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Abstract

Machine Learning in Asset Pricing and Portfolio Optimization

Jiawen Liang

In the rapidly evolving field of finance, asset pricing and portfolio optimization are fac-

ing challenges due to technological advancements, shifting economic landscapes, regulatory

changes, and increased complexity in financial markets. This thesis contains three essays

that explore the use of advanced machine learning approaches in financial advising and asset

pricing. The first essay improves robo-advisors’ performance by combining reinforcement

learning (RL) with importance sampling that focuses on rare events, leading to better invest-

ment outcomes. The second essay employs inverse optimization to estimate investors’ risk

aversion under normal and disaster conditions, and then optimizes portfolios based on the

learnt risk aversion by deep RL. The third essay proposes a framework for asset pricing that

uses neural networks to model nonlinear pricing kernels and includes considerations of en-

vironmental, social, and governance (ESG) factors in explaining cross-sectional asset prices.

Details of the three essays are summarized below:

Robo-advising under rare disasters
Robo-advisors provide automated portfolio management services to investors, and their growth

has been unprecedented in the past few years. However, empirical evidence shows that robo-

advisors underperformed during the recent COVID-19 pandemic. This may be because rare

disasters are highly unlikely to occur and yet have a huge impact on financial markets. Our

study develops a novel computational framework to improve the performance and robust-

ness of robo-advising in the presence of rare disasters. It integrates RL with importance

sampling. Instead of sampling the transition probability from a ground-truth probability dis-

tribution, we sample it from a proposal distribution, where the event of interest occurs more

frequently. The proposed algorithm is validated by data covering the 2008 financial crisis

and the COVID-19 pandemic, showing superior performance over benchmarked methods.

The estimated quarterly return of the robo-advising portfolio using the optimal policy of the
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proposed algorithm is 0.512%, significantly higher than both the benchmarked policy and

the average quarterly return, which are -0.639% and -14.55%, respectively. This improve-

ment is attributed to targeted learning about rare disasters, enabling robo-advisors to reduce

exposure to risky assets. The proposed algorithm is model-free and reduces the variance of

value estimates through importance sampling.

Risk aversion and portfolio optimization for robo-advising
We develop a novel framework for learning investors’ risk aversion using low-resolution

data, a common issue arising from short trajectories recording investors’ portfolio choices,

particularly during disaster events. Furthermore, the observed portfolio choice is often af-

fected by behavioural biases. Our approach combines online inverse optimization with deep

RL to simultaneously estimate risk aversion and determine optimal investment strategies un-

der both normal and disaster states. Utilizing real mutual fund data, we demonstrate that our

algorithm’s risk aversion estimation converges asymptotically to the optimal risk aversion

during the learning process. Critically, based on the learned risk aversion and trained deep

RL model, we show that robo-advisors adopting our approach can effectively tailor invest-

ment strategies to suit investor risk aversion under varying market conditions, outperforming

traditional funds. This highlights the potential for our framework to enhance investment

decision-making and better represent investor interests in both stable and volatile market

environments.

Nonlinear pricing kernels via neural networks
This study proposes a nonlinear pricing kernel approximated through neural networks, ad-

dressing limitations of traditional linear models, which capture linear relationships and are

prone to overfitting when applied to the factor zoo. The proposed model specification test

examines the validity of the nonlinearity assumption of the pricing kernel. Through optimal

neural network selection, our findings reveal that a one-layer neural network significantly re-

duces quadratic pricing errors, indicating its superior pricing performance compared to deep

neural networks. Moreover, the role of ESG variables in asset pricing, particularly within the

extensive range of factors, remains underexplored. The significance test designed for neural

networks shows that ESG variables are significant in asset pricing.
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Chapter 1

Introduction

The financial sector is currently undergoing significant technological advancements, partic-

ularly in the field of financial technology. These developments are transforming traditional

financial services and driving innovation in areas such as personalized investment, automated

trading and risk management. Integrating advanced technologies such as machine learning

and artificial intelligence enables financial institutions to improve efficiency, reduce costs

and offer more sophisticated products to their clients. Also, applying machine learning to

financial theories helps tackle issues that traditional methods cannot answer.

Robo-advisors play critical roles in modern finance by addressing the growing demand for

accessible, transparent and efficient wealth management services. Robo-advisors leverage

automated algorithms to provide personalized portfolio management services. These plat-

forms make investment advice more affordable and available to a broader audience. By

automating routine investment tasks, robo-advisors help reduce the need for costly human

advisors and lower entry barriers for investors. In addition, robo-advisors improve oper-

ational efficiency for financial institutions, allowing them to serve a more extensive client

base with consistent and scalable services. However, financial institutions should be careful

about using robo-advisors to avoid the regulatory risk involved in algorithmic investing.

Asset pricing is fundamental to understanding the behaviours of financial markets. It en-

ables the valuation of financial instruments, explains cross-sectional price variations, dis-

covers pricing risk factors, identifies risk exposures and maintains financial stability. The

no-arbitrage opportunity requires the pricing kernel to be positive, ensuring that asset prices

reflect the assets’ intrinsic values. In addition, factor pricing models identify asset returns

and risks to help investors make investment decisions and optimize portfolio performance.

Furthermore, asset pricing plays a crucial role in risk management by enabling financial in-

stitutions and investors to identify and mitigate risk exposures, thereby preventing strategies

1



Chapter 1

that could lead to potential losses. Asset pricing is essential for preventing financial crises,

as mispriced assets can accumulate financial imbalances and arise in widespread economic

turmoil.

The thesis explores robo-advisory because of the following motivations. Primarily, the focus

is on algorithmic investing. Robo-advisors are designed to manage and optimize investment

portfolios using automated algorithms to enhance long-term investment performance (Abra-

ham et al., 2019). However, rare disaster events can significantly affect the performance of

robo-advisors. According to the Barron’s Robo reports, the average normalized return of

robo-advising portfolios was -14.55% during COVID-191, while it was 5.43% before the

pandemic2. The distinct difference of performance highlights the vulnerability of automated

investment strategies to extreme market conditions. Addressing this issue is essential to en-

sure that robo-advisors can maintain the robust performance during rare economic disasters.

In addition to portfolio optimization, accurately assessing investors’ risk tolerance is nec-

essary to ensure the performance of investment strategies. Currently, robo-advisors rely on

”one-size-fits-all” surveys to determine risk profiles. However, cognitive limitations and be-

havioural biases may lead to imprecise results as the participants’ survey answers do not

necessarily reflect their true risk preferences without experiencing real-life situations. Addi-

tionally, robo-advisory questionnaires often lack comprehensive financial-related questions

to fully understand investors’ risk profiles. Therefore, improving risk profiling methods

through observing portfolio choices is crucial for enhancing the accuracy of portfolio op-

timization. This motivation drives the second essay of this thesis, which aims to develop

more sophisticated techniques for assessing risk tolerance while simultaneously optimizing

portfolio choices.

The motivations for exploring asset pricing in this thesis are outlined below. Firstly, tradi-

tional asset pricing models often rely on a linear span of risk factors to explain asset returns.

However, this approach is debatable when dealing with nonlinear payoffs, as the linear pric-

ing kernel cannot price the nolienar payoffs (Bansal and Viswanathan, 1993). To address this

limitation, neural networks offer a powerful alternative by approximating nonlinear pricing

1The Robo Report First Quarter 2020: https://storage.googleapis.com/gcs.backendb.com/wordpress/media/
2021/02/2020-Q1-Robo-Report.pdf

2The Robo Report Fourth Quarter 2019: https://storage.googleapis.com/gcs.backendb.com/1/2020/11/
2019Q4-Robo-Report-and-Robo-Ranking.pdf

2

https://storage.googleapis.com/gcs.backendb.com/wordpress/media/2021/02/2020-Q1-Robo-Report.pdf
https://storage.googleapis.com/gcs.backendb.com/wordpress/media/2021/02/2020-Q1-Robo-Report.pdf
https://storage.googleapis.com/gcs.backendb.com/1/2020/11/2019Q4-Robo-Report-and-Robo-Ranking.pdf
https://storage.googleapis.com/gcs.backendb.com/1/2020/11/2019Q4-Robo-Report-and-Robo-Ranking.pdf


Chapter 1

kernels, providing a more general and flexible representation of the pricing kernel.

Secondly, a factor zoo poses challenges in terms of overfitting during ordinary least squares

(OLS) estimation (Cochrane, 2009; Kozak et al., 2018). The factor zoo consists of a large

number of pricing factors that have been found to affect asset prices. The high-dimensional

factor models can capture noise rather than true signal, leading to models that perform poorly

out-of-sample. Therefore, studying SDFs in high-dimensional settings is crucial for reducing

generalization errors and, thus, mitigating overfitting.

Third, existing literature, such as Bolton and Kacperczyk (2021) and Sautner et al. (2023a),

has demonstrated the significance of ESG factors in low-dimensional factor pricing models.

However, it remains unclear whether ESG factors retain their significance within the exten-

sive factor zoo. Investigating this uncertainty is essential to incorporate relevant risk factors

in explaining cross-sectional price variations.

The application of RL to portfolio optimization aligns well with the sequential and dynamic

nature of financial markets. In portfolio management, investors make a series of decisions

over time, adjusting their asset allocations in response to changing market conditions to

maximize returns and minimize risks. RL is designed for such sequential decision-making

problems, where an agent learns optimal behaviours through interactions with an environ-

ment to achieve the long-term goal (Sutton and Barto, 1998). By receiving feedback in terms

of rewards or penalties, RL agents adjust their investment strategies over time on behalf of

investors.

The interactions between RL agents and the environment simulate the interactions between

robo-advisors, their clients and the financial market. Robo-advisors adjust portfolios based

on market movements and client feedback, observing the resulting gains or losses, which

helps in refining investment strategies over time. Therefore, RL’s capacity for sequential

decision-making and learning from interactions makes it highly suitable for the context of

portfolio optimization in robo-advising examined in this thesis.

In addition to the feasibility of applying RL to portfolio optimization, the model-free RL

that this thesis utilizes offers several advantages over traditional methods. First, model-free

RL algorithms learn directly from experience without explicitly defining transition probabil-

3
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ities or reward structures. This is particularly beneficial in environments involving disaster

states, where predicting future states is unreliable due to the rare occurrence of these events.

Second, model-free RL relies on fewer model assumptions. Unlike classical methods such

as stochastic control theory and other analytical approaches, which depend heavily on pre-

defined model assumptions, model-free RL leverages large amounts of financial data with

fewer assumptions, improving decision-making in complex financial environments (Hambly

et al., 2023). Third, model-free RL is good at handling complex and real-world scenarios

where the environment is constantly changing and strategies need to adapt over time. On the

other hand, traditional models often oversimplify market dynamics to remain computation-

ally tractable.

Neural networks have distinct advantages over conventional parametric models in asset pric-

ing due to their flexibility. Neural networks do not require a fixed functional form. While

neural networks are inherently parametric models with parameters learned during training,

they are more flexible than the traditional parametric models that assume fixed functional

forms. For example, linear pricing kernel models, as described by Hansen and Jagannathan

(1991), assume that the pricing kernel spans mean-variance efficient factors. Even nonlin-

ear pricing kernels discussed by Chapman (1997) and Almeida and Freire (2023) impose

specific parametric forms such as polynomial functions or parameter estimations, to man-

age non-linearity and minimize variance among candidate pricing kernels. In contrast, the

flexibility of neural networks allows for a more adaptive approach, capturing complex rela-

tionships and interactions between input features and the resulting pricing kernels (Gu et al.,

2020; Chen et al., 2023).

Moreover, neural networks are well-suited for handling the high dimensionality of the pric-

ing kernel that makes them surpass the capabilities of conventional linear models. Existing

research has identified hundreds of pricing factors which are often referred to as a factor zoo

that effectively price cross-sectional assets (Cochrane, 2009; Feng et al., 2020). Traditional

methods struggle with the curse of dimensionality, where a limited number of data points

relative to the number of dimensions adversely affects model performance. Studies by Gu

et al. (2020) and Chen et al. (2023) have successfully employed neural networks to address

these high-dimensionality challenges. By utilizing neural networks, the third essay provides

a flexible estimation of pricing kernels and deals with the high-dimensional nature of asset

pricing factors.
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Building upon the links with Finance, research motivations and the advantages of applying

machine learning to Finance, I discuss each essay’s research questions, methodologies, major

findings and contributions in the following. Given that each essay is distinct in its focus and

methodology, a separate analysis will provide a clear picture of their objectives and results.

Chapter 3 (the first essay) addresses the challenge of maintaining robo-advisory performance

during rare disaster events, such as the 2008 financial crisis and the COVID-19 pandemic.

These disaster states are rare but impactful events that are not frequently observed in histori-

cal data. The study investigates how robo-advisors can optimize asset allocation to maximize

investor utility in these extreme conditions. To achieve this, a novel algorithm, SARSA-IS, is

introduced, which integrates the tabular reinforcement learning method SARSA with impor-

tance sampling. This integration enhances the algorithm’s ability to account for rare disaster

states, leading to more stable and reliable investment advice.

The first essay contributes to the robo-advisory literature and industry by incorporating

model-free RL with importance sampling, thereby enhancing investment performance under

rare disaster events. First, the optimized robo-advising portfolios generated by SARSA-IS

result in higher average investor utilities compared to benchmarked policies and traditional

investor-only approaches. Additionally, the estimated quarterly return of the optimized port-

folio is 0.512%, significantly higher than the returns of -0.639% for benchmarked policies

and -14.55% for real robo-advising portfolios during COVID-19. Furthermore, the proposed

SARSA-IS algorithm reduces the variance of value estimates by effectively converging the

proposal disaster probability through importance sampling.

Chapter 4 explores inverse optimization for estimating investors’ risk aversion and optimiz-

ing investment strategies using deep RL. Traditional risk aversion estimation methods often

update risk aversion without considering distinct states, leading to biased estimations that

do not accurately reflect the risk preferences specific to disaster states. This study proposes

a framework to update investors’ risk aversion via inverse optimization based on their port-

folio choices in normal and disaster states, respectively. By leveraging deep RL, the model

adapts investment strategies in real time, enhancing portfolio management capabilities. The

approach was tested against three types of hybrid mutual funds: aggressive, moderate, and

conservative allocation types, which include diversified asset classes such as stocks, bonds,

and cash. The results demonstrate that the proposed framework not only provides accurate
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estimates of risk aversion but also achieves superior performance compared to actual mutual

fund outcomes, benchmark strategies, and equal-weighted portfolios over the long term.

The second essay has several crucial contributions. Firstly, it introduces an iterative up-

date algorithm that integrates inverse optimization with deep RL, enabling the simultaneous

estimation of investors’ risk aversion and the optimization of their portfolios. This dual

optimization approach ensures that investment strategies are both personalized and respon-

sive to varying risk preferences across different states. Secondly, the study reveals distinct

patterns in risk aversion among different investor types. Aggressive investors exhibit the

lowest estimated risk aversion, moderate investors display intermediate levels, and conserva-

tive investors have the highest estimated risk aversion. Additionally, the research finds that

risk aversion is significantly higher in disaster state spaces compared to normal state spaces,

highlighting the importance of context-specific risk assessment. Finally, the optimized port-

folios derived from the estimated risk aversion models achieve higher cumulative returns

than benchmarked simulated portfolios and existing mutual fund portfolios.

Chapter 5 (the third essay) investigates the complexities of pricing kernels in asset pricing

through three crucial research questions. The first question examines the unknown functional

form of pricing kernels by employing neural networks, allowing for a nonlinear specifica-

tion. Secondly, the essay studies whether the nonlinear pricing kernel via neural networks

performs better than the linear pricing kernel through the model specification test. Given the

validity of the nonlinear assumption, the essay finds the optimal neural network architecture.

The third question extends the analysis to the influence of ESG factors on pricing kernels,

integrating these into the model to see how they affect asset pricing in today’s increasingly

sustainability-focused financial market.

This research brings innovations to the estimation of pricing kernels. First, the study incor-

porates a range of characteristics-based factor portfolios to enhance the pricing ability of the

SDF model. Second, a model specification test designed for neural networks sets this work

apart from the traditional specification test, allowing for a direct comparison between the

linear models and neural networks.

The findings from this essay are significant in several aspects. Empirical tests demonstrate

that nonlinear pricing kernels consistently outperform linear models, exhibiting at least three
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times lower out-of-sample squared pricing errors. The nonlinear SDFs are more correctly

specified than linear SDFs, with hypothesis test results of p = 0.90 at the 5% significance

level. Additionally, a neural network with one hidden layer is identified as the best model,

achieving hypothesis test results of p = 0.99 at the 5% significance level. Furthermore, ESG

factors are highly significant in explaining price variations among the factor zoo, highlighting

their growing relevance in asset pricing within the context of sustainable finance. These

results challenge the conventional SDF models and indicate the potential of neural network-

based approaches in explaining cross-sectional and high-dimensional asset pricing.

This essay makes several important contributions to the field of asset pricing. Firstly, it intro-

duces a novel approach by incorporating a range of characteristics-based factor portfolios to

enhance the pricing ability of the SDF model. Secondly, the study develops model selection

tailored for neural networks. It includes the model specification test to test the nonlinear

specification compared to the linear ones and another hypothesis test to select the best neural

network configuration among a set of neural networks. Additionally, by integrating ESG fac-

tors into the pricing kernel analysis, the research provides valuable insights into their impact

on asset prices, contributing to understanding sustainable finance within high-dimensional

factor environments.

7



Chapter 2

Literature review

2.1 Portfolio choices

The first essay in chapter 3 and the second essay in chapter 4 are related to portfolio choices.

We study how robo-advising can utilize RL to improve financial advising in portfolio opti-

mization on behalf of their clients in either normal or disaster states. In particular, these two

essays contribute to the literature on robo-advising investment, utilizing importance sam-

pling in the presence of rare disasters, as well as employing inverse optimization to estimate

investors’ risk aversion.

2.1.1 Mean-variance optimization

This thesis relates to the portfolio choice literature, especially about Markowitz’s Mean-

Variance Optimization (MVO). The concept of MVO is initially introduced by Markowitz

(1952). It remains foundational in the fields of asset pricing and portfolio management,

forming the basis of Modern Portfolio Theory. Markowitz’s framework advocates for an

investment strategy that balances expected returns against risk, quantified as variance, to

construct an efficient frontier of optimal portfolios that provide the maximum expected return

for a given level of risk. This optimization method accommodates investment objectives such

as expected returns and acceptable variance, aiming to satisfy investors’ expected utilities.

The study of portfolio choices in this thesis is based on the objective function of Markowitz’s

MVO to achieve optimal asset allocation.

Although MVO is widely adopted, it is not without criticism. A significant drawback is its
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sensitivity to input assumptions. Slight changes in expected returns can lead to vastly differ-

ent portfolio recommendations. Additionally, MVO heavily relies on the covariance matrix

of returns. Michaud (1989) highlights that Markowitz’s MVO maximizes the effects of er-

rors arising from the uncertainty in historical returns used to represent expected returns and

the estimation errors of portfolio risk. Furthermore, traditional MVO assumes that returns

are normally distributed, which may not hold in real-world scenarios where asset returns can

exhibit significant skewness and kurtosis (Konno and Yamazaki, 1991). The thesis sections

on robo-advising assume returns are normally distributed, focusing on long-term investment

returns rather than short-term trading gains. Using longer periods of historical returns to

represent expected returns can mitigate the uncertainty caused by short-term fluctuations.

The relevant literature about robo-advisors is noteworthy. First, extant literature discusses

the empirical research on user demographics, the factors influencing the adoption of robo-

advisors, and the benefits and drawbacks of their use. An initial focus lies on identifying

demographic groups more inclined towards robo-advising. Using proprietary data from a

significant Indian robo-advisory firm, Baulkaran and Jain (2023) reveal that robo-advisory

services predominantly attract young, male, married professionals who are small investors.

Additionally, D’Acunto et al. (2019) demonstrate that robo-advisors significantly enhance

performance for investor groups that are less diversified. They outline four primary char-

acteristics of robo-adivosrs including personalization, involvement, discretion and human

interaction. They argue their potential to enhance financial decisions and mitigate invest-

ment errors such as limited exposure to risky assets, inadequate diversification, and be-

havioural biases (Campbell, 2006). This thesis also illustrates that robo-advisors are ben-

eficial in making investments on behalf of the investors’ risk profiles, as humans are prone to

cognitive limitations and behavioural biases, especially when facing disaster events. More-

over, Tao et al. (2021) find that robo-advisors outperform conventional funds in terms of

risk-adjusted returns in the US financial market, while Phoon and Koh (2017) explore how

robo-advisors pose a threat to traditional human advisors, and Brenner and Meyll (2020)

find that robo-advisors effectively substitute human financial advisors. Chapter 4 compares

the performance of robo-advisors and human advisors to illustrate whether robo-advising

outperforms human advising under disaster states. Second, papers on robo-advising model

portfolio choices and the dynamics between robo-advisors and their clients, mostly based on

the MVO framework, which is commonly used in practice (Beketov et al., 2018; Dai et al.,

2021; Capponi et al., 2022). Our thesis sets the expected utility function from MVO as the
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reward function. Additionally, we utilize RL to optimize the long-term cumulative utilities

of investors.

2.1.2 Rare disasters and importance sampling

Rare disasters, such as financial crises, wars, or pandemics, have dramatic and far-reaching

effects on investment portfolios. These events, characterized by sudden and severe market

downturns, can cause significant short-term financial loss. Rietz (1988) first incorporates the

risk of rare disasters into asset pricing models, showing that even the fear of market crashes

can raise equity risk premiums to compensate investors for potentially large losses. Building

on this, Barro (2006) demonstrates that low-probability economic disasters, such as the Great

Depression and World Wars, further explain the equity premium puzzle by showing that the

possibility of extreme losses leads investors to demand higher returns for holding risky assets.

More recently, Duchin and Harford (2021) highlight how the COVID-19 pandemic caused

unprecedented market disruptions, emphasizing the importance of robust asset allocation

during such crises. The dramatic effect of rare disasters on investments underscores the

necessity for portfolio strategies to withstand such shocks.

The literature offers various approaches to tackle the challenges posed by rare disasters.

Some research focuses on robust portfolio optimization techniques that aim to perform well

across a range of scenarios, including rare disasters. Anderson et al. (2003) account for

model uncertainty and the potential for extreme events. They highlight how decision-makers,

fearing model misspecification, tend to adopt robust strategies that safeguard against worst-

case scenarios. Nonetheless, these approaches may lead to overly conservative portfolios

that sacrifice returns during normal market conditions. In addition, some studies explore the

diversification strategies. Bonaccolto and Paterlini (2020), for example, construct portfolio

strategies by aggregating multiple existing methods to improve performance during turbulent

periods. However, these solutions often have drawbacks, such as over-reliance on historical

data that may not accurately predict future rare events and limited adaptability to sudden

market changes. It is due to the low probability but high impact nature of rare disasters,

which can lead to the suboptimal investment decisions when such events occur.

Essay 1 in chapter 3 addresses the low occurrence of rare disasters by integrating importance
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sampling in portfolio optimization for robo-advisors. This essay is among the first to con-

sider portfolio optimization for robo-advisors under rare disasters. By utilizing importance

sampling, the approach effectively tackles the challenge of rare events in training data that

occur infrequently. Importance sampling allows the model to focus on rare but significant

events by adjusting the probability distribution from which samples are drawn, enhancing

learning efficiency.

2.1.3 Risk aversion and inverse optimization

Understanding investors’ risk aversion is crucial in portfolio optimization, particularly within

the MVO framework. Investors’ risk aversion directly influences the trade-off between ex-

pected return and portfolio variance and determines the optimal asset allocation that maxi-

mizes their expected utilities. Accurate estimation of risk aversion is essential for construct-

ing portfolios that align with investors’ true aversion.

However, robo-advisors often face challenges in estimating investors’ risk aversion. These

challenges come from limitations in risk assessment methods and the behavioural biases

inherent in investors’ decision-making processes. Keffert (2024) demonstrates that robo-

advising can mismeasure investors’ risk preferences, which leads to decreased clients’ utili-

ties when measurement errors occur. They find that higher measurement volatility increases

utility losses, particularly when frequent interactions are required. Our thesis contributes

to estimating the investors’ risk aversion, and maximize their long-term cumulative utilities

based on the estimated risk aversion.

The literature on risk preference estimation reveals two main approaches. The first approach

is questionnaire-based methods that measure investors’ risk preferences directly through

surveys. These methods develop questionnaires to form risk-tolerance indices and assess

financial risk tolerance (Grable, 2000). Using large-scale representative surveys, Dohmen

et al. (2011) discover the determinants of risk attitudes and explain risk-taking behaviours.

In practice, robo-advisors mainly use online questionnaires to evaluate investors’ risk pro-

files (Tertilt and Scholz, 2018). However, these questionnaires cannot accurately capture

the dynamic and state-dependent nature of risk aversion, leading to mis-alignments between

advised portfolios and investors’ expectations.
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The second approach infers risk aversion from the observed investment behaviours, such as

household portfolios or investors’ portfolio choices. Bucciol and Miniaci (2011) derive the

distribution of risk tolerance from U.S. household samples by analyzing actual investment

decisions. Alsabah et al. (2021) learn an investor’s risk preference through virtual investors’

portfolio choices. Their study inversely estimates a parameter of the risk preference based

on a known market model, such as the mean-risk utility model, using observable market

and investor information. Following Alsabah et al. (2021), Dong et al. (2022) estimate risk

aversion using real Chinese market data. In addition, inverse optimization has emerged as a

powerful tool for estimating investors’ risk aversion from observed behaviours, particularly

when direct measurements are noisy or unreliable. Human investors inevitably exhibit be-

havioural biases and may make mistakes when making decisions and introduce noise into the

observed solution data (Foerster et al., 2017). Additionally, the data collection process might

involve measurement errors. Consequently, robo-advisors encounter noisy observations of

portfolio choices.

To address this challenge, two inverse optimization methods have been developed for noisy

data including batch learning (Aswani et al., 2018) and online learning (Yu et al., 2023).

Batch learning infers unknown parameters based on a batch of noisy solutions, while on-

line learning updates risk preferences incrementally using observed decisions as they occur

rather than waiting to process all observations at once. Online learning, designed to esti-

mate time-varying unknown parameters, has evolved from batch learning techniques (Dong

et al., 2018). Online inverse optimization offers several advantages over its batch counter-

part, such as significantly accelerating the learning process while maintaining performance

guarantees. The existing literature on online inverse optimization demonstrates that these

methods converge at a polynomial time rate and achieve statistical consistency (Yu et al.,

2023). However, the current invese optimization methods have not considered the economic

states. When facing the disaster events, the risk aversion might change dramatically from

either the batch estimation or online estimation.

Essay 2 in chapter 4 integrates online inverse optimization into the robo-advising framework

under normal or disaster states, respectively. We assume that risk aversion depends on the

the normal state space and disaster state space, respectively. This integration allows robo-

advisors to adaptively learn and update the risk aversion parameters according to portfolio

choices over time. This approach results in not only more personalized portfolio advisors but
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also resilience to economic changes. By learning portfolio strategies based on the estimated

risk aversion via deep RL, robo-advisors improve the clients’ satisfaction and thus enhance

the aligned performance between advised portfolios and investors’ true risk profiles.

2.2 Asset pricing

In this section, we discuss the related literature to the third essay in chapter 5. This essay

contributes to the literature on the development of nonlinear pricing kernels, as well as the

role of ESG in asset pricing.

2.2.1 Pricing kernels

The essay is related to estimating nonlinear stochastic discount factors (SDFs), often re-

ferred to as pricing kernels. A key strand of research on nonlinear SDFs begins with early

works like Bansal and Viswanathan (1993), who are among the first to apply neural networks

for estimating pricing kernels. Their approach uses neural networks, albeit constrained by

the limitations of smaller datasets and a relatively small number of factors. They use neu-

ral networks to address over-identification, but their study is limited in terms of scalability

and factor inclusion. Building on this, Chapman (1997) applies polynomial functions to

approximate nonlinear pricing kernels, introducing consumption growth as the primary fac-

tor. Their approach marks a significant step forward but still falls short in capturing the full

complexity of asset pricing by limiting the factors influencing the pricing kernel. Another

key development comes from Dittmar (2002), who employs a Taylor series expansion to

derive a nonlinear pricing kernel, extending the traditional utility-based models to account

for higher-order moments like skewness and kurtosis in asset returns. Although this Tay-

lor expansion allows for modelling nonlinearities, its reliance on utility theory constrains

flexibility, and the models assume specific functional forms, which may not capture the full

extent of market dynamics. More recently, Chen and Ludvigson (2009) propose habit-based

models where they employ sieve estimators to capture the habit formation of consumers,

allowing for more flexible non-linear estimations of the pricing kernel. They find that their

estimated habit function performs better than standard linear models like the Fama-French
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three-factor model, but their methodology still focuses on fewer factors compared to the fac-

tor zoo available today. In contrast, Almeida and Freire (2023) specify the nonlinear factor

pricing models by minimizing the variance among candidate pricing kernels, showcasing the

economic implications of nonlinear pricing models. Their work demonstrates the superiority

of nonlinear models over linear ones, particularly in pricing cross-sectional returns.

The essay contributes to the body of literature by addressing key limitations in previous stud-

ies. First, unlike Bansal and Viswanathan (1993), who rely on small-scale neural networks

with only a few factors, we incorporate a large set of factors from the factor zoo, leveraging

advancements in machine learning techniques to capture a more comprehensive pricing ker-

nel. Additionally, where Chapman (1997) and Dittmar (2002) rely on polynomial functions

and the Taylor series, our approach employs multiple layers of neural networks, allowing

for a flexible estimation framework. Our work not only compares different neural network

configurations but also ensures that the estimated kernels are both economically meaningful

and statistically robust across a broader range of factors. In sum, our research fills a crucial

gap by extending the nonlinear pricing kernel representation to accommodate larger datasets

and more complex factor structures, offering a more flexible and comprehensive solution

compared to the existing methods.

2.2.2 ESG

The role of ESG variables in asset pricing has been a subject of ongoing debate. A central

question is whether ESG factors can serve as common risk factors in asset pricing models,

similar to traditional risk factors such as the market factor, size and value.

On one side of the debate, several studies affirm the relevance of ESG components as sig-

nificant pricing factors. For instance, Bennani et al. (2018) treat ESG scores as factors in-

fluencing abnormal returns and risk exposures in asset pricing models. Engle et al. (2020)

utilize environmental scores from Asset4 to construct green factors, demonstrating that these

scores capture important risk characteristics. Maiti (2021) finds that ESG factors derived

from Bloomberg data are statistically significant when included in an extended Fama-French

five-factor model. Bolton and Kacperczyk (2021) identify a carbon risk factor that inde-

pendently explains abnormal returns, highlighting the financial materiality of environmental
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risks. Extant literature has also employed textual analysis methods. Engle et al. (2020), Ardia

et al. (2022), Sautner et al. (2023a), and Sautner et al. (2023b) construct measures of climate

change exposure through textual analysis, finding that these measures effectively price as-

sets. Moreover, machine learning techniques have been applied to ESG data. For instance,

Chen and Liu (2020) assess firms’ ESG components through topic modeling, using deep

learning to forecast returns and form profitable ESG trading strategies. Lanza et al. (2023)

and D’Amato et al. (2022) link specific ESG indicators like CO2 emissions and waste man-

agement to abnormal returns and profitability, respectively, using machine learning methods.

Conversely, some research suggests that ESG factors do not qualify as common risk fac-

tors in asset pricing models. Halbritter and Dorfleitner (2015) and Naffa and Fain (2022)

argue that ESG variables, despite varying data sources including Asset4 and Bloomberg, do

not consistently produce abnormal returns or validate themselves within the Fama-French

framework. These studies indicate that the inclusion of ESG factors may not significantly

improve the explanatory power of traditional asset pricing models.

2.3 Machine learning

Machine learning has emerged as an important tool in finance, offering sophisticated meth-

ods for analyzing complex data, capturing nonlinear relationships and enhancing decision-

making processes. Broadly speaking, machine learning methods can be categorized into su-

pervised learning, unsupervised learning, and RL. Each category provides unique capabilities

suitable for different financial applications. Neural networks can be applied to each category,

depending on the nature of the data. For example, neural networks with labelled datasets be-

longs to supervised learning, while neural networks can be designed for unsupervised learn-

ing with unlabelled datasets. If the state space or action space is large-dimensional, neural

networks can also be applied to RL for value function approximation.
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2.3.1 Supervised learning

Supervised learning involves training models on labelled datasets to learn the mapping from

input features to output targets, allowing predictions on new and unseen data. Techniques

such as linear regression, support vector machines (SVMs), decision trees and neural net-

works are popular in this category.

Supervised learning has been extensively applied to problems where historical data with

known outcomes are available. Linear regression has long been fundamental in asset pricing

models, such as the Capital Asset Pricing Model (CAPM) and the Fama-French factor model

(Fama and French, 1992). However, these traditional models assume linear relationships,

which may not capture the complexities of financial markets.

Support vector machines have been employed to financial applications. Kim (2003) applies

SVMs to forecast stock price index movements and demonstrates that SVMs outperform

other stock market prediction methods such as back-propagation neural networks and case-

based reasoning. SVMs can handle high-dimensional data and model nonlinear relationships

through kernel functions, which make them suitable for financial prediction tasks where

market behaviours are complex.

Decision trees predict outcomes by learning decision rules from data features. Bryzgalova

et al. (2019) utilize decision tree to predict cross-sectional stock returns for a range of char-

acteristics. Their characteristics are grouped by the decision tree to form the managed port-

folios. Although the pricing model is low-dimensional, it is interpretable, which allows us

to understand the characteristics that explain price variations.

Neural networks, particularly deep learning models, have gained popularity in supervised

learning tasks due to their ability to model complex, nonlinear relationships. Gu et al. (2020)

compare linear methods, decision trees, and neural networks in stock return predictions.

