviews, are presented in the
following sections.

The Value of Tactile Graphics in Specific Subjects

Chemistry teacher said:
"Tactile graphics are essential for teaching chemistry to visually impaired students. Chem-

istry involves understanding the structure and interactions of molecules, which are inherently

spatial concepts. Tactile graphics allow students to explore these concepts through touch, which

can help them to develop a deeper understanding of the material."

Physics teacher commented:
"When teaching about electric circuits, I use tactile diagrams of circuits with different com-

ponents like batteries, resistors, and capacitors. Students can explore the layout of the circuit

by touch and feel the raised lines representing the wires and components. This helps them to

visualize the flow of electricity and understand how the different components interact."

Challenges to Tactile Graphic Integration

However, there were some challenges associated with the TG representation.
Physic teacher pointed out:
"Optics can be a challenging topic to teach to visually impaired students because many of

the key concepts are inherently visual, such as reflection, refraction, and image formation"
Chemistry teacher added:
"It’s difficult to show dynamic processes, like chemical reactions, using tactile graphics.

Students need to be able to visualise the movement of atoms and molecules as bonds form and
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break."

Also, all teachers agreed that creating tactile graphics is a time-consuming task. Biology
teacher said:

"Creating and adapting tactile graphics can be time-consuming and require specialised

skills. There are not always readily available resources for the specific topics I’m teaching,

so I often have to create my own graphics."

The Potential of TAURIS

Math teacher said:
"I think the TAURIS app has the potential to be a very helpful tool for both teachers and

students. The app makes it easier to create and access tactile graphics, and the real-time audio

descriptions provide additional support for students who struggle with tactile perception."

Geography teacher commented:
"The app’s two-handed exploration feature is fantastic. It’s much more natural and intuitive

for students to be able to use both hands to explore the graphics. It helps them to build a more

complete mental image."

Suggestions for Improvement

Physics teacher suggested:
"It would be helpful to have a library of pre-made tactile graphics for common physics

concepts."

Informatics teacher proposed:
"More customisation options for the audio descriptions would be beneficial, such as the

ability to adjust the language, speed and voice of the speech output. And maybe even the option

to have a voice that reads more expressively."

ID Gender Age Subject Years of experience
1 Female 56 Informatics 23
2 Female 35 Physics 11
3 Female 47 Math and Geometry 20
4 Female 64 Biology 42
5 Female 33 Chemistry 11

Table 6.7: Teachers information

6.6.1 Summary

The interviews with teachers revealed a shared appreciation for the role of tactile graphics in im-
proving the learning experience for visually impaired students, particularly in STEM subjects.
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However, they also highlighted the significant challenges associated with their widespread im-
plementation, including the time-consuming and demanding process of creation, the limited
availability of resources, and the difficulties some students experience with tactile perception.
Teachers expressed great enthusiasm for the TAURIS app, believing its real-time audio de-
scriptions, interactive features, and two-handed accessibility could address these challenges.
They also offered valuable suggestions for improvement, such as expanding the library of tactile
graphics and adding customisation options for audio descriptions.

6.7 Discussion

6.7.1 Assistive Technology Performance and Impact

This study evaluated the efficacy of smartphone-based assistive technology in enhancing the
accessibility of TG within educational contexts. Quantitative analyses indicated that the tech-
nology significantly reduced the time required to acquire information compared to traditional
methods such as Braille text and screen readers. This improvement can be attributed to real-time
audio descriptions that enable simultaneous tactile exploration and auditory feedback. Addition-
ally, the findings revealed that the integration of a multi-modal system resulted in substantially
higher accuracy in information acquisition. This outcome likely arises from the direct coupling
of auditory feedback with tactile interaction, thereby minimizing the reliance on text or screen
reader navigation.

Moreover, the study investigated the impact of real-time speech output on memory retention,
identifying statistically significant improvements in memory accuracy scores when using multi-
modal approaches as opposed to screen readers. This suggests that combining tactile exploration
with spatially connected audio descriptions enhances learning experiences by fostering greater
engagement and retention. While screen readers provide a linear, auditory presentation of infor-
mation, the app’s ability to directly link audio cues to specific tactile elements may promote a
more engaging and memorable learning experience. These findings underscore the potential of
mobile assistive technologies to empower visually impaired users by enabling independent and
effective interaction with educational materials.

Previous studies demonstrated that TGs on their own are not sufficient to aid visually im-
paired people in learning (Zebehazy and Wilton, 2014c; Sheppard and Aldrich, 2001; Zebehazy
and Wilton, 2014b). Experiments conducted in the research revealed that audio information
from the TAURIS app enhanced the value and content of the tactile images. This finding is con-
sistent with those of Melfi et al. (2020) and Fusco and Morash (2015). Contrary to expectations,
this study did not find statistically significant differences between different vision loss and age
groups.
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6.7.2 Qualitative Insights and User Experiences

Quantitative findings demonstrate the potential of smartphone-based assistive technology to im-
prove efficiency and accuracy in TG exploration. Qualitative data, including teacher observa-
tions and user feedback, highlights the impact of these technologies on learning and understand-
ing. Participants reported a newfound clarity and confidence in explaining the frog lifecycle
and the map of Australia respectively, attributing this improvement to the app’s simultaneous
audio and tactile feedback. This suggests that the multi-modal approach may facilitate a deeper
understanding of concepts, allowing users to better connect tactile elements with their asso-
ciated descriptions. However, one participant’s feedback regarding the space shuttle graphic,
where they felt finer details were difficult to convey due to the limited tactile exploration area,
highlights a potential area for improvement.

This need for continued development is further echoed in the perspectives shared by teachers
during the qualitative interviews. While acknowledging the inherent value of tactile graphics,
particularly for conveying visual and spatial concepts in STEM subjects, teachers also empha-
sised the challenges associated with their current use. The time-consuming creation process, the
limited availability of pre-made resources, and student difficulties with tactile perception were
identified as key barriers to wider tactile graphic integration. Echoing the positive feedback from
users, teachers expressed optimism that the TAURIS app, with its features like real-time audio
descriptions, two-handed exploration, and potential for future enhancements, could effectively
address these challenges. They envisioned the app as a tool to enhance understanding, promote
engagement, and support individual learning needs, suggesting that further research focus on
expanding the library of available graphics and providing additional customisation options.

6.7.3 Camera Aiming Improvements

The successful implementation of ARUCO markers and vibration feedback in the TAURIS app
demonstrates a significant improvement in camera aiming for Visually Impaired People (VIP).
Prior to the experiments, interviews revealed that the users had faced consistent difficulties when
aiming phone cameras for daily use (Section 6.3.2). This echoes with the results of previous
studies where participants who use a phone camera expressed difficulty in performing this task
in their daily lives (Section 2.2.3). However, the results of this study showed that 12 out of 20
participants reported improved ease in camera aiming using the proposed system. More impor-
tantly, a 100% success rate in correctly aligning the camera with TG during testing. The use
of ARUCO markers provided a consistent spatial reference for camera orientation, addressing
the challenge of accurately positioning the camera. Furthermore, the implemented real-time
vibration feedback served as a non-visual cue for users, prompting them to make the neces-
sary adjustments for proper aiming. These results align with previous research that stresses
the need for active feedback and clear spatial cues to aid visually impaired users in the task of
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camera aiming (Vázquez and Steinfeld, 2012). Unlike existing solutions that are often reliant
on speech only or manual guidance, the TAURIS system coupled multiple methods resulting in
improved precision and a reduction in the cognitive load needed for camera positioning. The
positive feedback from participants about the markers and vibration providing them confidence,
also supports a more intuitive and reliable process, demonstrating the importance of incorporat-
ing user-centered design principles for practical and accessible solutions. It is therefore safe to
conclude that the proposed system offers a promising approach to addressing the long-standing
problem of camera aiming for visually impaired individuals.

Prior to conducting the experiments, the participants were instructed to mount the mobile
phone on a phone holder and align its camera accurately with the TG placed in front of them.
The results of the Likert-scale questions indicated that 12 out of 20 participants found it easy
to align the camera, as opposed to the previous finding where all participants who use a phone
camera expressed difficulty in performing this task in their daily lives (Section 2.2.3). This
improvement may be attributed to the utilisation of ARUCO markers placed at the corners of the
TG, which facilitated proper camera alignment. This finding, while preliminary, suggests that
ARUCO markers are a valuable tool in ensuring accurate phone camera aiming.

6.7.4 Technical Aspects and Future Development

In Section 2.4.6, I review existing educational systems and outline the four key criteria that
guided my selection of a method for detecting fingertips in the research. First of all, the de-
veloped algorithm has to be highly accurate and able to perform well in low-light conditions.
Second, it was crucial to implement the whole system on a mobile device. The results of previ-
ous research show that bulky and cumbersome solutions are not willingly accepted by end-users
(Ducasse et al., 2016). Third, since my device is designed to assist VIP in classrooms during
their course times, a real-time execution is essential. This will allow users to keep up with their
sighted peers. Lastly, the system had to allow a two-handed exploration for the user. Following
studies show that it is easier to recognise tactile images using both than one hand (Wijntjes et
al., 2008a; Bara, 2014). Table 6.8 presents a comparison between the TAURIS fingertip detec-
tion model and algorithms used in various systems. Based on the results, it is evident that the
TAURIS system’s fingertip detection algorithm is the only one that meets all of the criteria

Device
Fingertip
detection
method

Two-
handed
explo-
ration

Mobile de-
vice

Real-
time

Detec-
tion in
low-light
conditions

TAURIS (2022)
Tiny-
YOLOv3

✓ ✓ ✓ ✓
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Device
Fingertip
detection
method

Two-
handed
explo-
ration

Mobile de-
vice

Real-
time

Detec-
tion in
low-light
conditions

THATS3 (2020) Not stated x ✓ ✓ Not stated

TARS
(Hosokawa,
Miwa, and
Hashimoto,
2020)

MediaPipe ✓ ✓ x ✓

Tactile Graph-
ics with a
Voice(Baker
et al., 2014)

Colour-
based skin
detection

x ✓ ✓ x

Tactile Graphics
Helper (Fusco
and Morash,
2015)

Hand seg-
mentation

x x ✓ x

Access Lens
(Kane, Frey, and
Wobbrock, 2013)

Colour-
based skin
detection

x x ✓ x

Tactile Graphics
Reading As-
sistive Device
(Bahrin, Yusof,
and Na’im Sidek,
2022)

MediaPipe ✓ x ✓ ✓

Unified gesture
recognition and
fingertip de-
tection (Alam,
Islam, and Rah-
man, 2022)

YOLO9000 ✓ x ✓ ✓

Airpen (Jain and
Hebbalaguppe,
2019)

MobileNet
V2

x ✓ ✓ ✓

3https://thats.wiki.procivic.ro/en/
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Device
Fingertip
detection
method

Two-
handed
explo-
ration

Mobile de-
vice

Real-
time

Detec-
tion in
low-light
conditions

Table 6.8: Fingertip detection methods comparison

Participant feedback will be used to improve the app in the future. The improvements will
include adding a customisation option to increase the speed of speech output, change the syn-
thetic voice and notifying users when light levels are too low and the algorithm is struggling to
detect the fingertips. Also, it should be useful to create a universal frame with built-in ARUCO
markers to increase the effective area of the printed tactile images.

During the interviews some teachers mentioned that it is challenging to find high-quality and
ready to use TG. In section 4.3, I listed various repositories containing TG, but they do not fully
meet the needs of the school curriculum. This is an important problem that needs more study.
In fact, in a survey conducted by Sheppard and Aldrich (2001), teachers of visually impaired
students say that the laborious nature of creating TG is the main challenge. My potential solution
is to establish a collaborative database where teachers can share their graphics, but this will
require time to build up content. My future plan is to use AI to automate the TG creation
process. Generative Adversarial Networks (GANs) are a type of artificial intelligence model
that are used to generate synthetic data, that are similar to real data. They do this by training
two neural networks, one to generate data and one to determine if the generated data is real or
synthetic. This can be used to transform visual images to tactile ones by training a GAN on a
dataset of both real images and their tactile representations. To the best of my knowledge, no
such AI model exists, making this a promising research direction.

