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Abstract

Spreading problems are a class of decision problems on graphs that can be used to model
the behaviour of a spread of a contagion over a network. Real world networks are often
dynamic in nature, with the connections between the members of the network changing
over time. Take for example the contact network of a population of people: individuals
may come into contact for a period of time, and then move apart and contact other individ-
uals. Graphs do not model this dynamic behaviour, and as such in this thesis we consider
spreading problems on temporal graphs, which overcome this shortfall by augmenting a
graph with temporal information. In particular we consider the problems of Temporal
Firefighter and Temporal Graph Burning, extensions of the Firefighter and
Graph Burning problems to temporal graphs. Temporal Firefighter asks how to
best prevent the vertices of a temporal graph from “burning” when a fire is spreading
over the graph, and Temporal Graph Burning asks how best to burn the vertices of
a temporal graph to spread a fire as fast as possible. Both of these problems are NP-
complete, and unlikely to yield efficient algorithms in general. Parameterised complexity
theory provides tools for obtaining efficient algorithms for NP-complete problems, and
in this thesis we consider various parameters for temporal graphs. We find that both
Temporal Firefighter and Temporal Graph Burning are in FPT when param-
eterised by vertex-interval-membership-width and by temporal neighbourhood diversity.
Furthermore, we prove a meta-theorem for showing that a temporal graph problem is in
FPT when parameterised by vertex-interval-membership-width. Overall we demonstrate
the usefulness of temporal graph parameters, suggesting future work in applying these to
more problems on temporal graphs.

i



Contents

Abstract i

Acknowledgements vi

Declaration vii

1 Introduction 1
1.1 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Firefighter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Graph Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Temporal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Parameterised Complexity . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Table of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Temporal Firefighting and Burning Games 18
2.1 Problem Definitions and Hardness . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Temporal Firefighter . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Temporal Graph Burning . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Restricting the Underlying Graph for Firefighter . . . . . . . . . . . . . 23
2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Parameterised Complexity of Temporal Firefighter on Sparse Temporal
Graphs 34
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 A Fixed Parameter Tractable Algorithm . . . . . . . . . . . . . . . . . . . 37
3.3 Hardness for Edge-Interval-Membership-Width . . . . . . . . . . . . . . . . 42
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Parameterised Complexity on Dense Temporal Graphs 49
4.1 Introducing the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



CONTENTS iii

4.2 Temporal Firefighter Parameterised by Temporal Neighbourhood Diversity 54
4.3 Temporal Graph Burning Parameterised by Temporal Neighbourhood Di-

versity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Hardness for Temporal Modular Width . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 A Meta-Algorithm For Vertex Interval Membership Width 71
5.1 Locally Temporally Uniform Problems . . . . . . . . . . . . . . . . . . . . 72
5.2 Examples of Temporally Local Processes . . . . . . . . . . . . . . . . . . . 77

5.2.1 Temporal Hamiltonian Path . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Temporal Firefighter . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Temporal Graph Burning . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.4 Temporal Dominating Set . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions 93
6.1 Contributions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Figures

1.1 An example game of Firefighter, the orange vertices are burning, and
the green are defended. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 An example game of Graph Burning, the red vertices are newly placed
fires, and all other burning vertices are in orange. . . . . . . . . . . . . . . 9

1.3 An example temporal graph, and the snapshots of the graph on each timestep. 12

2.1 An example of the reduction for Temporal Firefighter that produces
a clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 An example of the reduction for Temporal Firefighter on cliques with
bounded lifetime. The vertex marked {W} represents the set W containing
|V (G)|c − |V (G)| vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The section of the tree corresponding to the appearances of variable b1 in
the Max-2-SAT instance (b1 ∨ b2) ∧ (¬b2 ∨ b3) ∧ (¬b1 ∨ ¬b3) . . . . . . . . 44

4.1 The connected component corresponding to the literal xi, appearing in
clauses Cj and Cj′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



List of Algorithms

1 Temporal Firefighter on temporal graphs of maximum degree
3 with a root of maximum degree 2 . . . . . . . . . . . . . . . . . . 32

2 Temporal Firefighter Parameterised By Temporal Neighbour-
hood Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 TND Graph Burning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Locally Temporally Uniform Algorithm . . . . . . . . . . . . . . 74
5 Temporal Hamiltonian Path Transition . . . . . . . . . . . . . . . 78
6 Temporal Firefighter Reserve Transition . . . . . . . . . . . . . . 81
7 Temporal Graph Burning Reserve Transition . . . . . . . . . . . 85
8 Temporal Dominating Set Transition . . . . . . . . . . . . . . . . . 89

v



Acknowledgements

Many thanks to my supervisors Jessica Enright and Kitty Meeks, for their continued
advice and support throughout my PhD. Thank you to my parents, Russell and Rachael
Hand for their love and encouragement. Thank you to both Duncan and Lynn, and Mel
and Chris, for their repeated hospitality, and to my friends for providing (not too much)
fun and distraction.

Finally thank you to Izzi. I would not be here without you.

vi



Declaration

With the exception of Chapter 1 which contains introductory material, all work in this
thesis was carried out by the author unless otherwise explicitly stated.

Chapter 2 and Chapter 3 contains work that appears in [44, 43]. Chapter 4 contains
work that appears in [29].

vii



To Izzi.



Chapter 1

Introduction

Spreading occurs in a variety of real world scenarios, including the spread of epidemics
[55], the spread of information and rumours over a social network [68], and the spread
of political idealogies and opinions [6]. We may desire to compute details about how a
given process spreads over such networks. For example, if we knew how an epidemic would
spread, we could use this information to decide who best to target with a vaccine to limit
the spread. We might alternatively be interested in promoting spreading over a network: if
we wanted to inform a population about a certain topic and knew how information spreads
on the social network of the population, we could use this to inform decisions about where
best to target our campaign. We refer to a computational problem as a spreading problem
if it asks how a process propagates over a given network.

In this thesis we consider algorithms for solving spreading problems. Unfortunately,
most of these problems are hard to solve, in that as the size of the input network increases,
the time taken by an algorithm to compute an answer likely becomes prohibitively large.
We describe how the time taken by an algorithm to solve a problem varies with respect to
the size of the network using the language of complexity theory. We then look for ways to
achieve efficient runtimes for our algorithms as the network size increases, by exploiting
structural features in the network. We search for parameterised algorithms, which can
solve problems efficiently provided some measurement of the network, called a parameter,
remains small.

Real world networks are dynamic. In population networks, the contacts between people
change, as the people travel around. However, many existing spreading problems take
place on mathematical objects known as graphs. These model networks, but only model
the existence, or lack thereof, of a connection, not the times at which this connection
exists. Temporal graphs overcome this limitation, by augmenting graphs with temporal
information, specifying not just whether a connection exists, but when it exists. In this
thesis we define two spreading problems on temporal graphs: Temporal Firefighter,
and Temporal Graph Burning. These are both extensions to temporal graphs of

1



CHAPTER 1. INTRODUCTION 2

existing graph spreading problems, Firefighter and Graph Burning respectively.
We explore the complexity of these new problems, and in doing so develop algorithmic
techniques which we believe will have wide applicability to other problems on temporal
graphs.

We define Temporal Firefighter and Temporal Graph Burning in Chapter 2,
and determine their difficulty using the language of complexity theory. We then give
further complexity results for Temporal Firefighter, inspired by those that already
exist for Firefighter.

In Chapter 3 we consider the temporal graph parameters vertex-interval-membership-
width and edge-interval-membership-width. Both of these parameters are small only when
the temporal network has few connections on each timestep. The former measures, for
any timestep, the maximum number of members of the network that are in contact or
have already been in contact with another member, and are in contact or will later be in
contact with another member. The latter is defined in a similar but measures numbers of
connections instead of network members. We find using these parameters to be a good av-
enue for approaching these problems, and give an algorithm for Temporal Firefighter
that achieves a fast runtime when one of these parameters known as the vertex-interval-
membership-width is small. It is possible that the edge-interval-membership-with is small
even when the vertex-interval-membership-width is large, and we show that with a small
edge-interval-membership-width Temporal Firefighter remains hard.

In Chapter 4 we explore new temporal parameters that are small even when the tem-
poral network has many connections on each timestep. These parameters are defined in
joint work with Enright et al. [29]. We consider two parameters, temporal neighbourhood
diversity and temporal modular width. The former of these measures the number of groups
of members of the network where members in the same group cannot be distinguished by
their connections. We show that Temporal Graph Burning and Temporal Fire-
fighter can be solved quickly when the temporal neighbourhood diversity is small. The
temporal modular width generalises temporal neighbourhood diversity and may be small
even when when the temporal neighbourhood diversity is large, and we show that even
with a small temporal modular width both Temporal Graph Burning and Temporal
Firefighter remain hard.

Finally, in Chapter 5, we again turn our attention to the parameter of vertex-interval-
membership-width, and consider how to more generally apply this parameter to more prob-
lems. We define a framework for expressing problems, and refer to problems expressible in
this framework as locally temporally uniform. We then prove a meta-theorem showing that
any locally temporally uniform problem is solvable efficiently when the vertex-interval-
membership-width is small. We give examples of locally temporally uniform problems,
including Temporal Firefighter, thus recreating the result from Chapter 3, as well
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as the problems of Temporal Graph Burning, Temporal Dominating Set, and
Temporal Hamiltonian Path, thus determining that all of these problems can be
solved efficiently when the vertex-interval-membership-width is small.

1.1 Background and Preliminaries

We now give an introduction to, and review literature in, the topics of graph theory,
temporal graphs, complexity theory and parameterised complexity. We also give some
prerequisite definitions, including those of the existing problems of Firefighter and
Graph Burning.

1.1.1 Graphs

A graph models the connections between a set of items, referred to as vertices, such
as people, computers, or physical places. Connections between vertices are referred to
as edges. Examples include: physical contacts or relationships between people, physical
connections between computers, and transport links between places.

Definition 1 (Graph). A graph G is a pair (V,E), where V is a set of vertices, and E is
a set of edges: unordered pairs of vertices.

Given a graph G = (V,E) we say that two vertices v, u ∈ V are adjacent if {v, u} ∈ E,
and that an edge e ∈ E is incident at a vertex v ∈ V if v ∈ e.

When considering spreading over the vertices of a graph, the concept of reachability
is often relevant. We say that one vertex is reachable from another if there exists a path
between the two vertices. If one vertex is reachable from another via the edges of the
graph then a contagion may spread between these vertices.

Definition 2 (Path). A path on a graph G = (V,E) is a sequence of edges P = e1, ...e`

such that there exists a sequence of vertices PV = v1, ..., v`+1, where every vertex appears
in PV at most once, and ei = {vi, vi+1}. The path P is said to be between the vertices v1
and v`+1. A vertex is said to be reachable from another if there exists a path between the
two.

Other structures present in graphs are also relevant to spreading, such as groups of
vertices where every vertex is connected to every other, known as cliques. If a contagion
spreads to just one vertex of a clique then it will be able to spread from this vertex to all
other vertices in the clique, as they are all connected.

Definition 3 (Clique). A clique on a graph G = (V,E) is a subset of the vertices K ⊆ V

such that for any pair of vertices u and v in K, there exists an edge between u and v:
{u, v} ∈ E.
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Many other structural properties of graphs are defined in Bondy and Murty’s textbook
[17], to which we refer the reader for a detailed introduction to the field of graph theory.

Spreading on graphs is often studied from the perspective of a game, in which the
players seek to influence a spreading process. Graph burning and firefighter are both
examples of one player games where the player aims to encourage or restrict the spread
of a fire over the vertices of a graph [13, 46]. Graph flooding games are an extension
to arbitrary graphs of a common puzzle game in which a grid is to be coloured with a
single colour by repeatedly flooding, or filling areas of the grid [4]. Closely related to
spreading games are the two player pursuit evasion games, in which both players move
agents over the vertices of a graph. One player takes the role of the pursuer, and attempts
to move their agents to the same vertices as that of the other player, who aims to escape.
Cops-and-robbers [70] is a typical example of this class of game.

In this thesis we focus specifically on algorithms that operate on graphs, and analyse
these algorithms using the language of complexity theory, which we now discuss.

1.1.2 Complexity Theory

Complexity theory is the study of how hard a given problem is to solve algorithmically.
We classify problems into complexity classes according to their difficulty. Two of the
most widely studied complexity classes are P and NP. Intuitively, a problem in P is
“easy” or (relatively) fast to solve, because an algorithm for the problem will terminate
in time asymptotically bounded by a polynomial of the size of the input. Note this
polynomial may be superlinear, so the runtime of the algorithm can still grow faster than
the input size, but exponential growth, for example, is not possible. Problems in NP
have no such guarantees on the runtimes of the algorithms that solve them, but it is
in the same sense “easy” to verify solutions to problems in NP. In a landmark paper
published in 1972, Karp showed 21 problems across combinatorics to be NP-complete:
at least as hard as any other problems in NP [52]. Several of these now archetypal NP-
Complete problems take place on graphs, including Vertex Cover, Max Cut, Graph
Colouring, and Hamiltonian Cycle. For definitions of these problems and other
NP-Hard problems on graphs, see Chapter 16 of the textbook by Skiena [71]. This story
of hardness has continued until the present day, with many non-trivial graph problems
being NP-Complete, including Cops and Robbers [37], Flood-It [4], and the two
problems that we consider in this thesis: Firefighter [63] and Graph Burning [10].

Formally, we phrase problems as decision problems, in which we ask whether a given
input belongs to a language (a set of sequences of symbols drawn from an alphabet, known
a strings).

Definition 4 (Decision Problem). A decision problem is a language L over a finite alphabet
Σ.



CHAPTER 1. INTRODUCTION 5

An algorithm is a rigorous set of instructions, and is said to solve a decision problem
if it can answer whether a given input word w ∈ Σ∗ is in L. The time complexity of an
algorithm tells us asymptotically how many steps are taken by the algorithm before it
terminates. This is given as a function of the size of the input. Formally, a problem is in
P if the number of steps taken by an algorithm for solving the problem is asymptotic to a
polynomial function of the size of the input. Similarly, a problem is in NP if the number
of steps taken by an algorithm for verifying a solution to the problem is asymptotic to a
polynomial function of the size of the input.

Every problem in P is also in NP, but it is widely conjectured that the converse is not
true, that is P 6= NP, and there exist problems where it is easy to check the validity of
solutions, but it is not easy to find a solution in the first place. If we wish to show that a
problem is unlikely to be in P, we usually do so by proving that it is NP-hard, meaning
that it is at least as hard as any problem in NP. We can prove that a problem is NP-hard
by a reduction from some known NP-hard problem, where we show that any algorithm for
solving our new problem would also be capable of solving the known NP-hard problem.
As a result of the previously mentioned conjecture that P 6=NP, any NP-hard problem
is unlikely to be in P. The hardest problems in NP, that is problems in NP that are also
NP-hard, are said to be NP-complete. For a complete treatment of complexity theory,
including further complexity classes and the concept of space complexity, see the textbook
by Arora and Barak [3].

Under the assumption that P 6= NP, the best possible runtime of an algorithm for a
NP-complete problem is superpolynomial, and the required time to execute the algorithm
grows prohibitively large as the input size grows. Various techniques exist for solving
NP-complete problems that cope with this intractability. In this thesis we primarily use
techniques from the field of parameterised complexity, which we discuss in Section 1.1.6.

Another approach is that of approximation algorithms, which can be applied to opti-
misation problems. These are problems where instead of answering yes or no, an algorithm
for the problem should produce a solution that either minimises or maximises some ob-
jective. Rather than finding an optimal solution, an approximation algorithm finds a
solution within a constant factor of the true maximum or minimum. By not requiring
that an algorithm finds a truly optimal solution, feasible runtimes can be achieved, even
for NP-complete problems. For a detailed treatment of approximation algorithms see the
book by Williamson and Shmoys [72], from which we take the following definition.

Definition 5 (α-approximation algorithm). An α-approximation algorithm for an op-
timization problem is a polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of α of the value of an optimal solution.

The constant α is referred to as the approximation ratio, and it is convention that
α < 1 for maximisation problems, and α > 1 for minimisation problems.
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Approximation algorithms can be generalised by considering algorithms that do not
have a fixed approximation ratio, but instead take the approximation ratio as part of the
input, and run in time polynomial in the size of the input, for any fixed approximation
ratio. Such an algorithm is called a polynomial time approximation scheme, or PTAS.
The definitions below are adapted from work by Ausiello et al. [5].

Definition 6 (Approximation scheme). An approximation scheme for an optimisation
problem is an algorithm that for any instance of the problem, and α such that 0 < α < 1

for a maximisation problem or 0 < 1
α
< 1 for a minimisation problem, returns a solution

within a factor of α of the optimal solution.

Definition 7 (PTAS). A polynomial time approximation scheme is an approximation
scheme with time complexity O(nf(α), where f is any computable function.

Optimisation problems can be expressed in terms of linear programs, a system of vari-
ables and linear inequalities between the variables, and an objective function to maximise
or minimise. When the variables can take any real value, it is possible to solve a linear
program in polynomial time. When phrased as a linear program, many discrete problems
restrict the variables to only take integer values, producing what is known as an integer
linear program, or ILP. Solving integer linear programs is NP-Complete [52], however it is
sometimes possible to obtain an approximate solution by solving the linear program that
results from removing the constraint that the variables be integers, known as the LP re-
laxation. For a detailed treatment of linear programming and integer linear programming,
including algorithms for solving linear programs, and discussion about LP relaxations, see
the book by Wolsey and Nemhauser [73].

The majority of this thesis is concerned with variants of two NP-complete problems,
Firefighter, and Graph Burning, which we now define.

1.1.3 Firefighter

Firefighter is a one player game first presented by Bert Hartnell in 1995 [46]. At the start
of the game a specified set of vertices are burning. On each turn the player deploys a
certain number of firefighters to defend chosen vertices, before the fire spreads, and all
unburning and undefended vertices adjacent to the fire begin burning. Once a vertex is
either burning or defended it remains so for the rest of the game.

On finite graphs, the primary algorithmic question is the Firefighter problem, which
asks whether it is possible to save a certain number of vertices from the fire in the following
process, where the player may defend one vertex a turn, given a graph with a single burning
vertex, known as the root:

Definition 8 (Firefighter Process).
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Figure 1.1: An example game of Firefighter, the orange vertices are burning, and the
green are defended.

1. At time t = 0, the root r is labeled as burning.

2. At all times t ≥ 1, a chosen vertex is labeled as defended, and the fire then spreads
to all undefended vertices adjacent to the fire.

3. This process ends once the fire can no longer spread.

For an example of the process described in Definition 8, see Figure 1.2. A vertex v is
valid to defend on timestep i if and only if v is not burning or already defended on timestep
i. We refer to a sequence of such valid defences for a given instance of Firefighter as
a strategy.

Definition 9 (Firefighter Strategy). Given a rooted graph (G, r), a strategy S =

v1, v2, ..., v` is a sequence of distinct vertices from V (G), such that if the fire begins at
r on timestep 0, spreads according to Definition 8, and each vertex is defended in turn,
each vi is unburning and undefended on timestep i, and the fire stops spreading on or
before timestep `.

We say a vertex is saved if it is not burning once the process ends. The decision
problem then asks if a certain number of vertices can be saved on a given graph:

Firefighter

Input: A rooted graph (G, r) and an integer k.
Output: Does there exist a strategy that saves at least k vertices on G when the fire
starts at vertex r?

The complexity of Firefighter has been well studied, and it was first shown to be
NP-complete in 2003 by MacGillivray and Wang [63].

Theorem 1 (MacGillivray and Wang [63]). Firefighter is NP-Complete, even on
bipartite graphs.

Finbow et al. [34] showed that Firefighter remains NP-complete even when re-
stricted to trees of maximum degree three, by reduction from a restricted variant of 3-SAT:
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the problem of determining if a boolean formula with 3 literals per clause is satisfiable.
King and MacGillvray [54] used a similar reduction to show that the problem is also
NP-complete on cubic graphs: graphs where every vertex has degree exactly 3. Despite
the existence of hardness results for Firefighter even on very restrictive graph classes,
polynomial-time algorithms have been identified for a few classes of graph. Finbow et
al. [34] showed that Firefighter can be solved in polynomial-time on graphs of maxi-
mum degree 3, provided the root has degree 2. On such a graph, the maximum number of
vertices are saved when the fire is restricted to spreading along a single path, as on each
timestep the one vertex adjacent to the fire but not on the path can be defended. The
algorithm then identifies the shortest path from the root, at the end of which the fire can
be contained. The vertices that burn will be all the vertices on this path, and all other
vertices will be saved. More recently, Fomin et al. [38] showed that Firefighter could be
solved in polynomial-time for several graph classes: interval graphs, permutation graphs,
Pk-free graphs for k > 5, split graphs, and cographs.

Firefighter has received significant attention when restricted to trees, due to its
difficulty in this case. MacGillivray and Wang showed that it is always optimal to defend
vertices adjacent to the fire on a tree [63]. If any vertex non-adjacent to the fire is
defended, defending the ancestor of this vertex that is adjacent to the fire will save at
least as many vertices. This observation suggests a greedy strategy for Firefighter on
trees; at each timestep defend the vertex adjacent to the fire with the greatest number
of descendants. Hartnell and Li [47] showed that the greedy strategy saves at least half
of the number vertices that can be saved by an optimal strategy. This greedy strategy
provides a 1

2
-approximation for the optimisation variant of Firefighter, where the goal

is to maximise the number of vertices saved.
In their 2003 paper, MacGillvray and Wang [63] also presented a formulation of the

optimisation variant of Firefighter as an integer linear program. Cai et al. [21] consid-
ered the LP relaxation of this program, and used it to produce a (1 − 1

e
)-approximation

for Firefighter on trees, improving on the greedy approximation. In 2006, Hartke [45]
modified MacGillvray and Wang’s integer linear program to reduce the difference between
the solution to the LP relaxation and ILP solution - known as the integrality gap. In 2016,
Adjiashvili et al. [1] utilised these existing LPs to construct a PTAS for Firefighter.

The game has been studied on infinite graphs, where the problem shifts to determining
if and how the fire can be contained such that it is unable to spread further in a finite
number of timesteps. Wang and Moeller showed that at least 8 timesteps are required
when using 2 defences per turn to contain a fire that starts burning at a single vertex in a
2 dimensional square grid [67]. In the strategy presented by Wang and Moeller, 18 vertices
burn, and Develin and Hartke used integer programming to prove that this is a minimum
[28]. In the same paper, Develin and Hartke also considered the problem of containing
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Figure 1.2: An example game of Graph Burning, the red vertices are newly placed fires,
and all other burning vertices are in orange.

the fire on multi-dimensional grids, and showed that at least 2d− 1 defences per turn are
required to contain a fire that starts burning at a single vertex in a square lattice of d
dimensions [28].

Other decision problems related to Firefighter have also received attention in the
literature. King and MacGillivray showed that the S-Fire problem is NP-complete, S-
Fire asks whether it is possible to save a set S of vertices from the fire, rather than a given
number of vertices. The number of defenses made per turn can also be altered, Bazgan et
al. studied the (S, b)-Fire problem, which asks if it is possible to save the set S when b

defences are made per turn. They showed that (S, b)-Fire is NP-complete, even on trees
of maximum degree b+ 2.

1.1.4 Graph Burning

Similar to Firefighter, graph burning is also a one player game, but now the player burns
the vertices of a graph to encourage the spread of a fire. The game was introduced
by Bonato et al. in 2014 [13], and subsequently has received significant attention in the
literature. On each turn in the graph burning game, the fire spreads to all vertices that it
is adjacent to, and then the player chooses an additional vertex to burn:

1. At time t = 0, all vertices are unburnt.

2. At all times t ≥ 1, the fire spreads, burning all vertices adjacent to an already
burning vertex. Then, a fire is placed at a chosen unburnt vertex.

3. This process ends once all vertices are burning.

An example graph burning game can be seen in Section 1.1.4.
A strategy for the graph burning game is then a sequence of distinct vertices at which

fires are placed:

Definition 10 (Graph Burning Strategy). A strategy for a graph G is a sequence of
vertices S = v1, v2, ..., v` where if fires are placed at each vertex in turn, vertex vi is unburnt
on timestep i, and every vertex in the graph is burnt on or before timestep `+ 1.
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The burning number of a graph refers to the length of the shortest strategy that burns
every vertex in the graph. The algorithmic problem of determining if a graph has a given
burning number is known as the Graph Burning problem.

Graph Burning

Input: A graph G and an integer `.
Output: Does there exist a burning strategy for G of length less than or equal to `?

Bessy et al. showed that Graph Burning is NP-Complete, even when on acyclic
graphs of maximum degree 3 [10]. This was shown by reduction from Distinct-3-
Partition, a problem that asks for a set X of 3n integers to be partitioned into subsets of
size 3 such that the elements in each subset sum to the same target number B. They also
gave a separate reduction from Distinct-3-Partition, showing that Graph Burning
is NP-complete when restricted to spider graphs and path forests. This reduction oper-
ates by constructing a path forest of 3n paths all of length 2B − 3, along with paths Qi

of length 2i− 1 for every i < max(X) and i /∈ X. ` is then set equal to max(X) + 1. If X
is a yes-instance of Distinct-3-Partition then each of the paths of length 2B − 3 can
be partitioned into 3 sub-paths with radii corresponding to 3 integers from a set in the
partition of X. Then, a burning strategy that places fires at the center of each of these
sub-paths and fires at the center of each path Qi in a particular order will burn the graph
and be of length less than `. Conversely, if the constructed path forest is a yes-instance of
Graph Burning the vertices of each path of length 2B− 3 at which a burning sequence
of length less than ` places a fire can be used to determine a partition for X, implying
that X is a yes-instance.

Theorem 2 (Bessy et al. [10]). Graph Burning is NP-Complete, even when restricted
to acyclic graphs with maximum degree three, spider graphs, and path forests.

There are some cases where tractable algorithms for Graph Burning exist. Bessy
et al. presented polynomial-time algorithms for Graph Burning on spider graphs and
path forests where the number of arms and components is fixed [10]. Kare and Reddy
found polynomial-time algorithms for cographs and split graphs [51], in fact, both of these
algorithms are linear in the number of vertices and edges in the graph.

As with Firefighter, the approximability of finding an optimal strategy for the
graph burning game has been considered. Bessy et al. provide a polynomial-time ap-
proximation for general graphs that produces a strategy at most 3 times longer than the
optimum [10]. Bonato and Lidbetter considered the approximability for path forests, and
provide a 3

2
-approximation algorithm [16]. Bonato and Kamali present two algorithms: a

2-approximation for trees, and a PTAS for path forests [15].
Graph burning is also often studied from a combinatorial perspective, where general

bounds are sought on the burning number. It can be seen that the burning number is
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d
√
n e on any n vertex path. An optimal strategy for burning a path P places fires such

that on each timestep t a fire is placed at the center of a ball with radius bg(P )-t+1, where
bg(P ) is the burning number for the path, such that any overlap between any two balls
is minimised. Then Σ

bg(P )
i=1 (2i − 1) ≥ n, and therefore bg(P )2 ≥ n, and bg(P ) ≥ d

√
n e.

In their original paper, Bonato et al. conjectured that d
√
n e is the maximum burning

number on any connected graph [13]. This conjecture is referred to as the burning number
conjecture.

Some progress has been made on proving the burning number conjecture on specific
graph classes. Bonato and Lidbetter showed that the conjecture holds for spider graphs:
trees with exactly one vertex of degree at least 3 [16]. The conjecture was proven for
caterpillars, that is trees where every vertex either lies on a central path, known as the
stalk, or is adjacent to a vertex on the stalk [62]. Hiller et al. also proved the conjecture
for p-caterpillars with a sufficient number of leaves [48]. A p-caterpillar is a generalisation
of a caterpillar where every vertex is at most distance p from the stalk.

Recent work has also found increasingly improving bounds on the burning number in
general. Bonato et al. showed that the burning number was at most 2d

√
ne − 1 on any

connected graph of n vertices [13], and this has subsequently been repeatedly improved
[9, 60, 14]. Most recently, Norin and Turcotte showed that the burning number holds
asymptotically, with the burning number being at most (1 + o(1))

√
n on any connected

graph of n vertices [69].

1.1.5 Temporal Graphs

Real world networks are often dynamic in nature. Take for example the contact network
for a population of people: a graph is only capable of modelling whether two individuals
are ever in contact or not, and includes no information as to when or how long a contact
occurs for. A pair of individuals may come into contact through sharing an office, mode
of public transport, or by meeting each other socially. All of these connections occur
at a certain time, and last for a certain length of time before the contact between them
ends again. As further examples, transport networks, social networks, and various types
of computer network can also exhibit dynamic behaviour [50]. Dynamic or time varying
networks have been studied in a wide range of recent work, across a diverse range of fields,
and under several different names including dynamic networks [22], graphs over time [61],
and evolving graphs [18].

Using static graphs to model the connections between individuals in a population or
network fails to capture any dynamic behaviour. In this thesis, we study temporal graphs,
which remedy this limitation by augmenting a graph with temporal information that
assigns times to the vertices or edges at which they are said to be active. Most existing
algorithmic work uses a definition for temporal graphs similar to that given by Kempe et
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Figure 1.3: An example temporal graph, and the snapshots of the graph on each timestep.

al. [53], in which a graph is augmented with a time-labeling function that assigns to each
edge a set of discrete times at which it is active.

