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Abstract
This thesis consists of three chapters, each examining the impact of ambiguity on a specific

economic problem.

Chapter 1, Competitive Insurance Market Under Ambiguity, extends the classic Stiglitz

and Rothschild model to a setting where insurers face ambiguity about the composition

of their customers. Using the epsilon-contamination framework, I characterize insurance

contracts in a screening game under ambiguity, considering two scenarios: pooling equi-

librium and separating equilibrium. Additionally, I provide a criterion that guarantees

the existence of a separating equilibrium under ambiguity—an outcome not observed in

the standard no-ambiguity model.

Chapter 2, Moral Hazard Under Ambiguity, examines the principal-agent problem in which

both the principal and the agent face ambiguity about the stochastic relationship between

the agent’s effort and the project outcome. The chapter explores the optimal contract when

effort is observable and the sub-optimal contract when effort is unobservable, within the

context of ambiguity aversion. I specify conditions under which the principal’s decision

to induce high or low effort under ambiguity aligns with the decision in the absence of

ambiguity.

Chapter 3, Cheap Talk With Ambiguous Beliefs, explores the cheap talk problem in the

spirit of Crawford-Sobel (CS), introducing ambiguity by relaxing the assumption that

both the sender and receiver know the actual distribution of the private message. The

chapter examines CS-like partition equilibria in cases of small, complete, and intermediate

ambiguity, using various frameworks to model ambiguity. It offers new insights into how

ambiguity influences agents’ behavior in strategic communication games.
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Introduction

In most real-life decision-making situations, people tend to rely on probabilities. Since

Blaise Pascal first laid the foundation of the probability theory (Ore (1960)), its power,

efficiency, and elegant simplicity have guided decision-makers across various scientific

fields where risk is involved, such as weather forecasting, finance, and computer science.

In particular, economists have long employed probability theory in the context of sub-

jective expected utility (SEU), where, under certain conditions, an agent’s choices can

be consistently explained by how she ranks acts based on a known prior of the states of

the world (Savage (1954)). In this Bayesian-like approach, the decision-maker evaluates

each act by considering the expectation of her utility over a set of possible events, each

of which is assigned a forecasted probability.

Although SEU has long been a canonical framework for efficiently explaining human

behavior, there are numerous real-life situations where the theory encounters significant

challenges. For instance, in weather forecasting, an agent negatively impacted by rising

sea levels may assess insurance as though sea level rise is highly probable, while another

agent who benefits from it may behave as if climate change will have minimal impact. This

inconsistency, where one individual is more pessimistic than another, is left unexplained

by the SEU model (Ilut and Schneider (2022)). In economics, the well-known Ellsberg

paradox also illustrates situations in which SEU predictions are violated.

In the most familiar version of Ellsberg’s thought experiment, a decision-maker (she) is

presented with an urn containing 90 balls in three colors: red, black, and yellow. The only

exact information available is that there are 30 red balls, while no further information is

provided about the number of black or yellow balls. The decision-maker is then asked to

bet on the color of a ball drawn randomly from the urn. For example, an act bet on red
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refers to receiving $100 if a red ball is drawn and $0 otherwise. The experiment offers the

following four options: (I) bet on red, (II) bet on black, (III) bet on red or yellow, (IV )

a bet on black or yellow. The subject is asked to choose between bets (I) and (II) and

between bets (III) and (IV ) as shown in Table 1. Initially, one might consider applying

the Principle of Insufficient Reason (Bernoulli (1954)) to assign equal probabilities to all

possible outcomes. However, this principle has been subject to harsh criticism, most not-

ably by Keynes (2004). The core of the disagreement lies in determining what constitutes

an appropriate equal likelihood between drawing a black ball and a yellow ball. More

precisely, the question arises whether we should assign equal probability to each type of

ball, or if every possible configuration of black and yellow balls (ranging from 0 to 60)

should be assigned an equal probability of 1
61 .

It turns out that most decision-makers prefer bet (I) over bet (II) and bet (IV ) over bet

(III). These choices violate the sure-thing principle, 1 which dictates that bet (III) should

be preferred over bet (IV ) if bet (I) is preferred over bet (II)as the two pairs differ only

in the outcome when a yellow ball is drawn.

Table 1: Bets in Ellsberg’s experiment

R B Y = 60 - B
f1 $100 $0 $0
f2 $0 $100 $0
f3 $100 $0 $100
f4 $0 $100 $100

The unpredictability of the agent’s behavior in the Ellsberg experiment suggests that

decision-makers (DMs) with subjective probability beliefs need to be reconsidered. In the

1980s, Gilboa (1987) proposed an axiomatic model of rational choice that accounts for

the Ellsberg experiment. Instead of estimating a single subjective probability distribution,

DMs are assumed to hold a set of possible beliefs. The choice under ambiguity is then

reduced to identifying the worst-case probability distribution for each belief and selecting

the option that maximizes the DM’s payoff. This mechanism is known as the maxmin

expected utility (MEU) model.

1. In essence, the sure thing principle states that if an option is preferred in one scenario, it should still
be preferred when an unrelated outcome is introduced.
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It should be emphasized that the MEU model is not the only framework for capturing

Knightian uncertainty. Various models, particularly under the assumption of ambiguity

aversion, have been proposed in the literature. Ghirardato et al. (2010) consider MEU as

a special case of the α-MEU, where an action f is evaluated based on a weighted average

of the worst expected utility (with probability α) and the best expected utility (with

probability 1−α). Although the α-MEU model appears to be more general than Gilboa’s

original model, it fails to disentangle ambiguity from ambiguity aversion Siniscalchi (2006)

Klibanoff et al. (2005), (KMM hereafter) propose the smooth model of ambiguity, which

successfully separates ambiguity from the decision-maker’s attitude toward it. In the KMM

model, the decision-maker evaluates each Aumann-Ascombe act f using the following

utility function:

U( f ) =
∫

∆(Ω)
ϕ
(∫

Ω
u(h(ω)d p(ω))

)
dµ(p)

where µ reflects the probability measure on ∆(Ω), u : ∆(C) → R is a von Neumann-

Morgenstern (vNM) utility function, and ϕ is concave under the assumption of ambiguity

aversion. While KMM offers flexibility in modeling ambiguity, its foundations remain

problematic, making it difficult to clearly distinguish its behavioral implications from

those of the Gilboa model (Epstein and Schneider (2010)). Due to its solid axiomatic

foundation and comprehensive nature, the MEU model, along with its variants, serves as

the backbone of this thesis.

When the ability to gather information is limited, it is cognitively intuitive that decision-

makers (DMs) form a set of probability distributions rather than a single one, as assumed

in classical expected utility theory. In a general sense, an Aumann-Ascombe act is evalu-

ated in the MEU framework using the following functional form:

V ( f ) = min
p∈P

∫
Ω

u( f )d p

xii



where the DM selects the worst-case probability distribution from the set P, minimizing

her expected utility over the set of priors for each act f . Unlike the smooth model (KMM),

the MEU does not exclude kinks, as it allows for non-differentiability in the utility func-

tion.2 The set P can take various forms, representing different degrees of ambiguity. In

this thesis, we explore three classic problems in the presence of ambiguity, modeled using

variants of the MEU framework, including the ε-contamination, maxmin expected utility,

and multiplier utility models.

In the first chapter, a Rothschild-Stiglitz-like competitive insurance market is considered,

where insurers are uncertain about the proportion of low-risk and high-risk customers.

Ambiguity is modeled using the ε-contamination framework, where the degree of uncer-

tainty in firms’ subjective beliefs regarding the composition of customers is represented

by ε . Under ambiguity, several novel findings, distinct from the RS model, emerge.

First, a pooling equilibrium, which guarantees full coverage for all high-risk customers, can

exist under complete ambiguity. Second, when ε exceeds a certain threshold—independent

of the firms’ beliefs—the separating equilibrium becomes stable. These results are not ob-

served in the original RS model. Finally, we show that the insurance policies for each

customer type in the separating equilibrium under ambiguity closely resemble the separ-

ating policies in the RS model.

The second chapter focuses on examining the moral hazard problem when both the prin-

cipal and the agent hold effort-dependent beliefs, represented as a simplex, about the

probability of the project’s success. We employ the MEU model following Gilboa and

Schmeidler (1989), where both the principal and the agent choose actions that maximize

the worst expected utility and expected profit over a set of prior beliefs.

2. See Chapter 2 for more details.
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When the effort exerted is observable, we show that ambiguity reduces the principal’s

welfare but not the agent’s. Although the principal can still incentivize the agent to exert

the desired effort by offering a risk-free contract, his expected utility under the MEU

model is lower than in the classic moral hazard (MH) model without ambiguity. Being

ambiguity-averse, the principal assumes the project will succeed with the lowest possible

probability, resulting in a lower expected payoff.

In the case of unobservable effort, ambiguity aversion produces an intriguing result. The

principal’s maxmin expected profit depends on the difference between the wages paid to

the agent when the outcome is favorable and when it is unfavorable. This contrasts with

the classic MH literature, where the principal’s expected profit is determined in a unique

way without ambiguity. Additionally, ambiguity aversion may lead to a situation where

less effort is more profitable. When the sets of priors overlap, inducing the agent to exert

less effort may be more advantageous than inducing greater effort, as the latter would

require higher compensation for the agent, ultimately reducing the principal’s profit.

The final chapter examines the problem of cheap talk following Crawford and Sobel (1982)

(CS) within an ambiguity context. In the original CS model, the distribution of the private

message is known to both the sender (S) and the receiver (R). We relax this condition by

considering the situation where the receiver is uncertain about the probability distribution

of the message.3 Depending on ambiguity degree, the receiver may employ the MEU model

(Gilboa and Schmeidler), or Multiplier Utility following Hansen and Sargent (2001) for

intermediate cases. Due to the misalignment of interest between agents, the sender informs

the receiver of an interval in which the private message lies, using a random signal. The

set of informed intervals thus forms a partition equilibrium in all these models.

3. Li (2022) addresses a similar problem of cheap talk under ambiguity regarding the distribution of the
private message. However, our approach differs from Li’s, as will be discussed in detail in Chapter 3.
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We demonstrate that, when the receiver’s reference distribution is uniform, both R and S

behave in the same manner under any level of ambiguity as they do in the Crawford-Sobel

(CS) model in the absence of ambiguity, provided their preferences follow a quadratic-

loss function. Therefore, the CS equilibrium remains robust under ambiguity when the

receiver’s reference probability is uniform. However, when the receiver’s reference prob-

ability differs, her strategy under ambiguity can deviate from her behavior in the CS

equilibrium, resulting in a shift of the partition equilibrium.

Overall, my research contributes to the ongoing discussion on the effects of ambiguity in

information economics. Throughout this work, various models are employed to explain

agents’ behavior under ambiguity. While several conclusions align with those in the non-

ambiguity context, ambiguity generally gives rise to market anomalies that deviate from

expected utility theory.

In the context of the insurance market under ambiguity, Chapter 1 aligns with recent

literature on screening (Spinnewijn (2013)) and insurance contracts under uncertainty

(Birghila et al. (2023), Vergote (2010), Anwar and Zheng. (2012), Huang et al. (2015)).

It is particularly related to Anwar and Zheng’s work on competitive insurance markets.

Although this chapter restricts the contamination of ambiguity to a simplex, it offers

several novel insights compared to the standard Crawford-Sobel (CS) model. By adopting

the ε-contamination model, we not only establish the existence of pooling equilibria but

also demonstrate that the extent of ambiguity can outweigh the subjective probabilities

of insurance firms. As a result, when ambiguity is sufficiently large, ambiguity aversion

leads to the existence of separating equilibria, independent of the firms’ beliefs.

Chapter 2 provides insights into how ambiguity aversion affects agents’ decision-making in

principal-agent problems under both symmetric and asymmetric information. While there

is a substantial body of work on contract theory with imprecise information (Lopomo,

Kellner and Riener (2014), Mastrolia and Possamaï (2018), Dumav and Khan (2018),

Carroll (2015)), no study, to my knowledge, thoroughly examines the situation in which

both parties face ambiguity regarding the effort-dependent distribution of the project’s

xv



outcome. By employing the maxmin expected utility framework, both parties are con-

cerned only with the degree of ambiguity, represented by probability ranges, rather than

the structure of the imprecise belief. Thus, this chapter offers a general mechanism for

determining the set of optimal and suboptimal contracts in an ambiguous setting.

While there is extensive literature on the effects of ambiguity in insurance markets and

moral hazard, surprisingly, few studies have explored its impact on strategic communic-

ation. Some authors have extended the foundational work of Crawford-Sobel, but they

focus primarily on cases where the receiver has no information about the true private mes-

sage (Ishida and Shimizu (2019), Lai (2014), Chen and Gordon (2015)). To the best of my

knowledge, aside from Li (2022), no research has examined the violation of the assump-

tion regarding the private message distribution. However, Li’s work is incomplete, lacking

detailed technical explanations. Moreover, by modeling ambiguity solely through the mul-

tiplier preference framework, Li’s approach becomes less intuitive and more technically

complex. In contrast, we offer a simpler and more intuitive solution by modeling ambigu-

ity using the ε-contamination approach in the small-case scenario, which is analytically

less cumbersome. Our approach provides a natural way to study the effects of ambiguity

on the CS model, from small levels of ambiguity to what can be considered ”higher-order

uncertainty.” This research thus contributes to the growing body of literature on cheap

talk and strategic communication.
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Chapter 1

Competitive Insurance Market
Under Ambiguity

We investigate the impact of ambiguity on a competitive insurance market when com-

panies are uncertain about the risk profile distribution of customers. 1 By employing

the epsilon-contamination framework, we show that, in contrast to the seminal work

by Rothschild and Stiglitz (1976), a pooling equilibrium emerges if insurers face com-

plete ambiguity. When ambiguity is less extreme, pooling contracts disappear, similar to

Rothschild-Stiglitz’s findings. Although ambiguity does not impact the terms of separating

insurance policies, it affects their availability. When the ambiguity degree is sufficiently

high, the existence of the separating equilibrium is guaranteed.

1.1 Introduction

The problem of adverse selection in a competitive insurance market with private inform-

ation was initially considered by Rothschild and Stiglitz (1976) (RS hereafter). A notable

outcome from their work is that, despite consumers concealing private information about

their type, insurance companies can still offer a range of contracts that induce buyers to

reveal their types if the composition of customers is known precisely.

1. A shorter version of this work was published in Le (2024).
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However, RS’ analysis proceeded under the assumption that agents’ preferences can be

expressed through the standard von Neumann-Morgenstern (vNM) expected utility, based

on their judgment about the possibility of uncertain events. Similarly, actuarial firms

often encounter difficulties in accurately estimating the market’s customer composition

or, equivalently, the percentage of individuals with a low probability of experiencing an

accident and those with a higher probability. Consequently, it may be more plausible to

consider errors that arise when insurance companies estimate this probability measure.

In other words, insurers will inevitably grapple with uncertainty in their calculations of

the proportion of each type of consumer.

Zheng et al. (2016) (hereafter referred to as ZWL) examined the feasible policies in a

monopolistic insurance market with adverse selection when there is ambiguity about the

composition of agents. However, their model only considered the case where a single

monopolistic insurance company offers contracts to customers, leaving open the question

of how ambiguity affects competition in the insurance market, as in the RS model. To the

best of our knowledge, little is known about the impact of ambiguity on a competitive

insurance market. Furthermore, there is limited research on how ambiguity influences the

self-selection mechanism of insurance buyers.

This chapter addresses these gaps in the literature. First, we characterize two types of

contracts—pooling and separating—in equilibrium when firms face ambiguity regarding

the composition of insurees. Second, we examine how ambiguity affects the existence of

separating equilibria.

Following ZWL, the degree of ambiguity is modeled by ε−contamination with a larger ε

reflecting a larger degree of ambiguity, where ε = 0 is mapped to a single prior case as in

the RS model, while ε = 1 corresponds to complete ignorance. All the intermediate cases,

where ε ∈ (0,1) are also examined in our paper.
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Our work first establishes that when ε = 1, or in the case of complete ambiguity, a pool-

ing insurance policy emerges in equilibrium, where high-risk customers are fully covered

against their losses. Due to ambiguity aversion, insurance firms assume the most pessim-

istic scenario, in which there are no low-risk customers in the market, preventing them

from offering any cream-skimming strategies to attract low-risk buyers. Although insur-

ance companies may have initial conjectures about the composition of customers in the

market, complete ambiguity nullifies these subjective priors, leading firms to behave as if

low-risk customers are absent. This finding is novel compared to the RS model without

ambiguity.

When ε < 1, insurers still face ambiguity regarding the proportion of each type of cus-

tomer, but with less severity. In contrast to the case of full ambiguity, firms do not rule

out the presence of low-risk customers in the market under ambiguity aversion. There-

fore, for every pooling contract offered to customers, there is always an opportunity for a

deviating firm to profit by attracting low-risk buyers. As a result, the pooling equilibrium

disappears in this case, mirroring RS’s conclusion in the absence of ambiguity (ε = 0).

In the context of ambiguity, insurance companies can still screen customer types by offer-

ing two distinguishable contracts that allow low-risk and high-risk customers to self-select,

similar to the RS model. However, in the RS model, a separating equilibrium may not al-

ways exist when there are relatively few high-risk customers. In such cases, the separating

equilibrium can be disrupted by a pooling contract that attracts low-risk customers, yield-

ing positive profits for the company offering it. Under ambiguity aversion, we show that

a separating equilibrium always exists when ε exceeds a certain threshold. This threshold

depends only on the probabilities of accidents for low-risk and high-risk customers, as well

as low-risk preferences, rather than on firms’ subjective priors regarding the composition

of buyers.
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The paper is organized as follows: In Section 1.2, we review the related literature. In

Section 1.3, we present the model of the screening game without ambiguity. Section1.4

characterizes equilibrium under ambiguity. Section 1.5 is for conclusion. All proofs are

provided in Appendix 1.6.

1.2 Literature Review

The impacts of ambiguity on the financial market have been widely conducted systemat-

ically in recent years. It is the main reason that restricts participants in their decisions

and reduces the availability of liquid assets in the market. Ambiguity is also considered

a cause of adverse consequences towards risk distribution and volatility in equilibrium

prices in the market of financial securities and derivatives.

Despite extensive examination by economists over the years, the co-existence of ambiguity

aversion and private information is an unexplored and compelling area that warrants fur-

ther attention. Kajii and Ui (2009) and Martins-da-Rocha (2010) exploited the definition

of compatible priors to determine weakly interim efficient allocation in the uncertainty

framework. Tallon (1998) and Condie and Ganguli (2011) indicated that the Grossman-

Stiglitz paradox can be resolved by admitting ambiguity. Another significant conclusion

from their research is that although information is included in the equilibrium price,

agents in the financial market may agree to buy it with more extra cost.

One of the noticeable research on the characteristics of insurance policies under asymmet-

ric information and imprecise probabilities is from Jeleva and Villeneuve (2004). Under

some specified parameters, they obtained a pooling equilibrium when there is a monopolist

company. However, insurance policies from their results are partial and can be considered

inefficient.
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Koufopoulos and Kozhan (2016)’ work provided interesting results when many insurance

companies compete to offer insurance contracts under adverse selection, and consumers

are ambiguity averse and utility maximizers. The first important conclusion is that in some

special range of parameters (the probability of getting an accident of a customer), any

pooling equilibrium, if it exists, will require two types of consumers to buy full insurance

policies. The next result is that a separating policy will create a situation where agents

with a low probability of getting an accident will be underinsured. However, their coverage

will be higher than the standard model in the absence of ambiguity. The last conclusion

is that there is always a unique equilibrium that is interim incentive efficient due to the

endogeneity.

While most research on ambiguity in the insurance market focused on the ambiguity

about the distribution of loss, Zheng et al. (2016) provided a new viewpoint by consid-

ering the case when a monopolist insurer faces ambiguity concerning the proportion of

different types of consumers. Employing the Choquet expected utility to incorporate the

insurer’s ambiguity about the proportion of different types of customers, these authors

have proved the following significant results when insurers have to face uncertainty about

the composition of customers under asymmetric information.

Firstly, under ambiguity (regardless of whether the insurer is ambiguity averse or ambigu-

ity seeking), the high-type consumers acquire full coverage while the low-type consumers

obtain less than full coverage. Secondly, for an ambiguity averse insurer, as the degree of

ambiguity increases, the optimal menu of contracts moves toward a menu (the ”attrac-

tion” menu) in which the profits the insurer earns from two types of customers are the

same. The coverage of the low-type consumer can increase or decrease when ambiguity

increases. When the attraction menu is reached, the optimal menu will no longer change

even as the ambiguity continues to increase. An insurance company that is ambiguity

averse may set the same menu of contracts (which is the attraction menu) for a range

of prior beliefs. When the insurer is ambiguity-seeking, when the degree of ambiguity

increases, the menu of the contract will move away from the menu in which two types

5



of buyers give the same profits. Finally, their research suggests that when there are two

types of consumers, an insurer who has the chance to learn and renegotiate the contract

can effectively learn the distribution of consumers even if ambiguity about the proportion

of consumers exists.

Our paper relates closely to ZWL’s paper, as we also consider the case when insurers have

to face the uncertainty of the proportion of each type of consumer. However, we extend the

problem from monopolist insurance when market power exists to the competitive setting.

The basic assumption that insurance companies can estimate exactly the probability of

getting an accident for each type of customer is still intact. Hence, the indifferent curves

of low-risk and high-risk type agents are the same as in the standard expected utility,

which is convenient for our calculations.

1.3 Model Of Screening Game

This section illustrates the setting of the game and the equilibrium concept, which can

be done before introducing ambiguity. Consider two insurance companies A and B, or

insurers, competing to offer insurance policies, with one customer (she) selecting the best

policy from those offered. The customer belongs to one of two types: the low-risk type

(L− type) with a low probability of accidents or the high-risk type (H− type) with a

higher probability of loss.

Both types of customers know exactly their probability of getting accidents, say πL for

L− type, and πH for H− type. However, this information is unobservable to insurance

companies. Therefore, insurers take steps to distinguish, or screen, individuals in the

market to offer optimal insurance contracts. The problem can be stated as a three-step

game:
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Step 1. Two insurance companies, A and B, simultaneously offer a set of finite insurance

policies to consumers. As both insurance companies only want to screen two types of

customers, it would be enough for each firm to offer only one menu of policies, consisting

of two policies for low-risk and high-risk types.

Specifically, the insurance company i (i = A,B) offers a menu in the form Ψi = (Ψi
L,Ψ

i
H) =

(Bi
L, pi

L,B
i
H , pi

H) where Ψi
L = (Bi

L, pi
L), Ψi

H = (Bi
H , pi

h) are the corresponding contracts for

agents of low and high risk offered by firm i. Bi
L represents the coverage (benefit) that

firm i will pay its customer in the event of an accident, and pi
L is the premium for the

insurance contract for the low-risk type, with similar notation for the high-risk type.

Step 2. Nature determines subsequently which type of buyer is offered the contract.

Insurance firms, based on empirical observation, have a subjective belief that nature draws

a low-risk consumer with probability α , and a high-risk consumer with probability 1−α .

In the RS model without the presence of ambiguity, insurance companies know α precisely.

Within ambiguity context, α is the best guess of firms regarding the proportion of the

L−type customers .

Step 3. Each customer can only choose a single policy from either A or B. If a policy she

wishes to choose is offered by both companies, the customer randomly selects between

the two.

For a customer i, where i is L−type or H−type, we define a choice function ci(.) that

specifies the insurance company she makes an agreement and its policy Ψi. If i receives

less expected utility from the menus of the policy of both insurers than her utility without

any insurance contract, she will not purchase any insurance policies, and choose the null

policy (0,0). Thus, ci(ΨA,ΨB) = (c,Ψ), where c is the chosen insurance company from

which the customer will buy a policy, and Ψ can be Ψc
L,Ψ

c
H , or the null policy (0,0).
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As consumers show no signal to the insurance companies, the set of outcomes in the

Perfect Bayesian Equilibrium is equivalent to the set of Subgame Perfect Nash Equilibrium

outcomes. Therefore, the Subgame Perfect Nash Equilibrium can be justified to analyze

our problem.

We define a pure Subgame Perfect Nash Equilibrium (SPNE) in the screening game as

the set of strategies (ΨA,ΨB,cL(.),cH(.)) that satisfies the following:

Given the choice of B, A maximizes its expected profit:

ΠA

(
ΨA,ΨB,cL(ΨA,ΨB),cH(ΨA,ΨB)

)
≥ ΠA

(
Ψ̃A,ΨB,cL(Ψ̃A,ΨB),cH(Ψ̃A,ΨB)

)

for any other Ψ̃A ̸= ΨA.

