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Abstract

Over the past two decades, malaria control efforts have averted 2.1 billion cases and
saved 11.7 million lives globally, yet the disease still claims over 600,000 lives
annually, mostly in sub-Saharan Africa. Key interventions like insecticide-treated nets,
indoor spraying, and antimalarial drugs have driven success, but major challenges
persist. Accurate, timely detection of malaria parasites and scalable population
screening remain difficult, especially in low transmission areas. Although WHO
promotes surveillance as a core pillar of elimination, resource constraints in
low-income countries hinder the expansion of effective, affordable surveillance
systems. Current malaria screening tools, such as rapid diagnostic tests (RDTs) and
microscopy, are essential for detecting parasites but have limitations, particularly in
low transmission settings and at low parasite densities, which hampers elimination
efforts. While more sensitive methods like polymerase chain reaction (PCR) are
available, they are costly and impractical for widespread use in resource-limited
areas. As a result, there is an urgent need for sensitive, cost-effective, and scalable
tools capable of detecting low-density infections, especially in low transmission
contexts.

Recent studies have shown the potential of using artificial intelligence (AI)-powered
infrared spectroscopy to detect malaria parasites in human blood. This approach
is reagent-free, robust, user-friendly, quick and potentially cost-effective. However,
to address the gaps in current methods for malaria screening and diagnosis, it was
important to also assess factors such as lowest detectable parasite density and
performance in low transmission settings before adoption by malaria control programs.

The primary aim of my PhD research was to improve malaria surveillance by
exploring the application of infrared spectroscopy and machine learning (IR-ML) for
malaria screening in population surveys. To achieve this, I pursued five
complementary objectives: (1) reviewing the potential applications of IR-ML for
malaria surveillance, developing a target product profile, and identifying key
considerations and research gaps for integrating IR-ML into control efforts; (2)
demonstrating the performance of mid-infrared spectroscopy and machine learning
(MIRs-ML) across varying parasite densities and anaemic conditions; (3) conducting

i



ii

cross-sectional surveys to map malaria burden in an endemic setting, assessing the
performance of existing methods (RDTs, microscopy, and qPCR) for risk stratification;
(4) evaluating MIRs-ML performance in areas with differing prevalence rates; and (5)
developing a web-based platform to deliver MIRs-ML results to end users. The
ultimate goal was to advance the development of MIRs-ML as a scalable malaria
screening tool, adaptable to both high (prevalence rate >30%) and low transmission
(prevalence rate <5%) settings, with the potential to transform malaria detection and
monitoring.

To achieve the first objective, I reviewed the current state of infrared spectroscopy
and machine learning (IR-ML) for malaria surveillance, comparing its advantages
and limitations to existing tools like PCR, RDTs, and microscopy. This review
identified research gaps and developed a target product profile (TPP) for integrating
infrared technology into routine surveillance. For the second objective, I conducted
lab experiments using blood from 70 malaria-free volunteers in Tanzania, diluted with
cultured Plasmodium falciparum to create different parasitemia and anemia levels.
These samples were used to create dry blood spots, which were then scanned using
ATR-FTIR spectroscopy. Using supervised machine learning classifiers trained on a
subset of the samples, we achieved over 90% accuracy in detecting malaria, even at
low parasite densities, and across different anemia conditions. Field applications of
these models demonstrated over 80% accuracy in predicting natural infections.

The third and fourth objectives involved cross-sectional surveys in 93 sub-villages in
southeastern Tanzania, screening 7,628 individuals using RDTs and microscopy, with
two-thirds analyzed by qPCR. qPCR consistently detected higher transmission rates,
revealing that RDTs and microscopy underestimate malaria prevalence, particularly in
fine-scale mapping. I then used the survey data to evaluate MIRs-ML performance in
areas with varying malaria prevalence rates from low to high. Again, the ML classifiers
achieved over 90% accuracy and sensitivity in both high and low transmission settings.
We also observed that performance was slightly lower in low transmission areas when
trained exclusively on high transmission data, compared to when the models were
trained with data from across all settings.

Finally, to make these models readily available to users in future, we developed a
web-based platform that allows scientists and national programs to access pretrained
ML models for instant malaria infection predictions. This platform is currently powered
by models trained on over 5,000 human blood samples and 40,000 mosquitoes, and
will continue to expand with data from Tanzania, Burkina Faso, and the UK. The
ultimate goal is to democratize the applications of these models across different user
groups in different countries.
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In conclusion, through population surveys, I demonstrated the limitations of RDTs and
microscopy for mapping malaria risk. I developed MIRs-ML in the lab to overcome
these challenges and tested it in the field, showing its promise. This research has
significantly advanced our understanding of the potential of MIRs-ML for malaria
screening. It has demonstrated that the approach has high sensitivity and is capable
of detecting parasite levels as low as one parasite/µl of blood, making it particularly
suitable for large-scale population surveys and enhancing risk stratification efforts.
The study also highlighted the limitations of current screening tools, such as RDTs and
microscopy, which perform poorly in low transmission settings compared to the more
sensitive PCR. This underscores the urgent need for new, more sensitive approaches
for precise stratification. This PhD research shows that MIRs-ML could meet these
needs, making it a valuable complement to existing surveillance methods and a
promising tool for malaria screening, even in low transmission areas.
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Chapter 1: Introduction

1.1 Malaria burden

In 2022, the World Health Organization (WHO) reported 249 million cases of malaria
globally, making this one of the most important public health challenges of our time [1].
In addition, there were over 600,000 deaths, 94% of which in the WHO-Africa region [1].
Over 50% of these deaths were concentrated in just four countries: Nigeria, the
Democratic Republic of Congo, Niger, and the United Republic of Tanzania. While
there has been an upward age-shift towards school-age children in many regions [2,3],
the most vulnerable populations continue to be pregnant women and children under
the age of five [1, 4]. In 2022, approximately 36% of pregnant women in WHO-
African region were exposed to malaria, underscoring the critical need for targeted
interventions to protect these high-risk groups [1].

Between 2000 and 2015, malaria-caused deaths were notably reduced by half, but
this decline has since slowed [1, 5]. For example, the WHO’s Global Technology
Strategy (GTS) target of reducing malaria incidence to 26 per 1000 population at
risk by 2022 has not been met [1]. The disruption caused by COVID-19 significantly
contributed to these unmet targets and the increase in burden [6, 7]; and malaria
deaths increased by 10% in 2020 compared to 2019 [1,8]. In the latest WHO report,
the challenge of the warming climate was also highlighted alongside other biological
threats including insecticide resistance, failing rapid diagnostic tests, drug resistance
and invasive vector species [1].

1.2 The epidemiology of malaria

Malaria is transmitted by female mosquitoes of the genus Anopheles within the
phylum Arthropoda [9,10]. When an infected female mosquito bites a person to feed
on blood, it can pass on the infectious stage of the malaria parasite [11]. In rare
instances, malaria can also be transmitted through blood transfusions or organ
transplants between infected and uninfected individuals [12,13]. Malaria infections in
humans are caused by five single-celled eukaryotic protozoan parasites:
Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae, Plasmodium
vivax, and Plasmodium knowlesi [14,15]. P. falciparum is the predominant cause of
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malaria deaths, particularly in Africa. While other malaria-causing parasites have
lower mortality rates than P. falciparum, their infections can still cause mild to severe
malaria and fatalities [1,16–18]. The taxonomic classifications of malaria parasites
are outlined in Figure 1.1.

1.2.1 Malaria parasites

The protozoan parasite Plasmodium belongs to the subgenus Apicomplexa within
the super phylum Alveolata [19], the phylum also consist of other parasite of human
and veterinary importance such as the Toxoplasma,Theileria, Eimeria, Babesia, and
Cryptosporidium [20, 21]. Like other apicomplexans, Plasmodium is an obligate
parasite that possesses a non-photosynthetic plastid called the Apicoplast within its
cell, Figure 1.1 [22,23]. This organelle plays a crucial role in the parasite’s survival,
aiding in various metabolic pathways essential for its lifecycle, including the synthesis
of fatty acids, heme, and other biosynthetic products [23, 24]. The parasite also
possesses an apical complex, which facilitates its invasion of host cells [24,25].

Figure 1.1: Full-spectrum classification of the Plasmodium genus, a human protozoan
parasite, with a model structure at the centre. Includes the IMC (inner membrane
complex), MAP (microtubule-associated protein), SPN (subpellicular network), IMP
(inner membrane particle), GAP45, GAP40, or GAP50 (Glycosylphosphatidylinositol
(GPI)-anchored proteins 45, 40, or 50), and GAMP (Glycosylphosphatidylinositol
(GPI)-anchored membrane protein). Adapted from [19,26]
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1.2.2 Malaria parasite distribution and clinical burden

The distribution of malaria parasites varies significantly across regions, with P.
falciparum being widespread in most malaria-endemic areas, particularly
predominating in tropical Africa [1, 5, 27]. This species is also responsible for the
majority of severe malaria cases and deaths [1]. In contrast, P. vivax is prevalent in
South and Central America, as well as Southeast Asia, but notably absent from most
of Africa due to the Duffy-negative blood type among African
populations [1,17,28,29].

The Duffy-negative phenotype confers immunity to most Africans against P. vivax
infections since the parasite requires Duffy antigen receptors to attach to and invade
red blood cells [28]. These genetic traits spread among African populations
approximately 42,000 years ago, although recent studies have reported instances of
P. vivax infections in both Duffy-negative and Duffy-positive individuals [30–32].
Additionally, P. vivax exhibits resilience in challenging environments by forming
dormant stages, hypnozoites, in the liver cells of its hosts, leading to relapses
months or years after the initial infection [33]. Clinically, P. vivax infections typically
present with lower parasitaemia levels compared to P. falciparum, targeting
reticulocytes, which are smaller than mature red blood cells [34,35]. Co-infections
between P. falciparum and P. vivax have been reported in over 10% of positive
samples in P. vivax prevalent areas [36].

P. malariae, although relatively rare globally, co-infects frequently with P. falciparum,
particularly in sub-Saharan Africa, southeast Asia, and western Pacific where it is more
prevalent [37]. This species is characterized by several distinctive clinical features and
a notably prolonged parasite life cycle, causing fever every 72 hours [37,38]. Chronic
malaria may result from its extended life cycle and low infection levels, triggering
robust immune responses and potentially leading to nephritis due to immune complex
deposition in the kidneys [39,40].

P. ovale is predominantly found in Asia and parts of Africa, particularly West Africa
[41]. Initially considered a single species, recent molecular advancements have
identified two distinct subspecies: P. ovale wallikeri and P. ovale curtisi [42]. Both
subspecies exhibit similar clinical symptoms and complications, including relapsing
malaria due to dormant liver-stage parasites, and they respond to similar antimalarial
treatments [42,43]. Additionally, coinfections of P. ovale with P. falciparum have been
observed [44].



4

Lastly, P. knowlesi is primarily found in the forested regions of southeast Asian
countries such as Thailand, Philippines, Malaysia, and Indonesia [45,46]. Noteworthy
for its potential to cause severe malaria cases, including cerebral malaria, acidosis,
and severe anaemia, P. knowlesi was initially considered to infect only non-human
primates like Macaca fascicularis and M. nemestrina (the long-tailed and pig-tailed
macaques respectively) [14,47,48]. Human infections were first recorded in Southeast
Asia in the 1960s, leading to its recognition as the fifth species capable of causing
malaria in humans. Transmission occurs between human and long-tailed macaques
when a human host is exposed via mosquitoes that previously fed on P. knowlesi-
infected long-tailed macaques [45, 49]. Due to its morphological resemblance to
P. malariae under microscopy, advanced molecular techniques are necessary for
accurate identification [46].

Importantly, P. falciparum is distinguished from other Plasmodium species by its
capacity to cause severe and fatal malaria, especially cerebral malaria. It infects
a higher proportion of red blood cells than P. vivax, P. ovale, P. malariae, and P.
knowlesi, and can trigger complications like severe anaemia. A key feature is its
sequestration of infected erythrocytes in the microvasculature, particularly in the
brain, mediated by proteins such as P. falciparum Erythrocyte Membrane Protein
1 (PfEMP1). This process induces inflammatory immune responses and obstructs
blood flow, leading to cerebral malaria, characterized by coma and high mortality.
Other Plasmodium species lack this severe sequestration ability, making P. falciparum
particularly lethal [50].

Overall, Plasmodium parasites that infect humans share similar life cycles and are
predominantly transmitted by Anopheline mosquitoes, exhibiting both susceptibility
and resistance to various antimalarial drugs [14].

1.2.3 African malaria vectors

Africa has over seven dominant malaria vector species, including Anopheles
arabiensis, Anopheles funestus, Anopheles gambiae, Anopheles melas, Anopheles
coluzzii, Anopheles merus, Anopheles moucheti, and Anopheles nili [51–53]. The
primary vectors responsible for the majority of malaria transmissions in Africa are An.
gambiae, An. arabiensis, and An. funestus [51]. Recently, there have been reports of
the invasion of An. stephensi, a mosquito native to Asia, in regions of Africa such as
Ethiopia, Kenya and more [54–56]. Known for its vector competence, its presence in
new regions can affect local malaria dynamics, especially in urban settings [57].
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An. gambiae and An. arabiensis belong to the Anopheles gambiae complex, which
also includes An. melas, An. merus, An. coluzzii, An. bwambae, An. quadrimaculatus
and An. amharicus [58,59]. Despite their occasional high population densities, An.
melas and An. merus exhibit lower vectorial capacity compared to An. gambiae, An.
coluzzii and An. arabiensis. On the other hand, the An. funestus subgroup comprises
nearly 13 sibling species: An. funestus sensu stricto (often referred to simply as
An. funestus), An. funestus-like, An. rivulorum, An. rivulorum-like, An. leesoni, An.
parensis, An. longipalpis types A and C, An. vaneedeni, An. aruni, An. confuses, An.
brucei, and An. fuscivenosus [60]. Importantly, An. funestus s.s is considered the
most competent malaria vector in this group [61].

The malaria vector species exhibit different behavioural profiles, which underlie their
vectorial capacity across regions. An. arabiensis exhibits diverse feeding and resting
behaviors influenced by factors like geography and host availability [53,59,62]. Though
it commonly bites humans, this species can be zoophilic, preferring to feed on animals
over humans compared to An. gambiae and An. funestus, and it tends to feed and
rest outdoors rather than indoors [59,63]. Although it is predominantly zoophilic and
exophilic [63,64] in areas where cattle are abundant, in certain regions such as West
Africa, it has been reported to be anthropophilic, feeding on humans, and endophilic,
resting indoors, and endophagic, biting indoors [63]. An. arabiensis breeds in various
habitats, including shallow, clear, small, and temporary bodies of fresh water [65]. It
thrives in habitats like partially shaded streams and man-made environments such as
rice farms, especially those exposed to sunlight, this species also exhibits tolerance
to dry seasons [58, 65, 66]. Its biting activity typically occurs during the night, with
peaks in the early evening hours [67].

An. gambiae is widely recognized as one of the most effective malaria vectors due to
its extensive distribution and high behavioral adaptability. This species is particularly
successful because of its ability to adapt to various environmental
conditions [58,59,68]. An. gambiae is opportunistic in its feeding habits and has a
longer lifespan compared to other species. It primarily feeds on human blood
(anthropophilic), although less frequently than An. funestus [58,59].

An. funestus s.s (hereafter referred to simply as An. funestus) is the only member
of its group recognized for its significant role in malaria transmission [69,70]. This
species breeds in diverse habitats such as swamps, large ponds, and lake edges,
thriving in both shaded and sunlit conditions [52, 59, 71]. It prefers permanent and
semi-permanent freshwater habitats with emergent vegetation and shaded plant
leaves [71–73]. An. funestus feeds mostly on humans (anthropophilic) but can also
feed on other animals, such as cattle, and tends to bite during the early evening
and morning hours [69, 74]. It also prefers to rest indoors (endophilic) and has a
notably long lifespan [69]. Morphologically, An. funestus can only be distinguished
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from other subgroup members at certain stages of its growth [75,76]. It is considered
a primary malaria vector due to its strong preference for human blood and a long
life span, which enhances its efficiency in transmitting malaria [69]. In some African
regions such as southeastern Tanzania, this species is responsible for the majority of
malaria infections, even in settings where the vector has lower abundance than other
species [69]. This can be attributed to An. funestus harboring a higher proportion of
sporozoites infections (the infective stage for malaria transmission) compared to An.
arabiensis and An. gambiae, despite the latter two species having higher population
densities [69,77].

Figure 1.2: Distribution of the major African malaria vector, adopted from [51].
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1.3 Malaria transmission

Transmission of malaria primarily involves two steps: (i) Female Anopheles mosquitoes
become infected when they feed on the blood of a person infected with malaria, (ii)
Subsequently, these infected female mosquitoes transmit the infectious stage of the
malaria parasite to a healthy individual during another blood meal [14]. Thus, the
malaria parasite completes its life cycle involving two organisms: a vertebrate host,
and an arthropod vector, female Anopheles mosquitoes [15].

1.3.1 Malaria parasite lifecycle

The motile infective stage of malaria parasites, sporozoites, is injected into the host’s
skin by an infected female Anophiline mosquito during a blood meal. These
sporozoites remain at the inoculation site for up to 30-60 minutes before penetrating
the bloodstream using trap-like proteins (TLP) during their gliding motility [15, 78].
However, not all sporozoites successfully enter the bloodstream; some remain in the
dermis and are cleared by the host immune response. Once in the bloodstream, the
sporozoites travel towards the liver [11,79], assisted by the sporozoite microneme
protein (SPECT), which helps them cross the sinusoidal barrier [80]. They invade
liver cells (hepatocytes) using various proteins such as tetraspanin CD81 and
scavenger receptor B1 (SR-B1), forming parasitophorous vacuoles that allow entry
into the liver cells [15,81]. In the liver, the sporozoites undergo reproduction outside
of RBCs (exoerythrocytic schizogony), where they divide into thousands of
merozoites. For example, within six days, a single P. falciparum sporozoite can
produce up to 40,000 merozoites [82, 83]. This tissue stage can last from 5 to 30
days or more depending on the parasite species. In unfavorable conditions, P. ovale
and P. vivax parasites can delay differentiation into merozoites by entering a dormant
stage called hypnozoites (Figure 1.3) [82,84].

Merozoites are released into the bloodstream and attack red blood cells (RBCs)
in three steps: pre-invasion, active invasion, and echinocytosis [25, 85, 86]. In the
pre-invasion stage, initial interactions between the merozoites and RBCs cause
deformation of the host cell. This is followed by active invasion, where the merozoites
irreversibly bind to the RBCs [85]. Lipid-rich parasitophorous vacuoles form at the
membrane, allowing the merozoites to propel into the erythrocyte [15,85]. During this
active invasion stage, the parasites successfully enter the erythrocytes, leading to the
complete infection of the cells [25,85]. The erythrocytes then shrink and develop spiky
protrusions, a stage known as echinocytosis [86]. Additionally, the released merozoites
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can invade both mature RBCs (erythrocytes) and immature RBCs (reticulocytes) [87],
though while P. falciparum can invade both erythrocytes and reticulocytes, P. ovale
and P. vivax primarily invade reticulocytes (see Figure 1.3).

Figure 1.3: Illustration of the malaria parasite life cycle, starting from sporozoite
inoculation by the mosquito during a blood meal (A), development in liver cells (B),
invasion of red blood cells (C), differentiation into gametocytes (D), and ingestion and
development in the mosquito gut (E). Adapted from [15]

1.3.2 Erythrocyte schizogony

During erythrocytic schizogony, merozoites undergo asexual reproduction within red
blood cells (RBCs), progressing from ring-shaped forms to trophozoites and then
developing into schizonts over approximately 48 hours [38,82,88]. For P. knowlesi,
this cycle is shorter, lasting about 24 hours, whereas for P. ovale, P. falciparum, and
P. vivax, it typically spans 48 hours, though P. malariae may extend this to up to
72 hours. In P. falciparum, erythrocytic schizogony also involves sequestration in
the microvasculature of various organs, where schizonts and trophozoites adhere to
endothelial cells, which can lead to severe complications such as cerebral malaria.
Eventually, the schizonts rupture, releasing daughter merozoites that invade new
RBCs, perpetuating the infection cycle. Symptoms of malaria typically manifest 4 to 8
days after the initial invasion of RBCs by merozoites [11,14]. The entire cycle from



9

invasion to RBC rupture and release of merozoites into the bloodstream (hemolysis)
spans 36 to 72 hours [11]. Hemolysis caused by malaria parasite infections can lead
to anaemia (see Figure 1.3) [14,82,89].

1.3.3 Gametogenesis

The repeated synchronization of the parasite causes a portion of the merozoites to
differentiate into male and female gametes through gametogenesis [14, 15]. This
process is triggered by various stimuli such as high parasitemia or drug exposure,
which can influence gametocyte production [11, 15, 82]. Gametocytes, which do
not cause disease in the infected individual [82,90], is the parasite stage capable of
transitioning from the vertebrate host to female mosquitoes during a blood meal [14,91].
Therefore, gametocyte formation is crucial for malaria transmission and has been
considered a potential target for transmission-blocking interventions such as vaccines
or drugs [92–94].

It takes over 10 days for mature gametocytes to develop after gametogenesis initiation.
There are five stages of gametocyte development, with stages I-IV predominantly
found in the bone marrow and stage V circulating in the peripheral blood, increasing
the likelihood of transmission to mosquitoes [14,15,95]. Mature gametocytes typically
evade spleen clearance by sequestering in the bone marrow before entering peripheral
blood circulation for uptake by mosquitoes [15,96]. P. vivax and P. ovale have shorter
sequestration times compared to P. falciparum, making them more susceptible to
spleen clearance (see Figure 1.3) [15,89].

1.3.4 Parasite development inside the mosquitoes

In mosquitoes, uninfected females ingest gametocytes when they bite
malaria-infected hosts. Inside the mosquito gut, various environmental stimuli, such
as changes in temperature and pH levels, trigger each male gametocyte to undergo
mitosis and produce eight microgametes, while each female gametocyte forms a
single macrogamete [11,97]. These male and female gametes then fuse to form a
zygote, which develops into an ookinete. The ookinete is a motile form that exits the
mosquitoes’ midgut and develops into an oocyst. Oocysts enlarge and eventually
rupture, releasing sporozoites that migrate from the mosquito’s abdomen to its
salivary glands. Once in the salivary glands, sporozoites are inoculated into a healthy
individual during subsequent mosquito blood meals, mixed with
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anticoagulant-containing saliva [82,98]. From the time of ingestion, it takes over 7-10
days for gametocytes to mature into sporozoites, a period known as the extrinsic
incubation period (see Figure 1.3), [11,99].

1.3.5 The pathogenesis of malaria infections

The malaria parasite can cause an infected individual to become ill, prompting them
to seek medical care; this is referred to as symptomatic infection. Alternatively, the
parasite may be harbored without causing symptoms, resulting in an asymptomatic
infection. Symptoms typically manifest when the first schizonts rupture, releasing
merozoites into the peripheral circulation. As the parasite progresses through its
asexual cycle, merozoite reinvasion, trophozoite development, and schizont rupture
every 24-48 hours, the parasite burden in the blood increases, triggering the host’s
immune response. Fever typically occurs when parasite levels reach 200-1,500
parasites/µL of blood, known as the pyrogenic threshold. Once crossed, the individual
becomes symptomatic, and illness severity may increase as the parasite load rises
[14,100].

The rupture of infected cells releases parasite toxins, primarily hemozoin and
glycosylphosphatidylinositol (GPI). GPI, a glycolipid that anchors proteins to the red
blood cell membrane, is released when infected cells burst. These toxins are
recognized by immune cells, leading to the production of inflammatory mediators and
cytokines, which stimulate the hypothalamus, causing fever. Various other molecules
also including TNF-α, interleukin-10, and interferons, are released during merozoite
rupture and trophozoite antigen presentation, contributing to fever. Hemozoin, formed
during the degradation of host hemoglobin by parasite, results from the oxidation of
ferrous haem into toxic ferric haem, detoxified into insoluble crystals. These
processes lead to symptoms such as chills, headaches, fatigue, and loss of appetite,
typically appearing 7-18 days after the initial infectious bite [14,100,101].

1.3.6 Parasite stages and their importance for diagnosis

Malaria symptoms resemble other diseases. Therefore, the WHO recommends
providing treatment only after confirming the presence of malaria parasites in human
blood samples. In P. falciparum infections, the ring stage is the predominant form in
peripheral blood, visualized in Giemsa-stained blood films. Mature stages are
sequestered in the deep vasculature and not typically detected in blood smears.
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Ring-stage parasites are metabolically inactive, increasing their potential for drug
resistance. In contrast, trophozoites and schizonts are metabolically active and more
susceptible to treatment. The malaria parasite expresses knob-associated histidine-
rich protein (KAHRP), such as small histidine-alanine-rich proteins (SHARP), specific
to the parasite and expressed on infected red blood cells. Histidine-rich protein I
(HRPI) is associated with knob-like protrusions but is expressed only by mature
stages. P. falciparum also expresses HRP2 and HRP3, with HRP2 produced by rings
and young gametocytes, detectable in blood, serum, and urine. Other markers, like
lactate dehydrogenase (LDH) and aldolase, are produced by both sexual and asexual
stages across all malaria-causing parasites [102,103].

1.4 Malaria control, elimination and surveillance

Malaria control aims to reduce malaria prevalence, incidence, mortality, and morbidity
to acceptable levels at national or subnational scales through well-designed efforts
[104]. In contrast, malaria elimination aims to bring the burden of malaria to zero within
a defined geographic area, typically confirmed by maintaining zero malaria cases for
three consecutive years, thereby qualifying for WHO certification as malaria-free [104].
Geographical areas where malaria transmission consistently remains below 1% are
often referred to as ’elimination zones’. Both malaria control and elimination strategies
involve implementing interventions focused on disrupting the circulation of the malaria
parasite and its mosquito vectors [104,105].

Malaria vector control encompasses a range of strategies aimed at reducing the
transmission of malaria by targeting mosquitoes that serve as vectors [106]. Key
interventions include the widespread deployment of insecticide treated nets (ITNs),
indoor residual spraying (IRS), sometime with supplementary approaches such as
larval source management (LSM) [1, 106–108]. IRS involves the application of
residual insecticide to the interior surfaces of human dwellings, effectively killing or
repelling malaria mosquitoes [106,109]. Additionally, LSM focuses on meticulously
managing mosquito breeding habitats to disrupt their aquatic life stages and prevent
their maturation into adult mosquitoes, thus reducing vector densities at source. This
approach may involve habitat manipulation, habitat removal, or the application of
chemical or biological agents such as larvicides and larvivorous fish [106].

To control circulating malaria parasites, strategies involve administering antimalarial
drugs such as Artemisinin combination therapy (ACT) or quinine-based therapy to
symptomatic individuals, typically confirmed via diagnostic tests at health
centers [106, 110, 111]. ACTs may include artemether-lumefantrine (AL),
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artesunate-amodiaquine (AS+AQ), dihydroartemisinin-piperaquine (DHAP),
artesunate-sulfadoxine-pyrimethamine (AS+SP), artesunate-mefloquine (ASMQ) and
artesunate-pyronaridine (ASPY) [106]. This approach also extends to asymptomatic
individuals tested positive during population screening [112]. Additionally, measures
to prevent sickness include maintaining therapeutic drug levels in the blood
throughout high-risk seasons. This is achieved through chemoprevention methods
like Intermittent Preventive Treatment in Pregnancy (IPTp) and Intermittent
Preventive Treatment in Infants (IPTi) [113,114].

1.4.1 Challenges of current malaria control and elimination in
Africa

The implication of these control measures have significantly aided the fight against
malaria over decades but are notably threatened by various factors, including
operational and financial shortages [115], emergence of resistance to commonly
used insecticides (typically impregnated on bed nets or applied as IRS) [1], and
resistance to antimalarial drugs such as artemisinin, quinine, and chloroquine [116].
Behavioral changes in both vectors and hosts, climate change, and the invasion of
new vector species like An. stephensi into new areas further compound these
challenges [117]. Additionally, malaria control is increasingly threatened by deletions
of the histidine-rich protein 2 and 3 (HRP II and III) genes, which code for the protein
targets of most Plasmodium falciparum-based RDTs [118]. Novel malaria control
tools are being developed, including the first two candidates for malaria vaccines,
RTS, S / AS01 and R21 / Matrix-mTM, which were approved in 2021 and 2023,
respectively, for children in P. falciparum endemic areas [119,120]. Other methods
are being developed, including the use of genetically modified mosquitoes (GMM)
and gene drive technology for the modification or suppression of the mosquito
population [121].

1.4.2 Malaria surveillance

Effective malaria surveillance involves systematic collection of malaria metrics
through continuous monitoring, analysis and interpretation of the information
collected to track the progress of disease burden and assessing the effectiveness of
control measures. The information can be also used for planning, evaluating, and
implementing public health measures aimed at malaria control and elimination. The
surveillance programs usually include timely entomological and parasitological
indicators [104]. For entomological surveillance, data are collected on malaria
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vectors, including mosquito species, survival rates, blood meal preferences, breeding
sites, biting and resting behaviors, and their resistance status to commonly used
insecticides [122–124]. Techniques such as microscopic dissections are used for
estimation of mosquito age, morphological species identification, and laboratory
methods like ELISA detect sporozoites or PCR confirm species, detect sporozoites,
and determine blood meal sources.

In parasitological surveillance, the focus is usually on estimating incidence,
understanding malaria endemicity levels and mapping the most impacted
demographic groups. This can involve tracking the malaria parasite through routine
health information systems at facilities or via community health-care workers (CHWs)
for passive surveillance to estimate prevalence (proportion of malaria-positive cases
among those tested) or annual parasite incidence (number of malaria-positive cases
per 1,000 individuals annually) [125, 126]. Active case detection such as through
cross-sectional population surveys can also be done to provide more direct estimates
of prevalence across entre populations. For malaria treatment, the parasite presence
in human blood must be confirmed using quality-assured microscopy or
WHO-recommended RDTs, primarily at health facilities, but also during population
surveys where occasionally molecular assays like PCR also serve as detection or
confirmation tools for malaria infections [127,128].

These tools play a crucial role in malaria surveillance and are endorsed as essential
components to be integrated into core interventions for malaria control. However,
challenges such as sensitivity, costs, and operational implementation remain
significant, particularly in malaria-endemic countries. Malaria diagnosis has
continuously been advancing from the direct observation of the parasite by
microscope to the use of techniques that detect malaria parasite circulating antigens,
such as RDTs, and malaria parasite nucleic acids, such as PCR [129–131].

1.5 Introduction to Infrared Spectroscopy

Infrared (IR) radiation is a part of the electromagnetic spectrum between the visible
light and microwave regions. This region bridges the energetic ultraviolet (UV)
spectrum and the low-energies of microwave and radio frequencies [101,132,133].
The discovery of infrared radiation dates back to 1800s, credited to Sir Frederick
William Herschel, who was studying the energy levels associated with various
wavelengths of light, particularly within the visible spectrum, Figure 1.4A [134,135].
Herschel’s experiment involved passing sunlight through a prism to disperse it into its
constituent colors, creating a visible spectrum. Using a mercury-in-glass
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thermometer, he measured temperature changes across different colors, Figure 1.4B.
As he moved the thermometer from the blue (lower energy) end of the spectrum
towards the red (higher energy) end, he noted an increase in temperature.
Intriguingly, when he extended his measurements beyond the red region into what
was presumed to be the absence of light, he observed a further increase in
temperature, Figure 1.4C [134–139]. This led him to identify a new type of radiation,
which he initially named as non-colorific rays, later known as infrared radiation,
Figure 1.4D. The infrared region, thus identified, encompasses wavelengths longer
than those of visible light. Infrared spectroscopy exploits this region to analyze
molecular vibrations, providing critical insights into the structural composition and
dynamics of various substances [140,141]

Figure 1.4: Illustrations of Herschel’s experiments leading to the discovery of infrared
radiation. (A) (B) Shows the setup for the infrared radiation refraction test with the
achromat, burning lens, prism, and thermometer. (C) Shows the solar radiation
spectrum: 1 marks colors from violet to red, 2 is the prism, and 4 are the mercury
thermometers. (D) Indicates the visible light color distribution with infrared radiation
discovered next to red. These schematics are adapted from Herschel’s original
work [135], and from [134].
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IR, as other electromagnetic radiations, consists of alternating electric and magnetic
fields, explained classically by continuous sinusoidal waves motions Figure 1.5 [133,
142,143]. Thus, considering a function of time, wavenumber is directly proportional to
frequency and inversely proportional to wavelength, as indicated in the equation 1.1
[133,143].

�̃� = 𝜈
( 𝑐

𝑛)
= 1

𝜆 (1.1)

Where �̃� is the wavenumber, C is the speed of light in a vacuum, n is the refractive
index of the medium, 𝜈 is the frequency, and 𝜆 is the wavelength.

Figure 1.5: The imagined electromagnetic radiations as an oscillating wave of both
electric (E) and the magnetic (M) with theoretical propagation of wave from the left
toward right, adapted from [132], wavenumber is inversely proportion to the wavelength
(𝜆).

The absorption bands of infrared (IR) spectra are typically reported using frequency
and wavelength. Frequency is measured in hertz (Hz) or seconds−1 (cycles per second,
CPS), and can be expressed as wavenumber, measured in inverse centimeters (cm−1),
while the unit of wavelength is the micrometer (μm). The electromagnetic spectrum
encompasses a range of electromagnetic radiation frequencies, each corresponding to
specific photon energies and wavelengths. Each region of the spectrum is associated
with distinct molecular processes: rotational transitions in the microwave region,
vibrational transitions in the infrared region, bond breaking and ionization in the x-ray
region, and electronic excitation in the ultraviolet/visible region [101,133,144,145]. The
energy (E) of electromagnetic radiation, including infrared, is inversely proportional to
wavelength (𝜆) and directly proportional to frequency (f) [133,145,146] as shown in
equations 1.2 & 1.3:

𝐸 ∝ 𝑓 (1.2)
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𝐸 = ℎ𝑓 (1.3)

Where E is energy and the ℎ is Planck’s constant 6.63 × 10−34 J.s

Additionally, frequency (𝑓) is inversely proportional to the wavelength (𝜆) as indicated
in equation 1.4:

𝑓 ∝ 1
𝜆 (1.4)

Given that, light propagates in a vacuum at a constant speed of light 3 × 108 m/s,
equation 1.5;

𝑓 = 𝐶
𝜆 (1.5)

Spectroscopy refers to the study of interactions between matter in its various states
(solid, liquid, or gas) and electromagnetic radiation. These interactions can manifest
as scattering, absorption, emission, transmission, diffraction, and resonance. Thus,
the amount of energy absorbed by chemical bonds between molecules is given by
the equation 1.6 [133,145,146];

𝐸 = ℎ𝐶
𝜆 (1.6)

When subjected to infrared (IR) light, molecular bonds absorb infrared energy and
produce a spectrum characterized by either absorbance (the amount of light absorbed
by the molecular bonds) or transmittance (the amount of light transmitted through the
bonds) against wavenumbers (cm−1) [133,143,147,148]. For a molecule to absorb
infrared radiation, it must be IR-active, which is a property that allows spectroscopy
to determine its chemical functional groups, as molecules with different structures
produce distinct spectra [132,144,145,149]. IR-active molecules possess a dipole
moment, enabling the covalent bonds to absorb energy and oscillate. Conversely,
materials that are IR-inactive have a net zero dipole moment. This differentiation is
crucial in spectroscopy for analyzing molecular structures and identifying chemical
functional groups [132,145,149].

In a molecule, atoms possess partial charges, either positive or negative. The product
of these charges (magnitudes) and the distance between the centers of the positive
and negative charges is referred to as the dipole moment [133, 144]. The dipole
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moment is a vector quantity, having both magnitude and direction. When two atoms
with different electronegativities interact, electrons move from the less electronegative
atom to the more electronegative one. This movement results in a dipole moment if the
magnitudes and directions of the partial charges do not cancel each other [133,144].
The bond dipole moment, which arises in a chemical bond between two atoms of
different electronegativities, can be expressed as equation 1.7:

𝜇 = 𝛿 ⋅ 𝑑 (1.7)

Where 𝜇 is the bond dipole moment, 𝛿 is the magnitude of the partial charges 𝛿+ and
𝛿−, and 𝑑 is the distance between 𝛿+ and 𝛿− [133,144].

Molecules in which all of their atoms have an identical nuclear composition
(homonuclear), such as H2, N2, and O2, lack a dipole moment and are therefore
IR-inactive. In contrast, heteronuclear (having different nuclear compositions)
diatomic molecules like HCl, NO, and CO2 possess a dipole moment and are
IR-active. The IR absorption process occurs when a molecule absorbs energy,
causing its dipole to interact with the electric field of the infrared light. This interaction
changes the dipole moment and results in a shift in the vibrational energy level of the
molecule [145, 150]. This absorption of energy, corresponding to the vibration
frequency, induces molecular vibrations by altering the dipole moment [133].
Techniques such as IR spectroscopy and Raman spectroscopy, collectively known as
vibrational spectroscopy, can induce these vibrations, making them essential tools
widely used for studying, identifying, and detecting the structural, physical, and
chemical properties of molecules [133,140,151].

1.5.1 Infrared absorptions and molecular vibrations

Infrared-induced molecular vibrations are of two types: Fundamental and
non-fundamental vibrations. Fundamental vibrations occur when covalent bonds in
molecules, acting like springs between two atoms, exhibit various movements at
room temperature. Upon absorbing energy, these bonds demonstrate two primary
modes of vibration: stretching and bending. Non-fundamental vibrations occur when
electrons within chemical bonds absorb energy and ascend to higher energy levels
beyond the fundamental states. Table 1.1 summarizes the types of both fundamental
and non-fundamental vibrations.
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The vibrational frequency (𝜈) of a molecule is inversely proportional to the square
root of its reduced mass (𝜇). This relationship is described by the equation 1.8. This
illustrates why the fundamental vibrations of organic compounds, which generally
involve lighter atoms, are detected in mid-infrared (MIRs) spectroscopy. In contrast,
vibrations involving heavier atoms, which have higher reduced masses, fall into the
far-infrared (FIR) region. The lower vibrational frequencies of heavier atoms shift their
fundamental vibrations to the FIR spectrum, while the higher frequencies of lighter
atoms are captured within the MIR range.

𝜈 = 1
2𝜋

√ 𝑘
𝜇 (1.8)

where 𝜈 is the vibrational frequency, 𝑘 is the force constant of the bond, and 𝜇 is the
reduced mass of the two atoms involved in the vibration.

Figure 1.6: Modes of fundamental vibrations in the infrared region primarily include
stretching and bending vibrations Modified from [144].