Another direction of future research is to improve the existing fingertip detection model. This
can be achieved by collecting additional images from individuals of diverse ages and skin tones.
This will increase the model’s generalisability, allowing it to be utilised by a wider population.
The current system has not been tested on individuals with diverse skin tones, highlighting the
need for improvement. As previously mentioned in the introduction, the developed system is
open-source and I will make the object detection model and app source code accessible to other
researchers.

Several participants expressed a preference for interacting with the app in the Kazakh lan-
guage, highlighting the importance of language accessibility within the educational context. To
address this need, a Kazakh language text-to-speech (TTS) synthesizer was integrated into the
TAURIS app. While a native Kazakh TTS was unavailable on Android platforms, a third-party
API provided by the Scientific Center "Til-Qazyna" was successfully utilised to incorporate this
functionality. However, further evaluation involving end-users is necessary to thoroughly assess
the efficacy and usability of the Kazakh TTS.
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The most important limitation of the study is the small sample size. On the other hand,
this is not uncommon in research which involves individuals with disabilities. Therefore, there
would be value in carrying out the same experiments with a larger number of participants in
several different schools for the blind and also different countries in order to obtain further
useful insights, increase the power of the statistical analysis and enable further comparisons.

6.8 Conclusion

This chapter presents and discusses the key findings of the study, which evaluated the effective-
ness of the TAURIS app in facilitating TG exploration. The results of end-user testing, incorpo-
rating both quantitative metrics and qualitative insights, highlight the potential of smartphone-
based Assistive Technology (AT) to enhance information accessibility from TG. Specifically, the
research investigated the app’s influence on user perceptions (RQ1), the role of real-time speech
output in improving comprehension and retention (RQ2), and approaches to optimize camera
aiming (RQ3).

The findings demonstrate that the TAURIS app enables users to interact with TG more ef-
ficiently and delivers an enhanced user experience. The integration of Likert-scale responses
with open-ended interview data provided a deeper understanding of user preferences and per-
ceptions, as well as the effectiveness of real-time speech output in supporting comprehension
and memory retention. Additionally, the study identified the combined use of ARUCO markers
and vibration feedback as a highly effective method for significantly improving camera aiming.
By employing a joint display method, the research triangulated qualitative and quantitative data,
thereby reinforcing the validity of the results and offering a comprehensive evaluation of the
TAURIS app’s efficacy.

To gain a deeper understanding of the app’s potential impact within the educational setting,
interviews were conducted with teachers of visually impaired students. This qualitative data
provided valuable insights into the challenges associated with current tactile graphic use, as well
as the potential benefits of the TAURIS app in addressing these challenges. Teachers recognised
the app’s ability to enhance student understanding, engagement, and independence, offering
valuable suggestions for future development.

Overall, the results of this study contribute to the understanding of the potential of the TAU-
RIS application as an educational tool, and provide insight for future research in this area.



Chapter 7

Conclusions

This thesis consists of seven chapters, each exploring a specific aspect of making Tactile Graph-
ics (TG) more accessible for Visually Impaired People (VIP). Chapter 2 provides a comprehen-
sive review of the relevant literature, examining the significance of TG in Assistive Technology
(AT) and identifying the barriers that have impeded their widespread utilisation. It also presents
a detailed analysis of existing fingertip detection and tracking methods, revealing their limita-
tions in the context of real-time applications on mobile devices. Chapter 3 introduces a novel
fingertip detection algorithm, specifically tailored to address the challenges identified in the lit-
erature review. Chapter 4 presents a thorough overview of the developed TAURIS system —
a novel, mobile-based system designed to provide real-time audio descriptions of TG, enabling
independent exploration — covering its core components: the mobile application, the web-
based annotation tool, and the pre-labelled TG. Chapter 5 outlines the research methodology
employed in this study, encompassing the research questions, data collection methods and anal-
ysis procedures. Chapter 6 presents the results of the quantitative experiments and qualitative
interviews, investigating the effectiveness and usability of the TAURIS app compared to tradi-
tional methods. Finally, Chapter 7 offers a comprehensive conclusion to the study, summarising
the outcomes for each research question, outlining the study’s contributions and acknowledging
its limitations. Lastly, I discuss potential areas for future research, building upon the themes that
emerged throughout the thesis.

7.1 Thesis overview

Chapter 2 provides a comprehensive literature review, establishing the current state of the field
regarding TG and their application in AT for VIP. This review reveals key gaps in the existing
literature. First, while TG are recognised as valuable tools for VIP, their wider utilisation is
impeded by factors like labor-intensive production, high costs, and the declining Braille literacy
among learners. Second, a review of fingertip detection and tracking methods revealed limita-
tions in both classic Computer Vision (CV) and Deep Learning (DL) approaches. Classic CV
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methods are often sensitive to variations in lighting and cluttered backgrounds, while existing
DL models tend to be computationally intensive, struggling to operate in real-time on mobile
devices. Finally, an examination of existing educational systems for VIP highlights the lack of
solutions that effectively address these limitations, particularly those running on readily avail-
able mobile devices. The development of the TAURIS system was driven by these identified
gaps, aiming to create a more accessible, efficient, and portable solution for TG exploration.
The comparison of TAURIS to existing systems is presented in Table 6.8.

Chapter 3 introduces the novel fingertip detection method developed for the TAURIS app,
which will be presented in Chapter 4. First, this chapter describes the development process of
the fingertip detection model used in the TAURIS system. Through experimentation with three
different Convolutional Neural Network (CNN) architectures, the tiny-YOLOv3 algorithm was
selected due to its promising inference speed, even though initial accuracy results were not the
highest. To improve accuracy, the existing dataset was expanded and the model was retrained.
The results of these efforts, as shown in Table 3.3, demonstrated improved accuracy while main-
taining fast detection speed. Further testing under various lighting conditions confirmed the ro-
bust performance of the model. To further enhance accuracy, "all or nothing", median filter and
Kalman filter algorithms were applied, making the system more robust.

Chapter 4 presents a comprehensive overview of the TAURIS system, a novel solution
designed to enhance the accessibility of TG for VIP by providing real-time audio descriptions.
The chapter also covers the key components of the system, including its mobile app and web-
based annotation tool. The chapter highlights the incorporation of a fingertip detection model
into the app, as well as the use of ARUCO markers and QR code detection libraries for improved
functionality. The utilisation of ARUCO markers aids the user in accurately aiming a phone
camera, while QR codes enable the downloading of information about graphics from a server.
The chapter also outlines the various description modes and mapping algorithms utilised by the
TAURIS system. Finally, it provides a brief overview of the design of the annotation tool.

Chapter 5 details the research methodology employed in this study. It begins by introduc-
ing the research questions that guided the investigation and then explains the rationale behind
the chosen methodological design. This study utilises a convergent mixed-methods approach,
leveraging both quantitative and qualitative data to gain a comprehensive understanding of the
effectiveness and user experience of the TAURIS system. The specific methods used for data
collection are described in detail, including the experimental design employed to assess the
app’s performance compared to traditional methods. Additionally, the semi-structured interview
procedures were designed to gather in-depth feedback from visually impaired participants and
teachers of the visually impaired. Finally, a six-step process for data analysis is outlined.

Chapter 6 presents the results and discussions of the research, drawing upon data gathered
from a diverse group of 20 participants. This group includes VIP of varying ages, vision levels,
and educational backgrounds. The results of the device testing are then presented. These include
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task completion times and accuracy scores, as well as their significance. The non-parametric
statistical approach was employed due to the non-normality of the data. The results show that
the TAURIS app allows users to acquire information from TG more efficiently. This finding is
corroborated by post-experiment questionnaires and interviews, which indicate a positive user
perception of the app’s effectiveness and usability. A mixed-methods approach, merging and
triangulating both quantitative and qualitative data, provides a comprehensive understanding of
the app’s impact, confirming its potential to enhance TG accessibility and support independent
learning. Based on user feedback, suggestions for future work include incorporating features
like adjustable speech speed, enhanced camera aiming guidance, and expansion of the TG library
with more diverse content.

7.2 Research Questions

To investigate the three research questions guiding this study, a mixed-methods approach was
employed, combining both quantitative and qualitative data collection and analysis techniques.
During the quantitative phase of the research, participants engaged in a series of timed trials,
exploring TG using the TAURIS app, Braille text, and screen reader modes. Data on task
completion time, accuracy in answering questions, and memory recall were recorded for each
participant and each exploration mode. This data was then analysed using non-parametric sta-
tistical methods, specifically the Wilcoxon signed-rank test for within-subject comparisons and
the Mann-Whitney U test for between-subject comparisons, to assess the significance of the ob-
served differences. Qualitative data was gathered through semi-structured interviews conducted
with each participant, exploring their perceptions, experiences, and suggestions regarding the
TAURIS app. These interviews were audio-recorded, transcribed verbatim, and thematically
analysed using a deductive coding approach to identify key themes and patterns in the partici-
pant feedback.

7.2.1 Research Question 1

• RQ1: What are visually impaired individuals’ perceptions and attitudes toward the use

of smartphone app in the context of exploring Tactile Graphics (TG)?

This study reveals a positive perception among VIP towards using the TAURIS app for TG
exploration. The combined analysis of Likert-scale data and qualitative interviews shows a
strong preference for the TAURIS app, with a significant majority of participants (90%) express-
ing interest in daily use. Highlighting the app’s superior convenience, speed, and engagement
when compared to traditional Braille text and screen readers. The positive sentiment was fur-
ther supported by the detailed qualitative analysis, in which participants frequently described
the app as "convenient," "helpful," "intuitive," and "interactive." They valued the app’s ability to
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provide access to information and reduce the cumbersome back-and-forth navigation associated
with traditional methods. These insights, coupled with valuable recommendations for future
improvements, particularly regarding the need for customisation and expanded content options,
emphasize the TAURIS app’s effectiveness in enhancing the accessibility and usability of TG.
The feedback from participants also highlighted specific design elements, such as real-time au-
dio descriptions, that users considered to be important for creating user-friendly and effective AT
solutions for TG exploration. While the overall response to the TAURIS app is largely positive,
it’s important to acknowledge the limitations of this study, including the small sample size which
might limit generalisation of these findings. However, the consistent feedback and preferences
indicate a strong foundation for future design and development efforts.

7.2.2 Research Question 2

• RQ2: To what extent does real-time speech output, integrated with tactile exploration,

enhance the comprehension and retention of complex information conveyed through TG

for visually impaired users?

This study demonstrates that the integration of real-time, spatially-connected audio descrip-
tions with tactile exploration, as implemented in the TAURIS app, significantly enhances the
comprehension and retention of complex information for VIP. Quantitative results showed that
participants using the TAURIS app achieved significantly faster response times and higher ac-
curacy compared to both Braille text and screen reader modes. Furthermore, memory recall
was also significantly higher compared to screen reader mode. These statistically significant
improvements, supported by the qualitative feedback, highlight the effectiveness of the app’s
multi-modal approach which combines tactile engagement with corresponding real-time audio
descriptions. The qualitative data further supported these findings, with participants reporting a
confidence in understanding complex information and improved spatial understanding of con-
cepts, such as the frog lifecycle and maps. Specifically, the app was noted to enable the creation
of a mental 2D representation of the data, which aided in information recall. While the TAURIS
app showed great promise in aiding information processing, it must be acknowledged that the
effectiveness of the app is dependent on factors such as the design of the TG itself. Smaller and
overly complex graphics may not benefit as much from real-time audio description as simpler
ones. In addition, it must be recognized that the scope of this study only focused on a few spe-
cific types of TGs. As such, this highlights the need for careful consideration of the TG design
and complexity to enable the optimal impact of real-time audio feedback. While this study’s
results indicate that the app can improve information processing through multi-modal interfaces
for visually impaired learners, further research will be essential to fully validate the effectiveness
and impact on learning in different contexts.
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7.2.3 Research Question 3

• RQ3: What methods can be employed to improve camera aiming in smartphone-based

assistive technology applications designed for exploring TG?

