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Abstract

With the advent of ultra-densification and the proliferation of diverse underlying
technologies, 5G and beyond networks promise unprecedented capabilities but also
introduce significant challenges in network management due to the manifold increase
in complexity. Two such key challenges are network resources optimization and
network maintenance. It is challenging to perform these tasks manually, with 5G
and beyond networks it does not remain viable at all. Self-aware solutions like Self-
Organizing Networks (SON) have, therefore, been proposed and well explored in
research to address these challenges.

However, the legacy SON, still relies on the predefined instruction sets making
them inelastic to network changes. On the other hand, they use the results from field
tests or customers complaints for the identification of network issues which cause
unnecessary delays and make existing SON reactive. But, to cater for the exponential
increase in network complexity and diverse use cases in 5G and beyond networks,
SON needs to be more intelligent, adaptable and autonomous. They are required to
be proactive rather than reactive. Artificial intelligence can play a crucial role here
and machine learning can equip SON with this intelligence by exploiting the hidden
patterns in the real network data. Another advantage of machine learning is that it also
brings prediction capacity important for making SON proactive.

Artificial intelligence, particularly machine learning, offers the potential to
transform SON into proactive systems by extracting actionable insights from network
data and enabling predictive capabilities. This research focuses on leveraging machine
learning to enhance two key SON functions: self-optimization and self-healing.

This study begins by exploring and classifying various data types generated within
the network, highlighting their potential roles in wireless cellular networks (WCN). A
review of existing and potential use cases for SON functions and machine learning-
based approaches provides the foundation for this work. For self-optimization,
a Support Vector Machine (SVM) model is developed to predict internet traffic
loads using Call Detail Records (CDR), achieving up to 91% prediction accuracy.
Additionally, a novel machine learning model leveraging Geohash global indexing
predicts users’ next locations with approximately 95% accuracy, marking a significant
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contribution to mobility prediction.
To enable self-healing, a hybrid machine learning scheme is proposed. Using

CDR data, network cells are grouped based on performance via K-means clustering.
Subsequently, an SVM classifier is employed to categorize cell performance with 98%
accuracy. The traffic prediction model for self-optimization is further refined through a
Support Vector Regression (SVR) approach, achieving 97% prediction accuracy. The
predictive capabilities of the model contribute to energy savings of up to eightfold,
underscoring its practical impact.

By integrating prognostics and self-aware systems into SON, this research
demonstrates a pathway to achieve self-optimization and self-healing in 5G and beyond
networks, laying the groundwork for sustainable, intelligent network management.
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Chapter 1

Introduction

5G has transformed telecommunications, opening new opportunities across diverse
domains. For end-users, it offers seamless connectivity, unmatched mobile speeds, and
reliable service even in congested environments, significantly enhancing the quality of
experience (QoE). For network providers, 5G accommodates a vast array of devices
and services while improving quality of service (QoS) and reducing operational costs.

According to Ericson’s report of 2024 [4], till 2024, over 300 operators globally
have launched commercial 5G services, with approximately 2.3 billion subscriptions
accounting for 25% of all mobile users. Projections suggest this will grow to 6.3
billion subscriptions, or 67% of all mobile users, by 2030 Beyond these figures, 5G’s
true potential lies in its transformative use cases, spanning healthcare, autonomous
vehicles, industrial automation, and augmented reality. These applications are
fostering a smart, interconnected digital ecosystem that reshapes communication,
commerce, and daily life .

5G networks are meeting and exceeding expectations, laying a solid foundation
for future cellular advancements. These networks deliver improvements in data
rates, reliability, latency, connectivity, and coverage, while also supporting diverse
applications, Internet of Things (IoT) integration, and enhanced data security and
privacy. By 2024, cellular IoT connections have reached 4.2 billion, with forecasts
exceeding 6 billion by 2030 [4].

5G’s success is built on enabling technologies such as ultra-densification, massive
multiple-input multiple-output (MIMO), millimeter-wave (mmWave) spectrum,
software-defined networking (SDN), network function virtualization (NFV), big data
analytics, and cloud computing etc. [5–8], These technologies collectively address
growing demands for higher data rates, capacity, and coverage, enabling data-intensive
applications like autonomous vehicles and smart cities.

Ultra-densification involves deploying numerous heterogeneous cells (macro,
micro, and small cells) in an area to enhance coverage. High-frequency mmWave
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spectrum (24 GHz to 100 GHz) provides greater bandwidth and higher data rates
but has limited range. This limitation is mitigated by small cells and massive
MIMO. Massive MIMO, with its large antenna arrays, increases throughput and
spectral efficiency. Together, these technologies enable high performance while
improving energy efficiency. While these advancements enable 5G’s capabilities, they
also introduce complexities. Modern base stations (BSs) are intricate systems with
thousands of parameters. Managing nationwide networks with hundreds of thousands
of BSs presents challenges in configuration, optimization, and maintenance. Currently,
these tasks rely heavily on human expertise, resulting in high operational expenditures
(OPEX) and delays in issue resolution.

In 5G and beyond, manual management is neither practical nor sustainable.
Autonomous solutions capable of handling network operations efficiently are critical.
To address this, the concept of self-organizing networks (SONs) was introduced. SONs
reduce human dependency by automating tasks such as resource optimization and fault
detection.

Self-organizing networks use machine learning (ML) to perform network
operations intelligently. ML enables SONs to analyze real network data, predict traffic
loads, and forecast user mobility patterns. These predictions allow SONs to optimize
network resources proactively, ensuring seamless service and enhanced QoS.

Additionally, ML identifies abnormalities in network performance, aiding in timely
maintenance. This automated fault detection is essential for managing complex
5G networks. By leveraging ML, SONs can transition from reactive to proactive
management, addressing challenges and improving efficiency.

Detailed discussions on SON functions, machine learning applications, and
network data are presented in Chapter 2.

1.1 Motivation

With its journey from the First Generation (1G) of connecting people to people,
to the Fifth-Generation (5G) connecting everything, wireless telephony has already
become part and parcel of our socioeconomic fabric. Second-Generation (2G) brought
a cultural revolution by introducing sms and mms services, and Third-Generation
(3G) with voice over IP (VoIP) paved path for internet-based services that lead to
Fourth-Generation (4G) of live streaming. 4G brought a tremendous increase in data
rate and mobile usage for the users and profits for the mobile network operators.
Building on this momentum, 5G offers unprecedented improvements in data rates,
latency, connectivity, and capacity. Its transformative potential lies in diverse use
cases across industries, enabling advancements in healthcare, autonomous systems,
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industrial automation, and smart cities. Beyond facilitation, 5G and beyond networks
aim to revolutionize production, services, and lifestyles.

Nevertheless, characteristics of 5G and beyond networks are not just limited to
ultra-reliability, low latency, faster data transportation and instant access enabled
by greater bandwidth, dense networks, increased number of channels, and massive
MIMO. A key desired attribute of future mobile networks is being cognisant. It
means it is capable of context-aware autonomous decision making, enabled by artificial
intelligence. On the network end, this intelligence is supposed to help network adapt to
dynamic ecosystem of 5G and beyond networks. Role of artificial intelligence in 5G
and beyond networks is expected to exponentially increase the slowing down linear
growth of financial worth of the mobile industry. Besides financial growth, artificial
intelligence can increase the impact of future mobile technologies (5G and beyond)
manifolds in all walks of life.

The defining characteristics of 5G and beyond extend beyond ultra-reliability,
low latency, and high-speed data transmission. A key aspiration is to make
networks intelligent and context-aware, capable of autonomous decision-making
through artificial intelligence (AI). This intelligence enables networks to adapt to
the dynamic and complex ecosystems of 5G and beyond. By integrating AI, these
networks can unlock exponential growth in both financial value and societal impact.

Despite substantial progress in enabling technologies such as ultra-dense small
cell deployments, massive MIMO, and millimeter-wave (mmWave) spectrum,network
complexity has grown significantly. This complexity makes manual management and
optimization increasingly infeasible. Network operators, burdened by high operational
expenditure (OPEX) and reliance on domain expertise, face challenges in maintaining
quality of service and promptly addressing network issues. As 5G networks expand,
manual operation becomes neither practical nor economically viable, emphasizing
the need for autonomous solutions. This realization has driven research into self-
organizing networks (SONs), which aim to reduce human dependency while enhancing
efficiency.

This research draws inspiration from the pivotal role of 5G and beyond networks
in driving socioeconomic progress. It addresses the challenges and leverages
opportunities presented by the enabling technologies critical to realizing the vision
of 5G and beyond.
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1.1.1 Progress in Enabling Technologies for 5G and Beyond
Networks

As mentioned earlier that 5G and beyond is attributed with some key enabling
technologies like network ultra-densification with heterogeneous cells, extended
bandwidth of spectrum, SDN, massive MIMO, NFV, big data, cloud computing, etc.
A remarkable progress is already made in these disciplines independently and under
the umbrella of wireless cellular technologies. Maverick technologies like cloud
computing and big data are revolutionising every field of life, SDN and NFV have
emerged as the new norm in networking, whereas high-frequency radio waves like
mm-Wave are the new carriers for the fast data transportation. Modern mobile network
infrastructures, already in place, are taking advantages from these technologies along
with the mobile network specialised technologies like deployment of heterogeneous
cells, massive MIMO, and splitting and reusablity of extended bandwidth. Progress in
these fields and their pragmatic role in the realisation of 5G and beyond networks are
very promising.

1.1.2 Opportunities and Challenges in SON

The plethora of enabling technologies mentioned above increase the complexity of the
network manifolds making the manual resource management and network maintain
impossible. Though, SON has been applied as an alternative for the auto-management
of resources. But still, to date, legacy SON functions commonly rely on the predefined
instruction set developed with the help of domain knowledge and results from the field
tests. It leads to too much operation cost and unnecessary delays neither affordable
operationally nor viable commercially. Therefore, there is a dire need for making SON
proactive rather than reactive. To achieve this goal developments on two ends can
really help. First, the use of alternative data to understand the network, for this purpose
3GPP 10 has proposed minimisation data tests (MDT). In this approach instead of
conducting field test, network operators can exploit user equipment (UE) data and
network data containing very useful information. Second, the use of machine learning
for the prediction of possible future scenario based on the historical data collected from
network and UE.

1.1.3 Abundance of Real Network Data

The network behaviour related intelligence can be gathered by applying machine
learning on the data generated from the different ends of the network. Network traffic
behaviour is the existence of certain patterns in the traffic over the network. This
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traffic can be generated by human-to-human, human to machines and machines to
machines interaction in the context of network facilities. The continuous interaction
leads to certain patterns of services consumption, users’ mobility, network operations,
resources requirement etc. that combined can be labelled as overall network behaviour.
Some data generated from different ends of the network are discussed in chapter 2.

One such very important data set from wireless cellular networks is called detailed
record (CDR). It is very comprehensive data which contains footprints of SMS, Calls
and Internet usage activity over the network. It comprises timestamp for every-time a
service is accessed and also the location of users, which can help to extract information
about the network traffic behaviour in spatiotemporal dimension. Machine learning
on the real network data like CDRs is getting popular in research and commercial
models for gathering intelligence about different aspects of network behaviour like
traffic congestion, handovers, network failure etc. One main reason for using real
data instead of synthetic data is that the synthetic data is generated based on multiple
assumptions for a predefined scenario in a simulation. But real scenarios may differ
and model trained on synthetic data will not stand valid. This becomes even more
crucial in the 5G and beyond networks which are so complex, involving so many
parameters that they all can not be considered in a simulation. Therefore, the use
of real data can help there as it reflects the actual status of the network influenced or
tuned by all the parameters involved.

1.1.4 Machine Learning Prediction Models for Enabling
Proactivity in SON

The discussion above clearly reflects machine learning has a crucial role in making
SON proactive. Machine learning is a well-known application domain of artificial
intelligence. It is a data-driven approach in which data and possible outcomes are fed
to machine learning algorithm which as a result builds a model that can make choices
and decision in an automated manner based on the patterns in the data. But the real
beauty of machine learning algorithms is there capacity to predict future possibilities or
outcomes for certain scenarios based on the historical data. This capacity of machine
learning to predict can play a crucial role in making SON proactive rather than reactive.
Because of the availability of real-time real network data like CDR, SON does not need
to depend on the results of field tests. Machine learning can leverage from this data to
predict future possible outcomes and provide it to SON functions so it can manage and
optimise it’s resources in advance to ensure seamless services.

Making SON proactive is not the only requirement, but developing simple efficient
models is also very important. Deep learning applied on data from complex data sets,
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e.g., raw network data, has been trending recently to make SON proactive. Machine
learning is meant to address challenges created due to increased complexities in 5G
and beyond network, and not meant to add to network complexities and OPEX. But
deep learning models itself or complex and data hungry. They require loads of data and
more computational resources as compared to classical machine learning algorithms.
It makes deep learning not the optimal choice in many prediction scenarios for the
SONs, particularly where the computational resources are limited like in edge or fog
computing. Secondly, where the classical machine learning models can easily exploit
the hidden patterns in a well known easily available data set to outperform deep
learning, there is no point of using deep learning in such scenarios. For example,
CDR data can be exploited with the classical machine learning algorithms for the
development of the models for the prediction of traffic load, mobility pattern and fault
detection.

1.2 Problem Statement

Where network ultra-densification with a plethora of technologies is making 5G
and beyond networks a reality, there it brings additional challenges mainly because
of the complexity increased manifolds. It is no longer operationally possible or
commercially viable to manually optimise numerous network resources, thousands
of network parameters and maintain hundreds of thousands of network nodes. In a
setup of deployment of small cells in network ultra-densification, there are two key
challenging areas. First is the proactive optimisation of network resources like the
optimisation of the radio resources, energy consumption, and network parameters for
example antenna tilts. Second is the management and maintenance of the numerous
cells in the network.

Though SON is proposed to address these challenges to avoid dependency on
human involvement. But legacy SON still depend mostly on predefined instruction sets
which can not adapt to continuously changing environment of the network in terms
of traffic load, users location and services consumed. Besides that, SON commonly
depend on data collected from field tests which cause unnecessary delays and make
SON reactive. Such approach is not viable for 5G and future networks which are
expected to adapt to continuous network changes in a proactive manner. Motivated
by the opportunities mentioned in the section above, to address this main challenge of
making SON proactive rather than reactive we try to find answers for the following
questions in this research:

1. Does there exist some patterns in real network data that can be exploited
to predict future scenarios helpful for SON to make decisions in a proactive
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manner? Finding patterns in real network data can be very helpful as it provides
a realistic picture of the network or user behaviour.

2. Is it possible to identify a single comprehensive data set that can be used to
exploit the patterns in the data and predict future scenarios? Having a single
comprehensive data can help to reduce the overhead cost of data processing

3. What are the potential machine learning algorithms that can produce accurate
traffic prediction models and out perform other state of the art prediction models
for the same scenarios? Traffic load estimation is very important for making
SON proactive and it is a well researched topic. Though the use of deep learning
and data from multiple sources is trending, but develop simple prediction models
with simple algorithms, data and features is very important. It is so because deep
learning itself is very complex and data hungry which makes it not feasible for
simple tasks or tasks performed on the edge of the network. Nevertheless, if
simple models can do the same job there is no point of using complex models to
overburden an already complex network.

4. Is it possible to develop user location prediction model using a global
hierarchical grid indexing system? Network comprises heterogeneous cells
overlaying each other. Understanding of users mobility pattern across cells
and capacity to predict users next cell can play crucial role in the provision of
services in seamless manner. Contemporary models rely on synthetic data and
grid system defined by the researchers for specific scenario. They neither reflect
the real mobility pattern of users nor the study perfomed can be transferred or
scaled. It is therefore important to study and develop prediction model based on
real mobility data of human and a global grid system that can be used by any
other entity.

5. Can real network data like CDR help to develop a solution for the the auto
diagnosis of the sub-optimally performing nodes in the network? Faulty nodes
are commonly identified by the field tests and heavily rely on human involvement
and domain knowledge causing delays in the identification and diagnosis of the
fault. For 5G and beyond networks it is inevitable to have an auto-diagnosis
solution which not only detects a fault on real time but also identify the root
cause of the problem.

6. How can real network traffic load prediction model help in Self-optimisation
function of SON for energy consumption minimisation? Can one such prediction
model be used to address multiple SON challenges like inter-cell-interference
(ICI) and energy consumption? ICI and energy consumption are twin key
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challenges faced by 5G and beyond networks. Traffic load prediction model have
been researched and used to address these challenges separately using synthetic
data. Addressing the simultaneously exploiting real network data is an ideal
scenario.

1.3 Research Contributions

The main goal of this research has been to address the key challenge of making SON
proactive rather than reactive. It is further narrowed down by focusing on adding
machine learning based predictability in two key SON functions, Self-optimisation and
Self-healing. For Self-optimisation, underlying key enabling mannerisms e.g., traffic
density patterns and mobility patterns are identified along with a relevant data set CDR
for the study of these patterns. The CDR data is exploited with the help of classical
machine learning algorithms to develop models for the prediction of traffic load and
mobility patterns. The models developed can be used for making SON functions
like Self-optimisation proactive rather than reactive for multiple use cases, e.g, radio
resource management, energy efficiency, data offloading etc. Besides that, CDR data
is also exploited for developing machine learning based scheme for the auto diagnosis
of network issues. A machine learning based solution is developed that categorise
network cells based on their performance. Further to that, sub-performing cells are also
identified and classified into different categories. Study on network traffic prediction
is extended and model built on CDR data is used in a use case of the minimising inter-
cell-interference (ICI) and energy consumption.

In this research, classical machine learning is used to develop generic high-
resolution network traffic load prediction models, global mobility pattern prediction
model helpful towards SON use cases of Self-optimisation. But the analysis and
models developed in this research can also be used by other public & commercial
entities like advertising agencies, road infrastructure and urban planning organisation
etc. to optimise their resources and improve their services. For example, traffic density
prediction models can provide insight about population density in an area at a certain
time and potential users of a service if users profiling is also performed. Similarly,
mobility pattern prediction models can help to identify influx and outflux of people in
a certain area at a particular time of the day. It can also help to identify popular routes
adopted by mobile users at a certain time of the day. Different service providers can
optimise their services proactively based on this information.
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The major contributions of this research include:

1. Identification of Fundamental Patterns for Generic Predictive Models

Towards the goal of enabling proactive SON functions for diverse use cases, two
key patterns—traffic load and user mobility—are identified. Prediction models
for these patterns, presented in Chapters 3 and 4, are designed for applications
across multiple SON use cases, such as proactive radio resource management,
energy efficiency, data offloading, handover management, and content caching.
A review of existing and potential use cases leveraging such models is provided
in Chapter 2.

2. Identification of a Single Comprehensive Dataset

Following MDT guidelines, this research identifies and classifies network-
generated data from various sources, highlighting their roles and importance
in Chapter 2. End-user KPIs are linked with contributing PIs and network
measurements. Call Detail Record (CDR) data is identified as a comprehensive
dataset capable of supporting diverse predictive models, including traffic load
and user mobility prediction. Furthermore, the same CDR data is used to classify
network cells/nodes based on performance.

3. Development of Efficient and Accurate Predictive Models

To achieve efficient and accurate predictive models that enable proactive SON
functions, CDR data is utilized with classical machine learning algorithms.
Traffic prediction models developed in Chapter 3 demonstrate high-resolution
internet traffic prediction, outperforming state-of-the-art statistical and deep
learning models. In Chapter 4, user location prediction models are developed
using a global indexing system, ensuring transferability across different
networks. These models use classical machine learning techniques to strike a
balance between simplicity and accuracy.

4. Proactive Self-Optimization via Traffic and User Location Prediction
Models

Two types of predictive models are developed to enhance the SON self-
optimization function proactively.

Traffic Prediction: A high-resolution traffic prediction model is developed
using Support Vector Machines (SVM) to predict minimum, mean, and
maximum internet traffic hourly. This efficient and simple model outperforms
state-of-the-art algorithms and is detailed in Chapter 3.
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User Location Prediction: A series of regression and classification models are
developed to predict users’ next multiple locations based on a global indexing
system (e.g., latitude and longitude). These models, presented in Chapter 4, use
basic features to maintain simplicity while providing accurate predictions. These
insights allow SON to optimize resources proactively by forecasting traffic loads
and user mobility patterns.

5. Robust Self-Healing via a Hybrid Scheme A hybrid scheme comprising
clustering and classification techniques is proposed to enhance SON’s self-
healing function. CDR data is utilized to identify patterns in cell performance in
real wireless networks at an hourly resolution.

Clustering: Patterns are identified using the K-means clustering algorithm, with
cells labeled based on performance using domain knowledge.

Classification: A classification model based on the SVM algorithm is
developed, achieving an accuracy of approximately 98% in classifying cell
performance. This method ensures a robust and efficient auto-diagnosis system
for sub-optimal network nodes, as detailed in Chapter 4.

6. Deploying Traffic Prediction Models for Multiple SON Challenges

A traffic prediction model based on SVM is developed using real CDR data and
deployed to address multiple SON challenges simultaneously. In Chapter 4, this
model is implemented in a scheme to minimize inter-cell interference (ICI) and
energy consumption concurrently demonstrated in Chapter 6: .

A mathematical model is formulated for the joint optimization of ICI and energy
consumption. The model is evaluated through system-level simulations using
NS-3, demonstrating its effectiveness in addressing these critical challenges.

1.4 Thesis Outline

The rest of the thesis is organised as follows. Chapter 2 presents a comprehensive
literature review, beginning with a brief introduction to Self-Organizing Networks
(SON) and their use cases. It classifies data generated from various parts of an
LTE network under different schemes. Emerging and existing applications of data-
driven machine learning in cellular networks are also discussed. Additionally, this
chapter highlights important Key Performance Indicators (KPIs) and their contributing
Performance Indicators (PIs), explaining how machine learning applied to network
data can aid in realizing these KPIs and PIs.
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Chapter 3 focuses on an empirical study using the conventional machine learning
algorithm, Support Vector Regression (SVR), to predict internet traffic at a high
temporal resolution. The performance of SVR-based models is compared against state-
of-the-art statistical and deep learning algorithms. Chapter 4 extends the research
to mobility patterns, this chapter presents the machine learning prediction models
developed for user mobility and their outcomes. It discusses emerging applications and
popular schemes, detailing the critical steps involved in mobility pattern prediction for
5G and beyond networks.

Chapter 5 presents a study on another important task for the SON in wireless
cellular networks, called fault detection. It presents a hybrid approach based on the
classical machine learning clustering and classification algorithms.

Chapter 6 presents a solution for two key issues expected in 5G and beyond
networks, namely inter-cell interference and energy consumption. It presents a
mathematical model of joint optimisation for these two issues, then proposes an
algorithm to address this issue and evaluate the proposed algorithm in a scenario
developed with the help of machine learning-based traffic prediction model. The
same solution is also evaluated with frequency reuse-1 scheme, through system level
simulations in NS-3.