19

Table 1.1: Fundamental and Non-Fundamental Vibrations in Infrared Spectroscopy
with Examples and Wavenumbers, [133,143–145,150,152,153]

Fu
nd

am
en

ta
lV

ib
ra

tio
ns

Stretching Vibrations

Type Descriptions Examples

Symmetrical
Stretching

Atoms move simultaneously towards and
away from the central atom, altering the
bond length.

CH3 (2870 cm−1), NH2
(3309 cm−1)

Asymmetrical
Stretching

One atom moves away from the central
atom (increasing bond length), while the
other moves towards it (decreasing bond
length).

CH3 (2960 cm−1), NH2
(3402 cm−1)

Bending Vibrations

Type Descriptions Examples

Scissoring Atoms move towards or away from each
other within the same plane, deforming
the bond angle.

CH2 (1465 cm−1)

Rocking Atoms swing side to side within the same
plane without altering the bond angle.

CH2 (720 cm−1)

Wagging Bond swings back and forth as a unit,
moving out of the original plane.

CH2 (1350 cm−1)

Twisting Bond rotates out of the plane around a
central atom, with bonded atoms moving
in opposite directions.

CH2 (1250 cm−1)

N
on

-F
un

da
m

en
ta

lV
ib

ra
tio

ns Type Description Examples

First
Overtone

Occurs when electrons jump from the
ground state (V=0) to the second energy
level (V=2), skipping the first level (V=1).

CH2 (2700 cm−1 - 2900
cm−1)

Combination
Vibrations

Occurs when two or more fundamental
vibrations combine. These often involve
weaker bonds and can shift depending on
the molecular environment.

CH2 stretching and
bending combination
(2349 cm−1)

Fermi
Resonance

Interaction between a fundamental
vibration and an overtone or combination
band that results in the splitting of
absorption bands.

CO2 (2350 cm−1)
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1.6 Infrared regions

The infrared spectrum is categorized into three distinct regions based on wavelength:
near infrared (wavenumbers 𝜈 ≈ 14000 cm−1 to 400 cm−1, wavelength 𝜆 = 1

𝜈 =
0.7-2.5 μm), mid-infrared (wavenumbers 4000 cm−1 to 400 cm−1, wavelength 2.5-25
μm), and far infrared regions (wavenumbers 400 cm−1 to 10 cm−1, wavelength 25-300
μm). Chapter two details the applications of near and mid-infrared spectroscopy for
malaria surveillance [144,150,154].

1.6.1 Near infrared (NIR)

Near Infrared Spectroscopy techniques rely on wavelengths from 0.7 to 2.5 μm and
is distinguished by its higher energy vibrational modes. NIR vibrations were first
discovered in the early 1800s and primarily arise from overtones and combination
vibrations, resulting in weak bands. Due to its ability to penetrate samples more
deeply compared to other infrared regions, NIR is particularly valuable in food
science, biomedical applications, and soil sciences Figure 1.7 [150,155,156]. NIR
spectroscopy provides numerous advantages, including minimal sample preparation,
non-destructive measurement capabilities, and the ability to analyze samples in
glass containers due to their transparency in the NIR range. Moreover, NIR is less
influenced by water content in samples, allowing for direct measurement of aqueous
samples. However, the presence of molecular overtone and combination vibrations
often leads to broad and overlapping bands in spectra, posing challenges in their
interpretation [150].

1.6.2 Mid infrared (MIR)

The spectroscopic region known as mid-infrared spans from 4000 (cm−1) to 400
(cm−1) (2.5 - 25 μm), providing comprehensive qualitative and quantitative insights
into the chemical structure and composition of molecules in gas, liquid, and solid
phases. MIR spectroscopy is extensively applied across environmental sciences,
biotechnology, medicine, and various other fields. Its main vibrational mode, the
fundamental vibrations, require less energy compared to NIRs [144,150,157].

MIRs are categorized into two primary segments: the fingerprint region (400 – 1400
(cm−1)) and the functional groups region (1400 – 4000 cm−1), each further divided
into four sub regions. The X-H stretch region (4000-2500 cm−1) exhibits fundamental



21

vibrations of OH, CH, and NH stretching. In the triple bond region (2500-2000 cm−1),
vibrations primarily from C�C and C�N bonds are observed. The double bond region
(2000-1500 cm−1) features vibrations of C=C, C=O, and C=N bonds, while the
fingerprint region (1500 – 600 cm−1) provides specific molecular characteristics
based on fundamental vibrations [158]. MIR spectroscopy generates strong bands
attributed to fundamental vibrations and exhibits particular sensitivity to water bands
Figure 1.7 [150]. Integration of MIR spectroscopy with other analytical techniques
such as microscopy and gas chromatography is straightforward, facilitating rapid and
reagent-free analysis processes [101,150,159,160].

1.6.3 Far infrared (FIR)

The far infrared region, also known as the terahertz (THz) region, encompasses
frequencies typically below 400 cm−1, after the MIR range. Historically, FIR
spectroscopy has seen slower adoption compared to MIRs due to challenges in
instrumentation. However, it has proven invaluable for studying intermolecular
interactions, hydrogen bonding, hydration dynamics, and the vibrational modes of
various molecules, materials, and tissues, (refer to Figure 1.7) [144,150,161].

FIR spectroscopy is particularly suited for probing low-frequency vibrations of heavy
atoms, including metal-ligand and lattice vibrations. In some IR region classifications,
additional divisions such as long-wave IR (LWIR) or thermal IR (TIR) are included,
typically spanning from 8 μm to 15 μm, depending on specific applications. These
divisions cater to different analytical needs within the broader infrared spectrum, (refer
to Figure 1.7) [132,144,150].
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Figure 1.7: The electromagnetic spectrum depicting the full visible light range and
the infrared regions with its divisions of near, mid, and far infrared.

1.7 Instrumentation for Infrared Spectroscopy

Infrared spectroscopy has seen significant advancements since the introduction of
the first spectrometers, known as dispersive instruments. The evolution of infrared
instrumentation can be broadly categorized into classical spectrometers and modern
spectrometers, each with distinct features and improvements.

1.7.1 Classical spectrometers

Classical spectrometers, introduced in the 1940s, laid the groundwork for infrared
spectroscopy. These instruments primarily differ from modern spectrometers, such
as Fourier Transform Infrared (FTIR) spectrometers, in their use of components and
operational principles. A classical spectrometer typically includes a light source, a
dispersing element (monochromator), a detector, and an optical system composed of
mirrors. The monochromator, which could be a diffraction grating or a prism, serves
to separate the broad spectrum of infrared radiation into a continuous sequence
of individual frequencies. As a result, different frequencies of IR radiation pass to
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the detector sequentially, allowing the instrument to record one frequency at a time,
(Figure 1.8A). This method, while effective, is time-consuming as it requires scanning
the entire frequency range sequentially [132,143,162].

1.7.2 Fourier transform infrared (FTIR) spectrometers

The development of modern spectrometers, particularly FTIR spectrometers, in the
early 1960s marked a significant leap forward in infrared spectroscopy. The key
innovation in FTIR spectrometers is the use of a Michelson interferometer, which
allows all frequencies of IR radiation to reach the detector simultaneously [132,163],
(Figure 1.8B). This approach contrasts sharply with the sequential scanning method
of classical spectrometers. In an FTIR spectrometer, the interferometer generates an
interferogram by splitting a beam of light into two paths, reflecting them off mirrors (one
fixed and one movable), and then recombining them (Figure 1.8B). This interferogram,
containing information about all wavelengths, is then mathematically transformed into
a spectrum using Fourier transform algorithms, which is a mathematical process that
converts the time-domain interferogram into a frequency-domain spectrum [138,139,
149].

The adoption of FTIR technology was greatly facilitated by advancements in
electronics and computing. These improvements have made FTIR spectrometers
faster, more accurate, and capable of producing high-resolution spectra with an
enhanced signal-to-noise ratio. The typical components of an FTIR spectrometer
include a light source, a beam splitter, a translating mirror, a fixed mirror, and a
detector, all forming an intricate optical system [132,144,164].

The transition from classical to modern FTIR spectrometers has brought numerous
advantages to infrared spectroscopy. FTIR instruments are not only faster but also
more efficient in capturing spectral data. They provide higher resolution and
accuracy, making them invaluable tools in various fields such as environmental
science, biotechnology, medicine, and material science. The ability to obtain
complete spectra in a fraction of the time required by classical spectrometers has
expanded the applicability and utility of infrared spectroscopy in research and
industry [132,144,149].
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Figure 1.8: Schematic presentations of infrared spectrometers. (A) Depicts the
classical spectrometer design, illustrating its traditional components and optical layout.
(B) Shows modern spectrometers, highlighting advancements in technology and
design features for enhanced performance and versatility in infrared spectroscopy,
adopted from [132].

1.8 Sampling techniques and spectra acquisition
approaches

1.8.1 Attenuated total reflectance (ATR-IR)

One of the most common modes of reflectance sampling is attenuated total reflectance
(ATR-IR), of which light passes through an ATR crystal, which is in contact with the
sample, and undergoes multiple internal reflections (Figure 1.9A). During these
reflections, a portion of the light, known as evanescent light, penetrates the sample
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to a certain depth. This depth depends on the light wavelength, the refractive index
of the ATR crystal, the sample contents, and the incidence angle. Common ATR
crystals include Zinc Selenide (ZnSe), Diamond, Germanium (Ge), and Silicon (Si)
[144,165–168].

1.8.2 Specular reflection infrared spectroscopy (SRS)

Specular reflection infrared spectroscopy (SRS) involves reflections occurring
externally at a specular (mirror-like) surface at well-defined angles, where the angle
of reflection equals the angle of incidence of the infrared radiation, (Figure 1.9B).
This technique is particularly useful for analyzing thin films, coatings, and surfaces.
In SRS, the infrared beam is directed at the sample at a specific angle, and the
reflected light is collected and analyzed. It is used more in micro-FT-IR applications,
allowing detailed surface analysis with high spatial resolution [140,144,162].

1.8.3 Diffuse reflectance spectroscopy (DRS)

Diffuse reflectance spectroscopy (DRS) involves a combination of internal and external
reflections, mainly from rough sample surfaces. By collecting scattered light reflected
off the sample surface, information about the sample composition and structure is
provided. DRS is particularly useful for analyzing powders, heterogeneous materials,
and surfaces with irregular textures, (Figure 1.9C). The scattered light is collected
using an integrating sphere or other optical arrangements to ensure that both specular
and diffuse reflections are captured, providing a comprehensive spectral profile of the
sample [169,170].

Reflectance sampling techniques, particularly ATR-IR, SRS, and DRS, offer versatile
and effective methods for acquiring infrared spectra with minimal sample preparation.
ATR-IR is highly useful, offering a large depth of penetration into samples, making
it ideal for the routine analysis of liquids, solids, and pastes. SRS provides detailed
surface analysis capabilities, making it suitable for studying thin films and coatings.
DRS excels in analyzing powders and rough surfaces, providing valuable insights
into the composition and structure of heterogeneous materials [171,172].
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Figure 1.9: Sampling techniques for acquiring spectra with infrared radiation. (A)
Attenuated total reflectance (has been widely used for malaria entomology and
parasitological studies [173,174]), (B) Specular reflection infrared spectroscopy, and
(C) Diffuse reflectance spectroscopy methods are depicted, modified from [144].

1.9 Applications of artificial intelligence in analysis
of infrared spectroscopy data

Artificial intelligence (AI) is the science of simulating and generating computer
systems to perform tasks that typically require human intelligence. These tasks may
approximate human critical thinking, intelligent behavior such as learning, reasoning,
problem-solving, and understanding languages. The concept of AI can be traced
back to the pioneering work of English computer scientist, mathematician, and
logician Alan Turing. In 1950, Turing posed the seminal question, “Can machines
think?” This inquiry led to the development of the famous Turing Test, a behavioral
test designed to evaluate a machine’s ability to exhibit intelligent behavior equivalent
to, or indistinguishable from, that of a human [175,176].
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1.10 Types of artificial intelligence

Artificial intelligence can be categorized into three main types: Artificial Narrow
Intelligence (ANI), Artificial General Intelligence (AGI), and Artificial Super
Intelligence (ASI) [177].

Artificial Narrow Intelligence, also known as weak AI, refers to systems that are
designed and trained to perform specific tasks. These systems excel in particular
domains but lack the ability to generalize knowledge across different areas. ANI
systems do not possess consciousness, self-awareness, or general intelligence akin
to human cognition. Examples of ANI include facial recognition systems, chess-playing
programs, recommendation algorithms on platforms like Amazon, and self-driving car
technologies [177].

One class of ANI is Reactive Machines, which do not have the ability to store
experiences or use past information to influence future actions. They respond to
specific inputs with predefined responses. Another group is Limited Memory AI,
which can store and utilize data from previous interactions to inform future decisions
and actions, improving performance over time. Overall, ANI is commonly employed
in applications such as disease diagnosis, agricultural monitoring, surveillance,
transportation, and finance [177].

Artificial General Intelligence, or strong AI, aims to replicate human intelligence
comprehensively. AGI systems would possess the ability to understand, learn, and
apply knowledge across a broad range of tasks, demonstrating self-awareness and
consciousness. However, AGI remains theoretical as no existing systems can fully
mimic human cognitive abilities, such as reasoning, problem solving, and learning from
past experiences to tackle future challenges autonomously. Current advancements
that hint towards AGI include language models like guide partition table (GPT) and
supercomputers like IBM’s Watson, which can process and analyze large amounts of
data to provide insights and recommendations [177].

Artificial Super Intelligence (ASI) represents a hypothetical stage where AI surpasses
human intellectual capabilities. ASI systems exhibit superior problem-solving,
reasoning, and creative skills beyond any human ability. While ASI remains
speculative, advancements in understanding, human brain functions and continuous
technological progress suggest the potential for such systems. Current technologies
indicating progress towards ASI include advanced neural networks and machine
learning algorithms [177].
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Within AI, the sub-discipline of machine learning further divides into areas such as
statistical learning [178] and deep learning [177]. In the context of this thesis, ANI
forms the foundation of current applications and is hereafter referred to simply as AI.

1.10.1 Machine learning

Machine learning (ML), a branch of artificial intelligence (AI), involves the development
of mathematical, statistical, and computational approaches known as algorithms.
These algorithms enable computers to learn patterns from data and improve their
performance based on experience. The ML process begins with input data, from
which algorithms learn patterns that link the data’s features to the desired outputs.
The knowledge derived from these algorithms can be used for various purposes, such
as summarization, visualization, grouping, and prediction over datasets [179].

1.10.2 Concept of algorithms

Algorithms in ML are structured mathematical sets designed to solve specific tasks or
problems via a logical series of computational steps. The steps enable the algorithms
to learn, memorize, and predict based on interactions with data.

The algorithms contain four building blocks, namely the input block, the processing
block, the output block, and the termination block. In the presence of computer
programs, input data characterized by features (or explanatory variables) and targets
(response variables) are presented to the algorithms. The algorithms then perform
a series of logical and arithmetic operations to derive a unique function that links
the features to the targeted output within the processing block. This successful
determination of the mapping function is referred to as decision-making. However,
some algorithms require the logical series of computations to be repeated multiple
times, a process known as looping, before arriving at a decision. In the output block,
after deriving the final decision, the algorithm provides the output to the users. This
must be done within a specific time-frame, as the termination block ensures that the
logical operations do not run indefinitely [179].

In the machine learning process, algorithms must be trained to perform specific tasks.
The data (input) are passed to the ML algorithms, which then learn the patterns and are
evaluated based on their performance. Subsequently, the algorithms are tested and
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validated before actual use and deployment [179]. Machine learning encompasses
various training approaches, including supervised, unsupervised, semi-supervised,
and reinforcement learning [180].

Supervised machine learning: Supervised machine learning algorithms learn from
labeled data, where input variables are paired with corresponding output labels
through human interaction. These algorithms iteratively learn and are tested until
they sufficiently perform the task. It is crucial that the labeled data accurately
represent population patterns to ensure generalizability. Supervised learning is
broadly categorized into two types: classification and regression. In classification
tasks, ML models predict categorical output labels such as binary outcomes (e.g.,
positive/negative) or multiclass scenarios like predicting colors of a rainbow.
Common classifiers used include Logistic Regression, Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), and Decision Trees.

In contrast, regression tasks involve learning from datasets with continuous outputs.
Regressors use predictor variables to develop regression curves that offer precise
predictions. Examples of regression algorithms include Linear Regression and
Random Forest Regressors. Advantages of supervised machine learning include
achieving high accuracy, lower computational costs, interpretable decision-making
processes, and the ability to adapt and improve using pre-trained algorithms.
However, supervised learning may face challenges such as underfitting, overfitting,
and poor generalizability when the labeled data fail to adequately capture real-world
variability and complexity [179,180].

Unsupervised machine learning: Unsupervised machine learning involves
algorithms that operate on unlabeled data to uncover underlying patterns,
relationships, and structures. This approach is invaluable for tasks such as
discovering hidden patterns in data, identifying similarities between data points,
clustering similar data for visualization, and reducing the dimensionality of complex
datasets. In practice, unsupervised learning utilizes various techniques such as
association, clustering, and dimensionality reduction.

Association techniques aim to find relationships or correlations between variables,
which can reveal interesting insights about the data. Clustering methods group similar
data points together into clusters based on their characteristics, allowing for the
exploration of natural groupings within the data. Dimensionality reduction techniques
reduce the number of variables in datasets while preserving essential features, making
it easier to analyze and visualize complex data structures.
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These unsupervised learning techniques often serve as preprocessing steps before
applying supervised learning algorithms like classifiers and regressors. By extracting
meaningful patterns and reducing the complexity of data, unsupervised learning
facilitates more efficient and effective training of predictive models. Despite its utility,
unsupervised learning presents challenges, particularly in predicting and evaluating
algorithm performance without labeled data. Since the algorithms operate without
predefined output labels, assessing the accuracy and reliability of their results can be
more complex compared to supervised learning [179,180].

Semi-Supervised Learning: Semi-supervised learning integrates aspects of both
supervised and unsupervised approaches by leveraging a combination of labeled and
unlabeled data for training. This hybrid approach harnesses the benefits of having
access to a smaller set of labeled data alongside a larger pool of unlabeled data. By
utilizing unlabeled data to augment the learning process, semi-supervised learning
can enhance the performance and generalizability of models compared to purely
supervised methods. This approach is particularly advantageous in scenarios where
acquiring labeled data is costly or time-consuming but unlabeled data is abundant
[181].

Reinforcement Learning: often referred to as agents, acquire knowledge and skills
by interacting with environments and receiving feedback in the form of rewards or
penalties. The goal of reinforcement learning is for the agent to learn optimal
strategies that maximize cumulative rewards over time. Through a process of trial,
error, and delayed rewards, the agent refines its decision-making capabilities and
adapts to changing environments. This iterative learning process emphasizes
continuous improvement through repeated actions, allowing the agent to navigate
complex scenarios and achieve better outcomes over successive interactions [182].

1.10.3 Infrared spectroscopy and machine learning for medical
applications particularly malaria diagnosis.

In medical applications, infrared (IR) spectrometers are used to scan various
biological specimens, generating their infrared spectra. These spectra capture
unique biochemical signatures, represented by wavenumbers and corresponding
absorption intensities. Wavenumbers act as the variables (features), while absorption
intensities represent the attributes or values, collectively forming the input data or
independent variables. These spectra are then associated with specific labels such
as “Positive” or “Negative”, which serve as the dependent variables in subsequent
analyses. Studies used classical models based on chemometrics and statistical
approaches, such as partial least squares, to classify various malaria indicators.
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However, due to the complexity of infrared spectral signals and multicollinearity,
these methods had limitations and lacked robustness, performing with limited
sensitivity in predicting indicators, particularly when adapting to new datasets beyond
those used to build the specific model.

Recently, there has been significant interest in integrating infrared spectroscopy with
machine learning techniques (IR-ML) to effectively map the spectral variables
(wavenumbers and intensities) to clinically relevant targets. This approach is crucial
for estimating various public health parameters, including disease diagnosis and
surveillance. In a broader context, IR-ML approaches have demonstrated
considerable success in classifying a wide range of diseases [183, 184]. These
include bacterial and viral infections, blood disorders, diabetes, heart diseases,
autoimmune diseases, respiratory diseases, and neurodegenerative diseases [183].
For instance, IR-ML models have achieved remarkable accuracy in identifying pleural
effusion, with reported accuracies exceeding 90% [177]. Similarly, in cancer
diagnosis, IR-ML has shown sensitivity rates of up to 90%, distinguishing between
cancerous and non-cancerous specimens [185]. The potential of IR-ML extends
further into specific types of cancer, such as breast, cervical, colorectal, esophageal,
and gastric cancers. Studies have highlighted IR-ML’s effectiveness in diagnosing
hepatitis C infections with accuracy rates exceeding 90% [186]. Additionally, IR-ML
systems have successfully detected conditions like high renin hypertension with
accuracies exceeding 89% and thyroid dysfunctions with accuracies over 80% [184].
Moreover, IR-ML demonstrates promising capabilities in identifying dengue viral
infections in blood plasma, achieving sensitivity rates above 95% and specificity
rates exceeding 90% [187].

Despite being a promising tool for malaria surveillance and surpassing many novel
diagnostic methods from proof-of-concept to field validation, there are alternative
approaches to IR-ML that have potential to offer greater resolution. One such
approach is the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight
(MALDI-TOF) technique, which also shows potential for identifying mosquito species
and detecting sporozoite infections [188,189]. While MALDI-TOF is widely used in
clinical microbiology for bacterial identification and has been adapted for microbial
diagnostics, giving it an advantage in usability and acceptance in clinical
settings [190], its application for detecting P. falciparum in human blood remains
limited to proof-of-concept studies, achieving detection of parasitemia as low as 0.1%
(5,000 parasites/µL) under controlled laboratory conditions [191]. In contrast, IR-ML,
while not yet clinically applied, outperforms MALDI-TOF in sensitivity,
cost-effectiveness, and ease of use, making it especially suited for malaria screening
and surveillance.
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Firstly, IR-ML offers significant operational advantages. It requires minimal sample
preparation and works effectively with whole dried blood samples, whereas MALDI-
TOF depends on isolated red blood cells, necessitating extensive laboratory protocols
and specialized expertise. Secondly, IR-ML is reagent-free, enhancing affordability,
while MALDI-TOF relies on reagents such as α-cyano-4-hydroxycinnamic acid as
a matrix to facilitate ionization and absorption of laser energy, adding costs and
potentially limiting its use in resource-constrained settings. Thirdly, comparisons of
infrared-based approaches and MALDI-TOF for bacterial discrimination have shown
infrared approaches to be more sensitive for species identification [192]. This is due to
the principle underlying infrared methods, which provide detailed molecular fingerprints
associated with species-specific biomarkers in the fingerprint region. In contrast,
MALDI-TOF detects protein alterations as mass-to-charge ratios, favoring identification
based on peptides and proteins [192]. For malaria screening, IR-ML offers broader
metabolic fingerprints of Plasmodium infections, enabling the investigation of a wider
range of biochemical diversity within infected cells.

Fourthly, IR-ML benefits from robust machine learning integration, enabling real-time
adaptability and incremental improvements. This could mitigate future diagnostic
threats more effectively than MALDI-TOF, which relies on static spectral libraries as a
benchmark databank for pathogen identification. The portability of IR-ML approaches,
demonstrated through compact, field-deployable devices, makes it ideal for use
in remote, resource-limited areas. In line with WHO’s advocacy for sensitive, cost-
effective tools in low-transmission settings, IR-ML is better positioned to meet the
needs of malaria-endemic regions, balancing sensitivity, affordability, and operational
feasibility.

In the context of malaria infection screening and surveillance, IR-ML has
demonstrated substantial potential. Chapter Two discusses these demonstrations,
highlighting how IR-ML could effectively enhance existing challenges in malaria
diagnosis and surveillance. IR-ML stands out for its cost-effectiveness, user-friendly
interface, and rapid processing capabilities, all of which enable its deployment even
in resource-constrained environments [173]. This project provides scientific evidence
of IR-ML applications for malaria screening across large populations. It begins with
detailed laboratory demonstrations and progresses to real-world field samples,
showcasing IR-ML adaptability and utility in diverse settings.
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1.11 Focus of my PhD research

While various studies have demonstrated the potential applications of infrared
spectroscopy and machine learning (IR-ML) for malaria screening, evidence
supporting their performance in field settings remains limited. Specifically, there is
insufficient information on the lowest detectable parasite concentrations using
MIRs-ML for malaria detection, as well as on whether the technology is suitable for
population surveys or as a point-of-care test. Existing studies have primarily used the
MIRs-ML system as a proof of concept, often with samples that do not encompass a
broad spectrum of parasite densities, immunological diversity, or account for
confounding variables. Additionally, there is a notable absence of field studies
evaluating the efficacy of MIRs-ML for malaria screening in low transmission areas,
where conventional diagnostic tools, such as rapid diagnostic tests (RDTs) and
microscopy, exhibit reduced performance.

Therefore, the main focus of my PhD thesis is to improve malaria surveillance by
exploring potential applications of MIRs-ML approaches for screening malaria
infections during large population surveys, particularly in low-income settings.
To achieve this, I have addressed the following objectives;

1. Reviewing key considerations develop target product profiles and formulate
research questions to be addressed for the utilization of IR-ML in malaria
surveillance and diagnosis. To achieve this second chapter of my PhD, I wrote
and published a comprehensive review identifying key research gaps in exploring the
potential of using infrared spectroscopy and machine learning (IR-ML) for malaria
surveillance and diagnosis. The chapter also includes the development of a target
product profile (TPP), which outlines the essential and desirable characteristics
needed for integrating IR-ML into routine malaria surveillance. I led the technical
discussions and developed the initial TPP in collaboration with a consortium of experts
in IR-ML applications. This consortium includes scientists from the Ifakara Health
Institute in Tanzania, the University of Glasgow in the United Kingdom, the University
of Queensland in Australia, and institutions in Mozambique and Burkina Faso.

2. Investigating potential of using MIRs-ML for malaria screening in human blood
samples in the context of different parasite densities and anaemic conditions.
This chapter focuses on establishing the lowest possible parasite concentrations of
malaria parasites that can be detected using MIRs-ML approaches. I diluted cultured
malaria parasites with blood from 70 malaria-free volunteers recruited for the study.
Various dilutions were prepared to create a matrix representing different parasite
densities and anemia conditions. Subsequently, dry blood spots (DBS) were generated
and scanned using mid-infrared (MIR) spectrometers to acquire spectra. These
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spectra were used to train and evaluate the performance of MIRs-ML for screening
malaria infections in the context of various parasite densities and anaemia conditions.
Additionally, the algorithms developed in the laboratory were tested under real field
conditions in southeastern Tanzania.

3. Comparative assessments of the fine-scale malaria strata generated using
data collected during population surveys with RDTs, microscopy, and qPCR. In
formulating my fourth chapter, I conducted extensive epidemiological surveillance in
southeastern Tanzania. The survey covered the Ulanga and Kilombero districts,
spanning 93 sub-villages and 35 villages, and screened approximately 8,000
individuals for malaria infections. As malaria stratifications shift from national and
subnational levels to fine-scale stratifications (districts, wards, villages) in the context
of malaria elimination, the data collected in this survey allowed me to carefully
investigate the limitations and strengths of current screening tools particularly RDTs,
microscopy, and qPCR for fine-scale mapping of malaria risk. The findings of this
objective are useful for alerting national malaria control programs to be aware of the
limitations that different screening tools may pose, which could impact precise
resource allocation.

4. To evaluate the performance of mid-infrared and machine learning approaches
for malaria screening in villages with varying parasite prevalence. I leveraged
the extensive stratifications of malaria burden in the Kilombero Valley from objective
three. For objective four, I assessed the performance of MIRs-ML in villages with
either low or high transmission profiles. The goal was to provide evidence on MIRs-ML
performance in low transmission areas, where current tools like RDTs and microscopy
exhibit poor performance. I developed ML algorithms using data sets collected from
realistic populations in Tanzanian villages (field data). Subsequently, I also developed
algorithms using laboratory-based datasets and refined these algorithms by integrating
laboratory data with a subset of field data. Building on the objectives outlined in
Chapter 3, I rigorously tested and evaluated these algorithms across various malaria
transmission strata, including high transmission areas, low transmission areas.

5. To develop a web-based AI platform for real-time analysis of infrared spectral
data to enhance parasitological and entomological surveys of malaria. I created
a cloud-based system using the Python Django framework. This system allows end-
users, including national malaria control programs, healthcare practitioners, and
scientists, to upload spectral data and interact with deployed machine learning models.
These models provide instant predictions of malaria infections in humans and the
age and species of mosquitoes, with potential for further improvement and expansion
to additional indicators. Currently, the system is restricted in its use, and predictions
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are not authorized for clinical decisions. A deployment roadmap has been prepared
to host the system on the Microsoft Azure platform, with plans for public release by
December 2024.



Chapter 2: Key considerations, target product
profiles, and research gaps in the application
of infrared spectroscopy and artificial
intelligence for malaria surveillance and
diagnosis

Published in Malaria Journal 2023:
https://doi.org/10.1186/s12936-023-04780-3

2.1 Abstract

Studies on the applications of infrared (IR) spectroscopy and machine learning (ML)
in public health have increased greatly in recent years. These technologies show
enormous potential for measuring key parameters of malaria, a disease that still
causes about 250 million cases and 620,000 deaths, annually. Multiple studies have
demonstrated that the combination of IR spectroscopy and machine learning (ML)
can yield accurate predictions of epidemiologically relevant parameters of malaria in
both laboratory and field surveys. Proven applications now include determining the
age, species, and blood-feeding histories of mosquito vectors as well as detecting
malaria parasite infections in both humans and mosquitoes. As the World Health
Organization encourages malaria-endemic countries to improve their
surveillance-response strategies, it is crucial to consider whether IR and ML
techniques are likely to meet the relevant feasibility and cost-effectiveness
requirements - and how best they can be deployed. This paper reviews current
applications of IR spectroscopy and ML approaches for investigating malaria
indicators in both field surveys and laboratory settings, and identifies key research
gaps relevant to these applications. Additionally, the article suggests initial target
product profiles (TPPs) that should be considered when developing or testing these
technologies for use in low-income settings
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2.2 Background

Effective control of malaria requires an in-depth understanding of its transmission.
This entails estimating parasitological, entomological and epidemiological
parameters in respective communities [193]. Specific activities may include detecting
malaria infections in humans, estimating mosquito survival following deployment of
interventions, identifying malaria-infected mosquitoes, and characterizing the human
populations at risk [193]. As countries move towards malaria elimination in line with
the strategic goals of the World Health Organization (WHO) [194], there is a need to
develop simple, low-cost and scalable methods for assessing key entomological and
parasitological indicators of malaria and for monitoring the impact of
interventions [193,195–198]. Proper management of suspected malaria cases
requires confirmation through quality-assured laboratory tests [106,194]. These tests
may also include quantifying the number of asexual malaria parasites in blood
samples to determine the severity of the infection, or identifying carriers through the
detection of Plasmodium gametocytes [199,200]. In population surveys, malaria
prevalence can be estimated through various methods, such as observing malaria
parasites under a microscope, using rapid diagnostic tests (RDTs) to detect
parasite-derived proteins and by-products, or detecting parasite nucleic acid
sequences through polymerase chain reactions (PCR) [197,201]. These tools have
greatly improved the diagnosis of malaria, guided effective case management, and
enhanced the evaluation of key interventions.

In terms of entomological indicators, female Anopheles can transmit malaria only if
they live long enough to pick up the infective stages of Plasmodium, and thereafter
incubate those parasites until they mature into the infectious sporozoite stage. This
process usually takes 10 – 14 days, but can be slower depending on climatic
conditions [202,203]. Proportions of female mosquitoes that are old enough to
transmit malaria can, therefore, be used to estimate vectorial capacity (number of
mosquito infective bites produced by a single malaria case) and assess the
performance of vector control methods, such as insecticide-treated nets (ITNs) and
indoor residual spray (IRS) [204–207].

The primary measure of malaria transmission intensity, the entomological inoculation
rate (EIR), is calculated as the product of the human biting rates (number of bites per
unit of time) and the proportion of mosquitoes infected with Plasmodium sporozoites.
Estimating EIR requires detailed assessments of Anopheles biting rates, typically
through mosquito trapping, and the proportion of female Anopheles that carry
infective Plasmodium sporozoites, typically through enzyme-linked immunosorbent
assays (ELISA) or PCR [208,209]. In addition to these core entomological metrics,
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other measures can be used to estimate the natural survival and transmission
potential of Anopheles populations. These may include ovarian dissections to assess
parous proportions, analysis of vertebrate blood meals to estimate the proportion of
mosquitoes biting humans, and estimation of the proportion of mosquitoes biting
indoors and outdoors [193,210].

Although these strategies for monitoring malaria transmission have contributed to
progress against the disease [211], there are still considerable obstacles related to
operational costs, performance accuracies, scalability, and human resource
requirements [124,196,198]. In order to align with global priorities for malaria
elimination, further advancements in both entomological and parasitological
surveillance are just as important as the need for new drugs, vaccines, or vector
control approaches [194,198]..

A recent advancement in malaria monitoring is the use of infrared (IR) spectroscopy
in combination with machine learning (ML) techniques to assess key indicators of
malaria. These indicators include the chronological age of mosquitoes (e.g. number
of days post emergence) [212–215], blood-feeding histories of malaria vectors [216],
Plasmodium infections in human blood [217–219] or mosquitoes [220], and
identification of malaria vector species [212]. In this technique, biological samples
are scanned with infrared radiation, and the energy absorbed by the covalent bonds
in the target specimen causes its molecules to vibrate. An infrared spectrum
generates information about the molecules that absorb the radiation and their
intensity of absorption [221]. Despite the subtle biochemical differences between
specimens with different biological traits, ML algorithms can disentangle these
spectral changes and map them to specific phenotypes [217,221,222]. Together, IR
and ML-based systems constitute robust, easy-to-use, reagent-free, non-invasive and
low-cost approaches, making them attractive in low-income settings [212,214,216].
As a result, there has been a significant increase in the number of studies evaluating
or validating these techniques for monitoring vector-borne diseases [173,213,223].

To ensure maximum benefits going forward, it is important to identify existing gaps
and the essential and desirable characteristics that should be met for these
technologies to be effectively integrated into routine malaria control programmes.
The aim of this article is to review existing IR spectroscopy and ML applications for
malaria surveillance and diagnostics, to identify gaps for field use, and to outline a
target product profiles for such technologies to be suitable in low-income settings.
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2.3 Current methods for measuring malaria
transmission

2.3.1 Parasitological methods

The most common method for parasitological assessment of malaria is light
microscopy, which is standard practice in many laboratories and relies on direct
observations of malaria parasites on thick or thin smears of blood [224–226].
Although light microscopy is accessible even in low-resource settings, it requires
highly experienced personnel and can generally detect only parasite densities above
50 parasites/μl of blood with an overall sensitivity of between 50-500
parasites/μl [103,227]. The method may, therefore, miss individuals with low
parasitaemia levels or asymptomatic carriers [103,226], and may perform poorly in
low-transmission settings [228]. The diagnostic accuracy might also be compromised
by poor preparation of thick or thin blood smears and visual identification [229,230].

Another common approach is the use of malaria rapid diagnostic tests (RDTs), which
have revolutionized malaria investigations in both clinical settings and community
surveys due to their low-cost and promptness [231,232]. Moreover, they do not
require highly-trained or experienced personnel to perform or interpret the tests, and
can be used even in hard-to-reach areas, and by community healthcare
workers [231,233]. Most RDTs target the parasite antigen, histidine-rich protein II
(HRP-2), which is abundant in P. falciparum infected red blood cells [103,234]. Some
RDTs also target glycolytic enzymes, such as Plasmodium aldolase and Plasmodium
lactate dehydrogenase (pLDH) antigens, and can detect non-falciparum malaria
parasites, such as Plasmodium ovale, Plasmodium malariae and Plasmodium
vivax [103,235].

The main disadvantages of RDTs include the lack of quantitative information and
poor performance in asymptomatic cases or low-level parasitaemia, such as those
with parasitaemia levels below 100 parasites/μl [197,233]. In addition, genetic
mutations of the HRP-2 genes, which are spreading around the world, also
compromise the sensitivity of RDTs [236–243]. These gene deletions, which have so
far been detected in nearly 40 countries [118], make the malaria parasites
undetectable by the HRP-2 based RDTs even when the patients are severely ill. The
WHO currently recommends that countries should withdraw these specific RDTs if
more than 5% of malaria infections have HRP-2 mutations [118].
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Nucleic acid-based diagnostics, such as PCR, have the highest sensitivity but are
often unaffordable in most malaria-endemic settings and are, therefore, rarely
used [244–246]. PCR can detect parasitaemia as low as 1-5 parasites/μl of blood,
but is used mostly in research settings because of its high cost and the need for
specialized facilities and personnel [103,246,247]. Epidemiological surveys have
also demonstrated that PCR assays can be used to identify areas with unusually
high malaria transmission [226,228]. Moreover, one analysis of methods for
detecting malaria hotspots in coastal Kenya concluded that PCR was the most
appropriate for mapping asymptomatic cases once overall prevalence had dropped
significantly [228]. Lastly, PCR also provides detailed information on Plasmodium
species based on the small subunit 18S rRNA or circumsporozoite protein genes,
and can also detect mixed infections [103,246]. Unfortunately, as summarized in
Figure 2.1A, the techniques require highly-skilled labour, expensive equipment and
reagents, making them untenable for regular use in places with poor supply of
laboratory materials [197].

Figure 2.1: Applicability, strengths, and weaknesses of current methods used to
measure key malaria indicators. Panel A compares the three most common methods
for parasitological assessment [236,248–256] while panel B compares the three main
methods for entomological assessment [257–267], on a proportion score of 1 to 100.
These scores are based on expert opinion of the authors of this article.

2.3.2 Entomological methods

The WHO has outlined several entomological indicators that malaria programs may
consider for monitoring transmission dynamics, guiding the selection or deployment
of control strategies, and evaluating the control efforts [106,193]. These include: (i)
mosquito blood-feeding histories, biting frequencies, and resting behaviours, (ii)
vector species presence and densities (iii) insecticide resistance status, (iv)
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proportion of mosquitoes with Plasmodium sporozoites, and (v) larval habitat
profiles [193,211]. The indicators may be differently prioritized depending on the
local capabilities, malaria epidemiological profiles, financial constraints, and
prevailing control strategies in the respective countries. However, the most central
ones are biting rate, mosquito density and EIR.

Entomological surveys involve different sampling methods, after which the collected
mosquitoes are sorted by taxa and physiological features. Adult female mosquitoes
are frequently dissected for analysis of their internal organs (e.g. gut, reproductive
systems and salivary glands) or retained for other laboratory analyses [210]. Sex and
species are initially sorted based on the exterior morphology of the mosquitoes using
taxonomic keys [60,268]; but the indistinguishable members of species complexes,
such as Anopheles gambiae sensu lato (s.l.) and Anopheles. funestus s.l. require
further distinction by PCR [76,269,270]. As summarized in Figure 2.1B, these
methods are time-consuming, expensive, require specialized training, and are not
always readily available locally [271].

