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Abstract

Rabies is a fatal disease caused by a negative-strand RNA virus with a genome size of

approximately 12 kilobases. Rabies kills an estimated 60,000 people per year, most of

whom would have been bitten by a rabid domestic dog. In recent years whole genome

sequencing of the rabies virus has become more accessible through the development of

portable sequencing technologies and inexpensive protocols, which has led to an increase

in the amount of publicly available genomic data, and in the capacity to rapidly acquire

sequence data from new rabies outbreaks. In this thesis I aim to use rabies genomic and

genetic data to investigate how rabies evolves, and how to best use this data to meet

the global goal of achieving zero human rabies deaths by 2030. I developed a simulation

framework consisting of an existing branching process epidemiological model and a novel

mutation model to generate synthetic rabies sequences associated with known underlying

transmission dynamics. In chapter 2 I used this framework to investigate whether the

lack of temporal signal required to conduct Bayesian phylogenetic analyses on rabies

sequence/added datasets could be due to rabies’ variable incubation period lengths. I

found that at substitution rates comparable to rabies’, it is not possible to distinguish

root-to-tip divergence plots for synthetic genomes generated using a per-unit time or per-

generation model of substitution; it is possible, however, at rates more representative of

other RNA viruses, due to distinctive “ridges” that form under the per-generation model

after unusually long or short incubation periods. I conclude that rabies’ slow evolution

is more likely to be the cause of the lack of temporal signal than its variable incubation

periods, but that thinking about evolution on a per-generation scale could be useful

in certain contexts. Existing methods of estimating outbreak sizes, such as serological

surveys and randomised testing, are unsuitable for estimating rabies outbreak sizes due

to the fatality of the virus and the testing method respectively. In chapter 3, using the
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same simulation framework as in chapter 2, I developed a novel method of estimating

outbreak sizes from phylogenetic trees which is simple, computationally inexpensive and

takes advantage of the genomic data already usually gathered as part of the outbreak

surveillance. I apply this method to a new outbreak of rabies in the Romblon province

of the Philippines, confirming that there has been widespread undetected transmission,

but that the outbreak surveillance was perhaps more effective at detecting cases than

is usual for a rabies outbreak. In chapter 4 I used publicly available rabies sequence

data to investigate to what extent codon usage was biased between different host-species-

specific minor clades, and whether these differences were evidence of adaptation by the

virus to the host. I found that while there was little evidence of the virus adapting its

codon usage specifically to new host species, differences exist in RABV’s CpG content

which suggest that bat- and carnivore-associated rabies clades are under differing levels

of selection pressure from the host immune system on CpG dinucleotides. Together these

findings demonstrate that genomic data is a valuable resource that can be used to inform

outbreak responses and tell us about how rabies evolves and interacts with its wide range

of hosts.
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Chapter 1

Introduction

1.1 Evolution, molecular clocks and phylogenetics

1.1.1 Neutral theory and the molecular clock

When comparing the number of amino acid substitutions in the different haemoglobin

chains of various mammals and the species’ divergence times, Zuckerkandl and Pauling

(1965) observed that genetic divergence increased linearly with time. Their observation

was considered incompatible with the contemporary view that natural selection was the

main driver of evolution, and that most mutations either had an advantageous or deleter-

ious effect. If this view was true and most mutations did have a fitness effect, the increase

in divergence would be unlikely to be so constant over time due to the unpredictability

in changes in evolutionary pressures from the environment.

This observation resulted in their introduction of the term “molecular clock”, and contrib-

uted to the development of the neutral theory of molecular evolution: the idea that most

mutations have no fitness effect, so whether they persist within the population or not is

random, leading to genetic drift (Kimura 1968). Kimura further developed this idea, stat-
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ing that the variation in substitution rate (the rate at which substitutions become fixed

in the population) observed between genes was likely due to the functional constraint of

a gene. As the “rigidity” of the structure and function of a protein decreased, the evol-

utionary rate would approach the synonymous mutation rate, based on the assumption

that synonymous mutations were always neutral and therefore equal to the mutation rate

(Kimura 1977, 1979).

1.1.2 Divergence time estimation and phylogenetic tree con-

struction

The assumption that the substitution rate remains constant through time allows the

divergence time to be estimated if the substitution rate is known. These methods first

construct a phylogenetic tree of the available sequences, and then use the branch lengths

of the tree and the substitution rate to estimate the divergence time at each node. Various

tree-building algorithms were developed around this time, including the neighbour join-

ing (Saitou and Nei 1987), maximum parsimony (Farris 1970) and maximum likelihood

methods (Felsenstein 1981). Maximum likelihood tree building uses evolutionary models

to capture different patterns of mutation; for example, the JC69 model assumes that all

nucleotide substitutions have an equal probability of occurring (Jukes and Cantor 1969),

whereas the HKY model assumes that transition and transversion substitutions occur

with different probabilities (Hasegawa et al. 1985), and the GTR model assumes that all

nucleotide substitutions occur at different rates (Tavaré 1986).