In the end, Chapter 7 concludes how the research presented in this thesis has
achieved the main objective set for this research. Besides that, it also lists down
future direction for the extension and application of the research and prediction models
presented in this thesis.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Literature Review

The evolution and ubiquitous Wireless Cellular Networks (WCN) have revolutionised
the world by enabling human to human, human to machine and Machine to Machine
(M2M) communication. These communications, a range of spatiotemporal data is
generated. This data is related to signal quality, traffic flow, subscriber profile, Quality
of Service (QoS), Quality of Experience (QoE), customer complaints and feedback,
wireless environment, network configuration, network operations and management
etc., amongst others. Additionally, with the network evolution towards 5G, a multitude
of technologies such as network densification, miscellany of node types, split of
control and data plane, network virtualisation, heavy and localised cache, infrastructure
sharing, concurrent operation at multiple frequency bands, simultaneous use of
different medium access control, physical layers and flexible spectrum allocations are
expected to increase the size of data generated from the network and about the network,
exponentially.

Data driven machine learning has transformed the way we think, deal, and benefit
from the world of data and information. It is a significant leap forward from
conventional sample-based, hypothesis-driven studies to robust analyses of entire
datasets. This transformation has been possible by overcoming the limitations of data
storage and processing regardless of the size and nature of data. Part of this revolution
lends itself to Moore’s-law-backed growth in hardware storage and processing power.
Other part stems from advances in software including parallel processing tools such
as MapReduce. Leveraging both, the hardware and software advances, data driven
machine learning tools can help us picture such a past, present and future of facts,
information and predictions with the help of actual data that might not be seen
otherwise.

In legacy WCNs, only a fraction of the data generated about the network state and
health is retained and analysed. Even this limited analysis is mostly carried for business
intelligence and/or network performance evaluation purposes, while most of the data
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is discarded or remain unused, trapped in silos. Due to analysis of only partial data,
the information extracted are mostly incomplete and inaccurate. Thus, the decisions
made are often guesstimates leading to sub-optimal performance. Leveraging data
driven machine learning can unleash the potential to combine and analyse the whole
data from all segments, unveiling end-to-end picture of the network and customers
and uncovering the hidden potentials and patterns within the data. WCN operators and
vendors can leverage from data driven machine learning to extract key information that
can be crucial for optimising and maintaining the network resources efficiently.

This chapter presents the literature review on the data generated from different ends
of the network, applications and potential use cases of data driven machine learning,
and important Key Performance Indicators (KPIs) with their subsequent Performance
Indicators (PI) that can be fulfilled by machine learning applied on real network data.
There has been existing surveys on wireless network data from application, network,
transmission, data layers and mobile big data perspective discussed in [9] and [10]
respectively. However, they do not cover industry professionals’ and practitioners
point of view specifically how wireless cellular network performance can be improved
using real network data and what challenges and opportunities exist for the 5G and
beyond networks. Therefore, this chapter discusses the opportunities and challenges
that stem from the crossroads of data-driven machine learning and wireless cellular
networks..

Salient Features of Literature Review
The salient characteristics of the literature review performed here are summarised

as follows:

1. A wide range of WCN data types are identified that can be collected from User
Equipment (UE) and from various sources within Radio Access Network (RAN)
and Core Network (CN). Besides that taxonomies are listed to classify the WCN
data into various categories ( Section 2.2).

2. Several new utilities are identified and discussed for machine learning applied to
WCN data to improve WCN performance in various aspects. It is explained how
these data can be leveraged to overcome technical challenges that affect network
performance. It also discusses how data driven machine learning can help
achieve some of the envisioned 5G and beyond requirements, which otherwise
are very challenging (Section 2.3).

3. A brief review of the literature on the data driven machine learning for WCN
along with a comparative summary of various studies in tabular format are
presented in (Section 2.4)
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4. A new perspective is present on how the resolution of the data, particularly in
case of measurements, can drastically change the insights that can be drawn.
Lower level measurements are identified which usually remain hidden as dark
data but has potential to be utilised by machine learning for enabling 5G and
beyond wireless networks. This perspective is explained with the help of several
examples of measurements and data streams from Long-Term-Evolution (LTE)
networks (Section 2.5).

5. Some emerging opportunities and challenges in WCN data driven machine
learning for the next generation of cellular networks aka 5G and beyond are
presented in (Section 2.6).

2.1 Self Organising Networks (SON)

In contemporary networks human input and intervention is required to accomplish
network operations from network deployment to network maintenance. 5G and
Beyond networks are envisioned as cognisant networks capable to perform end-to-
end network functions seamlessly in an autonomous manner without any external
intervention. To meet this goal, researchers and standardisation bodies like Third
Generation Partnership Project (3GPP) has proposed SON. SON are characterised with
intelligence to make important decisions for the network management on its own with
least possible human intervention. This intelligence can be gather by exploiting the
network with the help of machine learning. The data generated from different ends of
the network provides contextual information about the network and users’ behaviour
in different circumstances. Whereas machine learning exploit hidden patterns in the
that data and based on those patterns can differentiate among different scenarios and
make decisions for important network operations.

The main functions expected from the SON are commonly grouped into three broad
categories: Self-configuration, Self-optimisation and Self-healing [1,2]. Key functions
expected from SON under these three headings are listed in Fig 2.1. 5G and beyond
networks characterised with SON features are expected to configure network nodes
and parameters, optimise network resources and deal with network performance issues
in an automated manner.

2.1.1 Self-configuration

Whenever a new network is deployed, or extended with the addition of new terminal
or upgraded with new facilities, there are many network parameters that need to
be configured. These parameters include, operational and radio access parameters
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Figure 2.1: Main functions and sub-functions of Self-organising Networks (SON) [1,2]

such as IP address and backhaul, besides the neighbour cells list configuration
needed for enabling communication between the newly installed cell and the existing
neighbouring cells. In contemporary networks, these parameters are configured at base
station with input from domain experts. It is aimed that Self-configuration feature in
SON will configure these parameters autonomously such that the newly added nodes
work as plug and play.

2.1.2 Self-optimisation

Another key role expected from SON is Self-optimisation. After network
configuration, Self-optimisation aim to optimise the operational parameters and utility
of network resources in an efficient and autonomous manner. Network with Self-
optimisation function is expected to automatically adapt to changing circumstances
and schedule the resources and operational parameters such that the best possible
services are ensured with the minimal operational cost. 5G and beyond networks
are expected to have thousands and thousands of base stations with numerous
configuration parameters and huge requirement of overall resources, energy and
bandwidth to name few. It is very important function to make future cellular networks
viable rather than profitable. Main aspects of the network that SON need to optimise
in automated manner are network traffic distribution aka load balancing, inter-cell
interference, network robustness towards the mobility of connected devices, network
resource, backhaul and caching.
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Figure 2.2: Basic architecture of LTE [3]

2.1.3 Self-healing

Contemporary cellular network comprise hundreds of thousands of base-stations and
they need numerous skilled people for on site troubleshooting and maintenance which
costs network operators a fortune. In 5G and beyond networks the number of these
sites are expected to increase many-folds and it will be non-viable for the network
operators to maintain them manually. Here self-haling function of SON can play it’s
key role. Self healing refers to the auto detection of a non functional or sub performing
network facility due to some issue. It is not limited to that, it is further expected to
identify the root cause of the issue and also try to resolve that issue autonomously. The
main goal of Self-healing function is to eliminate or reduce the network performance
inefficiencies autonomously.

2.2 Wireless Cellular Network Data

In this section, data collected from UE and from various nodes of RAN and CN of the
LTE-Advanced (LTE-A) network are presented. Initially data is labelled corresponding
to measurements, events and network operation then it is classified into different
categories.

2.2.1 WCN Data and its Classification

A typical cellular network architecture with network elements and the standardised
interfaces is shown in Fig. 2.2 (using LTE terminology). At a high level, the network
has three layers; the user end, the access network and the core network. There are
various sources of data in the network that can be classified based upon 1) their
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Network 

Data 

Data Scale 

Based

UE and Control 

Plane Based

End user KPI 

Based

• Nominal

• Ordinal

• Interval

• Ratio

• User plane data

• Control plane data

• UE level data

• RAN level data

• Core Network 

level data

• Throughput

• Coverage

• Capacity

Network Layer 

Based

Figure 2.3: Different approaches to categorise the network data.

association to layers of the network (i.e. network layer based) 2) corresponding plane:
user plane (UE data) or control plane (control data) 3) their impact on end user KPIs
(relevant KPI based) and 4) their scale and measurement as shown in Fig. 2.3

1. Data and Measurement Scale Based Classification:

Under this category, data is classified into four types Nominal, Ordinal, Interval
and Ratio. Nominal scale are used to label data without any quantitative measure,
e.g. Radio lLink Failure (RLF) and Reference Signal Received Power (RSRP).
It is important to note that nominal data are mutually exclusive and they do
not possess any numerical significance. Ordinal scale provides order to the data,
however, the actual difference between them is not really known, e.g., A is better
than B or C but it can not be quantified how much better it is. Thus, Ordinal
scales are typically measures of non-numeric concepts like customer happiness,
discomfort and satisfaction. Interval type of scaling in addition to knowledge of
the order, allows to quantify the actual difference between the variables. Time
is a good example to describe Interval type of data, in which the increments are
known, consistent and measurable. Ratio scale tells about not only the orders of
the variables, but also exact value between units (i.e. Intervals) and allows for a
wide range of descriptive and inferential statistics to be applied.
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2. User and Control Plane Based Classification: This data belong to either user
plane or control plane. Data in the network is either utilised by the UE
or used for providing signalling and control information to the UE. Recently
there has been a new proposed Control and Data Plane Separated Architecture
(CDSA) that separates the control plane from data plane to avoid coupling
between data and control access points [11]. In addition, user and control plane
data facilitates leveraging Software Defined Network (SDN) approaches that
softwarise the control plane of the network and decouples it from data plane.
Thus identification of user plane and control plane data becomes essential in
realising futuristic network operations.

3. End-user KPI Based Classification: The end-level KPI in the network is
cumulative effect of a number of PIs. For example, LTE end user throughput
depends upon a number of factors e.g. session establishment time, performance
of the multi-antenna technology at the UE and base station (BS), block error rate
at air interface, delay of cell transition during handover, available bandwidth per
user, end-to-end performance of the CN,the delay associated and TCP/IP issues
at the end server. The identification of affect of a number of PIs over individual
KPI helps to observe not only the involved parameters and their strength but also
correlation among them. Self organising networks (SON) [12,13] can utilise the
correlation information to design self-coordination solutions avoiding conflicts
among the network functions.

4. Network Layer Based Classification: This classification involves data generated
at various layers of the network like UE layer, RAN layer and CN layer, detailed
network layer data is presented in Table 2.1. For more detailed description please
see [13]. Authors in [14] characterises cellular data (such as signalling data,
traffic data, location data, waveform data and heterogeneous data) as big data and
provide example platform for their analysis. All the above data can be utilised in
a number of ways to optimise the network performance from various perspective.

As the network complexity grows with advent of 5G and beyond, the applications
of the wireless cellular data will unfold limitless. In the following some exemplary
new utilities of wireless cellular data are discussed in the context of wireless network
optimisation and management.

2.3 Machine Learning New Utilities

The major capacity gain in 5G is expected through base station densification and
improvement in network-wide efficiency. To achieve that, one of the solution is to
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equip the network with SON functions for almost all functionalities [12, 13]. Such
as configuration of new nodes, optimisation of network parameters and resources,
recovery of faults, coordination among network parameters and functions etc. These
SON functions can be potentially enhanced through data driven machine learning as
recently proposed in [13]. In the following some of the potential utilities of data driven
machine learning in cellular network are described in the context of 5G.

2.3.1 End-to-End Network Visibility

As discussed, now, data can be collected, combined and analysed from each source
in the network. Since machine learning and analysis can be performed on entire data,
it enables to visualise connections and correlations among all parameters and KPIs
from different departments. For example, optimisation department might require to
add bandwidth to increase throughput. This change will have impact on many other
departments such as finance department (in terms of Operational Expense (OPEX))
and marketing department (in terms of number of users and required services). Thus,
analysis of all data connects each dot throughout the network enabling a transparent
end-to-end view of the network. This helps the network planner with intelligent and
efficient long term planning..

2.3.2 Self-Coordination

As discussed earlier, WCN data can be exploited to find the correlation among the
KPIs and the PIs and network parameters that affect these KPIs and PIs. Although
third generation 3GPP has already highlighted the need for self-coordination among
SON functions (Self-configuration, Self-optimisation and Self-healing), SON function
coordination has been overlooked in the networks up to 4G. However, recent studies
[15, 16] due to the increasing number of parameters and functions in the current
and emerging 5G architectures, the likelihood of conflicts among the functions
are extremely high. By revealing the functional correlations among parameters
PIs and KPIs through data driven machine learning, intelligent self-coordination
models can be developed to avoid conflicts for smooth and efficient network
operation. Self-coordination will become more crucial in ultra-dense deployment
where thousands of nodes will be operating with overlapping and conflicting interests
where data driven machine learning will play the role of the negotiator.
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2.3.3 Long Term Dynamics of the Network

The SON solutions in the current networks respond to the short-term dynamicity of the
network such as slow fading, user mobility, etc. although the gain has been smaller.
Data driven machine learning will incorporate long term dynamicity of the wireless
environment, e.g., dynamic changes in user density in a particular region, prediction of
user mobility patterns on long-time scale, data usage patterns over days etc. This will
add to the network efficiency achieved through current SON techniques.

2.3.4 Faster and Proactive Network

In the current network, the SON solution comes into play after the problem has
occurred. It takes time in diagnosing, detecting and compensating which can range
from the order of minutes to days. With this reactive approach, it is difficult to achieve
the desired level of low latency in 5G networks. Instead, the network should behave
proactively, in the sense that it can predict the future network behaviour (possible fault,
coverage holes, network congestion etc.) and user behaviour (mobility pattern, next
cell, data rate and QoS requirements) by learning from the historical data. In this way,
proper action can be taken beforehand to avoid the faults occurrence. Through analysis
of past data and building intelligent prediction/forecasting models, cellular networks
can be made proactive and quicker in response. Apart from network behaviour,
users future behaviour (mobility pattern, data usage pattern) can also be predicted
for resource allocation optimisation etc. Such prediction/forecasting through machine
learning is also referred to as predictive modelling.

2.3.5 Smart Caching

To meet the unprecedented growth in traffic, the available network resources as well
as the innovation in PHY/MAC layer technologies fall far behind the target 1000x
capacity gain. Caching of popular contents at the edge of cellular network can help
bridge the traffic vs. capacity gap. Caching is identified as one of the indispensable
approach towards a successful 5G. On one hand, data driven machine learning will
reveal users context information such as location, network usage pattern, social circle
etc. On the other hand, data driven machine learning again can be utilised to evaluate
spatiotemporal popularity of contents for individual as well as group of users. Having
known users context and content popularity information, Mobile Network Operators
(MNOs) can proactively cache popular contents at the required edge nodes (Base
Station (BS) or user devices) to provide services with improved QoE. This proactive
caching will have two-fold benefits. First, it will reduce the peak traffic demand



2.4. EXISTING APPLICATIONS OF DATA DRIVEN MACHINE LEARNING 23

reducing back-haul bandwidth requirement. Second, it will reduce Total Cost of
Operation (TCO) by avoiding access of contents from the origin server (that requires
Internet) every time the content is demanded.

2.3.6 Energy Efficiency

If the current strategy of keeping all BSs always ON is continued, it would be
impossible for the networks to meet the energy saving target in 5G, or even
be economically viable due to substantially increased BS density. In the dense
deployment scenario, data driven machine learning can enable the network to adjust
the configuration of cells that are most appropriate for serving given distribution of
users in time and space. Additionally, by predicting users mobility pattern and network
utilisation, MNOs can activate a dormant cell whereas send the unused active cell into
dormant state. Thus, using data driven machine learning, cell switching strategy can
be changed from always-on to available on demand, preventing wastage of energy.

2.4 Existing Applications of Data Driven Machine
Learning

As identified in section III, there are numerous parameters in the network which are
reported and gathered at/from the UE, RAN and CN layer of the network. By analysing
them, the network performance can be continuously monitored, instantly optimised
and proactively protected from possible fault occurrence. The Table 2.2 provides the
summary of the literature on research various works that involve data driven machine
learning approach for network optimisation, fault detection / prediction, Self-healing
and mobility prediction. Different network measurements, parameters and statistics
used for network analysis are also shown.

1. Network Optimisation

The conventional way of estimating cellular coverage is through sophisticated
planning tools that utilise building and terrain data combined with appropriate
propagation models. However, those estimates are not accurate, resulting in
coverage holes. To fill the coverage gaps, network operators perform drive tests
which are costly, or they perform network simulation which is partly unreliable,
or they use KPI approach which is not precise enough. In order to overcome
these inadequacies, study of Minimisation of Drive Tests (MDT) was started as
a 3GPP work item in release 10 for 3G, High Speed Packet Access (HSPA)
and LTE [17] [18]. The MDT report is proved to be extremely useful data
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Table 2.2: List of studies with key SON issues they addressed using data-driven
machine learning
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for coverage analysis. The authors in [19] [20] enhance the coverage estimated
through MDT reports using Spatial Bayesian prediction scheme. A data driven
machine learning approach for improving coverage analysis has been discussed
in [21]. The authors utilise BSSAP mobility and Radio Resource Management
(RRM) messages collected between the Base Station Controller (BSC) and
Mobile Switching Centre (MSC) nodes to identify inter-technology handovers
from 3G to 2G. The point of handover indicates 3G coverage discontinuity
(holes). The coverage gap found through above experiments are found to be
more accurate with more detailed coverage map than those obtained through
drive test and tracking BS KPIs. Coverage hole detection and optimisation is
also performed using RLF report generated from UE [22]. Reference Signal
Received Power (RSRP) statistics data has been analysed in [23] to determine
cell outage in a control-data plane separated heterogeneous network. In addition
to coverage, machine learning has also been applied to ensure transparent
handover. Article [45] proposed a model that utilises detected cell set to
improve automated Neighbour Cell List (NCL) performance. All the cells in
the detected set are considered as part of NCL and thus they predict all those
cells’ performance. This helps in identifying missing neighbours and thus avoid
walk/drive testing. Authors in [24] applied machine learning on Performance
Management (PM) data such as handover success rate, received signal quality to
self-optimise NCL. The optimised NCL is further utilised for building handover
Self-optimisation model. Usually, the intra-frequency handovers in LTE are
performed based upon RSRP measurement. Article [50] discusses suitability
of handover based on Reference Signal Received Quality (RSRQ) measurement
in a situation when severe interference causes RSRP to go below threshold.

2. Fault Detection and Self-healing

Recently, big data analysis combined with machine learning techniques have
drawn attention for development of Self-healing mechanisms. Researchers
have proposed clustering [30] [31] [32], classification [33] and knowledge
based Machine Learning (ML) algorithms [31], for cell outage detection.
MDT measurement reports from the network have been utilised in [30] [31]
from which KPIs relevant to network performance are gleaned. Due to large
dimension of KPIs, authors perform dimensionality reduction. Apply different
machine learning algorithms such as k-nearest neighbour, Local Outlier Factor
(LOF), One Class Support Vector Machine based Detector (OCSVMD) etc., to
automate the detection process. Data mining frameworks have been developed
to detect Random Access Channel (RACH) to further detect sleeping cell in [35]
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[37] which is hardly traceable by network operators. The authors used n-gram
analysis technique that also includes dimensionality reduction and classification
of data, except in [37] where they use k-nearest neighbour technique to identify
abnormal behaviour in the sequence of network events collected through MDT
report from the UE. The key idea of the system is that it provides a set of
abnormal users which eventually reveals location of problematic cell. The article
in [38] also proposed UE measurement based cell outage detection combined
with location information.

For multi-tier networks, the authors in [39] present a cooperative architecture in
a self-organised femto-macro cellular networks. The objective is to investigate
intra-cell correlations of RSRP statistics in space domain in order to make
a trigger decision and then extracts correlations of inter-cell RSRP statistics
in both space and time domains to improve the detection accuracy. In [23],
k-nearest neighbour is utilised to detect and locate cell outage in macro-pico
heterogeneous networks. Further, Onireti et. al. in [15] [16] proposed a
complete cell outage management framework that includes both detection and
compensation mechanism in control and data plane separated architecture. For
control plane, MDT reports are analysed applying k-nearest neighbour and local
outlier factor algorithm to detect the outage. For data plane, grey prediction
model has been proposed. For compensation, an actor-critic reinforcement
learning algorithm that optimises Coverage and Capacity Optimisation (CCO)
of the identified outage zone by adaptive adjustment of the antenna gain and
transmission power of the BSs in that plane. Other cell outage compensation
frameworks have been developed in [51] [41] [44]. For compensation, the
authors’ utilisation of control parameters such as RSRP, antenna tilt, uplink
target received power can be effectively utilised to compensate the cell outage.

3. Mobility Prediction

In the literature, researchers heavily utilise wireless cellular network data such as
Call Detail Record (CDR) [46] [52], Global Positioning System (GPS) location
data [53] [54], handover information data [55] for analysis and prediction of
user and network behaviour for further planning and resource allocation. Article
[46] analyses CDR to find the distance travelled by hundreds of thousands of
population every day in three major cities of USA. The article [52], on the
other hand reveals how many people travel from one place (origin) to another
(destination) in a given time. Users density in a particular area and their activities
can be monitored using CDR as proposed in [49] [56]. Similarly, city block’s
properties have been analysed utilising cellular data [48]. These predictions
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have been useful in smart city planning from various perspectives including
communication network, transport, ecology and environment. Cellular data has
been extremely useful in predicting mobility. Authors in [57] build cluster of
cell sequences where users were present in to represent physical routes and
the destination probabilities is derived from this sequence. Article [58] classify
users into residents, commuters and visitors by analysing their Global System for
Mobile communication (GSM) call profiles, and the categorisation information
is further utilised to predict their mobility pattern. The authors in [59] utilise stay
places and trip pattern of the users to find the spatial route, whereas they find the
temporal pattern by analysis of duration of stay in a cell coverage region. The
spatial information based prediction model utilises sequential models to predict
next stages. Article [60] utilises CDR for extracting movement information
and predict the future movement using Hidden Markov Model (HMM). Authors
in [27] also utilised HMM to predict user’s next location. Authors in [61] utilise
handover information using Markov chain to predict the next handover cell of
the user. Markov chain based model is proved to be more accurate for predicting
whether a user will move from one region to another in next period in [62].
Methods like recursive least squares lattice adaptive filter on mobility traces have
also been utilised for future location prediction [63].