Depending on the research goals, additional laboratory tests may be performed on
the collected mosquitoes. These can include ELISA tests to detect malaria parasite
proteins or PCR tests to find Plasmodium sporozoites in the heads and thoraces of
female Anopheles mosquitoes [267,272,273]. Additionally, examination of the
stomach contents of the mosquitoes, using ELISA [274] or PCR [275], can be
performed to identify the vertebrate sources of mosquito blood meals as required to
determine their preference for biting humans compared to other animals. The age of
field-collected female mosquitoes is generally determined by dissection to examine
changes in their ovaries; with age here being estimated in terms of reproductive
history (e.g. whether parous or not, and if parous how many gonotrophic cycles have
been completed) rather than in terms of chronological age (e.g. number of days post
emergence) [210,261,276,277]. Estimates of physiological age derived from these
dissection methods are used to approximate chronological age based on fixed
assumption of the number of days required to complete a gonotrophic cycle in the
field [260,278]. Finally, a series of bio-efficacy and molecular assays to determine the
resistance of the mosquitoes to insecticides, to inform appropriate insecticidal
interventions can also be done [279].

Entomological monitoring is complex and costly, and as a result, only a small number
of malaria-endemic countries can monitor all the recommended entomological
parameters on a large scale [124,211,280]. A recent analysis of vector surveillance
programmes in malaria-endemic countries found that countries with the highest
burden have far less surveillance capacity than countries nearing elimination [211].
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Overall, most countries are not well-equipped to establish effective surveillance
systems with the minimum essential data necessary to detect changes and adjust
public health responses.

2.4 Applications of infrared spectroscopy and
machine learning for parasitological and
entomological surveys of malaria

The attributes of mosquitoes or human body tissues can be studied by analysing
their infrared (IR) spectral signatures. These signatures contain complex biochemical
information represented by absorbance intensities at different wavenumbers. Near
Infrared (NIR) Spectroscopy specifically measures absorption by vibrational
overtones, or vibrations that are excited from the ground state to the second or third
energy level, in the 14,000 - 4,000 (cm−1) range. On the other hand, Mid-Infrared
(MIR) spectroscopy measures absorption by fundamental vibrations of molecular
bonds in the 4,000 - 400 (cm−1) range, which allows for more direct quantification of
functional chemical groups present in substances, such as chitin, protein, or wax in
the samples of interest [173,212].

Once the samples have been scanned, ML algorithms can be used to analyse the
infrared spectral data and identify specific entomological and parasitological
parameters [213–215,218,281]. Additional techniques may be used to remove errors
and improve the accuracy of the analysis, such as transfer learning [282]. These
algorithms can be used to determine features such as mosquito age, species identity,
infection status, and blood meal types. Studies have shown that combining IR
spectroscopy with machine learning (IR-ML) can provide accurate predictions and
estimates of various transmission indicators [173]. For example, this approach has
been used to classify malaria-transmitting mosquitoes by chronological age or
number of gonotrophic cycles [212,213], making it useful for studying the effects of
vector control on mosquito populations. The potential of IR-ML techniques for
measuring malaria transmission should be evaluated based on factors such as
robustness, speed, validity, infrastructure needs, scalability, costs, and
cost-effectiveness; and should only be adopted if they address the challenges of
conventional methods.

The cost of IR spectroscopy equipment used for malaria research can vary greatly.
Hand-held versions of NIRS or MIRS spectrometer can cost as little as $2,000 [283],
while desktop versions of these spectrometers range from $30,000 to
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$60,000 [217,281]. Most equipment is durable for regular laboratory or field use and
requires minimal maintenance. No additional reagents are needed for operation,
except standard low-cost maintenance, such as providing desiccants to limit humidity
effects.

2.4.1 Parasitological surveys

The use of infrared spectroscopy (IR) for diseases screening and diagnostic
purposes has been demonstrated in various branches of medicine, including the
histopathological screening of breast cancers and the prediction of infections (e.g.
enterococci), leukaemia, Alzheimer’s, epilepsy, skin carcinoma, brain oedema, and
diabetes [284,285]. An increasing number of studies are also using IR-ML
techniques for parasitological screening [173].

In one study in Tanzania, dried blood spots were scanned using an attenuated total
reflection-Fourier Transform Infrared spectrometer (ATR-FTIR) and a logistic
regression model was trained using the resulting MIR spectra [217]. This approach
achieved 92% accuracy relative to PCR in identifying individuals infected with P.
falciparum, and 85% accuracy for detecting mixed infections such as those carrying
both P. falciparum and P. ovale [217], which is also common in some parts of
Tanzania [286]. Another study used synchrotron MIR Fourier Transform Infrared
spectroscopy coupled with artificial neural networks (ANN) to achieve a prediction
accuracy of 100% for distinguishing between different stages of the cultured P.
falciparum, i.e., rings, trophozoites and schizonts [219]. Additionally, support vector
machine algorithms fitted with MIR spectra from an ATR-FT spectrometer were used
to classify infected and uninfected individuals with a sensitivity of 92% and specificity
of 97% [218]. Recently, it has been shown that the near-infrared absorption peaks of
malaria parasites can be used for non-invasive detection of malaria infection through
human skin using miniaturized hand-held spectrometers [283].

2.4.2 Entomological surveys

Using off-the-shelf hardware, both NIR and MIR spectroscopy can be used to
analyse large numbers of mosquito samples at a relatively low cost compared to
traditional methods [173,212,213,276]. Studies have demonstrated direct
applications to predict mosquito chronological (e.g. number of days post emergence)
and physiological age classes (e.g. whether parous or not), blood-feeding histories
and species identity [212–216,287]. They have also been used to detect mosquito



44

endosymbionts, such as Wolbachia [288,289], and mosquito-borne pathogens, such
as Zika [223,290] and malaria [291,292]. Scientists have attempted to validate these
laboratory findings in the field settings but so far, there has been success in only a
small number of studies [213,293,294].

There has been a particular interest in evaluating the potential of IR-ML systems for
mapping the demographic characteristics of wild mosquito populations and using this
to evaluate the performance of vector control interventions, or monitoring
transmission risk. Following multiple successes in combining IR spectroscopy and
ML for age-grading laboratory and semi-field vector populations [212,213], field
studies are now underway to validate the potential of this tool in malaria-endemic
communities. It is expected that these ongoing efforts will deliver a scalable and
operationally relevant IR-ML system that integrates off-the-shelf hardware and
open-source software to simplify the technologies. Ultimately, IR-ML based
approaches will be most desirable only if they constitute a simple set of routine
activities that can be performed by researchers and National Malaria Control
Programme (NMCP) staff.

Despite advancements in using Infrared-Machine Learning (IR-ML) for malaria
surveillance, there remain several challenges that might hinder its full potential. In
entomological surveillance, existing algorithms show up to 99% accuracy with
laboratory-reared mosquitoes, but this drops significantly in field data, due to
variances in mosquito body compositions from dietary, genetic, and environmental
factors [173,212,213,293,295]. Fortunately, recent strides using Convolutional
Neural Networks (CNN) have improved accuracy across diverse datasets, with CNNs
achieving over 90% accuracy in laboratory and field assessments on specific
mosquito species [214]. Transfer learning is also being explored to enhance
algorithm generalizability in real-world settings [282]. Additionally, logistical hurdles
akin to those faced by existing surveillance methods exist, particularly in hardware
maintenance and supply [211]. Moreover, unlike other diagnostic methods with
built-in verification, IR-ML lacks this feature [228,296], indicating a vital area for
future research to ensure reliable operations and address these identified gaps. The
sections below will discuss these gaps and potential solutions in detail.
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2.5 Considerations for research and development of
IR-ML approaches for malaria survey and
diagnostics

As the WHO encourages malaria-endemic countries to scale up effective
surveillance-response strategies for malaria, an important question that remains is
what elements should be considered when developing or evaluating new approaches
such as IR spectroscopy and ML. Moreover, while IR-ML technologies have the
potential to aid in malaria surveillance, several gaps in research and development
must be addressed to optimize their utility. This section identifies key research and
development gaps in the applications of these technologies for malaria surveys in
low-income settings. It further proposes a target product profile (TPP) consisting of
both the essential characteristics and desirable characteristics that could improve its
uptake, performance, and cost-effectiveness.

2.5.1 Research gaps to be addressed

Table 2.1 provides a summary of the key research gaps for the IR-ML applications
relevant to malaria. For each of these gaps, additional details are provided below.

Gap 1: Need for a greater understanding of the biochemical and physicochemical
basis of the IR signals relevant for malaria surveys and diagnosis. IR spectral
absorption intensities are determined by the chemical bonds within chitin, protein,
and wax, which are the three most abundant components of the mosquito cuticle.
Recent research has shown that these signals can be used to infer the age and
species of mosquitoes [212,213], as well as distinguish between
Plasmodium-infected and uninfected human blood [217].

In the case of parasitological observations, it is apparent that the most dominant
spectral features that influence ML model predictions are found in the fingerprint
region (1730 (cm−1) – 883 (cm−1)), where most of the signal from biological samples
is expected [217]. The breakdown of haemoglobin into haemozoin crystals may also
show up in the IR spectra and can help detect infections in blood samples [217,297].
The interpretation of IR spectra should, therefore, take into account the sample type
and characteristics, and in the case of composite sample types such as
parasite-infected blood, considerations on how the parasite interacts with and alters
the biochemical makeup of the host tissues should be factored in. For example,
changes in the carbohydrate regions at 1144 (cm−1), 1101 (cm−1) and 1085 (cm−1)
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may be associated with differential glucose levels in infected red blood cells, since
Plasmodium parasites metabolize glucose faster than normal cells [222,298]. The
presence of these direct and indirect signals of infection raises the possibility of
non-specific detection and false positive diagnoses, which should be mitigated with
carefully chosen controls when training machine learning (ML) models. Given the
many different applications of IR-ML for investigating malaria indicators, a
generalized framework is essential and should be derived from an updated
understanding of the bio-chemical and physico-chemical features of the samples

Gap 2: Need to validate the performance of the IR-ML in different field settings and
laboratories So far, most of the successes in the application of IR-ML have been with
laboratory specimens, but it has been difficult to apply these laboratory-trained
algorithms to field-collected specimens due to environmental, laboratory, and genetic
sources of variation, and/or limited training data. Only a small number of studies
have achieved this with partial success [213,215,293]. This challenge is
compounded by the limited generalizability of many existing ML models. Efforts
towards field validation should be integrated with those that seek to improve the
generalizability of the models, using more diverse datasets with greater genetic and
environmental variability.

Field validation is also essential for IR-based parasitological surveys, as algorithms
trained using spectral data from laboratory parasite cultures may not be applicable to
other settings, in part due to different immunological and physiological
profiles [299–301]. Additionally, cultured parasites mixed with blood may exhibit
important differences from natural infections, thus limiting their generalizability to
realistic samples unless transfer learning with field data is applied. Consequently,
early validation of IR-ML for parasitological surveillance is essential and the training
data should capture representative signals associated with immunological and
genetic composition from multiple populations [217,302]. For clinical applications,
determining the true effectiveness of these techniques may also require large-scale
clinical studies.

Gap 3: Need for appropriate ML-frameworks that achieve maximum predictive
accuracies with minimal computational power. While IR-ML approaches for assessing
malaria indicators can achieve high accuracies, there are many differences between
the analytical methods and algorithms used. Currently, there is no consensus on the
best ML frameworks for spectral analysis, either supervised or unsupervised. Ideally,
the best framework would be that which provides minimum computational needs
while also achieving accurate and generalizable predictions of the target traits.
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Initially, multivariate statistics, including partial least squares (PLS) and principal
component analysis (PCA) were the most widely used [222,298,301,303,304]. More
recently, IR spectroscopy coupled with different ML classifiers has been used to link
the signals of IR biochemical bands to specific biological traits [173]. A general
approach is to compare and select from multiple model types. Diverse ML algorithms,
such as support vector machines (SVMs), Random Forests (RFs), K-nearest
neighbours (KNNs), Naive Bayes (NBs), Gradient Boosts (XGBs), and Multilayer
Perceptrons have been tested for their ability to decipher IR spectra associated with
malaria indicators [214,215,217–219].

Unsupervised learning is often utilized in spectra pre-processing to decrease
dimensionality or cluster dominant features before algorithm training [213,218,219],
but additional statistical techniques can be added to improve generalization. For
example, unsupervised PCA was used to reduce the dimensionality of the data set,
and an ANN was trained on the pre-processed data to accurately predict malaria
parasite stages [219]. Moreover, transfer learning and dimensionality reduction
techniques like PCA and t-SNE (t-distributed stochastic neighbour embedding) can
significantly reduce computational power while maintaining robust accuracy in
models [282].

Gap 4: Need to understand the malaria parasite detection thresholds for the IR-ML
systems. As conventional methods have a low likelihood of detecting malaria
infections with low parasitaemia [245], it is necessary to understand the lower limits
of detection (LLOD) for any novel diagnostic and screening tools. Unfortunately, only
a small number of studies have examined such thresholds for IR-based malaria
detection. One study which used serially diluted parasites grown in vitro
demonstrated that ATR-FTIR data could be used to identify and quantify parasite
densities as low as <1 parasite/μl [222]. Other research has shown that NIR
spectroscopy coupled with PCA and PLS can detect up to 0.5 parasite/μl and
quantify up to 50 parasite/μl parasites in isolated RBCs [300].

Other studies have also shown that using wider spectral ranges, e.g. combining the
UV, Visual and IR spectra, can accurately detect and measure malaria without the
need for complex preservation methods [300,305]. Nevertheless, most studies that
established the LLODs of the IR did not use ML as the framework for interpreting
parasite signals in IR spectra. There has been no investigation of threshold
detections for malaria parasites using IR-ML approaches in field settings. Future
research should, therefore, establish absolute or the relative LLOD of the IR-ML
techniques in both the point-of-care applications and population surveys.
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Gap 5: Understanding the performance and validity of the IR-ML techniques in
settings with varying epidemiological profiles Malaria screening methods perform
differently in settings with varying transmission intensities and parasitaemia. The
most sensitive markers of malaria infections at low transmission intensities tend to be
nucleic acids or antibodies to P. falciparum [306]. One study in coastal Kenya that
compared RDTs, light microscopy, and PCR showed that malaria transmission
hotspots detectable by PCR overlapped with those detectable by microscopy at a
moderate transmission setting but not low transmission settings [228]. Elsewhere,
the effectiveness of RDTs and microscopy was greatest in regions with high malaria
transmission or in the presence of high parasitaemia [307]. These tests can however
miss many infections in low-transmission regions, where microscopy-negative
individuals may still contribute 20% - 50% of infections sustaining transmission [308].

According to the WHO-backed “High Burden, High Impact” malaria strategy [4],
endemic countries are encouraged to implement sub-nationally tailored plans that
differentially address high and low malaria burdens. This requires sensitive,
high-throughput, and fast screening tools for malaria with comparable validity across
transmission settings [194,198]. Unfortunately, the performance of new tools such as
IR-ML has not been compared across settings. Researchers have been able to
identify malaria-positive MIR spectra with models trained on pooled data from both
low and high transmission settings or from high transmissions only, but not across
strata [217,218]. Additionally, the positive predictive value (ability to predict true
positive cases), and negative predictive value (ability to predict true negative cases)
should be clarified. One study in Tanzania estimated the positive and negative
predictive values of IR-ML at 92.8% and 91.7%, respectively for detecting malaria
infections field-collected dried blood spots relative to PCR [217], but this study had
only a small number of samples. Future studies should include broad demonstrations
of the performance of IR-ML approaches in different epidemiological strata.

Gap 6: The need for essential human resource training in malaria-endemic countries
The implementation of effective malaria surveillance in endemic countries is hindered
by inadequacies of trained personnel and facilities. A global survey found that only
8% of malaria-endemic countries had sufficient capacity for vector surveillance and
nearly 50% had no capacity to implement core interventions [124]. To effectively
implement IR-ML based surveillance at the country level, two forms of training are
necessary: one for potential users, including researchers and malaria surveillance
officers, and one for higher-level experts capable of tasks such as manipulating
infrared and machine learning systems and creating new classification algorithms.
Countries may also implement periodic refresher training to boost human resource
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capabilities [309]. To ensure sustainability and effectiveness, a comprehensive and
strategic training plan involving the development of IR-ML training guidelines and
partnerships with research and academic institutions is necessary.

Gap 7: Need to select the most appropriate hardware and software platforms
Selecting suitable hardware and software platforms is crucial for enhancing the
scalability of IR-ML systems for malaria surveys and diagnostics. A mix of hardware,
such as sample collection devices and spectrometers, and software, such as
spectral filters and ML models, is necessary. Portable devices are available for field
surveys [212,213,216], but they are mostly in clinical or research laboratory settings.
To implement them on a large scale, spectrometers with hardware systems designed
for areas with limited electricity access, such as solar-powered or battery-powered
spectrometers, may be necessary. Other options may include the miniaturized IR
spectrometers, such as those recently used to detect and quantify malaria parasites
in RBCs [305] and for non-invasive parasite detection via the skin of human
beings [283].

Spectral data must also be easily interpretable for non-expert users in remote
settings. This may require deploying trained algorithms on cloud-based platforms and
designing user-friendly interfaces that work with simple internet connectivity. Systems
based on mobile phone applications [218] or web interfaces [310] are already being
tested, and can be enhanced to remain functional even under limited internet
connectivity in remote settings. Lastly, the availability of relevant source codes
(preferably via code-sharing platforms such as GitHub) and training in their use
should also be ensured.

Gap 8: Need to standardize sample-handling procedures Standardized protocols for
sample handling are needed to ensure the comparability of findings and to make
IR-ML techniques more widely applicable in parasitological and entomological
assessments. Unfortunately, little effort has been devoted to determining the optimal
methods for storing and preserving samples for IR-ML investigations. For
entomological studies, some protocols have indicated using chloroform to kill
specimens and storing them in silica gel for 2-3 days before scanning [212,216], and
also that NIR performs well when samples are stored by either desiccants, RNAlater,
or refrigeration [311]. Separately, a study using MIR spectroscopy and ML
demonstrated the crucial need for standardized handling (storage or preservation) for
both training and validation samples [295].

Proper sample storage and preservation is also essential for reducing spectral noise
and preserving the biochemical composition of the specimens. For example, the use
of anticoagulant materials can significantly affect model performance when using
dried RBCs compared to the wet RBCs or whole blood when scanned using
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ATR-FTIR spectroscopy [301]. While some of these challenges can be addressed by
statistical approaches, e.g. transfer learning [282], optimal performance requires a
level of standardization in methods for handling different sample types destined for
IR-ML analysis.

Table 2.1: A summary of key research questions and potential research agenda
for IR-ML applications relevant to malaria surveys and diagnostics.

R&D Gaps Descriptions and Examples References

Incomplete understanding
of the IR spectroscopic
signals relative to specific
biological traits

There is an insufficient
understanding of the IR
spectroscopic signals (vibrational
absorption bands/wavelengths) and
their association with biological
traits such as parasite infections,
age, species, and blood meals.

[212, 216, 217,
305]

Inadequate field validation
of the IR-ML approaches

There is insufficient field validation
of the performance of IR-ML
methods for assessing important
entomological and parasitological
indicators.

[212, 213, 218,
302]

Gaps in machine learning
frameworks for the IR
spectroscopy analysis

There is a need for studies to
identify optimal ML objectives
such as computational efficiency,
prediction accuracy, and model
generalizability. This might entail
one or a combination of the
many existing unsupervised and
supervised algorithms.

[212, 213, 218,
305]

Unknown detection
thresholds

There has not been sufficient
demonstration of the limits of
detection of IR-ML techniques
for detecting malaria infections in
human or mosquito samples.

[222,300,305]
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R&D Gaps Descriptions and Examples References

Uncertain granularity
of discretized biological
outcomes

It is uncertain which method of
classifying mosquito age is the
best. For example, comparing
classification by specific days (1, 2,
3, 4 days) to using longer ranges of
days (1, 3, 5, 7 days) or grouping
days into ranges (1-5, 5-7, 7-10
days) is unclear.

[212,213]

Resolving overlap and
interactions between
signals

For biological indicators such
as blood meal identification, the
possibilities of detecting mixed
blood sources remain unknown,
and how long after feeding, the
blood can still be detected.

[212,213]

Lack of evidence from
different epidemiological
profiles or settings

There is a need to demonstrate
the performance of the IR-ML
techniques for detecting malaria
parasites in areas with varying
epidemiological strata—with low to
high transmission or prevalence,
and in conditions with varying
parasite densities.

[217,218]

Gaps related to hardware
and software for IR and ML

There are limited off-the-shelf
portable tools that are completely
ready for applications in malaria
surveys and diagnostics in both
laboratory and field settings.

[216,218,300]

Need to standardize
sample-handling
procedures

There is currently no standardized
protocol for sample handling when
using IR-ML methods for malaria
surveys and diagnostics.

[295,301,311]
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2.5.2 Target product characteristics of the IR and ML approaches

To guide further development and evaluation of the IR-ML based approaches for
parasitological and entomological investigations of malaria, this article proposes an
initial outline of key characteristics that should be met. This target product profile
(TPP) consolidates the current thoughts and expertise of the authors as experts and
early adopters of the application of this technology for malaria surveys. However, this
TPP is subject to future modifications and should be considered as a preliminary
version. To satisfy the global strategies for malaria monitoring, the draft describes the
necessary and desirable qualities of emerging IR and ML-based techniques for use
in both field surveys and clinical settings (Tables 2.2 and 2.3).

Different TPPs have previously been proposed for future vector surveillance
tools [277] and malaria diagnostic tools [312]. The article complements these by
proposing relevant attributes for IR-ML techniques including both parasitological
(Table 2.2) and entomological measures (Table 2.3). The proposed profile presents
both the core characteristics, which are the minimum basic requirements for a
functional system, as well as other desirable characteristics that could further
improve the capabilities, scalability, and cost-effectiveness of this technology.
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Table 2.2: Proposed Target Product Profile (TPP) for an IR-ML based system for parasitological surveillance of malaria (focusing on detecting
parasites in vertebrate host)

Characteristics

Parasitological surveillance

Passive case detection in clinical settings
(symptomatic cases)

Active case detection in field screening
(asymptomatic cases)

Essential characteristics Desired characteristics Essential
characteristics

Desired characteristics

Sc
op

e

Intended use
settings and
contexts

As point-of-care test in malaria
control settings

As point of care test in
elimination and control
settings

Malaria screening
in moderate to high
transmission settings

Can be used in low,
moderate and high
transmission settings

Implementation
level

District-level health facilities,
other centralized facilities &
research facilities

Can be used in peripheral
health facilities, e.g.,
dispensaries, health
posts & health centres

Used for surveys in
research facilities

Routine parasitological
surveys in district or
regional hospitals

Types of
spectrometers
and durability

Bench-top units that require
minimum electricity, and can
operate 5 years or more with
minimal maintenance

Off-the-shelf portable
units with long-life
battery; can be solar-
powered; can operate
for up to 10 years with
minimal maintenance

Bench-top units that
require minimum
electricity, and can
operate 5 years or more
with minimal maintenance

Off-the-shelf portable
units with long-life battery;
can be solar-powered; can
operate for up to 10 years
with minimal maintenance



54

Characteristics

Parasitological surveillance

Passive case detection in clinical settings
(symptomatic cases)

Active case detection in field screening
(asymptomatic cases)

Essential characteristics Desired characteristics Essential
characteristics

Desired characteristics

Te
ch

ni
ca

lp
er

fo
rm

an
ce Sensitivity

relative to
conventional
methods
[307,313,314]

Can detect >95% of positive
P. falciparum cases in
symptomatic individuals
relative to RDT

Can detect >99% of
positive P. falciparum
cases in symptomatic
individuals relative to
RDT or microscopy

Detects >95% of positive
P. falciparum cases
in moderate to high
transmission areas
relative to microscopy or
RDT or PCR

Detects >95% of positive
P. falciparum cases in
low, moderate or high
transmission areas relative
to microscopy or PCR

Specificity
relative to
current tests
[307,313,314]

Can identify >95% of malaria-
negative cases in febrile
individuals relative to RDT

Can identify >99% of
malaria-negative cases
in febrile individuals
relative to RDT or
microscopy

Can identify >95% of
malaria-negative cases
in areas with moderate to
high transmission relative
to microscopy or RDT or
PCR

Can identify >99% of
malaria-negative cases
in low, moderate to
high transmission areas
relative to microscopy or
PCR.

Resolution
and accuracy
of predictions

Achieves at least 95%
accuracy compared to RDT or
microscopy

Performance equivalent
to microscopy or RDTs in
detecting P. falciparum &
other malaria parasites

Has >95% accuracy
compared to RDT or
microscopy in moderate
high transmission sites

Performance matches
PCR in detecting malaria
parasites under low - high
transmission
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Characteristics

Parasitological surveillance

Passive case detection in clinical settings
(symptomatic cases)

Active case detection in field screening
(asymptomatic cases)

Essential characteristics Desired characteristics Essential
characteristics

Desired characteristics

Te
ch

ni
ca

lp
er

fo
rm

an
ce Lower limit

of parasite
detection
(LOD)

50-100 parasites/μl of blood;
equivalent to microscopy &
RDTs in respective settings

<10 parasites/μl of blood;
better performance
than microscopy in low
transmission settings

10-100 parasites/μl
of blood; better than
microscopy & RDTs
in moderate to high
transmission settings

1-10 parasites/μl of
blood; more accurate than
microscopy & RDTs in all
settings

Durability and
stability

Stable in ambient
temperatures and can
withstand increases to 45°C
for short periods and varied
humidity.

Stable in ambient
temperatures and can
withstand increases to
45°C for short periods
and varied humidity.

Stable in ambient
temperatures and can
withstand increases to
45°C for short periods and
varied humidity.

Stable in ambient
temperatures and can
withstand increases to
45°C for short periods and
varied humidity.

O
pe

ra
tio

na
la

sp
ec

ts Equipment &
maintenance
costs

Less than $ 30,000 per
spectrometer; lasts >5 years;
costs < $100/yr to maintain

Less than $ 2000 per
portable spectrometer;
lasts up to 10 years;
Costs < $50/Yr to
maintain

Less than $ 30,000 per
spectrometer; lasts >5
years; costs < $100/yr to
maintain

Less than $ 2000 per
portable spectrometer;
lasts up to 10 years; Costs
< $50/Yr to maintain

Sample
handling costs

Costs < $0.1 per test Costs < $0.01 per test Costs < $0.1 per test Costs < $0.01 per test
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Characteristics

Parasitological surveillance

Passive case detection in clinical settings
(symptomatic cases)

Active case detection in field screening
(asymptomatic cases)

Essential characteristics Desired characteristics Essential
characteristics

Desired characteristics

Test duration <5 minutes <1 minute <5 minutes <1 minute

Sample
preservation
and storage

Requires freezing, desiccants,
RNAlater
Uses must be less than 30
days old.

Can use any preservation
method
Samples can be older
than six months as long
as preserved fresh

Freezing, desiccants or
RNAlater;
Samples must be less
than 30 days old

Any preservation method;
Samples can be older than
six months as long as
preserved fresh.

O
pe

ra
tio

na
la

sp
ec

ts Human
resources:
Skills &
training

Requires minimal training on
sample handling, scanning &
data interpretation

No more than 30 minutes
training needed to use,
conduct the tests and
read results

Requires minimal
training on sample
handling, scanning & data
interpretation

No more than 30 mins
training needed to use,
conduct the tests and read
results

Type of sample Wet or dry blood samples;
presented as glass slides, on
filter papers or as blood drops.

Both blood and non-
blood samples (saliva,
urine, sweat or other
samples collected non-
invasively e.g. over the
skin)

Wet or dry blood samples;
presented as glass slides,
on filter papers or as blood
drops.

Both blood and non-blood
samples (saliva, urine,
sweat or other samples
collected non-invasively
e.g. via skin)
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Characteristics

Parasitological surveillance

Passive case detection in clinical settings
(symptomatic cases)

Active case detection in field screening
(asymptomatic cases)

Essential characteristics Desired characteristics Essential
characteristics

Desired characteristics

Reagents No reagents needed except
for cleaning the instruments or
sample collection

No reagents needed
except for cleaning the
instruments or sample
collection

No reagents needed
except for cleaning the
instruments or sample
collection

No reagents needed
except for cleaning the
instruments or sample
collection
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Table 2.3: Proposed Target Product Profile (TPP) for an IR-ML based system for entomological surveillance of malaria

Characteristics
Entomological surveillance

Essential characteristics Desired characteristics

Sc
op

e

Intended use Mosquito identification; mosquito age-grading,
detection of Plasmodium-infected mosquitoes
and blood meal identity

One-stop platform for most desired
entomological indicators; species IDs,
age grading, blood meal identifications,
infection detection, and assessment of
insecticide resistance status, i.e., ability to
predict resistance phenotype as per standard
bioassays.

Implementation level Can be used in research laboratories and
training centres

Used for research and routine surveillance
services laboratory and field settings.

Types of spectrometers
and durability

Bench-top units that require minimum
electricity, and can operate 5 years or more
with minimal maintenance

Off-the-shelf portable units with long-life
battery; can be solar-powered; can operate for
up to 10 years with minimal maintenance

Te
ch

ni
ca

lp
er

fo
rm

an
ce Sensitivity relative

to current methods
[208,209]

Plasmodium sporozoites: Sensitivity of > 90%
with reference to ELISA

Plasmodium sporozoites: Sensitivity of > 90%
with reference to PCR

Specificity relative
to current methods
[208,209,267]

Plasmodium sporozoites: Specificity of > 90%
with reference to ELISA, Microscopy or PCR

Plasmodium sporozoites: Specificity of > 90%
with reference to PCR
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Characteristics
Entomological surveillance

Essential characteristics Desired characteristics

Resolution of predictions Mosquitoes age: can classify young (e.g. 1-6
days) vs old (e.g. > 10 days) mosquitoes, with
> 90% accuracy
Species identification: Can distinguish
between members of a species complex (e.g.
An. gambiae vs. An. arabiensis) with > 90%
accuracy
Mosquito blood meals: Can distinguish
between human blood meal from any other
vertebrate blood meals, with >90% accuracy

Mosquitoes age: Can classify mosquito ages
chronologically at 2-day resolution (e.g 1, 3, 5
days etc) with > 90% accuracy
Species: Can identify all major malaria vectors
(An. gambiae, An. arabiensis, An. coluzzii and
An. funestus) with >90% accuracy
Blood meal: Can identify most vertebrate blood
meals (i.e. human, cattle, goat, chicken, dog
etc) even if the meals are mixed, and with >90%
accuracy

Lower limit of parasite
detection

Plasmodium sporozoites: has performance
equivalent to ELISA or PCR

Plasmodium sporozoites: has performance
equivalent to PCR

Temperature and
humidity stability

Functions and can be stored in ambient
temperature; withstands frequent temperature
rises to 35°C for long periods under diverse
humidity

Functions and can be stored in ambient
temperature; withstands frequent temperature
rises to 45°C for long periods under diverse
humidity

O
pe

ra
tio

na
la

sp
ec

ts Equipment &
maintenance costs

Less than $ 30,000 per spectrometer; lasts >5
years; costs < $100/yr to maintain

Less than $ 2000 per portable spectrometer;
lasts > 5 yrs; Costs < $50/Yr to maintain

Sample handling costs Costs < $0.1 per test Costs < $0.01per test

Test duration <5 minutes <1 minute
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Characteristics
Entomological surveillance

Essential characteristics Desired characteristics

Sample preservation and
storage

Requires freezing, desiccants, RNAlater
Uses must be less than 30 days old.

Can use any preservation method
Samples can be older than six months as long
as preserved fresh

O
pe

ra
tio

na
la

sp
ec

t

Human resources: Skills
& training

Requires minimal training on sample handling,
scanning & data/results interpretation

No more than 30 minutes training needed to
use, conduct the tests and read results

Type of sample Can analyse dried mosquito body parts Can analyse either fresh or dried mosquito
body parts

Reagents No reagents needed except for cleaning the
instruments or sample collection

No reagents needed except for cleaning the
instruments or sample collection
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2.6 Conclusion

The combination of infrared spectroscopy and machine learning is being considered
a promising new method for predicting or estimating various entomological and
parasitological indicators of malaria. The IR-ML platforms have the added advantage
of being simple to use, reagent-free, high-throughput, low-cost, and applicable in
rural and remote settings. As malaria-endemic countries seek to enhance their
surveillance-response strategies to achieve elimination targets, an important
question is how IR-ML-based approaches can complement ongoing processes and
be integrated into routine surveillance. This paper has reviewed existing IR and ML
applications and their gaps for malaria surveys and parasite screening; with provision
of initial suggestions on target product profiles (TPPs) for such technologies in
low-income settings. The TPPs outline both essential and desirable attributes to
guide further development. The article also outline key research and development
gaps that should be addressed in the short and medium term, including the need for
field validation, determination of minimum detection threshold, capacity development
and training in user countries, assessment of the validity of the tests in different
epidemiological strata, and work on robust hardware and software to enable
expanded use.



Chapter 3: Screening of malaria infections in
human blood samples with varying parasite
densities and anaemic conditions using AI-
Powered mid-infrared spectroscopy
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3.1 Abstract

Background: Effective testing for malaria, including the detection of infections at
very low densities, is vital for the successful elimination of the disease. Unfortunately,
existing methods are either inexpensive but poorly sensitive or sensitive but costly.
Recent studies have shown that mid-infrared spectroscopy coupled with machine
learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires
further evaluation on diverse samples representative of natural infections in endemic
areas. The aim of this study was, therefore, to demonstrate a simple AI-powered,
reagent-free, and user-friendly approach that uses mid-infrared spectra from dried
blood spots to accurately detect malaria infections across varying parasite densities
and anaemic conditions.

Methods: Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed
with blood from 70 malaria-free individuals to create various malaria parasitaemia and
anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%,
12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood
spots were prepared on Whatman𝑇𝑀 filter papers and scanned using attenuated total
reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis.
Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast
(6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all
concentrations (all positive levels vs. negative). The classifiers were validated with
unseen datasets to detect malaria at various parasitaemia levels and anaemic
conditions. Additionally, these classifiers were tested on samples from a population
survey in malaria-endemic villages of southeastern Tanzania.
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Results: The AI classifier attained over 90% accuracy in detecting infections as low
as one parasite per microlitre of blood (0.00003%), a sensitivity unattainable by
conventional RDTs and microscopy. These laboratory-developed classifiers
seamlessly transitioned to field applicability, achieving over 80% accuracy in
predicting natural P. falciparum infections in blood samples collected during the field
survey. Crucially, the performance remained unaffected by various levels of anaemia,
a common complication in malaria patients.

Conclusion: These findings suggest that the AI-driven mid-infrared spectroscopy
approach holds promise as a simplified, sensitive and cost-effective method for
malaria screening, consistently performing well despite variations in parasite
densities and anaemic conditions. The technique simply involves scanning dried
blood spots with a desktop mid-infrared scanner and analysing the spectra using
pre-trained AI classifiers, making it readily adaptable to field conditions in
low-resource settings. In this study, the approach was successfully adapted to field
use, effectively predicting natural malaria infections in blood samples from a
population-level survey in Tanzania. With additional field trials and validation, this
technique could significantly enhance malaria surveillance and contribute to
accelerating malaria elimination efforts.

3.2 Background

Malaria control has made significant progress in recent decades but there are still an
estimated 600,000 deaths and 250 million cases annually, most of these in
sub-Saharan Africa [1]. To accelerate elimination efforts, effective strategies are
required, both for control and for surveillance. There is an urgent need for simple,
scalable and low-cost methods for monitoring key malaria metrics, so as to establish
prevailing risk, evaluate impacts of control measures and assess overall progress
against malaria. The World Health Organization (WHO) underscores the need for
evidence-based and context-specific control strategies – which require sensitive,
rapid, and affordable screening tools that are deployable at scale even in low-income
or remote settings [194]. This includes the need for accurate detection of malaria
infections – both at clinical points of care settings and in population surveys.

While rapid diagnostic tests (RDTs), microscopy, and polymerase chain reactions
(PCR) have played a crucial role in the diagnosis and management of malaria across
endemic and elimination situations [103], these approaches still have major
limitations in most settings. For example, RDTs have transformed malaria case
management across Africa due to their practicality and affordability [231], yet studies
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show that as many as half of children in some poor communities still lack access to
these tests [197,315]. Their effectiveness is also increasingly threatened by deletions
on the histidine-rich protein 2 and 3 (HRP II and III) genes, which code for the protein
targets of most Plasmodium falciparum RDTs [118,316,317]. Additionally, both
microscopy and RDTs have poor sensitivity when parasite densities fall below 50-100
parasites/μL of blood [103,197,227,313,318]; and can miss significant fractions of
sub-microscopic infections, which can contribute 20-50% of all human-to-mosquito
transmission in low endemicity settings [308]. From an operational perspective,
microscopy requires electrical power sources, can take as long as 30 minutes to run,
is prone to subjective interpretations of results and can be expensive due to
personnel costs and reagents [230]. Unfortunately, even the highly sensitive
techniques, such as PCR, enzyme-linked immunosorbent assays (ELISA), and
loop-mediated isothermal amplification (LAMP), which detect as few as 5
parasites/μL of blood, with greater accuracy, are expensive, and require highly
skilled workers.

In recent years, infrared spectroscopy (IR) in both the near (NIR) and mid (MIR)
infrared ranges has shown substantial promise for monitoring key entomological and
parasitological indicators of malaria - including detecting malaria infections in human
blood [174,217,305]. The technology is rapid, robust, reagent-free, and requires
minimum skills to operate. Infrared spectroscopy involves shining infrared light
through biological specimens to infer their biochemical composition, which can be
analysed using different mathematical techniques to distinguish meaningful traits,
such as infection status, age, and species. Given the complexities of assigning
spectroscopic bands for interpreting patterns associated with malaria infections,
recent studies have been integrating spectroscopy with either multivariate analysis or
machine learning (ML) approaches to more effectively interpret the key biological
traits [173,174,213]. Infrared spectroscopy combined with machine learning (IR-ML),
outperforms the traditional analyses in detecting malaria by efficiently deciphering
complex, non-linear, multi-correlated spectral signals and exhibiting high
accuracy [174,212]. For example, during the development cycle, malaria parasites
generate distinctive biomarkers, which are evident on infrared spectra and can be
used to identify infected individuals [173,218,222]. Further, models have been
reported to achieve over 90% precision in differentiating infected from uninfected
blood samples [217,218].