Their study demonstrates that neural networks outperform traditional linear models in cap-

turing nonlinear relationships and interactions among variables. Using feed-forward net-

works, they effectively analyze the relationship between input and output variables, which

results in enhancing predictive performance in asset pricing and portfolio management.
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These supervised learning techniques differ from traditional statistical methods by their abil-

ity to handle larger datasets with more variables, model complex nonlinear relationships, and

improve predictive accuracy. Their application in finance has led to advancements in asset

return prediction, risk assessment, and the development of more sophisticated investment

strategies.

2.3.2 Unsupervised learning

Unsupervised learning involves training models on unlabeled data to discover hidden pat-

terns or intrinsic structures within the data. Unlike supervised learning, unsupervised learn-

ing does not rely on predefined output labels. Techniques in this category include clustering

algorithms, dimensionality reduction and neural networks designed for unsupervised tasks,

such as autoencoders (Goodfellow et al., 2016).

Regarding financial applications, unsupervised learning methods are used to uncover hidden

structures in financial data, which can inform investment decisions and risk management.

Clustering algorithms have been applied to segment financial markets or group similar as-

sets. For example, Tsai et al. (2015) use clustering to segment bank customers based on

transaction history and demographic information.

Dimensionality reduction techniques such as principal component analysis (PCA) help re-

duce the number of variables while retaining essential information. In asset pricing, instru-

mental PCA (IPCA) has been used to identify underlying latent factors driving asset re-

turns (Kelly et al., 2019). However, PCA captures only linear relationships. To address this

limitation, neural networks like autoencoders can capture nonlinear patterns in data. Gu et al.

(2021) extend the instrumented principal component analysis by introducing autoencoders

to capture nonlinear relationships between factor loadings and firm characteristics. Autoen-

coders, serving as nonlinear counterparts to PCA, reduce dimensionality by encoding inputs

into a lower-dimensional space and then decoding them back to their original dimensions.

Unsupervised learning methods differ from traditional approaches by not requiring labelled

data and by their ability to uncover complex and nonlinear structures. Unsupervised learn-

ing provides a data-driven approach to discover insights that may not be evident through
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conventional analysis.

2.3.3 Reinforcement learning

Reinforcement learning enables autonomous agents to learn to make decisions based on

interactions with the environment, aiming to maximize cumulative rewards in the long run

(Sutton and Barto, 1998). Unlike supervised learning, which learns from labelled examples,

or unsupervised learning, which discovers patterns in data, RL learns optimal actions through

trials and errors.

RL has been applied to portfolio management, trading strategies, and robo-advising. Its

ability to model sequential decision-making and adapt to changing environments makes it

suitable for financial applications where decisions have long-term consequences. For in-

stance, Almahdi and Yang (2017) use RL to learn the optimal trading strategy over time.

The proposed RL method is effective when using different transaction costs.

In the context of order execution, Gao and Xu (2022) develop an order scoring model inte-

grated with multi-armed bandit learning from RL to quantify the performance of a limit order

before execution. Additionally, Schnaubelt (2022) designs an RL environment to optimize

limit order placement, concluding that Proximal Policy Optimization learns superior order

strategies compared to other RL algorithms. These studies demonstrate the superiority of RL

in handling complex financial tasks.

Neural networks are often employed as function approximators to estimate value functions

or policies in high-dimensional spaces. Deep RL, which combines RL with deep neural

networks, has been pivotal in advancing RL applications in finance. For example, Deng

et al. (2016) apply deep RL to high-frequency trading, where the neural network learns

complex trading policies based on vast amounts of market data. Jiang et al. (2017) utilize a

model-free algorithm of deep RL for the portfolio management problem, demonstrating that

RL can handle the complexities of financial markets and adapt to dynamic environments.

Maeda et al. (2020) employ deep RL to optimize stock-trading strategies in agent-based

artificial price-order-book simulations, showing the effectiveness of RL in developing trading

strategies in simulated environments.
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2.3.4 Model selection

Model selection in neural networks involves choosing the optimal architecture and hyper-

parameters that balance model complexity and predictive performance. It is essential to

prevent overfitting and ensure that models generalize well to new data. The performance

of neural networks can vary widely based on chosen hyperparameters and random elements

like weight initialization and dropout masks due to their highly non-convex loss functions

(Li et al., 2018). This variability makes it challenging to compare the performance of various

network architectures directly and complicates the model selection process.

Pioneering work by White (1989) introduces a statistical perspective for neural networks

by deriving asymptotic distributions for network parameters, allowing for hypothesis testing

and model comparison. Building on this foundation, Anders and Korn (1999) apply White’s

methods along with cross-validation and information criteria such as the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC) for model selection in neural

networks. They demonstrate that these criteria could be adapted to evaluate neural network

models, providing a balance between goodness-of-fit and model complexity.

2.3.5 Model interpretability

While neural networks have demonstrated superior performance in modelling complex fi-

nancial data, they often face challenges regarding model interpretability. The ”black box”

nature of neural networks makes it difficult to understand the underlying decision-making

process, which is crucial for regulatory compliance and trust in Finance.

Several studies have discussed interpretability in neural networks. Farrell et al. (2021) pro-

pose methods for statistical inference in deep learning models, introducing significance tests

for parameters within neural networks. Their approach adapts traditional econometric tech-

niques to the deep learning framework, allowing for hypothesis testing and confidence in-

tervals in high-dimensional settings. This enables researchers to assess the importance of

individual variables and interactions, enhancing model interpretability. Similarly, Fallahgoul

et al. (2024) apply significance tests to neural networks with various hidden layers in the
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context of asset pricing. By conducting hypothesis testing on the estimated parameters, they

aim to identify the most relevant factors influencing asset returns and improve model trans-

parency. However, they acknowledge the difficulty in selecting the optimal neural network

architecture and emphasize the need for systematic model selection procedures. These sig-

nificance tests designed for neural networks can be applied to increase the transparency of

asset pricing models.

20



Chapter 3

Robo-advising under rare disasters

Abstract

Robo-advisors provide automated portfolio management services to investors, and their growth

has been unprecedented in the past few years. However, empirical evidence shows that robo-

advisors underperformed during the recent COVID-19 pandemic. This may be because rare

disasters are highly unlikely to occur and yet have a huge impact on financial markets. Our

study develops a novel computational framework to improve the performance and robust-

ness of robo-advising in the presence of rare disasters. It integrates RL with importance

sampling. Instead of sampling the transition probability from a ground-truth probability dis-

tribution, we sample it from a proposal distribution, where the event of interest occurs more

frequently. The proposed algorithm is validated by data covering the 2008 financial crisis

and the COVID-19 pandemic, showing superior performance over benchmarked methods.

The estimated quarterly return of the robo-advising portfolio using the optimal policy of the

proposed algorithm is 0.512%, significantly higher than both the benchmarked policy and

the average quarterly return, which are -0.639% and -14.55%, respectively. This improve-

ment is attributed to targeted learning about rare disasters, enabling robo-advisors to reduce

exposure to risky assets. The proposed algorithm is model-free and reduces the variance of

value estimates through importance sampling. In addition to methodological contributions,

our study contributes to the growing literature on robo-advising by considering rare events.

Keywords: artificial intelligence; reinforcement learning; robo-advising; importance sam-

pling; rare disasters; portfolio management
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3.1 Introduction

Portfolio management entails selecting and supervising a collection of investments aimed at

achieving an investor’s financial goals, such as maximizing expected returns and minimiz-

ing risks. Researchers and professionals have extensively explored this area across various

disciplines, including economics, finance, operations research, and computer science. Robo-

advisors are the digital platforms that use algorithms to provide investors with automated

portfolio management services (Abraham et al., 2019). Since their inception in 2008, robo-

advising has experienced tremendous growth. According to Statista, the value of assets

managed by robo-advisors is expected to reach US $2.8 trillion by 2025, with 478 million

users.1

The COVID-19 pandemic has accelerated the adoption of digital technologies, whereas en-

suring the performance of robo-advisors has been challenging during the pandemic. A recent

McKinsey survey indicates that the COVID-19 pandemic has driven companies to adopt

digital technologies, leading to substantial business transformations2. Despite the acceler-

ated adoption of robo-advisors, maintaining their performance during the pandemic remains

challenging. The Barron’s Robo reports reveal that the average normalized return of robo-

advising portfolios was -14.55% during COVID-193, while it was 5.43% before the pan-

demic4. The reasons behind the sub-optimal performance of robo-advisors during rare dis-

asters are yet to be understood. One possible explanation is that robo-advising applications

are relatively new and have not been thoroughly examined across long economic cycles. In

this study, we address this challenge by proposing a disaster-adaptive robo-advising frame-

work, enabling robo-advisors to optimize their investment strategies in the presence of rare

disasters.

Asset allocation becomes particularly important in managing investments during rare dis-

asters (Duchin and Harford, 2021). Bonaccolto and Paterlini (2020) construct portfolio

1Statista: https://www.statista.com/outlook/dmo/fintech/digital-investment/robo-advisors/worldwide?
currency=usd.

2McKinsey: https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights.
3The Robo Report First Quarter 2020: https://storage.googleapis.com/gcs.backendb.com/wordpress/media/
2021/02/2020-Q1-Robo-Report.pdf

4The Robo Report Fourth Quarter 2019: https://storage.googleapis.com/gcs.backendb.com/1/2020/11/
2019Q4-Robo-Report-and-Robo-Ranking.pdf
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strategies by aggregating multiple existing strategies to improve asset allocation and port-

folio performance. We focus on asset allocation for robo-advising, enabling robo-advisors

to choose assets that maximize the investor’s utility during disaster events. We propose a

novel algorithm called SARSA-IS, integrating a well-established RL algorithm, State-Action-

Reward-State-Action (SARSA) with importance sampling (IS). RL is a type of machine learn-

ing technique in which autonomous agents learn to make decisions based on the realizations

and interaction with the environment, aiming to maximize the cumulative rewards in the

long run (Sutton and Barto, 1998). It has been used in Finance to solve optimization prob-

lems and improve decision-making (Akbarzadeh et al., 2018; Maeda et al., 2020; Gao and

Xu, 2022; Schnaubelt, 2022). Importance sampling allows us to effectively capture rare

events, addressing the limitations of existing robo-advising algorithms during the COVID-19

pandemic. For new developments about COVID-19, Khalilpourazari and Hashemi Doulabi

(2021) propose a novel hybrid RL approach for modelling and forecasting the COVID-19

pandemic.

The proposed SARSA-IS algorithm is examined with financial data containing the 2008

financial crisis and the recent COVID-19 outbreak, and the key parameters are initiated

by the economic and market outlook reports of the NBER and Vanguard (Alsabah et al.,

2021). Compared to benchmarked methods, we find that the optimal SARSA-IS policy

achieves relatively higher rewards and value estimates in rare disasters. The resulting opti-

mized policy advises a cautious strategy whenever the probability of transition to a disaster

state is relatively high. We extensively compare the performance of SARSA-IS, SARSA,

and the investor-only approach. For the latter, investors are supposed to invest their assets

and maximize their utilities by themselves. They may commit investment mistakes such as

behavioural biases and cognitive limitations (Foerster et al., 2017) when dealing with their

own investment. We show that during the COVID outbreak, the performance of the proposed

robo-advising algorithm is salient, with an estimated quarterly return using the optimal pol-

icy of up to 0.512%, compared to -0.639% generated by the benchmark policy and -14.55%

by the average quarterly return of existing robo-advising portfolios.

Several pieces of literature about robo-advising are worth mentioning. D’Acunto et al.

(2019) show that the performance of portfolios managed by robo-advisors improved signifi-

cantly for less-diversified investor groups. Capponi et al. (2022), and Dai et al. (2021) investi-

gate the use of the mean-variance approach in robo-advising separately. Tao et al. (2021) find
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that robo-advisors have better risk-adjusted performance than conventional funds on the US

financial market. Phoon and Koh (2017) investigate how the rise of robo-advisors threat-

ened traditional human advisors, and Brenner and Meyll (2020) confirm that robo-advisors

have a substitution effect on human financial advisors. Van Staden et al. (2021) point out

that robo-advisors require human intervention due to their unstable capability of asset al-

location. Alsabah et al. (2021) are perhaps the earliest researchers that use RL to learn

investors’ risk preferences through multiple interactions between robots and investors. Gan

et al. (2021) find that investors, particularly those with higher financial literacy, are inclined

to adopt robo-advisors during the crisis. Giudici et al. (2022) combine financial network

analysis with portfolio optimization techniques in order to better understand and manage

risk in robo-advisory portfolios during crisis times.

Our study contributes to the growing literature on robo-advising by considering the impact

of disaster events like the 2008 financial crisis and the COVID-19 pandemic. We develop

a computational framework based on RL that can be deployed in real-world robo-advisory

systems. Integrating importance sampling enables robo-advisors to perform well and re-

main reliable during rare events. Thus, we develop a novel application that utilizes machine

learning or, more broadly, artificial intelligence (AI) to support portfolio management in

robo-advising. Our development yields several outputs, including optimized policy during

disasters, reduced variance of value estimates, increased rewards, and value functions.

Emphasizing disaster states in portfolio optimization is economically meaningful due to the

profound impacts that disaster states can have on portfolios. Although disaster states occur

infrequently, their potential shocks are substantial, aligning with Nicholas (2008)’s Black

Swan theory, which illustrates that such rare events own high uncertainty and disastrous im-

pact. The disaster states are typically difficult to predict but can result in significant asset

losses when they occur, representing extreme risk. Ignoring the possibility of these events

can significantly increase the vulnerability of investment portfolios, enabling them to be in-

effective to deal with severe market fluctuations. Furthermore, historical analysis reveals

consistent patterns and underlying causes of financial disasters, as emphasized by Reinhart

(2009). By incorporating disaster states more frequently through importance sampling, this

paper investigates asset allocation strategies that leverage historical disaster events. Uti-

lizing RL to analyze historical data allows for the identification of recurring patterns and

mechanisms, thereby enhancing the ability to recognize and respond to such extreme events
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effectively.

Emphasizing disaster states has significant economic implications for investor behaviours,

asset allocation and risk management. From the perspective of investor behaviours, investors

react more intensely to potential losses than equivalent gains according to the Prospect theory

from Kahneman and Tversky (2013). Thus, exposure to potential extreme risks often leads

investors to adjust their asset allocation strategies, seeking safe-haven assets. By increasing

the sampling frequency of disaster states within the model, the study can more accurately

reflect investor decision-making under extreme conditions.

In terms of asset allocation, incorporating disaster states enables adjustments to the asset

portfolio proportions based on investor expectations, risk preferences, and prevailing market

conditions during disaster states. This strategic adjustment helps mitigate potential losses,

thereby enhancing investors’ utility from their portfolios which can be supported by the

Model Portfolio Theory (Markowitz, 1952). Regarding risk management, disaster states

are typically associated with significant market volatility and exposure to systemic risks.

Acharya et al. (2017) emphasize that failure to adequately account for these disaster states in

portfolio optimization can result in unforeseen substantial losses, undermining the stability

of overall returns. Therefore, employing importance sampling to increase the representation

of disaster states allows for a more accurate capture of the potential impacts of these extreme

scenarios.

The remainder of the paper is organized as follows. Section 3.2 introduces our proposed

methodology framework. Section 3.3 describes data and provides an analysis of robo-

advisors in rare disasters. Section 3.4 concludes the paper.

3.2 Learning about rare disasters

In this section, we first introduce the mathematical preliminaries of RL and importance sam-

pling in the context of robo-advising. We then discuss the technical details of the proposed

algorithm SARSA-IS.
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3.2.1 Portfolio allocation

We start with a Markov decision process (MDP) environment for RL, where robo-advising

(also called agent) interacts with the environment at a sequence of discrete-time, denoted by

t = 0,1,2, ..., and with a state space that contains different economic scenarios in financial

markets, denoted by S. Each state can be specified for portfolio management by economic

variables such as market return and volatility. For example, we denote st = 0 for the low

return volatility state, which represents the state with the low expected market return and

volatility; st = 1 for the high return volatility state that represents the state with the high

expected market return and volatility; and st = 2 for the disaster state with the dramatic neg-

ative expected market return, notoriously high fluctuation and low probability of occurrence.

At time t, the robo-advisor observes some features representing the state st ∈ S , and takes

action from an action space at ∈A. In the next time step t+1, it receives the resulting reward

rt+1 and moves into the next state st+1.

There are several assumptions. First, the robo-advisors’ actions are independent of each other

and conditional on the state. Second, each individual’s decision has a minor (or trivial) effect

on the overall market. Third, the transition probability from state s to state s′ is independent

of the portfolio choice, denoted by p(s′|s) = P{st+1 = s′|st = s} for all s,s′ ∈ S . The third

assumption distinguishes the optimal learning policy in the context of robo-advising from

the conventional RL setting, where the action is a conditioning variable in the transition

probability.

In accordance with the optimal policy, it is important to note that the action taken at state st

represents the portfolio allocation strategy across N assets. To be more specific, we define

the action setA= {a(1),a(2), . . . ,a(i)}, where each a(i) represents a possible portfolio weight

vector within the space [0,1]N . Robo-advisors solve an optimization problem by learning

an optimal policy that maps the state st to the action a(i). In response to state transitions,

robo-advisors are expected to select the optimal action. For the sake of simplification, we

limit the portfolio to consist of one risky asset and one risk-free asset. The risky asset can

represent the stock market, which exhibit returns and volatility that fluctuate with states.

Meanwhile, the risk-free asset serves as a safe haven. We assume that short sales are not

permitted. Consequently, the weight vector reduces to a scalar a ∈ (0,1) for the risky asset
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and the remaining 1−a for the risk-free asset.

Given the portfolio return in the next-period Rp(s′,a), we consider the maximization of re-

wards defined in the mean-variance analysis (Markowitz, 1952), that is

r(s,a,s′) = E[RP(s′,a)]−θVar[RP(s′,a)], (3.1)

where E[·] is the expectation operator, Var[·] is the variance operator, r(s,a,s′) is the expected

reward for the state-action-next state triple r : S ×A×S → R, and θ is the risk-aversion

parameter representing the client’s risk aversion. We assume the risk aversion is given, as

they have been extensively studied in existing literature (Bucciol and Miniaci, 2011; Alsabah

et al., 2021).

In our method, at each time step t, robo-advisors allocate a fraction a of the investor’s wealth

to the risky asset and the remaining (1−a) fraction to the risk-free asset under state s. The

expected portfolio return is given by E[RP(s′,a)] = aE[RM(s′)]+ (1− a)RF , where RM(s′)

represents the rate of return on the risky asset in the market portfolio in the next state, and RF

denotes the rate of return on the risk-free asset. Consequently, the variance of the portfolio

is Var[RP(s′,a)] = a2σ2
M(s′), where σM(s′) is the standard deviation of the risky asset return

in the subsequent state s′.

3.2.2 Reinforcement learning

RL consists of two building blocks: policy evaluation and policy control. The former itera-

tively estimates the value function, while the latter improves the given policy through greedy

policy improvement (Sutton and Barto, 1998). In policy evaluation, it is crucial to compute

the state value function V π(s) or the state-action value function Qπ(s,a) for a given policy.

The policy π(a|s) = P(at = a|st = s) represents the probability of actions conditional on

the state. The state value function V π(s) = ∑a∈Aπ(a|s)Qπ(s,a) represents the total sum of

the probability of choosing an action or policy multiplied by the state-action value for each

action in a state.

Value functions can be solved using the Bellman equation (Singh and Sutton, 1996). For
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s,s′ ∈ S, the state value function can be expressed as:

V π(s) = ∑
a∈A

π(a|s) ∑
s′∈S

p(s′|s,a)
[
r(s,a,s′)+ γV π(s′)

]
, (3.2)

where r(s,a,s′) is the reward received after transitioning from state s to state s′ via action a.

γ is the discount factor, representing the importance of future rewards relative to immediate

rewards.

The state-action value function Qπ(s,a) can be written as:

Qπ(s,a) = ∑
s′∈S

p(s′|s,a)
[
r(s,a,s′)+ γ ∑

a′∈A
π(a′|s′)Qπ(s′,a′)

]
. (3.3)

Evaluating the Bellman equation is costly, as it requires full information, including p(s′|s,a),

π(a′|s′), and Q(s′,a′) for all possible states and actions in the next step. Instead, temporal

difference (TD) learning can be used. It is model-free (i.e., requires no knowledge of an

MDP) and avoids the need to simulate the entire trajectory until reaching the terminal condi-

tion. TD learning employs the bootstrap technique to estimate the value function at the next

step, and the value function can be updated as follows:

V (s)←V (s)+α

[
r(s,a,s′)+ γV (s′)−V (s)

]
, (3.4)

where α is the learning rate.

Policy control aims to find the policy that maximizes the value function Q(s,a) for action

a∈A and s∈S . Q(s,a) is updated by adjusting it towards the estimated optimal future value.

It can be achieved using SARSA with the following recursive state-action value function.

Q(s,a)← Q(s,a)+α

[
r(s,a,s′)+ γQ(s′,a′)−Q(s,a)

]
. (3.5)
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3.2.3 Probability of rare disasters

Let ε(s) ∈ [0,1] denote the probability of a rare disaster that might occur in state s. We

define the two sub-spaces of state, D as the disaster state space, and its complement state

space Dc = S \D. Then the transition probability p(s′|s) can be expressed as a mixture of

two independent transition probabilities:

p(s′|s) =

(1− ε(s)) f (s′|s) if s′ ∈ Dc,

ε(s)g(s′|s) if s′ ∈ D.
(3.6)

where f (s′|s) is the transition probability that characterizes the normal environment for

s′ ∈ Dc, g(s′|s) is the transition probability to disaster events s′ ∈ D, and the disaster prob-

ability ε(s) is also a mixture weight that governs the dominance between two component

probability distributions. In this case, the total sum of transition probabilities ∑s′ p(s′|s)

equals 1, ensuring that the expressions of the transition probability are valid.

In theory, the mixture weight ε(s) in eq. (3.6) is expected to be small, suppressing the impact

of a rare disaster on the transition process. We, therefore, employ a proposal distribution ε̂(s)

where the disaster events occur more frequently than ε(s). The estimated ε̂(s) varies and is

updated during the simulation, and ε̂(s) (rather than ε(s)) determines a fraction between the

unchanged f (s′|s) and g(s′|s). Eventually, ε̂(s) converges to optimal ε∗(s) that minimize the

variance under an exhaustive simulation which will be proved in Section 3.2.5. The transition

probability distribution under the mixture weight governed by ε̂(s) becomes

q(s′|s) =

(1− ε̂(s)) f (s′|s) if s′ ∈ Dc,

ε̂(s)g(s′|s) if s′ ∈ D.
(3.7)

3.2.4 Optimal policy

We aim to optimize investment strategies for decision-making empowered by robo-advisors

through policy control. Not all the investment strategies adopted by robo-advising are the

best ones. The optimal policy π∗ is declared to be better than or equal to any other policy
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π ′ if its expected reward is larger than or equal to that of π ′ for all states (Sutton and Barto,

1998). The robo-advisors’ objective is to find an optimal policy to maximize the investor’s

cumulative rewards over a lifetime. The rewards are the investor’s utilities in the paper.

The optimal policy is the one that maximizes the state-action value function Qπ(s,a) in

eq. (3.3):

π
∗ = argmax

π

Qπ(s,a) (3.8)

To search for the optimal policy, one can adopt various TD learning methods such as SARSA

or Q-learning (Watkins, 1989). SARSA is an on-policy learning algorithm, meaning it up-

dates Qπ(s,a) based on the actions taken under the current policy π , and improves π via

ε-greedy exploration. In contrast, Q-learning is an off-policy algorithm that updates Qπ(s,a)

using the greedy policy, independent of the agent’s actions. We adopt SARSA for its faster

convergence and higher learning speed (Wang et al., 2013), which is particularly beneficial

for applications involving rare disaster events.

The ε-greedy policy improvement is a strategy to greedily improve the policy by choosing

the greedy action with a probability of 1− ε , and with a probability of ε , selecting action

a ∈ A randomly. ε decreases as the episodes progress. In the first few episodes, more actions

are chosen randomly to ensure exhaustive exploration. As the episode develops, the opti-

mal action is chosen with a higher probability of maintaining exploitation in the following

episodes. When the policy converges to the optimal policy, an optimal action that optimizes

cumulative rewards for each different state will be chosen with a probability close to one.

Eligibility traces are widely applied to operate step-by-step updates upon observing samples.

Instead of updating the value function by looking forward to the entire trajectory, eligibility

traces make it possible to propagate the update backwards to the state at the last step along

the trajectory.

In our approach, we incorporate replacing eligibility traces into the SARSA algorithm to

enhance its learning efficiency. Replacing eligibility traces are proposed to provide a stable

and efficient approach of eligibility traces (Singh and Sutton, 1996).

To implement SARSA with replacing eligibility traces, we update the eligibility traces as
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follows for each state-action pair:

et(s,a) =

1 if s = st and a = at ,

γλet−1(s,a) otherwise.
(3.9)

The decay rate of eligibility traces, denoted as λ , ranges from 0 to 1. A value of λ = 0

simplifies the algorithm to the standard SARSA update eq. (3.5), whereas λ = 1 aligns it

with Monte-Carlo methods.

At state s, robo-advisors choose an action a according to the ε-greedy policy derived from

the state-action value Q(s,a), observe reward r(s,a,s′), and transition to the next state s′.

The update rule for SARSA with replacing eligibility traces is then given by:

Q(s,a)← Q(s,a)+αe(s,a)
[
r(s,a,s′)+ γQ(s′,a′)−Q(s,a)

]
. (3.10)

The technical details of the vanilla SARSA are provided in Appendix 3.A.

3.2.5 Optimal policy with importance sampling

In the presence of rare disasters, the conventional SARSA encounters the problem of a less

consistent approximation toward the value function. With such an obstacle, the process

is likely to fail to converge within a given period. Hinich (2003) showed that it took at

least ten times the average time for the agent to generate sufficient outcomes of the low

probability event so that all agents shared the same objective knowledge of distribution.

To meet this challenge, we propose SARSA-IS (see an algorithm 1) to draw an alternative

sampling probability in the next state, which can accelerate policy learning for rare disasters.

The probability distribution is replaced by a proposal distribution that features a fatter-tailed

distribution than the true one. By exploiting the distribution with a higher likelihood of

unusual random variables, robo-advisors benefit from effective updating since learning is

not constrained by the required sample size or the number of learning episodes. Suppose
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one believes that important values have a more significant impact on the parameter being

estimated than others. In that case, the main idea is to sample the “important region” of

the distribution more often and to choose a distribution that encourages the important but

unusual samples. By doing so, robo-advisors observe samples in the extreme area of the

distribution more often, accelerating learning and policy updating. Importance sampling

resolves the issue of excessive learning duration induced by a low probability of occurrence.

More importantly, importance sampling is a variance-reduction technique commonly used

in rare event simulation (Juneja and Shahabuddin, 2006). If the sampling probability is

modified effectively, using samples from the alternative distribution can reduce the variance

of estimators.

SARSA is modified by taking the presence of rare disasters into account. To overcome

the learning difficulty in the presence of rare disasters, sampling the future realization is

undertaken by the proposal sampling distribution q that favours sampling disaster events.

Frank et al. (2008) mentioned that the bias and variance of the importance sampling weight

can be substantially reduced. To correct samples that are biased due to sampling q rather

than p, we have importance sampling weights as:

w(s,s′) =
p(s′|s)
q(s′|s)

. (3.11)

It should be noted that we assume that robo-advisors’ actions do not affect the market envi-

ronment. Given that the state space S is split into two subspaces, and the proposal transition

probability in eq. (3.7), the importance sampling weight boils down to

w(s,s′) =

ε(s)/ε̂(s) if s′ ∈ D,

(1− ε(s))/(1− ε̂(s)) if s′ ∈ Dc.
(3.12)

where ε(s) is the true disaster probability and ε̂(s) is the proposal rare event probability.

The optimal disaster probability can be characterized by choose an alternative sampling dis-

tribution that minimizing the variance of state-action value function due to the change of
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trajectory. The optimal form of disaster probability are as follows.

ε
∗(s) = ε(s)

∑s′∈D g(s′|s)
[
r(s,a,s′)+ γ ∑a′∈A π(a′|s′)Qπ(s′,a′)

]
Qπ(s,a)

, (3.13)

Proof: see Appendix 3.B.

With the observation that the state-action values for the disaster state space D is

Qπ
D(s,a) = ε(s) ∑

s′∈D
g(s′|s)

[
r(s,a,s′)+ γ ∑

a′∈A
π(a′|s′)Qπ(s′,a′)

]
. (3.14)

Eq. (3.13) can be rewritten as

ε
∗(s) =

Qπ
D(s,a)

Qπ(s,a)
. (3.15)

If states and actions are sampled according to the optimal policy, Q̂π
D(s,a) and Q̂π(s,a) con-

verge to the optimal and unbiased values, so we also have the estimated disaster probability

converges to the optimal disaster probability as follows.

ε̂(s) =
Q̂π
D(s,a)

Q̂π(s,a)
→ ε

∗(s). (3.16)

In the algorithm 1, we take the absolute value of Q̂π
D(s,a) and Q̂π

D(s,a) in eq. (3.16), mainly

because the expected cumulative rewards of taking state s and action a can be both positive

or negative in general cases. A boundary is set for ε̂(s) to ensure an exhaustive exploration

of the optimal value ε∗(s). Hence, ε̂(s) ∈ (δ ,1−δ ) is bounded. If ε̂(s) is computed outside

the boundary, it takes the value of δ or 1−δ as follows

ε̂(s)←min

{
max

{
δ ,
|Q̂π

D(s,a)|
|Q̂π(s,a)|

}
,1−δ

}
.

The state-action value function that over-weights the important samples is

Q̂π(s,a)← Q̂π(s,a)+αe(s,a)
[
w
(
r(s,a,s′)+ γQ̂π(s′,a′)

)
− Q̂π(s,a)

]
, (3.17)

where w is the importance sampling weight in eq. (3.12) to correct biases.
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We can then estimate Q values using the form of Bellman equation. If s′ ∈ D, then

Q̂π
D(s,a)← (1−α)Q̂π

D(s,a)+αε(s)
(

r(s,a,s′)+ γQ̂π(s′,a′)
)
. (3.18)

Proof: see Appendix 3.C.

The eligibility traces of SARSA-IS can be updated as

et(s,a)←

1 if s = st and a = at ,

γλwet−1(s,a) otherwise.
(3.19)

In addition to the algorithm 1, there is a flow chart 3.1 for SARSA-IS to understand the

algorithm.

Fig. 3.1: Flow chart for SARSA-IS algorithm

One can obtain and compare the optimal policy π∗ generated by SARSA-IS and the bench-

mark policy π obtained from SARSA. We propose the disaster events adaptive importance

sampling (abbreviated as DEIS) (see algorithm 2). It improves TD learning through im-

portance sampling in the policy evaluation. We outline the difference between DEIS and

SARSA-IS. First, DEIS has the state value function when evaluating the given policy V π(s)

in the presence of disaster states while SARSA-IS uses a state-action value function Qπ(s,a).

Second, DEIS is designed for evaluating a specific policy, and thus cannot improve the policy

as SARSA-IS does. The state value function of DEIS is

V̂ π(s)← V̂ π(s)+αe(s)
[
w
(

r(s,a,s′)+ γV̂ (s′)
)
−V̂ (s)

]
. (3.20)
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Algorithm 1 SARSA with importance sampling (SARSA-IS)

1: Input: Rare event set D, normal event set Dc, true rare-event probabilities ε(s), tran-
sition probabilities f (s′|s), g(s′|s), the learning rate α , the discount rate γ , the greedy
parameter ε and the parameter δ > 0.

2: Initialize state action values Q̂π(s,a), Q̂π
D(s,a), Q̂

π
Dc(s,a) arbitrarily, ∀s,a;

3: Initialize the rare event sampling distribution ε̂(s) = 0.5,∀s;
4: Initialize eligibility traces e(s,a) = 0;
5: Select the initial state s;
6: Select an action a using ε-greedy policy;
7: for each iteration do
8: Update eligibility traces e(s,a) in eq. (3.19);
9: Take the action a;

10: Decide whether a disaster event happens based on ε̂(s). If a disaster event is deter-
mined to occur, sample s′ from the disaster event transition distribution g(s′|s). Other-
wise, sample s′ from normal state transition distribution f (s′|s).

11: Observe the reward r′;
12: Select an action a′ using ε-greedy policy;
13: Compute the weight of importance sampling:

w(s,s′) =

{
ε(s)/ε̂(s) if s′ ∈ D,
(1− ε(s))/(1− ε̂(s)) if s′ ∈ Dc;

14: Compute the error:
△= w(s,s′)

(
r′+ γQ̂π(s′,a′)

)
− Q̂π(s,a);

15: Update the value estimates:

Q̂π(s,a)← Q̂π(s,a)+αe(s,a)△;

16: if s′ ∈ D then
17: Q̂π

D(s,a)← (1−α)Q̂π
D(s,a)+αε(s)

(
r′+ γQ̂π(s′,a′)

)
,

18: else
19: Q̂π

D(s,a)← Q̂π
D(s,a);

20: end if
21: Update disaster probabilities:

ε̂(s)←min

{
max

{
δ ,
|Q̂π

D(s,a)|
|Q̂π(s,a)|

}
,1−δ

}
;

22: s← s′, a← a′;
23: end for
24: Output: r′, π∗(a|s), Qπ(s,a) and ε∗(s).
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The eligibility traces et(s) of DEIS can be computed as

et(s)←

1 if s = st ,

γλwet−1(s) otherwise.
(3.21)

In DEIS, ε̂(s) can be updated as

ε̂(s) =
|V̂ π

D(s)|
|V̂ π

D(s)|+ |V̂
π
Dc(s)|

. (3.22)

The state values V̂ π
D(s) and V̂ π

Dc(s) are updated following the forms of Frank et al. (2008). If

s′ ∈ D, then

V̂ π
D(s)← (1−α)V̂ π

D(s)+αε(s)
(

r(s,a,s′)+ γV̂ π
D(s
′)
)
, (3.23)

Otherwise, then

V̂ π
Dc(s)← (1−α)V̂ π

Dc(s)+α(1− ε(s))
(

r(s,a,s′)+ γV̂ π
Dc(s′)

)
. (3.24)

Since V̂ π
D(s) and V̂ π

D(s) are updated to the unbiased V π
D(s) and V π

Dc(s), respectively, disaster

probabilities will converge to the optimal, that is ε̂(s)→ ε∗(s). In what it follows, V̂ π(s)→

V π(s). Hence, we put forward Proposition 3.1 of convergence.