Given the choice of A, B maximizes its expected profit:

ΠB

(
ΨA,ΨB,cL(ΨA,ΨB),cH(ΨA,ΨB)

)
≥ ΠB

(
ΨA,Ψ̃B,cL(ΨA,Ψ̃B),cH(ΨA,Ψ̃B)

)

for any other Ψ̃B ̸= ΨB.

Each type of consumer chooses the choice function that gives her the maximum expected

utility among those policies offered by both companies:

uL(Ψ)≥ uL(Ψ′), where uL(Ψ) is the expected utility of a L−type customer from the con-

tract Ψ in her choice function cL(ΨA,ΨB). uL(Ψ̃) is her expected utility corresponding to

the contract Ψ′ if she deviates. A similar definition can be applied to H−type consumers.

A Subgame Perfect Nash Equilibrium in the screening setting consists of the set of insur-

ance policies offered by firms A and B, denoted by ΨA and ΨB. Additionally, it includes

the choice functions of the low-risk and high-risk customers, represented as cL(ΨA,ΨB)

and cH(ΨA,ΨB), respectively. Denote ΨL (ΨH) as the contract that the low-risk (or the
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...

ΨB
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Ψ̃B

ΨA

Nature

L-type

Ψ̃A
L 0,0 ΨB

L
...

α

H-type

0,0

1−α

ΨB

(...)

Ψ̃B

Ψ̃A

Firm B

Figure 1.3.1: Screening game in the competitive insurance market

high-risk) consumer will choose from the choice function cL(ΨA,ΨB) (cH(ΨA,ΨB))(note

that ΨL(ΨH) can be offered by firm A, firm B or both). The pure strategy SPNE is sep-

arating if ΨL ̸= ΨH ; otherwise, it is a pooling equilibrium. The game can be depicted by

its extensive form in Figure 1.3.1.

Remark 1.3.1. Since there are only two types of buyers in the market, insurance com-

panies only need to offer at most two different insurance policies, (ΨA,Ψ̃A) and (ΨB,Ψ̃B),

as illustrated in Figure 1.3.1.
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1.4 Main Results

1.4.1 Expected profit with ε contamination

Following Section 1.3, we exclusively consider the model where individuals are categorized

as high-risk type and low-risk type. Initially, each individual is endowed with wealth w but

if the accident occurs, she faces a loss L. The probabilities of being involved in an accident

are πL for low-risk customers and πH for high-risk ones accordingly, where 0< πL < πH < 1.

Each consumer then maximizes their von Neumann-Morgenstern expected utility when

facing risks, using the utility function u(.), which is strictly increasing, differentiable,

continuous, and strictly concave.

Two competitive insurers will compete in a Bertrand game to offer a list of insurance

policies to their customers. Throughout this paper, they are assumed to be ambiguity-

averse. 2 An insurance policy takes the form of (B, p), where p is the premium paid to the

insurer, and B is the payout in the event of a loss. Both insurers and consumers know the

true values of πL and πH . Nonetheless, there is asymmetric information about the type

of customers to which one belongs: buyers know exactly their probability of getting an

accident, while companies can not observe this.

Without the presence of ambiguity, insurers have the same subjective prior belief P0 =

(α,1−α) 3 about the distribution of consumer types (or a proportion of low-risk type πL):

an individual is of low-type with proportion α and of high-type with probability 1−α .

The estimation can be the insurer’s best guess based on her experience and research.

2. According to Kunreuther et al. (1993), there is a large number of proofs from laboratory-controlled
experiments that decision makers are ambiguity-averse. Therefore, we will limit the scope of this paper
to the context of ambiguity aversion, with two insurance firms being profit maximizers and all customers
being utility maximizers.
3. More precisely, α can be defined as a probability measure, P(S) → [0,1], where S denotes the set
containing the states L and H.
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When ambiguity is taken into account, we introduce the notion of epsilon contamination,

which has been extensively studied in Zheng et al. (2016) and Carlier et al. (2003). Follow-

ing these, although insurers have formed a subjective belief regarding P0, they assume it is

incorrect with some probability ε in which α can take any possible probability measure.

More precisely, insurers perceive that with probability (1− ε) the true distribution is P0

and that with probability ε it can take any other probability law P1. As such, ε can

be interpreted as the insurer’s uncertainty about whether P0 accurately reflects reality.

The true distribution is then modeled as a mixture of P0 and P1, controlled by ε . Note

that under this interpretation, one insurance firm A will be more uncertainty-averse than

another firm B if εA > εB. The contaminated distribution is given by

P = (1− ε)P0 + εP1 (1.4.1)

In this formula, P0 represents the insurer’s baseline belief about consumer risk types,

and P1 is a worst-case alternative distribution (e.g., skewed towards high-risk consumers).

When there is no ambiguity, i.e., ε = 0, the problem reduces to the RS model. We therefore

restrict the analysis to ε ∈ (0,1].

Following Zheng et al. (2016) and formula 1.4.1, the maximum expected utility of an

ambiguity-averse insurance company under ambiguity modeled by ε−contamination can

be described by (1− ε)E(u)+ ε min
s∈S

u(s), with u(.) denoting the vN-M utility function. In

that fashion, the total expected profit from two ambiguity-averse insurers facing ambiguity

can be defined as

Π = (1− ε)
[

αΠl +(1−α)ΠH

]
+ ε min

(
ΠL,ΠH

)
. (1.4.2)

where ΠL,ΠH represent the expected profits from low-risk and high-risk consumers, re-

spectively. In 1.4.2, each insurer perceives that with probability ε , her prior belief P is

incorrect. The next section will exhibit the pure pooling and separating equilibria of the

screening game under ambiguity.
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1.4.2 Equilibrium insurance policies

Before delving into the analysis of the impact of ambiguity on insurance companies, we

first revisit the main findings from the RS model, where ε = 0:

i. There is no pooling equilibrium in competitive markets with asymmetric information.

ii. There is a unique separating equilibrium Ψ∗
L = (B∗

L, p∗L), Ψ∗
H = (B∗

H , p∗H) where H−types

are fully covered and L−types are under-covered.

iii. However, the existence of a separating equilibrium is not guaranteed. When α is close

to 1, the proportion of low-risk buyers is much higher than that of high-risk buyers,

an insurance company can offer a pooling contract that entices low-risk buyers while

generating positive profit. This scenario leads to the breakdown of the initial separating

equilibrium.

We show that, on the one hand, the separating contract in (ii) is robust under ambiguity.

On the other hand, ambiguity aversion leads to the existence of pooling equilibrium where

insurers offer a unique policy that fully insures the H−type, thus (i) is violated. This is a

novel result compared to the RS model.

Moreover, firms can still offer the separating equilibrium even when the subjective prior

belief α , or the percentage of the L−types dominates that of the H−types if ε exceeds a

certain threshold. This suggests that (iii) is no longer robust in the ambiguity context.

In the next step, we first set up the preliminaries. Assume that each type of consumer

has the same vN-M utility preference u(.) over their wealth, then the expected utility for

each type of consumer, L−type and H−type from an insurance contract (B, p) will be:

uL(B, p) = πLu(w−L+B− p)+(1−πL)u(w− p) (1.4.3)
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uH(B, p) = πHu(w−L+B− p)+(1−πH)u(w− p). (1.4.4)

From the properties of u(.) in 1.4.1, uL(B, p) and uH(B, p) are also continuous, differenti-

able, and strictly concave. Moreover, uL and uH are strictly increasing in B and strictly

decreasing in p. The marginal rate of substitution in each contract (B, p) for low-risk

customers is given by:

MRSL(B, p) =
πLu′(w−L+B− p)

πLu′(w−L+B− p)+(1−πL)u′(w− p)
(1.4.5)

and for high-risk type:

MRSH(B, p) =
πHu′(w−L+B− p)

πHu′(w−L+B− p)+(1−πH)u′(w− p)
. (1.4.6)

It can be observed from 1.4.5 and 1.4.6 that both MRSL and MRSH are increasing functions

for πL and πH , and MRSL(B, p)<MRSH(B, p) for all (B, p). This implies the single-crossing

property, where the indifferent curves of two types of consumers intersect at most one time.

The expected profit from one L−type customer for a policy (B∗, p∗) is as follows:

ΠL = πL(p∗−B∗)+(1−πL)p∗ = p∗−πLB∗ (1.4.7)

Similarly, the expected profit from one H−type customer is:

ΠH = πH(p∗−B∗)+(1−πH)p∗ = p∗−πHB∗ (1.4.8)

The total expected profit of the market from L−types and H−types is determined ac-

cording to 1.4.2:

Π = (1− ε)
[

αΠL +(1−α)ΠH

]
+ ε min

(
ΠL,ΠH

)

13



1.4.3 Insurance contracts in equilibrium under full ambiguity

We first consider the case when ε = 1. When both insurers are completely ambiguous

about the composition of types of customers, the total gains from the two firms equals

the lowest between the expected profits of L−types and of H−types:

Π = min
(

ΠL,ΠH

)
(1.4.9)

The following lemma shows that the expected profit of each insurer must be zero.

Lemma 1.4.1. In every pure strategy Subgame Perfect Nash Equilibrium (SPNE) under

full ambiguity, both insurance companies earn zero profit.

Following 1.4.1, the pooling equilibrium where both types of buyer choose an identical

insurance policy would also produce zero profit. In case of complete ambiguity, insurers

anticipate the worst case when all buyers are high-risk type, thus ruling out the contribu-

tion expected from the low-risk type. Thus, a cream-skimming mechanism that upsets the

pooling equilibrium as in the original context fails to exist in case of complete ambiguity.

Theorem 1.4.1. There is a unique pure strategy pooling equilibrium under full ambiguity

where the H-type is fully insured.

The intuition of 1.4.1 is as follows. Under complete ambiguity, when one insurance firm

offers the unique pooling contract that attracts only the H−type insurees, Ψ∗, the remain-

ing firm has no incentive to offer a profitable one, as it assumes that the worst situation

will not have L− type customers. For any other pooling contract that attracts both types

of buyers, since the expected profit of each firm is zero following the Lemma 1.4.1, it

can be derived that the unique feasible policy is the null contract. Nevertheless, the null

contract is easily upset once the other insurance firm offers a pooling policy better suited

for L− type, or implements cream-skimming.
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Figure 1.4.1: Pooling contract under complete ambiguity

Figure 1.4.1 illustrates the unique pooling policy Ψ∗ in Theorem 1.4.1. As explained

above, the null contract Ψ0 is eliminated in equilibrium, since one firm can offer another

pooling contract Ψ′∗ which attracts two types of customers, leading to a positive profit

upon deviating.

Next, we characterize the separating equilibrium under full ambiguity. Firstly, in every

separating equilibrium Ψ∗
H , Ψ∗

L the H−type must gain the exact utility in the pooling

contract Ψ∗. This can be shown by considering two cases. If the H−type is overinsured,

then the profit gained from them is less than zero. Under full ambiguity and by ambigu-

ity aversion, firms that offer the overinsurance policy for the H−type assume the worst

scenario when there is no L−type in the market. Thus, their overall profits will be less

than zero, which cannot happen in any equilibrium (since firms can always offer a null

policy that at least guarantees the zero profit).

Next, we consider the remaining case if the H−type is underinsured in some equilibrium.

Then in this equilibrium contract, the premium for the H−type will cost more than

πHL in case he is reimbursed the full loss L. However, one firm can deviate and offer a

policy (L,πHL+ ε), with ε small enough so that the H−type buyers in this policy pay

less for the premium than in the policy in equilibrium. As a result, this policy attracts
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Figure 1.4.2: Separating contract under complete ambiguity

all H−types (if the policy also attracts L−types, it is obviously more profitable for the

deviating company) and guarantees positive profits for the deviating firm, which is a

contradiction. Thus, ΠH = 0 in the separating equilibrium, leading to ΠL = 0 by 1.4.1.

By the incentive constraint, it can be derived that the H−type is fully insured while

the L−type is underinsured. A detailed proof can be found in Jehle and Reny (2011), p

410-412.

Theorem 1.4.2. The policies (Ψ∗
H , Ψ∗

L) selected by L-type and H-type customers in a

pure strategy separating equilibrium are illustrated in Figure 1.4.2.

The optimal contracts Ψ∗
L and Ψ∗

H in the separating equilibrium under ambiguity coin-

cide with those in Rothschild and Stiglitz (1976)’ paper. The reason is ambiguity only

affects insurance companies’ expected profit rather than customers’ preferences. Moreover,

Lemma 1.4.1 asserts that in any separating equilibrium under ambiguity, each firm earns

only zero profit. Therefore, the separating equilibrium under full ambiguity is, in essence,

no different from the RS model.

Existence of separating equilibrium under full ambiguity
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Figure 1.4.3: No separating equilibrium exists when H−types are outnumbered by
L−types.

In the RS model without ambiguity, the separating equilibrium does not always exist.

Consider the case when both insurers know precisely the probability of the low-risk type

α(ε = 0). Ψ∗
H and Ψ∗

L are best and second-best contract in separating equilibrium in

Figure 1.4.3. If one firm deviates by offering a pooling policy Ψ′ = (B′,L′) that lies below

both uc
H and uL, then both L−types and H−types will prefer this policy to their former

equilibrium contracts since it strictly improves their utilities. If the proportion of L−types

dominates H−types, or α ≈ 1, the pooling zero profit line will be close enough to the zero

profit line of L−types πLB.

Thus one firm can earn strictly positive profit by offering Ψ′ = (B′, p′) that lies above the

zero profit line of the L−type. As the proportion of low-risk buyers dominates high-risk

buyers, the profit gained out of the former outweigh the loss caused by the latter. However,

when both companies are fully ambiguous about α , or ε = 1, the separating equilibrium

always exists since there can not be any pooling equilibrium that not only attracts both

types of consumers but also guarantees positive profit to the firm offering it. Indeed, being

completely ambiguous about the proportion of each type of customer, insurers assume

the worst total expected profit, p′ − πHB′, when all customers are H−types. In other

words, firms are prudent in the face of ambiguity as they are completely unsure about the

composition of their customers. In light of that, the zero profit line for a pooling contract
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coincides with the zero profit line of H−types πHB. Consequently, any pooling contract

chosen by a L−type customer (and also by a H−type one) will lie below the zero profit

line and return a negative profit, which is not chosen by any insurance firms. As such, the

separating equilibrium exists.

1.4.4 Insurance contracts in equilibrium under intermediate am-

biguity

When ambiguity is intermediate, i.e. ε ∈ (0,1), the original conclusions in the standard

model of RS are robust. The pooling equilibrium does not exist because one deviating firm

can offer a new contract that would entice the low-risk type and guarantee a positive profit.

Furthermore, the separating contract in equilibrium remains consistent with Theorem

1.4.2 where each type of consumer contributes zero to the firms’ profit and there is no

cross-subsidization in the model.

Lemma 1.4.2. In every pure strategy SPNE under ambiguity with 0 < ε < 1, both insur-

ance companies earn zero profit.

If there exists a pooling equilibrium when ε ∈ (0,1), then following Lemma 1.4.2 the

pooling contract must lie in the zero profit line πkB between πLB and πHB, which gives

rise to a cream-skimming situation when a deviating insurance firm can offer a different

pooling contract which makes two types of the customer better off and gain a positive

profit from low-risk type. Therefore, a pooling equilibrium also can not exist in this case.

We have the following result:

Theorem 1.4.3. There is no pure strategy pooling equilibria with ε ∈ (0,1).

Figure 1.4.4 illustrates Theorem 1.4.3. Indeed, a rational firm can strategically offer one

policy in the region R and lies above πkB to appeal only to the low-risk consumer and

earn a strictly positive profit.
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Figure 1.4.4: No pooling equilibrium exists when ε ∈ (0,1).

We examine the existence of the separating equilibrium when ε ∈ (0,1). Note that as

analyzed in the case ε = 1, the separating contract is characterized by a pair of policies

(Ψ∗
H , Ψ∗

L) as in 1.4.2. We have already shown that when insurers are completely ambiguous

about the composition of customers (ε = 1), there always exists a separating equilibrium

as firms are extremely cautious about the worst-case scenario when all consumers are

high-risk type. Full ambiguity, thus, rules out the role of any prior subjective belief α

when insurers only take into account the extreme case α = 0. If insurance firms face

insignificant ambiguity about the proportion of customers, or ε ≈ 0, and the proportion

of the low-risk type dominates the high-risk type (α ≈ 1), there will be a situation that

the separating policy does not exist as in Figure 1.4.3. When the degree of ambiguity is

significant, i.e. ε ≈ 1, insurance firms possess almost no information regarding the true

composition of low-risk customers α . Being ambiguity-averse, firms assume the worst

scenario when there is a high chance that H-type customers dominate the market. In this

case, no pooling equilibrium exists, and insurers offer separating policies in equilibrium,

as analyzed in the case of full ambiguity.
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When ε is not close to the two ends 0 and 1, we consider Figure 1.4.5. Firstly, we observe

that the zero-profit line πkB concerning the ε-contamination lies above the zero profit line

πpB when there is no ambiguity. Indeed, since πp is defined by πp = απL+(1−α)πH , and

πk = kπL +(1− k)πH = (1− ε)απL +(1− (1− ε)α)πH , then πk −πp = εα(πH −πL)> 0.

Consider the tangent πuLB of the indifferent curve for the low-risk type uL where the policy

Ψ∗
L lies in. It can be seen that if the zero profit line πkB is lower than the tangent line

πuLB, there is always a pooling policy Ψ′ which can attract both types of customers and

earn a strictly positive. Hence, to ensure the existence of a separating equilibrium, πkB

must be higher than πuLB, or πk > πuL . This is equivalent to kπL +(1− k)πH > πuL , hence

πH − k(πH −πL)> πuL , or k <
πH −πuL

πH −πL
. Since k = (1− ε)α , it implies that

ε > 1− πH −πuL

α(πH −πL)
= εα (1.4.10)

The intuition of 1.4.10 is as follows. When α ≈ 0, the RHS of the inequality is very small,

thus 1.4.10 holds for every ε > 0. In other words, if firms have a small subjective belief

regarding the proportion of L− type, they always separate insurance policies regardless

of the ambiguity degree. Ambiguity aversion, in this case, exacerbates the initial belief α

of insurers. As α increases along the simplex, εα also moves upward. Therefore, the value

of ε increases accordingly. This implies that although insurance firms hold a very high

belief regarding the proportion of L− type, they can offer the separating equilibrium if

ambiguity is significant enough. Moreover, by taking α = 1 in 1.4.10, we obtain the highest

value of εα equal to 1− πH −πuL

πH −πL
= εmax. As εmax ∈ (0,1) and it is the highest possible

value of εα , insurance firms will offer the separating equilibrium when the ambiguity level

exceeds it. Therefore, the separating equilibrium is always assured.
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Figure 1.4.5: Existence of separating equilibrium when ε < 1.

1.5 Conclusion

This paper takes inspiration from the seminal work of Rothschild and Stiglitz (1976) where

the authors concerned the competitive insurance market with adverse selection. We extend

the analysis by introducing ambiguity with respect to the customer composition into the

literature.

When insurance firms face complete ambiguity about the proportion of each customer

type, a pooling equilibrium exists, as no company is able to attract low-risk customers

due to ambiguity aversion. However, when ambiguity is present but not complete, the

pooling equilibrium fails to exist, which aligns with the conclusions of the RS model.
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Without ambiguity, the primitive model of RS predicts that the separating equilibrium is

not guaranteed if the proportion of H−types is significantly outweighed by L−types. An

entrant can strategically offer a more profitable contract that pulls all L−types customers

out of the separating equilibrium, thus earning positive profit. However, when ambiguity

is factored in, such a situation is eliminated. Our results show that under a significant

degree of ambiguity, a separating equilibrium always exists, contributing a novel result

compared to the RS model.

The study of ambiguity about the distribution of types of consumers can be further

explored in a broader class of problems within the insurance market with adverse selection.

For instance, investigating signaling models where insurers identify the type of buyers

based on received signals under asymmetric information, or considering scenarios where

both insurers and consumers face ambiguity presents interesting and complex avenues for

future research. In summary, introducing ambiguity into the research of the insurance

market poses numerous intriguing questions that will be the focus of future studies.

1.6 Appendix of Proofs

1.6.1 Proof of Lemma 1.4.1

If both L−type and H−type customers choose the same insurance policy Ψ∗
L = Ψ∗

H =

(B∗, p∗), the total expected profit from two insurance firms A and B from 1.4.9 will be

Π = ΠA +ΠB = min
(

ΠL,ΠH

)
= min (p∗ − πLB∗, p∗ − πHB∗) = p∗ − πHB∗ since πL <

πH . We use counterarguments to claim that profit ΠA,ΠB of each firms must be zero.

Indeed, firstly both insurance companies’ profits are positive (ΠA,ΠB ≥ 0) because they

can otherwise offer the contract (0,0) and guarantee at least a null profit. Secondly, if

there exists one company that gains strictly positive profit, for example, ΠA > 0, then we

have ΠB < ΠA +ΠB = p∗−πHB∗ = Π. If firm B deviates by offering a pooling contract

Ψ′
B = (B∗+ ε, p∗) with ε > 0 then both types of insuree will take this contract since they
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will be more covered with B′ = B+ ε with the same premium. Then the expected profit

for firm B is Π′
B = min(Π′

L,Π′
H) = min(p∗−πL(B∗+ε), p∗−πH(B∗+ε))= p∗−πH(B∗+ε).

When ε is small enough Π′
B can be close to Π arbitrarily. Specifically, there exists ε that

makes firm B financially better off, which contradicts the fact that (B∗, p∗) is pure strategy

SPNE.

Now consider the case each type of insuree takes a distinctive insurance policy, or Ψ∗
L =

(B∗
L, p∗L) ̸= Ψ∗

H = (B∗
H , p∗H). Because low-risk buyers will choose (B∗

L, p∗L) and high-risk

buyer will choose (B∗
H , p∗H) then the incentive compatibility constraints must be satisfied:

uL(Ψ∗
L) ≥ uL(Ψ∗

H)(1), and uH(Ψ∗
H) ≥ uH(Ψ∗

L)(2). By single crossing property, these two

inequalities can not happen simultaneously. Thus we can assume that uL(Ψ∗
L) > uL(Ψ∗

H)

WLOG. Then the total expected profits of firms A and B are Π=ΠA+ΠB = min(ΠL,ΠH)

= min (p∗L −πLB∗
L, p∗H −πHB∗

H). Suppose that profit of firm A ΠA > 0 then ΠB < Π and

Π = ΠA + ΠB > 0. Because the total expected profit from two firms Π = min (p∗L −

πLB∗
L, p∗H −πHB∗

H)> 0, then we denote Π = p j −π jB j = min
(

p∗L −πLB∗
L, p∗H −πLB∗

H

)
> 0.

Here j = L or H and π j = πL or πH accordingly.

Consider the situation when insurance firm B proposes a pair of policies (Ψσ
L = (B∗

L +

σ , p∗L)) and (Ψβ
H = (B∗

H + β , p∗H). Both types of consumers will prefer the new policy

to the old one (ΨL,ΨH) due to the former’s higher coverage. We show that one can

choose σ and β small enough to satisfy the incentive compatibility condition (1) and (2)

, which means only low-risk agents will choose Ψσ
L and only high-risk agents will choose

Ψβ
H . Indeed, since uL(Ψ∗

L) > uL(Ψ∗
H), we can find β small enough such that uL(B∗

L, p∗L) >

uL(B∗
H + β , p∗H) = uL(Ψ

β
H)(3) . Now fix β , then there exists σ small enough such that

uH(Ψ
β
H) = uH(B∗

H + β , p∗H) > uH(B∗
L +σ , p∗L) = uH(Ψσ

L )(4). There is indeed σ such that

(4) happens because uH(Ψ
β
H)> uH(Ψ∗

H)≥ uH(Ψ∗
L) = limσ→ 0 uH(Ψσ

L ). Take this σ to the

contract Ψσ
L and from (3) we have the followings : uL(Ψσ

L ) = uL(B∗
L+σ , p∗L)> uL(B∗

L, p∗L)>

uL(Ψ
β
H)(5). (4) and (5) show that L−types and L−types will choose contract Ψσ

L and Ψβ
H .
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Therefore, firm B will attract all types of consumers when it offers the pair of policies

(Ψσ
L ,Ψ

β
H). By choosing the value of β and σ close enough to 0, firm B can still make

Π′ = min
(

p∗L − πL(B∗+σ), p∗H − πH(B∗
H + β )

)
close enough to total expected profit π j

and thus increase the expected profit of firm B. This is again a contradiction to our

assumption that (Ψ∗
L,Ψ∗

H) is a SPNE. Hence both insurance companies must gain profit

zero. ■

1.6.2 Proof of Theorem 1.4.1

Assume that both types of customers, choose the same policy Ψ∗ = (B∗, p∗) in equilibrium.