Despite IR-ML techniques demonstrating potential in identifying malaria infections in
whole blood or isolated red blood cells (RBCs), critical gaps remain to be addressed,
one of which is the need to evaluate the lower limits of parasite detections and
quantifications [174]. One study has shown that MIR coupled with multivariate
statistics could detect low density malaria infections at <1-5 parasites/µL of blood in
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methanol-fixed RBCs [222]. However, no tests have been done on the actual
detection thresholds critical for applications of IR-ML in either point-of-care tests or
population surveys using whole blood specimens.

Another key gap is the need to identify and estimate the impacts of confounding
factors. In areas with high malaria transmission, infected individuals often exhibit
decreased haemoglobin concentrations, other parasitic infections, nutritional
deficiencies or other concomitant factors [319–321]; all of which may compromise
tools such as IR-ML that are designed to detect biochemical changes resulting from
malaria infections. Indeed, previous MIR-ML models trained for malaria detection
may have been influenced by the association of co-variates (e.g., anaemia and
immune response to parasites) rather than true parasite signals [217]. Immunological
variations from persistent asymptomatic infections may also affect performance of
IR-ML results for malaria detection, in ways not detectable in studies that use blood
bank samples from limited numbers of volunteers. ML algorithms should therefore
consider these variabilities, e.g. by incorporating varying anaemic, nutritional or
immunologic conditions, but also train models with different parasite ‘contrasts’, to
disentangle true infections more effectively from these noise signals.

The aim of this current study was therefore to assess the lower limit of malaria
parasite detection on dried blood spots (DBS) using MIR-ML approaches, investigate
the impact of anaemic conditions on detecting malaria infections and demonstrate
the best ML training approaches, whether utilizing high, low, or combined parasite
concentrations, and finally test them on spectra of actual malaria-infected patients.
The DBS were generated using whole blood from 70 malaria-free volunteers to
capture immunological variations, and were spiked with cultured ring-stage P.
falciparum at various parasitaemia and haematocrit ratios to mimic anaemia. ML
algorithms were then trained on MIR spectra acquired from laboratory-generated
DBS, where specific malaria parasite signals could be learned. MIRs-ML, trained
with high-contrast parasite concentrations against negatives, demonstrated a
detection accuracy of over 90% in laboratory tests across various parasitaemia
levels; in field-collected samples, the accuracy consistently remained above 80%.
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3.3 Methods

3.3.1 Malaria parasite cultures

Sample collection and parasite cultures were completed at Ifakara Health Institute’s
laboratories in Bagamoyo, Tanzania using adapted protocols with slight
adjustments [322,323]. Group O+ blood was obtained from four malaria-free
volunteers, and kept in tubes containing the anticoagulant,
ethylenediaminetetraacetic acid (EDTA) for continuous culturing of P. falciparum
strains NF54 and FCR3. The blood was centrifuged at 2500 rpm at 24°C for 10
minutes to obtain RBCs. The RBCs were then washed, diluted to 50% haematocrit
with uncomplemented media, namely Roswell Park Memorial Institute (RPMI) 1640
media supplemented with hypoxanthine, neomycin and
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and stored at 4°C.

The washed RBCs were used to culture P. falciparum in vitro for up to seven days.
The asexual malaria parasites were grown in uninfected washed O+ RBCs as host
cells at 5% haematocrit, maintained in RPMI-1640 medium supplemented with 25
mM HEPES, 100 µM hypoxanthine, neomycin, 5% Albumax II, and 24 mM sodium
bicarbonate. The parasite culture was gassed with a mixture of 5% CO2, 3% O2, and
93% N2 and incubated at 37°C. The culture was examined daily for parasitaemia
estimation using field-stained (Hemacolor® rapid staining) thin blood smears under a
compound microscope in 10 fields. Two rounds of parasite synchronization were
performed to ensure the remaining parasites were only ring-stage P. falciparum [324].
The culture was kept until the ring-stage parasitaemia level reached >6% and was
used for experimental dilutions. Parallel malaria-free cultures with only media and O+

RBCs from the same volunteers were kept to create controls. The process was
repeated for up to 11 batches until 70 volunteers were recruited and their blood was
diluted.

3.3.2 Recruitment of malaria-free volunteers

Malaria-free individuals were recruited from tertiary-level colleges in Bagamoyo,
eastern Tanzania, following sensitization meetings, during which the objectives,
procedures, potential risks, and benefits of the study were explained. Participants
who expressed interest were given a unique identity number, contacted by phone,
and requested to provide informed consent. The consenting participants were
screened for malaria parasites using RDTs by taking a finger-prick blood sample,
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followed by a confirmatory quantitative polymerase chain reaction (qPCR).
Participants who tested negative for malaria were enrolled in the study, while those
who tested positive were treated following Tanzania’s malaria treatment guidelines
and excluded from the study [325]. A total of 70 volunteer participants were recruited,
all between 20 and 40 years old. A total of 40 mL venous blood was drawn in an
EDTA tube from each participant and used for laboratory dilutions of cultured malaria
parasites to create different malaria parasitaemia and haematocrit ratios.

3.3.3 Haematocrit dilutions to mimic anaemic conditions

For each participant, two sets of haematocrit dilutions were created to simulate
different anaemic conditions for both infected and un-infected blood. One set had
malaria-free blood at 50%, 25%, and 12.5% haematocrit content, while the other
comprised infected red blood cells (iRBCs) from cultured parasites, adjusted to 50%,
25%, and 12.5% haematocrit ratios using respective plasma. For uninfected blood,
40 ml of venous blood from each participant was split into 5 ml and 35 ml portions
and centrifuged to separate plasma from RBCs. After separation, plasma was
transferred to empty 1.5mL tubes for haematocrit dilutions. RBCs from the 5 ml
portion were used to formulate a 50% haematocrit stock solution by adding plasma
from the same volunteer. Serial dilutions was done by transferring 2.5 ml of the stock
solution to a second tube, and adding 2.5 ml of previously obtained plasma to
simulate moderate anaemia (25% haematocrit) and severe anaemia (12.5%
haematocrit) conditions (Figure 3.1). On the other hand, for infected blood, when the
culture reached >6% ring stage parasitaemia, it was centrifuged to separate iRBCs
from the culture media and washed twice. Washed iRBCs volume was 0.5 ml, which
was mixed with an equal volume of participant plasma (0.5 ml) to create a 50%
haematocrit ratio stock solution; and serially diluted to 25% and 12.5% solutions
(Figure 3.1).
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Figure 3.1: Schematic flow of experimental setup used to create DBS of different
parasitaemia under non-anaemic (50%), moderate (25%), and severe anaemia
(12.5%) and then scanned with MIR Spectrometer for spectra acquisitions and analysis
using AI approaches
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3.3.4 Serial dilutions for different parasite densities and controls

The parasite dilutions were performed at the respective haematocrit ratios. Initially,
the cultured parasitaemia was standardized to 6% stock – and in cases where the
initial densities were higher, this was lowered to the 6% densities. Serial dilutions
were done to create three additional parasitaemia levels, i.e. 0.1%, 0.002% and
0.00003%, were created from the stock solution.

The control group included malaria-negative samples at haematocrits of 50%, 25%,
and 12.5% prepared from uninfected RBC from the culture with plasma from same
individual participants. To ensure that the RBC distribution in the control matched
that of the malaria parasitaemia dilutions, uninfected haematocrits from the culture
were diluted with uninfected haematocrits from participants in volumes equal to the
parasitaemia dilutions (Figure 3.1).

3.3.5 Preparation of dried blood spots

For each individual volunteer, five replicates of dry blood spots (DBS) for each
parasite density at each haematocrit level were created, resulting in a total of 75 DBS
per participant. For each DBS, 50 μL of blood was added on the circular spot on the
Whatman𝑇𝑀 paper cards. The experimental design ensured that all malaria-positive
and negative samples utilized similar filter paper cards to standardize the potential
impact of filter paper on ML analysis. The cards were air-dried for up to 3 hours and
labelled with batch number, date, parasitaemia levels, haematocrit ratio, and
participant ID. To prevent cross-contamination, each card was sealed in a plastic bag.
The cards were then grouped by participant ID and stored in a cool environment in a
larger bag with desiccant packets and a humidity card, awaiting transportation to
another Ifakara Health Institute’s facility, the VectorSphere, at Ifakara, Tanzania for
infrared scanning. During transport, the bags were kept in a cooler box with ice packs
separated by plastic sheeting.

3.3.6 Acquisition and pre-processing of infrared spectra

The DBS were individually scanned using a Fourier transform infrared spectrometer
(FT-IR) with a wavenumber range of 4000-500 (cm−1) and a resolution of 2 (cm−1).
The instrument employed was a compact Bruker Alpha FTIR interferometer,
equipped with a Platinum-Attenuated Total Reflectance (ATR) module that
incorporates diamond crystals. Scanning was done after 3-5 days of DBS storage.
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Each blood spot was punched and placed on the diamond crystal. For scanning,
each blood spot was excised, positioned on the diamond crystal, and subjected to
pressure using an anvil to enhance the contact area with the crystal, thereby
optimizing the depth of light penetration. Each spot was scanned 32 times to obtain
an averaged spectrum, which was labelled by project initial, study site, participant ID,
haematocrit ratio, parasitaemia ratio, and dates.

To quantify the depth of light penetration (𝑑) in whole blood, a theoretical approach
that considers the wavelength of light (𝜆), incidence angle (𝜃), and the refractive
indices of whole blood (𝑛1) and the diamond crystal (𝑛2) used in the spectrometer
was employed. The penetration depth (𝑑) (refer to Fig SS3.1) was calculated using
the formula indicated in equation 3.1:

𝑑 = 𝜆𝑛1

2𝜋√sin2 𝜃 − (𝑛2
𝑛1

)
2

(3.1)

Given that the incidence angle (𝜃) was fixed at 45∘, the refractive index of whole
blood (𝑛1) was determined using the Sellmeier equation (with 𝜆 expressed in
micrometres) [326], given as equation 3.2 :

𝑛1(𝜆) = 1 + 0.7960 × 𝜆2

𝜆2 − 1.0772 × 104 + 5.1819 × 𝜆2

𝜆2 − 78301 × 105 (3.2)

Similarly, the refractive index of the diamond crystal (𝑛2) was ascertained through its
corresponding Sellmeier equation [326], given as equation 3.3:

𝑛2(𝜆) = 1 + 4.3356 × 𝜆2

𝜆2 − 0.10602 + 0.3306 × 𝜆2

𝜆2 − 0.17502 (3.3)

The acquired spectra were then pre-processed using a Python program to
compensate for atmospheric interferences, water vapour, and carbon dioxide (CO2)
and to discard spectra with poor quality as described by González-Jiménez et
al. [212]. The pre-processed spectra were subsequently used for training, testing,
and validating machine-learning algorithms.
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3.3.7 Selection of machine-learning models

Machine learning analysis was conducted using the Python programming language,
version 3.9. Employing a supervised ML classification approach, seven classifiers
were evaluated: Logistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), Gradient Boosting (XBG), Decision Tree (DT), Extra Tree (ET) Classifier,
and Bagging Classifier (BC). The non-anaemic class (50% haematocrit) was utilized
for ML algorithm selection and training, while the two other haematocrit ratios (25%
and 12.5%) were kept separate and used to assess the impact of anaemia on the
ability of the models to classify infected versus non-infected specimen from sets of
previously unseen spectra. To do this, the non-anaemia data was shuffled and split
into two portions; 70% for model selection, training, and testing, while 30% were kept
separate as an unseen dataset for validating the trained model. Further, 70% portion
were divided into 80–20% train-test split, respectively. For model selection, training,
and testing, balanced classes were ensured through random under-sampling of the
majority class.

Stratified shuffle split, 10-fold cross-validation (SSS-CV) was employed to select the
best machine-learning algorithm for identifying malaria infections. The seven
mentioned algorithms were evaluated, and the best one was selected based on
accuracy scores to distinguish malaria infections within the non-anaemia class using
three approaches: (i) Cross-validation using datasets with high contrast (Positive
class = 6%, N = 230) against the negative class (Negative = 0%, N = 230); (ii)
Cross-validation with all concentrations (6%, 0.1%, 0.002%, and 0.00003%)
combined as the positive class (N = 220) against the malaria-negative class (N =
220); and lastly, (iii) Cross-validation with low contrast (positive class = 0.00003%, N
= 226) against the negative class (N = 226) datasets. Model selection, training and
validation were performed on standardized absorption intensities relative to their
wavenumbers.

3.3.8 Training, testing and validation of machine learning models
to identify malaria parasite presence in non-anaemic spiked
blood

The best ML algorithms selected through SSS-CV were then trained on 80% of the
spectra data from non-anaemic blood using three distinct approaches: (i) High
Contrast: models were trained using highest parasite densities (6%) as positive
samples against negatives (0%); (ii) All Concentrations: models were trained using
combined all parasite densities (6%, 0.1%, 0.002% and 0.00003%) as positives,
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against negatives (0%); and (iii) Low Contrast: models were trained using lowest
parasite densities (0.00003%) as positives, against negatives (0%). The trained
models underwent fine-tuning through Grid Search for optimal hyper parameter
optimization.

For testing purposes, the final tuned classifiers were tested on a similar parasitaemia
class used for training. For instance, the model trained on 80% of the data with high
contrast at 6% against negatives was also tested on the remaining 20% of the data at
the highest contrast against negative classes. In addition to accuracy, other
evaluation measures such as sensitivity, specificity, recall, and F1-score on the test
set (20%) were calculated. Finally, the best classifiers were validated on a completely
unseen dataset, the 30% kept separate at the start. Beginning with non-anaemic
classes at different parasitaemia levels, the total number of DBS included for model
validation in the non-anaemic class with various parasitaemia levels were as follows:
validated model performance on predicting malaria infections at non-anaemic
conditions when positive at 6% parasitaemia (N = 82) against negative 0% (N = 82);
then validated positive at 0.1% (N = 82) against negative 0% (N = 82), followed by
positive at 0.002% (N = 82) against negative 0% (N = 82), and finally, positive at
0.00003% parasitaemia (N = 82) against negative 0% (N = 82).

3.3.9 Evaluating the effect of anaemia on performance of MIRs-
ML for distinguishing between blood samples with and
without malaria parasites

The best classifiers developed for predicting malaria infections without considering
anaemia were evaluated on a new dataset comprising cases of moderate anaemia
(with a haematocrit level of 25%) and severe anaemia (with a haematocrit level of
12.5%). This evaluation was structured across four distinct categories: (i)
malaria-positive with a 6% parasitaemia rate (N = 101) versus malaria-negative with
a 0% parasitaemia rate (N = 101); (ii) malaria-positive with a 0.1% parasitaemia rate
(N = 101) versus malaria-negative (N = 101); (iii) malaria-positive with a 0.002%
parasitaemia rate (N = 101) versus malaria-negative (N = 101); and (iv)
malaria-positive with a 0.00003% parasitaemia rate (N = 101) versus
malaria-negative (N = 101). The accuracy, sensitivity, and specificity of these models
computed using a bootstrap method with 100 iterations and establishing a 95%
confidence interval for these metrics.
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Finally, a generalized linear model was used to test the statistically significant effect
of anaemia and parasitaemia on the performance of MIRs-ML approaches in
predicting malaria infections.

3.4 Results

3.4.1 Generating samples of different parasite densities and
anaemic conditions

In order to identify the lowest detectable concentrations of malaria parasites and
assess the impact of anaemia on the predictive accuracy of MIRs-ML for malaria
infections, cultured P. falciparum ring-stage parasites were diluted with
malaria-negative blood from seventy volunteers to generate four different parasite
densities (Figure 3.1). The two lowest malaria parasitaemias (0.002% or 50–100
parasites/μL and 0.00003% or 1–3 parasites/μL) were selected to correspond to the
approximate detection limits of RDT/microscopy and PCR, respectively. Additionally,
parasitaemia levels of 6% and 0.1% were chosen to capture the highest parasite
contrasts in the training dataset. Haematocrit was set at 50%, 25%, and 12.5% to
represent normal, moderate, and severe anaemia, respectively. Thus, a two-way
matrix consisting of four malaria-positive parasitaemia levels (6%, 0.1%, 0.002%,
and 0.00003%) and a negative class (0%), along with three anaemic classes, was
generated (Table SS3.1). In total, 4,655 DBS were created and scanned using an
MIR spectrometer, which were used to train and evaluate ML classifiers. Samples
were randomly selected to confirm the success of dilutions (Fig SS3.2 and SS3.2).

3.4.2 Selection and training of machine-learning classifiers

4,559 spectra were analysed with varying malaria parasite densities and haematocrit
ratios. Of these, 12 spectra from the non-anaemic samples, 35 from moderately
anaemic samples, and 49 from severely anaemic samples were discarded due to
excessive water content resulting from plasma and atmospheric interference (Table
SS3.2). The mean spectra of each parasitaemia class at different anaemic conditions
revealed characteristic biochemical signatures of P. falciparum infections such as
amide, lipids, and haemozoin (Fig SS3.1) [327]. To ensure ML classifiers would learn
features associated with malaria infections, an infrared region without the key
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biochemical information (from 2799 to 1801 (cm−1)) was eliminated [222], and the
regions 3100–2800(cm−1) and 1800–900 (cm−1) were selected to train and validate
ML classifiers.

First, using 10-fold stratified shuffle split cross-validation (SSS-CV), LR achieved the
highest SSS-CV accuracy score in all three datasets, achieving 97.61%, 71.14% and
70.87% in high contrast, all concentrations combined and low contrast training sets,
respectively (Figures 3.2a-3.2c).

Figure 3.2: The performance of the seven ML classifiers assessed through cross-
validation on non-anaemic samples, following three approaches. (a) Accuracy
scores of classifiers in high contrast against the negative class. (b) Evaluation with
all concentrations, combining all parasite densities as positive against none. (c)
Assessment in low contrast against the negative. Confusion matrices for trained and
fine-tuned LR models on the 20% test set, with parasitaemia class similar to the
training set, are displayed in panels d, e, and f. Receiver Operating Characteristics
(ROC) and Area Under the Curve (AUC) of three tuned LR models are presented for
high contrast (g), all concentrations (h), and low contrast (i)

LR algorithm was retained for further tuning, utilizing a grid search approach over an
extensive range of hyperparameter values. The tuned model, when fitted to
high-contrast scenarios characterized by a 6% parasitaemia level versus non-infected
samples, demonstrated remarkable capacity to distinguish malaria-positive and
-negative samples, achieving accuracies of 100% and 91%, respectively
(Figure 3.2d). When evaluating the performance of the tuned models across all
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parasitaemia concentrations combined, the accuracy rates for correctly identifying
positive and negative samples were 82% and 73%, respectively (Figure 3.2e). Even
in the context of low-contrast model, trained with the 0.0003% parasitaemia against
negative, the model maintained strong performance, with positive and negative
detection accuracies of 78% and 65%, respectively (Figure 3.2f).

Even after tuning the LR to optimize its hyperparameters, training with high contrast
had the largest area under the curve (AUC) estimate, 0.98 (Figure Figure 3.2g),
outperforming models trained using both the combined concentrations and low
contrast data sets, for which the AUC scores were 0.85 and 0.82, respectively
(Figures 3.2h-3.2i). The train-test size, precision, recall, and F1-score of the three
models on the validation set are summarized in Table 3.1

Table 3.1: Summarized scores (Precision, Recall, and F1-score) for testing the three
LR models on the 20% train-test splits using laboratory data

Sample size Precision score (%) Recall
score (%)

F1-Score
(%)

Classifier 01: Trained on High contrast (6%) against 0%

Train
size

460 Positive
class

92 100 96

Test size 92 Negative
class

100 91 95

Classifier 02: Trained on all concentrations (6%, 0.1%, 0.002%, 0.00003%) against 0%

Train
size

440 Positive
class

75 82 78

Test size 88 Negative
class

80 73 76

Classifier 03: Trained on Low contrast (0.00003%) against (0%)

Train
size

452 Positive
class

69 78 73

Test size 91 Negative
class

75 65 70

In addition, to understand the specific biochemical contribution influencing
predictions, the wavenumber values were extracted with corresponding coefficients
that most influenced the performance of three trained LR classifiers. All three
classifiers have learned from wavenumber values associated with biochemical
signals associated primarily with lipids (3100-2800 (cm−1)) and proteins (1800-600
(cm−1)) (Figures 3.3a-3.3c), consistent with signals expected from malaria
infections [217,222].
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Figure 3.3: Spectral features with the greatest influence on the performance of the
three models, a) High contrast, b) All concentrations combined, and c) Low contrast
training sets for the prediction of positive class (Red circle) and negative class (Blue
circle). The size of the circle represents coefficient scores.

The highest contrast model appears to have primarily learned to classify malaria
infections from the wavenumbers associated with proteins, notably amide III and
amide I vibrations (1185-1191 (cm−1), 1199-1201 (cm−1), 1619-1617 (cm−1) and
1687-1671 (cm−1)), which are indicative of the secondary structure of proteins.
Wavenumber values 997, 1125-1139 (cm−1) highlight the models’ use of C-N
stretching vibrations of proteins (peptides) and phosphodiester stretching (1201,
1071, and 1263 (cm−1)) indicative of nucleic acids (Figure 3.3A). The high-contrast
model effectively identified wavenumbers linked to lipids, alkanes, and carbohydrates,
indicated by key C-H stretching vibrations at 2917(cm−1), 2843(cm−1), 2967 (cm−1),
and 2955 (cm−1), and C-H bending vibrations at 1491 (cm−1) and 1493 (cm−1).
Optimal wavenumber values for the other LR models, covering all concentrations and
low-contrast scenarios, are also visually indicated in Figures 3.3B and Figure 3.3C.
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Visualization of blank filters paper revealed distinct peaks in the wavenumbers
between 1700 and 1200 (cm−1) in both malaria-positive and malaria-negative blood
samples (Figure 3.4), where most of the features of importance for all three
classifiers are concentrated (Figures 3.3A-3.3C). Additionally, a similar spectral trend
was observed in the 1100–500(cm−1) range across the blank filter paper and both
malaria-positive and malaria-negative samples (Figure Figure 3.4). However, of the
40 key features identified by the classifier trained with high contrast samples
(Figure 3.3A), only 6 fell within this overlapping region, with 4 out of those 6 having
positive coefficients. The other two classifiers—one trained on all concentrations and
the other trained with low contrast against negative samples—had fewer features
originating from this region (Figures 3.3B-3.3C). This suggests that cellulose, a
component of the filter paper, did not significantly affect the accuracy of the
classifiers.

Figure 3.4: Visual comparison of mid-infrared spectra from blank filter paper with
those containing varying levels of malaria parasitaemia in malaria-positive blood
(6%, 0.1%, 0.002%, and 0.00003%) and malaria-negative blood (0%). The figure
represents averaged spectra from 10 filter papers, each scanned 32 times, i.e 320
spectral scans.

3.4.3 Detection of malaria infections at different parasitaemia
and anaemic conditions

After establishing that the high contrast training set had the best performance in
predicting a dataset of the same parasitaemia levels, the accuracy of the three
trained LR algorithms was validated against various parasitaemia and anaemic
conditions using 100 bootstrap random resampling. For this purpose, 30% of the full
dataset was held out separately before training as unseen data.
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The MIRs-ML trained on the high contrast data set against the negative class
identified malaria infections in non-anaemic samples with 100% accuracy for the two
highest parasitaemia levels tested (6% and 0.1%). Accuracy dropped to 92-91%
when classifying intermediate and low-level parasitaemia, and when evaluating
combined spectra from all concentrations (Figure 3.5a). Similarly, high accuracies
were observed when the high-contrast model was used to predict parasite infections
at moderate and severe anaemia (Figures 3.5b-c).

Figure 3.5: Performance of three LR models on a completely unseen dataset
held out prior to training, for non-anaemic (a), moderate (b), and severe anaemia
(c). d-f represent the three-dimensional representation of the LR performance on
the validation set for high contrast, all concentrations, and low contrast models,
respectively.

Models trained on all combined concentrations and those trained using low contrast
were also validated for predicting various parasitaemia in an unseen dataset.
Regardless of anaemia, MIRs-ML trained on all concentrations accurately classified
different parasitaemia, achieving an average accuracy of 75.33% [70.07-80.8%]
(Figures 3.5a-3.5c). The model trained on the lowest contrast demonstrated an
average accuracy of 62.73% [56.53-74.00%] across different parasitaemia and
anaemia. When validating the low-contrast model on different parasitaemia and
anaemic conditions in new data, an increased accuracy was noticed in predicting
parasitaemia levels resembling those in the training set (moderate and low
parasitaemia) (Figures 3.5a-3.5c)).

Overall, the high-contrast model outperformed the other two models in predicting
malaria infections at all tested parasitaemia and anaemic conditions
(Figures 3.5d-3.5f), suggesting that this approach is the most robust for achieving
generalizability.
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A generalized linear model was fitted to estimate the impact of training
methodologies, levels of parasitaemia, and the presence of anaemia on the
predictive accuracy of MIRs-ML in diagnosing malaria infections. The analysis
revealed that neither anaemia nor the different levels of parasitaemia significantly
affected the capabilities of the MIRs-ML models for distinguishing between infected
and non-infected samples (anaemic conditions: χ² = 0.01, p = 0.99; parasite
intensities: χ² = 0.24, p = 0.99). However, the choice of training methodology
significantly affected model performance (χ² = 201.62, p < 0.001). Further analysis
using Post-Hoc Tukey’s test to compare the three training methodologies showed
that training with high-contrast samples notably enhanced the predictive accuracy of
MIRs-ML, yielding a mean difference of 19.93% (p < 0.001) compared to training with
all concentrations, and a mean difference of 32.53% (p < 0.001) compared to training
with low-contrast samples. Additionally, training with all concentrations demonstrated
a significant positive effect, with a mean difference of 12.59% (p < 0.001), when
compared to training with low-contrast samples.

3.4.4 Validation of the MIRs-ML for identifying malaria infections
using spectra from field-collected dry blood spots

The performance of laboratory-trained models was evaluated using realistic samples
collected from patients. To facilitate comparison, the created models were tested
under two scenarios. Firstly, by employing laboratory data as detailed in the
preceding sections. Secondly, by utilizing a realistic dataset obtained from the field
(see Figure 3.6a). In simulations resembling field conditions, where all parasitaemia
levels generated in the laboratory were combined and treated as positive, the
high-contrast trained model distinguished positive from negative samples with
accuracies of 88% and 92%, respectively (Figure 3.6b).
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Figure 3.6: Evaluation of three trained logistic regression (LR) models for classifying
malaria infections in laboratory and patient samples. (a) Mean accuracy for each
anaemia level across various parasitaemia levels using laboratory and field-collected
DBS. (b) Confusion matrix of the high-contrast model predicting laboratory-combined
parasitaemia against negative in non-anaemic conditions, simulating realistic field
collections. (c) Confusion matrix indicated the high-contrast model’s performance
in detecting malaria infections in realistic field-collected DBS. (d) False positive and
false negative predictions by the high-contrast model averaged by anaemic conditions
using both laboratory and field samples.

Next, 252 DBS samples collected from a previous field survey in southeastern
Tanzania were scanned [217]. The malaria infection status in these samples had
been confirmed using nested PCR [217]. In these tests, the model with the highest
contrast predicted malaria infections with an accuracy of 83%, achieving 86%
accuracy for the positive class and 79% accuracy for the negative class (refer to
Figure 3.5c). The precision, recall, and F1-score of the three trained models when
tested with these field-collected dataset are summarized in Table 3.2.

To understand the potential applications of MIRs-ML for either point-of-care or
population surveys, false negatives and false positives of the highest contrast model
were computed in predicting all parasitaemia in laboratory specimens and field
datasets (Figure 3.6d). The model exhibited a prediction error of 14% for false
negatives and 21% for false positives in field samples, preliminary suggesting that
this approach could be most useful in population surveys, especially in low
transmission settings, due to the lower rate of false negatives.
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Table 3.2: Summarized scores (Precision, Recall, and F1-score) for validating the
three LR models on field-collected samples

Precision
score (%)

Recall score
(%)

F1-Score (%)

Classifier 01: Trained on High contrast (6%) against 0%

Positive class 84 86 85

Negative class 81 79 80

Classifier 02: Trained on combined positive (6%, 0.1%, 0.002%, 0.00003%) against 0%

Positive class 58 59 58

Negative class 51 50 50

Classifier 03: Trained on Lowest parasitaemia (0.00003%) against (0%)

Positive class 57 58 57

Negative class 57 56 57

3.5 Discussion

Effective malaria screening is crucial for guiding elimination efforts, especially in
detecting low-density parasitaemia. However, current methods often face trade-offs
between cost and sensitivity. Alternatively, infrared spectroscopy coupled with
machine-learning (MIRs-ML) is showing great promise, particularly in laboratory
settings. Here, the findings suggest that the MIRs-ML approach can detect as few as
1–3 parasites/μL of blood with an overall accuracy exceeding 90% under laboratory
settings even with presence of anaemia. Furthermore, this study demonstrates that
ML algorithms trained with the highest plausible parasite concentrations against
negative samples (“high contrast” training set) can yield a potent and robust classifier
capable of predicting malaria infections at various parasitaemia levels, regardless of
the presence of anaemia. Although anaemia is highly correlated with malaria
infections, this study reports for the first time that it does not impact the performance
of the ML approach in predicting malaria infections. Notably, the ML model trained
with laboratory-generated high contrast dataset accurately classified over 80% of
field-collected specimens obtained from malaria-infected patients. Since these
specimens were entirely unseen by the model, this indicates good generalizability of
this approach and holds great promise for its future optimization in malaria detection,
especially for field surveys.
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This study demonstrates the ability of MIRs-ML to detect low parasite concentrations
(1–3 parasites/μL), which are often missed by methods such as microscopy and
RDTs [328,329], the latter of which is also compromised by HRPII gene
deletions [102,330]. Additionally, this study improves upon earlier studies that
applied multivariate analysis, including partial least squares and classical regression
approaches, to detect and quantify malaria infections in isolated infected and
uninfected RBCs by revealing that the integration of MIRs-ML can detect as low as 1
parasite/μL of blood with an accuracy exceeding 90% in DBS, even in the presence
of anaemia, and requiring minimal sample handling.

While malaria is the primary cause of anaemia in regions with high transmission
risks, other infections, including gastrointestinal helminths, can also cause anaemia,
especially in children and the elderly [331–333]. If MIRs-ML detects anaemia (e.g.
where anaemia may be confounded with malaria presence), there could be a risk of
misdiagnosis disproportionality affecting children, who are more vulnerable to the
effects of misdiagnosed malaria [319]. Therefore, experimentally anaemia levels were
simulated by adjusting plasma to RBC ratios using blood from volunteers. MIRs-ML
trained on the high contrast dataset predicted malaria infections in the presence of
severe anaemia, with accuracy exceeding 90% even at the lowest parasitaemia,
indicating that the predictive capabilities of IR-ML are not affected by anaemia.

A further potential problem for IR-ML technologies is poor generalizability to new
datasets, as observed in entomological traits of malaria vectors due to genetic,
environmental, and dietary variation [174,213]. Previous studies involving the training
of IR approaches for malaria detection used low contrast or less immunologically
diverse blood to spike with parasite culture [174]. Here, models were trained on blood
samples from 70 individuals to capture population immunological variability,
experimentally spiked with cultured ring-stage P. falciparum parasites. This allowed
models to achieve over 80% accuracy in diagnosing malaria infections with field data
without further calibrations. To further improve generalizability, techniques, such as
transfer and partial learning [213,282] could be useful for improving the predictive
accuracy of this approach, especially in diverse population surveys.

The trained algorithms in this study learned from peaks associated with the
biochemical signatures of malaria-infected samples, particularly those suggested to
be linked with the by-products of the malaria ring-stage parasite, such as lipids,
proteins (haemozoin) [327], and parasite DNA. In this study, the blood sample was
prepared by removing the buffy coat and white blood cells by suction when
separating plasma from RBCs for anaemic adjustment. Therefore, the host cells
present in the sample were RBCs, which are enucleated. Thus, the signal observed
corresponding to phosphodiester stretching (997, 1201, 1071, and 1263 (cm−1)) are
likely due to parasite nucleic acids only. Further, differences in the peaks related to
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the amide groups of the proteins were identified. Specifically, the band between 3500
and 3000 (cm−1), commonly referred to as Amide A and associated with the
stretching of N-H bonds; the band between 1700 and 1600 (cm−1) (Amide I),
primarily linked to the C=O stretching vibration and sensitive to the secondary
structure of the protein; the band between 1600 and 1500 (cm−1) (Amide II), mainly
due to N-H in-plane bending and C-N stretching vibrations; and the band between
1350 and 1200(cm−1) (Amide III), which is a combination of C-N stretching, N-H
in-plane bending, and C-H in-plane bending vibrations, appear crucial in capturing
the variations due to malaria infections. Also changes in the peaks associated with
the C-H stretching modes of the lipids (2901, 2905, and 2859 (cm−1)) were observed.

Analysis of blank filter paper, compared to filter paper containing malaria-positive and
-negative samples, indicated that the filter paper was adequately controlled for and
did not affect the model performance. This is consistent with other reports that
identified significant bands in the fingerprint region, which correspond to the
presence of malaria parasites in blood samples [219,222,304,327]. Spectral
analysis of human blood has also revealed key features in the cellulose-overlapping
region of 1100–500 (cm−1), providing additional insights into distinguishing blood
samples [185,334–337]. For example, Mistek-Morabito et al. used the wavenumber
ranges of 4000–2800 (cm−1) and 1800–600(cm−1) to differentiate human blood from
other organisms, emphasizing the importance of the fingerprint region (below 1500
(cm−1)) [338]. Given the well-controlled experimental design of this study, which
ensured standardization in the use of filter papers for both malaria-negative and
malaria-positive samples, it is likely that the features observed in the fingerprint
region offer valuable information for detecting malaria parasites, considering the
characteristic peaks in human blood.

The advantage of using MIRs-ML for malaria parasite detection relies on its higher
sensitivity and accuracy cost ratio, demonstrating potential applicability in
low-income communities [174]. Standard low-cost maintenance, such as providing
desiccants to limit humidity effects, is the only requirement for operation, with no
need for additional reagents. This study demonstrated an added advantage of the
approach, its capability to detect as low as one parasite/μL of blood in the presence
and absence of anaemia, highlighting the potential use-case of MIRs-ML for malaria
parasite detection in field settings. This technology has potential to be an easy-to-use
method for screening parasite infections, and requires minimal training, specifically in
sample handling, spectra acquisition, and result interpretation. This reduced training
requirement is a major advantage over technologies like microscopy and PCR, which
require high levels of expertise. This study, along with ongoing efforts to develop
portable surveillance tools using similar technology [283,339], suggests that this
approach could be scalable, and might in future be integrated into routine health
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facilities, or even adapted for population surveys in rural areas. Bench-top devices
range in cost from $20,000 to $60,000 but are reagent-free and require minimal
maintenance, with a lifespan exceeding 10 years. This operational cost advantage,
combined with the sensitivity demonstrated in this study, makes them a viable
alternative to more expensive PCR-based technologies. Even RDTs, which are more
affordable, tend to have lower sensitivity and may be less reliable in low-transmission
settings [174]. Additionally, there are now pocket-sized devices, which can cost as
little as $2,000, which offer opportunities for non-invasive diagnostics through the
skin, allowing for fast, real-time results for malaria [283]. However, to better integrate
the methods, further investigations are needed to understand full needs [174].

One important question to consider is where MIRs-ML should be utilized, either as a
point-of-care test or for population surveys. Using a field-collected dataset, this study
revealed that MIRs-ML algorithms detected unseen field-collected specimens with a
lower false-negative rate of 14% compared to a false-positive rate of 21%. This might
primarily indicate a potential use case of MIRs-ML for population surveys that could
complement PCR confirmation of positive MIRs-ML samples. However, these should
be considered as preliminary observations and for the further integration of MIRs-ML
into routine malaria surveillance, large-scale clinical trials are essential to validate the
feasibility of MIRs-ML for malaria parasite detection in vertebrate hosts.

This study solely focused on detecting the P. falciparum parasite, prevalent in
endemic regions. It is crucial to explore detection limits and infrared signals
associated with infections from Plasmodium ovale, Plasmodium vivax, and
Plasmodium malariae. Future studies may also explore the performance of MIRs-ML
in detecting malaria infections across various epidemiological strata, as the current
tools exhibit different performance characteristics based on transmission patterns,
with RDTs and microscopy showing poor performance in low-transmission areas.
Also, given the increasing threat of HRP2 gene deletions, future research should
investigate whether HRP2 mutations could compromise the performance of MIRs-ML
in detecting malaria infections. Moreover, the infrastructure requirements for IR-ML,
including hardware and software configurations, training needs, and maintenance
levels, should be addressed [174].

Additionally, it is important to further investigate malaria diagnostic interference of
MIRs-ML due to other potential confounding factors, such as coinfection and
nutritional factors. Exploring the potential of MIRs-ML to detect other blood infections
common in malaria-endemic areas, such as typhoid fever, schistosomiasis, and viral
infections like HIV, is also valuable, as these often co-occur with malaria.
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3.6 Conclusion

To advance malaria elimination, there is a critical need for screening methods that
combine cost-effectiveness with the ability to detect low-density parasitaemia, a gap
not filled by current methods like RDTs, microscopy, or expensive PCR. This study
demonstrated an AI-driven mid-infrared spectroscopy technique that excels in
identifying malaria infections in dried blood spots, achieving high accuracy across
various parasite densities. The detectable limit of malaria parasite by MIRs-ML is
below the lowest concentration tested, which is 1 parasite per microlitre of blood.
The performance of the technique was not compromised by anaemia, which is a
frequent complication in malaria patients. Moreover, when MIRs-ML models initially
trained on laboratory data were used to distinguish between infected and uninfected
field samples collected from a field survey in rural Tanzania, the classification
accuracies were maintained above 80%. These findings indicate the significant
potential and viability of this AI-driven mid-infrared spectroscopy technique as an
affordable and malaria-scalable screening tool in low-resource settings. Further
validation in diverse areas and the consideration of additional confounders, such as
co-infections, are necessary to further validate the approach in real-life settings.
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4.1 Abstract

Background: Malaria-endemic countries are increasingly adopting data-driven risk
stratification, often at district or higher regional levels, to guide their intervention
strategies. The data typically comes from population-level surveys collected by rapid
diagnostic tests (RDTs), which unfortunately perform poorly in low transmission
settings. Here, a high-resolution survey of Plasmodium falciparum prevalence rate
(PfPR) was conducted in two Tanzanian districts using rapid diagnostic tests (RDTs),
microscopy, and quantitative polymerase chain reaction (qPCR) assays, enabling the
comparison of fine-scale strata derived from these different diagnostic methods.