Proposition 3.1. For every state s, with ε∗(s) ∈ (δ ,1−δ ), as t→ ∞, the estimated disaster

probability ε̂(s) converges almost surely to the true disaster probability ε∗(s).

ε̂(s)→ ε
∗(s).

Furthermore, the estimate of the value function also converges almost surely to the unbiased

value.

V̂ π(s)→V π(s).
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Algorithm 2 Disaster event adaptive importance sampling (DEIS)

1: Input: Policy π , rare event setD, normal event setDc, true rare-event probabilities ε(s),
transition probabilities f (s′|s), g(s′|s), the learning rate α , the discount rate γ , the greedy
parameter ε and the parameter δ > 0.

2: Initialize state values V̂ π(s),V̂ π
D(s),V̂

π
Dc(s) arbitrarily, ∀s;

3: Initialize the rare event sampling distribution ε̂(s) = 0.5,∀s;
4: Initialize eligibility traces e(s) = 0;
5: Select the initial state s;
6: for each iteration do
7: Update eligibility traces e(s) in eq. (3.21);
8: Select an action a∼ π;
9: Decide whether a disaster event happens based on ε̂(s). If a disaster event is deter-

mined to occur, sample s′ from the disaster event transition distribution g(s′|s). Other-
wise, sample s′ from normal state transition distribution f (s′|s).

10: Observe the reward r′;
11: Compute the weight of importance sampling:

w(s,s′) =

{
ε(s)/ε̂(s) if s′ ∈ D,
(1− ε(s))/(1− ε̂(s)) if s′ ∈ Dc;

12: Compute the error:

△= w(s,s′)
(

r′+ γV̂ π(s′)
)
−V̂ π(s);

13: Update the value estimates:

V̂ π(s)← V̂ π(s)+αe(s)△;

14: if s′ ∈ D then
15: V̂ π

D(s)← (1−α)V̂ π
D(s)+αε(s)

(
r′+ γV̂ π(s′)

)
,

16: else
17: V̂ π

Dc(s)← (1−α)V̂ π
Dc(s)+α(1− ε(s))

(
r′+ γV̂ π(s′

)
;

18: end if
19: Update the disaster probabilities:

ε̂(s)←min

{
max

{
δ ,

|V̂ π
D(s)|

|V̂ π
D(s)|+ |V̂

π
Dc(s)|

}
,1−δ

}
;

20: s← s′;
21: end for
22: Output: r′, V π(s) and ε∗(s).
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3.3 Empirical results

This section assesses to what extent robo-advisors surpass the performance of human ad-

visors and the stand-alone investor approach. We first introduce the used dataset, which

contains rare disaster events and normal events. We then discuss our analysis of results on

robo-advising using the proposed algorithm against the benchmarked methods.

3.3.1 Data

To simplify the analysis without loss of generality, we consider an MDP with three states:

high-volatility, low-volatility, and disaster. Our classification of high and low volatility states

is based on the financial markets (Alsabah et al., 2021). Data for high and low volatility states

are extracted from the NBER and Vanguard’s economic and market outlook reports (Alsabah

et al., 2021). We collect data of S&P 500 from Yahoo Finance and the periods include the

targeted two disaster events: the financial crisis in 2008 and the recent COVID-19 outbreak.5

The key parameters of the risky asset are specified for each s∈ S. Each state is characterized

by a tuple of the first and the second moment of the market returns. The historical monthly

returns of S&P 500 in the period from January 2008 to December 2008 are used for the 2008

financial crisis. Regarding the COVID-19 outbreak, the monthly returns of S&P 500 in the

first quarter of 2020 are extracted. Finally, we pin down the average returns 1.25%, 0.5%,

−3% and −2.75% for the high volatility state, low volatility state, the financial crisis, and

the COVID-19 outbreak, respectively. We assign 5% (high volatility), 3% (low volatility),

6% (the 2008 financial crisis), and 13.52% (the COVID-19 pandemic) volatility levels for

each considered state. We choose the monthly treasury yield rate which is 0.2% as the proxy

for the risk-free rates following Alsabah et al. (2021).6 Robo-advisors are assumed to make

investment decisions every month, so we use monthly data and parameters. Robo-advisors

run iteratively from episode to episode. Each episode has 75 time steps (months), the average

length of the US business cycle between 1945 and 2020.7

5Source: Yahoo Finance: https://finance.yahoo.com/quote/5EGSPC/history/
6Alsabah et al. (2021) collect the monthly treasury rate as on May 16, 2019 from the US Department of the
Treasury: https://home.treasury.gov/policy-issues/financing-the-government/interest-rate-statistics.

7We update the business cycle data from the NBER: https://www.nber.org/research/business-cycle-dating.
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The set of possible risk aversion parameters for retail investors is {2.2,2.3, . . . ,8.3} (Alsabah

et al., 2021). Lower risk aversion corresponds to a higher portfolio weight allocated to the

risky asset. Since this paper does not examine the risk profiles and investment behaviours of

investors, we use the average risk aversion value 5.25 from this set as the predefined value

for the investor’s risk aversion θ .

3.3.2 Analysis of results

There are two simulations that contain high volatility states, low volatility states and disaster

states. The difference between the two simulations is that Simulation 1 includes the 2008

financial crisis as the disaster state, while Simulation 2 treats the COVID-19 pandemic as the

disaster state.

We begin by examining the optimal policy that maximizes investor utility in the presence of

rare disasters. The optimal policy is obtained by implementing policy optimization according

to the algorithm 1. In table 3.1, we tabulate the constellation of the optimal action over a state

space. Table 3.1 compares the optimal action at each state between SARSA-IS and SARSA

at the 500th episode. The policy generated by SARSA serves as a benchmark. This episode

is considered to have converged for both simulations in the presence of rare disasters. The

optimal action represents the ideal allocation of the risky asset in the portfolio by robo-

advisors. For instance, if the robo-advisor employs SARSA-IS in Simulation 1, the most

favorable action in response to the disaster state is to decrease the allocation of the risky

asset to 0.01, and seek safety by investing the remaining wealth in the risk-free asset under

the disaster state. In Simulation 2, the optimal allocation remains at 0.01 in the disaster state.

Notably, the allocations are lower than the benchmark in all states. This observation suggests

that SARSA-IS produces a conservative policy with regard to rare disasters. These findings

indicate that robo-advisors utilizing SARSA-IS can adapt their investment strategies to better

account for the impact of rare disasters. By adopting a more conservative approach, robo-

advisors are better equipped to protect investors’ wealth during periods of extreme market

turmoil.

Figure 3.2 shows the average rewards over 500 episodes for SARSA-IS and SARSA, and

the investor-only approach, respectively. A stand-alone investor approach assumes that in-
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Table 3.1 The estimated optimal action

States
Simulation 1 Simulation 2
SARSA-IS SARSA SARSA-IS SARSA

High return volatility state 0.5 0.58 0.24 0.3
Low return volatility state 0.23 0.87 0.59 0.69
Disaster state 0.01 0.12 0.01 0.14
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Fig. 3.2: Reward estimation of: (a) Simulation 1; (b) Simulation 2

vestors select a portfolio independently and allocate their wealth to risky assets depending

on risk preference. They are supposed to maximize their utilities but are subject to be-

havioural biases and investment mistakes. On the one hand, we assume that a rational in-

vestor acts in accordance with the principle of a mean-variance optimizer (Markowitz, 1952).

On the other hand, rationality may not be upheld, as in reality, investors are subject to invest-

ment mistakes, information cost (Campbell, 2006), behaviour biases, and cognitive limita-

tions (Foerster et al., 2017). Such behaviour biases lead to a disparity (the investment gap)

between the optimization and observed portfolios. Based on the US Survey of Consumer

Finances dataset, the gap size is estimated to be around 0.073%. Thus, the investor-only

approach considers mean-variance optimization and this disparity gap. The performance of

an investor-only approach, as shown in figure 3.2 reflects these two factors.

Several findings merit emphasis. First, SARSA-IS maintains a consistently higher average

annual reward than the benchmarked methods in the long run (over 100 episodes). This su-

perior performance is attributed to the adoption of importance sampling techniques, which

assign a higher importance weight to the outcomes corresponding to the identified disasters.

Furthermore, compared to SARSA, the reward generated by SARSA-IS exhibits lower fluc-

tuations over time. It has been observed that SARSA-IS converges more rapidly than SARSA
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due to the intensive sampling of disaster events, which enhances the policy improvement

process. Subsequently, the gap between SARSA-IS and SARSA remains bounded, with

SARSA-IS persistently outperforming both SARSA and the investor-only approach.

In comparison to the robo-advisors, the rewards of the investor-only approach fall signifi-

cantly short of those achieved by SARSA-IS, demonstrating that stand-alone investors are

unable to manage their portfolios as effectively as robo-advisors.

The results in figure 3.2 implicate that the adoption of robo-advisors, particularly those im-

plementing SARSA-IS, can enhance portfolio performance by mitigating the impacts of am-

biguity and uncertainty. By utilizing a systematic and data-driven approach, robo-advisors

can address the challenges faced by individual investors, resulting in improved investment

decision-making and more efficient risk management. Additionally, the reduced fluctuations

exhibited by SARSA-IS indicate that this approach may be especially beneficial in handling

rare disaster events, potentially offering a more robust solution for investors during turbulent

market conditions.

Optimizing the probability of a rare event is a challenging task in robo-advising. Accord-

ing to Proposition 3.1, if the number of learning episodes is sufficiently large, the estimated

probability of a rare event converges almost surely to the optimal one, with ε̂(s)→ ε∗(s).

Figure 3.3 illustrates the estimated probability of a rare event ε̂(s) for the two targeted dis-

asters. The optimal disaster event probability estimated by SARSA-IS reaches 0.1 after 400

episodes. Prior to converging on an optimal probability, importance sampling is effective at

the sampling stage, and SARSA-IS favours the sampling of rare events. As the number of

episodes increases, ε̂(s) converges to the optimal ε∗(s) at a rate of 0.10. This convergence

reconciles with the true probability of the disaster event ε(s), which is set at 0.10. The im-

plication emphasizes the value of using importance sampling in robo-advising, particularly

when estimating the probability of rare disaster events. By effectively sampling rare events

and converging to the optimal probability more quickly, SARSA-IS can provide a more accu-

rate and reliable estimation of disaster event probabilities. This, in turn, allows for better risk

management, improved investment decision-making, and potentially more robust portfolio

performance during times of market turmoil.

We now turn our focus to policy evaluation. In the policy evaluation process, we compare the
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Fig. 3.3: Estimated disaster probability (ε̂(s)) of: (a) Simulation 1; (b) Simulation 2

performance of policies using the algorithm DEIS (Frank et al., 2008). Our approach has at

least two advantages. First, regarding rare disasters, enhanced learning by importance sam-

pling overcomes learning bottlenecks caused by the low probability of occurrence. Second,

using the proposal distribution substantially reduces the variance of value function estimates.

Figure 3.4 presents value function estimates for Simulation 1 with the 2008 financial crisis,

and Simulation 2 with the COVID-19 outbreak. To show that DEIS is a sensible method

for policy evaluation, we compare its performance with TD learning. As expected, the latter

exhibits a higher fluctuation before convergence, even though it gets close to DEIS by the

end. TD learning may take longer to converge to the optimal one, and sometimes, this

convergence is unfeasible in practice (Frank et al., 2008; Dann et al., 2014). After a 2000-

round of iteration, we conclude that for an evaluated policy π∗, both converge to 2.64 in

Simulation 1 and 2.45 in Simulation 2. For the policy π , a convergence value at 1.67 (2008

simulation) and 1.92 (COVID-19 simulation) are presented. Overall, empirically we are able

to support V̂ π(s)→V π(s) using DEIS, as t→ ∞. This result supports the proposition 3.1. It

is worth noting that in the presence of rare disasters, TD learning exhibits higher volatility,

resulting in errors in value estimation. To circumvent this risk and the associated cost, the

robo-advising industry may consider adopting DEIS for policy evaluation tasks.

With DEIS, the robo-advising industry benefits from precisely estimating investors’ utilities.

Proper estimations enable robo-advisors to provide customized consulting services and tac-

tical strategies to investors, addressing their unique needs and preferences. Such efforts help

alleviate clients’ concerns and restore their confidence in investment decision-making (Cap-

poni et al., 2022). The value estimate under policy π∗ generated from SARSA-IS consis-
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Fig. 3.4: Value estimation of: (a) Simulation 1; (b) Simulation 2. π∗ is the optimal policy
generated by SARSA-IS in the algorithm 1, while π is the benchmark policy updated by
SARSA, π∗(DEIS) and π(DEIS) are the algorithm 2 DEIS following the optimal policy π∗,
the benchmark policy π , respectively. π∗(TD) and π(TD) are TD learning following the
optimal policy π∗, the benchmark policy π , accordingly.

tently surpasses that of policy π generated from SARSA. Both figures demonstrate that the

optimal policy π∗ derived from SARSA-IS outperforms the benchmark policy π obtained

from SARSA. Moreover, investors can experience higher utility under the desired policy

generated from SARSA-IS compared to a policy generated from SARSA.

The implications emphasize the superiority of SARSA-IS in generating policies that maxi-

mize investor utility. By providing higher utility, SARSA-IS can help robo-advisors deliver

more effective investment strategies, thus fostering better portfolio performance and client

satisfaction. In a competitive industry like robo-advising, adopting advanced techniques like

SARSA-IS and DEIS may contribute to retaining and attracting clients, ultimately leading to

a more sustainable and successful business.

To examine the effectiveness of our proposed solutions when confronted with rare disasters

in real-world scenarios, we compare the quarterly portfolio returns following our policies

to the actual quarterly returns of “real” robo-advisory portfolios in Q1 2020. The term of

“real” robo-advisory portfolios refers to the investment strategies employed by well-known

robo-advisors, as detailed in the 2020 First Quarter Robo Report8. These portfolios typically

utilize diversified algorithmic strategies that allocate assets across a range of investment ve-

hicles, including a mix of risky and risk-free assets, tailored to meet the risk preferences and

financial goals of individual investors.

8For the data and details of robo-advisory portfolios, please see: https://storage.googleapis.com/gcs.backendb.
com/wordpress/media/2021/02/2020-Q1-Robo-Report.pdf
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The comparison between our proposed portfolio, which comprises one risky asset and one

risk-free asset, and “real” robo-advisory portfolios is justified through the lens of Modern

Portfolio Theory (Markowitz, 1952) and the principles underlying robo-advisory services.

Although our model utilizes a simplified asset universe, the objective remains consistent

with that of the “real” robo-advisors to optimize the risk-return profiles of portfolios based

on predefined risk preferences and market conditions. While the “real” robo-advisory portfo-

lios are potentially more complex and diversified, they are fundamentally designed to balance

risk and return by allocating assets across various investment vehicles. Our two-asset model

captures the essential dynamics of this process and allows us to evaluate the effectiveness

of the SARSA-IS policy in mitigating extreme risks. Furthermore, by focusing on the per-

formance during a disaster period, we highlight the robustness of our approach in scenarios

where traditional robo-advisory strategies may falter due to insufficient emphasis on rare but

impactful events in reality.

As illustrated in figure 3.5, the portfolio return adhering to the policy π∗ generated from

SARSA-IS significantly exceeds that of the policy π generated from SARSA, as well as the

robo-advising portfolio returns from the 2020 First Quarter Robo Report9 during the onset of

the COVID-19 pandemic. Specifically, we observe that the estimated quarterly return utiliz-

ing the optimal policy π∗ generated from SARSA-IS is 0.512%, representing a remarkable

performance when compared to -0.639% (generated by the benchmark policy from SARSA)

and -14.55% (the average quarterly return of existing robo-advising portfolios). All returns

of existing robo-advising portfolios were obviously negative, while our policy generated

from SARSA-IS ensured a positive return during the same disaster period.

Employing SARSA-IS, the strategy of robo-advising manifests resilience and stability even

when confonted with rare disasters. Figure 3.5 highlights the significant economic loss expe-

rienced by the robo-advising industry during 2020 Q1. By implementing policy π∗ generated

from SARSA-IS, robo-advisors alleviate the dramatic impact of rare disasters. To sum up,

our solutions optimize investment strategies employed by robo-advisors and enhance the

performance of their portfolios, even under challenging circumstances.

9For the data and details of robo-advising portfolios, please see: https://storage.googleapis.com/gcs.backendb.
com/wordpress/media/2021/02/2020-Q1-Robo-Report.pdf
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Fig. 3.5: Comparison of portfolio returns. The blue dot represents the optimal SARSA-IS
policy, the orange dot is for the benchmark SARSA policy, and the dots aligned along a
vertical line depict various ”real” robo-advisory portfolios.

3.4 Conclusion

Robo-advisors have effectively transferred human-involved investment decisions into au-

tomated and AI-driven solutions. The advantages and potential of AI-powered portfolio

management are substantial. However, during the COVID-19 outbreak, robo-advisors faced

challenges in maintaining satisfactory performance, particularly under rare disasters. Em-

pirical evidence indicates that robo-advisors underperformed during the recent pandemic,

emphasizing the need for a novel robo-advising algorithm that ensures reliability and robust-

ness.

In this study, we develop a novel framework that enables robo-advisors to learn from rare but

emphasized samples and maximize cumulative rewards in portfolio optimization. By consid-

ering the mean-variance approach in asset allocation, robo-advisors can assign appropriate

asset weights to maximize returns. We propose SARSA-IS to search for the optimal policy

and DEIS for policy evaluation under rare disasters. Robo-advisors, empowered by SARSA-

IS, significantly improve investors’ utilities and rewards due to the effective identification of

optimal policies. Our approach diverges from existing research focusing on robo-advising

adoption during COVID-19, contributing to the robo-advising domain by examining the im-

pact of rare disasters and offering pertinent solutions. By employing importance sampling

techniques, our algorithm effectively learns from rare disasters. DEIS, combined with im-

portance sampling, exhibits lower variance than traditional TD learning methods in value

function estimation. Our study suggests that robo-advisors, proficient in learning investors’
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utilities, can provide reliable financial services.

To the best of our knowledge, our research is among the first to analyze robo-advising in

the context of rare disaster events. Our work can be specialized in portfolio management

related to rare disasters, proving effective in learning from rare but crucial events and solving

optimization problems within low-probability state spaces. We classify financial markets into

three states for simplicity and ease of interpretation, although our analysis can be extended

further. In practice, numerous features can contribute to defining a state. Future research will

involve identifying key features for high-dimensional data and expanding the size of states

to explore the set of optimal policies in more complex scenarios. We leave this extension for

future endeavours.
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3.A SARSA

For the reader’s convenience, this appendix provides the technical details about SARSA in

the context of robo-advising.

Algorithm 3 State–Action–Reward–State–Action (SARSA)

1: Input: Rare event set D, normal event set Dc, true rare-event probabilities ε(s), the
learning rate α , the discount rate γ and the greedy parameter ε .

2: Initialize state action values Q̂π(s,a) arbitrarily, ∀s,a;
3: Initialize eligibility traces e(s,a) = 0;
4: Select the initial state s;
5: Select an action a from s using ε-greedy policy;
6: for each iteration do
7: Take an action at ;
8: Sample s′ from the transition distribution p(s′|s);
9: Observe the reward r′;

10: Select an action a′ from s′ using ε-greedy policy;
11: Compute the error:

△= r′+ γQ̂π(s′,a′)− Q̂π(s,a)

12: Update the value estimates:

Q̂π(s,a)← Q̂π(s,a)+αe(s,a)△

13: Update eligibility traces e(s,a) in eq. (3.19);
14: s← s′, a← a′

15: end for
16: Output: a, r′ and Q̂π(s,a).

3.B Proof of the optimal disaster probability function

According to Frank (2009), there is an optimal form of transition probability that enables the

zero-variance of Q value under disaster events, given an MDP with states, actions, one-step
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transition probability and reward function. The optimal transition probability is:

p∗(s′|s,a) =
p(s′|s,a)∑a′∈A π(a′|s′)

[
r(s,a,s′)+ γQπ(s′,a′)

]
Qπ(s,a)

. (3.25)

Developed from eq. (3.25), one can obtain the optimal form of disaster probability as shown

in eq. (3.13). That is:

∑
s′∈S

p∗(s′|s,a) = ∑
s′∈S

p(s′|s,a)
[
r(s,a,s′)+ γ ∑a′∈A π(a′|s′)Qπ(s′,a′)

]
Qπ(s,a)

.

As

∑
s′∈S

p(s′|s,a) = ε(s) ∑
s′∈D

g(s′|s)+(1− ε(s)) ∑
s′∈Dc

f (s′|s,a),

we have

ε(s)∗ ∑
s′∈D

g(s′|s) =
ε(s)∑s′∈D g(s′|s)∑a∈Aπ(a′|s′)

[
r(s,a,s′)+ γQπ(s′,a′)

]
Qπ(s,a)

,

for all s′ ∈ D. As ε(s)∗ is a constant for s′,

ε(s)∗ ∑
s′∈D

g(s′|s) = ε(s)∗.

Therefore, we obtain the optimal form of disaster probability, which is:

ε(s)∗ = ε(s)∗ ∑
s′∈D

g(s′|s)

=
ε(s)∑s′∈D g(s′|s)

[
r(s,a,s′)+ γ ∑a′∈A π(a′|s′)Qπ(s′,a′)

]
Qπ(s,a)

.

3.C Proof of the disaster state-action value function

The relationship between Qπ(s,a) and Qπ
D(s,a) is:

Qπ
D(s,a) = ε(s)Qπ(s,a).
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Qπ(s,a) can be evaluated by the Bellman Q function eq. (3.3). Replace Qπ(s,a) with Qπ
D(s,a)
ε(s)

and thus, one have:

Q̂π
D(s,a)
ε(s)

←
Q̂π

D(s,a)
ε(s)

+α[r(s,a,s′)+ γQ̂π(s′,a′)−
Q̂π

D(s,a)
ε(s)

],

that can be reformulated as:

Q̂π
D(s,a)← (1−α)Q̂π

D(s,a)+αε(s)
(

r(s,a,s′)+ γQ̂π(s′,a′)
)
.

Therefore, we complete the proof of eq. (3.18).
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Risk aversion and portfolio optimization

for robo-advising

Abstract

We develop a novel framework for learning investors’ risk aversion using low-resolution

data, a common issue arising from short trajectories recording investors’ portfolio choices,

particularly during disaster events. Furthermore, the observed portfolio choice is often af-

fected by behavioural biases. Our approach combines online inverse optimization with deep

RL to simultaneously estimate risk aversion and determine optimal investment strategies un-

der both normal and disaster states. Utilizing real mutual fund data, we demonstrate that our

algorithm’s risk aversion estimation converges asymptotically to the optimal risk aversion

during the learning process. Critically, based on the learned risk aversion and trained deep

RL model, we show that robo-advisors adopting our approach can effectively tailor invest-

ment strategies to suit investor risk aversion under varying market conditions, outperforming

traditional funds. This highlights the potential for our framework to enhance investment

decision-making and better represent investor interests in both stable and volatile market

environments.

Keywords: robo-advising; risk aversion; economic disasters; inverse optimization; deep

reinforcement learning
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4.1 Introduction

Robo-advising are digital platforms that utilize algorithms to build and manage clients’ in-

vestments automatically. They have attracted lots of investors’ interest because of their sub-

stantive benefits, such as being cheaper, more efficient and more transparent than traditional

financial services. They are able to diversify investors’ portfolios based on economic models,

and algorithms. However, research argues that robo-advisors are not capable enough to build

portfolios tailored to investors’ risk profiles (Tertilt and Scholz, 2018; Alsabah et al., 2021;

Dong et al., 2022). Although the importance of risk aversion is well documented, in practice,

the assessment on risk aversion tends to be hard due to the subjective nature of risk-taking

such as inherent behaviour biases, and investment errors.

A strand of research studies reveals investors’ risk aversion in two main areas. The first area

is the questionnaire-based methods that measure investors’ risk preferences directly from a

set of questions. These methods develop questionnaires to construct risk-tolerance indices

and measure financial risk tolerance (Grable, 2000). Using large-scale representative sur-

veys, Dohmen et al. (2011) discover the determinants of risk attitudes and explain the risk-

taking behaviours. In practice, robo-advisors mainly use online questionnaires to evaluate

investors’ risk profiles (Tertilt and Scholz, 2018). The second area infers risk aversion from

investors’ observed investment behaviours such as household portfolios or the investors’

portfolio choices. Bucciol and Miniaci (2011) derive the distribution of risk tolerance from

the U.S. household samples. Alsabah et al. (2021) learn an investor’s risk preference through

virtual investor’s portfolio choices. Their study inversely estimates a parameter of the risk

preference based on the known market model, e.g. mean-risk utility model, as well as the ob-

servable information from the market and investors. Following Alsabah et al. (2021), Dong

et al. (2022) estimate the risk aversion using Chinese stock market data. Yu et al. (2023) infer

an investor’s risk preference and expected returns directly from historical portfolio allocation

data using inverse optimization on the mean-variance portfolio model.

The existing literature about assessing risk aversion of robo-advisory faces several limita-

tions. Firstly, when using questionnaires to assess investors’ risk aversion, cognitive biases

may lead to imprecise results as the participants’ choices do not necessarily reflect their true

risk preferences without experiencing real-life situations (Tertilt and Scholz, 2018). Addi-
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tionally, robo-advisory questionnaires often lack comprehensive financial-related questions

to fully understand investors’ risk profiles. Secondly, although studying portfolio choices

can be more accurate and comprehensive in revealing risk preferences as they examine ob-

served behaviours, these methods may only asymptotically converge to the true risk prefer-

ence when data is sufficiently large or representative. This is particularly problematic in rare

economic disasters where obtaining comprehensive data is challenging. Third, the current

approach of inverse optimization assumes that risk aversion is time-varying, relying on the

real-time market data and previously updated risk aversion (Yu et al., 2023). This approach

is sensitive to the market movement resulting in an unstable estimator. The evidence is re-

flected in the empirical results of big jumps in their estimated risk aversion under economic

recession.

To solve the aforementioned limitations, we present a novel approach to learning investors’

risk aversion and optimizing investment strategies by combining inverse optimization and

deep RL in two state spaces including normal states and disaster states. Our framework is

developed using several advanced methods, including mean-variance optimization, inverse

optimization and deep RL algorithms. Since the risk aversion parameters may not converge

to the true one with limited observations of holdings for batch inverse optimization, online

inverse optimization updates iteratively risk aversion if the observed holdings are available in

the recorded trajectory until convergence. The updated risk aversion will be used to learn the

optimal investment by robo-advisors via deep RL continuously. Robo-advisors act as human-

acid investment advisors that not only learn the dynamic of economic states but also provide

investment strategies tailored to investors’ risk aversion. Continuous portfolio optimization

after risk aversion is learned, which helps avoid huge potential losses in disaster states and

obtain sustainable profits in normal states.

RL is a sub-field of machine learning that focuses on how an agent can learn to make de-

cisions through interactions with the environment. RL improves learning based on experi-

ence and errors, where the agent receives feedback on its actions in the form of rewards or

penalties (Sutton and Barto, 1998). The agent learns to optimize its policies based on these

rewards, maximising the expected cumulative rewards in the long run. Using converging risk

aversion values in two states, we test the trained model in the testing set, which covers both

disaster states and normal states. Results show the proposed approach successfully beat the

real mutual fund performance and benchmark portfolios in the long term.
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The framework greatly improves how we estimate risk aversion based on different economic

conditions. Traditional methods, which use a fixed measure of risk aversion, don’t accurately

reflect the real-world fluctuations of the market. Unlike these static models, our framework

adjusts to changes, recognizing that people’s levels of risk aversion can differ greatly during

normal times and in crisis situations. However, trying to keep risk aversion estimates up-

to-date can be challenging. They often need to be adjusted due to changes in both market

conditions and investor behaviours. Our approach uses inverse optimization to update these

estimates in two distinct state spaces that deal with economic changes.

We select hybrid funds to investigate the risk aversion of funds because this category of funds

actively invests in diversified asset classes and, therefore, exists a thorough asset allocation

process. Through testing on three types of hybrid funds with different allocation strategies,

the results illustrate that our proposed algorithms not only successfully estimate risk aver-

sion, but also outperform the benchmarks and real mutual fund performance in investment.

This paper contributes to the revealed preference literature by inferring investors’ risk aver-

sion from observed portfolio choices. Our approach is connected to Hansen and Singleton

(1982), who estimate preference parameters within a nonlinear rational expectations frame-

work. They utilize aggregate consumption and asset returns to infer the agent’s risk prefer-

ences. While their focus was on macroeconomic data and aggregate consumption patterns,

we extend it to investors’ portfolio choices in financial markets. Similarly, Chetty (2006) de-

velops a method to estimate the coefficient of relative risk aversion from labour supply data.

His work demonstrates how individual behavioural responses to wage and income changes

reveal underlying risk preferences. Koijen and Yogo (2015) present an equilibrium model of

institutional demand and asset prices, using stock market data to understand how institutional

investors’ preferences influence asset prices. Following their research, we use institutional

data, which is the mutual fund holdings, to infer risk aversion.

Our work diverges from the revealed preferences’ studies by employing mean-variance op-

timization within an inverse optimization framework to infer risk aversion from observed

portfolio choices. Unlike Hansen and Singleton (1982), who utilize aggregate consumption

data, and Chetty (2006), who focuses on labor supply, we apply our methodology directly to

financial portfolio allocations. While Koijen and Yogo (2015) analyze institutional demand,

we focus on institutional holdings in the robo-advisory context. By using mean-variance op-
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timization, we are able to estimate state-dependent risk aversion parameters. The results re-

veal that investors’ risk aversion increases during normal state spaces or disaster state spaces.

This finding contributes to the literature by providing empirical evidence of how risk aver-

sion is inferred from financial data adapted to changing market conditions, thereby extending

the revealed preference approach to the domain of portfolio optimization and robo-advisory

services.

Additionally, our research presents several crucial contributions. Firstly, this study is the pi-

oneering effort to estimate risk aversion and optimize investment concurrently by proposing

an iterative update algorithm between online inverse optimization and deep RL. Secondly, we

advance the optimization of investment strategies that cater to investors’ unique risk aversion

preferences. Lastly, our work improves the estimation of risk aversion dependent on normal

and disaster state spaces, offering a framework with the potential for extension to a broader

range of states.

The study is presented in the following order. Section 4.2 presents the mean-variance op-

timization model to optimize asset weights conditional on appointed risk aversion, market

signals and states. Section 4.3 propose inverse optimization. Section 4.4 discusses the RL

methods. Then, section 4.5 outline the data and section 4.6 illustrates results. Finally, sec-

tion 4.7 concludes the whole study.

4.2 Portfolio selection

4.2.1 Markowitz mean-variance optimization

The proposed methodology starts with finding the optimal portfolio weights, which is the

so-called portfolio selection. Investors choose fractions x = (x1,x2, ...,xn)
⊺ to allocate in n

assets over a certain period subject to constraints e⊺x = 1 where e is a vector of ones, corre-

sponding to the number of assets n to ensure that the sum of the portfolio weights x equals

to one (Markowitz and Todd, 2000). We consider the mean-variance portfolio optimiza-
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tion (Markowitz, 1952). That is:

max
x

µ
⊺x− 1

2
ρx⊺Σx,

s.t. x≥ 0,

e⊺x = 1,

(4.1)

where ρ is the risk aversion parameter to balance the expected portfolio return and the portfo-

lio variance term. The expected portfolio return µ⊺x is the weighted average of the expected

asset returns µ ∈ Rn. The variance of portfolio returns x⊺Σx measures the degree of fluctua-

tion due to the actual returns of the portfolio assets, where Σ ∈Rn×n is the covariance matrix

between assets.

We assume there is no short sell allowed, in equivalent, x≥ 0. The model eq. (4.1) is unable

to derive analytical solutions due to inequality constraints (Best and Grauer, 1991), but we

can use numerical solutions to optimize the optimal weights from the quadratic optimization

function as shown in eq. (4.1).

To achieve effective portfolio diversification in asset allocation for hybrid funds, which typi-

cally hold hundreds of distinct assets, it is essential to categorize these holdings into broader

financial asset classes, including equities, fixed-income, and cash. This approach not only

simplifies the analysis but also aligns with the common investment strategies employed by

fund managers. The equity asset class encompasses various types of tradable equity as-

sets, such as common shares, and preferred stocks, found in hybrid funds. Research has

shown that equities generally provide higher returns over the long term, albeit with increased

volatility (Fama and French, 1992). This makes them an attractive option for investors seek-

ing growth potential. Fixed-income assets, which include sovereign bonds, corporate bonds,

mortgages, and asset-backed securities, offer more predictable income streams and lower risk

compared to equities (Fabozzi and Fabozzi, 2021). As such, they serve as an essential com-

ponent in a diversified portfolio, particularly for conservative investors or those nearing re-

tirement. The cash asset class comprises cash and cash equivalents held by fund companies,

providing liquidity and a buffer against short-term market fluctuations. Holding cash can

help investors manage risk and capitalize on investment opportunities as they arise. More-

over, we exclude other asset types, such as futures and swaps, from our analysis as they

constitute an insignificant portion of hybrid fund portfolios.
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Researchers often utilize proxy indices to represent asset classes for reasons of data avail-

ability and simplification. Acquiring data on specific illiquid and short-lived holdings can

be challenging throughout the entire study period. Additionally, determining the historical

returns of each asset class from a diverse range of component assets with varying charac-

teristics proves difficult, as these encompass numerous fluctuating returns over time. One

solution to this issue is the use of proxy assets. Karoui (2013) employs the stock market

factor from the Kenneth French library as a proxy for stock class returns and the total return

index on 7 to 10-year U.S. Treasury bonds to represent bond returns. Their study assesses

the performance of 182 hybrid funds using these proxies. In line with their employment of

proxy assets, our study adopts the S&P 500 stock index (SPX) as a proxy for the equity asset

class, the FTSE US Broad Investment-Grade Bond Index (USBIG) as a representative for the

fixed-income asset class, and the one-month Treasury bill rate as a proxy for the cash asset

class. These indices provide a reliable representation of their respective asset classes.