The expected profit from a archetypal L−type is ΠL = p∗ − πLB∗ and from H−types

is ΠH = p∗− πHB∗. Then the total expected profits of two insurance companies under

ambiguity is Π = (1− ε)
[

αΠL +(1−α)ΠH

]
+ ε min

(
ΠL,ΠH

)
= min

(
ΠL,ΠH

)
(since

ε = 1) = p∗−πHB∗. From 1.4.1 both firms earn zero profits, therefore Π = ΠA +ΠB = 0,

therefore it follows that p∗−πHB∗ = 0 and ΠL ≥ 0. Now consider the case when ΠL > 0.

As the total expected profit from two types is zero, insurance firms assume the worst

case is when there are no L− type customers. Thus, companies only offer policy for the

H−type. The unique policy in equilibrium is Ψ∗ = (L,πHL), which follows the standard

result in the insurance market context.

We consider if ΠL = 0. From the expression of ΠL and ΠH , we can conclude that (B∗, p∗) =

(0,0) is the unique possible pooling contract. Note that with this insurance policy, both

indifferent curves of two types of consumers will lie above the zero profit line πHB and

πLB (we can also derive this by observing that uL(L,πLL)> uL(0,0) so policy (L,πLL) will

lie below the utility of policy (0,0). A similar argument applies to high-risk buyers.

If one firm deviates from the null policy by offering Ψ′∗ = (B′∗, p′∗) = (L,πHL+ ε), the

H−types will be pulled to the new contract since they receive higher utility. This new

policy generates the strictly positive expected profit for the deviating, which is a contra-

diction. ■
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1.6.3 Proof of Lemma 1.4.2

Firstly we prove the lemma for the pooling case. If both types of consumers choose

the policy ΨL = ΨH = (B∗, p∗), the total expected profit of two insurance firms under

ambiguity with ε-contamination will be Π = ΠA + ΠB = (1 − ε)
[

αΠL + (1 − α)ΠH

]
+

ε min
(

ΠL,ΠH

)
, where ΠL = p∗ − πLB∗ and ΠH = p∗ − πHB∗. Since πL < πH , we have

ΠH < ΠL and min
(

ΠL,ΠH

)
= ΠH . We re-express the total expected profit of the market

as Π= (1−ε)
[

αΠL+(1−α)ΠH

]
+εΠH = (1−ε)αΠL+(1−ε)ΠH −(1−ε)αΠH +εΠH =

(1− ε)αΠL +(1− (1− ε)α)ΠH = kΠL +(1− k)ΠH(1), with k = (1− ε)α . Since 0 < ε < 1

and 0 < α < 1 we also have 0 < k < 1(2). If there is one firm gaining strictly positive

profit, for example, ΠA > 0, then ΠB < Π. Now if firm B deviates to offer only policy

Ψ′
B = (B∗+ δ , p) with δ > 0 then the new policy which covers more for accident B∗+ δ

will attract both types of players. The total expected profit from both types for firm B

will be Π′ = (1−ε)
[

αΠ′
L+(1−α)Π′

H

]
+ε min

(
Π′

L,Π′
H

)
. Here Π′

L = p∗−πL(B∗+δ ) and

Π′
H = p∗−πH(B∗+δ ). Still min(Π′

L,Π′
H) = Π′

H , thus we can use (1) to determine the total

expected profit Π′
B = kΠ′

L+(1−k)Π′
H = k

(
p∗−πL(B∗+δ )

)
+(1−k)

(
p∗−πH(B∗+δ )

)
=

k(p∗−πLB∗)+(1− k)(p∗−πHB∗)−δ
(

kπL +(1− k)πH

)
= Π−δ

(
kπL +(1− k)πH

)
.

From (2) we have kπL+(1−k)πH is a strictly positive constant, so for δ sufficiently small

Π′
B is smaller than Π arbitrarily. Because Π > ΠB there exists Π′

B > ΠB and thus firm B

is better off by deviating, which contradicts the assumption that (B∗, p∗) is a pure SPNE.

In the case when the separating equilibrium is established, by following the proof of

Lemma 1.4.1, we also derive a similar result as in the pooling case which dictates that

each insurance company earn zero profit. ■
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1.6.4 Proof of Theorem 1.4.3

Assume that both types of customer choose the same insurance policy (B∗, p∗), then

according to the proof of 1.4.2, the total expected profit of two firms will be Π = k(p∗−

πLB∗)+(1− k)(p∗−πHB∗) = p∗− (kπL +(1− k)πH)B∗ = p∗−πkB∗ = 0(1), where the last

equation comes from each firm will only earn zero profit following Lemma 1.4.2 (here

we denote πk = kπL +(1− k)πH). If p∗ = 0 then we must have B∗ = 0. This trivial case

can be shown to be unstable because one firm can offer a contract that attracts all high-

risk consumers and still guarantees a strictly positive. We only, therefore, consider the

case when p∗ > 0 and thus B∗ > 0 from. Consider the situation when one firm in the

shaded region R in Figure 1.4.4 offers a pooling policy Ψ′ = (B′, p′). The utility of low-

risk customers will be improved whereas the utility of high-risk ones will be worse off.

Consequently, all the low-risk type customers will move to a new policy and the high-risk

one will not change their initial policy (B∗, p∗). Hence, the expected profit for the deviating

firm is only from L−types: Π′ = p′−πLB′. Since we have denoted πk = kπL +(1− k)πH

and 0 < k < 1, πL < πH then πL < πk < πH . Hence Π′ = p′−πLB′ > p′−πkB′(2).

But from (1) we already know that p∗−πkB∗ = 0. Hence, if another firm offers a contract

(B′, p′ ) which is close enough to the initial contract (B∗, p∗) in region R which guarantees

a positive profit from low-risk type, (2) will be strictly positive and Π′ > 0, which is a

contradiction because the deviating firm is financially better off. Henceforth the pooling

equilibrium contract does not exist. ■
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Chapter 2

Moral Hazard Under Ambiguity

We examine a two-outcome principal-agent problem where both the principal and the

agent face ambiguity regarding the project’s probability of success. We show that when

effort is observable, the agent’s welfare remains unaffected by ambiguity, while the prin-

cipal’s welfare declines relative to the non-ambiguous model. When effort is unobservable,

ambiguity aversion leads to two distinct possible expected profits for the principal, which

differs from traditional models without ambiguity. Consequently, ambiguity influences

the principal’s decision on whether to induce effort, diverging from the decisions made in

the absence of ambiguity.

2.1 Introduction

The orthodox principal-agent problem assumes that while outcomes are random, their

probability distributions are deterministic. This assumption leads to a unique first-best

wage scheme when the principal can observe the agent’s effort and a unique second-best

wage scheme when effort is unobservable (Holmström (1979)). However, many argue that

this assumption is overly restrictive (Weinschenk (2010)), as there are numerous situations

where one or both parties cannot precisely evaluate the probability of a project’s success.

In this paper, we relax this assumption by considering the case where both the principal

and the agent face ambiguity regarding the project’s success probability.
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Imprecise probabilities have been extensively documented across various areas of financial

markets. For example, Koufopoulos and Kozhan (2016) examined competitive insurance

contracts under ambiguity aversion, while Easley and O’Hara (2009) showed that ambigu-

ity aversion can lead to non-participation in markets and influence asset prices. However,

to the best of our knowledge, the impact of ambiguity on decision-making in the classic

moral hazard framework has not been thoroughly explored.

By introducing ambiguity into the beliefs of both the principal and the agent, we employ

the maxmin expected utility framework (Gilboa and Schmeidler (1989)) to examine the

classic principal-agent problem under both symmetric and asymmetric information scen-

arios. In our model, both parties face ambiguity regarding the likelihood of the project’s

success, unlike much of the existing literature, where typically only the buyer is considered

ambiguity-averse and the seller ambiguity-neutral (Koufopoulos and Kozhan (2016)). In-

troducing ambiguity aversion for both parties highlights the fact that their perceptions

differ and may even be oppositional: the best-case scenario for one party could represent

the worst-case scenario for the other.

Weinschenk (2010) also studies the principal-agent problem under ambiguity. However,

their work differs from ours in two ways. First, their model does not assume ambiguity

aversion for the principal. Second, the assumption that the set of performance distributions

is effort-independent limits its flexibility. Our approach adopts a more flexible paradigm

where the set of distributions depends on the manager’s contribution. In this way, by

manipulating the agent’s effort, which adjusts the spectrum of possible priors for the

project, the principal can control the worst-case scenario in the context of ambiguity

aversion.

This paper contributes to the moral hazard literature by characterizing the optimal com-

pensation schemes when effort is observable and unobservable under ambiguity. We first

show that, if the manager’s effort is observable, offering a risk-free contract that pays

the agent a fixed wage, regardless of the project outcome, is optimal for the principal.

This mirrors the best contract in Holmström (1979)’s non-ambiguity model, where the
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principal eliminates the risk of overpayment when the good outcome is realized. Due to

ambiguity aversion, the principal assumes the worst probability of project success for

any induced effort, lowering the principal’s welfare under ambiguity, although the agent’s

utility remains unchanged when effort is observable.

When effort is unobservable, ambiguity aversion leads to multiple potential expected profit

outcomes for the principal, with the worst-case scenario possibly occurring when the

project’s chance of success is highest. As a result, ambiguity can shift the principal’s

decision: while the principal may induce the agent to exert high effort if the true priors

are known, they may opt for low effort under ambiguity to maximize expected profit,

and vice versa. To our knowledge, this situation has not been explored in the existing

moral hazard literature under ambiguity. Furthermore, we analyze conditions under which

the principal’s choice of effort remains consistent in both the presence and absence of

ambiguity.

This paper is organized as follows. Section 2.2 introduces the model of moral hazard

(MH) under ambiguity. The main results are presented in Section 2.3. Section 2.4 covers

comparative statics, and Section 2.5 concludes the paper. All proofs are provided in the

Appendix 2.6.

2.2 Model

With the exception of the ambiguity assumption, we adopt the setup of the classic

principal-agent model. Consider a principal (he) who aims to design a contract to motiv-

ate an agent (she) to complete a one-time venture. Throughout this paper, we restrict our

analysis to cases where the project outcome is binary: a good outcome or a bad outcome.

Specifically, let P = (πg,πb) ∈ R2
+ represent the set of realized profits, where πb denotes
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the lower payoff in the case of a bad outcome, and πg represents the higher payoff in the

case of a good outcome. We assume that πg > πb in line with these definitions.1 A com-

pensation scheme (wg,wb) rewards the agent with a payment contingent on the project’s

outcome: she receives wg in the case of a good result and wb in the case of a bad result.2

The set of one-dimensional effort choices available to the agent is denoted by E = {e0,e1},

where e0 and e1 represent low and high effort, respectively. For each level of effort e

implemented, the disutility of exerting the effort is denoted by d(e). The agent’s utility

given by compensation w and the disutility ce is defined by u(w,e), where u satisfies

uw(w,ce)> 0, uww(w,e)≤ 0 for all (w,e). The first inequality implies that the agent prefers

more payment than less for the same level of effort implemented. The second implies

that the agent is weakly risk-averse over income lotteries. Finally, to be more realistic, we

impose that the manager prefers low effort to high effort for the same level of payment

he or she receives.

Throughout this chapter, we only consider the special case u(w,e) = v(w)−c(e), which has

gained much of consideration in the literature. Literally, agent’s utility is determined only

by the difference between the utility from salary v(.) and the disutility from implementing

effort c(e). Note that in this form of representation of u(w,e), the disutility c(e) has been

completely separated from v(.), implying that it does not depend on her utility function for

the conpensation scheme. With assumptions on u(w,e) defined earlier, it can be derived

that v′(w) > 0,v′′(w) ≤ 0, and c(e1) > c(e0) (we will use c1 and c0 for simplicity from

onwards), indicating that exerting high effort incurs a higher cost than low effort.

1. The outcomes in Mas-Colell et al. (1995) take values in π, π̄, where π < π̄. We can assume that π = πb
and π̄ = πg, with only π and π̄ in support of distribution.
2. We do not require output-based salary schemes to be positive. A negative compensation scheme (e.g.,
wb < 0), can be interpreted as a situation where the agent bears responsibility for the bad outcome and
faces a salary reduction to offset the project’s losses. However, in the context of the insurance market,
compensation schemes are typically required to be positive. See Koufopoulos and Kozhan (2016).
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The agent needs the minimum utility (outside option) u to accept the contract the prin-

cipal has offered. This is typically the utility the agent could achieve from their next best

alternative, which could be doing nothing (a default utility), working for another prin-

cipal, or pursuing another opportunity. The principal must offer the agent at least this

level of utility, or else the agent will choose the outside option rather than engage in the

contract.

The standard literature on the moral hazard problem typically assumes a stochastic re-

lationship between the agent’s effort and the project’s performance. In our model, this

assumption is relaxed, as both the principal and the agent are unable to precisely determ-

ine the effort-dependent probability of the project’s success. For any effort e ∈ E, both

parties face Knightian uncertainty regarding the prospect of the project outcome, result-

ing in a range of possible beliefs concerning the true likelihood of success. We outline the

following assumptions to specify how the project’s performance is statistically associated

with the level of exerted effort under ambiguity.

Assumption 1. Given that the agent implements effort ei, i ∈ {0,1}, both the principal

and the agent face a set of set of possible probabilities regarding the true probability of a

good outcome, represented by the interval [pi, p̄i]. The true probability, from both parties’

perspectives, could take any value p ∈ [pi, p̄i].

It is important to emphasize that an objective probability for the favorable outcome

πg which depends on the agent’s effort, exists. Without ambiguity, the effort-dependent

distribution of the project’s good outcome is perfectly known to both the principal and

the agent. However, the presence of external factors that create ambiguity prevents both

parties from accurately identifying the exact distribution of outcomes, leading them to

hold a spectrum of possible probabilities.3

3. Exogenous events that contribute to ambiguity have been examined in recent literature; see Etner
and Spaeter (2010).
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Assumption 2. For every effort ei, pi < p̄i. Moreover, p1 > p0 and p̄1 > p̄0. 4

The first inequality in Assumption 2 is obvious. The second inequality in Assumption 2

suggests that both parties, who are ambiguity-averse, assume that the lowest probability of

project success when the agent exerts high effort is still higher than the lowest probability

of success when the agent exerts low effort. Lastly, the third inequality in Assumption

2 states that implementing e1 may result in a large likelihood of success that could not

occur when implementing e0. Otherwise, it will follow that [p1, p̄1] ⊂ [p0, p̄0] if p̄1 ≤ p̄0

and p1 > p0, making high effort e1 indistinguishable from low effort e0.

Remark 2.2.1. From Assumption 2, it can be derived that for every effort ei, [pi, p̄i] ̸=

[0,1]. For instance, if [p0, p̄0] = [0,1], then p̄1 > p̄0 = 1 as the above argument, which is

impossible. Similarly, if [p1, p̄1] = [0,1], then 0 = p1 > p0, which cannot occur.

Given that both the principal and the agent are ambiguity-averse,5 their utility function

follows the MEU criterion introduced by Gilboa and Schmeidler (1989). For each contract

(wg,wb) offered by the principal, denote e∗ as the effort the agent selects from {e0,e1}. To

ensure the agent participates in the agreement, the contract must meet two constraints:

the participation constraint (P.C.), which guarantees that the agent will be paid at least a

required utility level, and the incentive constraint (I.C.), which ensures the principal can

indirectly induce the agent to exert the desired effort. Therefore, the optimal incentive

scheme (wg,wb) solves the following problem (P):

max
(wg,wb)

min
p∈[p∗e ,p̄∗e ]

p(πg −wg)+(1− p)(πb −wb) (2.2.1)

4. Dumav and Khan (2018) shows that if an effort ak is implementable, then for any other effort a j
with lower cost, QA(a j) \QA(ak) ̸= /0, where QA(a) represents a non-empty, compact, and convex set of
the agent’s effort-dependent distribution regarding technology. Although Assumption 2 is interpreted
differently in our paper, it remains consistent with Dumav’s findings.
5. We also examined the case where the principal is ambiguity-neutral, in which the problem becomes
much simpler. Without ambiguity aversion, the principal faces a unique expected profit rather than a range
of non-unique profit expectations, consistent with the classic moral hazard framework by Holmström.
Beyond that, most of the results remain qualitatively similar to those presented in this paper.
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subject to the participation constraint (P.C.) and the incentive constraint (I.C.) as follows

(in that order):

min
p∈[p∗e ,p̄∗e ]

pv(wg)+(1− p)v(wb)≥ ke (2.2.2)

e∗ = argmax
e∈{e0,e1}

min
p∈[pe,p̄e]

pv(wg)+(1− p)v(wb)− ce (2.2.3)

Note that in the (P.C.) constraint 2.2.2, ke = ce +u for e ∈ {e0,e1}, which represents the

agent’s reservation utility with respect to effort e that she implements. Intuitively, the

minimum expected payment for the agent under ambiguity, given that she implements

effort e, must at least equal the disutility of exerting that effort plus her outside option.

In the following section, we derive the key results that highlight how ambiguity aversion

affects the principal-agent relationship and agent effort decisions.

2.3 Main results

2.3.1 Preliminaries

Before presenting our results, we first outline several key facts that are essential to un-

derstanding the analysis in this chapter. The proofs can be found in the appendix.

Fact 2.3.1. For every e ∈ E, min
p∈[pe,p̄e]

p(πg−wg)+(1− p)(πb−wb) is concave for (wg,wb)∈

R2.

Fact 2.3.2. In the domain where pev(wg)+(1− pe)v(wb) satisfies the participation con-

straint, the expected compensation scheme pwg +(1− p)wb for agent under any true dis-

tribution p ≥ pe will decrease if wb increases or wg decreases, and vice versa.
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The concavity of the objective function, as stated in Fact 2.3.1, supports the application

of convex programming techniques, following Rockafellar (1970). The fact 2.3.2 further

implies that in the region where the participation constraint binds at the lowest probability

pe, the expected compensation to the agent when the principal reduces wg and increases

wb for every p ≥ pe decreases. In other words, when the agent is incentivized to accept a

contract under the lowest probability of success pe, the principal can lower the expected

wage payment by offering a higher wb in the scenario of a bad outcome and a lower

wg if a successful outcome occurs. Since 1− p ≤ 1− pe, the probability of the venture

generating a bad outcome under p is lower than under pe. Consequently, by increasing

the compensation in the event of a bad outcome, the principal effectively reduces the

overall expected cost.

In the next section, we first examine the case where the principal can observe the agent’s

effort.

2.3.2 The optimal contract with observable effort

In the classic literature on symmetric information, the principal faces no ambiguity and

can observe the effort exerted by the agent. An optimal contract provides the agent with

a risk-sharing arrangement that ensures they receive at least their reservation utility level

for all realizations of the project outcome. The principal then decides the observable ma-

nagerial effort in E which generates higher expected profits after deducting the disutility

incurred by implementing the effort.

When ambiguity is considered and effort is observable, the principal can still incentivize

the agent to exert the desired level of effort by offering a fixed-wage scheme. This scheme

fully insures the agent against any risk, similar to the model without ambiguity. Due to

ambiguity aversion, the agent anticipates the worst-case scenario, in which the probability

of a negative outcome is highest. As a result, the agent expects a lower payoff compared to

the standard model. As a result, any payment policy that differentiates payments based
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on output becomes more costly for the principal than a fixed-wage scheme, since the agent

would demand a higher payment for favorable outcomes. Let Πob
e denote the principal’s

MEP when effort is observable, and let wob
e,g and wob

e,b represent the payments when the

outcome is good or bad, respectively, with the observable effort e under ambiguity. The

optimal wage scheme, given ambiguity and observability, is specified as follows:

Proposition 2.3.1. The optimal contract under ambiguity, when effort is observable,

specifies that the principal chooses the effort level e∗ ∈ E that maximizes Πob
e = peπg+(1−

pe)πb−v−1(ke). In this contract, the manager receives a fixed wage, wob
e,g = wob

e,b = v−1(ke),

regardless of the project outcome.

The fixed contract in Proposition 2.3.1 ensures that the manager always receives a con-

stant level of compensation, regardless of the project outcome, thereby maintaining identical

reservation utility across all states of the world. However, the principal’s expected profit

for any induced effort e is lower in the presence of ambiguity compared to the Holmström

(1979) model. Due to ambiguity aversion, the principal is less optimistic than in the no-

ambiguity case, leading to a reduced expected profit, as they assume the worst possible

likelihood of project success. Consequently, ambiguity aversion diminishes the principal’s

welfare, even when the agent’s effort is fully observable, compared to the no-ambiguity

scenario.

2.3.3 The optimal contract with unobservable effort

When the principal cannot observe the agent’s effort, they can still indirectly control the

agent’s behavior by offering a contract that satisfies the incentive constraint. The principal

can achieve the first-best contract by inducing the agent to exert low effort e0, regardless

of the effect of ambiguity. This compensation scheme eliminates any uncertainty about the
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agent’s wage by offering a fixed wage, wun
e0,g = wun

e0,b
= v−1(k0), which we refer to as contract

CT0. This risk-sharing contract satisfies the participation constraint, ensuring that the

agent will choose low effort, as it yields a higher maxmin expected utility compared to

high effort.

Moreover, this contract imposes the same expected cost on the principal as in the sym-

metric information case. Since the principal can never achieve a better outcome under

asymmetry than under symmetry, 6 contract CT0 is the optimal choice for the principal

when low effort is induced. Let Πun
e0

denote the principal’s maxmin expected profit (MEP)

from inducing the agent to exert e0 under ambiguity and unobservable effort. We derive

the following:

Proposition 2.3.2. When effort is unobservable, the principal can induce the agent to

implement low effort e0 by offering the risk-sharing contract CT0. This payment scheme

is optimal because it guarantees the same expected profit as in the observable case, which

is Πun
e0

= p0πg +(1− p0)πb − v−1(k0).

The contract CT0 in Proposition 2.3.2 ensures that the agent will implement the project

with low effort e0 since their expected utility will always equal k0, regardless of the amount

of effort exerted. Therefore, the manager has no incentive to choose the higher effort e1.

The formal proof for Proposition 2.3.2 is omitted due to its simplicity.

When the principal aims to induce the agent to implement high effort e1, the compensation

must be sufficiently attractive. The share the agent receives in the case of a successful

project (good outcome) must be lucrative enough to offset the lower payment in the event

of a bad outcome, while still satisfying the participation constraint.

6. When effort is observable, the project owner can always offer the sub-optimal non-observability con-
tract and allow the manager to choose the effort herself. Therefore, the principal can never do better
with an unobservable contract. See Mas-Colell et al. (1995), Proposition 14.B.2.
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Let ∆v = v(wg)− v(wb) represent the difference in the utility of the wages corresponding

to the good and bad outcomes when e1 is implemented, and ∆c/p =
c1 − c0

p1 − p0
represent the

difference in effort costs relative to the lowest probability of success. Based on our as-

sumptions, both ∆v > 0 and ∆c/p > 0. We now state the necessary and sufficient conditions

under which the agent is induced to implement the high effort:

Proposition 2.3.3. The agent chooses to implement the high effort e1 when effort is

unobservable to the principal if and only if ∆v ≥ ∆c/p and the participation constraint is

satisfied.

In a moral hazard problem without ambiguity, where the distribution of the project’s

possible outcomes is fully known, the second-best wage scheme that induces the agent to

implement e1 yields a unique expected profit for the principal. However, under ambigu-

ity, this may not hold. The principal and the agent may interpret the worst-case scenario

differently when high effort is implemented. For the agent, the worst-case scenario arises

when the project succeeds with the lowest probability. In contrast, for the principal, the

worst case could occur either when the project succeeds with the lowest probability or

with the highest probability. The latter occurs because ambiguity introduces an equi-

librium where the project has the highest likelihood of success. In such a scenario, the

principal faces a higher probability of paying a substantial wage to the agent for a suc-

cessful outcome. This becomes particularly detrimental for the principal when the profit

margin between the good and bad outcomes is relatively small. Thus, ambiguity can result

in two distinct expected payoffs for the principal.

We denote wun
e1,g and wun

e1,b
as the payments made to the agent when the project outcome is

good or bad, respectively, to induce the effort e1 when the agent’s effort is unobservable.