While many early studies surrounding the molecular clock were conducted using euk-

aryote genes (such as Sarich and Wilson (1967) using relative levels of cross-reactivity

between albumins and antiserums instead of amino acid or genetic sequences to estimate

the divergence time between humans and other primates), these methods were soon also

applied to viral sequences. Gojobori et al. (1990) observed the same linear relationship
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between genetic divergence and time in viral genes, albeit at a much higher rate than their

hosts, and concluded that the neutral theory was also applicable to viruses. They then

used the assumption of a molecular clock to estimate the divergence times of hepatitis

viruses and other hepadnaviruses (much more recently than their respective host species’

divergence times) and HIVs and SIVs (150-200 years ago). Li et al. (1988) also used this

divergence time estimation to date the emergence of HIV to before 1960, and Buonagurio

et al. (1986), Saitou and Nei (1986) and Gorman et al. (1990) applied this method to

influenza A sequences, all using maximum parsimony trees.

These methods were of particular relevance to RNA viruses as their fast rate of evolution

meant that the substitution rate could be measured from a few years’ worth of sampling.

This contrasts the required “fossil data” (estimates of the divergence time of at least

two clades in the dataset, perhaps acquired from fossil evidence) when all sequences are

acquired in a timeframe that is relatively short compared to the timeframe over which

divergence has occurred, such as in modern eukaryotes (Hasegawa et al. 1985). RNA

viruses, like their DNA counterparts, require their host’s translation machinery to produce

their proteins, but have a much higher evolutionary rate due to their error prone mode of

replication. A study of a range of RNA virus species found that there was evolutionary

rate variation between these lineages outwith the constraints of a molecular clock (Jenkins

et al. 2002). Furthermore, Jenkins et al. found that while evidence for a molecular clock

was stronger when only investigating synonymous substitutions, there was still sufficient

variation to suggest that these substitutions were not truly neutral.
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1.1.3 Alternative clock models and Bayesian phylogenetics

One of the most important developments was the realisation that Kimura’s “strict” clock

too simple; in reality, there is variation in the substitution rate between lineages. Ini-

tially, this resulted in genes that failed tests of strict clock-likeness being removed from

analyses, until methods that could handle non-clock-likeness were developed (Sanderson

1997; Thorne et al. 1998). These methods relied on the evolutionary rates being autocor-

related (more closely related lineages are likely to have similar evolutionary rates).

These methods also required that the tree topology be pre-specified, which could lead

to inaccurate results if the topology was determined under the assumption of a global

molecular clock. Drummond et al. (2006) developed relaxed clock models for use with the

Bayesian phylogenetics software BEAST (Drummond and Rambaut 2007), which allowed

the tree topology itself to be determined under the assumption of between-lineage rate

variation. BEAST also incorporated the use of sequences sampled at different times to aid

in estimating the evolutionary rate, which is particularly relevant to RNA viruses (Drum-

mond et al. 2003b). The ability to construct trees scaled in time rather than substitutions

per site distinguished BEAST from other Markov-chain Monte Carlo-based phylogen-

etic methods such as MrBayes (Huelsenbeck and Ronquist 2001). Later developments to

the BEAST software included phylogeographic inference and models of phenotypic trait

evolution (Drummond et al. 2012).
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1.1.4 Codon usage

One argument against the neutral theory of evolution is that synonymous mutations in

some cases can, in fact, have a fitness effect, unrelated to the functional constraint of the

resulting protein. This can be due to biases in codon use, where certain codons are used

preferentially to encode an amino acid over others, or selection against dinucleotides such

as CpG and UpA.

The extent of codon usage bias varies between groups of viruses with different host life

history strategies; viruses spread by aerosols have stronger codon usage biases, whereas

vector-borne viruses have weaker biases (Jenkins and Holmes 2003), and positive-strand

RNA viruses with a narrow host range have stronger biases than those with a broad

host range (Tian et al. 2018). Codon usage biases are mainly driven by nucleotide and

dinucleotide usage in human RNA viruses (Jenkins and Holmes 2003), particularly due

to biases against CpG and UpA dinucleotides, but this fails to explain all variation ob-

served in codon usage. Another possible explanation for these biases is that more closely

matching the host’s codon usage can improve translational efficiency of viral proteins

(Haas et al. 1996), although there is poor evidence that negative-strand RNA viruses’

codon usage mimics their host species (Rima 2015). One possible reason for this could

be that optimising translational efficiency may not actually be the best strategy for the

virus; suboptimal codon usage can be used as a way to delay glycoprotein production in

lentiviruses and herpesviruses (Shin et al. 2015).

A significant selective bias against CpG dinucleotides has been noted to occur in almost

all RNA viruses (Karlin et al. 1994), which was suggested to be due to a previously

unknown host immune mechanism (Greenbaum et al. 2009), as vertebrate genomes are

also CpG deficient due to the high mutation rate of methylated cytosine (which exists

mainly in CpG dinucleotides in vertebrates) to thymine (Sved and Bird 1990). We now
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know this host immune mechanism is likely to be the zinc-finger antiviral protein (ZAP;

Takata et al. 2017), which selectively binds to CpG-rich RNA sequences. While the exact

mechanism of the bias against UpA is currently unknown, ZAP may also be involved here

(Goonawardane et al. 2021).