This study identified ARUCO markers as highly effective for improving camera aiming for
visually impaired users. When combined with vibration feedback, these markers enhanced in-
teractions with smartphone-based AT for TG exploration. The use of ARUCO markers, strate-
gically placed at the corners of TG, provided a reliable spatial reference that enabled a 100%
success rate in proper alignment during user testing. Furthermore, the integration of real-time
vibration feedback facilitated a non-visual method for users to correct misalignments, providing
immediate tactile cues for optimal positioning. These findings highlight the benefit of com-
bining multiple approaches to enhance user experience and system accuracy in camera aiming.
Subjective user feedback collected during interviews supported the effectiveness of these meth-
ods, demonstrating an increased confidence that the camera was aligned properly with the TG.
Importantly, while these results indicate a positive outcome, further development is needed to
create a more flexible system that reduces the reliance on pre-printed graphics and provides more
explicit audio navigation for precise adjustments. Therefore, it can be concluded that while the
TAURIS system has addressed a significant challenge in using smartphone cameras for TG, a
continued focus on exploration of various camera aiming methodologies is required for broader
applications.

7.3 Contributions

In this section I summarise the main contributions of my work on the development of AT for
VIP.

1. System to Provide Real-time Audio Descriptions for Tactile Graphics. This thesis
contributes a novel system designed to provide VIP with real-time audio descriptions of
TG, enabling them to access and understand graphical information independently, without
requiring sighted assistance. Unlike existing solutions that often rely on bulky hardware,
pre-recorded audio, or limited single-finger exploration, the TAURIS system leverages a
smartphone’s camera and processing capabilities to offer a more portable, interactive, and
comprehensive experience. The system incorporates a customised DL model for accu-
rate fingertip detection, even under varying lighting conditions, and enables two-handed
exploration, allowing users to engage with TG more naturally. To evaluate the system’s
usability, user testing was conducted with a diverse group of VIP, focusing on metrics such
as task completion time, accuracy in answering questions, and user perceptions obtained
through questionnaires and semi-structured interviews. These findings provided valuable
insights into the system’s strengths, weaknesses, and potential areas for improvement.
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2. Fast and accurate fingertip detection model. This thesis contributes a novel fingertip
detection model that is both highly accurate and capable of real-time operation on a mo-
bile device, a significant advancement in the field of TG exploration for VIP. The model,
presented in Chapter 3, achieves high accuracy through a combination of a customised
dataset tailored specifically for TG exploration and a YOLOv3 DL model selected for its
efficiency and speed. This model successfully detects all ten fingertips simultaneously,
enabling two-handed exploration, which previous models have struggled to achieve in
real-time. Two-handed exploration allows for more natural and intuitive interactions with
TG, as users can simultaneously trace contours, explore spatial relationships between el-
ements, and maintain a better overall understanding of the graphic’s layout. While some
existing systems offer two-handed interaction with tactile displays or 3D models, to the
best of my knowledge, this is the first system to achieve real-time, accurate fingertip de-
tection for two-handed exploration on standard TG using a mobile device.

3. Novel fingertip detection image set. This thesis introduces a novel dataset specifically
designed for training and evaluating fingertip detection models on TG. This dataset, con-
sisting of 2000 manually annotated images captured during real-world TG exploration
sessions, offers several advantages over existing datasets primarily focused on hand ges-
tures or object recognition in general scenes. The images in this dataset capture the unique
challenges of fingertip detection on TG, such as variations in lighting, hand positions, and
occlusions caused by interaction with raised lines and textures. This dataset significantly
improved the accuracy of the developed fingertip detection model, with an average in-
crease of 20% for each finger. By making this dataset publicly available under a Creative
Commons license, this thesis aims to accelerate research in this field, enabling other re-
searchers to benefit from this resource and further advance the development of accessible
TG exploration technologies.

4. Tests under different lighting conditions. This thesis demonstrates the robustness of the
developed fingertip detection model under a wide range of lighting conditions, a crucial
aspect for ensuring the usability and reliability of AT for VIP. While previous research in
gesture and fingertip detection has often focused on controlled lighting environments, this
study explicitly evaluated the model’s performance under varying illumination levels. As
described in Chapter 3, a dedicated test set of 200 images was created, and the gamma
correction algorithm was utilised to alter image brightness, simulating different lighting
conditions encountered in real-world scenarios. The results, summarised in Table 3.5,
demonstrate that the TAURIS system maintains a high level of accuracy even in low-light
conditions, surpassing the performance of several existing systems designed for gesture
recognition. This finding constitutes a significant contribution to the field, providing a
valuable reference for future researchers and developers aiming to create robust and reli-
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able assistive technologies that perform effectively across diverse lighting environments.

5. Enhancing App Performance and Reliability Through Advanced Algorithms. This
thesis contributes to the field of accessible TG exploration by developing and integrating
a combination of algorithms designed to enhance the performance and reliability of the
TAURIS app. These algorithms, implemented in the app’s fingertip detection and tracking
pipeline, go beyond simply applying existing techniques. They represent modifications
and novel approaches specifically tailored to the unique challenges of real-time fingertip
detection for VIP.

• "All or Nothing" Approach: To minimise false positive detections, a novel "all
or nothing" algorithm was implemented. This algorithm ensures that only when
all fingers, except the thumb, are confidently detected by the deep learning model
will the location of the index finger be used for triggering audio descriptions. This
approach significantly reduces erroneous audio cues caused by misdetected fingers.

• Median Filter: To address instances where the model misidentifies the same finger
on both hands, a median filter was developed and integrated. This filter smooths the
raw fingertip location data by considering a window of consecutive frames, effec-
tively reducing erroneous jumps between left and right hands.

• Kalman Filter: To further enhance tracking stability and mitigate the impact of
spurious or missing detections, a Kalman filter was implemented. By leveraging
temporal information from consecutive video frames, the Kalman filter predicts the
future location of the fingertip, effectively smoothing its trajectory and ensuring that
audio feedback remains consistent.

These algorithms, operating in conjunction, substantially improve the overall performance
and reliability of the TAURIS system, providing users with a smoother, more accurate, and
less error-prone TG exploration experience.

6. Enhanced Camera Aiming Using ARUCO Markers and Vibration Feedback This
thesis introduces a novel approach to improving camera aiming accuracy for VIP, a per-
sistent challenge in mobile AT. The TAURIS system utilises ARUCO markers placed at
the corners of TG to provide spatial references for the phone camera. By detecting these
markers, the app can determine if the camera is properly aligned and the entire graphic is
within the field of view. The system incorporates vibration feedback to alert users when
one or more markers are not visible, prompting them to readjust the phone’s position.
Each marker has a unique identifier, allowing the app to determine which corner is miss-
ing and guide the user with more specific directional cues. This approach has significantly
improved camera aiming accuracy during user testing, with all participants achieving a
100% success rate in properly aligning the camera with the TG. While a voice assistant



CHAPTER 7. CONCLUSIONS 115

feature that provides explicit verbal guidance is not yet implemented, it is planned for fu-
ture development to further enhance usability. The challenge of accurate camera aiming
remains a major area of focus in the field of AT, and this thesis offers a promising solution
for visually impaired users interacting with TG on mobile devices.

7. Addition of Kazakh language This thesis addresses a critical gap in accessible learn-
ing resources by integrating Kazakh language support into the TAURIS system. While
numerous AT and learning materials are readily available in English and Russian, there
is a significant lack of resources for Kazakh speakers, particularly in the domain of TG
exploration. This was achieved by incorporating a recently released and publicly available
Kazakh Text-To-Speech (TTS) engine, enabling the delivery of all audio descriptions and
app feedback in Kazakh, in addition to the existing English and Russian language support.
This localised language functionality makes the system readily accessible to a wider pop-
ulation of VIP in Kazakhstan, where Kazakh is the primary language. By demonstrating
the feasibility of integrating a Kazakh TTS engine, this thesis sets a precedent for making
AT available in languages for which there is currently limited provision. This contribu-
tion highlights the importance of considering linguistic diversity and promoting inclusion
in the design and development of AT, ensuring that they reach and benefit a truly global
community of users.

7.4 Strengths and Limitations

This section reflects upon both the strengths and limitations of the research, providing a trans-
parent assessment of its contributions and highlighting areas for future development.

Strengths

• Novel and Accessible System: The TAURIS system represents a significant advance
in TG exploration for VIP. Its unique combination of real-time fingertip detection, two-
handed interaction, and customisable audio descriptions offers a more engaging, intuitive,
and independent learning experience compared to traditional methods.

• Robust Fingertip Detection: The developed fingertip detection model, incorporating a
customised dataset and a YOLOv3 DL model, achieves high accuracy even under varying
lighting conditions, addressing a significant challenge in Computer Vision-based AT.

• Accessibility for Non-Russian Speakers: The integration of Kazakh language support
through a TTS engine demonstrates the feasibility and importance of extending AT to
under-resourced languages, promoting inclusion and broadening the system’s reach.
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• Enhanced Camera Aiming: The use of ARUCO markers and vibration feedback effec-
tively guides visually impaired users in properly aligning the phone camera, improving
the accuracy and usability of the system.

Limitations

• Small Sample Size: The limited sample size in the user testing, primarily due to unfore-
seen circumstances caused by the COVID-19 pandemic, may impact the generalisability
of the findings. Further research with a larger and more diverse participant pool is needed
to strengthen the study’s conclusions.

• Focus on Two-Handed Exploration: The study primarily focused on two-handed TG ex-
ploration, as participants found this approach more convenient. Further research is needed
to evaluate the app’s effectiveness and usability for individuals who prefer or require one-
handed exploration.

• Limited Skin Tone Diversity: While the fingertip detection model performed well dur-
ing user testing, its accuracy on a wider population with diverse skin tones has not been
extensively evaluated. Further research and dataset expansion are necessary to ensure the
model’s robustness and generalisability across different skin tones.

7.5 Future Work

A natural progression of this work is to replicate the study in various educational settings with a
larger sample size. This would provide a more comprehensive understanding of the findings and
generalisability of the results. Additionally, a comparative study to analyse the performance and
user experience of one-handed and two-handed TG exploration with the TAURIS app, would
provide valuable insights into the optimal interaction modes for different users and learning
contexts.

Also further work will have to be conducted on refining the existing app based on user feed-
back and suggestions. This includes the implementation of a universal frame with ARUCO1

markers placed at the corners to increase the effective area of the TG, the inclusion of a light
level indicator to alert users when lighting conditions are insufficient, and the provision of a
customisable speech output speed option to accommodate individual preferences. These im-
provements will enhance the overall experience of visually impaired users and better meet their
needs.

Another promising avenue for future research is the development of automated tools for cre-
ating accessible materials. Specifically, incorporating AI technology to convert visual graphics

1ARUCO markers are fiducial markers that can be easily detected by computer vision algorithms, providing
reliable reference points for camera pose estimation and object tracking.
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into tactile representations. Furthermore, the results of this study have raised several questions
regarding the role of ARUCO markers in assisting VIPs in aiming their phone cameras. Further
investigation into this aspect could provide valuable insights and inform the design of future
assistive technologies.

Finally, it would be beneficial to extend the fingertip detection assessment to a larger popu-
lation to assess its performance and identify any demographic or individual differences that may
impact the model detection results.

7.6 Final Remarks

This thesis makes a significant contribution to overcoming the barriers that visually impaired in-
dividuals face in accessing information, particularly within educational settings. By developing
and evaluating the TAURIS system, this research not only provides a novel and practical tool
for independent TG exploration, but also demonstrates the broader potential of mobile, multi-
modal technologies in enhancing learning for VIP. Through this thesis, I explored the efficacy of
the TAURIS system, which leverages a smartphone’s camera, processing capabilities, and audio
output to provide real-time, spatially-connected audio descriptions of TG. The results of this
research demonstrate that this approach is more effective in supporting information acquisition
and comprehension than traditional tools, such as Braille texts and screen readers, which often
require cumbersome navigation and can disrupt the learning flow. I believe that the wider adop-
tion and utilisation of mobile, multi-modal systems like TAURIS hold significant promise in
empowering visually impaired learners to access knowledge, engage with educational materials,
and pursue their academic goals in a more independent and efficient manner.
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Appendix A

Technical Background

The purpose of this section is to give a basic overview of key concepts in the fields of Artificial
Intelligence (AI), Computer Vision (CV) and Deep Learning (DL).