The optimal contract is then specified as follows:
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Theorem 2.3.1. When effort is unobservable, under ambiguity aversion, the principal

induces the agent to implement the high effort e1 by offering the compensation scheme

wun
e1,g = v−1

(
k1 + (1− p1)∆c/p

)
,wun

e1,b
= v−1

(
k1 − p1∆c/p

)
. His MEP is specified by the

following:

• Πun
e1,p̄1

= p̄1πg +(1− p̄1)πb − p̄1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p̄1)v−1

(
k1 − p1∆c/p

)
if v−1

(
k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
≥ ∆π

• Πun
e1,p1

= p1πg +(1− p1)πb − p1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p1)v−1

(
k1 − p1∆c/p

)
if v−1

(
k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
< ∆π

In theorem 2.3.1, wun
e1,g = v−1

(
k1 +(1− p1)∆c/p

)
and wun

e1,b
= v−1

(
k1 − p1∆c/p

)
repres-

ent the payments contingent on the project’s good and bad outcomes under ambiguity,

respectively. Similar to the second-best contract in the classic model, both the parti-

cipation constraint 2.2.3 and the incentive constraint ?? are binding. Due to ambiguity

aversion, however, the agent assumes the worst-case scenario, where the project is success-

ful with the lowest probability p1. The compensation scheme defined in theorem 2.3.1 is

the unique solution that satisfies both the two constraints, given that the project succeeds

with probability p1.

The intuition behind Theorem 2.3.1 is as follows: if the difference between the two output-

based wages exceeds the difference between πg and πb, the principal considers the worst-

case scenario to be when the project succeeds with the highest probability. In this situ-

ation, since the agent is compensated significantly if the project succeeds, the principal

faces a scenario where they are more likely to pay a large wage to the agent, which is

the least favorable outcome for the principal. A similar argument can be applied in the

opposite direction. If the agent’s wage for the good outcome is not significantly higher

than the wage for the bad outcome, the principal prefers the scenario where the project

succeeds with a high probability rather than with a low probability. However, since the

principal is ambiguity-averse, their least expected scenario is when the project succeeds

with the lowest probability.
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2.4 Comparative Statics

How does ambiguity aversion affect the principal’s decision regarding the level of effort to

induce from the agent? To what extent does the final decision mirror the scenario without

ambiguity? In this section, we first illustrate how ambiguity can alter the principal’s

choice. Specifically, while the principal may prefer to induce high effort in the absence

of ambiguity, ambiguity aversion could prompt them to reconsider and opt for low effort

when confronted with uncertainty.

We consider the case where effort is unobservable. If effort were observable, the principal

could offer the contracts constructed in this example to the agent, which would result in

the same behavior from the agent. Without ambiguity, both the principal and the agent

know that the project succeeds with probability p0 if the agent implements low effort,

and with probability p1 if she implements high effort (p0 < p1). In the classic model

without ambiguity, the principal can offer a risk-free contract wwa
e0,g =wwa

e0,b
= v−1(k0) where

wwa
e0,g((w

wa
e0,b

) represent the agent’s wage when the outcome is good or bad, respectively,

if he wishes to induce the agent to implement low effort e0. The expected profit for the

principal in this case is:

Πwa
e0

= p0

(
πg − v−1(k0)

)
+(1− p0)

(
πb − v−1(k0)

)
= p0∆π +πb − v−1(k0)

If the principal aims to induce the agent to contribute high effort e1, from the results

in the standard model without ambiguity, two constraints (I.C.) and (P.C.) must bind. 7

The optimal contract to induce the agent to implement e1 is:

(wwa
e1,g,w

wa
e1,b) =

(
v−1(k1 +(1− p1)∆c/p),v

−1(k1 − p1∆c/p)

)

7. see Mas-Colell et al. (1995), Lemma 14.B.1
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where ∆c/p =
c1 − c0

p1 − p0
. Similar to the low-effort case, the expected profit for the principal

when the agent exerts high effort e1 is:

Πwa
e1

= p1∆π +πb − p1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p1)v−1

(
k1 − p1∆c/p

)

Without ambiguity, the agent is induced to work with the high effort e1 if Πwa
e1

> Πwa
e0

, or

equivalently: p1∆π +πb − p1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p1)v−1

(
k1 − p1∆c/p

)
> p0∆π +

πb − v−1(k0). This inequality can be rearranged as:

(p1 − p0)∆π > p1v−1
(

k1 +(1− p1)∆c/p

)
+(1− p1)v−1

(
k1 − p1∆c/p

)
− v−1(k0) (2.4.1)

Within the ambiguity context, by Proposition 2.3.2 and Theorem 2.3.1 the principal

prefers the low effort e0 being implemented to the high effort e1 if the maxmin expected

profit gained from the former is higher than from the latter,i.e. Πun
e0

> Πun
e1

:

p0πg +(1− p0)πb − v−1(k0)> p̄1πg +(1− p̄1)πb − p̄1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p̄1)v−1

(
k1 − p1∆c/p

)

We reorganize the above inequality as:

(p̄1 − p0)∆π < p̄1v−1
(

k1 +(1− p1)∆c/p

)
+(1− p̄1)v−1

(
k1 − p1∆c/p

)
− v−1(k0) (2.4.2)

It follows from Theorem 2.3.1 that we require the condition under which the principal’s

worst-case distribution, given that e1 is implemented, is p̄1, as expressed in 2.4.2:

v−1
(

k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
≥ ∆π (2.4.3)

We provide an example to demonstrate that the set of solutions to the system of inequal-

ities 2.4.1, 2.4.2, and 2.4.3 is non-empty. This result implies that, under ambiguity, the

principal will induce the agent to implement low effort rather than high effort, which

would have been the optimal choice in the absence of ambiguity.
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By defining v−1
(

k1 +(1− p1)∆c/p

)
= a1, v−1

(
k1 − p1∆c/p

)
= b1, v−1(k0) = c0, v−1

(
k1 +

(1− p1)∆c/p

)
= a1, v−1

(
k1 − p1∆c/p

)
= b1, we can then reformulate inequalities 2.4.1,

2.4.2, and 2.4.3 as follows:

(p1 − p0)∆π > p1a1 +(1− p1)b1 − c0 (2.4.4)

(p̄1 − p0)∆π < p̄1a1 +(1− p̄1)b1 − c0 (2.4.5)

a1 −b1 ≥ ∆π (2.4.6)

Note that a1,b1,a1, and b1 exhibit pairwise relationships, namely:

v(a1)− v(b1) = ∆c/p (2.4.7)

v(a1)− v(b1) = ∆c/p (2.4.8)

v(b1)− v(b1) = p1∆c/p − p1∆c/p (2.4.9)

The system of inequalities 2.4.1 to 2.4.3 will have a solution if there is a tuple (a1,b1,a1,b1)

and a set of parameters I = (p0, p1, p0, p1, p̄0, p̄1,∆π ,∆c/p,∆c/p,c1,c0) that satisfies 2.4.4 to

2.4.9. Thus, it is sufficient to construct at least one solution for 2.4.4 to 2.4.9.

The procedure is as follows: first, we choose v(x) = 5−e−x, then v(.) is strictly increasing

and concave. 8

The set of input parameters includes p0 = 0.03 , p1 = 0.06 , p0 = 0.01 , p1 = 0.02 , p̄0 =

0.04 , p̄1 = 0.07 , and c1 − c0 = 0.006 then ∆c/p = 0.6,∆c/p = 0.2. Note that the way of

choosing probabilities satisfies Assumption 1 and Assumption 2, since p0 < p1, p0 < p1,

and p0 < p0 < p̄0, p1 < p1 < p̄1. Next, we set c0 = v−1(k0) = 0.2, then k0 = 4.181, k1 =

k0 + c1 − c0 = 4.187. Finally, we set ∆π = 1.

8. More precisely, we choose v(x) = A−e−x as it is an archetypal utility function in the literature, where
A is some constant. For the purposes of our calculations, we set A = 5, which keeps the output-based
wages within a reasonable range.
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Since v−1(y) = − ln(5− y), the compensation schemes for the agent to implement high

effort e1 with respect to I, following Theorem 2.3.1 are as follows:

For the case where the principal faces ambiguity and effort is unobservable:

wun
e1,g = a1 = v−1

(
k1 +(1− p1)∆c/p

)
= 1.491 , wun

e1,b
= b1 = v−1

(
k1 − p1∆c/p

)
= 0.192

For the case without ambiguity and effort is unobservable:

wwa
e1,g = a1 = v−1

(
k1 +(1− p1)∆c/p

)
= 0.47 , wwa

e1,b
= b1 = v−1

(
k1 − p1∆c/p

)
= 0.192.

Remark 2.4.1. Note that in our choice for the parameters in I, regardless of whether

the principal has to face ambiguity, he offers the agent the same payments in the case of

an unfavorable outcome given that the high effort is implemented (0.192). This is only for

convenience purposes for our calculation.

We make some observations from the compensation schemes in the cases where the agent

is induced to implement either e0 or e1. Without ambiguity, the agent working with the low

effort e0 is rewarded the identical contract wwa
e0,g = wwa

e0,b
= v−1(k0) = c0 = 0.2. In contrast,

the compensation scheme for implementing e1 is (wwa
e1,g,w

wa
e1,b

) = (0.47,0.192). Therefore,

if the project succeeds, the payment to the agent (0.47) is relatively modest, making it

worthwhile for the principal to induce the agent to implement e1 in exchange for a higher

probability of earning a more significant profit (∆π = 1).

Under ambiguity, when the principal motivates the agent to implement e1, they must

offer a significant payment of wun
e1,g = 1.491 if the project succeeds. In this case, ∆π is

not substantial enough to cover the agent’s wage, which leads the principal to induce the

agent to exert low effort instead.
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The intuition behind our example is that when ambiguity is significant in the sense that

p0 and p1 are close to zero and the effort is unobservable, the ambiguity-averse agent

will only accept working with high effort if the discrepancy between the two output-based

wages under ambiguity wun
e1,g (a1) and wun

e1,b
(b1) is high enough, leading to inequalities 2.4.5

and 2.4.6 are satisfied. Since ∆π is sufficiently attractive to the principal, as mentioned

earlier, the principal prefers to induce the agent to exert low effort under ambiguity.

However, if the difference between the two project outcomes, ∆π is significant enough for

the principal, and he knows the probabilities p0 and p1 with certainty, he will induce the

agent to implement high effort without ambiguity, provided that the cost of implementing

low effort c0 is not cheap. In this case, inequality 2.4.4 is satisfied.

It is evident that 2.4.4, 2.4.5, and 2.4.6 hold for the parameters in I selected above. By

the nature of our construction, 2.4.7, 2.4.8, and 2.4.9 are satisfied. For inequality 2.4.4,

we compare the left-hand side (LHS) and the right-hand side (RHS):

LHS = (p1 − p0)∆π = 0.03 > RHS = p1a1 +(1− p1)b1 − c0 = 0.009.

For inequality 2.4.5, we get LHS = ( p̄1 − p0)∆π = 0.06 < RHS = p̄1a1 +(1− p̄1)b1 − c0 =

0.083.

For inequality 2.4.6, we have a1 −b1 = 1.4916−0.1923 > ∆π = 1.

Thus, all conditions from 2.4.4 to 2.4.9 are met. This confirms our example, demonstrating

that the principal induces the agent to exert low effort under ambiguity, whereas high

effort is induced in the absence of ambiguity.

Notice that, by the nature of our notation, a1, b1, and b1 depends only on a1. Specifically,

b1 = v−1
(

v(a1)−∆c/p

)
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a1 = v−1
(

v(a1)+(1− p1)∆c/p − (1− p1)∆c/p

)

b1 = v−1
(

v(a1)− p1∆c/p − (1− p1)∆c/p

)
Let awa

e1,p1,p0
, aam

e1,p̄1,p0
be threshold values of inequalities 2.4.4 and 2.4.5, 9 and a∗1 be the

threshold value of 2.4.6. These values can be interpreted as a level of payment to the

agent that would make the principal indifferent between inducing high effort and low

effort, both with and without ambiguity. We also denote aam
e1,p1,p0

as a unique solution of

(p1 − p0)∆π = p1a1 +(1− p1)b1 − c0.

Since all these values exist uniquely, we now derive a condition under which the principal

does not change his decision when facing ambiguity and effort is unobservable.

Theorem 2.4.1. The Principal will make the same decision to induce the agent to im-

plement high effort under ambiguity and without ambiguity if and only if either:

a∗1 < v−1
(

k1 +(1− p1)∆c/p

)
< min

(
awa

e1,p1,p0
,aam

e1,p̄1,p0

)
when a1 −b1 ≥ ∆π(i), or

v−1
(

k1 +(1− p1)∆c/p

)
< min

(
awa

e1,p1,p0
,aam

e1,p1,p0
,a∗1

)
when a1 −b1 < ∆π(ii).

The principal will make the same decision to induce the agent to implement low effort

under ambiguity and without ambiguity if and only if either:

max
(

awa
e1,p1,p0

,aam
e1,p1,p0

)
< v−1

(
k1 +(1− p1)∆c/p

)
< a∗1 when a1 −b1 < ∆π(iii), or

v−1
(

k1 +(1− p1)∆c/p

)
> max

(
awa

e1,p1,p0
,aam

e1,p̄1,p0
,a∗1

)
when a1 −b1 ≥ ∆π(iv).

9. A threshold value turns an inequality into an equality. Therefore, awa
e1,p1,p0

is a solution of (p1− p0)∆π =
p1a1+(1− p1)b1−c0 for the inequality 2.4.4, we have similar definitions for aam

e1,p̄1,p0
and other cases. Note

that all threshold values reference a1, since a1, b1, and b1 are functions a1.
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Remark 2.4.2. If inequality 2.4.4 has no threshold value, continuity implies that the

inequality will be either strictly negative or positive. If (p1− p0)∆π < p1a1+(1− p1)b1−c0

holds for all a1, the principal is unwilling to induce the agent to choose e1 since he expects

to pay a costly amount to the agent if the project succeeds. A similar argument applies

to 2.4.5, where there exists a threshold value a1 (as a function of a1) for (p̄1 − p0)∆π =

p̄1a1 + (1− p̄1)b1 − c0. If (p1 − p0)∆π > p1a1 + (1− p1)b1 − c0 for all a1, condition (i)

becomes unnecessary and can be ruled out.Therefore, we focus only on the cases where

2.4.4 and 2.4.5 have threshold values.

Condition (i) predicts that even when the principal has to pay the agent a significant

amount if the project succeeds, they may still induce high effort under ambiguity. This

could occur if inequality 2.4.5 holds, for instance, when c0 is large and p0 is very small.

In other words, when exerting low effort requires a high reservation utility and the worst

probability of project success with low effort is too low under ambiguity, the principal will

direct the agent to exert high effort.

Conditions (ii) suggest that if the payments to the agent, both in the presence and absence

of ambiguity, are below a certain threshold (specifically, the minimum threshold at which

the agent is indifferent between exerting low or high effort), the principal will induce the

agent to exert high effort.

The same arguments can be applied to conditions (iii) and (iv). In condition (iii), even if

the cost of inducing high effort when the project succeeds is not too high, the principal

may still prefer to induce low effort. This is likely when p0 is large, p0 ≈ p1, and exerting

low effort requires a small reservation utility. In this case, inducing low effort is more

beneficial for the principal. In condition (iv), when the cost of paying the agent for high

effort exceeds a certain level under ambiguity or without ambiguity, the principal will

induce low effort.
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When the principal can observe the agent’s contribution, we derive a set of conditions

under which the principal can maintain their decision under ambiguity, although these

conditions are less complex than those in Theorem 2.4.1.

If both parties know the effort-dependent distribution of the project’s outcome with cer-

tainty, the principal will induce the agent to exert high effort if it results in a higher

expected profit than low effort. Based on the standard contract in moral hazard when

effort is observable and there is no ambiguity, we get:

p1

(
πg−v−1(k1)

)
+(1− p1)

(
πb−v−1(k1)

)
> p0

(
πg−v−1(k0)

)
+(1− p0)

(
πb−v−1(k0)

)
,

or equivalently:

(p1 − p0)∆π > v−1(k1)− v−1(k0),

which implies:

p1 − p0 >
v−1(k1)− v−1(k0)

∆π

Under ambiguity, and given the principal’s ambiguity aversion, the principal’s expec-

ted profit from inducing the agent to implement effort e is described as in Proposition

2.3.1. Although the manager is still offered a fixed wage, which eliminates uncertainty for

them, the project owner assumes the worst-case scenario, where the chance of the project

succeeding is minimized. In this case, the agent is incentivized to implement e1 if:

p1πg +(1− p1)πb − v−1(k1)> p0πg +(1− p0)πb − v−1(k0)

By a similar transformation to the case without ambiguity, it can be derived that:

p1 − p0 >
v−1(k1)− v−1(k0)

∆π

The same reasoning applies when the agent is induced to contribute low effort e0. The

principal will stick to inducing e0 with and without ambiguity if and only if:
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p1 − p0 <
v−1(k1)− v−1(k0)

∆π
, and p1 − p0 <

v−1(k1)− v−1(k0)

∆π
.

Summing up all derived conditions, we obtain the following:

Theorem 2.4.2. If the principal can observe the agent’s effort, they will induce the agent

to implement high effort under ambiguity and without ambiguity if min
(

p1− p0, p1− p0

)
>

v−1(k1)− v−1(k0)

∆π
, and implement low effort under both two cases if max

(
p1 − p0, p1 −

p0

)
<

v−1(k1)− v−1(k0)

∆π
.

The intuition behind Theorem 2.4.2 is straightforward. In the first case, if both p1 −

p0 and p1 − p0 exceed a certain threshold, the principal is assured that the project’s

likelihood of success is high enough, regardless of ambiguity, when high effort is exerted.

This ”likelihood guarantee” mitigates ambiguity aversion, encouraging the principal to

persuade the agent to implement e1.

A similar reasoning applies when the principal induces the agent to exert low effort, both

under ambiguity and without it: if p1 − p0 and p1 − p0 are below a certain threshold,

the upper bound of p1 and p1 ensures that the principal prefers the agent to choose low

effort e0. Since the principal is ambiguity-averse, they focus on the lower bound p̄1 rather

than p1. As a result, the principal avoids the risk of inducing high effort because, in the

worst-case scenario, high effort does not significantly increase the project’s likelihood of

success, while the compensation paid to the agent, v−1(k1) is much higher than that in

the low-effort case, v−1(k0).
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2.5 Conclusion

This chapter incorporates ambiguity into the moral hazard problem, where both the

principal and the agent hold a set of prior beliefs regarding the probability of the pro-

ject’s success. We show that the effect of ambiguity aversion is two-fold. First, it reduces

the principal’s welfare compared to the non-ambiguity case when efforts are observable.

Second, ambiguity introduces variability in the principal’s expected profits, which may

cause the principal to alter their choice of the agent’s effort compared to the non-ambiguity

scenario. Our results offer insights into seemingly counterintuitive behavior in the moral

hazard problem, where ambiguity can make inducing high effort less desirable than in-

ducing low effort. Although higher effort increases the probability of project success, the

substantial payment required to incentivize the agent ultimately results in lower expected

profit compared to implementing lower effort.

While we employed the Gilboa-Schmeidler maxmin expected utility framework to address

the impact of ambiguity on the moral hazard problem, this is not the only approach

available. Ambiguity can also be modeled through alternative frameworks, e.g., the smooth

ambiguity model (Klibanoff et al. (2005)). Within the context of ambiguity aversion, it

is reasonable to expect that these alternative models would yield similar conclusions to

those derived using Gilboa’s framework. Namely, the principal’s expected profit under

ambiguity is lower than in the non-ambiguity case, regardless of the specific model of

ambiguity used. Exploring ambiguity through alternative frameworks may lead to further

unexpected results beyond those presented in this chapter, and this will be the focus of

future research.
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2.6 Appendix of Proofs

2.6.1 Proof of Fact 2.3.1

Define h(wg,wb) = min
p∈[p,p̄]

p(πg −wg) + (1− p)(πb −wb), (wg,wb) ∈ R2. The function h(.)

represents the minimum of a family of linear functions. According to a well-established

result in convex optimization (Boyd and Vandenberghe (2004), Rockafellar (1970)), the

minimum of a set of concave functions is also concave. Since linear functions are both

concave and convex, we conclude that h(.) is also concave. ■

2.6.2 Proof of Fact 2.3.2

Let (wg,wb) ∈ R2 such that pev(wg)+(1− pe)v(wb) = ke, we show that the compensation

scheme function q(wg,wb) = pwg+(1− p)wb is a decreasing function of wb for any p ≥ pe.

We define ug = v(wg), ub = v(wb), then wg = v−1(ug) = ϕ(ug) and wb = v−1(ub) = ϕ(ub).

Since v(.) is concave and strictly increasing, ϕ(.) is convex and increasing.

q(wg,wb) = pwg +(1− p)wb = pϕ(ug)+ (1− p)ϕ(ub) = pϕ(ug)+ (1− p)ϕ
(

ke − peug

1− pe

)
=

h(ug). Since then h′(ug) = pϕ ′(ug)−
1− p
1− pe

peϕ ′
(

ke − peug

1− pe

)
.

As p ≥ pe, we have p ≥ 1− p
1− pe

pe. Moreover, ϕ ′(ug)> ϕ ′(ub) = ϕ ′(
ke − peug

1− pe
), given that Φ

is convex and increasing. Therefore, h′(ug) ≥ 0, leading to q(wg,wb) being an increasing

(decreasing) function with respect to wg(wb). This completes the claim in 2.3.2. ■
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2.6.3 Proof of Proposition 2.3.1

Consider a compensate scheme (wg,wb) offered by the principal. Under the observability

assumption, the incentive constraint 2.2.3 in problem (P) is unnecessary. We state the

problem (P) only with 2.2.1 and 2.2.2 when the principal induces the agent to implement

an observable effort e as follows:

max
(wg,wb)

min
p∈[pe,p̄e]

p(πg −wg)+(1− p)(πb −wb) (2.6.1)

subject to

min
p∈[pe,p̄e]

pv(wg)+(1− p)v(wb)≥ ke(P.C) (2.6.2)

Now we consider two cases as follows:

a. If the principal offers any ”unconventional” contract (wg,wb), that is, when wg ≤ wb,

from the P.C. constraint 2.6.2 we have min
p∈[pe,p̄e]

pv(wg) + (1− p)v(wb) = min
p∈[pe,p̄e]

(v(wg)−

v(wb))+ v(wb) = p̄e(v(wg)− v(wb))+ v(wb)≥ ke.

From 2.6.1 the worst scenario of expected profit for the principal given inducing the agent

to implement the effort e is E = min
p∈[pe,p̄e]

p(πg −wg) + (1− p)(πb −wb) = min
p∈[pe,p̄e]

p(∆π −

∆w) + πb −wb = pe(∆π −∆w) + πb −wb = peπg + (1− pe)πb −
(

pewg + (1− pe)wb
)
, since

∆π −∆w > 0, due to ∆π > 0 and ∆w = wg −wb ≤ 0.

Hence, E will be maximized when the expected cost pewg+(1− pe)wb is minimized. From

the convexity of v(.), v(pewg + (1 − pe)wb) ≥ pev(wg) + (1 − pe)v(wb) ≥ p̄ev(wg) + (1 −

p̄e)v(wb)≥ ke, where the one before the penultimate comes from wg ≤ wb under the case

we consider. Therefore pewg+(1− pe)wb ≥ v−1(ke). it implies that the optimal contract is

when all the mentioned inequalities occur, i.e., wg = wb = v−1(ke) The principal’s expected

profit in this case will be:

maxE = peπg +(1− pe)πb − v−1(ke) (2.6.3)
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b. Now we consider conventional contracts when wg >wb. In this domain, the participation

constraint 2.6.2 becomes pev(wg)+(1− pe)v(wb)≥ ke. The original optimal problem (P)

can be reorganized as follows:

max
(wg,wb)

min
p∈[pe,p̄e]

p(πg −wg)+(1− p)(πb −wb) (2.6.4)

such that:

ke − pev(wg)− (1− pe)v(wb)≤ 0 (2.6.5)

wb −wg < 0 (2.6.6)

As min
p∈[pe,p̄e]

p(πg−wg)+(1− p)(πb−wb) is concave following Fact 2.3.1, two constraints of

the optimal problem are convex (given v(.) is concave) and differentiable, the Rockefella

theorem (Rockafellar 1970) is necessary and sufficient to find local maximizers of (P). The

Lagrangian is defined as follows:

L = min
p∈[pe,p̄e]

p(πg −wg)+(1− p)(πb −wb)

+λ
(

pev(wg)− (1− pe)v(wb)− ke

)
+µ(wg −wb)

(2.6.7)

We consider the domain D1 = (wg,wb)|{0 < ∆w = wg −wb < ∆π = πg −πb}. In D1 we have

min
p∈[pe, p̄e]

p(πg −wg)+ (1− p)(πb −wb) = min
p∈[pe,p̄e]

p(∆π −∆w)+ πb −wb = pe(πg −wg)+ (1−

pe)(πb −wb).