4. Traffic Prediction

An analysis was performed on data collected from devices using Android,
iOS and Windows platform, to study the traffic and user application behaviour
dynamics. The study reveals that all of the platforms incur high traffic
during night. Windows have highest traffic variance while browser and instant
messengers attracts more users thus achieving large user ratio. Another analysis
performed on 3G traffic also reveals that the traffic in night consumes the highest
bandwidth. Additionally, their finding shows user number distribution, user
request distribution and location characteristics [64]. The study performed
in [28] extract human mobility and traffic utilisation pattern from a MNO’s
perspective. Importantly, their analysis reveals that consumed traffic is strongly
correlated with mobility and therefore, they exhibit distinct temporal pattern.
A framework for rating important mobility features that influence application
usage behaviour is presented in [65]. The rating (correlation) is further utilised to
forecast application utilisation behaviour of individuals as well as crowds. Data
from Twitter and 3G networks have been exploited to forecast traffic requirement
in Satellite Communication Network (SCN). In addition to users, MNOs’ traffic
usage pattern and characteristics of data services can also be revealed by using
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machine learning [66]. The authors in [67] extract the distribution and temporal
patterns of different services in wireless cellular data in terms of service request
times and service duration.

2.5 Further Unleashing the Potential of Data Driven
Machine Leaning in WCN

Managing KPI complexity in a single-technology environment is difficult enough. In
4G the number of parameters per node rose to around fifteen hundred from five hundred
in 2G [13]. Even if the same trend continues, the number of parameters in 5G and
beyond will be significantly high. Additionally, in a cellular ecosystem encompassing
all technologies up to 5G, the level of complexity will increase dramatically. Therefore,
in this section, first, the end user KPIs are defined and then it is explained how these
are computed conventionally. Then it is discussed how data driven machine learning
can be leveraged to gain insights by digging down to the granular level.

2.5.1 End User KPIs

The service experienced by the end users is measured using a number of PIs. Multiple
PIs are aggregated to form one KPI. According to 3GPP standard, there are six main
KPIs which directly influence network performance and end user experience. These
are Accessibility, Retainability, Integrity, Mobility, Availability and utilisation.

• Accessibility defines how easy it is for the user to obtain a requested service
within a specified tolerances and other given conditions. Session setup time, call
success rate etc. are example of accessibility KPIs.

• Retainability defines the capability of the network to continuously provide
requested service under given conditions for the desired period of time. An
example KPI in this context is session abnormal release rate which means poor
retainability for a network.

• Integrity means the degree to which a service is provided without excessive
impairments, for example uplink/downlink throughput, latency, packet loss etc.

• When user is moving from one cell to another, handover performance and
other mobility related performances are measured through Mobility KPI.
LTE Handover success rate and Inter-Radio Access Technology (Inter-RAT)
handover success rate are examples of Mobility KPIs.
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Figure 2.4: Standard KPIs and their immediate dependencies.

• As the name suggests, Availability means the percentage of time a cell is
considered to be available. In some cases, although the cell may seem to be
up and running, it can be sleeping or in outage condition due to some anomaly
or disabled manually because of operator’s maintenance procedure. In such a
case, poor network availability or complete outage can occur.

• Whereas utilisation refers to the simultaneous usage of the network resources
without affecting the end user experience.

2.5.2 Measurement Composition of KPIs

These end user KPIs discussed in previous subsection further depend upon various
others PIs. The high level blue print for six standardised KPIs and their immediate PIs
dependencies is shown in Fig. 2.4. The insights obtained by dissection of the various
other KPIs help to better couple users’ perceived QoS and QoE with the operator’s
Operational and Business Objectives (OBOs). The PIs which comprise the KPIs,
themselves depend upon plethora of lower level measurements. The measurements
are shown for accessibility, utilisation, mobility, integrity, retainability and availability
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KPIs in Fig. 2.5, Fig. 2.6, Fig. 2.7, Fig. 2.8, Fig. 2.9 and Fig. 2.10 respectively. It must
be noted that all these grass root level measurements are by no means representing an
exhaustive list of all the measurements needed, in order to compute a specific KPI. It
represents what major specific measurements comprise a given KPI. In addition, these
tree diagrams informs us that how deeper resolutions in performance measurements
can help in better diagnosis of the real root cause affecting a specific OBO or
KPI. Having extensive measurements can provide the correct decision to make for
a specific parameter in order to improve respective KPI. These measurements are the
building blocks of KPIs and end users’ experience. In order to realise self organised
networks enabled by real data driven machine learning for 5G and beyond wireless
networks, these measurements should be available and standardised for user centred
KPIs estimation. The true value of such self organised wireless cellular networks
of the future can only be realised when all the measurements are recorded, mined
and analysed to perform a KPI computation analysis. In order to demonstrate this
approach, as an example a user centred data driven machine learning approach for the
KPI estimation is presented in subsection 2.5.4.

2.5.3 Conventional Approach of KPI Estimation

In conventional approach, a range of KPIs are evaluated to ensure the target network
performance. Normally, the selected KPIs are uncoordinated and do not reflect the user
experience. It requires significant effort to improve one set of KPIs at the expense of
others. The correlation among different KPIs is not taken into account in conventional
approach. As a result it ends up disturbing one KPI while improving the other. In
addition, reaching the set targets for these poorly selected KPIs may have little impact
on overall system efficiency, performance and user experience.

In conventional KPIs estimation approach, multiple PIs are integrated into a single
KPI to effectively indicate the end user performance. Even though, the performance
statistics for all PIs are recorded for investigative and troubleshooting purposes. But,
they are not utilised in real-time for performance improvement on regular basis. This
approach has been adopted mainly to reduce computational overheads of storage,
processing and analysis of the data generated by myriad of PIs based measurements.
Nevertheless, in such aggregation based approach, the underlying individual PIs are
not effectively utilised to identify the exact root cause of the performance degradation.

Conventional machine learning schemes operate on user data about user’s
decisions, actions and social interactions. These data are highly dynamic for the
global optimisation at macro level. However, it ignore the user’s’ local interactions
and contextual information at micro level. In short, the conventional approaches are
network-centred. In conventional approach, a good KPI value may not reflect a great
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user experience in reality. For example, an LTE radio bearer can be dropped when an
always-on LTE device is not transmitting data. Measuring such a KPI does not offer
any real understanding of user experience, as sessions are quickly reestablished when
needed and any delay incurred goes unnoticed by the user.

2.5.4 Machine Learning Approach for KPI Estimation
(User Centred Approach)

Data driven machine learning approach can help to go to a much deeper level to
identify root causes that affects individual PI. It allows to go into the granularity of
the parameters, observe their individual and compound effect on end user KPIs. It
also allows to identify the correlation among parameters to establish relation of each
individual parameter with multiple KPIs.

Data driven machine learning shifts the network centred approach of conventional
KPI estimation to user-centred approach for 5G and beyond networks. In a user centred
approach, all the factors affecting the end level KPI are analysed from the user and
OBO perspective. The data generated by each event is categorised into different classes
of data as previously discussed in section III. The data category identification helps in
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deciding the relevant data analysis tools and procedure to be applied for each event.
The high level procedure of data driven machine learning for the user centred KPI
estimation is shown in Fig. 2.11

As an example for demonstration, Fig. 2.12 describes the accessibility KPI being
estimated by machine learning as a user centred approach. Accessibility KPI depends
upon three major PIs: RRC establishment, S1 portion and E-Radio Access Bearer
(E-RAB) portion. If accessibility KPI is poor on account of RRC phase establishment.
Data driven machine learning helps us further identify, what is the cause of poor
accessibility, what parameters affect it, even so it ultimately leads to the real root cause
of the problem causing poor accessibility KPI, as depicted in Fig. 2.12.

Let’s say poor accessibility KPI is due to bad RF conditions. Fig. 2.12 further
breaks down the cause of poor RF in various categories which may cause it. It can
be seen from Fig. 2.12 that poor RF condition further depends upon many other
factors. These include terrain geography, non-terrain obstacles like building structures
and foliage, building penetration and antenna angles. The evidence is clear that one
end-user KPI is dependent upon a number of the other parameters which are further
correlated as show in Fig. 2.12. Using data driven machine learning approach, the
dependency of top parameter can be traced back to the intermediate and root cause
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parameters. Hence, the power of network analytics can be used to identify and cross
correlate the inter dependencies of one PI over the other PIs. In addition using data
driven machine learning real time effect of a single parameter and /or root cause on
the end user experience in the form of a KPI can be predicted, therefore it is termed as
user centred approach.

Similar to Fig. 2.12 the hierarchical KPIs estimation for Integrity KPIs is identified
in Fig. 2.13. Using data driven machine learning methodology described in Fig. 2.12
and Fig. 2.13, real time anomaly identification and KPI improvement can be done in
a user centring way. Similarly the blue print for user centred hierarchical KPIs for
Retainability, Mobility and Availability can be identified With the help of data driven
machine learning.

2.6 Opportunities and Challenges

The key common concept behind the data driven machine learning is the analysis of
entire data space which further enables to find inter-connection, correlation, conflict
and coordination among the parameters and the associated entities in the network.
These relations are exploited to leverage the massive potential hidden within and
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behind the massive data generated in the wireless cellular network. In fact, the
researchers have realised only those potentials that they have been able to think and
relate with information so far extracted from the data. As the necessities will unfold
with time, so will the potentials hidden behind the data. However, to achieve those
benefits, many challenges have to be overcome. In the following,the opportunities that
can be availed and the associated challenges especially with regard to 5G and beyond
networks are discussed.

2.6.1 Opportunities

Flexible Network Functionality and Deployment

Network function virtualisation and software defined networking have enabled
decoupling of software and hardware functionalities in the network. Through data
driven machine learning, regional user and service requirements can be predicted,
based on which network functions can be deployed dynamically. For example, by
analysing user and traffic information in an area, operators can deploy Multimedia
Broadcast Multicast Service (MBMS) functionality module where there is much
broadcasting requirement. The analysis of the traffic and user attributes data can
help predict the traffic characteristics in a region based upon which hot spot Access
Points (AP) can be deployed or dynamically switched to meet the traffic requirement.
This would be extremely useful for 5G dense heterogeneous network. Standardisation
initiatives of networking hardware and protocols across the industry can also enable
flexible sharing of networking facilities among multiple operators.

Internet of Things (IoT)

Global telecommunications companies are seizing the opportunity to provide
end-to-end communication over internet for IoT environments. IoT domain requires a
range of data rate and accordingly requires the processing power. For example, energy
meter at every house does not require high data rate and also they are less sensitive to
delay. On the other hand, medical appliances connecting to internet require prompt
actions without compromising delay. Through data mining and machine learning,
the data generated by Internet of Things (IoT) devices can be processed to facilitate
sufficient resource and also clean data to provide the concise information. For a
machine in America communicating with a machine in Asia, machine learning will
facilitate sufficient bandwidth and clean stream of data that conveys the essence of
what is to be communicated.
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2.6.2 Challenges

Data driven machine learning in cellular network has its own idiosyncratic challenges.
Some of these challenges are briefly outlined in the following.

Need for Paradigm shift from conventional data analytic to big data analytic

In conventional data analytics, analyses are performed on sample data selected from
whole data or population using different statistical techniques, commonly random
selection. A statistical inference is made towards the behaviour of overall population
based on results of the sample analysis. Conventional data analytic may help to
infer some useful information about the whole data or phenomenon under observation
but it fails to provide the real and exact picture of the problem under consideration
or an insight to set of possible causes and effects. Whereas, modern day data
driven machine learning can take the whole data into consideration for analysis and
intelligence gathering that helps to have comprehensive and real information about
complete population. The analysis using entire data makes us worry-free about some
individual data points that may bias the overall analysis. Data driven machine learning
also allows testing of new hypothesis at many levels of granularity, which were
not possible by using conventional data analytics tools. Correlation is another very
important statistical aspect of data analytics which help to extract valuable information
about the relationship among the various factors and features of the data. In case of
small-data, correlations are useful but in the context of big data they outshine. Through
correlation, we can glean insights more easily, faster, and clearer than before. In
contrast to conventional data analytics, big data analytics enabled by machine learning
at scale can identify and explain multidimensional correlation across the various
features, horizontally and vertically, which is the backbone of predictive capacity of
a data driven machine learning tool. Information about correlation among the data
features play a crucial role to establish coordination among the network functions in a
self-organising network.

Standardising procedures for data acquisitions and transportation

In the world of cellular networks, multiple vendors are contributing through network
devices corresponding to different layers of the network. Thus inter-operability
becomes necessary. In such a scenarios, standards must be developed to specify how
real network data will be transferred among different platforms. The real network
data comes in structured and unstructured forms such as picture, videos, audio, click
streams etc. Standard procedures are, therefore, needed to encode and transport
data within and across different networks. This will enable not only multi-vendor
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operability but also enhance QoS management with low latency and high fidelity.

Enhancing speed of the data processing

In cellular networks, the requirement for high speed processing can be viewed from
two different perspectives. Firstly, the hyper competitive business environments,
companies not only have to find and analyse the relevant data they need but also they
must find it quickly, however, the challenge is going through the sheer volumes of data
and assessing the level of detail needed all at high speed. Secondly, to pro-actively
meet the various demand by users and rapidly changing network environment, the data
collected at different layers of the network need to be promptly analysed and necessary
resource allocated to avoid delay and to avoid fault occurrences.

Integrating of inter-department data

Although data driven machine learning offers big opportunity, the integration of data
from disparate sources has remained a huge challenge in cellular networks. With the
increasing volume and variety, it is difficult to integrate inter-department data and
extract useful insights from them. For example, the data obtained from the network
optimisation department may need to be complemented with data from customer CRM.
CRM data further needs to include all the information related to customers. It is
challenging to manage and control data quality so that it could meaningfully connect
well-understood data from the data warehouse with the data that is less understood.
Thus data integration requires further research to leverage network analytics.

Challenges Pertaining to Data in data driven machine learning

• Data Cleaning

Although it is assumed that data will be processed quickly, the value of data for
network performance optimisation process will be jeopardised if the data is not
accurate and timely. This is a challenge pertaining to machine learning in any
field and it is more pronounced with rise in volume. To address this issue, there
need to have a data governance or information management process in place to
ensure the data is clean. Additionally, 5G networks prefer to have a proactive
method to address data quality issues to avoid incorrect interpretation of data
and model using the data.

• Ensuring privacy of data

Machine learning usually involves data related to users’ location from which
their movement behaviour, their shopping interests as well as their future
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locations can be predicted. Consider that some retailers have used data analysis
to predict intimate personal details such as the due dates of pregnant shoppers.
In such cases subsequent marketing activities resulted in having members of the
household discover a family member was pregnant before she had told anyone,
resulting in an uncomfortable and damaging family situation. Moreover, with the
sufficient amount of data and powerful machine learning tools, it could become
impossible to completely remove the ability to identify an individual if there are
no rules established for the use of anonymised data files.

• Enhancement of security of data

With the emergence of small cell technologies and due to ultra-dense BSs
requirement in 5G, cloud RAN has become important for effective control
and utilisation of resources among the small BSs. Security along with the
privacy issues are magnified by the 4Vs of big data, such as large scale cloud
infrastructures, diversity of data sources formats, streaming nature of data
acquisition, and high volume of data integration etc. The traditional security
mechanism which are tailored to securing small scale static data are inadequate.
For example, machine learning for anomaly detection would generate too many
outliers. Thus enhancement in security mechanism considering the challenges
imposed by nature of large scale data.

2.7 Conclusion

Data-driven machine learning holds immense potential to unlock the hidden value
within wireless cellular network data. By incorporating data from across the
network into the analysis, it becomes possible to uncover patterns, connections, and
correlations that are not evident through conventional methods. These insights, when
combined with intelligent machine learning algorithms, can automate wireless network
functionalities, revolutionizing the way cellular networks are operated and maintained.

In this chapter, key data types generated from various network segments have been
identified and their potential roles in enabling SON functions have been described.
Additionally, it has been demonstrated how these data types can be leveraged to
enhance SON functionalities in the context of 5G and beyond networks. Existing
literature efforts toward this goal have also been summarized.

Through an exemplary case study, this chapter has highlighted the necessity of
decomposing cellular network KPIs into their contributing PIs to realize the envisioned
utilities of wireless cellular network data. Actionable insights derived from data-driven
machine learning can enable automation of network functionalities, improve resource
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efficiency, and boost performance. These advancements are critical for meeting the
demands of emerging 5G cellular networks, paving the way for a new era of intelligent
and autonomous wireless communication systems.
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Chapter 3

Machine Learning for Traffic Load
Estimation

During the last decade, mobile services have sharply evolved from only cellular
network-based services like messages and calls to internet-based services like mobile
apps and web surfing on mobiles. On one end such services demand a different set of
bandwidths, network protocols and resources for data transmission to cater diversified
data types, there on the other end, they have also raised user-network interaction
to the highest level ever and this trend is increasing [68]. Data consumption, user
interaction with the network and the time spent by users on the cellular network to
access Internet-based services, has surpassed the conventional cellular services such
as call and Short Messaging Service (SMS). StatCounter, a research company that
tracks internet activity globally, concluded that the number of web pages accessed
using mobile devices already exceeds the number of web pages accessed from desktop
computers and laptops since October 2016, and this trend is increasing [69]. For
instance, subscribers from the USA spent almost 90% of their mobile phone time on
the mobile internet in 2015.

These statistics clearly show an increasing demand of a huge range of
Internet-based services on the cellular network and require the network to be capable
to cater a variety of data types with efficiency and better latency [70]. So it becomes
crucial for the network to learn user’s internet usage behavior and preferences in
terms of contents, timings, and vicinity for the provision of user-specific seamless
services. Further to it, the future network must be able to predict demand for
internet services at different spatiotemporal granularity for better Radio Resources
Management (RRM) and pre-emptive measures against key challenges like admission
control, traffic congestion etc. To meet that objective, there exists a need to design most
efficient and optimal (RRM) algorithms. The analysis of spatiotemporal patterns of
internet consumption at higher granularity is also important for the understanding and

43
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information management of varying communication level expected among numerous
devices locally in future networks [71].

The increased frequency of user network interaction has also led to an activity level
of very high granularity over the network with fine footprints of respective activity
records, e.g call data records (CDRs). Such CDRs, also provide an opportunity to
gather intelligence about users’ behaviors and preferences towards different on and
off network services. This intelligence can be accumulated by the identification of
patterns and correlations in the existing data with the application of data analytics.
Such data analytics based cognizance can help to improve overall network performance
via Radio Resources Management (RRM) strategies at shorter intervals by making
timely autonomous decisions [72]. This kind of network intelligence is a driving factor
to make future networks more pre-emptive, autonomous and self-organizing, some of
the key features expected in the future cellular (i.e. 5G and beyond) and IoT based
networks [73].

Spatiotemporal understanding and prediction of traffic can help optimize resources
like switching off certain eNodeB for possible energy conservation. Similarly, timely
and accurate traffic prediction can also play an important role in managing operational
and quality of services related problems e.g. congestion control, admission control,
network bandwidth allocations etc. [74]. In chapter 6 a small cell sleep cycle
centered approach [75] is proposed that leverages from spatiotemporal prediction
based on same CDR to pro-actively schedule radio resources. Results for this approach
show substantial energy savings and reduced inter-cell-interference (ICI), without
compromising the users Quality of Service (QoS). Besides the future traffic prediction,
understanding of high granularity spatiotemporal traffic distribution and patterns are
also important for network planning and configuration for future networks where
network densification is seen as a mean to meet the diversified high data demands.

In this chapter, the mobile users’ internet usage behavior with respect to time and
location is studied with the help of real network data. For the purpose of analysis,
actual two months cellular internet activity data for Milan city, released by Telecom
Italia, is used [76]. Here, the real internet traffic variance over a network in the
spatiotemporal domain is explored at a high granularity level particularly in term of
time where the the variance of traffic even within an hour is studied. The detailed
study of the users’ preferences in terms of the data contents is out of the scope of this
study.

Cellular data is a rich source of information for multidisciplinary research and
multifaceted decision-making processes. There exists enormous research on cellular
network architecture, functionalities, and services. Now plenty of work also exists
on the utilization of data analytics for network improvement as it can be seen from
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Figure 3.1: Cells distribution with respect to maximum traffic generated on hourly
basis in a week
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Figure 3.2: Heat map of maximum hourly internet activity in 225 cells over a week
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[75, 77, 78], where [78] specifically discuss predictability in networks. Significance
of the use of real mobile data in analytics is very high as it captures and exhibits the
true feel of actual network behaviour. But research on spatiotemporal analysis and
predictability of cellular network traffic based on real network data is very limited and
research on spatiotemporal analysis and predictability at high granularity is even rare
especially for the internet traffic. Authors in [68] emphasize the need of models to
predict traffic demand on short (e.g., minute to hours) and medium intervals of time
(e.g., days to weeks) after presenting a detailed review of the literature published in the
last decade on the topic.

Another drawback of the existing research is that aggregated hourly activity level
is taken into account whereas maximum traffic is more significant for estimation of
demand and resource allocation [79–81]. The aggregated or mean traffic is more stable
as compared to maximum traffic which has high spatiotemporal variance as it can be
seen from Fig. 3.1 and Fig. 3.2. Further, most of the traffic prediction models proposed
in the literature are for call and SMS data only and were separately trained and tested
at different locations [79–81]. In this research, the proposed model is platform and
location independent. The model is trained simply by providing six data points of
aggregated activity level, each for ten minutes in an hour, for all cells. In the literature,
Artificial Neural Networks (ANN) is one of the most popular non-linear models to
forecast complex network traffic and outperform traditional time-series models like
ARMA and FARIMA [82]. Studies focusing internet traffic on the cellular network
for spatiotemporal analysis and short-term predictability are very rare. In [83], authors
have applied deep learning methods for the prediction of internet traffic and results are
used as a benchmark in the study presented in this chapter.

In this chapter, a Support Vector Regression (SVR) model is used for the prediction
of future internet activity for three different levels, minimum, maximum and mean
at high granularity. These levels help to have a basic idea about the activity level
in the different cells for a shorter period of time. The performance of the proposed
method is compared with the SOTA deep learning methods available in the literature.
One objective of this study is to prove that a classical, comparatively simple, SVR
model can perform much better than the complex deep learning models for cellular
network problems like the one under study here, internet activity estimation at high
granularity. Deep learning models are not the optimal solution in all cases, therefore in
this study focus has been on these three to compare the performance of SVR with
that of the deep learning models for the same data at same granularity and same
predicates This is a timely research as future internet activity estimation using data
mining and machine learning over a cellular network at high granularity is one of the
most important problems for the research community in order to design efficient and



48 CHAPTER 3. MACHINE LEARNING FOR TRAFFIC LOAD ESTIMATION

intelligent 5G and beyond 5G cellular networks [84]. In this chapter, it is concluded
that the proposed SVR based method outperforms SOTA approaches used in the recent
literature.

Main contributions of this study include:

• Performed detailed spatiotemporal analysis of real-world cellular internet traffic
data, identifying significant patterns and variations across time and location at
high granularity.

• Demonstrated the suitability of classical machine learning models like SVR
model to accurately predict minimum, mean, and maximum internet activity
levels for the next hour using historical data.