Codon and dinucleotide usage biases in RNA viruses have particular relevance to vaccine

development. Deoptimising codon usage has been suggested as a way to develop live

attenuated viruses (Baker et al. 2015), and has successfully resulted in effective vaccines

for a variety of viruses (Konopka-Anstadt et al. 2020; Lorenzo et al. 2022; Broadbent

et al. 2016; Cheng et al. 2015). Conversely, altering the codon usage of the herpesvirus

glycoprotein to make it more translationally efficient induces an antibody response which

could assist in its usage as a vaccine vector (Shin et al. 2015).

1.2 Rabies

Rabies is an infectious disease of the nervous system which is estimated to cause ap-

proximately 60,000 human deaths per year (Hampson et al. 2015). The majority of these

deaths occur in Africa and Asia, and 99% result from a bite from a rabid domestic dog.

Rabies can also infect a range of other mammal species, including cats, bats, mustelids,

raccoons and livestock (Hanlon et al. 2003), although herbivores and humans are usually

dead-end hosts. Symptoms of rabies in humans commonly include hydrophobia, seizures,

and behavioural changes (ibid.). The disease can present as either “furious” or “paralytic”

rabies (Ghosh et al. 2009), where patients either become agitated and aggressive, or be-

come anorexic, depressed and paralysed, eventually leading to coma; in either case, rabies

is virtually always fatal. Rabies, especially in its paralytic form, is often initially mis-

diagnosed in humans as other neurological conditions, such as Guillain-Barré syndrome

(Surve et al. 2021).
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Rabies is caused by a negative sense, single-stranded RNA virus in the genus Lyssavirus.

While other Lyssaviruses can also cause rabies-like disease (Shope 1982), this thesis focuses

on the rabies virus, commonly abbreviated to RABV. After being transferred into the

wound of a bite victim via the saliva of a rabid animal, the virus enters the nervous

system by binding to a range of host cell receptors (Lentz et al. 1982; Tuffereau et al.

1998; Thoulouze et al. 1998) with the glycoprotein, which is the virus’ only surface protein.

The virus then proceeds to travel along the nerves at a rate of 50 to 100 millimetres per

day (Tsiang et al. 1991). As it travels along the nerves towards the central nervous system

(Charlton and Casey 1979; Tsiang 1979), the bite victim may experience pain or itching at

the healed bite site (Jackson 2011), but in general no symptoms are displayed during this

incubation period. While bite victims are generally assumed to not become infectious until

a few days before or after they become symptomatic, detectable levels of the virus have

been found in the saliva of infected dogs nearly two weeks before symptoms were observed

(Fekadu et al. 1982), although there is some scepticism surrounding this finding (Hanlon

et al. 2003). This asymptomatic, non-infectious phase of the infection can routinely last

multiple weeks, and in some cases over a year (Johnson et al. 2008; Lakhanpal and Sharma

1985). In many diseases where the infecting event is almost impossible to observe, the

serial interval (the time from the primary case becoming symptomatic to the secondary

case becoming symptomatic) is used as a proxy for the generation interval (the time from

the primary case becoming infected to the secondary case becoming infected). Because

of the memorable nature of rabies’ infecting events (i.e., a bite), the generation interval

for rabies can be constructed using contact-tracing data (Figure 1.1). Curiously, rabies’

generation interval has been found to be significantly longer than its serial interval (32.1

days compared to 21.7 days, respectively; Li 2019), due to dogs with longer incubation

periods producing a larger number of secondary cases.

Upon reaching the brain, the aforementioned symptoms emerge, at which point it is too

late to save the patient; it is therefore important that patients receive post-exposure

prophylaxis (PEP) as soon as possible after being bitten by an animal that is suspected

to be rabid. PEP is almost 100% effective in preventing the onset of rabies as long as
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Figure 1.1: Histograms comparing the incubation period, serial interval and generation
interval lengths of rabies cases in a Tanzanian dataset. While not as extreme as in Li et
al.’s study, the mean generation interval is longer than the mean serial interval.

it is administered quickly after a bite. It is recommended that the wound is washed, a

number of vaccinations are given either intradermally or intramuscularly depending on the

protocol used, and in some cases rabies immunoglobulins can also be given (World Health

Organization 2018). The infectious-symptomatic period lasts for a matter of days before

the victim inevitably dies of the disease. The only documented survivors of symptomatic

rabies across all reservoir species are a handful of patients who survived after receiving

either PEP before becoming symptomatic or the Milwaukee protocol (Jackson 2013).

Under experimental conditions vampire bats have also survived for over two years after

the virus was detected in their saliva, but these animals never became symptomatic and

their saliva only contained detectable titres at one time point (Aguilar-Setien et al. 2005).