Artificial Intelligence

Artificial Intelligence (AI) is the ability of machines and other computer-based systems to exe-
cute tasks that typically require human intelligence. The ultimate goal of AI is to mimic human
abilities without being explicitly programmed. Machine learning, as its name implies, is an AI
subdivision that trains machines to make predictions or take actions based on data inputs. The
process of machine learning usually starts with data observation wherein the greater quantity of
useful data that is provided to the machine, the more meaningful patterns and conclusions that
it can draw. CV is a sub-field of AI that focuses on developing algorithms and systems that
are capable of interpreting and understanding visual data. This includes tasks such as image
recognition, object detection, and scene understanding. Sometimes biologically inspired neural
networks are used by computers to analyse the data. These artificial neural networks work by
processing information through layers of interconnected "neurons" which use mathematical op-
erations to learn from input data and make predictions or decisions. This technique is called DL
and with the recent increase in computing power, this research area has become quite popular.
The combination of CV and DL has led to significant advances in the field and has opened up
new applications and possibilities. For example, DL algorithms can be used to analyse large
amounts of visual data in real time, enabling applications such as surveillance, traffic manage-
ment, and augmented reality. Figure 1 illustrates the relationship between the mentioned fields
and the research area. In the next section, the fundamentals of CV and DL will be presented.

Computer Vision

CV is a field of AI which enables machines to acquire information from digital photos and
videos. CV algorithms range from simple magnification algorithms to complex ones that encap-
sulate machine and deep learning techniques. Larry Roberts, at that time an MIT Ph.D. student,
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Figure 1: Artificial Intelligence and its fields

laid the foundation of the CV back in the 1960s (Roberts, 1963). He began by studying the
machine perception of 3D figures and now this area has advanced to the point where it can be
applied to almost any scientific field including the field of AT. CV based systems are widely used
to assist VIP in their daily life activities (Budrionis et al., 2022; Zhang, Liu, Sarkodie-Gyan, et
al., 2021; Chen, Liu, et al., 2021; Manoharan et al., 2019; Zhao, Wu, et al., 2018). Some of the
listed systems rely on the DL algorithms presented below.

Deep Learning

Overview

DL is an area of machine learning which uses artificial neural networks to process data. The
concept of artificial neural networks was inspired by the architecture and function of the human
brain neuron (Figure 2). Deep Neural Network (DNN) use multiple layers (one input, one or
more hidden and one output layers) to enable learning (Figure 3). The first layer deals with
raw input data and passes it to the hidden layer, where nonlinear transformations are applied to
capture the relations between input features and then sent to the next layer. This process repeats
until the generated result reaches the output layer. The more layers a neural network has, the
more complex relations that it will detect. Finally, modeled nonlinear relationships are used to
make decisions. CNN is a type of DL model that is commonly used in image recognition and
processing tasks. The main advantage of CNN is that they are able to learn spatial hierarchies
of features, allowing them to effectively handle images and other data with spatial structure.
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Figure 2: Biological and Artificial neural networks

Figure 3: Deep Neural Network with three hidden layers



APPENDIX A 134

Convolutional Neural Networks

CNN is a type of neural network architecture that uses convolutional layers to learn spatial
hierarchies of features from input data in an automatic and adaptive manner. The term "CNN"
or ConvNets was first introduced by LeCun et al. (1989) when he was a postdoctoral student at
the University of Toronto. His work was built on the architecture of a Neocognitron multilayered
artificial neural network developed by Fukushima and Miyake (1982). An early application of
CNN was the recognition of handwritten digits in postal and banking services. Due to the
low computational capacities and lack of data at that time, ConvNets could not show their full
potential. Only two decades later, Krizhevsky, Sutskever, and Hinton (2012) designed the CNN
called AlexNet which created a real breakthrough in the field.

Like other DNN, ConvNets have input, output and hidden layers. The main distinction of
this network type is the nature of its hidden part- convolutional layers. As its name suggests,
inside these layers, input data is convolved with a filter (set of weights that represent a particular
feature of the image). The results of these mathematical operations are then summed to produce
a single output value. This process is called convolution.

The resultant two-dimensional array of the convolution process is called a feature map and
it encodes the presence of specific features in the input image. The number of the produced
feature maps is equal to the number of filters used. Activation function is then applied to each
of the feature maps to decide whether it should be activated or not. This function introduces non-
linearity into the network, allowing it to learn complex, non-linear relationships between input
and output. There are many different activation functions that can be used in DL, including
the sigmoid, tanh and ReLU functions. Each of these functions has its own characteristics, and
choosing the right activation function for a particular network can have a significant impact on
its performance. ReLU is often used in CNNs because of its computational efficiency and ability
to handle sparse data, sigmoid is used when you want the output to be between 0 and 1, and tanh
is used when you want the output to be between -1 and 1.

This process can be repeated multiple times. After going through a certain number of con-
volutional and activation layers, a pooling layer is introduced to reduce the dimensions of the
feature maps. The purpose of a pooling layer is to down sample the input, reducing its di-
mensions and allowing the network to focus on the most important features. There are several
different types of pooling layers, but the max pooling layer is the most common. In a max
pooling layer, the input is divided into a set of non-overlapping regions, and for each region, the
largest value is selected and propagated to the output. This has the effect of retaining only the
most important features in the input and discarding the rest. Pooling layers have several benefits:
(1) they reduce the computational complexity of the network by reducing the dimensions of the
layer, thus allowing it to process inputs more efficiently; (2) they also make the network more
resilient to small translations and deformations in the input, improving its generalisation ability.

The last convolutional layer is then connected to fully connected input layer. This layer
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Figure 4: Architecture of CNN

turns the multidimensional data into a single one-dimensional vector and sends the result to
the first fully connected layer. Finally, this layer outputs the probability scores for the detected
objects. The whole process is illustrated in Figure 4. The first layers of CNN usually detect
basic features of the input image (edges, corners, etc.). As we go deeper into the network,
more complex features are extracted and the final layers are capable of detecting more semantic
information, like faces or whole objects.

ConvNets training requires a large amount of computational power and uses Graphical Pro-
cessing Unit (GPU) for this process. In general, the main purpose of the training is to calculate
proper parameters (weights) for each filter across all layers. Labelled images are the main source
of data for CV tasks. To start, networks initialise weights as random numbers. Each image then
moves through all layers (forward propagation) before the output is compared to the correct
labels. The difference between calculated and ground truth (manually labelled) labels is called
a loss. Minimising the loss is the main focus during the CNN model training. After each for-
ward propagation step, a tiny adjustment is made to the weights. The process which is called
backpropagation helps the network to correct the weights in the right direction. This process
based on the idea of propagating errors backwards through the network to update the weights
of the connections between neurons, in order to improve the accuracy of the network’s output
(Rumelhart, Hinton, and Williams, 1986).

In more technical terms, by recursively applying the chain rule to each of the layers of a
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network, backpropagation calculates the gradient of a loss function as a function of weights. This
involves first computing the error between the predicted and actual outputs of the network, and
then propagating this error backwards through the layers of the network. Then, by multiplying
it by the derivative of each layer’s activation function, and using it to update the weights of the
connections between neurons. Multiple iterations are repeated until a set of weights is found that
minimises the loss function. Ideally, the loss function should decrease over epochs (sequence of
the entire dataset processed) completed. This process can take several hours to weeks, depending
on the hardware specifications and the number of images in the dataset. After the training is
completed, a test dataset is used to evaluate the model performance. Usually, images that have
not been used during the training are used for evaluation. There are two primary CNN object
detector types: two-step and one-step detection-based algorithms.

Two-step detectors

Region-based Convolutional Neural Network (R-CNN) family algorithms divide the detection
problem into two steps: (i) propose regions (ii) classify the objects within these regions. This
approach tends to show a higher accuracy but suffers from low speed. R-CNN method was
first introduced by Girshick et al. (2014). The authors used a selective search algorithm created
by Uijlings et al. (2013) for the region proposals and the CNN model for the classification.
An improved version called Fast R-CNN was then released (Girshick, 2015). This version
showed both higher accuracy and speed but similar to its predecessor, it utilised an external
region proposal algorithm. Ren et al. (2016) presented a faster R-CNN the same year. The main
difference in their approach was the implementation of Region Proposal Network (RPN) instead
of a selective search algorithm. RPN is a fully convolutional network that can predict bounding
boxes and probability scores for objects simultaneously. This technique showed much faster
detection speeds (7 fps for Pascal VOC 2007 testing) but this performance is still very behind
the one-step detectors.

One-step detectors

Single-shot Detector (SSD) family, as the name implies, tackles object detection in one step
(Liu et al., 2016). SSDs are based on a VGG-16 network (Simonyan and Zisserman, 2014)
which serves as a feature map extractor. This network is then connected to the series of 1x1
and 3x3 convolutional layers with different depths. These layers, in their turn, are responsible
for object detection. The architecture of the SSD network is illustrated in figure 5. Compared
to R-CNNs, SSDs achieve a faster detection rate while maintaining the same level of accuracy
(Table 1).

You Only Look Once (YOLO) is another good example of a detector that approaches ob-
ject detection as a single regression (step) problem. The first version of the YOLO algorithm
was proposed by Redmon, Divvala, et al. (2016). The key difference between SSD and YOLO
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Figure 5: Structure of Single-shot Detector (SSD) network

Method mAP FPS Input image resolution

Faster RCNN (VGG2016) 73.2 7 1000 x 600

SSD300 74.3 46 300 x 300

SSD512 76.8 19 512 x 512

Note. Adapted from Liu et al. (2016)

Table 1: Performance on Pascal VOC2007 test
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Figure 6: Architecture of YOLO network

architectures is that the latter utilises two fully connected layers instead of convolutional ones
to regress the bounding boxes. The object detection process of the YOLO algorithm can be
described as follows. First, it divides the input image into a grid of cells, with each cell respon-
sible for predicting a set of bounding boxes. Then, for each cell, YOLO uses a CNN to predict
the bounding boxes and their corresponding class probabilities. These predictions are combined
across the grid to generate the set of bounding boxes and class probabilities for the image. Once
the predictions have been made, YOLO utilises non-maximum suppression to remove overlap-
ping boxes and select the most likely bounding boxes for each object. This helps to improve the
accuracy of the predictions and reduce false positives.

The main limitation of the YOLO algorithm is that each cell can detect only one object i.e. if
multiple objects fall in the same cell region, only the one with the highest score will be detected.
YOLO network architecture is presented in figure 6.

The second version called YOLO9000 was released the next year (Redmon and Farhadi,
2017). The authors improved the network performance by modifying the architecture, adding
anchor boxes and introducing other minor optimisations. CNN that has 19 convolutional and 4
max-pooling layers and is called Darknet-19 was used as a backbone for the YOLO9000. To
transcend the limitation of a single prediction per grid cell, fully-connected layers were replaced
with anchor boxes. Anchors are sets of predefined boxes with a certain width and height. With
this feature enabled, the network tries to forecast the object’s bounding box as an offset to the
anchor, instead of predicting it arbitrarily. The offset can be filtered, so the predictions are
adjusted around the predefined shapes. Assessed on the basis of YOLO, this version performs
better on the PASCAL VOC 2007 Dataset, showing both better accuracy and higher detection
speed (ibid.).

The authors later released an updated version called YOLOv3 (Redmon and Farhadi, 2018).
The proposed algorithm was the fastest object detector at that time, tiny YOLOv3 (lighter ver-
sion), was capable of detecting objects at the rate of 171 fps. This compact version of YOLOv3
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was used for the fingertip detection process in my work. A thorough description and analysis of
the YOLOv3 is presented in Section 3.2.1.