Definition 11 (Temporal Graph). A temporal graph G is a pair (G, λ) where G is a static
graph (V,E), and λ : E → 2N is a time-labeling function. We say that an edge e ∈ E is
active on timestep t if and only if t ∈ λ(e).

We refer to the maximum time on which any edge is active as the lifetime Λ =

max{maxλ(e) : e ∈ E(G)} of the temporal graph. For example, the temporal graph
in Figure 1.3 has lifetime 4.

For a temporal graph G = (G, λ) we use G↓ to refer to G, and say that this is the
underlying graph of the temporal graph. Additionally, we use V (G) as shorthand for the
vertex-set of G, and similarly E(G) for the edge-set. Throughout this thesis we assume
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that temporal graphs are represented as a sequence of static graphs, with one graph per
timestep containing all the edges active on that timestep. We say that these graphs are
the snapshots of the temporal graph, and given a temporal graph G we let Gt denote the
snapshot of G on timestep t. Figure 1.3 shows an example temporal graph, along with its
snapshots. If we represent these graphs as adjacency matrices the size of a temporal graph
is n2Λ where n is the number of vertices, and we can check in constant time whether a
given pair of vertices are adjacent on a given timestep.

This definition introduces new notions of adjacency and paths, which we define below.

Definition 12 (Temporal Adjacency). Two vertices v1 and v2 in the temporal graph G =

(G, λ) are adjacent at time t if they are adjacent in the underlying graph G, and t ∈
λ({v1, v2}).

For example, vertices c and d in Figure 1.3 are adjacent in the underlying graph, but
only adjacent at timesteps 3 and 4 in the temporal graph.

As the edges of a temporal graph are only active at certain times, new notions of paths
are introduced. Two vertices may have a sequence of edges connecting them, but the
existence of such a path no longer ensures that either vertex is reachable from the other.
As such, a path on a temporal graph is said to be temporal if its edges are active on an
increasing sequence of timesteps, so each edge can be traversed one after the other. In
this thesis we require that the sequence of timesteps on the edges is strictly increasing,
and define a temporal path as a sequence of edge appearances, but note there is not one
settled on definition for paths on temporal graphs in the literature.

Definition 13 (Temporal Path). A temporal path originating at u and arriving at v on
the temporal graph G = (G, λ) is a sequence P = (e1, t1)..., (e`, t`) of edge-appearances:
pairs of edges and timesteps such that the sequence e1, ..., e` is a path on G between u and
v, and the sequence of times t1, ...t` is strictly increasing, and ti ∈ λ(ei) for every i.

We say that a vertex v is temporally reachable from u if there is a temporal path
originating at u and ending at v. Note that reachability is not symmetric, unlike in static
undirected graphs, where vertex v is reachable from u if and only if u is reachable from
v. For example, in Figure 1.3 there is a temporal path from vertex a to vertex d, but no
temporal path from vertex d to vertex a.

When considering a temporal path, the length of the path, that is the number of edges
that it contains, does not necessarily relate to the length of time taken to traverse the
path. It is entirely possible that a path contains very few edges, but still takes a long
time to traverse, due to the times at which its edges are active. We say that the arrival
time of a temporal path is the final timestep on the path. We may then ask for a path
from one vertex to another such that the arrival time is minimised, which is referred to
as the foremost path, or such that the total time taken to traverse the path is as low as



CHAPTER 1. INTRODUCTION 14

possible, referred to as a fastest path [18]. Many path-related problems have been explored
on temporal graphs by recent work, which we now discuss. Michail and Spirakis defined
multiple temporal analogues of the traveling salesman problem, proving inapproximability
for the problem of exploring the vertices of a temporal graph as soon as possible, but
providing approximation algorithms for the problem of finding a minimum cost traveling
salesman tour where every edge is given a weight of 1 or 2. Bumpus and Meeks showed
that the problem of finding Eulerian circuits on a temporal graph is NP-hard, unlike the
problem on static graphs [20]. Mertzios et al. provided polynomial-time algorithms for
finding foremost and shortest paths on temporal graphs, and also proved an analogue of
Menger’s theorem. They also considered two optimisation problems in which times must
be assigned to the edges of a graph in a manner minimal in the number of active timesteps
per edge, or total number of timesteps used, such that a certain degree of connectivity
is maintained [64]. Enright et al. studied the problem of temporally ordering the edges
of a graph, such that the reachability is minimised [32], and showed that this problem is
NP-hard. A related problem of minimising reachability by deleting edges of an existing
temporal graph has also been studied, and is also NP-hard [31]. Additionally, some
non-path related problems have been considered on temporal graphs, including finding
temporal cliques [49], matchings [65], colourings [66], and covers [2].

1.1.6 Parameterised Complexity

Perhaps unsurprsingly, problems that are hard on static graphs remain hard when consid-
ered on temporal graphs, since a static graph can be seen as a special case of a temporal
graph with all edges active on every timestep. Furthermore, many problems get even
harder when studied on temporal graphs. Kempe et al. [53] showed that Menger’s the-
orem, an important result for static graphs, does not hold in its original formulation on
temporal graphs, and thus several problems concerned with the connectivity that are in
P for static graphs are NP-Complete when considered on temporal graphs.

The field of parameterised complexity theory provides tools for coping with the hard-
ness of problems. It considers not just the size of the input, but also some other measure
or parameter. By doing so, algorithms are able to exploit structural properties of the input
provided this parameter is small, and runtimes can be obtained that are only polynomial
in the size of the input [26]. We use the definitions of parameterised and fixed-parameter
tractable problems provided by Flum and Grohe, who give a detailed treatment on the
field of parameterised complexity theory [35].

Definition 14 (Parameterised Problem). A parameterised problem is a pair (L, κ) where
L is a language over an alphabet Σ and κ : Σ∗ → N is a polynomial time computable
function, referred to as a parameterisation of Σ∗.
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Definition 15 (Fixed-parameter tractable). A parameterised problem (L, κ) is fixed-
parameter tractable or in FPT if it can be decided if an input x belongs to the language
L in time O(f(κ(x))|x|O(1)) where f is any computable function that depends only on the
value of κ.

Note that whilst the above definition requires that the parameterisation be polynomial
time computable, this restriction is often relaxed. For example, the parameter of treewidth,
which we discuss below, cannot be computed in polynomial time, but the problem of
determining if a graph has treewidth at most k is fixed-parameter tractable with respect
to the parameter k.

Treewidth is arguably the typical example of a parameter. Informally, this parameter
measures how “tree-like” a graph is. Many problems are in P when restricted to trees,
but NP-complete for general graphs. Such problems often also admit tractable algorithms
on sufficiently tree-like graphs, and so are FPT with respect to treewidth. For example,
vertex cover, a problem that is NP-Complete on general graphs but in P on trees, is in
FPT when parameterised by treewidth [12]. A key meta-theorem of Courcelle states that
any problem that can be expressed in monadic second order logic (MSO) is in FPT with
respect to the aforementioned parameter of treewidth [24]. Such meta-theorems have also
been found for other pairs of parameters and logics. For instance, it is the case that any
problem expressible in first order logic is in FPT with respect to neighbourhood diversity,
a parameter that measures the number of classes of vertices with identical neighbour-
hoods [58]. Furthermore there is a corresponding result for cliquewidth, a parameter that
generalises both neighbourhood diversity and treewidth, which states that any problem
expressible in a particular restriction of MSO is in FPT [25].

The parameterised complexity of both the Firefighter and Graph Burning prob-
lems has been studied. Cai et al. showed that Firefighter on trees is in FPT when
parameterised by the number of the vertices to be saved [21]. Bazgan et al. then went
on to show that Firefighter is in FPT when parameterised by a combination of the
number of vertices to be saved and the treewidth, and also showed that it is in FPT when
parameterised by a combination of the number of vertices to be saved and the vertex cover
number [7]. The runtimes in this work were later improved by Cygan et al. [27]. For graph
burning, Kare and Reddy showed that the parameters of distance to cluster and neighbor-
hood diversity yield fixed-parameter tractable algorithms [51]. This work was continued
by Kobayashi and Otachi, who showed that the problem is in FPT when parameterised
by cliquewidth and the maximum diameter [56].

Some problems on temporal graphs admit fixed-parameter tractable algorithms when
parameterised by classical static graph parameters. Casteigts et al. showed that the prob-
lem of finding time-respecting paths with a maximum waiting time is in FPT when
parameterised by the vertex cover number, treedepth, and feedback edge number of the
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underlying static graph [23]. Furthermore, they find that whilst this problem remains
hard when parameterised by the static parameter feedback vertex number, it is in FPT
when parameterised by the parameter timed feedback vertex number: a temporal ver-
sion of feedback vertex number. Enright et al. find that the problem of deleting edges to
minimise the maximum reachability of a temporal graph is in FPT when parameterised
by a combination of the maximum degree and treewidth of the underlying graph, along
with the reachability to be achieved [31]. This result is arrived at by use of Courcelle’s
meta-theorem: they provide a method for representing a temporal graph by a relational
structure of bounded treewidth provided the underlying graph has both bounded treewidth
and maximum degree. Thus any temporal graph problem that can be expressed by an
MSO formula of bounded length on such a relational structure is in FPT when parame-
terised by the sum of treewidth and maximum degree.

Moreover, the lifetime of a temporal graph (the maximum time label on any edge)
often serves as a useful parameter, either by itself or in combination with a classical static
graph parameter. Erlebach and Spooner find that the problem of deciding whether there
exists a temporal walk that visits every vertex of a graph is in FPT when parameterising
by lifetime, providing that the sequence of time-edges traversed by the walk is allowed
to be non-strictly increasing [33]. The problem of finding separators between vertices in
a temporal graph, and the problem of counting temporal paths are both in FPT when
parameterised by both the lifetime and the treewidth of the underlying graph [36, 30].
Similarly, Kutner and Larios-Jones study problems related to finding temporal reacha-
bility dominating sets, that is sets of vertices from which all others in the graph can be
reached. By utilitising Courcelle’s metatheorems they show the existence of fixed param-
eter tractable algorithms, again using the parameters of lifetime and treewidth, and also
the size of the dominating sets to be achieved [57]. Finally, Bocci et al. study the problem
of modifying a temporal graph to producd a disjoint union of temporal cliques, and find it
to be in FPT with respect to both the lifetime and number of allowed modifications [11].

Recent work has shown it to be fruitful to define new parameters that measure details
of the temporal structure of the graph. Zschoche et al. define the temporal graph param-
eter temporal core, and find that a particular variant of the problem of finding separators
between two vertices is in FPT [74]. Bumpus and Meeks define the temporal parame-
ters interval membership width and vertex interval membership width, presenting fixed
parameter tractable algorithms for the problems of determining if a graph is temporally
Eulerian, and finding a set of vertices that if deleted minimise the temporal reachability
of the graph respectively [20]. The parameter of vertex interval membership width is also
used to produce a fixed parameter tractable algorithm for counting temporal paths in the
aforementioned work by Enright et al. [30]. Whilst the aforementioned work has shown the
parameter of vertex interval membership width to be useful, some temporal graph prob-
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lems require that the input graph be temporally connected, meaning that every vertex can
be reached from every other vertex. It is worth noting that in these cases parameterising
by the vertex interval membership width is not meaningful, as the parameter becomes
equal to the number of vertices in the graph.

1.2 Table of Results

Parameter Temporal Firefighter Temporal Graph Burning
Graphs of maximum degree
3 with a root of degree 2

P (Theorem 9)

Cliques NP-Complete (Theorem 6)
Vertex-interval-
membership-width

FPT (Theorem 17) FPT (Corollary 7)

Edge-interval-membership-
width

NP-Complete (Theo-
rem 19)

Temporal neighbourhood
diversity

FPT (Theorem 32) FPT (Theorem 39)

Temporal modular width NP-Complete (Theo-
rem 40)

Table 1.1: The complexity classes to which the problems of Temporal Firefighter and
Temporal Graph Burning belong when parameterised by the parameters considered
in this thesis.



Chapter 2

Temporal Firefighting and Burning
Games

In this chapter we define the problems Temporal Firefighter and Temporal Graph
Burning. These are both natural extensions of the Firefighter and Graph Burning
problems to temporal graphs. We show that Temporal Firefighter and Temporal
Graph Burning are NP-Complete, by reducing from Firefighter and Graph Burn-
ing respectively. Both of these reductions preserve the underlying graph, in fact, in both
cases we simulate the static input instance by assigning times to the edges of the input
graph, making no other modifications. In this way the static problems can be seen as
special cases of our newly defined temporal extensions.

As a consequence of these results, for any class C of static graphs for which it is
known that Firefighter is NP-Complete, Temporal Firefighter is NP-Complete
on the class of temporal graphs with underlying graphs belonging to C , and the same is
true of Graph Burning and Temporal Graph Burning. There are several classes
of graph for which Firefighter is known to be in P, and in the final section of the
chapter we explore the complexity of Temporal Firefighter when the underlying
graph belongs to these classes. We show that Temporal Firefighter is NP-Complete
when the underlying graph is a clique, again by reduction from Firefighter. This allows
us to show that for all but one of the classes for which Firefighter is known to be in
P, Temporal Firefighter remains NP-Complete, as all of these classes can contain
cliques of unbounded size. The sole remaining class is graphs of maximum degree 3 where
the fire starts at a vertex of degree 2. In this case we provide an algorithm for Temporal
Firefighter with linear runtime, which operates in an analogous way to the known
algorithm for static Firefighter.

18
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2.1 Problem Definitions and Hardness

As stated in Sections 1.1.3 and 1.1.4, in both Firefighter and Graph Burning a
fire spreads over a graph by spreading to adjacent vertices on each timestep. We now
extend both of these problems to temporal graphs, such that the fire spreads to temporally
adjacent vertices on each timestep.

2.1.1 Temporal Firefighter

We now define Temporal Firefighter, an extension of Firefighter to temporal
graphs. In Temporal Firefighter, just as in Firefighter, the fire begins burning
at a root vertex r, and on each timestep a single vertex can be defended before the fire
spreads. Unlike Firefighter the fire does not spread to all adjacent vertices in the
underlying graph, but only to vertices to which it is adjacent at that timestep. Thus, we
consider the following process.

1. At time t = 0, the root r is labeled as burning.

2. At all times t ≥ 1, a chosen vertex is labeled as defended, and the fire then spreads
to all undefended vertices adjacent to the fire on timestep t.

3. This process ends once there is no undefended and unburning vertex adjacent to the
fire on the current timestep or any subsequent timestep.

Note that there is a subtle difference here in when the process will end. In Fire-
fighter, if there is a timestep on which the fire is unable to spread, the process will end
on that timestep. In Temporal Firefighter, it is possible that the fire will be unable
to spread on a timestep, but may still spread again in the future, and thus the process
will not end until the fire is unable to ever spread again. This will certainly be the case
once the lifetime of the graph is exceeded, as no edges are ever active after this time.

We define a strategy for Temporal Firefighter equivalently to Definition 9 for
Firefighter.

Definition 16 (Temporal Firefighter Strategy). Given a rooted temporal graph
(G, r), a strategy S = v1, v2, ..., v` is a sequence of vertices from G, such that if the fire
begins at r on timestep 0 and each vertex in S is defended in turn, each vi is unburning
and undefended on timestep i, and the fire stops spreading on or before timestep `.

We now define the decision problem equivalently to Firefighter.

Temporal Firefighter

Input: A rooted temporal graph (G, r) and an integer k.
Output: Does there exist a strategy that saves at least k vertices on G when the fire
starts at vertex r?
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In some ways modifying Firefighter to take place on a temporal graph actually
makes the task of defending the graph easier. For any vertex v to burn in Firefighter
on a rooted graph (G, r), it is a necessary condition that there is a path from the root r
to v. For the same vertex v to burn in Temporal Firefighter on a rooted temporal
graph (G, r) with G↓ = G, there must exist a temporal path from r to v. We observe
that every temporal path on G has a corresponding path on G. Thus, there is no vertex
reachable by the fire in Temporal Firefighter that is not reachable by the fire in
Firefighter on the underlying graph.

Observation 1. For every temporal path P on G there exists a path P ′ on G↓ that traverses
the same vertices as P .

Furthermore, in Firefighter on a static graph the fire spreads along paths at a rate
of exactly one vertex per timestep. In Temporal Firefighter the fire cannot spread
along a temporal path at a rate of greater than one vertex per timestep, and in fact the
fire may spread at a slower rate if it has to wait at a vertex on the path for the next edge
to become active. Thus the additions of times on the edges of a path will never increase
the speed at which the path can be traversed, and may in fact slow this speed.

Observation 2. The arrival time of a temporal path is at least the number of edges on
the path.

As a result, if the same defences are made in the same order, the fire cannot reach
anywhere in Temporal Firefighter on a rooted temporal graph (G, r) that it would
not be able to reach in Firefighter on the underlying static graph (G↓, r). This gives
us the following observation.

Observation 3. Any strategy S = v1, ..., v` for Firefighter on a rooted graph (G, r)

is also a strategy for Temporal Firefighter on any rooted temporal graph (G, r) with
G↓ = G. Furthermore any vertex saved by S in Firefighter is also saved by S in
Temporal Firefighter.

As stated, the times on the edges in Temporal Firefighter may actually cause
the fire to spread at a slower rate than in Firefighter on the underlying graph. Thus,
there may exist strategies for Temporal Firefighter that save more vertices than it
is possible to save in Firefighter on the underlying graph. It is therefore worthwhile
to consider algorithms specific for Temporal Firefighter that produce strategies that
take advantage of the temporal nature of the graph.

Unfortunately, such algorithms are unlikely to have polynomial-time runtimes. We
now give a reduction from Firefighter to Temporal Firefighter, showing that the
decision problem remains hard. Given an instance ((G, r), k) of Firefighter, the reduc-
tion produces an instance of Temporal Firefighter ((G, r), k) with lifetime |V (G)|−1,
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G↓ = G, and every edge active on every timestep. Temporal Firefighter on (G, r)
then behaves exactly as Firefighter on (G, r), due to the following observation.

Observation 4. In both Firefighter and Temporal Firefighter the process must
end by timestep |V (G)| − 1, as one vertex is defended per timestep, so every vertex other
than the root will have been defended, and the fire will not be able to spread.

Theorem 3. Temporal Firefighter is NP-Complete.

Proof. First see that Temporal Firefighter is in NP, with a strategy acting as a cer-
tificate that can be checked in polynomial time by simulating Temporal Firefighter.
We now continue by reduction from Firefighter. Given an instance ((G, r), k) of Fire-
fighter, we construct an instance ((G, r), k) of Temporal Firefighter where G↓ = G,
and λ(e) = {1, ..., |V (G)| − 1} for every edge e ∈ E(G). Any strategy S that saves at
least k vertices in Firefighter on (G, r), will also save at least k vertices in Temporal
Firefighter on (G, r) as an immediate result of Observation 3. Furthermore, any strat-
egy S that saves k vertices in Temporal Firefighter on (G, r) will also save at least k
vertices in Firefighter on (G, r), as on every timestep t on which the fire may be able
to spread, two vertices are adjacent on timestep t in G if and only if they are adjacent in
G.

We can thus view Firefighter as a special case of Temporal Firefighter. We
then have the following corollary, as the above reduction preserves the underlying graph
class:

Corollary 1. For every class C of graphs for which Firefighter is NP-complete, Tem-
poral Firefighter is NP-complete on the class of temporal graphs with the graphs of
C as the underlying graphs.

2.1.2 Temporal Graph Burning

We now define Temporal Graph Burning, an extension of Graph Burning to tem-
poral graphs. Just as in Graph Burning, the player chooses a vertex to burn on each
timestep, but as in Temporal Firefighter the fire only spreads to temporally adjacent
vertices, rather than all adjacent vertices, as described in the following process:

1. At time t = 0, all vertices are unburnt.

2. At all times t ≥ 1, the fire spreads, burning all vertices adjacent to an already
burning vertex on timestep t. Then, a fire is placed at a chosen unburning vertex.

3. This process ends once all vertices are burning.



CHAPTER 2. TEMPORAL FIREFIGHTING AND BURNING GAMES 22

We define a strategy for Temporal Graph Burning equivalently to Definition 10
for Graph Burning.

Definition 17. A strategy for a temporal graph G is a sequence of vertices S = s1, s2, ..., s`

where if fires are placed at each vertex in turn, vertex si is unburnt on timestep i, and
every vertex in the graph is burnt on or before timestep `+ 1.

We now define the decision problem equivalently to Graph Burning.

Temporal Graph Burning

Input: A temporal graph G and an integer h.
Output: Does there exist a successful burning strategy for G of length less than or
equal to h?

Due to Observation 1 and Observation 2, the addition of times on the edges can only
serve to limit the spread of the fire, just as in Temporal Firefighter. Therefore, any
strategy for Temporal Graph Burning on a temporal graph G can be used to produce
a strategy of no greater length for Graph Burning on G↓.

Observation 5. Given a strategy S for Temporal Graph Burning on G there exists
a strategy for Graph Burning on G↓ that burns the same vertices as S, but skips any
turns that attempt to burn an already burning vertex.

Any strategy must burn the graph by timestep |V (G)| in both Graph Burning and
Temporal Graph Burning:

Observation 6. In both Graph Burning and Temporal Graph Burning the process
will end by timestep |V (G)|, as a fire is placed at one vertex on every timestep, and thus
if the process lasts for |V (G)| timesteps a fire will have been placed at every vertex.

Similarly to the previous reduction for Temporal Firefighter, we show that Tem-
poral Graph Burning is NP-Complete by reduction from Graph Burning.

Theorem 4. Temporal Graph Burning is NP-Complete.

Proof. First see that Temporal Graph Burning is in NP, with a strategy acting as
a certificate that can be checked in polynomial time by simulating Temporal Graph
Burning. We now continue by reduction from Graph Burning. Given an instance
(G, k) of Graph Burning, we construct an instance (G, k) of Temporal Graph Burn-
ing where G↓ = G, and λ(e) = {1, ..., |V (G)|} for every edge e ∈ E(G). Any strategy
S of length less than k for Temporal Graph Burning on G, will also be a strategy
for Graph Burning on G as an immediate result of Observation 5. Then consider a
strategy S of length less than k for Graph Burning on G. From Observation 6 we have
that k ≤ |V (G)|, and if the fire spreads from any vertex u to an adjacent vertex v on
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timestep t when S is played in Graph Burning on G, we have that t ≤ k ≤ |V (G)| and
u and v are adjacent on timestep t on G. Therefore the fire will spread from vertex u to
vertex v on timestep t when S is played in Temporal Graph Burning on G, and S is
a strategy for Temporal Graph Burning on G of length less than k.

2.2 Restricting the Underlying Graph for Firefighter

We showed that for every class C of graphs for which Firefighter is NP-complete, Tem-
poral Firefighter is NP-complete on the class of temporal graphs with the graphs
of C as the underlying graphs. Therefore, any class of underlying graph for which Tem-
poral Firefighter has a polynomial-time algorithm must also be a class for which
Firefighter has a polynomial-time algorithm. Thus, we now determine the complex-
ity of Temporal Firefighter on underlying graph classes for which Firefighter
is known to be solvable in polynomial time. These are: interval graphs, permutation
graphs, Pk-free graphs for k > 5, split graphs, cographs, and graphs of maximum degree
3 providing the root is of degree 2 [34, 38]. We prove that Temporal Firefighter
is NP-Complete when we restrict the underlying graph to belong to all of these classes
except the last, in which case we find there is a polynomial time algorithm. Additionally,
we establish that it is NP-Complete when the underlying graph is an AT-free graph, a
class for which the complexity of Firefighter has not been determined.

All of these hardness results follow from the fact that Temporal Firefighter is
NP-hard when the underlying graph is a clique. This can be shown by reduction from
Firefighter. We assign times to the edges in a static graph G so that they will be
active at all times up until |V (G)|−1, at which point the fire can always no longer spread.
We then add further edges to make the graph a clique, and have them only active from
time |V (G)| − 1 onwards such that they will not affect the spread of the fire. Temporal
Firefighter on such a temporal clique will then simulate Firefighter on G. A sketch
of this construction can be seen in Fig. 2.1.

We first show that given a yes-instance for Temporal Firefighter we may add
edges to the input temporal graph in such a way that the resulting temporal graph still
forms a yes-instance.

Lemma 5. Suppose there is a strategy S = v1, ..., v` for Temporal Firefighter on the
rooted temporal graph G = (((V,E), λ), r) that saves k vertices. Let F be any set of edges
disjoint from E, and λ′ : E ∪ F → N be a labelling function such that λ′(e) = λ(e) for
every e ∈ E, and furthermore min(λ′(f)) ≥ |V | − 1 for all f ∈ F . Let S ′ be the strategy
consisting of all the defences in S followed by defending every remaining undefended vertex
in an arbitrary order. Then, S ′ will save k vertices in Temporal Firefighter on
(((V,E ∪ F ), λ′), r).
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r r

λ( ) = {1, ..., 5}

λ( ) = {5}

Figure 2.1: An example of the reduction for Temporal Firefighter that produces a
clique.

Proof. We show by induction on the timestep t that any vertex unburnt on timestep t

when the first t defences in S are played on G is also unburnt when the first t defences in
S are played on (((V,E ∪F ), λ′), r). This allows us to inductively assume all the defences
in S can be made in order on (((V,E∪F ), λ′), r), as in particular the inductive hypothesis
will imply that for any vertex vt′ defended by S on a timestep t′ ≤ t will not burn before
the end of timestep t′ − 1 on (((V,E ∪ F ), λ′), r).

If t = 0 then the only vertex to have burnt in both instances is r. Otherwise, consider
a vertex v unburnt on timestep t when S is played on G, and see that as v is unburnt on
timestep t, each of the temporal paths from r to v in G either contains a defended vertex
or has an arrival time greater than t. Now consider the temporal paths from r to v in
(((V,E∪F ), λ′), r). Each of these paths is either also a path in (((V,E), λ), r), or contains
an edge from F and thus has an arrival time of at least |V | − 1 > t. In either case, the
fire cannot have burnt along the path to v on timestep t, and thus v is unburnt on this
timestep when the defences from S are played on (((V,E ∪ F ), λ′), r).

Finally see that all vertices saved but not defended by S on G can be defended after
the defences from S are played on (((V,E ∪ F ), λ′), r). Consider any such vertex v, and
see that any path from r to v in (((V,E ∪ F ), λ′), r) either traverses a defended vertex or
contains an edge from F . Thus any path from r to v that does not traverse a defended
vertex has arrival time of at least |V | − 1, and v will not burn before this time. By
Observation 4 every vertex in the graph must have been defended by this time, and thus
v will never burn.

We are now ready to give the reduction. This result allows us to determine that
Temporal Firefighter is NP-complete on the class of temporal graphs {((G, λ), r) :
(G, r) ∈ C } for all but one of the classes C for which it is currently known that Fire-
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fighter has a polynomial time solution.

Theorem 6. Temporal Firefighter is NP-complete on the class of temporal graphs
where the underlying graph is a clique.

Proof. We give a reduction from Firefighter. Given an instance (G, r, k) of Fire-
fighter, we construct an instance ((G′, λ), r′, k′) of Temporal Firefighter which is
a yes-instance if and only if (G, r, k) is a yes-instance of Firefighter.

We construct ((G′, λ), r′, k′) as follows. Let G′ be the vertex-edge pair (V,E ′) such
that V = V (G), and E ′ contains edges connecting every pair of distinct vertices. Then we
define λ as follows:

λ(e) =

{1, 2, ..., n− 2} if e ∈ E(G)

{n− 1} otherwise

Finally, let r′ = r and k′ = k.
We now show that if (G, r, k) is a yes-instance of Firefighter, then ((G′, λ), r′, k′) is

a yes-instance of Temporal Firefighter. If (G, r, k) is a yes-instance then there is a
strategy for firefighter on (G, r) that saves at least k vertices. We know from Observation 3
that this same strategy will also save at least k vertices in Temporal Firefighter on
((G, λ′), r) where λ′(e) = {1, 2, ..., n − 2}, and then from Lemma 5 we have that it is
possible to save at least k vertices on ((G′, λ), r), and thus ((G′, λ), r′, k′) is a yes-instance,
as r′ = r and k′ = k.

To show the converse, we recall from Observation 4 that Temporal Firefighter is
always over by timestep n − 1 where n = |V (G)|, and thus the fire will only ever spread
along edges that are active before this time. If ((G′, λ), r′, k′) is a yes-instance then there
is a strategy for Temporal Firefighter on ((G′, λ), r′) that saves at least k′ vertices.
If the same strategy is used in firefighter on (G, r′) then exactly the same vertices will
burn on each timestep, as every edge present in G is active at all times until the fire stops
spreading in (G′, λ). Furthermore, as previously stated the fire will never spread along the
edges present only in (G′, λ), as these are only active at time n− 1. Thus (G, r, k) is also
a yes-instance as r′ = r and k′ = k.