4.2.2 Expected returns and covariance

The expected return of the S&P 500 index is calculated by the Implied Equity Risk Pre-

mium (ERP) summing a proxy risk-free rate. Damodaran (2019) provides the implied ERP

calcualting from the price of the S&P 500 index, future cash flow and its growth rate1. It rep-

resents investors’ expectations of the stock market. Thus, we treat the ERP as the expected

excess returns of S&P 500 index. And its expected returns are the summation to risk-free

returns which is the T bond rate (Tbond) from Damodaran (2019)’s measurement. Thus, the

expected returns of stock index µs is formulated as:

µs = ERP+Tbond. (4.2)

Unlike traditional methods that often rely on historical data, the implied equity risk premium

is forward-looking. This estimation method bases itself on the market’s current expectations

rather than actual future cash flows, enhancing its relevance and responsiveness to market

sentiment and macroeconomic changes. Particularly in disaster states, where actual returns

are low and infrequent, relying on historical data can lead to significant estimation errors.

1For detailed measture, please refer to Damodaran (2019).
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Thus, using the implied ERP allows our expected return calculation to dynamically reflect

these fluctuations and provide a more accurate, market-sensitive evaluation.

For the expected returns of the bond index, as the bond index is less volatile to the market

conditions, such as the presence of economic disasters, we use the historical average of

returns of the bond index as its expected returns. The returns of the bond index at time t are

calculated as:

Rb,t =
pb,t

pb,t−1
−1, (4.3)

where pt is the bond price at time t. Konno and Kobayashi (1997) add coupons of the

individual bond to the bond prices in the calculation of bond returns. However, as the bond

index does not pay coupons, we don’t include the average coupon in the returns of bonds.

The expected returns of cash assets are equivalent to their actual returns, and these assets are

not included in the covariance matrix. As per the definition of risk-free assets (Damodaran,

1999), they exhibit a characteristic of zero return variance, implying that their expected re-

turns correspond to the actual returns of the risk-free asset.

Regarding the covariance, the Ledoit-Wolf shrinkage approach (Ledoit and Wolf, 2004a) is

utilized to estimate expected covariance. The Ledoit-Wolf method is particularly benefi-

cial as it moderates extreme coefficients within the covariance matrix, pulling these values

towards more central estimates to reduce estimation risk. In our paper, this method specifi-

cally addresses the extreme coefficients that arise from financial assets prone to disaster risk,

which are typically skewed due to their high exposure to such risks. By applying shrinkage,

these distorted covariance values are adjusted to more neutral estimates, effectively mitigat-

ing the impact of extreme risks.

The foundation of this method is a sample covariance matrix, denoted as Σsample = E[(R−

E[R])(R−E[R])′], where R is a vector of historical returns for the stock index, bond index,

and risk-free assets2. This matrix is adjusted towards a structured estimator, Σstruct , defined

2The variance of the risk-free asset and its covariance to the stock index and the bond index should be set to
zero, due to its risk-free attribute.
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by a constant variance across all variables. This structured estimator is formulated as follows:

Σstruct =
tr(Σsample)

n
In, (4.4)

where tr(Σsample) represents the trace of Σsample which is the sum of the diagonal elements,

and In is an identity matrix of dimension n×n. This formulation provides a simple and sta-

ble baseline of covariance variance matrix by setting all variables in the structured estimator

with the same variance. The optimal shrinkage constant, denoted as δ , is determined by min-

imizing the expected quadratic loss between the actual covariance matrix and the shrinkage

estimator Σ̂ (Ledoit and Wolf, 2004b). The shrinkage covariance matrix Σ is expressed as a

linear combination of two extremes that are the sample covariance matrix and the structured

covariance matrix. The function of the shrinkage covariance matrix is:

Σ(δ ) = δΣstruct +(1−δ )Σsample. (4.5)

4.3 Inverse optimization

4.3.1 Forward optimization

Before defining the inverse optimization problem, we generalize the mean-variance opti-

mization eq. (4.1) to the form of forward optimization to understand the process of forward

decision-making. In forward optimization, the decision maker minimizes an objective func-

tion f (x,u,ρ) given a constraint function g(x,u,ρ) by responding with the optimal solution

x. The formula of the forward optimization problem (FOP) is:

FOP(u,ρ) := min
x
{ f (x,u,ρ)|g(x,u,ρ)≤ 0}, (4.6)

where x ∈ Rn is the decision variable which is portfolio holdings, and u ∈ Rn is the exter-

nal input variable, such as the asset prices or historical returns. ρ ∈ R is the risk aversion

parameter. The feasible set to FOP(u,ρ) is:

X (u,ρ) := {x ∈ Rn : g(x,u,ρ)≤ 0}. (4.7)
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The optimal solution set to FOP(u,ρ) is:

X opt(u,ρ) := argmin
x
{ f (x,u,ρ)|x ∈ X (u,ρ)}. (4.8)

We have the following assumptions to ensure that FOP is a convex optimization problem.

Assumption 4.1. f (x,u,ρ) are continuous in x,u,ρ , and convex in x for the fixed u,ρ . g(x)

is continuous and convex in x.

When dealing with concave optimization problems, a common approach to solving them is

by converting them into convex optimization problems eq. (4.6), which are typically more

tractable due to their well-behaved properties in the field of inverse optimization. We take

the opposite of the concave objective function, as the opposite concave function is the convex

function. Given the mean-variance optimization problem eq. (4.1), the objective function can

be reformulated to focus on the minimization of a linear combination of risk and negative

expected returns. The objective function which is also the primal problem becomes:

min
x

1
2

ρx⊺Σx−µ
⊺x,

s.t. x≥ 0,

e⊺x = 1.

(4.9)

Eq. (4.9) is deemed as a convex optimization problem, as it satisfies the assumption 4.1.

In the context of solving eq. (4.9) for the optimal x, the dual problem is derived to facilitate

finding this optimal solution. The Lagrangian of the problem is given by:

L(x,λ ,ν) =
1
2

ρx⊺Σx−µ
⊺x−λ

⊺x+ν(1− e⊺x), (4.10)

where λ ∈ Rn is the vector of Lagrange multipliers associated with the non-negativity con-

straints x≥ 0, and ν ∈ R is the Lagrange multiplier for the equality constraint e⊺x = 1. The

saddle-point formulation of eq. (4.9) can be written as:

min
x

max
λ ,ν

L(x,λ ,ν). (4.11)
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The dual function is obtained by minimizing the Lagrangian with respect to x,

D(λ ,ν) = min
x

L(x,λ ,ν). (4.12)

Thus, the dual problem is:

max
λ ,ν

D(λ ,ν),

s.t. ∇xL(x,λ ,ν) = 0,

λ ≥ 0.

(4.13)

By controlling the Lagrange multipliers and setting the partial derivatives ∇xL(x,λ ,ν) = 0,

L(x,λ ,ν) is minimized with respect to x. We further derive the function of the zero partial

derivatives as follows:

∇xL(x,λ ,ν) = ρΣx−µ−λ −νe

= 0.
(4.14)

Through these calculations, one can estimate the appropriate λ and ν values, substituting

back into eq. (4.13) to ultimately determine the optimal x.

Slater’s condition assures that there exists at least one point x within the interior of the feasi-

ble set of the dual problem such that x≥ 0 and e⊺x = 1, there is a strong duality between the

primal problem and dual problem. This strong duality confirms that the optimal solutions to

both problems coincide, meaning that any optimal solution x ∈ X opt(u,ρ) must satisfy the

Karush-Kuhn-Tucher (KKT) conditions (Bertsekas, 1997). They are:

ρΣx−µ−λ −νe = 0, (Stationarity)

x≥ 0, e⊤x = 1, (Primal feasibility)

λ ≥ 0, (Dual feasibility)

λixi = 0 for all i. (Complementary slackness)

The stationarity condition implies that at the optimal solution, the gradient of the Lagrangian

function (x,λ ,ν) with respect to the decision variable x must be zero. Essentially, the gradi-

ent of the objective function is exactly balanced by a linear combination of the gradients of
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the constraint functions, weighted by their respective Lagrange multipliers.

According to primal feasibility, the solution x must satisfy the original constraints of the

primal problem, namely x≥ 0 and e⊤x = 1. For the dual feasibility, the Lagrange multipliers

associated with the inequality constraints must be non-negative λ ≥ 0.

Complementary Slackness is a critical component of the KKT conditions linking primal

problem constraints with dual problem multipliers. Specifically, for each constraint i,

λixi = 0. (4.15)

It indicates that if xi > 0, λi must be zero. Conversely, if λi > 0, xi = 0 must hold exactly.

To address the nonlinearity introduced by the complementary slackness condition λixi = 0,

we can transform it into a set of linear constraints using a large constant M > 0 and binary

variables zi ∈ {0,1} (Yu et al., 2023). That is:

λi ≤Mzi,

xi ≤M(1− zi).

These constraints enable the effectiveness of complementary slackness. If zi = 0, λi ≤ 0

forces λi = 0 due to dual feasibility λi ≥ 0, and xi ≤ M allows xi to be positive. If zi = 1,

λi ≤M allows λi to be positive, and xi ≤ 0 forces xi = 0 due to the primal feasibility xi ≥ 0.

4.3.2 Inverse optimization

After outlining the convex optimization and its Lagrangian of mean-variance optimization

eq. (4.1), we turn to inverse optimization to inversely estimate risk aversion from the mean-

variance optimization as the risk aversion ρ is unknown. Inverse optimization refers to the

inference of unknown parameters from an optimization problem based on the knowledge of

the optimal solutions. If the observed solution belongs to the optimal solution set X opt(u,ρ)

of the FOP(u,ρ), inverse optimization finds the optimal ρ in the feasible solution set such

that the aggregate fit of the FOP(u,ρ) is optimized to the observed solutions. It is inverse
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feasible since ρ can be optimized directly by reformulating x with observed solutions in the

FOP(u,ρ) model.

However, if the inverse feasibility is not available since the observed data is not the op-

timal solution to the FOP(u,ρ), we can use data-driven inverse optimization to estimate

ρ (Chan et al., 2023). It is usually the case with noisy solution data where the observ-

able solution data are noisy, as human investors inevitably incur behavioural biases and may

make mistakes when making decisions (Foerster et al., 2017). Some other noises come

from measurement errors during the data collection process. Thus, robo-advisors observe

noisy solutions within the rational boundary instead of theoretically optimal solutions. Two

developed inverse optimization methods with noisy data are batch learning (Aswani et al.,

2018) and online learning (Yu et al., 2023). The former research infers unknown parameters

based on a batch knowledge of noisy solutions, while the latter updates risk preferences us-

ing concurrent observed resolutions step by step rather than only updating after catching all

observations.

The methodologies presented in Aswani et al. (2018) and Yu et al. (2023) are well-suited

for our framework, as they are capable of inferring risk aversion coefficients through either

batch estimation or an online updating rule. Given the compatibility of online learning with

our proposed deep RL framework, which also employs step-by-step updates, we opt for the

online inverse optimization approach to estimate risk aversion coefficients. Subsequently,

we determine the optimal investment strategies using deep RL.

Online learning, designed to estimate time-varying unknown parameters, has evolved from

batch learning techniques (Dong et al., 2018). Online inverse optimization offers several

advantages over its batch counterpart, such as significantly accelerating the learning process

while maintaining performance guarantees. The existing literature about online inverse op-

timization demonstrates that these methods converge at a polynomial time rate and achieve

statistical consistency. Consequently, it can asymptotically attain the best possible predic-

tion errors while learning parameters with high accuracy and robustness. By incorporating

the online learning approach within the context of estimating risk aversion coefficients, we

can effectively and efficiently adapt to changing market conditions. Furthermore, the seam-

less integration with our deep RL framework allows for the simultaneous identification of

optimal investment strategies, thus providing a comprehensive and robust solution to the
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portfolio optimization problem.

Inverse optimization finds the risk aversion parameter ρ if we know all the other variables,

including investors’ optimal investment solutions and financial market signals. Since we are

unable to directly observe the optimal weight vector x ∈ Rn because of the noises, such as

the behavioural biases and investment mistakes, we employ a variable y∈Rn to represent the

observable portfolio weight vector in reality. In the inverse problem, minimising the distance

between observable noisy solutions y and the optimal solutions x can control noises. We use

|| · ||p to denote the lp norm. Thus, we define the loss function under each optimal solution set

as the minimum predicted distance between observed solutions yt and the optimal solutions

x.

l(yt ,ut ;ρt) = min
x∈X opt(u,ρ)

||yt− x||22, (4.16)

where x is subject to a specific risk aversion parameter ρ according to eq. (4.9). ρ are

unknown, but they can be estimated in a pre-defined finite risk aversion set Ψ.

There are several state spaces depending on market situations. For example, we define S =

{S1,S2, . . . ,SJ}, where each S j represents a different kind of state space used to classify a

set of similar economic scenarios. This paper sets J = 2, with S1 representing the space of

normal states and S2 representing the space of disaster states where disaster events happen.

For the risk aversion ρS j , we assume that the true risk aversion is invariant within the state

space S j.

The proposed framework is different from the context of online IOP, in which risk aversion

is time-varying at all times. The proposed framework adjusts online inverse optimization to

make it suitable for updating risk aversion under different economic state spaces S j. The

optimization updates ρS j once receiving the signal that corresponds to S j and noise solution

(ut ,yt) at time t. For st ∈ S j, the risk aversion under S j is updated as follows:

ρ̂S j,t = argmin
ρ∈Ψ

1
2
||ρ− ρ̂S j,t−1||22 +

η√
t
l(yt ,µt ;ρ), (4.17)

where η√
t is a learning rate. ρ̂S j,t−1 is the risk aversion value updated at time t − 1. ρ̂S j,t

is updated based on the distance from the last updated value ρ̂S j,t−1 and the predicted loss

between estimated optimal actions, subject to the estimated risk aversion and the observed

actions. The estimated risk aversion ρ̂S j,t at time t is only formed when investors notice
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market signals µt and also make decisions yt , as the risk aversion is inherent and dependent

under the different state space S j. After updating the risk aversion under S j, the estimate is

used to update the next estimated risk aversion under the same S j.

Estimating risk aversion in eq. (4.17) presents challenges due to the high dimensionality of

the solutions, which leads to computational complexity, classified as NP-hard (Aswani et al.,

2018). Also, even though converting to the dual problem, the unknown parameter ρ prevents

it from estimating the solution and dual variables. Instead, we can find the optimal solution

by utilizing the KKT conditions of the Markowitz mean-variance optimization eq. (4.9),

as detailed in section 4.3.1. The feasibility of eq. (4.9) can be obtained easily, thus there

exits solutions to eq. (4.9). Such a solution that satisfies the KKT conditions is the optimal

solution. Thus, by incorporating the KKT conditions into the constraint set of the inverse

optimization problem eq. (4.17), the method finds the optimal x. Then, we estimate risk

aversion ρ̂ bounded in Ψ that minimizes the objective function eq. (4.17). Thus, the online

updating function and its constraints are:

min
ρ,x

1
2
||ρ−ρS j,t−1||22 +

η√
t
||yt− x||22,

s.t. ρΣx−µ−λ −νe = 0,

0≤ x≤M(1− z),

e⊤x = 1,

0≤ λ ≤Mz,

z ∈ {0,1}n.

(4.18)

4.4 Reinforcement learning

4.4.1 Preliminary settings

RL is formulated within the framework of a Markov decision process (MDP) environment.

An MDP is a mathematical model that formalizes the problem of decision-making in an

environment where the outcomes of actions are probabilistic and dependent only on the

current state of the environment. An MDP consists of a set of states, actions, transition
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probabilities, and reward functions. By formulating a problem as an MDP in RL, robo-

advisors (also called agents) interact with the environment at a sequence of discrete time,

denoted by t ∈ T , and with states over time in a state space that contains different economic

scenarios in financial markets, denoted by st ∈ S j for j = {1,2} with j = 1 for the normal

state space and j = 2 for the disaster state space. At time t, robo-advisors observe some

features representing either the normal state or disaster state and take investment actions from

an action space at ∈ A according to their investment policies π(a|s). In the next time step

t + 1, the agent transits to the next states according to the transition probability P(st+1|st).

It receives the resulting reward rt+1 and moves itself into the next state st+1. We consider

rewards rt defined in the mean-variance analysis as defined in section 4.2.

Our framework employs model-free RL, which operates without the need to know transition

probabilities. This approach directly learns the policy π(a|s) and optimizes the value func-

tion V (s) through interactions with the real-time financial market environment. Model-free

methods are beneficial in environments that involve dramatic changes, such as under dis-

aster states, where predicting future states can be unreliable due to the rare occurrence of

these transitions. In contrast, model-based approaches rely on knowing the model of transi-

tion probabilities and rewards. They calculate expected rewards for each possible next state

using transition probabilities and reward functions before selecting actions at the current

state. Overall, model-free RL, by focusing on decision-making solely through direct inter-

actions with the financial market, offers a more straightforward approach than model-based

approaches.

There are two key assumptions underlying our framework. First, the actions of robo-advisors

are assumed to be independent of each other and are based solely on the current state and

their individual risk aversion. Second, it is assumed that the impact of any single individual’s

decision on the overall market is minimal, thus suggesting that the actions taken by robo-

advisors do not significantly influence the transition to subsequent economic states. In our

simulations, even though agents are actively making investment decisions, they still interact

with a realistic economic environment, unchanged with the simulated decisions.

Each state can be featured by a range of indicators. In economics and finance, these features

can be macroeconomic indicators and technical indicators. The inflation rates, as the monthly

percentage change of the consumer price index (CPI) are used as the macroeconomic indi-

65



Chapter 4

cators. The equation for calculating inflation rates is INF = CPIt−CPIt−1
CPIt−1

× 100. Moreover,

the unemployment rate (UR) plays an important role in representing states, since a change

of states often parallels a significant change in the unemployment rate. In terms of technical

analysis, various indicators are employed to represent states and make informed investment

decisions through deep RL. These indicators include simple moving average (SMA) and rel-

ative strength index (RSI). A simple moving average (SMA) is an arithmetic moving average

calculated by adding the asset prices from a number of periods and then dividing the total

amount by the number of periods. That is, SMAt =
1
n

n−1
∑

i=0
pt−i, where pt−i is the asset price

at time t− i. SMA smoothes out random fluctuations in past data, thereby providing a view

of trends. Relative strength index (RSI) is a momentum oscillator that measures the speed

and change of price movements on a scale of 0 to 100. The equation for the m-month RSI is

RSIm = 100− 100
1+RSm

where RSm is the average of m-month gains divided by the average of

m-month losses. Deep RL allows these indicators as input to feature the specific states over

time, and updates the parameters from the input.

One unknown parameter value ρ is updated from online inverse optimization discussed in

section 4.3 and used as a parameter in the reward function in the process of learning invest-

ment decisions. The algorithm to simultaneously estimate risk aversion values and make the

investment is shown in the algorithm 4.

4.4.2 Policy gradient

Policy gradient is a class of RL algorithms that directly optimize policy to maximize the

expected long-term reward instead of ing the value functions of rewards. Unlike value-based

methods that approximate and use a value function to compute a procedure, policy gradient

methods explicitly outline a policy function with its own parameters to find an optimal policy.

The basic idea behind policy-gradient methods is to update the parameters of the policy

function in the direction of the gradient of its objective function that measures the long-term

expected rewards following a parameterized policy. The parameters are typically updated by

stochastic gradient ascent.

Policy-gradient methods benefit in converging to a locally optimal policy. Value-based meth-

ods prescribe a near-optimal policy since they rely on a function approximation to estimate
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the value function, which can introduce errors and approximation bias into the estimates.

They may succeed in a good approximation of value function rather than guaranteeing con-

vergence in a near-optimal of the policy (Sutton et al., 1999). This is because any minor

change in the estimated value of an action can change the estimated policy in value-based

methods. In addition, the optimal policy from the policy gradient is stochastic, selecting a

set of actions with specific probabilities. Value-based methods find the deterministic policy

of a specific action, which is not realistic in practice (Konda and Tsitsiklis, 1999).

The setting for policy-based RL is described within the standard RL framework, as detailed

in section 4.4.1. Policy gradient methods suppose that the policy πθ (a|s) is differentiable

with respect to its parameters θ , such that the partial derivative ∂πθ (a|s)
∂θ

exists.

The policy value function is formulated as:

J(θ) = ∑
s∈S

dπθ (s) ∑
a∈A

πθ (a|s)Qπθ (s,a), (4.19)

where θ is a policy network parameter, and dπθ (s) represents the stationary distribution of

states under policy π within the Markov chain framework, and Qπθ (s,a) is the state-action

value function. Although the Q-value function calculates the expected cumulative future

rewards, in model-free RL, these values are estimated directly from real interactions with the

environment without relying on explicit models or simulations of future states.

A policy gradient theorem articulates the gradient of J(θ) as follows:

Theorem 4.1. For any MDP, and for any differentiable policy πθ (a|s), whether in the average-

reward or start-state formulations, the policy gradient is given by:

∇θ J(θ) = Eπθ [∇θ logπθ (a|s)Qπθ (s,a)]. (4.20)

See proof in Appendix 4.A.

The policy parameter vector is updated according to the direction of ∇θ J(θ). Considering

the step size of updating α , the change of policy parameter is ∆θ = α∇θ J(θ). In practice,

calculating the exact gradient involves computing an expectation over all possible states and
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actions, which can be computationally expensive. A single sample is commonly used to

approximate the expectation. In other words, the parameter vector θ is updated using the

gradient evaluated at a single sampled state and action, multiplied by the step size α . The

update rule is therefore:

θ ← θ +α∇θ logπθ (a|s)Qπθ (s,a). (4.21)

4.4.3 Function approximation

Since the Qπθ (s,a) in policy gradient theorem 4.1 is unknown, it must be estimated. The

tabular methods are one way to estimate Q value Qπθ (s,a). Nevertheless, in many tasks, the

state space is relatively large, leading to the difficulty of using tabular RL methods no mat-

ter in finding the optimal policy or value function due to the memory limits, time and data

needed to fill tabular accurately. On the other hand, function approximation is a generaliza-

tion used to solve large-scale problems, as it takes samples from a desired function such as a

value function or policy function. It represents and approximates value functions or policies

in an MDP. Using function approximation, RL algorithms can be applied to a wide range

of problems, including high-dimensional control tasks and decision-making problems with

large action spaces.

Let fw(s,a) be an approximator to Qπθ (s,a) following πθ (a|s). The update value of pa-

rameter vector w is proportional to the differential estimation errors between the true value

Qπθ (s,a) and the approximated fw(s,a). Therefore, ∆w ∝ ∇w[
1
2( fw(s,a)−Qπθ (s,a))2] ∝

( fw(s,a)−Qπθ (s,a))∇w fw(s,a).

We should choose function approximation carefully to avoid introducing any bias to follow

the exact policy gradient. Sutton et al. (1999) illustrate that the policy gradient can be exact

to the approximated policy gradient with the two conditions. First, w minimizes the mean

square error ε = Eπθ
[( fw(s,a)−Qπ

θ
(s,a))2]. Second, w is compatible to the policy. That is:

∇w fw(s,a) = ∇θ logπθ (a|s). (4.22)
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The policy gradient is exact to the approximated policy gradient as shown below:

∇θ J(θ) = Eπθ
[∇θ logπθ (a|s) fw(s,a)]. (4.23)

The proof of eq. (4.23) is shown in Appendix 4.B. Moreover, policy iterations with function

approximation in eq. (4.23) converge to a locally optimal policy (Sutton et al., 1999).

4.4.4 Actor-Critic

Although we control for unbiased approximate in function approximation, a drawback of

the policy-based methods is that they may introduce a large variance due to the use of a

stochastic policy gradient. Moreover, they do not involve learning from older information,

as a new gradient is estimated using the current trajectory, which means past information is

not explicitly stored or used during the learning process. Konda and Tsitsiklis (1999) propose

Actor-Critic algorithms to combine the advantages of value-based and policy-based methods.

The state-action Q value function is estimated using a critic network, that is, Qπ(s,a) ≈

fw(s,a) = Qw(s,a).

The parameterized Q value function Qw(s,a) is approximated using a linear function:

Qw(s,a) = φ(s,a)⊺w, (4.24)

where φ(s,a) is a feature vector corresponding to the state-action pair (s,a), and w is the

parameter vector of the critic network. According to the updated Qw(s,a), the policy is

thereby parameterized using an actor network. The approximate policy gradient becomes

∇θ J(θ) = Eπ [∇θ logπθ (a|s)Qw(s,a)]. Using the parameter update equation eq. (4.21), the

change in the policy parameter θ is:

△θ = α∇θ logπθ (a|s)Qw(s,a). (4.25)

Actor-critic algorithms can effectively reduce variance with the effort of a critic to evaluate

how good a policy πθ (a|s) is for current parameter θ . Then, the actor updates policy pa-

rameters θ in the direction suggested by the critic. They propose a projection operator to

ensure that the policy parameters remain within the range of admissible values during the
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learning process. Therefore, the critic-parameterized approximation is directly prescribed

by the actor rather than they are chosen independently.

4.4.5 A2C

The Advantage Actor-Critic algorithm (A2C) combines the actor-critic architecture with the

advantage function to reduce the variance from plain actor-critic algorithms (Mnih et al.,

2016). The advantage function is used to estimate the quality of the policy. That means it

estimates the advantage of action a in state s. The advantage function is defined as:

Aπθ (s,a) = Qπθ (s,a)−V πθ (s). (4.26)

The policy gradient becomes:

∇θ J(θ) = Eπθ
[∇θ logπθ (a|s)Aπθ (s,a)]. (4.27)

The advantage function value can be approximated by estimating state value Vw(s)≈V πθ (s)

and state-action value as Qw(s,a)≈ Qπθ (s,a).

In the critic process, the A2C algorithm updates the parameters of the value network w to

minimize the temporal-difference (TD) error of the state value function Vw(s). The TD error

is defined as:

δw = r+ γVw(s′)−Vw(s). (4.28)

This TD error δw serves as an estimate of the advantage function Aw(s,a):

δw ≈ Aw(s,a). (4.29)

The update of w is as follows:

w← w+βδw∇wVw(s), (4.30)

where β is the step size in the policy network.
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In the actor process, the Q value is replaced by Aw(s,a). The policy parameter θ are devel-

oped from eq. (4.21) to the below function:

θ ← θ +α∇θ logπθ (a|s)Aw(s,a). (4.31)

The proposed algorithm to update risk aversion and learn investment decisions are presented

in algo 4.

Algorithm 4 Update risk aversion and optimize policy simultaneously

1: Input: State spaces S j where j = {1,2}, risk aversion set Ψ, portfolio holdings y and
asset signals including price of asset class index, expected stock returns.

2: Initialized values ρ̂S j,t at t = 0.
3: Start at st ∈ S j for t = 0.
4: for t = 0,1,...,T do
5: Sample at ∼ πθ (at |st , ρ̂S j,t).
6: Observe rewards r(st ,at , ρ̂S j,t).
7: Transit to next state st+1 according to the actual market environment.
8: Update value network: wt+1← wt +β δwt ∇wtVwt (st).
9: Update policy network: θt+1← θt +α ∇θt logπθt (at |st , ρ̂S j,t)Awt (st ,at).

10: Update ρ̂S j,t+1 = argmin
ρ∈Ψ

1
2 ||ρ− ρ̂S j,t ||22 +

η√
T
||yt+1− x||22.

11: end for
12: ρS j ← ρ̂S j,T .
13: Output: ρS j , π⋆(a|s,ρS j).

4.5 Data

The paper establishes the criteria for classifying the financial market into normal and dis-

aster states. The classification of states refers to the business cycle data provided by the

National Bureau of Economic Research (NBER)3. According to the NBER, expansions oc-

cur from the trough to the peak of a business cycle, while recessions appear from the peak

to the trough. We adopt the NBER’s classification, designating disaster states as periods of

economic contraction and the remaining time periods as normal states. This classification is

justified for the reason that the two disaster states retrieved from the NBER business cycles

as we can see in table 4.5.1 coincide with the periods of economic turmoils resulting from the

2008 financial crisis and the COVID-19 pandemic. The algorithm starts in January 2008 as
3Business cycles data source: https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions.
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the starting point and transitions to the subsequent month, February 2008, as the next state,

continuing to progress monthly in this manner.

Table 4.5.1: Summary of state dates

State Date Month Quarter

Normal state space (S1)
2009.07 (2019Q3) - 2020.02 (2019Q4)

158 50
2020.05 (2020Q3) - 2022.12 (2022Q4)

Disaster state space (S2)
2008.01 (2008Q1) - 2009.06 (2009Q2)

20 7
2020.03 (2020Q1) - 2020.04 (2022Q2)

The data, spanning from January 2008 to December 2022, is divided into two subsets, includ-

ing a training set covering January 2008 to December 2019, and a testing set encompassing

January 2020 to December 2022, as illustrated in figure 4.5.1. The proposed framework es-

timates risk aversion and trains the deep RL model using the training set. In contrast, the

testing set is designated to evaluate the performance of the trained model. To assess the ef-

fectiveness of the proposed algorithm, it is crucial to examine its impact on the testing set.

Fig. 4.5.1: Training set and testing set for deep RL. Blue blocks represent disaster states,
while grey blocks represent normal states.

In addition, we tune the hyperparameters using three-fold cross-validation on the training set.

The hyperparameter set includes the learning rate η and a sufficiently large constant M in the

online updating equation (eq. (4.18)), as well as the learning rates α for the policy network

and β for the value network. Three-fold cross-validation involves splitting the training set

into three equal folds. For each iteration, two folds are used to train the model, and the

remaining fold is used for validation. This process is repeated three times, with each fold

serving as the validation set once. Consequently, each set of hyperparameters is evaluated

through three separate runs. We select the optimal hyperparameters based on the smallest

average loss across the three validation sets.

By performing three-fold cross-validation on the training set, we effectively adjust hyper-
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parameters during the model training process, ensuring their robustness and generalization

across different data splits. It is crucial that the entire hyperparameter tuning and model

training process is conducted solely based on the training set, with the test set completely

unused during this process. This ensures the independence and reliability of the test set in

the evaluation process.

Regarding the data collection, the required variables and their corresponding data sources

are outlined below. For the stock asset class, we use the S&P 500 index (SPX) as a com-

mon proxy because of its representativeness for U.S. stock markets. As for the bond asset

class, we select the FTSE US Broad Investment-Grade Bond Index (USBIG) as a represen-

tative index. The USBIG index encompasses a wide range of bonds including US Treasury,

government-sponsored, collateralized, and corporate debt, making it reliable for represent-

ing the investment-grade bond market. The prices of SPX and USBIG, as well as holding

weights of stocks, bonds, and cash asset classes for mutual funds are collected in Datas-

tream. Also, net asset values (NAV) are gathered to construct mutual funds’ returns from

Datastream. The expected stock returns are collected from Damodaran (2019)4. We choose

the one-month treasury bill as a proxy for the risk-free asset (cash) and obtain the treasury

yields from the Federal Reserve Economic Data (FRED) database 5. For deep RL invest-

ment, we incorporate technical indicators along with macroeconomic indicators, including

monthly inflation and unemployment rates, to present the state features. The latter two vari-

ables are collected from the Bureau of Labor Statistics (BLS) 6.

Table 4.5.2 presents the summary statistics of data for the stock index, bond index, risk-

free rate, inflation rate and unemployment rate. There is a 180-month data collection from

January 2008 to December 2022. The monthly expected stock returns obtained from ERP

have the same mean as the historical stock returns of S&P 500, with an average of 0.65%.

Bond returns exhibit an average of 0.23% over the dataset. The average risk-free rate is

0.05%, with an average inflation rate of 0.19% and an average unemployment rate of 6.29%.

4Data are sourced from his website https://pages.stern.nyu.edu/∼adamodar/New Home Page/home.htm. From
September 2008 onwards, expected stock returns are provided monthly, calculated as the sum of the equity
risk premium and Treasury bond yield. For the period from January 2008 to September 2008, we use the
expected stock returns in 2007 to avoid forward-looking bias. To align with the frequency of other variables,
we convert these annual expected returns into monthly returns by dividing by 12.

5FRED data source: https://fred.stlouisfed.org.
6BLS data source: https://www.bls.gov/bls/newsrels.htm.
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Table 4.5.2: Summary statistics of data. Monthly stock prices (Ps), monthly bond prices (Pb),
monthly expected stock returns (µs), monthly stock returns (Rs), monthly bond returns (Rb),
cash returns as risk-free rate (R f ), monthly inflation rate (INF) and monthly unemployment
rate (UR). Returns, inflation rate and unemployment rate are measured in %.

Ps Pb µs Rs Rb R f INF UR

count 180 180 180 180 180 180 180 180
mean 2228.74 1573.98 0.65 0.65 0.23 0.05 0.19 6.29
std 1027.84 226.52 0.08 4.71 1.17 0.07 0.33 2.26
min 735.09 1116.76 0.43 -16.94 -4.38 0.00 -1.80 3.50
25% 1341.56 1439.00 0.63 -1.77 -0.31 0.00 0.00 4.30
50% 2061.43 1589.40 0.67 1.24 0.15 0.01 0.20 5.80
75% 2851.18 1685.38 0.70 3.56 0.95 0.08 0.30 8.20
max 4766.18 1975.23 0.89 12.68 4.53 0.34 1.20 14.70

The standard deviation reveals the degree of variability around the mean, with the stock

returns showing a relatively high standard deviation of 4.71%, indicating greater volatility

compared to bond returns, which have a standard deviation of 1.17%. This suggests that

while stock returns offer higher returns, they come with significantly more risk. In contrast,

the risk-free rate (R f ) and inflation rate (INF) exhibit lower standard deviations (0.07% and

0.33%, respectively), reflecting their more stable nature over the period.

