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Abstract

Autonomous vehicles rely on a diverse array of sensors to achieve comprehensive visual

perception of their surroundings. Consequently, the integration of multimodal data, aimed

at harnessing the complete spectrum of features from each sensor’s Bird’s Eye View

(BEV) information, has emerged as a pivotal area of interest for numerous researchers.

Currently, the research community is dedicated to enhancing the accuracy of detection

models. However, given that the visual perception systems of autonomous vehicles are

typically compact to medium-sized mobile platforms, computational complexity and ef-

ficiency are paramount. As the surrounding environment of an autonomous vehicle can

fluctuate rapidly at times, maintaining a static sampling rate in such varied contexts

results in suboptimal computational efficiency. Furthermore, as each modality’s features

are processed through Vision Transformers, particularly in the self-attention mechanism

where the attention values for features are computed, it has been observed that adher-

ing to the conventional pipeline approach results in elevated computational complexity

and diminished efficiency. For the self-adaptive sampling mechanism, we adeptly extract

depth information from camera features by utilizing point cloud data. Then, the fusion

rate, which functions as a regulatory factor, dynamically adjusts the size of the effective

sampling intervals, significantly impacting the computational load of the feature integra-

tion process. We also adopted the structure of the iTransformer that masterfully inverts

the dimensions of the embedding. Our experiments conducted on the nuScenes dataset

prove that our model can perform with reduced computational complexity while main-

taining results comparable to those of the baseline model.
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Chapter 1

Introduction

Autonomous driving technology is transforming transportation by offering improved safety,

efficiency, and convenience. At the heart of this advancement lies 3D Object Detection, a

crucial innovation that maps objects in three-dimensional space, determining their posi-

tions, orientations, and dimensions. Unlike traditional 2D detection, 3D Object Detection

is essential for autonomous vehicles to accurately identify and track pedestrians, vehicles,

and obstacles. This capability empowers vehicles to make precise, informed decisions about

speed, direction, and collision avoidance, ensuring the safety of passengers and other road

users.

Modern 3D Object Detectors, driven by the growing demand for precise spatial perception

in applications such as autonomous driving, primarily leverage deep learning methodolo-

gies. The two predominant approaches are Point Cloud-based and Voxel-based methods.

Point Cloud-based detectors, like those introduced by Ding et al. 2021 in 2021, directly

process raw LiDAR point cloud data, capturing fine-grained geometric details through a

combination of CNNs and GNNs, effectively managing the irregular and sparse nature of

the data. In contrast, Voxel-based detectors, such as those proposed by Zhou and Tuzel

2018 in 2018, transform point clouds into structured voxel grids, enabling 3D CNNs to

extract spatial features with remarkable efficiency and success.

1



1. Introduction 2

The escalating demand for autonomous vehicles has outpaced the capabilities of tradi-

tional single-sensor systems, such as cameras or LiDAR, which often falter in providing

consistent and reliable data across varied conditions. This challenge has spurred the in-

novation of multimodal visual fusion techniques, which amalgamate data from an array

of sensors to bolster the vehicle’s perceptive prowess . In the realm of multimodal visual

data fusion, each sensor brings its suite of strengths: cameras offer high-resolution color

imagery, LiDAR provides accurate depth measurements, radar maintains effectiveness in

inclement weather, and thermal cameras detect heat signatures in low-light conditions,

proving invaluable for night-time navigation. By integrating these diverse datasets, as

demonstrated in works such as Liu et al. 2023b, Li et al. 2022, and Kurniawan and Tri-

laksono 2023, autonomous vehicles can gain a more holistic and precise understanding of

their surroundings. The Liu et al. 2022 and Liu et al. 2023a introduced a 3D Positional

Encoding module that enhances multi-task detection capabilities. Cai et al. 2024, on the

other hand, employs monocular depth estimation to transpose LiDAR features into image

features, and BEVDepth introduces a DepthNet within RGB features, utilizing ground

truth from points to supervise the RGB’s sampling task, thus mitigating the impact of

depth information scarcity.

The research on autonomous vehicles based on multimodal sensors is indeed promising,

offering a comprehensive view of the environment and enhancing the safety and reliability

of self-driving systems. However, several challenges remain to be addressed: To begin

with, the integration of various sensor modalities, such as LiDAR, radar, and cameras,

is complex due to the heterogeneity of data they provide. This includes differences in

physical units, sampling resolutions, and spatio-temporal alignment, which significantly

increase the complexity of preprocessing and alignment, thus affecting the efficiency of

fusion Bokade et al. 2021.
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Following up, the computational intensity of deep learning models, which are often cent-

ral to multimodal fusion systems, is another critical challenge. While these models offer

superior performance, they require substantial computational resources, potentially com-

promising real-time processing capabilities. This is especially problematic in autonomous

driving scenarios, where timely and accurate perception is crucial for safety and efficiency

Bokade et al. 2021. Moreover, the literature has presented innovative solutions to address

the complex issue of multimodal sensor fusion efficiency, particularly within the context

of autonomous driving scenarios. These contributions are instrumental in advancing the

field by providing robust methods to handle the intricate challenges associated with in-

tegrating diverse sensor data for autonomous vehicle systems. For efficiency problem in

multimodal fusion, Zhang et al. 2025 is an efficient multimodal data fusion framework that

has been developed for 3D object detection and tracking. It introduces innovative fusion

strategies such as High-Level Semantic Guidance (HLSG) and Multi-Priority Matching

(MPM), which not only optimize the utilization of multimodal data but also enhance the

complementary integration of different data types, significantly improving performance

in adverse weather conditions.

Meanwhile, deploying autonomous driving vision systems in real-world scenarios presents

a multifaceted set of challenges that significantly impact system performance and reliab-

ility. One of the primary issues is sensor noise, which arises from the inherent limitations

of cameras and other visual sensors. These sensors are susceptible to variations in light-

ing conditions, weather, and occlusions, leading to degraded image quality and reduced

accuracy in object detection and recognition tasks Geiger et al. 2012, Yan et al. 2024.

Additionally, hardware limitations pose a significant constraint. The computational re-

sources required for real-time processing of high-resolution visual data are substantial,

necessitating efficient algorithms and specialized hardware to ensure low latency and high

throughput Huang and Chen 2020. Environmental factors, such as adverse weather con-

ditions (e.g., rain, fog, snow) and complex urban environments with dynamic objects and

varying illumination, further complicate the task. These conditions can introduce addi-

tional noise and occlusions, making it difficult for vision systems to maintain consistent
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performance Bijelic et al. 2020a. Addressing these challenges requires a combination of

robust sensor fusion techniques, advanced machine learning algorithms, and adaptive com-

putational frameworks that can handle the variability and unpredictability of real-world

driving conditions.

Furthermore, the development of sensor-adaptive multimodal fusion methods, such as

Palladin et al. 2024, has been crucial for 3D perception. These methods are designed to

learn from a combination of RGB and LiDAR sensors, and can also incorporate data from

Near-Infrared (NIR) gated cameras and radar to handle low-light and adverse weather

conditions. By using attention-based deep fusion schemes and refinements in the Bird’s

Eye View (BEV) plane, these methods effectively integrate image and range features, en-

hancing the overall performance of autonomous vehicle systems. However, these articles

do not address a key issue in autonomous driving: the integration of multimodal sensor

systems in autonomous vehicles, while enhancing performance, also increases computa-

tional complexity in real-time, thereby reducing computational efficiency. This decrease

in efficiency can lead to accidents when vehicles need to make rapid judgments. Therefore,

this paper aims to propose a model that can solve the aforementioned problems.

Among all the challenges mentioned, the most critical and pressing issue that needs to be

addressed is the trade-offs between the computational efficiency issue and the performance

of the model. This complexity is a double-edged sword; it sharpens the vehicle’s ability

to perceive and interpret its surroundings but simultaneously dulls the blade of compu-

tational efficiency. The consequence of this is a potential lag in the vehicle’s response

time, which is particularly dangerous in scenarios requiring swift and decisive actions. A

moment’s delay could mean the difference between a safe maneuver and a catastrophic

collision. Thus, the imperative for a model that can adeptly balance the scales of per-

formance and efficiency becomes evident.
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It is interesting to note that in the field of computer vision and autonomous driving per-

ception, the computational demands have been a subject of considerable research. For

example, papers such as Zhang et al. 2025 have already tackled the problem of improv-

ing the detection performance for cars by applying a better fusion strategy, Liu et al.

2018 proposed a method that reduces computational complexity by employing a low-rank

multimodal fusion strategy in human motion detection, and Tan et al. 2022 resolved the

problem by optimizing the data fusion strategy, efficient multimodal data processing has

been achieved, improving the efficiency of occupancy detection in residential buildings.

These scholarly contributions have been pivotal in propelling the field forward by offering

robust methodologies designed to navigate the complex challenges associated with the in-

tegration of diverse sensor data within autonomous vehicle systems. However, autonomous

driving systems need to process vast amounts of data in real-time and respond swiftly.

Excessive computational complexity can slow down the system’s processing speed, fail-

ing to meet the demands of real-time performance, which in turn affects the safety and

efficiency of autonomous driving. Moreover, the computational resources of autonomous

vehicles are limited, including the processing power of the processors, memory capacity,

and power supply. Reducing computational complexity can decrease the consumption of

hardware resources, enabling the system to operate more stably within these constraints.

This work, which is the pursuit of efficient 3D multimodal autonomous driving percep-

tion is ongoing, with researchers actively developing new methods to improve data fusion

strategies and computational efficiency. The ultimate goal is to create autonomous vehicle

systems that can reliably interpret and react to their environment in real-time, ensuring

safety and performance.