Deep Learning Frameworks

Like any programming task, DL model development requires a high-level programming inter-
face to start with. This is a user-friendly framework that will enable a programmer to develop a
model. State-of-the-art DL frameworks provide a convenient way to build models by facilitating
the utilisation of various neural network architectures through the most popular programming
languages. Each framework has its unique characteristics and the researchers have to select one
which best fits their needs. In this section, the most widely used frameworks will be described
and their key features will be compared in a summary table.

TensorFlow (Abadi et al., 2016) is an open-source machine learning framework that utilises
data flow graphs for high-performance numerical calculations. This powerful tool was devel-
oped by the Google Brain team and its first release was in 2015. The updated version called
TensorFlow 2.0 was released in 2019 (this version was used in my research). The main ad-
vantage of this framework is an easy deployment on various platforms (desktop, server and
edge device) utilising single or multiple Central Processing Unit (CPU), GPU and Tensor Pro-
cessing Unit (TPU). In addition, this library has an excellent visualisation tool (TensorBoard),
well-written documentation and a great selection of publicly available ready-to-use pre-trained
models.

Darknet (Redmon, 2013–2016) is another open-source high-performance framework that
became well-known after the YOLO algorithm (Redmon, Divvala, et al., 2016) release. The
framework was written in C and CUDA2. The tiny-YOLOv3 model used in my research was
trained using this tool. The main advantage of this framework is that it can be easily configured
for GPU training.

PyTorch (Paszke et al., 2019) is a relatively new DL framework developed by Facebook and
written in Python. As a result, it has a cleaner interface and Python developers will find it easier
to use. Additionally, this framework is compatible with NumPy (Harris et al., 2020), one of the
most popular scientific computing libraries.

Keras (Chollet et al., 2015) is a user-friendly and easy-to-use high-level DL framework.
This makes it extremely popular among those who just started exploring the DL field. Fast
experimentation with DNN is possible with this framework. It is worth mentioning that Keras
uses TensorFlow as its default backend computational engine. Thus, it is easy to call the classes
and functions of Tensorflow without adding any additional code.

Caffe (Jia et al., 2014) is an extremely fast DL framework developed by Berkeley Vision and
Learning Centre (BVLC). According to their website3, this framework is capable of processing

2https://developer.nvidia.com/cuda-zone
3https://caffe.berkeleyvision.org/
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over 60 million images with a single NVIDIA K40 GPU per day. Thus, Caffe models can be
easily deployed on mobile or edge devices. Another advantage of this framework is a Caffe
model zoo- an open-source repository of pre-trained models.

To conclude, in this section some of the most popular DL frameworks were discussed. Their
general information, together with their advantages and disadvantages, is summarised in Table 2.
This list is by no means exhaustive and other widely used DL frameworks include: Theano (Al-
Rfou et al., 2016), MXNet (Chen, Li, et al., 2015), ONNX (Bai, Lu, and Zhang, 2019), CNTK
(Seide and Agarwal, 2016) and others. In the context of the research, TensorFlow 2 and Darknet
frameworks were used for the object detection models training. TensorFlow 2 was selected due
to its object detection API that makes the training process very easy and intuitive. Thus, it is
very convenient for experimenting. Whereas Darknet was the most suitable for training models
which could be easily deployed on mobile devices.

DL Frame-
work

Year
Re-
leased

Interface Pros Cons

TensorFlow 2015 Python Scalable, pre-trained
models available,
supported by Google

Comparatively slow,
frequent updates and
tricky to configure
with GPU

Darknet 2013 C, C++,
Python

Easy to install, pre-
trained models avail-
able

Models tend to be
less accurate

PyTorch 2017 Python Dynamically up-
dated graph, good
for experimenting
and research, sup-
ported by Facebook

Lack of visualisation
tools, small devel-
oper community

Keras 2015 Python Easy to use, uses
other frameworks
as its backend,
pre-trained models
available

Slower than its back-
end, difficult to de-
bug

Caffe 2013 C++,
Python

Extemely fast, pre-
trained models avail-
able

Not scalable

Table 2: Most used DL Frameworks
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Summary

CV is a field of computer science that focuses on enabling computers to interpret and under-
stand visual data. It involves developing algorithms and models that can automatically analyse
and understand visual information in order to perform tasks such as object recognition, image
segmentation and scene understanding.

DL is a type of machine learning that involves using artificial neural networks to learn com-
plex patterns in data. These neural networks are made up of many layers of interconnected
nodes, which can be trained to recognise and classify different objects and features in images
and videos.

In the context of my research, CV and DL techniques were used to develop an algorithm that
can detect and track fingertips in real-time and facilitate user interaction with the developed app.
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Tactile Graphics Descriptions and Questions

Space Shuttle Description

This is an image of a space shuttle. It is a partly reusable space vehicle in which people travel
into space and back again. It is also used for carrying a satellite or other equipment into orbit. It
consists of an external fuel tank, rocket boosters, orbiter and its main engines.

External fuel tank: It carries the fuel for the Orbiter main engines. Also it connects the
orbiter with the rocket boosters. It jettisons after the launch and not reused.

Rocket boosters: Rockets used to launch and accelerate a space shuttle during liftoff. After
burnout, they jettison and parachute into the ground where they examined, refurbished, and
reused.

Orbiter: It is the spaceplane component of the shuttle which goes to the orbit.
Main engines: They aid the orbiter to reach the orbit after the rocket boosters are jettisoned.

Space Shuttle Questions

1. How many rocket boosters does the shuttle have?

2. Which component of the space shuttle is not reused:

(a) Orbiter

(b) Rocket boosters

(c) External tank

(d) Main engines

3. Which component of the space shuttle reaches the orbit together with the orbiter?

4. (Memory question) What are the four components of the space shuttle?

142



APPENDIX B 143

Tactile Graphics Descriptions and Questions

Frog Life Cycle Description

This is an image of the frog life cycle. There are six stages presented in a clockwise direction:
eggs, tadpole, tadpole with two legs, tadpole with four legs, froglet, and adult frog.

Eggs: A frog begins life as a fertilized egg. An adult frog lays hundreds of eggs at one time.
Tadpole: The tadpole has an oval-shaped body and a long tail.
Tadpole with two legs: At this stage, the tadpole develops back legs while still retaining its

tail.
Tadpole with four legs: At this stage, the tadpole has both front and back legs along with

its tail.
Froglet: The froglet possesses pairs of front and back legs, a larger body, and a shortened

tail.
Adult frog: At this stage, the tail disappears completely. Adult frogs lay eggs to begin the

life cycle anew.

Frog Life Cycle Questions

1. How many stages are there in the frog life cycle?

2. At what stage does the tail disappear completely?

(a) Tadpole

(b) Adult frog

(c) Tadpole with four legs

(d) Froglet

3. Which legs grow first?

4. (Memory question) Name all stages of the frog life cycle without using the tactile graphic.

Map of Australia Description

This is the map of Australia. It consists of six states and two territories.
Western Australia: The capital city is Perth.
Northern Territory: The capital city is Darwin.
Queensland: The capital city is Brisbane.
South Australia: The capital city is Adelaide.
New South Wales: The capital city is Sydney. The Australian Capital Territory is located in

this state as well.
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Victoria: The capital city is Melbourne.
Tasmania: The capital city is Hobart.

Map of Australia Questions

1. Which state or territory is surrounded by Western Australia, Queensland, and South Aus-
tralia?

2. What is the capital of New South Wales?

(a) Sydney

(b) Brisbane

(c) Perth

(d) Adelaide

3. Which state is a separate island?

4. (Memory question) Without using the tactile graphic, how many states and territories are
there in Australia?

Map of Kyrgyzstan Description

This is the map of Kyrgyzstan. It consists of seven regions.
Talas Region: The capital is Talas.
Chui Region: The capital is Bishkek.
Issyk-Kul Region: The capital is Karakol.
Jalal-Abad Region: The capital is Jalal-Abad.
Naryn Region: The capital is Naryn.
Osh Region: The capital is Osh.
Batken Region: The capital is Batken.

Map of Kyrgyzstan Questions

1. What is the capital of the Issyk-Kul Region?

2. In which region is the capital of the country located?

(a) Talas

(b) Chui

(c) Issyk-Kul

(d) Osh
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3. Which region is located between the Talas and Osh regions?

4. (Memory question) Without using the tactile graphic, how many regions are there in
Kyrgyzstan?

Histogram Description

This histogram represents the number of books read over six months.
Months: Below are the months and the corresponding number of books read: June: Number

of books read in June is 3.
May: Number of books read in May is 5.
April: Number of books read in April is 2.
March: Number of books read in March is 0.
February: Number of books read in February is 1.
January: Number of books read in January is 1.
Number of Books Read: The histogram shows the count of books read above each month.

Histogram Questions

1. During which month were the most books read?

2. During which months were no books read?

(a) January

(b) February

(c) March

(d) April

3. During which two months was the same number of books read?

4. (Memory question) Without using the tactile graphic, how many months’ statistics are
presented in the histogram?

Percentage Graph Description

This graph represents the library occupancy throughout the week.
Below are the days of the week and the corresponding library occupancy percentages:
Monday: Library occupancy on Monday is 100
Tuesday: Library occupancy on Tuesday is 60
Wednesday: Library occupancy on Wednesday is 20
Thursday: Library occupancy on Thursday is 80



APPENDIX B 146

Friday: Library occupancy on Friday is 40 Saturday: Library occupancy on Saturday is 0
Sunday: Library occupancy on Sunday is 40

Percentage Graph Questions

1. On what day is the library full?

2. What is the library occupancy on Wednesday?

(a) 80%

(b) 60%

(c) 40%

(d) 20%

3. On which two days is the library occupancy the same?

4. (Memory question) Without using the tactile graphic, on what day is the library empty?

Interview Questions

Personal information for statistical purposes

1. Please select the option that best describes you
Secondary school student
University student
College student or a vocational trainee
A person who has left education in the last five years
Other (Please specify)

2. What is your age?
3. Which gender do you identify with?

Male
Female
Other

4. What country do you live in?
5. Which of the following best describes your vision?

Totally blind with no awareness of light
Blind and able to distinguish light and dark
Able to see shapes, but unable to distinguish detail or to read print
Able to read a large print text
Other (Please specify)
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6. Which of the following statements best describes you?
I have been blind or partially sighted since birth
I lost my sight between 0 and 3 years
I lost my sight between 3 and 11 years
I lost my sight between 11 and 35 years
I lost my sight after the age of 35

7. Which of the following best describes the school you are attending now or attended most
recently? (Check all that apply)

School for the blind
A mainstream school with resource room
The mainstream school (full-time classroom)
Other (Please specify)

8. Can you read Braille?
Yes
No
I understand some Braille but I am not fluent

9. Have you used tactile graphics?
Yes, in education
Yes, in other applications but not education
No

Please, proceed to section B if your answer to the previous question was “YES”.
If your answer was “NO”, please answer the next two questions and you can skip section
B.
10. Would you like to use tactile graphics?