The minimum and maximum values show the extreme observations in the dataset. For in-

stance, stock returns reached a low of -16.94% and a high of 12.68%, further highlighting

the high volatility and risk associated with equity investments during this period. Bond re-

turns, on the other hand, had a smaller range, with a minimum of -4.38% and a maximum of

4.53%.

The lower (25%), median (50%), and upper (75%) quartiles provide further insight into the

distribution of the data to know where the majority of observations lie. For stock returns

(Rs), the 25th percentile is -1.77%, the median is 1.24%, and the 75th percentile is 3.56%.

This indicates that while extreme values exist, the majority of stock returns fall within a

moderate range. Similarly, for the unemployment rate (UR), the 25th percentile is 4.30%

and the 75th percentile is 8.20%, showing a concentration of observations within this range,

with the labour market fluctuating around the 5.80% median. The quantiles provide us with

an understanding of both the central tendency and spread of the data.

The work selects six hybrid funds listed in table 4.5.3 according to three types of investment
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strategies for hybrid funds, including aggressive, moderate and conservative allocations. In-

vestment strategy types determine the allocation of stock and bonds. Aggressive hybrid funds

have a higher allocation to stocks, typically 65−80%, and a lower allocation to bonds, typi-

cally 20−35%. The moderate investment strategy allocates 50/50 to stocks and bonds asset

class. Conservative hybrid funds typically have a higher allocation to bonds with 65−80%

holding weights and a lower allocation of 20−35% to stocks.

These fund types are designed for investors with different risk tolerance levels and the ex-

pectation of returns. Aggressive funds are suitable for investors who expect higher returns

and bear higher risk in the long term. In comparison, conservative funds are designed for

investors willing to accept lower returns in exchange for a lower level of risk. Moderate

funds are a good choice to balance the potential for higher returns with a moderate level of

risk. We carefully select two representative mutual funds for each investment type to study

their asset allocation and portfolio strategies.

In addition to the performance of mutual funds themselves, we also simulate two other in-

vestment strategies for comparison: investment-type benchmark portfolios and the equal-

weighted (EW) strategy. On average, aggressive investment portfolios allocate 75% of as-

sets to the stock index, 20% to the bond index, and 5%to cash. Moderate asset allocation

portfolios typically hold 50% in the stock index, 45% in the bond index, and 5% in cash.

Conservative portfolios consist of 20% in the stock index, 70% in the bond index, and 10%

in cash. The EW strategy allocates the same holdings to the stock index, the bond index and

cash.

Table 4.5.3: Summary of selected hybrid funds

Investment strategy Fund name Ticker

Aggresive allocation
T Rowe Price Spectrum Moderate
Growth Allocation Fund

TRSGX

American Century One Choice Portfolio AOVIX

Moderate allocation
Fidelity Balanced Fund FBALX
Invesco Equity and Income Fund ACEIX

Conservative allocation
Vanguard LifeStrategy Conserva VSCGX
Chartwell Income Fund BERIX

Figure 4.5.2 illustrates the NAV of the mutual funds, representing the per-share value of each

fund’s net assets. The aggressive mutual fund TRSGX exhibits the highest appraisal with the
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largest NAV among the funds in our sample. In contrast, the NAV of ACEIX, a fund with

moderate allocations, is the smallest. Despite the heterogeneity in asset allocation strategies

across the six mutual funds under examination, figure 4.5.2 shows that their NAVs follow

business cycle patterns. All funds experienced NAV decreases during the 2008 financial

crisis and the COVID-19 pandemic periods.

Fig. 4.5.2: NAVs of mutual funds

Except for asset prices and returns, the risk aversion parameter is required to find the optimal

weight vector of assets in mean-variance optimization. We set the possible risk aversion in

the set Ψ= {0.1,0.2, ...,9.9,10.0}. The risk aversion set Ψ is defined following the empirical

estimation from Bucciol and Miniaci (2011). The asset weight vector will be optimized

under each possible risk aversion ρ in the set Ψ. Then, the risk aversion values under Ψ are

estimated to be the one that minimizes the predicted loss between observed holdings and the

optimal holdings from mean-variance optimization.

The initialization of risk aversion values is based on the assumption that investors are more

conservative during disaster states, and investors with more conservative types exhibit greater

risk aversion. We set the initialized risk aversion the same for the same strategy type of

mutual funds. The risk aversion is then estimated in the inverse optimization given observed

portfolio holdings. As shown in table 4.5.4, the initialized risk aversion values for normal

states st ∈ S1 are relatively smaller compared to the values in the risk aversion set, while the

risk aversion for disaster states st ∈ S2 is 1.5 higher than in normal states. For mutual funds

with moderate allocations, the initialized risk aversion lies within the mid-range of the risk

aversion set, with 4.0 in normal states and 5.5 in disaster states. Furthermore, risk aversion

values are initialized at 7.0 for conservative funds in normal states and 8.5 for disaster states.
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Table 4.5.4: Initialize the risk aversion values for mutual funds. ρ̂S1,0 are initialized risk
aversion under normal states, while ρ̂S2,0 are initialized values under disaster states. The
mutual funds with the same investment strategy are initialized with the same risk aversion
value.

Investment strategy Ticker ρ̂S1,0 ρ̂S2,0

Aggressive
TRSGX 1.0 2.5
AOVIX 1.0 2.5

Moderate
FBALX 4.0 5.5
ACEIX 4.0 5.5

Conservative
VSCGX 7.0 8.5
BERIX 7.0 8.5

4.6 Result

4.6.1 Estimate risk aversion

The proposed framework infers investors’ risk aversion by applying online inverse optimiza-

tion to observed mutual fund holdings, aligning with the revealed preference approach in

economics. By studying observable portfolio choices, we infer the implied risk aversion

parameters that rationalize investors’ decisions in different market states. This methodol-

ogy extends the work of Chetty (2006), who estimates the coefficient of relative risk aver-

sion from labour supply data, demonstrating how individual behavioural responses reveal

underlying preferences. Similarly, we analyze portfolio allocations to infer risk aversion,

contributing to the literature by focusing on investment choices rather than consumption or

labour decisions.

Figure 4.6.1 presents the estimated risk aversion values for each fund with online inverse

optimization. The risk aversion values of all funds are varied at the beginning of the learning

process, but they asymptotically converge to accurate values by minimizing the predicted

loss in eq. (4.18).

Among aggressive funds, TRSGX and AOVIX update higher values of risk aversion in dis-

aster states than in normal states. For TRSGX, risk aversion converges to 3.3 under disaster

states and 0.5 under normal states, while for AOVIX, it converges to 2.3 under disaster states
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Fig. 4.6.1: Estimated risk aversion values. (1) TRSGX and (2) AOVIX on the first row are
hybrid funds with aggressive allocation types, (3) FBALX and (4) ACEIX on the second row
are moderate-invested funds, and (5) VSCGX and (6) BERIX on the third row are conserva-
tive funds.

and 0.4 under normal states. These funds have relatively low values of risk aversion com-

pared to moderate and conservative funds from (3) to (6) shown in figure 4.6.1. Notably,

the risk aversion values in normal states nearly reach the lower bound of 0.1, indicating that

aggressive mutual funds can tolerate a relatively high risk of investment under normal states.

The convergence value reflects the fact that aggressive funds can hold a larger amount of

risky assets in line with their higher tolerance for risk. The results also reveals that aggres-

sive funds respond the most to disasters, as the gap between their risk aversion under disaster

states and normal states is the largest among moderate and conservative funds. This implies

that investors who are more risk tolerant and willing to accept higher risk should consider

investing in aggressive funds, but they should be aware of the increased risk in disaster states.

On the other hand, conservative funds have the largest risk aversion values. VSCGX risk

aversion converges to 8.7 under disaster states while 7.5 under normal states. BERIX con-

verges to 9.5 under disaster states while 7.6 under normal states. Conservative hybrid funds

nearly touch the upper cap of 10.0, which indicates that they have a large risk aversion when

making investments. The conservative risk aversion values indicate that this kind of fund has

a substantial aversion to risk and prefers riskless assets when pursuing returns. In line with
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the large risk aversion, they only allocate a small number of risky assets.

FBALX and ACEIX moderate hybrid funds converge to a range of middle risk aversion

values between aggressive and conservative mutual funds in figure 4.6.1. Specifically, for

FBALX, the risk aversion values converge to 6.5 under disaster states and 4.2 under normal

states, while for ACEIX, they converge to 6.0 under disaster states and 4.6 under normal

states. Funds with moderate investment strategies hold a middle range of risky assets and

exhibit a moderate level of risk aversion. These findings suggest that moderate funds may be

a suitable investment option for investors who seek a balance between risk and returns.

Importantly, our results reveal that investors’ risk aversion increases during disaster states

across all fund types. This state-dependent risk aversion suggests that investors become more

risk-averse in response to adverse market conditions, which is consistent with the Prospect

Theory (Kahneman and Tversky, 2013). According to the Prospect Theory, investors react

more intensely to potential losses than equivalent gains. During market downturns, increased

uncertainty and the fear of losses lead investors to adjust their portfolios towards safer assets.

These behaviours reflect the higher risk aversion of investors during disaster states.

The findings contribute to asset pricing literature. We extend the revealed preference ap-

proach in asset pricing by empirically demonstrating state-dependent risk aversion inferred

from portfolio choices. This aligns with the work of Hansen and Singleton (1982), Chetty

(2006) and Koijen and Yogo (2015), who emphasize the importance of preferences in ex-

plaining market dynamics. Our results provide micro-level evidence of how individual risk

aversion adapts to different economic states.

4.6.2 Deep RL investment

This study evaluates the investment performance of the trained A2C model during the testing

period. When assessing the rewards of the deep RL approach, we compare the performance

against the respective investment types of the funds and the EW benchmark portfolios.

For the A2C deep RL investment, we set the rewards to be the investors’ utilities, as rep-

resented in the mean-variance optimization equation eq. (4.9). The deep RL agent selects

79



Chapter 4

actions based on the policy π(a|ρS j ,S j), which is conditional on the well-converged risk

aversion and states. Subsequently, the agent receives rewards that correspond to the utilities

associated with the learned policy. The analysis highlights the ability of A2C to maximize

the rewards in the long run. Figure 4.6.2 highlights the potential benefits of employing the

A2C. Despite the initial underperformance for some funds, the A2C algorithm demonstrates

superior long-term rewards compared to traditional investment types and the EW benchmark.

Fig. 4.6.2: Cumulative rewards. The cumulative rewards are the sum of rewards over time.
Investment types of (1) TRSGX and (2) AOVIX are aggressive allocation types that allocate
75% of the asset to stocks, 20% to bonds, while 5% to cash. (3) FBALX and (4) ACEIX
investment type is moderate allocation with 50% stocks, 45% bonds and 5% cash. Conser-
vative investment types for (5) VSCGX and (6) BERIX include stocks (20%), bonds (70%)
and cash (10%) holdings.

The performance of the A2C optimal investment strategy is worth examining, along with the

benchmarked investment type allocation strategy and the EW benchmark. The cumulative

returns illustrated in figure 4.6.3 represent the returns over time, reflecting the profit potential

of various portfolios. For the moderate fund (4) ACEIX, the A2C algorithm demonstrates
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exceptional performance compared to both the moderate investment and the EW benchmark

portfolios throughout the entire testing period. Conversely, while the A2C approach gen-

erates substantially higher cumulative returns for the conservative fund (6) BERIX before

August 2022, its investment strategy appears to align more closely with the EW portfolio

afterwards. Given that the EW portfolios allocate one-third of their weight to each of the

three asset classes, this implies that the A2C algorithm also invests conservatively, assign-

ing a smaller portion to risky assets to accommodate the risk aversion of conservative in-

vestors. For the remaining funds, the A2C algorithm yields higher cumulative returns in the

long run despite experiencing some initial challenges similar to the other two benchmarks.

This demonstrates the potential benefits of employing the A2C algorithm for investment

decision-making across a variety of funds, as it tends to outperform traditional benchmarks

out-of-sample.

Fig. 4.6.3: Cumulative returns.

In figure 4.6.4, the performance comparison extends beyond the scope of simulated bench-

mark results by contrasting the proposed A2C optimal strategies with the actual real-world
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performance of the corresponding mutual funds. The performance of mutual funds is anal-

ysed from the NAV of mutual funds. At the onset of the investment period during disaster

states, the A2C demonstrates superior performance compared to the actual mutual funds,

with the exception of the moderate fund (3) FBALX, which exhibits equivalent performance.

These results suggest that A2C effectively mitigates the adverse impact of disaster states on

portfolio returns for mutual funds, serving as a buffer during turbulent market conditions.

Furthermore, the A2C performance during the normal states surpasses that of the actual

mutual funds. This result implies that the A2C algorithm has a superior out-of-sample per-

formance compared to the actual performance of mutual funds across various market states.

Fig. 4.6.4: Cumulative returns: A2C v.s. mutual funds.

This paper analyzes the out-of-sample results of the A2C optimal strategies for each fund,

the benchmark strategies and the EW strategies. As shown in the table 4.6.1 as an example,

we present key performance metrics such as average monthly returns (mean), annual returns,

standard deviation (std), minimum (min) and maximum returns (max), and quantile returns

(25%, 50%, 75%). It also includes risk measures like maximum drawdown, Sharpe ratios
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and value at risk (VaR). Maximum drawdown represents the largest peak-to-trough decline

in the returns during an out-of-sample period, highlighting the magnitude of potential losses.

Annualized Sharpe ratios evaluate risk-adjusted returns by comparing expected excess re-

turns to standard deviations. A higher Sharpe ratio indicates better returns per unit of risk.

VaR quantifies the maximum expected loss over an out-of-sample time horizon at a given

confidence level of 97.5%, providing a measure of downside risk.

In table 4.6.1, the A2C strategies for TRSGX (A2C TRSGX) and AOVIX (A2C AOVIX)

consistently outperform the mutual funds, aggressive benchmark, and equal-weighted bench-

mark. The A2C TRSGX strategy achieves an annual return of 5.72%, surpassing the mutual

fund TRSGX’s annual return of 5.66%. It also has a higher Sharpe ratio (0.37) compared

to TRSGX’s Sharpe ratio (0.36). Additionally, the A2C strategies exhibit smaller maximum

drawdowns, emphasizing their superior performance and better risk management. The value

at risk (VaR) values for A2C strategies also indicate more favourable downside risk charac-

teristics. Specifically, A2C TRSGX has a VaR of -0.09, the same as TRSGX (-0.09), but

with a lower maximum drawdown, indicating a more controlled risk profile. A2C AOVIX

shows a slightly higher VaR of -0.10 compared to AOVIX’s -0.12, suggesting that while

A2C AOVIX takes on slightly higher risk than A2C TRSGX, it still performs better in down-

side risk control than the traditional AOVIX fund. These results highlight the effectiveness

of the A2C approach in enhancing returns and providing greater resilience against market

volatility compared to traditional mutual funds and benchmarks during normal states.

Table 4.6.1: Aggressive funds performance under normal states. (1) A2C TRSGX, (2)
A2C AOVIX, (3) TRSGX, (4) AOVIX, (5) Aggressive, (6) EW.

(1) (2) (3) (4) (5) (6)

count 33 33 33 33 33 33
mean 0.58% -0.25% 0.58% -0.35% 0.37% 0.10%
std 4.87% 4.70% 5.02% 5.79% 4.31% 2.17%
min -8.41% -10.52% -9.34% -14.85% -7.87% -4.50%
25% -3.92% -3.50% -3.14% -3.94% -2.95% -1.48%
50% 1.67% 0.62% 0.91% 0.00% 1.52% 0.30%
75% 3.58% 3.00% 4.24% 3.34% 3.21% 1.36%
max 10.75% 9.32% 10.75% 12.17% 8.28% 3.94%
annual return 5.72% -4.16% 5.66% -6.05% 3.43% 0.90%
annual volatility 16.86% 16.29% 17.39% 20.05% 14.94% 7.53%
max drawdown -0.18 -0.32 -0.25 -0.35 -0.22 -0.13
Sharpe ratio 0.37 -0.23 0.36 -0.25 0.25 0.06
value at risk -0.09 -0.10 -0.09 -0.12 -0.08 -0.04
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In table 4.6.2, which shows the performance of aggressive funds under disaster states, the

A2C strategy for TRSGX (A2C TRSGX) notably outperforms the mutual funds and bench-

marks. A2C TRSGX achieves an impressive average monthly return of 3.74% and an annual

return of 54.50%, significantly higher than the other funds. It also boasts a superior Sharpe

ratio of 3.26, indicating excellent risk-adjusted performance and resilience during market

downturns. In terms of downside risk, the A2C TRSGX also has a relatively low VaR of

-0.04, which is much smaller than TRSGX’s VaR of -0.24, reflecting better control of ex-

treme losses at a 95% confidence level. The performance of A2C AOVIX is also better than

its traditional strategy.

The unusually lower absolute maximum drawdown during disaster states than normal states

can be attributed to the deep RL model’s adaptive risk management. During disaster periods,

the model recognizes increased market volatility and uncertainty, making it to adopt a more

conservative strategy. Moreover, the performance are improved based on the market situation

in the same period. For example, the benchmark portfolios of A2C TRSGX are TRSGX, the

aggressive type, and EW, since these portfolios are evaluated using the same market data.

Table 4.6.2: Aggressive funds performance under disaster states. (1) A2C TRSGX, (2)
A2C AOVIX, (3) TRSGX, (4) AOVIX, (5) Aggressive, (6) EW.

(1) (2) (3) (4) (5) (6)

count 3 3 3 3 3 3
mean 3.74% 0.43% 0.90% 1.04% 1.29% 0.72%
std 3.92% 11.81% 12.68% 13.97% 9.86% 4.65%
min -0.51% -12.89% -12.51% -14.79% -9.49% -4.34%
25% 2.01% -4.16% -4.99% -4.25% -2.99% -1.32%
50% 4.53% 4.57% 2.53% 6.30% 3.50% 1.69%
75% 5.87% 7.10% 7.61% 8.96% 6.68% 3.25%
max 7.20% 9.62% 12.68% 11.62% 9.86% 4.81%
annual return 54.50% -0.59% 4.39% 4.47% 12.21% 8.04%
annual volatility 13.57% 40.92% 43.91% 48.39% 34.16% 16.10%
max drawdown -0.01 -0.13 -0.13 -0.15 -0.09 -0.04
Sharpe ratio 3.26 0.11 0.23 0.24 0.43 0.49
value at risk -0.04 -0.23 -0.24 -0.27 -0.18 -0.09

The performance statistics in table 4.6.3 highlight the mixed results of the A2C strategies

for moderate-risk funds under normal market conditions. A2C FBALX delivers an average

monthly return of 0.69%, slightly higher than the mutual fund FBALX’s return of 0.68%.

A2C ACEIX also outperforms with a mean return of 0.10% compared to ACEIX’s -0.24%.

The A2C FBALX strategy also outperforms its benchmark in annual return, achieving 7.42%
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compared to FBALX’s 7.06%, indicating its ability to deliver slightly better returns. In

terms of risk, the annual volatility of A2C FBALX is notably higher at 17.59% compared to

FBALX’s 14.38%, which reflects greater variability in returns, while A2C ACEIX exhibits

lower volatility at 14.34% compared to ACEIX’s 16.26%. The Sharpe ratio of A2C FBALX

is higher (0.52) than FBALX’s 0.43, suggesting that its risk-adjusted return is as favourable.

Similarly, A2C ACEIX has a higher Sharpe ratio of 0.03 compared to ACEIX with a negative

Sharpe ratio of -0.25.

Table 4.6.3: Moderate funds performance under normal states. (1) A2C FBALX, (2)
A2C ACEIX, (3) FBALX, (4) ACEIX, (5) Moderate, (6) EW.

(1) (2) (3) (4) (5) (6)

count 33 33 33 33 33 33
mean 0.69% 0.10% 0.68% -0.24% 0.14% 0.10%
std 5.08% 4.14% 4.15% 4.69% 3.21% 2.17%
min -9.34% -7.86% -9.34% -8.31% -6.63% -4.50%
25% -3.92% -3.14% -1.97% -2.08% -2.15% -1.48%
50% 1.31% 0.00% 1.02% 0.09% 0.58% 0.30%
75% 4.36% 2.61% 2.61% 2.87% 2.05% 1.36%
max 10.75% 8.72% 10.63% 12.85% 5.85% 3.94%
annual return 7.42% -0.05% 7.06% -3.84% 1.05% 0.90%
annual volatility 17.59% 14.34% 14.38% 16.26% 11.11% 7.53%
max drawdown -0.19 -0.29 -0.23 -0.25 -0.19 -0.13
Sharpe ratio 0.52 0.03 0.43 -0.25 0.08 0.06
value at risk -0.08 -0.09 -0.09 -0.09 -0.06 -0.04

Table 4.6.4 shows the comparison of the A2C optimal strategies for each moderate fund with

the mutual funds, the benchmark strategies, and the EW strategy during disaster states. The

A2C strategy for ACEIX (A2C ACEIX) outperforms the mutual fund ACEIX, achieving an

annual return of 11.84% compared to ACEIX’s -9.75%. It also has a positive Sharpe ratio of

0.41 versus ACEIX’s negative -0.13, indicating better risk-adjusted performance. However,

for FBALX, the mutual fund itself performs better than its A2C strategy, with a higher annual

return of 47.04% and a Sharpe ratio of 1.26 compared to A2C FBALX’s 29.66% and 0.79.

Table 4.6.5 compares the A2C strategies with their competitors under normal market con-

ditions. For instance, A2C VSCGX generates an average monthly return of 0.15%, which

is higher than VSCGX’s 0.04% and significantly better than the conservative benchmark’s

return of -0.12%. This pattern holds over the annual horizon as well, with A2C VSCGX

achieving an annual return of 1.39%, compared to VSCGX’s 0.00% and the conservative

benchmark’s -1.70%. On the other hand, A2C BERIX underperforms, posting a negative an-
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Table 4.6.4: Moderate funds performance under disaster states. (1) A2C FBALX, (2)
A2C ACEIX, (3) FBALX, (4) ACEIX, (5) Moderate, (6) EW.

(1) (2) (3) (4) (5) (6)

count 3 3 3 3 3 3
mean 2.60% 1.30% 3.57% -0.37% 1.05% 0.72%
std 11.17% 10.35% 9.63% 11.77% 6.92% 4.65%
min -9.40% -10.25% -6.51% -13.61% -6.48% -4.34%
25% -2.44% -2.93% -0.99% -5.01% -1.99% -1.32%
50% 4.53% 4.38% 4.53% 3.59% 2.50% 1.69%
75% 8.61% 7.07% 8.61% 6.25% 4.81% 3.25%
max 12.68% 9.76% 12.68% 8.91% 7.12% 4.81%
annual return 29.66% 11.84% 47.04% -9.75% 11.16% 8.04%
annual volatility 38.69% 35.87% 33.37% 40.77% 23.96% 16.10%
max drawdown -0.09 -0.10 -0.07 -0.14 -0.06 -0.04
Sharpe ratio 0.79 0.41 1.26 -0.13 0.49 0.49
value at risk -0.20 -0.19 -0.16 -0.24 -0.13 -0.09

nual return of -3.83%, which lags behind both its mutual fund counterpart BERIX (-0.95%)

and the EW benchmark (0.90%). In terms of risk, A2C VSCGX demonstrates marginally

lower volatility, with an annual volatility of 9.73%, compared to VSCGX’s 10.07%. This

suggests that A2C VSCGX delivers returns with slightly less risk exposure. The Sharpe

ratio further reinforces the superior risk-adjusted performance of A2C VSCGX, posting a

value of 0.11 compared to VSCGX’s -0.02, suggesting a better trade-off between risk and

return. A2C BERI, however, records a much lower Sharpe ratio of -0.43, indicating poor

performance relative to the risk taken.

In table 4.6.6, the A2C VSCGX strategy achieves a higher annual return of 44.59% com-

pared to VSCGX’s 31.51%, suggesting that the A2C strategy generated higher returns. How-

ever, the mutual fund VSCGX has a higher Sharpe ratio of 2.05 compared to A2C VSCGX’s

Sharpe ratio of 1.29, indicating better risk-adjusted returns. For BERIX, the A2C strategy

for BERIX (A2C BERIX) improves upon the mutual fund BERIX, achieving an annual re-

turn of 1.16% compared to BERIX’s -21.61%. It also has a positive Sharpe ratio of 0.10

versus BERIX’s negative -0.67, indicating better risk-adjusted performance. The maximum

drawdown for A2C BERIX is smaller at -0.07 compared to BERIX’s -0.12, showing greater

resilience during market downturns. These results indicate that the A2C approach can en-

hance performance and manage risk effectively for conservative funds under disaster states,

although its effectiveness may vary depending on the specific fund.
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Table 4.6.5: Conservative funds performance under normal states. (1) A2C VSCGX, (2)
A2C BERIX, (3) VSCGX, (4) BERIX, (5) Conservative, (6) EW.

(1) (2) (3) (4) (5) (6)

count 33 33 33 33 33 33
mean 0.15% -0.29% 0.04% -0.06% -0.12% 0.10%
std 2.81% 2.82% 2.91% 2.18% 1.98% 2.17%
min -6.31% -6.57% -6.31% -4.65% -4.91% -4.50%
25% -1.48% -1.79% -1.97% -1.20% -1.17% -1.48%
50% 0.20% 0.04% 0.17% 0.07% 0.05% 0.30%
75% 2.20% 1.25% 2.03% 1.29% 0.86% 1.36%
max 5.72% 5.44% 7.01% 4.56% 3.71% 3.94%
annual return 1.39% -3.83% 0.00% -0.95% -1.70% 0.90%
annual volatility 9.73% 9.77% 10.07% 7.55% 6.86% 7.53%
max drawdown -0.16 -0.22 -0.23 -0.16 -0.15 -0.13
Sharpe ratio 0.11 -0.43 -0.02 -0.19 -0.32 0.06
value at risk -0.05 -0.06 -0.06 -0.04 -0.04 -0.04

Table 4.6.6: Conservative funds performance under disaster states. (1) A2C VSCGX, (2)
A2C BERIX, (3) VSCGX, (4) BERIX, (5) Conservative, (6) EW.

(1) (2) (3) (4) (5) (6)

count 3 3 3 3 3 3
mean 3.38% 0.24% 2.36% -1.71% 0.72% 0.72%
std 8.92% 6.46% 3.89% 9.20% 3.34% 4.65%
min -5.09% -7.00% -0.28% -12.27% -2.86% -4.34%
25% -1.28% -2.34% 0.12% -4.84% -0.79% -1.32%
50% 2.53% 2.32% 0.53% 2.59% 1.28% 1.69%
75% 7.61% 3.86% 3.68% 3.57% 2.51% 3.25%
max 12.68% 5.40% 6.82% 4.55% 3.74% 4.81%
annual return 44.59% 1.16% 31.51% -21.61% 8.53% 8.04%
annual volatility 30.89% 22.37% 13.47% 31.86% 11.56% 16.10%
max drawdown -0.05 -0.07 0.00 -0.12 -0.03 -0.04
Sharpe ratio 1.29 0.10 2.05 -0.67 0.69 0.49
value at risk -0.14 -0.13 -0.05 -0.20 -0.06 -0.09

4.7 Conclusion

This study proposes a novel framework combining online inverse optimization and the A2C

deep RL algorithm with learning risk aversion and optimal investment policies tailored to

investors’ risk profiles under normal and disaster states. Our findings demonstrate that the

proposed framework effectively estimates risk aversion for each selected mutual fund. In
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disaster states, funds exhibit higher risk aversion, which has important implications for robo-

advisors and fund managers in ensuring investors’ risk tolerance, particularly during periods

of market distress.

In the second stage of our study, we test the performance of the trained deep RL algorithm

using the converged risk aversion values for each fund. The results illustrate that deep RL can

generate exceptional investment strategies tailored to investors, consistently outperforming

the EW portfolios, relevant investment type allocations and actual mutual funds. Deep RL

demonstrates outstanding performance in normal states and serves as a buffer during disaster

states, highlighting its ability to improve investment performance for investors.

While the small sample size limits our study during disaster states, it paves the way for future

research in this area. A larger sample size would allow for more accurate estimation to the

true risk aversion values. Moreover, future studies can explore solutions for addressing the

imbalance between disaster and normal datasets and expand the range of states to estimate

risk aversion comprehensively.
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Appendices to chapter 4

4.A Proof of policy gradient theorem

The gradient ∇θ π(s,a) can be expressed as likelihood ratios. That is:

∇θ π(s,a) = π(s,a)
∇θ π(s,a)

π(s,a)

= π(s,a)∇θ logπ(s,a).

Thus, the gradient of policy values is:

∇θ J(θ) = ∇θ [∑
s∈S

dπ(s) ∑
a∈A

π(s,a)Qπ(s,a)]

= ∑
s∈S

dπ(s) ∑
a∈A

∇θ π(s,a)Qπ(s,a)

= ∑
s∈S

dπ(s) ∑
a∈A

π(s,a)∇θ logπ(s,a)Qπ(s,a)

= Eπ [∇θ logπ(s,a)Qπ(s,a)].

4.B Proof of function approximation

This section provides a proof of the function approximation in eq. (4.23).

If the parameter vector w satisfies to minimize MSE, the gradient of MSE must be zero.

∇wε = 0

Eπθ
[( fw(s,a)−Qπ(s,a))∇w fw(s,a)] = 0
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If w is compatible to the policy. That means ∇w fw(s,a) = ∇θ logπ(s,a).

Eπθ
[( fw(s,a)−Qπ(s,a))∇θ logπ(s,a)] = 0

Eπθ
[Qπ(s,a)∇θ logπ(s,a)] = Eπθ

[ fw(s,a)∇θ logπ(s,a)]

According to eq. (4.20), ∇θ J(θ) = Eπ [∇θ logπ(s,a)Qπ(s,a)]. Thus,

∇θ J(θ) = Eπθ
[ fw(s,a)∇θ logπ(s,a)].
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Nonlinear pricing kernels via neural net-

works

Abstract

This study proposes a nonlinear pricing kernel approximated through neural networks, ad-

dressing limitations of traditional linear models, which capture linear relationships and are

prone to overfitting when applied to the factor zoo. The proposed model specification test

examines the validity of the nonlinearity assumption of the pricing kernel. Through optimal

neural network selection, our findings reveal that a one-layer neural network significantly re-

duces quadratic pricing errors, indicating its superior pricing performance compared to deep

neural networks. Moreover, the role of ESG variables in asset pricing, particularly within the

extensive range of factors, remains underexplored. The significance test designed for neural

networks shows that ESG variables are significant in asset pricing.

Keywords: asset pricing; pricing kernels; neural networks; model specifications; signifi-

cance tests

91



Chapter 5

5.1 Introduction

In asset pricing, the appropriate specification of a pricing kernel, or so-called stochastic

discount factor (SDF), is a crucial question that drives much research interest. The simplic-

ity and intuitive implications of linear pricing kernels have made them a common choice

in asset pricing literature. Hansen and Jagannathan (1991) introduce a minimum-variance

pricing kernel that simplifies to a linear projection of asset payoffs. However, Bansal and

Viswanathan (1993) suggest the linear assumption might not hold, especially when the pay-

offs are nonlinear functions of risk factors. The nonlinear payoffs can arise from primitive

payoffs or from derivative securities being priced using nonlinear factor pricing models.

Moreover, the linear SDF within a factor zoo that is traditionally estimated by a cross-

sectional regression is subject to the curse of dimensionality, resulting in large out-of-sample

pricing errors and severe overfitting (Kozak et al., 2020). Though less explored, the nonlin-

ear pricing kernel approximated by neural networks leads to a general representation of the

pricing kernel and reduces the out-of-sample quadratic pricing errors.

In this study, we develop a nonlinear asset pricing model that employs neural networks to

approximate the pricing kernel for characteristics-managed portfolios (factors) based on U.S.

equities. The pricing kernel via neural networks is defined as a nonlinear span of risk fac-

tors, meaning it is a linear combination of their nonlinear transformations of factors. The

nonlinear functions of these factors serve as basic functions spanning the pricing kernel.

This structure allows the nonlinear pricing kernel to capture the nonlinearity in risk factors

effectively.

Neural networks offer distinct advantages over conventional asset pricing models due to the

approximation power, its flexibility functional form, and ability to handle high-dimensionality.

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) suggests that a

sufficiently large neural network can approximate any function, regardless of what kinds of

unknown function that we want to learn. They are considered a class of universal approxi-

mators when they have at least one hidden layer, enough hidden units and non-polynomial

activation functions.

While neural networks are inherently parametric models, with parameters learned during
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training, their flexibility contrasts with traditional parametric models that assume fixed func-

tional forms. The nonlinear pricing kernels discussed by Chapman (1997) and Almeida

and Freire (2023) impose specific parametric structures, such as polynomial functions or

predefined parameter estimations, to manage non-linearity and minimize variance among

candidate pricing kernels. In contrast, the adaptability of neural networks allows them to

capture more complex relationships and interactions between input features and the result-

ing pricing kernels (Gu et al., 2020; Chen et al., 2023). This enhanced flexibility enables

neural networks to model intricate patterns in financial data without being constrained by a

fixed functional form, thereby improving the approximation power of asset pricing models.

Furthermore, neural networks are more suitable for handling the high dimensionality in pric-

ing kernels than conventional linear models. Extant research has identified hundreds of

pricing factors which are classed in a factor zoo that effectively price cross-sectional as-

sets (Cochrane, 2009; Feng et al., 2020; Hou et al., 2020). However, traditional methods

struggle with the curse of dimensionality, where a small number of data points relative to

the number of dimensions reduces the model performance. Gu et al. (2020) and Chen et al.