This paper, therefore, sets out to introduce an innovative model that not only maintains

the high standards of performance offered by multimodal sensor integration but also

ensures that this performance does not come at the cost of computational efficiency. By

doing so, it seeks to mitigate the risk of accidents caused by computational delays, thereby
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contributing to a safer autonomous driving experience. The proposed model is designed to

be a robust solution that can operate efficiently under the stringent demands of real-time

processing, ensuring that autonomous vehicles can make time-sensitive decisions without

compromise.

To solve the problem mentioned above, we proposed two innovative modules. The first

module is formed upon that the environment surrounding an autonomous vehicle can

change rapidly at times, and at other moments, it evolves more gradually. Employing a

static sampling rate in the face of such diverse scenarios leads to less than optimal com-

putational efficiency. Moreover, when processing the features of each modality through

Vision Transformers, especially within the self-attention mechanism where the attention

values for features are determined, it has become apparent that sticking to the con-

ventional processing pipeline increases computational complexity and reduces efficiency.

Drawing inspiration from Li et al. 2023a, we propose a depth-aware adaptive multimodal

visual fusion strategy. This strategy is predicated on the notion that an autonomous

vehicle’s perception system should intelligently adapt its data fusion tactics in response

to the prevailing traffic conditions and driving environment. For example, the reliance on

visual information from cameras is heightened in crowded areas. In contrast, in less dense

or clearer settings, the reliance on camera-derived visual data is diminished. This adaptive

approach ensures that the autonomous vehicle can sustain peak perceptual performance,

regardless of the environmental challenges it encounters. In this work, we introduce a

depth-aware self-adaptive sampler that extracts a depth map from camera features within

a point cloud. Subsequently, it dynamically calculates the fusion rate—the proportion of

camera features to be integrated—based on this depth map. This innovative method al-

lows for the efficient and real-time determination of the average depth information for

any given scene.
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In our innovative approach, we’ve taken inspiration from the observation that traditional

methods of processing multimodal features through Vision Transformers, especially within

the self-attention mechanism, can be computationally intensive. As highlighted in the

seminal work of Woo et al. 2018, inferring attention weights from mid-level feature maps

by considering both channel and spatial dimensions, and then refining the original features

accordingly, has been shown to enhance the model’s ability to capture a wider array of

object parts, thereby improving detection accuracy. This insight has led us to believe

that the attention mechanism is pivotal in steering the model’s focus toward the most

relevant information. Building on this concept, we propose a novel hypothesis: detection

accuracy during the feature preparation phase of our model could be significantly boosted

by concatenating dimensional values of all patches into a single token. Borrowing from the

innovative ideas of Liu et al. 2024, we emphasize the calculation of inter-signal correlations

across all patches to create a comprehensive global representation. This method aligns with

a signal-centric strategy, which is particularly advantageous for the emerging attention

mechanisms aimed at harmonizing multiple signals. To implement this, we’ve introduced

an architectural innovation: inverting the feature dimensions before they are fed into

both the self-attention and feed-forward layers. This inversion allows for attention to be

computed based on the intrinsic dimensional correlations within each patch at specific

locations. A significant computational benefit arises from the fact that, in our model,

the feature dimension for each patch is less than the number of patches. Consequently,

as detailed in Woo et al. 2018, we achieve a substantial reduction in complexity, scaling

down from O(9002) to O(2562).

This paper delves into the cutting-edge techniques of multimodal visual fusion, pivotal

for the advancement of autonomous driving. Our key contributions in this domain are as

follows:
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1). We introduce a depth-aware fusion sampler that dynamically adjusts the fusion rate

between the auxiliary and primary detectors, marking a novel approach in optimizing

the multimodal visual fusion process for autonomous vehicles. This intelligent adaptation

ensures that the auxiliary sensor operates only when necessary, with its activation gauged

by depth calculations. Specifically, when the depth surpasses the threshold of 52 meters—

the maximum measurable range in our project— the auxiliary detector is deactivated,

relying solely on the primary detector for perception.

2). We incorporate the attention mechanism from the iTransformer into our model, aug-

menting the self-attention module for each feature dimension. This refined focus enables

the model to concentrate more intently on the unique signals of each modality, thereby

boosting the model’s performance and its capacity to generalize across diverse scenarios.

Particularly beneficial for detecting rare targets that infrequently appear within scenes,

our experimental evaluations demonstrate a notable improvement in model performance

with the integration of the iTransformer’s attention mechanism.



Chapter 2

Related Work and Background

2.1 Related work

In recent years, remarkable strides have been made in the realm of 3D object detection

and the fusion of multi-modality sensor data. Several distinguished studies have tackled

the complex challenges within this field, proposing groundbreaking solutions aimed at

enhancing both the precision and efficiency of detection systems. The following overview

synthesizes discussions on the pivotal contributions made in this domain.

3D Object Detection. Within the realm of computer vision and sensory perception,

a multitude of researchers have been intently focused on the pursuit of advancements

in 3D Object Detection. As delineated in Section 1, the field of 3D Object Detection

is primarily categorized into three approaches: Voxel-based, Point-based, and Bird’s Eye

View (BEV)-based. In the realm of voxel-based 3D Object Detection, the pioneering

work of Ding et al. 2021 pioneered the direct extraction of voxel features for advanced

processing. Meanwhile, the grid-based methodology, exemplified by the success of Zhou

and Tuzel 2018, involves the transformation of raw point cloud data into a structured voxel

grid, thereby facilitating more intricate analysis. Shifting focus to BEV-based detection,

Wang et al. 2021b has made significant strides by converting multi-tiered RGB features

9
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into object-centric BEV features. This approach provides a more holistic understanding

of the spatial interrelations among objects within the environment. Similarly, the works of

Li et al. 2022, Liu et al. 2023b, and Li et al. 2023a have each contributed to the extraction

of multi-tiered RGB features into dense, grid-based BEV features. This methodology has

proven to be more versatile in processing and more adept at identifying objects in scenarios

rife with uncertainty.

Single-modality. The landscape of contemporary 3D Object Detection is neatly seg-

mented into three categories, reflecting the diversity of detectors used: Single-modality,

Dual-modality, and Multi-modality Object Detection. Single-modality approaches have

achieved notable milestones, especially in environments where data is procured from a

solitary sensor type, such as RGB cameras or LiDAR.

In the case of RGB cameras, Yan et al. 2023 noted that early efforts concentrated on

dense prediction pipelines, which often fell short of capturing a holistic view essential for

real-world autonomous driving scenarios. Furthermore, these detectors struggled to retain

information about previously detected objects, leading to subpar detection outcomes. To

surmount these challenges, Wang et al. 2021b introduced a groundbreaking transformer-

based 3D object detector. This innovation sparked a new trend: transforming the vehicle’s

visual data into Bird’s Eye View (BEV) features. The success of this paradigm was fur-

ther substantiated by the works of Li et al. 2022 and Philion and Fidler 2020. Specifically,

BEVFormer aggregates camera features from all six perspectives, demonstrating the ef-

ficacy of this approach. On the LiDAR front, Ding et al. 2021 pioneered an architecture

that processes point clouds in an end-to-end manner. Subsequently, Zhou and Tuzel 2018

advanced the field by converting raw point clouds into structured voxel grids, streamlining

the detection process.
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Dual-modalities. However, in the intricate tapestry of driving scenarios, the reliance on

a single modality is often insufficient. Addressing this challenge, dual-modality 3D Object

Detection has emerged as a powerful solution. For instance, Li et al. 2023a ingests both

raw RGB images and raw LiDAR point clouds, harnessing the depth information from the

latter to enhance the precision of the semantic data derived from the former. Liu et al.

2023b, on the other hand, takes in raw data from cameras and LiDAR, and innovates

by introducing two Task-Specific Heads: one dedicated to BEV Map Segmentation and

the other to 3D Object Detection. This dual-focus approach allows for a more nuanced

understanding and processing of the data. Yan et al. 2023 has introduced a Coordinates

Encoding Module, which plays a pivotal role in minimizing the discrepancies in coordinates

between different modalities, thereby improving the accuracy of the detection process.

Cai et al. 2024 made a pivotal observation: before the fusion of BEV features, there is

an inherent fusion error stemming from the varied representational formats of different

modal features. To counteract this, it proposes a method that fuses the BEV features

before feature processing, streamlining the integration and enhancing overall accuracy. In

the realm of Radar detectors, Stäcker et al. 2023 represents a novel approach, presenting

a radar-camera fusion architecture that operates on the BEV plane. This innovation is

significant as it opens up new possibilities for how radar and camera data can be integrated

to yield more robust detection results.

Multiple-modalities. As dual-modality fusion technology matures, there’s a growing

interest in leveraging raw data from three or more modalities to enhance real-time re-

sponsiveness to dynamic road traffic conditions. In this context, multi-modal 3D Object

Detection is increasingly being explored. For instance, Li et al. 2023a ingests both raw

RGB images and LiDAR point clouds, extracting depth information to enrich the se-

mantic insights from cameras. Liu et al. 2023b processes inputs from cameras and LiDAR,

introducing Task-Specific Heads that cater to BEV Map Segmentation and 3D Object De-

tection. Yan et al. 2023 introduces a Coordinates Encoding Module designed to minimize

discrepancies in coordinates between different modalities. Cai et al. 2024 addresses the

fusion error that arises from differences in feature representation of various modalities
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Figure 2.1: The overall pipeline of iTransformer. Liu et al. 2024

and proposes a method to fuse BEV features before feature processing. In the domain

of Radar detectors, Stäcker et al. 2023 presents a novel radar-camera fusion architecture

that operates on the BEV plane. Notably, Chen et al. 2023, as proposed by Chen et al.,

stands out as a pioneering unified end-to-end sensor fusion framework for 3D detection.