Yes
No (please specify the reason)
Unsure (please specify the reason)

11. For what reasons have you not used them?
Not provided by teachers
No training was provided on how to use them
Other (please specify)

Your experience with tactile graphics

12. What subjects have you used tactile graphics in? (Check all that apply)
STEM (Science, technology, engineering and mathematics)
Geography
History
Orientation and Mobility classes
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Art and music
Domestic science and woodwork
Other (please specify)

12. How were these tactile graphics usually labelled?
Braille text
Large printed text
Audio descriptions
Not labelled
Other (please specify)

14. How often do you use tactile graphics in education?
Most of the time (3-4 times a week or more)
Sometimes (1-2 times a week)
Rarely (a few times a month or less)
Almost never

15. Please select the option that best applies to you
Tactile graphics are sufficient on their own without Braille and text descriptions and help me

understand the concept better
Tactile graphics complement Braille and text descriptions and help me understand the con-

cept better
Tactile graphics do not help me understand the concept better

16. Is it easier to keep up when tactile graphics are used in class?
Yes, they make a big difference
Yes, they help a bit
No, they make no difference
No, I can keep up without them

17. Indicate all of the following that would help you to use tactile graphics more effectively
Training in using tactile graphics
Being shown how to use/oriented to each tactile graphics
Audio descriptions provided with tactile graphics
Training in using tactile graphics with audio descriptions
Other (please specify)

18. Please give three examples of how you have used tactile graphics to support your learning
with comments on how useful you found them
19. Please comment on any features of tactile graphics you have used that makes them easy or
difficult to read and any strategies you have used to read new tactile graphics.
20. Do you have any suggestions on how tactile graphics could be improved?
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Your experience with assistive technology phone applications

21. Which mobile phone do you use?
Android smartphone
IOS smartphone
Another smartphone
Phone without a camera
I do not use a mobile phone

22. If you ever used an app which requires you to use a phone camera, which of the following
apps have you used? (Check all that apply)

Camera (for taking pictures)
Currency reader
Color identifier
Photo Identifier (e.g. VizWiz)
Light detector
Barcode reader
Object identifier (e.g. TapTapSee)
Other (Please specify)

23. How often do you use an app which requires you to use a camera?
Everyday
Once or twice a week
Once a month
Almost never

24. Do you want applications to give you feedback to properly aim the camera?
No, I can aim the camera without feedback
Yes, I would use camera apps more frequently if there was feedback on how to aim the

camera
Yes, I would consider using camera apps if feedback to aim the camera was available

25. How the feedback should be conveyed to you while aiming the camera?
Vibration
Voice information
Tones
A combination of the above
Other, please specify
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TAURIS Mobile Application Source Code

MainActivity.java

package com.example.YoloDetectionFiveFingers;

import android.content.res.AssetManager;

import android.content.Context;

import android.os.Build;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import android.os.StrictMode;

import android.os.VibrationEffect;

import android.os.Vibrator;

import android.speech.tts.TextToSpeech;

import android.util.Log;

import android.view.SurfaceView;

import android.view.WindowManager;

import android.widget.Toast;

import org.opencv.android.BaseLoaderCallback;

import org.opencv.android.CameraBridgeViewBase;

import org.opencv.android.JavaCameraView;

import org.opencv.android.OpenCVLoader;

import org.opencv.aruco.Aruco;

import org.opencv.aruco.Dictionary;

import org.opencv.core.Core;

import org.opencv.core.Mat;

import org.opencv.core.MatOfFloat;

import org.opencv.core.MatOfInt;

import org.opencv.core.MatOfRect;

import org.opencv.core.Point;

import org.opencv.core.Rect;

import org.opencv.core.Scalar;

import org.opencv.core.Size;

import org.opencv.dnn.Net;

import org.opencv.imgproc.Imgproc;

import org.opencv.dnn.Dnn;

150
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import org.opencv.utils.Converters;

import org.opencv.android.FpsMeter;

import org.opencv.objdetect.QRCodeDetector;

import java.io.BufferedInputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.Locale;

import java.lang.String;

import static java.lang.System.out;

public class MainActivity extends AppCompatActivity implements

CameraBridgeViewBase.CvCameraViewListener2 {

private static final String TAG = "OCVSample::Activity";

CameraBridgeViewBase cameraBridgeViewBase;

BaseLoaderCallback baseLoaderCallback;

public TextToSpeech tts1;

String newResult; //This variable needed to compare old and new text

which is to be converted to speech

boolean fetched = false;

boolean QRdetected = false;

boolean datafetched = false;

boolean tell_description = false;

int step = 40;

int counter = 0;

int vibro1 = 0;

int vibro2 = 0;

int timer = 0;

String final_planet = "false";

FpsMeter fpsMeter = new FpsMeter();

Net tinyYolo;

public static String tinyYoloCfg;

public static String tinyYoloWeights;

private static String getPath(String file, Context context) {

AssetManager assetManager = context.getAssets();

BufferedInputStream inputStream = null;

try {

// Read data from assets.

inputStream = new BufferedInputStream(assetManager.open(file));
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byte[] data = new byte[inputStream.available()];

inputStream.read(data);

inputStream.close();

// Create copy file in storage.

File outFile = new File(context.getFilesDir(), file);

FileOutputStream os = new FileOutputStream(outFile);

os.write(data);

os.close();

// Return a path to file which may be read in common way.

return outFile.getAbsolutePath();

} catch (IOException ex) {

Log.i(TAG, "Failed to upload a file");

}

return "";

}

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

if (android.os.Build.VERSION.SDK_INT > 9)

{

StrictMode.ThreadPolicy policy = new

StrictMode.ThreadPolicy.Builder().permitAll().build();

StrictMode.setThreadPolicy(policy);

}

cameraBridgeViewBase = (JavaCameraView)findViewById(R.id.CameraView)

;

cameraBridgeViewBase.setVisibility(SurfaceView.VISIBLE);

cameraBridgeViewBase.setCvCameraViewListener(this);

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON)

;

baseLoaderCallback = new BaseLoaderCallback(this) {

@Override

public void onManagerConnected(int status) {

super.onManagerConnected(status);

switch(status){

case BaseLoaderCallback.SUCCESS:

cameraBridgeViewBase.enableView();

break;

default:

super.onManagerConnected(status);

break;

}

}
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};

tts1=new TextToSpeech(getApplicationContext(),

new TextToSpeech.OnInitListener() {

@Override

public void onInit(int status) {

if(status != TextToSpeech.ERROR){

tts1.setLanguage(Locale.getDefault());

}

}

});

}

public void convertTextToSpeech(String text) {

if (null == text || "".equals(text)) {

Log.d(TAG, "Nothing to say");

}

tts1.speak(text, TextToSpeech.QUEUE_FLUSH, null, TextToSpeech.

ACTION_TTS_QUEUE_PROCESSING_COMPLETED);

}

//initialize YoloDetector method. Input frame and transformation matrix

are the parameters.

public Mat yoloDetector(Mat frame, Mat perspectiveTransformation){

//convert RGBA to RGB

Imgproc.cvtColor(frame, frame, Imgproc.COLOR_RGBA2RGB);

Mat imageBlob = Dnn.blobFromImage(frame, 0.00392, new Size(416,416),

new Scalar(0, 0, 0),/*swapRB*/false, /*crop*/false);

tinyYolo.setInput(imageBlob);

java.util.List<Mat> result = new java.util.ArrayList<Mat>(2);

List<String> outBlobNames = new java.util.ArrayList<>();

outBlobNames.add(0, "yolo_16");

outBlobNames.add(1, "yolo_23");

tinyYolo.forward(result,outBlobNames);

float confThreshold = 0.2f;

List<Integer> clsIds = new ArrayList<>();

List<Float> confs = new ArrayList<>();

List<Rect> rects = new ArrayList<>();

boolean middledetected = false;

boolean ringdetected = false;

boolean pinkydetected = false;

boolean indexdetected = false;

List<String> cocoNames = Arrays.asList("Thumb", "Index", "Middle", "

Ring", "Pinky");
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int intConf = 0;

Rect box = new Rect(0,0,0,0);

for (int i = 0; i < result.size(); ++i)

{

Mat level = result.get(i);

for (int j = 0; j < level.rows(); ++j)

{

Mat row = level.row(j);

Mat scores = row.colRange(5, level.cols());

Core.MinMaxLocResult mm = Core.minMaxLoc(scores);

float confidence = (float)mm.maxVal;

Point classIdPoint = mm.maxLoc;

if (confidence > confThreshold)

{

int centerX = (int)(row.get(0,0)[0] * frame.cols());

int centerY = (int)(row.get(0,1)[0] * frame.rows());

int width = (int)(row.get(0,2)[0] * frame.cols());

int height = (int)(row.get(0,3)[0] * frame.rows());

int left = centerX - width / 2;

int top = centerY - height / 2;

clsIds.add((int)classIdPoint.x);

confs.add((float)confidence);

rects.add(new Rect(left, top, width, height));

}

}

}

int ArrayLength = confs.size();

if (ArrayLength >= 1) {

// Apply non-maximum suppression procedure.

float nmsThresh = 0.2f;

MatOfFloat confidences = new MatOfFloat(Converters.

vector_float_to_Mat(confs));

Rect[] boxesArray = rects.toArray(new Rect[0]);

MatOfRect boxes = new MatOfRect(boxesArray);

MatOfInt indices = new MatOfInt();

Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThresh,

indices);

// Draw result boxes:

int[] ind = indices.toArray();

for (int i = 0; i < ind.length; ++i) {

int idx = ind[i];

//idGuy is the id of the finger. 0 is thumb, 1 is index and

so on.

int idGuy = clsIds.get(idx);
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float conf = confs.get(idx);

//if detected finger is index, we need to store its

confidence value and surrounding box coordinates. We

will use later to detect the center point

if(idGuy == 1) {

indexdetected = true;

intConf = (int) (conf * 100);

box = boxesArray[idx];

}

//if detected finger is middle, we need to change the

boolean to true

else if(idGuy == 2) {

middledetected = true;

}

//if detected finger is ring, we need to change the boolean

to true

else if(idGuy == 3) {

ringdetected = true;

}

//if detected finger is pinky, we need to change the boolean

to true

else if(idGuy == 4) {

pinkydetected = true;

}

}

//we proceed only if all fingers are detected. Thumb is not that

crucial in our case. Also we return the location of index

finger only

//***change this part 28/08/2020

if(indexdetected == true && middledetected == true &&

ringdetected == true && pinkydetected == true) {

//step is the dimensions of the square cell in pixels

int step = 15;

// =========== KALMAN FILTER APPLICATION ===========

// 1. Prepare Measurement

measurement.put(0, 0, new_centerX);

measurement.put(1, 0, new_centerY);

// 2. Predict using Kalman Filter
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Mat prediction = kalmanFilter.predict();

Point predictedPt = new Point(prediction.get(0, 0)[0],

prediction.get(1, 0)[0]);

// 3. Correct Kalman Filter with Measurement

kalmanFilter.correct(measurement);

//here use predictedPt (x, y from Kalman filter) for cell

mapping

// instead of new_centerX and new_centerY

//box top left angle added by the half of the width/height

double centerX = box.x + box.width/2;

double centerY = box.y + box.height/2;

//here we find the desired points coordinates in the warped

image. dst = H * src. Where H is the transformation

matrix taken from the function parameter

double new_centerX = (perspectiveTransformation.get(0,0)[0]*

centerX + perspectiveTransformation.get(0,1)[0]*centerY

+ perspectiveTransformation.get(0,2)[0])/(

perspectiveTransformation.get(2,0)[0]*centerX +

perspectiveTransformation.get(2,1)[0]*centerY +

perspectiveTransformation.get(2,2)[0]);

double new_centerY = (perspectiveTransformation.get(1,0)[0]*

centerX + perspectiveTransformation.get(1,1)[0]*centerY

+ perspectiveTransformation.get(1,2)[0])/(

perspectiveTransformation.get(2,0)[0]*centerX +

perspectiveTransformation.get(2,1)[0]*centerY +

perspectiveTransformation.get(2,2)[0]);

//normalize the width and height to 900 and 600 respectively

new_centerX = new_centerX/GetWarpedFrame.maxWidth*

GetWarpedFrame.newWidth;

new_centerY = new_centerY/GetWarpedFrame.maxHeight*

GetWarpedFrame.newHeight;

//proceed only if the finger position is within the area

enclosed by markers

if (new_centerX >= 0 && new_centerX <= 900 && new_centerY >=

0 && new_centerY <= 600 ) {

//find the corresponding cell numbers. Image is 60 (900/

step) x 40 (600/step) = 2400 cell sized.

int cell_x = (int) Math.ceil(new_centerX / step);

int cell_y = (int) Math.ceil(new_centerY / step);

// N is the number of cells in one row

int N = GetWarpedFrame.newWidth / step;

//int N = GetWarpedFrame.newHeight / step;

//cell_number is the unique value of each of the
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900*600/(15*15) = 2400 cells

int cell_number = N * Math.abs(cell_y - 1) + cell_x;

//int cell_number = N * Math.abs(cell_y - 1) + cell_x;

//access cell element from the excel file using the cell

number and convert it to String

//proceed only if the cell value is within the array

size

if (cell_number >= 0 && cell_number <= 2400) {

System.out.println("cell number is " + cell_number);

// catch exception if json file was not downloaded

try {

String cell_number_string = String.valueOf(

cell_number);

final_planet = fetchData.dict.get(

cell_number_string);

} catch(IndexOutOfBoundsException e) {

//prevent from multiple TTS

if (datafetched == false) {

convertTextToSpeech("Please check your

internet connection");

datafetched = true;

}

final_planet = "false";

}

//Only TTS text when the object location is not

empty and is changed so one text is not repeated

many times

if (!final_planet.equals(newResult) && !"false".

equals(final_planet)) {

convertTextToSpeech(final_planet);

newResult = final_planet; //this is used to

compare old and new text

timer = 0;

}

else if (final_planet.equals(newResult)) {

timer = timer + 1;

Log.d("timer: ", "> " + timer); //here u ll

get whole response...... :-)

if (timer == 6){

String description = fetchData.dict.get(

final_planet);
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convertTextToSpeech(description);

timer = 0;

}

}

else if ("false".equals(final_planet)) {

timer = 0;

}

//draw the box around the index frame

Imgproc.putText(frame, cocoNames.get(1) + " " +

intConf + "%", box.tl(), Imgproc.