• Conducted a rigorous evaluation of the SVR model against other machine
learning techniques (e.g., ARIMA, CNN-RNN) and demonstrated its superior
performance in prediction accuracy and efficiency.

• Leveraged real-world Call Detail Records (CDRs) from Telecom Italia to
validate the proposed model, ensuring practical relevance and reliability.

• Showcased the groundwork for the application of traffic load prediction in
enabling energy-efficient cellular network operations, such as proactive small
cell sleeping and resource optimization.

3.1 Data Set Description

To study the internet activity dynamics on a cellular network it is of paramount
importance to use actual data from a cellular network operator. The internet activity
data used in this chapter is obtained from a comprehensive big dataset released by
Telecom Italia as part of Big Data Challenge 2014 [76]. The dataset includes CDRs
(i.e. SMS, call, and internet activity), precipitation data, electricity consumption data,
weather station data and website data for the city of Milan, Italy and provides it for
November and December 2013. In this chapter, internet activity data from CDRs is
used for the spatiotemporal analysis of the behavior of users using smartphones.

For the data collection and aggregation, the city of Milan is geographically mapped
as a 100 by 100 grid of 10,000 rectangular cells as shown in Fig. 3.3. Internet activity
level is represented by an imitated rational number for confidentiality. Each number
refers to an activity level aggregated for each cell separately for a time interval of 10
minutes. These numbers do not represent actual internet data consumption but refer to
activity level in a cell. So they can help for the comparative study of internet activity in
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Figure 3.3: Grid over Milan and area under observation

various cells at different time slots. They can give an idea which cells or time slot have
more or less active as compared to other cells or time slots and how much the difference
is. In this study, data of nine weeks is used, for the months of November and December
2013, and 225 cells covering the left bottom corner of the city as highlighted in Fig. 3.3,
a grid of 15 by 15 cells. First three weeks data is used for cross-validation and later
more data is added for training purposes. Finally, data for the first eight weeks is used
for the training purposes and the ninth week data is used for testing and performance
evaluation.

3.2 Methodology

First, three basic levels of internet activity are calculated for each hour of the day for all
225 cells i.e. Minimum, Average and Maximum level of activity. This was followed by
the study of the spatiotemporal changes in maximum internet activity level. A density
candle plot, Fig. 3.1 and a heat map Fig. 3.2 are plotted for the maximum internet
activity level which helps to understand maximum internet activity distribution and
variance over each day of a week for 225 cells and over a day across the 225 cells
respectively. For visualization purposes here focus has been on maximum internet
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Figure 3.4: Layout of SVR model implementation

activity as it is commonly the most sought-after feature for network resources planning
and allocation.

Three SVR models, independent from each other, are trained and tested for the
prediction of three activities level Maximum, Mean, and Minimum. Initially, SVR
models are separately trained using two weeks data and trained models are validated
using the data of the third week which was kept separate. In the validation step, SVR
exhibited an accuracy of 85%, 87% and 83% for Minimum, Mean and Maximum tasks
respectively. In the end, the model was trained on eight weeks data and tested against
unseen data of week nine which was kept separate at the very start of the experiment.
The performance of the models was evaluated using the performance metrics defined in
section IV.B. The internet activity over an hour, aggregated in six slots of ten minutes
each, works as an input to the SVR model for the prediction of each internet activity
level for the next hour.

3.3 Proposed Model and Performance Metrics

3.3.1 Support Vector Regression (SVR)

A statistical learning theory based epsilon-insensitive nonlinear SVM (ε-SVM)
regression is implemented here. The basic idea of SVR is Structural Risk Minimization
(SRM), which uses the sum of empirical risk and model complexity as the
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minimization objective. In practice, the time series of base stations’ traffic show
non-linear behavior. Hence, non-linear SVR is used in the proposed base station
activity forecasting scheme. To formulate the problem, let’s define training data as
xi,yi, i = 1,2,3, . . . ,n = 24 where xi is the input vector representing an hour of the
day (e.g. X1 represents the first hour in the morning 00:00 to 1:00 am) comprising
six scalar values u each representing internet activity for a ten-minute time slot as
shown in Fig. 3.4. Similarly, yi represents the maximum, minimum or mean value
of the corresponding hour, depending on task the model is trained for. First, the
input is mapped on a multidimensional nonlinear feature space using a non-linear
transformation function [85] represented as Φ(∏). In the high dimensional feature
space, regression function can be expressed as follows:

f (x) = ∏ωΦ(X)+b (3.1)

Such that ω ∈Rd and b∈R where d represents the dimensions or number of columns in
data as it is six in this case and b represents the bias. And outcome of Φ(X) represents
the input features space. The quality of estimation is measured by the loss function.
Here, the ε-insensitive loss function is used, which ignores errors that are within ε

distance of the observed values. For training samples outside ε–insensitive zone, the
slack variable ζi,ζ ∗i is introduced that allows the errors to exist up to ζi,ζ ∗i beyond
ε-insensitive zone. So SVR model is trained by solving the minimisation problem
defined as (1.2):

min
1
2
||ω||2 +C ·

n

∑
i=1

(ζi +ζi) (3.2)

s.t 

yi−∏ωΦ(xi)+b≤ ε +ζi

−yi−∏ωΦ(xi)+b≤ ε +ζ ∗i

ζi,ζ
∗
i ≥ 0

i = 1,2,3, ....,n

The constant C is a positive numeric value that regularise the function for flatness and
over fitting. It imposes a penalty on the values beyond ε-insensitive zone and determine
the level of tolerance for deviation of values beyond ε-insensitive zone. An heuristic
method is used here for the selection of C and ε . By extensive iterations, using the
values of C = 1 and ε = .02, the loss function is minimum.
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3.3.2 Performance Metrics

In order to evaluate the performance of the proposed SVR model, the following
performance metrics were used: Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE) and Mean Accuracy (MA) [83]. The MAE, RMSE, and MA were
calculated for each task, Minimum, Mean and Maximum separately. Let yi represents
the actual hourly minimum, mean and maximum internet activity in test data and
ŷi represents corresponding minimum, mean or maximum hourly internet activity
predicted by the relevant model. Hence, performance metrics can be written as
(3.3)-(3.6):

MAE = (
1
n
)

n

∑
i=1
|yi− ŷi| (3.3)

RMSE =

√
(
1
n
)

n

∑
i=1

(yi− ŷi)2 (3.4)

MAE = (
1
n
)

n

∑
i=1
|yi− ŷi|/yi (3.5)

where n represents the number of instances in the test data. Mean accuracy (MA)
is measured using MAPE metric as follow:

MA = (1−MAPE)×100 (3.6)

where yi and ŷi respectively represent actual and estimated values of minimum, mean
and maximum hourly internet activity.

3.4 Analysis and Results

3.4.1 Spatiotemporal Analysis of Maximum Internet Activity

The maximum internet activity level is critical for network resource planning and
optimization, as it represents peak usage demands in the network. Observing both
the heat maps and violin plots reveals distinct temporal and spatial activity patterns,
varying significantly by time of day and across network cells.
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Spatial Analysis:

The heat map (Fig. 3.2) provides a spatial perspective of maximum internet activity
across the cellular grid for a week. Each grid cell represents a unique spatial location
in the network, while the color gradient indicates varying activity levels.

High-Activity Zones: Specific clusters in the bottom-left corner (e.g., cells 1–11,
101–111, 201–211) consistently exhibit high activity levels across the week. These
clusters appear as yellow to red regions, indicating maximum activity levels of 24–30
or above. The spatial proximity of these cells suggests these areas are critical for
resource allocation, possibly due to dense user populations or significant commercial
activity.

Moderate-Activity Zones: The blueish-green shades (activity levels 6–18) dominate
the grid, representing moderately active cells. These cells are distributed throughout
the network and may correspond to residential or mixed-use zones.

Low-Activity Zones: Blue cells with activity levels between 0 and 6 are sparsely
distributed, reflecting areas with limited network usage. These regions may correspond
to rural areas, underpopulated zones, or areas with limited mobile penetration.

Spatial Cluster Identification: The grid highlights clear clusters of activity, which
can inform network planning. For example, consistent high-activity zones may require
enhanced capacity through additional small cells or spectrum reallocation.

Temporal Analysis

The violin plots (Fig. 3.1) offer a temporal perspective, showing hourly traffic
distribution across days of the week.

Weekday Patterns: Maximum traffic levels rise significantly between 7 a.m. and
9 p.m., with a pronounced peak during evening hours (6 p.m.–9 p.m.). This reflects
typical working hours and post-work usage spikes, likely driven by streaming, gaming,
and social media activities. Higher variance in traffic levels during these hours
indicates the presence of both highly active and moderately active cells.

Weekend Patterns: Traffic remains relatively stable but exhibits a broader distribution
during weekends, particularly in the afternoon and evening hours. This aligns with
increased leisure and recreational use.

Low-Activity Periods: Across all days, traffic levels dip significantly from 11 p.m.
to 6 a.m., reflecting reduced user activity during nighttime. However, certain cells
maintain activity, likely reflecting areas with nightlife or essential services.
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Key Spatiotemporal Clusters

Clusters identified in both the heat map and violin plots reveal areas requiring
differentiated network management strategies.

High-Activity Clusters: Require advanced resource optimization techniques such as
traffic offloading, load balancing, and dynamic spectrum allocation. These clusters
also highlight potential areas for deploying additional infrastructure like small cells or
massive MIMO.

Moderate-Activity Clusters: Serve as transition zones and require periodic
monitoring to handle peak surges effectively. Moderate activity zones may benefit
from pre-emptive measures, such as capacity boosting during events or holidays.

Low-Activity Clusters: Highlight potential opportunities for energy conservation,
e.g., dynamically switching off underutilized base stations during non-peak hours.

Implications for Network Resource Management

Dynamic Allocation: Insights from both the heat map and violin plots emphasize
the need for dynamic resource allocation tailored to spatiotemporal traffic patterns.
High-activity clusters demand consistent monitoring and pre-emptive load balancing.

Energy Efficiency: Moderate and low-activity clusters present opportunities for
energy-efficient measures such as small cell sleep cycles and energy-aware routing.

Proactive Management with SON: These visualizations underscore the value of
self-organizing networks (SON) equipped with predictive algorithms for real-time
traffic forecasting and proactive optimization.

3.4.2 Models Performance Analysis

The Support Vector Regression (SVR) model demonstrated, as represented in
Table 3.1, exceptional performance across all three prediction tasks, namely minimum,
mean, and maximum internet activity levels as compared to other state-of-the-art
solutions for this problem. When compared to both classical models like ARIMA
and Levenberg-Marquardt (LM) algorithm-based neural networks (NN) and deep
learning-based models such as CNN-RNN, the SVR model consistently outperformed
these alternatives. As highlighted by the authors in [83], deep learning models like
recurrent neural networks (RNN), three-dimensional convolutional neural networks
(3D CNN), and the combination of CNN and RNN (CNN-RNN) are often considered
state-of-the-art for spatiotemporal data analysis. However, the findings in this study
challenge that narrative, demonstrating that a well-trained classical SVR model can
provide superior results for specific tasks, particularly those with high spatiotemporal
granularity.
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Table 3.1: Results for the machine learning models against evaluation metrics
Task Metric SVR ARIMA LM CNN-RNN [83]

Min.
MA 90.25% 67% 61% 69%

MAE 0.42 22.85 32.86 21.35
RMSE 0.61 58.18 90.96 50.4

Mean
MA 91% 75% 68% 72%

MAE 0.45 24.34 33.08 26.85
RMSE 0.65 52.25 81.46 58.36

Max.
MA 89.72% 63% 63% 67%

MAE 0.6 49.78 56.01 44.74
RMSE 0.88 100.85 126.36 92.32

For accuracy, the SVR model achieved mean accuracy scores of 90.25% for
minimum activity prediction, 91% for mean activity prediction, and 89.72% for
maximum activity prediction, as shown in Table 3.1. These figures are significantly
higher than those of CNN-RNN, which ranged from 67% to 72% for similar tasks, as
reported in [83]. This indicates that SVR captures underlying patterns more effectively,
offering a robust solution for predicting internet activity levels. In comparison, deep
learning models like CNN-RNN, while powerful, achieved predictability of 70% to
80% for all activity levels, with slightly higher accuracy in multitask learning setups
[83]. The superior performance of SVR underscores its ability to handle specific
nuances in spatiotemporal data that deep learning models might oversimplify or overfit.

In terms of mean absolute error (MAE), the SVR model further demonstrated
its reliability, achieving values of 0.42, 0.45, and 0.6 for minimum, mean, and
maximum activity predictions, respectively, as detailed in Table 3.1. These results
are markedly better than those of CNN-RNN, which exhibited MAE values of 21.35,
26.85, and 44.74 for the same tasks, as reported in [83]. The reduced MAE highlights
the precision of the SVR model in generating predictions close to actual values.
Similarly, root mean square error (RMSE) values provide additional evidence of SVR’s
effectiveness. The SVR model achieved RMSE values of 0.61, 0.65, and 0.88 for
minimum, mean, and maximum predictions, respectively, compared to higher values
for CNN-RNN, such as 50.4 for minimum and 92.32 for maximum predictions [83].
These results demonstrate that SVR minimizes large prediction errors, making it highly
reliable for network planning and resource allocation.

The cumulative distribution function (CDF) plots for SVR predictions further
validate its alignment with actual data. For minimum activity levels, the CDF in
Fig. 3.7 indicates that approximately 60% of cells exhibit activity levels below 5, with
fewer than 10% exceeding an activity level of 10. The upper bound aligns closely
with the actual maximum of approximately 17. Similarly, for mean activity levels, as
depicted in Fig. 3.6, around 50% of cells have activity levels below 5, with only 10%
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Figure 3.5: CDF of maximum hourly Internet activity: Actual VS Predicted

Figure 3.6: CDF of mean hourly Internet activity: Actual VS Predicted

Figure 3.7: CDF of minimum hourly Internet activity: Actual VS Predicted
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exceeding 10. The close correspondence between actual and predicted values reflects
SVR’s ability to accurately capture mean activity patterns. For maximum activity
levels, the CDF in Fig. 3.5 reveals that 40% of cells generate activity levels below
5, with nearly 20% exceeding 10 and an upper bound approaching 25. This close
alignment between actual and predicted CDFs indicates SVR’s superior predictive
fidelity, particularly for high activity levels critical for network optimization.

Authors in [83] emphasized the importance of multitask learning in CNN-RNN
models, achieving slightly higher accuracy in such configurations. However, the SVR
model, trained and tested separately for each task, proved to be more effective in this
study. This challenges the assumption that multitask learning is always superior and
highlights the adaptability of classical machine learning techniques for targeted tasks.
Furthermore, the SVR model’s simplicity and computational efficiency make it a viable
alternative to deep learning models, especially in scenarios with limited computational
resources or where interpretability is crucial.

These findings have significant implications for network management. Accurate
predictions of maximum activity levels are critical for resource allocation, congestion
management, and ensuring seamless user experiences. Predictions of minimum
and mean activity levels provide valuable insights for long-term planning, such as
optimizing infrastructure and implementing energy-saving strategies. Additionally,
the SVR model’s scalability and minimal computational overhead make it suitable for
larger networks and more complex scenarios, including edge computing and real-time
decision-making.

In conclusion, the SVR model emerges as a robust and efficient tool for
predictive modeling in 5G and beyond networks. By outperforming deep learning
and classical time-series models across various metrics, as presented in Table 3.1,
and by demonstrating close alignment with actual data in CDF plots (Figures 3.5,
3.6, and 3.7), SVR bridges the gap between classical and modern machine
learning approaches. It offers a reliable and computationally efficient solution for
spatiotemporal analysis and network resource optimization. Its consistent performance
across different activity levels underscores its potential to meet the growing demands
of modern cellular networks while maintaining accuracy and reliability.

3.5 Conclusion

This chapter has addressed the critical challenge of accurately predicting internet
activity levels, a cornerstone for proactive self-organizing networks (SON) in 5G
and beyond. By leveraging a nonlinear Support Vector Regression (SVR) model,
the research demonstrated that significant spatiotemporal variance exists in the
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maximum, mean, and minimum activity levels over cellular networks. Using real
network data, the SVR model achieved superior predictive accuracy compared to
advanced deep learning models and traditional statistical methods, while maintaining
computational efficiency and simplicity. The results highlight the capability of
classical machine learning models to deliver high-resolution predictions, supporting
the design of proactive resource management and optimization strategies. This
work underscores the importance of data-driven insights for enabling intelligent,
adaptive, and energy-efficient networks, aligning with the broader goal of realizing
fully autonomous and efficient 5G and beyond network ecosystems.



Chapter 4

Mobility Pattern Prediction for
Wireless Cellular Networks using a
Global Indexing System

Data-driven mobility pattern prediction is essential for achieving zero-touch
automation and closed-loop performance optimization in 5G and 6G networks. While
several studies have proposed methods for indexing user locations and predicting
mobility patterns, most rely on localized grid systems, which lack generalizability.
This chapter addresses this gap by conducting a comparative study of mobility pattern
prediction using a global indexing system, specifically Geohash.

The study reviews promising use cases enabled by mobility pattern prediction
and explores the main methods of tracking users’ movements and predicting their
mobility. A comparative evaluation of regression and classification machine learning
approaches is presented, using Geohash as the hierarchical grid system. Additionally,
a KNN-based model is developed, which incorporates Geohash ID and user speed as
features, achieving an accuracy of 94% at resolution level VIII.

The rapid evolution of mobile networks, including 5G, aims to meet diverse
requirements such as 1000x capacity increases, ultra-low latency, and energy
efficiency for enhanced mobile broadband (eMBB), ultra-reliable low latency
communications (URLLC), and massive machine-type communications (mMTC).
However, these advancements exacerbate challenges like seamless user mobility
management, especially in ultra-dense deployments, where frequent handovers can
degrade Quality of Experience (QoE). Accurate mobility prediction is critical to
addressing these challenges. This chapter proposes a high-accuracy mobility
prediction model based on real-world data while avoiding computationally expensive
methods like deep learning.

59
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4.1 Relevant work

Several techniques for modeling and predicting user mobility patterns have been
proposed in literature [86,87] and they can broadly be grouped into three categories: 1)
Traces based models which are derived from measurements obtained from deployment
systems such as connection logs or user location update information; 2) Random
synthetic models which employ mathematical models to characterize the movement of
mobile devices; and 3) Data-driven machine learning (ML) models which use historical
data containing contextual information about the users mobility behaviour. Data-driven
ML models would be most relevant in 5G networks because the ultra-dense and
heterogeneous nature of network deployment would make it difficult to develop
analytical models that can accurately fit the mobility of users in order to analyze
system metrics; e.g., HO rate, throughput, coverage, and sojourn time. In addition,
ML techniques would play a crucial role, because there are certain hidden patterns that
exist in human behaviour which cannot be fully described or modeled mathematically.
However, with sufficient data, these hidden patterns or behaviours can be intelligently
learned using proper data analytics and ML algorithms.

The focus of this article is to identify potential applications of mobility pattern
prediction for 5G networks, and to investigate different data analytics and ML
techniques for the diverse applications. First, some futuristic applications, such as
content caching and pop-up networking, that utilize mobility pattern prediction to
improve the performance of 5G networks are identified and discussed. Second,
different methods of locating users are discussed followed by highlighting the
significance of a global indexing grids. Third, ML based mobility prediction
algorithms and implementation schemes are presented briefly. Lastly, using Geohash
grid system to locate users with reference cells, the performances of regression and
classification based ML algorithms for the prediction of future locations of the users,
a very popular task in mobility prediction, are compared thoroughly. Research on
mobility pattern prediction in cellular networks highly rely on synthetic data or uses
localized grid system. As presented in a recent study [88], authors exploit synthetic
data in a user defined environment to predict the future location of mobile users and
they achieve an accuracy of prediction around 95%. To the best of the knowledge of
authors, it is the first time that such comprehensive study is performed that compares
the performance of machine learning algorithms for the two popular approaches of
tracing users, user location coordinates and cells of association with reference to a
global indexing system.
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Contribution and Organization

The main contributions of the work presented in this chapter are:

• Identification of contemporary and futuristic applications of mobility pattern
analysis and prediction in mobile networks.

• Classification of methods of locating users with their pros and cons

• Classification of machine learning algorithms and implementation schemes
commonly used for mobility prediction in mobile networks

• Comparative study of the performance of regression and classification based
algorithms for the prediction of next multiple consecutive locations, using real
GPS data and global grid based indexing system called Geohash.

• Development of prediction model for the prediction of user’s location with high
accuracy based on Global indexing system. Such that the model uses very simple
algorithm and fewer features.

The rest of the chapter is organised as follows: Section 4.2 presents some key
applications of machine learning based mobility prediction in the field of 5G and
beyond networks. Key ingredients of the machine learning approaches for the
prediction of mobility patterns are discussed in Section 4.3. Comparative study based
on the results from regression and classification machine learning algorithms applied
on coordinates and grid indexed data is presented in Section 4.4. Section 4.5 concludes
how Geohash based global referencing system can help to predict users location at
different resolution levels of Geohash grid system.

4.2 Enabling Network Optimization via Mobility
Prediction

Traditionally, data-driven models for mobility prediction have been used to optimize
network performance metrics like latency, call drop rates, and signaling overhead.
However, predictive mobility models can unlock several advanced use cases in 5G
networks:

4.2.1 Proactive Caching and Pre-buffering

Mobility prediction enables efficient caching and buffering by estimating user
trajectories. This allows small cells (SCs) to cache user-specific content or pre-buffer
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data in areas with predicted connectivity challenges, thereby reducing latency and
backhaul overhead [89, 90]. For instance, [89] leveraged user trajectory estimation
to optimize SC cache usage, while [90] proposed algorithms to schedule data fetches
proactively based on mobility patterns.

4.2.2 Energy-Efficient Cell Switching

Predicting future traffic loads helps optimize energy savings by scheduling small cell
sleeping cycles or deciding which base station (BS) a user should connect to along their
route [75,91]. For example, [91] used past handover(HO) traces to forecast traffic loads
and develop SC sleeping patterns in ultra-dense networks.

4.2.3 Base Station Skipping

Frequent HOs in ultra-dense networks increase signaling overhead and reduce QoS.
Mobility prediction aids in HO skipping techniques, such as location-aware or
cell-size-aware skipping [92], which minimize unnecessary HOs by extending user
connections with selected BSs.

4.2.4 Pop-up Networking

Mobility prediction can optimize drone-assisted temporary networks for scenarios like
events or disasters [93]. By forecasting user density, drones equipped with SCs can
dynamically position themselves to provide additional resources and coverage.

4.2.5 Secondary User Mobility Predictions in Cognitive Radio
Networks

In 5G’s IoT-driven ecosystem, cognitive radio networks (CRNs) improve
spectral efficiency by enabling secondary users to access available spectrum
opportunistically [94]. Mobility prediction can proactively identify spectrum
availability and reduce latency for secondary users, as highlighted in [95].