It is designed to be versatile across all sensor configurations, integrating a query-based

Modality-Agnostic Feature Sampler (MAFS) with a transformer decoder, complemented

by a set-to-set loss function for 3D detection. This approach elegantly sidesteps the reli-

ance on late fusion heuristics and post-processing techniques. FUTR3D can process raw

inputs from RGB cameras, LiDAR, and radar, defining the 3D reference point from the

projection plane coordinates, and applying a set-to-set loss in the decoding stage. Remark-

ably, FUTR3D, even when equipped with just a 4-beam LiDAR and cameras, achieves a

58.0 mAP score, surpassing the state-of-the-art 3D detection model, which scores a 56.6

mAP with a 32-beam LiDAR. This achievement highlights FUTR3D’s potential to be a

game-changer by offering high-performance detection capabilities with a fraction of the

hardware resources typically required. In our project, we aim to delve into how modality

fusion is executed across all Camera, LiDAR, and Radar features, which is why we have

chosen FUTR3D as our baseline model.
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Fusion Strategy. These years, researchers have dived into research on multimodal fusion

strategies. Fusion strategies are divided into three categories: Early-fusion, Middle-fusion,

and Late-fusion. For Early-fusion, Bijelic et al. 2020b proposed an entropy-based method

for multimodal feature fusion across LiDAR, RGB Front View (FV) data, and LiDAR

data into a specific type of BEV embedding called ”entropy”. The entropy itself is the

variety of modalities. The richer the entropy is, the richer the information contained in

the fused feature is. This paper tackled the problem of scenarios where annotated data is

scarce and challenging to acquire due to the inherent bias of natural weather conditions.

Meanwhile, conducting early-level fusion can easily deal with the problem stated above.

Middle fusion is referred to by most of the current papers, which focus on multimodal

fusion methods. For example, Li et al. 2022, Liu et al. 2023b, and Wang et al. 2021b uses

a backbone to extract features from the raw data. Currently, late fusion is less commonly

employed as the sole fusion technique in multimodal models due to its heightened require-

ments for sophisticated loss functions and nuanced attention mechanisms. The prevailing

models in the field often leverage Cross-Attention within the Transformer architecture

to calculate attention and manage the fusion process. Consequently, implementing late

fusion without the integration of Cross-Attention presents a significant challenge, as it ne-

cessitates the development of advanced techniques to effectively amalgamate the diverse

modalities at the decision-making stage.

Summary. Research in multimodal fusion, particularly using the Vision Transformer

(ViT), is currently focused on improving the accuracy of predictive models. However,

there appears to be a gap in the literature for reducing computational complexity to

improve the efficiency of multimodal 3D object fusion tasks without sacrificing the detec-

tion accuracy of individual object classes. This research gap suggests that new research

directions are needed to optimize algorithms and model structure to make the feature

extraction, sampling, secondary sampling, and fusion process more memory-saving.
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2.2 Background

Vision Transformer. Transformer Vaswani et al. 2017 was proposed for machine lan-

guage tasks, and has been cited in many Natural Language Processing (NLP) tasks. Still,

it can only deal with time-series-related works. As stated in Dosovitskiy et al. 2021, con-

volutional neural networks (CNNs) continue to hold a dominant position in computer

vision, as evidenced by seminal works such as LeCun et al. 1989. Despite their theoret-

ical advantages, these models have yet to achieve widespread adoption in large-scale im-

age recognition tasks, primarily due to the challenges associated with scaling on modern

hardware accelerators, which are often limited by the specialized nature of the attention

patterns they employ. Consequently, in the context of large-scale image recognition, the

classic ResNet-like architectures continue to set the benchmark for performance.

As depicted in Figure 2.2, different from the traditional Transformer model, which takes

features across all feature dimensions at one timestamp as one token, Vision Transformer

divides the feature at one timestamp into blocks, which are called patches. Each patch

contains information on the features of the image in one position. After obtaining the

information of one patch, attention is calculated to measure the correlation between each

patch. For the rest of the model, it follows the pipeline proposed by Vaswani et al. 2017.

iTransformer. The recent surge in linear forecasting models has sparked a reevaluation

of the fervor surrounding architectural enhancements to Transformer-based forecasters.

These forecasters utilize Transformers to capture global dependencies across temporal

tokens of time series data, with each token comprising multiple variates from the same

timestamp. However, Transformers encounter challenges in forecasting tasks with extens-

ive lookback windows, often leading to performance deterioration and computational

strain. Moreover, the embedding of each temporal token, which amalgamates multiple

variates representing potential lagged events and diverse physical measurements, may

struggle to learn variate-specific representations, thereby resulting in ineffective attention
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Figure 2.2: The overview of the Vision Transformer Model. Feature information is divided
into several patches, each patch contains a batch of feature dimensions. In the vanilla
Vision Transformer model, each token is obtained along the dimension of number of
patches. Dosovitskiy et al. 2021

maps. iTransformer is a model that employs the attention and feed-forward mechanisms on

inverted dimensions. Specifically, the time points of individual series are transformed into

variate tokens, which are then leveraged by the attention mechanism to discern multivari-

ate correlations. Concurrently, the feed-forward network is tasked with learning nonlinear

representations for each variate token. The iTransformer model has achieved state-of-the-

art performance on complex real-world datasets, thereby augmenting the Transformer

family with enhanced performance, improved generalization across various variates, and

optimized use of arbitrary lookback windows.



Chapter 3

Methods

3.1 Problem statement

The primary objective of this research is to optimize the computational efficiency of mul-

timodal fusion while ensuring that the accuracy of the system remains uncompromised.

To accomplish this goal, two innovative modules have been specifically designed and

integrated into the framework. The first module is a dynamic adaptive sampling mechan-

ism, which leverages the inherent sparsity of real-world scenes to selectively sample the

most informative data points. By doing so, it effectively reduces the amount of redund-

ant information processed, thereby minimizing unnecessary computational overhead. The

second module is the iTransformer, a novel architecture designed to enhance the efficiency

of feature extraction. It achieves this by optimizing the way features are extracted and

processed, ensuring that only the most relevant and discriminative features are utilized

in subsequent stages. The synergistic interaction between these two modules allows for

a substantial reduction in computational complexity during the fusion process. This not

only accelerates the overall system performance but also ensures that the fusion of mul-

timodal data remains both efficient and effective, paving the way for more scalable and

practical applications in complex, real-world scenarios.

16
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3.1.1 Input Description.

1.Multi-view RGB images (F1). These images capture the visual spectrum and

provide rich texture and color information. They are initially processed to extract fea-

tures that are crucial for object recognition and classification.

2 LiDAR Data (F2). LiDAR sensors provide high-resolution 3D information about the

environment. The data is used to generate a detailed point cloud, which is then processed

to create a BEV feature set that is particularly robust in challenging conditions such as

low light or adverse weather.

3. Radar Data (F3). Radar sensors contribute with their ability to penetrate through

various weather conditions and provide velocity information. The radar data is processed

to produce a BEV feature set that complements the LiDAR data, especially in dynamic

scenarios.

The SAMFusion3D architecture, as introduced in our research, is designed to address

the critical issue of real-time computational efficiency in autonomous driving systems

equipped with multimodal sensors. The primary inputs to our model are multi-view RGB

images, LiDAR, and Radar data, which are processed through specialized backbones to

generate three distinct Bird’s Eye View (BEV) feature sets, labeled as F1, F2, and F3.

Our proposed SAMFusion3D architecture, as depicted in Figure 3.1, synergizes multi-view

RGB images, LiDAR, and Radar data through specialized backbones to generate three

distinct Bird’s Eye View (BEV) feature sets (F1, F2, and F3). We employ multi-head

attention, feedforward layers, and layer normalization during feature extraction. Inspired

by iTransformer, we invert the feature dimensions within the self-attention and feedfor-

ward layers to enhance processing efficiency. The extracted features are then subjected
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Figure 3.1: In the SAMFusion3D framework, we meticulously process multi-view imagery
and point cloud data through their respective backbones. Features extractors, Depth
Obtainer, and Sampler are employed to make the pipeline function more efficiently. The re-
sampled camera feature and LiDAR feature are fused through the Cross-attention layers of
the Transformer. After calculating attention across modalities, features are concatenated
through linear layers (Fusion Features). Last but not least, feature is fed to the Decoder
for loss calculation. For Camera and Radar fusion, we conduct experiments in the same
way.

to a Sampler, which adjusts the feature set based on a real-time fusion sampling rate de-

rived from depth cues. Depth is ascertained by processing detected object data through a

Depth Obtainer, generating a depth map that aligns with the camera’s coordinate system.

This depth information is converted into a sampling rate by the Sampler module. While

the Camera’s BEV feature (F1) is re-sampled for fusion to enrich the detail, the LiDAR

and Radar features (F2 and F3) are retained in their original form, capitalizing on their

reliability in challenging conditions. The resulting re-sampled features (F1’, F2, and F3)

are merged in a final fusion step, as illustrated in Figure 3.3, culminating in an integrated

representation that optimizes perception for autonomous driving applications.
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3.2 Feature Extractor

The SAMFusion3D system adeptly handles a comprehensive array of raw data, including

images captured by the six cameras mounted on the autonomous vehicle and raw point

cloud data sourced from LiDAR and Radar sensors. This diverse dataset is funneled into

the backbone network for initial processing. We utilize ResNet50 as the backbone network

for image data, with dedicated networks addressing the point cloud data. The features

extracted by these backbones are then conveyed to a Vision Transformer, which employs

attention mechanisms to bolster feature integration. For the camera images, considering

we have six distinct images, we adhere to the methodology established in previous work

Li et al. 2022. This involves performing self-attention calculations on each image while

also executing cross-attention across the entire suite of images. Once the features from the

three distinct modalities are harvested, they are subjected to further refinement through

self-attention layers that are tailored to each modality. During this refinement phase,

we introduce an inversion process that targets both the self-attention and feed-forward

layers, thereby optimizing the transformation of features. Prior to the Layer Normaliza-

tion stage, the feature dimensions are meticulously restored to their original state. This

carefully orchestrated series of operations ensures a thorough and sophisticated fusion of

features drawn from multiple data sources, establishing a solid foundation for robust and

dependable 3D object detection.