FONT_HERSHEY_COMPLEX, 2, new Scalar(0, 0, 0), 2)

;

Imgproc.rectangle(frame, box.tl(), box.br(), new

Scalar(255, 0, 0), 2);

}

}

}

}

//return the frame with bounding box

return frame;

}

@Override

public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame

inputFrame) {

Mat frame = inputFrame.rgba();

if(QRdetected == false){

QRCodeDetector qrDecoder = new QRCodeDetector();

String QRtext = qrDecoder.detectAndDecode(frame);

//new fetchData().execute("https://api.jsonbin.io/b/5

ea97ac94c87c3359a63bd78");//Uk map

//https://api.jsonbin.io/b/5ea9bb884c87c3359a63db73

if (counter % step ==0){

//convertTextToSpeech("Please scan the QR code first");

convertTextToSpeech("

");

}

counter+=1;
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if(QRtext.contains("http")) {

Log.d("QRcode text: ", QRtext);

new fetchData().execute(QRtext);//shapes

QRdetected = true;

//convertTextToSpeech("QR code scanned successfully");

convertTextToSpeech("

");

}

}

if(QRdetected == true) {

Mat ids = new Mat();// needed for Aruco

List<Mat> corners = new ArrayList<>(); // needed for Aruco

Dictionary dictionary = Aruco.getPredefinedDictionary(Aruco.

DICT_4X4_250); // needed for Aruco

Mat perspectiveTransformation = new Mat();

//Start detecting Aruco markers

Aruco.detectMarkers(inputFrame.gray(), dictionary, corners, ids)

;

// Initiate vibration

Vibrator v = (Vibrator) getSystemService(Context.

VIBRATOR_SERVICE);

// Initiate descriptions when at least one marker is visible

// it will initiated only once

if (ids.size(0) >= 2 && tell_description == false) {

if(fetchData.dict.get("title") != null && !fetchData.dict.

get("title").trim().isEmpty()) {

String title = fetchData.dict.get("title");

convertTextToSpeech(title);

tell_description = true;

}

}

int sum = 0;

// vibrate when more than one and less than three markers are

visible

if (ids.size(0) == 1) {

//initiate vibro counter
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vibro1 = vibro1+1;

//System.out.println("Vibro 1 : "+ vibro1);

//if markers are not visible on 50 consecutive frames

vibrate

if (vibro1 == 50) {

// take care of API versions deprecation

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

v.vibrate(VibrationEffect.createOneShot(100,

VibrationEffect.EFFECT_DOUBLE_CLICK));

vibro1 = 0;

} else {

//deprecated in API 26

//pattern: 0-start without delay, 50- duration, 50-

pause, 50-duration (double vibration)

long[] pattern = {0, 50, 50, 50};

// -1 = no repeat

v.vibrate(pattern, -1);

// start over the counter

vibro1 = 0;

}

}

}

if (ids.size(0) == 2) {

//initiate vibro2 counter

//Notify the user that only two markers are visible and it

is advised to recalibrate by making at least 3 markers

visible

vibro2 = vibro2+1;

//System.out.println("Vibro 2 : "+ vibro2);

//if markers are not visible on 10 consecutive frames

vibrate

if (vibro2 == 10) {

// take care of API versions deprecation

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

v.vibrate(VibrationEffect.createOneShot(100,

VibrationEffect.EFFECT_DOUBLE_CLICK));

vibro2 = 0;

} else {

//deprecated in API 26

//pattern: 0-start without delay, 50- duration (

single vibration)

long[] pattern = {0, 50};
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// -1 = no repeat

v.vibrate(pattern, -1);

// start over the counter

vibro2 = 0;

}

}

fpsMeter.measure();

int size = 2;

//iterate over each Aruco marker

for (int i = 0; i < 2; i++) {

int ID = (int) ids.get(i, 0)[0];

if (ID < 4) { //sometimes wrong ID numbers are detected.

So restricted them to <4

Mat markerCorners = corners.get(i);

//call the CornerPoints class

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

//call the method within that class

pointvalues.getMarkerCorners();

}

}

//it looks like Aruco uses old detected coordinate values if

new ones are not detected

//get 2D arrays of 4 corner points. Only one corner of each

marker is detected to get a new frame enclosed by inner

corners

int corner_tr[][] = {{CornerPoints.markerfeatures[0][2][1]},

{CornerPoints.markerfeatures[0][2][2]}}; //bottom left

corner of TL marker

int corner_br[][] = {{CornerPoints.markerfeatures[1][3][1]},

{CornerPoints.markerfeatures[1][3][2]}}; //BR corner of

TR marker

int corner_bl[][] = {{CornerPoints.markerfeatures[2][0][1]},

{CornerPoints.markerfeatures[2][0][2]}}; //Tl corner of

BR marker

int corner_tl[][] = {{CornerPoints.markerfeatures[3][1][1]},

{CornerPoints.markerfeatures[3][1][2]}}; //TR corner of

BL marker

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

perspectiveTransformation = finalframe.getTransform();

frame = yoloDetector(frame, perspectiveTransformation);

}
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//if only 3 markers are detected

if (ids.size(0) == 3) {

vibro1 = 0;

vibro2 = 0;

fpsMeter.measure();

int size = 3;

for (int i = 0; i < 3; i++) {

int ID = (int) ids.get(i, 0)[0];

sum = ID + sum;

}

// If missing ID is 0 (1+2+3=6). 0 is not considered because

detected markers size is 3

if (sum == 6) {

for (int i = 0; i < 3; i++) {

int ID = (int) ids.get(i, 0)[0];

Mat markerCorners = corners.get(i);

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

pointvalues.getMarkerCorners();

}

int corner_br[][] = {{CornerPoints.markerfeatures

[1][3][1]}, {CornerPoints.markerfeatures[1][3][2]}};

//BR corner of TR marker

int corner_bl[][] = {{CornerPoints.markerfeatures

[2][0][1]}, {CornerPoints.markerfeatures[2][0][2]}};

//Tl corner of BR marker

int corner_tl[][] = {{CornerPoints.markerfeatures

[3][1][1]}, {CornerPoints.markerfeatures[3][1][2]}};

//TR corner of BL marker

//missing corner is calculated from the remaining 3

corners. Add x and y values of diagonal corner

points and subtract the corner points of the

remaining marker

int corner_tr[][] = {{corner_tl[0][0] + corner_br[0][0]

- corner_bl[0][0]}, {corner_tl[1][0] + corner_br

[1][0] - corner_bl[1][0]}};

//use the calculated corner points to find a warped

frame

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

//access the getwarped class to take the

perspectiveTransformation matrix

perspectiveTransformation = finalframe.getTransform();

//call Yolodetector method. Note that Yolo is detecting

finger coordinates on the input frame and then these
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coordinates are mapped to the warped frame

frame = yoloDetector(frame, perspectiveTransformation);

}

// If missing ID is 1 (0+2+3=5)

else if (sum == 5) {

for (int i = 0; i < 3; i++) {

int ID = (int) ids.get(i, 0)[0];

Mat markerCorners = corners.get(i);

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

pointvalues.getMarkerCorners();

}

int corner_tr[][] = {{CornerPoints.markerfeatures

[0][2][1]}, {CornerPoints.markerfeatures[0][2][2]}};

//bottom left corner of TL marker

int corner_bl[][] = {{CornerPoints.markerfeatures

[2][0][1]}, {CornerPoints.markerfeatures[2][0][2]}};

//Tl corner of BR marker

int corner_tl[][] = {{CornerPoints.markerfeatures

[3][1][1]}, {CornerPoints.markerfeatures[3][1][2]}};

//TR corner of BL marker

int corner_br[][] = {{corner_tr[0][0] + corner_bl[0][0]

- corner_tl[0][0]}, {corner_tr[1][0] + corner_bl

[1][0] - corner_tl[1][0]}};

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

perspectiveTransformation = finalframe.getTransform();

frame = yoloDetector(frame, perspectiveTransformation);

}

// If missing ID is 2 (0+1+3=4)

else if (sum == 4) {

for (int i = 0; i < 3; i++) {

int ID = (int) ids.get(i, 0)[0];

Mat markerCorners = corners.get(i);

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

pointvalues.getMarkerCorners();

}

int corner_tr[][] = {{CornerPoints.markerfeatures

[0][2][1]}, {CornerPoints.markerfeatures[0][2][2]}};

//bottom left corner of TL marker

int corner_br[][] = {{CornerPoints.markerfeatures

[1][3][1]}, {CornerPoints.markerfeatures[1][3][2]}};

//BR corner of TR marker
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int corner_tl[][] = {{CornerPoints.markerfeatures

[3][1][1]}, {CornerPoints.markerfeatures[3][1][2]}};

//TR corner of BL marker

int corner_bl[][] = {{corner_br[0][0] + corner_tl[0][0]

- corner_tr[0][0]}, {corner_br[1][0] + corner_tl

[1][0] - corner_tr[1][0]}};

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

perspectiveTransformation = finalframe.getTransform();

frame = yoloDetector(frame, perspectiveTransformation);

}

// If missing ID is 3 (0+1+2=3)

else if (sum == 3) {

for (int i = 0; i < 3; i++) {

int ID = (int) ids.get(i, 0)[0];

Mat markerCorners = corners.get(i);

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

pointvalues.getMarkerCorners();

}

int corner_tr[][] = {{CornerPoints.markerfeatures

[0][2][1]}, {CornerPoints.markerfeatures[0][2][2]}};

//bottom left corner of TL marker

int corner_br[][] = {{CornerPoints.markerfeatures

[1][3][1]}, {CornerPoints.markerfeatures[1][3][2]}};

//BR corner of TR marker

int corner_bl[][] = {{CornerPoints.markerfeatures

[2][0][1]}, {CornerPoints.markerfeatures[2][0][2]}};

//Tl corner of BR marker

int corner_tl[][] = {{corner_tr[0][0] + corner_bl[0][0]

- corner_br[0][0]}, {corner_tr[1][0] + corner_bl

[1][0] - corner_br[1][0]}};

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

perspectiveTransformation = finalframe.getTransform();

frame = yoloDetector(frame, perspectiveTransformation);

}

}

//if all of the markers detected

if (ids.size(0) > 3) {

vibro1 = 0;

vibro2 = 0;

fpsMeter.measure();

int size = 4;
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//iterate over each Aruco marker

for (int i = 0; i < 4; i++) {

int ID = (int) ids.get(i, 0)[0];

if (ID < 4) { //sometimes wrong ID numbers are detected.