As a result we can deduce that Temporal Firefighter is NP-Complete when the
underlying graph belongs to several classes containing cliques for which Firefighter
is in P. For the same reason, we can determine that Temporal Firefighter is NP-
Complete when the underlying graph belongs to the AT-free graphs, a class for which the
complexity of Firefighter is still an open problem.

Corollary 2. Temporal Firefighter is NP-Complete when the underlying graph be-
longs to any of the following static classes: split graphs, unit interval graphs, cographs,
Pk-free graphs for k > 2, and AT-free graphs.
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{W}

λ( ) = {1, ..., 5}

λ( ) = {5}

Figure 2.2: An example of the reduction for Temporal Firefighter on cliques with
bounded lifetime. The vertex marked {W} represents the set W containing |V (G)|c −
|V (G)| vertices.

Given this reduction operates by adding edges active only at times greater than the
final timestep on which the fire can spread, it is reasonable to consider if we might obtain
polynomial-time algorithms for cliques where the lifetime is bounded by some function of
the number of the vertices in the graph. We find that this is not the case, and now prove
the stronger result that Temporal Firefighter is hard on cliques of n vertices with
lifetime of less than n

1
c for any positive integer constant c. This reduction operates by

adding nc − n vertices to a static graph, and assigning times in such a way that they will
all burn immediately, without affecting the spread of the fire over the existing graph. All
defences then take place on a clique constructed in the same manner as that described in
the proof of Theorem 6.

Theorem 7. For any constant c ∈ N, Temporal Firefighter is NP-complete when
restricted to temporal graphs whose underlying graph is a clique and whose lifetime is at
most n 1

c where n is the number of vertices in the graph.

Proof. We give a reduction from Firefighter; given an instance ((G, r), k) of Fire-
fighter and a constant c, where G is a non-trivial connected graph, we construct an
instance (((G′, λ), r), k) of Temporal Firefighter which is a yes-instance if and only
if ((G, r), k) is a yes-instance of Firefighter.

Letting ` = |V (G)|, we now construct an instance (((G′, λ), r), k) of Temporal Fire-
fighter with `c vertices as follows. Let W be a set of `c − ` vertices not in G. Then let
G′ be the graph (V ′, E ′), with V ′ = V (G)∪W , and E ′ containing edges connecting every
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pair of distinct vertices in V ′, making the graph a clique, as shown in Fig. 2.2. We then
define λ as follows:

λ(e) =


{1, 2, ..., `− 2} if e ∈ E(G)

or e = {r, v} and v ∈ W

{`− 1} otherwise.

Note that the lifetime of this instance is ` − 1, which is less than |V (G′)| 1c = `, as
required.

We now show that if ((G, r), k) is a yes-instance of Firefighter then (((G′, λ), r), k)

is a yes-instance of Temporal Firefighter. If ((G, r), k) is a yes-instance then there
is a strategy S for Firefighter on (G, r) that saves at least k vertices. We claim that
we can save at least k vertices in Temporal Firefighter on ((G′, λ), r) by first playing
the defences from S, and then defending in arbitrary order the remaining unburnt vertices
in V (G′) \W .

If we play the defences from S, then every vertex in W burns on the first timestep,
and we are left with only the vertices in V (G) to defend. Any path from a vertex in W

to a vertex in V (G) other than those that go via the root has an arrival time of at least
`− 1, and we have at most `− 2 vertices left to defend after W burns, so the process must
have ended before the fire spreads from W into V (G). We can then restrict our attention
to the spread of the fire over the subgraph of ((G′, λ), r) induced by V (G), and this is the
temporal graph ((V (G), E(G) ∪ F ), λ′) where F contains edges connecting every pair of
vertices in V (G) not connected by edges in E(G), and λ′ is defined as follows.

λ′(e) =

{1, 2, ..., `− 2} if e ∈ E(G)

{`− 1} otherwise

We know from Observation 3 that the strategy S will save at least k vertices in any
temporal graph with G as the underlying graph, and then from Lemma 5 we know that it
is possible to save at least k vertices on ((V (G), E(G) ∪ F ), λ′), and thus (((G′, λ), r), k)

is a yes-instance.
To show the converse, we first argue that if it is possible to save k vertices in Temporal

Firefighter on ((G′, λ), r) then in particular it is possible to do this without defending
any vertices in W . It is only possible to defend a vertex in W on the first timestep, as
every undefended vertex in W will burn on timestep 1. As G is non-trivial and connected,
there must be at least one vertex v in V (G) on ((G′, λ), r) that is connected to r by an
edge active at times {1, 2, ..., `− 2}, and so v will burn on the first timestep if a vertex in
W is defended. Thus, defending v instead of a vertex in W on the first timestep saves at
least as many vertices.
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Next we observe that in any strategy that does not defend a vertex in W , the fire stops
spreading by timestep `− 1, as every vertex in W burns instantly on timestep 1, and by
timestep `− 1 it must be the case that every vertex in V (G) is burnt or defended.

It follows that if (((G′, λ), r), k) is a yes-instance then there is a strategy for Temporal
Firefighter on ((G′, λ), r) that saves at least k vertices, and does not defend any vertices
in W .

We now see that this same strategy is valid for Firefighter on (G, r). Firstly, it does
not defend any vertices in W . Secondly, if we consider any defence vi in the strategy, then
we can see that all paths from the root r to vi in (G, r) are also present in ((G′, λ), r) and
have arrival times equal to their length. If vi is unburnt on timestep i when S is played
in Temporal Firefighter on ((G′, λ), r) then every such path is either defended, or
has length greater than i. Thus, if we inductively assume the first i − 1 defences from S

are valid on (G, r), we can see that vi is unburnt on timestep i when these defences are
played in Firefighter on (G, r), as every undefended path from r to vi must have length
greater than i.

Furthermore if a vertex v does not burn in Temporal Firefighter on ((G′, λ), r)

then it must not burn in Firefighter on (G, r), as every temporal path between r and
v in (G′, λ) with an arrival time of less than `− 1 has a corresponding path between r and
v in G that traverses the same vertices. If v does not burn in Temporal Firefighter
then each of the temporal paths from r to v either traverse a defended vertex, or have an
arrival time of `− 1, and therefore have no corresponding path present in G. Therefore it
is possible to save at least k vertices on (G, r), and ((G, r), k) is also a yes-instance.

We have seen that Temporal Firefighter is NP-Complete on several graph classes
for which Firefighter is in P. We now show that there exists a non-trivial class for which
both Firefighter and Temporal Firefighter are in P, that being the class of graphs
of maximum degree three, with a root of degree at most two.

A proof that Firefighter is polynomial-time solvable on this class is given by Finbow
et al. [34]. This proof works due to the fact that it is always optimal to restrict the fire
to spreading down only one path on such a graph. An algorithm need only find the
shortest path at which the fire can be contained at the end, and then defend accordingly.
Exactly the same can be done for Temporal Firefighter, the only difference being
in calculating where the fire can be contained – sometimes the active times of the edges
allow the fire to be contained at a vertex in Temporal Firefighter where it could not
be contained in Firefighter played on the underlying graph.

We present a strategy S for Temporal Firefighter on a temporal graph ((G, λ), r)

where G has maximum degree three and r has degree two in G, and show that this strategy
is optimal and computable in polynomial time. This strategy and proof only requires slight
modifications from that given by Finbow et al. for Firefighter [34].
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Throughout, for any two vertices v and u in a temporal graph (G, λ) let dist(v, u) be
the number of edges on the shortest path between v and u in the underlying graph G.

After defining the strategy S we show that no strategy that does not always defend
next to the fire can outperform S, and thus that there always exists an optimal strategy
which only defends next to the fire. Such a strategy, due to the degree restriction, limits
the fire to spreading along a single path. An optimal strategy then finds the shortest of
such paths to a vertex at which the spread of the fire can be stopped. We observe that
this can be done at any vertex u where there are one or fewer incident edges not on the
path and active on timestep dist(r, u) + 1. Stated otherwise, as soon as the fire reaches a
vertex at which the temporal nature of the graph delays its spread, it is possible to contain
it, and in an optimal strategy the fire will spread along the path to such a vertex at a
rate of one vertex per timestep, just as in Firefighter. We then show that strategy S
is exactly this strategy, and then that the number of vertices saved by such an optimal
strategy can be computed in polynomial time, as required.

We begin by defining three sets that will be used in the strategy: V0, V1, and Vc.

• Let V0 contain any vertex u that is not adjacent at time dist(r, u) + 1 to any vertex
that is not on any shortest underlying path between r and u.

• Let V1 contain any vertex u that is adjacent at time dist(r, u) + 1 to exactly one
vertex not on any shortest underlying path between r and u.

• Finally, let Vc be the set of all vertices that lie on a cycle and are not in V0 or V1.

Additionally, for any vertex u that lies on a cycle, let C(u) denotes the length of the
shortest cycle containing u.

Strategy S operates by first finding a vertex u ∈ V0∪V1∪Vc that minimises the function
f(u), defined below.

f(u) =

dist(r, u) + 1 if u ∈ V0 ∪ V1
dist(r, u) + C(u)− 1 if u ∈ Vc

Now, let P be the shortest path from r to u on the underlying graph G. Furthermore,
if u ∈ Vc, let C be the shortest cycle containing u.

If u ∈ V0 ∪ V1, assume for a contradiction there is no temporal path on (G, λ) that
traverses the same vertices as P and has arrival time dist(r, u). If every vertex v on P

is adjacent to the next vertex on P at timestep dist(r, v) + 1, then such a temporal path
exists, so there must exist a vertex v on P and closer to r than u which is not adjacent
to the next vertex on P at timestep dist(r, v) + 1. Thus, v ∈ V0 ∪ V1, and f(v) < f(u),
contradicting the minimality of f(u). Therefore there exists a temporal path on (G, λ)

that traverses the same vertices as P and has arrival time dist(r, u).
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Otherwise, if u ∈ Vc, assume that P traverses a vertex v of C other than u. As v lies
on the shortest path between r and u, it is necessarily closer to r than u. Additionally,
as v lies on the same cycle as u, we would have that C(v) ≤ C(u), and thus f(u) < f(u)

which contradicts the minimality of u. Therefore P must not traverse any vertices of C
other than u.

Now when u ∈ V0 ∪ V1 on every timestep 1 ≤ t < f(u), strategy S defends the vertex
adjacent to the fire on timestep t and not on P . On timestep f(u), S defends either
a non-burning neighbour of u adjacent on timestep f(u) if one exists, or otherwise any
other non-burning neighbour of u. If there exists any further non-burning neighbour of u,
S defends this on timestep f(u) + 1. Once the fire stops spreading, the burnt vertices will
be all those on P , meaning that in total f(u) vertices will be burnt.

Otherwise, if u ∈ Vc then on every timestep 1 ≤ t < dist(r, u) + 1, S defends the
vertex adjacent to the fire on timestep t and not on P . Then on timestep dist(r, u) + 1,
S defends one of the two non-burning vertices on C adjacent to the fire on timestep
dist(r, u)+ 1. Then for every remaining timestep S defends the vertex adjacent to the fire
on that timestep and not on C. Once the fire stops spreading, the burnt vertices will be
all those on P and all those on C except one, meaning once again f(u) vertices are burnt
in total.

We now show that there is an optimal strategy that always defends next to the fire.
The argument here is equivalent to that for Firefighter [34], but uses comparison to
our newly defined strategy S to show optimality.

Lemma 8. Given a rooted temporal graph ((G, λ), r) where G has maximum degree 3 and
r has degree at most 2 in G, if k is the greatest number of vertices that can be saved
in Temporal Firefighter on ((G, λ), r), then there exists a strategy for Temporal
Firefighter that saves k vertices and always defends adjacent to the fire.

Proof. Assume for a contradiction that there is a rooted temporal graph ((G, λ), r) with
maximum degree 3 and root of degree 2 such that there exists a strategy S for Temporal
Firefighter that saves k vertices, but no strategy S ′ that saves k vertices and always
defends adjacent to the fire, that is a counterexample, and that this counterexample is
minimal in the number of vertices in G. Let x1 and x2 be the two neighbours of r. If there
is a strategy that saves k vertices in which the first vertex defended is a neighbour of r,
say x1 without loss of generality, then ((G− {r, x1}, λ), x2) is a smaller counterexample –
a contradiction.

Let T be some strategy for Temporal Firefighter on ((G, λ), r) that saves k ver-
tices, and let u be the closest vertex to r defended in T . This cannot be a neighbour of r,
and thus dist(r, u) ≥ 2.

If no neighbours of u are burning once the fire stops spreading, then there are no
temporally admissible paths between r and u. In this case T wastes a defence defending
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u, a vertex that will never burn, and thus this defence can be replaced with a defence of
a vertex that burns when T is played, producing a strategy that saves k + 1 vertices, a
contradiction.

If only one neighbour of u is burning once the fire stops spreading, then defending this
neighbour instead of u saves one more vertex, and thus we again have a contradiction.

If once the fire stops spreading two or more neighbours of u are burning, then u lies
on a cycle that is completely burnt except for u. In this case we argue that the strategy S
must save at least as many vertices. Strategy S finds a vertex v that minimizes f(v), and
always causes f(v) vertices to burn, saving the rest. If T performs better than S, then
there is a vertex w ∈ Vc lying on the same cycle as u where the entire path between r

and w has burnt, as well as the entire cycle except for u, thus meaning that f(w) < f(v)

vertices burn. This is impossible – f(v) is a minimum. As S always defends next to the
fire, its optimality contradicts the assumption.

We now show that strategy S is an optimal strategy.

Theorem 9. Temporal Firefighter can be solved in polynomial time on a rooted
temporal graph ((G, λ), r) of maximum degree 3 with a root of degree at most 2.

Proof. First we note that if strategy S is played on the graph ((G, λ), r) then min{f(u) |
u ∈ V0 ∪ V1 ∪ Vc} vertices will burn. We now show that strategy S is optimal.

By Lemma 8 there is an optimal strategy T in which each vertex defended is next to
the fire, thus restricting the fire to spreading down a single path. Let w be the final vertex
to burn, at the end of this path.

Due to the degree restriction there are at most two vertices adjacent to w that do not lie
on the path from r down which the fire burnt to reach w. There are two ways in which the
fire can stop spreading at w. In the first case both of these vertices are defended after the
fire reaches w, and in the second at least one of these vertices has already been defended
before the fire reaches w, and any undefended neighbours are defended afterwards.

In the first case, we must have that w ∈ V0∪V1, as there must have been time to make
these defences after the fire reached w. Furthermore at least dist(r, w) + 1 vertices must
have burnt, and strategy S performs at least as well, and is therefore optimal.

Otherwise, in the second case, w must lie on a cycle that is fully burnt except for
one vertex, as the already defended vertex must be adjacent to some burning vertex, and
therefore adjacent to a vertex that lies on the burnt path from r to w, as these are the
only vertices that burn. Let v be the first vertex on C to have burnt. A path from r to
v must be fully burnt, as is all of C except for one vertex. Thus f(v) vertices have burnt
in total. As strategy S finds a vertex u that minimises f(u), and allows f(u) vertices to
burn, it must be the case that f(u) = f(v), and thus strategy S is optimal.
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We now give a polynomial algorithm that computes how many vertices S saves, showing
that Temporal Firefighter is in P for temporal graphs of maximum degree 3 with
roots of degree 2.

Algorithm 1 Temporal Firefighter on temporal graphs of maximum degree
3 with a root of maximum degree 2
Input: A rooted temporal graph ((G, λ), r) and integer k where G has maximum degree

3 and r has maximum degree 2.
Output: Returns true if at least k vertices can be saved in the temporal firefighter game

on ((G, λ), r).
1: V0, V1, Vc ←∅
2: for each vertex v ∈ V (G) do
3: P ←all vertices on the shortest underlying path between r and v
4: if Ndist(r,u)+1[v] \ P = ∅ then
5: V0 ← V0 ∪ {v}
6: else if |Ndist(r,u)+1[v] \ P | = 1 then
7: V1 ← V1 ∪ {v}
8: else if v is on a cycle then
9: Vc ← Vc ∪ {v}

10: end if
11: end for
12: return k ≥ |V (G)| −min {f(v) : v ∈ V0 ∪ V1 ∪ Vc}

Theorem 10. Algorithm 1 will run in time O(n3), where n is the number of vertices in
the graph.

Proof. For each vertex v in the input graph (G, λ), Algorithm 1 finds the shortest under-
lying path between r and v, and thus also the underlying distance between r and v. This
can be computed in time O(n2) for each vertex. The algorithm also finds the shortest
cycle containing v if it exists, and thus the number of vertices on this cycle, which is again
possible in time O(n2) for each vertex, giving an overall runtime of O(n(n2+n2)). Finally,
the algorithm iterates over every vertex v, computing the value of the function f(v) to
find the minimum. As the distances between r and v, as well as the size of the shortest
cycle containing v have already been computed, f(v) can be can be computed in constant
time. Thus this final step can be achieved in time O(n), giving an overall runtime of
O(n(n2 + n2) + n) = O(n3).

Corollary 3. Temporal Firefighter is in P for temporal graphs where the underlying
graph has maximum degree 3 and the root has maximum degree 2.

2.3 Conclusions

In this chapter, we defined the problems Temporal Firefighter and Temporal
Graph Burning. These problems are natural temporal extensions of the Firefighter
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and Graph Burning problems. We showed that in both problems, fires can never spread
faster in a temporal graph than they can on the underlying static graph, and that both
problems remain NP-Complete.

We then considered restricting the underlying graph class for Temporal Firefighter,
and found this approach to be limited in its ability to produce tractable algorithms. For
all but one class of static graphs where Firefighter is in P, Temporal Firefighter
remains NP-Complete, as Temporal Firefighter is NP-Complete on cliques. We
were only able to find a polynomial time algorithm for the very sparse class containing
graphs of maximum degree 3 where the fire begins at a vertex of degree 2.

Evidently, in the case of Firefighter, restrictions on the underlying graph class are
too weak to produce tractable algorithms. This is because the class of the underlying
graph tells us very little about the actual behaviour of the temporal graph. For example,
in our reduction in Theorem 6 we produce a temporal graph where the underlying graph
is a clique. However, several of the edges that make this graph a clique are only active
on one very late timestep, and as such do not actually affect the spread of the fire in
Firefighter. Due to the lack of correlation between the underlying graph class and the
behaviour of a temporal graph, it is also possible that restricting the underlying graph
class is would be too strong a restriction in other settings, and would needlessly rule out
temporal graphs where properties of the temporal structure actually allow for tractable
algorithms despite the underlying graph class.

Motivated by the unsuitability of restricting the underlying graph class, the remaining
chapters will use the tools of paramterised complexity to consider restrictions to the tem-
poral structure of a graph. We begin in the next chapter by considering two parameters
that are small when the activity of the edges in a temporal graph is limited.



Chapter 3

Parameterised Complexity of
Temporal Firefighter on Sparse
Temporal Graphs

In Chapter 2 we saw that Temporal Firefighter remained NP-Complete when the
underlying graph belongs to many of the classes for which Firefighter is known to be in
P, with one main exception when the underlying graph has maximum degree 3 and a root
of degree 2. In this chapter we again consider the complexity of Temporal Firefighter,
but now restrict the temporal structure of the input graph, rather than just the underlying
static structure. We achieve this using the tools of parameterised complexity, in particular
we determine the parameterised complexity of Temporal Firefighter for two exist-
ing parameters: vertex-interval-membership-width and edge-interval-membership-width.
Intuitively, a temporal graph with small (vertex or edge)-interval-membership-width can
be thought of as having low temporal activity. The parameters measure the maximum
number of vertices or edges respectively that overlap in the time intervals in which they
are active. Both of these parameters are small only when every snapshot graph of the
temporal graph is sparse, but it is worth noting that this is not a sufficient condition
for the parameters to be small. For example, these width measures can be unbounded
even when the underlying graph is a path. In this way, both parameters can be said to
capture a form of sparsity, but specifically sparsity of activity. We find that Temporal
Firefighter is in FPT when parameterised by vertex-interval-membership-width, but
remains NP-Complete when the edge-interval-membership-width is bounded.

We first define the parameters of vertex-interval-membership-width and edge-interval-
membership-width, and give some useful lemmas about their properties and the com-
plexity of computing them. We then present an algorithm for Temporal Firefighter
when parameterised by vertex-interval-membership-width. Finally, we prove that Tem-
poral Firefighter is NP-Complete even when the edge-interval-membership-width is

34
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bounded.

3.1 Background

We begin by recalling the definition of edge-interval-membership-width, due to Bumpus
and Meeks [20]. For each edge, we consider its active interval to be the sequence of
timesteps between the first timestep on which it is active, and the final timestep on which
it is active. Note that there may exist timesteps within an edge’s active interval on which
the edge is not active, however on such a timestep it is always true that the edge will
again be active at some point in the future. The parameter then measures the maximum
number of edges in their active interval on any given timestep.

Definition 18 (Edge-Interval-Membership-Width (Bumpus and Meeks [20])). The edge-
interval-membership-sequence of a temporal graph (G, λ) with lifetime Λ is a sequence
(Ft)t∈[Λ] of subsets of E(G) where Ft = {e ∈ E(G) : min(λ(e)) ≤ t ≤ max(λ(e))}.

The edge-interval-membership-width of a temporal graph is then the integer ψ = maxt∈[Λ] |Ft|.

Note that if the edge-interval-membership-width is bounded, then so is the number of
active edges on any given timestep. However the converse is not true: it is possible for
a temporal graph to have a constant number of active edges on every timestep, but an
arbitrarily large edge-interval-membership-width.

It is possible to compute the edge-interval-membership-width in time polynomial in
the lifetime of the temporal graph and the edge-interval-membership-width itself.

Lemma 11 (Bumpus and Meeks [20]). There is an algorithm that, given a temporal graph
G with every edge active at least once and with lifetime Λ, computes the edge-interval-
membership-sequence of G in time O(ωΛ) where ω is the edge-interval-membership-width
of G.

The vertex-interval-membership-width, also defined by Bumpus and Meeks, is very
similar, but considers the number of vertices, rather than edges, in their active inter-
val. The active interval of a vertex v refers to the inclusive sequence of timesteps from
the earliest timestep on which any edge incident at v is active to the latest timestep on
which any edge incident at v is active. We denote these two timesteps with mintime(v) =

min({min(λ(e)) : e is incident at v}), and maxtime(v) = max({max(λ(e)) : e is incident at v}).

Definition 19 (Vertex-Interval-Membership-Width (Bumpus and Meeks [20])). The vertex-
interval-membership-sequence of a temporal graph (G, λ) with lifetime Λ is the sequence
(Ft)t∈[Λ] of vertex-subsets of G where Ft = {v ∈ V (G) : mintime(v) ≤ t ≤ maxtime(v)}.

The vertex-interval-membership-width of a temporal graph (G, λ) is then the integer
ω = maxt∈[Λ] |Ft|.
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The vertex-interval-membership-width and edge-interval-membership-width are incom-
parable. In some cases the edge-interval-membership-width maybe higher than the vertex-
interval-membership-width: take for example a temporal graph where the underlying
graph is a clique, and there is at least one timestep on which every edge is active. The
edge-interval-membership-width of this graph is equal to the number of edges, which is
1
2
n(n − 1) where n is the number of vertices. The vertex-interval-membership-width is
n. In other cases, the vertex-interval-membership-width is higher than the edge interval-
membership-width, and in fact can be arbitrarily higher, as shown by Bumpus and Meeks
[20].

Just as with the edge-interval-membership-width, we can compute the vertex-interval-
membership-width in time polynomial in the lifetime of the temporal graph and the vertex-
interval-membership-width.

Lemma 12 (Bumpus and Meeks [20]). There is an algorithm that, given a temporal graph
G with every edge active at-least once and with lifetime Λ, computes the vertex-interval-
membership-sequence of G in time O(ωΛ) where ω is the vertex-interval-membership-width
of G.

Finally, we see that any entries from the edge-interval-membership-sequence containing
an edge e must always occur consecutively within the edge-interval-membership-sequence,
as it is not possible for an edge to ever be active again after it has left its active interval.

Lemma 13. Given a temporal graph G with edge-interval-membership-sequence [Ft]t≤Λ,
for any edge e and times s, t, and u with s ≤ t ≤ u, if e is in Fs and Fu, it must be in Ft.

Proof. If e ∈ Fs, then by definition min(λ(e)) ≤ s. Furthermore, if e ∈ Fu then by
definition max(λ(e)) ≥ u. Now min(λ(e)) ≤ s ≤ t ≤ u ≤ max(λ(e)), and therefore
e ∈ Ft.

The same is also true of the vertex-interval-membership-sequence. The entries that
contain a vertex v must always occur consecutively within the sequence, as by definition
it is not possible for a vertex to ever be active again after it has left its active interval.

Lemma 14. Given a temporal graph G with vertex-interval-membership-sequence [Ft]t≤Λ,
for any vertex v and times s, t, and u with s ≤ t ≤ u, if v is in Fs and Fu, it must be in
Ft.

Proof. If v ∈ Fs, then by definition mintime(v) ≤ s. Furthermore, if e ∈ Fu then by
definition maxtime(v) ≥ u. Now mintime(v) ≤ s ≤ t ≤ u ≤ maxtime(v), and therefore
e ∈ Ft.

Having introduced the parameters of edge-interval-membership-width and vertex-interval-
membership-width, we are now ready to show that Temporal Firefighter is in FPT
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when parameterised by vertex-interval-membership-width, before going on to show that
it remains NP-Complete even when the edge-interval-membership-width is bounded.

3.2 A Fixed Parameter Tractable Algorithm

We find that Temporal Firefighter is in FPT when parameterised by vertex-interval-
membership-width. To simplify our analysis when showing this, we actually use the related
problem Temporal Firefighter Reserve.

Temporal Firefighter Reserve is the temporal extension of the Firefighter
Reserve problem described by Fomin et al. [38]. In Temporal Firefighter Reserve,
it is not required to make a defensive move every timestep. Rather, each timestep a budget
is incremented by 1, and it is then possible to defend any number of vertices less than
or equal to the budget simultaneously, subtracting from the budget appropriately. Stated
more formally, the problem ask whether it is possible to save k vertices from burning in
the following process:

1. At time t = 0, the root r is labeled as burning, and the budget is 0.

2. At all times t ≥ 1, the budget is incremented by 1, and then a chosen (possibly
empty) set of vertices D are labeled as defended, provided |D| is at most equal to
the budget. The budget is then decremented by |D|, and the fire spreads to all
undefended vertices adjacent to the fire on timestep t.

3. The process ends once the fire cannot spread on the current timestep or any future
timesteps.

A strategy is then defined as a sequence of sets of valid defences, such that on each
timestep there is sufficient budget to defend all the vertices in the corresponding set.

Definition 20. Given a rooted temporal graph (G, r), a strategy S = D1, D2, ..., D` is a
sequence of sets of vertices from G, such that Σt

i=1|Di| ≤ t for all timesteps t, and if the
fire begins at r on timestep 0 and each set of vertices is defended in turn, all the vertices
in each Di are unburning and undefended on timestep i, and the fire stops spreading on
or before timestep `.

The decision problem is then phrased identically to Temporal Firefighter.

Temporal Firefighter Reserve

Input: A rooted temporal graph (G, r) and an integer k.
Output: Does there exist a strategy that saves at least k vertices on G when the fire
starts at vertex r?
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Just as in the static Firefighter Reserve, allowing the defence to build up a reserve
in this manner does not affect the number of vertices than can be saved. We prove this
using the same argument as that for the static case as given by Fomin et al. [38].

Lemma 15. An instance ((G, λ), r) along with an integer k of Temporal Firefighter
Reserve is a yes-instance if and only if ((G, λ), r) along with k is a yes-instance of
Temporal Firefighter.

Proof. Given a temporal graph ((G, λ), r), assume there is a strategy for Temporal
Firefighter Reserve that saves k vertices. Any strategy for Temporal Firefighter
is a valid strategy for Temporal Firefighter Reserve, and thus it is also possible to
save k vertices in Temporal Firefighter Reserve by playing the same strategy.

Now assume that there is a strategy that saves k vertices in Temporal Firefighter
Reserve on ((G, λ), r). We can transform this strategy into a valid strategy for Tempo-
ral Firefighter that saves the same number of vertices as follows: if at any timestep t
the strategy defends d > 1 vertices, the budget on timestep t must be at least d, and there
therefore must have been at least d− 1 timesteps prior to t where no defences were made.
By making exactly one of these d defences on the latest d − 1 each of these d − 1 prior
timesteps, and on timestep t itself, we produce a valid strategy for Temporal Fire-
fighter. Modifying the strategy in this manner creates a valid strategy for Temporal
Firefighter, as, if defending vertex v is valid on timestep t, it must also be valid at any
timestep less than t. Finally, as the exact same defences occur, only at an earlier time,
the modified strategy must also save at least k vertices.

Additionally, we note that in Temporal Firefighter Reserve there is always an
optimal strategy that only defends vertices temporally adjacent to the fire, as any defence
can be delayed until the turn upon which the defended vertex would burn. More generally,
there is always an optimal strategy which defends only vertices at time t if they have an
incident edge active at time t. From now on when we refer to strategies for Temporal
Firefighter Reserve, we assume that they all have this property.