Nonetheless, given the intense ML implementations to make the decision, the
proposed approaches are more suitable for stationary users, since all the processes
should be repeated while the SUs are moving. Therefore, mobility prediction could be
a good candidate in solving this problem by predicting the future locations of the SUs
in order to proactively carry out the necessary ML implementations for deciding the
most appropriate spectrum portion to sense.
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Figure 4.1: Machine learning driven mobility prediction components and cellular
network optimization use cases.

4.3 Machine Learning Driven Mobility Prediction

Mobility pattern prediction in wireless mobile networks like 5G is driven by both
predefined requirements and untapped opportunities derived from big data generated
by networks and users. This data includes user interaction times, geographical
locations, and types of services used. By leveraging data-driven ML algorithms, this
contextual information can be transformed into insights about user mobility behavior.
Key components of mobility pattern prediction for mobile networks are outlined in
Fig. 4.1. These components represent a flexible framework that can vary based on
specific research or business needs.

4.3.1 Methods of Locating Users

In mobile networks, user locations are determined using two primary methods:
coordinate-based and grid-based systems.

Coordinates

Coordinates, comprising latitude, longitude, and altitude, provide exact user
geolocation. GPS systems are widely used to obtain this data. Latitude and longitude
are commonly used for tracing mobility patterns, while altitude assists in analyzing
vertical mobility, such as movements between floors in buildings. However, due to
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privacy concerns, network operators are often reluctant to share such precise data,
limiting its research applications.

Grid

A grid represents a set of adjacent cells covering a geographical area. In mobile
networks, each cell can refer to the coverage area of a base station (BS) or a
user-defined grid. The grid-based approach, which associates users with specific cells,
is popular for studying mobility behavior, particularly in scenarios where cells act as
autonomous entities.

Key parameters for defining grid systems include:

• Resolution: Resolution basically defines the size or area of each cell in a grid.
In mobile networks, cell resolution is important because different cell sizes can
assist in the study of mobility patterns that are important at different network
levels. For example at high resolution (grid of cells with small size) can be
useful for studying mobility patterns important for operations related to micro
and pico cells whereas the low resolution analysis can be useful for macro cell
operations. In an actual mobile network, BS cells are commonly categorized
as macro (radius 3-30 km) and SCs e.g. micro (radius 500-2,500 meters),
pico (radius 100-250 meters) and femto (10-50 meters).

• Shape: In mobile network, different shapes of cells can be used to draw a grid
for the study of mobility behaviour of users. It can be hexagonal, rectangular,
diamond or triangular shape depending on the requirements e.g. triangular grid
can be used to study BS antennas beamforming operations. Most commonly
used grids are rectangular in shape as coordinates can easily be translated into
a Cartesian System which makes different computational functions very easy.
Cells in rectangular grid shape can be of fixed size or different sizes depending
on the scheme used to define it.

• Hierarchical Structure: Another criterion to differentiate various grid systems
is whether they are hierarchical or non-hierarchical. Hierarchical grid system
combines multiple grids, each grid with different cell size. At the first level
of the hierarchy, the grid has broad cells and at subsequent levels cell sizes
decreases and smaller cells fall within the broad cells at a level above. One
such hierarchical grid system is Geohash. It is described in section 4.3.1 and its
sample cells at resolution level V to VIII are shown in Fig. 4.2. If the grid is
non-hierarchical, each cell has a unique identifier, independent of the labels of
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Figure 4.2: Geohash cells at resolution levels V to VIII.

the cells on the top levels. Concept of a hierarchical grid is important to replicate
the concept of SCs deployed inside macro cells in real mobile networks.

Global Grid Systems

Global grid systems like Geohash provide a standardized framework for mobility
studies, supporting cross-disciplinary applications like urban planning and marketing.
Geohash translates user coordinates into alphanumeric tags based on grid cell
locations, with longer tags representing finer resolutions. Table 4.1 lists examples
of global geo-coding systems, while Table 4.2 summarizes Geohash specifications.
These systems can convert the coordinates of a user’s location into string labels as cell
identifier using some geo-coding scheme and can also do the reverse.

Geohash

Geohash is a global geocoding scheme comprising hierarchical grid system of
rectangular cells of different sizes at different resolution levels [96]. It was introduced
by Gustavo Niemeyer in 2008 and it is public domain indexing system. It translates
the coordinates (latitude and longitude) of a user’s location into an alphanumeric
string label called ’Geotag’ or ’Geohash’. Length of the Geohash tags represents
the resolution level of the grid. Longer the Geohash tag, higher the resolution and
smaller the cell size are. This resolution also determines the precision, up-to how close
a user can be located to its actual position using Geohash tag. Cell dimensions and
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Table 4.1: Different global geo-coding systems
Name Translates Presents Resolution Labels
Mapcode
(2001)

latitude,
longitude

Points Arbitrarily
precise

Two alphanumeric strings
joined by dot of length
between 4-7

What3-
words
(2013)

latitude,
longitude

Grid of
cells

One, 57 million
squares of
3m*3m area

Three words

Geohash
(2008)

latitude,
longitude,
precision

Grid of
cells

twelve levels,
hierarchical

Alphanumeric string, 32
characters with the base 32
encoding

Plus Code
(2014)

latitude,
longitude,
precision

Grid of
cells

Various
hierarchical
levels up to
3m*3m area

Up to 10 characters with +
sign before last two, first
four character for area code
and last 6 for local code

precision levels up to resolution IX of Geohash grid system are presented in Table
4.2 with reference to the length of the Geohash tag [97]. Fig. 4.2 shows the cells in
the Geohash grid system at resolution level V to VIII. In Geohash tag first character
presents the broad cell at level one and first two characters together present a smaller
cell at resolution II. Similarity between the prefixes of Geohash of two cells represents
how close they are to each other, but it is not always true for the vice versa case. For
example, Geohash tag ’wx4g00w’ contains seven characters which represents a cell at
resolution level VII. If a cell has Geohash tag ”wx4g00f’ it means both cells are falling
into same cells up-to resolution level VI.

4.3.2 ML Approaches

Based on these methods of locating users different ML algorithms can be used to
predict mobility patterns. These algorithms can be broadly grouped into two categories

Table 4.2: Geohash grid specifications
Geohash length Cell width (km) Cell height (km) Precision (Error km)
1 5,000 5,000 ± 2500
2 1,250 625 ± 630
3 156 156 ± 78
4 39.1 19.5 ± 20
5 4.89 4.89 ±2.4
6 1.22 0.61 ±0.61
7 0.153 153 ±0.076
8 0.038 19.1 ±0.019
9 0.0048 4.77 ±0.002
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namely regression and classification.

Regression

Regression algorithms predict continuous numeric values, such as user coordinates
(latitude and longitude). Examples include Least Square, Ridge, LASSO, Elastic-Net,
SVR, and Decision Tree Regression (DTR). Multitask regression models can predict
multiple outputs simultaneously, e.g., both latitude and longitude. Non-numeric
categorical variables, such as dates, must be converted into numeric values for use
in regression models.

4.3.3 Predicates

Classification

Classification algorithms, such as SVM, Decision Trees, and KNN, predict discrete
outcomes like grid cell IDs or user trajectories. These methods are particularly suitable
for tasks like predicting the next cell in a user’s path. Sequence similarity algorithms
can identify recurring mobility patterns, aiding user profiling and personalized service
delivery. In Section 4.4 we compare the performance of both approaches at the
different resolution.

4.3.4 Feature Space

Mobile network data is rich in features like user location, time-stamps, and service
details. Features can be directly used (e.g., coordinates) or derived (e.g., time-stamps
converted into day or time-slot). These features are critical for training ML models to
predict mobility patterns.

4.3.5 Prediction Schemes

Using any combination of the above features, different approaches can be adopted for
prediction according to the network requirements.

• Predicting immediate or distant future locations using the current location.

• Using sequences of recent locations to forecast trajectories.

• Iteratively predicting far-off destinations by chaining predictions. These
schemes vary in computational cost and suitability for specific use cases, such
as real-time vs. long-term predictions.
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4.3.6 Predicates

Predicates in mobility prediction include predicting user coordinates, grid cell IDs, or
paths. Mobility pattern analysis can also be used for user profiling, trajectory similarity
analysis, and identifying popular routes. Such insights enable enhanced marketing,
resource management, and service delivery in future networks.

4.4 Comparative Study of Machine Learning
Approaches for the Prediction of next Location

In this section, we present and compare results for different ML approaches,
regression, and classification, for the prediction of future locations, based on the
current location, at the different levels of resolution of ’Geohash’ spatial indexing
system.

4.4.1 Data Set Description

In this study, we have used mobility data of a user in Beijing. Data is extracted from
a bigger GPS data-set collected for Geolife project by Microsoft Research Asia [98].
Data is collected from 182 participants using different GPS loggers and GPS-phones
at different sampling rates with around 91% of the data logged in dense representation
i.e. at every 1-5 seconds or 5-10 meters. The data used here covers mobility patterns
of a user in a dense urban area of Beijing for VI trajectories. Data comprises
coordinates (latitude and longitude) of location points of the user with time-stamp.
These trajectories cover an area of approximately 2250 km2. It has 27,627 sample
points. It crosses 21 unique cells at resolution V of the Geohash grid system and 6,188
unique cells at resolution VIII. For the data selection following aspects have been in
consideration:

• Data covers a dense urban area, as study of 5G and beyond networks in the urban
context is crucial.

• Data of such participant is used who has more trajectories than any other
participant in that area. So we have data of as many trajectories as possible
for a single participant.

• For the participant, mentioned above, top VI trajectories with the highest number
of foot prints (data samples) are selected. So we have more number of data
samples for training models.
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4.4.2 Methodology

This study is conducted in two stages. At first stage, simply two features (latitude and
longitude) are used to compare the performance of multiple ML algorithms from the
two main ML approaches, regression, and classification. We evaluate the impact of
resolution (size of cells to identify user location) on predicting the next location of the
user under the both approaches. In a classification approach, first the coordinates are
translated into Geohash tag at certain resolution then the label (cell id), identifier for
current cell, is used as feature and ’cell id’ of the next location is used as predicate to
train and evaluate classification algorithms namely Support Vector Machine (SVM),
Logistic Regression, Decision Trees (DT), K-nearest neighbours (KNN) and Gaussian
Naive Bayes.

In Regression approach, we have used linear regression and regression-based
implementation of ML algorithm decision tree (DTR). In this approach, we have
trained and tested separate models for the prediction of latitude and longitude with
each algorithm. In any single model, the latitude of the current location is used as
feature and the latitude of the next is used as a predicate, same is repeated for the
prediction of longitudes. To use accuracy as an evaluation metric, later the predicted
latitude and longitudes are translated into ’cell id’ using Geohash. Geohash of the
predicted and actual destination points are then compared to calculate the accuracy of
regression-based models. Accuracy is used as a single evaluation metric so that the
results of regression and classification can be compared. Separate classification and
regression models are trained and tested for the resolution level I to VIII of Geohash
grid system. For simplification, only better performing algorithms (DTR, LR, DT,
KNN and NB, SVM) are presented for meaningful resolution levels V to VIII for the
prediction of the next location. In the second stage, we have developed models using
best performing classification algorithm and features from the set of features listed in
Table 4.3 at resolution VIII. Performance of the models is compared to identify the

Table 4.3: Set of features exploited in enriched data with the help of KNN
Sr# Sets of Feature
1 Set I: {Latitude, Longitude}
2 Set II: {Latitude, Longitude, Time}
3 Set III: {Latitude, Longitude, Time, Date}
4 Set IV: {Latitude, Longitude, Time, Date, Speed}
5 Set V: {Geohash }
6 Set VI: {Geohash, Time }
7 Set VII: {Geohash, Time , Date}
8 Set VIII: {Geohash, Speed}
9 Set IX: {Geohash, Time , Date, Speed}
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Figure 4.3: Number of samples for each cell at different resolution levels of Geohash

combination of features and tuning parameters that lead to best performing model.
But first data is enriched by increasing the number of samples for the cells with fewer
sample to over come the challenge of data scarcity. No. of samples for each cell are
presented in Fig. 4.3 for each resolution level and enriched data at resolution level VIII.

4.4.3 Data Processing

Since the data used here is real data so it require loads of pre-processing and cleaning
before its use in the model. The original data has individual 17,621 trajectory plots
of 182 users representing sequence of time-stamped geographical coordinates latitude,
longitude and altitude. First through the reverse geo-coding each point in the trajectory
is labeled with corresponding city and administrative area. Trajectories in the most
dense area Beijing are screened, and in Beijing such participant is selected that has the
maximum number of trajectories. For that selected person, top six trajectories with the
highest number of for prints are selected. Using location and time information first
distance and then speed of travel for the participant is calculated among consecutive
points. Using ’pygeohash’ library in python Geohash labels for each point are
extracted. These extracted information, Geohash ID, speed etc., are used as features in
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Figure 4.4: Performance comparison of regression and classification approaches at
different resolution level of Geohash spatial indexing system for the prediction of next
location(step). DT Reg.: Decision Tree Regression, Linear Reg.: Linear Regression,
DT Class: Decision Tree Classifier, KNN: K Nearest Neighbours, NB: Naive Bayse,
Log. Reg.: logistic Regression

the study later. Categorical features like date, time, Geohash ID are also encode into
numeric values so tha they can be used as features in machine learning algorithms. At
stage II, data is enriched by creating duplicate samples for the cells where they had
very few instances of occurrences. Simple duplication is performed as, at a sampling
rate of 1-5 second and 5-10 meter, creating more sample points by interpolation of
latitude and longitude will also lead to coordinate points falling in the same Geohash
cells.

4.4.4 Results and Discussion

Stage I

Comparison of the performance of regression and classification models at resolution
level V to VIII is presented in Fig. 4.4. Resolution levels I to IV are excluded because
for those resolutions models can predict multiple future locations with an accuracy
almost 100%. It is so because the cell size of the Geohash grid system is very large
and in the data used here users’ locations is logged after very short intervals of time
or distance i.e., at every 1-5 seconds or 5-10 meters. It is highly unlikely for the user
to change its cell in that short interval of time and predicting next location becomes
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Table 4.4: Results of classification algorithms at different resolutions
Model Geohash

Level
Parameters selected based on cross validation Mean Val.

Accuracy
Test
Accuracy

V NA 92.82% 93.35%
VI NA 92.20% 92.43%
VII NA 83.61% 83.23%

Gaussian
Naive
Bayes

VIII NA 53.96% 51.64%
V {C: 100, penalty: L1} 67.42% 67.82%
VI {C: 100, penalty: L1} 44.05% 44.39%
VII {C: 100, penalty: L1} 31.31% 30.91%

Logistic
Regression

VIII {C: 100, penalty: L1} 7.84% 7.30%
V {C: 1000, kernel: linear} 99.07% 99.38%
VI {C: 1000, kernel: linear} 90.61% 91.99%
VII {C: 1000, kernel: linear} 59.07% 60.16%

Support
Vector
Machine

VIII {C: 1000, kernel: linear} 18.24% 13.46%
V {Metric: Minkowski, No. of neighbors: 5, Weights: distance} 99.49% 99.70%
VI {Metric: Manhattan, No. of neighbors: 5, Weights: distance} 96.99% 96.96%
VII {Metric: Manhattan, No. of neighbors: 5, Weights: distance} 88.06% 87.20%

KNN

VIII {Metric: Minkowski, No. of neighbors: 10, Weights:
distance}

58.75% 56.55%

V {Criterion: Gini, Maximum depth: 19} 99.39% 99.59%
VI {Criterion: Entropy, Maximum depth: 11} 96.63% 85.51%
VII {Criterion: Entropy, Maximum depth: 15} 86.68% 63.04%

Decision
Tree

VIII {Criterion: Entropy, Maximum depth: 13} 55.15% 31.32%

meaningless. Another reason for ignoring these resolutions is that the femto to macro
cells are expected to fall within same cells where as mobility prediction is important
for knowing the movement of a user from one cell to another. Resolution IX and higher
are also excluded from the results here, because it identifies each location almost with
a unique identifier which will be same as using coordinates to locate the users.

From Fig. 4.4 it can be seen that all models, whether it be regression or
classification models, perform equally well at low resolution as cell size is large. It
is observed that accuracy decreases as the resolution increases, i.e, with the decrease
in the cell size of the grid system. All models except Logistic Regression, perform
well, with an accuracy above 90%, for the prediction of the next immediate location at
resolution V.

As it can be seen from Table 4.4, at resolution V where cell size is 4.89Km by
4.89km, SVM, KNN, and Decion tree based models can predict the next location
of the participant even with an accuracy more than 99%. at this resolution these
classification models perform better than regression models. Reason being the same,
the cell size is big so classification models can classify non changing cells easily while
regression model predict continuous values and have comparatively low accuracy. For
the resolution VI with a cell size 1.22km by 610m, it can be seen that the prediction
accuracy is slightly decreased for all models as compared to their accuracy at level
V. It can be observed that the best performing regression model Linear Regression and
decision tree and classification model like KNN predict next location with almost same
accuracy. KNN with 96.96% accuracy overall performs the best and slightly better than
the other two models.
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At resolution VII with cell size 153m by 153m, performance degrades further for
the all models. KNN classfier, Linear and DT regression remains pretty consistent with
slight degradation in performance. Here Linear and DT regression models perform
slightly better tahn KNN contrary to their behviur at resolution V and VI. Whereas
at Resolution VIII, all models have drastic decrease in accuracy as compared to other
resolutions for predicting next location of the participant. Among all these models,
here, linear regression performs better than others with an accuracy around 68% for the
prediction of next location. From Fig. 4.4 a trend of gradual decrease in performance
of all models can e seen from Resolution V to VIII. At low resolution i.e., large cell
size, Classification algorithms seem to perform better whereas at high resolution i.e
small cell size, regression models perform better. From the comparison of the results,
it can be said convincingly that Geohash indexing system can be used to identify and
predict mobility patterns of users. It can also be concluded that at low resolution (i.e.
in a grid with larger cells) both regression and classification models can achieve similar
high accuracy to predict immediate next location, but as the resolution increases and
cell size decreases the regression-based prediction approach can provide better results
both for immediate and far locations as compared to classification schemes.

Stage II

Looking at the trend from Fig. 4.4 the decrease in the performance from level VII
to VIII should have been gradual rather than drastic. The gradual further increase
is expected as the cell size decrease further, but this strange behaviour needs to
be investigated. Beside that, considering future cellular networks with small cell
deployments, study of mobility at high resolution is very important. Therefore the
study is extended at high resolution level VIII of Geohash grid system with the best
performing classification algorithm. Study is extending with the best performing
classification algorithm rather than the best performing regression algorithm. It is
so because the natural option for developing a prediction model with a Grid based
indexing system is classification. To exploit the Geohash indexing system with its cell
id based labeling, it is important to develop better performing classification algorithm.

To understand the performance lag at resolution VIII and to develop a better
performing classifier, therefore we further investigated the data, extracted and
exploited new features. We extended study with KNN as it was consistently exhibiting
the best performance among other classification algorithms. Data exploration lead to
insight that key reason for the drastic decrease in performance at resolution VIII is due
to data scarcity. As it can be seen from Fig. 4.3 that there are sufficient number of
samples for each cell at low resolution V, i.e., around 75% of the cells have 200 or
more number of footprints or sample data points at resolution V. But 75% of the cells
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Set I Set II Set III Set IV Set V Set VI Set VII Set VIII Set IX

Accuracy 94.66% 84.70% 93.54% 93.76% 76.28% 93.95% 94.07% 94.38% 94.13%
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Figure 4.5: Performance of KNN on enriched data for the prediction of next location
with the set of features from Table 4.3

at resolution VIII have less than three data points. With the increase in resolution level
the number of cells on each resolution level increases whereas the data points in each
cell decreases leading to data scarcity in cells at high resolution. It means 27,627 data
points fall in only 21, 175, 1100, and 6188 unique cells at resolution V, VI, VII, and
VIII respectively To address this challenge more data is generated by duplication of
sample points with less than ten instances. As a result of data enrichment the number
of total samples increased to 83,131 from 27,627. As it can be seen from the result for
feature set I in Fig. 4.5, the performance of the KNN model significantly increases after
data enrichment. But goal here to develop a highly accurate model that exploits the
Geohash ID. For this purpose new features are extracted and set of different features
are exploited for the model development. Set of the features evaluated are listed in
Table 4.3 and correlation between the feature set and the predicate Geohash id of the
destination location is shown in Fig. 4.6. From Fig. 4.6 it can be seen that Geohash
id for the current location and future location has the strongest correlation, Cartesian
coordinates (Latitude and Longitude) are next in the list for strong correlation with the
predicate ’Geohash VIII Destination’.

From Fig. 4.5 it can be seen that feature set I produces the best results. Whereas use
of set II, only Geohash ID does not generate some good results. But when Geohash ID
is used along the speed as features in the KNN model it produce very good accuracy
of around 94% for the prediction of the next location. So finally we have a model that
rely on Geohash ID and can predict the future location of an individual with very high
accuracy based on the current location.
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Figure 4.6: Correlation of features and predicate

4.5 Conclusion

This chapter demonstrated that a global hierarchical spatial indexing system like
Geohash is a powerful tool for mobility pattern prediction in mobile networks. By
leveraging Geohash-based spatial indexing, both regression and classification ML
approaches were evaluated, revealing that larger grid cells (e.g., resolution V) allow
models like DTR, LR, DT, KNN, and SVM to achieve high prediction accuracy
above 96% for the next location of users. However, prediction accuracy declines
progressively as the resolution increases (smaller cell sizes), with a noticeable
performance drop at resolution VIII, primarily due to data scarcity and smaller cell
dimensions.

Data enrichment through duplication and feature augmentation using Geohash Cell
ID and speed significantly enhanced model performance. The KNN model achieved
an accuracy of over 94% for next-location prediction at resolution VIII, demonstrating
the effectiveness of enriched data and feature selection. Overall, the results indicate
that classification models generally outperform regression models at lower resolutions
(larger cells), while regression models perform better at higher resolutions (smaller
cells). The integration of additional features, such as speed, further improves
classification accuracy, making it suitable for high-resolution mobility prediction.

These findings align with the thesis’s broader goal of enabling intelligent,
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data-driven mobility management in 5G and beyond networks. By optimizing
prediction accuracy at varying resolutions, this work supports enhanced mobility
management, network optimization, and service delivery in ultra-dense and
heterogeneous networks.