In many areas in Africa and Asia, domestic dogs are the main reservoir of rabies. Out-

breaks can be managed through mass dog vaccination, where a target of 70% of the dog

population being vaccinated is estimated to be sufficient to prevent outbreaks (Cleaveland

et al. 2018). The culling of dogs may also occur in response to an outbreak, although this

appears to be ineffective or actively detrimental as a control strategy due to dog owners

concealing or moving their potentially rabid animals in response to the cull order (Putra

et al. 2013). The overall burden of dog rabies is unknown, although annual incidence is

estimated to not exceed 1% of the dog population in affected areas, with estimated preval-
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ence remaining below 0.15% in the Serengeti district of Tanzania (Mancy et al. 2022). The

R0 of canine rabies is estimated to be between 1 and 2 (Hampson et al. 2009; Townsend

et al. 2013a), with more recent recalculations updating this interval to between 1 and 2.5

(Li et al. 2024); in raccoons, Re is just above 1 (Biek et al. 2007).

Rabies’ low prevalence combined with its low R0 allows it to persist despite being fatal

by avoiding susceptible depletion, but also makes it a prime candidate for elimination

through vaccination campaigns. The World Health Organization, along with the Food

and Agriculture Organization of the United Nations, the World Organisation for Animal

Health, and the Global Alliance for Rabies Control, have proposed a goal of reducing

global human rabies deaths to zero by the year 2030 (World Health Organization et al.

2018). This plan includes increasing access to post-exposure prophylaxis, scaling up and

sustaining dog vaccination efforts, and improving education surrounding the prevention

of dog bites and rabies infections, as well as improving data collection to better inform

decision making.

1.2.1 Genomic epidemiology and contact tracing

Genomic epidemiology is the collecting and monitoring of whole genome sequence data

over the course of an outbreak, often to track transmission dynamics and the emergence

of new variants (Hill et al. 2023). Genomic epidemiology has become an increasingly

important part of the response to disease outbreaks; perhaps the most well known example

is the massive sequencing effort of the SARS-CoV-2 pandemic and subsequent tracking

of new variants of concern (Robishaw et al. 2021). Prior to this, genomic epidemiology

had also been used successfully during outbreaks of HIV, Ebola and Zika (Holmes et al.

1995; Gardy and Loman 2018), and can be implemented both retrospectively or while the

outbreak is ongoing (Jackson et al. 2016).
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The RABV genome is just under 12 kilobases in length, and made up of five genes;

the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and

the polymerase (or “large” protein; L) genes (Tordo et al. 1988). Until recently, most

sequences generated from rabies samples were only partial genome sequences, most com-

monly either the N or G gene, but increasingly whole genomes are being generated and

used in analysis (Jaswant et al. 2024). This is in part due to the development of more

portable sequencing technologies, such as the Oxford Nanopore MinION, allowing RNA

extraction and sequencing to be conducted close to where the sample was collected using

a “lab-in-a-suitcase” setup (Brunker et al. 2020), and improvements in protocols reducing

costs and time associated with sequencing (Bautista et al. 2023; Gigante et al. 2020). At

the time of writing1, 29,859 RABV sequences are available on the RABV-GLUE sequence

database (Campbell et al. 2022), 3,425 of which are whole genome sequences.

The resulting RABV sequence data is usually used in two ways. The first is to discover

the origins of an outbreak: when it started, how many introductions of the disease there

have been to the area, and where the introductions came from. At its simplest, this

analysis involves constructing phylogenetic trees from the sequences acquired from the

outbreak along with sequences from outwith the outbreak and determining the location

from which the closest related sequences were collected. For example, a fox rabies outbreak

in Newfoundland was determined to likely have originated from a single introduction

as the sequences were very similar to one another, but sequences from Greenland being

interspersed with Canadian sequences in the phylogenetic tree suggests that rabid animals

may have been crossing the sea ice between the two landmasses (Nadin-Davis et al. 2008a).

Using phylodynamic software that explicitly takes temporal and spatial data into account,

such as BEAST (Drummond et al. 2012), can provide more in-depth investigations into

the origin of the outbreak. For example, Brunker et al. (2015) used phylogeographic

methods to determine that long distance dispersal events and co-circulation of lineages

were common within Tanzania, and Lushasi et al. (2023) used sequence data to determine

1. Data retrieved 16th September 2024
10



that an outbreak on Pemba Island resulted from two separate introductions from mainland

Tanzania. Nadin-Davis et al. (2017) used whole-genome sequencing to determine that

a raccoon rabies outbreak in Ontario, Canada likely resulted from a single incursion,

rather than repeat incursions from New York state, USA, which previously could not be

determined using partial genome data (Nadin-Davis et al. 2006). These more complex

analyses require, however, that the sequence dataset has sufficient “temporal signal” (i.e.,

genetic divergence increases observably through time; Biek et al. 2015), and some rabies

datasets lack this (Fusaro et al. 2013; Wang et al. 2019; Zhang et al. 2017; Faye et al.