We now give an algorithm for Temporal Firefighter Reserve that iterates over
the vertex-interval-membership sequence of the input graph, and show that it is fixed
parameter tractable with respect to vertex-interval-membership-width.

The algorithm takes as input a rooted temporal graph ((G, λ), r) with lifetime Λ and
vertex-interval-membership-sequence [Fi]i∈[Λ], and an integer k, and determines if it is
possible to save k vertices in temporal firefighter reserve played on the graph. For any
edge set E ⊆ E(G), let V (E) be the set of vertices with an incident edge in E. Also, for any
set X let P(X) denote the powerset of X: {X ′ : X ′ ⊆ X}. The algorithm then operates
by recursively computing a sequence of sets Li ∈ P(Fi)×P(Fi)×{1, 2, ...,Λ}×{1, 2, ..., n}
for each Fi in the vertex-interval-membership-sequence.
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An element of Li is a 4-tuple (D,B, g, c) where D is a set of defended vertices in Fi,
B is a set of burnt vertices in Fi, g is the budget that will be available on timestep i+ 1,
and c is the total count of vertices that have burnt at time i.

To determine the spread of the fire it is only necessary to keep track of the root, along
with the vertices that have burned or been defended in Fi, as if a vertex is not in Fi all
its incident edges must either only be active before time i, or after time i. If the former
is the case, and the vertex is not the root, then the fire cannot spread from or to it after
time i, meaning that whether it is burning or defended does not affect the spread of the
fire after this point. If the latter is the case, and the vertex is not the root, then the vertex
cannot be burning, as the fire cannot have reached it yet, and as we only defend vertices
with incident edges active at time i, it cannot be defended either.

Additionally, it is possible to compute these defended and burning sets recursively from
only a previous entry in the sequence, as we know from Lemma 14 that a vertex v can
only be in a sequence of consecutive Fis.

Finally, we check if there is any entry (D,B, g, c) ∈ LΛ where Λ is the lifetime of the
graph, such that |V (G)| − c ≥ k, returning true if so.

We recursively compute the sequence Li, beginning by initialising L0 = (∅, {r} ∩
F0, 1, 1). Let Ei be the set of edges active at time i, and Ni(S) the set of all vertices
adjacent at time i to the vertices in S, for any set S ⊆ V (G). Note that V (Ei) ⊆ Fi, as
the timestep i is within a vertex’s active interval if the vertex has an incident edge active
on i.

We then require that, for any set A ⊆ V (Ei) \ (D ∪ B) containing vertices to be
defended on timestep i, (D′, B′, g−|A|+1, c′) ∈ P(Fi)×P(Fi)×{1, 2, ...,Λ}×{1, 2, ..., n}
is in Li if and only if there is a tuple (D,B, g, c) in Li−1, such that:

(1) D′ = (D ∩ Fi) ∪ A

(2) B′ = (B ∩ Fi) ∪Ni(B ∪ {r}) \D′

(3) g − |A|+ 1 > 0

(4) c′ = c+ |Ni(B ∪ {r}) \ (D′ ∪B ∪ {r})|

That is, given sets of burning and defended vertices in Fi−1, we create a set of burning
and defended vertices in Fi appropriately for each possible set of defences on vertices with
incident edges active at time i.

Condition 1 ensures that the defended set contains only previously defended vertices
in Fi, along with the set of new defences A.

Condition 2 specifies that the burning set contains only previously burnt vertices in
Fi, allong with all non-defended vertices temporally adjacent to the fire.
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Condition 3 ensures that the budget is correct. The budget available at the end of
timestep i will be g − d+ 1 if at the end of timestep i the budget is g, and d vertices are
to be defended, as the budget decreases by the number of defences made, but increases by
1 per timestep.

Condition 4 counts the number of newly burnt vertices.
We show that computing these sets correctly answers the Temporal Firefighter

problem. That is, that entries exist in the sequence if and only if there is a corresponding
strategy, and thus it is possible to check if k vertices can be saved in temporal firefighter
on the rooted temporal graph ((G, λ), r).

Theorem 16. Given a temporal graph ((G, λ), r) there is an entry (D,B, g, c) ∈ Li if and
only if there exists a strategy for Temporal Firefighter Reserve on ((G, λ), r) such
that D and B are the vertices in Fi that are defended and burnt respectively by timestep i,
g is the budget that will be available on timestep i+1, and c is the total number of vertices
that burn by timestep i.

Proof. We proceed by induction on i. After timestep 0, only one vertex (the root) has
burnt, and L0 = {(∅, {r}, 1, 1)}. We suppose that for every entry (D,B, g, c) ∈ Li−1, there
is a corresponding strategy Si−1, and show that if (D′, B′, g − d+ 1, c′) ∈ Li then there is
a corresponding strategy Si.

Assume that there is an entry (D′, B′, g − d + 1, c′) ∈ Li, we will now show that
there exists a corresponding strategy. If (D′, B′, g − d + 1, c′) ∈ Li there must be an
entry (D,B, g, c) ∈ Li−1 and set of vertices A ⊆ V (Ei) \ (B ∪ D) with d = |A| such
that Conditions 1 through 4 hold. By our induction hypothesis there is a corresponding
strategy Si−1 for this entry such that D and B are the vertices in Fi−1 that are defended
and burnt respectively by timestep i− 1, g is the budget available at the end of timestep
i − 1, and c is the total number of vertices burnt by timestep i − 1. If we take Si−1 and
extend it by defending the set of vertices A on timestep i, then we obtain a strategy Si

that we claim corresponds to (D′, B′, g − d+ 1, c′).
First see that by the definition of A, all the defences it contains are valid, as A contains

only vertices in V (Ei) ⊆ Fi that have not either already burnt or been defended, and
g − |A|+ 1 > 0, and g is the budget available at the end of timestep i− 1.

The vertices that are newly defended on timestep i when Si is played are only those
in A. Thus the vertices that are defended in Fi on timestep i when Si is played are those
that were already defended and are also in Fi, that is D ∩ Fi, and those that are newly
defended. Thus by condition 1 the vertices in Fi that are defended by timestep i when Si
is played are those in D′.

The vertices that then burn on timestep i when Si is played are all those adjacent to
the fire on timestep i and not defended by Si. Additionally, any vertex from which the
fire spreads on timestep i must be in Fi, as it must have an incident edge active at time i.
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For the same reason, any defended vertex that the fire would otherwise burn on timestep
i must also be in Fi. Thus, Ni(B) \D′ is the set of vertices that newly burn on timestep
i. Therefore the vertices that have burnt in Fi on timestep i when Si is played are those
that had already burnt and are also in Fi, that is B ∩ Fi, and those that newly burn:
Ni(B) \D′. Thus by condition 2 the vertices in Fi that have burnt by timestep i when Si
is played are those in B′.

The budget available on timestep i + 1 when Si is played is the budget available
on timestep i incremented by 1, with |A|, the number of defences made on timestep i,
subtracted. Thus by condition 3 the budget available at timestep i+ 1 when Si is played
is g − d+ 1.

The set of vertices that newly burn after timestep i when Si is played is all those
adjacent to the fire on timestep i and not defended or already burning, so the number
of such vertices is |Ni(B) \ (B ∪ D′)|. The total number of vertices to have burnt after
timestep i when Si is played is then c+ |Ni(B) \ (B ∪D′)|, thus by condition 4 the total
number of vertices to have burnt is c′.

We now show the converse: that if there is a strategy Si such that after time i the
sets of vertices that have been defended and burnt are DS and BS respectively, g′ is the
available budget, and c′ is the total number of vertices to have burnt, then there is a
corresponding entry (D′, B′, g′, c′) ∈ Li, such that D′ = DS ∩ Fi and B′ = BS ∩ Fi.

Consider the state at timestep i−1 if strategy Si is played. By our induction hypothesis
there is a corresponding entry (D,B, g, c) ∈ Li−1 where D is the set of vertices in Fi−1

that are defended at time i − 1, B is the set of vertices in Fi−1 that are burnt at time
i− 1, g is the budget that will be available at time i, and c is the total number of vertices
to have burnt at time i− 1.

Let A be the set of vertices defended at time i when strategy Si is played. As we
consider only strategies that only defend vertices at time i with incident edges at time i,
and A is a valid defence, we have that A ⊆ V (Ei) \ (B ∪D).

By our induction hypothesis D is the set of vertices in Fi−1 that are defended by the
end of timestep i−1, so the set of vertices in Fi defended by time i is DS∩Fi = (D∩Fi)∪A,
satisfying condition 1.

Again by the induction hypothesis B is the set of vertices in Fi−1 that are burnt by the
end of timestep i− 1. The only vertices from which the fire can spread on timestep i are
those that have an incident edge active at time i, and thus are in Fi. For the same reason
the only defended vertices that would otherwise burn on timestep i are in Fi. Therefore the
vertices in Fi burnt by time i are BS∩Fi = (B∩Fi)∪Ni(B)\DS = (B∩Fi)∪Ni(B)\(D∪A),
satisfying condition 2.

Finally, the budget available at time i is g, and so the budget at time i + 1 is g′ =
g − |A| + 1, satisfying condition 3, and the number of vertices burnt after time i − 1
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is c, so the number of vertices burnt after time i is c′ = c + |Ni(B) \ (B ∪ DS)| =
c+ |Ni(B) \ (B ∪ (D ∩ Fi) ∪ A)|, satisfying condition 4.

Thus we see that, given (D,B, g, c) is an entry in Li−1, we have that (DS ∩ Fi, BS ∩
Fi, g

′, c′) satisfies conditions 1-4, and thus is an entry in Li.

We now determine the runtime of computing all sets Li, thus showing that Temporal
Firefighter is FPT when parameterised by vertex-interval-membership-width.

Theorem 17. It is possible to solve Temporal Firefighter in time O(8ωωΛ3) for a
rooted temporal graph ((G, λ), r) where Λ is the lifetime of the graph, and ω is the vertex-
interval-membership-width.

Proof. Temporal Firefighter Reserve, and therefore Temporal Firefighter,
can be answered by computing all sets Li, and then checking if there exists an entry
(D,B, g, c) ∈ LΛ with |V (G)|− c ≥ k. Thus, it suffices to show that each of these sets can
be computed in the required time.

First observe that the total number of burnt vertices on any given timestep i is at
most Σi

j=1|V (Ej)| = O(ωΛ), as on each timestep j only vertices in V (Ej) can burn, and
|V (Ej)| ≤ ω, and for any timestep i we have that i ≤ Λ.

Now see that for any i, we have that |Li| = O(4ωωΛ2) as Li ⊆ P(Fi) × P(Fi) ×
{1, ...,Λ} × {1, ..., ωΛ}, and |P(Fi)| × |P(Fi)| = 22ω = 4ω.

Furthermore, on each timestep i we only consider defending vertices in V (Ei), and
|V (Ei)| ≤ ω. Thus for each timestep there are at most 2ω defences to consider.

As described, for each timestep i in the lifetime Λ of the graph, it is necessary to
compute every possible set of defences for every entry in Li, and then to check if these
defences are valid and compute the resulting state after these defences are made. Checking
if a set of defences is valid can be achieved in O(ω) time by checking if every vertex to be
defended is unburnt. Computing the resulting state can then be achieved in O(ω2) time
by checking if each vertex in Fi is adjacent to a burning vertex. The overall complexity is
therefore O(4ωωΛ2 × 2ω × ω × ω2 × Λ) = O(8ωω4Λ3) as required.

3.3 Hardness for Edge-Interval-Membership-Width

Motivated by the existence of a fixed-parameter-tractable algorithm for Temporal Fire-
fighter when parameterised by vertex-interval-membership-width, we now answer whether
a fixed-parameter-tractable algorithm for Temporal Firefighter exists when parame-
terised by edge-interval-membership-width. When the vertex-interval-membership-width
is small, the number of possible useful defences per timestep is also small, which gives us
a fixed-parameter-tractable algorithm.
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Despite the similarity between the two parameters, the same is not true of edge-interval-
membership-width. In fact, we show that Temporal Firefighter is NP-Complete even
when the edge-interval-membership-width is at most 2. We show this by reduction from
the Max-2-SAT variant of the classic SAT problem.

Satisfiability problems ask whether there is a truth assignment to the variables of a
boolean formula that satisfy a certain requirement. Formulas are usually given in con-
junctive normal form (abbreviated to CNF), where the formula is a conjunction of clauses:
disjunctions of literals.

Max-2-Sat asks us to determine if a given number of clauses can be satisfied in a
CNF formula, in which each clause contains two literals. This problem was shown to be
NP-Complete by Garey et al. [41].

Max-2-SAT

Input: An integer k, and a pair (B,C) where B is a set of boolean variables, and C

is a set of clauses over B in CNF, each containing 2 variables.
Output: Is there a truth assignment to the variables such that at least k clauses in
C are satisfied?

Theorem 18 (Garey et al. [41]). Max-2-SAT is NP-Complete.

We are now ready to give our reduction. Given a CNF formula in which each clause has
2 literals, we produce a temporal graph in which the underlying graph is a tree of depth 2,
and each edge is active exactly once, and at most two edges are active on every timestep.
The fire begins at a root vertex r, and every vertex adjacent to the root corresponds to
a literal from the formula. We attach leaves to these literal vertices and assign times to
their incident edges such that the firefighters are forced to defend exactly one of each
pair of literal vertices corresponding to a variable. Such a defence then corresponds to a
truth assignment for the variables in the formula. We construct our instance such that a
defence saves the desired number of vertices in Temporal Firefighter if and only if
the corresponding truth assignment satisfies the desired number of clauses.

Theorem 19. Temporal Firefighter is NP-Complete even when restricted to the
class of temporal trees with each edge active exactly once, and at most two edges active per
timestep.

Proof. We reduce from Max-2-SAT. Given an instance ((B,C), k) of Max-2-SAT we
construct an instance (((G, λ), r), k′) of Temporal Firefighter where G is a tree, each
edge is active exactly once, and there are at most two edges active per timestep, such that
(((G, λ), r), k′) is a yes-instance if and only if ((B,C), k) is also a yes-instance.

Let v = |B|, the number of variables, and w = |C|, the number of clauses. Our vertex
V (G) set consists of 1 + 2v + 2wv + 4w vertices:
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Figure 3.1: The section of the tree corresponding to the appearances of variable b1 in the
Max-2-SAT instance (b1 ∨ b2) ∧ (¬b2 ∨ b3) ∧ (¬b1 ∨ ¬b3)

• one root vertex r,

• 2v variable vertices {bi,x : i ∈ [v], x ∈ {1, 0}},

• 2wv forcing leaf vertices {di,x,j : i ∈ [v], x ∈ {1, 0}, j ∈ [w]},

• 4w clause leaves, two for each appearance of a literal in a clause, {cj,i, c̄j,i : i ∈
[v], j ∈ [w], bi appears in clause cj}.

Our set of time edges then connects every variable vertex to the root, and every forcing
and clause leaf to a variable vertex:

{(e, t) : e ∈ E(G), t ∈ λ(e)} = {({bi,x, r}, i) : i ∈ [v], x ∈ {1, 0}}

∪ {({di,x,j, bi,x}, v + (i− 1)w + j) : i ∈ [v], x ∈ {1, 0}, j ∈ [w]}

∪ {({cj,i, bi,1}, v + wv + j), ({c̄j,i, bi,0}, v + wv + w + j)

: i ∈ [v], j ∈ [w], bi occurs positively in cj}

∪ {({cj,i, bi,0}, v + wv + j), ({c̄j,i, bi,1}, v + wv + w + j)

: i ∈ [v], j ∈ [w], bi occurs negatively in cj}

Now, set k′ = (1 + 2v + 2wv + 4w)− (1 + v + (w − k)) = v + 2wv + 3w + k, and this
along with the above temporal graph is our instance (((G, λ), r), k′). As required, G is a
tree, each edge is active on exactly one timestep, and there are two edges active on every
timestep. For any timestep between 1 and v inclusive, both of these edges are between
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the root and a variable vertex. For any timestep between v+1 and v+vw inclusive, these
edges are between a variable vertex and a forcing leaf. For any timestep between v+vw+1

and v + vw + w inclusive these edges are between a variable vertex and a positive clause
vertex. Finally, for any timestep between v+wv+w+ 1 and v+wv+ 2w inclusive these
edges are between a variable vertex and a negative clause vertex. An example construction
of such a graph can be seen in Fig. 3.1.

Now assume that ((B,C), k) is a yes-instance, that is that there is a truth assignment
φ : B → {T, F} to the variables in B such that at least k of the clauses in C are
satisfied. Given this truth assignment we then define a strategy σ, and show it to save
k′ = v(2w+ 1) + 3w+ k vertices on ((G, λ), r), thus demonstrating that (((G, λ), r), k′) is
also a yes-instance. This strategy defends as follows:

Definition 21 (Strategy σ).

• For each timestep t ∈ [v], σ, if φ(bt) = T then σ defends bt,1, and if φ(bt) = F then
σ defends bt,0,

• for each timestep t ∈ [v+1, v+vw], σ defends dd t−v
w

e,0,((t−v−1) mod w)+1 if φ(bd t−v
w

e) =

T , and dd t−v
w

e,1,((t−v−1) mod w)+1 if φ(bd t−v
w

e) = F ,

• for each timestep t ∈ [v + wv + 1, v + wv + w], σ defends any clause leaf in
{ct−(v+wv),i : bi occurs in ct−(v+wv)} that has an undefended parent. If neither of
these two clause leaves have an undefended parent, then σ defends a clause leaf in
{c̄t−(v+wv),i : bi occurs in ct−(v+wv)},

• finally, for each timestep t ∈ [v + wv + w + 1, v + wv + 2w], σ defends any clause
leaf in {c̄t−(v+wv+w),i : bi occurs in ct−(v+wv+w)} that has an undefended parent. If
neither of these two leaves have an undefended parent, then σ defends one of them
arbitrarily.

Now consider the number of vertices that burn under σ. To begin with the root and
half of the variable vertices burn, before all of the forcing leaves are saved. Now consider
some clause cj ∈ C containing variables bx and by. If cj is satisfied, then neither clause leaf
cj,x or cj,y burns, as at least one of these leaves will have a defended parent, and if either
leaf does not have a defended parent, the leaf will be defended on timestep v + wv + j.
If cj is not satisfied, then neither of cj,x and cj,y will have a defended parent, and one of
them will burn, and the other will be defended on timestep v + wv + j.

Finally consider a pair of negative clause leaves c̄j,x and c̄j,y. If the parents of both of
these leaves burn, the neither of the parents of the corresponding leaves cj,x and cj,y burn,
and one of c̄j,x and c̄j,y will be defended on timestep v+wv+ j, and the other on timestep
v+wv+w+j. If one or fewer of the parents burn, then either of the leaves with a burning
parent will be defended on timestep v + wv + w + j. Therefore no negative clause leaf
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c̄j,i will burn. Thus in total the root, half of the variable vertices, and one clause leaf per
unsatisfied clause burn, that being at most 1 + v + (w − k) vertices. This means that at
least (1 + 2v + 2wv + 4w) − (1 + v + (w − k)) = v + 2wv + 3w + k vertices are saved as
required.

We now show that if (((G, λ), r), k′) is a yes-instance, that is that there is some strategy
σ that saves v+2wv+3w+k vertices then ((B,C), k) is also a yes-instance. We begin by
showing that if there exists a strategy that saves k′ vertices, then there exists a strategy
that on every timestep t ∈ [v] defends one of the vertices bt,0 and bt,1, and also saves k′

vertices. Given a strategy σ with this property, we then define a truth assignment φ, such
that φ(bt) = T if σ defends bt,1 on timestep t, and φ(bt) = F if σ defends bt,0 on timestep
t.

First assume that there exists a strategy that saves k′ vertices, but no strategy that
does so by defending only variable vertices on every timestep t ∈ [v]. Now let σ be a
strategy that saves k′ vertices and is maximal in the number of timesteps t ∈ [v] on which
a variable vertex is defended. Let t be the earliest timestep on which σ defends a leaf
vertex l, and let {bi,0, bi,1} be a pair of variable vertices undefended by σ, noting that such
a pair must exist - if σ defends at least one vertex from every pair of variable vertices,
then it must do so by timestep v at the latest, by which time every variable vertex burns.
Furthermore, if it defends at least one vertex from every pair of variable vertices, then
this requires at least v defences, and so σ would only defend variable vertices on every
timestep t ∈ [v], contradicting its definition. Consider now the strategy σ′ that defends
bi,0 on timestep t, and makes the same defences as σ otherwise. See that σ′ saves at least
all the vertices saved by σ, with the possible exception of l, and also saves bi,0, which was
not saved by σ. Therefore σ′ also saves at least k′ vertices and contradicts the maximality
of σ, and so there always exists a strategy that only defends variable vertices for every
timestep t ∈ [v].

We now show by induction on the variable index i that any strategy σ that saves k′

vertices and defends only variable vertices on the first v timesteps must defend exactly one
of every pair of vertices bi,0 and bi,1 on timestep i. When i = 1 if neither of bi,0 and bi,1 are
defended both of these vertices will burn. There are then 2w forcing leaf vertices adjacent
to these variable vertices, and all of these forcing leaf vertices will burn by timestep v+w.
Our strategy only defends variable vertices for the first v timesteps, so can then only
defend at most w of the forcing leaf vertices by timestep v+w, meaning at least w forcing
vertices burn. Even assuming the remaining vertices in the graph are saved, the root, v
of the variable vertices, and w forcing vertices burn, meaning that the number of saved
vertices is (1 + 2v + 2wv + 4w) − (1 + v + w) = v + 2wv + 3w < v + 2wv + 3w + k,
contradicting the assumption that σ saves k′ vertices. Therefore σ must defend exactly
one of b1,0 and b1,1 on timestep 1. Otherwise, if i > 1 then by the inductive assumption
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σ defends one of each pair of vertices bt,0 and bt,1 on every timestep t < i. Assume that
σ does not defend either of bi,0 or bi,1 on timestep i, so both of these vertices will burn.
There are then iw+w forcing leaf vertices adjacent to the burning variable vertices bt,0, bt,1
with t ≤ i, and all of these forcing leaf vertices will burn by timestep v+ iw. Our strategy
only defends variable vertices for the first v timesteps, so can then only defend at most
iw of the forcing leaf vertices by timestep v + iw, meaning that at least w forcing leaves
burn. Even assuming the remaining vertices in the graph are saved, the root v of the
variable vertices, and w forcing vertices burn, meaning that the number of saved vertices
is (1 + 2v + 2wv + 4w)− (1 + v + w) = v + 2wv + 3w < v + 2wv + 3w + k, contradicting
the assumption that σ saves k′ vertices. Therefore σ must defend one of bi,0 and bi,1 on
timestep i.

Therefore, if there exists a strategy that saves k′ vertices, there must exist a strategy
that only defends variable vertices during the first v timesteps, and this strategy must
defend exactly one of each pair of variable vertices bi,0 and bi,1. Thus given such a strategy
σ we then define a truth assignment φ, such that φ(bi) = T if σ defends bi,1 on timestep
i, and φ(bi) = F if σ defends bi,0 on timestep i.

Now assume that there exists a strategy that defends one of the vertices bi,0 or bi,1 on
each timestep i ≤ v, and saves at least k′ vertices, but no strategy that saves at least k′

vertices, defends either bi,0 or bi,1 on each timestep i ≤ v, and saves every forcing leaf.
Let σ be a strategy that saves at least k′ vertices, defends one of the vertices bi,0 or bi,1
on each timestep i ≤ v, and is maximal in the integer ` such that every defence made
by σ on a timestep v < t ≤ v + ` is made at a forcing leaf with a burning parent and
an active incident edge active on timestep t. Consider the strategy σ′ which defends as σ
but on timestep v + `+ 1 defends a forcing leaf with an incident edge active on timestep
v + `. Note that such a leaf must exist, as for every timestep v < t ≤ v + vw, there are
two forcing leaves with incident edges active on t, and one of these leaves is the child of a
variable vertex bi,0, and the other the child of bi,1, only one of which will be defended by
σ. Also see that such a leaf cannot have burnt at the start of timestep v + `, as its only
incident edge is only active on this timestep. See then that any leaf that does not burn
and is not defended when σ is played also does not burn when σ′ is played, as σ′ defends
the same non-leaf vertices as σ. Furthermore, the number of leaves that are defended is
the same when σ is played is the same as the number of leaves that are defended when σ′

is played, and therefore σ′ saves the same number of vertices as σ. This contradicts the
maximality of σ, and therefore if there exists a strategy that saves k′ vertices, there exists
a strategy that saves k′ vertices, defends one of the vertices bi,0 or bi,1 on each timestep
i ≤ v, and saves every forcing leaf.

When such a strategy σ is played, vw forcing leaves will have burning parents, and
each of these leaves will burn by timestep v + vw if undefended, meaning that on every
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timestep v < t ≤ v + vw, σ will defend a forcing leaf. Furthermore, σ saves v variable
vertices, 2vw forcing leaves, and must therefore save at least 3w + k clause leaves, as σ
saves k′ = v+2wv+3w+k vertices. There are 2w negative clause leaves, and 2w positive
clause leaves, meaning that at least w+k positive clause leaves must be saved by σ. Every
undefended positive clause leaf with a burning parent will burn by timestep v + vw + w,
and σ can only defend clause leaves from timestep v + vw + 1 onwards. Therefore at
most w positive clause leaves can be saved by being defended. The remaining required k

positive clause leaves must therefore have parents defended by σ. If the parent bi,x of any
positive clause leaf cj,i is defended, then clause cj must be satisfied by our truth assignment.
Therefore at least k clauses are satisfied by the truth assignment corresponding to σ as
required.

3.4 Conclusions

In this chapter, we considered the tractability of Temporal Firefighter when pa-
rameterising by vertex-interval-membership-width and edge-interval-membership-width.
Bounding either of these parameters bounds the activity of the graph, the former bounds
the number of vertices that can be in their active interval on any given timestep, and the
latter the number of edges.

For vertex-interval-membership-width we provide a dynamic programming algorithm
for Temporal Firefighter Reserve that is fixed-parameter-tractable. Temporal
Firefighter Reserve is a variant of Temporal Firefighter that allows a budget
of defences to be built up so that multiple defences can be made in a single turn. Using
this problem allows us to consider only strategies that always defend adjacent to the fire,
and it is equivalent to Firefighter in terms of the number of vertices that can be saved.

We then showed that Temporal Firefighter is NP-Complete even on a tree of
depth 2, with every vertex active on exactly 1 timestep, and at most 2 vertices active per
timestep. Such a tree has edge-interval-membership-width 2, so Temporal Firefighter
cannot be in FPT when parameterised by edge-interval-membership-width. However,
the tree does have unbounded degree, and as future work it may be worth to consider
parameterising by both the edge-interval-membership-width and the maximum degree.

Both of the parameters we have considered so far are small only when a temporal
graph is in some way sparse, or limited in activity. In Chapter 4 we consider parameters
that may be small even on dense temporal graphs. Finally, in Chapter 5 we return our
attention to vertex-interval-membership-width and edge-interval-membership-width, and
define classes of problems for which these parameters produce tractable algorithms.



Chapter 4

Parameterised Complexity on Dense
Temporal Graphs

In Chapter 2 we presented an efficient algorithm Temporal Firefighter when the
underlying graph belongs to a particular sparse graph class. Then in Chapter 3 we found
that Temporal Firefighter is in FPT with respect to the parameter of vertex-interval-
membership-width, a parameter that is small when the temporal graph is temporally
sparse, with few vertices relevant on any given timestep. In this chapter we determine
the complexity of Temporal Firefighter and Temporal Graph Burning when
parameterising by temporal neighbourhood diversity, and also determine the complexity of
Temporal Graph Burning when parameterising by the related parameter of temporal
modular width. Both of these parameters can be small on dense temporal graphs, and
are temporal analogues of the known static parameters of neighbourhood diversity and
modular width. The definitions of these temporal parameters were first introduced in joint
work with Enright, Larios-Jones, and Meeks [29].

We begin by recalling the definitions for neighbourhood diversity and modular width,
before stating the definitions for temporal neighbourhood diversity and temporal modular
width, and seeing that the temporal neighbourhood diversity of a temporal graph is always
at least the temporal modular width, that is a graph with a small temporal neighbourhood
diversity will have a small temporal modular width, but not vice-versa. We then give
algorithms for both Temporal Firefighter and Temporal Graph Burning when
parameterised by the temporal neighbourhood diversity. Finally, we show that Temporal
Graph Burning remains NP-Complete when the temporal modular width is bounded.

4.1 Introducing the Parameters

The neighbourhood diversity of a static graph measures the number of classes of vertices
where any pair of vertices in the same class are indistinguishable - they are both adjacent

49
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to exactly the same vertices excluding each other. We say that such a pair of vertices
has the same type. Lampis originally introduced this parameter specifically for coloured
graphs [59], and it was then generalised by Ganian to uncoloured graphs [40]. We now
recall the formal definitions of type due to Ganian, and neighbourhood diversity due to
Lampis.

Definition 22 (Type (Ganian [40])). Two vertices v and v′ have the same type if and
only if N(v) \ {v′} = N(v′) \ {v}.