Chapter 5

Performance Based Cells
Classification in Cellular Network
Using CDR Data

The fifth generation of mobile networks (5G) is now a reality as Verizon turns on
the world’s first 5G network1 and EE launches the first 5G trial in Canary Wharf,
London2. The launch of 5G networks promises great gains in capacity, speed,
resilience, and latency, but at the cost of unseen complexity. In order to unlock
the 5G potential, a network requires ultra dense small cell deployments, multi-RAT
coexistence (radio access technology), catering for an unprecedented spectrum of
services, and advanced features (e.g., network slicing), just to name a few. Such
complexity requires permanent monitoring, diagnosis, rectification, and actuation for
three main reasons. First, it would require an inhibitive capital expenditure to be
able to offer the promised 5G infinite capacity perception to all users by following
the traditional over-engineering approach. To this end, network agility and flexibility
are key to reshuffling the exactly dimensioned resources in ”near” real-time in a
user-centric method. Authors in [99] refer to this feature as ”Resource Elasticity”
and propose mechanisms for the exploitation of this elasticity by softwarising network
functions pertinently and via cross-slice resource provisioning. Second, the increased
number of network nodes coupled with the key role of each node in creating the
infinite capacity perception renders the failure (or sub-par performance) of any node a
significant impediment on the overall network performance.

Thus, in order to offer the best sustainable quality of experience, an augmented
smart root cause analysis with ”near” real-time classification of network nodes is
paramount. With that in mind, the authors in [100] propose a modified local outlier

1https://www.techradar.com/uk/news/verizon-turns-on-the-worlds-first-5g-network
2https://www.mirror.co.uk/tech/ee-launches-first-5g-network-13368492
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factor approach to identify cells in outage and apply rectification immediately in the
context of heterogeneous cloud radio access networks. Third, the amount of data
generated by the network to report on its performance and experience of its users is
massive and very diverse in nature, content, and frequency. As such, it is essential to
synthesize the knowledge from multiple sources in ”near to real-time” with permanent
inspection and analysis to match the pace of changes in the network such as capacity
demand, users expectations, interference conditions, mobility patterns, etc. Authors
in [101] analyze the role of machine learning in the implementation of self-organized
network management, with an end-to-end perspective of the network, taking into
account the entirety of data generated by the network.

The methodologies employed in current networks for performance management
and optimization is by far insufficient to avail real-time optimization and requires a
disruptive approach to scale it to 5G timing stipulations. Today’s networks are firstly
dissected to subsystems (e.g., radio access, transport, core, etc.), then to regions, and
features (e.g, 3G, LTE, 4G, etc.) and sometimes to vendors (e.g., Nokia equipment,
ZTE node B, Ericsson core, etc.) and more. Such a silo-like approach to examining
the network performance is no longer valid in the world of 5G where the distinction
between radio access and transport is blurred (e.g. C-RAN: centralized radio access
networks with pooled base band units) and the inter-RAT operation is no longer
optional (e.g., ATSSS: Access Traffic Steering, Switch and Splitting). Moreover, the
abundance of data sources and data types has further increased with features such as
minimization drive tests (MDT) [102] and advanced self organization mechanisms.
There is an equal rise in specialized solutions to examine these new data sources, alas,
these are often vendor specific and result in narrower silos.

In this chapter, we propose a novel semi-supervised machine-learning scheme for
automating the detection of under-par network performance and classification of the
behaviour of network nodes which allows for a ”near” real time detection of the nodes
causing performance degradation. The described method is particularly designed to
operate on various and multiple types of data streams that are continuously generated
by the network. For instance, the performance indicators continuously generated by the
radio access network may be jointly analyzed with minimization drive test data streams
for the performance degradation detection. We posit that such a feature is crucial for
overcoming the traditional silo-approach of network performance management.

The proposed solution offers a user-centric perception of the network’s
performance as opposed to the traditional network-centric perception. This aspect
is critical in the prioritization of identified problems and in the distribution of
resources/efforts for the optimization and maintenance of network nodes. We have
tested our solution on CDR data from an African GSM operator and it was successful
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in identifying under par performing nodes and categorize the “type” of degradation
recorded within an hour of the incident.

We thus summarize the contributions of this work in the following points:

• Development of unique method for “near” real-time identification of under-par
performing cells that may be applied to any network generated stream of data.
Moreover, the identification is further categorized to highlight the “type” of
degradation recorded in preparation for the automated smart root cause analysis
that would follow.

• A unique method for unsupervised learning based on K-means clustering that
auto tunes the pertinent number of clusters based on the streaming data.

• A supervised learning technique based on Support Vector Machines (SVM) that
builds on the knowledge extracted from the previous step to classify similar
new data streams. Aim of the classifier to enhance accuracy and scalability for
real-world applications.

• Validation of the framework on CDR data from a real GSM network, achieving
over 98% classification accuracy.

The rest of the chapter is organized as follows. Section 5.1 offers a survey on state of
the art work that employs machine learning for solving network problems. Section 5.2
details the proposed method comprising two phases of clustering and classification.
Sections 5.3 and 5.4 describe the data set used for the validation of this method and the
corresponding results and analysis.

5.1 Machine Learning for Mobile Networks

Machine learning is a proven technique for solving complex problems and has been
successfully applied in many fields such as computer vision, medical diagnosis,
recommendation systems, speech recognition, and more. Driven by the success of
machine learning in various verticals, both industry and the research communities are
exploring its potentials in solving mobile network problems, as in [103].

There are three key features in machine learning that advocate for its application
on mobile networks. First, machine learning learns from the data and the acquired
knowledge improves when the data volume increases. In the advent of fast and
massively parallel graphical processing units and the abundance of network-generated
data, this key feature of machine learning is well exploited. Second, machine
learning and reinforcement learning in particular, circumvents the requirement of
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highly complex closed form mathematical formulation since it is model-free and relies
mostly on the reward system. Closed-form formulations have been a impediment in
classical programming for mobile problems as they create a catch-22; many aspects
of the system need to be omitted to secure a closed form, hence, compromising the
model’s fidelity, alternatively, no closed form can be reached which limits the solution
to numerical analysis. The third features of machine learning is the knowledge transfer
which, in the field of mobile networks, can exploit the temporal and spatial differences
and relevance of different regions. As such, the knowledge acquired in one node
can be transferred to another (or new) node to accelerate the learning curve. This
is particularly important in the 5G era which is characterized by dynamic changes and
diversity. In this case, the knowledge acquired in classifying macro-cell performance
can readily be transferred to small cells or indoor cells. Similarly, knowledge acquired
in diagnosing quality deterioration for VoIP services can be used to accelerate the
diagnose of IoT service (e.g., e-health, smart meters, driver-less vehicles etc.).

Applying machine learning to solving network problems has resulted in a prolific
research output in the last few years. Many efforts have been invested in identifying
potential applications of machine learning such as [1, 104, 105] in the domain
of wireless networks and in particular in the implementation of self-optimization
mechanisms. Two recent works apply machine learning techniques into the analysis of
Call Data Records (CDRs): [106] and [107]. Authors in [106] employ big data analysis
for over ten million CDR records to extract the spatial-temporal predictability of
network traffic. These CDR-driven predictions are then applied to a novel mechanism
for joint optimization of energy consumption and inter-cell-interference in ultra-dense
5G networks. Motivated by the crippling cost of churn faced by telecom operators,
authors in [107] apply deep learning to CDR and customer relationship management
(CRM) records to predict which customer is likely to churn to allow for user-centric
retention efforts. On the other hand, authors in [108] propose a novel method
to automatically diagnose the radio condition in a mobile network cell based on
the user’s performance as captured by MDT records. To this end, the proposed
method applies an unsupervised machine learning technique (Self optimizing maps)
to cluster and classify the performance of each cell in the network. Moreover, in the
domain of fixed networks, authors in [109] propose a machine learning method for
performance monitoring employing SVM and double exponential smoothing (DES)
for the prediction of equipment failure. Authors in [110] offer a solution that uses
deep learning to predict customer churn. By exploiting the intrinsic property of deep
neural networks, the proposed solution can be applied to any type of network and any
subscription based events.
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5.2 Methodology

In this section, we discuss the proposed solution, first detailing each step of the
clustering stage then describing the SVM classifier. Steps taken to devise the solution
are outlined in the flowchart presented in Fig. 5.1. The solution is devised with an
aim to classify cells according to their performance in certain intervals of time over the
day. By performance here we mean the volume of dropped calls (i.e duration, quantity)
against that of normally terminated calls.

To this end, we start by analyzing the data to find relevant features that are
descriptive of the desired performance aspect. Moreover, we apply the concept of
sliding window to capture both, the instantaneous streaming values as well as the trend
of variation of these values; the length of segments can be user defined, e.g., three
hours. As there exists no gold standard for cluster validation in our case, therefore,
in the clustering phase, the goodness of clusters is preliminarily determined by the
internal measure of clusters compactness and separation. More importantly, we mostly
rely on domain expertise via visual validation to determine the quality of the clusters
and to ensure that domain specific characteristics are represented correctly. Tier-wise
implementation scheme using K-means, as explined in in section 5.2.3, is designed.
A certain combination of features is selected for each tier after evaluating possible
combinations from the available feature space.

Once the clustering is yielding satisfactory results data is labeled with the help
of that clustering scheme. Then the labeled data is used to devise a classifier with
supervised learning approach as it can be more simple and generic in terms of
implementation on real data while being more deterministic in terms of performance
evaluation at the same time. In the development of a classifier, the labeled data is split
into training and testing data set. The first is employed to train the SVM classifier
which is later evaluated on the testing data set. The entire process of clustering and
classification is reiterated until a satisfactory level of accuracy is achieved resulting in
a final clustering and classification scheme.

5.2.1 Clustering Model

The goal here is to identify categories of issues present in network and group together
segments with similar performance behavior. As, here, different possible categories of
performance behavior are not known, so, the use of a clustering algorithm is an obvious
choice. But the fact is that there is no best clustering algorithm [111]. Some of the
major methods of clustering are based on density estimation, probabilistic estimation,
partition, and graph-theoretic.
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There are numerous clustering algorithms which basically differ in their objective
function computation. Each algorithm has its own pros, cons and implementation
methods. Density-based clustering algorithms [112] e.g., DBSCAN that looks for
regions of high density is not very efficient particularly for high dimensional sparse
data cases because it compares the distance of all pairs of points.
Whereas, though the spectral clustering [113], an example of graph theory, does not
require complicated parameters like BDSCAN, but it is not a good algorithm for big
data and a higher number of clusters. A Gaussian mixture model [114] from the family
of probabilistic methods consider data as a mixture of Gaussian distribution with
unknown factors. This model has limitations like it cannot be scaled and it requires
too many parameters for implementation.
K-means clustering is the most popular and simplest partition model [115]. It does not
require any parameters except the number of clusters. There also exist the methods
to compute an optimal number of clusters. It works well even for high-dimensional
sparse data [111]. Multiple variants and implementation schemes of K-means exist
due to the rich history of research [111]. In addition, it is scale-able for huge data
and very efficient for real-time implementation. Considering all these factors K-means
clustering is selected here.

5.2.2 Clustering Validation Metrics

Another critical task in clustering is the validation of results, particularly in absence
of a ground truth, as it is the case here. We have no predefined labels for any classes
in our data. There exist multiple metrics for clustering validation, for data, where
exists ground truth or golden standard, also known as external metrics [116]. But the
metrics for evaluating the goodness of clustering without ground truth are rare. Such
metrics are called internal metrics and they evaluate clusters generally on the basis
of two attributes of clustering: compactness within clusters and separation between
clusters [117]. Some of the internal metrics take compactness into consideration or
separations only, other evaluate clustering taking both parameters into consideration at
the same time. We have taken four commonly used and well-acknowledged internal
metrics [117]: Root-mean-square standard deviation (RMSSTD) for compactness,
R-squared (RS) for separation, Calinski-Harabasz index (CH) and Silhouette index
(S) for compactness and separation.
Internal metrics basically help to determine the optimal number of clusters and their
numeric values just indicate how compact or separate the clusters are on average. For
example, Silhouette index varies between [-1,1] where negative values indicate that
clusters are mixed with data points assigned to one cluster from other clusters. When
it is zero or close to zero, it reflects clusters are not far from each other and similarity
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Figure 5.2: Selection of optimal K, at Tier I using elbow methods.

among data points within clusters is low. Moving away from zero on the positive
side of the index indicates that the clusters are well separated and well compact.
Besides that, visual validation with the help of domain knowledge is a requirement
in the absence of a gold standard. These metrics can be a good statistical indicator of
compactness or separation of the cluster but they are no guarantee that the obtained
clusters are suitable for the desired application [117].

5.2.3 Clustering Implementation Scheme

K-means clustering results in groups of data such that a distance metric between the
empirical mean of a sub-cluster and the points in that cluster is minimized and it
happens for all the clusters [111]. In this work, we have used the Euclidean distance
as the distance metric. The input parameter required by K-means is the number of
clusters beside decision function also known as kernel.

In this research, an heuristic approach is applied for the selection of features.
For this different combinations of features are used in K-means and the features
with optimal results are shortlisted. Clusters here not only need to be statistically
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Table 5.1: Performance of K-means against clsuter validation metrics for different
values of K on both tiers of clustering

K RMSS RS Silhoutte CH
T-1 T-2 T-1 T-2 T-1 T-2 T-1 T-2

2 0.14 0.18 0.44 0.33 0.48 0.36 9546 312
3 0.11 0.15 0.69 0.54 0.54 0.39 13479 368
4 0.09 0.14 0.78 0.58 0.45 0.37 13963 296
5 0.08 0.14 0.81 0.62 0.46 0.38 13206 262
6 0.07 0.13 0.85 0.66 0.41 0.36 13383 246
7 0.07 0.13 0.87 0.69 0.41 0.31 13126 232
8 0.06 0.12 0.88 0.71 0.42 0.31 13278 223
9 0.06 0.12 0.90 0.73 0.41 0.32 13910 217
10 0.06 0.11 0.91 0.76 0.39 0.29 14052 220

sound but require to group together segments with similar performance in terms of
telecommunications characteristics, that is variations of cell load alongside variations
in the number of interrupted calls. Therefore cluster validation is done by applying
domain knowledge on the visual presentation of segments in clusters alongside the use
of internal validation metrics. Moreover, the selection of clustering scheme is another
key factor that affects the results. The data has multiple features and co-relations
among those features and variation within the values of individual features determine
the network behavior. We have applied a two-tier clustering scheme, wherein the first
tier separates the segments with poor performance from those with good performance
while the second tier further segregates the poor performing segments into the final
clusters reflecting different type of network behaviors. Another advantage of using
this two-tier approach is that visual validation is easier as there are fewer segments to
analyze in the second tier.

In both tiers, we majorly rely on the elbow method beside the metrics of
compactness and separation for selecting the optimal K. Bend on the elbow plot as
shown in Fig. 5.2 is the optimal number as after that increase in number of clusters
does not changes the clustering at that rate as it change it before that, similar behavior
is observed when RMSS and RS values in Table 5.1 are plotted against the number of
clusters. Calinski-Harabasz index (CH) and Silhouette index (S) are used to evaluate
the overall quality of the clusters.

The inputs of each tier are the hourly aggregated CDRs, split into l long vectors
for each segment i and cell j. ~Di, j and ~D′i, j are the duration of normally terminated
and dropped calls, while ~Ci, j and ~C′i, j express the quantity of normally terminated and
dropped calls, respectively. Moreover, the vectors ~D j, ~D′j, ~C j and ~C′j, with length 24,
contain data relative to cell j for the entire day.
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Figure 5.3: Four clusters generated at Tier I

First Tier

Tier I is used to separate segments with poor performance from the segments with good
performance in terms of number and duration of interrupted calls. It also segregates
segments with good performance according to the cell load. For that we have used two
features F1 and F2 computed as follows:

F1
i, j = mean

 ~Di, j

max
(
~D j

)
 (5.1)

and
F2

i, j = 10 · log
(

max
(
~C
′
i, j÷

(
~Ci, j +~C

′
i, j

)))
, (5.2)

where ÷ indicates an element wise division and log denotes the natural logarithm.
To emphasize differences in the number of dropped calls, we have considered a
logarithmic scale for F2. The idea is to make the variation of the bad data more
pronounced, such that clustering can find the bad quality segments easily based on
Euclidean distance. The output of the first tier is depicted in Fig. 5.3. Note that the
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bad quality segments are grouped into Cluster IV while the other three clusters contain
good quality segments segregated according to their volume of traffic.

Second Tier

In the second tier, we consider only the segments from Cluster IV, the one with poor
performing segments from the first tier. It is further sub-clustered into three groups of
segments with K-means clustering. There are two sets of features used in the second
tier. The first set F3

i, j is obtained via

F3
i, j = ∇

 ~Ci, j

max
(
~C j

)
 , (5.3)

where ∇ indicates the gradient operation and thus F3
i, j is a vector of l−1 features.

The second set F4
i, j is obtained using

F4
i, j = ∇

(
~D
′
i, j÷

(
~Di, j +~D

′
i, j

))
, (5.4)

and thus also results in a vector of l− 1 features. Therefore the second tier contains
2l − 2 features in total. F3

i, j captures the variation in the number of bad calls as a
gradient whereas F4

i, j encompass variations in bad call duration.

5.2.4 Classification

The labeled data from K-Means clustering is used further to train and test a classifier.
Here an SVM based classifier (SVC) is used to classify the labeled data. SVM is very
effective for high dimensional sparse data. It is memory efficient for training as it
uses a subset of points for the training of the decision function. SVM based models
already have proved to perform exceptionally on cellular network data like the call
traffic prediction at high granularity [106]. Another huge advantage of SVC is the
availability of a diverse range of Kernels to compute the decision function [118], such
as linear, polynomial of higher degrees, Gaussian, sigmoid etc. In this research, we
have evaluated the three most popular kernels, linear, polynomial (cubic) and radial
basis function (RBF) for developing the classifier. SVC decision function constructs
hyper-plane(s) in high dimensional space which separates the data points into different
classes.

Theoretically, good separation is when the hyper-plane has maximum distance
from the nearest training data points of any class. But there is a trade-off between
the separation level also known as functional margin and model generalization. The
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Figure 5.4: Average normalized traffic

higher the margin, the lower the generalization error of the classifier leading to
over-fitting. Model generalization and over-fitting can be regulated with the help of
kernel parameters like C also known as penalty parameter for the error. A larger C

yields a more accurate classification at the cost of a lower generalization. A smaller C

means a more smooth decision plane. We have used a set of exponentially increasing
values for C for all three kernels. For model training and evaluation data is randomly
split into training and testing data sets, such that 75% is allocated for training and
validation while the remainder 25% of the data is reserved for testing. A classifier is
trained and validated, with three-fold cross-validation, using 75% of the training data
with different combinations of kernels and C. The best estimated model is then applied
on the test data in the end for the final evaluation of classifier.

5.3 Data-set Description

The data used in this research is extracted from CDRs gathered from a real GSM
network in Africa over a period of three weeks for 759 geographical cells. Data
used here is numeric in nature and presents duration in seconds and number of calls
terminated normally and dropped, both separately. Normal termination means the calls
were properly cut off by either user, conversely, a dropped call is a call that has ended
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due to some network error. We have used hourly aggregated data of 759 cells for one
day to train and evaluate our clustering and classification scheme.

From our preliminary analysis, we found that total call traffic in terms of duration
and quantity is very low from midnight until morning as shown in the Fig. 5.4, which
contains the average3 total traffic across all the cells for one day. Thus, we have taken
the data from 6 a.m. to midnight into consideration for this research. Selecting the data
this way also helps to overcome the model biases towards greater number of segments
with low traffic. Moreover, network operators are more concerned in dealing with
issues which affect larger volumes of calls, which occur during the day.

5.4 Results

The results of the proposed clustering and classification methodology are presented in
this section. The analysis demonstrates the framework’s effectiveness in categorizing
network cells based on performance and identifying specific patterns of degradation
using CDR data. Detailed insights into the clustering and classification processes,
along with their implications for network optimization, are discussed below.

5.4.1 Clustering

Tier I

From the results of elbow method as shown in Fig. 5.2 and those of RMSS and RS
shown in Table 5.1 it is found that K = 4 is the optimal number of cluster at Tier
I. Using K = 4 for the feature sets F1, F2 produces optimal clusters presented in
Fig. 5.3. The use of F2, which incorporates a logarithmic scale for dropped calls, was
particularly effective in capturing smaller variations in dropped call volumes. This
ensured a meaningful separation of segments, where even minor degradations were
distinctly identified. As shown in Fig. 5.3, the four resulting clusters represent different
performance profiles:

• Cluster I: Segments with good quality and low traffic, indicative of low activity
periods or less congested areas.

• Cluster II: Segments with medium traffic, reflecting moderate activity levels in
the network.

• Cluster III: Segments with high traffic, representing peak usage times or highly
congested areas.

3The traffic is first scaled between 0 and 100 for the whole day and each cell, then averaged. This
provides a realistic information of the cell load at each hour of the day.
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[Cluster VI: Unstable performance.]
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Figure 5.5: Sample segments in their respective clusters.
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• Cluster IV: Segments with poor quality, characterized by high volumes of
dropped calls and reduced performance.

The ability to isolate Cluster IV with poor performance is a significant
achievement, as it enables targeted interventions in problem areas without impacting
other network operations. Furthermore, this tier’s clustering aligns with the real-world
requirements of prioritizing segments with substantial performance issues for further
analysis.

Tier II

The second tier of clustering focuses on Cluster IV from Tier I, which contains
segments with poor performance. By further analyzing these segments, Tier II aims to
categorize specific types of degradation. Using feature sets F3 and F4, which capture
variations in call duration and dropped call behavior, the optimal number of clusters at
this tier was determined to be K = 3.

The statistical metrics in Table 5.1 confirm the compactness and separation of
clusters at Tier II. These numbers indicate how compact or separated the clusters are at
Tier II. Where RS and RMSSD scores respectively give an idea about how separate or
compact the clusters are there they also help to choose an optimal number of clusters
which is III for Tier II.

Visual validation further supports the quality of these clusters, as shown in Fig. 5.5 ,
presenting samples from each cluster at Tier II. The three sub-clusters represent distinct
degradation patterns:

• Cluster IV: Represents segments recovering from performance degradation, as
evidenced by decreasing dropped calls and increasing good call durations.

• Cluster V: Captures segments at the onset of performance degradation(i.e., as
soon as the performance starts degrading), characterized by an increase in
dropped calls and a decline in good call durations.

• Cluster VI: Identifies segments with unstable performance, where a spike in
dropped calls is observed at certain times, disrupting normal traffic patterns.