2022; Caraballo et al. 2021).

The second way genomic data is commonly used is to determine relationships between

cases by reconstructing transmission trees. These methods involve determining the prob-

ability that pairs of rabies cases are linked by comparing differences in the dates of symp-

tom emergence and geographic locations to probability distributions of the generation

interval and distance kernel. Transmission tree reconstruction methods that utilise only

temporal and spatial data have been previously used in Tanzania (Lushasi et al. 2021),

but if multiple co-circulating lineages are present it is possible to incorrectly link com-

pletely unrelated cases unless genomic data is taken into account. Incorporating genomic

data can involve directly comparing the pairwise number of single nucleotide polymorph-

isms (SNPs) between cases and eliminating any links with a SNP distance above a cut-off

value, as used by Cori et al. (2018), or by narrowing down the list of possibly related cases

by splitting the sequences into separate clusters or lineages, such as the lineages outlined

in the MADDOG nomenclature system (Campbell et al. 2022), and then using spatial-

and temporal-data based transmission tree reconstruction methods within each cluster,

as used by Yuson et al. (2024). These two methods essentially complete the same process

but using a different order of operations.
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1.2.2 Phylogenetics and host-associated clades

Genomic data has revealed that RABV can be split into eight major clades: the “Bats”,

“RAC-SK”, “Cosmopolitan”, “Africa-2”, “Africa-3”, “Arctic”, “Asian” and “Indian Sub-

continent” clades (Figure 1.2), some of which can be further split into a total of 33 minor

clades (Troupin et al. 2016). As their names suggest, the “Bats” and “RAC-SK” major

clades are mainly associated with bats and raccoons or skunks respectively, while the

remaining major clades are associated with other carnivores in certain geographic areas.

Palearctic bats are thought to be the original rabies reservoir (Badrane and Tordo 2001;

Hayman et al. 2016), with the host shift event from bats to carnivores that resulted in the

modern-day carnivore-associated clades being estimated to have occurred approximately

600 years ago (Troupin et al. 2016). The global spread of rabies may have been a direct

result of the human-mediated transport of dogs during the height of European colonialism

(Holtz et al. 2023), and the human movement of dogs over long distances continues to be

a major source of rabies introductions to this day (Talbi et al. 2010).

While rabies can infect any mammal, sustained transmission has only been observed in

a limited number of species (Holmes et al. 2002), with most minor rabies clades being

associated with transmission within a specific host species (Troupin et al. 2016). For ex-

ample, the Asian SEA2b and SEA5 clades circulate in Chinese ferret badger populations

(Liu et al. 2010; Zhang et al. 2013), and the Africa-3 and Cosmopolitan AM2a clades

circulate in mongooses in both southern Africa (Van Zyl et al. 2010) and the Caribbean

(Nadin-Davis et al. 2008b) respectively, while separate clades also co-circulate in the dog

populations of all of these regions. Despite extended periods of species-specific transmis-

sion, these clades are still able to infect other species, including humans, although in some

cases transmissibility is reduced between species depending on the direction of transmis-

sion. For example, raccoon rabies strains can infect skunks more easily than skunk rabies

strains can infect raccoons, in both natural and experimental infections (Hill et al. 1993;

Wallace et al. 2014).
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Figure 1.2: Phylogeny of the eight major rabies clades, European Bat Lyssavirus 1 (EBLV-
1) and Gannoruwa Bat Lyssavirus (GBLV). The maximum-likelihood tree was constructed
from complete N gene sequences with GTR+F+R5 model.

There has been debate as to whether this species-specific transmission is due to genetic

adaptation, either pre- or post- host shift, or ecological circumstances (Marston et al.

2018; Mollentze et al. 2014); determining what factors contribute to rabies host-shift

events could help to prevent them in the future. Positive selection in general is very rare

in RABV, including on the glycoprotein, where non-synonymous diversity appears to be

more highly constrained than in other RNA viruses (Holmes et al. 2002). Evidence of

positive selection in relation to rabies host shifts is mixed, with some studies showing no

evidence of adaptation to new host species (Kuzmin et al. 2012; Troupin et al. 2016) and

others observing some positively selected sites but with low repetition across different

host shift events (Streicker et al. 2012b). Troupin et al. (2016) also found, however, that
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an amino acid change from leucine to serine at nucleoprotein position 374 appears almost

exclusively and ubiquitously in two separately emerging ferret badger-associated clades,

which may suggest pre-adaptation is required to infect this new host. The reduced trans-

missibility of a skunk-associated strain of rabies to raccoons compared to skunks under

experimental conditions also suggests that this species-specificity may not be purely due

to the behaviour or geographic range of the host species (Hill et al. 1993). The focus by

many of these studies on non-synonymous substitutions may miss other possible mechan-

isms of genetic adaptation to the host, such as changes in codon usage (Bahir et al. 2009),

which may contribute to host specificity.