The structure of iTransformer is shown in Figure 3.2. Following is a detailed explanation

of each block of iTransformer.

• Embedding: The process begins with the crucial step of transforming raw time

series data into an embedding format. In this initial phase, each embedding is en-

capsulated as a query, adopting the shape of (batch size,number of queries, em-

bedding dimensions). In a conventional transformer, each token is embedded across

the dimension of the number of queries. However, in the innovative iTransformer,

each token is embedded through the dimension of the embedding dimensions itself.
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Figure 3.2: The iTransformer model, akin to the classic Transformer architecture, is me-
ticulously structured into several key components: an embedding input, multi-head self-
attention mechanisms, feed-forward networks, and layer normalization processes. Within
the multi-head self-attention layers, the model ingeniously inverts the relationship between
the embedding dimension and the feature dimensions of each patch. This inversion is then
reversed in preparation for the layer normalization phase. Post the feed-forward layers,
the tokens, which are derived from the feature dimensions of the individual patches, are
subjected to another round of layer normalization. Ultimately, the meticulously processed
features are projected and presented as the final output.

In our project, the dimensionality transformation process is ingeniously implemen-

ted within the Multivariate Attention module. To detail, Let’s assume we have an

input X = {x1, . . . ,xT} ∈ RT×N , where T represents the number of patches and N

represents the number of pixels for each patch. Note that xi = {xi1, . . . ,xiN} and

here xi is a vector used to store all the pixel features within each patch. xi also

represents a token that is input to the Transformer encoder. As depicted in Figure

1, we assume there are 4 pixels and 9 patches. Therefore, it has T = 9 and N = 4.

Embarking on a novel approach, we adjust the input to X̂ = {x̂1, x̂2, . . . , x̂N}, and

x̂i = {x1i,x2i, . . . ,xTi}. As shown in Figure 1, the novel number of tokens becomes 4.

As we know, the computational complexity of the Transformer is about O(Tokens2),

therefore, a substantial reduction in complexity scaling down from O(92) to O(42)

with our proposed Feature Extractor in our example.
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• Multivariate Attention: This section elaborates on the attention mechanism em-

ployed within our model. Similar to all Vision Transformers, it encompasses a mul-

tivariate attention process where queries, keys, and values undergo transformation

and scaling before they are amalgamated into a multivariate correlation map. Lever-

aging the strengths of the iTransformer architecture, we introduce a novel inversion

of the second and third dimensions of our embeddings at this stage. This inversion

allows the transformer to calculate the attention correlations such that each token

is represented from the perspective of the number of modalities. In contrast, tradi-

tional transformers typically derive tokens from the viewpoint of multiple queries,

which can limit the nuanced representation of the data.

• Feed-forward: This part illustrates a sequence of dense layers, where the variates

pass through dense transformations, activations, and dropout processes before mov-

ing to the next dense layer. In this part, we first invert the dimension of queries fed

to the FFN (Feed-Forward networks) in each layer and revert it back to the original

dimension for further processing.

• LayerNorm: In the realm of layer normalization, the iTransformer standardizes

features based on their mean (µ) and standard deviation (σ) before their progression

to the subsequent dense layer. In our project, we adopt the transformer base layers

from Chen et al. 2019 to carry out the layer normalization. Consequently, the mean

and standard deviation of the query samples are determined in accordance with the

original configuration, ensuring a faithful and effective normalization process.
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3.3 Depth Obtainer

The input features comprise Camera Bird’s Eye View (BEV), LiDAR BEV, and Radar

BEV features. All these BEV features are meticulously extracted utilizing the backbone

architecture of Chen et al. 2023. Each feature set extracted—denoted as F1, F2, and

F3—is pivotal in capturing distinct aspects of the surroundings, thereby enhancing the

robustness and reliability of the fusion process. These trio of BEV features (F1, F2, and

F3) are then ingested into the Sampler module.

Depth Obtainer. The Depth Obtainer will get the depth of objects detected by the

LiDAR detector and create a corresponding depth map. Given the detected objects’ in-

formation, the depth d is calculated. The transformation from LiDAR’s depth map to the

camera’s coordinate system is performed using a method similar to Li et al. 2023a and Li

et al. 2023b. This transformation involves the following steps:

1). Depth Map Collection and Transformation. This process starts with collecting

raw 3D points from the LiDAR sensor. Each point is represented by coordinates (xi,yi,zi),

where xi, yi, and zi represent the spatial coordinates of the i-th point.

2). Transformation to Camera Coordinates. To integrate the LiDAR data with cam-

era data, we need to transform the LiDAR points into the camera’s coordinate system.

This involves using a transformation matrix T, which compresses rotation R and trans-

lation t. In this process, the py quaternion library in Python is used to conduct rotations

and orientations. The transformation is performed as follows:
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Figure 3.3: In the original scenario of feature fusion, a concatenation process is employed
to integrate the distinct features derived from Camera and LiDAR/Radar sensors. This
approach ensures that the complementary information from both sources is effectively
combined, enhancing the overall performance of the system.


x′

y′

z′

= R


x

y

z

+ t (3.1)

In this transformation equation 3.1, R ∈ R3×3 represents Rotation Matrix. This mat-

rix aligns the LiDAR coordinate system with the camera coordinate system by rotating

the LiDAR points. t ∈ R3×1 means Translation Vector. This vector shifts the LiDAR

points to align them with the camera’s position. In this paper, the z′ after transformation

represents the real-time depth information of the cameras.

3). Average Depth Calculation. The average depth d̄ Is calculated by utilizing the

mean of the depth values from the cameras.
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d̄ =
1
N

N

∑
i=1

di (3.2)

In equation 3.2, N represents the number of depth values from the cameras, and di rep-

resents the depth at the i-th point.

3.4 Sampler

Sample Rate Calculation and Resampling Process. In the Sampler module, a

function is defined to project the calculated average depth value into the fusion sampling

rate. The equation is illustrated as follows:

ϕ(d) = α ·d · e−β (3.3)

In Equation 3.3, parametersα and β dictate the sampling rate, which is depth-dependent.

Utilizing this rate, the Camera’s Bird’s Eye View (BEV) feature (F1) is resampled to be-

come F1’. In contrast, the Radar and LiDAR BEV features (F2 and F3) remain unaltered,

capitalizing on their superior reliability and confidence even under challenging conditions.

For this study, we have assigned α and β the values of 1.

For further details of our proposed sampler, we extract a depth map from the LiDAR point

cloud data, then employ a conversion matrix to align this depth map with the Camera’s

BEV feature, as delineated by Equation 3.1. Subsequently, we determine the sampling

rate using the camera feature’s BEV map. This rate guides our selection of which feature

areas will contribute to the fusion process. We implement a zero-padding strategy for

areas not selected for fusion, effectively padding them with zeros.
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Figure 3.4: Feature fusion is enhanced with our innovative sampler, where F1’ denotes the
Bird’s Eye View (BEV) feature from the camera, and F3 signifies the BEV feature from
the radar (alternatively denoted as F2 when fused with the LiDAR BEV feature). In our
approach, the feature region utilized for fusion is dynamically modulated based on the
depth value, allowing for an adaptive adjustment of the fusion rate. The blocks with blue
gradient color indicate effectively fused patches, where objects are detected. For patches
without gradient colors,

The figure illustrates arrows connecting F1 with F3/F2, indicating that padding is not

required for these features, as they serve as the primary detectors in their respective

detection tasks. To encapsulate, this fusion strategy is prevalent in architectures aimed

at tasks that require multi-scale feature integration, such as image segmentation, object

detection, and complex scene understanding. By effectively merging features of varying

resolutions and types, this approach not only bolsters the model’s performance but also

enhances computational efficiency by reducing the processing time for a set number of

frames.
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3.5 Loss Function

We adhere to the methodologies outlined in Wang et al. 2021b, Wang and Solomon 2021,

and Zhu et al. 2021 employing a set-to-set loss calculation between the predictions and

the ground truths, facilitated through one-to-one correspondence. For the classification

task, we utilize focal loss, while for the 3D bounding box regression, we adopt the L1

loss, aligning with the approaches of DETR3D and FUTR3D. In detail, The typical scen-

ario of this kind of problem involves a smaller count of ground-truth bounding boxes, in

comparison to the number of predicted bounding boxes. To facilitate the computational

process, we augment the ground-truth set with placeholder values (indicating no object)

until it matches the count of predictions. This alignment is achieved by addressing the

task as a bipartite matching problem, thereby creating a clear correspondence between

each ground-truth box and its predicted counterpart. In detail, the equation of the loss

function is listed as follows:

L1 Loss. The L1 loss, also known as the Mean Absolute Error (MAE), is given by:

L1 =
1
N

N

∑
i=1
|yi− ŷi| (3.4)

where N is the number of samples, yi is the actual value for the i-th sample, and ŷi is the

predicted value for the i-th sample.

Focal Loss. The Focal loss is defined as:

FL(pt) =−αt(1− pt)
γ log(pt) (3.5)
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where pt is the model’s predicted probability for the true class, αt is the weight for the

class, and γ is the focusing parameter.