Red color represents the duration percentage of dropped calls while the yellow
color represents the percentage of dropped calls (quantity), both presented as
secondary axis on the right y-axis, whereas normalized good calls duration is presented
by blue bars on the primary axis on the left y-axis. The top two graphs in Fig. 5.5
represent two sample segments from Cluster IV, it can be seen that segments with
decreasing dropped calls and increasing good call duration are grouped in that cluster.
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Table 5.2: Classification cross validation results
Rank C Kernel Mean Validation

Score
Mean Train

Score

1 103 Linear 0.989 0.99
2 104 Linear 0.986 1.00
3 102 Linear 0.986 0.99
4 102 RBF 0.985 0.99
5 103 RBF 0.984 0.99
6 104 RBF 0.984 1.00
7 101 Linear 0.983 0.99
8 104 Cubic 0.975 0.98
9 101 RBF 0.974 0.98

10 100 Linear 0.970 0.97
11 103 Cubic 0.961 0.97
12 102 Cubic 0.931 0.93
13 100 RBF 0.923 0.92
14 10−1 Linear 0.914 0.91
15 101 Cubic 0.877 0.88
16 10−1 RBF 0.862 0.86
17 100 Cubic 0.797 0.80
18 10−1 Cubic 0.581 0.58

Whereas segments with an opposite behaviour, to that observed in Cluster IV, are
grouped in Cluster V shown with two graphs in the middle in Fig. 5.5. The bottom two
graphs in Fig. 5.5 show segments in Cluster VI which are different from IV and V in the
traffic patterns, here we can see a spike in bad calls on the middle hour when the good
traffic is low compared to other hours. These sub-clusters provide valuable insights
into the nature of performance issues. For example, segments in Cluster IV suggest
recovery trends that can be monitored for stabilization, while segments in Cluster V
require immediate attention to prevent further degradation. Cluster VI, on the other
hand, highlights unpredictable behaviour that may be linked to transient issues such as
interference or hardware faults.

The two-tier clustering approach demonstrates its effectiveness in breaking down
complex performance issues into manageable categories. This granularity enables
network operators to prioritize and tailor their interventions, improving overall
efficiency in network management.

5.4.2 Classification

The labeled data from the clustering process serves as input for the classification
stage, where an SVM-based classifier is trained, validated, and tested. The classifier’s
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Figure 5.6: Confusion matrix

performance is summarized below.

Model Performance

Results of three-fold cross-validation are shown in Table 5.2. The classifier achieved
a mean accuracy of 99.39% during validation using a linear kernel and a penalty
parameter (C) of 1000. This high accuracy indicates the robustness of the model and
its ability to generalize well across the training data. When applied to unseen test data,
the classifier maintained an impressive accuracy of 98.91%. It can be seen from the
mean training and validation score for different sets of parameters shown in Table 5.2
that the model performance is consistent.This consistency between training and test
performance reduces concerns about overfitting, confirming that the model can reliably
classify new data.

Confusion Matrix Analysis

The confusion matrix in Fig. 5.6 provides a detailed view of the classifier’s
performance across the six clusters. Key observations include:

• High accuracy in identifying large clusters, such as Clusters I, II, and III, which
represent segments with good performance.
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• Balanced performance across smaller clusters, such as Clusters IV, V, and VI,
with accuracies of 92%, 98%, and 88%, respectively. This demonstrates that
the model is not biased toward larger clusters, a common issue in classification
tasks.

• Minimal misclassification errors, indicating that the feature sets used for training
effectively capture the distinguishing characteristics of each cluster.

The ability to accurately classify segments in smaller clusters, such as Cluster VI,
is particularly noteworthy. These clusters represent critical performance issues that
may otherwise be overlooked in traditional approaches. The classifier’s effectiveness
in this regard underscores its value as a tool for proactive network management.

Implications for Network Optimization and Maintenance

The classification results have several practical implications for network optimization:

• Proactive Maintenance: By accurately identifying and classifying problem
segments, the framework enables network operators to address issues before they
escalate, reducing downtime and improving user experience.

• Resource Allocation: The ability to differentiate between stable and unstable
performance segments allows for more efficient allocation of resources, ensuring
that efforts are focused on areas with the greatest need.

• Scalability: The high accuracy and consistency of the classifier make it
suitable for deployment in large-scale networks, where manual monitoring and
intervention are impractical.

5.5 Conclusion

As we approach the deployment of 5G and design of 6G networks, the increasing
complexity of mobile networks emphasizes the need for automated performance
monitoring to ensure optimal Quality of Experience (QoE). This chapter presented
a novel machine-learning framework for classifying network node performance using
Call Detail Records (CDR) data. The proposed method combines a two-tier clustering
approach with a Support Vector Machine (SVM) classifier, achieving an accuracy of
98.91% in near-real-time classification.

The framework effectively identifies performance degradation and categorizes
its type, enabling network operators to prioritize and address issues swiftly. By
overcoming traditional silo-based approaches, it provides a scalable and user-centric
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solution, aligned with the broader goal of predictive modeling for cellular network
optimization.

Future work can extend this method to include multiple performance indicators
and proactive predictive capabilities, paving the way for more comprehensive network
management strategies.
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Chapter 6

Leveraging Intelligence from Network
CDR Data for Energy Consumption
Minimization

As emphasized throughout this thesis, network densification is a cornerstone of
5G and future cellular networks, addressing the escalating demand for mobile
traffic. Co-channel small cells (SCs), which reuse spectrum with macro cells
(MCs), are pivotal in this densification. However, spectrum reuse introduces
inter-cell interference (ICI) that can degrade network performance if not managed
effectively. Furthermore, while SCs have lower power consumption than MCs,
their load-independent power component constitutes a significant portion of their
overall energy usage. This ”always-on” operation exacerbates energy inefficiency in
ultra-dense networks. Consequently, achieving the vision of 5G and beyond requires
addressing two persistent challenges: high ICI and aggregated energy consumption.

This study proposes a proactive approach leveraging real-world Call Data Records
(CDRs) to predict spatio-temporal user activity, optimizing SC operational states
dynamically. Unlike reactive designs prevalent in the literature, the proposed
framework integrates ICI mitigation with energy optimization, minimizing interference
and resource wastage while meeting 5G’s ambitious quality-of-service (QoS)
requirements. To the best of the author’s knowledge, this is the first study to exploit
CDR data for proactive scheduling of SC sleep cycles while concurrently addressing
ICI and energy efficiency (EE) challenges.

Several studies have addressed ICI and EE challenges in heterogeneous networks
(HetNets). SC-to-SC interference mitigation has been explored in [119], [120].
However, the interference from SCs to MC users often has a greater impact on network
performance due to the higher number of MC users. To tackle this issue, authors
in [121–123] propose techniques to reduce SC-induced interference for MC users,

97
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balancing user experience and network efficiency.
An alternative line of research involves spectrum partitioning between cell-center

and cell-edge users, as seen in [124–126]. While effective for ICI reduction,
these methods sacrifice overall capacity, making them less scalable in ultra-dense
deployments. Joint EE and ICI management strategies have been explored in [127–
129], focusing on interference reduction to improve energy throughput efficiency.
However, these approaches fall short of optimizing underutilized network resources
during off-peak hours.

Traffic-aware transmission strategies, proposed in [130–133], address this gap
by recommending underutilized base stations (BSs) transition to sleep mode during
off-peak hours. While promising for improving EE, these strategies are often
decoupled from comprehensive ICI mitigation frameworks. Other studies, such as
[134–136], explore EE and ICI jointly but focus primarily on uplink transmissions and
user equipment (UE) energy savings, leaving downlink energy optimization largely
unaddressed despite its significant contribution to operational expenditures (OPEX).

Existing approaches are predominantly reactive, responding to changes in traffic or
interference after they occur. These methods may fall short in meeting the real-time
demands of 5G and beyond. Building on the Big Data-empowered Self-Organizing
Network (BSON) vision [13], this study adopts a fundamentally proactive approach,
leveraging CDR data to dynamically optimize SC operations. This framework
integrates traffic-aware scheduling with interference mitigation, demonstrating the
potential for predictive analytics to enhance network performance and resource
efficiency.

The utility of CDR data in network planning and optimization has been
highlighted in [137] and [138], where real-world CDR analysis revealed insights
often overlooked by analytical models or synthetic datasets. However, prior studies
have not utilized CDR data for scheduling SC sleep cycles while simultaneously
addressing ICI and EE challenges. This research fills that gap by combining
real-world data analysis with predictive modeling to propose a unified framework
for energy-efficient, interference-optimized HetNets. This chapter builds upon the
data-driven and machine-learning-based methodologies introduced in Chapters 3–5,
extending their application to practical network optimization challenges in dense
cellular environments. Specifically, it demonstrates how insights from clustering and
classification models can inform resource allocation and energy-saving decisions in a
predictive framework.

The main contributions of the revised Chapter 6 are:

• Energy Efficiency and Interference Optimization: A joint optimization
framework is developed to minimize energy consumption while ensuring
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Figure 6.1: Call activity level for POI
and non-POI

Figure 6.2: Internet activity level for POI
and non-POI

minimum guaranteed throughput. The novel contribution is the integration
of base station sleep-mode mechanisms with resource allocation strategies,
supported by a heuristic low-complexity solution to this NP-hard problem.

• CDR-Driven Small Cell Deployment and Evaluation: Real-world CDR data
from Milan City is analyzed to predict spatio-temporal traffic patterns. These
insights are applied to design a realistic small cell deployment scenario and
evaluate the proposed ECA scheme, achieving up to 8x energy savings under
low traffic conditions.

These contributions integrate predictive modeling (Chapter 3), mobility analysis
(Chapter 4), and performance classification (Chapter 5) into a cohesive framework
for energy-efficient, interference-aware HetNet management.

6.1 Leveraging CDR Data for Proactive ICI–EE
Solutions

6.1.1 CDR Analysis and Traffic Insights

The analysis of Call Data Records (CDR) data is a critical foundation for developing
proactive scheduling strategies to optimize small cell (SC) operations. Using
real-world data from the Telecom Italia Big Data Challenge, the study identifies
spatio-temporal patterns in network activity. These findings complement and extend
the methodologies presented in Chapter 3, particularly regarding mobility and traffic
prediction.

Traffic Periodicity: The analysis reveals consistent periodic patterns in network
activity for both Point-of-Interest (POI) and non-POI cells. Fig. 6.1 and 6.2 illustrates
the aggregate traffic load over 24 hours, showing:
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Figure 6.3: Milan activity level at 6 am, 6 pm, 12 pm

Daytime Peaks: POI cells exhibit significantly higher traffic levels during business
hours (8 AM–11 PM) compared to non-POI cells.

Off-Peak Hours: Both POI and non-POI cells experience minimal activity during
off-peak hours (midnight–6 AM), highlighting opportunities for SC sleep mode
scheduling. In Figures 6.3 morning, midday, and evening activity levels are shown,
reinforcing the dominance of low activity in the early morning hours. These insights
support proactive SC transitions to sleep mode, reducing energy consumption without
compromising user experience.

The periodicity observed here aligns closely with temporal mobility patterns
discussed in Chapter 3. The grid-based approaches from Chapter 3, particularly
hierarchical grids like Geohash, can complement the CDR-based periodicity analysis
by offering a spatial indexing framework to enhance resource optimization during high
and low traffic periods.

Spatial Variation: Geographic differences in traffic intensity are pronounced, as
demonstrated in Fig. 6.4 and Fig. 6.5, POI cells consistently demonstrate higher
activity due to their significance (e.g., commercial hubs and landmarks). Conversely,
non-POI cells often remain underutilized, suggesting the need for location-aware
resource allocation and SC scheduling strategies.

Chapter 3’s hierarchical grid systems (e.g., Geohash) are directly applicable
for mapping spatial traffic variations. By linking the traffic variations highlighted
here with spatially indexed data structures from Chapter 3, more efficient resource
distribution can be achieved, particularly in balancing SC usage between POI and
non-POI areas.
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Figure 6.4: POI on Milan map Figure 6.5: Activity level for non-POI
and POI macro cells

Figure 6.6: Weekly call activity Figure 6.7: Weekly internet activity

Predictability: Weekly trends (as shown in Fig. 6.6 and 6.7) underscore the
predictability of user behaviour. Internet activity consistently surpasses calling activity
throughout the week, maintaining stable and periodic patterns. This predictability
provides a robust basis for forecasting future network conditions and enabling dynamic
SC optimization.

Predictive models such as regression and classification techniques discussed in
Chapter 3 can be extended to utilize the predictable patterns identified here. By
integrating these models, the predictive mobility patterns in Chapter 3 can be enriched
with traffic insights from CDR analysis, enhancing the ability to proactively manage
SC operations.

6.1.2 System Model and Problem Formulation

This section outlines the comprehensive system model for a heterogeneous network
(HetNet) comprising a macrocell (MC) and multiple small cells (SCs) within its
coverage area. This model underpins the proactive resource allocation and energy
efficiency strategy central to this study. The integration of SCs into the MC’s frequency
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Figure 6.8: System Model with Heterogeneous Cells

spectrum enhances network capacity but also introduces significant interference
challenges, necessitating coordinated resource allocation and energy optimization
strategies.

HetNet Architecture

The HetNet under consideration includes one macrocell (MC) and M small cells (SCs),
which reuse the same spectrum as the MC. This reuse enhances spectral efficiency, a
critical requirement for dense 5G deployments. However, this setup also introduces
inter-cell interference (ICI) due to overlapping frequency usage. To address this, a
coordinated resource allocation strategy is essential to manage interference effectively
while maintaining quality of service (QoS) for all users.

The user distribution within this HetNet is dynamic, with K active users connected
to either the MC or SCs. The system model assumes that each user is served by one cell
at a time, while each cell can support multiple users. This setup reflects the realistic
complexity of dense HetNets and serves as the foundation for our optimization strategy.
The dynamic user distribution within this HetNet aligns with the spatial traffic variation
patterns modeled in Chapter 3, where grid-based approaches were used to predict user
mobility and traffic trends.

Key Model Components

The HetNet model includes several critical components, described below:
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Resource Blocks (RBs): The total system bandwidth is divided into N resource
blocks (RBs). Each RB can be allocated to a single user within a cell to avoid intra-cell
interference. Fig. 6.8 illustrates the HetNet layout, showing the spatial arrangement
of the MC, SCs, and users, as well as the overlapping resource allocation zones. This
figure is crucial for understanding how resource allocation decisions affect interference
patterns and overall network performance.

Binary Indicators for Operational States and Allocation: The operational state of
each SC is represented by the binary indicator cm, where:

cm =

1, if SC is active,

0, if SC is in sleep mode.

Similarly, the RB allocation is represented by fk,m,n, where:

fk,m,n =

1, if user k in cell m is allocated RB n,

0, otherwise.

These binary variables allow for flexible modeling of resource usage and
energy-saving strategies.

Performance Metrics: User performance is modeled using the
signal-to-interference-and-noise ratio (SINR) and the Shannon capacity formula.
The SINR for user k in cell m on RB n is given by:

γk,m,n =
pm,nGm,k,n

∑i6=m pi,nGi,k,n +N0
,

where:

• pm,n: Transmit power of cell m on RB n,

• Gm,k,n: Channel gain between cell m and user k,

• N0: Noise power.

The user data rate is then estimated using the Shannon-Hartley theorem:

Rk,m,n = B log2
(
1+ γk,m,n

)
,

where B represents the bandwidth of each RB.
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Energy Efficiency Metrics

Given the critical importance of energy efficiency (EE) in dense networks, the study
evaluates EE using the following metrics:

Energy Consumption Ratio (ECR): The energy required to transmit one bit is
calculated as:

ECR =
P
D
,

where

• P is the total power consumed, and

• D is the data rate.

• Lower ECR values indicate higher energy efficiency.

Area Power Consumption: The power consumption normalized by the coverage
area is measured in Watts per square kilometer. This metric is particularly useful for
comparing energy efficiency across different network deployments.

Problem Formulation

The objective of this study is to develop a resource allocation strategy that minimizes
energy consumption while mitigating interference and maintaining network efficiency.
This problem is formulated as a mixed-integer non-linear programming (MINLP)
problem:

Objective: min
f ,c,p

M

∑
m=1

N

∑
n=1

pm,n · cm,

subject to:

• SINR constraints to ensure user QoS,

• Resource allocation constraints to avoid intra-cell interference,

• Power and operational state constraints for SCs.

This optimization problem is inherently complex due to its combinatorial nature,
requiring heuristic approaches for practical implementation. To address this
complexity, we propose an Energy Consumption Aware Resource Allocation Scheme
(ECA). The flowchart in Fig. 6.9 provides a step-by-step overview of the ECA
algorithm presented by Algorithm 1, illustrating the processes of RB allocation, SC
state transitions (ON/OFF), and interference management. The diagram helps to
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clarify how the heuristic algorithm works iteratively to achieve energy efficiency while
maintaining QoS for both MUEs and SUEs.

6.1.3 Proposed Energy Consumption Aware Resource Allocation
(ECA) Scheme

To overcome the challenges of energy efficiency (EE) and interference mitigation
in dense heterogeneous networks (HetNets), we propose the Energy Consumption
Aware (ECA) Resource Allocation Scheme. This heuristic approach addresses the
computational complexity of real-time resource allocation while ensuring efficient
operation in scenarios with dynamic user demands and dense SC deployments. By
leveraging predictive modeling based on historical CDR data, the ECA scheme
proactively optimizes Resource Block (RB) allocation and adjusts Small Cell (SC)
operational states.

The ECA scheme’s unique focus on proactive adjustments, underutilized SC
transitions, and computational efficiency positions it as a practical solution for
real-time implementation in Self-Organizing Networks (SONs). This is especially
critical in the ultra-dense 5G and 6G environments discussed in Chapters 3 and 5,

Figure 6.9: Flow diagram for ECA scheme
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where user mobility, traffic variations, and network optimization are intricately linked.

Algorithm 1 : Energy Consumption Aware Resource Allocation (ECA)
for n = 1→ N

Initialise : ~φn =~0
Calculate : Ωmax

n ,ωm
u,0,n,Rk,m,n as in eq. 3, 5 and 6 [75]

~φn= bint prog (~Rn, ~ωu,0,n, Ωmax
n )

end
Notify SCs with their respective φm,n.

Small Cell Sleep Mode Phase
Analyse Available n RBs at Macrocell
if RBAvail

0 > RBThres
0

Sort small cell utilisation ~U in descending order
while RBAvail

0 < RBThres
0

Send sleep mode activation message to SC on
top of ~U .
Update RBAvail

0 , Remove top element from ~U .
end

Small Cell Wake-up Phase
For every SC in sleep mode do:
if ∑kRBReq

k,m > RBAvail
0 OR C0 = 1

Sort ∑kRBReq
k,m in ascending order for all m

while ∑kRBReq
k,m > RBAvail

0 OR C0 = 1
Send wakeup message to SC on top of the list
Update RBAvail

0
end

end

Key Components of the ECA Scheme

Resource Block Allocation The ECA scheme begins with RB allocation. The Macro
Cell (MC) takes a central role by:

Allocating RBs to its Macro User Equipment (MUEs) based on their minimum
data rate requirements and SINR constraints. Guiding SCs on their muting parameters
to ensure interference from SCs to MUEs remains within acceptable thresholds. This
process is critical for minimizing inter-cell interference (ICI) while maintaining the
Quality of Service (QoS) for MUEs. This step incorporates Fig. 6.8, which visually
illustrates the RB allocation dynamics in a HetNet with multiple SCs and an MC.
The diagram shows how RBs are distributed among users and how interference
management is achieved through coordinated allocations.
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SC Sleep Mode Decision Underutilized SCs are identified based on traffic
conditions, which are predicted using historical CDR data. SCs with minimal load
or high interference factors are transitioned to sleep mode if:

The MUEs and Small Cell User Equipment (SUEs) associated with the SC can be
seamlessly accommodated by the MC. The MC has sufficient resources to handle the
additional load without compromising its performance. This step emphasizes energy
efficiency by reducing the idle power consumption of SCs during off-peak hours.
Fig. 6.9 (Flowchart of the ECA Algorithm) provides a clear overview of this process,
showing how RB allocations and SC operational states are iteratively optimized.

Proactive Adjustments with Predictive Insights The ECA algorithm presented
as Algorithm 1 leverages predictive modeling of user behavior, as explored in
Chapter 3, to anticipate traffic trends and make preemptive adjustments to resource
allocations. Historical CDR data, analyzed for spatio-temporal traffic patterns (e.g.,
traffic periodicity and spatial variation from Chapter 3), provides the basis for these
forecasts.

For example:

During off-peak hours, SCs in residential areas (non-POI cells) can be transitioned
to sleep mode based on low expected traffic volumes. In contrast, SCs in POI areas
with consistently high activity are allocated additional resources to ensure seamless
operation. These proactive adjustments reduce the reliance on reactive mechanisms,
which are often slower and less efficient in ultra-dense network scenarios.

Advantages of the ECA Scheme

Low Computational Complexity: The heuristic nature of the ECA scheme ensures
that it operates efficiently, making it suitable for real-time applications in SONs.
Unlike exhaustive search methods, the ECA algorithm achieves sub-optimal solutions
with significantly reduced computational overhead.

Energy Efficiency Gains: By transitioning underutilized SCs to sleep mode and
optimizing RB allocations, the ECA scheme achieves notable reductions in network
energy consumption, aligning with the energy-saving strategies emphasized in Chapter
5. Interference Mitigation: Coordinated RB allocations and SC muting ensure that
interference remains manageable, preserving QoS for both MUEs and SUEs.
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6.2 Results and Analysis

This section evaluates the effectiveness of the proposed Energy Consumption Aware
(ECA) algorithm in leveraging spatio-temporal traffic predictability for energy savings
and interference management within dense HetNet deployments. By integrating
real-world CDR data and deterministic simulation models, the analysis highlights
the algorithm’s role in achieving the thesis’s objectives of predictive modeling and
proactive network optimization.

6.2.1 Traffic Predictability and Analysis

The analysis of real CDR data from Telecom Italia’s Milan network reveals clear
periodicity and predictability in spatio-temporal traffic patterns. Figures 6.1 and
6.2 illustrate weekly variations in call and internet activity, distinguishing between
Point-of-Interest (POI) and non-POI cells. POI cells consistently experience higher
traffic volumes due to their location-specific significance, such as proximity to
commercial hubs, entertainment centers, and transport nodes. Conversely, non-POI
cells exhibit lower activity, particularly during off-peak hours.

This predictable behavior, forms the foundation for proactive scheduling strategies.
The higher variance in traffic levels for POI cells underscores their dynamic nature,
requiring adaptive and granular resource allocation approaches. These findings align
with insights discussed in Chapter 3, where predictive modeling techniques are
employed to forecast user mobility and network demand. This synergy across chapters
reinforces the thesis’s focus on predictive analytics as a critical tool for cellular network
optimization.

The predictable traffic patterns observed in this analysis validate the premise of
the ECA algorithm, which utilizes historical CDR data to anticipate traffic demands
and optimize network operations. By exploiting this predictability, the algorithm
minimizes energy consumption and interference, achieving tangible improvements in
network performance.

6.2.2 Simulation-Based Energy Efficiency Gains

The simulation results, presented in Figures 6.10, provide a detailed evaluation of the
ECA algorithm’s energy efficiency (EE) performance across POI and non-POI cells.
The results demonstrate the algorithm’s ability to address the circuit power-dominant
nature of small cells and optimize their energy usage:
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Figure 6.10: EE (bits/Joule) performance for non-POI cells(left), and POI cells (right)
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Figure 6.11: Energy reduction gain (ERG) performance for non-POI (left) and POI
case (right)

Energy Efficiency Improvements: POI cells exhibit higher EE due to their higher
utilization rates, while non-POI cells, often underutilized, achieve significant EE gains
with the ECA algorithm. The transition from the conventional always-on operation
(solid black line) to the ECA-enhanced operation (red line for non-POI and blue line
for POI) underscores the algorithm’s impact.