1.3 Thesis aims & organisation

This thesis aims to leverage the growing number of rabies genome sequences to explore

how rabies evolves, and how we can use this invaluable data to assist in reaching the

global goal of achieving zero human rabies deaths by 2030 (Minghui et al. 2018). This

thesis consists of an introductory chapter, three data chapters in journal article format,

and a discussion chapter. As each data chapter contains its own in-depth introduction

and discussion, chapters 1 and 5 are kept brief.

The fact that viral replication and mutation are closely linked (Belshaw et al. 2008),

taken together with RABV’s variable lengths of time spent within the axons of nerve

cells, implies that the difference in replication rate between the incubation and infec-

tious periods could affect how RABV evolves. This, along with the difficulty oftentimes

encountered while trying to conduct temporal phylogenetic analyses on rabies datasets,

begs the question of whether rabies conforms to the most commonly used molecular clock

models. In chapter 2 I use a simulation framework to explore how patterns of genetic

divergence over time vary in rabies outbreaks where substitutions arise on a per-unit

time (strict molecular clock) or a per-generation (controlling for variation in the incuba-
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tion period) basis. I compare these synthetic patterns to those observed in genetic data

from the Serengeti district of Tanzania, and estimate a per-generation substitution rate

from these data. This chapter has been published in PLoS Pathogens as “Examining

the molecular clock hypothesis for the contemporary evolution of the rabies virus” (DOI:

10.1371/journal.ppat.1012740, November 2024) with the following author list: Rowan Dur-

rant, Christina Cobbold, Kirstyn Brunker, Kathryn Campbell, Jonathan Dushoff, Elaine

Ferguson, Gurdeep Jaswant, Ahmed Lugelo, Kennedy Lushasi, Lwitiko Sikana, and Katie

Hampson. Rowan Durrant (RD) wrote all R code except where otherwise stated, gen-

erated and analysed the data, and wrote the manuscript. Jonanthan Dushoff wrote the

R code to generate lognormal Bayesian posteriors. Elaine Ferguson provided epidemi-

ological simulation output. CC, Kirstyn Brunker, Kathryn Campbell, Jonathan Dushoff

(JD), Elaine Ferguson (EF), and KH assisted in editing the manuscript for publication.

During the review process the work in this chapter received feedback from two anonymous

reviewers.

Estimates of the size of an outbreak, either as part of the initial outbreak response or

retroactively, can inform the scale of the outbreak response needed or can be used to

evaluate how successful contact tracing efforts were (or indeed surveillance performance

more generally is) in detecting transmission. Commonly used methods of outbreak size

estimation such as seroprevalence surveys are unsuitable for rabies outbreaks, and existing

phylodynamic methods are computationally expensive and require that the dataset has

sufficient temporal signal in order to conduct them. In chapter 3 I develop a simple math-

ematical method of estimating outbreak sizes that only requires a maximum-likelihood

phylogenetic tree and an estimate of the per-generation substitution rate. I test this

method using the simulation framework developed in chapter 2 and apply it to genetic

data from a recent rabies outbreak in the Philippines. This chapter is in preparation for

publication with the following provisional author list: Rowan Durrant, Jonathan Dushoff,

Christina Cobbold, Daniel Haydon, Elaine Ferguson, Criselda Bautista, Kirstyn Brunker,

Daria Manalo, Mary Elizabeth Miranda, Mirava Yuson and Katie Hampson. RD wrote

all R code except where otherwise stated, generated and analysed the data and wrote
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the manuscript. EF provided some epidemiological simulation output. BEAST log files

were provided by Criselda Bautista. JD assisted with early stages of deriving the equation

and wrote the R code to generate lognormal Bayesian posteriors. JD and Daniel Haydon

provided useful discussion and feedback. Mirava Yuson, Daria Manalo and Mary Elizabeth

Miranda provided the Romblon genome sequences.

Most rabies clades circulate predominantly within a specific host species, but there is

debate as to whether this is purely due to ecology or whether genetic adaptation to the

host plays a role. In chapter 4 I leave the simulation framework to explore how the rabies

virus evolved in practice and investigate whether there is evidence of genetic adaptation

to the host hidden in synonymous substitutions. I explore differences in codon usage and

CpG content in a range of bat- and carnivore- associated rabies clades and explore what

forces could be driving these differences, including host immune mechanisms. This chapter

is in preparation for publication with the following provisional author list: Rowan Durrant,

Jonathan Dushoff, Christina Cobbold, and Katie Hampson. All conceptualisation, analysis

and writing was conducted by RD, and RD wrote all R code except where otherwise stated.

JD and Denise Marston provided useful discussion and feedback. Spyros Lytras shared

code for the PhylogeneticEM analysis.