Methods: A cross-sectional survey was conducted in 35 villages in Ulanga and
Kilombero districts, south-eastern Tanzania between 2022 and 2023. We screened
7,628 individuals using RDTs (SD-BIOLINE) and microscopy, with two thirds of the
samples further analyzed by qPCR. The data was used to categorize each district
and village as having very low (PfPR<1%), low (1%≤PfPR<5%), moderate
(5%≤PfPR<30%), or high (PfPR≥30%) parasite prevalence. A generalized linear
model was used to analyse infection risk factors. Other metrics, including positive
predictive value (PPV), sensitivity, specificity, parasite densities, and Kappa statistics
were computed for RDTs or microscopy and compared to qPCR as reference.

Results: Significant fine-scale variations in malaria risk were observed within and
between the districts, with village prevalence ranging from 0% to >50%. Prevalence
varied by testing method: Kilombero was low risk by RDTs (PfPR=3%) and
microscopy (PfPR=2%) but moderate by qPCR (PfPR=9%); Ulanga was high risk by
RDTs (PfPR=39%) and qPCR (PfPR=54%) but moderate by microscopy
(PfPR=26%). RDTs and microscopy classified majority of the 35 villages as very low
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to low risk (18-21 villages). In contrast, qPCR classified most villages as moderate to
high risk (29 villages). Using qPCR as the reference, PPV for RDTs and microscopy
ranged from as low as <20% in very low transmission villages to >80% in moderate
and high transmission villages. Sensitivity was 62% for RDTs and 41% for
microscopy; specificity was 93% and 96%, respectively. Kappa values were 0.7 for
RDTs and 0.5 for microscopy. School-age children (5-15years) had higher malaria
prevalence and parasite densities than adults (P<0.001). High-prevalence villages
also had higher parasite densities (Spearman r=0.77, P<0.001 for qPCR; r=0.55,
P=0.003 for microscopy).

Conclusion: This study highlights significant fine-scale variability in malaria burden
within and between the study districts and emphasizes the variable performance of
the testing methods when stratifying risk at local scales. While RDTs and microscopy
were effective in high-transmission areas, they performed poorly in low-transmission
settings; and classified most villages as very low or low risk. In contrast, qPCR
classified most villages as moderate or high risk. The findings emphasize that, where
precise mapping and effective targeting of malaria are required in localized settings,
tests must be both operationally feasible and highly sensitive. Furthermore, when
planning microstratification efforts to guide local control measures, it is crucial to
carefully consider both the strengths and limitations of the available data and the
testing methods employed.

4.2 Background

Precise mapping of malaria prevalence is crucial for the eventual elimination of the
disease from different localities. In line with World Health Organization (WHO)
guidelines, National Malaria Control Programs (NMCPs) in Africa are increasingly
adopting data-driven stratification of malaria burden, in most cases at either district or
higher regional levels [340–342]. These stratifications involve assessing risk levels
and burden in geographical areas at the subnational level (e.g. zones, regions, and
districts) [341,343,344], and can include fine scale mapping (down to wards and
villages levels) as countries progress towards elimination [345–347]. The data for
such stratification may come from health facilities, active malaria screening during
population surveys, or proxy data sources such as antenatal care clinic
visits [345,348,349].

When developing country-level malaria strategies, the prevalence of malaria,
representing the proportion of confirmed positive cases of Plasmodium falciparum (or
other Plasmodium sp.) among all individuals tested [350,351], can be classified into
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various transmission categories. The WHO has previously used the following cutoff
points for malaria endemicities: below 1% as very low, 1-10% as low, 10-35% as
moderate, and above 35% as high burden malaria stratum [351]. Different NMCPs
may adapt these criteria with slight adjustments based on local epidemiological
insights. For instance, some countries, including Tanzania and Kenya, have used the
parasite prevalence data to categorize their geographic zones as either very low risk
(PfPR < 1%), low risk (1% ≤ PfPR < 5%), moderate risk (5% ≤ PfPR < 30%), or high
risk strata (PfPR ≥ 30%) [341,352]. Another measure that can be used for
generating these strata is the annual parasite incidence (API), which is the number of
diagnostically confirmed malaria cases per 1000 individuals per year and is usually
obtained from health facilities data [351,353]. API estimates are simpler to generate
because they rely on facility-level data, but do not account for sub-clinical malaria
infections, which can also contribute to transmission and impede malaria elimination
effort [354].

National malaria programs usually rely on different actively and passively collected
data to measure malaria burden and monitor the effectiveness of control
measures [355–357]. For instance, Tanzania employs multiple platforms, including
the District Health Information software (DHIS2) populated with data from routine
health facility visits, the Malaria Indicator Surveys (MIS) and Tanzania Demographic
and Health Surveys (TDHS), which are done every 4-5 years through household
surveys, and the school malaria parasite surveillance (SMPS) targeting kids aged
5-16 years during [341,358–360]. A common feature of these established systems is
that most rely primarily on rapid diagnostic tests (RDTs) and
microscopy [349,361,362], though samples are sometime also preserved for PCR
assays.

Microscopy, long used in malaria diagnosis, can quantify parasite loads and identify
different Plasmodium species, which are essential for precise treatment
choices [224,226]. However, its effectiveness depends significantly on the skill and
experience of the microscopist, making it unreliable in some contexts, and it can miss
a substantial number of true infections due to sub-optimal accuracy [308,328,363].
In contrast, Rapid Diagnostic Tests (RDTs) offer a consistent and user-friendly option,
enabling quick, on-site diagnosis without specialized skills or equipment. RDTs have
become widely used in both point-of-care settings and population surveys due to
their operational simplicity and cost-effectiveness [103,197,231,233,364]. While the
technique enhances access to diagnostics, especially in remote areas, RDTs have
lower sensitivity for detecting low-level infections, such as those with <100
parasites/µL of blood, and cannot quantify parasite density. Additionally, current
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RDTs may detect antigens for over three weeks post-treatment especially those
targeting histidine-rich proteins 2 (HPR2), leading to poor specificity and potential
overestimation of malaria cases in high transmission areas [103,364,365].

In contrast, polymerase chain reaction (PCR) assays are known for their high
sensitivity and specificity [366]. While conventional PCR assays typically provide
qualitative information on malaria infections, quantitative PCR (qPCR) can offer
additional quantitative measures of malaria parasite density [296,367]. Unfortunately,
the widespread use of PCR assays for population surveys is hindered by cost
constraints and the need for specialized expertise and infrastructure for
implementation [246,247,366].

The increased focus on evidence-based strategies in malaria control also includes a
transition from broad subnational stratifications to more granular, fine-scale
approaches [345,349]. However, although current methods like RDTs and microscopy
are favored for their operational simplicity, their effectiveness in detailed risk
stratification, which are critical for targeting both clinical and sub-clinical infections for
malaria elimination, remains poorly understood. Some authors have also suggested
that RDTs may have vastly reduced performance in settings where the malaria
burden has been significantly reduced [368]. This calls for a rigorous evaluation and
comparison of these methods against highly sensitive techniques such as qPCR to
refine malaria stratification approaches for malaria elimination. Indeed, available
evidence, including data from Kenya and Tanzania, suggest that PCR assays are
generally better at pinpointing main malaria hotspots in communities than RDTs and
microscopy [228,369]. The study from Tanzania further showed that in subsequent
treatment campaigns relying on RDT-based screening, 45% of infections remain
untreated, even if treatment is offered to all members of households with an infected
individual [369]. In the Kenyan study, the authors went further to suggest that since
detection of hotspots depends on the sensitivity of diagnostic tools, health authorities
working in malaria elimination settings should consider using PCR to guide detection
of the residual hotspots, as this provides greatest opportunities to find asymptomatic
individuals and sub-patent parasite reservoirs in the communities [228].

All these studies clearly show that while sub-national stratification may be the most
effective approach to decide on how to allocate resources, the type of data used for
such epidemiological profiling matters significantly; especially when the stratification
is done at local-sub-district levels. In places like southeastern Tanzania, which has
experienced decades of sustained malaria interventions and progress, and where
robust entomological surveillance already exists [370], addition of detailed parasite
prevalence data from population-level surveys is required to enable more precise,
fine-scale stratifications at both district and sub-district levels.
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The aim of this study was therefore to generate a high-resolution population-level
survey map of P. falciparum prevalence in two districts in south-eastern Tanzania and
to compare the fine-scale malaria strata obtained using data from different test
methods, namely RDTs, microscopy, and qPCR. Additionally, the study evaluated the
performance of RDTs and microscopy relative to qPCR in a range of transmission
settings from high to very low. This study also sought to provide detailed population
survey data on malaria burden to complement the ongoing entomological surveys in
the study area.

4.3 Methods

4.3.1 Study site

The study was conducted in Morogoro region, in south-eastern Tanzania Figure 4.1,
in the two districts of Kilombero (population: 583,000; 8.2414°S, 36.3349°E;
elevation: 270m) and Ulanga (population: 233,000; 8.9889°S, 36.6133°E; elevation:
800m). The average malaria prevalence in the Morogoro region has previously been
estimated to exceed 10%, with P. falciparum as the dominant malaria
species [358,359,371]. The main economic activities for residents include rice
farming, sugarcane farming and maize farming, though the area also has other food
crops and large commercial tree plantations (teak). The known annual rainfall range
is 1200-1400 mm in the lower-lying plains of Kilombero district, and 1400-2100 mm
in the higher areas in Ulanga district [372]. Approximately 90% of the rainfall occurs
during the wet seasons between December to April, with dry seasons typically lasting
from June through September [372]. The annual mean daily temperature is around
27°C in the lowlands and approximately 23°C in the highlands. Relative humidity
averages from 75% in the lowlands to 80% in the highlands.



91

Figure 4.1: Study villages in Kilombero and Ulanga districts, south-eastern Tanzania

4.3.2 Study design, procedures and survey tools

The cross-sectional surveys were conducted once per village, and the entire
surveillance spanned two consecutive years, from 2022 in Ulanga to 2023 in
Kilombero, covering the months of April to September each year. Villages were
randomly selected from each district, and sample sizes were proportionately
determined based on the population of each village using the Cochran formula
adjusted for finite populations [373–375]. The sample size aimed to achieve a 95%
confidence interval with a precision of 5% for each specific village prevalence
estimate see supplementary table 3.

The expected prevalence varied depending on the village and was derived from
previous surveys and health centers within each village, These earlier surveys had
covered a far smaller subset of the areas, and yielded prevalence rates from as low
as 1% to as high as 45% (Minja et al. 2019, unpublished). However, for villages
without these population surveys, health-facility data or prevalence estimates from
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neighboring villages were utilized. Based on the estimated sample sizes per village,
representative households were determined, assuming an average household size of
three individuals. Households were selected by randomizing the names of all
households obtained from the respective village administrations. This selection
ensured equal representation of households from each sub-village, thereby covering
all parts of the village. The selected households were visited and recruited if they
consented.

The screening criteria included individuals aged 5-60 years who had not taken
malaria medications in the preceding two weeks. This precaution aimed to prevent
potential overestimation by RDTs, as they may detect residual traces
post-treatment [376]. Individuals needing special medical attention, such as pregnant
women, were excluded from the study. All eligible individuals in selected households
were allowed to participate. Each participant who underwent malaria screening was
assigned a unique identification number that was also linked to their corresponding
household ID. On-site finger-prick blood samples were collected for three diagnostic
tests: 1) RDTs, 2) creating thick and thin blood smears, and 3) collecting 3–5 dried
blood spots (samples) on Whatman 903 protein saver cards. Subsequently, these
samples were transported to the reference laboratory for microscopy and qPCR
analysis.

4.3.3 Ethical considerations, survey team, and trainings

Permission to conduct this study was obtained from the Ifakara Health Institute
Review Board (Ref: IHI/IRB/No: 1/2021) and the National Institute for Medical
Research-NIMR (NIMR/HQ/R.8a/Vol. 1X/3735). Additionally, approvals were
obtained from regional, district, ward, and respective selected village authorities
before commencing the surveys, given the screening was done at centralized
location in each village. Written informed consent was obtained from individual adult
participants (and parents or guardians of those aged below 18) on the day before the
actual testing. The study team consisted of 11 members, including three molecular
laboratory technologists, four licensed medical laboratory microscopists, two
licensed clinical officers, and two social scientists. Prior to the survey
commencement, a five-day training session was conducted at the Ifakara Health
Institute laboratory. This training covered explanations of the study protocols, pilot
implementations, procedures for protecting human participants, quality assurance
and training on data collection tools.
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4.3.4 Tests using malaria rapid diagnostic tests (RDTs)

A small blood drop obtained through a finger prick was collected onto the RDTs (SD
Bioline Ag Pf /Pan), following the manufacturer’s instructions. The buffer solution was
applied according to standard RDTs procedures and left on the bench surface for up
to 20 minutes. The type RDT used were capable of detecting P. falciparum infections
by targeting histidine-rich proteins 2, which react on the Pf -line. Additionally, they
could detect P. malariae. P. vivax, and P. ovale by targeting glycolytic lactate
dehydrogenase, expressed by the Pan-line on RDTs [103]. The RDT results were
recorded on a paper form, and any individuals who tested positive for malaria were
promptly treated with Arthemether Lumefantrine (ALu), following Tanzania’s national
malaria treatment guidelines [377].

4.3.5 Tests using microscopy

Thick and thin blood smears were created in the field, stained with 10% Giemsa for
15 minutes then examined for the presence of malaria parasites under oil immersion
at 100X magnification [374,378,379]. Two experienced microscopists independently
read the slides, and discrepancies between them were resolved by a third, more
experienced microscopist. They read the thick smear first, and if an infection was
detected, the thin smear was read to identify parasite species. The presence of both
asexual and sexual malaria parasite stages discriminating P. falciparum, P. malariae,
and P. ovale was recorded. Asexual stage parasites were counted per 200 white
blood cells and assuming 8000 WBC/μL [380]. The mean count of malaria parasite
by microscopy between the two readers was calculated and confirmed by the third
reader.

4.3.6 Tests using real-time qPCR assays

A representative sample of approximately two thirds of all samples was randomly
selected from each village and screened further by quantitative polymerase chain
reaction (qPCR) i.e. 4905 samples out of the total 7628 samples. Out of the five
spots on the Whatman protein saver card, three were punched using a handheld
6mm slot hole puncher. These punched spots were then used for DNA extraction with
the Quick-DNA𝑇𝑀 Miniprep Plus Kit (Zymo Research, USA) [381], and eluted with50
μL of elution buffer, stored at -20°C for further detection and quantification of P.
falciparum infections using probe-level allele-specific quantification (PlasQ)-multiplex
qPCR assays protocols [367,382,383]. The detection and quantification of P.
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falciparum parasites were performed using the Bio-Rad CFX96 real-time PCR
system (Bio-Rad Laboratories, USA) [382] and analyzed with Bio-Rad CFX maestro
software. The qPCR reaction, PlasQ primers and probes mix, are summarized in
supplementary Table S4.1 & Figure S4.2. DNA amplification processes included:
activation at 95°C for 1 min, denaturation at 95°C for 15 seconds, and annealing and
elongation at 57°C for 45 seconds for 45 cycles, followed by melting [382].

The qPCR assays were run with positive controls (samples with confirmed P.
falciparum) and a non-template control (samples with no P. falciparum as negative
control). For absolute parasite quantification, the WHO international standard for P.
falciparum nucleic acid amplification techniques were used (WHO reference from
NIBSC#04/176) [367]. The standard was reconstituted following the manufacturer’s
instructions and serially diluted in the range of 100,000 parasites/μL to 0.01 and
analyzed in triplicates.

During the qPCR assay, the prepared standards were run together with unknown
samples, and at the end of the assay, the standard curve and samples were
normalized and analyzed with Bio-Rad CFX maestro software. The obtained
normalized Ct values of the samples and the linear regression equation derived from
the standard curve were used to calculate the parasites density of the unknown
samples, expressed as parasites per microlitre (parasites/μL) of blood.

4.3.7 Malaria stratifications (PfPR) categories

Malaria stratifications generally rely on predefined PfPR categories, with NMCPs
adopting WHO definitions. In this study, which focuses on fine-scale stratifications at
the village level (the lowest administrative boundaries), PfPR categories predefined
in a study conducted in mainland Tanzania were adapted [341,345]. These
categories stratify malaria risk at the council level, which is also considered fine
scale, as it is below the district level [345]. The arbitrary risk categories used are:
very low risk (PfPR <1%), low risk (1% ≤ PfPR <5%), moderate risk (5% ≤ PfPR
<30%), and high risk (PfPR ≥30%). In this study, the strata were defined as
fine-scale because they were performed at the village level using data derived from
village prevalence estimates.
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4.3.8 Data analysis

All results from RDTs, microscopy, and qPCR were entered into the Open Data Kit
(ODK) system [384], and subsequently downloaded as an excel file for further
cleaning. The datasets for RDTs, microscopy, and qPCR results were merged based
on the participant’s ID using the Pandas Python package [385]. Generalized linear
mixed models (GLMMs) with a binomial distribution were utilized to evaluate the
relationship between malaria infection risk and the predictors age and gender. These
models were implemented using the R statistical software, where random effects for
both Village and House ID were incorporated to address the hierarchical structure
and intra-cluster correlations within the dataset.

Additionally, to evaluate the performance of RDTs and microscopy in fine-scale
malaria stratifications compared to qPCR, their agreement was tested using Kappa
statistic [386], and the resulting Kappa values interpreted as follows: κ�<�0.20 as poor
agreement, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantially
good and 0.81–1 as almost perfect agreement [387]. In addition, the positive
predictive value (PPV) for RDTs and microscopy was computed, using qPCR results
as the reference, per village, as (proportion of positive test results that are actually
true positives, estimated as PPV = True Positives / (True Positives + False Positives)).
Fine-scale stratification by villages was performed using data from qPCR, RDT, and
microscopy to generate prevalence maps with QGIS software version 3.26, enabling
visualization of malaria prevalence across the study area. To further analyze this
data, we employed Inverse Distance Weighting (IDW) interpolation techniques. IDW
estimates values at unsampled locations by weighting observed data points inversely
to their distance, creating a smooth, continuous surface [388]. This method was
applied to the malaria prevalence data from RDTs, microscopy, and qPCR for each
village, producing continuous surfaces that visually depict spatial variations in
malaria risk across the study area.

The geometric mean of parasite density, estimated by microscopy and qPCR, was
calculated for each village. These densities were also statistically compared across
different gender and age groups within each village. The non-parametric
Mann-Whitney statistics were used to compare the parasite densities between two
categorical groups, while Kruskal-Wallis statistical tests were used to compare more
than two categorical groups [389,390]. For example, differences in parasite densities
between age groups were tested using Kruskal-Wallis statistics, and if statistically
significant, the Mann-Whitney statistics were applied for pairwise statistical
significance tests. All analyses comparing parasite densities excluded the negative
cases and focused solely on investigating parasite density distribution among
malaria-positive patients within each respective village. Lastly, to test for statistical
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correlations between parasite prevalence and parasite densities estimated by both
qPCR and Microscopy, non-parametric Spearman’s rank correlation tests were
employed [391]. Additionally, a logistic regression model was used to evaluate the
probability of detecting malaria infections (positive or negative) with both RDTs and
microscopy at varying parasite densities estimated by qPCR.

4.4 Results

Baseline study population: This survey covered 35 villages across Ulanga and
Kilombero districts. A total of 7,628 participants (>5 years) were recruited upon
consent and tested for malaria using RDTs and microscopy. The number of
participants tested per village ranged from over 160 to 449. Additionally, 64.3% of
these participants (4,905) were also tested using qPCR Figure 4.2. Males comprised
38% of the study population, while females made up 62%. Among the participants,
35% were school-aged children (5-15 years), and 65% were aged 16 years and
above Figure 4.1.
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Figure 4.2: Schematic representation of the study sampling procedures

4.4.1 Malaria prevalence by RDTs, Microscopy and qPCR

In the Ulanga district, malaria transmission was found to be high by both qPCR and
RDTs, with P. falciparum prevalence rates of 53.89% [95% CI, 52.06-55.72] and
38.35% [95% CI, 36.92-39.79] respectively. However, microscopy categorized it as
moderate, with a prevalence rate of 26.07% [95% CI: 24.77-27.36] (Table 4.2). Within
this moderate to high transmission strata in Ulanga, males had a significantly higher
prevalence of malaria compared to females. The odds ratios of malaria infection in
males compared to females were estimated as 1.6 [95% CI: 1.4-1.8] (P < 0.001) by
RDTs, 1.4 [95% CI: 1.2-1.6] (P < 0.001) by microscopy, and 1.5 [95% CI: 1.2-1.7] (P
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Table 4.1: Baseline characteristics of the study populations

Kilombero District n (%) Ulanga District n (%) Total N (%)

Villages 19 (54.3) 16 (45.7) 35
Sub Villages 48 (51.6) 45 (48.4) 93

Gender

Female 2164 (67.4) 2573 (58.3) 4737 (62.1)
Male 1047 (32.6) 1844 (41.7) 2891 (37.9)
Total 3211 4417 7628

Age Group

5-10 years 519 (16.2) 935 (21.2) 1454 (19.1)
11-15 years 400 (12.5) 802 (18.2) 1202 (15.8)
16-20 years 198 (6.2) 333 (7.5) 531 (7.0)
>20 years 2094 (65.2) 2347 (53.1) 4441 (58.2)
Total 3211 4417 7628

< 0.001) by qPCR (Table 4.2). All tests - RDTs, microscopy, and qPCR - indicated
that school-age children (5-15 years) had a significantly higher prevalence of malaria
infections than the other age groups, (P<0.001), refer (Table 4.2).

In Ifakara council, within the Kilombero district, both RDTs and microscopy
categorized the area as a low risk stratum, with observed prevalence rates of 2.68
[95% CI: 2.12-3.24] and 1.84 [95% CI: 1.37 – 2.30], respectively (Table 4.3). However,
qPCR classified Kilombero district as a moderate risk stratum with a prevalence rate
of 8.77 [95% CI: 7.55-9.99] (Table 4.3). Notably, there were no statistically significant
differences in malaria infection risk between males and females in this low to
moderate transmission setting, as indicated by both RDTs (Odds ratios 1.2% [95%
CI; 0.8, 2.], P=0.361) and microscopy (Odds prevalence 1.33% [95% CI; 0.7, 2.0],
P=0.521), as well as qPCR (Odds ratios 1.2% [95% CI: [0.7-1.4], P = 0.941).
Additionally, school-age children (5-15 years) exhibited a significantly higher risk of
malaria infections compared to those 16 years old and above, as demonstrated by
both RDTs and microscopy (P<0.001). However, qPCR demonstrated no significant
difference between the two groups (P<0.124) (Table 4.3).
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Table 4.2: Malaria prevalence in Ulanga district by sex and age groups, as measured using RDTs, microscopy and qPCR

RDTs Microscopy qPCR

Attribute Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value

Overall
prevalence

1689/4404 38.4
[36.9-39.8]

- - 1148/4404 26.1
[24.8–27.4]

- - 1531/2841 53.9
[52.1-55.7]

- -

Sex

Female 874/2566 34.1
[32.2-35.9]

Ref 593/2566 23.1
[21.5–24.7]

Ref - 830/1659 50.0
[47.6-52.4]

Ref -

Male 815/1838 44.3
[42.1-46.6]

1.6
[1.4-1.8]

<0.001 555/1838 30.2
[28.1-32.3]

1.4
[1.2-1.6]

<0.001 701/1182 59.3
[56.5-62.1]

1.5
[1.2-1.7]

<0.001

Age group

5-15 years 976/1734 56.3
[53.9 -
58.6]

Ref 699/1734 40.3
[38-42.7]

Ref - 693/1156 59.9
[57.1-62.8]

Ref -

≥ 16 years 713/2670 26.7
[25 - 28.4]

0.3
[0.2-0.3]

0.001 449/2670 16.8
[15.4-18.3]

0.3
[0.3-0.4]

<0.001 838/1685 49.7
[47.3-52.1]

0.3
[0.2-0.3]

<0.001
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Table 4.3: Malaria prevalence in the Kilombero district by sex and age groups, as measured using RDTs, microscopy and qPCR

RDTs Microscopy qPCR

Attribute Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value Positive/
Total
tested

Prevalence
(%)
[95% CI]

Odds
ratios
[95%CI]

P-value

Overall
prevalence

86/3211 2.7
[2.1-3.2]

- - 59/3211 1.8
[1.4 – 2.3]

- - 181/2064 8.8
[7.6-10.0]

- -

Sex

Female 50/2164 2.3
[1.7-2.9]

Ref - 36/2164 1.2
[1.1-2.2]

Ref - 118/1385 8.5
[7.1-10.0]

Ref -

Male 36/1047 3.4
[2.3-4.5]

1.2
[0.8-2.0]

0.361 23/1047 2.2
[1.3 – 3.1]

1.2
[0.7-2.1]

0.521 63/679 9.3
[7.1-11.5]

0.9
[0.7-1.4]

0.941

Age group

5-15 years 38/919 4.1
[3-5.7]

Ref 26/919 2.8
[1.9-4.2]

Ref - 61/599 10.2
[7.9-13]

Ref -

≥ 16 years 48/2292 2.1
[1.6-2.8]

0.5
[0.3-0.8]

0.008 33/2292 1.4
[1-2.1]

0.5
[0.3-0.9]

<0.021 120/1465 8.2
[6.9-9.7]

0.6
[0.3-1.2]

<0.124
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4.4.2 Micro-stratification of malaria risk using data collected by
qPCR, RDTs, and microscopy.

Significant variability in malaria infections was observed at the individual village level,
with prevalence rates ranging from 0% to over 50% across the study area (Figure 4.3
& Table 4.4). Additionally, the method used to test for malaria significantly impacted
the risk categorization of villages. Among the 35 villages surveyed, qPCR data
indicated that only one village (1.2% of all villages) had very low malaria prevalence
(PfPR < 1%). In contrast, RDTs identified 12 villages (34.3% of all villages) and
microscopy identified 11 villages (31.4% of all villages) as having very low
prevalence. For moderate transmission, qPCR, RDTs, and microscopy categorized
15, 9, and 8 villages, respectively. For high transmission, qPCR identified 14 villages,
RDTs identified 8, and microscopy identified 6. Notably, qPCR detected more malaria
infections than RDTs and microscopy, resulting in many villages being classified into
higher transmission categories. Overall, using qPCR data, over 80% of the villages
were classified as moderate to high risk, significantly higher than the 48% classified
by RDTs and 40% by microscopy. Conversely, while only 17% of the villages were
classifiable as having low or very low malaria risk based on qPCR data, as high as
51% and 60% of the villages were classified into these same categories based on
RDT and microscopy data (Table 4.4 and Figure 4.4).
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Figure 4.3: Fine-scale malaria mapping of 35 surveyed villages in the Ulanga and
Kilombero districts using qPCR, RDTs, and microscopy data is shown in the top
panel. The bottom panel indicates malaria risk generated by interpolating prevalence
data obtained for each surveyed village by qPCR, RDTs, and Microscopy. Categories
defined based on calculated prevalence rates as either very low risk (PfPR <1%), low
risk (1% ≤ PfPR <5%), moderate risk (5% ≤ PfPR <30%), or high risk (PfPR ≥30%)
(total number of villages = 35.
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Table 4.4: Number of villages categorized into different risk strata based on the P.
falciparum prevalence rate (PfPR) data from qPCR, RDTs, and microscopy

Risk strata 0.98Prevalence qPCR RDTs Microscopy

No. % No. % No. %

Very low PfPR < 1% 1 2.9 12 34.3 11 31.4

Low 1% ≤ PfPR < 5% 5 14.3 6 17.1 10 28.6

Moderate 5% ≤ PfPR < 30% 15 42.9 9 25.7 8 22.9

High PfPR ≥ 30% 14 40.0 8 22.9 6 17.1

Total 35 100.0 35 100.0 35 100.0

Figure 4.4: Percentage of villages categorized by different testing methods as either
very low risk (PfPR <1%), low risk (1% ≤ PfPR <5%), moderate risk (5% ≤ PfPR
<30%), or high risk (PfPR ≥30%) (total number of villages = 35)

4.4.3 Comparison of the perfomance of RDTs and microscopy
relative to qPCR.

In this comparative analysis, only samples tested by all three methods—PCR, RDTs,
and microscopy—were included (n = 4905). Among these, qPCR identified 1712
(34.9%) positives, respectively (Table 4.5 and Figure 4.5).
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Table 4.5: Overall prevalence in the 35 surveyed villages estimated using qPCR, RDTs,
and microscopy. Additionally, the table summarizes the proportion of malaria positive
samples missed by RDTs and microscopy when qPCR is used as the reference.

No. tested Pf. Positive Prevalence

qPCR 4905 1712 34.90%
RDTs 4905 1289 26.30%
Microscopy 4905 843 17.20%

Proportion of missed positives when qPCR is the reference

Total Positive by PCR Sample missed (%) of missed Positive

RDTs 1712 650 37.90%
Microscopy 1712 1009 58.90%

Both RDT and microscopy missed several infections otherwise identified by qPCR.
This category of false negatives included cases where qPCR identified a sample as
positive, but microscopy identified it as negative, cases classified as positive by
qPCR but negative by RDTs, and cases where RDTs indicated positive results while
microscopy indicated negative result. Out of the 1712 positives detected by qPCR,
RDTs missed 650 (37.97%) and microscopy missed 1009 (58.9%) (Table 4.5).
Additionally, when comparing microscopy to RDTs, microscopy failed to detect
45.46% (586/1289) of malaria infections detected by RDTs. RDTs correctly identified
1062 (62.03%) samples as true positives, while microscopy identified 703 (41.06%)
as true positives (Table 4.6). Furthermore, RDTs misclassified 227 (7.10%) samples
as false positives, while microscopy misclassified 140 (4.38%) (Table 4.6). More
importantly, 56 samples were classified as positive by both RDTs and microscopy but
were missed by qPCR Figure 4.5).
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Figure 4.5: The Venn diagram illustrates positive samples detected exclusively by a
specific tool while the other two missed them (qPCR only: 594 positive, RDT only: 171
positive, Microscopy only: 84 positive). Additionally, it shows intersections indicating
positive detection by two tools when one detects negative (qPCR & RDT: 415 positive;
qPCR & Microscopy: 56 positive; RDT & Microscopy: 56 positive). It also indicates
intersections where all tools detect positive samples (qPCR, RDT, & Microscopy: 647
positive).
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Table 4.6: Evaluation metrics for assessing the performance of RDTs and microscopy
relative to qPCR during the fine-scale stratification of malaria risk in Ulanga and
Kilombero districts, southeastern Tanzania. The evidence from other published studies
serves only as a descriptive summary for comparison purposes.

Test characteristics RDTs Microscopy (Thick smear)

True Positives (PCR
positive = 1712)

1062 703

False Positives (PCR
negative)

227 140

True Negatives (PCR
negative = 3193)

2966 3057

False Negatives (PCR
positive)

650 1009

Sensitivity [95% CI] 62.0% [95% CI: 60.0-64.2] 41.0% [95% CI: 38.8-43.4]

Specificity [95% CI] 92.9% [95% CI: 92.0-93.7] 95.6% [95% CI: 94.9-96.3]

Positive Predictive
Value [95% CI]

82.4% [95% CI: 80.3 -84.4] 83.4% [95% CI: 80.8-86.0]

Negative Predictive
Value [95% CI]

82.0% [95% CI: 80.7-83.2] 75.2% [95% CI: 73.8-76.4]

Kappa value [95% CI] 0.7 [95% CI: 0.6-0.8] 0.5 [95% CI: 0.4-0.6]

Accuracy 82.1% 76.57%

4.4.4 Positive predictive values (PPVs), sensitivity, specificity,
and agreement of RDTs and microscopy when compared
to qPCR.

Considering qPCR as the benchmark, the sensitivity (the proportion of actual
positives which were correctly identified as such) of RDTs was 62.0% [95% CI:
60.0-64.2], while that of microscopy was 41.0% [95% CI: 38.8 - 43.4]. The specificity
(proportion of actual negatives which were correctly identified as such) was 92.9%
[95% CI: 92.00-93.7] for RDTs and 95.6% [95% CI: 94.9- 96.3] for microscopy
(Table 4.6). Overall, the positive predictive value (PPV), i.e. the probability that
individuals with a positive test result actually have true infection, was 82.4% [95% CI:
80.3 -84.4] for RDTs and 83.4% [95% CI: 80.8-86.0] for microscopy (Table 4.6).
Importantly however, the PPV for both RDTs and microscopy varied with malaria
endemicity, generally increasing with prevalence, ranging from less than 20% in very
low transmission areas to over 80% in high transmission areas (Figure Figure 4.6).
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When considering the micro-strata generated using qPCR data, the PPV of RDTs
and microscopy started at 0% in very low risk strata and gradually increased to >80%
as villages shifted towards high risk strata (Figure 4.6A). However, when referring to
the strata generated using RDTs data (Figure 4.6B), the PPV of both RDTs and
microscopy started at 20% in very low risk strata and gradually increased to >80% in
high-risk strata. The agreement between RDTs and qPCR was good (Kappa value =
0.58 [95% CI: 0.56-0.61]), while the agreement between microscopy and qPCR
showed fair agreement (Kappa value = 0.42 [95%CI: 0.39-0.44]), (Table 4.6).

The sensitivity of both RDTs and microscopy varied by age, where RDTs sensitivity
was higher for school-aged children (>80%) and dropped to 75% and 60% for 16-20
years and >20 years, respectively (Figure 4.6C). A similar trend of sensitivity was
observed for microscopy (Figure 4.6C), indicating that RDTs and microscopy perform
better in detecting malaria in school-aged children compared to adults.

The relationship between parasite density and the malaria detection probability by
RDTs and microscopy was also examined. In this analysis, the probability of RDTs
detecting positive malaria infections was maximized reaching 1 at 100 parasites/μL,
where the logistic regression (logit (p)) model saturated (Figure 4.6D). At this density
in contrast, the probability of microscopy to detect malaria infections was only 0.85%
(Figure 4.6D), suggesting higher sensitivity of RDTs vs microscopy.
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Figure 4.6: Estimates of the positive predictive values (PPVs) of RDTs and microscopy
at different malaria endemicities across the study villages, defined based on either
qPCR data (A) or RDT data (B). Panel C) illustrates the trend of sensitivity of both RDTs
and microscopy relative to age groups. Panel D) displays the detection probability of
both RDTs and microscopy relative to the parasite density estimated by qPCR.

4.4.5 Parasites density estimates and their correlations with
Plasmodium prevalence

Further, asexual parasite densities estimated by both microscopy and qPCR were
investigated and compared across different sex and age groups using Mann-Whitney
statistics for two categories and the Kruskal-Wallis statistical test for more than two
categories. Overall, PCR was capable of detecting approximately 100 fold lower
parasite densities compared to microscopy. The geometric mean asexual parasite
density estimated by microscopy was 2206.4 parasites/μL (95% CI: 1976.7-2462.8),
while that estimated by PCR was 27.07 parasites/μL (95% CI: 23.23-31.54).

The asexual parasite density of infected individuals significantly differed between
males and females as estimated by qPCR (P < 0.001), with males harboring a higher
parasite density compared to females, though similar trend was observed by
microscopy, this sex difference was not statistically detectable by microscopy (P =
0.11). Importantly, the geometric mean parasite density estimated by both
microscopy and qPCR per village demonstrated a significant positive correlation with
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the parasite prevalence of the respective village. Thus, villages with high malaria
prevalence also had high malaria parasite densities compared to villages with lower
prevalence (Figure 4.7C-F). Considering qPCR-estimated geometric mean parasite
densities, the Spearman rank correlation score was 0.77 (P < 0.001) and 0.76 (P <
0.001) when the malaria prevalence of the villages was estimated by qPCR and
RDTs, respectively (Figure 4.7C & Figure 4.7E). On the other hand, the Spearman
rank correlation for the parasite density estimated by microscopy was 0.55 (P <
0.003) and 0.48 (P < 0.012) for qPCR and RDTs estimated prevalence of the villages,
respectively (Figure 4.7D & Figure 4.7F). When parasite density by age groups were
analyzed, both microscopy and qPCR revealed a significant difference in estimated
malaria parasite densities between age groups based on Kruskal-Wallis statistics (P
< 0.001). Pairwise tests by Mann-Whitney statistics revealed that school-aged
children (5-15 years old) harbored a higher parasite density than those 16 years old
and above (P < 0.001) as indicated by both microscopy and qPCR (Figure 4.7A &
Figure 4.7B)
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Figure 4.7: Geometric mean parasite densities per age group estimated by A)
qPCR and B) microscopy. Panel C (density estimated by qPCR) and Panel D
(density estimated by microscopy) show the correlation between parasite density
and prevalence estimates by qPCR. Panels E (density estimated by qPCR) and F
(density estimated by microscopy) show the correlation between parasite density and
prevalence estimates by RDTs.
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4.5 Discussion

In malaria-endemic countries, data-driven risk stratification is increasingly used at
district or higher regional levels to guide intervention strategies and optimize
resource allocation. Additionally, the geographical variations in levels of endemicities
and the shift towards elimination in some settings necessitates finer resolution for
optimal resource allocation [345,349,392]. In most settings in Africa, the data used
for epidemiological stratification of malaria typically comes from rapid diagnostic tests
(RDTs) or microscopy-based testing, which despite wide scale availability and low
operational costs, often perform poorly in low transmission settings [228,248,393].
While direct comparisons of these diagnostic tools for fine-scale stratification are
currently limited, selecting the most appropriate data sources and testing methods is
crucial, as different methods can yield significantly different results depending on
endemicity, particularly in elimination settings. Even without alternative testing
methods, data users and decision-makers need to understand the limitations of their
selected approaches, especially the weaknesses of current dominant data sources
like RDTs or microscopy. In this study, we conducted a high-resolution survey of P.
falciparum malaria in two Tanzanian districts, comparing fine-scale strata obtained
using RDTs, microscopy, and qPCR assays.