Definition 23 (Neighourhood Diversity (Lampis [59])). A graph G has neighbourhood
diversity at most k if and only if there exists a partition of V (G) into at most k sets where
all vertices in each set have the same type.

The definition of type neither requires or disallows two adjacent vertices to be of the
same type. It is worth noting that in any set where all vertices have the same type, either
all vertices in the set are adjacent to each other (the set is a clique), or no vertices in the
set are adjacent to each other (the set is an independent set).

Modular width, like neighbourhood diversity, measures the number of sets produced
when we group the vertices of a graph according to their neighbourhoods. Unlike neigh-
bourhood diversity, this grouping is not a partition, and is in fact a recursive decomposition
of the graph. In particular the well known notion of modular decomposition is used, which
recursively decomposes a graph into sets of vertices known as modules. A module of a
graph is a set of vertices X such that any two vertices within X have the same set of
neighbours outside X. Every modular decomposition has an associated decomposition
tree, where every vertex is a module, and the children of a vertex its sub-modules.

The modular width measures the maximum degree of this modular decomposition tree,
and was first briefly considered as a parameter by Courcelle et al. [25], and then explored
in further detail by Gajarskỳ et al. [39], from whom we obtain our definition given below.

Definition 24 (Modular Width (Gajarskỳ et al. [39])). Suppose the graph G can be con-
structed by an algebraic expression A that uses only the following operations.

1. � - Creates an isolated vertex.

2. ⊕ - Takes the disjoint union of two graphs. G1 ⊕ G2 is the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G2) ∪ E(G2).

3. ⊗ - Takes the complete join of two graphs. G1 ⊗ G2 is the graph with vertex set
V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{{v, w} : v ∈ V (G1) and w ∈ V (G2)}.

4. G(G1, ..., Gn) - Substitutes the vertices v1, ...vn of G with the graphs G1, ...Gn. G(G1, ..., Gn)

is the graph with vertex set
⋃

1≤i≤n V (Gi) and edge set
⋃

1≤i≤nE(Gi) ∪ {{u,w} :

{vi, vj} ∈ E(G) and u ∈ V (Gi) and w ∈ V (Gj)}.
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The width of A is the maximum number of operands in an occurrence of operator
4 in A. The modular width of G is then the minimum width of any expression A that
constructs G.

Temporal neighbourhood diversity and temporal modular width are both defined anal-
ogously to their static counterparts, except we consider the temporal neighbourhood of
the vertices, rather than the static neighbourhood. Two vertices share the same temporal
neighbourhood if they are adjacent to the same vertices on every timestep.

Definition 25 (Temporal Neighourhood). The temporal neighbourhood of a vertex v in a
temporal graph G = (G, λ) is the set TN(v) of vertex time pairs (w, t) where (w, t) ∈ TN(v)

if and only if {v, w} ∈ E(G), and t ∈ λ({v, w}).

We then define the temporal type and temporal neighbourhood diversity according to
this definition of neighbourhood. The following definitions first appeared in joint work
with Enright, Larios-Jones, and Meeks [29].

Definition 26 (Temporal Type (Enright et al. [29])). Two vertices u, v have the same
temporal type if and only if {(w, t) ∈ TN(v) : w 6= u} = {(w, t) ∈ TN(u) : w 6= v}.

Definition 27 (Temporal Neighourhood Diversity (Enright et al. [29])). A temporal graph
G has temporal neighbourhood diversity at most k if and only if there exists a partition X

of V (G) into at most k sets where every vertex in each set has the same temporal type.
We refer to the partition X as the temporal neighbourhood partition, and will use [v]X

to refer to the class in X to which v belongs.

Similar definitions are given by Bui-Xuan et al. [19] who refer to two vertices of the
same type as “eternal twins”, and a class in the temporal neighbourhood partition as an
eternal module. They also consider a variant of these concepts referred to as a ∆-module
where vertices are only required to share a neighbourhood for a certain time window of
length ∆.

We now see that as every pair of vertices in a class must have identical temporal
neighbourhoods excluding each other, every class must either form an independent set
or a clique on each timestep. If two vertices u and v in the same class are adjacent on
a timestep t, then all other vertices in the class must both be adjacent to u and v on
timestep t. If this were not the case, there would exist vertices in the class with different
types to u and v.

Lemma 20 (Enright et al. [29]). At any snapshot Gt of G, the subgraph induced by the ver-
tices in a class X of a temporal neighbourhood partition of G either forms an independent
set or a clique.
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We see that we can compute the temporal neighbourhood partition, and therefore the
temporal neighbourhood diversity, in polynomial time by checking every pair of vertices
to see if they have the same temporal type.

Lemma 21 (Enright et al. [29]). The temporal neighbourhood diversity of a temporal graph
G can be computed in O(Λn3) time, where n is the number of vertices in the graph, and Λ

the lifetime.

We then define the temporal modular width using an analogous substitution opera-
tor to that in Definition 24. Using this operator to substitute graphs G1, ...,Gn into G
joins each pair of graphs Gi,Gj with edges active at all the times on the edge between vi

and vj in G. Furthermore, we note that the complete join and disjoint union operators
from Definition 24 can be expressed using substitutions into a clique and independent set
respectively, and as such we omit these operators.

Definition 28 (Temporal Modular Width (Enright et al. [29])). Suppose a temporal graph
G can be constructed by an algebraic expression A using only the following operations.

• � - Creates an isolated vertex.

• G(G1, ...,Gn) - Substitutes the vertices v1, ...vn of G with the temporal graphs G1, ...Gn.
G(G1, ...,Gn) is the graph with vertex set

⋃
1≤i≤n V (Gi) and time-edge set

⋃
1≤i≤n ε(Gi)∪

{({u,w}, t) : ({vi, vj}, t) ∈ ε(G) and u ∈ V (Gi) and w ∈ V (Gj)}.

The width of A is the maximum number of operands in an occurrence of operator 2 in
A. The temporal modular width of G is then the minimum width of any expression A that
constructs G.

We now show that the unique decomposition of the graph into maximally sized tem-
poral modules, and therefore the width, can be computed in polynomial time. Habib and
Paul [42] describe a simple algorithm for finding the modular decomposition of a static
graph. This operates by finding and repeatedly adding splitters to a candidate module. We
use a similar method to find the temporal modular decomposition. We begin by recalling
the definition of splitters, and use this to give a definition for temporal modules.

Definition 29 (Splitter (Habib and Paul [42])). Given a set of vertices S, a vertex x is
said to be a splitter for S if there exist vertices u, v ∈ S such that x is adjacent to exactly
one of u and v.

Definition 30 (Static Module (Habib and Paul [42])). A set of vertices M is a module
of the static graph G, if and only if for every vertex x /∈M , x is not a splitter for M .
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Definition 31 (Temporal Module). A set of vertices M is a temporal module of (G, λ)
if and only if for every timestep t ∈ [Λ] and vertex x /∈M , x is not a splitter for M in the
snapshot graph (V (G), {e ∈ E(G) : t ∈ λ(e)}).

We now show that every temporal module of G is a module of every static snapshot
graph of G, and conversely, that any module of a snapshot graph is a temporal module of
G.

Lemma 22. M is a temporal module of (G, λ) if and only if for every timestep t ∈ [Λ],
M is a module of the snapshot graph (V (G), {e ∈ E(G) : t ∈ λ(e)}).

Proof. If M is a temporal module of (G, λ), then for any timestep t there are no splitters
of M in (V (G), {e ∈ E(G) : t ∈ λ(e)}), and thus M is a module of (V (G), {e ∈ E(G) :
t ∈ λ(e)}).

Conversely, if for every timestep t, M is a module of (V (G), {e ∈ E(G) : t ∈ λ(e)}), it
must have no splitters in (V (G), {e ∈ E(G) : t ∈ λ(e)}), and thus is a temporal module
of (G, λ).

We further demonstrate that, as in the static case, the set of maximal modules for a
temporal graph is unique.

Lemma 23. The set of maximal temporal modules M for the temporal graph (G, λ) is
unique and partitions V (G).

Proof. Assume that such a set does not partition V (G), that is
⋃
M = V (G) but there

exists Mi,Mj ∈M such that Mi ∩Mj 6= ∅. By the previous lemma, we have that Mi and
Mj are modules in every snapshot of (G, λ), and hence Mi ∪Mj is also a module in every
snapshot of (G, λ) and is therefore a temporal module, but Mi ∪Mj ⊃ Mi, contradicting
the maximality.

Now assume that such a set is not unique, that is there exists a set of maximal temporal
modules P with P 6=M. Now let Pi ∈ P be a module such that Pi /∈ M, and consider
a vertex v ∈ Pi. As M partitions V (G), there exists some module Mj ∈ M such that
v ∈ Mj. Then Pi ∪Mj is a module in every snapshot, and therefore a temporal module,
but this contradicts the maximality of M and P .

A simple way to compute the unique maximal modular decomposition is then provided
by the following observation.

Observation 7. Let S be a subset of the vertices of a temporal graph (G, λ). If S has a
splitter x in any snapshot of (G, λ), then any module of (G, λ) containing S also contains
x.
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We now recursively compute the modular decomposition as follows. Given a set M
of modules, repeatedly test if a non-trivial module containing a pair M1,M2 ∈ P exists,
by considering M1 ∪ M2 as a candidate module, and repeatedly adding any remaining
modules in M containing a vertex that splits M1 ∪M2. If a trivial module is obtained
the pair is discounted, and otherwise the set of modules is updated with the newly found
non-trivial module. We find the maximal modular decomposition by initialising the set of
modules to all the singleton trivial modules, that is {{v} : v ∈ V (G)}.

Theorem 24. We can find the maximal temporal modular decomposition in time O(n4Λ),
where n is the number of vertices in the temporal graph.

Proof. The above algorithm begins with a set of n modules, and repeatedly considers pairs
from this set. After each iteration the size of the list will either be reduced by one, or a
pair will be discounted, thus the process must terminate after O(n2) iterations. On each
iteration each remaining module is checked to see if it splits the current candidate module
on any timestep, which is possible in O((n +m)Λ) = O(n2Λ), giving an overall runtime
of O(n4Λ).

Finally, we observe that the temporal neighbourhood diversity bounds the temporal
modular width. This result is again due to joint work with Enright et al., and follows from
Lemma 20. Each class in the temporal neighbourhood decomposition is also a module, and
each of these classes can be created by repeatedly substituting into a two vertex temporal
graph, where the underlying graph is either a clique or independent set.

Lemma 25 (Enright et al. [29]). The modular width of a temporal graph G is at most the
temporal neighbourhood diversity of G.

In the remainder of the chapter we explore the tractability of both Temporal Fire-
fighter and Temporal Graph Burning with respect to the two parameters of tem-
poral neighbourhood diversity and temporal modular width. We begin by showing that
Temporal Firefighter is in FPT with respect to temporal neighbourhood diversity.

4.2 Temporal Firefighter Parameterised by Temporal
Neighbourhood Diversity

We now present a fixed parameter tractable algorithm for Temporal Firefighter when
parameterised by the temporal neighbourhood diversity. This algorithm operates by de-
termining a sequence of classes from the temporal neighbourhood partition in which to
defend every vertex. From such a sequence it is possible to determine in which classes
every undefended vertex will burn, as all vertices of a class from the temporal neighbour-
hood partition share the same temporal adjacencies, and we can therefore in some respects
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view each class as a single vertex. In particular, we observe that in order for any unde-
fended vertex that is temporally reachable from the root to be saved, it is necessary to
defend every vertex in at least one class from the temporal neighbourhood partition. Our
algorithm then determines if a strategy exists that defends according to the sequence of
classes, and if so how many vertices such a strategy can save.

Given a rooted temporal graph (G, r) along with a sequence of defences S for Tem-
poral Firefighter, we throughout denote the set of classes from the temporal neigh-
bourhood partition X of G in which every vertex is defended by S with CS = {Xi ∈
X | ∀v ∈ Xi · v ∈ S}, and refer to these classes as totally defended. Furthermore, we
denote the set of any other classes in which at least one vertex is defended by S with
IS = {Xi ∈ X : ∃v ∈ Xi · v ∈ S and Xi /∈ CS}, we refer to the defences made by S in IS

as individual defences. Note that both of these definitions refer to a sequence of defences
and not necessarily an entire strategy. Furthermore, throughout we consider a sequence of
defences S to be a bijection between the first |S| natural numbers and the vertices in the
sequence, and use S−1(A) to denote the set of timesteps on which S defends the vertices
in a set A.

We begin by formally proving the observation stated above, showing that it is necessary
to totally defend some classes in order to save any undefended vertices temporally reachable
from the root.

Lemma 26. Let (G, r) be a rooted temporal graph with temporal neighbourhood decompo-
sition X, and let v be a vertex both undefended and unburnt on timestep t > |S| after a
sequence of defences S is played.

Consider any temporal path P from r to v with earliest arrival time t′ ≤ t. There exists
a vertex x on P such that [x]X ∈ CS.

Proof. Let r, p1, ..., pi, ..., pn, v be the vertices traversed by P , and assume there is no such
vertex x.

Then for every pi there exists a p′i ∈ [pi]X undefended by S. Each of these vertices
shares the same temporal adjacencies as the corresponding vertex from P . Therefore,
there is a temporal path with the same earliest arrival time as P that traverses the un-
defended vertices r, p′1, ..., p′i, ..., p′n, v. So, v would burn on timestep t′ ≤ t, and we have
contradiction.

We now further show that given a strategy S it is never harmful to add classes to CS.
Doing so will always save at least all the undefended vertices previously saved by S.

Lemma 27. Let (G, r) be a rooted temporal graph, and let S and S ′ both be valid sequences
of defences with CS ⊆ CS′, and v a vertex not defended by S.

If v is not burning immediately after S is played, then it is also not burning immediately
after S ′ is played.
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Proof. Assume that there is a counterexample, that is a rooted temporal graph (G, r),
with sequences of defences S and S ′ such that and CS ⊆ CS′ such that a vertex v is not
burning or defended immediately after S is played, but is burning immediately after S ′ is
played.

As v burns when S ′ is played, there must exist a temporal path P from r to v with
arrival time t′ < |S ′| on which every vertex burns, and thus that contains no vertices
defended by S ′. By Lemma 26 when S is played P contains a vertex x with [x]X ∈
CS. However, CS ⊆ CS′ but [x]X /∈ CS′ as x is not defended by S ′, and we have a
contradiction.

Corollary 4. Let (G, r) be a rooted temporal graph, and let S and S ′ both be valid sequences
of defences with CS ⊆ CS′, and v a vertex not defended by S.

If v never burns, and is thus unreachable by the fire after S is played, it never burns
and is thus unreachable by the fire after S ′ is played.

We now show that given a strategy S we can remove classes from CS, and any unde-
fended vertex saved by S will not burn until the removed classes burn.

For any class X ∈ X let bS(X) be the earliest timestep t such that the vertices of X
are adjacent to the fire at the start of timestep t when S is played. That is if X /∈ CS,
bS(X) is the timestep on which all undefended vertices of X burn.

Note that as a consequence of Lemma 27 the timestep on which any given undefended
vertex burns is determined only by the classes totally defended by the strategy being
played, and thus for any class Xi and pair of strategies S and S ′ with CS = CS′ we have
that bS(Xi) = bS′(Xi).

Lemma 28. Let (G, r) be a rooted temporal graph, and let S and S ′ both be valid sequences
of defences with v a vertex not defended by S. Let t be a timestep such that t ≤ bS′(X)

for every class X ∈ CS \CS′.
If v is not burning on timestep t when S is played, then it is also not burning on

timestep t when S ′ is played.

Proof. Assume that there is a counterexample, that is a rooted temporal graph (G, r), and
let S and S ′ be sequences of defences with CS′ ⊆ CS such that a vertex v is not burning
or defended on timestep t after S is played, but is burning on timestep t after S ′ is played,
where t ≤ bS′(X) for every class X ∈ CS \CS′ .

As v burns when S ′ is played, there exists a temporal path P from r to v with arrival
time t′ < t on which every vertex burns, and thus that contains no vertices defended by S ′.
By Lemma 26 when S is played P contains a vertex x with [x]X ∈ CS. However, t < bS′(X)

for every class X ∈ CS \ CS′ . If [x]X ∈ CS′ then we have contradiction, as x would be
defended and thus not burn when S ′ is played. Otherwise, [x]X ∈ CS \ CS′ , and thus
t ≤ bS′([x]X) and again x cannot be burning on timestep t and we have contradiciton.
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We now show that for any strategy S, there exists a strategy S ′ that totally defends
the same classes, saves at least the same number of vertices, and makes all defences within
a totally defended class on a contiguous set of timesteps. If a strategy S has this property,
that is for every class Xi ∈ CS′ we have that max(S−1(Xi)) − min(S−1(Xi)) = |Xi|, we
refer to it as well formed. Furthermore, we say that the sequence of every class in X ∈ CS

ordered by min(S−1(X)) is the total defence sequence of S.

Lemma 29. Let ((G, λ), r) be a rooted temporal graph, and let S be a strategy for Tem-
poral Firefighter on this graph that saves at least k vertices.

There exists a strategy S ′ that saves at least k vertices with CS′ = CS, such that for
every class Xi ∈ CS′ we have max(S−1(Xi))−min(S−1(Xi)) = |Xi|.

Proof. Assume that there is a counterexample: a temporal graph ((G, λ), r) and a strategy
S that saves k vertices, such that there is no strategy S ′ that saves at least k vertices
with CS′ = CS, and for every class Xi ∈ CS′ we have max(S−1(Xi)) − min(S−1(Xi)) =

|Xi|. Furthermore, assume that S is maximal in the number of classes Xi for which
max(S−1(Xi))−min(S−1(Xi)) = |Xi|.

Let Xi ∈ CS be a class such that max(S−1(Xi)) − min(S−1(Xi)) > |Xi|, and let
t1 = min(S−1(Xi)) and t2 = max(S−1(Xi)).

Now let R be the subsequence of vertices defended by S between times t1 and t2 that
are not in Xi.

Consider now the sequence S ′ that contains the same first t1 − 1 defences as S, but
then from timestep t1 defends the sequence R, before defending all the vertices of Xi, and
then defends as S again from timestep t2 onwards.

We now show that S ′ is a valid strategy. As S is a valid strategy the initial t1 − 1

defences of S ′ are valid.
Now consider a vertex v in R. Let t be the time at which S defends this vertex, and

t′ the time at which S ′ defends this vertex. See that t′ < t as S ′ defends the vertices of R
in the same order as S, but begins defending them on timestep t1, on which S defends a
vertex of Xi. Let St′−1 and S ′

t′−1 denote the sequences containing the first t′ − 1 moves of
S and S ′ respectively. See that CSt′

⊆ CS′
t′−1

and that v is unburnt and undefended on
timestep t′ when S is played and is therefore by Lemma 27 also unburnt and undefended
on timestep t′ when the first t′ − 1 moves of S ′ are played. Therefore the defence of v by
S ′ on timestep t′ is valid.

We now show that the defences S ′ makes in Xi are valid. As every undefended vertex
of Xi will always burn on the same timestep, it suffices to show that the final defence S ′

makes in Xi is valid. This defence is made on timestep t2, and we have that Ct2−1
S = Ct2−1

S′ ,
and thus by Lemma 27 this defence is valid.

Finally consider a vertex v defended by S ′ on a timestep t′ > t2. S also defends v on
this timestep and thus v is not burning on t′ when S is played. Furthermore we have that
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Ct′

S′ = Ct′
S , and hence by Lemma 27 v is not burning on t′ after the first t′− 1 moves of S ′

are played, and thus its defence by S ′ is valid.
Then, as S and S ′ defend the exact same vertices, any vertex unreachable by the fire

after S is played is also unreachable by the fire after S ′ is played. Furthermore, S ′ defends
exactly the same vertices as |S|. Therefore, S ′ also saves at least k vertices, and we have
contradiction.

We now further show that each full defence of a class can be finished “as late as
possible”, meaning the defence of the class is completed on the last possible timestep
before either the class burns, or there is not enough time to defend the remaining classes.
We refer to such a strategy as strongly well formed.

Lemma 30. Let (G, λ) be a temporal graph with root r and temporal neighbourhood de-
composition (Xi)i∈I , and let S be a well formed strategy that saves k vertices on this graph,
with total defence sequence Z = Z1, ..., Z`.

There then exists a well formed strategy S ′ also with total defence sequence Z that
saves at least k vertices, such that if we define the function ld as follows:

ld(Zi) =

bS′(Zi) i = `

min(bS′(Zi), ld(Zi+1)− |Zi+1|) i 6= `

for all classes Zi ∈ Z we have that max(S ′−1(Zi)) = ld(Zi).

Proof. Assume that the temporal graph (G, λ) with root r along with a well formed
strategy S that saves k vertices is a counterexample. Let Z = Z1, ..., Z` be the total
defence sequence of S, and assume that S is maximal in length of the postfix subsequence
Zi, ..., Z` of classes for which max(S ′−1(Zi)) = ld(Zi).

Consider the class Zi−1. It is the case that:

max(S ′−1(Zi−1)) ≤ ld(Zi−1).

This is as S would not be valid if max(S ′−1(Zi−1)) > bS(Zi−1), and S would not be
well formed with total defence sequence Z if max(S ′−1(Zi−1)) > min(S ′−1(Zi))− 1. Then
min(S ′−1(Zi))− 1 = max(S ′−1(Zi))− |Zi| = ld(Zi)− |Zi|, by the assumption and the fact
that S is well formed. Furthermore, as Zi−1 does not satisfy the expression in the lemma
max(S ′−1(Zi−1)) 6= ld(Zi−1) and therefore max(S ′−1(Zi−1)) < ld(Zi−1).

Let R be the sequence of defences made by S between times max(S ′−1(Zi−1)) and
ld(Zi−1).

Consider the strategy S ′ which defends as S, but then from timestep min(S−1(Zi−1))

defends the entire sequence R, before defending all the vertices of Zi−1, and then from
timestep ld(Zi−1) onwards defending as S does again.
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In S the defences of the vertices of R all occur strictly later than they do in S ′, and the
set of totally defended classes is the exactly the classes in Z1, ..., Zi−1 when the defences
are made in S, and exactly the classes Z1, ..., Zi−2 when the defences are made in S ′. Then,
as S ′ defends the vertices of R prior to bS′(Zi−1), by Lemma 28 these defences are valid.

Furthermore S ′ defends all the vertices of Zi−1 prior to bS’(Zi−1), and thus these de-
fences are valid.

Then S ′ is a valid sequence of defences that defends the same vertices as S, and
therefore also saves k vertices.

However in S ′ the sequence of classes Zi−1, ..., Zn satisfies the lemma, contradicting the
maximality of S, and thus the existence of a counter-example.

Finally, we turn our attention to the defences made in non-totally defended classes.
We show that if it is possible to save k vertices, then there always exists a strategy that
does so and only non-totally defends one class, leaving the vertices in all other classes
undefended.

Lemma 31. Let ((G, λ), r) be a rooted temporal graph, and let S be a strategy for Tem-
poral Firefighter on this graph that saves at least k vertices.

There exists a strategy S ′ that saves at least k vertices with CS ⊆ CS′, such that IS′

contains only a single class.

Proof. Assume there is a counterexample, that is a rooted temporal graph ((G, λ), r) on
which k vertices can be saved, but no strategy S for saving k vertices has |IS| = 1. Let
S be a strategy such that |IS| is minimised, noting that |IS| ≥ 2 by the assumption that
((G, λ), r) is a counterexample.

We first show that the undefended vertices of every class in IS must burn when S is
played. If there existed a class I ∈ IS for which the undefended vertices did not burn, then
a shorter strategy that omits the defences in I, but ortherwise defends the same vertices
as S in the same order would also save at least k vertices, contradicting the minimality of
|IS|.

Let Xi be a class in IS such that bS(Xi) is maximised, and di be the number of vertices
of Xi that S defends. Then let T be the latest set of min(|

⋃
IS \Xi|, |Xi| − di) timesteps

on which S defends vertices in
⋃
IS \Xi.

Now let S ′ be a strategy that defends exactly as S, except that for every timestep in
T , S ′ defends a vertex in Xi that is not defended by S.

We now show that every defence S ′ makes of a vertex in Xi is valid. Let t be the final
timestep on which S defends a vertex not in

⋃
CS. As bS(Xi) was a maximum, we have

that no vertex of Xi is burning on timestep t when S is played. Then, for every timestep
t′ ≤ t on which S ′ defends a vertex of Xi we have that Ct′

S ⊆ Ct′

S′ , and then by Lemma 27
the defence made by S ′ on timesetep t′ is valid.
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See that CS ⊆ CS′ , and thus by Corollary 4 any vertices that never burn and are not
defended when S is played, also never burn after S ′ is played, and are unreachable by the
fire. Furthermore, see that S ′ defends the exact same number of vertices as S. Finally, no
vertex defended by S ′ is unburnt and undefended when S is played, as the only vertices
that S ′ defends that S does not are vertices of Xi, and the undefended vertices of this
class burn when S is played. Therefore S ′ also saves at least k vertices.

See now that if |
⋃

IS \Xi| < |Xi| − di then IS′ contains only Xi, and we have contra-
diction.

Otherwise, if |Xi| − di ≤ |
⋃

IS \ Xi| then S ′ defends all vertices of Xi, and thus
CS ⊂ CS′ , and we again have a contradiction.

We now present an algorithm for Temporal Firefighter, and show that this algo-
rithm is in FPT when parameterising by temporal neighbourhood diversity.

Algorithm 2 Temporal Firefighter Parameterised By Temporal Neighbour-
hood Diversity
Input: A rooted temporal graph ((G, λ), r) and an integer k.
Output: Whether there exists a strategy that saves k vertices in Temporal Fire-

fighter on ((G, λ), r).
1: Θ ←the temporal neighbourhood partition of (G, λ)
2: for all Sequences C of subsets of Θ do
3: for all Classes I ∈ Θ and not in the sequence C do
4: if The unique strongly well formed sequence S with CS = C and IS = {I} is

a strategy that saves at least k vertices then
5: return True
6: end if
7: end for
8: end for
9: return False

The correctness of Algorithm 2 follows from Lemma 29, Lemma 30, and Lemma 31. If
there exists a strategy S that saves at least k vertices then we know from Lemma 31 that
there exists a strategy S ′ that saves at least k vertices such that IS′ contains only a single
class. Then by Lemma 29 and Lemma 30 there exists a strongly well formed strategy S ′′

that saves at least k vertices, maintaining the condition that IS′′ contains only a single
class.

Theorem 32. We can solve Temporal Firefighter on a temporal graph (G, λ) in
time O(Λn3ψψ!) where ψ is the temporal neighbourhood diversity, and n is the number of
vertices in the graph.

Proof. The algorithm described above solves Temporal Firefighter. It begins by
computing the temporal neighbourhood decomposition, which we know from Lemma 21
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that we can do in time O(Λn3). Furthermore there are at most Σψ
i=1(

ψPi) = O(ψψ!)

possible sequences C, and at most ψ sets I. We can then simulate temporal firefighter on
a graph with any sequence of defences in time O(n2Λ) by checking every pair of vertices on
each timestep, giving us an overall running time of O(Λn3 + ψψ!n2Λ) = O(Λn3ψψ!).

4.3 Temporal Graph Burning Parameterised by Tem-
poral Neighbourhood Diversity

We now show that Temporal Graph Burning is solvable efficiently when the temporal
neighbourhood diversity of the input graph is bounded. Throughout we assume that the
lifetime Λ of the input temporal graph is at most the number of vertices n, as it is possible
to burn any temporal graph in n timesteps by placing a fire at every vertex in turn.

We begin by defining notation for the burning set of vertices on a given timestep when
a strategy is played.

Definition 32 (Burning Set). Given a strategy S the burning set Bt(S) at timestep t is
the set of vertices immediately after a fire is placed on timestep t when S is played.

We now prove a lemma that shows that if for two strategies S and R and some timestep
t1 we have Bt1(S) ⊆ Bt1(R), then we are able to use an initial segment from strategy R

and find remaining moves from times t1 + 1 onwards to obtain a strategy that will burn
the graph at least as fast as S.

Thus throughout, in order to show that the existence of a strategy that burns the graph
at least as fast as another, we need argue only about the existence of such a timestep t

and the first t moves made by the strategies.

Lemma 33. Let S be a successful strategy for (G, λ). Suppose that there is some timestep
t1 < |S| and strategy R with |R| = |S| such that Bt1(S) ⊆ Bt1(R) and on every timestep
after t1, R places a fire at the same vertex as S. Then R is also successful.

Proof. We prove by induction on t2 − t1 that for any timestep t2 ≥ t1 we have that
Bt2(S) ⊆ Bt2(R).

Our base case is given, as R is defined such that Bt1(S) ⊆ Bt1(R). We now assume
that Bt(S) ⊆ Bt(R), for some t1 ≤ t < |S|, and show that Bt+1(S) ⊆ Bt+1(R).