Finally, in chapter 5 I discuss how my findings contribute to our understanding of rabies

evolution and elimination, the implications of these findings, and what further work is

required to answer questions that arise from these.
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Chapter 2

Examining the molecular clock
hypothesis for the contemporary

evolution of the rabies virus

2.1 Abstract

The molecular clock hypothesis assumes that mutations accumulate on a genome at a

constant rate over time, but this assumption does not always hold true. While modelling

approaches exist to accommodate deviations from a strict molecular clock, assumptions

about rate variation may not fully represent the underlying evolutionary processes. There

is considerable variability in rabies virus (RABV) incubation periods, ranging from days

to over a year, during which viral replication may be reduced. This prompts the question

of whether modelling RABV on a per-infection generation basis might be more appropri-

ate. We investigate how variable incubation periods affect root-to-tip divergence under

per-unit time and per-generation models of mutation. Additionally, we assess how well

these models represent root-to-tip divergence in time-stamped RABV sequences. We find

that at low substitution rates (<1 substitution per genome per generation) divergence

patterns between these models are difficult to distinguish, while above this threshold dif-

ferences become apparent across a range of sampling rates. Using a Tanzanian RABV
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dataset, we calculate the mean per-generation substitution rate to be 0.17 substitutions

per genome per generation. At RABV’s substitution rate, the per-generation substitution

model is unlikely to represent rabies evolution substantially differently than the molecu-

lar clock model when examining contemporary outbreaks; over enough generations for

any divergence to accumulate, extreme incubation periods average out. However, meas-

uring substitution rates as per-generation holds potential in applications such as inferring

transmission trees and predicting lineage emergence.

2.2 Introduction

The molecular clock hypothesis assumes that the genomes of organisms accumulate neut-

ral mutations at a constant rate over time, either across all lineages (the “strict molecular

clock”) or within each individual lineage but with some degree of variation between them

(clock models with this assumption include the relaxed and multirate clock models; Gojo-

bori et al. 1990; Drummond et al. 2006; Ho and Duchêne 2014).The ability to sample viral

sequences through time, and the application of the molecular clock hypothesis to these

sequences, has led to massive advances in using viral genetic data to investigate disease

outbreaks (Drummond et al. 2003a). The substitution rate, measured in substitutions per

site per unit time, can be used to estimate how long ago pathogens diverged (Pybus and

Rambaut 2009), and the date of infection of individual infected hosts (Wróbel et al. 2006).

Combining the analysis of epidemiological and genetic data has allowed further insights

into the history of outbreaks (Grenfell et al. 2004), and the introduction of geographic

data provides estimates as to rates of spatial spread and the frequency and source of

introductions (Gire et al. 2014; Kamath et al. 2016). However, in order to conduct these

phylogenetic analyses, genetic divergence must increase appreciably over time in the data-

set under investigation (Drummond et al. 2003b). Whether or not the viral population is

measurably evolving, and thus whether a dataset of sequences contains sufficient temporal

signal for Bayesian phylogenetic analysis, depends mainly on the evolutionary rate, the
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sequence length and the length of time sequences are sampled over being sufficiently high.

Various methods exist to assess temporal signal, the most commonly used being root-to-

tip divergence plots (Korber et al. 2000; Buonagurio et al. 1986) implemented in tools

such as TempEst (Rambaut et al. 2016), but these also include Bayesian evaluation of

temporal signal (BETS; Duchêne et al. 2020a) and the date-randomisation test (Duchêne

et al. 2015).

The rabies virus (RABV) is a negative-strand RNA virus, with a genome size of approx-

imately 12 kilobases. While RNA viruses generally have high mutation rates due to a lack

of proofreading by RNA polymerases, RABV has a substitution rate at the lower end of

normal for single-stranded RNA viruses of between 1× 10−4 and 5× 10−4 substitutions

per site per year (Holmes et al. 2002; Biek et al. 2015; Layan et al. 2021). This may

be due to strong purifying selection (Holmes et al. 2002), or due to peculiarities of the

rabies virus. For example, the RABV genome is longer than average for RNA viruses,

and genome length and evolutionary rate are negatively correlated (Duchêne and Holmes

2018), although this relationship appears to be weaker in single-stranded RNA viruses

(Sanjuán 2012). A more unusual feature of RABV is that infections can exhibit extended

incubation periods within the host. The median generation interval (the time between

one individual becoming infected and then infecting another) is estimated to be 17.3 days

in domestic dogs (Mancy et al. 2022), with other studies estimating mean serial inter-

vals of 26.3 days (Hayes et al. 2022) and 45.0 days (Kurosawa et al. 2017). Symptoms,

infectivity, and death from rabies, however, can occasionally occur years after the initial

infection event (Boland et al. 2014). The length of the incubation period is influenced

by the route of exposure, with bites to the head and neck leading to more rapid disease

progression than bites to lower extremities (Dimaano et al. 2011). RABV can remain in

the muscle at the bite site for prolonged lengths of time before invading the host’s mo-

tor neurons and progressing through the nervous system, with limited, if any, infection

of other muscle fibres (Charlton et al. 1997). While some replication in the muscle cells

has been observed (Yamaoka et al. 2013), RABV replication at the inoculation site is

not necessary for neural invasion (Shankar et al. 1991). It is currently unknown precisely
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how the RABV replication rate in the host muscle cells and peripheral nervous system

compares to the massive replication rate within the cells of the central nervous system

and brain. However, work suggests that RABV replication in muscle cells may be re-

duced (Schnell et al. 2010), and RABV replication in cultured rat sensory neurons may

be 10- to 100-fold lower than replication rates in rat and mouse CNS neurons (Lycke and

Tsiang 1987). Rabies infections that involve long incubation periods may, therefore, not

lead to more accumulated mutations than those with shorter incubation periods, as viral

mutation is strongly influenced by the replication process (Belshaw et al. 2008).