The total Focal loss for a batch of samples is the average of the Focal losses for each

sample:

FLtotal =
1
N

N

∑
i=1

FL(pti) (3.6)

where pti is the predicted probability for the true class of the i-th sample in the batch.

3.6 Algorithms

To elucidate the training process of our model, we have meticulously crafted a visual

representation of the algorithm in Algorithm 1. This diagram provides a clear and intu-

itive overview of the model’s training regimen. It is important to note that Algorithm 1

specifically illustrates the fusion of Camera and LiDAR features. The feature extraction

and other steps for Camera and Radar fusion are analogous to those depicted. As shown

in Algorithm 1, the model begins by ingesting raw data from the Camera, LiDAR, and

Radar sensors within the nuScenes dataset. Prior to training, we initialize the weights

for the feature extractors of each modality and the decoder, denoted as θ f
m and θd, re-

spectively. During each epoch, if LiDAR is selected as the primary detector to integrate

with the Camera feature, the feature extractor is employed to extract features from the

LiDAR feature. Concurrently, our Depth Obtainer calculates the average depth of the

live scene. This depth measurement, guided by the LiDAR, is then assigned to variable

D. Once D is determined, the Sampler is utilized to re-sample the Camera feature, using

both the extracted Camera feature and depth D as inputs. Subsequently, the feature from

the primary detector, FL, and the re-sampled Camera feature are combined and fed into

the Fuser for feature fusion. The output of the Fuser is the fused feature F , which, in

conjunction with the decoder training parameter θd, is passed to the Decoder module.
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This process culminates in the computation of the loss, for which we have adopted the

Focal Loss method as detailed in Section 3.5. Upon calculating the loss value, we proceed

to update the weights utilized throughout the training process following the loss function

outlined in Chen et al. 2023.

Algorithm 1: Algorithm for the training process of SAMFusion3D
input : nuScenes raw data from Camera C, LiDAR raw point cloud data L
Initialize weights of feature extractor θ f

m for modality m;
Initialize weights of decoder θd ;
for i = 1 to max_iter do

Fm = FeatureExtractor(m,θ f
m),m ∈ {C,L};

if m = L then
D←DepthObtainer(L,C);

F
′
C = Sampler(FC,D);

F = Fuser(F ′C , FL);
Loss(θ f

m,θd) = Decoder(F,θd);
Update θ f

m,θd using Loss(θ f
m,θd) [Chen et al. 2023];

3.7 Summary

In summary, our model has been meticulously crafted, building upon an existing model

that adeptly handles the fusion of three-modal raw data as our baseline. Within the

Feature Extractor module, we have integrated the iTransformer to reverse the dimensions

processed into Transformer tokens, thereby enhancing the computational efficiency of the

feature extraction process. Furthermore, we have introduced a novel Sampler that re-

samples the extracted Camera feature, leveraging the guidance from the LiDAR feature

and its real-time average depth, which is derived by our Depth Obtainer. Once the re-

sampled Camera feature and the LiDAR feature—or Radar feature, should we opt for

Radar as the primary detector—are obtained, they are channeled into the Fuser and

Fusion Features module. This step concatenates the features from the different modalities.
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Ultimately, the fused feature is then passed to the Decoder component to compute the

loss value. This comprehensive approach ensures that our model not only maintains the

performance standards but also optimizes the computational efficiency, making it a robust

solution for multi-modal data fusion tasks.



Chapter 4

Experiments Evaluation

4.1 Dataset and Model

We evaluate our proposed method on nuScenes benchmark and dataset. The nuScenes

dataset, proposed by Caesar et al. 2019, is a large-scale and multi-task dataset designed

for tasks such as 3D object detection, bird’s eye view (BEV) segmentation/detection, and

3D object tracking. It is divided into training, validation, and testing sets, containing 700,

150, and 150 scenes, respectively.

For both 3D object detection, each scene contains 20 seconds of video sequences and is

annotated with around 40 keyframes. Detailed ground-truth data is provided for specific

frames in the video, like the positions and attributes of objects in each scene. These

annotations allow the system to evaluate how well the model detects objects over time.

30



4.2. Metrics 31

4.2 Metrics

To assess the performance of these detection approaches, several key metrics are used:

1). nuScenes Detection Score (NDS): This is a composite score that evaluates the

overall performance of the 3D object detection system. It takes into account multiple

aspects of detection performance, providing a holistic view of how well the model performs.

A higher NDS score represents a better performance across all the key metrics. This metric

is higher the better. The formula of calculating NDS is:

NDS=
mAP+mATE+mASE+mAOE+mAVE+mAAE

6
(4.1)

The nuScenes Detection score is obtained by averaging all six metrics, to get a compre-

hensive value reflecting the model’s overall performance.

2). Mean Average Precision (mAP): This metric measures the precision of the model

in detecting objects at various levels of confidence. It evaluates how accurately the model

detects objects without producing a great amount of false positives. Mean Average Pre-

cision is calculated by averaging the precision scores across different detection thresholds

and object categories. This metric is higher the better as well. The formula of mAP is:

mAP =
∑all classes APclass
number of classes (4.2)
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where AP represents the average precision of each category. For each category, precision

is calculated according to the recall values. Each recall will correspond to a value of

precision. Each recall will correspond to a value of precision. The correspondence between

these values and the recall can be reacted as an R-P curve. Our AP value is obtained by

calculating the area below the R-P curve.

3). Five True Positive(TP) Metrics: These metrics specifically evaluate different

aspects of true positive detections, or correctly detected objects. They are critical for

understanding the strengths and weaknesses of the detection system.

• Mean Average Translation Error (mATE) : This measures the average posi-

tional error in the detected objects. It tells how far the predicted object’s position

is from its ground-truth location in 3D space.

The formula of mATE is:

mAT E =
1
N

N

∑
i=1

√
(xi− x∗i )2 +(yi− y∗i )2 (4.3)

where N represents the total number of objects detected, xi and yi represent the

coordinates of objects detected to the center point, while xi* and yi* represent the

coordinates of ground-truth objects to the center point.

• Mean Average Scale Error (mASE) : This captures the error in estimating the

scale between the detected objects and their ground-truths. mASE is calculated in

the formula of:

mASE =
1
N

N

∑
i=1

(1− IoUi) (4.4)

where IoUi represents the Intersection over Union between the i-th predicted bound-

ing boxes and the i-th ground truth bounding boxes.

• Mean Average Orientation Error (mAOE): This evaluates how well the model

predicts the orientation or direction of detected objects. It is important for tasks

to know the objects’ facing direction, e.g. Predicting where a vehicle is going. The

formula of mAOE is:
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mAOE =
1
N

N

∑
i=1
|θi−θ ∗i | (4.5)

• Mean Average Velocity Error (mAVE): This assesses the accuracy in estim-

ating the velocity of moving vehicles. For example, it checks how many accuracies

between the predicted velocity, direction, and ground-truth velocity. The formula

of mAVE is:

mAV E =
1
N

N

∑
i=1
|vi−v∗i | (4.6)

where N represents the total number of objects, vi represents the predicted velocity

vector, and vi* represents the ground-truth velocity vector.

• Mean Average Attribute Error (mAAE): This metric measures the model’s

accuracy in estimating the velocity of moving objects. For example, when the model

successfully detects and recognizes a car, this doesn’t mean the model can accurately

recognize whether the car is parked or moving. This metric can tell whether a car

is parked or moving, or whether it has its lights on. Different objects may have

different relevant attributes, more attributes being recognized means the model’s

performance is better. The formula for calculating mAAE is listed as follows:

mAVE =
1
N

N

∑
i=1
|θi−θ ∗i | (4.7)

where θ represents the angle between which the object’s velocity is heading and

directly in front.

4.3 Implementation details

Cameras. The nuScenes dataset gives images from six cameras around the ego-car for

each frame. They are front-left, front, front-right, back-left, back and back-right ; The

resolution of frames is 1600 * 900.
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LiDARs. Low-resolution LiDARs are frequently utilized in many cost-effective applica-

tions. We view these low-resolution LiDARs as complementary to high-resolution counter-

parts due to their scalability for deployment in production-ready platforms. To simulate

low-resolution LiDAR outputs, we downsample data from a 32-beam LiDAR. This process

includes coordinate transformation, defined by range (γ), inclination (θ ), and azimuth (ϕ).

LiDARs are separated according to the number of beams. For 4-beam LiDAR, we select

beams whose inclination angles (θ ) fall within the intervals[−7.1◦,−5.8◦]∪ [−4.5◦,−3.2◦]∪

[−1.9◦,−0.6◦]∪ [0.7◦,2.0◦].

Radars. For Radar information, we aggregate the points collected from all five radar

detectors into a single point cloud, with each point cloud containing between 200 and 300

points per frame. For each radar point, we utilize its coordinates, velocity measurements,

and intensity values. To refine the radar data, we apply the official filtering tool provided

by the nuScenes dataset.

Experimental setting-up. In this segment, we adhere to the configuration of our

baseline model. For each of the three feature sets, we establish a feature dimension of 256.

A total of 900 object queries are deployed, with each feature map dimensioned at 30×30

pixels. For the extraction of features from LiDAR and camera data, we utilize M=4 layers

of multi-scale features, which are encoded through a Feature Pyramid Network (FPN).