The two F.O.C conditions with respect to wg and wb are ∂L

∂wg
=−pe+λ pev′(wg)+µ = 0,

and ∂L

∂wb
= −(1− pe)+λ (1− pe)v′(wg)− µ = 0. Since wg > wb and µ(wg −wb) = 0, we

have µ = 0. But if we set this value of µ to the expression of two F.O.C conditions
∂L
∂wg

, ∂L
∂wg

, it can be seen that v′(wg) = v′(wb) = 1/λ , which can not happen since wg > wb.

Therefore, there is no local maximizer (wg,wb) in D1. Furthermore, sup
(wg,wb)

pe(πg−wg)+(1−
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pe)(πb −wb) = peπg +(1− pe)πb − inf
(wg,wb)

(
pewg +(1− pe)wb

)
. As v(pewg +(1− pe)wb)≥

pev(wg)+(1− pe)v(wb)≥ ke, inf
(wg,wb)

(
pewg +(1− pe)wb

)
= v−1(ke). This implies that the

principal can not be better off by offering any contract ∆w < ∆π , expectedly, in the domain

D1 than by offering a risk-sharing contract wg = wb as in 2.6.3.

In the domain D2 = (wg,wb)|{0 < ∆w = ∆π}, we apply the necessary condition of the

Rockafella theorem for local maximizers to derive the following: 10

0

0

 ∈

Lwg

Lwb

=



[
minp∈[pe,p̄e] p(πg −wg)+(1− p)(πb −wb)+

λ (pev(wg)+(1− pe)v(wb)− ke)+µ(wg −wb)

]
wg[

minp∈[pe,p̄e] p(πg −wg)+(1− p)(πb −wb)+

λ (pev(wg)+(1− pe)v(wb)− ke)+µ(wg −wb)

]
wb


(2.6.8)

Since minp∈[pe,p̄e] p(πg−wg)+(1− p)(πb−wb) = pe(πg−wg)+(1− pe)(πb−wb) if πg−wg ≥

πb −wb, or p̄e(πg −wg)+(1− p̄e)(πb −wb) if πg −wg < πb −wb, µ = 0 since wg > wb, and

pe < p̄e, the expression of 2.6.8 can be reduced to:

−p̄e +λ pev′(wg)≤ 0 ≤−pe +λ pev′(wg)

and

−(1− pe)+λ (1− pe)v
′(wb)≤ 0 ≤−(1− p̄e)+λ (1− pe)v

′(wg)

If λ = 0, then the first inequality implies that − p̄e ≤ 0 ≤−pe, and the second inequality

implies that −(1− pe) ≤ 0 ≤ −(1− p̄e). This can only occur when pe = 0 and p̄e = 1,

which is a contradiction following Remark 2.2.1. Therefore, λ > 0, and the participation

constraint is binding, leading to the optimal policy (w∗
g,w

∗
b), if it exists, being the (unique)

10. Notice that in the expression of the F.O.C, we used the sub-derivative as the objective function is
non-smooth.
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solution defined by:
pev(wg)+(1− pe)v(wb) = ke

wg −wb = πg −πb

(2.6.9)

Notice that the uniqueness of the solution (w∗
g,w

∗
b) in 2.6.9 comes from v(.) being strictly

increasing. The expected profit for the principal from offering (w∗
g,w

∗
b) will then be πb−w∗

b.

However, this contract is worse than the identical one defined in 2.6.3. Indeed, one can

verify that πb−w∗
b ≤ peπg+(1− pe)πb−v−1(ke), which is equivalent to pe∆π +w∗

b > v−1(ke).

But the last inequality holds because v(pe∆π +w∗
b) = v(pe(w∗

g −w∗
b)+w∗

b) = v(pew∗
g +(1−

pe)v(w∗
b))≥ pev(w∗

g)+(1− pev(w∗
b) = ke, due to the convexity of v(.).

Now we consider the domain D3 = (wg,wb)|{0 < ∆π < ∆w}. In this domain min
p∈[p∗e ,p̄∗e ]

p(πg −

wg)+ (1− p)(πb −wb) = p̄e(πg −wg)+ (1− p̄e)(πb −wb). The two F.O.C conditions with

wg and wb are, respectively (notice that µ = 0 as in the previous argument): ∂L

∂wg
=

− p̄e +λ pev′(wg) = 0, ∂L

∂wb
= −(1− pe)+λ (1− pe)v′(wg) = 0. Given that v(.) is strictly

increasing, one can derive that λ > 0, v′(wg) =
p̄e

λ pe
, and v′(wb) =

1− p̄e

λ (1− pe)
. But since

p̄e

λ pe
>

1− p̄e

λ (1− pe)
due to p̄e > pe, it leads to v′(wg)> v′(wb), which is a contradiction since

wg > wb and v(.) is concave. As the system of two equations of F.O.C conditions has no

solution, there is no local maximizer in D3. We will next show that sup
(

min
p∈[p∗e ,p̄∗e ]

p(πg −

wg)+ (1− p)(πb −wb)

)
cannot be larger the expected profit for the principal defined in

2.6.3 under constraints 2.6.5 and 2.6.6.

Indeed, in domain D3 with ∆π < ∆w and wg > wb, sup
(

min
p∈[p∗e ,p̄∗e ]

p(πg −wg)+ (1− p)(πb −

wb)

)
= sup

(
p̄e(πg−wg)+(1− p̄e)(πb−wb)

)
= p̄eπg+(1− p̄e)πb−inf

(
p̄ewg+(1− p̄e)wb

)
.

Let’s C = p̄ewg+(1− p̄e)wb. For the lower bound of C, we first observe that 2.6.5 must be

binding because otherwise, the principal can always lower wb to reduce the total expected

cost C while still being able to induce the agent to implement the chosen effort e, i.e. both

2.6.5 and 2.6.6 are satisfied.
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Now we consider infC under the binding constraint 2.6.5 pev(wg)+(1− pe)v(wb) = ke and

wg −wb > ∆π . Following Fact 2.3.2, the expected total cost C will be lowered if the wage

paid for the agent in the case of good outcome wg is reduced. Therefore, infC happens

when wg−wb = ∆π , which is similar to the proof in domain D2 above. This verifies that no

contract in domain D3 is better for the principal than the identical one in 2.6.3. Combined

with the results in D1 and D2, we completely show that without the presence of ambiguity,

the optimal incentive scheme for the principal is the unique one defined by 2.6.3.

2.6.4 Proof of Proposition 2.3.3

From the incentive constraint, the principal can induce the agent to exert a high effort e1

if and only if:

min
p∈[p1,p̄1]

pv(wg)+(1− p)v(wb)− c1 ≥ min
p∈[p0,p̄0]

pv(wg)+(1− p)v(wb)− c0

which is equivalent to:

min
p∈[p1,p̄1]

pv(wg)+(1− p)v(wb)− min
p∈[p0,p̄0]

pv(wg)+(1− p)v(wb)≥ c1 − c0

By eliminating v(wb), we can get the following:

min
p∈[p1,p̄1]

p
(

v(wg)− v(wb)

)
− min

p∈[p0,p̄0]
p
(

v(wg)− v(wb)

)
≥ c1 − c0

If wg ≤wb then v(wg)≤ v(wb), thus min
p∈[p1,p̄1]

p(v(wg)−v(wb))= p̄1(v(wg)−v(wb)), min
p∈[p0,p̄0]

p(v(wg)−

v(wb)) = p̄0(v(wg)−v(wb)), so the LHS is negative or zero since p̄1 > p̄0, which cannot be

the case. Henceforth, we must have wg > wb and v(wg) > v(wb). Then the expression of

LHS equals (p1 − p0)(v(wg)− v(wb))≥ c1 − c0, which completes the proof. ■
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2.6.5 Proof of Theorem 2.3.1

When the principal induces the agent to implement the high effort e1 under ambiguity,

from Proposition 2.3.3 we have ∆v ≥ ∆c/p. Consequently, and sensibly, the principal must

compensate a higher payment when the project runs successfully than the payment when

it otherwise does not, i.e. wg > wb.

Now let’s consider again problem (P). As the induced effort is e1 and wg > wb, the

participation constraint (P.C) will be p1v(wg) + (1− p1)v(wb) ≥ u+ c1 = k1. It can be

observed that for every feasible contract (wg,wb) offered by the principal, and for every

possible value of prior p, the principal can always be financially better off by lowering wb if

(P.C) is not binding. Indeed, by offering a slightly lower w′
b < wb, the principal can reduce

the total expected payment for the agent, while sufficiently encouraging the manager to

make a high effort since both (PC) and (IC) are satisfied. Thus, 2.2.2 must be binding.

The above arguments imply that we consider the following problem (P’):

max
(wg,wb)

min
p∈[p1,p̄1]

p(πg −wg)+(1− p)(πb −wb)

under two constraints:

p1v(wg)+(1− p1)v(wb) = k1 (a)

v(wg)− v(wb)≥ ∆c/p. (b)

Define D′ = (wg,wb) so that constraints (a) and (b) are satisfied. Notice that D′ is not

empty since there is always at least wg,wb satisfying the system of equations of equality

with (a) and (b).

We consider the following three cases as follows.
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i. First, we consider the following situation:

v−1
(

k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
> ∆π (c)

We claim that for every (wg,wb) that satisfies constraints (a) and (b), we must have

wg −wb > ∆π under (c).

This is done by using counterarguments. Assume that wg −wb ≤ ∆π , from (a) and (b) we

have v(wg) ≥ k1 +(1− p1)∆c/p, and v(wb) ≤ k1 − p1∆c/p. Since v(.) is strictly increasing,

wg ≥ v−1(k1+(1− p1)∆c/p), and wb ≤ v−1(k1− p1∆c/p). It leads to wg−wb ≥ v−1(k1+(1−

p1∆c/p))− v−1(k1 − (1− p1∆c/p)> ∆π , which is a contradiction with our assumption that

wg −wb ≤ ∆π . Therefore, wg −wb > ∆π .

Set up the Lagrangian as follows:

L = min
p∈[p1,p̄1]

p(πg −wg)+(1− p)(πb −wb)

+λ1

(
p1v(wg)+(1− p1)v(wb)− k1

)
+λ2

(
v(wg)− v(wb)−∆c/p

) (2.6.10)

Since wg−wb > ∆π , min
p∈[p1,p̄1]

p(πg−wg)+(1− p)(πb−wb) = p̄1(πg−wg)+(1− p̄1)(πb−wb).

Taking the F.O.C we obtain:

Lwg =−p̄1 +λ1 p1v′(wg)+λ2v′(wg) = 0 (a’)

Lwb =−(1− p̄1)+λ1(1− p1)v′(wb)−λ2v′(wb) = 0 (b’)

λ2

(
v(wg)− v(wb)−∆c/p

)
= 0 (c’)
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If λ2 = 0, then from (a’) and (b’) we have v′(wg) =
p̄1

λ1 p1
and v′(wb) =

1− p̄1

λ1(1− p1)
. Since

p̄1

p1
>

1− p̄1

1− p1
we derive v′(wg)> v′(wb), which is a contradiction because wg >wb and v(.) is

concave, therefore v′(wg) must be less than v′(wb). Henceforth, λ2 > 0, and the constraint

(b) is binding, or v(wg)− v(wb) = ∆c/p. Combining with the participation constraint (a),

the optimal wage scheme is (wun
e1,g,w

un
e1,b

) =

(
v−1(k1 +(1− p1)∆c/p

)
,v−1(k1 − p1∆c/p)

)
.

The maxmin expected profit for the principal in this case is

Πun
e1,p̄1

= p̄1(πg −wun
e1,g)+(1− p̄1)(πb −wun

e1,b)

= p̄1πg +(1− p̄1)πb − p̄1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p̄1)v−1

(
k1 − p1∆c/p

)
Remark 2.6.1. Provided (wun

e1,g,w
un
e1,b

) specified above, it can be verified that λ1,λ2 are

strictly positive from F.O.C conditions (a’) to (c’). With a slight abuse of notation, we

use wg and wb instead of wun
e1,g and wun

e1,b
.

Rewrite (a’) as λ1 p1v′(wg) = p̄1 − λ2v′(wg) and multiply both sides with 1 − p̄1 gives

λ1 p1(1− p̄1)v′(wg)= (1− p̄1)

(
p̄1−λ2v′(wg)

)
. Similarly for (b’), we have λ1(1− p1)p̄1v′(wb)=

p̄1

(
(1− p̄1)+λ2v′(wb)

)
. Subtracting two equations leads to λ1

[
(p1 − p1 p̄1)v′(wg)− (p̄1 −

p1 p̄1)v′(wb)

]
=−λ2

[
(1− p̄1)v′(wg)+ p̄1v′(wb)

]
(r.m.1). Now notice that (p1− p1 p̄1)v′(wg)−

(p̄1− p1 p̄1)v′(wb)< 0 since v′(wg)< v′(wb) since v(.) is concave, p1 < p̄1, v′(wg),v′(wb)> 0

then from (r.m.1) λ1 and λ2 are both positive are negative. But if they are all negative,

then from (a’) p̄1 < 0, which cannot happen. Therefore, λ1,λ2 > 0.

ii. Consider the case when

v−1
(

k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
< ∆π (d)
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We first claim that there is no local maximizer of the problem (P’) in the sub-domain

D′
1 ∈ D′,D′

1 = (wg,wb)|{wg−wb > ∆π}. Indeed, this case is analogous to the previous part

(i), which derives a unique optimal policy (wop
g ,wop

b ) ≡ (wun
e1,g,w

un
e1,b

), but wun
e1,g −wun

e1,b
=

v−1
(

k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p

)
< ∆π as our assumption, which is a contra-

diction since (wop
g ,wop

b ) ∈ D′
1 thus wop

g −wop
b > ∆π .

Let’s consider the sub-domain D′
2 = D′ \D′

1 = {(wg,wb) | wg−wb ≤ ∆π}. We show that the

optimal contract does exist in this domain.

Let D′
3 = {(wg,wb) ∈ D′

2 | wg −wb = ∆π}, it must be that the incentive constraint (b)

slacks in D′
3, i.e. v(wg)− v(wb)> ∆c/p. Because if (b) is binding with an optimal solution

(wop
g ,wop

b ), then from (a) and (b), (wop
g ,wop

b )≡ (wun
e1,g,w

un
e1,b

), but in this case wop
g −wop

b =

v−1
(

k1 + (1− p1)∆c/p

)
− v−1

(
k1 − (1− p1∆c/p)

)
= ∆π , which is inconsistent with the

preliminary assumption of (ii).

Therefore, from now on we can consider only the case when v(wg)−v(wb)>∆c/p,wg−wb =

∆π , and p1v(wg)+ (1− p1)v(wb) = k1 for (wg,wb) ∈ D′
3. The last two conditions define a

unique contract (w′
g,w

′
b) due to continuity and strictly increasing of v(.). Nevertheless, it

does not serve as an optimal contract. Indeed, since v(wg)− v(wb) > ∆c/p, the principal

can offer a contract (w′′
g,w

′′
b) specifying a slightly lower wage for the manager in the case of

a good outcome, and slightly higher wage in case of a bad outcome, i.e., w′′
g < w′

g, w′′
b > w′

b.

The refined contract satisfies both the participate constraint (a) p1v(w′′
g)+(1− p1)v(w′′

b) =

k1, the incentive constraint (b) v(w′′
g)−v(w′′

b)≥∆c/p, and w′′
g−w′′

b <∆π . Thus, (w′′
g,w

′′
b)∈D′

2

and produce a higher expected profit for the principal according to 2.3.2. Consequently,

the principal only needs to consider contracts in D′
2 when wg −wb < ∆π . 11

Now consider domain D′
4 = D′

2 \D′
3 = {(wg,wb) | wg −wb < ∆π}. We show that (wi

g,w
i
b) is

the optimal contract on D′
4, which is also the optimal one for the principal over the whole

domain D′ satisfying (d).

11. Note that there always exists at least a contract (w′′
g ,w

′′
b) as mentioned, as we can take (w′′

g ,w
′′
b) =

(wun
e1,g,w

un
e1,b

). This contract lies in D′
2 and is consistent with the preliminary condition (d) in (ii).
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Reconsider the Lagrangian in 2.6.10, we have min
p∈[p1,p̄1]

p(πg − wg) + (1 − p)(πb − wb) =

p1(πg −wg)+(1− p1)(πb −wb) since wg −wb < ∆π .

The F.O.C conditions with wg,wb are Lwg =−p1+λ1 p1v′(wg)+λ2v′(wg) = 0 (d’), Lwb =

−(1− p1)+λ1(1− p1)v′(wb)−λ2v′(wb) = 0 (e’), and λ2

(
v(wg)− v(wb)−∆c/p

)
= 0 (f’).

The incentive constraint in (f’) must be binding. If not, or λ2 = 0, from (d’) and (e’)

λ1 p1v′(wg) = p1, and λ1(1 − p1)v′(wb) = (1 − p1), but it then implies v′(wg) = v′(wb),

which is a contradiction.

Therefore, v(wg)−v(wb) = ∆c/p, together with the binding of the participation constraint,

we can derive the optimal contract, which is (wun
e1,g,w

un
e1,b

). 12

Since wg −wb < ∆π , the worst scenario for the principal is that the project succeeds with

the lowest probability p1. Therefore, the maxmin expected profit is as follows

Πun
e1,p1

= p1πg +(1− p1)πb − p1v−1
(

k1 +(1− p1)∆c/p

)
− (1− p1)v−1

(
k1 − p1∆c/p

)

iii. Lastly, we consider the case when v−1
(

k1 +(1− p1)∆c/p

)
− v−1

(
k1 − p1∆c/p = ∆π .

From two constraints (a) and (b), any (wg,wb) ∈ D′ satisfies v(wg)≥ k1+(1− p1)∆c/p and

v(wb)≤ k1− p1∆c/p, then wg−wb ≥ v−1(k1+(1− p1)∆c/p)−v−1(k1− p1∆c/p) = ∆π . Hence-

forth, min
p∈[p1,p̄1]

p(πg −wg)+ (1− p)(πb −wb) = p̄1(πg −wg)+ (1− p̄1)(πb −wb). Therefore,

the MEP for the principal happens if p̄1wg +(1− p̄1wb) is minimized. By Fact 2.3.2, the

principal can always reduce the expected cost by increasing the payment if the outcome

is bad and reducing the payment if the outcome is good. Therefore, the optimal contract

for the principal is wb = v−1(k1 − p1∆c/p), wg = v−1(k1 +(1− p1)∆c/p). Finally, the MEP

for the principal coincides with part (i), which is Πun
e1,p̄1

.■

12. An analogous argument to Remark 2.6.1 can be applied to show λ1,λ2 are positive with this contract.
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2.6.6 Proof of Theorem 2.4.1

We prove for the part of theorem where a1−b1 ≥ ∆π . An analogous reasoning can be used

in proving the part where a1 −b1 < ∆π .

When effort is unobservable, following 2.4.1, the principal will induce high effort e1 without

the presence of ambiguity if:

(p1 − p0)∆π > p1a1 +(1− p1)b1 − c0 (a)

From 2.4.2, the principal will induce the agent to implement e1 under ambiguity if:

(p̄1 − p0)∆π > p̄1a1 +(1− p̄1)b1 − c0 (b)

Moreover, we have to include condition 2.4.3 that aligns with the expression of the prin-

cipal’s expected profit in (b), which is a1 −b1 ≥ ∆π (c).

Now consider (a), since v(a1)− v(b1) = ∆0
c/p, we have p1a1 + (1 − p1)b1 = p1a1 + (1 −

p1)

(
v−1(v(a1)−∆0

c/p)

)
= q(a1), which is strictly increasing, since

q′(a1) = p1 +(1− p1)
v′(a1)

v′
(

v−1(v(a1)−∆0
c/p)

) > 0

Therefore, a1 < awa
e1

, the threshold value of (a). Similarly, from (b) a1 < aam
e1

with aam
e1

being

the threshold value of (b) as a function of a1.

Now consider condition a1−b1 ≥ ∆π , which is equivalent to a1−v−1
(

v(a1)−∆c/p

)
)≥ ∆π .
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The derivative of LHS with respect to a1 equals 1− v′(a1)

v′(v−1
(

v(a1)−∆c/p)

) . Since v−1
(

v(a1)−

∆c/p

)
= b1, and a1 > b1, v(.) is concave, the sign of the derivative is positive. There-

fore, a1 that satisfies (c) must be at least equal to its threshold value. As v(a1) =

v(a1)+ (1− p1)∆c/p − (1− p1)∆c/p, it implies that a1 > a∗1, which is the threshold value

of (c) as a function of a1. In short, the system of (a), (b) and (c) has a solution if a∗1 <

a1 = v−1
(

k1+(1− p1)∆c/p

)
< min(awa

e1
,aam

e1
). Conversely, if a∗1 < v−1

(
k1+(1− p1)∆c/p

)
<

min(awa
e1
,aam

e1
), it can be seen that the principal will induce the agent to implement e1 under

ambiguity.

Now consider if a1−b1 < ∆π , from 2.4.1 the expected profit for the principal under ambi-

guity upon inducing the agent to implement e1 is:

Πam
e1

= p1πg +(1− p1)πb − p1v−1(k1 +(1− p1)∆c/p)− (1− p1)v−1(k1 − p1∆c/p)

The condition that leads to implementing e1 under ambiguity is Πam
e1

> Πam
e0

= p0πg+(1−

p0)πb − v−1(k0), or equivalently:

(p1 − p0)∆π > p1a1 +(1− p1)b1 − c0 (d)

Similar to the previous case, as aam
e1,p1,p0

is a unique threshold value of (d), we must have

a1 < aam
e1,p1,p0

. Combined with the condition of a1 < aam
e1

in (a) and a1 < a∗1 when a1−b1 <

∆π , we come to the conclusion that a1 = v−1(k1 +(1− p1)∆c/p)< min(awa
e1
,aam

e1,p1,p0
,a∗1).

If the principal aims to induce the agents to implement e0 and a1−b1 ≥ ∆π , the inequality

sign in (a) and (b) will be reversed:

(p1 − p0)∆π < p1a1 +(1− p1)b1 − c0(e)

(p̄1 − p0)∆π < p̄1a1 +(1− p̄1)b1 − c0( f )
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Analogously, we can derive from (e) and (f) that a1 > awa
e1

, and a1 > aam
e1,p̄1,p0

. Combined

with a1 > a∗1 from a1−b1 ≥ ∆π , it can be seen that a1 > max(awa
e1
,aam

e1,p̄1,p0
,a∗1). Finally, the

case a1 −b1 < ∆π leads to max(awa
e1
,aam

e1,p1,p0
)< a∗1. ■
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Chapter 3

Cheap Talk With Ambiguous Beliefs

This chapter investigates strategic information transmission in the presence of ambigu-

ous language. Extending the classic cheap talk model introduced by Crawford and Sobel

(1982), we explore a setting where the uninformed receiver is uncertain about the distri-

bution of the sender’s private information. We find that the partition equilibria, under

varying levels of distributional ambiguity, mirror that of the Crawford-Sobel standard

model when the receiver’s reference distribution is uniform, assuming both parties’ pref-

erences are characterized by a quadratic-loss function. However, when the receiver’s ref-

erence distribution deviates from uniformity, intermediate ambiguity alters her optimal

strategy compared to the original model, leading to an adjustment in the Crawford-Sobel

partition equilibrium.

3.1 Introduction

The cheap talk problem, as proposed by the pioneering work of Crawford and Sobel

(CS hereafter), provides a consistent framework for analyzing communication strategies

between an informed sender (S) and an uninformed receiver (R). Since its introduction,

extensive literature has explored extending the original problem to various settings. One

such extension incorporates ambiguity into the CS model, where one or both parties face

Knightian uncertainty regarding some of the assumptions in the original framework.
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The implications of ambiguity on the outcomes of the cheap talk problem have garnered

significant interest in recent years. Blume et al. (2007) studied the game where a noisy

communication channel introduces randomness in the messages received by R. Their find-

ings show that channel noise fosters communication by forcing the pooling of sender types,

which makes R less reactive to messages and, in turn, encourages S to reveal more inform-

ation. In Blume’s partition equilibria, R’s expectation, given a message, is a weighted

average of the conditional expectation without transmission error and the ex-ante mean.

R’s expectation, when given a low message, is distorted upward, implying a reduction in

de facto preference alignment.

Gordon and Nöldeke (2015) finds that S employs truth-distorting techniques, such as

exaggeration or understatement. Lipman (2009) analyzes cheap talk with aligned prefer-

ences, concluding that vagueness is only efficient when the informed party holds ”vague

views of the world.” Kellner and Le Quement (2018) examines a cheap talk game where

the sender can adopt a Knightian uncertainty strategy. Under ambiguous randomization,

any standard influential communication equilibrium has a Pareto-dominant counterpart,

consistent with ex-ante utilities and strategic planning.