The study showed significant variability in malaria risk at a fine scale. Within less
than 150 kilometers, malaria prevalence estimates ranged from 0% to over 50%
across contiguous villages in an area broadly classified as moderate risk ( 17%
PfPR) by recent government stratification [371]. Such fine-scale variability is not
uncommon and has been observed in several other settings [394]. In one study in
Madagascar, there was a tenfold difference of malaria prevalence within a radius of
less than 50 kilometers [395]. For precise micro-stratifications, this study emphasizes
the importance of carefully selecting diagnostic tools, especially for local malaria
elimination efforts. Our findings indicate that RDTs and microscopy have poor
positive predictive values, which can be even less than 20% in villages with very low
and low transmission as the proportion of truly infected individuals is very small
compared to non-infected persons. There were also significant discrepancies in the
resulting micro-strata depending on the test method used. For instance, among the
35 surveyed villages, RDTs and microscopy classified 12 and 11 as very low and 6
and 10 as low risk strata, respectively, while qPCR identified only 1 village as very
low and 5 as low transmission. This means RDTs and microscopy classified majority
of the villages as very low to low risk while qPCR classified most villages as
moderate to high risk (Table 4.4).
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Clear demarcation of areas with very low to low risk versus those with moderate to
high risk is essential, particularly in the push towards elimination. As countries
increasingly adopt data-driven decision-making for malaria control, there is a risk of
improper resource allocation or premature withdrawal of effective interventions from
localities erroneously deemed as nearing elimination. Local authorities need to
decide which data to use for local-level micro-stratification and whether RDTs,
commonly used for broader-scale sub-national stratification, suffice for fine-scale
local decision-making. Previous evidence has shown that hotspots identified by RDTs
are less stable than those identified by microscopy and PCR [228]. Hotspots of
febrile malaria infections are also generally unstable and variable over geographical
spaces, while hotspots of asymptomatic cases tend to be more permanent and can
be more practically targeted for transmission control [396]. In this current study, we
also found significant positive correlations between malaria parasite densities and
malaria prevalence in southeastern Tanzania, emphasizing the need to incorporate
tests that depict sub-microscopic infections into malaria stratification and decision
making to better target the hotspots. As already reported in other studies, villages in
our study area, which were classified as low transmission areas had lower geometric
mean parasite density compared to those with higher transmission rates.

Our findings, benchmarked against qPCR, reveal limited detection capabilities of
RDTs and microscopy in overall fine-scale stratifications, especially in low
transmission settings. Previous studies have emphasized the usefulness of routine
hospital data for micro-stratifications [347,349,397,398]. However, evidence
indicates that both microscopy and RDTs are less effective in identifying stable febrile
malaria hotspots, except for asymptomatic hotspots, which are reliably identified by
microscopy [396], however still not stable when transmission is low [306]. Our
research underscores the importance of identifying subclinical infections using
sensitive tools to advance malaria elimination, particularly through fine-scale
population surveys. Additionally, there is evidence suggesting potential benefits from
integrating hospital and school-age children survey data or even antenatal care
centers [341,348]. Nevertheless, these approaches heavily rely on rapid diagnostic
tests (RDTs) as the primary tool for malaria detection. While the World Health
Organization (WHO) recommends monitoring RDT performance alongside
microscopy, our study is particularly relevant as we have directly compared the
fine-scale stratification capabilities of RDTs, microscopy, and qPCR at a fine scale.

This study demonstrated overall good agreement between RDTs and qPCR, while
microscopy showed fair agreement. However, RDTs missed over 38% of malaria
infections, particularly among adults over twenty years old, who were found to harbor
lower parasite densities compared to those under twenty years old. However, RDTs
remain useful in testing fever-positive malaria cases in hospitals and are widely
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employed in population surveys due to their cost-effectiveness and ease of
implementation [231]. As evidenced in this study, carefully re-consideration of using
RDTs for finer-scale mapping and intervention planning at sub-district level should be
a priority. Similarly, microscopy missed >50% of the malaria infections detected by
qPCR, which is consistent with previous studies, including a meta-analysis of 42
studies, which showed that microscopy misses over 50% of malaria
infections [308,399]. Operational challenges, such as the level of expertise required
for accurate detection and the need for electricity and precise sample handling
procedures, contribute to these limitations. Interestingly, microscopy underestimated
malaria risk by classifying more villages as low strata compared to qPCR.
Nonetheless, microscopy still plays a crucial role when used in conjunction with tools
like RDTs, providing valuable information about malaria parasite
densities [174,400,401]. Here, we estimate a 100-fold higher parasite density when
measured by microscopy compared to densities measured by qPCR, consistent with
similar trends observed in previous studies [382]. The findings of this study also
indicate that the false-negative rate of microscopy decreases with increasing parasite
density, a pattern observed in other studies too [400].

The analysis also revealed variations in parasite densities across different age
groups, with school-age children (5-15 years old) exhibiting higher parasite densities
compared to individuals aged 16 and above. Notably, our study identified a reduced
sensitivity of both RDTs and microscopy among adults aged over 16 years,
consistent with findings from prior studies conducted before 2015 in various
regions [402–409]. It is possible that this pattern is driven by age-related differences
in malaria parasite prevalence, as observed in Table (Table 4.3), and may be
confounded by unequal sampling of the age distribution. Furthermore, our findings
suggest that this trend may be attributed to the lower parasite density estimates
observed in adults within the study (Figure 4.7A & Figure 4.7B). Significantly, our
research provides valuable insights, highlighting the potential implications of these
trends, particularly in fine-scale mapping scenarios, where RDTs and microscopy
may underestimate burden at very low and low transmission strata, with qPCR
serving as the reference standard in this study.

When selecting a tool for a stratification exercise, it is crucial to consider several key
operational factors. First, to assess whether transmission levels are sufficiently low to
require a high-sensitivity tool capable of differentiating between locations with the
lowest prevalence. This was exemplified in much of this study area, especially in the
northern zones where qPCR was clearly more sensitive than RDTs and microscopy.
Second, evaluate the logistical and cost implications associated with using each tool
for testing individuals. Finally, consider the ethical requirements and the ability to
provide immediate results and treatment when necessary. Ultimately, when aiming to
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achieve more precise fine-scale mapping of malaria infections to facilitate more
accurate resource allocation, the choice of testing tools should be based on the
balance between sensitivity and operational feasibility.

Sensitive molecular tools like qPCR are available, but qPCR has operational
challenges, including the need for well-designed infrastructure, high costs, and
expertise, and it is not portable for remote areas. Efforts are underway to develop
portable qPCR technologies, but cost and expertise remain significant barriers. To
address these gaps, NMCPs should develop innovative plans, which might include:
a) establishing centralized facilities for receiving and processing qPCR samples and
conducting such surveys infrequently, such as every 3 years; b) partnering with local
research organizations to support high-accuracy evaluations using nucleic
acid-based tests; c) exploring alternative methods for micro-stratification, such as
geo-spatial modeling that integrates information such as land use, elevations, and
other environmental factors, and potentially combining facility and population survey
data. A related point to emphasize is the overall need for highly sensitive,
cost-effective, and potentially reagent-free tools that align with the economic context
of malaria-endemic settings. Recent innovations such as high/ultra-sensitive RDTs,
the saliva-based tests [410] or the use of Infrared spectroscopy (IR) and machine
learning (ML) [174,411] have shown promise in detecting malaria infections at
sensitivities equivalent to PCR, but further research are needed before these
technologies can be routinely deployed. Such reagent-free assays like the IR-AI
based approaches would be particularly transformative for scaling up effective micro
stratification of malaria risk in Africa.

It is important to recognize that prevalence rates obtained from different tests are not
directly comparable; for example, a 5% prevalence detected by RDTs does not
equate to 5% detected by PCR. Therefore, in some cases, the ranking of prevalence
is more critical than the exact rates. In some cases, ranking prevalence may be more
critical than the exact rates. Additionally, variations in sample sizes should be
considered, especially in fine-scale stratifications, as confidence intervals (CIs) may
cause overlap across strata. Therefore, it is important to assess stratifications based
on prevalence CIs rather than relying solely on point estimates. In this study Despite
some villages spanning two or three strata based on their CIs, RDTs and microscopy
still classified more villages as very low to low risk, while qPCR frequently classified
them as moderate to high (see Supplementary Table 4).

More importantly, the need for more detailed data becomes crucial when stratification
occurs at local scales, such as comparing wards or villages within districts, as done
in this paper, rather than at the national level, where regions or districts are
compared. While most malaria stratifications are currently conducted at national and
sub-national levels using RDTs and sometimes microscopy, this study highlights that
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the choice of test methods can influence decision-making and overall control
strategies, especially in finer-scale stratifications. Determining appropriate public
health decisions was beyond the scope of this study and may vary depending on the
scale of stratification. However, we emphasize that decision-making should consider
the strengths and limitations of the available data when planning stratifications.
Additionally, countries may therefore establish locally relevant thresholds for deciding
which interventions to implement or withdraw.

This study also raised some important new questions. For example, it is interesting to
observe that areas with low transmission also have persistently low parasite
densities compared to those in higher transmission settings, which are usually
reported to acquire immunity and become protective. Although this phenomenon of
low parasite density in low transmission areas was not explored in detail in this study,
it could suggest residual immunity among individuals due to recent declines in
transmission or potential migration of participant [412]. Studies have demonstrated
that in low transmission areas, highly virulent parasites are more exposed to facilitate
malaria transmission by mosquitoes compared to low virulent ones [413].
Consequently, high virulent parasites are detected and treated, leading to their
removal from the population [413]. This leaves behind low virulent parasites that are
less exposed and maintain low densities, becoming symptomatic, undetectable, and
untreated [414]. This phenomenon may contribute to long-term parasite transmission
strategies, highlighting the importance of using highly sensitive tools for
screening [382,413,415].

In interpreting the findings of this study, several limitations should be considered. The
IDW technique used here is primarily intended for visualizing general trends in
malaria risk rather than providing precise prevalence estimates or specific risk levels
for each village (both sampled and unsampled). Unlike the exact data shown in the
top panel of Figure 3, IDW interpolation is subject to smoothing effects, particularly in
areas with fewer data points, which may reduce the accuracy of the maps. Villages
without data may contribute to differences, such as the appearance of low-risk areas
in the southern regions, where actual values could range from moderate to high.
Nonetheless, this approach effectively visualizes likely malaria risk patterns in
unsampled areas by using known data from sampled villages, based on the results
of different screening methods. Furthermore, seasonal variations are expected to
influence village-level prevalence estimates and, consequently, the distribution of
malaria risk. However, seasonality does not affect the primary objective of this study,
which is to evaluate the performance of qPCR, RDTs, and microscopy for fine-scale
stratification.
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This study also did not account for all factors that may contribute to the broader
heterogeneity of malaria infections in southeastern Tanzania. It is crucial for future
studies to also investigate how different categorizations of malaria prevalence-based
strata impact the agreement between diagnostic tools. This will help determine the
most appropriate categories for decision-making and resource allocation. Future
investigations should also delve into potential environmental, geographical,
immunological or genetic diversity of the parasite influences underlying this variability.
Additionally, the biological significance of missed infections by both RDTs and
microscopy was not explored. Consequently, the study did not estimate the
transmission burden associated with these undetected positive samples, nor assess
the parasite densities necessary to sustain transmission in the population.

4.6 Conclusion

As countries progress towards malaria elimination, fine-scale mapping of malaria risk
becomes increasingly important. This study highlights significant variability in
village-level malaria risk within and between districts in southeastern Tanzania, an
area where the scale-up of effective interventions has led to substantial progress, yet
cases persist despite high intervention coverage. Secondly, the study underscores
the variable performance of different testing methods in stratifying risk. While RDTs
and microscopy, the primary test methods used in low-income endemic settings and
the main sources of data for ongoing epidemiological stratification efforts, were
effective in high-transmission areas, they performed poorly in low-transmission
settings, often classifying most villages as very low or low risk. In contrast, qPCR
classified most villages as moderate or high risk. These findings demonstrate the
importance of using appropriate testing methods for data-driven, fine-scale risk
stratification to enhance targeted interventions aimed at reducing and eliminating
malaria. The study underscores the need for proper choices of malaria testing
approaches that are both operationally feasible and sufficiently sensitive to enable
precise mapping and effective targeting of malaria in local contexts. More importantly,
public health authorities must recognize the strengths and limitations of their
available data when planning local stratification or making decisions. While
innovation for more effective strategies is ongoing, sensitive molecular tools like
qPCR, despite their operational challenges, will be crucial for accurate malaria risk
mapping and intervention planning, especially in settings with significantly reduced
risk. Going forward, developing new tools that balance operational costs and
sensitivity, particularly in low transmission settings, will be essential for effective
malaria control and eventual elimination.



Chapter 5: Performance of Mid-Infrared
Spectroscopy and Machine Learning for
Detecting Malaria Infections in High and Low
Transmission Settings

5.1 Abstract

Background: Mid-infrared spectroscopy combined with machine learning (MIRs-ML)
has emerged as a promising approach for detecting malaria parasites, with potential
to achieve high sensitivity while balancing costs and operational efficiency. However,
its performance across different malaria endemicities remains unexplored. We
therefore evaluated the performance of MIRs-ML for malaria screening in blood
samples collected from high and low transmission areas in south-eastern Tanzania,
using qPCR as the reference standard.

Methods: We conducted a cross-sectional survey in south-eastern Tanzania,
screening 7628 individuals across 35 villages with malaria Plasmodium falciparum
prevalence ranging from less than 1% to over 50%. Additionally, we used qPCR to
analyse dried blood spots (DBS) from 4,905 of these individuals, randomly selected
from across the epidemiological strata. Mid-infrared spectra from these DBS were
collected using ATR-FTIR spectrometer and used to train and validate
machine-learning classifiers. The spectra were labelled based on the qPCR results,
and two classifiers, Random forest and Logistic regression, were trained using: (i)
data from all epidemiological strata, (ii) data from high transmission strata, (iii) data
from individuals with the highest parasitaemia in high transmission strata, or (iv) a
mix of laboratory-generated and field-collected data. These classifiers were validated
and used to predict the qPCR results in unseen datasets of MIR spectra from low
transmission villages (PfPR < 5%) and high transmission villages (PfPR >30%).

Results: Based on the qPCR results as the reference, classifiers trained on data
from all epidemiological strata or high parasitaemia in high transmission areas
achieved over 93% accuracy and >90% sensitivity (recall) in detecting malaria across
both low and high transmission settings. However, classifiers trained exclusively on
high transmission data demonstrated over 95% accuracy and 93.5% sensitivity in
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high transmission areas but had reduced accuracy of 87% and sensitivity of 86.5% in
low transmission areas. Moreover, classifiers incorporating both laboratory and field
data achieved accuracy levels comparable to those trained exclusively on field data.

Conclusion: This study demonstrates the effectiveness of MIRs-ML across different
transmission settings, showing strong performance for classifying infected versus
non-infected individuals in both high and low transmission strata. The findings
emphasize the importance of selecting appropriate training datasets for the ML
models, and particularly highlight the suitability of laboratory data augmented with
field data. Given that the approach is robust, reagent-free, and easy-to-perform, this
study provides further evidence of its potential for broader application in large-scale
parasitological surveys of malaria across a range of epidemiological settings.

5.2 Background

Over the past two decades, malaria control efforts have averted 2.1 billion cases and
11.7 million deaths globally [1]. This success is attributed to interventions including
antimalarial drugs and vector control measures such as insecticide-treated bed nets
(ITNs), indoor residual sprays (IRS), and larval source management [5,416–418].
These successes inspired a trend to transition towards malaria elimination, with
several countries planning to achieve this goal by 2030 [194]. However, several
significant challenges persist, highlighting the need for inexpensive, scalable
screening methods with high sensitivity, even at low levels of parasitaemia and
prevalence. Conventional tools, such as RDTs and microscopy, are widely used but
demonstrate limited sensitivity in detecting malaria infections, particularly in low
transmission settings, despite being cost-effective [128,419–421]. In these contexts,
undetected infections can be very high, in some instances reaching even 50% ,
especially in low transmission settings [422]. This underscores the critical need for
more sensitive diagnostic approaches, particularly during population screenings, that
could span on being scalable, cost-effective and user-friendly [198].

Molecular assays, like polymerase chain reaction (PCR), demonstrate high sensitivity
in detecting malaria infections [128,366,423], but their suitability for population-wide
surveys is hindered by several factors, including the high cost of reagents,
labour-intensive procedures, the need for specialized expertise, limited portability
and not sufficiently robust for field laboratories in locations most affected by
malaria [420,424,425]. As a result, PCR assays are not considered feasible for
wide-scale implementation, particularly in remote areas. This emphasizes the need
for alternative malaria screening methods capable of striking a balance between



119

sensitivity and operational viability [198,426]. Such approaches are vital as core
components of the broader evidence-based strategies endorsed by the WHO to
ensure the accurate and timely detection of infections [416]. Indeed, the requirement
for highly scalable and low-cost approaches for malaria surveillance is now
considered one of the fundamental pillars of malaria elimination efforts as envisaged
under the global strategy for malaria elimination by WHO, 2016-2030 [194].

Recently, mid-infrared spectroscopy combined with machine learning (MIRs-ML)
have demonstrated potential for detecting malaria infections in human
blood [174,427]. This technology involves scanning the blood samples either wet or
dried on paper cards with infrared light to obtain blood chemical
signatures [217,218,222]. Computational approaches are used to identify and
translate the spectra signatures into meaningful biological traits, such as the
presence or absence of malaria infection [217,218,222,428]. Under laboratory
conditions, MIRs-ML could detect malaria parasites at ultra-low concentrations, of
which are undetected by conventional tools such as RDT and microscopy, even in
presence of confounders anaemia and varying parasite densities [222,411]. The
added advantage of using MIRs-ML for malaria screening is promising for balancing
the cost of operations with sensitivity, especially when compared to PCR.

Despite the progress in MIRS-ML techniques, their practical application in field
settings remains underexplored. Some studies using samples collected from
population surveys have shown over 90% accuracy in detecting P. falciparum
infections and greater than 80% accuracy for mixed infections of P. falciparum and P.
vivax [217,218]. Additionally, the approach achieved a sensitivity of 92% and a
specificity of 97% in detecting malaria infections in blood samples, using samples
collected from hospitals in Thailand [218]. Despite these demonstrations on
applicability of the MIRs-ML for detecting malaria infections on realistic samples,
there is no evidence of the performance of such technologies in detecting malaria
infections in areas with varying malaria transmission endemicity.

It is crucial to test promising malaria screening tools in areas with varying levels of
endemicity to determine their suitability for point-of-care diagnosis or screening in
different transmission strata (low, moderate, and high) or exclusively in high
transmission areas [174]. For instance, detailed fine-scale mapping of malaria in
south eastern Tanzania revealed significant variability in malaria prevalence, ranging
from <1% to 50% between local lowest administrative boundaries known as villages,
as estimated by RDTs, microscopy, and qPCR [429]. In these settings, RDTs and
microscopy showed poor positive predictive value (<20% PPV) compared to qPCR,
while they performed better (>80% PPV) in high transmission areas [429]. Therefore,
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evaluating novel malaria screening tools like MIRs-ML in such settings could help
determine their effectiveness across different transmission strata, providing a clearer
understanding of where these tools might be most suitable.

Laboratory demonstrations have shown the potential for optimizing algorithm
development by using high-parasitaemia samples alongside negative ones in training
sets while cover immunological and genetic variations. These algorithms trained with
high-parasitaemia samples have successfully transitioned to field applications,
underscoring the importance of assessing the best training datasets using realistic
field samples [411]. This could involve using data from high transmission areas,
combining various data types, or calibrating laboratory models with integrated field
data to develop robust systems with minimal effort [174].

The aim of this study was therefore to evaluate the performance of MIRs-ML in
detecting malaria infections across villages with different malaria prevalence levels.
Using qPCR as a reference method, we compared the performance of this approach
for malaria screening in blood samples collected from high prevalence (PfPR ≥ 30%
by qPCR) and low malaria ((PfPR <5% by qPCR) areas.

5.3 Methods

5.3.1 Study area

This study was conducted in south eastern Tanzanian districts of Ulanga and
Kilombero, in the Kilombero Valley (Figure 5.1), where malaria prevalence is
significantly heterogeneous, with village-level malaria prevalence varying from < 1%
to > 50% [429].
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Figure 5.1: Map of the study area, encompassing 35 villages and over 100 sub-
villages within the Kilombero and Ulanga districts

Ulanga District is situated at 8.9889°S, 36.6133°E and has a population exceeding
200,000 individuals while Kilombero District is located at 8.2414°S, 36.3349°E, has a
population of over 500,000 [429,430]. The study area has temperature range that
fluctuates between 20°C and 35°C, influenced by both altitude and seasonal
variations. The region experiences a rainy season typically from December through
April, followed by a dry season from June to September. The primary economic
activities include subsistence farming and large-scale agriculture. Most families
engage in crop farming, with rice being the predominant crop. Additionally, there are
extensive commercial operations, particularly large-scale teak and sugarcane
plantations [372,431,432].
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5.3.2 Study surveys, and creation of dried blood spots

A cross-sectional survey was carried out in 35 villages (Figure 5.1). The sample size
for each village was calculated proportionally based on the village population and
malaria prevalence estimates from prior surveys, as described in Mshani et al [429].
Households were selected using systematic random sampling, and written consent
was obtained from each selected household before conducting surveys and
recruiting participants. Consent was provided on a household basis, and all
individuals in a consenting household were recruited. Each participant was assigned
a unique identification number to link relevant information, including malaria test
results from different tools, demographic data, and household characteristics.

Malaria screening was performed using RDTs (SD Bioline Ag-Pf/Pan) through finger
pricks at temporary screening centers set up in each village. Additionally, both thin
and thick blood smears were prepared and analysed using microscopy [224,429].
For dried blood spots, approximately 50 µL of blood from each participant was
applied to a single spot on Whatman𝑇𝑀 protein saver cards, totalling three to five
spots per individual depending on the volume of blood available. These cards were
left to air-dry and then stored. The blood smears and dried blood spots were
transported to the Ifakara Health Institute’s laboratory, where further analysis for
malaria infections was performed using microscopy and quantitative polymerase
chain reaction (qPCR), respectively.

5.3.3 DNA extraction and qPCR analysis

DNA extraction from dried blood samples was done using theQuick-DNA𝑇𝑀 Miniprep
Plus Kit (Zymo Research, USA) [381]. The extracted DNA was dissolved in 50 μL of
elution buffer and stored at −20°C until it was needed for detecting and quantifying P.
falciparum infections with probe-level allele-specific quantification (PlasQ) multiplex
qPCR assays, [367,382,383]. Detection and quantification of P. falciparum parasites
were performed using the Bio-Rad CFX96 real-time PCR system (Bio-Rad
Laboratories, USA), with data analysed using Bio-Rad CFX Maestro software. The
qPCR reaction, PlasQ primers and probes mix, are summarized in supplementary
Table S4.1 & Figure S4.2. The DNA amplification protocol included an initial
activation step at 95°C for 1 minute, followed by 15 seconds of denaturation at 95 °C
and 45 seconds of annealing/elongation at 57 °C, repeated for a total of 45 cycles,
ending with a melting phase [367,382,383]. The quantitative polymerase chain
reaction (qPCR) assays included both positive controls (samples known to contain P.
falciparum) and a non-template control (samples free of P. falciparum). For unknown
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samples, the result was considered positive for the target genes (pfvarATS and 18S
ribosomal RNA) if the cycle threshold (Ct) value was less than 37, and negative if the
Ct value was greater than 37. Similarly, for the human ribonuclease P gene
(extraction control), a Ct value less than 35 was considered positive, while values of
35 or higher were considered negative. For absolute quantification, the WHO
international standard for P. falciparum nucleic acid amplification (WHO reference
NIBSC#04/176) [367], was employed. This standard was prepared by serially
dilutions from 100,000 parasites/μL to 0.01 parasites/μL, with each dilution tested in
triplicate.

During qPCR assay, the prepared standards were analysed alongside the unknown
samples. Following the assay, the standard curve and sample data were normalized
and analysed using Bio-Rad CFX Maestro software. The normalized cycle threshold
(Ct) values of the samples, along with the linear regression equation from the
standard curve, were used to determine the parasite density in the unknown samples,
expressed as parasites per microliter (parasites/μL) of blood.

5.3.4 Malaria heterogeneity in the study area

The villages were stratified based on the results from RDTs, microscopy, or qPCR.
While the WHO provides standard guidelines for stratifying malaria risk, it allows
countries to adjust these ranges according to their understanding of local
transmission patterns. Therefore, the stratification categories used in this study were
adapted from the Tanzania National Malaria Control Program [341]. Malaria
prevalence was highly variable in the 35 surveyed villages, ranging from less than
1% to over 50% based on any of the three tests as reported in Mshani et al [429] and
summarised in Table 5.1.

Table 5.1: Stratifications of study villages by P. falciparum prevalence (PfPR), serving
as benchmarks for evaluating MIRs-ML performance in malaria screening across
different endemicity levels

Risk strata Prevalence qPCR RDTs Microscopy

No. % No. % No. %

Very low PfPR < 1% 1 2.9 12 34.3 11 31.4

Low 1% ≤ PfPR < 5% 5 14.3 6 17.1 10 28.6

Moderate 5% ≤ PfPR < 30% 15 42.9 9 25.7 8 22.9

High PfPR ≥ 30% 14 40.0 8 22.9 6 17.1

Total 35 100.0 35 100.0 35 100.0
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5.3.5 Acquisition and processing of mid-infrared spectra

For each participant, a single cycle of Whatman protein saver cards that was fully
covered with blood was selected, resulting in one spectrum per individual. A punched
cycle from the Whatman card was scanned using a Fourier Transform Infrared
(FT-IR) spectrometer, which operated across the mid-infrared range, 4000–500
(cm−1) with a resolution of 2 (cm−1). The scanning equipment was a compact Bruker
Alpha FTIR interferometer, equipped with a Platinum-Attenuated Total Reflectance
(ATR) module featuring diamond crystals. To enhance light penetration, the card was
positioned on the diamond crystal of the spectrometer, and pressure was applied
using an anvil to ensure optimal contact between the sample and the crystal. Each
scan was performed 32 times to produce an averaged spectrum, which was labelled
with a unique ID assigned to each participant, along with the date of scanning. These
unique IDs facilitated the linkage of the mid-infrared spectra with laboratory malaria
status results by qPCR and other demographic data collected during field activities.

The spectra were first pre-processed to ensure that only high-quality data were used
for machine learning analysis. Using a program adapted from Gonzalez-Jimenez et
al. [212], low-quality spectra, such as those distorted by the anvil, were discarded.
This program also corrected for atmospheric interference, including excess water and
CO� content.

5.3.6 Selection of machine learning algorithms

The processed mid-infrared spectra were linked with qPCR laboratory results using
unique identity numbers, with the Pandas Python package [385]. After merging the
datasets, the final dataset included wavenumbers and their corresponding absorption
intensities, along with malaria screening results, which were classified as positive or
negative based on the qPCR data. This dataset was then used for selecting, training,
and evaluating the machine learning algorithms using Python version 3.9.

A supervised learning approach was used to evaluate six models through stratified
k-fold cross-validation, selecting the best model based on accuracy, sensitivity,
specificity, Receiver Operating Characteristic (ROC) curves, and Area Under the
Curve (ROC-AUC). The models evaluated included K-Nearest Neighbours (KNN),
Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF),
Gradient Boosting (XGB), and Multilayer Perceptron (MLP). To address class
imbalance, random under-sampling was applied, and the data was standardized to
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ensure uniformity. The dataset was divided such that 70% was used for model
selection, training, and testing, while the remaining 30% was reserved to prevent
data leakage and was used for validating the trained algorithms.

Using stratified K-fold cross validation, the selection of the models was conducted
using datasets divided into four segments based on malaria strata defined by qPCR
prevalence results (Table 5.1): (i) data from all epidemiological strata, (ii) data from
high transmission strata, (iii) data from individuals with the highest parasitaemia in
high transmission strata, or (iv) a mix of laboratory-generated and field-collected data.

5.3.7 Training and testing of machine learning algorithms

The stratifications based on the qPCR results were used as the benchmark for
evaluating the performance of MIRs-ML in malaria screening (Table 5.1). The
best-performed algorithms on cross validation were selected and trained to classify
malaria infections from field-collected samples. The dataset was randomly shuffled
and divided into 80% for training and 20% for testing model performance. Training
was done using the four categories of datasets divided as explained during model
selection by cross-validation above. For validation of the performance of the trained
models, we used the 20% unseen datasets using data from: i) high malaria
transmission villages (PfPR>30%) and ii) low malaria transmission villages (PfPR <
5%). The performance of the ML models on these validation sets was assessed using
a range of metrics, including accuracy, F1-score, recall (sensitivity), and precision.

5.4 Results

5.4.1 Acquired infrared spectra

To assess the performance of MIRs-ML for malaria screening in areas with varying
transmission levels, whether in high or low settings, 7,628 participants from the
Kilombero Valley in south-eastern Tanzania were screened for malaria infections
using RDTs and microscopy across 35 villages. From these, 4,905 participants were
randomly selected, ensuring that each village was represented by at least two-thirds
(approximately 65%) of the screened participants. These samples were then
analysed using qPCR to detect and quantify malaria infections, and subsequently
scanned using an MIR spectrometer. Thus, the obtained spectra where labelled
either positive or negative based on the qPCR results. Significant peaks associated
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with malaria infection were identified in the spectra of the scanned dried blood spots
(Figure 5.2). These peaks corresponded to protein markers such as amide I, amide II,
and amide A, as well as markers associated with hemozoin, lipids, and nucleic acids.
These spectral features can be indicative of malaria parasites, either as by-products
of their metabolic activity or as direct markers of their presence in human blood. Out
of the 4,905 spectra acquired, 9 were excluded during pre-processing due to
distortion from improper anvil placement on the diamond crystal. Additionally, 19
spectra were discarded due to low absorption intensity caused by high water content,
atmospheric interference, and carbon dioxide absorption. Consequently, 4,877
spectra were retained for evaluating the performance of ML algorithms in malaria
screening across villages with varying transmission.

Figure 5.2: Mid-infrared spectra averaged over 4,877 dried blood spots (DBS) from
samples collected across various villages with differing levels of malaria endemicity

5.4.2 Malaria strata for MIRs-ML analysis

As shown in Table 5.1, the categories were adapted from a previous study by
Tanzania NMCPs [341]. In this study, to ensure enough negative and positive
samples in each transmission category, we made slight adjustments. Consequently,
we classified the 35 study villages into three main categories: low (0 < PfPR < 5%),
moderate (5% ≤ PfPR < 30%), and high malaria transmission strata (PfPR ≥ 30%)
(see Table 5.2).
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Table 5.2: New strata for training and validation of MIRs-ML, based on P. falciparum
prevalence rate (PfPR) estimate by qPCR, with ”Very Low” and ”Low” strata merged
into a single “Low” stratum

Strata Categories by prevalence Total sample Positive Negative

Low transmission 0 < PfPR < 5% 769 19 750
Moderate 5% ≤ PfPR < 30% 1492 175 1317
High transmission PfPR ≥ 30% 2616 1514 1102

5.4.3 Selection, training and testing of machine learning
algorithms

Of the six machine learning algorithms evaluated with data from all epidemiological
strata, Random Forest (RF) outperformed the other evaluated classifiers, achieving
an accuracy of 91.48% in classifying malaria infections in dried blood spots
(Figure 5.3A), and was consequently selected for further training and fine-tuning to
optimize its hyper parameters for generalizability and for avoiding overfitting. The
optimized RF model achieved an accuracy of 90% when tested on 20% of the
dataset from the same all epidemiological strata (Figure 5.3B). Additionally, this
model attained an ROC-AUC score of 0.92 for malaria classification using the
combined strata dataset (Figure 5.3C).

Figure 5.3: Performance of ML algorithms during cross-validation, training, and
testing with an 80%-20% split. Panels A, B, and C show the performance metrics for
models evaluated using datasets from all epidemiological strata (high, moderate, and
low), while panels D, E, and F datasets derived from high transmission settings. A, D
display cross-validation scores, B, E show performance on the test set from the same
strata used for training, and C, F present the ROC-AUC scores.
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5.4.4 Validation of models trained using combined data from
across the full range of endemicities or data from high
transmission settings on classifying malaria in low and
high transmission settings.

The performance of two RF models was evaluated: one trained on data from all
epidemiological strata (Model 1) and one trained exclusively with data from high
transmission strata (Model 2). Both models were tested with completely unseen data
from high and low malaria transmission settings. Model 1 (Trained on data from all
epidemiological strata) achieved an accuracy of 93% (sensitivity: 93%) for classifying
malaria-infected and uninfected samples in high transmission settings (274 positive
and 274 negative samples) and 92.5% (Sensitivity: 92.5%) in low transmission
settings (7 positive and 7 negative samples) (Figure 5.4). In contrast, Model 2
(trained on data from high transmission strata) showed 93.5% (sensitivity: 93.5%)
accuracy when validated with high transmission data (274 positive and 274 negative
samples) and 86.5% (Sensitivity: 86.5%) when tested with low transmission data (19
positive and 19 negative samples) (Figure 5.4). Table 5.3 summarizes the results of
validating the two RF classifiers on classifying malaria infections from both high and
low transmission settings.
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Figure 5.4: Performance of MIRs-ML models on unseen high and low transmission
datasets. Model 1 was trained on data from all epidemiological strata, while Model 2
was trained on data from high transmission strata
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Table 5.3: Summary of ML evaluation metrics (Recall, Precision, F1-score) and sample counts from high and low malaria transmission strata
used for validation of classifiers trained on data from all epidemiological strata and from high transmission strata only.

Performance in high prevalence villages (PfPR ≥ 30%))

Model 1: Trained on data from all epidemiological strata Model 2: Trained on data from high transmission strata

Class Precision Recall F1-score Validation
Sample size

Class Precision Recall F1-score Validation
Sample size

Positive 0.88 1.00 0.93 274 Positive 0.92 0.95 0.93 186

Negative 1.00 0.86 0.92 274 Negative 0.94 0.92 0.93 186

Performance in low transmission villages (PfPR < 5%))

Model 1: Trained on data from all epidemiological strata Model 2: Trained on data from high transmission strata

Class Precision Recall F1-score Validation
Sample size

Class Precision Recall F1-score Validation
Sample size

Positive 0.92 0.92 0.93 7 Positive 0.85 0.89 0.87 19

Negative 0.93 0.93 0.92 7 Negative 0.89 0.84 0.86 19
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5.4.5 Evaluating the influence of parasite densities on the
performance of MIRs-ML models for malaria screening.

The distribution of parasite densities, estimated by qPCR, was analysed across 35
surveyed villages, revealing the highest densities in high transmission areas
(Figure 5.5). We selected only the top 25% of samples with higher parasite densities
from high transmission settings for MIRs-ML training. To ensure an adequate number
of positive samples for validation—particularly given the limited number of positive
samples (19) from low transmission settings—all samples from low transmission
areas were kept separate for validation.

Figure 5.5: Distribution of parasite densities estimated by qPCR for positive samples
across various surveyed villages. Negative samples are not depicted in this illustration.

Using stratified k-fold cross-validation, the Logistic Regression (LR) classifier
outperformed other tested classifier, achieving an accuracy score of 96.54%
(Figure 5.6A) for classifying malaria infections on data from individuals with the
highest parasitaemia in high transmission strata against negative. Upon fine-tuning,
the LR model achieved an accuracy of 96% in classifying malaria-positive and
malaria-negative samples (Figure 5.6B) and an ROC-AUC score of 0.99
(Figure 5.6C).
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Figure 5.6: Performance of ML classifiers evaluated with the top 25% parasitaemia
from high transmission settings across villages. Panel A shows k-fold cross-validation
of ML classifiers, while Panels B and C display Logistic Regression (LR) performance
on the 20% test set: Panel B shows the confusion matrix and Panel C shows the
ROC-AUC curve

The LR model, trained on the highest parasitaemia from high transmission settings,
achieved an accuracy of 97% for predicting malaria-positive samples and 96% for
predicting malaria-negative samples when validated with unseen high transmission
data (sensitivity: 96.5%) (Figure 5.7A). Conversely, when validated with unseen low
transmission data, the model achieved 100% accuracy for predicting negative
samples (19 samples) but 89% accuracy for predicting positive samples, (Sensitivity:
94.5; 19 samples) (Figure 5.7B). Table 5.4 summarizes other evaluation metrics for
these classifiers in classifying malaria infections from both high and low transmission
settings.
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Figure 5.7: Validation of the Logistic Regression (LR) model trained using a dataset
generated from the top 25% parasitaemia of high transmission strata. Panel A indicates
performance in high transmission settings (159 positive and 159 negative samples),
while Panel B shows performance in low transmission (19 positive and 19 negatives.)

5.4.6 Evaluating laboratory-developed algorithms for transition
to field applications.

Previously, our MIRs-ML system, trained on samples produced in the laboratory,
demonstrated over 80% accuracy in predicting unseen malaria infections in field
datasets, with field results referenced against conventional PCR [411]. In this study,
we evaluated the generalizability of these laboratory-trained algorithms using field
samples analysed by qPCR – which is more sensitive than PCR - focusing on their
performance in high and low transmission settings. The MIRs-ML system trained in
the laboratory achieved accuracies of 68% and 64% for detecting malaria infections
in high and low transmission field-collected datasets, respectively (Figure 5.8A).

Since the LR model, which performed best in the laboratory, does not support
transfer or partial learning [213,282], we retrained the MIRs-ML system by
integrating both laboratory and field datasets, specifically from high transmission
settings. We combined laboratory data (samples with 6% and 0% parasitaemia) with
varying proportions of high transmission field data—10% from high transmission
(262 samples), 20% (524 samples), and 30% (786 samples). The sample size used
for training and testing these model when combining laboratory and field datasets
are summarised in the supplementary Table S5.1. Additionally, we incorporated the
top 100 highest parasitaemia samples from the field dataset. Here, LR achieved the
highest stratified K-fold cross-validation accuracy in all scenarios, including when
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combining laboratory data with 10%, 20%, and 30% of the high transmission dataset
and when incorporating the top 100-parasitaemia samples from the field
(Figure 5.8A-D).

Figure 5.8: Algorithm performance evaluated with stratified K-fold cross-validation
using lab combined with field datasets from high transmission settings: A) 10%; B)
20%; C) 30% of samples;, and D) the 100 highest parasitaemic field samples

The calibrated LR algorithms were then validated for their performance in detecting
malaria infections using samples from both low and high transmission settings
(Figure 5.9A). For instance, the LR model, calibrated with laboratory data (samples
with 6% and 0% parasitaemia) combined with the top 100 highest parasitaemia
samples from the field, achieved 100% accuracy for predicting malaria-positive
samples (19 samples) and 89% accuracy for predicting malaria-negative samples in
the low transmission strata (Sensitivity: 94.5%; 19 samples) (Figure 5.9B and
Table 5.4).
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Figure 5.9: Validation of the laboratory-calibrated LR with unseen datasets: Panel
A shows LR performance with lab data alone and when combined with 10%, 20%,
30%, and the top 100 parasitaemia field samples. Panel B presents the confusion
matrix for LR re-trained with lab data and top 100 parasitaemia samples, validated on
low transmission strata (38 samples).
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Table 5.4: Summary of ML evaluation metrics (Recall, Precision, F1-score) and sample counts from high and low malaria transmission strata
used for validation of models trained on to 25% of high parasitemia from high transmission strata and Lab combined with top 100 samples from
the field.