Now let v ∈ Bt+1(S). If v ∈ Bt(S) then v ∈ Bt(R) and therefore v ∈ Bt+1(R).
Otherwise if v /∈ Bt(S) then either the fire spreads to v on timestep t+1 when S is played,
or S places a fire at v on timestep t+ 1. In the former case v is adjacent to a vertex in u

in Bt(S) on timestep t+ 1. It must be the case that u is also in Bt(R), and therefore the
fire will spread to v on t + 1 when R is played if v has not already burnt. In the latter
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case either v is burning before R places a fire a on timestep t + 1 when R is played, or
rt+1 = sh+1 = v.

Therefore Bt+1(S) ⊆ Bt+1(R). We then have that V (G) = B|S|(S) ⊆ B|S|(R), and
therefore R is successful.

We now show that we can delay placing a fire at a vertex belonging to a class in which
a fire is already burning, without causing a large effect on the set of vertices that will burn
at each timestep.

Lemma 34. Let (G, λ) be a temporal graph with temporal neighbourhood partition (Xi)i∈I .
Now let S be a strategy that burns this graph, and let u be a vertex at which S places a fire
on a timestep t1, and Xi be the class to which this vertex belongs. Fix a timestep t2 > t1,
and let S ′ be a strategy which plays as follows until timestep t2:

s′t =


st if t < t1

st+1 if t1 ≤ t < t2

u if t = t2

If there exists a vertex w ∈ Xi which is burning before the end of timestep t1 when S ′

is played, we have that Bt2(S) ⊆ Bt2(S
′).

Proof. We will show that for any vertex x ∈ Bt2(S) we have that x ∈ Bt2(S
′).

Consider the case where x is a vertex at which S places a fire. If x 6= u then S ′ will
place a fire at x on the same timestep or earlier than S, and thus x ∈ Bt2(S). Otherwise,
if x = u then S ′ places a fire at it on timestep t2, and again x ∈ Bt2(S).

Now, consider the case where S does not place a fire at x before timestep t2. It must
then burn because the fire spreads to it. Note, as x ∈ Bt2(S), there exists timesteps tα
and tβ with tα < tβ such that there exists a temporal path P with arrival time tβ that
traverses the vertices y1, ..., yh, yh = x, and y1 is a vertex at which S places a fire prior to
tα, and tβ ≤ t2.

If y1 6= u then x = yh will still burn before the end of timestep tβ ≤ t2 when S ′ is
played, as S ′ will also place a fire at y1 prior to timestep tα. Thus x ∈ Bt2(S

′).
Otherwise if y1 = u then u is adjacent to y2 on timestep tα > t1. As w, u ∈ Xi, w is

also adjacent to y2 on this timestep, and there is also a temporal path P ′ = w, y2, ..., yh

starting at time tα > t1, and identical to P in all but the first vertex. Therefore in this
case when S ′ is played x = yh will burn before the end of timestep t, as w burns by the
end of timestep t1 < tα when S ′ is played. Thus, again, x ∈ Bt2(S

′).

We go on to show that any time we place a fire at a vertex, we may instead place a fire
at another unburnt vertex in the same class, if such a vertex exists, and obtain a strategy
that burns the graph in the same time.
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Lemma 35. Let (G, λ) be a temporal graph with temporal neighbourhood partition (Xi)i∈I .
Let S and S ′ both be strategies with |S ′| = |S|, such that on every timestep, S and S ′

both place fires in the same class, that is, for any i ≤ min(|S|, |S ′|) we have that there
exists a class Xj where {si, s′i} ⊆ Xj. Furthermore, suppose that S ′ places a fire at an
already burning vertex on a timestep i if and only if S also places a fire at an already
burning vertex on timestep i.

Then S is successful if and only if S ′ is.

Proof. We show that on each timestep t, the number of burning vertices in each class from
the temporal neighbourhood partition is the same when S and S ′ are played. We proceed
by induction on the timestep.

On the first timestep only s1 is burning when S is played, and only s′1 is burning when
S ′ is played. By assumption these two vertices are both in the same class in the temporal
neighbourhood partition.

Then, assume that on some timestep t the number of burning vertices in each class
from the temporal neighbourhood partition is the same when S and S ′ are played. Now
given any class Xi from the temporal neighbourhood partition, let bi be the number of
vertices burning in Xi at the end of timestep t + 1 when S is played. The number of
vertices burning in Xi at the end of timestep t + 1 when S ′ is played is then the number
of vertices that were burning on timestep t, plus the number of vertices to which the fire
spreads, plus one if a fire was placed in Xi by S ′ on timestep t+ 1. All of the vertices in
Xi will be burning by the end of timestep t + 1 if the fire spreads to any vertex v ∈ Xi,
as any burning vertex u adjacent to v on t+ 1 is also adjacent to all other vertices in Xi.
Furthermore, such a vertex u ∈ Xj exists if and only if there is a burning vertex in Xj at
the end of timestep t when S is played, as the number of vertices burning in Xj at the
end of timestep t is the same when both S and S ′ are played. Then, all of the vertices of
Xi are burning on timestep t + 1 when S is played if and only if all of the vertices of Xi

are burning on timestep t+1 when S ′ is played. Furthermore, S ′ places a fire in Xi if and
only if S does also. Therefore, on timestep t + 1 the number of vertices burning when S

is played is the same as the number of vertices burning when S ′ is played.
Then, by induction, if there exists a timestep t on which all the vertices are burning

when S is played, the same number of vertices are burning when S ′ is played, so S is
successful if and only if S ′ is.

Definition 33 (Placement Classes). The placement classes for a strategy S denoted C(S)
is the set of classes from the temporal neighbourhood partition in which S places fires.

We now show that we can reorder any successful burning strategy S, so that initially
one fire is placed in every placement class for S. This reordering gives a new strategy
which is still successful.
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Lemma 36. Given a temporal graph (G, λ), let S be any successful strategy. There is
then a successful strategy S ′ with |S ′| = |S|, and C(S ′) = C(S), such that the first |C(S)|
burns are in distinct equivalence classes in the temporal neighbourhood partition.

Proof. Assume that (G, λ) is a counterexample. Then let R be a successful strategy
minimal in the timestep tc, such that at the end of timestep tc there is a fire placed in
every class in C(S). Now, let u ∈ Xi be a vertex at which S places a fire on timestep
t1 ≤ |C(S)|, such that a fire has already been placed at a vertex w ∈ Xi prior to t1.

Consider the strategy R′ which makes moves as follows:

r′t =


rt if t < t1 or t > tc

rt+1 if t1 ≤ t < tc

u if t = tc.

By Lemma 34, we have that Btc(R) ⊆ Btc(R
′). Then, by Lemma 33, R′ burns (G, λ)

in the same or less time as R. This contradicts the assumption that R was minimal
in the number of moves played until a fire is placed in every class in C(R), so no such
counterexample (G, λ) can exist.

Finally we show that, given a strategy S that places fires only in distinct classes for the
first |C(S)| moves, we can arbitrarily reorder all subsequent moves made after timestep
|C(S)|.

Lemma 37. Let (G, λ) be a temporal graph, and S a successful strategy such that the
first |C(S)| fires placed by S are placed in distinct classes from the temporal neighbourhood
partition. Let f : [|C(S)|+ 1, |S|]→ [|C(S)|+ 1, |S|] be any bijection.

Then the strategy S ′ given by

s′t =

st if t ≤ |C(S)|

sf(t) otherwise

is successful, and burns the graph in the same or less time as S.

Proof. Let (G, λ), along with a strategy S and bijection f be a counterexample.
Then let R be a successful strategy with |R| ≤ |S|, C(R) = C(S), and rt = st for all

t ≤ |C(S)|. Furthermore, assume that R is the strategy minimal in the timestep t2 such
that, for every timestep t ≥ t2, rt = sf(t). (Note that it is possible that t2 = |R |+ 1, and
there is no terminal sub-sequence on which R agrees with the permutation of S.) Let t1
be the timestep on which R places a fire at sf(t2−1) = s′t2−1.
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Now let R′ be the strategy that makes moves as follows:

r′t =


rt if t < t1 or t ≥ t2

rt+1 if t1 ≤ t < t2 − 1

sf(t2−1) if t = t2 − 1.

Then, as R′ places a fire at a vertex in every class in C(S) prior to timestep t1, by
Lemma 34 we have that Bt2−1(R

′) ⊆ Bt2−1(R). Then, by Lemma 33, R′ burns (G, λ) in
the same or less time as R. This contradicts the assumption that R was minimal in the
timestep t2, so no such counterexample (G, λ), strategy S, and bijection f can exist.

We now present an algorithm for Temporal Graph Burning, and show that this
algorithm is an fpt-algorithm with respect to temporal neighbourhood diversity.

Algorithm 3 TND Graph Burning Algorithm
Input: A temporal graph G, and an integer h.
Output: True if there exists a successful burning strategy of length at most h, and false

otherwise.
1: Compute the temporal neighbourhood partition Θ of (G, λ).
2: for all possible subsets A ⊆ Θ do
3: for all possible orderings of A do
4: for all possible subsets B ⊆ A do
5: Let S be the strategy that first places a fire in order in every class from A,

and then places fires at every unburnt vertex in B.
6: if S is successful and consists of h or fewer moves then
7: return true.
8: end if
9: end for

10: end for
11: end for
12: return false.

We now prove correctness of this algorithm, using the following lemmas.

Lemma 38. Algorithm 3 returns true for a temporal graph (G, λ) and integer h if and
only if there exists a strategy S that burns the graph in h or fewer timesteps.

Proof. Suppose there exists a strategy S that burns (G, λ) in h or fewer timesteps. By
Lemma 36 and Lemma 35 we may assume without loss of generality that S first places
a fire at an arbitrary vertex from every class in C(S). The remaining moves must then
place fires at every other vertex of any class to which the fire will not spread before the
graph is burnt. These classes must be some subset of the classes from C(S), and from
Lemma 37 we know that these fires can be placed in any order.
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The algorithm exhaustively checks every such strategy, and thus will return true if any
strategy exists that burns (G, λ) in h or fewer moves, and false otherwise.

This allows us to obtain fixed parameter tractability, as bounding the temporal neigh-
bourhood diversity bounds the number of such strategies that we have to check.

Theorem 39. Temporal Graph Burning is solvable in time O(Λn3φφ!2φ), where n
is the number of vertices in G, Λ the lifetime, and φ the temporal neighbourhood diversity.
If the temporal neighbourhood partition is given, we obtain a runtime of O(Λn2φφ!2φ).

Proof. The TND Graph Burning Algorithm solves Temporal Graph Burning. It be-
gins by computing the temporal neighbourhood partition, which we know from Lemma 21
that we can do in time O(Λn3). Furthermore, there are at most φφ! possible orderings A
of subsets of the temporal neighbourhood partition Θ, and at most 2φ sets B. We then
simulate temporal graph burning on the graph, which is possible in O(n2Λ) time, where
n is the number of vertices in the input graph. This gives us an overall running time
of O(Λn3 + φφ!2φn2Λ) = O(Λn3φφ!2φ), and Λ is the lifetime of the input graph. If the
decomposition is given, we instead obtain a runtime of O(Λn2φφ!2φ), as we may drop the
extra factor of n needed to compute it.

4.4 Hardness for Temporal Modular Width

In this section we show that Temporal Graph Burning is NP-hard even on graphs
of bounded temporal modular-width. This is achieved by reducing from (3, 2B)-SAT,
an NP-hard variant of the Boolean satisfiability problem in which each variable appears
exactly twice both positively and negatively [8], defined formally as follows.

(3, 2B)-SAT

Input: A pair (B,C) where B is a set of Boolean variables, and C = C1 ∧ ... ∧ Cm is
a set of clauses over B in CNF, each containing 3 literals C1

j ∨C2
j ∨C3

j , such that each
variable appears exactly twice negatively and exactly twice positively.
Output: Is there a truth assignment to the variables such all of the clauses in C are
satisfied?

Our reduction produces a graph where every connected component has bounded tempo-
ral neighbourhood diversity, and hence the graph overall has bounded temporal modular-
width. Each connected component can be constructed with a use of the substitution
operation, where the number of operands equal to the temporal neighbourhood diversity
of the connected component, as each class in a temporal neighbourhood partition is either
a clique or an independent set. We note that this hardness result contrasts with the recent
proof that the static version of the problem is in FPT parameterised by modular-width
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[56]: this difference arises from the fact that, in the static setting, the length of a longest
induced path in the graph (which is upper bounded by the modular-width) gives an upper
bound on the time taken to burn the graph, whereas in the temporal setting the times
assigned to edges mean that even temporal graphs with an underlying graph of small
diameter may take many steps to burn.

Theorem 40. Temporal Graph Burning is NP-complete even when restricted to
graphs with constant temporal modular-width.

Proof. Temporal Graph Burning is in NP, as stated in Theorem 4. We now show
that it is NP-hard by reduction from (3, 2B)-SAT. As such we begin by describing how
to construct an instance ((G, λ), h) of Temporal Graph Burning, given an instance
(B,C) of (3, 2B)-SAT with C = C1 ∧ · · · ∧ Cm, and |B| = n. We then go on to show
that (B,C) is a yes-instance of (3, 2B)-SAT if and only if ((G, λ), h) is a yes-instance of
Temporal Graph Burning.

To construct ((G, λ), h), begin by setting h = 2n + 3m + 1. Now let the vertex set of
G be given by the union of the following sets:

• the set of literal vertices: {xi,¬xi : i ∈ [n]},

• the set of clause vertices: {c1j , c2j , c3j : j ∈ [m]},

• the set of appearance vertices: {ui,j, wi,j : xi or ¬xi appears in Cj},

• the set of leaf vertices: {yi,d,¬yi,d : i ∈ [n], d ∈ [h+ 1]} ∪ {z1j,d, z2j,d, z3j,d : j ∈ [m], d ∈
[h+ 1]}.

We represent the set of time-edges as a set of pairs of edges and a single timestep, such
that if ({u, v}, t) is a time-edge then {u, v} ∈ E(G) and λ({u, v}) = {t}. This set is then
given by the union of the following sets:

• {({xi, yi,d}, 2i+ 1), ({¬xi,¬yi,d}, 2i+ 1) : i ∈ [n], d ∈ [h+ 1]},

• {({c1j , z1j,d}, 2n+3j+1), ({c2j , z2j,d}, 2n+3j+1), ({c3j , z3j,d}, 2n+3j+1) : j ∈ [m], d ∈
[h+ 1]},

• {({xi, ui,j}, 2i), ({ui,j, wi,j}, h), ({wi,j, c`j}, 2n+ 3j) : xi is the `th literal in Cj},

• {({¬xi, ui,j}, 2i), ({ui,j, wi,j}, h), ({wi,j, c`j}, 2n+ 3j) : ¬xi is the `th literal in Cj}.

Note that this graph consists of 2n connected components, each corresponding to a
literal xi or ¬xi. We denote by Hi, and ¬Hi the connected components containing x and
¬xi respectively. One of these connected components can be seen in Fig. 4.1.

In order to show that it is possible to burn this graph in h timesteps if and only if
there is a satisfying truth assignment for (B,C), we first prove the following claims.
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Figure 4.1: The connected component corresponding to the literal xi, appearing in clauses
Cj and Cj′ .

Claim 1. In order to burn (G, λ) in h or fewer timesteps, for each pair of literal vertices
xi and ¬xi, a fire must be placed at or adjacent to one on timestep 2i−1, and at the other
on timestep 2i.

Proof. Begin by observing that in order for (G, λ) to burn in h or fewer timesteps, every
literal vertex xi or ¬xi must be burning by the end of timestep 2i, as every literal vertex
has h + 1 adjacent leaves with edges active at timestep 2i + 1. Observe that the fire can
only spread to a literal vertex xi or ¬xi by the end of timestep 2i if it originates at one
of the two adjacent non-leaf vertices ui,j and ui,j′ . As a result, for each literal vertex xi or
¬xi a fire must either be placed at the literal vertex by the end of timestep 2i, or at one of
the vertices ui,j and ui,j′ by the end of timestep 2i− 1. We now continue by induction on
the variable index i. For the base case it follows immediately that a fire must be placed at
x1 on timestep 1 or 2, or the adjacent vertex u1,j on timestep 1. The same is true of the
vertex ¬x1. Therefore on timestep 1 a fire must be placed at or adjacent to one of these
vertices, and on timestep 2 a fire must be placed at the other vertex. For the inductive
step assume that the claim is true for all literal vertices xa and ¬xa with a < i. Then, on
timestep 2i − 1, there must be no fires already placed either at or adjacent to xi or ¬xi.
Then, a fire must be placed at xi on timestep 2i − 1 or 2i, or at the adjacent vertex ui,j

on timestep 2i − 1. Again, the same is true of vertex ¬xi, and therefore a fire must be
placed at one of these vertices on timestep 2i, and at or adjacent to the other on timestep
2i− 1.

Claim 2. In order to burn (G, λ) in h or fewer timesteps, for each triple of clause vertices
c1j , c

2
j , c

3
j there must exist a permutation π of {1, 2, 3}, such that a fire is placed at or

adjacent to cπ(1)j on timestep 2n+ 3j − 2, at or adjacent to cπ(2)1 on timestep 2n+ 3j − 1,
and at cπ(3)1 on timestep 2n+ 3j.

Proof. Begin by observing that in order for (G, λ) to burn in h or fewer timesteps, every
clause vertex c`j must be burning by the end of timestep 2n + 3j, as every clause vertex
has h+ 1 adjacent leaves with edges active at timestep 2n+ 3j + 1. Observe that the fire
can only spread to a clause vertex c`j by the end of timestep 2n+ 3j if it originates at the
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adjacent non-leaf vertex wi,j. As a result, for every clause vertex c`j a fire must either be
placed at the clause vertex by the end of timestep 2n + 3j, or at wi,j before the end of
timestep 2n+ 3j − 1. We now continue by induction on the clause index j. For the base
case we see from Claim 1 that no fire can be placed at either c11 or wi,1 prior to timestep
2n + 1, and it therefore follows that a fire must be placed at c1j on one of the timesteps
2n+1, 2n+2, or 2n+3, or the adjacent vertex wi,1 on timesteps 2n+1 or 2n+2. The same
is true of the two other clause vertices c21 and c31. Therefore there must exist a permutation
π of {1, 2, 3}, such that a fire is placed at or adjacent to cπ(1)1 on timestep 2n + 1, at or
adjacent to cπ(2)1 on timestep 2n + 2, and at cπ(3)1 on timestep 2n + 3. For the inductive
step assume that the claim is true for all clause vertices c1a, c2a, c3a with a < j. Then on
timestep 2n + 3j − 2, there must be no fires already placed either at or adjacent to c1j .
Then, a fire must be placed at c1j on one of the timesteps 2n+3j, 2n+3j− 1, 2n+3j− 2,
or at the adjacent vertex wi,j on one of the timesteps 2n+3j−1, 2n+3j−2. The same is
true of the vertices c2j and c3j , and therefore there must exist a permutation π of {1, 2, 3},
such that a fire is placed at or adjacent to cπ(1)j on timestep 2n+ 3j − 2, at or adjacent to
c
π(2)
1 on timestep 2n+ 3j − 1, and at cπ(3)1 on timestep 2n+ 3j.

Claim 3. Suppose that there is a successful strategy for (G, λ) of length at most h, and
consider the connected component Hi or ¬Hi in which a fire is placed on timestep 2i.
Let c`j be a clause vertex in this connected compoment. Then a fire must be placed at or
adjacent to c`j prior to timestep 2n+ 3j.

Proof. If a fire is placed in Hi or ¬Hi on timestep 2i, then it must be placed at the
corresponding literal vertex xi or ¬xi by Claim 1. The fire cannot spread to the adjacent
non-leaf vertex ui,j from the literal vertex, as the edge between ui,j and the literal vertex
is only active at time 2i. Thus, the fire must spread to ui,j from wi,j. Furthermore, by
Claim 2, a fire is either placed at c`j one of the timesteps 2n+ 3j − 2, 2n+ 3j − 1, 2n+ 3j

or at wi,j on one of the timesteps 2n+ 3j − 2, 2n+ 3j − 1. This fire cannot be placed at
c`j on timestep 2n + 3j, as otherwise it would not reach wi,j. In every other case, the fire
is placed prior to timestep 2n+ 3j as required.

We are now ready to prove the correctness of our reduction, and begin by showing that
if ((G, λ), h) is a yes-instance, then so is (B,C).

Assume that ((G, λ), h) is a yes-instance, and consider a strategy that burns the graph
in h or fewer timesteps. We then assign a value to each variable xi according to when the
strategy places fires in the connected components Hi or ¬Hi. If on timestep 2i− 1 a fire
is placed in Hi, then xi is assigned true, otherwise, if a fire is placed in ¬Hi then xi is
assigned false. Note that by Claim 1 this truth assignment is well defined. Now consider
any clause Cj ∈ C, and see that by Claim 2 one of the corresponding vertices c1j , c2j , or c3j
must have a fire placed at it on timestep 2n+ 3j. Then, by Claim 3, this vertex must be
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in the connected component in which a fire was placed on timestep 2i− 1. This literal is
therefore assigned true, and thus the clause is satisfied, as required.

Now assume that (B,C) is a yes-instance, and consider a satisfying assignment of the
variables in B. We now describe a burning strategy for (G, λ), and show that it burns
the graph in h or fewer timesteps. We place fires such a fire is placed at the vertex
corresponding to the truthful literal in {xi,¬xi} on timestep 2i − 1, and a fire is placed
at the vertex corresponding to the literal assigned false in {xi,¬xi} on timestep 2i. As
we have a satisfying assignment, each clause Cj = C1

j ∨ C2
j ∨ C3

j must contain a literal
C`
j that evaluates to true, and we place a fire at the corresponding clause vertex c`j on

timestep 2n + 3j. Fires are placed at the other two clause vertices {c1j , c2j , c3j} \ {c`j} on
timesteps 2n+3j− 2 and 2n+3j− 1 in either order. In this strategy, every literal vertex
xi or ¬xi is burnt by the end of timestep 2i, and therefore all literal leaves yi,d burn by
the end of timestep h. Every clause vertex c`j is burnt by the end of timestep 2n+3j, and
therefore all clause leaves z`j,d burn by the end of timestep h. Finally, if a vertex pair ui,j
and wi,j belongs to a connected component Hi or ¬Hi in which a fire is placed on timestep
2i− 1, the fire spreads from the literal vertex to ui,j on timestep 2i, and then from ui,j on
timestep h. Otherwise, the vertex pair must be on a path with a clause vertex at which a
fire is placed by timestep 2n+ 3j − 1, then the fire spreads from the clause vertex to wi,j
on timestep 2n+3j, and from wi,j to ui,j on timestep h. Thus in either case both of these
vertices will burn by the end of timestep h as required.

4.5 Conclusions

In this chapter we considered the parameters of temporal neighbourhood diversity and
temporal modular width, analogues of the static parameters of neighbourhood diversity
and modular width. Both of these parameters can be small even on dense temporal
graphs, and the temporal modular width is a generalisation of the temporal neighbourhood
diversity, such that the temporal neighbourhood diversity always bounds the modular
width.

We find that both Temporal Firefighter and Temporal Graph Burning ad-
mit fixed parameter tractable algorithms when parameterised by the temporal neighbour-
hood diversity, and also that Temporal Graph Burning remains NP-Complete when
parameterised by temporal modular width.

In the following chapter we turn our attention again to the parameters of edge-interval-
membership-width and vertex-interval-membership-width, and explore more problems to
which these parameters may be applied.



Chapter 5

A Meta-Algorithm For Vertex
Interval Membership Width

In Chapter 3 we used the parameter of vertex-interval-membership-width to obtain a fixed
parameter tractable algorithm for Temporal Firefighter. We believe this parameter is
applicable to a wide variety of similar problems concerning spreading, and more generally
to any problem in which vertices can be affected only by their temporal neighbours. In this
chapter we provide a framework for defining problems that obey this constraint, and prove
a meta-theorem that shows that any problem definable in this framework admits a fixed
parameter tractable algorithm when parameterised by the vertex-interval-membership-
width. In defining this framework, we provide tools to easily show that a problem is
in FPT when parameterised by vertex-interval-membership-width, and more generally
explore the properties of problems that allow for tractability using this parameter.

This framework is based on labellings of the vertices of a temporal graph that change
over discrete time. We define a set of conditions constraining the label on a vertex to
change only when at least one incident edge is active, and refer to any problem that obeys
these conditions as locally temporally uniform. We provide an algorithm capable of solv-
ing locally temporally uniform problems and give bounds on the runtime of this algorithm
in terms of the vertex-interval-membership-width, showing that the algorithm is efficient
when this parameter is small. Then, in order to obtain a fixed parameter tractable al-
gorithm using vertex-interval-membership-width for a given problem, we need only show
that it is locally temporally uniform. We provide examples of using this method to ob-
tain algorithms for both Temporal Firefighter and Temporal Graph Burning,
and also for Temporal Hamiltonian Path and Temporal Dominating Set, both
temporal extensions of classical graph theory problems that do not involve spreading,
demonstrating the versatility of this method.

71
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5.1 Locally Temporally Uniform Problems

We consider temporal graph problems that can be expressed in terms of labellings on the
vertices of the input graph that change over discrete time. We refer to the labelling of the
vertices of a graph at a particular timestep as a state for the graph. Also included in a
state is an additional k-length vector of integer counters.

Definition 34 ((X, k)-State). A (X, k)-state on a vertex set V is a pair (l, c), where
l : V → X is a labelling of the vertices in V using the labels from set X, and c is a vector
of k integers, containing integers of size at most a polynomial of the size of the graph.

In order to obtain tractability with respect to the vertex-interval-membership-width,
we specifically consider problems that can be expressed in terms of sequences of states on
the vertices in the vertex-interval-membership-sequence, the definition of which we recall
from Chapter 3.

Definition 35 (Vertex-Interval-Membership-Width (Bumpus and Meeks [20])). The vertex-
interval-membership-sequence of a temporal graph (G, λ) is the sequence (Ft)t∈[Λ] of vertex-
subsets of G where Ft = {v ∈ V (G) : mintime(v) ≤ t ≤ maxtime(v)} and Λ is the lifetime
of (G, λ).

The vertex-interval-membership-width of a temporal graph (G, λ) is then the integer
ω = maxt∈[Λ] |Ft|.

For convenience, we let F0 = F1, and furthermore, we let At denote the set of ver-
tices with incident edges active on timestep t, and note that At ⊆ Ft. We first define
temporally uniform problems, for which the sequences of states can be uniformly pro-
duced by a transition routine which when given two states returns true if the second
state can follow the first. We will then provide a definition for locally temporally uniform
problems that further restricts such problems, such that one state can only follow from
another if only the labels on the vertices in their active interval change, and the transition
routine ignores any label not on a vertex in its active interval. We go on to show that
all locally temporally uniform problems have a tractable algorithm with respect to the
vertex-interval-membership-width.

Definition 36 ((X, k)-Temporally Uniform Problem). We say that a problem P is tem-
porally uniform if and only if there exists:

1. a polynomial time transition algorithm Tr that takes a static graph, and two (X, k)-
States for the vertices of this graph and returns true or false,

2. a polynomial time accepting algorithm Ac that takes a (X, k)-State and the problem
instance, and returns true or false, and
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3. a set of (X, k)-States S0,x for every instance x,

such that an input x = (G, ...) is a yes instance of P if and only if there exists a sequence
s0, ..., sΛ of (X, k)-States with s0 ∈ S0,x, Tr(st−1, st,Gt) = true for all timesteps 1 ≤ t ≤ Λ,
and Ac(sΛ, x) = true.

We say that two states s = (l, c) and s′ = (l′, c′) for vertex set V agree on a vertex set
U if and only if U ⊆ V , l gives the same label as l′ to every vertex in U , and c = c′.

We are now ready to define locally temporally uniform problems. Locality refers to the
fact that we restrict temporally uniform problems such that the transition routine may
only consider vertices in their active interval in the vertex-interval-membership-sequence.

Definition 37 ((X, k)-Locally Temporally Uniform Problem). We say that a (X, k)-
temporally uniform problem P is (X, k)-locally temporally uniform if and only if for any
temporal graph G, and instance of the problem x:

1. There exists a label U such that every initial state s0 ∈ S0 gives label U to all vertices
not in F0.

2. For any pair of states s and s′, if Tr(s, s′, G) = true then s and s′ give the same
label to every isolated vertex in G.

3. For every quadruple of states r, r′, s, and s′, if r and s agree on the non-isolated
vertices of G, each pair of states r, r′ and s, s′ give the same label to every isolated
vertex of G, and r′ and s′ agree on the non-isolated vertices of G, then Tr(r, r′, G) =
Tr(s, s′, G).

4. For every pair of states sΛ and s′Λ that agree on the vertices in AΛ, Ac(sΛ, x) = true
if and only if Ac(s′Λ, x) = true.

We now give a meta-algorithm that solves any locally temporally uniform problem
using the transition routine and the accepting routine, when given the input x = (G, ...)
and the associated set of initial states S0. This algorithm uses locality to avoid having to
consider every possible state on each timestep. Instead, on each timestep t the algorithm
considers only one state for each possible state for Ft, the number of which is bounded by
a function of the vertex-interval-membership-width. These states for Ft are extended to
states for the vertex set of the input graph by giving every other vertex label U . We first
prove a lemma that shows that states extended in this manner will agree with any state
in a sequence following from an initial state, on all vertices not yet in their active interval.