So restricted them to <4

Mat markerCorners = corners.get(i);

//call the CornerPoints class

CornerPoints pointvalues = new CornerPoints(

markerCorners, ID, size);

//call the method within that class

pointvalues.getMarkerCorners();

}

}

//get 2D arrays of 4 corner points. Only one corner of each

marker is detected to get a new frame enclosed by inner

corners

int corner_tr[][] = {{CornerPoints.markerfeatures[0][2][1]},

{CornerPoints.markerfeatures[0][2][2]}}; //bottom left

corner of TL marker

int corner_br[][] = {{CornerPoints.markerfeatures[1][3][1]},

{CornerPoints.markerfeatures[1][3][2]}}; //BR corner of

TR marker

int corner_bl[][] = {{CornerPoints.markerfeatures[2][0][1]},

{CornerPoints.markerfeatures[2][0][2]}}; //Tl corner of

BR marker

int corner_tl[][] = {{CornerPoints.markerfeatures[3][1][1]},

{CornerPoints.markerfeatures[3][1][2]}}; //TR corner of

BL marker

GetWarpedFrame finalframe = new GetWarpedFrame(frame,

corner_tr, corner_br, corner_bl, corner_tl);

perspectiveTransformation = finalframe.getTransform();

frame = yoloDetector(frame, perspectiveTransformation);

}

perspectiveTransformation.release();

System.gc();

}

return frame;

}

@Override

public void onCameraViewStarted(int width, int height) {

//initialize appropriate cfg and weights files for detection

tinyYoloCfg = getPath("yolov3-tiny_custom.cfg", this);
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tinyYoloWeights = getPath("yolov3-tiny_custom_last.weights", this);

tinyYolo = Dnn.readNetFromDarknet(tinyYoloCfg, tinyYoloWeights);

}

@Override

public void onCameraViewStopped() {

}

@Override

protected void onResume() {

super.onResume();

if (!OpenCVLoader.initDebug()){

Toast.makeText(getApplicationContext(),"There’s a problem, yo!",

Toast.LENGTH_SHORT).show();

}

else

{

baseLoaderCallback.onManagerConnected(baseLoaderCallback.SUCCESS

);

}

}

@Override

protected void onPause() {

super.onPause();

if(cameraBridgeViewBase!=null){

cameraBridgeViewBase.disableView();

}

}

@Override

protected void onDestroy() {

super.onDestroy();

if (cameraBridgeViewBase!=null){

cameraBridgeViewBase.disableView();

}

}

}

GetWarpedFrame.java

package com.example.YoloDetectionFiveFingers;

import org.opencv.core.Mat;

import org.opencv.imgproc.Imgproc;

import org.opencv.utils.Converters;

import org.opencv.core.Point;
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import java.util.ArrayList;

import java.util.List;

public class GetWarpedFrame {

static Mat mRgba;

int x1;

int y1;

int x2;

int y2;

int x3;

int y3;

int x4;

int y4;

public static double maxWidth;

public static double maxHeight;

public static int newHeight = 600;

public static int newWidth = 900;

GetWarpedFrame(Mat mRgba, int[][] corner_tr, int[][] corner_br, int[][]

corner_bl, int[][] corner_tl) {

//GetWarpedFrame(Mat mRgba, int[][] corner_tl, int[][] corner_tr, int

[][] corner_br, int[][] corner_bl) {

// corners order changed because landscape orientation is used.

Aruco marker 3 is top left now

this.x1 = corner_tl[0][0];

this.y1 = corner_tl[1][0];

this.x2 = corner_tr[0][0];

this.y2 = corner_tr[1][0];

this.x3 = corner_br[0][0];

this.y3 = corner_br[1][0];

this.x4 = corner_bl[0][0];

this.y4 = corner_bl[1][0];

this.mRgba = mRgba;

}

public Mat getTransform() {

//find maximum width of the new warped frame

double widthA = Math.sqrt((Math.pow((x3 - x4), 2)) + (Math.pow((y3 -

y4), 2)));

double widthB = Math.sqrt((Math.pow((x2 - x1), 2)) + (Math.pow((y2 -

y1), 2)));

maxWidth = Math.max(widthA, widthB);

//find maximum height
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double heightA = Math.sqrt((Math.pow((x2 - x3), 2)) + (Math.pow((y2

- y3), 2)));

double heightB = Math.sqrt((Math.pow((x1 - x4), 2)) + (Math.pow((y1

- y4), 2)));

maxHeight = Math.max(heightA, heightB);

//create a matrix of the destination warped frame

List<Point> dstPoints = new ArrayList<>();

dstPoints.add(new Point(0, 0));

dstPoints.add(new Point(maxWidth - 1, 0));

dstPoints.add(new Point(maxWidth - 1, maxHeight - 1));

dstPoints.add(new Point(0, maxHeight-1));

Mat dstMat = Converters.vector_Point2f_to_Mat(dstPoints);

//create a matrix of the source warped frame

List<Point> srcPoints = new ArrayList<>();

srcPoints.add(new Point(x1, y1));

srcPoints.add(new Point(x2, y2));

srcPoints.add(new Point(x3, y3));

srcPoints.add(new Point(x4, y4));

Mat srcMat = Converters.vector_Point2f_to_Mat(srcPoints);

//get the transformation matrix

Mat perspectiveTransformation = Imgproc.getPerspectiveTransform(

srcMat, dstMat);

srcMat.release();

dstMat.release();

System.gc();

//return the transformation matrix

return perspectiveTransformation;

}

}

fetchData.java

package com.example.YoloDetectionFiveFingers;

import android.os.AsyncTask;

import android.util.Log;

import java.io.BufferedReader;
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import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.*;

import static java.lang.System.out;

public class fetchData extends AsyncTask<String, String, String> {

public static List<String> list = new ArrayList<String>();

public static HashMap<String, String> dict = new HashMap<String, String

>();

String fetched_data;

protected String doInBackground(String... params) {

HttpURLConnection connection = null;

BufferedReader reader = null;

try {

URL url = new URL(params[0]);

connection = (HttpURLConnection) url.openConnection();

connection.connect();

InputStream stream = connection.getInputStream();

reader = new BufferedReader(new InputStreamReader(stream));

String line = "";

while ((line = reader.readLine()) != null) {

fetched_data = line;

Log.d("Response: ", "> " + fetched_data); //here u ll get
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whole response...... :-)

}

fetched_data = fetched_data.substring(1, fetched_data.length()

-1);//remove curly brackets

fetched_data = fetched_data.replaceAll("\"", "");

String[] keyValuePairs = fetched_data.split(",");

for (String s : keyValuePairs) {

String key = s.split(":")[0];

String value = s.split(":")[1];

dict.put(key,value);

}

list = Arrays.asList(fetched_data.split(","));

return null;

} catch (MalformedURLException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (connection != null) {

connection.disconnect();

}

try {

if (reader != null) {

reader.close();

}

} catch (IOException e) {

e.printStackTrace();

}

}

return null;

}

}

CornerPoints.java

package com.example.YoloDetectionFiveFingers;
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import org.opencv.core.Mat;

import org.opencv.core.Point;

//initialize class

public class CornerPoints {

private static final String TAG = "OCVSample::Activity";

public static int ID;

static int size;

Mat markerCorners;

public Point[] cornerValues = new Point[4]; //this are the corner points

of a single marker

public static int[][][] markerfeatures = new int[4][4][3]; //here all of

the 16 or 12 corners of 4 or 3 markers are saved

//class constructor

CornerPoints(Mat markerCorners, int ID, int size) {

this.ID = ID;

this.markerCorners = markerCorners;

this.size = size;

}

//initialize method

public void getMarkerCorners() {

//one loop accesses 4 points of marker. Note that each marker data

is sent separately from the Main activity. This class deals with

single marker.

for (int i = 0; i < 4; i++) {

//use the Mat of markercorners to access the corner values only.

this.cornerValues[i] = new Point(markerCorners.get(0, i)[0],

markerCorners.get(0, i)[1]);

//this is not necessary and can be removed

markerfeatures[ID][i][0] = 0;

//use markercorners to access x and y coordinate of each of the

4 corners of the single marker. 8 points on total

markerfeatures[ID][i][1] = (int) this.cornerValues[i].x;

markerfeatures[ID][i][2] = (int) this.cornerValues[i].y;

}

markerCorners.release();

System.gc();

}

}
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OrientationManager.java

package com.example.YoloDetectionFiveFingers;

import android.view.OrientationEventListener;

import android.content.Context;

public class OrientationManager extends OrientationEventListener {

public enum ScreenOrientation {

REVERSED_LANDSCAPE, LANDSCAPE, PORTRAIT, REVERSED_PORTRAIT

}

public ScreenOrientation screenOrientation;

private OrientationListener listener;

public OrientationManager(Context context, int rate, OrientationListener

listener) {

super(context, rate);

setListener(listener);

}

public OrientationManager(Context context, int rate) {

super(context, rate);

}

public OrientationManager(Context context) {

super(context);

}

@Override

public void onOrientationChanged(int orientation) {

if (orientation == -1){

return;

}

ScreenOrientation newOrientation;

if (orientation >= 60 && orientation <= 140){

newOrientation = ScreenOrientation.REVERSED_LANDSCAPE;

} else if (orientation >= 140 && orientation <= 220) {

newOrientation = ScreenOrientation.REVERSED_PORTRAIT;

} else if (orientation >= 220 && orientation <= 300) {

newOrientation = ScreenOrientation.LANDSCAPE;

} else {

newOrientation = ScreenOrientation.PORTRAIT;

}
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if(newOrientation != screenOrientation){

screenOrientation = newOrientation;

if(listener != null){

listener.onOrientationChange(screenOrientation);

}

}

}

public void setListener(OrientationListener listener){

this.listener = listener;

}

public ScreenOrientation getScreenOrientation(){

return screenOrientation;

}

public interface OrientationListener {

public void onOrientationChange(ScreenOrientation screenOrientation)

;

}

}

KalmanFilter.java

package com.example.YoloDetectionFiveFingers;

import org.opencv.core.KalmanFilter; // Import Kalman filter

public class MainActivity extends AppCompatActivity implements

CameraBridgeViewBase.CvCameraViewListener2 {

// Kalman filter variables

private KalmanFilter kalmanFilter;

private Mat measurement;

private Point lastPredictedPoint; // Store the last predicted point

// Initialize Kalman filter in onCameraViewStarted

@Override

public void onCameraViewStarted(int width, int height) {

// Kalman filter initialization
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kalmanFilter = new KalmanFilter(4, 2, 0); // 4 state variables, 2

measurement variables

measurement = new Mat(2, 1, CvType.CV_32F);

// Set initial state (assuming starting at 0,0)

kalmanFilter.statePost.put(0, 0, 0);

kalmanFilter.statePost.put(1, 0, 0);

kalmanFilter.statePost.put(2, 0, 0);

kalmanFilter.statePost.put(3, 0, 0);

// Set initial covariance matrix (adjust as needed)

setIdentity(kalmanFilter.measurementMatrix);

setIdentity(kalmanFilter.processNoiseCov, new Scalar(1e-4));

setIdentity(kalmanFilter.measurementNoiseCov, new Scalar(1e-1));

setIdentity(kalmanFilter.errorCovPost, new Scalar(1));

lastPredictedPoint = new Point(0, 0); // Initial prediction

}

// Modify the yoloDetector method to apply Kalman filter

public Mat yoloDetector(Mat frame, Mat perspectiveTransformation){

// **Apply Kalman Filter:**

measurement.put(0, 0, new_centerX);

measurement.put(1, 0, new_centerY);

Mat prediction = kalmanFilter.predict(); // Predict

fingertip position

Point predictedPt = new Point(prediction.get(0, 0)[0],

prediction.get(1, 0)[0]);

kalmanFilter.correct(measurement); // Update Kalman filter

with measurement

// Use predictedPt (from Kalman filter) instead of

new_centerX and new_centerY

// Update lastPredictedPoint

lastPredictedPoint = predictedPt;

}

}
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