A critical assumption in cheap talk problems is that both the sender and receiver are fully

aware of the exact distribution function governing message generation. On one hand, this

assumption is reasonable, as it simplifies the analysis of posterior beliefs, which, in turn,

influences agents’ decisions in equilibrium. On the other hand, empirical evidence suggests

that decision-makers often lack precise knowledge of the message-generating process, thus

introducing uncertainty.

We propose a cheap talk game where the distribution of the private message observed by

S is ambiguous to R, who is ambiguity-averse, as in previous chapters.
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Since ambiguity only affects how R evaluates actions and does not influence the preferences

of either the principal or agent, the misalignment between the interests of R and S remains

similar to the standard CS model. As a result, all equilibria take a partition form, where

S pools his signals before sending them to R.

In this chapter, depending on how R perceives the degree of ambiguity, she judges actions

according to the corresponding ambiguity model, rather than selecting the action that

maximizes conditional expected utility, as in the CS model.

When R faces complete ambiguity, the true distribution of the message can take any

form. As a result, R’s posterior belief after Bayesian updating becomes irrelevant: being

ambiguity-averse, R assumes the worst-case scenario, where the private message’s distri-

bution degenerates, placing the message furthest from her optimal action. In this context,

we apply the maxmin expected utility (MEU; Gilboa and Schmeidler (1989)) framework

to characterize R’s behavior. The Gilboa-Schmeidler model, in its simplest form, offers

a straightforward mechanism to rank actions under ambiguity without relying on the

information R has learned about the true distribution.

However, when R faces some ambiguity, but not extreme, the MEU mechanism, which

excludes the information R acquires regarding the true distribution of the private message,

may no longer be efficient for evaluating R’s responses. This is because R’s best response,

under intermediate ambiguity, should reflect the information she has about the private

message. Intuitively, when ambiguity is intermediate, R’s action should be closer to the

private message than when she faces complete ambiguity. To address the shortcomings of

the MEU in this context, we adopt the multiplier utility following Andersson et al. (2003),

which measures the divergence between R’s best guess about the actual distribution and

the worst-case misspecified distribution. As a result, R can narrow down the set of potential

candidates for the actual distribution, leading to an optimal response that incorporates

some information about the uninformed type.
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The first contribution of this chapter is that it demonstrates and proves the existence

of partition equilibria across varying levels of ambiguity, including small, complete, and

intermediate cases. In contrast to the CS model, where R’s Bayesian optimal action is

consistently determined in equilibrium from the updated prior, there is no single functional

form to describe R’s behavior across different ambiguity models. However, we show that

the partition equilibrium exists as long as R’s behavior satisfies continuous differentiability

and monotonicity, both of which hold in the three models discussed in the text.

Secondly, I show that when R faces complete ambiguity, she chooses the midpoint of the

informed interval as her best response, regardless of her reference belief, or S’s strategy.

Thus, all equilibria under complete ambiguity are essentially equivalent. In the inter-

mediate ambiguity case, modeled by the multiplier preference framework, I find that R

also selects the midpoint as her optimal action if her reference distribution is uniform.

Although this result appears similar to the complete ambiguity case, the underlying ra-

tionale differs. When R faces complete ambiguity, her action is an anti-ignorance strategy,

balancing between two extreme scenarios at the ends of the informed interval. In contrast,

her behavior under intermediate ambiguity resembles the CS model, assuming S’s strategy

is uniform.

However, if R’s reference distribution is non-uniform, I show that her optimal action under

intermediate ambiguity can deviate from both cases including no ambiguity (CS) and the

complete ambiguity. Therefore, the original partition equilibrium in the CS model is robust

under ambiguity when R’s reference distribution is uniform but may be altered when R

holds a different belief. Finally, I present examples comparing the partition equilibrium

in the CS model and the ambiguity model, illustrating how different degrees of ambiguity

impact the outcomes.
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In the context of cheap talk under ambiguity, I discovered that Li (2022) had explored

a closely related problem after I had already developed the core idea that the receiver

faces ambiguity regarding the distribution of the private message. Although I adopt Li’s

approach of using the multiplier utility (MU) model, leading to some overlapping results,

my work differs from his in several significant ways.

First, Li’s approach, which relies heavily on the MU model and the use of relative entropy

between distributions, is analytically complex. In contrast, when ambiguity is relatively

small, I introduce an alternative approach using the ε-contamination model. This model

avoids the need for relative entropy and the functional extrema found in Li’s model, sim-

plifying the analysis. Additionally, I provide a more detailed and formal proof, along with

clearer explanations of Li’s results within the MU framework. Furthermore, I demonstrate

that the receiver’s (R’s) strategy under ambiguity generally differs from that in the ori-

ginal CS model and reveals more information than when R is entirely ignorant of the true

distribution of the private message. These key distinctions are absent from Li’s work.

Secondly, Li does not formally prove the existence of equilibrium under ambiguity, a

crucial aspect that my paper addresses. Establishing equilibrium existence is vital for

understanding how ambiguity impacts the structure of partition equilibria. Additionally,

Li’s work does not explicitly define the strategy profiles for both agents under ambiguity.

In contrast, I show that when ambiguity is modeled using the MU framework, the partition

equilibria exhibit a fundamental structural equivalence to those in the CS model. These

critical points are not covered in Li’s research.

Lastly, I provide illustrative examples and figures that showcase how partition equilibria

shift under ambiguity, offering clear visual insights that further distinguish my contribu-

tion from Li’s.
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The rest of the paper is organized as follows. Section 3.2 introduces the model of cheap

talk under ambiguity. Section 3.3 established the existence of the CS-like equilibrium

under ambiguity. Sections 3.4 and 3.5 characterize partition equilibrium following the

ε−contamination model and max-min expected utility model in two cases: small ambi-

guity and complete ambiguity. Section 3.6 studies agents’ responses under intermediate

ambiguity modeled by the multiplier utility framework Hansen and Sargent (2001). The

conclusion is presented in Section 3.7 and proofs are included in Appendix 3.8.

3.2 Model

We follow the notation of the standard CS model. There are two players: a sender (S,

he), who is the only one capable of sending a costless, non-verifiable message to a receiver

(R, she). Occasionally, we will refer to S as the expert and R as the decision maker (see

Barreda (2010)). The sender observes the value of a random variable θ ∈ Θ = [0,1], which

represents a payoff-relevant state of the world. In the CS model, θ is drawn from the

uniform distribution over [0,1] , and this distribution is known by both parties. However,

in this chapter, we relax this assumption by introducing ambiguity regarding the true

distribution f that generates θ , which is ambiguous to the receiver.1 As the sender’s

payoff is determined solely by the receiver’s actions, only the receiver’s attitude toward

ambiguity is relevant. For consistency with the assumptions made in previous chapters,

we assume that R is an ambiguity-averse decision-maker.

The utilities of S and R, US(y,θ ,b) and UR(y,θ), depend on the private information θ

and the action y taken by R after observing the message m from S. The parameter b

captures the misalignment between R and S. We assume that S incurs no cost in sending

any message to R. Following the assumption in CS, I assume that U i
12 > 0, and U i

11 < 0

for i = R,S. It is important to note that we do not require the agents’ preferences to take

the quadratic-loss form as in the original CS model at this stage.

1. Since the sender can only observe the private message and takes no action, the sender’s prior does
not influence the CS equilibrium. Therefore, we assume ambiguity only affects the receiver.
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The game proceeds as follows, after observing random information (or type) θ , S sends

a signal (message) m ∈ Z to R, where Z denotes the signal space. The signal space Z is

sufficiently rich such that, in the most informative mode of transmission where S truthfully

reports his type to R, Z can accommodate all possible values of θ . This ensures that R can

distinguish between any two arbitrary signals in Z. Therefore, without loss of generality

(WLOG), we assume Z = Θ = [0,1].

Our equilibrium concept follows the Bayesian Nash equilibrium. At each information set

where an agent is called upon to act, R’s optimal action is determined based on her

prior belief and the sender’s signaling rule in equilibrium. Since S’s is not influenced by

ambiguity, he only chooses a strategy to send the message m that maximizes his expected

payoff contingent on R subsequent action. Meanwhile, R’s strategy depends on S’s signaling

rule and how she incorporates ambiguity into her updated beliefs.

Formally, a cheap talk problem under ambiguity is defined as follows:

(i) S’s problem: given private information θ , S’s strategy involves selecting a state-

dependent distribution of messages σ(m|θ) over Z. In the absence of ambiguity, R updates

his prior belief µ(θ |m) according to Bayes’ law upon observing the signal m :

µ(θ |m) =
σ(m|θ) f (θ)∫
1

0
σ(m, t) f (t)dt

(3.2.1)

In the setting of ambiguity, however, R is uncertain about f (.), which leads to the pos-

terior belief µ(θ |m) also being vague. Despite this, R forms a conjecture about the actual

distribution of the private message. 2 With a slight abuse of notation, we refer to R’s ref-

erence distribution as f (θ), implicitly indicating that it represents her conjecture rather

than the actual distribution of θ . Throughout this chapter, I assume that f is continu-

ously differentiable. An analogous notation is applied to the posterior belief µ(θ |m) within

ambiguity context.

2. This is rather similar to the problem of the competitive insurance market in Chapter 1, where actuarial
firms hold a subjective belief regarding the proportion of low-risk and high-risk customers.
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Let ∆(Θ) denote the set of probability distributions on Θ. For each reference distribution

f (θ), let K∆(Θ) represent a non-empty, compact, convex subset of ∆(Θ) that contains f (θ)

and all potential candidates for the true distribution under ambiguity associated with f .

In the following sections, we will examine different versions of K∆(Θ), corresponding to

cases of small, complete, and intermediate ambiguity.

(ii) R’s problem: upon observing the signal m from S, R selects an action rule y(m) that

maximizes his expected utility, given the ambiguous posterior µ(θ |m) in 3.2.1. The process

by which R handles the ambiguous posterior and find the optima will be studied in next

sections. As UR(.) is a concave function, t follows from Jensen’s inequality that R never

employs a mixed strategy.

We define the equilibrium in the context of ambiguity based on conditions (i) and (ii) as

follows.

Definition 3.2.1. A strategy profile (σ(m|θ),y(m)) is called a Crawford-Sobel equilib-

rium under ambiguity (CSUA) if the following conditions hold:

a. Given R′ s optimal action y(m), S′ s strategy is optimal, i.e., if m is in support of σ(m|θ),

then y(m) = argmax
m̂∈Z

US(y(m̂),θ), here m̂ is any feasible message in Z.

b. Given S′ s strategy σ(m,θ), R chooses the action y(m) that maximizes the minimum

expected utility of UR(y(m),θ) over a set of probability measures. 3 Note that the min-

imum expected utility of UR(y(m),θ) is evaluated within the framework that accounts for

ambiguity when accessing actions.

3. R is assumed ambiguity-averse, as in previous chapters, ensuring that every model examined in the
following sections satisfies the uncertainty aversion axiom (Epstein and Schneider (2010)).
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In this chapter, the case of small ambiguity is modeled using the ε−contamination frame-

work. Complete ambiguity is represented by the max-min expected utility framework

of Gilboa and Schmeidler, as in Chapter 2. Finally, the multiplier utility framework of

Hansen and Sargent (2001) is used to model cases of intermediate ambiguity. In the next

section, similarly to Theorem 1 in CS, we state the general result asserting the existence

of the CSUA equilibrium when R’s optimal strategy meets the continuous differentiability

and monotonicity conditions.

3.3 Characterization of equilibria under ambiguity

For any observed information θ , we define S and R’ desired action as yS(θ ,b)= argmax
y

US(y,θ ,b),

and yR(θ) = argmax
y

UR(y,θ). Following the misalignment assumption in CS, I assume that

yS(θ ,b) ̸= yR(θ) for every θ . 4 It is worth noting that the conflict of interest condition just

mentioned rules out separating equilibria, in which the expert fully discloses his type.

By an argument analogous to Lemma 1 in the CS model, it can be verified that any

equilibrium under ambiguity also has a partition structure. First of all, the misalignment

between yS(θ ,b) and yR(θ) for every θ implies that there exists ε such that |yS(θ ,b)−

yR(θ)| ≥ ε for all θ (i). Now let’s consider two actions u and v induced in equilibrium. As

S prefers u to v for the S− type that induces u and vice versa, there exists an θ̄ ∈ [0,1]

that makes S indifferent between inducing these two actions, i.e. US(u, θ̄ ,b) =US(v, θ̄ ,b).

The conditions US
11 < 0 and US

12 > 0 then implies that u < yS(θ̄ ,b) < v(ii), u can only be

induced by some θ ≤ θ̄ and v can only be induced by some θ ≥ θ̄ . Combining these last

two implications with UR
12 > 0, we derive that u ≤ yR(θ̄) ≤ v (iii). From (i),(ii), and (iii),

we conclude that v− u ≥ ε , which means that the set of induced actions in equilibrium

is finite. Given that the set of induced actions in any equilibrium is bounded by yR(0)

and yR(1) since UR
12 > 0, we conclude that the set of induced actions in equilibrium is

4. Although not specified at this step, the reader can assign the quadratic-loss utility functions for US(.)
and UR(.). The misalignment assumption then naturally follows. There are, of course, other functional
forms of non-quadratic loss (for example, see Krishna and Morgan (2004), Barreda (2010)). Nevertheless,
the misalignment assumption remains a crucial and widely adopted feature in the cheap talk literature.
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finite. Due to the continuity of UR(.), the decision maker will choose a unique action for

signals received from some open interval. Thus, the CSUA equilibrium takes the form of a

partition over the space of S− type [0,1]. S informs R the exact interval where the private

information lies by sending a random signal m within that interval.

Lemma 3.3.1. Any CSUA equilibrium, if it exists, takes the form of a partition of [0,1],

wherein all S-types within each open interval induce a unique action for R.

Roughly speaking, although ambiguity may shift R’s response compared to the original

model, it does not affect the misalignment between S’s and R’s desired actions, which

results in a minimum gap between any two actions induced by R in equilibrium.

For every CSUA equilibirum, denote a0 = 0,a1, ...aN = 1 be a partition of [0,1]. S observes

the private type θ and then informs R the exact interval [ai,ai+1] where θ lies in. If θ

falls on some threshold ai, S can choose either [ai−1,ai] or [ai,ai+1] to inform R.

Let us define y(ai,ai) = yR(ai) for all i and y(ai,ai+1) as the best response of R upon

receiving the signal in (ai,ai+1). Since UR
11 < 0, it can be shown that y(ai,ai+1) lies within

(ai,ai+1). This implies that ai+1 − ai−1 is bounded below since there exists a minimum

gap between y(ai,ai+1) and y(ai−1,ai), leading to the number of cutoffs ai in equilibrium

being finite.

Corollary 3.3.1. For each b, there exists a maximum number N(b) of cutoffs ai in the

partitioned CSUA equilibrium.

We omitted the proof of Lemma 3.3.1 and Corollary 3.3.1. Next, we characterize the ne-

cessary condition for the existence of a partitioned CSUA equilibrium under ambiguity.

Similar to the CS equilibrium, the arbitrage condition is necessary to ensure that S is in-

different between sending signals from either (ai−1,ai) or (ai,ai+1) when the true observed

message is at the cutoff ai. This condition ensures that R acts consistently upon receiving

any signal within (ai,ai+1).
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Theorem 3.3.1. Suppose that for each informed interval [ai,ai+1], R’s optimal response

y(ai,ai+1) the following conditions:

i. y(ai,ai+1) is continuous differentiable.

ii. y(ai,ai+1) is monotonic, i.e., y(ai,α)≤ y(ai,β ) when α ≤ β and y(α,ai)≤ y(β ,ai) when

α ≤ β for all i. Moreover, y(ai,ai) = yR(ai) for all i.

Then, for every N ≤ N(b) there exists a partition 0 = a0 < a1 < ... < aN = 1 that satisfies

the arbitrage condition, that is,

US(y(ai−1,ai),ai,b) =US(y(ai,ai+1),ai,b)(C)

Remark 3.3.1. Theorem 3.3.1 establishes the existence of partial equilibrium under am-

biguity. Although it closely resembles Theorem 1 in the CS model, there is an important

difference. The first thing is with the best response y(ai,ai+1). In the CS model, the best

response y is uniquely derived from the conditional expectation of θ after R updates her

belief, and this expectation remains consistent across contexts. In contrast, since our model

incorporates various frameworks for ambiguity, y(m) in our model is not necessarily spe-

cified in a unique way based on the posterior belief. Therefore, the existence of partial

equilibria depends solely on the generic properties of y, specified by conditions (i) and (ii).

Remark 3.3.2. In CS model, the distribution function f (m), is not generally assumed

to be continuous. Therefore, the continuity of R’s optimal response y(ai,ai+1) is not guar-

anteed. However, the assumption of differentiability is crucial for proving the existence of

equilibrium cutoffs ai under condition (C). Lastly, the monotonicity condition (ii) can be

interpreted that the closer ai or ai+1 moves to 1, R’s optimal choice y(ai,ai+1) will increase

accordingly.
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The key idea behind the proof of Theorem 3.3.1 is as follows. First, we construct a partition

equilibrium that satisfies the arbitrage condition (C) with the terminal aN < 1. Then, by

the implicit theorem, if we vary a1 continuously, there exists some a1 such that aN = 1.

Note that this can be achieved since the sequence {ai} does not ”stop” at any i, or ai = ai+1,

under conditions (i) and (ii). 5

The argument is outlined more explicitly as follows. For each y there exists N(b) such that

the maximum number of thresholds in one partition equilibrium satisfying the arbitrage

condition and aN ≤ 1 does not exceed N(b), as established in Crawford and Sobel (1982).

If the last element of the largest partition equilibrium aN = 1 (N = N(b)), the proposition

is true. Otherwise, there exists a sequence 0 < a1 < .. < aN < 1 that satisfies condition

(C). If a solution for condition (C) already exists when aN < 1, then by the implicit

function theorem, there also exists a neighborhood of a1 where condition (C) continues

to hold. Therefore, if the initial point a∗1 is the largest element satisfying condition (C),

the corresponding last element a∗N must be one. Otherwise, a neighborhood of a∗1 can still

be found where condition C holds, contradicting the assumption that a∗1 is the supremum

element.

In the following sections, we first investigate the CSUA equilibrium for the complete

ambiguity in section 3.5, using the ε-contamination model and the max-min expected

utility (MEU) framework proposed by Gilboa and Schmeidler (1989). Following Li (2022),

we model the intermediate ambiguity case by employing the framework developed by

Hansen and Sargent (2001), which offers a more convenient approach for modeling the

divergence between distributions. This model allows us not only to study the CSUA

equilibrium when the preference distribution is uniform but also to derive R’s strategy in

equilibrium for a broader range of distributions. The results of this analysis are presented

in Section 3.6.

5. See Appendix 3.8.1.
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f (θ)
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ε =−M

ε = M

Figure 3.4.1: The set of R’s possible distributions under small ambiguity.

3.4 Small ambiguity equilibrium

In the canonical example in CS model, the probability density function (pdf) of the

private message is assumed to be uniform, specifically, f (θ) = 1 for every θ . When facing

small ambiguity regarding f , R has a set of priors about the actual distribution. However,

since the degree of ambiguity is small, R knows that the true pdf is close enough to the

uniform distribution, in the sense that it still takes a linear form but deviates slightly

from the uniform distribution. Specifically, ambiguity is modeled using the concept ε-

contamination, which results in a set of linear forms for the density function: f (θ ,ε) =

2εθ +(1− ε) for |ε| ≤ M for some small M.6

In Figure 3.4.1, if ε = 0 then f (θ ,ε) = 1, which corresponds exactly to the uniform dis-

tribution in the example of CS. For sufficiently small M, the true density function f (.)

from R’s perspective, can be represented by any line lying between the two boundaries

2Mθ +(1−M) and −2Mθ +(1+M). 7

6. Intuitively, M can take value one as its upper bound. In this case, the set of true distributions lies
between two extreme ones, −2θ and 2θ . However, we can lower this bound so that 1+M−2Mθ > 0 every
θ . (see the proof of Theorem 3.4.1). In this sense, we can establish a better upper bound M ≤ 0.5.
7. It can be easily verified that both of these linear distributions (and any other symmetric, linear
distributions lying between them, as shown in Figure 3.4.1 are proper distribution functions.
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With a slight abuse of notation, let N(b) denote the maximum number of thresholds in

the original CS equilibrium, which depends on the degree of misalignment between S and

R.

Let y(m) denote the optimal strategy of R’ when informed of the interval containing the

message m in equilibrium. We first present a general result for a class of UR(.) preferences,

which are formed by a linear combination of quadratic-loss functions.

Theorem 3.4.1. In the small ambiguity case, for ki ∈ N for every i, if US(y,θ ,b) =−(y−

(θ +b)2) and UR(y,θ) =−
l

∑
i=1

αi(y−θ)2ki +ci, where (α1, ..αl)∈ Rl
+, then for every positive

integer N ≤ N(b), there exists at least one equilibrium (y(m),σ(m,θ)) where σ(m,θ) is a

uniform distribution, supported on [ai,ai+1] if θ ∈ (ai,ai+1) satisfying:

i. US(y(ai−1,ai),ai,b) =US(y(ai,ai+1),ai,b)

ii. y(m) =
ai +ai+1

2
.

Since R’s preference in the CS model is a special case of the general preference defined in

Theorem 3.4.1, with l = 1,αi = 1,ci = 0 for all i, we derive the following result.

Corollary 3.4.1. When S and R’ preferences are defined as in the CS model, the CSUA

equilibrium is characterized by (y(m),σ(m,θ), which satisfies:

i. US(y(ai−1,ai),ai,b) =US(y(ai,ai+1),ai,b)

ii. y(m) =
ai +ai+1

2
for all m ∈ (ai,ai+1)

Corollary 3.4.1 states that, under small ambiguity, R’s best response coincides with its

strategy in the CS model. Although R’s strategy appears similar in both cases, the un-

derlying mechanism is different. In the CS model, R simply chooses the strategy y that

maximizes her conditional expected utility, which is a straightforward one-step process.
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However, under ambiguity, R cannot directly maximize the conditional expected utility

to determine the optimal action, as the distribution of the message is uncertain. Given

that R is ambiguity-averse, she must consider the worst-case scenarios associated with

each possible action y.

The intuition behind Corollary 3.4.1 is as follows: when y lies in the right half of the

signaled interval [ai,
ai +ai+1

2
], R perceives the worst-case scenario when the distribution

of θ is as concentrated as possible on the left, represented by f1(θ) = −2Mθ +(1+M).

Conversely, when y lies in the left half of [
ai +ai+1

2
,ai+1],the worst-case scenario for R

is when the distribution of θ is concentrated towards the right, represented by f2(θ) =

2Mθ +(1−M). As y approaches the midpoint of [ai,ai+1], R’s expected payoffs improve

with respect to both extreme distributions, f1(θ) and f2(θ). Given that R preference

is symmetric, the midpoint of [ai,ai+1] maximizes receiver’s expected utility in both of

worst-case scenario, thus constitutes a unique response of R.

With the case of small ambiguity addressed, we now move on to analyze the equilibrium

under complete ambiguity.

3.5 Complete ambiguity equilibrium

This section examines the case where R faces complete ambiguity regarding the true

probability of the private message θ . Consequently, R has no certainty toward her best

guess distribution f (θ). From R’s perspective, the true distribution could take any pos-

sible distribution. As a result, under the assumption of complete ambiguity, the reference

probability distribution f (θ) provides no advantage in determining R’s optimal strategy.

In other words, R is completely ignorant of the actual distribution of the private mes-
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sage. The set of possible candidates for the true f (θ) now spans the entire domain, or

K∆(Θ) = ∆(Θ). Maintaining the assumptions of quadratic utility functions and the mis-

alignment between R’s and S’s best ex-post actions, and following the arguments in the

CS model, every equilibrium in this case remains a partition equilibrium.

Being ambiguity-averse, R ranks actions in the informed interval in equilibrium under

complete ambiguity following Gilboa and Schmeidler (1989):

y(m) = argmax
y

min
µ(θ |m)∈∆(Θ)

[∫ ai+1

ai

UR(y,θ)µ(θ |m)dθ
]

(3.5.1)

In 3.5.1, µ(θ |m) is the posterior belief with respect to the reference probability f (θ) as

in 3.2.1. Since f carries no information in the case of complete ambiguity, µ(θ |m) could

take any posterior belief. The following result characterizes the partition equilibrium in

the case of complete ambiguity:

Proposition 3.5.1. Under complete ambiguity, the set of equilibria strategy profiles

(y(m),σ(m,θ)) contains a signaling rule σ(m,θ) supported on [ai,ai+1] if θ ∈ (ai,ai+1),

and y(m) that satisfies:

i. US(y(ai−1,ai),ai,b) =US(y(ai,ai+1),ai,b)

ii. y(m) =
ai +ai+1

2
for all m ∈ (ai,ai+1)

We can provide an intuition for Preposition 3.5.1 as follows: R is informed the true state θ

is in [ai,ai+1], however, the true pdf f is completely ambiguous to her. Being ambiguity-

averse, R assumes the worst situation under which the distribution function of θ is a

degenerate distribution that minimizes R’s expected payoff over the set of possible priors
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∆(Θ). In the worst case, the minimum value of R’s expected utility is when the selected

action y lies in one half of the interval (ai,ai+1), and θ lies in the opposite half with

probability equal to 1. Therefore, the optimal action for the R is the position on (ai,ai+1)

being indifferent to both these two ends. That explains his choice y(m) =
ai +ai+1

2
.