Lemma 41. Consider any instance (G, ...) of a locally temporally uniform problem, such
that S0 is the set of initial states, Tr is the transition algorithm and [Ft]t≤Λ is the vertex-
interval-membership-sequence of G.
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If s0, ..., st is a sequence of states such that s0 ∈ S0, and Tr(si−1, si,Gi) = true for
1 ≤ i ≤ t, then st gives label U to every vertex v ∈

⋃
t′>t Ft′ \ Ft.

Proof. We continue by induction on the timestep t. If t = 0, then as the problem is locally
temporally uniform, s0 gives label U to every vertex not in F0.

Then, assume by induction that st−1 gives label U to every vertex v ∈
⋃
t′>t−1 Ft′ \Ft−1.

If Tr(st−1, st,Gt) = true, then st−1 and st give the same label to any isolated vertex in Gt,
and therefore give label U to every vertex v ∈

⋃
t′>t Ft′ \ Ft ⊆

⋃
t′>t−1 Ft′ \ Ft−1 as any

vertex v ∈
⋃
t′>t Ft′ \ Ft is not in Ft, and therefore cannot have any active incident edges

active on timestep t, so is isolated in Gt.

Algorithm 4 Locally Temporally Uniform Algorithm
Input: A problem input x = (G, ...) with Λ the lifetime of G, and an associated set S0 of

initial (X, k)-States.
Output: Whether x is a yes-instance.

1: Fix a label U ∈ X
2: for t = 1, . . . ,Λ do
3: St ←{}
4: for all Possible states sFt for Ft do
5: st ←the state agreeing with sFt such that all vertices not in Ft are given label
U

6: for all st−1 ∈ St−1 do
7: rt−1 ←the state agreeing with st−1 on Ft such that all other vertices are

given label U
8: if Tr(rt−1, st, Gt) then
9: St ←St ∪ {st}

10: end if
11: end for
12: end for
13: end for
14: for all sΛ ∈ SΛ do
15: if Ac(sΛ, x) then
16: return True
17: end if
18: end for
19: return False

On a timestep t, Algorithm 4 considers every possible state for Ft, and then extends
these states to the entire graph by giving every other vertex some fixed label. We first
show that in doing so, the algorithm does not omit any required states, and for any
state produced by repeated applications of the transition routine to an initial state, the
algorithm will produce an agreeing state.

Lemma 42. Let x be an instance of a (X, k)-locally temporally uniform problem P with
transition routine Tr and acceptance routine Ac, along with an associated set S0 of initial
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(X, k)-States. There exists a sequence of states s0, ...st with s0 ∈ S0 and Tr(si−1, si,Gi) =
true for all timesteps 1 ≤ i ≤ t, if and only if there exists a state s′t in the set St produced
by Algorithm 4 that agrees with st on Ft.

Proof. We in fact prove a stronger result, that not only does there exist a state s′t in St

that agrees with st on Ft, but that this state gives label U to every vertex not in Ft. We
proceed by induction on the length of the sequence t. The base case when t = 0 is trivial,
as S0 is given as input to the algorithm, and by Definition 37 every state s0 ∈ S0 gives
label U to every vertex not in F0.

Assume by induction that there exists a sequence of states s0, ...st−1 with s0 ∈ S0 and
Tr(si−1, si,Gi) = true for all timesteps 1 ≤ i ≤ t−1, if and only if there exists a state s′t−1

in the set St−1 produced by Algorithm 4 that agrees with st−1 on Ft−1, and gives label U
to every vertex not in Ft−1.

Now, consider any state st such that there exists a sequence of states s0, ...st with
s0 ∈ S0 and Tr(si−1, si,Gi) = true for all timesteps 1 ≤ i ≤ t. By induction there exists a
state s′t−1 ∈ St−1 that agrees with st−1 on Ft−1, and gives all vertices not in Ft−1 label U .
This state will be used to produce a state rt−1 which agrees with s′t−1 on Ft. By Lemma 41,
any vertices in Ft \ Ft−1 will be given label U by st−1, and rt−1 also gives these vertices
label U , and therefore rt−1 agrees with st−1 on Ft, and gives label U to every vertex not
in Ft. Now, Algorithm 4 will consider a state s′t that agrees with st on Ft, such that every
vertex not in Ft is given label U , as it considers every possible state for Ft, extending these
states by labelling the remaining vertices with U . Now as Tr(st−1, st,Gt) = true and At

is exactly the set of non-isolated vertices of Gt, st−1 and st give the same label to every
vertex not in At by Definition 37. Now, consider any vertex v /∈ At. If v ∈ Ft then st gives
the same label to v as s′t, as s′t and st agree on Ft. Then st−1 also gives the same label
to v as v /∈ At and st−1 and st give the same label to any vertex not in At. Finally, rt−1

gives the same vertex to v as it agrees with st−1 on Ft. Otherwise, if v /∈ Ft, both s′t−1

and rt−1 give label U to v. Therefore rt−1 and s′t−1 give the same label to every vertex
not in At. Furthermore, s′t and st agree on At, as At ⊆ Ft, as do rt−1 and st−1. Then by
Definition 37, Tr(rt−1, s

′
t,Gt) = true, and line 9 of Algorithm 4 will place the state s′t in

St.
Finally, consider any state s′t ∈ St, and see that there must exist some state s′t−1 ∈ St−1

such that if rt−1 is the state that agrees with s′t−1 on Ft and gives label U to all vertices not
in Ft, then Tr(rt−1, s

′
t,Gt) = true. By induction s′t−1 agrees on Ft−1 with some state st−1

where there exists a sequence of states s0, ...st−1 with s0 ∈ S0 and Tr(si−1, si,Gi) = true
for all timesteps 1 ≤ i ≤ t − 1. Furthermore, by definition, s′t−1 gives label U to every
vertex not in Ft−1, and so rt−1 gives label U to every vertex in Ft \ Ft−1. By Lemma 41
st−1 also gives label U to every vertex in Ft \Ft−1, and rt−1 agrees with st−1 on Ft ∩Ft−1,
so therefore rt−1 agrees with st−1 on Ft. As Tr(rt−1, s

′
t,Gt) = true we have that rt−1 and
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s′t give the same label to every isolated vertex in Gt. Furthermore rt−1 and st−1 agree on
the non-isolated vertices of Gt, as these are At ⊆ Ft. Consider now the state st that agrees
with s′t on the non-isolated vertices of Gt, and gives the same label as st−1 to every isolated
vertex in Gt. By Definition 37 we have that Tr(st−1, st,Gt) = true as Tr(rt−1, s

′
t,Gt) = true.

Finally see that for any vertex v ∈ Ft \ At, that is for any isolated vertex of Gt in Ft, st
and st−1 give the same label to v. Now, as rt−1 and st−1 agree on Ft, rt−1 also gives the
same label to vertex v. Finally s′t gives the same label to vertex v, as it gives the same
label as rt−1 to every isolated vertex of G. Therefore s′t and st agree on Ft as required.

We are now ready to prove our overall meta-theorem, showing that our algorithm solves
any locally temporally uniform process, and does so in a time that is exponential only in
the vertex-interval-membership-width, and otherwise polynomial in the size of the input.

Theorem 43. Let x be an instance of a (X, k)-locally temporally uniform problem P with
transition routine Tr and acceptance routine Ac, along with an associated set S0 of initial
(X, k)-States. We can determine if x is a yes-instance of P in time O(Λf(n,Λ)b2k|X|2ω),
where ω is the vertex-interval-membership-width, b is the maximum size of any counter
variable in a (X, k)-state, and f is a function such that Tr and Ac both run in O(f(n,Λ))
time.

Proof. We show that Algorithm 4 returns true if and only if it is given a yes-instance as
input, and furthermore that Algorithm 4 runs in the required time.

If Algorithm 4 returns true, then there exists a state sΛ ∈ SΛ such that Ac(sΛ, x) =
true. Furthermore, as Algorithm 4 only places a state st in St if there exists a state
st−1 ∈ St−1 with Tr(st−1, st,Gt) = true, there exists a sequence s0, ..., sΛ of states, such
that st ∈ St for every timestep t, and Tr(st−1, st,Gt) = true for all timesteps t ≥ 1.
Therefore, by Definition 37, x is a yes-instance.

If x is a yes-instance, then there exists a sequence s0, ..., sΛ of (X, k)-States with s0 ∈ S0,
and Tr(st−1, st,Gt) = true for all timesteps t ≥ 1, and Ac(sΛ, x) = true. Then, by
Lemma 42 there exists a state s′Λ ∈ SΛ that agrees with sΛ on AΛ. Then, by Definition 37
Ac(s′Λ, x) = true, as Ac(sΛ, x) = true.

For every timestep t, there is at most one entry in St for every possible state of Ft,
of which there at most bk|X|ω. Now for each timestep t Algorithm 4 runs the transition
routine for every pair of a possible state in St, and a state in St−1. This can be achieved
in time O(f(n,Λ)b2k|X|2ω). Finally, Algorithm 4 runs the acceptance routine for every
state in SΛ, which can be achived in time O(f(n,Λ)bk|X|ω), giving an overall runtime of
O(Λf(n,Λ)b2k|X|2ω + f(n,Λ)bk|X|ω) = O(Λf(n,Λ)b2k|X|2ω).



CHAPTER 5. A META-ALGORITHM FOR VIMW 77

5.2 Examples of Temporally Local Processes

Using the machinery we have just defined, it is possible to find tractable algorithms for a
range of problems. In order to show that a given problem admits a tractable algorithm
when parameterised by the vertex-interval-membership-width, we are required to show
that it is locally temporally uniform by providing the transition and accepting routines.
It is also necessary to provide bounds on the runtime of these routines. We may then
use Theorem 43 to obtain a tractable algorithm for our problem, thus negating the need
to construct a dynamic programming algorithm from scratch. Whilst many problems
are locally temporally uniform, it is worth noting that this is not always the case. Any
problem where the state of a vertex at a given time depends not just on the other relevant
vertices at that time is not locally temporally uniform. For example, consider a problem
where we are given a temporal graph G, a set of vertices V , and an integer k, and wish
to determine if there exists a set of vertices V ′ of size at least k such that each vertex in
V can be reached by every vertex in V ′. This problem is not locally temporally uniform,
since we need to know if the set of vertices that reach a vertex v ∈ V contains all of the
vertices in a candidate V ′. We continue by giving some examples of problems for which
we can find tractable algorithms using the approach outlined above.

5.2.1 Temporal Hamiltonian Path

We begin by considering a temporal extension of the Hamiltonian Path problem, which
we refer to as Temporal Hamiltonian Path, and define below.

Temporal Hamiltonian Path

Input: A temporal graph G.
Output: Does there exist a temporal path on G containing every vertex in the graph?

We produce an algorithm that will find any such path beginning on a vertex in F1, the
first entry in the vertex-interval-membership sequence. If no such path exists, then we can
re-run our algorithm on G, except with all temporal edges active on timestep 1 removed,
and all other temporal edges active one timestep earlier. If any temporal hamiltonian path
exists, we would be able to find it in this manner using at most O(Λ) executions of the
algorithm.

We use (X, 1)-states, where the label set X = {V, U,C} contains a label for visited,
unknown, and current vertices respectively, and the counter vector contains a single integer
h, which counts the total number of visited vertices. We will define our transition routine
and initial states such that each state produced by repeated applications of the transition
routine corresponds to the existence of a temporal path that traverses h vertices, such
that if there is a vertex given label C, the path is currently at that vertex, and any
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vertices labelled V are traversed by the path. The accepting routine then returns true if
h = |V (G)|. We now show that Temporal Hamiltonian Path is locally temporally
uniform, by giving the transition and acceptance routines, and the set of initial states.

Algorithm 5 Temporal Hamiltonian Path Transition
Input: A static graph G and states (l1, (h1)) and (l2, (h2)) for V (G).
Output: Returns true when (l2, (h2)) corresponds to a path that traverses zero or one

further vertices than the path corresponding to (l1, (h1)) and false otherwise.
1: Let U1 and U2 be the set of vertices labelled U by l1 and l2 respectively, and equivalently

for V1, V2, and C1, C2.
2: if C1 \ C2 contains a single vertex c1, and C2 \ C1 contains a single vertex c2 then
3: if {c1, c2} ∈ E(G), c2 ∈ U1, h2 = h1 + 1, and V1 ∪ {c1} = V2 then
4: return True
5: end if
6: end if
7: if (l1, (h1)) = (l2, (h2)) then
8: return True
9: end if

10: return False

Given a state (l, (h)) and an instance of Temporal Hamiltonian Path, that is a
temporal graph G, the acceptance routine returns true if and only if h = |V (G)|. We use
|F0| initial states. For each vertex v ∈ F0, construct a state for F0 where v is labelled C,
all other vertices in F0 are labelled U , and h = 1.

We now show that there exists a correspondence between the temporal paths on G
and sequences of states beginning with initial states and related by the transition routine.
We say that a sequence s0, ..., st of states corresponds to a temporal path beginning on a
vertex in F0 if and only if:

1. s0 is an initial state,

2. Tr(si−1, si,Gi) = true for every 1 ≤ i ≤ t,

3. if st gives a single vertex label C, and this is the final vertex on the path, and the
path has arrival time t′ ≤ t, and

4. the vertices traversed by the path are exactly the vertices given label V by st,

5. the value of h given by st is equal to the number of vertices traversed by the path.

Lemma 44. For any timestep t, there exists a temporal path beginning on a vertex in F0,
and arriving on a timestep t′ ≤ t if and only if there exists a corresponding sequence of
states s0, ...st.
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Proof. We proceed by induction on the timestep t. Any temporal path that begins on a
vertex in F0 and has arrival time 0 can only contain a single vertex. Our initial states
contain a state for every vertex in F0 that gives label C to this vertex, and sets h to 1,
giving the remaining vertices label U , and thus the base case holds.

Otherwise, first assume that there is a temporal path P beginning on a vertex in F0

and arriving on a timestep t′ ≤ t at a vertex v, and traversing ` vertices. If t′ < t, then
by induction there exists a sequence of states s0, ...st−1 corresponding to P . Now take
st = st−1, and see that Tr(st−1, st,Gt[Ft]) = true as line 8 of Algorithm 5 will return true.
If t′ = t, there must exist some temporal path beginning on a vertex in F0 and arriving
on a timestep t′ ≤ t− 1 at a vertex u adjacent to v on timestep t, and hence by induction
there exists a sequence of states s0, ...st−1 corresponding to this path. Let st be the state
that has a value of h one greater than st−1, gives label C to v, label V to u, and labels
all other vertices as they are by st−1. See that {u, v} ∈ E(Gt[Ft]), as P traverses {u, v} on
timestep t, and therefore t ∈ λ({u, v}). Therefore Tr(st−1, st,Gt[Ft]) = true, as line 7 of
Algorithm 5 will return true.

Now assume there is a sequence of states s0, ...st such that s0 is an initial state, and
Tr(si−1, si,Gt[Ft]) = true for every 1 ≤ i ≤ t, and if such a vertex exists let v be the vertex
given label C by st. Now consider the sequence s0, ..., st−1. By induction, there must exist
a temporal path P corresponding to this sequence, and let u be the final vertex on this
path. See that Tr(st−1, st,Gt[Ft]) = true. If this is the case because line 4 of Algorithm 5
returns true then {u, v} ∈ Gt, and therefore t ∈ λ({u, v}). There is then a temporal path
that traverses the same edges as P , before traversing {u, v} on timestep t. This path will
traverse all the vertices traversed by P , along with the additional vertex u, and therefore
corresponds to st. Otherwise, if line 11 of Algorithm 5 returns true, then st = st−1, and
therefore P corresponds to s0, ..., st.

Theorem 45. Temporal Hamiltonian Path is locally temporally uniform.

Proof. Each initial state gives label C to one vertex in F0, and label U to all other vertices,
thus all initial states give label U to any vertex not in F0, as required. Line 4 of Algorithm 5
is the only line of the algorithm that returns true if the two input states are labeled
differently. This line returns true if only the two vertices c1 and c2 have different labels,
with all other vertices labeled identically. Furthermore if line 4 returns true then {c1, c2} ∈
E(G), and neither c1 and c2 are isolated in G, and the algorithm returns true only if all
isolated vertices in G are given the same label as required.

Consider any graph G and pair of states s and s′ such that Tr(s, s′, G) = true. Let
Cs, Us be the sets of vertices labeled C and U by s respectively, and equivalently for Cs′ , Us′
and s′. Now consider any vertex v isolated in G. If v ∈ Cs, then v ∈ Cs′ , as Cs \ Cs′ only
contains one vertex, and this vertex is not isolated in G. If v ∈ Cs′ , then similarly v ∈ Cs
as Cs′ \ Cs only contains one vertex, and this vertex is not isolated in G. If v ∈ Vs, then
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v ∈ Vs′ as Vs ⊆ Vs′ . If v ∈ Vs′ , then v ∈ Vs, as Vs′ \ Vs only contains one vertex, and this
vertex is not isolated in G. Finally, as Cs, Vs, Us partitions the vertices of G, and so does
Cs′ , Vs′ , Us′ , we must have that if v ∈ Us if and only if v ∈ Us′ . Therefore s′ gives the same
label as s to every non-isolated vertex of G.

Consider any graph G and a quadruple of states r, r′, s, and s′ such that r and s agree
on the non-isolated vertices in G, r′ and s′ agree on the non-isolated vertices in G, and
the pairs s, s′ and r, r′ both give the same label to every isolated vertex not in G. Assume
without loss of generality that Tr(r, r′, G) = true.

If this is because line 8 of Algorithm 5 returns true, see that r = r′. Then as s agrees
with r on the non-isolated vertices of G, s also agrees with r′ on the non-isolated vertices
of G, and r′ agrees with s′ on the non-isolated vertices of G. Therefore s agrees with s′

on the non-isolated vertices of G, and by definition s and s′ give the same label to every
isolated vertex of G, and so s = s′ and line 8 of Algorithm 5 will return true when given
s, s′ and G as input.

Otherwise, if Tr(r, r′, G) = true because line 4 of Algorithm 5 returns true, let I be
the non-isolated vertices in G, and Cs, Cs′ , Cr, and Cr′ be the vertices labeled C by s, s′,
r, and r′ respectively. See that Cs \I = Cs′ \I, and therefore Cs \Cs′ = (Cs∩I)\ (Cs′ ∩I),
and Cs′ \Cs = (Cs∩ I)\ (Cs′ ∩ I). Furthermore, Cs∩ I = Cr ∩ I and Cs′ ∩ I = Cr′ ∩ I, and
therefore Cs \Cs′ = (Cr ∩ I) \ (Cr′ ∩ I), and Cs′ \Cs = (Cr′ ∩ I) \ (Cr ∩ I). Then as r and
r′ give the same label to every vertex not in I, Cs \Cs′ = Cr \Cr′ , and Cs′ \Cs = Cr′ \Cr.

Thus, Cs \Cs′ and Cs′ \Cs both contain the same single vertices c1 and c2 as Cr \Cr′
and Cr′ \ Cr respectively. We have that {c1, c2} ∈ E(G) as Tr(r, r′, G) = true, and c2 is
given label U by s, as it is given label U by r, c2 ∈ I, and s and r agree on I. Also, s′ has
the same value of h as r′, and s has the same value of h as r, so hs′ = hs + 1. Finally, c1
is given label V by s′, as it is given label V by r′, and s′ and r′ agree on I. Any vertex
v ∈ I and not equal to c1 or c2 is given the same label by s and s′, as r and r′ give the
same label to v, and s agrees with r on I, and s′ agrees with r′ on I. Any vertex v /∈ I is
given the same label by s and s′ by definition, and hence Vs ∪ c2 = Vs′ , Tr(s, s′, G) = true
because line 4 of Algorithm 5 returns true when given s, s′ and G as input.

Finally, see that the acceptance routine checks only the value of a counter variable,
and therefore if it returns true when given a state s, then it will return true when given
any state agreeing with s on any vertex set.

Then, as Algorithm 5 runs in time O(n) by checking the label on each vertex in turn,
and we use 1 counter variable of size at most n and 3 labels, we finally obtain the following
corollary from Theorem 43.

Corollary 5. Temporal Hamiltonian Path can be solved in time O(Λnn232ω) =

O(Λ2n332ω), where Λ is the lifetime of the input temporal graph, n the number of vertices,
and ω the vertex-interval-membership-width.
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5.2.2 Temporal Firefighter

In Chapter 3 we showed that Temporal Firefighter is in FPT with respect to the
parameter of vertex-interval-membership-width, and gave a dynamic programming algo-
rithm to solve it using this parameter. We now show how we can use our framework of
temporally local processes to obtain the same result, and show the existence of an algo-
rithm without the necessity to construct a dynamic program. As in Chapter 3 we use
the equivalent problem of Temporal Firefighter Reserve, which allows us to only
consider strategies that defend temporally adjacent to the fire. Thereby ensuring that
every defence made on a timestep t is made at a vertex in At. Furthemore we assume that
we are given an instance (G, r) of Temporal Firefighter Reserve such that r has
an incident edge active on timestep 1. Note that if we are given an instance where this is
not the case, we could take the earliest timestep at which r has an active incident edge
to be timestep 1, and increase the starting budget according to the number of ommited
timesteps, as the fire cannot leave r before its first incident edge is active.

We use (X, 2)-states, where the label set X = {B,D,U} contains a label for burning,
defended, and unburning vertices respectively, and the counter vector contains an integer
h which counts the total number of burnt vertices, and an integer b which counts the
current available budget. We will define our transition routine and initial states such that
each state produced by repeated applications of the transition routine corresponds to the
existence of a stratagy for Temporal Firefighter Reserve where there are b burning
vertices and these are all given label B, the strategy has defended every vertex labeled D,
and all unburning and undefended vertices are given label U . Note that both b and h can
be at most the number of vertices in the input graph.

Given an instance ((G, r), k), we use one initial state, r is labelled B, all other vertices
are labelled U , and b and h are both equal to one. We now give the transition algorithm
for this process, and thus prove it is temporally local.

Algorithm 6 Temporal Firefighter Reserve Transition
Input: A static graph G and states (l1, (b1, h1)) and (l2, (b2, h2)) for V (G).
Output: Returns true when (l2, (b2, h2)) corresponds to state of the graph when the

fire spreads after an in budget defence is made following the state corresponding to
(l1, (b1, h1)) and false otherwise.

1: Let U1 and U2 be the set of vertices labelled U by the l1 and l2 rspectively, and
equivalently for D1, D2, and B1, B2.

2: Let I be the non-isolated vertices of G
3: if D2 \D1 ⊆ I ∩U1 and b2 = b1− |D2 \D1|+1 and b2 ≥ 1 and B2 = NG[B1] \D2 and
h2 = h1 + |B2 \B1| and U2 = U1 \ (B2 ∪D2) then

4: return True
5: else
6: return False
7: end if
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Given a state (l, (b, h)) and an instance of Temporal Firefighter Reserve, that
is a rooted temporal graph (G, r) along with an integer k, the acceptance routine returns
true if and only if |V (G)| − h ≥ k.

We now show that there exists a correspondence between sequences of defences for
Temporal Firefighter Reserve that only defend active vertices on (G, r) and se-
quences of states beginning with initial states and related by the transition routine. We
say that a sequence s0, ..., st of states corresponds to a t-length sequence S of defences
for Temporal Firefighter Reserve that only defends active vertices on (G, r) if and
only if:

1. s0 is an initial state,

2. Tr(si−1, si,Gi) = true for every 1 ≤ i ≤ t,

3. the vertices given label B by st are exactly the burning vertices after the defences
from S are played,

4. the vertices given label D by st are exactly the vertices defended by S,

5. the vertices given label U by st are exactly the vertices that are unburning and
undefended after the defences from S are played,

6. the value of h given by st is equal to the number of burning vertices after the defences
from S are played,

7. the value of b given by st is equal to the budget available at the start of timestep
t+ 1 after the defences from S are played.

Lemma 46. For any timestep t, there exists a t-length sequence of defences for Tem-
poral Firefighter Reserve that only defends active vertices on (G, r), if and only if
there exists a corresponding sequence of states s0, ...st.

Proof. We proceed by induction on the timestep t. On timestep 0, only the root is burning
and no defences can have been made, and the budget will be 1. Our initial states contain
only one state which gives label B to r, label U to every other vertex, and sets h and b to
1, and thus the base case holds.

Otherwise first let S be a t-length sequence of defences that only defends active vertices
for Temporal Firefighter Reserve, letting St−1 be the first t − 1 defences from S,
and A the set of vertices defended by S on timestep t. See that by induction there must
be some sequence of states s0, ..., st−1 corresponding to St−1. Now, let st be the state such
that all vertices burning after the defences from S are played are given label B, all vertices
defended by S are given label D, and all remaining vertices are given label U . Furthermore,
let h be the number of burning vertices after the defences from S are played, and b the
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budget available at the start of timestep t + 1 after the defences from S are played. See
that Tr(st−1, st,Gt) = true, as by the defintion of Temporal Firefighter Reserve,
and our assumption that all defences are made at active vertices, all vertices in A must
be unburning and undefended at the end of timestep t− 1, and have active incident edges
on timestep t and are therefore not isolated in Gt, the budget available after the vertices
in A are defended is equal to bt−1 − |A|+ 1 where bt−1 is the previous budget, the budget
available after the vertices in A are defended must be at least 1, and the burnt vertices
after the fire spreads are the undefended vertices in the temporal neighbourhood of the
vertices burning before the vertices in A are defended. Therefore s0, ..., st corresponds to
S.

Now let s0, ..., st be a sequence of states such that s0 is an initial state and Tr(si−1, si,Gi) =
true for every 1 ≤ i ≤ t. By induction there exists a sequence of defences St−1 correspond-
ing to s0, ..., st−1. Consider the set of vertices D2 \ D1. As Tr(st, st,Gt) = true every
vertex in this set is undefended and unburning after the fire spreads on timestep t − 1

and has an active incident edge on timestep t. Furthermore, the budget after defending
these vertices would be bt−1 − |A| + 1 where bt−1 is the value of b given by st−1, and this
value is greater than or equal to 1. Thus, the vertices in D2 \ D1 can be defended on
timestep t after the defences from St−1 are made. Furthermore the vertices burning after
the fire spreads after these defences are made are all the undefended vertices in the closed
temporal neighbourhood of the vertices burning the defences were made. Therefore if we
let S be the sequence of defences such that the first t−1 defences are those in St−1, and the
tth defence defends the vertices in D2 \D1, this corresponds to the sequence s0, ...st.

Theorem 47. Temporal Firefighter Reserve is locally temporally uniform.

Proof. The initial state gives label B to r, which we assume is in F0, and label U to all
other vertices. Thus all initial states give label U to any vertex not in F0, as required.

Consider any pair of states s and s′ and graph G such that Tr(s, s′, G) = true. Let
Ds, Bs, Us be the sets of vertices labeled D, B, and U by s respectively, and equivalently
for Ds′ , Bs′ , Us′ and s′. Let v be any vertex isolated in G. If v ∈ Bs then v /∈ Ds′ , as
Ds′ \Ds ⊆ I ∩ Us ⊆ I, v /∈ Ds, and v is isolated in G. Therefore v ∈ NG[Bs] \Ds′ = Bs′ .
If v ∈ Bs′ , then v ∈ Bs, as v ∈ NG[Bs], and v is isolated in G. If v ∈ Us, then v /∈ Ds′ ,
as Ds′ \ Ds ⊆ I ∩ Us ⊆ I, and v /∈ Ds and v is isolated in G. Furthermore, v /∈ Bs′ , as
v /∈ Bs, and we just showed that any isolated vertex in Bs′ is in Bs. Therefore v ∈ Us′ , as
Us′ , Bs′ , Ds′ partition the vertices of G. If v ∈ Us′ , then v ∈ Us \ (Bs′ ∪Ds′) ⊆ Us. Finally,
as Ds, Bs, Us partitions the vertices of G, and so does Ds′ , Bs′ , Us′ , we must have that if
v ∈ Ds if and only if v ∈ Ds′ . Therefore s′ gives the same label as s to every non-isolated
vertex of G.

Consider any graph G and a quadruple of states r, r′, s, and s′ for V (G), such that r
and s agree on the non-isolated vertices in G, r′ and s′ agree on the non-isolated vertices



CHAPTER 5. A META-ALGORITHM FOR VIMW 84

in G, and the pairs s, s′ and r, r′ both give the same label to every isolated vertex not in
G. Assume without loss of generality that Tr(r, r′, G) = true.