Energy Reduction Gain (ERG): Fig. 6.11 highlights the algorithm’s effectiveness
in reducing energy consumption. For non-POI cells, the ECA scheme achieves up
to 8 times ERG during off-peak traffic conditions, while POI cells exhibit up to 2
times ERG improvement under similar conditions. These results demonstrate the
algorithm’s ability to optimize energy usage, particularly in underutilized scenarios.
The observed improvements align with the predictive modeling insights from Chapter
3, interference-aware scheduling strategies in Chapter 4, and machine learning-based
optimizations in Chapter 5, highlighting the integration of these methodologies within
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the thesis framework.

6.2.3 Service Quality and Scalability

A critical challenge in dense HetNets is maintaining quality of service (QoS) while
optimizing energy efficiency. The ECA algorithm addresses this challenge through
intelligent resource allocation and dynamic scheduling mechanisms:

SINR Improvements for MUEs: The algorithm mitigates interference from muted
SCs, significantly enhancing SINR for MUEs. This is consistent with interference
management strategies detailed in Chapter 4, where grid-based mobility prediction is
leveraged for resource allocation optimization.

QoS Consistency for SUEs: Dynamic RB allocation ensures that small cell users
(SUEs) maintain satisfactory data rates, even during peak traffic conditions. This
adaptability highlights the algorithm’s ability to balance energy savings with service
quality.

The results further demonstrate the scalability of the ECA algorithm across diverse
traffic scenarios, from POI to non-POI cells, and its practical applicability for future
5G and beyond networks. By integrating predictive modeling, interference-aware
scheduling, and machine learning techniques, the ECA scheme exemplifies the thesis’s
overarching goal of leveraging data analytics for cellular network optimization.

6.3 Conclusion

This chapter introduced the Energy Consumption Aware (ECA) scheme, aimed at
addressing the pressing challenges of energy inefficiency and interference management
in dense HetNets by leveraging spatio-temporal traffic patterns derived from real-world
CDR data. The ECA algorithm demonstrated its effectiveness in dynamically
optimizing small cell operations and resource allocation. Notably, the algorithm
achieved energy savings of up to 8x Energy Reduction Gain (ERG) in non-POI
cells during off-peak hours and up to 2x ERG in POI cells under similar conditions.
These results underscore the significant potential for energy efficiency improvements,
particularly in underutilized network segments. Importantly, these gains were realized
without compromising the quality of service (QoS) for either macrocell users (MUEs)
or small cell users (SUEs), highlighting the robustness of the proactive resource
management enabled by traffic predictability.

The methodologies developed in this chapter build upon and integrate insights
from earlier chapters. Specifically, the traffic load estimation and predictive modeling
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techniques explored in Chapter 3 laid the foundation for understanding the temporal
and spatial dynamics of network activity. Similarly, the mobility pattern predictions
and grid-based indexing strategies detailed in Chapter 4 were instrumental in
enhancing the granularity of traffic data analysis, which the ECA scheme leveraged
to schedule small cell operations effectively. Furthermore, the performance-based
classification and clustering methods from Chapter 5 provided a framework for
identifying underutilization and adapting small cell operations to dynamic network
conditions.

By integrating predictive analytics from Chapters 3–5, this chapter exemplifies
the cohesive framework of this thesis, demonstrating how data-driven approaches can
address the multifaceted challenges of energy efficiency, interference mitigation, and
QoS assurance in next-generation cellular networks. This alignment reinforces the
thesis’s overarching goal of leveraging predictive modeling and data analytics for
optimized network performance in 5G and beyond.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusion

5G and beyond network technologies are becoming part and parcel of our
socio-economic system. They are envisioned to connect everything with everything,
i.e., massive machines to machines communication is expected along with human to
human and human to machine communication. Where it makes the wireless cellular
network systems too complex to be managed manually there it leads to the generation
of an enormous amount of data carrying valuable information about network and user
behaviour. This data can be exploited by machine learning to gather intelligence
required to perform SON functions considered as an auto management solution for
the complex wireless cellular networks. The capacity of machine learning to predict
can help SON enabled networks to be proactive rather than reactive. It can help
SONs to better perform two of their key function namely self-optimization and self
organization. A major share of the OPEX of networks goes towards the maintenance
of network facilities. In this research, classical machine learning is used to develop
a generic high-resolution internet traffic prediction model, global mobility pattern
prediction models, both helpful towards SON use cases of self-optimization function.
Besides that, a classification scheme is developed for the classification of network
cells based on their performance that also identifies and categorise sub-performing
cells. In addition to that, the traffic load prediction model is applied in a use case
of wireless cellular network to address common issues of inter-cells interference
and energy consumption. Though deep learning is getting very popular, but one
of the objectives of this study had been to exploit classical machine learning to
avoid deep learning because deep learning is very complex, computationally costly
and data-hungry. Secondly, 5G and beyond networks are expected to rely on the
application of edge and fog computing to make fast decisions for the specific tasks
in hand. In such cases classical machine learning algorithms become crucial. An SVR

113
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based prediction models are proposed in Chapter 3 that predict minimum, maximum,
and mean hourly internet traffic density with a prediction accuracy of around 95%
much higher than the state of the art statistical and deep learning models. This
prediction model can help to enable SON self-optimization function for uses case
like radio resource management, load optimization, energy optimization etc. Towards
the enabling of the same self-optimization function, in Chapter 4, for the first time
such a comprehensive study is presented on mobility pattern prediction schemes with
an empirical comparison of the performance of classical machine learning algorithms
with the help of a global indexing system for locating users. Besides the radio resource
optimization Users’ location prediction can also help in self-optimization function in
use cases like handover management, caching etc. Towards another key function of
SONs, self-healing, a comprehensive hybrid scheme is developed with the help of
classical clustering algorithm K-means and classification algorithm SVC, presented
in 5. This scheme groups together cells based on their performance andidentifies
sub-performing cells exploiting CDRs. Use of machine learning for the identification
and classification of cells based on their performance can help in enabling self-healing
function in SON. Cellular network traffic prediction study is further extended to
apply in a use case for the joint optimization of inter-cell-interference and energy
consumption presented in Chapter 6. Except for the Chapter 4, throughout this study
real network CDR data is used for the development of the models. It is concluded that
the real network data like CDR can be exploited with the help of classical machine
learning algorithms for gathering intelligence needed to enable SON functions, e.g.,
self-optimization and self-healing in a proactive manner. It is also established that
classical machine learning algorithms can outperform deep learning algorithms for the
tasks like traffic density estimation which make them a potential candidate for their
use in edge or fog computing.

7.2 Future Direction

Research presented in this thesis aimed at developing broad comprehensive prediction
and diagnosis machine learning models that can work as base models for providing
support to enable SON functions of self-optimization and self-healing. As a case study,
the prediction model is also applied and evaluated in the cellular network use case for
the optimization of interference aware energy consumption. Further research can be
conducted to extend or build on the work done so far and presented in this thesis. Some
areas are highlighted here with potential for further research as follows:
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7.2.1 Prognostics in SON

Prognostics, the capability to predict failures or performance degradation before they
occur, offers a significant opportunity to enhance the self-healing capabilities of SONs.
By leveraging historical data and machine learning techniques, prognostics can provide
timely insights into potential issues, allowing preemptive actions that reduce downtime
and improve network reliability.

Prognostics models use data such as Call Detail Record (CDR) trends, KPIs (e.g.,
signal quality, call drops, and throughput), and hardware performance metrics to
anticipate faults. For instance, machine learning algorithms like Long Short-Term
Memory (LSTM) networks and Support Vector Regression (SVR) can model these
trends to detect patterns that signal impending failures. By predicting such events,
operators can proactively perform maintenance, reallocating resources and ensuring
service continuity. For example, cells prone to traffic congestion during peak hours
can be identified in advance, enabling network adjustments that balance loads across
the system.

Incorporating prognostics into SON functions not only improves fault management
but also aligns with the thesis’s broader objective of leveraging predictive analytics for
proactive decision-making. Chapters 5 and 6 lay the foundation for such advancements
by exploring methods to detect underperforming cells and optimize resource usage
dynamically. Building on this, future research can focus on integrating heterogeneous
data sources—such as hardware logs, user behavior, and environmental conditions—to
improve the accuracy of prognostics models. Additionally, ensemble machine learning
models can be developed to combine multiple algorithms for enhanced fault prediction
reliability, and uncertainty quantification techniques can be explored to provide
confidence levels for predictions, enabling more informed decision-making.

7.2.2 Reinforcement Learning in SON

Reinforcement Learning (RL) has emerged as a powerful tool for enabling dynamic
decision-making in SONs. Unlike traditional approaches, RL models learn from the
environment by iteratively adjusting their policies to maximize long-term rewards,
making them highly suitable for complex and adaptive tasks in cellular networks.

In the context of SONs, RL can address several critical challenges. For
example, RL models can dynamically allocate Resource Blocks (RBs) to Mobile User
Equipment (MUEs) and Small User Equipment (SUEs), balancing resource efficiency
and interference mitigation. By analyzing traffic patterns and resource utilization,
RL can optimize energy efficiency by deactivating underutilized small cells during
off-peak hours, thereby reducing unnecessary energy consumption. Additionally, RL
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can significantly enhance fault recovery processes. By learning optimal strategies
for rerouting traffic or reconfiguring network parameters, RL ensures minimal service
disruption during cell outages or performance degradation. Mobility management is
another area where RL can play a pivotal role, as highlighted in Chapter 4. Predicting
user mobility patterns with RL facilitates seamless handovers, reducing latency and
maintaining Quality of Service (QoS).

Future advancements in RL for SONs can further enhance these capabilities.
Developing lightweight RL models that operate efficiently in edge computing
environments will be crucial for real-time decision-making. Multi-agent RL, where
multiple agents collaborate to optimize the entire network, can also address the
challenges posed by large-scale heterogeneous networks. Furthermore, integrating RL
with supervised learning techniques can overcome the ”cold start” problem, allowing
RL models to perform effectively even in unfamiliar network conditions. Finally, RL’s
potential can be expanded to focus on improving user Quality of Experience (QoE).
By incorporating real-time feedback from users, RL models can dynamically adjust
network policies to ensure an optimal experience for end-users.

Incorporating RL into SON functions, as demonstrated in Chapters 4, 5, and 6,
reinforces the thesis’s overarching goal of integrating data-driven methods for cellular
network optimization. By leveraging RL’s dynamic adaptability and ability to learn
from complex environments, SONs can achieve significant advancements in resource
allocation, energy efficiency, and fault management.

7.2.3 Machine Learning on Big Data

Through the machine learning applied on real data in this research, it is established
that real network data has valuable information and machine learning can exploit that
data to gather intelligence needed to make futuristic cellular network more smart and
independent. Except for the Chapter 4, throughout this research only CDR data is
used for the tasks like internet traffic estimation in Chapter 3 fault detection in Chapter
5 and overall traffic load prediction in Chapter 6. The volume of the data used in
this research has been significantly huge which helps in identifying and predicting
important patterns about network behaviour. But the fact is, including CDR data
gigantic amount of heterogeneous data is generated from different ends of the network
as highlighted in Chapter 2. This data can be rightly characterized as big data and has
the same potential as attributed to big data. This cellular big data is a mine of valuable
information and can be exploited using proper big data analytic and machine learning
approach. So machine learning applied on the big data with proper big data analytic
steps as few listed below can open a new world of meanings for the future cellular
networks.
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Data Fusion

Heterogeneous data generated from different ends of the network can be exploited
independently with the help of machine learning to meet requirements for different
KPIs. But data fused from multiple sources can be more meaningful, reliable and
informative but it becomes more complicated and huge in volume that needs to be
treated as big data for storage, processing and machine learning. For example, as
mentioned earlier, in this study the main source of information has been CDR data
which is itself enormous in volume and independently sufficient to gather intelligence
to perform certain tasks like the prediction of change in cell association through
machine learning applied onCDR data which can be helpful in better management of
handover for mobile users. But a mobile user may be using a mobile app e.g. watching
a video on some popular online video platform if a machine learning model is trained
not only on spatiotemporal data of location but also on the mobile app usage behaviour
of the users it can not only predict when to perform a handover but it can also inform
the network which data stream need to be cached on which base station at what time.
So in such cases a fused data from data of user’s location with time line and data of
history of mobile apps usage can be very helpful. So the research work already done
and presented in this thesis can be extended by applying machine learning on fused
data to facilitate single SON function or multiple SON functions at the same time.

Distributed Storage and Parallel Processing

Though in this study as well parallel processing is used for the efficient processing
wherever it could be possible like in SVR based model development in Chapter 3
and big data ecosystem is used in Chapter 6. But here, main purpose has been
to expedite the model development process. But considering the big data aspect,
it becomes inevitable to use big data processing tools like distributed storage and
parallel processing for the data processing, analysis and machine learning. So the
existing research presented can be extended further to develop big data focused models.
Research work can be performed to develop machine learning algorithms that can
crunch enormous heterogeneous data streams in parallel to train single model. For
example, in fault diagnosis, when there are hundreds of thousands of sites and over
a single day, performance of each site can be evaluated multiple time for a shorter
interval of times. If the model evaluate each site one after the other, it will take too
much time to evaluate the performance of all sites and by the time it evaluates them,
the results may not be useful any more. On the contrary, with a model that can run
in parallel and evaluate performance of multiple sites at the same time, it can help in
timely or near real-time decisions.
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7.2.4 Traffic Load Estimation and Applications

The focus of this research has been to develop prediction and diagnosis models using
classical machine learning algorithm for being computationally low cost and less
data hungry during training as compared to deep learning algorithms. In Chapter
3, prediction model is developed using classical machine learning algorithm Support
Vector Machine and its performance is compared against some state of the art statistical
and deep learning algorithms for the prediction of three levels of internet traffic. This
research can be possibly extended in any of the following three dimensions:

1. Though, in this research traffic density is already estimated at a significantly
high resolution of one hour important for decision making in a shorter interval.
But this research can be extended for even higher resolutions like few minutes
important for future cellular networks with small cells in place where keeping
all cells active with the maximum resources is not optimal. Key challenges for
extending research in high resolution will be to address the data sparsity as in
smaller areas (i.e., small cells) and the shorter intervals very few samples can be
expected. Use of big data and mitigation techniques for data sparsity can help to
address this challenge.

2. Research presented in Chapter 3 covers the development of machine learning
based prediction model and comparison of its performance with the other state
of the art algorithms. This research can be extended to evaluate the application of
the models developed in the relevant use cases of cellular networks. For example,
to evaluate, how much it can help in saving energy or optimize radio resources
when the predicted values are used in some optimization model as compared to
’always on’ or maximum resources allocated scenarios.

3. It is well-known fact that deep learning algorithms are computationally complex,
expensive and data hungry but they can lead to better accuracy. But with our
prediction model developed and presented in Chapter 3, it is established that
conventional machine learning models can outperform complex deep learning
models in terms of accuracy. But the potential of deep learning models can not
be undermined as they can work on raw heterogeneous data. Hence, the research
can be extended to develop such lighter versions of deep learning models for the
traffic load estimation which do not only have good accuracy but they are also
efficient in terms of computational cost.
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7.2.5 Mobility Pattern Predictions and Applications

To the best of my knowledge it was the first time that such study is performed that
comprehensively discusses the machine learning based mobility pattern prediction
schemes and present comparative study of some popular machine learning algorithms
for the prediction of mobility patterns with the help of a global indexing system in
the context of cellular networks, for details please see Chapter 4. The study presented
is very generic and can be used in multiple use cases of SON functions in wireless
cellular networks. Further research can be conducted in the mobility pattern prediction
in the following potential areas:

1. Further research can be conducted by reproducing results for some other global
indexing system. User location is very important information in wireless cellular
networks for the provision of services. Commonly in research grid systems are
defined by researchers for the study of users association with cells and their
mobility patterns. But there is need of global indexing system which can help in
the transferability and scalability of the machine learning models. Hence further
research using different global indexing systems can be a very helpful trend for
the future cellular networks.

2. As mentioned earlier the main goal of this research has been the development of
prediction and diagnosis models using conventional machine learning algorithms
rather than its applications. So the research presented on mobility pattern
prediction in Chapter 4 can be extended toward the implementation of these
models in SON use case. For example to evaluate, how it can improve the
handover, load balancing or content caching.

3. Third dimension to extend this work can be to develop deep learning models
for the prediction of mobility patterns and compare their performance with
conventional machine learning models. It can be good contribution if such model
is developed which are not only more accurate but also computationally efficient.

7.2.6 Fault Diagnosis

A comprehensive scheme for the identification and classification of sub-performing
cells is presented in Chapter 5. A clustering model is developed for the identification
of sub-performing cells as the data is not labelled. Cells are grouped into clusters,
based on similarity and labelled with the help of domain knowledge. This study can
be extended further for the auto diagnosis on top of detection of sub-performing cells.
So the model not only identifies that there is some issue with cell but it also diagnoses
the reason of fault like temporary traffic congestion, some equipment failure or high
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traffic loads at some cells with not sufficient resources. Some of the reasons can be
identified by applying data analytic on a single source data like CDR. But others may
require big data from multiple sources as an alternative for the domain knowledge and
human expertise. For example, if a cell sub performs on specific time intervals with
high traffic it can be due to temporary traffic congestion. But if it always sub performs
and it has high traffic in general then the cell is overloaded or less equipped. If a cell
sub performs due to other technical reasons then the data of other technical reports
may help in the identification of root cause. So the research presented here in Chapter
5 can be extended for the further root cause analysis by comparative study of multiple
time slots of the same cells or exploiting fused big data from multiple sources.

7.2.7 Energy Efficiency by Proactive Instead of Cell Switching

Energy efficiency is one of the major use cases being targeted in the emerging cellular
network. In Chapter 6 research is presented to address not only this issue but also
to minimize inter-cells interference another use case for the future wireless cellular
networks. In the envisioned ultra-dense 5G networks, there will be hundreds of small
BSs deployed in a heterogeneous environment. These BSs will be switched ON/OFF
based upon user’s requirement for the sake of efficient resource utilization and energy
saving. To choose which BSs need to be turned ON, it often requires to know the
channel quality which is fed from the UE. However, it is not possible for a turned
OFF BS to listen to UE so that it can know the radio channel information. Here
this BS selection procedure can be enabled through data driven machine learning.
The idea is to collect the history of the channel quality indicator (CQI) of different
locations in the coverage. By analyzing the history of the channel information with
respect to those different locations, the radio signal quality nearby any BS can be
predicted and thus efficient BS switching can be enabled. In a user-centred multi-tier
heterogeneous network, the macro cell and the small cells have coordinated resource
allocation for uplink soundings reference signals. Based on the uplink random access
signals of new UEs or UEs with handover requirement or traffic variation of UEs in the
network, the central controller or macro BS will decide whether and which dormant
smalls cells need to be activated and which active cell should go to dormant mode.
This decreases UE access latency and achieves maximum possible energy saving
according to dynamic traffic variations. Thus machine learning can enable optimal
implementation of small cell activation and UE access to the network avoiding the
waste of energy in a heterogeneous environment. Here again, study presented in ??
can be extended with the fused big data from multiple sources instead of just once
source like CDR data although it was also huge in volume. But data from multiple
sources can help to make more robust and timely decisions.
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7.2.8 Integrated Model

Though in this study a conscious effort is made to develop generic models that can be
helpful to address multiple use cases of SON. For example, internet traffic prediction
model in Chapter 3 and model of mobility prediction patterns in Chapter 4 can be
used for multiple use cases of self-optimization in SON like for energy efficiency, load
balancing, caching, handover management etc. But still, the development of a single
integrated comprehensive model to address maximum use cases of SON functions is
an ideal scenario. Research can be further extended towards that end by integrating
multiple models as modules into one algorithm or by developing one comprehensive
algorithm that takes heterogeneous big data but it is also robust to missing data and
make accurate predictions and decisions related to several use cases of SON functions.
For example, a model can be envisioned with multiple modules and based on the
end KPIs or PIs it automatically decides the data set and model to be used and
make decisions accordingly or a comprehensive single big data based algorithm is
developed that ignores the missing streams and exploits the available data streams to
make decisions help for performing SON functions in different use cases.

7.2.9 Light Efficient Models

As highlighted already that focus in this study had been on the use of classical
machine learning algorithms instead of deep learning algorithms because deep learning
algorithms are complex, computationally costly and data hungry. But deep learning
algorithms have a huge potential of developing comprehensive single algorithm for
all or multiple use cases. But such comprehensive algorithm is expected to be even
more complex whereas it is envisioned that in the future wireless cellular networks
some decisions need to be made on centre but some decision needs to be delegated as
referred to the concepts of edge or fog computing. Running such complex models on
the edge or not practical not only because of the limitations of computational resources
but also because the tasks to be performed on the edge can be very specific. Light
and efficient machine learning models are needed there to address such challenges.
Classical machine learning algorithms developed here can be crucial in such scenarios
for specific tasks or lighter versions of deep learning algorithms need to be developed,
deep learning algorithms developed from detailed deep learning algorithms are getting
popular in this regard.
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7.2.10 Control and Data Plane Separated Architecture

Due to the network densification, heterogeneity of RANs and diverse use cases
forecasted in 5G networks, the conventional architectures are not deemed suitable from
energy efficiency, efficient planning, and interference mitigation perspectives. Thus a
new architecture has been proposed in which the control and data plane are logically
separated. A complete survey on this architecture can be found in [11]. In control
plane of the architecture, a few macro BS (MBS) provide control signalling to all the
users and data transmission to only low data rate users, whereas there are many data BS
(DBS) in the data plane that provides high rate data transmission within the macro base
station (MBS) footprint. However, interference from the DBS to MBS users is still a
challenging problem. In such a scenario, since the MBS has an MDT report from
all the users, effective mitigation technique can be developed through coordination
and cooperation to overcome the interference between the two planes. The massive
MDT report (big data) containing radio signal quality and location information of the
users, collected at the control base station (CBS) can be analyzed to come up with
comprehensive framework to overcome interference and provide better signal quality.
Apart from interference mitigation, if there occurs network fault e.g. cell outage, those
DBS can be cooperated to compensate the outage until the problem is rectified. These
solutions for proposed architectures are only possible through data driven machine
learning.

7.2.11 Bridging Gap between QoS and QoE

Although data driven machine learning promises automatic optimization of QoE of
individual subscriber sessions under dynamically changing conditions, the current
machine learning solutions do not meet the performance and real-time needs to telecom
networks. This is because of the vast size of big data generated in the network.
For example, a wireless network with 10 million subscribers runs about 1,000,000
transactions per second during peak hours. To enhance the individual customer’s QoE,
the insights from the big data needs to be combined with intelligent decisions based on
machine learning to automate immediate actions enabling dynamic QoE management.
This automatic, prompt and iterative loop between analytics, decision and optimization
is still missing.
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