Since R always responds to the message m under the assumption that the true distribution

of the message is degenerate and the true state θ can be either ai or ai+1, it is not necessary

for S to send the message in uniform distribution as in CS. Rather than that, she can

chooses any strategy σ(m,θ), as long as it guarantees m ∈ (ai,ai+1).

Remark 3.5.1. in Proposition 3.5.1, the sender can choose an arbitrary signaling rule in

equilibrium. To put it another way, we have a continumm of equilibria where σ(m,θ) can

take any distribution in ∆(Θ). As R faces complete under ambiguity, she only evaluates

actions by assuming the worst situation where the true information θ is furthest from her

response. In equilibrium, R only chooses the action at the midpoint of [ai,ai+1] and do

not consider the guess distribution. Thus S’s strategy is not necessarily equivalent to the

uniform distribution as in the CS model.

3.6 Multiplier preference model

This section is devoted to examining the case where the receiver faces some level of

ambiguity in the distribution f of θ , but not complete as in Section 3.5. R still faces

ambiguity regarding the actual distribution f , but he has more information about the

probability distribution than the case of complete ambiguity.
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Denote µ(θ |m) as the updated prior of R after observing the signal m as in 3.2.1. Al-

though µ(θ |m) is ambiguous to R, the receiver may still capture some information about

the true distribution f , or a valid ”guess” of f (θ). Therefore, the agent can conjecture

some reference distribution for µ(θ |m), leading to the need to accommodate her guess

in her strategy, rather than only concerning the worst scenario as in the multiple-prior

framework. Following Hansen and Sargent (2001), we employ the multiplier utility (MU)

model to represent R’s preference under ambiguity:

UR
MU(y) = min

P∈∆(Ω)

[∫ ai+1

ai

UR(y,θ)dP+KR(P||Q)

]
(3.6.1)

In the above equation, firstly R finds the worst misspecification P for his best guess of the

true distribution Q for each action y. Then y is chosen to maximize R’s expected pay-off

corresponding to the worst distribution P.

The second term on the right-hand side of equation 3.6.1, R(P||Q) is called the Kullback-

Leibler divergence, 8 which measures the difference between the considered probability

distribution P and the reference probability distribution Q. For distributions P and Q of

a continuous variable as in our model, R is defined as follows: 9

R(p||q) =
∫ ∞

−∞
p(x)log

(
p(x)
q(x)

)
dx (3.6.2)

8. R(p||q) is also called Relative Entropy, or I-divergence in some other sources

9. More rigorously, R(p||q) can be defined as
∫

θ∈Θ log
(

p(dθ)
q(dθ)

)
p(dθ), where p and q are two probability

measures on a measurable space Θ, where p(dθ)
q(dθ)

is the Radon–Nikodym derivative of p for q. However,
introducing measure theory to the model is unnecessary as it does not change the main results in our
paper. Employing the definition of the probability distribution of a continuous variable, as in 3.6.2 is
sufficient for our purposes.
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In 3.6.2, p(θ) and q(θ) are pdfs of P and Q. Note that as we only restrict the set of

message space being Θ = [0,1], the two boundaries of the integral in 3.6.2 are zero and

unity. Also in 3.6.1, K reflects the level of ambiguity associated with R’s best guess of

distribution f . More specifically, an increase in K−1 leads to R being more ambiguity-

averse (Epstein and Schneider (2010)).If K = 0, K−1 goes to infinity, which reflects the

case where R is completely ambiguous about the precise distribution f , thus her guess is

uninformative in choosing the best action in equilibrium. If K tends to infinity, R gains

substantial information about the distribution law. In this case, P = Q, and R’s guess

coincides with the true distribution of f , as in the CS model.

Replace Q in 3.6.1 by the expression of the reference distribution µ(θ |m), and UR by the

quadratic-loss utility, R’s optimal strategy under MU framework given message m can be

interpreted as follows:

y(m) = argmax
y

inf
p(θ)

[∫ ai+1

ai

−(y−θ)2 p(θ)dθ +K p(θ)log
(

p(θ)
µ(θ |m)

)
dθ

]
(3.6.3)

In 3.6.3, upon receiving the signal m, for each response y, the receiver assumes the most

pessimistic scenario where the actual prior p(θ) is most divergent from the conjectured

prior µ(θ |m).

We consider K > 0 (the case K = 0 is the complete ambiguity case as in 3.5). Moreover, to

be able to find an analytical solution for p(θ) in 3.6.3, we further assume that both p(θ)

and µ(θ |m) are continuously differentiable. The worst distribution satisfies the following:

Proposition 3.6.1. p∗(θ) = exp
(

A+
(y−θ)2

K

)
µ(θ |m), where A is the unique real num-

ber normalizing p(θ) as a probability density distribution, i.e.
∫

ai+1

ai
p∗(θ)dθ = 1.

The result of Proposition 3.6.1 can be illustrated in figures below. Given that K represents

the degree of ambiguity in the best estimate of the distribution of R’, the shift from the

graph of the conjectured distribution µ(θ |m) to the graph of the worst distribution p∗(θ)

can be observed accordingly. In Figure 3.6.1, µ(θ |m), purple in color, is assumed to be
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a beta distribution. When the ambiguity is significant, respectively K = 0.05, the blue

diagram of p∗(θ) shifts farthest and has a relatively different shape from the original

beta distribution. When R can access a considerable amount of information on the true

distribution µ(θ |m) (K = 1), it can be seen that p∗(θ) is very close to µ(θ |m). Similar

observations can be seen in Figures 3.6.2 and 3.6.3. Note that in Figure 3.6.2, the shape

of p∗(θ) is similar to the normal distribution due to its symmetry, which can be seen in

proposition 3.6.1.

Figure 3.6.1: Beta distribution and p∗(θ) with different values of K.

Figure 3.6.2: Normal distribution and p∗(θ) with different values of K.

Given Proposition 3.6.1, there is a unique worst scenario of the probability distribution

p∗(θ) for each response y of R. The DM’s strategy, thus, can be derived accordingly:
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Figure 3.6.3: Uniform distribution and p∗(θ) with different values of K.

Corollary 3.6.1. Upon observing the signal in [ai,ai+1], R’s best action is the unique

solution y(ai,ai+1) ∈ [ai,ai+1] satisfying
∫

ai+1

ai
(θ − y)exp

(
(y−θ)2

K

)
f (θ)dθ = 0. There

exists at least one equilibirum (y(m),σ(m|θ)), where σ(m|θ) is uniform, supported on

[ai,ai+1] if θ ∈ (ai,ai+1) that satisfies the condition (C). Moreover, any equilibrium is

essentially equivalent to one in this class.

The corollary 3.6.1 identifies the best strategy for R when observing the signal m in the

interval [ai,ai+1] given that his best guess of the true probability distribution is f , and the

posterior belief corresponding is µ(θ |m) defined by 3.2.1. If f (.) is a uniform distribution,

one can derive y(ai,ai+1) =
ai +ai+1

2
, which coincides with the best action of R in previous

sections. When f (.) is different from the uniform distribution, y(ai,ai+1) ̸=
ai +ai+1

2
in

general. Moreover, the integral in 3.6.1 is hardly solvable. However, given that µ(θ |m)

is continuously differentiable, by Implicit Theorem it can be verified that the solution

y(ai,ai+1) is also continuously differentiable, which satisfies the conditions of theorem

3.3.1. Thus, the partition equilibrium exists in the multiplier preference model.

Corollary 3.6.2. R’s optimal action identified from 3.6.1 satisfies all the conditions of

Theorem 3.3.1, therefore, the CSUA partition equilibrium exists.
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A direct implication can be observed from 3.6.1: when R gains a lot of information from f ,

or K goes to infinity, one can show that y will converge to the conditional expected value

of θ on (ai,ai+1) under the assumed distribution µ(θ |m). This is exactly the response

of R in the CS model. In particular, when µ(θ |m) is a uniform distribution, y converges

to the midpoint of [ai,ai+1] regardless of the value of K. Hence, R’s action in the MU

model when her guess distribution is uniform accommodates the complete ambiguity in

section 3.5as a special case. The consistency in R’s choice of the midpoint of [ai,ai+1]

under ambiguity can be attributed to her preference’s quadratic form and the uniform

distribution’s symmetry.

Corollary 3.6.3. y =
ai +ai+1

2
when the reference distribution f (θ) is uniform for K ∈

(0,+∞].

For an arbitrary µ(θ |m), when R is completely uncertain about the distribution of the

private message, that is, K = 0, the best response is y f ull ambiguity =
ai +ai+1

2
. When R does

not face ambiguity in the distribution law, namely K = ∞, it is straightforward to show

that yno ambiguity = yCS =

∫
ai+1

ai
θ f (θ)dθ , which coincides with the optimal action in the

expected utility model of CS.

When R holds certain ambiguity about the true distribution of the private message but is

not too extreme, i.e., K ∈ (0,∞), in general, her optimal action is neither y f ull ambiguity nor

yno ambiguity. Although proving this in the general case seems challenging, it is constructive

to provide a few examples to illustrate it.

Firstly, we give an example to show that for some K > 0, y(ai,ai+1) ̸= yCS. We take

K = 0.1 and consider the distribution f (θ) = 2θ . By setting the informed interval is the

whole domain [0,1], we get yCS =

∫
1

0
θ2θdθ =

2
3

, y(ai,ai+1) is the solution of
∫

1

0
(θ −

y)exp
(
(θ − y)2

K

)
2θdθ = 0, so y(ai,ai+1)≈ 0.60 ̸= yCS.

We then show that, for a class of motonotic distributions, y(ai,ai+1) ̸= y f ull ambiguity. Notice

that the distribution f (θ) = 2θ defined above also satisfies this property.
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Proposition 3.6.2. If f (θ) is weakly increasing (decreasing), R’s action in CSUA is

strictly higher (lower) than her solution in the case of full ambiguity.

The intuition behind proposition 3.6.2 is as follows: when R has a best guess that the

true distribution is increasing (decreasing), or getting higher to the right (left) of the

informed interval, he will choose her action to the right (left) of the completely ambiguous

action y =
ai +ai+1

2
when she is the most uncertain about f . Since R has some information

related to f , she is not completely uncertain, and thus her action must be closer to private

information than when she is completely uncertain about f . As the distribution of f (θ)

is increasing (decreasing), there is a higher chance that the true θ lies in the half-right

(left ) interval than in the half-right (right) of (ai,ai+1), which explains the choice of R.

Finally, we illustrate R’s optimal responses and equilibrium cutoffs in the standard CS

and ambiguity models for cases where N = 2 or N = 3, and where K is either small or

large.

Figure 3.6.4: Equilibrium cutoffs in the CS and in CSUA models where N = 1 under large
ambiguity.
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Figure 3.6.5: Equilibrium cutoffs in the CS and in CSUA models where N = 1 under small
ambiguity.

Figure 3.6.6: Equilibrium cutoffs in the CS and in CSUA models where N = 2 under large
ambiguity.
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Figure 3.6.7: Equilibrium cutoffs in the CS and in CSUA models where N = 2 under small
ambiguity.
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3.7 Conclusion

This chapter examines the strategic communication problem based on the canonical

Crawford-Sobel model, considering the case where the receiver faces ambiguity regard-

ing the distribution of private information. Several key conclusions are drawn under this

ambiguity context: the sender transmits a signal from the interval in which his type lies

and the receiver selects an action that maximizes her payoff under ambiguity. The set

of signals that induces the same response forms intervals, partitioning the entire signal

domain. Consequently, every equilibrium takes the form of a partition. Additionally, the

receiver follows a strategy similar to that of the CS model if her reference distribution is

uniform.

However, ambiguity significantly impacts the receiver’s behavior: under the assumption of

ambiguity aversion, the receiver consistently selects the midpoint of the informed interval.

This strategy ensures that her action in equilibrium is not too far removed from the

unobserved information. When ambiguity is less extreme, and the receiver’s reference

distribution deviates from uniformity, her response to each received signal may shift from

its original position in the CS model. As a result, the entire partition equilibrium shifts

accordingly.

Although ambiguity can shift the CS partition equilibrium, this raises several interesting

questions: does this shift imply that information can be transmitted more efficiently under

ambiguity? How does ambiguity affect the maximum number of steps in equilibrium?

These questions remain unanswered in this research, and I plan to address them in future

studies.
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3.8 Appendix

3.8.1 Proof of Theorem 3.3.1

For simplicity, we do not write b in the expression of the utility function US(.). The

first part of the proof is devoted to verifying the existence of the CSUA equilibrium, or

condition C. In essence, (C) specifies a second-order condition with an initial point a1 and

a terminal point aN = 1.

Define M(a1) = sup{N|∃ partition size N that satisfies C and aN ≤ 1}. We can assume that

M(a1)≥ 2. For the case of an uninformative equilibrium when M(a1)≤ 1, no cutoff exists,

and condition C holds vacuously.

Given that yS(θ ,b) ̸= yR(θ) for every m, WLOG supposes that yS(θ)> yR(θ) (I suppress

yS(θ ,b) by yS(θ) for simplicity) for every θ , we show that the gap between the two adjacent

thresholds must be bounded below. The claim is made by counterargument, assuming that

there is no minimum gap between each step. Then in any partition equilibrium, for every

ε there always exists an,an+1 such that |an+1 − an| < ε . Since the number of intervals in

the partition equilibrium is limited, there is some i such that |ai+1 −ai|< ε for all small

enough ε . Therefore, ai = ai+1 for some i.

Due to the arbitrage condition, US(y(ai−1,ai),ai) = US(y(ai,ai+1),ai) = US(y(ai,ai),ai) =

US(yR(ai),ai). Therefore, US(y(ai−1,ai),ai)=US(yR(ai),ai). From the monotonicity y(ai−1,ai)<

y(ai,ai) = yR(ai), it follows that y(ai−1,ai)< yS(ai)< yR(ai), which is a contradiction since

yS(θ)> yR(m) for every θ . Next, we prove the following lemma.

Lemma 1. Assume that the arbitrage condition has a solution 0 = a0 < a1 < ... < an < 1,

then there exist an open neighborhood V of a1 and a set of continuously differentiable

functions ξi : V → R such that: ξi(a1) = ai for every i = 0,n, and (0,a
′
1,ξ2(a

′
1), ...ξn(a

′
1))

satisfies the arbitrage condition for every a
′
1 ∈V .
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Proof: The proof is carried out by employing the implicit function theorem (IFT) 10 under

the induction assumption. Without loss of generalization, we can assume that ξ0(a1) = 0

and set ξ1(a
′
1) = a

′
1. We will show that if the lemma is true under n− 1 and n− 2, it is

also justified for every n.

In fact, consider a partition equilibrium 0 = a0 < a1 < ... < an < 1. Since the arbitrage

condition holds, it is obvious that for every i = 1, ..n− 1, the induction assumption is

still satisfied. Then by the induction assumption, there exist continuously differentiable

ξ0(a′1) = 0,ξ1(a′1) = a′1, ..ξn−2(a′1) defined in some neighborhood V of a1 such that ξi(a1) =

ai for i = 0, ..,n−1, and

US(y(ξi−1(a
′
1),ξi(a

′
1)),ξi(a

′
1)) =US(y(ξi(a

′
1),ξi+1(a

′
i+1)),ξi(a

′
1))(1)

for i = 1, ..,n−2.

Now we have the arbitrage condition at n−1:

US(y(an−2,an−1),an−1) =US(y(an−1,an),an−1)

By the induction assumption, it is equivalent to:

US(y(ξn−2(a1),ξn−1(a1)),ξn−1(a1)) =US(y(ξn−1(a1),an),ξn−1(a1))

This equation defines an as a function of a1. Note that by our assumptions, U(.), y(.),

ξ (.) are all continuously differentiable. By the implicit function theorem, there exists ξn

on a neighborhood V ′ of a1 such that ξn(a1) = an, and

US(y(ξn−2(a
′
1),ξn−1(a

′
1)),ξn−1(a

′
1)) =US(y(ξn−1(a

′
1),ξn(a

′
1)),ξn−1(a

′
1))

for every a
′
1 ∈V

′(2).

10. Kono and Kandori (2019) provides a proof of Lemma 1 without employing IFT. However, as R’s
optimal action in the multiplier preference model is continuously differentiable (see Corollary 3.6.2), we
apply this continuous differentiability to the assumption y(ai,ai+1). This justifies our use of the IFT in
the proof.

90



From (1), (2), it can be seen that in the neighborhood V ∩V
′ , the family of ξi(a1) combined

with a′1 defines a solution for the arbitrage condition, which completes the proof.

Now we will use Lemma 1 to complete the proof. More specifically, we want to show

that if yS(m)> yR(m) then the CS equilibrium exists when R’s optimal response satisfies

all the conditions in 3.3.1. Consider any solution 0 < a1 < ... < an < 1 which meets the

arbitrage condition, we claim that there exist another partition equilibrium with the same

size where the terminal point a
′
n = 1. Note that, for any n ≤ N(b), if the terminal an = 1

then Theorem 3.3.1 is obvious. Therefore, we only consider the cases where an < 1.

Let D= {a
′
1 ∈ (0,1)| there exists 0< a

′
1 < a

′
2 < ... < a

′
n ≤ 1}. Since at least (0,a1, ...,an)∈D,

hence D is non-empty. Denote a∗1 = supD, then there exists a sequence {a
′
1i}i∈N in D which

converges to a∗1. Each {a
′
1i} defines the associated solution of the arbitrage condition

a
′
2i, ...,a

′
ni. Now consider the sequence of associated solutions (a

′
1i,a

′
2i, ...,a

′
ni)i∈N . As the

sequence is inside the compact set [0,1]n, there exists a subsequence (a
′
1ik,a

′
2ik, ...,a

′
nik)k∈N

that converges to some (a∗1,a
∗
2, ...,a

∗
n), note that every subsequence a

′
1ik all converges to

a∗1. As all the subsequence are in D, the arbitrage condition yields:

US(y(a
′
j−1,ik,a

′
j,ik),a

′
j,ik) =US(y(a

′
j,ik,a

′
j+1,ik),a

′
j,ik)

for every j = 1, ..n−1

By taking limit of both sides we have:

US(y(a∗j−1,a
∗
j),a

∗
j) =US(y(a∗j ,a

∗
j+1),a

∗
j)

under assumptions that U and y are continuous.
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The above expression shows that (a∗1,a∗2, ...,a∗n) also satisfied the arbitrage condition since

a∗1 = supD which leads to a∗1 ≥ a1 > 0, and all a∗i ,a
∗
j are different. As a∗i = supD, then a∗n

must be 1. Indeed, if a∗n < 1, then from Lemma 1 there exists a neighborhood V of a∗1 such

that for any a∗∗1 ∈V , particularly a∗∗1 > a∗1, a∗∗1 ∈ D. This is a contradiction as a∗1 = supD.

Therefore, there always exists an arbitrage solution with an = 1.

For the case yS(m)< yR(m), all arguments above can be still applied in the same fashion

under the initial condition an−1 < an = 1. Therefore, the existence of the CS equilibrium

is warranted under both cases when yS(m)< yR(m), and when yS(m)> yR(m).

Provided that yS(m) ̸= yR(m) for every m, it implies that either yS(m)< yR(m) or yS(m)>

yR(m). Otherwise, there exists some m′ such that yS(m′) = yR(m′) due to the continuity of

yS(.) and yR(.). In either case, the existence of the CS equilibrium is always guaranteed

following the above arguments.

Now given the existence of the partition equilibrium defined in (C) with a0 = 0 and

a1 = 1, and R’s law of action y(ai,ai+1) for any signal received in (ai,ai+1), we show that

S’s optimal strategy is also sending a random signal in the considered interval. To show

S does not have an incentive to send signals from other intervals, it is sufficient to verify

that:

US(y(ai,ai+1),θ ,b)≥US(y(a j,a j+1),θ ,b)

for all j ̸= i and θ ∈ (ai,ai+1).

It can be seen from the arbitrage condition:

US(y(ai−1,ai),ai,b) =US(y(ai,ai+1),ai,b)

For every k< i−1, following the intermediate value theorem, there exists q∈ (y(ak,ak+1),y(ai−1,ai))

such that:

US(y(ai−1,ai),ai,b)−US(y(ak,ak+1),ai,b) =US
1 (q,ai,b)(a)

92



Similarly, there is q′ ∈ (y(ai−1,ai),y(ai,ai+1)) such that:

US(y(ai,ai+1),ai,b)−US(y(ai−1,ai),ai,b) = 0 =US
1 (q

′,ai,b)(b)

Here notice that we have used the fact that y(ai,ai+1)> y(ai−1,ai)> y(ak,ak+1) from R’s

best response.

From (a) and (b), q< q′ and US
11 < 0, it can be seen US(y(ai−1,ai),ai,b)−US(y(ak,ak+1),ai,b)=

US
1 (q,ai,b)>US

1 (q
′,ai,b) = 0 (c). The analogous argument is applied for j > i+1, i.e.

US(y(ai,ai+1),ai,b)−US(y(a j,a j+1),ai,b)> 0

Therefore, when the true state is θ = ai, the S’s signaling rule is to send a signal m ∈

(ai−1,ai) or m ∈ (ai,ai+1) .

Now, for any other θ ∈ (ai,ai+1), using the fact that US
12 > 0, we can derive the following

inequalities: Now, for any other θ ∈ (ai,ai+1), using the fact that US
12 > 0, we can derive

the following inequalities:

(US(y(ai,ai+1),θ ,b)−US(y(ak,ak+1),θ ,b)≥US(y(ai,ai+1),ai,b)−US(y(ak,ak+1),ai,b)≥ 0

for k < i−1 (d), and a similar inequality for j > i+1:

(US(y(ai,ai+1),θ ,b)−US(y(a j,a j+1),θ ,b)≥US(y(ai,ai+1),ai+1,b)−US(y(a j,a j+1),ai+1,b)≥ 0

(e).

Indeed, as US(.) is differentiable, by applying Cauchy’s mean value theorem, there exists

some γ ∈ (y(ai,ai+1),y(ak,ak+1)) such that:

US((y(ai,ai+1),θ ,b)−US((y(ak,ak+1),θ ,b)
US((y(ai,ai+1),ai,b)−US((y(ak,ak+1),ai,b)

=
US

1 (γ,θ)
US

1 (γ,ai)
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Since ai < θ and US
12 > 0, we have US

1 (γ,θ)≥US
1 (γ,ai). Therefore (d) is proved, the same

argument can be applied to (e). These two inequalities guarantee that for R’s best response

y(m), S’s best response is to send a message in (ai,ai+1). ■

3.8.2 Proof of Theorem 3.4.1

We only give the proof for part (ii); part (i) is similar to Theorem 3.3.1.

Consider R, from 3.2.1 and from S’s strategy is uniform; her updated belief when hearing

a signal in (ai,ai+1) is given by:

µ(θ |m) =
f (θ ,ε)∫

ai+1

ai
σ(m, t) f (t,ε)dt

=
2εθ +(1− ε)∫
ai+1

ai
2εt +1− εdt

=
2εθ +(1− ε)

(ai+1 −ai)

(
1− ε + ε(ai +ai+1)

) =
2εθ +(1− ε)
εC+ai+1 −ai

, where C = (ai +ai+1 −1)(ai+1 −ai). Notice that if ε = 0 then µ(θ |m) =
1

ai+1 −ai
, which

resonates the uniform posterior as in the CS model.

Now, for UR(y,θ) =−
l

∑
i=1

αi(y−θ)2ki + ci, the following properties are true:

a. UR(ai,θ) is decreasing in θ , UR(ai+1,θ) is increasing in θ .

b.
∫ ai+1

ai

UR(
ai +ai+1

2
,θ)(2θ −ai −ai+1)dθ ≤ 0

c.
∫ ai+1

ai

UR
1 (

ai +ai+1

2
,θ)dθ ≤ 0

The proof is provided in the following steps.
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Step 1. We show that there exists a unique action y∗ such that
∫ ai+1

ai

UR(y,θ)µ(θ |m)dθ

is indifferent for every ε .