(2023) employ neural networks with regularized techniques such as Ridge regression and

dropout to address the curse of high-dimensionality issues.

This paper proposes specification tests to evaluate the validity of the linear pricing kernel

approximated by the linear models or the nonlinear ones approximated via neural networks.

The model specification test sets the null hypothesis as the hypothesized linear model yields

the highest pricing errors compared to nonlinear pricing kernels. Then, we compare the out-

of-sample test statistic with the quantile of the empirical distribution. As the distribution of

test statistics is complicated, we employ Block Bootstrap to estimate the empirical distribu-

tion. Eventually, we find that the linear specification is the worst compared to its nonlinear

competitors.

Although neural networks are powerful methods to approximate the nonlinear pricing ker-

nel, there are lots of choices for model architectures, such as the number of hidden layers.

They prevent us from understanding the optimal approximated pricing kernel via neural net-

works. Many economic and financial studies, such as those by Gu et al. (2020), Chen et al.

(2023) and Fallahgoul et al. (2024), select the number of hidden units and layers arbitrarily

or through hyperparameter tuning solely, highlighting the need for a more systematic model
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selection approach to network architectures.

The paper conducts the optimal neural network selection by employing a hypothesis test.

The optional neural network selection sets the null hypothesis, which is the hypothesized

optimal neural network that yields the lowest in-sample quadratic pricing errors compared to

other neural networks. We compare neural networks with hidden layers from 1 to 5, which

are common choices of neural network architectures in asset pricing (Gu et al., 2020; Chen

et al., 2023; Fallahgoul et al., 2024). Then, the hypothesized neural network with the smallest

out-of-sample pricing errors is selected in the hypothesis test.

Given the optimal selection of the neural network to approximate the pricing kernel, we

further utilize significance tests to identify useful factors that significantly explain cross-

sectional asset prices. Traditionally, neural networks have been viewed as “black boxes”

due to their opaque operational nature. Gu et al. (2020), Gu et al. (2021) and Chen et al.

(2023) measure the importance of variables and rank them according to the importance val-

ues. However, this measure cannot direct us to the absolute importance of factors from

the relative rank of variable importance. By employing significance tests, we enhance the

transparency of neural networks, addressing concerns about their interpretability in financial

applications. This approach is supported by Horel and Giesecke (2020), who demonstrate the

viability of significance tests in one-layer neural networks, providing a theoretical foundation

for our use in SDF estimation. Different from Fallahgoul et al. (2024) that employ signif-

icance tests for various potential neural networks in factor pricing models, our framework

focuses on conducting significance tests for the optimal neural network configuration. Our

approach not only streamlines the identification of useful pricing factors but also avoids the

confusion that can arise from presenting varying significant factors across different models.

Thanks to the feasibility of significance tests for neural networks, we assess the impact of

ESG variables in asset pricing considering the factor zoo. Despite some empirical evidence

showing that factors such as carbon emissions and climate change influence asset prices

(Bolton and Kacperczyk, 2021; Sautner et al., 2023b,a), these ESG variables are under-

explored among the factor zoo. A factor that is significant in the low dimensional factor

models does not mean that it is significant among the factor zoo. The paper employs sig-

nificant tests to examine the significance of ESG variables in the factor zoo. Moreover, due

to ESG variables’ low signal-to-noise ratio, which means the useful information is accom-
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panied by lots of disturbances (Almeyda and Darmansya, 2019), asset pricing models such

as CAPM or Fama-French three-factor model with the inclusion of ESG factors can lead to

unstable estimates. In addition, ESG variables are often multi-correlated with other pricing

factors. Neural networks are capable of managing multicollinearity among input variables,

an issue that Ordinary Least Squares (OLS) typically fail due to their assumption of no mul-

ticollinearity. This capability is supported by Obite et al. (2020), demonstrating that neural

networks provide a better fit and more reliable forecasts than OLS in the presence of multi-

collinearity.

Our paper addresses three crucial questions regarding pricing kernels in asset pricing. Firstly,

we specify nonlinear pricing kernels by employing neural networks with different hidden

layers. Secondly, we investigate whether nonlinear pricing kernels perform better than linear

pricing kernels in the model specification test. Given the validity of the nonlinear assump-

tion, we conduct model selection strategy to find the optimal neural network configuration.

Third, we examine the impact of ESG factors on pricing kernels through the optimal selected

neural network.

Our methodological framework introduces two innovations to the pricing kernel. First, we

propose a model specification framework tailored for neural networks, distinct from tradi-

tional specification tests used in parametric asset pricing models. Also, our approach differs

from that of Chen and Ludvigson (2009), who propose a model comparison framework for

the intertemporal marginal rate of substitution (IMRS) in assumption based on a habit prior

estimated by neural networks. Instead, our model specification test considers the nonlinear

pricing kernel approximated directly via neural networks. Second, unlike Fallahgoul et al.

(2024), which conduct significance tests across various neural network configurations, this

study focuses on identifying the factors that significantly impact the optimal neural network

configuration.

Our research about applying machine learning to asset pricing is significant in several as-

pects. First, unlike most studies that focus on predicting asset returns using machine learning

approaches (Gu et al., 2020, 2021), we concentrate on estimating the pricing kernel. This

approach not only identifies the fair prices of assets but also uncovers relevant factors for

pricing kernel estimation in asset pricing. Conversely, the risk premiums do not necessarily

indicate the usefulness of the factors in asset pricing, as these factors may merely corre-
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late with truly influential factors without being directly useful for estimating pricing kernels

(Cochrane, 2009; Feng et al., 2020; Kozak et al., 2020). Second, our work pioneers asymp-

totic tests and examines the null hypothesis of whether the linear pricing kernels have larger

pricing errors than the nonlinear specifications via neural networks, which is an area not yet

explored in the existing literature. Third, we address a gap in the literature by examining

the significance of ESG factors within asset pricing. Given the growing relevance of ESG

issues and their complex multi-correlations with traditional pricing factors, our use of neu-

ral networks, with their capability for nonlinear transformations, uniquely helps us analyze

these relationships and assess the impact of ESG variables on asset pricing. This analysis

is crucial as it overcomes the limitations of linear models in dealing with multicollinearity

among factors.

This paper studies U.S. equities available in the CRSP database, covering the period from

January 2002 to December 2017. This period marks the rising influence of ESG considera-

tions in financial markets. Our dataset comprises 60 pricing factors, including 50 traditional

factors from Kozak et al. (2020)’s database and 10 ESG factors. These ESG factors consist

of 8 variables related to a range of ESG scores provided by Datastream and 2 variables fo-

cusing on climate change exposure and toxic emissions, as detailed by Sautner et al. (2023a)

and Hsu et al. (2023) respectively. We integrate these factors with stock returns from CRSP to

construct characteristic-based ESG factors, applying the same factor construction of Kozak

et al. (2020).

Empirical evidence strongly supports the superiority of nonlinear pricing kernels over the lin-

ear candidates. The model specification test results show that the linear pricing kernel is not

capable in pricing factors compared to the nonlinear pricing kernel. This finding challenges

the traditional use of the linear pricing kernel in asset pricing, suggesting a shift towards

nonlinear ones. Additionally, portfolios that mimic nonlinear pricing kernels achieve higher

annualized SR than those based on linear pricing kernels, highlighting the outstanding in-

vestment performance of the nonlinear pricing kernel. Furthermore, Our analyses reveal that

ESG factors are significant in explaining variations in cross-sectional asset prices. Surpris-

ingly, many ESG factors surpass the importance of other commonly used factors in asset

pricing. This highlights ESG’s growing importance and substantial impact on financial mar-

kets.
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5.1.1 Related literature

The paper is related to literature about the nonlinear pricing kernel. Bansal and Viswanathan

(1993) is the first to implement neural networks in pricing kernel estimation. They use a

semi-nonparametric method where the neural net is finite in length. Their study, however,

is limited by smaller datasets and the network configuration, which uses only a small num-

ber of factors. With only a few features input into the neural networks and a large number

of moment conditions, they utilize neural networks to address the over-identification prob-

lem. We extend nonlinear pricing kernel models to include a large amount of factors from

the factor zoo. Additionally, they employ a single neural network, whereas we discuss the

performance and model comparisons of various neural networks with multiple layers and a

variety of parameters. Chapman (1997) uses polynomial functions to approximate nonlinear

pricing kernels based on a factor called consumption growth. Dittmar (2002) investigates

a nonlinear pricing kernel model derived from a Taylor series expansion of the marginal

utility function, considering preference theory for covariance, skewness, and kurtosis. Chen

and Ludvigson (2009) propose habit-based SDF models where the unknown habit functional

form is estimated by the one-layer neural network. Their estimated pricing kernel with the

estimated habit as a prior performs better than the Fama-French 3-factor model Fama and

French (1993). Almeida and Freire (2023) estimate nonlinear pricing kernels by minimizing

variances among candidate pricing kernels, presenting economic implications of nonlinear

models. Different from previous literature, our paper extends the extant research of nonlinear

pricing kernels to a large dimensional set of factor data via neural networks. This extension

is more practical than the nonlinear pricing kernel subject to a smaller dataset (Bansal and

Viswanathan, 1993), as there are a lot of pricing factors found in the up-to-date literature.

Unlike Chapman (1997), Dittmar (2002) and Almeida and Freire (2023), our unknown pric-

ing kernels are approximated by neural networks, allowing for approximation flexibility.

Our study contributes to machine learning research in asset pricing by tackling issues related

to optimal neural network selection and improving transparency. The first major concern is

the rigorous justification for selecting a specific neural network method. Asset pricing com-

monly compares machine learning methods by averaging model performance results from

multiple model runs (Gu et al., 2020, 2021; Chen et al., 2023). However, due to the stochas-

tic nature of these models, comparing only a few average scores may not be reliable. The
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performance of neural networks can vary widely based on chosen hyperparameters and ran-

dom elements like dropout masks due to their highly non-convex loss functions (Li et al.,

2018). This variability makes it challenging to compare different network architectures di-

rectly. To address this issue, pioneering work by White (1989) introduces a statistical per-

spective by deriving a normal distribution for network parameters, and Anders and Korn

(1999) apply White (1989)’s methods along with information criteria for model selection.

However, the over-parameterization of networks leads to estimation challenges and potential

overfitting, which make traditional information criteria less effective for model selection in

neural networks. Our approach improves from these methods by running hypothesis test-

ing to compare the out-of-sample performance of competitive models. Our hypothesis tests

are developed from Chen and Ludvigson (2009). Different from their method, we compare

the neural networks in hypothesis tests rather than the parametric pricing kernel functions.

The second major concern of our paper tackles is the statistical significance of factors in ex-

plaining cross-sectional asset prices via neural networks. While Fallahgoul et al. (2024) and

Horel and Giesecke (2020) provide frameworks for significance testing in neural networks,

these primarily focus on return prediction. Our research, however, extends these tests to SDF

pricing models, assessing the significance of factors in pricing assets non-arbitrarily.

The paper contributes to the emerging ESG literature by exploring the impact and signifi-

cance of ESG factors in asset pricing models. On the one hand, lots of existing empirical

studies illustrate that ESG variables are pricing factors. For instance, Bennani et al. (2018)

treat ESG as a factor influencing abnormal returns and risk exposures in asset pricing. Engle

et al. (2020) utilize environmental scores from Asset 4 as green characteristics in construct-

ing factors. Maiti (2021) find ESG factors from Bloomberg statistically significant in an

extended Fama-French five-factor model. Bolton and Kacperczyk (2021) identify a carbon

risk factor that explains abnormal returns independently. Additionally, textual analyses by

Engle et al. (2020), Ardia et al. (2022) and Sautner et al. (2023a,b) construct measures of cli-

mate change exposure that price assets effectively. Chen and Liu (2020) use data to forecast

returns with deep learning and form profitable ESG trading strategies. Lanza et al. (2023)

and D’Amato et al. (2022) use machine learning to link specific ESG indicators like CO2

emissions and waste management to abnormal returns and profitability, respectively. On the

other hand, some research suggests ESG variables are not common factors. Halbritter and

Dorfleitner (2015) and Naffa and Fain (2022) argue that ESG, despite varying data sources,

including ASSET4 and Bloomberg, does not consistently produce abnormal returns within
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the Fama-French model. The opposite results are due to the different ESG measure matrices

from ESG rating companies and the noise of ESG scores. Unlike existing ESG research, our

study uses neural networks to extract the useful information from low signal-to-noise ESG

data. Also, we implement significance testing to determine the significance of ESG factors

among the factor zoo. These ESG variables have not yet been fully explored in the pricing

kernel estimation, particularly considering such a comprehensive range of factors.

We organize the rest of the paper as follows. Section 5.2 introduces both linear and nonlinear

pricing kernel models. Section 5.3 details the implementation of neural networks. The model

specification test and optimal neural network selection are elaborated in section 5.4.1 and

section 5.4.2, respectively. The significance test is presented in section 5.4.3. Empirical

results are detailed in section 5.5, and the paper concludes with section 5.6.

5.2 Pricing kernel representation

This section explores the representation of the pricing kernel, beginning with the linear pric-

ing kernel and developing to the nonlinear case. Two assumptions are posed to nonlinear

pricing kernel models in asset pricing.

A pricing kernel, mt , ensures that any asset or investment returns, denoted by Rt , satisfy the

Euler equation Et−1[mtRt | It−1] = 1 (Hansen and Richard, 1987; Hansen and Jagannathan,

1997; Cochrane, 1996), where Rt represents an N×1 vector of asset returns. This equation

illustrates that portfolios yielding the same payoffs must be priced equivalently.

When Rt changes to be the returns Re
t in excess of the risk-free rates, the pricing kernel model

can be expressed as a conditional moment condition.

Et−1[mtRe
t |It−1] = 0, (5.1)

where It−1 represents the information set observed by econometrics and investors at time

t−1.
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Hansen and Jagannathan (1991) define the admissible set of pricing kernels U ,

U = {mt |mt ≥ 0,Et−1[mtRe
t |It−1] = 0}. (5.2)

Non-negativity of the pricing kernel mt ≥ 0 indicates the absence of arbitrage opportunities

(Ross, 1976; Harrison and Kreps, 1979; Kreps, 1981). When the market is complete and with

common information sets, the admissible pricing kernel is unique across investors; while

when the market is incomplete, admissible pricing kernels are not equated. Every pricing

kernel in U can price cross-sectional assets given the moment conditions and non-negativity

in eq. (5.2).

The pricing kernel satisfies the unconditional orthogonality conditions as stated below:

E[mtZ′t−1Re
t ] = 0, (5.3)

where Zt−1 ∈RN×q is a vector of instruments comprising firm characteristics included in the

information set It−1. These instruments must be both relevant and exogenous. Relevance en-

sures that the instruments are related to the excess returns of assets Re
t . Additionally, the ex-

ogeneity implies the instruments are not correlated with the error terms. The characteristics-

managed portfolios, also called factors Ft ∈Rq, are constructed from the instruments applied

to the excess returns (Cochrane, 2009).

Ft = Z′t−1Re
t . (5.4)

Assigning eq. (5.4) to conditions eq. (5.3), the unconditional moment conditions becomes:

E[mtFt ] = 0. (5.5)

5.2.1 Linear pricing kernel

The linear arbitrage-pricing theory (APT) implies the existence of a linear pricing ker-

nel. Ross (1976)’s linear APT assumes payoffs are linear in factors and the idiosyncratic

noise. The linear payoffs can be priced by the pricing kernel function that is linear and

low-dimensional with only a few factors.
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The linear pricing kernel is in the linear span of factor returns Ft following Hansen and

Jagannathan (1991). Ft should be mean-variance efficient to span the pricing kernel with

minimum variance. The linear pricing kernel model m(Ft) is

m(Ft) = 1−b′Ft , (5.6)

where b ∈ Rq is the pricing kernel loadings that can be estimated by satisfying the pricing

eq. (5.5). The functional form of the optimal efficient weights b to construct the mean-

variance portfolios on the efficient frontier is

b = Σ
−1
F µF , (5.7)

where µF is a sample mean of factors µF = 1
T ∑

T
t=1 Ft , and ΣF is a second moment of factors

ΣF = 1
T ∑

T
t=1 FtF ′t .

The invertibility of ΣF is critical in estimating the SDF coefficients. Challenges arise par-

ticularly when the dimension of factors q is high relative to the number of time series ob-

servations, or when factors exhibit strong multicollinearity or redundancy. ΣF tends to be

unstable or nearly singular, leading to the difficult inversion of the covariance matrix and en-

larging estimation errors. Furthermore, a large q can lead to overfitting of the cross-sectional

regression. The overfitting results in a perfect in-sample performance, but adversely affects

the model’s out-of-sample performance.

To avoid the overfitting of cross-sectional SDF regression, SDF can be regularized using reg-

ularization methods such as Lasso, Ridge regression, Elastic Net, and so on. These methods

manage the model complexity and reduce overfitting by introducing penalties. When there

are redundant factors, research uses Lasso to remove the redundant factors. When features

present multicollinearity, Ridge regression is better than Lasso, as Lasso might remove the

multi-correlated factors that are relevant to the pricing kernel estimation. Kozak et al. (2020)

utilize Elastic Net that combines the penalties of Lasso and Ridge regression to regularize

pricing kernel loadings.

b = argmin
b

(µF −ΣFb)′Σ−1
F (µF −ΣFb)+ηλ ||b||1 +η(1−λ )||b||22, (5.8)

where η is the learning rate of Elestic net, and λ ∈ (0,1) is the parameter of l1 norm of
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pricing kernel loadings. The higher the λ , the more parameters b are shrinkaged to exactly

zero via the l1 norm. When λ = 1, eq. (5.8) takes effect of Lasso. Otherwise, the smaller

the λ , the more parameters b shift to near zero by the l2 norm. When λ = 0, eq. (5.8) is

equivalent to Ridge regression.

5.2.2 Nonlinear pricing kernel

The proposed pricing kernel is a nonlinear span of factors. This means that the factors Ft

are processed with nonlinear transformations and are then projected to be the pricing kernel

m(Ft). In neural networks, this is achieved by using nonlinear activation functions in the

hidden layers. Such transformations enable the neural networks to effectively capture the

complex behaviours and dependencies between factors and the pricing kernel.

The nonlinear pricing kernel obeys the essential conditions of admissible pricing kernels.

First, the q-dimensional factors Ft exist such that nonlinear SDF functions m(Ft) satisfy

the orthogonality conditions. Developed from the linear pricing kernel, the orthogonality

unconditional moment conditions are:

E[m(Ft)Ft ] = 0. (5.9)

Moreover, the nonlinear pricing kernel is non-negative. The non-negativity of pricing kernels

is equivalent to no-arbitrage opportunity. These conditions imply that the identified nonlinear

pricing kernel exits in the admissible pricing kernel set U , and can be correctly specified.

We do not restrict the pricing kernel to low-dimensional. The APT implies that there are only

a few risk factors to price assets (Ross, 1976). Bansal and Viswanathan (1993) follow Ross

(1976)’s implication and apply a low-dimensional pricing kernel through neural networks.

We argue that their model is limited, as current research has examined hundreds of pricing

factors existing in the factor zoo. Ross (1976)’s model specification is subject to only a small

number of factors, and we develop it to deal with the high-dimensional factor zoo, discussed

in section 5.3.1.
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5.3 Approximate the nonlinear pricing kernel

We utilize neural networks to approximate the nonlinear pricing kernel functions. These net-

works adapt to the amount of data without assuming a predefined functional form, thereby

minimizing approximation errors. Neural networks support a broad dimension of parame-

ters, enabling them to handle a large set of input factors effectively in the SDF estimation.

As the input features increases, the parameters of the network expand. Particularly in a

single-layer neural network, the network can become very wide to effectively approximate

the unknown function, thereby facilitating a flexible pricing kernel function to adapt the

data complexity and volume (Goodfellow et al., 2016). However, careful construction of the

network is crucial to manage its approximation potential while avoiding overfitting, ensuring

that the model represents the underlying data patterns and does not merely adapt to noise.

5.3.1 Construction of neural networks

Our framework employs a multilayer perceptron (MLP) which is a specialized type of feed-

forward network (FFN) renowned for its ability to handle the relationship between input and

output variables. In an FFN, information flows strictly forward from input to output lay-

ers without any backward connections. The MLP develops this configuration by ensuring

that every unit within a layer is fully connected, receiving inputs from all units of the pre-

ceding layer. MLPs utilize nonlinear activation functions to capture complex patterns and

relationships. The ability of MLPs to approximate the complex relationships between input

variables and outputs makes them particularly well-suited for approximating the nonlinear

pricing kernel.

Regarding the network structure of the MLP, we use the 2-layer MLP shown in Figure 5.3.1

as an example. The MLP begins with q input units corresponding to their covariates and ends

with one output unit for the outcome. The configuration of the MLP features hidden units

organized into a sequence of L hidden layers. L also measures the depth of the network. Each

layer with l = 1, ...,L is defined by its position in the sequence. The width of the network at

each layer is the same, denoted as K, which is the number of hidden units as well. A unit
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Fig. 5.3.1: Diagram of FMLP. Input dimension q = 4, number of hidden units K = 3 and
number of hidden layers L = 2.

belongs to layer l if it receives input from layer l−1 and has no predecessors in subsequent

layers.

The nonlinear pricing kernel is estimated via these neural networks, specifically within an

MLP class m̂(Ft) ∈ CMLP. Units on the input layer are factors F ∈Rq. Then, we use F̃k,l ∈R

to denote an output of unit k on layer l for k = 1, ...,K and l = 1, ...,L. A set of units for

layer l ≤ L denotes as F̃l = (F̃1,l, ..., F̃K,l)
′. Each unit computes the output with the activation

function σk as F̃k,l = σk(bk,l−1F̃l−1 +ak,l−1) where bk,l−1 ∈R1×K is a row vector of weights

and ak,l−1 ∈ R is an intercept for the unit F̃k,l . The pricing kernel function via MLP can be

written as an affine function of a sequence of nonlinear functions.

m̂(F) = bLσ

(
· · ·σ

(
b1σ(b0F +a0)+a1

)
+ · · ·

)
+aL, (5.10)

where the network weights bl ∈ RK×K for l = 1, ...,L− 1. In addition, b0 ∈ RK×q for the

input layer and bL ∈ R1×K for the output layer. The intercepts al ∈ RK is a vector where

K is the same as the number of the first dimension of bl for all layers (l = 1, ...,L). The

activation function σ : RK→RK is componentwise, such that it is applied individually to the

combination of outputs from units of layer l−1 before being passed to each corresponding

unit in layer l.

We use a sigmoid function as the activation function1 which is smooth. The sigmoid function

1There are some other choices for activation functions, including the rectified linear unit (ReLu), tanh, softmax.
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is the logistic function, and its functional form is

σ(blF̃l +al) =
1

1+ e−(bl F̃l+al)
, (5.11)

for l ≤ L. The smoothness of the activation function is essential for the significance tests

discussed in section 5.4.3.

To ensure the non-negativity of the pricing kernel, we transform the output with a Softplus

function which is a smooth version of ReLu. ReLu obtain zero value for negative input and

keeps the positive input unchanged. Nonetheless, the gradient is zero for the negative input

when applying ReLu. Thus, we apply Softplus, as a smooth ReLu, to enable all SDF values

to be positive and everywhere differentiable in the function region. The function of softplus

is log(1+ em̂(F)). Bansal and Viswanathan (1993) utilize ReLU and add a small positive

number θ with a specific transformation: 0.5× m̂(F)+0.5×
√

m̂(F)2 +θ . However, their

method needs to decide the value of the small θ , while Softplus avoids this necessity.

Our candidate neural network architectures with hidden layers varying from 1 to 5 exhibit

varying depths and complexities. The one-layer network (MLP1) is suitable for relatively

small and low-dimension datasets because it is simple, fast converged, and has a good ap-

proximation with fewer units (Hornik et al., 1989). In contrast, deeper networks with more

than one hidden layer are better suited for high-dimensional datasets or to learn complex

functions. These multi-layer networks not only require fewer units to represent complex

functions but also help minimize generalization errors (Goodfellow et al., 2016). They are

suitable for high-dimensional datasets and when the function we want to learn is complex,

especially when it is composed of several more straightforward functions.

The total number of parameters for MLPs is calculated as (q+1)K+(L−1)(K2+K)+K+1

(Farrell et al., 2021). To ensure consistency in neural networks, the number of parameters

must increase with the sample size T , and it is naturally limited by T (Chen and Ludvigson,

2009).

Neural network training adjusts weights using forward and back-propagation. Forward prop-

agation processes information from input to output, and back-propagation computes the gra-

dient of the loss function to optimize the network. We use mini-batch gradient descent, a
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variant of Stochastic Gradient Descent (SGD), to increase computation efficiency and avoid

easily getting stuck in local optimization. Moreover, we employ “Adam” a gradient-based

optimization algorithm to update parameters. Adam adjusts the adaptive learning rate for

each parameter.

5.3.2 Estimation

The criterion function for estimating the pricing kernel via neural networks is:

J(b) = ĜT (b)′WĜT (b), (5.12)

where ĜT (b) are q×1 sample moments. That is:

ĜT (b) =
1
T

T

∑
t=1

m̂(Ft)Ft , (5.13)

where W is a q×q weighting matrix. Eq. (5.12) is also the criterion function for the gener-

alized method of moments (GMM).

There are a few choices of the weighting matrix W (Cochrane, 2009). Hansen and Jagan-

nathan (1991) propose to use the inverse of the second moment of m̂(Ft)Ft as a weighting

matrix to obtain the efficient GMM estimator. However, this weighting matrix introduces

volatile pricing errors. Hansen and Jagannathan (1997) suggest using the inverse of the

second moments of returns as the weighting matrix in model comparison. The empirical

studies, such as Chapman (1997), show that the criterion function with this weighting matrix

attributes to a smaller variance of the estimated pricing kernel than the inverse of the second

moments of pricing errors as the weighting matrix. We therefore set the inverse of second

moments of factors W = E[FtF ′t ]
−1 as the weighting matrix.

Eq. (5.12) is equivalent to the first HJ distance (Hansen and Jagannathan, 1997) which shows

below:
min
m∈L2

||m− m̂(F)||2,

s.t. E[mF ] = 0,
(5.14)

where m is the admissible SDF exiting in the admissible set U and L is the space of potential
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payoffs.

Neural network literature commonly sets the least square function between the estimator and

the observed values as the objective function. Then, the neural networks estimate the network

parameters by minimizing the loss, which is the value of the least squares function, to achieve

the best fit to the observed values. As the first HJ distance in eq. (5.14) is equivalent to the

criterion function in eq. (5.12) with the inverse second moments of factors as the weighting

matrix, choosing eq. (5.12) as the objective function in our framework is consistent with the

objective function settings used in the neural network literature.

The paper estimates the parameters in neural networks by minimizing loss in eq. (5.12). The

nonlinear pricing kernel is therefore estimated.

5.3.3 Cross-validation and sample splitting

The hyperparameters are selected using cross-validation. Cross-validation in neural net-

works is computationally intensive but essential for ensuring stable and high out-of-sample

performance. We adopt three-fold cross-validation, which reduces the computational cost as-

sociated with evaluating a vast number of networks compared to higher-fold cross-validation.

Hyperparameters are chosen based on minimizing the average loss (quadratic pricing errors)

across the three folds.

For the data splitting scheme, we allocate 80% of the data to the training and validation sets,

and 20% to the test set. The training set is used to train the neural networks and estimate

the weights of neural networks. The validation set is used to tune the hyperparameters. The

test set evaluates the trained network. The 80% training and validation data are further split

into three-fold subsets for cross-validation. The test set remains entirely separate during

the cross-validation process and is solely used for out-of-sample performance evaluation.

Alternative sample-splitting methods are discussed in Appendix 5.A.

We utilize “Optuna” to select hyperparameters, which automates the hyperparameter opti-

mization process efficiently. Optuna is an open-source hyperparameter optimization frame-

work designed to automate the search for optimal hyperparameters. It employs state-of-
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the-art algorithms to efficiently explore the hyperparameter space and identify the best set

of parameters (Akiba et al., 2019). We define a search space for hyperparameters, and the

“Optuna” iteratively samples different values, evaluating their performance based on the loss

using the data set split by three-fold cross-validation. This process significantly reduces

the manual effort involved in hyperparameter tuning and ensures a thorough exploration of

potential hyperparameter values.

A table of potential hyperparameters and their optimal values is provided in Appendix 5.B.

5.3.4 Overfitting and robustness

The paper employs batch normalization to accelerate training efficiency, while also utilizing

dropout and ensemble learning techniques to mitigate the risk of overfitting and increase the

overall model robustness.

Batch normalization is a technique designed to improve the training of deep neural networks

by standardizing the inputs of each layer. By normalizing the layer inputs, batch normal-

ization allows for a higher learning rate and reduces the dependence on initialization. It

stabilizes the learning process and dramatically reduces the number of training epochs re-

quired to train deep networks.

Dropout is a regularization method that randomly omits a subset of units during the training

phase while retaining all units in the testing. This technique outperforms traditional reg-

ularized models such as Lasso and Ridge regression to reduce the overfitting (Chen et al.,

2023).

In addition to dropout, we utilize an ensemble learning approach by training 10 independent

neural networks with the same model configuration. The approximated pricing kernel of

each neural network is obtained by averaging the outputs of these ten ensemble networks.

The quadratic pricing error is also the average among ten ensemble networks. The ensemble

learning strategy reduces the initialization randomness among the individual networks and

increases the robustness of neural network approximation.
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Fig. 5.4.1: Flow chart

5.4 Model selection and evaluation

This paper conducts three kinds of hypothesis tests. The first test is a model specification

test, which examines whether the nonlinear pricing kernel through neural networks specifies

better than the linear pricing kernel approximated via linear models. The second one involves

selecting the optimal neural network architecture among neural networks with hidden layers

from 1 to 5. The third one is the significance test of risk factors designed for neural networks.

The flow chart in figure 5.4.1 presents the procedures for the methodology framework. First,

the pricing kernel can be assumed to be linear or nonlinear. The linear specification can be

approximated through linear models including the linear model and the regularized linear

model, while the nonlinear one can be approximated through neural networks. Second, the

specification test is conducted to determine whether the pricing kernel is linear or not. If the

linear pricing kernel is correctly specified, the linear pricing kernel is estimated, and then the

process ends.

Otherwise, the pricing kernel should be correctly specified as nonlinear. Then, we con-

duct the optimal neural network selection to find the optimal neural network architecture

with the smallest out-of-sample quadratic pricing errors compared to other neural networks.

Then, we proceed to the significance test for the nonlinear pricing kernel through the opti-

mal neural network. This test is designed to identify the significant factors that explain the

cross-sectional variations.
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5.4.1 Specification test

According to Hansen and Jagannathan (1991, 1997), the traditional specification tests for

parametric SDF models compare the J values or HJ distance to the quantile of χ2 distri-

bution with a degree of freedom, which is the number of moments minus the number of

parameters. However, this approach is not applicable to neural networks because the con-

cept of degrees of freedom does not apply in the same way. Instead, neural networks rely on

gradient descent for parameter updates, making the sample size, rather than the number of

moments, critical for ensuring consistent estimation. In contrast, GMM representations of

SDF models estimate parameters when the model is exactly or over-identified, ensuring that

degrees of freedom are positive.

To determine which model specification is better, we conduct a hypothesis test to examine

whether all the nonlinear pricing kernels have a smaller pricing error than the linear pricing

kernels. If so, the nonlinear pricing kernels approximated by neural networks have better

pricing performance than the corresponding linear models. The specification test compares

two linear models, including a standard linear model in eq. (5.7) and a regularized linear

model in eq. (5.8). We conduct the specification test for each, separately hypothesizing each

model as the worst compared to neural networks.

Let j = 1, ...,J index the J candidate SDF models. J = 7 in total, as we have 7 competing

models. j = 1,2,3,4,5 represent the neural networks with 1 to 5 hidden layers, respectively.

j = 6 index the linear pricing kernel model, and j = 7 is allocated for the regularized linear

pricing kernel. We choose each model’s parameters b j to minimize the quadratic form in

eq. (5.12). The HJ distance is the square root of its quadratic value d j =
√

J(b j).

First, we set the hypothesised worst model as the linear model j = 6 and the competing

models as neural networks j = 1,2,3,4,5. As this specification test compares the linear

model sorely with neural networks, the regularized linear model is excluded and will be

tested separately in the next test. The null hypothesis is:

H0 : max
j=1,2,3,4,5

{d2
j −d2

6} ≤ 0. (5.15)

The null hypothesis means that even the worst neural network is better than the linear model.
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The alternative hypothesis is:

H1 : max
j=1,2,3,4,5

{d2
j −d2

6}> 0. (5.16)

The alternative hypothesis illustrates that the linear model has a smaller pricing error than at

least one neural network.

We employ the test statistic formulated in White’s reality check test (White, 2000). The test

statistic is given by:

φ = max
j=1,2,3,4,5

{d2
j −d2

6}. (5.17)

The test statistic φ measures the maximum difference between the square HJ distance for

model j and the linear model.

White (2000)’s reality check test addresses the issue of data snooping, which occurs when

the dataset is repeatedly used for statistical inference. The problem with data snooping is that

it increases the likelihood to find spurious results that appear significant purely by chance.

The test statistic is specifically designed to mitigate this issue by testing the null hypothesis

that all the neural networks that do not have larger pricing errors over a benchmarked linear

model and exploring Bootstrap in the reality check test.

The test statistic has a complicated limiting distribution, making it challenging to directly

infer the distribution equation. To address this, we employ the Block Bootstrap method to

estimate the finite sample distributions of the test statistics following (Chen and Ludvigson,

2009). Block Bootstrap is a nonparametric approach that does not assume the data distribu-

tion. It allows for resampling with replacement while preserving the temporal dependence

structure within the blocks of data. It is suitable for the time-series data. By dividing the data

into blocks, this method maintains the correlation between observations within each block,

which is crucial for accurate inference in time-series data. The use of Block Bootstrap helps

mitigate the potential bias and variability that could arise from the complex dependence

structure in the time-series financial data, especially when a given dataset is used more than

once for the purpose of statistical inference. It leads to a robust estimation of the test statis-

tic’s distribution.