Performance in high prevalence villages (PfPR ≥ 30%)

Trained on highest parasitaemia from high prevalence strata Trained on lab (samples with 6% and 0% parasitaemia) combined
with top 100 field samples with high parasitaemia

Class Precision Recall F1-score Validation
Sample size

Class Precision Recall F1-score Validation
Sample size

Positive 0.96 0.97 0.96 159 Positive 0.95 1.00 0.97 274

Negative 0.97 0.96 0.96 159 Negative 1.00 0.95 0.97 274

Performance in low prevalence villages (PfPR < 5%)

Trained on highest parasitaemia from high prevalence strata Trained on lab (samples with 6% and 0% parasitaemia) combined
with top 100 field samples with high parasitaemia

Class Precision Recall F1-score Validation
Sample size

Class Precision Recall F1-score Validation
Sample size

Positive 1.00 0.89 0.94 19 Positive 0.90 1.00 0.95 19

Negative 0.90 1.00 0.95 19 Negative 1.00 0.89 0.94 19
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5.4.7 Major spectral features that influenced ML algorithms
performance on classifying malaria positive and negative
samples.

Based on the partitioning of the training datasets described above, we trained seven
different models (either RF or LR algorithms) using various training datasets, ranging
from field data alone to combinations of field and lab data. A key finding is that the
wavenumber 1557 (cm−1), which corresponds to NH bending in proteins (amide II
band), significantly influenced the ability of classifiers to predict malaria infections
across all seven models, regardless of whether LR or RF algorithms were used
(Table 5.5). Additionally, the wavenumber 1565 (cm−1), indicative of the amide I band
due to C=O stretching in proteins, and the wavenumber 1081 (cm−1), associated with
C=O stretching in proteins, nucleic acids, or elevated carbohydrates, were present in
at least five models. Wavenumbers 1230 (cm−1), 1139 (cm−1), and 1657 (cm−1)
were among the top informative features in at least three models each, representing
nucleic acid proteins, lipids, and amide I bands, respectively. These findings
underscore the consistent biochemical features captured across different models and
provide insights into the molecular changes associated with malaria infection. The
common wavenumbers and their band assignments are summarized in Table 5.5.
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Table 5.5: The common MIRs wavenumbers that appear in various model-training approaches indicative of malaria parasite presence in human
blood.

Wavenumber
(cm−1)

ML model defined by
datasets used for training

Typical Assignment Possible explanation in-relation to malaria infections

1557 cm−1 1,2,3,4,5,6,7 Amide II band (N-H bending in
proteins)

Changes in protein content and structure, such as alterations in
haemoglobin levels due to malaria infection.

1565 cm−1 1, 4,5,6,7 Amide I band (C=O stretching in
proteins)

Changes in protein secondary structures could be associated with
changes in haemoglobin due to digestion by the parasite or other
structural proteins.

1139 cm−1 4,5,6 Phosphate stretching (nucleic
acids), C-O stretching
(carbohydrates)

Changes in nucleic acids (i.e parasite DNA) or glycoproteins.

1657 cm−1 1,3,7 Amide I band (C=O stretching in
proteins)

Related to protein secondary structures, particularly the presence
of β-sheets in proteins. Changes can indicate alterations in protein
structures, potentially including hemoglobin.

1723 cm−1 3,5,6 Carbonyl stretching (lipids) Reflects changes in lipid carbonyl groups. It can indicate alterations
in lipid profiles or oxidative stress due to infection.

1081 cm−1 3,4,5,6,7 C-O stretching (nucleic acids,
carbohydrates)

Could be indicative of parasite’s nucleic acids or host cell glycosylation.

1230 cm−1 3,5,6,7 P-O stretching (nucleic acids) Nucleic acid backbone structures. It can depict alterations or presence
of DNA/RNA due to malaria parasite presence.

1. Trained on data from all epidemiological strata; 2. Data from high transmission strata; 3. Data from individuals with the highest parasitaemia
in high transmission strata; 4. Lab +10% high strata; 5. Lab +20% high strata; 6. Lab +30% high strata; 7. Lab + top 100 highest parasitaemia
from field.
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5.5 Discussion

This study explored MIRs-ML techniques for malaria screening in different
transmission settings. We analyzed mid-infrared spectra from dried blood spots
collected in south-eastern Tanzania, where malaria prevalence ranges from <1% to
over 50% [429]. Our MIR-ML system achieved over 92% accuracy in detecting
malaria across both low and high transmission settings. Its performance depends on
the training datasets: using samples from all epidemiological strata or high
parasitaemia resulted in a robust system capable of accurate screening, even in low
transmission settings where conventional tools might perform poorly.

In high transmission settings, all training methods achieved accuracy rates over 95%.
This strong performance highlights the significant potential of these tools for malaria
detection in areas with high endemicity. The high accuracy is likely due to the
elevated parasite densities in these settings, which may improve the sensitivity and
reliability of MIRs-ML systems. This is consistent with existing tools, such as RDTs
and microscopy, which also perform better under high transmission [411,426,433].
Additionally, abundance of positive samples in these regions enabled robust training
of the MIRs-ML systems.

The MIRs-ML system showed strong potential for detecting malaria in low
transmission settings, an area where current diagnostic tools fall short [312,420].
When trained on samples across all epidemiological strata, the system achieved over
90% sensitivity in detecting malaria in new samples. However, when trained solely on
high transmission data, its sensitivity in low transmission settings dropped to 86%
when compared to qPCR. This highlights the need to include low transmission
samples during training. Such inclusion helps the system adapt to the specific
malaria patterns of low transmission environments, improving its accuracy.

Performance variations of the MIRs-ML system can also be linked to parasitemia
levels. High transmission areas have a range of parasitemia levels, which can affect
system robustness. Conversely, low parasitemia in low transmission areas makes
detection more challenging. Previous research has shown that training with high
parasitemia samples is essential for developing a robust MIRs-ML system capable of
detecting malaria effectively [411].

This study supports the finding that the MIRs-ML system, when trained on the
highest parasitaemia from high transmission areas, showed improved performance
in detecting malaria infections in low transmission settings, achieving an accuracy of
over 90%. Specifically, the system detected positive cases with 89% accuracy and
negative cases with 100% accuracy. Although the detection of positive cases was
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slightly lower compared to models trained with combined datasets, these results
suggest that the MIRs-ML system, when trained with high parasitaemia data from
high transmission settings, can be effectively adapted for use in low transmission
environments.

In addition to these findings, other studies have demonstrated the potentiality of
similar approaches for malaria screening in field scenarios. For instance, Mwanga et
al. developed a system that achieved over 90% accuracy in detecting malaria
infections using field-collected samples, although their analysis did not account for
varying endemicity levels [217]. Similarly, Heraud et al. validated approaches in high
transmission settings, where MIRs-ML achieved a sensitivity of 92% and a specificity
of 97% [218]. Building on these previous studies, this research provides the first
evidence of the potential application of MIRs-ML in low transmission settings,
highlighting its promise as a viable tool for malaria detection in such challenging
environments.

In our previous study, ML models trained on laboratory datasets performed optimally
when evaluated with field samples, as confirmed by nested PCR, achieving an
accuracy of over 80% (with approximately 250 samples tested). However, when
these models were tested on a new dataset referenced by qPCR in this study, which
included around 4,877 spectra, the accuracy dropped to 66.17%. Several factors
could explain this decline in performance and warrant further investigation. The
discrepancy may be due to differences between the qPCR and nested PCR methods,
which could result in variations in the reference standards used for positive and
negative results, leading to differing outcomes [369].

To address these observations for the failure of laboratory data in predicting
qPCR-referenced data, we incorporated field data into the training process to
recalibrate the laboratory-trained models. This integration led to a notable
improvement in the accuracy with qPCR-referenced samples. Our findings suggest
that incorporating field data during training or applying transfer learning can
significantly enhance the adaptability and performance of ML models across diverse
transmission endemicities. The MIRs-ML approach has proven to be user-friendly,
reagent-free, cost-effective, and fast in assessing various malaria indicators,
including the presence of parasites in human blood [173,434]. Additionally, we have
previously demonstrated its ability to detect as few as one parasite/ul of blood of
blood, a sensitivity not achieved by RDTs or microscopy. This study underscores its
potential performance in low transmission settings, a significant advancement that
had not been previously explored.
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While the sensitivity of MIRs-ML tools is well-established, it’s also crucial to consider
the effort required for their development and optimization, including adaptation for
national malaria control programs or creating country-specific algorithms. Our
findings indicate that robust MIRs-ML systems can be developed in controlled
laboratory settings and adapted for field use with minimal additional calibration. For
instance, combining high parasitaemia samples from the lab with top parasitaemia
samples from the field achieved performance levels similar to training with
comprehensive field datasets. Therefore, considerations such as costs, time, and
work force for dataset collection should be taken into account. Overall, once
developed, MIRs-ML systems can balance high sensitivity with operational efficiency,
requiring minimal training for end-users in basic computer skills, sample handling,
and result interpretation.

Our analysis identified several key wavenumbers that appeared consistently across
multiple models, reflecting common biochemical features associated with malaria
infection. Notably, wavenumbers such as 1230 (cm−1), which is indicative of nucleic
acids; 1139 (cm−1), associated with lipids; and 1657 (cm−1), linked to the amide I
band, were present in at least three of the models (defined based on training sets).
These consistent features suggest their significant roles in the biochemical changes
occurring during malaria infection. Further examination of model-specific
wavenumbers revealed additional important signals. For proteins, several amide
bands were prominent: 1557 (cm−1), 1565 (cm−1), 1455 (cm−1), 1457 (cm−1), and
1459 (cm−1), along with C-H bending at 1417 (cm−1), 1439 (cm−1), and 1551 (cm−1).
These wavenumbers highlight changes in protein structure and composition that are
characteristic of malaria infection and their ranges has been also reported with
various study [217,411,427,428,434].

In the case of carbohydrates, significant C-O stretching bands were observed at
1033 (cm−1), 1045 (cm−1), 1049 (cm−1), 1123 (cm−1), and 1653 (cm−1). For nucleic
acids, phosphate stretching was evident at 1131 (cm−1), 1133 (cm−1), 1135 (cm−1),
1137 (cm−1), 1193 (cm−1), and 1195 (cm−1), while C-O stretching was seen at 1081
(cm−1), 1230 (cm−1), and 1241 (cm−1). Lipid characteristics were identified by
carbonyl stretching at 1723 (cm−1), 1755 (cm−1), and 1775 (cm−1), and C-H bending
at 1673 (cm−1), 1675 (cm−1), and 1679 (cm−1). These findings underscore the
complexity of biochemical changes associated with malaria infection, as reflected in
the diverse wavenumber patterns captured by our models.

Despite the promising results demonstrating the applicability of MIRs-ML for malaria
detection in both high and low transmission settings in this study, several critical
limitations must be addressed. First, the influence of various biological factors—such
as age, altitude, parasite densities, anaemia, and co-existing parasitic infections—on
MIRs-ML performance needs further investigation. Understanding how these factors
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influence malaria detection accuracy in realistic field conditions is essential and
should be a focus of future research. Additionally, this study explored only P.
falciparum infections; to enhance the robustness of MIRs-ML system, it is crucial to
evaluate its effectiveness against other malaria species and in mixed infection
conditions, which are prevalent in different regions. Furthermore, this research was
conducted only in the Kilombero Valley of south-eastern Tanzania. For a more
comprehensive assessment, it is necessary to validate MIRs-ML systems across a
range of geographical areas. This broader validation will account for variations in
geography, immunology, and genetic diversity, ensuring that the algorithms are both
robust and adaptable to diverse epidemiological contexts.

5.6 Conclusion

This study demonstrates the high potential of MIRs-ML as a malaria screening tool,
achieving >90% sensitivity in low transmission settings and >93% in high
transmission areas. Its performance mainly depends on the selection of the training
datasets, with a reduced sensitivity of 87% when trained exclusively on high
transmission data and validated in low transmission settings. It is the first to show
these capabilities across different transmission levels, addressing the limitations of
conventional tools in low transmission regions. The study also underscores the
feasibility of adapting laboratory-trained algorithms for field use, particularly by
integrating both lab and field data during model training. Further validation across
diverse settings is needed to ensure its broad effectiveness, positioning MIRs-ML as
a valuable tool for improving malaria detection and control strategies.



Chapter 6: A Web-Based AI Platform for
Real-Time Analysis of Infrared Spectral Data
to Enhance Parasitological and
Entomological Surveys of Malaria

6.1 Abstract

Mid-infrared spectroscopy combined with machine learning (MIRs-ML) shows
promise for measuring key parasitological and entomological indicators of malaria.
The approach is simple, reagent-free, robust, and fast, but its scalability is limited by
the need for advanced AI programming expertise to interpret the data. To address
this challenge, we introduce ’VectorPredictor,’ the first web-based platform that
provides access to pretrained ML models for instant interpretation of infrared data.
The current Beta version of the platform is powered by models trained on over 5,000
human blood samples and 40,000 mosquitoes, with datasets continually expanding,
from Tanzania, Burkina Faso, and the UK. This enables real-time malaria predictions,
streamlining surveillance in low-resource settings. To demonstrate the functionality of
the system, we show its perfomance in predicting malaria infections in field-collected
human blood samples and identifying the species and age classes of field-collected
mosquitoes. The platform is easy to use and potential to be a one-stop interface for
assessing multiple malaria indicators by integrating additional predictive models.

6.2 Introduction

Effective monitoring of key parasitological and entomological indicators of malaria is
crucial for tracking progress against the disease and evaluating the effectiveness of
control measures [193]. Malaria control programs typically record mosquito-related
indicators such as malaria vector species, their resistance status, and the
entomological inoculation rate, which measures the number of infected mosquito
bites a person might receive, on a daily, monthly, or annual basis [124,174,211].
Additionally, they measure parasitological indicators, which might include the
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prevalence rate, which is the proportion of malaria-positive cases out of the total
tested, and the annual parasite incidence (API), which represents the number of
malaria-positive individuals per 1,000 tested populations [351,353,429].

Malaria prevalence and API are typically measured using rapid diagnostic tests
(RDTs) or microscopy, though both methods show reduced sensitivity, especially in
low-transmission settings [429]. Molecular assays like PCR offer greater sensitivity
but are costly and less feasible in low-income regions for large scale
surveys [174,366]. Similarly, entomological techniques, including mosquito
dissections and molecular methods, face limitations such as high operational costs
and complexity, hindering their widespread application in malaria
surveillance [174,210,268,272,274,275].

Recent studies have highlighted the potential of infrared spectroscopy combined with
machine learning (IR-ML) techniques for estimating key parasitological and
entomological malaria indicators [173,174]. This approach offers cost-effectiveness,
speed, robustness and user-friendly making it highly promising for malaria
surveillance and diagnosis. IR-ML techniques have demonstrated high accuracy,
sensitivity, and specificity in predicting malaria infections in humans and mosquitoes,
as well as in identifying mosquito species, age, blood meal histories, Wolbachia
infections, and insecticide resistance [173,212,213,216,411,435]. For instance, our
models can detect malaria infections in human blood at densities as low as 1
parasite/μl with over 90% accuracy, even in cases of severe anaemia [411]. We have
also developed models that can identify vertebrate blood-hosts for these mosquitoes,
with accuracies above 90%, enabling rapid estimation of the degree of anthropophily
in these vector species [216,436].The approach readily extends to species
identification, age-grading [212,213,437], and identification of endosymbionts like
Wolbachia [173,288,290,292,435,437] and protozoan pathogens including
Plasmodium falciparum infections in mosquitoes.

Despite the significant potential that IR-ML have demonstrated for malaria
surveillance, there is currently no readily accessible IR-ML platform available for
researchers or National Malaria Control Programs (NMCPs) for predicting malaria
indicators. The interpretation of infrared spectra and the training of ML algorithms
can be quite complex, particularly for end-users. Consequently, there is a need for
automated platforms to facilitate access to these technologies, enabling end-users to
simply upload the obtained spectra and receive interpretable indicators of malaria
transmission, such as infection status in humans and vectors, or the age and species
of mosquitoes. These platforms could include trained ML algorithms deployed as
applications for mobile devices, tablets, desktop software, and cloud-based online
systems [174].
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In response to these challenges, we introduce VectorPredictor, the first online
platform that utilizes IR-ML approaches to simultaneously predict malaria infections
in humans and identify the age and species of mosquitoes. The VectorPredictor web
application is intended to be a public, open-source platform designed for scientists
and NMCPs to leverage mid-infrared spectra for predicting malaria indicators. It is
powered by two models: one trained on over 5,000 human samples from
southeastern Tanzania for predicting malaria infections, and a deep convolutional
neural network trained on over 40,000 mosquitoes from Tanzania, Burkina Faso, and
the United Kingdom. To demonstrate the functionality of the system, we show its
perfomance in predicting malaria infections in field-collected human blood samples
and identifying the species and age classes of field-collected mosquitoes.

6.3 Implementation

6.3.1 Software architecture

The VectorPredictor platform has two main functionalities: 1) predicting malaria
infections in humans and 2) predicting the age and species of mosquitoes. These are
supported by four key components: a) User authentication: We use authentication
functionalities from Django to ensure secure user registration, login, and session
management. User roles and permissions can be used to restrict access to specific
features based on user privilege; b) metadata input: we provide a user-friendly
interface for users to input metadata associated with their spectra, such as collection
site, sample storage conditions, collection date, and other relevant details; c) spectra
uploading and filtering: the platform allows users to upload mid-infrared spectra data
files, after which they can filter the data, such as by specifying a range of
wavenumbers desired; and d) prediction outputs, the core functionality of the
application, which used two pre-trained models: one for predicting malaria infections
in human-derived samples and another for determining mosquito age groups and
species.

When a user uploads a spectrum and initiates a prediction, the Django view sends
the data to a RESTful API endpoint, receives the prediction results, and displays
them within the application interface.

The web structure of the website is depicted in Figure 6.1, and source code
accessible at: https://github.com/Issamshani17/VectorPredictor.

https://github.com/Issamshani17/VectorPredictor


146

Figure 6.1: Schematic flow of the VectorPredictor built-in functionalities for predicting
malaria infections in humans and determining the age and species of mosquitoes.
Note: RF stands for Random Forest and CNN stands for Convolutional Neural Network.

6.3.2 Deployed machine learning algorithms

The platform is powered by two models: one trained on human samples and another
on mosquito samples.

Random Forest Classifier : This classifier predicts malaria infections in blood
samples by categorizing them as malaria-positive or malaria-negative. Trained on
4,905 dried blood spots from southeastern Tanzania and validated against qPCR
results, the model was developed using samples from various transmission settings,
with prevalence rates ranging from less than 1% to over 50% [429]. It achieved over
94% prediction accuracy for samples referenced by qPCR, across both low and high
malaria transmission areas. This model is preliminary and will be updated with new
samples and user feedback on the VectorPredictor platform.

Convolutional Neural Network (CNN): This deep learning model was trained on over
40,000 mosquitoes from Tanzania, Burkina Faso, and the Unitied Kingdom, UK to
predict mosquito species and age groups [213]. The dataset incorporated laboratory,
genetic, and environmental variability across three mosquito species: An. gambiae,
An. arabiensis, and An. coluzzii. The CNN, which includes a 1-dimensional
convolutional layer as the input (wavenumbers) and a dense layer with 500 features,
predicts mosquito species and classifies them into three age groups: 1–4 days, 5–10
days, and 11–17 days. The model achieves >95% accuracy for age group
predictions and >94% accuracy for species classification.
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6.4 Key considerations for accurate predictions

6.4.1 Quality of the spectra

To ensure precise predictions of malaria infections in human blood samples or the
age and species of mosquitoes, users must acquire mid-infrared spectra that align
closely with the parameters used to train the models on the VectorPredictor platform.

For malaria infection predictions, spectra should be within the range of 4000-500
(cm−1), scanned at a resolution of 2 (cm−1) with 32 scans. For predicting mosquito
age and species, spectra should also fall within the 4000-500 (cm−1) range but
scanned at a resolution of 1 (cm−1) with 16 scans. Users can save their spectra in
one of three formats, namely Opus, Mzz, or dpt. Adhering to these parameters
significantly enhances the reliability of predictions made by VectorPredictor. Currently,
high-quality spectra are those obtained from dried samples, such as dried blood
spots or mosquitoes, to minimize water content (Figure 6.2A). For mosquito samples,
this is achieved by storing them in silica gel-containing tubes, either individually or in
pools. Mosquitoes should be stored and dried on silica gel for up to 10 days,
although earlier-scanned mosquitoes are preferable (Figure 6.2A). For malaria
predictions, the model was trained on spectra from dried blood spots. To prepare
these, add approximately 50 µL of fingerprick or venous blood onto Whatman𝑇𝑀

protein saver cards, allow the sample to air-dry, then scan and use the obtained
spectra for malaria predictions.

6.4.2 Sample storage and handling

Studies have shown that storage time does not affect MIRs-ML performance [295].
However, methods such as freezing and ethanol reduce MIRs-ML accuracy for
predicting various entomological indicators [295]. It is recommended to carefully
examine spectra peaks, as shown in Figure 6.2B-E, before uploading them to
VectorPredictor.
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Figure 6.2: Illustrates the best specimen storage approaches and provides snapshots
of quality spectra. Panel A shows the sample storage setup for drying purposes. Panel
B depicts spectra from samples stored for 1-20 days, highlighting the importance of
ensuring that spectra patterns closely resemble those of dry samples with clear peaks.
Panel C presents an example of spectra affected by interference from atmospheric
water and carbon dioxide. Panel D features spectra with low intensity, which may
compromise prediction accuracy when using the VectorPredictor. Finally, Panel E
displays spectra that are shifted due to poor sample positioning.

6.4.3 Considerations for scanning and labelling of spectra

For human-derived dried blood samples, standard Whatman papers are used to
collect the dried blood spots. Here, it is crucial that the punched spot from the protein
saver card is not less than 100mm cycle to fully cover the infrared crystal. Optimal
spectra quality is achieved when the card is placed upside down, allowing the side
where the blood was applied to directly contact the infrared crystal, and pressure is
applied with the anvil to maximize light penetration [411]. For labeling, it is
recommended to use a separator “-” between each block of information, such as in
the format DD-UL-SN23-200324-230324. While the naming convention can be
customized, maintaining the “-” separator is important so that the VectorPredictor can
accurately extract the wavenumbers and absorption intensity of the respective
spectra.

For mosquito samples, the scanning should be done on the approriate part of the
mosquito body, relevant to the entomological indicators targeted for prediction.
Previous studies have primarily demonstrated the efficacy of scanning three body
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parts of mosquitoes using IR technologies. Mid-infrared is commonly employed on
the head and thorax for predicting chronological age, species identity, and estimating
resistance status [174,212]; and also for detecting plasmodium infections since the
infective stage of the parasite is usually lodged in the salivary glands in the head.
The abdomen of mosquitoes has been shown to be useful for predicting blood meal
histories [216]. On the other hand, near-infrared typically scans the head and thorax,
with the light beam passing through a mosquito part via a probe [173].

To use the acquired spectra with VectorPredictor for predicting mosquito age and
species, users should scan the head and thorax of the respective mosquitoes. They
should begin by removing dried mosquitoes stored in silica gel tubes and placing
them at room temperature for up to 10 minutes to allow evaporation of atmospheric
water and gas interference. Subsequently, position the dried mosquitoes side by side
on the ATR crystal, and apply pressure by squeezing an anvil to grind the head and
thorax, optimizing light penetration depth. After each scanning batch, users must
clean the ATR crystal with ethanol and tissue, allowing a few seconds for ethanol
evaporation, and then use a dry tissue to absorb any remaining water and ethanol
content before the next scans [212]. Considering the dataset used for the CNN
deployed on this platform, users should ensure proper labeling and naming of the
spectra, as outlined above, using the separator “-”. This practice ensures the CNN
identifies similar spectra patterns in the intended mosquitoes for wavenumbers and
absorption intensities, facilitating accurate predictions.

6.5 Results

6.5.1 Accessing the VectorPredictor homepage

Once users have acquired mid-infrared spectra of the intended samples, either dried
blood spots (DBS) or mosquitoes, in Mzz, dpt, or Opus format, they should access
the VectorPredictor platform at https://vectorpredictor.comand navigate to
the homepage. We have purchased this domain, and its activation is currently in
process. For thesis demonstrations, users should access the platform and refer to
the instructions provided in the GitHub repository:
https://github.com/Issamshani17/VectorPredictor.

The homepage provides an overview of the workflow, as shown in Figure 6.3. Initially,
end-users must register for an account by clicking the ”Sign Up” button and providing
required information, such as username, institution name, and email (see
Figure 6.3C). Note that only registered users can access other sections of the

https://vectorpredictor.com 
https://github.com/Issamshani17/VectorPredictor.
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platform. Therefore, it is advisable for each project or group to create a single
account for use by all team members. This account will be linked to the uploaded
spectra and associated information. All samples collected within a single project and
uploaded through this registered project account will share common information.
Users can then follow simple on-screen instructions to navigate through the system
(see Figure 6.3B). After logging in, users are directed to the welcome page, where
they can choose to predict either mosquito age and species or malaria infections in
human blood samples, as shown in Figure 6.4.

Figure 6.3: Screenshots of the homepage accessible to users: Panels A and B show
general instructions, while Panel C displays the login and registration options for users
to log in or create a new account.
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Figure 6.4: The web page screen where users can select either ”Predict Age and
Species of Mosquitoes” or ”Predict Malaria Infections in Human Blood.

6.5.2 Section I: Predicting malaria infections in human

When the user presses the button to predict malaria infections, they will be directed
to a page that provides instructions about the deployed model and offers options to
predict malaria infections either from a single spectrum or from a batch of spectra.
The key functionalities are illustrated in Table 6.1 and Figure 6.5:

Figure 6.5: Screenshot of the malaria prediction page. Panel A shows the initial page
where users click Button 1 to be directed to Panel B, which provides metadata entry
functionalities. Numbered labels in Table 01 above.
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Table 6.1: Overview of VectorPredictor functionalities when predicting malaria
infections in human samples.

Functionality Details
1 Single spectrum predictions Allows predictions from a single spectrum (Figure 5A/B).
2 Batch prediction Supports single spectra predictions; batch predictions

coming soon.
3 Metadata naming Each spectrum requires a unique name for organization.
4 File upload requirements Files must be in mzz, dpt, or opus format.
5 Description field Optional description field to enhance data utility.
6 Sample collection location Users must enter sample collection location.
7 Sample ID Optional sample ID for tracking and model

improvements.
8 Sex specification Users select sex (male, female, other) for demographic

data.
9 Age and other optional fields Age required; height and weight fields appear for under

15 years; other fields optional.
10 Form submission and feedback Users submit data, correct errors, and access prediction

page; review spectra via ’View Spectra’ page.

After submitting the metadata form and agreeing to the terms, including confirmation
that the data were collected following the ethical guidelines of the respective country,
users are automatically redirected to a page with various tools for interacting with the
spectra. These functionalities allow users to view saved database details, download
uploaded spectra, and predict malaria infections, as shown in Figure 6.6A. The page
also displays the name of the spectrum in the prediction pipeline, such as
’Msogezi01’ (Figure 6.6A). The functionalities of the Spectra interaction page are
explained in Table 6.2 and figure Figure 6.6.

Table 6.2: Spectra interaction functionalities.

Functionality Details
1 Viewing spectrum metadata Allows users to view metadata of the selected spectrum

(Figure 6B).
2 Downloading spectra file Users can download the spectrum file in its original

format; restricted to logged-in users.
3 Spectra pre-processing and

malaria prediction
Loads spectrum, cleans data, and predicts malaria
status (positive/negative).

4 Returning to new spectrum entry Users can navigate back to the spectrum entry page
(Figure 6B).

5 Browsing other spectra Enables users to browse and view other spectra entries
(Figure 6C).
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Figure 6.6: This figure illustrates the VectorPredictor pages and their functionalities
for malaria infection prediction. Panel A shows options for downloading spectra files
and making predictions, Panel B displays the metadata table with details stored for a
specific spectrum, and Panel C demonstrates tools for inspecting, downloading, and
predicting for multiple spectra simultaneously.

After the user clicks the ”Predict Malaria Infections” button, they will be directed to a
results page displaying malaria prediction results based on the uploaded spectrum.
This section provides various interactive features, as outlined in Table 6.3 and
Figure 6.7:

Table 6.3: Functionalities for predicting malaria infections by VectorPredictor

Functionality Details
1 Spectrum name display Allows users to track specific spectral information and link

it with the corresponding results.
2 Predict malaria infections Malaria status, either positive or negative, will be displayed

here, reflecting the output from the machine learning
model.

3 Line plot visualization Line plot of extracted wavenumbers relative to their
absorption intensity from the uploaded spectrum.

4 Download line plot Allows the download of the line plot (wavenumber vs.
intensity) as a PNG file.

5 Download dataset Allows download of the dataset of the respective spectrum
as a CSV file.

6 Data visualization Display data in two columns, showing the wavenumbers
and their corresponding intensity as shown in Figure 7B.

7 Download results Allows download of the results in PDF format, as displayed
in Figure 7C.
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Figure 6.7: Screenshot of the malaria infection prediction results page. Panel A
shows the general page with the results, plot, and various interactive functionalities.
Panel B displays the extracted data, with wavenumbers and intensities for detailed
examination. Panel C shows the PDF version of the results that users can download,
including the spectrum name, malaria prediction results with probabilities, and the
line plot for wavenumber vs. intensity.

6.5.3 Section II: Predicting mosquitoes age and species

In addition to predicting malaria infections in human samples, users can also predict
the age and species of mosquitoes. From the homepage (Figure 6.5), clicking button
1 directs users to the species and age prediction functionalities. Upon accessing this
section, users will follow the outlined steps: Creating locations for mosquito
collection: In this step, users are required to create and save the collection site for
mosquito samples (Table 6.4 and Figure 6.8). This information is essential for linking
all uploaded mosquito spectra from the same location, which can improve the
accuracy of the deployed machine learning model. Additionally, in the future, data
such as temperature, humidity, malaria burden, and mosquito vectors could be
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extracted from these locations for further analysis such as geospatial modeling.
Below is a step-by-step guide to the location functionalitiesas dipected by Table 6.4
and Figure 6.8.

Table 6.4: Functionalities for creating locations where mosquito samples were
collected.

Functionality Details
1 Location page Access the location page at any time while navigating

through the system or by clicking on ’Predict mosquito
age and species’ in Figure 4.

2 Create a new location A search box will appear after clicking this button,
allowing the entry of a new location name.

3 Enter the location name Type the location name in the search box, and auto-
suggestions will appear. The map will automatically
update to show this location.

4 Map display The intended location should match the one shown on
the map to ensure accuracy.

5 Given name for the location Confirmation that the created location is linked to the
correct name provided.

6 Any other description Allows input of any descriptions to enhance future utility
of the data.

7 Coordinate display The coordinates of the entered location are displayed
here, providing additional confirmation.

8 Submit location Allows the location to be saved in the database.

Figure 6.8: The pages depicts functionalities for entering mosquito samples collection
site, as part of the metadata.

Key metadata entry: Once the user has created and submitted the mosquitoes’
collection site, the system will navigate to the metadata form, requiring the user to fill
the suggestion boxes with information such as the brand name of the spectrometer
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used for scanning, the wavenumber range, the part of the mosquito’s body scanned,
morphological identification of the mosquitoes, and their resistance status
(Figure 6.9). The user can access this metadata form at any time by clicking the
location ‘button 01’, as shown in Figure 6.9. The primary purpose of this section is to
link the uploaded spectra with this metadata, enabling incremental learning of the
deployed algorithm in future.

Figure 6.9: The metadata form entry for spectra used to predict the species and age
of mosquitoes.

Spectra upload, quality check, and Age and Species Predictions: After
completing the location and metadata forms, the VectorPredictor system navigates to
the spectra upload page (Figure 6.10). Here, users can upload spectra either
individually or in batches, and previously created metadata names will be available
for selection. This section also provides quality-control measures for the uploaded
spectra, assessing whether they meet criteria for intensity thresholds, background
quality, and atmospheric interferences. The functionalities for spectra upload, filtering
and predictions of mosquitoes age and species are depicted in Table 6.5 and figure
Figure 6.10 below.
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Table 6.5: Functionalities for Spectra upload, quality check, and Age and Species
Predictions.

Functionality Details
1 Spectra upload Allows access to the spectra upload page, as indicated in

Figure 10A.
2 Choose File to upload Files must be in MZZ, DPT, or OPUS format.
3 Select metadata name Link each spectrum with its associated metadata name

provided in the previous sections.
4 Upload button Allows selected spectra to be saved in the database and

display Figure 10C.
5 Load and view spectra Pass the spectra through the filters and display the line

plot with the filter results in Figure 10B.
6 Spectra filters Indicates whether the spectra quality fails or passes;

predictions will proceed regardless of the quality status
(Figure 10B).

7 Line plot Line plot of extracted wavenumbers relative to their
absorption intensity for the uploaded spectrum.

8 Predict age and species of
mosquitoes

Age class (either 1-4 days, 5-10 days, or 11-17 days)
and species (either An. gambiae, An. arabiensis, or An.
coluzzii) will be predicted.

Figure 6.10: Panel A shows the spectra upload page. Panel B displays spectra details,
including filtering results for atmospheric interference, abnormal backgrounds, and low
intensity, along with line plots of wavenumbers versus absorption intensities. Panel
C features functionalities for further spectrum investigation, including predictions for
mosquito age and species. Panel D presents the prediction results.
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6.6 Discussion

The development of the VectorPredictor, an AI-powered online platform for the
simultaneous detection of malaria infections in human blood samples and mosquito
vector profiling by age and species, represents a significant advancement in applying
IR-ML based technologies to real-world scenarios and bringing them to end users.
This platform could offer crucial support to malaria control programs and researchers,
particularly for both parasitological and entomological malaria surveillance.

The platform simplifies the analysis of mid-infrared spectra and offers access to
pre-trained machine learning algorithms, making them more accessible across
various settings, including low-resource environments. Users benefit from an intuitive
interface that enables simultaneous predictions of multiple malaria indicators.
Traditionally, detecting malaria infections in humans required less sensitive tools such
as RDTs and microscopy, or expensive methods such as PCR. Similarly, identifying
mosquito species or classifying their age often required specialized expertise in
morphological identification, PCR techniques, or microscopic dissections [174].
VectorPredictor consolidates all these tasks into a single, user-friendly platform.

The modular design of VectorPredictor is a significant advantage, allowing for the
future integration of predictive models for additional indicators, thereby extending its
utility beyond malaria surveillance. For instance, incorporating models to predict
insecticide resistance, mosquito blood meal histories, sporozoites infection could
evolve the platform into a comprehensive tool for disease surveillance [173,174].
Furthermore, the ability to input metadata associated with spectra, such as collection
site and sample conditions, facilitates more personalized and location-specific
predictions, which could be essential for targeted intervention strategies in future.

Integrating such platform into malaria control programs holds great potential. By
providing a standardized and automated method for monitoring malaria indicators,
NMCPs could obtain more accurate and timely data, which is crucial for assessing
the effectiveness of control measures and making informed decisions. Furthermore,
adapting the platform for mobile and offline use would enhance its accessibility in
remote areas with limited internet connectivity.

This platform should be regarded as an initial prototype with room for further
development; therefore, its results should not be used for clinical purposes or
decision-making at this stage. The machine learning models are still under
refinement and have not been approved by any regulatory authorities. Several
challenges must be addressed to ensure successful implementation and widespread
adoption of the VectorPredictor. One critical challenge is the quality of the
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mid-infrared spectra, which directly influences prediction accuracy. Adherence to
recommended procedures for sample collection, storage, and scanning is essential.
To this end, training and capacity-building efforts are necessary to ensure users
understand the platform and the importance of following these standards. Another
challenge is the ongoing need for model updates and validation. As new data
becomes available and the platform is deployed across different geographic and
epidemiological settings, retraining and validating the machine learning models will
be crucial to maintain their accuracy and relevance. This will require continuous
collaboration between researchers, public health officials, and users to integrate new
data and insights into the system.

While the current focus of the VectorPredictor on malaria is appropriate given the
global burden of the disease, expanding its capabilities to include other vector-borne
diseases could significantly enhance its impact. For example, the ability to detect
additional pathogens in mosquito vectors or assess the risk of emerging diseases in
real time would make the platform an invaluable tool in global health surveillance.

6.7 Conclusion

The AI-powered online platform for malaria detection and mosquito vector profiling
marks a significant advancement in the fight against malaria. By promising to offer a
user-friendly, scalable, and cost-effective solution for monitoring key malaria
indicators, it has the potential to enhance malaria surveillance, particularly in
low-resource settings. Future developments should focus on expanding the
capabilities of the platform, prioritizing user training, and ensuring the continuous
update and validation of ML models to maintain high accuracy and reliability. If
successfully integrated into existing malaria control programs, this platform could
play a pivotal role in improving current malaria surveillance systems – including the
estimation of key parasitological and entomological indicators- thereby accelerating
progress toward malaria elimination in the future.



Chapter 7: General discussion

As malaria-endemic countries shift their focus toward elimination, the need for
simplified, scalable, and cost-effective disease surveillance methods becomes
increasingly urgent. These tools must possess sufficient sensitivity to detect malaria
infections despite challenges such as low parasite densities or prevalence, and they
must function reliably in environments with poor infrastructure or limited electricity
access. Although several attempts have been made to develop such systems,
including high-level advocacy by WHO for integrating surveillance as a core strategy,
the challenges persist [194,198].

7.1 Screening malaria infections using AI-Powered
infrared spectroscopy

Research on new malaria screening tools has been ongoing for a while, aiming to
simplify current approaches without limiting validity [312]. For example, there has
been considerable interest in creating non-invasive techniques such as tests using
saliva and urine [438,439], and those that can overcome the growing issue of
parasite mutations [243,440], which render them undetectable by conventional
malaria rapid diagnostic tests (mRDTs). These mutations pose a significant threat to
ongoing malaria surveillance and control efforts [441–443]. These studies have
achieved varied successes though so far, we have not found anything more scalable
and more cost-effective than mRDTs and microscopy. Current tools also often fall
short in sensitivity, particularly as the epidemiological profile approaches
elimination [127,406,421]. While mRDTs and light microscopy are widely used and
low-cost, their sensitivity significantly diminishes under conditions of low parasitemia,
with predictive values dropping in regions where true positives are scarce compared
to false positives [308,444]. To be truly effective, new field-ready tools must operate
under challenging conditions with unstable electricity availability and without
requiring extensive technical training.

My PhD research therefore focused on improving malaria surveillance for evaluating
a straightforward technique that utilizes mid-infrared spectroscopy, combined with
machine learning algorithms (MIRs-ML), as a rapid, reagent-free method for
detecting malaria infections in humans. This system was adapted from previous
studies and developments in entomological studies, where similar technology has

160
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been successfully employed to measure various parameters such as mosquito age,
blood-feeding behavior (including whether mosquitoes feed on humans or other
vertebrates), species identification, and detection of infective stages of malaria
parasites [212,213,216,217].