It suffices to show that there exists y∗ ∈ (ai,ai+1) such that the integral

I(y∗,ε) =
∫ ai+1

ai

UR(y∗,θ)
2εθ +(1− ε)
εC+ai+1 −ai

dθ does not depend on ε .

Taking the first derivative w.r.t ε yields:

I′ε(y
∗,ε) =

(ai+1 −ai)

2(εC+ai+1 −ai)2

∫ ai+1

ai

UR(y∗,θ)(2θ − (ai +ai+1))dθ (i).

It reduces to show that there exists y∗ ∈ (ai,ai+1) such that:

∫ ai+1

ai

UR(y∗,θ)(2θ − (ai +ai+1))dθ = 0 (ii)

Define h(t) =
∫ ai+1

ai

UR(t,θ)(2θ − (ai +ai+1))dθ , for any t ∈ (ai,ai+1), we have:

h(ai) =
∫ ai+1

ai

UR(ai,θ)(2θ − (ai +ai+1))dθ , h(ai+1) =
∫ ai+1

ai

UR(ai,θ)(2θ − (ai +ai+1))dθ .

From (a), UR(ai,θ) is a decreasing function of θ , 2θ − (ai +ai+1) is a strictly increasing

function of θ , the Chebyshev’s sum inequality for integral implies:

1
ai+1 −ai

∫ ai+1

ai

UR(ai,θ)(2θ − (ai +ai+1))dθ <

(
1

ai+1 −ai

∫ ai+1

ai

UR(ai,θ)dθ
)

(
1

ai+1 −ai

∫ ai+1

ai

(2θ − (ai +ai+1))dθ
)

= 0, since
∫ ai+1

ai

(2θ − (ai +ai+1))dθ = 0.

Notice that equality cannot hold in the inequality above, as UR(ai,θ) and 2θ − (ai+ai+1)

are not constant functions. Analogously, we can show that:

1
ai+1 −ai

∫ ai+1

ai

UR(ai+1,θ)(2θ − (ai +ai+1))dθ > 0
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Therefore h(ai)< 0 < h(ai+1), due to the continuity of h(.) there exists y∗ ∈ (ai,ai+1) such

that h(y∗) = 0. Next, we show that h(t) is increasing, leading to the uniqueness of y∗.

Consider h′(t) =
∫ ai+1

ai

UR
1 (t,θ)(2θ − (ai + ai+1))dθ , since UR

12 > 0 we see that UR
1 (t,θ) is

an increasing function of θ . We apply again the Chebyshev’s inequality for two increasing

functions UR
1 (t,θ) and 2θ − (ai +ai+1) to derive:

∫ ai+1

ai

UR
1 (t,θ)(2θ −(ai+ai+1))dθ >

1
ai+1 −ai

∫ ai+1

ai

UR
1 (t,θ)dθ

∫ ai+1

ai

(2θ −(ai+ai+1))dθ = 0.

Thus,
∫ ai+1

ai

UR(t,θ)(2θ − (ai + ai+1)dθ is an increasing function of t. This implies the

uniqueness of y∗.

Step 2. We claim that for action y∗ satisfying h(y∗) = 0,
∫ ai+1

ai

UR
1 (y

∗,θ)dθ ≤ 0.

Observe that y∗ ≥ ai +ai+1

2
. In fact, we have h(y∗) = 0 and from (c), h(

ai +ai+1

2
) ≤ 0,

given that h(t) is a strictly increasing function of t from Step 1, we have y∗ ≥ ai +ai+1

2
.

Since
∫ ai+1

ai

UR
1 (

ai +ai+1

2
,θ)dθ ≤ 0, UR

11 < 0, y∗ ≥ ai +ai+1

2
, it implies that

∫ ai+1

ai

UR
1 (y

∗,θ)dθ ≤
∫ ai+1

ai

UR
1 (

ai +ai+1

2
,θ)dθ ≤ 0.

Step 3. We claim that for any action y ∈ (y∗,ai+1], the receiver’s expected payoff under

the most extreme cases of small ambiguity, i.e. ε =−M (or M) is less than that of action

y∗. Specifically, we show that:

∫ ai+1

ai

UR(y∗,θ)
1+M−2Mθ

ai +ai+1 −MC
dθ ≥

∫ ai+1

ai

UR(y,θ)
1+M−2Mθ

ai +ai+1 −MC
dθ .

The inequality is reorganized as follows:

∫ ai+1

ai

(
UR(y∗,θ)−UR(y),θ)

)
1+M−2Mθ

ai +ai+1 −MC
dθ ≥ 0

By the mean-values theorem, the L.H.S can be expressed as:
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∫ ai+1

ai

(y∗−y)UR
1 (y

′,θ)
1+M−2Mθ

ai +ai+1 −MC
dθ ≥ 0 for some y′ ∈ (y∗,y), or equivalently

∫ ai+1

ai

UR
1 (y

′,θ)(1+

M−2Mθ)dθ ≤ 0 when we drop y∗−y < 0 and ai+1−ai−MC = (ai+1−ai)(1+M−M(ai+

ai+1)))> 0.

Now, since UR
12 < 0, UR

1 (y
′,θ) is increasing in θ , 1+M−2Mθ is a decreasing function in θ .

Applying Chebyshev’s inequality for these two increasing and decreasing functions yields:

∫ ai+1

ai

UR
1 (y

′,θ)(1 + M − 2Mθ)dθ ≤ 1
ai+1 −ai

∫ ai+1

ai

UR
1 (y

′,θ)dθ
∫ ai+1

ai

(1 + M − 2Mθ))dθ <

0 since
∫ ai+1

ai

UR
1 (y

′,θ)dθ <
∫ ai+1

ai

UR
1 (y

∗,θ)dθ ≤ 0 following Step 2, and
∫ ai+1

ai

(1+M −

2Mθ))dθ > 0 for M small enough. Therefore, Step 3 is verified.

Step 4. we show that the optimal action y∗ satisfying Step 1 is indeed R’ optimal action

following the max-min expected utility under ambiguity.

For each action y(m), R assumes that the worst case occurs with some value of ε .

W (y) = min
ε

∫ ai+1

ai

UR(y,θ)
2εθ +(1− ε)

εK +ak+1 −ak
dθ = min

ε
I(y,ε) where I(y,ε) is the integral in the

expression.

Taking the derivative with respect to ε of the integral yields:

I′ε(y,ε) = (ai+1 −ai)
∫ ai+1

ai

UR(y,θ)
2θ − (ai +ai+1)

(εK +ai+1 −ai)2 dθ

The above expression shows that the sign of the derivative I′ε(y,ε) depends only on the sign

of
∫ ai+1

ai

UR(y,θ)(2θ −(ai+ai+1)dθ . Since
∫ ai+1

ai

UR(y,θ)(2θ −(ai+ai+1)dθ is an increasing

function of y and y∗ satisfies
∫ ai+1

ai

UR(y∗,θ)(2θ − (ai+ai+1)dθ = 0 according to step 1, it

holds that if y > y∗ then I′ε(y,ε)> 0, and if y < y∗ then I′ε(y,ε)< 0.
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Now consider action y ≥ y∗, I′ε(y,ε) > 0 means that the worst case is when ε = −M, but

from Step 3 we know that the best action for the receiver in the domain [y∗,ai+1] is y∗

and the max-min expected utility is
∫ ai+1

ai

UR(y∗,θ)
1+M−2Mθ

MC+ai+1 −ai
dθ . Similarly, over the

domain [ai,y∗], I′ε(y,ε) ≤ 0, so the worst case is when ε = M and the max-min expected

utility is
∫ ai+1

ai

UR(y∗,θ)
1−M+2Mθ

−MC+ai+1 −ai
dθ . From the definition of y∗, the two integrals

I(y∗,M) and I(y∗,−M) have the same value. This implies that y∗ is the best action for the

receiver. ■

3.8.3 Proof of Proposition 3.5.1

We first calculate R’s best response in the case of complete ambiguity. Upon receiving

a signal m ∈ (ai,ai+1) from S, R updates his prior belief and solves the MEU with the

posterior µ(θ |m) defined in 3.2.1:

max
y(m)

min
µ(.)

∫ ai+1

ai

UR(y,θ)µ(θ |m)dθ

Being ambiguity-averse, R calculates the worst expected utility associated with some

posterior belief µ under ambiguity for each response strategy y,:

W (y) = min
µ(.)

∫ ai+1

ai

UR(y,θ)µ(θ |m)dθ (3.8.1)

It is obvious that UR(y(m),θ) is exactly the distance between the true state θ and the

best guess y of R. In any case, once R knows for sure that θ lies in [ai,ai+1], any other

option y outside the interval would be dominated by ai or ai+1. Therefore, we can assume

R’s optimal action y(m) lies in [ai,ai+1].

For each y ∈ [ai,ai+1], denote by θ(y) the true state that minimizes UR(y,θ). Being

ambiguity-averse, the worst scenario for R is when the probability distribution of θ de-

generates with support at θ(y):

min
µ(.)

∫ ai+1

ai

UR(y,θ)µ(θ |m)dθ =UR(y,θ(y))
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Now, since UR(y,θ(y)) = min
θ

UR(y,θ) = min
θ

−(y−θ)2 for θ ∈ [ai,ai+1], θ(y) will maximize

(y−θ)2. Consider h(θ) = (y−θ)2, then h′(θ) =−2(y−θ) for ai ≤ y ≤ ai+1.

It can be seen that if θ ∈ [ai,y) then h′(θ) ≤ 0 therefore h is maximized at θ = ai. If

θ ∈ (y,ai+1] then h′(θ) ≥ 0 henceforth h is maximized at θ = ai+1. In short, when y ∈

[ai,ai+1] the worst scenario for R is either (y−ai)
2 or (y−ai+1)

2. By direct calculation, if

y >
ai +ai+1

2
then the worst case occurs when θ = ai+1 (3.5.2.1), if y <

ai +ai+1

2
then the

worst case happens when θ = ai (3.5.2.2).

From (3.5.2.1) and (3.5.2.2), the worst scenario for R when he chooses an action y upon

hearing signal m ∈ [ai,ai+1] is the following:

- if y >
ai +ai+1

2
then W (y) =−(y−ai+1)

2

- if y <
ai +ai+1

2
then W (y) =−(y−ai)

2

- if y =
ai +ai+1

2
then W (y) = −(ai+1 −ai)

2

2
and the worst distribution is the Bernoulli

distribution with µ(ai|m) = k and µ(ai+1|m) = 1− k for some k ∈ [0,1].

From the three observations above, it is clear that R’s best strategy is to choose y at which

she is indifferent between two possible worst scenarios, or y(m) =
ai +ai+1

2
■

3.8.4 Proof of Proposition 3.6.1

The proof is based on two steps. In the first step, we show that the worst distribution

p(θ)min is defined as in the expression of proposition 3.6.1. In the second step, we show

the uniqueness of A, which makes p(θ)min a probability density.

Firstly, for each response y of R, he identifies the worst distribution that differs from his

best guess µ(θ |m). More specifically, R solves the following:
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min
p(θ)

∫ ai+1

ai

−(y−θ)2 p(θ)+K p(θ) log
(

p(θ)
µ(θ |m)

)
dθ

= min
p(θ)

∫ ai+1

ai

−(y−θ)2 p(θ)+K p(θ) log(p(θ))−K p(θ) log(µ(θ |m))dθ

Given the assumption that p(θ) is continuous, we have
∫

ai+1

ai
−(y−θ)2 p(θ)dθ =

∫
ai+1

ai
−(y−

θ)2dP(θ) = −(y − θ)2P(θ)
∣∣∣∣ai+1

ai

−
∫

ai+1

ai
P(θ)d − (y − θ)2 = C +

∫
ai+1

ai
P(θ)(2θ − 2y)dθ ,

where C =−(y−θ)2P(θ)
∣∣∣∣ai+1

ai

.

Therefore, the worst distribution p(θ) can be solved from the equivalent problem:

min
p(θ)

∫
ai+1

ai
P(θ)(2θ −2y)+K p(θ)log(p(θ))−K p(θ)log(µ(θ |m))dθ (b).

We define L(P, p,θ) = P(θ)(2θ −2y)+K p(θ)log(p(θ))−K p(θ)log(µ(θ |m)). Then in (b)

we need to find the distribution P(θ) ∈ C2[0,1] that extremizes the integral on RHS of

(b).

J[P] =

∫
ai+1

ai
L(P, p,θ)dθ , with p(θ) =

dP
dθ

. The Euler-Lagrange equation yields the fol-

lowing:

∂L(P, p,θ)
∂P

− d
dθ

∂L
∂ p

= 0. Equivalently, (2θ −2y)−K
p′(θ)
p(θ)

−K
µ ′(θ |m)

µ(θ |m)
= 0. By changing

the side of the equation, we derive p′(θ)
p(θ)

=
µ ′(θ |m)

µ(θ |m)
+

2(y−θ)
K

(c).

Now taking the integral for both sides of (c), we obtain log(p(θ)) = log(µ(θ |m)) +

(y−θ)2

K
+C, which finally yields p(θ) = exp(A+

(y−θ)2

K
)µ(θ |m) for A being a constant

such that
∫

ai+1

ai
p(θ)dθ = 0. ■
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3.8.5 Proof of Corollary 3.6.1

By replacing the expression of the worst p∗(θ) in 3.6.1 to 3.6.2, we derive:

y(ai,ai+1) = argmax
y

∫ ai+1

ai

−(y−θ)2 p(θ)+K exp
(

A+
(y−θ)2

K

)
µ(θ |m)

(
A+

(y−θ)2

K

)
dθ

= argmax
y

AK
∫ ai+1

ai

exp
(

A+
(y−θ)2

K

)
µ(θ |m)dθ = argmax

y
AK

, since the value of the integral is unity. Therefore, R needs to find y such that A(y) is

maximized under the condition
∫

ai+1

ai
exp(A(y)+

(y−θ)2

K
)µ(θ |m)dθ = 1.

Denote F(A,y) as the expression on L.H.S. The implicit function theorem and the first-

order condition yield the following:

dA
dy

= −

∂F
∂y
∂F
∂A

= −
∫

ai+1

ai

2(y−θ)
K

exp
(

A+
(y−θ)2

K

)
µ(θ |m)dθ = 0, which implies the op-

timal condition for y(ai,ai+1):

∫ ai+1

ai

(y−θ)exp
(

A+
(y−θ)2

K

)
µ(θ |m)dθ = 0 (i)

By replacing the expression of µ(θ |m), (i) is equivalent to:

∫ ai+1

ai

(y−θ)exp
(

A+
(y−θ)2

K

)
σ(m|θ) f (θ)∫
1

0
σ(m, t) f (t)dt

dθ = 0

, or equivalently we have:

∫ ai+1

ai

(y−θ)exp
(

A+
(y−θ)2

K

)
σ(m|θ) f (θ)dθ = 0 (ii)

, since
∫

1

0
σ(m, t) f (t)dt is well defined for each signal m.
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Now because y(ai,ai+1) is the action induced in equilibrium, let Mi ≡{m|y(m) = y(ai,ai+1)}

then R’s action must be optimized for all sigmal m′ ∈Mi. Therefore (ii) occurs for all signal

m′ induced equilibrium, which leads to:

∫
Mi

∫ ai+1

ai

(y−θ)exp
(

A+
(y−θ)2

K

)
σ(m′|θ) f (θ)dm′dθ = 0 (iii)

Since y is constant over the range of integration and conditional densities integrate to

unity over signal m′, we derive:

∫ ai+1

ai

(y−θ)exp
(

A+
(y−θ)2

K

)
f (θ)dθ = 0 (iv)

(iv) shows that in equilibrium, R’s optimal action depends on her best guess of the actual

distribution f (θ) and not on S’s strategy σ(m|θ). Particularly, it can be easily checked

that (iv) also specified R’s best action when S’ signaling rule is uniform, namely σ(m|θ) =
1

ai+1 −ai
for all m. As a result, all equilibria are essentially equivalent to the uniform

distribution.

Finally, we shall verify the existence and uniqueness of R’s response in equilibrium.

Consider w(y) =

∫
ai+1

ai
(θ −y)exp(

(y−θ)2

K
) f (θ)dθ = 0. It can be seen that w(ai)< 0 and

w(ai+1 > 0), therefore there exists a solution between (ai,ai+1) followed by the mean value

theorem. Next, w′(y) =

∫
ai+1

ai

(
− exp(

(y−θ)2

K
)− 2(θ − y)2

K
exp(

(y−θ)2

K
)

)
f (θ)dθ < 0,

thus w is strictly decreasing implying the uniqueness of y(ai,ai+1). ■
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3.8.6 Proof of Proposition 3.6.2

From 3.6.1, y(ai,ai+1) is a solution of the following:

Q(ai,ai+1,y) =
∫ ai+1

ai

(θ − y)exp
(
(y−θ)2

K

)
f (θ)dθ = 0

As f (θ) assumed continuously differentiable, the Implicit Function Theorem yields ∂y
∂ai

=

−
∂Q
∂ai
∂Q
∂y

and ∂y
∂ai+1

= −
∂Q

∂ai+1
∂Q
∂y

. By direct calculation we get ∂Q
∂ai

< 0, ∂Q
∂ai

< 0, and ∂Q
∂y

> 0.

Moreover, all these terms are continuously differentiable from the assumption of f . Thus

both partial derivatives of y with respect to ai, ai+1 are positive and also continuously

differentiable. Henceforth, y(ai,ai+1) is monotonic and continuously differentiable as re-

quired. ■

3.8.7 Proof of Proposition 3.6.3

Substitute y =
ai +ai+1

2
into the equation that determines y(ai,ai+1) in Corollary 3.6.1.

Notice that f (θ) is constant since it is uniform, it is straightforward to verify y satisfies

the expression:

∫ ai+1

ai

(
θ − (

ai +ai+1

2
)

)
exp

((
ai +ai+1

2
−θ)2

K

)
dθ = 0

, which completes the proof. ■

3.8.8 Proof of Proposition 3.6.2

We claim that y(ai,ai+1)≥
ai +ai+1

2
, where y(ai,ai+1) is the unique solution identified from

corollary 3.6.1 under the assumption that the ”best guess” distribution f (θ) is increasing.

If f (θ) is decreasing, a similar result could be derived, namely y(ai,ai+1)≤
ai +ai+1

2
.
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Consider h(y) =

∫
ai+1

ai
(θ − y)exp(

(y−θ)2

K
) f (θ)dθ = 0, for y ∈ (ai,ai+1). The derivative

of h is h′(y) =−
∫

ai+1

ai

(
1+

2(θ − y)2

K

)
exp(

(y−θ)2

K
) f (θ)dθ < 0, therefore h(y) is strictly

decreasing. Consequently, we can show that R’s response y(ai,ai+1) will be higher than

the midpoint of the informed interval, or her action under complete ambiguity, if:

h(
ai +ai+1

2
) =

∫
ai+1

ai
(θ − ai +ai+1

2
)exp(

(
ai +ai+1

2
−θ)2

K
) f (θ)dθ > 0.

We can see that
d(θ − ai +ai+1

2
)exp(

(
ai +ai+1

2
−θ)2

K
)

dθ
= exp(

(
ai +ai+1

2
−θ)2

K
)+

2
K
(θ −

ai +ai+1

2
)2 exp(

(
ai +ai+1

2
−θ)2

K
)> 0, hence (θ − ai +ai+1

2
)exp(

(
ai +ai+1

2
−θ)2

K
) is increas-

ing in θ . Given f (θ) is increasing from our assumption, we can apply the Chebyshev

inequality for integral which yields:

h(
ai +ai+1

2
)≥ 1

ai+1 −ai

∫
ai+1

ai
(θ − ai +ai+1

2
)exp(

(
ai +ai+1

2
−θ)2

K
)dθ
∫

ai+1

ai
f (θ)dθ

=
K

2(ai+1 −ai)

∫
ai+1

ai
exp(

(θ − ai +ai+1

2
)2

K
)d(

(θ − ai +ai+1

2
)2

K
)

∫
ai+1

ai
f (θ)dθ = 0, since the

first integral is equal to zero. Notice that the equality does not hold since both func-

tions under integrals are not constant and K > 0. Thus h(
ai +ai+1

2
) > 0, combined with

h(y(ai,ai+1) = 0 and h is decreasing, we derive that ai +ai+1

2
< y(ai,ai+1). ■
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Chapter 4

Conclusion

This thesis studies three information economics problems under ambiguity with different

objectives. In the first chapter, we investigate the competitive insurance market where

actuarial firms have ambiguous information regarding the composition of their customer

base. The chapter contains both of an extended version of the Rothschild-Stiglitz model

under Knightian uncertainty and Zheng et al. 2016’s work on insurance market under

ambiguity regarding the proportion of low-risk and high-risk customers.

Under the assumption of ambiguity aversion, the expected profit of companies facing am-

biguity in the composition of customers is modeled using ε-contamination, distinguishing

it from the RS model. In this setup, the total expected profit depends not only on the

composition of customers but also on the degree of ambiguity. In complete ambiguity case,

insurance firms’ subjective beliefs about the market’s composition carry no information.

Due to their ambiguity-averse nature, pessimistic insurers prepare for the worst-case scen-

ario, which involves only gaining profits from the high-risk type, resulting in the creation

of a unique pooling equilibrium that fully insures the H-types. Note that in the Rothschild-

Stiglitz model without ambiguity, the pooling equilibrium does not exist once firms hold

some (positive) subjective belief about the composition of the market. Thus, ambiguity

has prevented a cream-skimming mechanism where one deviating firm can entice L-type

customers from others. On the other hand, the separating equilibrium is unaffected by

ambiguity and therefore agrees with the RS model.
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When the ambiguity level is less than one, a pooling equilibrium does not exist because

there is always a possibility of cream-skimming L-type consumers by a deviating company.

Nevertheless, the separating equilibrium always exists if the degree of ambiguity exceeds

a certain threshold. This is a novel result compared to the standard model.

In Chapter 2, we examine the moral hazard problem when both the principal and the agent

are uncertain about the effort-dependent distribution of the project’s outcome. Using the

maxmin expected utility (MEU) framework, as introduced by Gilboa-Schmeidler, we find

that if the agent’s effort is observable, ambiguity reduces the principal’s expected profit

compared to the standard model, as the principal adopts a more pessimistic view of the

project’s likelihood of success. When the agent’s effort is unobservable, inducing high effort

leads to two possible expected profit outcomes, depending on the initial parameters of the

model. Specifically, the principal anticipates a high expected profit if the compensation

for the agent in the event of success is not significantly different from the compensation in

the event of failure. However, when the reward for success is considerably higher than for

failure, the principal expects a lower profit due to ambiguity aversion. This result differs

from the standard moral hazard model, where the distribution of the project’s outcome,

conditional on the agent’s effort, is assumed to be unambiguous.

The final chapter examines the Crawford-Sobel (CS) cheap talk problem in the context

of a decision maker facing ambiguity about the distribution of private information. When

ambiguity is small, R’s evaluation of actions is modeled using the ε-contamination frame-

work. For cases of extreme ambiguity, R’s behavior admits the maxmin expected utility

framework by Gilboa-Schmeidler. In situations of intermediate ambiguity, the multiplier

utility framework by Hansen and Sargent is applied.
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We demonstrate that CS-like partition equilibrium exists at all levels of ambiguity. In the

presence of ambiguity, R consistently selects the midpoint of the informed interval as her

optimal response when her reference distribution is uniform and her preferences follow

a quadratic loss function, consistent with the findings in the CS model. However, when

the updated reference distribution deviates from the uniform case, R’s strategy generally

diverges from the CS model. Ambiguity can influence R’s actions by shifting her optimal

response either upward or downward, resulting in adjusted cutoffs in the new equilibrium.

Overall, my thesis contributes to the ongoing discourse on decision making under ambi-

guity by highlighting its impact on the competitive insurance market, the moral hazard

problem, and the cheap talk problem. The thesis suggests some promising directions for

future work, given the ubiquity of ambiguity in both practice and research when decision

makers have limited access to the source of true information. In Chapter 1, for instance,

it would be more advantageous to employ the ε−contamination framework and analyze

the problem for a general class of compact, convex subsets of distributions, rather than

restricting it to a simplex. Similarly, in Chapter 2, the moral hazard problem can be ana-

lyzed when both the principal and the agent face ambiguity over the distribution of the

project’s outcome in non-binary states. Finally, while Chapter 3 has shown that ambi-

guity can influence the receiver’s optimal action within the informed interval, it remains

uncertain whether this shift is strictly confined to the range between the CS optimal ac-

tion and the complete-ambiguity action. Investigating whether the receiver’s action under

ambiguity can extend beyond these boundaries offers a compelling direction for future

research.

This thesis concludes, but the journey of research continues. Every discovery sparks new

questions, leaving ample room for further exploration.
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