During the application of Deformable Attention, we implement K=4 sampling offsets. The

transformer’s detection head is configured with nHead=8, and within each head, it encom-

passes a total of L=6 blocks in its decoder. The choice of nHead=8 in the transformer’s

detection head is crucial for enhancing the model’s ability to capture diverse and complex

patterns within the input data. Specifically, the multi-head attention mechanism allows

the model to split the input into multiple subspaces, each processed by an individual

attention head. With nHead=8, the model can effectively attend to eight different as-

pects of the input simultaneously. This parallel processing enables the model to capture

various relationships, such as syntactic and semantic dependencies in natural language

processing tasks or spatial and contextual relationships in computer vision tasks. Each
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attention head computes its own set of query (Q), key (K), and value (V) matrices, allow-

ing the model to focus on different parts of the input sequence. The outputs from these

heads are then concatenated and transformed through a linear layer, which integrates the

information from all heads. This design not only increases the model’s capacity to cap-

ture nuanced patterns but also reduces the risk of missing important details that might

be overlooked by a single attention mechanism. For our multi-modality fusion sampler,

the parameters α and β represents he weights for each modality in the fusion process.

Representing the level of trust in a particular modality, an example would be adjusting

the value of α when the camera detector’s performance is suboptimal. By lowering the α

value, even if the fusion process is currently integrating all features from the camera, our

trust in the camera modality is diminished due to the reduced alpha value, meaning it

won’t be fully integrated. For β , the principle is the same. However, this approach should

only be used when fusing different detectors to avoid introducing human-induced errors

into the experimental results. In that case, we assign the values of each in equation 3.3

to be 1. Regarding the iTransformer’s configuration, we retain the settings equivalent to

the iTransformer’s baseline model Liu et al. 2024, setting the embedding dimension for

the attention layer to 256 and designating 900 queries per feature map. In light of the

necessity to switch between various sensor modalities within our model, we have meticu-

lously designed a sophisticated fusion mechanism. This device is pivotal in the final stage

of our processing pipeline, where a critical decision regarding adopting a fusion strategy

is made. Should we opt not to employ a fusion strategy, the LiDAR features, which have

undergone dimension inversion processing, will be utilized directly as the model’s output.

Conversely, suppose a fusion strategy is deemed beneficial. In that case, it is instantiated

by incorporating a cross-attention mechanism at the culmination of the fusion device,

effectively materializing the fusion function.

Throughout the training phase of this study, we have explored three distinct modal con-

figurations to leverage the strengths of each sensor type and their combinations:
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LiDAR Only Configuration. In this setup, the model is trained exclusively with LiDAR

data, bypassing the fusion strategy. This allows us to assess the performance of LiDAR

as a standalone modality and serves as a baseline for comparison.

Camera-LiDAR Fusion Strategy. Here, we integrate data from both the Camera and

LiDAR sensors. The fusion strategy is applied to harmoniously combine the rich semantic

information from the Camera with the precise spatial data from the LiDAR, enhancing

the model’s environmental perception capabilities.

Camera-Radar Fusion Strategy. This configuration focuses on the synergy between

Camera and Radar data. By fusing these two modalities, we aim to capitalize on the

Radar’s ability to penetrate through adverse weather conditions and provide velocity

information, complemented by the Camera’s detailed visual cues.

The implementation of these modal configurations and the strategic decision to employ

or forgo fusion strategies are integral to our research. They provide a comprehensive

evaluation of the model’s adaptability and performance across different sensory inputs,

offering insights into the most effective ways to harness multimodal data for autonomous

driving applications.

Training details. In our experimental phase, we trained our model for a duration of 20

epochs under the aforementioned settings and carried out testing on both the nuScenes

test set and validation set, utilizing the Camera and LiDAR configuration. When it came

to the Camera and Radar configuration, we conducted a training period of 6 epochs,

followed by testing and validation on the nuScenes datasets, all in accordance with the

parameters of our baseline model.
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Significantly, for LiDAR-based detectors, we adopted the AdamW optimizer Loshchilov

and Hutter 2019 for training, initializing the learning rate at 1.0×10−4 and implement-

ing a cyclic learning rate policy. During the training period, the learning rate follows

an initial upward trend, subsequently declining. This pattern is often employed to facil-

itate a more robust optimization process, allowing the model to explore the parameter

space more effectively at the outset and then fine-tuning its weights with smaller steps

as it approaches the optimal solution. The cyclic learning rate policy involves varying

the learning rate during training, which can help the model escape local minima and

achieve better generalization. Other configurations adhere to the original settings estab-

lished in FUTR3D. In line with established practices Li et al. 2023a, Huang and Huang

2022, we employed ResNet50 He et al. 2016a with the native image dimensions of 256

x 704. Here, the number 256 represents the width of the image, and 704 represents its

height. Consequently, for each image-derived point cloud map, we obtain a total of 256

* 704 values, which correspond to the raw features of the current image (features that

have not been processed). These raw features serve as the initial data points that our

model will use to learn and make predictions, providing a foundational representation

of the visual information captured by the camera. Throughout the training process, we

executed a data augmentation strategy encompassing the camera, LiDAR, and radar mod-

alities. These augmentations comprised random scaling, flipping, and rotation, mirroring

the methodology employed in BEVDet Huang et al. 2021. In the initial training phase

for the fusion sampler and the iTransformer, we trained the model with both the sampler

and the iTransformer, applying dimension inversion in both the Camera and LiDAR con-

figuration and the Camera-Radar configuration. Subsequently, in the ablation study, we

eliminated the sampler and refrained from conducting dimension inversion to assess the

model’s performance. Regarding the Camera’s real-time depth information, we utilized

the real-time LiDAR point data, leveraging the LiDAR raw points’ coordinate inform-

ation and transforming it into the Camera’s feature map for depth supervision via the

matrix that converts the Camera coordinates to LiDAR coordinates, which facilitates the
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transformation between different modal features. For the LiDAR and Radar’s real-time

depth information, to emulate a full-time operational state of the detectors, we designated

the real-time depth information for both LiDAR and Radar to a maximum of 50 meters,

correlating to the maximum observable depth range of the detectors.

Table 4.1: The table provides a comprehensive comparison of various methodologies util-
ized for 3D object detection tasks, as evaluated by several performance metrics on the
nuScenes test dataset.

Method Modality NDS mAP mATE mASE mAOE mAVE mAAE

FCOS3D [Wang et al. 2021a] C 40.2 32.6 74.3 25.9 44.1 134.1 16.3
PETR [Liu et al. 2022] C 48.1 43.4 64.1 24.8 43.7 89.4 14.3
FUTR3D-vovNet [Chen et al. 2023] C 47.9 41.2 64.1 25.5 39.4 84.5 13.3

MMDetection3D [Chen et al. 2019] L 65.3 57.5 31.6 25.6 40.9 23.6 12.4
FUTR3D [Chen et al. 2023] L 69.9 65.3 28.1 24.7 36.8 25.3 12.4

3D-CVF [Yoo et al. 2020] L+C 62.3 52.7 30.0 24.5 45.8 27.9 12.2
FUTR3D-ResNet50 [Chen et al. 2023] L+C 67.0 61.9 31.6 26.6 31.0 32.8 17.8
SAMF3D-ResNet50 L+C 66.3 60.0 32.7 25.9 29.0 28.2 19.0

Fusion Rate. To evaluate the real-time memory computational complexity, we employ

the term Fusion Rate as a metric to quantify the workload during the actual fusion process.

The concept of Fusion Rate is defined as follows:

Fusion rate= Pu
Pa ·100% (4.8)

In this context, Pu denotes the subset of patches that are actively engaged in the actual

fusion process, while Pa refers to the complete set of patches encompassed within the

Camera feature. These patches are essentially the blocks segmented during the vision

transformer stage. In the baseline scenario, the Camera feature incorporates 900 patches

for fusion, representing the total count of patches available. However, upon re-sampling

the feature, the actual number of patches utilized is expected to decrease below 900. This

reduction occurs because the real-time depth measurement is invariably greater than zero,

which impacts the patch selection. Consequently, the computational complexity can be

articulated as follows:
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Complexity ∝
n_heads

∑
n=1

O(Φc2)+O(Φl2) (4.9)

where ϕc represents the input dimension of the Camera modality and ϕl represents the

input dimension of the LiDAR modality. The specific formulas for these two parameters

are as follows:

ϕc = ϕco× fusion_rate_cam (4.10)

where ϕco means the original input dimension of Camera modality, and ϕlo indicates the

original input dimension of LiDAR modality. As detailed in equation 4.10 and 4.11.

ϕl = ϕlo× fusion_rate_lidar (4.11)

As detailed in Woo et al. 2018, the computational complexity of a Transformer model

is O(n2). Accordingly, this complexity is proportional to the square of the fusion rate.

Therefore, the overall computational complexity is determined by the sum of the com-

plexities associated with each modality, followed by a simultaneous summation across the

dimension of the number of detected heads. In our project, we adhere to the original con-

figuration of FUTR3D by setting the value of n_heads to 8. The formula that delineates

the relationship between the fusion rates of LiDAR and Camera, as well as the number

of detection heads, is presented in Equation 4.9.
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4.4 Results

Camera and LiDAR fusion. We have conducted experiments focusing on the fusion

of LiDAR and Camera data. To simulate a realistic scenario where LiDAR serves as the

primary detector and the Camera acts as the secondary detector, we have chosen to utilize

raw image data from the Camera and raw point cloud data from the LiDAR as our input

data. Table 4.5 presents a comparative analysis of 3D multi-modality detection results

on the nuScenes test set, featuring our baseline FUTR3D [Chen et al. 2023], FB-BEV

[Li et al. 2023b], and other leading-edge methods. We trained the model on the nuScenes

training dataset for 20 epochs, following the original setting of FUTR3D. After training,

we tested the results on the nuScenes test dataset, to get the results. To verify the effect

of conducting experiments on different servers to the results, we conducted experiments

on FUTR3D on ResNet50 backbone and LiDAR-only configurations. Experiments show

that this impact is low enough that can be neglected.