The Block Bootstrap splits data samples with fixed length, and there are n blocks, which are
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an integer that derives the number of samples by the length of blocks. We set the length

as 21 to cover a one-month length of trading days. If the block length is smaller like a

one-weak length than a one-month length, the Block Bootstrap captures the shorter-length

time-dependent relationship.

The pseudo-code to conduct the Block Bootstrap for estimation is listed below.

Algorithm 5 Block bootstrap
1: Sample n non-overlapping blocks with replacement.

2: Split 80% of the data into a training set and 20% into a test set.

3: Optimize parameters b j to minimize the squared HJ distance using the training set.

4: Evaluate the squared HJ distance using the test set.

5: Calculate the bootstrap test statistic φ b with the test set.

We repeat the above procedures B times to compute the Bootstrap estimates of p values.

p̂ =
1
B

b

∑
b=1

1{φ b > φ}, (5.18)

where φ b is the Block Bootstrap test statistic.

The p values are formulated assuming the null hypothesis H0 exits. We conduct an upper-

tailed test to decide whether to reject or not to reject H0. At a α = 5% significance level,

if p̂ > α , the test cannot reject H0, and concludes that even the worst neural network has a

smaller quadratic pricing error than the linear model. Otherwise, we reject H0 and indicate

the linear specification is better than the nonlinear pricing kernels.

Moreover, the paper also conducts another specification test to examine whether all nonlinear

pricing kernels perform better than the regularized linear pricing kernel via the Elastic Net.

We set the hypothesised worst model j = 7 as the Elastic Net, and the competing models as

neural networks with j = 1,2,3,4,5 for the nonlinear pricing kernels. The following hypoth-

esis settings, test statistics, and p values are the same as those of the above specification test

for the linear model.
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5.4.2 Neural network selection

We argue that performance comparisons based on the averaged pricing errors over ten en-

semble learnings are not enough to decide the optimal neural network configuration. This

is because the performance of neural networks depends seriously on the selection of hyper-

parameters, the initialization of network parameters, or stochastic factors like dropout. Thus,

we compare the out-of-sample performance of candidate pricing kernels for neural networks.

According to the results of average quadratic pricing errors in table 5.5.3, we know that

MLP1 is the model with the smallest in-sample quadratic pricing errors. Thus, the test

evaluates the MLP1 with j = 1 as the hypothezed best case among other models j = 2,3,4,5.

We change to hypothesis to be:

H0 : max
j=2,3,4,5

{d2
1−d2

j} ≤ 0. (5.19)

The null hypothesis indicates MLP1 has the smallest quadratic pricing error compared to the

four other competing neural networks. The alternative hypothesis is:

H1 : max
j=2,3,4,5

{d2
1−d2

j}> 0. (5.20)

The alternative hypothesis means that at least one deeper neural network has a smaller

quadratic pricing error than MLP1.

The test statistic is shown below:

δ = max
j=2,3,4,5

{d2
1−d2

j}. (5.21)

The neural network selection follows the Block Bootstrap procedures (algorithm 5) to esti-

mate the distribution of the test statistic. Then, we repeat the above procedures B times to

compute the Bootstrap estimates of p values. Then:

p̂ =
1
B

B

∑
b=1

1{δ b > δ}. (5.22)
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If p̂ > α at the 5% significance level, the test cannot reject H0, and concludes that MLP1

is the best candidate pricing kernel with the smallest pricing error. Otherwise, we reject H0

and conclude that there is at least one candidate pricing kernel model except for MLP1 has a

smaller pricing error. In this case, we turn back to the step of selecting another hypothesized

model that has a second smaller pricing error than MLP1, and conduct the neural network

selection again.

The neural network selection utilizes out-of-sample data to calculate the test statistic to eval-

uate its generalization ability. By setting the neural network with the smallest in-sample

quadratic pricing errors, and then calculating the test statistic and distribution based on out-

of-sample data, the framework balances the in-sample approximation ability, as well as the

model generalization. This also helps to avoid the overfitting.

5.4.3 Significance test

Unlike traditional regression models where we can employ a t-test to determine the signifi-

cance of variables, machine learning methods often act as a black box, making it challenging

to investigate variable significance. Machine learning research in asset pricing derives vari-

able importance to measure how importance of pricing factors or characteristics are (Gu

et al., 2020, 2021; Chen et al., 2023). The variable importance of a variable of interest is

measured by the average of partial derivatives of the neural network estimator with respect

to this variable. Although we can see whether a factor is relatively important or not by its

ranking of variable importance compared to other factors, the method does not infer whether

such a factor is significant to the pricing kernel.

Recent research has made progress in this area by developing statistical methods to test the

significance of variables in one-layer neural networks (Horel and Giesecke, 2020). Fallah-

goul et al. (2024) apply this method to asset pricing, providing variable significance tests for

multi-layer neural networks.

Regarding the significance test for neural networks, the null hypothesis assumes that the test
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statistics ξ of factor i equals zero. The null hypothesis is:

H0 : ξi = 0. (5.23)

The alternative hypothesis is:

H1 : ξi ̸= 0. (5.24)

The test statistic ξi is the average of squared partial derivatives, with weights P defined by

the distribution of input factors F .

ξi =
∫
F
(
∂m(F)

∂Fi
)2dP(F), (5.25)

where m(F) is the pricing kernel in the admissible set U in eq. (5.2). P describes the distri-

bution of F over the factor space F := Rq. If the pricing kernel is assumed to be linear, the

null hypothesis can take the form of H0 : bi = 0 where bi is the coefficient of a factor in linear

regression. Thus, the hypothesis can be tested using a standard t-test. However, in the case

of a nonlinear pricing kernel function, the derivative of ∂ m̂(F)
∂Fi

is not explicit but depends on

F .

Since the paper works with data samples, we use sample averages to measure the integral in

the empirical function of ξi. Thus, ξ̂ j is the average sample squared partial derivative of the

neural network estimator m̂(Ft),

ξ̂i =
1
T

T

∑
t=1

(
∂ m̂(Ft)

∂Fi

)2

. (5.26)

Horel and Giesecke (2020) asymptotically derive a function of test statistic distribution. The

scaled test statistic ξi
2 asymptotically converges to the distribution of τ[h∗] where h∗ is the

argmax of the Gaussian process with the zero mean, and the covariance matrix of the sampled

neural networks. The argmax is the index of the unique maximum value of the Gaussian

process. The zero mean and the covariance matrix of the sampled neural networks are used

to construct the Gaussian process, so as to find the argmax h∗. The empirical function of

2The scaler is inverse to the square of the upper bound, which is the difference between the estimator and the
true function (Fallahgoul et al., 2024). The smaller the bound, the larger the scaler.
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τ[h∗] is

τi[h∗] =
1
T

T

∑
t=1

(
∂h∗(Ft)

∂Fi

)2

. (5.27)

The derivation of asymptotic distribution helps avoid the need to employ bootstrap to ap-

proximate the distribution of statistics by repeat sampling and reduce the computation cost.

The framework utilizes a discretization approach to estimate the asymptotic distribution of

test statistics. The discretization approach can be used to approximate a continuous Gaussian

process by a discrete set of sampled values. As the limiting distribution of test statistics is a

function of the h∗ of a Gaussian process, the distribution is estimated by repetitively sampling

h∗ many times.

To estimate the Gaussian process indexed by the function space that includes all possible

neural networks M̂(Ft), we generate nm random neural networks in eq. (5.10) by sampling

network parameters. The parameters are sampled from a Glorot normal distribution, which

is a truncated normal distribution centred at 0 with a standard deviation of
√

2/(q+1) where

q refers to the number of input factors, and 1 refers to the number of output. The sampled

nm neural networks approximate the ξ−cover function space.

Then, we obtain h∗ in the following ways shown in algorithm 6. By sampling nm random

neural networks, we have the nm dimensional multivariate normal distribution. Then we

obtain a sample from the multivariate normal distribution. The argmax is the index of the

maximum value from the sample. By repetitively sampling nh times of h∗ and calculating

τ[h∗], the framework estimates the limiting distribution of the test statistics.

The discretization is challenging due to the difficulty of simulating the Gaussian process and

estimating the limiting distribution of test statistics. The correct estimation depends on the

number of sampled neural networks, the number of sampled h∗, and the model complexity

of neural networks. If the model complexity is complex, we need to have many nm and

nh. Otherwise, the distribution is likely to increase a few redundant values if the model

complexity is simple but with large nm and nh (Fallahgoul et al., 2024).

We set nm = 500 neural networks for each iteration and nh = 10,000 iterations to cover

enough values to estimate the test statistic distribution3.
3Fallahgoul et al. (2024) generate data using a data-generating process in the Monte Carlo study. They evaluate
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Algorithm 6 Compute the asymptotic distribution
1: Sample nm one-layer random neural networks by initializing weights from the Glorot

normal distribution.

2: Simulate a sample from the multivariate normal distribution of nm networks.

3: Find h∗ from the sample.

4: Calculate τi[h∗].

5: Repeat the above steps nh times to generate the empirical distribution of test statistics.

The framework calculated the test statistics by averaging ξ̂i over ten times of ensembling

learning for the same network structure. Then, we conduct the significance test using the

following rules. The scaled test statistic ξ̂i of Fi is compared to the 100(1−α)% quantile

of the estimated distribution of test statistics. If the test statistic is larger than the quantile,

we reject H0 in favour of H1 at the 100α% significance level. Otherwise, we do not reject

H0, which means factor i is insignificant in pricing cross-sectional assets among the high-

dimensional factor zoo.

5.5 Empirical analysis of U.S. equities

5.5.1 Data and factor construction

There are 60 factors in total, including 50 pricing factors that have been proven to price cross-

sectional assets, and 10 ESG factors that we are interested in whether they are significant to

asset pricing. The returns of 50 pricing factors are collected from Kozak et al. (2020)4.

The description of these factors is available in Appendix 5.C. Data to construct ESG factors

are collected from Datastream, Sautner et al. (2023a) and Hsu et al. (2023). Also, we collect

stock returns from CRSP and risk-free rates from Fama-French website. We deduce risk-free

returns from asset returns to obtain excess returns of assets.

the performance of the significance test using lots of distributions simulated in the Monte Carlo. However, it
is not necessary to do this in the empirical study, as long as the number nh of sampled ĥ∗ is enough to estimate
the limiting distribution. Otherwise, the computation cost will be massive.

4Their data is available at: https://sites.google.com/site/serhiykozak/data.
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Data were collected from January 2002 to December 2017. ESG data started gaining atten-

tion in the 21st century, and subsequently, various data vendors began providing ESG data.

To ensure that the ESG data of interest corresponds with the pricing factor data, we discard

the pricing factor data prior to 2002. Given the numerous pricing factors we introduced, and

to avoid overfitting due to insufficient observations, we constructed daily factor returns using

the daily asset returns. To avoid forward-looking bias, we applied time lags to the factors to

match returns (Kozak et al., 2020; Gu et al., 2020). To match returns at month t, we use the

most recent monthly characteristics at the end of month t− 1 and the most recent quarterly

data by the end of t−4. Annual characteristics available in year t−1 are matched to returns

from July at year t to June at year t +1.

There is a set of ESG collection from Datastream. They are ESG combined scores (esgscore),

environmental scores (envscore), social scores (socialscore), and governance scores (govs-

core). Also, we collect their sub-categories from environment scores, including emission

(emission), innovation scores (envinnova), and resource use scores (resuse). In addition, we

construct a greenness to measure the stocks’ greenness level following Pástor et al. (2022)’s

measure. The unadjusted greenness score of firm s at the beginning of month t is

greennesss,t−1 =−(100− envscores,t−1)× envweights,t−1, (5.28)

where envscores,t−1 is environmental scores, and envweights,t−1 is the weight of environ-

mental scores across the same industry5. The greenness measures how close the company t

reach to the perfect environmental score of 100. The closer the greenness to zero, the better

the company’s greenness level. We consider the environmental weights to make the green-

ness level comparable across industries. Moreover, we collect the climate change exposure

(ccexpo) from Sautner et al. (2023a) and the toxic emission (toxicemission) from Hsu et al.

(2023). Both of them are evaluated as effective pricing factors in their papers.

After gathering all relevant characteristics and asset excess returns, we apply specific nor-

malizations to these characteristics to define our characteristics-based factors, as detailed

by Kozak et al. (2020). This normalization process aims to concentrate exclusively on the

cross-sectional aspect of return predictability, eliminate the impact of outliers, and ensure

consistency across all portfolios. The characteristics are normalized as follows.

5The sum of environmental scores, social scores and governance scores is 1 across the same industry
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First, following Asness et al. (2019) and Freyberger et al. (2020), we implement a rank

transformation for each characteristic. For each characteristic i of a stock s at a given time

t, denoted as ci,s,t , we sort all stocks based on the values of their respective characteristics

ci,s,t and rank them cross-sectionally (across all s) from 1 to nt , where nt is the number of

stocks at time t for which this characteristic is available. For the unavailable characteristics,

we replace them with zero, which is the mean value of weights. We then normalize all ranks

by dividing by nt +1 to obtain the value of the rank transform:

rci,s,t =
rank(ci,s,t)

nt +1
. (5.29)

Next, we normalize each rank-transformed characteristic rci,s,t by first centering it cross-

sectionally and then dividing by the sum of absolute deviations from the mean of all stocks:

zi,s,t =
rci,s,t− r̄ci,s,t

∑
nt
s=1 |rci,s,t− r̄ci,s,t |

, (5.30)

where r̄ci,t =
1
nt

∑
nt
s=1 rci,s,t . The resulting zero-investment long-short portfolios of trans-

formed characteristics zi,s,t are insensitive to outliers and allow us to maintain a fixed abso-

lute amount of long and short positions invested in the characteristic-based strategy. Finally,

we combine all transformed characteristics zi,s,t for all stocks into a matrix of instruments,

Zt ∈ Rn×q. Interaction with the excess returns of assets, Ft = Z′t−1Re
t , then yields one factor

for each characteristic.

In addition, we orthogonalize all characteristic-based factor returns with respect to the CRSP

value-weighted index returns. According to the factor pricing models, we know that the

market factor is the dependent variable of all factor returns (Fama and French, 1993). Since

we focus on the factors that explain the cross-sectional variations, we exclude the market

factor from the factor zoo to estimate the pricing kernel.

5.5.2 Descriptive statistics

Table 5.5.1 tabulates statistical measures, including mean, standard deviation, minimum,

median, and maximum for the interested variables including traditional asset pricing factors,

119



Chapter 5

alongside ten ESG variables. The top 5 factors are studied from the Fama-French 5 factor

model (Fama and French, 1996) and are useful to include within asset pricing literature

because of their abilities to price cross-sectional assets6. The rest of the factors are 10 ESG

variables that are potentially useful in asset pricing.

Table 5.5.1: Descriptive statistics for factor returns

Mean Std Dev Min Median Max

rme 0.03 1.19 -8.95 0.07 11.35
size -0.01 0.93 -8.93 -0.02 7.86
value 0.00 0.81 -5.88 -0.00 6.16
prof 0.03 1.11 -9.94 0.03 7.14
inv -0.02 1.05 -7.05 -0.02 6.94
esgscore -0.01 0.16 -1.76 -0.01 0.93
emission -0.01 0.18 -1.53 -0.00 1.60
envscore -0.01 0.18 -1.71 -0.01 1.25
envinnova -0.00 0.17 -1.25 -0.00 1.76
govscore -0.01 0.14 -1.18 -0.01 1.25
resuse -0.01 0.16 -1.60 -0.00 1.05
socialscore -0.00 0.17 -1.87 -0.00 1.19
greenness -0.01 0.24 -1.55 -0.01 2.02
ccexpo -0.00 0.13 -0.78 -0.00 0.92
toxicemission -0.00 0.19 -2.06 -0.00 1.60

It is apparent that most factors’s mean values stay around zero, indicating a normalization

that we demean the mean of each characteristic cross-sectionally in the data processing stage

described in section 5.5.1. The standard deviation values reveal the volatility or risk as-

sociated with each factor. The traditional Fama-French factors such as market excess re-

turns (rme) and profitability (prof) show relatively higher volatility than most ESG variables,

where greenness and toxic emissions are comparatively less volatile with values 0.24 and

0.19, respectively. The contrast in volatility highlights the differing stability and risk profiles

between traditional financial metrics and ESG considerations. The ESG factors demonstrate

a smaller spread between the minimum and maximum values than the Fama-French five fac-

tors, indicating that ESG factors have less variability and are less likely to be exposed to

outliers. Furthermore, the median values closely align with the means for most factors, sug-

gesting a symmetric distribution of data points around the centre. However, slight deviations

in some ESG scores, like emission and resource use scores where the medians are closer to

zero than the means, indicate a skewed distribution of these factors.
6Please note that the paper does not use market excess returns (rme) to pricing kernel estimation as it is corre-
lated with lots of pricing factors. We orthogonalize the studied factors to market returns.
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The summary statistics of all factors use in the pricing kernel estimation are shown in Ap-

pendix 5.D.

The correlation matrix shown in figure 5.5.1 provides a visualized relationship between the

5 Fama-French factors and ESG variables. The size factor shows moderately positive corre-

lations with most ESG variables such as ESG combined scores, emission, and environmental

scores, suggesting that larger firms tend to have higher ESG ratings. The ESG variables

present high correlations among themselves. ESG factors including ESG combined scores,

emission, environmental scores, and social scores exhibit strong correlations with each other,

especially notable between ESG combined scores and social scores with 0.85 covariance. It

is because the ESG combined scores are a weighted combination of environmental scores,

social scores and governance scores. The significant correlations observed among ESG vari-

ables and between ESG and traditional factors suggest a potential for multicollinearity if

used together in traditional linear pricing kernel models.
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Fig. 5.5.1: Correlation matrix for factors

Figure 5.5.2 displays the variance inflation factor (VIF) values for all risk factors used in

the SDF estimation. The VIF quantifies how much the variance of an estimated regression

coefficient increases due to collinearity. A common threshold suggests that a VIF greater

than 5 indicates distinct multicollinearity, and values above 10 suggest high multicollinear-

ity (Davidson, 2004). Factors such as leverage (lev), value and profitability (prof) exhibit
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very high VIF values, indicating significant multicollinearity within the model. The ESG

variables also show relatively high VIF values. For instance, ESG combined scores have a

VIF of 17.04 and environmental scores reach 10.97, illustrating that ESG-related variables

are also subject to multicollinearity.

Given the collinearity issues among these factors, traditional linear regression models may

be inadequate for capturing the complex interrelations inherent in this data. Linear models

struggle with the correlated explanatory variables. Nonetheless, neural networks are good at

capturing and modelling the complex relationships and intricate interactions present in data

through their hidden layers. Thus, neural networks becomes a more popular choice in asset

pricing when analyzing ESG factors characterized by high multicollinearity.

Table 5.5.2: VIF of factors

Factor VIF Factor VIF Factor VIF

size 10.00 lev 144.55 ivol 16.63
value 62.00 roaa 32.66 betaarb 6.94
prof 72.50 roea 34.08 season 1.42
valprof 13.48 sp 60.42 indrrev 13.22
fscore 3.89 gltnoa 1.48 indrrevlv 4.45
debtiss 5.43 mom 29.91 indmomrev 5.92
repurch 4.89 indmom 7.97 ciss 4.11
nissa 11.76 valmom 53.19 price 10.89
accruals 1.54 valmomprof 52.92 age 6.88
growth 8.14 shortint 6.49 shvol 15.36
aturnover 44.21 mom12 10.91 esgscore 17.04
gmargins 8.52 momrev 2.21 emission 9.00
divp 5.30 lrrev 4.21 envscore 10.97
ep 30.03 valuem 36.21 envinnova 2.04
cfp 18.82 nissm 10.99 govscore 4.98
noa 19.66 sue 4.40 resuse 8.37
inv 5.74 roe 46.25 socialscore 8.11
invcap 7.54 rome 12.33 greenness 6.73
igrowth 3.94 roa 38.21 ccexpo 2.23
sgrowth 5.85 strev 10.84 toxicemission 1.59

5.5.3 Model performance

Table 5.5.3 presents the quadratic values of pricing errors for candidate pricing kernels, in-

cluding the linear model, Elastic Net, and neural networks with varying hidden layers from 1

to 5 hidden layers. The quadratic pricing errors, defined by the weighted squares of errors ac-
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cording to the criterion function in eq. (5.12), utilize the inverse matrix of second moments of

factors as the weighting matrix. This method also refers to calculating the quadratic HJ dis-

tance between the specified and admissible pricing kernels. The in-sample column shows the

quadratic pricing errors used as training loss, whereas the out-of-sample column describes

these errors computed using unforeseen data, assessing the models’ performance beyond the

training dataset.

The in-sample loss for the linear model (Linear) is the smallest, as the analytical approach

fits the training data to estimate linear pricing kernel loadings. However, this model exhibits

a significant difference in performance between in-sample and out-of-sample data. The poor

out-of-sample performance indicates a severe overfitting for the linear model with the factor

zoo. As the dimension of input factors is high, the SDF loadings estimated by a cross-

sectional regression are prone to high estimation errors, which are reflected in their out-of-

sample performance.

The linear model regularised by the Elastic Net (Enet) is used to deal with overfitting. How-

ever, the Elastic Net yields the highest quadratic pricing errors either in-sample or out-of-

sample. The unsatisfied performance of the Elastic Net might be due to its difficulty in iden-

tifying the difference between important factors and those that are redundant but still closely

related to useful factors, especially in situations where there are many multi-correlated fac-

tors.

Machine learning methods demonstrate good out-of-sample performance compared to both

the linear model and Elastic Net. This improvement in performance is because of the fea-

ture extraction and non-linear transformation of neural networks, which are able to capture

complex patterns and avoid the multicollinearity in the data. With increasing hidden layers,

the quadratic pricing errors are increasing for both in-sample and out-of-sample datasets. A

shallow network architecture with one hidden layer looks capable of modelling the pricing

kernel as shown in table 5.5.3. This finding will be further explored in the model specifica-

tion tests.

Figure 5.5.2 illustrates the in-sample training and out-of-sample testing losses for the Elastic

Net and neural networks (MLP1 to MLP5). We plot the training loss during training while

recording the evaluated testing loss to see whether these models are prone to overfitting. We
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Table 5.5.3: Squared pricing errors of pricing kernels

In-sample Out-of-sample

Linear 2.27e-12 1.29e-01
Enet 2.91e-02 1.38e-01
MLP1 3.46e-06 3.09e-05
MLP2 9.58e-06 7.93e-05
MLP3 9.92e-06 8.06e-05
MLP4 1.48e-05 1.13e-04
MLP5 2.93e-04 1.63e-03

tune the best hyperparameters by three-fold cross-validation using the in-sample dataset for

all these models. Cross-validation evaluates the losses for three folds of data respectively to

find the best set of hyper-parameters for each model. For Elastic Net, although the trends

of both in-sample and out-of-sample loss are the same, its generalization ability is poor with

the evidence of a high out-of-sample loss.

Despite concerns about over-parameterization, which typically increases with more hidden

layers and hidden units potentially leading to overfitting, the minimal difference between

in-sample and out-of-sample losses across the neural network models suggests that the over-

fitting problem has been effectively resolved due to the techniques used, including Cross-

validation for hyperparameter tuning and dropout of some parameters randomly in the train-

ing process. Cross-validation reduces the overfitting of unseen data and obtains a realizable

and stable estimation performance.

5.5.4 Linear or nonlinear?

The model specification tests compare linear pricing kernels to nonlinear ones. Specifically,

we analyze the specification of the linear model and the Elastic Net against all nonlinear

pricing kernels approximated by neural networks in CMLP, as illustrated in figure 5.5.3. In

plot (a), we assess the performance of the linear model, while in plot (b), we evaluate the

Elastic Net. The figure shows the test statistics, the distributions of test statistics and the 95%

quantiles of distributions.

In figure 5.5.3 (a), the Bootstrap empirical distribution of the test statistic is consistently

below zero, indicating that all neural networks yield smaller quadratic pricing errors than the
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Fig. 5.5.2: Squared pricing errors over episodes

linear model. Also, the test statistic −3.60 is smaller than the critical value −1.88, which

is the 95% quantile of its distribution. This comparison confirms that the null hypothesis

cannot be rejected based on the observed data. Thus, figure 5.5.3 (a) proves that the nonlinear

pricing kernel through neural networks provide a better specification than the linear model.

Additionally, figure 5.5.3 (b) presents the comparative analysis of the Elastic Net to neural

networks. The Bootstrap distribution of the test statistic, similar to those in figure 5.5.3 (a), is

positioned to the left of zero. Moreover, the values of φ =−3.87 fall below the 95% quantile

−2.15, illustrating that we cannot reject the null hypothesis. These results suggest that even

when the linear model is regularized with the Elastic Net to mitigate overfitting, the linear

pricing kernel incurs higher quadratic pricing errors than the nonlinear pricing kernel.

We tabulate the results of model specification tests in table 5.5.4. Each specification test

applies a one-tailed distribution to critically assess the performance against hypothesized

models. The specification tests compare test statistics against the upper bounds of the 95%

critical interval (CI). These upper bounds serve as crucial benchmarks. Test statistics falling
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Fig. 5.5.3: Distribution of test statistics for model specification tests. The specification
tests examine whether all nonlinear pricing kernels specify better than the linear model (a)
and the Elastic Net (b). The test statistics φ are represented in the blue dotted line for the
specification test. The 95% quantile q95 is outlined in black solid line to compare with the
test statistics in the tests.

below these thresholds indicate that there is not enough evidence to reject the null hypoth-

esis. The p-values indicate the likelihood of observing the sampling data, or more extreme,

under the null hypothesis. According to table 5.5.4, since all derived p-values exceed the

significance threshold of 5%, there is insufficient statistical evidence to reject the null hy-

pothesis for any of the tested models. The results indicate that the nonlinear pricing kernel

outstands the linear pricing kernel approximated in either the linear model or the Elastic Net.

Table 5.5.4: Model specification test results

Test statistics Upper bounds of 95% CI P values

Specification test (a) -3.60 -1.88 0.90
Specification test (b) -3.87 -2.15 0.92

5.5.5 Which neural network?

The neural network selection is designed to find the optimal neural network configuration

among nueral networks with hidden layers from 1 to 5. As depicted in table 5.5.3, MLP1

is hypothesized as the optimal model under the null hypothesis, because of its lowest in-

sample squared pricing errors compared to other neural networks. The test statistic and the

distribution under the null hypothesis are then calculated. Specifically, the test statistic δ

represents the maximum difference in out-of-sample squared pricing errors between MLP1

and its competing models. This distribution is estimated through Block Bootstrap of the test

statistic, denoted as δ b.
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Figure 5.5.4 depicts the test statistic and the empirical distribution of the bootstrap test statis-

tic. The positioning of the test statistic lies left to the 95% quantile of the distribution.

It suggests that the null hypothesis, which is MLP1 is the best model, cannot be rejected.

Consequently, MLP1 has the smallest squared pricing errors among the competitive neural

networks, confirming its outstanding performance in both model approximation and gener-

alization.
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Fig. 5.5.4: Distribution of the test statistic for neural network selection. The blue dotted line,
representing the test statistics, is positioned significantly to the left of the 95% quantile of
the empirical bootstrap distribution, marked by the black solid line.

5.5.6 Significance of factors

Figure 5.5.5 shows the empirical distribution of statistics τi[h∗] and test statistics ξi of ESG

portfolios evaluated via MLP1. The τi[h∗] samples are gathered together from 10000 times

of h∗ by sampling the Gaussian process. Each h∗ sample is obtained from the argmax of a

sample from the Gaussian process by sampling 500 neural networks with random weights.

For the test statistics, we conduct ensemble learning to estimate the average test statistics ξi,

and then scale them by the convergence rate rT . The distributions of the aggregated τi[h∗]

samples exhibited heavy right tails shown in the distribution for factors emission, innovation

scores and toxic emission. It indicates that these distributions are similar to the χ2 distribu-

tions.
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In figure 5.5.5, the dotted, dashed and solid lines are the critical value at the 90%,95% and

99% quantile ((1−100α)%) of distribution. If the scaled test statistic of the ESG portfolio

exceeds the critical value, the ESG portfolio is significant to the nonlinear pricing kernel.

Otherwise, it is insignificant at a 100α% significance level. The figure shows that scaled

test statistics of all ESG portfolios stay far right away from the 99% quantiles. It illustrates

that these ESG portfolios are significant at 1% significant level, except for the environmental

innovation scores which is significant at the 10% significance level. It shows that ESG

variables are helpful to price the cross-sectional variations among the factor zoo.
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Fig. 5.5.5: Distribution of test statistics for ESG portfolios

Table 5.5.5 tabulates the t-statistics and corresponding p-values for all the factors considered

in the pricing kernel estimation. For each factor across the neural networks, the t-statistics

represent the averaged values of the scaled test statistics ξi obtained from 10 ensemble learn-

ing. The p-values are calculated based on the distribution of the τ[h∗] samples directly linked
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to the observed t-statistics. The factors are sorted according to their t-statistic values from

high to low.

Remarkably, the top three factors which are governance scores, greenness and environment

scores, are all ESG variables. The evidence reveals that the growing importance of ESG

considerations and a substantial influence on asset pricing. Furthermore, nearly all ESG-

related factors demonstrate statistical significance at the 1% significance level. The only

exception is a factor called environmental innovation scores, which is significant at the 10%

significance level. This slight deviation still suggests it is a significant but somewhat less

important effect compared to the other ESG factors in pricing kernel estimation.

Table 5.5.5: Significance test of neural networks

t-stat p-value t-stat p-value

govscore 0.4412*** 0 toxicemission 0.0105*** 0
greenness 0.2666*** 0 gltnoa 0.0090*** 0.0001
envscore 0.2273*** 0 value 0.0087*** 0.0015
indrrevlv 0.1745*** 0 valprof 0.0075*** 0.0014
resuse 0.1464*** 0 age 0.0072*** 0.0029
cfp 0.1112*** 0 indmom 0.0062*** 0.0041
sue 0.0835*** 0 valmomprof 0.0060*** 0.0059
socialscore 0.0779*** 0 price 0.0055*** 0.0077
esgscore 0.0635*** 0 roaa 0.0052** 0.0123
ccexpo 0.0575*** 0 growth 0.0043** 0.0216
indrrev 0.0532*** 0 sp 0.0041** 0.0235
betaarb 0.0516*** 0 inv 0.0041** 0.0216
indmomrev 0.0458*** 0 ep 0.0040** 0.0259
emission 0.0446*** 0 gmargins 0.0040** 0.0276
ivol 0.0422*** 0 shvol 0.0035** 0.0473
mom 0.0363*** 0 envinnova 0.0031* 0.0522
lrrev 0.0357*** 0 momrev 0.0019 0.1910
nissm 0.0325*** 0 lev 0.0016 0.2376
prof 0.0307*** 0 strev 0.0016 0.2549
repurch 0.0255*** 0 shortint 0.0012 0.3930
debtiss 0.0232*** 0 ciss 0.0011 0.4358
roea 0.0219*** 0 season 0.0009 0.5873
igrowth 0.0209*** 0 roe 0.0006 0.8477
size 0.0190*** 0 fscore 0.0004 0.9832
nissa 0.0174*** 0 roa 0.0003 0.9946
valuem 0.0155*** 0 invcap 0.0002 0.9991
valmom 0.0141*** 0 rome 0.0002 0.9990
aturnover 0.0134*** 0 accruals 0.0002 1.0000
sgrowth 0.0132*** 0 noa 0.0002 1.0000
divp 0.0126*** 0 mom12 0.0002 0.9999

In addition, 5.5.6 shows the ranking for the importance of factors based on their test statis-
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tics. The green bars in the figure represent the importance of the ESG portfolios. As clearly

observed and discussed before, ESG portfolios consistently rank among the top factors. Con-

versely, the factors ranked at the bottom of the chart are barely visible due to their very low

test statistics. This suggests that these factors have very little importance on the model,

highlighting the contrast in importance between the top-ranking ESG factors and the least

impactful variables.

The results of the significance test emphasize the critical importance of ESG factors among

the factor zoo in asset pricing. It is the first study that includes ESG variables in the factor

zoo in asset pricing. Surprisingly, these ESG variables are all significant in explaining the

cross-sectional variations of asset prices. The prominence of these factors in the results

suggests that investors and analysts should consider ESG variables when estimating pricing

kernels and evaluating cross-sectional asset prices in stock trading and investment.
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Fig. 5.5.6: Variable importance
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5.5.7 Pricing kernel visualization

This section visualizes the time-series estimated pricing kernels using the MLP1 and exam-

ines the structure of the pricing kernels as functions of various factors.

Figure 5.5.7 illustrates that the pricing kernels during different economic periods, as recorded

by NBER. The grey-shaded area represents the economic downturns, while the white area il-

lustrates the economic expansions. The pricing kernels are represented in light blue and light

red for those estimated by daily factor returns in-sample and out-of-sample, respectively. The

deep-coloured lines represent the monthly averages of these daily pricing kernels.