Let I be the non-isolated vertices in G, and Ds, Ds′ , Dr, and Dr′ be the vertices labeled
D by s, s′, r, and r′ respectively. See that Ds′ \ Ds = Dr′ \ Dr, as Dr′ \ Dr ⊆ I, s and
s′ give the same label to every vertex not in I, and s and r agree on I, as do s′ and r′.
Furthermore, Us∩I = Ur∩I and Dr′ \Dr ⊆ Ur∩I, so therefore Ds′ \Ds ⊆ Us∩I. Consider
any vertex v ∈ Bs′ , if v ∈ I, then v ∈ Br′ = NG[Br] \Dr′ , and as both r and s, and r′ and
s′ agree on I, v ∈ NG[Bs] \Ds′ . Otherwise if v /∈ I, then v ∈ Bs as s and s′ give the same
label to every vertex not in I. Furthermore v /∈ Ds′ as v ∈ Bs′ , therefore v ∈ NG[Bs] \Ds′

and so Bs′ ⊆ NG[Bs] \Ds′ . Conversely, consider any vertex v ∈ NG[Bs] \Ds′ if v ∈ I then
v ∈ NG[Br] \Dr′ = Br′ , and then v ∈ Bs′ as Br′ and Bs′ agree on I. Otherwise, if v /∈ I,
then v ∈ Bs \DS′ ⊆ Bs. Then v ∈ Bs′ as s and s′ give the same label to every vertex not
in I, so Bs′ = NG[Bs] \Ds′ .

Now consider any vertex v ∈ Us′ . If v ∈ I then v ∈ Ur′ = Ur \ (Br′ ∪ Dr′), and
v ∈ Us \ (Bs′ ∪ Ds′). Otherwise if v /∈ I then v ∈ Us. Therefore Us′ ⊆ Us \ (Bs′ ∪ Ds′).
Conversely consider any vertex v ∈ Us\(Bs′∪Ds′). If v ∈ I then v ∈ Ur \(Br′∪Dr′) = Ur′ ,
and then v ∈ Us′ . Otherwise if v /∈ I then v ∈ Us′ as v ∈ Us, and s and s′ give the same
label to every vertex not in I. Then Us′ = Us \ (Bs′ ∪Ds′).

Finally Ds′ \Ds ⊆ I, and Bs′ \Bs ⊆ I as s and s′ give the same label to every vertex
not in I. Therefore Ds′ \ Ds = Dr′ \ Dr, and Bs′ \ Bs = Br′ \ Br, and so hs′ = hr′ =

hr + |Br′ \ Br| = hs + |Bs′ \ Bs|, and bs′ = br′ = br − |Br′ \ Br| + 1 = bs − |Bs′ \ Bs| + 1.
So Tr(s, s′, G) = true as required.

Finally, see that the acceptance routine checks only the value of a counter variable,
and therefore if it returns true when given a state s, then it will return true when given
any state agreeing with s on any vertex set.

Then, as Algorithm 6 runs in time O(n) by checking the label on each vertex in turn,
and we use 2 counter variable of size at most n and 3 labels, we finally obtain the following
corollary from Theorem 43.

Corollary 6. Temporal Firefighter Reserve can be solved in time O(Λnn432ω) =

O(Λn532ω), where Λ is the lifetime of the input temporal graph, n the number of vertices,
and ω the vertex-interval-membership-width.

5.2.3 Temporal Graph Burning

We now show that Temporal Graph Burning is in FPT with respect to the parameter
of vertex-interval-membership-width. As with Temporal Firefighter, we actually
use the equivalent problem of Temporal Graph Burning Reserve, where it is not
required to place exactly one fire at each timestep, and rather a budget increases by one
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each timestep, and at any point the budget can be depleted by placing up to the number
of fires given by its value. Similarly to Temporal Firefighter Reserve, this allows
us to assume that any fire placed on timestep t is placed at a vertex in Ft.

Temporal Graph Burning Reserve

Input: A temporal graph G, and integer k.
Output: Does there exist a strategy S, that is a k-length sequence of sets of vertices
such that if fires are placed at all the vertices in each set in turn, every vertex of the
graph is burning by the end of timestep k.

We use (X, 3)-states, where the label set X = {B,U} contains a label for burning, and
unburning vertices respectively, and the counter vector contains an integer h which counts
the total number of burnt vertices, an integer b which counts the current available budget,
and an integer i which counts the total number of timesteps until the graph is burnt.
We will define our transition routine and initial states such that each state produced by
repeated applications of the transition routine corresponds to the existence of a stratagy
for Temporal Graph Burning Reserve where there are b burning vertices and these
are all given label B, and all unburning vertices are given label U . Note that both b and
h can be at most the number of vertices in the input graph.

Given an instance (G, k), we use one initial state, where all vertices are labelled U ,
and b is equal to zero, h is equal to one, and i is equal to 0. We now give the transition
algorithm for this process, and thus prove it is temporally local.

Algorithm 7 Temporal Graph Burning Reserve Transition
Input: A static graph G and states (l1, (b1, h1, i1)) and (l2, (b2, h2, i1)) for V (G).
Output: Returns true when (l2, (b2, h2, i2)) corresponds to the fire spreading after an in

budget number of fires is placed following the state corresponding to (l1, (b1, h1, i1))
and false otherwise.

1: Let U1 and U2 be the set of vertices labelled U by the l1 and l2 rspectively, and
equivalently for B1 and B2.

2: Let I be the non-isolated vertices of G
3: if ∃A ⊆ I ∩ (U1 \NG[B1]) such that B2 = NG[B1]∪A and b2 = b1−|A|+1 and b2 ≥ 1

and h2 = h1+ |B2 \B1| and U2 = U1 \B2 and i2 is equal to i1 if h2 = |V (G)| and equal
to i1 + 1 otherwise then

4: return True
5: else
6: return False
7: end if

Given a state (l, (b, h, i)) and an instance of Temporal Graph Burning Reserve,
that is a temporal graph G along with an integer k, the acceptance routine returns true if
and only if i ≤ k.

We now show that there exists a correspondence between sequences of moves for Tem-
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poral Graph Burning Reserve that only place fires at active vertices on G and
sequences of states beginning with initial states and related by the transition routine. We
say that a sequence s0, ..., st of states corresponds to a t-length sequence S of moves for
Temporal Graph Burning Reserve that only places fires at active vertices on G if
and only if:

1. s0 is an initial state,

2. Tr(si−1, si,Gi) = true for every 1 ≤ i ≤ t,

3. the vertices given label B by st are exactly the burning vertices after the moves from
S are played,

4. the vertices given label U by st are exactly the vertices that are unburning after the
moves from S are played,

5. the value of h given by st is equal to the number of burning vertices after the moves
from S are played,

6. the value of b given by st is equal to the budget available at the end of timestep t

after the moves from S are played,

7. the value of i given by st is equal to the number of moves in S after which the graph
is fully burnt, and equal to t if the moves from S do not burn the graph.

Lemma 48. For any timestep t, there exists a t-length sequence of moves for Temporal
Graph Burning Reserve that only places fires at active vertices on G, if and only if
there exists a corresponding sequence of states s0, ...st.

Proof. We proceed by induction on the timestep t. When t = 0, any sequence of moves
will not have placed any fires, so every vertex is unburnt, the budget available on the next
timestep is 1, and the graph is not burnt. The only initial state labels all vertices with U ,
sets h = 0, b = 1, and i = 0, as required.

Now assume that there exists a sequence s0, ..., st of states such that s0 is the initial
state, and Tr(si−1, si,Gi) = true for every 1 ≤ i ≤ t. By induction there exists a sequence
of moves St−1 corresponding to the sequence s0, ..., st−1. Now as Tr(st−1, st,Gt) = true,
there exists a set A of vertices with active incident edges on timestep t such that all of
the vertices in A are unburnt after the moves in St−1 are played, none of the vertices in
A are adjacent on timestep t to a vertex burning after the moves in St−1 are played, and
|A| does not exceed the budget available at the end of timestep t− 1. Thus, placing a fire
at every vertex in A is a valid move on timestep t after the moves in St−1 are played. Let
S be the sequence of moves that plays the moves in St−1 for the first t− 1 timesteps, and
then places fires at the vertices of A on timestep t. The burnt vertices after the moves in
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S are played are then the vertices in the closed temporal neighbourhood of the vertices
that are burning after the moves in St−1 are played, along with the vertices in A. The
budget available at the end of timestep t is equal to bt−1−|A|+1 where bt−1 is the budget
available at the end of timestep t + 1, and the graph was burnt in t timesteps if not all
of the vertices of the graph were burning after the moves in St−1 were played, but all the
vertices of the graph are burning after the moves in S are played.

Otherwise assume there exists a t-length sequence S of moves for Temporal Graph
Burning and see that by induction there exists a sequence of states s0, ..., st−1 corre-
sponding to the first t − 1 moves of this sequence. Let A be the set of vertices at which
fires are placed by S on its tth move, and consider the state st that gives label B to all
vertices labeled B by st−1, all vertices in A, and all vertices adjacent on timestep t to a
vertex labeled B by st−1, and label U to all other vertices. Furthermore let the value of h
given by st be equal to the number of burning vertices after the moves from S are played,
the value of b given by st be the budget at the end of timestep t, and the value of i be
the number of moves of S taken to fully burn the graph. Then as A is a set of vertices
unburning after the fire spreads on timestep t with a cardinality that does not exceed the
budget available and the end of timestep t − 1, we have that Tr(st−1, st,Gt) = true, as
required.

Theorem 49. Temporal Graph Burning Reserve is locally temporally uniform.

Proof. The initial state gives label U to all vertices as required.
Consider any graph G and pair of states s and s′ such that Tr(s, s′, G) = true. Let Us

and Bs be the sets of vertices labeled U and B by s respectively, and equivalently for Us′
and Bs′ . Then consider any vertex v isolated in G. If v ∈ Bs, then v ∈ NG[Bs] ∪ A for
any set A, and therefore v ∈ Bs′ . If v ∈ Bs′ , then v ∈ Bs as v is isolated in G. Now as Us
and Bs partition the vertices of G, as do Us′ and Bs′ , we have that v ∈ Us′ if and only if
v ∈ Us. Therefore s and s′ give the same label to any isolated vertex in G.

Consider any graph G and a quadruple of states r, r′, s, and s′ for V (G), such that r
and s agree on the non-isolated vertices in G, r′ and s′ agree on the non-isolated vertices
in G, and the pairs s, s′ and r, r′ both give the same label to every isolated vertex not in
G. Assume without loss of generality that Tr(r, r′, G) = true.

Let Br, Br′ , Bs, and Bs′ be the sets of vertices labeled B by r, r′, s and s′ respectively,
and equivalently for Ur, Ur′ , Us, and Us′ . Also, let I be the non-isolated vertices of G, and
A the set of vertices that must exist obeying the conditions on line 3 of Algorithm 7, as
Tr(r, r′, G) = true.

Consider any vertex v ∈ Bs′ . If v ∈ I then v ∈ Br′ = NG[Br] ∪A as s′ and r′ agree on
I. Then v ∈ NG[Bs] ∪ A, as I ⊆ I, and s and r also agree on I. Otherwise if v /∈ I then
v ∈ Bs ⊆ NG[Bs] ∪ A, as s and s′ give the same label to every vertex not in I. Therefore
Bs′ ⊆ NG[BS]∪A. Now consider any vertex v ∈ NG[Bs]∪A. If v ∈ I then v ∈ NG[Br]∪A,
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as s and r agree on I, and A ⊆ I. Then NG[Br] ∪A = Br′ , and v ∈ Bs′ as s′ and r′ agree
on I. Otherwise if v /∈ I, then v ∈ Bs, as NG[Bs] \ Bs ⊆ I and A ⊆ I. Then v ∈ Bs′

as s and s′ give the same label to any vertex not in I. Therefore NG[Bs] ∪ A ⊆ Bs′ , and
Bs′ = NG[Bs] ∪ A.

Furthermore, consider any vertex v ∈ Us′ . If v ∈ I then v ∈ Ur′ = Ur \ Br′ as r′ and
s′ agree on I. Then v ∈ Us \ Bs′ , as s and r also agree on I. Otherwise if v /∈ I then
v ∈ Us as s and s′ give the same label to every vertex not in I. Furthermore v /∈ Bs′ , and
so v ∈ Us \ Bs′ . Therefore Us′ ⊆ Us \ Bs′ . Now consider any vertex v ∈ Us \ Bs′ , if v ∈ I
then v ∈ Ur \ Br′ = Ur′ = Us′ , otherwise if v /∈ I then v ∈ Us′ . Therefore Us \ Bs′ ⊆ Us′

and Us′ = Us \Bs′ .
Finally, see that Bs′ \ Bs = (Bs′ ∩ I) \ (Bs ∩ I), as s′ and s give the same label to

every vertex not in I. Equivalently see that Br′ \Br = (Br′ ∩ I) \ (Br ∩ I), and therefore
Bs′ \Bs = Br′ \Br as s′ and r′ agree on I, as do s and r.

Now hs′ = hr′ = hr + |Br′ \Br| = hs+ |Bs′ \Bs|, bs′ = br′ = br− |A|+1 = bs− |A|+1,
and is′ = ir′ , and ir′ = ir if hr = |V (G)| and ir + 1 otherwise, and if hr = |V (G)| then
hs = |V (G)|, and ir = is, so is′ = is if hs = |V (G)| and is + 1 otherwise.

Finally, see that the acceptance routine checks only the value of a counter variable,
and therefore if it returns true when given a state s, then it will return true when given
any state agreeing with s on any vertex set.

Then, as Algorithm 7 runs in time O(n) by checking the label on each vertex in turn,
and we use 3 counter variable of size at most n and 2 labels, we finally obtain the following
corollary from Theorem 43.

Corollary 7. Temporal Graph Burning Reserve can be solved in time O(Λnn622ω) =

O(Λn722ω), where Λ is the lifetime of the input temporal graph, n the number of vertices,
and ω the vertex-interval-membership-width.

5.2.4 Temporal Dominating Set

We now consider the problem of Temporal Dominating Set. This problem asks if it is
possible to find a set D of size k or less consisting of vertex-time pairs (vertex appearances)
such that every vertex v is covered, that is it either appears in a pair in D, or there exists
a (u, t) ∈ D such that v is adjacent to u on timestep t. We assume that the underlying
graph G↓ contains no isolated vertices, and that for any vertex appearance (u, t) ∈ D, u
has an incident edge active on timestep t.

Temporal Dominating Set

Input: A temporal graph G and an integer k.
Output: Does there exist a set D of vertex-appearances such that |D| ≤ k and the
appearances in D cover every vertex in G?
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We use (X, 2)-states, where the label set X = {U,C} contains a label for uncovered and
covered vertices respectively, and the counter vector contains an integer c which counts the
number of covered vertices, and an integer d which counts the size of the dominating set
D. We will define our transition routine and initial states such that each state produced
by repeated applications of the transition routine corresponds to the existence of a set D
of size d of vertex appearances which covers c vertices and these are all given label C,
and all uncovered vertices are given label U . Note that both c and d can be at most the
number of vertices in the input graph.

We use one initial state, in which every vertex is labelled U , and c and d are both
equal to 0. We now give the transition algorithm for this process, and thus prove it is
temporally local.

Algorithm 8 Temporal Dominating Set Transition
Input: A static graph G and states (l1, (c1, d1)) and (l2, (c2, d2)) for V (G).
Output: Returns true when (l2, (c2, d2)) corresponds to adding d2−d1 vertex appearances

to the vertex appearances corresponding to (l1, (c1, d1)) and false otherwise.
1: Let U1 and U2 be the set of vertices labelled U by l1 and l2 respectively, and equivalently

for C1 and C2.
2: Let I be the non-isolated vertices of G
3: if ∃D ⊆ I such that d2 = d1 + |D| and C2 = C1 ∪NG[D] and c2 = c1 + |C2 \C1| then
4: return True
5: else
6: return False
7: end if

Given a state (l, (c, d)) and an instance of Temporal Dominating Set, that is a
temporal graph G along with an integer k, the acceptance routine returns true if and only
if d ≤ k and c = |V (G)|.

We now show that there exists a correspondence between sets of vertex appearances
and sequences of states beginning with initial states and related by the transition routine.
We say that a sequence s0, ..., st of states corresponds to a set D of vertex appearances up
to timestep t from G if and only if:

1. s0 is an initial state,

2. Tr(si−1, si,Gi) = true for every 1 ≤ i ≤ t,

3. the vertices given label C by st are exactly those covered by D,

4. D contains d vertices,

5. D covers c vertices.

Lemma 50. For any timestep t, there exists a set of vertex appearances up to timestep t
from G, if and only if there exists a corresponding sequence of states s0, ...st.
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Proof. We proceed by induction on the timestep t. When t = 0 there are 0 vertices that
appear on or before timestep 0, and so 0 vertices are covered. Our initial state gives label
U to every vertex in the graph, and sets d and c to 0, as required.

Now assume that there exists some set D consisting of vertex appearances on or before
timestep t. By induction there exists a sequence of states s0, ..., st−1 corresponding to
Dt−1 = {(v, i) ∈ D : i ≤ t−1}. Now let st be the state giving all vertices covered by D label
C, all other vertices label U , and with d = |D|, and c the number of vertices covered by D.
Let Dt = {v : (v, t) ∈ D} be the set of vertices appearing on timestep t in D, and see that
Dt is a subset of the non-isolated vertices of Gt. Then d2 = |D| = |Dt−1|+ |Dt| = d1+ |Dt|.
The vertices labeled C by st are those covered by D, so those covered by Dt−1, which are
the vertices labeled C by st−1, and any vertex in the closed temporal neighourhood of Dt

on timestep t. Finally, c2 is the number of vertices covered by D, that is the number of
vertices covered by D up to timestep t−1, so c1, plus the number of vertices covered by D
on timestep t and not before, so |C2 \ C1|. Therefore Tr(st−1, st,Gt) = true, and s0, ..., st

corresponds to D as required.
Otherwise assume that there exists some sequence of states s0, ..., st such that Tr(si−1, si,Gi) =

true for every 1 ≤ i ≤ t, and s0 is the initial state. By induction there exists a set Dt−1

of vertex appearances corresponding to the sequence s0, ..., st−1. Let A be a set of non-
isolated vertices in Gt such that d2 = d1 + |A|, C2 = C1 ∪NGt [A], and c2 = c1 + |C2 \ C1|,
seeing that such a set exists as Algorithm 8 returns true when given st−1, st, and Gt as
input. Now let Dt be the set of vertex appearances {(v, t) : v ∈ A}.

See that |Dt−1∪Dt| = d1+ |Dt| = d2. Also, the vertices covered by Dt−1∪Dt are those
covered by Dt−1 along with those in the closed temporal neighourhood of A on timestep t,
so C1 ∪NGt [A] = C2. The number of vertices covered by Dt−1 ∪Dt is then the number of
vertices covered by Dt−1, so c1, plus the number of vertices covered by Dt but not Dt−1,
so |C2 \C1|. We have that c1 + |C2 \C1|, and thus Dt−1 ∪Dt corresponds to s0, ..., st.

Theorem 51. Temporal Dominating Set is locally temporally uniform.

Proof. The initial state gives label U to all vertices as required.
Consider any graph G and pair of states s and s′ such that Tr(s, s′, G) = true. Let

Us and Cs be the vertices labeled U and C by s, and equivalently for Us′ and Cs′ and s′.
Consider any vertex v isolated in G. If v ∈ Cs ⊆ Cs ∪NG[D] for any set D then v ∈ Cs′ .
If v ∈ Cs′ then v ∈ Cs, as Cs′ = Cs ∪NG[D], for some set D of non-isolated vertices of G.
Now as Us and Cs partition the vertices of G, as do Us′ and Cs′ , we have that v ∈ Us′ if
and only if v ∈ Us. Therefore s and s′ give the same label to any isolated vertex in G.

Consider any graph G and a quadruple of states r, r′, s, and s′ for V (G), such that r
and s agree on the non-isolated vertices in G, r′ and s′ agree on the non-isolated vertices
in G, and the pairs s, s′ and r, r′ both give the same label to every isolated vertex not in
G. Assume without loss of generality that Tr(r, r′, G) = true.
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Let Cs′ , Cs, Cr′ , and Cr be the vertices given label C by s′, s, r′, and r respectively.
Also let I be the non-isolated vertices of G, and A a set of vertices such that dr′ = dr+ |A|,
Cr′ = Cr∪NG[A], and cr′ = cr+|Cr′\Cr, noting that such a set must exist as Tr(r, r′, G) =
true.

Consider any vertex v ∈ Cs′ . If v ∈ I then v ∈ Cr′ = Cr ∪ NG[A] as s′ and r′ agree
on I. Then v ∈ Cs ∪ NG[A] as s and r agree on I. Otherwise if v /∈ I then v ∈ Cs as s
and s′ give the same label to every vertex not in I. Therefore Cs′ ⊆ Cs ∪NG[A]. Consider
now any vertex v ∈ Cs ∪ NG[A], if v ∈ I then v ∈ Cr ∪ NG[A] = Cr′ and then v ∈ Cs′ .
Otherwise if v /∈ I then v ∈ Cs, as NG[A] ⊆ I. Then v ∈ Cs′ as s and s′ give the same
label to any vertex not in I. Therefore Cs ∪ NG[A] ⊆ Cs′ and Cs′ = Cs ∪ NG[A]. Also,
ds′ = dr′ = dr + |A| = ds + |A|.

Finally, see that Cs′ \ Cs = (Cs′ ∩ I) \ (Cs ∩ I), as s′ and s give the same label to
every vertex not in I. Equivalently see that Cr′ \ Cr = (Cr′ ∩ I) \ (Cr ∩ I), and therefore
Cs′\Cs = Cr′\Cr as s′ and r′ agree on I, as do s and r. Therefore cs′ = cr′ = cr+|Cr′\Cr| =
cs + |Cs′ \ Cs|, and we have that Tr(s, s′, G) = true as required.

Finally, see that the acceptance routine checks only the value of a counter variable,
and therefore if it returns true when given a state s, then it will return true when given
any state agreeing with s on any vertex set.

Then, as Algorithm 8 runs in time O(n) by checking the label on each vertex in turn,
and we use 2 counter variable of size at most nΛ and 2 labels, we finally obtain the
following corollary from Theorem 43.

Corollary 8. Temporal Firefighter Reserve can be solved in time O(Λn(nΛ)422ω) =
O(Λ5n522ω), where Λ is the lifetime of the input temporal graph, n the number of vertices,
and ω the vertex-interval-membership-width.

5.3 Conclusions

In this chapter we showed that Temporal Firefighter, Temporal Graph Burn-
ing, Temporal Hamiltonian Path, and Temporal Dominating Set are in FPT
with respect to the parameter of vertex-interval-membership-width. These results were
obtained through the use of a meta-theorem, in which we presented a fixed parameter
tractable algorithm for solving any problem expressible in terms of a locally temporally
uniform pair of transition and acceptance routines. By expressing problems in this way
we may avoid the need to construct an individual algorithm for a problem that we wish to
show is in FPT with respect to vertex-interval-membership-width. We believe that many
more temporal graph problems are expressible in this manner, and therefore that this will
prove a useful toolkit for finding temporal problems in FPT.
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Furthermore, we believe that this toolkit will carry over to the parameter of edge-
interval-membership-width. If we label the edges, rather than the vertices, of a temporal
graph, and allow the label on an edge to change only according to the labels on edges tem-
porally incident to the same vertices, then we will then find analogous algorithmic results
to those for the locally temporally uniform problems, except that the runtime bounds will
be given in terms of the edge-interval-membership-width. We suggest as future work to
define edge-locally temporally uniform problems, and prove an equivalent theorem to The-
orem 43. We believe that Temporal Eulerian Walk and Temporal Vertex Cover
would be examples of such problems, as these are analogous to Temporal Hamiltonian
Path and Temporal Dominating Set respectively, except that a solution consists of
a set of edges, rather than vertices.



Chapter 6

Conclusions

The developing field of temporal graphs studies graphs that have been augmented with
temporal information, modeling the when rather than just the where of a connection.
This thesis explored two spreading problems on temporal graphs: Temporal Fire-
fighter and Temporal Graph Burning. These problems are natural extensions of
Firefighter and Graph Burning respectively to temporal graphs, and usefully model
spreading on real world networks, where the topology is often dynamic. Furthermore,
both of these problems are NP-complete, and we explored various ways to tame this
complexity, including using the tools provided by parameterised complexity to obtain
fixed-parameter-tractable algorithms. We explored several parameters specific to tem-
poral graphs, and found making use of the temporal structure of the graph in this way
fruitful for solving our problems efficiently. We believe the temporal graph parameters
we considered to have wide applicability to problems on temporal graphs, beyond those
considered in this thesis.

6.1 Contributions and Future Work

In Chapter 2 we defined Temporal Firefighter and Temporal Graph Burning,
and proved that they are both NP-complete. We also considered the complexity of Tem-
poral Firefighter when the underlying graph is a clique, and found it to remain
NP-complete in this case. In doing so we showed that Temporal Firefighter is NP-
complete for almost every class of underlying graph where Firefighter is known to be
in P. This demonstrates an informative principle: the underlying structure of a temporal
graph determines very little about its behaviour. We did not consider restricting the under-
lying graph class for Graph Burning, and suggest this for future work. We believe that
a similar proof technique to that used for the hardness of Temporal Firefighter on
cliques could be used to show that Temporal Graph Burning is NP-complete when-
ever the underlying graph class contains long paths, as Graph Burning is NP-complete
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on path forests [10].
In Chapter 3 we considered the complexity of Temporal Firefighter when param-

eterised by vertex-interval-membership-width and edge-interval-membership-width: pa-
rameters which respectively measure the number of relevant vertices and edges on each
timestep [20]. We found that Temporal Firefighter is in FPT when parametersed
by the vertex-interval-membership-width but remains NP-complete when even when the
edge-interval-membership-width is at most 2. The reduction used for the hardness result
produces an instance of Temporal Firefighter with a root of large degree, and we
suggest investigating the complexity of Temporal Firefighter when parameterised
by the edge-interval-membership-width and the maximum degree of the underlying graph
as future work. Furthermore, although we resolve the complexity of Temporal Graph
Burning when parameterised by the vertex-interval-membership-width in Chapter 5, we
leave its complexity when parameterised by the edge-interval-membership-width unre-
solved and suggest this as future work. We expect that like Temporal Firefighter,
Temporal Graph Burning will remain NP-complete even when the edge-interval-
membership-width is small.

In Chapter 4 we gave fixed-parameter-tractable algorithms for both Temporal Fire-
fighter and Temporal Graph Burning when parameterised by temporal neighbour-
hood diversity. We also considered the parameter of temporal modular width, and found
that Temporal Graph Burning is NP-complete when the temporal modular width is
small. This differs from the static case; Graph Burning is in FPT when parameterised
by modular width [56]. We did not determine the complexity of Temporal Firefighter
when parameterised by temporal modular width, and suggest this as further work. Both
temporal neighbourhood diversity and temporal modular width are temporal analogues of
static graph parameters, and as is the case with the static parameters, they can be small
even when the temporal graph is dense. This contrasts to many of the other temporal
graph parameters considered thus far in the literature, which are only small when the
temporal graph is sparse.

Finally, in Chapter 5 we considered how the parameter of vertex-interval-membership-
width might be more generally applied to other problems. We defined a class of lo-
cally temporally uniform problems, and proved a meta-theorem showing that all locally
temporally uniform problems are in FPT when parameterised by the vertex-interval-
membership-width. Our definition of locally temporally uniform problems should capture
many natural spreading problems, and we show that Temporal Graph Burning is
locally temporally uniform, thus obtaining that it is in FPT when parameterised by
vertex-interval-membership-width. We also show that Temporal Firefighter is lo-
cally temporally uniform, recreating the result from Chapter 3. Furthermore, we show
that Temporal Hamiltonian Path and Temporal Dominating Set, both prob-
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lems unrelated to spreading, are locally temporally uniform, and therefore in FPT when
parameterised by vertex-interval-membership-width. This demonstrates the wide applica-
bility of our meta-theorem, and we suggest applying the theorem to other temporal graph
problems as future work. Furthermore, we believe that an equivalent result can be shown
for edge-interval-membership-width, and also leave this for future work.

This thesis analysed the temporal graph problems of Temporal Firefighter and
Graph Burning, with a focus on complexity theory. We proved hardness results, show-
ing that our problems are NP-complete, and therefore hard to solve in the worst case.
To achieve tractability, we developed fixed-parameter-tractable algorithms, meaning that
feasible runtimes can be achieved if a parameter other than the input size is small. As fu-
ture work it is worth implementing these algorithms, and executing them on real datasets
to see how well they perform in practice, and how useful these parameters are in a non-
theoretical setting. It is also worth noting that although we showed that our problems are
hard to solve in the worst case, solvers exist for NP-complete problems, such as integer
programming and boolean satisfiability, that can quickly solve a wide range of instances.
We also suggest as future work to formulate our problems so that they can be input into
one of these solvers, and see what problem inputs are solvable in practice.

Overall, we find that temporal graph parameters are a useful tool for building efficient
algorithms for temporal graph problems, and show that several problems admit fixed-
parameter-tractable algorithms when parameterised by the temporal graph parameters
considered in this thesis. These parameters should be applicable to problems beyond
those we explore, and determining the complexity of other problems when parameterised
by the temporal parameters discussed in this thesis is an avenue for future research. To
aid this, we proved a meta-theorem that can be applied generally to a wide range of
temporal graph problems. As future work, parameterised complexity results for temporal
graphs could be further generalised, by proving a result of the kind provided by Courcelle,
where any problem expressible in a certain logic is shown to yield fixed-parameter-tractable
algorithms for a given parameter [24].
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