As shown in Figure 4.5, the methodologies, such as FCOS3DWang et al. 2021a, PETR Liu

et al. 2022, and FUTR3D, incorporate diverse network architectures and leverage different

input data modalities, encompassing Camera (C), LiDAR (L), and their combined use

(L+C). The performance metrics encompass the nuScenes Detection Score (NDS), mean

Average Precision (mAP), mean Average Translation Error (mATE), mean Average Scale

Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error

(mAVE), and mean Average Attribute Error (mAAE). The table underscores the com-

parative strengths and weaknesses of each methodology across these metrics. Notably, the

CenterPoint-Ensemble achieves the highest NDS score of 67.5%, demonstrating its overall

effectiveness in the detection task. FUTR3D-ResNet50 stands out in terms of mAVE, with

the lowest error rate of 28.2, indicating its precision in estimating the velocity of detected
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objects. Furthermore, SAMF3D-ResNet50 (an abbreviation for SAMFusion3D-ResNet50)

excels in mASE, mAOE, and mAVE, achieving the lowest error rates of 25.9%, 29.0%, and

28.2% respectively, which highlights its robustness in accurately determining the scale,

orientation, and velocity attributes of detected objects.

When FUTR3D employs only LiDAR data (L), it demonstrates a notable enhancement

over preceding methods like MMDetection3D Chen et al. 2019, with an NDS of 69.9%

and an mAP of 65.3%. In the realm of multi-modality fusion, our initial experiment com-

bined LiDAR and Camera features. For this, we selected ResNet50 He et al. 2016a as the

backbone for the Camera. Given that the FUTR3D baseline was originally executed with

VovNet, we also re-implemented FUTR3D on ResNet-50 for 20 epochs to establish a con-

trol group for our experimental outcomes. As indicated in Table 4.5, SAMF3D-ResNet50

outperforms in mAVE, with the lowest error rate of 28.2, suggesting that despite similar

mAP and NDS values compared to FUTR3D, its capability to estimate the velocity of

moving objects is superior. This affirms that SAMF3D-ResNet50 matches the performance

metrics of the FUTR3D model.

Regarding SAMF3D, as illustrated in Figure 4.2, the original fusion rate is consistently

maintained at 1.00 throughout all iterations, indicating that the fusion process is uni-

formly applied using the complete set of camera and LiDAR features. Conversely, the

self-adaptive fusion rate exhibits considerable variation throughout the iterations. This

variation suggests that the self-adaptive approach incurs reduced computational demands

when processing the same frame count, specifically over 4000 epochs with 50 frames per

epoch. Our findings indicate that while our model may not excel in metrics such as mAP

and NDS, it shows a marked advantage in achieving a lower fusion rate. This suggests

that our model can attain comparable performance levels with a diminished computa-

tional load. The capacity to sustain performance efficiency while reducing computational

requirements underscores the effectiveness of our approach, rendering it a more resource-

efficient solution.
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Figure 4.1: Changes in self-adaptive fusion rate and Original fusion rate at different num-
bers of iterations.

Table 4.2: Methods comparison in 3D object detection Camera and Radar fusion tasks
on the nuScenes test dataset. Here, R50 represents ResNet-50 backbone.

Method Modality NDS mAP mATE mASE mAOE mAVE mAAE

TransCAR [Pang et al. 2023] C+R 52.2 42.2 63.0 26.0 38.3 49.5 12.1
CRAFT [Kim et al. 2023] C+R 48.7 34.1 58.7 25.7 42.4 46.1 10.8
FUTR3D-R50 [Chen et al. 2023] C+R 50.3 38.9 65.4 27.9 38.8 41.7 17.9
SAMF3D-R50 C+R 48.5 38.9 65.5 27.9 38.9 38.8 17.9

Camera and Radar fusion. In our inaugural Radar and Camera fusion experiment,

we embarked on an integrative approach by melding radar and camera features. Par-

alleling our strategy in the LiDAR and Camera fusion setup, we adopted ResNet50 as

the foundational architecture for the camera features, while maintaining the Radar back-

bone’s consistency with our previous experiments for comparative integrity. To ensure a

controlled comparison, we meticulously re-implemented the baseline model, FUTR3D, in

a Camera and Radar fusion context, dedicating 20 epochs to its training to establish a

benchmark for our analyses. To obtain accurate ground truth radar point cloud data, we

need to first capture, extract, and convert the real-time depth information from radar

sensors into the corresponding average depth values. Following the established approach

used in LiDAR-Camera fusion, we apply the method proposed by Li et al. 2023b to extract

the depth information and compute the average depth accordingly.
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Figure 4.2: Dynamic visualization of the fusion rate’s evolution in tandem with the pro-
gression of iterations.

In this experimental series, we positioned our results against the current state-of-the-art

(SOTA) methods that support the fusion of Camera and Radar data. As depicted in

Table 4.2, TransCAR [Pang et al. 2023] secured the leading position with an impressive

NDS score of 52.2 and an mAP of 42.2. In contrast, our FUTR3D-ResNet50 exhibited a

commendable performance, with NDS and mAP values consistently hovering around 38.9.

Furthermore, we conducted a comparative analysis between FUTR3D-ResNet50 and

SAMF3D-ResNet50 with the existing SOTA works. This comparison revealed that while

our NDS and mAP figures may not have scaled the peaks of SOTA, the sampling rate, a

critical indicator of the efficiency in targeting sampling, demonstrated a marginal superi-

ority for SAMF3D-ResNet50 in the Camera and Radar fusion domain. This observation

suggests that our SAMF3D-ResNet50 model, when processing an equivalent number of

video frames, can achieve a lower computational expense while sustaining a performance

closely approximating the original, whether in LiDAR or Radar-Camera fusion scenarios.

This underscores the efficiency and potential of the model for real-world applications

where computational resources are measured.
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Complexity Comparison. As shown in figure 4.1, it can be easily seen that the original

fusion rate, which is shown in the orange line consists of orange dots, remains 1.00 because,

in the original setting, all patches of the processed feature are considered to be fused.

Therefore, the effective fusion rate which, also known as the fusion rate in the table is

always the same as the actual fusion rate. In that case, the computation complexity will

not reduce, which is always O(900) because every time the detector detects the object,

the model will consider all the patches for each feature, i.e. each scene. However, when the

self-adaptive sampler is adopted, the patches used for fusion will be selected according

to the depth value. In that case, the effective fusion rate for the Camera feature will

be reduced. For the LiDAR feature, the feature will not be re-sampled because, in our

project, the LiDAR detector is the main detector, while the Camera detector is the minor

detector. For minor detectors, it is not much use in good road conditions, so we conduct

secondary sampling on the Camera’s feature. It can be seen that the fusion rate rises and

falls during the detection process and, maintains an average value of 0.84. This proves

that the computation complexity of our model will be reduced to some extent, therefore

reducing the burden of the detector in the real scene, which is mounted on the car. For

Radar & Camera fusion, as shown in Figure 4.2, the original fusion rate is marked by

yellow spots, while the yellow solid line delineates the specific fusion rate attributed to

the Camera, reflecting the computational process dedicated to the Camera’s features.

The fusion rates for the Camera and the overall system are respectively denoted by the

yellow and blue data points, each adorned with an ’x’ marker. The proximity of the

fusion rate to the value of one can be attributed to the depth of information provided

by the Radar. We can also see that the fusion rate of Radar and Camera decreases from

1.0000 to 0.9994 in average. This shows that the fusion efficiency has been increased to

some extents. Note that in the context of both LiDAR-Camera and Radar-Camera fusion

strategies, our sampling of the Camera feature, which serves as our auxiliary sampler, is

based on features extracted from either Radar or LiDAR data. Following the extraction

of depth information, we proceed with the sampling process. It is important to note that

the depth we refer to is actually the average depth value derived from the point cloud

features. Consequently, the accuracy of this approach is somewhat lower. This explains

the experimental results where the fusion rate only reaches 90% of the original fusion rate.
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Additionally, When compared to the baseline performance of the model, which is at 67%,

our model achieves a performance of 66.3%. Although there is a minor difference of 0.7

percentage points, this result is effectively equivalent to the baseline performance. This

indicates that our model maintains a strong level of performance, closely matching the

established benchmark.

Categorie. During actual driving, different types of targets such as cars, buses, and

motorcycles have varying dimensions, a fact also reflected in the nuScenes dataset. Con-

sequently, detection models respond differently to these targets. To investigate how the

sampler and the use of an iTransformer to reverse input dimensions affect the detection

outcomes for various targets, we conducted experiments as detailed in Table 4.3. We exper-

imented with both LiDAR-only and LiDAR-Camera fusion setups on the FUTR3D data-

set. The parameter configurations and training iterations were consistent with our previ-

ous experiments. It’s important to note that in the experimental setup for L-SAMF3D,

we incorporated the iTransformer solely during the feature processing stage, as there was

feature information available for only one modality. This approach allows us to assess the

impact of the iTransformer on object categories without the confounding influence of the

sampler on the model’s detection performance. To detail the experiment, we utilize the

ResNet-50 architecture on the nuScenes validation dataset. Our evaluation focused on the

Average Precision, i.e. AP values for each detected object category, aiming to demonstrate

the positive impact on detecting targets that may appear irregularly or vary significantly

in size within a scene. As detailed in Table 4.3, we examined the iTransformer’s contri-

bution to the model’s detection capabilities by integrating it alone, without the influence

of the adaptive sampler, and with LiDAR as the primary detection sensor.