The figure shows that the pricing kernel exhibits the highest volatility during economic

downturns, especially at the end of 2008 when the 2008 financial crisis was ongoing. The

increased volatility of pricing kernels during economic downturns is consistent with eco-

nomic theory. During recessions, returns tend to be more volatile, and investments become

increasingly unstable. This reflects the uncertainty in financial markets and fluctuations in

investors’ sentiments.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225
IS daily
OOS daily
IS monthly average
OOS monthly average

Fig. 5.5.7: Pricing kernel visualization

Additionally, figure 5.5.8 presents the time series of the top five factor returns, ranked by their

importance. The results reveal that these factors also exhibit greater volatility during periods

of economic downturn, with their maximum and minimum values significantly exceeding
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those observed during expansion periods. The time-series patterns in figure 5.5.7 along

with figure 5.5.8 demonstrate that the estimated pricing kernels are effectively implied by

the factor returns. The alignment of pricing kernel volatility with economic cycles and the

corresponding behaviours of key factor returns reflect the effectiveness of MLP1 in capturing

the dynamics of financial markets through data-driven pricing kernel estimation.
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Fig. 5.5.8: Factor returns

Figure 5.5.9 illustrates the shape of the pricing kernel as a function of the two top-ranked

ESG portfolios. They are greenness and governance scores. Also, we plot the pricing kernel

function concerning the profitability and value within the MLP1 model. The relationships

between the pricing kernel and these two ESG variables are positive, indicating that as ESG

values increase, the pricing kernel also increases. Given that the pricing kernel is aligned

132



Chapter 5

with asset returns in the factor pricing model implied by the APT, the positive relationships

suggest that higher ESG values are associated with higher expected asset returns. Addition-

ally, the data indicates that companies with higher ESG values tend to perform better than

those with lower ESG values.

Regarding the linearity of the pricing kernel, it exhibits a certain degree of nonlinearity of

ESG variables and firm value within the MLP1 model. The nonlinearity between profitabil-

ity and the pricing kernel is more obvious than other presented variables. It indicates that

the relationship between the pricing kernel and the profitability is more complex than other

presented variables to some extent. If more hidden layers are added to neural networks,

the nonlinear patterns are more distinct due to the nonlinear transformation of the activation

function.

Fig. 5.5.9: Pricing kernel as a function of each ESG variable

In addition to examining the pricing kernel with respect to the single factor, we also explore

the two-dimensional pricing kernel for MLP1, as shown in figure 5.5.10. This figure captures

the interactions between firm size and the top two ESG variables, which are the governance

scores and greenness. Also, we capture the effect of firm size with profitability or firm

value on the pricing kernel. The highest pricing kernel values are observed in the scenarios

where the firm size is the smallest, and the ESG variables are at their maximum levels. This

finding is consistent with the Fama-French factor pricing models, which suggest that smaller

firms tend to outperform larger ones. Also, firms with higher values have higher pricing
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kernels, especially when their size values are small. The results show that incorporating ESG

variables into investment strategies improves returns, particularly for smaller companies.

Our findings indicate that MLP1 captures the interactions among factors and the nonlinear

relationships between factors and the pricing kernel.

Fig. 5.5.10: Pricing kernel as a function of two factors

5.5.8 State-dependent performance

We evaluate the out-of-sample pricing performance of the linear and nonlinear SDFs across

different economic states. These states are defined based on eight macroeconomic variables,

as detailed in Welch and Goyal (2008). The variables include the dividend-price ratio (dp),

earnings-price ratio (ep), book-to-market ratio (bm), net equity expansion (ntis), Treasury-

bill rate (tbl), term spread (tms), default spread (dfy), and stock variance (svar) 7. Each of

these macroeconomic variables is chosen to represent the economic state because it has been

documented as a predictor of the equity risk premium. By segmenting the sample according
7Data are collected from Amit Goyal’s website: https://sites.google.com/view/agoyal145/home?authuser=0.
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to whether these variables are above or below their medians of the samples, we determine

whether the linear or nonlinear SDF is superior in pricing equities under varying economic

conditions. For example, the “high bm” state comprises the state in which the bm value

exceeds its median.

Table 5.5.6 presents the quadratic pricing errors for the linear SDF, the linear SDF regularized

by Elastic Net, and the nonlinear SDF approximated via MLP1 under different states. Across

all defined states, the nonlinear SDF (MLP1) consistently achieves the lowest quadratic pric-

ing errors compared to the linear and Elastic Net models. For instance, under the high bm

state, the quadratic pricing error of the linear SDF is approximately 0.22, while the nonlinear

MLP1 error is only 5.49×10−5. Similarly, in the high ep state, the linear SDF error reaches

1.24 and the Elastic Net model yields 0.93, whereas the nonlinear MLP1 reduces the error

dramatically to 1.28×10−4.

These results strongly imply that incorporating nonlinearities into the SDF enhances its abil-

ity to price assets in a state-dependent manner. In particular, the nonlinear SDF adapts to

different financial market conditions more effectively than its linear candidates. This adapt-

ability is evident in states characterized by the eight macro-economic predictors. The supe-

rior performance of the nonlinear SDF suggests that traditional linear models cannot capture

the relationship between macroeconomic conditions and asset pricing, while a nonlinear SDF

can exploit these complex relationships.

5.5.9 Robustness

This paper provides the robustness check for the estimated pricing kernel via MLP1. Dif-

ferent test assets are priced by the estimated pricing kernel to illustrate that our estimated

pricing kernels are robust to explain variations for universal test assets. Table 5.5.7 shows

there are three sets of test assets. The first one is 36 portfolios collected from Fama and

French websites. They are 6 Portfolios Formed on Size and Book-to-Market, 6 Portfolios

Formed on Size and Operating Profitability, 6 Portfolios Formed on Size and Investment, 6

Portfolios Formed on Size and Momentum based on prior 2 to 12 months’ returns, 6 Portfo-

lios Formed on Size and Short-Term Reversal based on prior 0 to 1 month’s returns, and 6

Portfolios Formed on Size and Long-Term Reversal based on prior 13 to 60 months’ returns.
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Table 5.5.6: State-dependent performance of SDFs

Linear Enet MLP1

High bm 2.22e-01 2.28e-01 5.49e-05
Low bm 2.00e-01 2.13e-01 4.53e-05
High dfy 2.49e-01 2.63e-01 6.08e-05
Low dfy 2.03e-01 2.10e-01 4.67e-05
High dp 1.29e-01 1.44e-01 3.25e-05
Low dp 4.72e-01 4.62e-01 1.01e-04
High ep 1.24e+00 9.32e-01 1.28e-04
Low ep 1.31e-01 1.42e-01 3.17e-05
High ntis 9.63e-01 9.46e-01 2.06e-04
Low ntis 1.37e-01 1.49e-01 3.32e-05
High svar 2.55e-01 2.75e-01 6.32e-05
Low svar 2.04e-01 2.10e-01 4.64e-05
High tbl 3.14e-01 3.10e-01 7.05e-05
Low tbl 1.64e-01 1.82e-01 4.04e-05
High tms -6.45e+00 2.23e+01 7.15e-03
Low tms 1.31e-01 1.40e-01 3.06e-05

Table 5.5.7: Robust check for the estimated pricing kernels to price test assets

In-sample Out-of-sample

36ff 5.76e-06 5.76e-06
49industry 3.62e-06 3.62e-06
118hxz 1.90e-05 1.90e-05

The second set of test assets is 49 industry portfolios from Fama-French’s webiste8. The last

one is the 118 factors collected from Hou et al. (2020)9.

The quadratic pricing errors of test assets are very small and similar to the results of the

60 risk factors used in table 5.5.3. The minimal quadratic pricing errors indicate that the

arbitrage opportunity is absent. The estimated pricing kernel is robust when pricing with a

broad range of test assets in the financial market.

5.5.10 Investment performance

This section compares the performance of the outstanding neural network model MLP1 with

traditional linear models in factor pricing to evaluate whether the nonlinear pricing kernel

8These data are available at: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
9Hou et al. (2020)’s data are collected from: https://global-q.org/testingportfolios.html.
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enhances investment performance over the linear kernel. By studying the Sharpe ratio (SR)

of the factor pricing models, we can evaluate the investment performance of the candidate

SDFs. The higher the SR, the smaller the abnormal returns generated in the factor pricing

model. Thus, it is more likely that the pricing kernel can price the payoffs.

Unlike the managed portfolio constructed in the linear pricing kernel from eq. (5.6) is deemed

as a pricing factor, the difficulty of nonlinear pricing kernel is that they cannot be treated as

pricing factors directly. Alternatively, we treat the nonlinear pricing kernel as a non-traded

factor so that we can construct the mimicking portfolios of the non-traded factor (Almeida

and Freire, 2023). The regression between the non-traded factor m(Ft) and test asset returns

Re
t is:

m(Ft) = α +β
′Re

t + εt . (5.31)

The nonlinear candidate pricing kernel m(Ft) projects to test asset returns Re
t and a constant

α to obtain its mimicking portfolio. Therefore, the mimicking portfolio of the nonlinear

pricing kernel is:

mnp
t = β̂

′Re
t . (5.32)

The SR of the mimicking portfolios of the nonlinear pricing kernels is therefore as follows:

SR(mnp
t ) =

E[mnp
t ]√

Σ(mnp
t )

. (5.33)

In addition, we calculate the SR of the combination of traded factors, which is the same as

the SR of linear SDFs, as they are treated as traded factors. That is:

SR(ml p
t ) =

E[Ft ]√
Σ(Ft)

. (5.34)

Table 5.5.8 presents the annualized SR10 for both linear pricing kernels and mimicking port-

folios generated by various test assets for the nonlinear pricing kernel. Like what we use

for the robust check in section 5.3.4, these test assets are 36 common factors, 49 industry

factors and 118 single-sorted hxz factors. They are used to construct mimicking portfolios

MLP1 36ff, MLP1 49industry and MLP1 118hxz, respectively. In addition to test assets,

the 60 factors are also used to form the portfolios.

10The annualized SR is calculated by multiplying the daily SR by
√

252.
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The SR of the linear pricing kernel model is recorded at 2.05, matching the SR of its traded

factor. In contrast, the Elastic Net model displays a notably low SR of 0.96, highlighting its

limitations in investment. On the other hand, MLP1 outperforms the linear models signifi-

cantly, with all mimicking portfolios priced from MLP1 achieving higher SRs. Overall, the

empirical evidence supports the superior performance of neural networks.

Table 5.5.8: Out-of-sample annualized SR.

Linear Enet MLP1 36ff MLP1 49industry MLP1 118hxz

2.05 0.96 3.36 3.75 8.72

Figure 5.5.11 displays the out-of-sample cumulative returns of mimicking portfolios derived

from both the linear and nonlinear pricing kernels. To ensure comparability, all portfolios are

adjusted to have the same volatility as the market returns. Among the candidates, the mim-

icking portfolios generated from the nonlinear pricing kernel via MLP1 exhibit the higher

cumulative returns than the portfolios from the linear pricing kernel over time. Notably,

the cumulative returns of the mimicking portfolios from 118 HXZ test assets are the most

outstanding, aligned with the highest SR of the mimicking portfolios from HXZ test assets.

Conversely, portfolios based on the Elastic Net and the linear model show lower cumula-

tive returns, with the linear portfolios marginally outperforming those of the Elastic Net.

However, both lag behind the nonlinear pricing kernel.
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Fig. 5.5.11: Out-of-sample cumulative portfolio returns
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5.6 Conclusion

We utilize neural networks to estimate the nonlinear pricing kernel. Unlike the linear pricing

kernel, which supposes that the pricing kernel is linearly spanned by mean-variance effi-

cient factors, our nonlinear specification allows for the inclusion of nonlinear factor compo-

nents without the necessity of constructing efficient portfolios. By enforcing a non-negativity

constraint on the candidate pricing kernel, our methodology ensures the estimation of asset

prices without arbitrage opportunities. Significantly, this estimation method captures the

cross-sectional variations attributable to the factors in SDF estimation rather than to the fac-

tor pricing models.

This paper assesses model specifications and performs the specification test between the

linear pricing kernel approximated by the linear models and the nonlinear pricing kernel ap-

proximated by neural networks. The superiority of nonlinear specification leads to a general

representation of the pricing kernel.

The neural network selection is conducted to find the optimal neural network configuration.

Current machine learning papers in asset pricing typically compare the average model per-

formance among various neural networks with different numbers of hidden layers. However,

such approaches do not infer which model is robustly superior. Our research addresses this

gap by demonstrating the critical necessity for neural network selection that accounts for the

non-convex nature of neural networks in asset pricing.

Building upon the appropriately specified pricing kernel model using MLP1, we explore the

importance of various factors in explaining cross-sectional variations. We employ the signif-

icance test designed for neural networks to identify statistically significant factors. Current

research assesses the relative importance of variables. This method, while informative, does

not clarify which factors are absolutely significant.

Our findings hold practical implications for empirical research. Firstly, we demonstrate that

a nonlinear pricing kernel outperforms its linear counterpart in terms of quadratic pricing

errors and Sharpe ratio. By comparing the quadratic pricing errors of the nonlinear pricing

kernel, we observe the smallest in-sample pricing errors and robust out-of-sample perfor-
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mance. Moreover, by constructing mimicking portfolios of the nonlinear pricing kernel, we

note that the annualized Sharpe ratio is higher than that of the linear pricing kernels. This

suggests that the nonlinear pricing kernel has superior pricing and portfolio investment ca-

pabilities.

Secondly, the optimal neural network selection results show that MLP1 is the optimal neural

network. This result is statistically robust when applied to various test assets. For future

empirical research in asset pricing using neural networks, researchers can utilize MLP1 to

estimate unknown functions, which are optimal both in terms of the universal approximation

theory and the proposed statistical tests.

Thirdly, we have incorporated ESG variables into the factor zoo to estimate the pricing ker-

nel. Through the significance test, we find that ESG variables significantly impact asset

prices and rank highly. Due to the low signal-to-noise ratio of ESG and multicollinearity

between ESG and traditional pricing factors, it is challenging to disentangle these effects

in linear models. Our study leverages neural networks to simulate these interrelationships.

Given the high level of attention that the public is currently paying increasing attention to

ESG, this paper helps investors, stakeholders, and policymakers better understand the role of

ESG in asset pricing through neural networks.
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5.A Sample splitting methods

In addition to cross-validation, there are some other sample-splitting methods, including the

fixed scheme, rolling scheme, and recursive window scheme. The fixed scheme splits data

into training, validation and testing samples. Then, it estimates the model once the training

and validation samples are used, and then attempts to fix the trained model in the test set.

Second, the rolling scheme shifts the training and validation sets forward in time to include

more recent data but holds the window length of training and validation fixed. It refits the

model at the time of each rolling, and evaluates the model performance on the unforeseen test

samples. As the model is trained again using the data in the newly training set independently

at each rolling, there are a few sets of weight parameters. Rolling approach is suitable to the

model that is sensitive to data in the short-time, like stoch trading data. Third, the recursive

window approach includes the data in the training set as new data arrive but retains the

historical data in the training set. When it refits the model, it does not discard the previous

trained model, but continues to update the pre-trained model using the recursive training set.

The recursive approach is suitable for the model that utilize the long-term history of data.

5.B Hyperparameters

We select the optimal hyperparamers for each neural network via “Optuna”. The range of

the number of hidden units is decided according to the growth rate of hidden units compared

to the data sample. Also, the number of network parameters is smaller than the data sample

to decide the optional number of hidden units in each layer. The options and optimal hyper-

parameters are listed in table 5.B.1 for each neural network. We select the optimal number

of units from a range of potential units. The pre-defined set of units per layer cannot exceed

the observation sizes T , in order to obtain model consistency. As shown in table 5.B.1, the
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optimal units per layer are decreasing as the number of hidden layers increases, indicating

that the optimal model complexity for each network cannot be too large for estimating the

pricing kernels. The dropout rate of the 5-hidden layer network is smaller, as its model com-

plexity is smaller compared to other network configurations. The initialize learning rate is

optimized to be the same.

Table 5.B.1: Hyperparameter tuning and optimization

Hidden
layers

Units per layer Dropout rate Learning rate

Options Optimal Options Optimal Options Optimal

1 (4,45) 42 {0.05,0.1,0.2,0.3} 0.1 {0.001,0.01} 0.01
2 (4,30) 30 {0.05,0.1,0.2,0.3} 0.1 {0.001,0.01} 0.01
3 (4,24) 24 {0.05,0.1,0.2,0.3} 0.1 {0.001,0.01} 0.01
4 (4,21) 19 {0.05,0.1,0.2,0.3} 0.1 {0.001,0.01} 0.01
5 (4,19) 4 {0.05,0.1,0.2,0.3} 0.05 {0.001,0.01} 0.01
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5.C Description of factors
Table 5.C.1: Summary of financial factors

Abbreviation Factor Name Description Reference

size Size Market capitalization as the end of June price times shares outstanding. Fama and French (1993)

value Value (annual) Book equity to market equity ratio at the end of June each year. Fama and French (1993)

prof Gross Profitabil-

ity

Gross profits over total assets, indicating operational efficiency. Novy-Marx (2013)

valprof Value-

Profitability

Ranking combination of book-to-market and profitability. Novy-Marx (2013)

fscore Piotroski’s F-

score

Financial scoring system assessing profitability, funding, and efficiency. Piotroski (2000)

debtiss Debt Issuance Indicator of whether long-term debt was issued during the year. Spiess and Affleck-Graves

(1999)

repurch Share Repur-

chases

Indicates activity of share repurchases within the fiscal year. Ikenberry et al. (1995)

nissa Share Issuance

(annual)

Yearly change in number of shares outstanding, excluding dividends and splits. Pontiff and Woodgate (2008)

accruals Accruals Difference in earnings and cash from operations, adjusted for non-cash items. Sloan (1996)

Continued on next page
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Table 5.C.1 continued from previous page

Abbreviation Factor name Description Reference

growth Asset Growth Growth rate of total assets from year t-1 to year t. Cooper et al. (2008)

aturnover Asset Turnover Sales revenue relative to total assets. Soliman (2008)

gmargins Gross Margins Gross profits relative to total sales. Novy-Marx (2013)

divp Dividend Yield Dividend payments scaled by market equity, assessed in December. Naranjo et al. (1998)

ep Earnings/Price Earnings relative to market value of equity, evaluated annually. Basu (1977)

cfp Cash

Flow/Equity

Market Value

Sum of net income and depreciation, scaled by market equity. Lakonishok et al. (1994)

noa Net Operating

Assets

Operating assets over total assets minus financial liabilities. Hirshleifer et al. (2004)

inv Investment Annual change in property, plant, and equipment plus inventory changes. Lyandres et al. (2008)

invcap Investment-to-

Capital

Capital expenditures relative to total physical capital. Xing (2008)

growth Investment

Growth

Invest- ment growth is the percentage change in capital expenditure. Xing (2008)

sgrowth Sales Growth Annual sales growth, calculated as current year’s sales over previous year’s. Lakonishok et al. (1994)

lev Leverage Total assets divided by market value of equity, measured annually. Barbee Jr et al. (1996)

Continued on next page
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Table 5.C.1 continued from previous page

Abbreviation Factor name Description Reference

roaa Return on Assets Net income scaled by total assets, updated annually. Chen et al. (2011)

roea Return on Equity

(annual)

Net income scaled by book value of equity, updated annually. Haugen and Baker (1996)

sp Sales-to-Price Total revenues divided by stock price, updated annually. Barbee Jr et al. (1996)

gltnoa Growth in LT-

NOA

Growth in Long-Term Net Operating Assets minus accruals. Fairfield et al. (2003)

mom Momentum (6m) Cumulative return excluding the most recent month, over the previous six months. Jagadeesh and Titman (1993)

indmom Industry Momen-

tum

Industry ranking based on past 6-month performance. Moskowitz and Grinblatt

(1999)

valmom Value-

Momentum

Combination of book-to-market and past 6-month returns. Novy-Marx (2013)

valmomprof Value-

Momentum-

Profitability

Aggregate ranking of book-to-market, profitability, and momentum. Novy-Marx (2013)

shortint Short Interest Ratio of shares shorted to shares outstanding. Dechow et al. (1998)

mom12 Momentum (1

year)

Cumulative return over the past year, skipping the most recent month. Jagadeesh and Titman (1993)

Continued on next page
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Table 5.C.1 continued from previous page

Abbreviation Factor name Description Reference

momrev Momentum-

Reversal

Returns from a defined past period, used to predict reversals. Jagadeesh and Titman (1993)

lrrev Long-term Re-

versals

Long-term cumulative returns used to forecast market corrections. DeBondt and Thaler (1985)

valuem Value (monthly) Monthly book-to-market ratio using the latest financial data. Asness and Frazzini (2013)

nissm Share Issuance

(monthly)

Monthly change in share count, accounting for stock actions. Pontiff and Woodgate (2008)

sue PEAD (SUE) Standardized unexpected earnings, reflecting surprises in quarterly reports. Foster et al. (1984)

roe Return on Book

Equity

Quarterly net income divided by book equity from three months prior. Chen et al. (2011)

rome Return on Market

Equity

Quarterly earnings scaled by market equity from four months prior. Chen et al. (2011)

roa Return on Assets Quarterly net income relative to total assets, from three months prior. Chen et al. (2011)

strev Short-term Re-

versal

Return of the previous month, used to predict immediate reversals. Jegadeesh (1990)

ivol Idiosyncratic

Volatility

Standard deviation of residuals from a firm-level return model. Ang et al. (2006)

Continued on next page
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Table 5.C.1 continued from previous page

Abbreviation Factor name Description Reference

beta Beta Arbitrage Beta value calculated over the past 60 months, used in arbitrage strategies. Cooper et al. (2008)

season Seasonality Average return from the same month over the previous five years. Heston and Sadka (2008)

indrrev Industry Relative

Reversals

Difference between a stock’s return and its industry’s return, from the previous month. Da et al. (2013)

indrrevlv Industry Relative

Reversals (Low

Volatility)

As above, for stocks with below-median volatility. Da et al. (2013)

indmomrev Industry

Momentum-

Reversal

Combined ranking of industry momentum and relative reversals for low volatility stocks. Moskowitz and Grinblatt

(1999)

ciss Composite Is-

suance

Log difference of market equity, adjusted for past returns. Daniel and Titman (2006)

price Price Logarithm of market equity divided by shares outstanding. Blume and Husic (1973)

age Firm Age Logarithm of months since a firm’s listing in the CRSP database. Barry and Brown (1984)

shvol Share Volume Average trading volume over the past three months, relative to outstanding shares. Datar et al. (1998)
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5.D Summary statistics
Table 5.D.1: Descriptive statistics of all factor returns (%)

Factor Mean Std Dev Min Median Max

size -0.01 0.93 -8.93 -0.02 7.86

value 0.00 0.81 -5.88 -0.00 6.16

prof 0.03 1.11 -9.94 0.03 7.14

valprof 0.02 0.91 -6.89 0.01 5.20

fscore 0.02 0.86 -6.77 0.00 5.50

debtiss 0.01 0.81 -6.19 0.04 5.45

repurch 0.03 0.79 -4.69 -0.00 5.24

nissa -0.04 0.75 -5.19 -0.01 5.72

accruals -0.01 0.92 -4.59 -0.02 5.86

growth -0.03 0.81 -4.16 -0.01 8.96

aturnover 0.04 1.14 -10.90 0.05 8.74

gmargins -0.02 0.97 -4.93 -0.00 7.94

divp 0.01 1.00 -8.51 0.01 11.44

ep 0.02 0.81 -5.36 0.01 4.96

cfp 0.02 0.81 -5.66 -0.00 4.92

noa -0.00 0.78 -5.06 -0.03 4.66

inv -0.02 1.05 -7.05 -0.02 6.94

invcap -0.02 0.65 -6.84 -0.02 6.99

igrowth -0.04 0.99 -5.72 -0.01 10.36

sgrowth -0.03 0.86 -5.40 0.00 7.30

lev -0.00 0.92 -7.15 -0.01 7.89

roaa 0.04 1.11 -9.33 0.03 7.71

roea 0.03 1.01 -5.08 0.00 7.70

sp 0.02 0.81 -7.86 0.02 4.59

gltnoa -0.02 0.69 -3.54 -0.02 3.83

mom -0.00 1.06 -7.52 0.05 6.93

indmom 0.01 0.96 -6.34 0.06 4.87

valmom 0.01 0.99 -6.07 0.06 4.69

valmomprof 0.01 1.00 -6.50 0.04 5.60

Continued on next page
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Table 5.D.1 continued from previous page

Factor Mean Std Dev Min Median Max

shortint -0.01 0.90 -10.30 0.00 7.56

mom12 0.01 1.08 -7.34 0.07 7.21

momrev 0.01 0.95 -9.77 0.03 6.74

lrrev -0.01 1.03 -8.19 0.02 8.30

valuem 0.00 0.86 -6.48 -0.03 6.13

nissm -0.04 0.71 -4.55 -0.01 3.93

sue 0.03 1.04 -9.52 0.04 7.98

roe 0.04 0.96 -6.58 0.04 6.53

rome 0.04 0.75 -6.92 0.03 6.12

roa 0.04 1.01 -7.38 0.03 7.09

strev 0.00 1.02 -7.53 0.02 5.92

ivol -0.03 0.68 -5.64 -0.01 3.98

betaarb -0.03 0.68 -5.94 -0.03 5.30

season -0.01 1.04 -6.23 0.00 5.30

indrrev -0.00 1.00 -7.20 0.02 6.30

indrrevlv -0.02 1.08 -7.54 -0.00 7.30

indmomrev 0.01 1.11 -8.97 0.03 7.22

ciss -0.03 0.82 -6.83 -0.03 4.23

price 0.01 0.94 -6.30 0.03 6.17

age 0.01 0.63 -3.49 -0.02 5.49

shvol -0.02 0.64 -5.04 -0.01 3.77

esgscore -0.01 0.16 -1.76 -0.01 0.93

emission -0.01 0.18 -1.53 -0.00 1.60

envscore -0.01 0.18 -1.71 -0.01 1.25

envinnova -0.00 0.17 -1.25 -0.00 1.76

govscore -0.01 0.14 -1.18 -0.01 1.25

resuse -0.01 0.16 -1.60 -0.00 1.05

socialscore -0.00 0.17 -1.87 -0.00 1.19

greenness -0.01 0.24 -1.55 -0.01 2.02

ccexpo -0.00 0.13 -0.78 -0.00 0.92

toxicemission -0.00 0.19 -2.06 -0.00 1.60
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Conclusion

This thesis examines portfolio optimization and asset pricing, focusing on the application

of machine learning methods. Through three interconnected essays, the research collec-

tively enhances the understanding and applications of advanced machine learning techniques

in finance, addressing critical challenges and providing significant implications for both

academia and industry.

Chapter 1 illustrates the link between machine learning and finance, and outlines the motiva-

tions for exploring robo-advisory portfolio optimization and asset pricing. Also, this chapter

introduces the research questions, methodologies, main findings and contributions of each

essay presented in this thesis. Regarding the advantages of machine leanring methods, they

enable financial institutions to improve efficiency, reduce costs and offer sophisticated prod-

ucts to their clients. Moreover, applying machine learning to financial theories helps tackle

issues that traditional methods cannot address, such as modelling complex and nonlinear

relationships, as well as adapting to rapidly changing market conditions.

Chapter 2 provides a comprehensive literature review that forms the theoretical backbone

of this thesis. The chapter covers critical areas of portfolio optimization, asset pricing, and

machine learning methods. The chapter begins by discussing portfolio choices, especially

the mean-variance optimization. It addresses the challenges of rare disasters and introduces

the importance sampling as a technique to oversample disaster events. Risk aversion and

inverse optimization concepts are examined to understand how investors’ preferences influ-

ence portfolio choices. The literature review then shifts focus to asset pricing, discussing

pricing kernels and the significance of ESG factors. Furthermore, the chapter summarizes

machine learning methods in finance applications, presenting the definitions and applica-

tions of supervised, unsupervised, and reinforcement learning. Moreover, model selection

and interpretability of neural networks are discussed.
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Chapter 3 develops a novel computational framework that integrates RL with importance

sampling in the presence of disaster events. The COVID-19 pandemic highlighted the vulner-

abilities of traditional robo-advisors, which struggled to maintain satisfactory performance

during unprecedented market downturns. Empirical evidence indicates that robo-advisors

underperformed during such periods, emphasizing the need for algorithms that ensure reli-

ability and robustness under extreme market conditions. By incorporating importance sam-

pling into the RL framework, we ensure that robo-advisors acquire sufficient learning expe-

riences to optimize investment strategies during rare disasters. This framework effectively

reduces potential investment losses, leads to higher investor utilities and increases portfolio

returns in the face of rare disasters.

However, this framework simplifies financial markets into three states, which may not fully

capture the complexities of real-world markets where numerous features contribute to defin-

ing a state. Additionally, tabular RL methods face challenges in handling high-dimensional

state and action spaces, limiting their generalization ability in complex environments. Ad-

dressing these limitations is crucial for enhancing the practical applicability of the frame-

work. Future research can focus on the high-dimensional state spaces to model the dynamics

of financial markets. Incorporating techniques such as deep RL algorithms can help manage

the model complexity and improve performance.

Building upon the limitations identified in Chapter 3, Chapter 4 shifts focus on investors’ risk

aversion estimation under normal state space and disaster state space. The proposed frame-

work combines online inverse optimization with the A2C deep RL algorithm to estimate

state-dependent risk aversion and formulate adaptive investment strategies that align with

individual risk profiles. Inverse optimization can inversely estimated the unknown risk aver-

sion given the observable portfolio choices which are subject to noise such as behavioural

biases, cognitive limitations and measurement errors. Moreover, we employ deep RL since

it effectively handles the complexities and high dimensionality of financial environments.

Our findings demonstrate that the framework effectively estimates risk aversion for each se-

lected mutual fund. This has important implications for robo-advisors and fund managers

in aligning investment strategies with individual risk profiles, particularly during periods of

market distress. By enhancing the alignment of investment strategies with investors’ risk

preferences, the framework improves portfolio performance across varying market condi-
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tions. The deep RL algorithm consistently outperforms equal-weighted portfolios, relevant

investment-type allocations, and actual mutual funds, demonstrating its capability to gener-

ate exceptional investment strategies tailored to investors.

However, data scarcity during disaster states poses challenges in accurately estimating risk

aversion. The limited sample size may affect estimation accuracy and the generalizability

of the results. Future research can methods such as incorporate importance sampling, as

utilized in Chapter 3, to address this data limitation and further refine investment strategies.

Additionally, exploring solutions for addressing the imbalance between disaster and normal

datasets, such as data augmentation techniques or synthetic data generation, can enhance the

robustness of the estimation process.

Chapter 5 proposes a nonlinear pricing kernel approximated by neural networks, moving be-

yond traditional linear specifications in asset pricing models. Unlike the linear pricing kernel,

the nonlinear specification allows for a span of nonlinear components of factors. By conduct-

ing model specification tests, this work pioneers a comprehensive approach to validate the

nonlinear specification of the pricing kernel. Also, the optimal neural network selection finds

the optimal neural network architecture with minimized out-of-sample quadratic pricing er-

rors. Based on the selection of optimal neural network architecture, we evaluate the factor

significance through a significance test designed for neural networks.

This essay contributes to the development of asset pricing studies. The findings suggest that

a nonlinear pricing kernel outperforms its linear counterpart in terms of quadratic pricing er-

rors and Sharpe ratios, indicating superior pricing and portfolio investment capabilities. By

comparing the quadratic pricing errors of neural networks, we observe that the one-layer neu-

ral network has both the smallest in-sample and out-of-sample pricing errors. Constructing

mimicking portfolios of the nonlinear pricing kernel, we note that the annualized Sharpe ra-

tio is higher than that of linear pricing kernels, suggesting enhanced investment performance

of the nonlinear stochastic discount factor. Moreover, the state-dependent performance of

the nonlinear pricing kernel outstands the linear pricing kernel across all economic states.

The significance tests for neural networks highlight the importance of ESG variables. We

find that ESG variables significantly impact asset prices and rank highly among factors based

on the results of significance tests. This insight is valuable given the increasing attention on
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ESG considerations in investment decisions. Incorporating ESG factors into asset pricing

models not only aligns with the shift toward sustainable finance but also provides a more

comprehensive understanding of the pricing factors. We find that ESG factors explain the

cross-sectional asset prices under a range of pricing factors in the factor zoo.

Exploring the broader impact of ESG factors in asset pricing is interesting for further inves-

tigation. Future research can extend to how ESG factors interact with traditional financial

variables. In the linear model, ESG factors are known to be linear-correlated with some tradi-

tional pricing factors. However, the correlation may be isolated when the features are mapped

to high-dimensional space. Also, exploring the temporal dynamics, industry-specific effects,

and geographic variations of ESG factors is worthwhile. Moreover, enhancing the inter-

pretability of neural networks in finance is another important direction. We can dive into the

explainable machine learning to make the black-box nature of neural networks more trans-

parent, allowing practitioners and regulators to better understand financial decision-making.

The research on robo-advisory has several important policy implications. First, optimized

investment strategies during rare economic states strengthen financial stability and protect

investors in turbulent times. Policymakers and regulators may consider encouraging the use

of these technologies to make financial markets more resilient. Second, adapting investment

strategies to tailor investors’ personalized risk profiles can make financial services more re-

sponsive to individual needs, increasing investor trust and investment satisfaction. Therefore,

policymakers and practitioners should delicately assess investors’ risk profiles before making

investments on behalf of their clients.

The implications in asset pricing are also practically useful. By introducing a nonlinear pric-

ing kernel, this research provides a more general pricing kernel for pricing various financial

instruments such as derivatives and structured securities. Unlike traditional linear models,

neural networks capture complex patterns in the data. This improvement motivates investors

and portfolio managers to employ neural networks in estimating asset prices. Moreover, un-

derstanding how ESG factors affect asset prices can guide regulators to shape sustainable

investment policies. At the same time, making AI-driven financial models more transparent

is essential. Interpretable models help investors understand the reasons behind certain in-

vestment decisions, reduce the risks associated within “black-box” algorithms, and support

more effective risk management.
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In conclusion, this thesis advances the integration of machine learning techniques in finance,

offering novel frameworks and methodologies for asset pricing and portfolio optimization.

By addressing key challenges such as learning from rare disaster events, tailoring strategies

to investor risk profiles, modelling the nonlinear pricing kernel, selecting the best neural net-

work architecture and evaluating the significance of pricing factors, the research contributes

valuable insights that bridge the gap between traditional financial theories and advanced ma-

chine learning methods.
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