7.1.1 Establishing a target product profile for AI-Powered infrared
spectroscopy as a tool for malaria screening

The ultimate goal of my research was to demonstrate that the same approach could
be effectively used for rapidly screening malaria infections in human blood samples
across varying parasite densities and in field settings with different levels of
endemicity. We argued that this was essential to allow further development of the
technology for real-life application in large-scale field surveys in areas targeting
control or elimination of malaria. To achieve this, I began by conducting an in-depth
review of the current state of the technology, evaluating its advantages and
disadvantages compared to other existing screening tools such as PCR, RDTs, and
microscopy. I also highlighted key research gaps that must be addressed before this
infrared-based technology can become practically useful in malaria-endemic settings
in sub-Saharan Africa. My analysis extended to both entomological and
parasitological contexts of malaria screening, exploring multiple use cases and
varying degrees of feasibility. Further, in addition to providing a general overview of
the technological landscape, I aimed to identify critical research gaps that need to be
bridged to maximize the potential of AI-enhanced infrared spectroscopy.

Many of the identified gaps aligned with those previously recognized by other
experts, such as the need to fully understand the biochemical signals associated with
distinctive spectra and the importance of optimizing sample processing
methods [173,217,295]. However, unique gaps remain, which required significant
advancements in the field. A key area of focus was establishing thresholds for
detection and exploring the potential influence of confounding factors, such as
anaemia, which is commonly observed in individuals infected with malaria and other
parasites.

Another critical lesson was that new tools will need to meet certain specific criteria
set by experts and authorities to be effectively integrated into public health practices.
For the integration of MIRs-ML technology into routine malaria surveillance, it was
therefore important to establish a target product profile to ensure both effectiveness
and practical utility of the products. As a minimum, my analysis indicated that
MIRs-ML technology must demonstrate high sensitivity and specificity, with
performance at similar to or better than existing methods such as ELISA, PCR, and
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microscopy for entomological indicators, and RDTs and microscopy for parasitological
indicators. The technology should be robust, requiring minimal maintenance, and
capable of operating on solar-powered batteries due to frequent power supply issues
in malaria-endemic regions. Additionally, it must efficiently process dried samples
from both mosquitoes and humans and function effectively at temperatures up to 35
°C, a requirement in line with prevailing environmental conditions in malaria-endemic
settings, while remaining user-friendly with minimal training requirements. Although
not strictly necessary, there are additional desirable, features that could significantly
enhance the utility of MIRs-ML technology, such as versatility in handling various
sample types and effectiveness across different malaria transmission settings,
particularly in low-transmission areas. Portable spectrometers would be especially
valuable in remote locations with limited electricity, and alternative energy sources
would be advantageous. Balancing sensitivity with practical operational requirements
is crucial to ensure the technology performs well even under resource constraints.

This target product profile served as a foundational guideline, and the work described
in my thesis was part of the iterative process necessary to refine it further – through
additional development and validation to fully realize the potential of this technology.

7.1.2 Screening of malaria infections in the context of varying
parasite densities and anaemic conditions

Next, I conducted what is likely the most extensive analysis of its kind, where we
recruited 65 healthy adult volunteers from local tertiary colleges and invited them to
donate blood – generating hundreds of samples over the test durations. This blood
was then spiked with cultured malaria parasites to generate a range of infection
levels across different parasite densities. By simulating malaria infections as low as 1
parasite/μL of blood and as high as 6% parasitemia, we covered a full spectrum of
infection levels (ranging from 0.00003%, 0.002%, 0.1%, to 6%). To introduce
additional complexity and to mirror the likely scenarios in field settings, we adjusted
hematocrit levels to simulate various degrees of anaemia: mild anaemia (50%
hematocrit), moderate anaemia (20% hematocrit), and severe anaemia (12.5%
hematocrit).

The dried blood spots were analyzed using Attenuated Total Reflection-Fourier
Transform Infrared (ATR-FTIR) spectroscopy to acquire mid-infrared spectra for
subsequent machine learning analysis. I partitioned the dataset into training and
validation subsets, ensuring that the algorithms were validated on data that they had
not previously encountered. The primary objective was to establish a robust,
AI-driven, reagent-free, and user-friendly method for detecting malaria infections,
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leveraging the mid-infrared spectra from dried blood spots. This approach was
evaluated across a range of parasite densities and anaemic conditions to ensure
broad applicability. In addition to traditional diagnostic metrics like sensitivity,
specificity, and positive predictive value, I also included overall accuracy as a key
performance metric.

Overall accuracy was defined as the percentage of cases where our method correctly
identified the qPCR result, whether positive or negative, since qPCR is currently the
most sensitive and widely accepted benchmark for parasite detection. In addition to
accuracy, we also measured various metrics such as recall (corresponding to
sensitivity), F1-score, and precision. While high sensitivity and specificity typically
lead to high accuracy, it is important to note that high accuracy can be misleading if
sensitivity and specificity are imbalanced. We addressed this issue by analyzing
accuracy distributions per class (positive or negative) through confusion matrices.
Our results were promising, demonstrating that the AI-powered mid-infrared
spectroscopy technique offers a simplified and cost-effective method for malaria
screening. This technique maintained high accuracy and sensitivity, even under
varying parasite densities and anaemic conditions. Most importantly, the findings
indicate that this approach has significant potential for rapid, high-throughput
screening, which could be crucial for large-scale malaria control and elimination
programs.

In this research, MIRs-ML technology emerged with considerable promise in
laboratory settings, detecting as few as 1–3 parasites/μL of blood with over 90%
accuracy. Therefore, the sensitivity of MIRs-ML, comparable to qPCR, suggests it
could be valuable for large-scale surveys where detecting low levels of infection is
essential. For example, MIRs-ML could be integrated into malaria elimination
programs or used to support large-scale treat and test approaches for malaria
elimination [445]. Additionally, capability of MIRs-ML to detect very low parasitemia
makes it useful for border areas and malaria elimination zones, where detecting
imported cases and preventing parasite circulation is critical [446].

7.1.3 Demonstrating performance of AI-powered infrared
spectroscopy for large-scale field surveys of malaria

Once the laboratory evaluation and optimization was completed in controlled
laboratory settings, we sought to validate its utility in the field using both lab-trained
and field-trained ML algorithms to interpret the infrared spectra collected from
thousands of dried blood-spots. To achieve this, we conducted a large-scale,
intensive population survey at the household level in rural southeastern Tanzania,
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specifically in the expansive Kilombero Valley. Before the year 2000, the valley was
classified as holoendemic, characterized by intense malaria transmission throughout
the year [447,448]. During the 1990s, studies reported up to 1,400 infectious bites
per person annually [449]. By 2009, however, ongoing malaria control efforts,
including extensive bed net distribution campaigns, had achieved a reduction in
malaria burden by up to 18-fold [449]. Further advancements, such as enhanced
diagnostic access, distribution of bed nets, and availability of antimalarial drugs,
played a crucial role in this decline [450]. For instance, by 2015, the widespread
implementation of Long-Lasting Insecticidal Nets (LLINs) led to a 60% reduction in
malaria transmission and contributed to the local disappearance of the primary
vector, Anopheles gambiae sensu stricto [450].

In the present day, malaria infections in the semi-urban areas of the valley have
markedly decreased, with only one infected mosquito captured over 3572
trap-nights [370]. The overall prevalence of P. falciparum in the region stands at
approximately 10%, with the southeastern parts still identified as high transmission
zones [358,359]. Malaria transmission occurs both indoors and outdoors, with
school-age children and adults particularly exposed to outdoor transmission during
early evening hours (6 PM to 10 PM) and early morning hours (5 AM to 7 AM).
Children under school age are more vulnerable to early evening transmission, as
they are generally protected by bed nets during the early morning hours [451].

Our study covered 35 villages and 93 sub-villages in kilombero and Ulanga districts,
where we screened 7,628 individuals from diverse demographics, ranging in age
from 5 to 60 years, across 3,018 households. We employed three diagnostic
methods: microscopy, RDTs, and qPCR (performed on approximately 65% of the
samples). Additionally, we scanned each individual’s blood samples (mounted on
filter papers as dried blood spots), generating thousands of spectral signatures from
these communities.

These data served two critical purposes: first, to generate a fine-scale stratification
map of the entire study area, categorizing villages into very low, low, moderate, or
high parasite prevalence based on the diagnostic results from RDTs, microscopy, and
qPCR. Traditionally, such stratification heavily depends on mRDTs to create data
layers that guide the deployment of major malaria interventions. However, we
hypothesized that given the varying performance, sensitivity, and specificity of
different diagnostic methods, the resulting stratification might vary significantly
depending on the diagnostic tool employed. We argued that while RDT-based
stratification might suffice for large-scale decision-making—such as determining
which districts should receive specific interventions or be considered for a malaria
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elimination push—more localized, fine-scale decisions, such as those at the district
level, might require more refined diagnostic tests with higher sensitivity to better
delineate differences and prevent the misallocation of resources.

Our findings confirmed this hypothesis, revealing that in regions where malaria has
been substantially reduced, and where RDTs and microscopy are more likely to miss
infected individuals, fine-scale stratification maps are more accurate when generated
using data from qPCR. The superior sensitivity of qPCR in detecting low-density
infections allows for more precise identification of transmission hotspots, which is
critical in settings approaching malaria elimination. However, we caution that the
interpretation of stratification data is highly context-dependent and resource-sensitive.
Therefore, while our findings do not advocate for an immediate, widespread shift to
qPCR-based stratification, they strongly suggest that users of stratification data must
be acutely aware of the diagnostic methods underlying the data. This understanding
is essential because the choice of screening tool could lead to significant differences
in how areas are classified and, consequently, how resources are allocated.
Furthermore, this insight underscores the need for a context-specific approach when
applying stratification data, particularly in areas where malaria transmission is low
and traditional diagnostics may underperform.

The second use of the field data was aligned with our key objective: to validate the
performance of the AI-driven mid-infrared spectroscopy approach for field surveys of
malaria in areas varying transmission endemicity either low or high. To achieve this,
we employed machine learning models that were trained using either the lab data, as
previously described, or a portion of the field data. The field-trained models were
further diversified by training them on data from high-prevalence areas, low
transmission settings, across the full spectrum of epidemiological risk, and from
highly parasitemic individuals. With these models, we evaluated the suitability of this
approach for rapid screening of individual cases in the field, determining whether
they were infected or not. We achieved tremendous success, with both
laboratory-trained and field-trained models accurately identifying infected samples.
The accuracy of these models ranged from 88% to over 95% in both low and high
transmission settings. While this was not the first time that such models have been
applied to test human blood samples—previous studies in Australia and Tanzania
have shown that infrared spectroscopy can achieve over 90% accuracy in parasite
detection from human blood samples [217,218], our work was the first to directly
demonstrate the utility of this approach for field surveys.

However, these previous studies did not stratify samples based on malaria
transmission endemicity. The primary contribution of my PhD research was the
demonstration of the effectiveness of MIRs-ML in classifying malaria infections from
samples derived from both high and low transmission settings, using qPCR as the
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reference standard. The MIRs-ML system performed well in low transmission
settings, although its accuracy varied depending on the selection of the training
datasets. Further improvements in accuracy could be achieved by increasing the size
of the training datasets or by employing alternative statistical approaches, such as
transfer learning techniques, as demonstrated by Mwanga et al. and Siria et
al. [213,282]. The next step is to deploy this approach to generate different
epidemiological strata and demonstrate that it can indeed serve as a low-cost
surveillance method. Secondly, while the successes observed so far may be
sufficient for field-level screening surveys, the validity of the tests remain inadequate
for diagnostic uses. We therefore propose further development to evaluate and
potentially improve performance in clinical settings.

Overall, these studies have demonstrated the significant potential of the AI-powered
infrared spectroscopy approach for large-scale malaria screening in both laboratory
and field settings. The technique is straightforward, involving the scanning of dried
blood spots with a desktop mid-infrared scanner and the subsequent analysis of the
spectra using pre-trained AI classifiers. When interpreted together with studies on
entomological indicators, it can be concluded that these attributes make it highly
adaptable to field conditions, particularly in low-resource settings. In this study, the
approach was successfully adapted for field use, effectively predicting natural
malaria infections in blood samples from a population-level survey in Tanzania. With
further field trials and validation, this technique could substantially enhance malaria
surveillance and contribute to accelerating malaria elimination efforts. Additionally, as
a complementary outcome of this research, we were able to generate a large dataset
to compare different malaria diagnostic methods. Our findings indicate that when
these tools are used for stratifying malaria risk, the resulting strata can differ,
potentially leading to different policy decisions regarding malaria interventions.

7.1.4 Delivering AI-Powered mid-infrared spectroscopy to users
via web-based platform

While the first part of this thesis demonstrated the potential of MIRs-ML technologies
for malaria screening, a significant challenge emerged in translating these
technologies into accessible, real-world applications for non-expert users. This
includes removing the need for users to create their own algorithms and providing a
standardized approach for the applicability of MIRs-ML in malaria surveillance.
Addressing this challenge led my research beyond proof-of-concept studies to the
development of a functional prototype platform, which we named ‘VectorPredictor’.
This novel web-based tool integrates various MIRs-ML models into a user-friendly
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interface, allowing users to upload their infrared spectra and quickly receive malaria
infection predictions. Importantly, the system requires only basic computer skills,
eliminating the need for specialized expertise or complex laboratory workflows.

Prior to this PhD research, we had been developing machine-learning algorithms for
predicting entomological indicators such as mosquito age, species, blood meal
source, infections, and resistance status [212,213,216,217]. For the first time, we
have successfully integrated these pre-trained algorithms for entomological
surveillance with the malaria-screening model developed during this PhD. Two
critical lessons emerged from this integration: Firstly, this platform could function as a
one-stop shop, capable of predicting malaria infections in human samples while
simultaneously determining mosquito age and species within the same system.
Traditionally, these tasks required separate, labor-intensive, and costly methods,
such as molecular, microscopic, and serological tests [174]. Integrating these
capabilities into a single, reagent-free, and rapid interface highlights the
transformative potential of MIRs-ML technologies for overall malaria surveillance.
Secondly, the advantage of using a platform like VectorPredictor its ability to support
continuous improvement of the underlying machine learning models through
incremental and batch learning techniques [452]. More importantly, the platform
could facilitate the development of a spatial network for forecasting potential
infections based on prior predictions, especially in low-transmission areas. This
would support targeted, localized incremental learning of the algorithms, enhancing
their effectiveness in specific localities. This feature not only enhances the
performance of the deployed ML algorithms but also allows for a quick response to
public health threats, such as parasite mutations. In the future, such tools will enable
the system to learn from new data in real-time, providing timely updates to the trained
ML models and facilitating prompt responses to potential threats such as mutations.

Upon approval for using MIRs-ML systems for malaria screening, countries might
adopt the development of context-based algorithms tailored to specific areas. Thus, a
platform like VectorPredictor could facilitate the creation of these localized systems,
adapting to varying transmission intensities and biological threats in different regions.
This platform should be considered a preliminary prototype, with further refinements
needed to maximize its applicability and successfully transition to real-life
applications, pending the improvement of ML models and approval from respective
authorities before its deployment.
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7.2 Questions arising and future directions

Despite the valuable findings, lessons, and conclusions drawn from the previous
chapters of this PhD, several critical concerns emerged that warrant further
investigation. First, in the analysis of Chapter 3, where I generated various levels of
malaria parasitemia in laboratory experiments (6%, 0.1%, 0.002%, and 0.00003%),
the findings revealed that training models with the highest parasitemia (6%) against
negative samples produced more robust results compared to using a combination of
all parasitemia levels or only low parasitemia (0.00003%) against negative samples.
This raises questions about the underlying mechanisms: Why does the highest
parasitemia yield more robust models, particularly for malaria screening? Is it due to
the parasitemia level affecting the induced signals of malaria parasites, or does
mixing different parasitemia levels introduce noise, thereby reducing
machine-learning performance during training? Interestingly, in field datasets, similar
trends were observed; training with high parasitemia levels produced robust models
and mixing samples regardless of parasitemia levels in field conditions also led to
robust algorithms. We argue that, future studies should delve into the
infrared-induced signals by malaria parasites and how parasite density might
influence these signals. Understanding this will be crucial in developing training
datasets that consistently generate robust algorithms.

Secondly, a unique aspect of this study was the validation of ML models trained with
laboratory data against field-collected samples. When field samples were referenced
by nested PCR, the algorithms-maintained accuracy, achieving over 80% accuracy in
transitioning from laboratory to field datasets (∼250 samples). However, when the
same algorithms were validated with samples I collected, as indicated in Chapter 4
and referenced by qPCR (∼4900 samples), the performance dropped to 60%
accuracy. This discrepancy likely arises from the different reference methods (qPCR
vs. nested PCR), highlighting the importance of the reference standard in training
robust machine learning models. Building on the rich datasets generated, I plan to
investigate training algorithms using references from RDTs, microscopy, qPCR, and
nested qPCR to determine which method yields the most generalizable algorithms.
This will be a key focus for future research.

Thirdly, Chapter 4 focused on generating fine-scale malaria burden maps for the
Kilombero Valley, covering 93 sub-villages. The findings revealed significant
heterogeneity in malaria prevalence between neighboring villages, with rates ranging
from 0% to over 50%, despite their proximity within a 150 km radius and shared
temporal and spatial characteristics. Future studies should explore the underlying
causes of this heterogeneity. Moreover, comparisons of fine-scale malaria burden
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maps generated using RDTs, microscopy, and qPCR showed that RDTs and
microscopy often underestimated malaria burden, particularly by categorizing a
village as low transmission when qPCR indicated it as moderate or high risk. As
countries move towards malaria elimination, the need for accurate fine-scale
mapping becomes increasingly urgent. One pressing research question is: How
would public health decisions be impacted when relying on fine-scale mapping using
commonly used tools like RDTs and microscopy? This question remains unanswered,
and future research should focus on investigating how low-resource countries can
generate accurate surveillance data for proper resource allocation, given the high
costs and sensitivity requirements of approaches like qPCR.

Lastly, considering that this research primarily focused on malaria screening using
field-generated samples, a critical question is where MIRs-ML approaches should be
applied either as point-of-care tests or as field screening tools. I have demonstrated
that MIRs-ML could accurately detect parasite concentrations as low as 1
parasite/μL of blood, suggesting that while this sensitivity might not be necessary for
hospital case management, it could be highly beneficial for large-scale surveys.
However, this hypothesis requires further validation backed by evidence, and future
studies should be designed to evaluate the performance of MIRs-ML in clinical
settings. Additionally, as countries increasingly advocate for fine-scale mapping of
malaria risk and face challenges using RDTs, microscopy, and PCR for that purpose
as demonstrated in chapter 4, a pertinent question arises: How well would MIRs-ML
perform in generating precise fine-scale risk maps compared to conventional
approaches? This PhD advocates for future research to focus on demonstrating the
effectiveness of MIRs-ML in generating fine-scale malaria maps and comparing them
with RDTs, microscopy, and PCR.

7.3 Key implications and recommendations

This PhD research has revealed critical findings with substantial implications for
advancing IR-ML approaches as a promising tool in malaria surveillance and risk
stratification by control programs. Here, I have highlighted the key messages,
implications, and recommendations. These recommendations are not limited to
IR-ML but can also be adapted to other novel tools for malaria parasite detection in
human samples.
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7.3.1 Developing a roadmap for integrating IR-ML into routine
surveillance

This PhD research provides the first roadmap for integrating IR-ML into routine
malaria surveillance. In collaboration with experts, I have outlined the essential and
desirable characteristics of IR-ML tools, identified key considerations, and highlighted
research gaps that need addressing to facilitate the widespread adoption of these
techniques. The developed TPP and identified research questions will guide future
research aim to build evidence for applicability of IR-ML for malaria surveillance in
general. These TPPs also ensure that stakeholders are aware of the crucial aspects
that need further exploration.

Although my research has answered some of the initial questions raised in Chapter 1,
I propose several recommendations for researchers and malaria control programs.
First, collaboration between the research community and malaria control programs is
vital for developing a comprehensive TPP. This TPP should outline the essential
features that IR-ML must achieve for successful integration into malaria surveillance,
ensuring input from a broad team of experts, stakeholders, and end-users. While my
work has initiated the development of this TPP, I am aware of ongoing efforts by other
teams to expand on these findings. These teams are conducting stakeholder
mapping to identify potential users of the tools once developed (Urio et al., 2024
unpublished). They are also exploring the availability of portable spectrometers,
focusing on prototypes suitable for areas with limited electricity, and investigating
non-invasive spectrometers for skin-based malaria screening. The TPP should serve
as a general roadmap for any novel malaria diagnostic tool introduced into routine
surveillance, not just IR-ML and might be country-specific. Secondly, capacity
building is also crucial, IR-ML pioneers should collaborate closely with malaria
control programs and researchers to ensure a thorough understanding of IR-ML
systems and assess the infrastructure needs for successful implementation. This
involves evaluating spectrometer availability, identifying priority indicators, and
fostering collaborations to accelerate technology adoption.

7.3.2 Malaria Screening under varying parasite densities and
anemic conditions

This research demonstrates that MIRs-ML can detect malaria at levels as low as 1
parasite/µL of blood, a sensitivity unattainable by RDTs and microscopy. Notably, its
performance remained consistent across different degrees of anaemia, whether
moderate or severe. The conclusions derived from my PhD have greater implications
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for understanding the potential of IR-ML for malaria screening. The unique design of
this study, which considered various confounding factors, confirmed that MIRs-ML is
not impacted by such variables, making it a reliable tool for screening malaria
infections across diverse populations and demographic groups. Beyond this, I am
aware of available studies that also show IR-ML technologies could detect more than
one disease at once, such as diabetes [453]. However, based on these important
conclusions, we preliminarily recommend that malaria control programs consider
adopting MIRs-ML for large-scale field screening due to its demonstrable high
sensitivity. Caution is warranted in hospital settings, especially in endemic areas, to
prevent overestimation of cases and potential mismanagement of fever.

7.3.3 Fine-Scale mapping of malaria burden

Our research highlights significant malaria heterogeneity when stratification is
performed at a fine-scale level such as wards, villages, and sub-villages. RDTs and
microscopy underestimated malaria burden at this scale, misclassified villages as
very low or low risk, while qPCR indicated these same villages as moderate or high
risk. This discrepancy is particularly evident in low-prevalence villages where RDTs
and microscopy exhibit poor positive predictive value. These findings are timely, as
there is a concerted push for shifting towards fine-scale mapping of malaria risks by
NMCPs. Thus, the implications of my findings might alert the NMCPs to the
limitations of the designs and choice of diagnostic tools when assessing malaria risk
stratifications at fine-scale. National malaria control programs should carefully design
stratification approaches and select diagnostic tools that balance sensitivity with
considerations of operational feasibility. Understanding the limitations and strengths
of the collected data is crucial for effective malaria risk mapping and resource
allocation.

7.3.4 Performance of MIRs-ML for malaria Screening in villages
with varying parasite prevalence

MIRs-ML technologies have proven effective in accurately predicting malaria
infections in both high and low prevalence villages, as confirmed by qPCR. This
research marks a significant advancement, as there were previously no
demonstrations of MIRs-ML performance in areas with varying malaria endemicity.
These findings complement the results of Chapter 3 by highlighting the potential of
MIRs-ML for large-scale malaria screening. MIRs-ML has the potential of addressing
the challenges of conventional tools by balancing cost and sensitivity, even in low
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transmission settings. Key recommendations include conducting further validation of
MIRs-ML across different levels of endemicity and geographical settings to ensure its
reliability and effectiveness.

7.3.5 Selection of training datasets for developing machine
learning algorithms

The choice of training datasets significantly affects the performance of machine
learning algorithms. This PhD research highlights three key findings: i) Training
algorithms with high-parasitemia samples results in more robust MIRs-ML systems.
ii) Incorporating samples from diverse settings, such as both high and low
transmission villages, produces MIRs-ML systems that are more generalizable
across various levels of malaria endemicity, including low-prevalence areas. iii)
Calibrating laboratory-generated models with field data can further enhance the
robustness of MIRs-ML systems.

These findings emphasize the importance of carefully considering the efforts and
resources required by malaria control programs and researchers when developing
MIRs-ML systems. Key factors include the extent of data collection, the expertise
involved, and potential future improvements to the algorithms. While we cannot
definitively conclude the best approach to training these algorithms, we recommend
using high-parasite datasets whenever possible. Previous study by Dar et al.; 2021,
also supports similar conclusions [292]. However, generalizability remains a
challenge. Advanced techniques, such as transfer learning, may address this issue.
For algorithms to perform effectively in low-transmission settings, it is crucial that
training datasets include representative samples from these contexts, enabling
accurate identification of true positives.

7.4 Limitations of the Study

This PhD research has demonstrated the potential applications of MIRs-ML
techniques for malaria screening. Beyond validating these techniques in various
settings, I have also shown how MIRs-ML can be delivered to end-users through the
development of a prototype web-based platform. While specific chapters of this
research discuss the limitations in detail, here are some general limitations.
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Laboratory-generated samples revealed that training algorithms with high parasitemia
levels resulted in more robust models compared to those trained on combined
parasitemia levels or low concentrations. The parasitemia dilutions conducted had
factors of 60, resulting in classes of 6%, 0.1%, 0.002%, and 0.00003%. The clear
distinctions between these parasitemia classes may have influenced the poor model
performance when parasitemia classes were combined for analysis. Further research
could investigate this by employing smaller dilution factors, such as 10, 1, or less, to
explore this phenomenon further. It should be noted that, even in field conditions
where such high parasitemia levels (6%) are rare or almost impossible, selecting the
highest available parasitemia still yielded robust models. Therefore, while our
findings are genuine, we urge for detailed investigations into this specific issue.

Another limitation relates to the experimental design, where blood from donors was
collected using EDTA tubes. Although standardized by ensuring all samples utilized
the same tubes, the chemical components could introduce noise in the infrared
spectra. Research indicates that EDTA tubes result in higher water content compared
to heparin, which is significant given that mid-infrared spectrometers are sensitive to
water content [301]. Although we dried the blood samples on protein saver cards
before scanning, potentially mitigating the impact of water, we argue that future
studies should account for any noise introduced by chemical compounds, such as
those in anticoagulants or parasite culture materials.

This research also provides evidence of how the choice of diagnostic tools can
impact the precision and strength of fine-scale malaria risk stratifications. On the
other hand, the findings show that novel tools like MIRs-ML perform well in
low-prevalence villages where RDTs and microscopy underperformed compared to
qPCR. However, our analysis for MIRs-ML was limited to a pool of villages in low
transmission settings. Future research should aim to generate fine-scale maps using
MIRs-ML across all villages and compare them with those obtained by RDTs,
microscopy, and qPCR. Additionally, incorporating environmental, geographical, and
socio-economic variables could provide more robust MIRs-ML systems that might
complement the challenges of conventional tools observed in this research for
fine-scale mapping. Furthermore, the quantification of the parasite by MIRs-ML was
not fully addressed, primarily due to limitations in the data generated from the
laboratory. However, in future studies using our field-generated samples from 4,905
individuals, it will be possible to analyze and assess the quantification capabilities of
MIRs-ML for malaria parasites in human blood samples. One notable challenge in
applying AI in healthcare is addressing ethical issues, particularly concerning
participant and data protection, including accountability in case of errors. This study
did not explore in detail how the use of MIRs-ML might be influenced by these ethical
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considerations. Therefore, it is crucial to emphasize the need for dedicated research
on ethics, participant protection, and data security for application of MIRs-ML for
malaria screening.

7.5 Conclusion

This thesis demonstrated the significant potential of MIRs-ML for malaria screening,
especially in low-resource settings, as it promising to become reagent-free,
user-friendly, fast, and robust. The research outlined the characteristics required to
support the integration of MIRs-ML into routine surveillance, established the lowest
reliable malaria parasite concentrations detectable by MIRs-ML, and evaluated the
limitations and strengths of RDTs and microscopy for malaria fine-scale mapping
through extensive cross-sectional surveys in southeastern Tanzania. These surveys
provided malaria risk profiles that were used to validate the performance of MIRs-ML
across varying levels of malaria endemicity. The developed TPP served as a
roadmap not only for MIRs-ML but also for other novel malaria screening tools aiming
for integration into routine surveillance. MIRs-ML showed high sensitivity, the ability
to detect lower parasite concentrations, and high specificity in both laboratory and
field samples, making it promising for large-scale malaria population surveys.
Additionally, the findings related to fine-scale mapping emphasized the importance of
proper design and the choice of diagnostic tools that considers high sensitivity and
operational feasibility. Further studies should explore how novel tools like MIRs-ML
could help NMCPs overcome diagnostic challenges. Additionally, research should
evaluate how to best adapt these techniques in the future, as further validations are
necessary.



Appendix for Chapter 3

Table S3.1: A two-way matrix of dried blood spots (DBS) generated in laboratory and
used to train, test and validate machine-learning classifiers

Hematocrit concentrations that mimic anemic condition

M
al

ar
ia

pa
ra

si
te

m
ia

(%
) Normal

(40-50%)
Moderate
anemia
(25%)

Severe
anemia
(12.5%)

Total

6% 335 335 335 1005
0.10% 335 335 335 1005
0.00% 335 335 335 1005
0.00% 335 335 335 1005

0% 335 150 150 635

Total DBS 1675 1490 1490 4655

Table S3.2: A summary of total spectra discarded due to either excessive water
content, atmospheric water vapor and carbon dioxide interferences or bad intensity

Hematocrit concentrations that mimic anemic condition

M
al

ar
ia

pa
ra

si
te

m
ia

(%
) Normal

(40-50%)
Moderate
anemia
(25%)

Severe
anemia
(12.5%)

Total

6% 4 5 11 20
0.10% 2 10 8 20
0.00% 1 6 16 23
0.00% 2 3 6 11

0% 3 11 7 22

Total DBS 12 35 49 96
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Figure S3.1: Average spectra of the generated anemic conditions, non-anemic (Ai),
moderate (Aii), and severe anemia (Aiii) spectra. (B) Illustrates the magnified (Ai) for
a better visualization of the average spectra of specific parasitemia in non-anemic
samples. (C) Represent the estimated depth of light penetration to the DBS sample.

Figure S3.2: RDTs showing results when we tested the final dilutions sample as part
of quality assurance processes
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Figure S3.3: A representative PCR amplification cycles for the random samples
generated in the laboratory as part of quality assurance processes



Appendix for Chapter 4

Table S4.1: Master Mix preparation

Component Stock
concentration

Final
concentration

Reaction
volume (μL)

Example
for 100
reactions
(μL)

Luna Universal
Probe qPCR
Master Mix

2x 1x 5 500

PlasQ Primer Mix 5x 1x 2 200

Molecular biology
grade H2O

- - 1 100
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Table S4.2: Preparation of 1 mL of 5x Oligo mix and their respective sequence

Oligo name Species
specificity

Target
region

Oligo sequence Oligo
modification
[5’-3’]

P. falciparum
(PlasQ assay)

Pspp18S F Plasmodium
spp

18S rDNA GCT CTT TCT TGA
TTT CTT GGA TG

-

Pspp18S R Plasmodium
spp

18S rDNA AGC AGG TTA AGA
TCT CG TTC G

-

Pspp18S
probe

Plasmodium
spp

18S rDNA ATG GCC GTT TTT
AGT TCG TG

Cy5-BHQ2

PfvarATS F P.
falciparum

varATS CCC ATA CAC AAC
CAA YTG GA

-

PfvarATS R P.
falciparum

varATS TTC GCA CAT ATC
TCT ATG TCT ATC T

-

PfvarATS
probe

P.
falciparum

varATS TRT TCC ATA AAT
GGT

FAM-
NFQ/MGB

HsRNaseP F H. sapiens RnaseP
gene

AGA TTT GGA CCT
GCG AGC G

-

HsRNaseP R H. sapiens RnaseP
gene

GAG CGG CTG TCT
CCA CAA GT

-

HsRNaseP
probe

H. sapiens RnaseP
gene

TTC TGA CCT GAA
GGC TCT GCG CG

YakimaYellow-
BHQ1
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Table S4.3: Prevalence estimates for the 35 surveyed villages using three diagnostic methods.

District Village Name Latitude Longitude Survey Month

RDT Microscopy qPCR

No tested Prevalence % No tested Prevalence % No tested Prevalence %

[95% CI] [95% CI] [95% CI]

Kilombero Ichonde -7.88122 36.877098 July-2023 188 0.5 [0.1-2.9] 188 0.5 [0.1-2.9] 94 4.9 [2-11.3]

Kilombero Ikwambi -7.9859 36.819019 June-2023 143 25 [18.6-32.7] 143 9.6 [5.8-15.6] 92 45.2 [35.4-55.4]

Kilombero Kapolo -8.09353 36.7061085 August-2023 138 0.7 [0.1-3.9] 138 0 [0-2.7] 89 7.1 [3.4-14.4]

Kilombero Kiyongwile -8.1571 36.6891643 September-2023 212 0 [0-1.8] 212 0 [0-1.8] 106 0.9 [0.2-5.1]

Kilombero Kikwawila -8.08771 36.7395421 August-2023 146 0 [0-2.6] 146 0.8 [0.2-4] 92 4.7 [1.9-11.1]

Kilombero Kisawasawa -7.89719 36.8715262 June-2023 141 0 [0-2.7] 141 0 [0-2.7] 88 2.8 [0.9-8.7]

Kilombero Lihami -8.15684 36.6855141 September-2023 197 0 [0-1.9] 197 0 [0-1.9] 99 11.9 [6.9-19.7]

Kilombero Lipangalala -8.1508 36.6813302 September-2023 147 0 [0-2.5] 147 0 [0-2.5] 89 8.5 [4.3-16.1]

Kilombero Lungongole -8.04441 36.7584786 August-2023 180 7.2 [4.3-11.9] 180 3.9 [1.9-7.8] 90 10.5 [5.7-18.5]

Kilombero Magengeni 36.68213 244.1016846 September-2023 183 0.6 [0.1-3.1] 183 2.7 [1.2-6.2] 183 5.6 [3.1-10]

Kilombero Mang’ula -7.8339 36.9022122 June-2023 270 0 [0-1.4] 270 2.6 [1.3-5.3] 135 5.3 [2.6-10.5]

Kilombero Minarani -8.12218 36.6835894 September-2023 139 0 [0-2.7] 139 0.7 [0.1-3.9] 92 2.2 [1-7.6]
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(Continued)

District Village Name Latitude Longitude Survey Month

RDT Microscopy qPCR

No tested Prevalence % No tested Prevalence % No tested Prevalence %

[95% CI] [95% CI] [95% CI]

Kilombero Mkamba -7.68703 37.0102679 May-2023 147 1.4 [0.4-4.9] 147 2 [0.7-5.8] 147 5.6 [2.9-10.6]

Kilombero Mkochi -8.05123 36.7780487 August-2023 136 28.6 [21.7-36.7] 136 22.9 [16.6-30.6] 89 37.9 [28.5-48.3]

Kilombero Mkula -7.8011 36.9080764 June-2023 231 0.4 [0.1-2.4] 231 0 [0-1.6] 116 15.4 [10-23.1]

Kilombero Sagamaganga -8.05523 36.8074578 July-August 2023 218 4.1 [2.2-7.6] 218 0.5 [0.1-2.6] 109 20.6 [14.1-29.1]

Kilombero Sanje -7.76816 36.9143145 May 2023 205 1.5 [0.5-4.3] 205 0.5 [0.1-2.7] 103 3.9 [1.5-9.6]

Kilombero Sululu -7.99394 36.8296639 June 2023 149 13.4 [8.9-19.8] 149 4 [1.8-8.5] 96 25 [17.4-34.5]

Kilombero Utaifa A -8.12283 36.6848243 September-2023 212 0.9 [0.2-3.3] 212 2.4 [1-5.5] 106 5.8 [2.7-11.9]

Ulanga Chikuti -8.56194 36.7720928 May 2022 449 53.3 [48.7-57.9] 449 30.1 [26-34.5] 449 68.2 [63.8-72.3]

Ulanga Ebuyu -8.97243 36.7449489 June 2022 385 51.6 [46.6-56.6] 385 42 [37.2-46.9] 193 46.4 [39.5-53.4]

Ulanga Mbuga -8.9813 36.8690018 July 2022 349 30.9 [26.3-35.9] 349 20.5 [16.6-25] 175 35.4 [28.7-42.7]

Ulanga Igota -8.40479 36.6727855 April-2022 142 4.2 [1.9-8.9] 142 2 [0.7-5.9] 94 27.5 [19.5-37.3]

Ulanga Igumbiro -8.35423 36.6738147 April 2023 134 5.7 [2.9-10.1] 134 3.4 [1.4-8] 92 40.9 [31.4-51.1]
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(Continued)

District Village Name Latitude Longitude Survey Month

RDT Microscopy qPCR

No tested Prevalence % No tested Prevalence % No tested Prevalence %

[95% CI] [95% CI] [95% CI]

Ulanga Ikungua -8.46596 36.6878861 January 2023 181 25.4 [19.6-32.2] 181 15.5 [11-21.5] 91 62.9 [52.6-72]

Ulanga Itoo -8.23007 36.6143815 April-2023 148 6.1 [3.2-11.2] 148 6.8 [3.7-12] 92 15.8 [9.7-24.6]

Ulanga Kivukoni -8.20477 36.690195 February-2023 147 2 [0.7-5.8] 147 3.4 [1.5-7.7] 92 18.9 [12.2-28.1]

Ulanga Makanga -8.65621 36.72257092 April 2022 367 46.3 [41.3-51.4] 367 25.7 [21.5-30.4] 184 71.4 [64.5-77.4]

Ulanga Mavimba -8.31773 36.6807224 February 2023 148 1.4 [0.4-4.9] 148 1.4 [0.4-4.9] 96 6.7 [3.2-13.5]

Ulanga Igamba -8.31479 36.7465093 April 2023 149 48.7 [40.8-56.7] 149 34.7 [27.5-42.6] 96 63.8 [53.8-72.7]

Ulanga Mdindo -8.62298 36.6927682 April-2022 406 45 [40.23-49.9] 406 36.8 [32.3-41.6] 406 68.2 [63.5-72.5]

Ulanga Msogezi -8.60496 36.6811327 April-2022 408 61.4 [56.6-66] 408 42 [37.3-46.8] 401 62.4 [57.6-67]

Ulanga Mwaya -8.94368 36.8269591 June-2022 304 20.7 [16.5-25.6] 304 15.1 [11.5-19.6] 152 43.1 [35.5-51.1]

Ulanga Mzelezi -8.88216 36.7308193 July-2022 384 45.3 [40.4-50.3] 384 28 [23.7-32.7] 192 69.7 [62.9-75.8]

Ulanga Tulizamoyo -8.35886 36.7342939 April-2022 132 28.6 [21.6-36.8] 132 33.3 [25.8-41.7] 88 66.7 [56.3-75.7]
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