Table 4.3: Detection performance analysis, we’ve highlighted the category-specific results,
ensuring a fair comparison by including outcomes from systems using only Camera input.
Values shown in the table are Average Precision (AP)

Modalities Car Truck Bus Ped Motor
L-FUTR3D 89.4 63.3 97.9 90.3 23.8

L-SAMF3D 89.8 71.0 98.2 89.3 40.6
L+C-FUTR3D 95.0 69.2 99.0 92.7 78.0

L+C-SAMF3D 94.5 65.8 99.0 88.7 81.1
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The experimental outcomes indicate a comprehensive improvement in performance across

all object categories. Notably, the detection score for motorcycles saw the most significant

boost, with a remarkable increase of 16.8 % over the baseline model. This was followed by

the category of trunks, which exhibited a 7.7 % improvement. The enhancement in AP for

these categories can be attributed to the relatively sparse representation of motorcycles

and trunks in the dataset. By reorienting the embedded tokens, our approach facilitates

the aggregation of global representations that are more attuned to variability, thereby

optimizing the utility of the emerging attention mechanisms tailored for multivariate

correlation. Simultaneously, the feed-forward network excels at acquiring generalizable

representations, proficient in encoding a spectrum of variables from diverse historical series

and decoding them to anticipate future patterns. Consequently, this strategy propels the

model to achieve more robust outcomes.

Object distance. Our experiments were designed to assess the impact of our model on

the detection performance of a specific category of objects, namely buses, across various

distance intervals. The results, as depicted in Table 4.4, present the NDS (Normalized

Detection Score) and AP (Average Precision) scores for the bus category about distance.

The data reveals that the AP value tends to rise as the distance increases, and the applic-

ation of the iTransformer further enhances the overall AP value compared to scenarios

without it.

It is particularly noteworthy that as the distance extends, the gap in AP values between

our baseline model equipped with the self-adaptive sampler (FU3D-S) and the model

with both the Sampler and iTransformer becomes more pronounced. At closer distances,

the inclusion of the iTransformer results in a 4% improvement in AP. However, this

improvement diminishes as the distance grows; at 30 meters, the AP increase is a modest

2%, and beyond 30 meters, the AP only rises by 1%.



4.4. Results 47

These findings underscore the effectiveness of the iTransformer in reducing computa-

tional load and enhancing detection precision, especially for objects that are infrequently

encountered and near the ego-car. The diminishing returns in AP improvement at greater

distances suggest a nuanced relationship between detection accuracy and the application

of advanced computational techniques.

Table 4.4: Detection Performance for Buses at Different Distances

NDS AP(0-10m) AP(10-20m) AP(20-30m) AP(30m- inf)
Bus (SA3D-S) 0.73 0.49 0.77 0.908 0.93
Bus (SA3D-S+i) 0.72 0.53 0.79 0.92 0.94

4.5 Ablation Study

In this part, as shown in Table 4.5, we explore the effects of incorporating the Sampler (S)

and iTransformer (i) on detection performance. Consistent with the approach outlined in

Chen et al. 2023, we have chosen ResNet50 He et al. 2016b, which has the advantage of

effectively tackling the residual between outputs instead of learning the output itself also

alleviates the problem of gradient explosion� as our backbones of interest. To rigorously

assess the impact of our self-adaptive Sampler and iTransformer, we conducted a series of

model training sessions, each with a distinct configuration. Before each training iteration,

we made a deliberate choice regarding the application of the Sampler by modifying the fu-

sion strategy within the Cross-Attention component of our framework. Specifically, if the

fusion strategy opted for non-fusion, we merged all camera-derived feature patches. On

the other hand, if fusion was selected, we anchored our fusion around the central patch,

expanding the fusion area following a predefined rate. For the dimension inversion process,

we made a binary decision on whether to incorporate the third dimension into the atten-

tion calculation module. In the subsequent paragraph, we will delve into a comprehensive

analysis of our experimental outcomes. This analysis will shed light on the determinants

behind the observed performance metrics and explore the broader implications of our

findings within the context of our research.
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Table 4.5: Detection performance of models utilizing ResNet50 backbones, under different
configurations of Self-adaptive Sampler (S) and iTransformer (i).

Backbone S i mAP NDS mATE mASE mAOE mAVE mAAE
ResNet50 × × 0.595 0.662 0.326 0.259 0.290 0.282 0.189
ResNet50 × ✓ 0.613 0.670 0.321 0.260 0.282 0.323 0.225
ResNet50 ✓ ✓ 0.595 0.663 0.327 0.259 0.290 0.282 0.190

For ResNet50, it can be seen that without the Sampler and the iTransformer, the model

achieves an mAP of 59.5 % and an NDS of 66.2 %. Also when only the iTransformer

is added, it is clear to see that both the value of mAP and NDS is slightly increased.

This proves that our iTransformer can perform the target detection task more accurately

while utilizing resources more efficiently. This enhancement stems from the optimization

of the model’s time complexity through dimensional inversion, a technique that allows

the model to concentrate more intently on the core task of target detection, thereby en-

hancing its overall performance. It’s important to highlight that the integration of both

the iTransformer and the self-adaptive Sampler in our detection framework while main-

taining error metrics comparable to the control group that lacks these enhancements, can

sometimes result in a performance level that mirrors the control group. This observation

is particularly pertinent when considering the impact of the self-adaptive Sampler on the

detection process. The self-adaptive Sampler is designed to refine the detection process

by adjusting the sampling strategy based on depth information. However, this additional

layer of complexity can introduce potential pitfalls. Specifically, when the Sampler is en-

gaged, it performs secondary sampling, which can lead to a drop in performance if not

executed accurately. The crux of the issue lies in the depth calculation: any inaccuracies

in determining the depth can result in the re-sampling process inadvertently excluding

regions that contain key objects.
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4.6 Summary

We have conducted extensive experiments using the nuScenes dataset, adhering strictly

to the settings and configurations outlined in Chen et al. 2023. In terms of dataset par-

titioning, we have also maintained the same configuration as detailed in ibid. For our

experiments, we designate either LiDAR or Radar as the primary detector, with the

Camera serving as the secondary detector. Depending on the chosen primary detector, we

select various data categories from the nuScenes dataset to simulate real-world driving

scenarios. Our experimental results indicate that our proposed model significantly reduces

computational complexity when either LiDAR or Radar is used as the main detector, as

compared to the approach in ibid. Moreover, our model achieves performance on par with

that reported in ibid. This comparison suggests that our proposed model offers super-

ior efficiency over the baseline model. Furthermore, our ablation study reveals that the

application of the iTransformer leads to a noticeable improvement in the model’s overall

performance, indicating that the iTransformer indeed enhances the model’s performance.



Chapter 5

Limitations

We have identified several limitations within our current model. Initially, our depth-aware

self-adaptive sampler relies on the average depth rather than the specific depth informa-

tion of the nuScenes target associated with each segment of the feature map. This approach

can result in an inaccurate fusion rate, particularly when the local traffic environment is

intricate and the movement of traffic participants is highly unpredictable. Secondly, our

fusion configuration is constrained by computational resources and hardware capabilities,

which currently only support the integration of two modalities at a time. This limita-

tion precludes us from exploring the potential of fusing Lidar, Camera, and Radar data

simultaneously. However, we are optimistic that advancements in technology will address

this challenge in the future. Thirdly, our model employs a two-stage approach, which,

while enhancing accuracy and adaptability, introduces certain complexities. The training

process can be more intricate, and there is an inherent risk of overfitting. Additionally,

the model requires meticulous parameter tuning due to the interplay between the two

stages. Furthermore, the direct saving of detection results may hinder the application of

our model to other downstream tasks, such as 3D object tracking or trajectory predic-

tion. This limitation poses a barrier to integrating our model with other state-of-the-art

tracking systems.

50



5.1. Key Limitations 51

5.1 Key Limitations

Apart from the abovementioned limitations, some key limitations should be acknowledged.

First, the study used only a single dataset, which may not adequately capture the diversity

and complexity of real-world scenarios. This limitation could potentially affect the gener-

alizability of the findings. Additionally, the backbone architecture employed was limited

to ResNet50, and the compatibility of the proposed method with other backbone architec-

tures has not been examined. This raises concerns about the adaptability of the approach

across different network structures. Lastly, the experimental results are only compared

to one baseline model. More baseline models should be compared to ensure the model

is adaptable enough across all mainstream 3D Object Detection models in autonomous

driving perception systems.
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Conclusion and Future work

In conclusion, as autonomous vehicles rely on sensor fusion to achieve higher precision

in detection, researchers are continually exploring ways to enhance the detection capab-

ilities of models. In this context, we have identified a method to reduce computational

complexity during both the feature processing and modality fusion stages. Our approach

introduces a self-adaptive Sampler that dynamically integrates features from one detector

with the average depth information extracted from another modality, providing a more

accurate representation of real-time driving scenarios. Additionally, we have developed

the iTransformer to reorient the dimensions of the embeddings before they are fed into

the multi-head self-attention and feed-forward layers of the Transformer encoder, thereby

enhancing feature extraction and processing.

Our experiments on the nuScenes test and validation datasets demonstrate that our model

can attain baseline detection performance. Notably, our Sampler is capable of moderately

reducing the fusion rate, which in turn decreases computational complexity. Furthermore,

we have observed that the application of the iTransformer notably improves the detection

of targets that are less frequently encountered during actual driving, particularly when

they are near the vehicle.
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Looking ahead, we plan to train our model on a broader range of datasets to assess

its generalizability across more diverse scenarios. We also intend to fine-tune VovNet to

better accommodate our proposed Sampler. Additionally, we have recognized the need to

address the model’s current challenges in detecting small and static objects, a problem

we are committed to solving in future research. Furthermore, we envision our model

being extended to a broader range of tasks in the future, such as enhancing the efficiency

of multimodal object tracking and improving the efficiency of object segmentation. We

aspire for this paper to serve as a source of inspiration for self-adaptive fusion techniques

in multi-modal fusion and scene perception.
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