Changes in mutation rates through time on an individual case level due to long incubation

periods may affect how we analyse RABV sequence data and interpret these analyses on

a population level. A relaxed molecular clock is usually required to carry out phylogenetic

analyses on rabies datasets, and it is not uncommon for there to be difficulties in applying

these analyses due to “insufficient temporal signal”; usually referring to either no or a

negative relationship between genetic divergence and time, or this relationship having

a lot of noise and a very low R2 (Fusaro et al. 2013; Wang et al. 2019; Zhang et al.

2017; Faye et al. 2022; Caraballo et al. 2021). RABV shows variation in substitution rate

between lineages (Troupin et al. 2016; Streicker et al. 2012a; Layan et al. 2021), which may

be driven in part by differences in incubation periods. If the variable incubation period

of rabies infections does cause deviation from the molecular clock model (exceeding the

variation captured by relaxed or multirate clock models), this may negatively affect the

accuracy of time-scaled phylogenetic trees and emergence date predictions. Conversely, if

mutation does continue at a consistent rate during the incubation period, attention should

be paid to extremely long incubators which could drive the emergence of new variants, as

seen recently in chronic SARS-CoV-2 infections (Kemp et al. 2021; Choi et al. 2020).

We hypothesised that reduced replication (and thus mutation) during the incubation

period could cause rabies evolution to be better represented by a per-generation model of

mutation than by the strict molecular clock model. We aim to clarify the nature of con-

temporary RABV evolution using in silico methods, comparing the root-to-tip divergence
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of sequences generated from synthetic outbreaks under per-unit time or per-generation

mutation models, and comparing these to RABV genomic data from Tanzania. We also

aim to calculate a per-generation substitution rate for RABV for future use as a parameter

in transmission tree reconstruction algorithms.

2.3 Methods

We investigate two contrasting mutational models for RABV – i.e., substitutions occur-

ring on a per-generation vs. per-unit-time basis – using a simulation approach. We first

generated synthetic RABV outbreaks using a branching process model (Mancy et al.

2022) and then simulated these two mutation processes over the resulting transmission

trees. From the synthetic sequences generated, we examined root-to-tip divergence and

calculated the variance explained (R2) from linear regressions, and compared these to the

root-to-tip divergence of a set of RABV whole genome sequences from Tanzania. Finally,

we developed a method to estimate the per-generation substitution rate for RABV and

tested this on synthetic data before applying it to the Tanzanian RABV dataset.

2.3.1 Rabies outbreak simulation

We simulated RABV mutation on branching-process simulations of rabies outbreaks. Out-

breaks were simulated 100 times over a spatially explicit representation of the Mara Region

in northern Tanzania. In the Serengeti District of this region, where contact tracing data

were available, the model was initialised with the three cases that occurred in the mean

generation interval (g=27 days, based on contact tracing data) prior to 2017 (simulations

were run over a dog population representing that in the Mara region between 2017 and

2024). In the rest of the Mara region, where there were no data to guide initialisation, we

seeded with (0.01Dg)/365 cases, where D is the initial dog population in that area. If Re is
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equal to 1 (endemic transmission), this results in roughly 1% of the population becoming

rabid over a year; contact tracing data suggest that incidence typically does not exceed

that level (Hampson et al. 2009). This led to a total of 273 initial cases in the region. Each

case was assigned a number of offspring cases drawn from a negative binomial distribution

(ibid.) with a mean R0 of 1.05 and a dispersion parameter of 1.33. This R0 value was chosen

to result in a median number of cases each month that was roughly constant over time

(over the 100 simulations), mimicking endemic disease, with the dispersion parameter

giving a distribution in secondary case numbers that reflects observed patterns in rabies

transmission, where most cases result in no onward transmission and an increasingly small

proportion of cases result in an increasingly large number of secondary cases.. Movement

of rabid dogs from their home locations to and between transmission locations followed a

random walk with step lengths drawn from a Weibull distribution (shape = 0.41; scale =

0.13). We simulated occasional long-distance transport of dogs to a random location prior

to their first transmission in 2% of cases (Mancy et al. 2022). At each of a rabid dog’s

transmission locations, another dog was randomly selected within the local 1km2 grid

cell. If this dog was susceptible (i.e., not vaccinated or already incubating infection from

a prior transmission event), rabies was transmitted. While not explicitly explored in this

study, a model with a spatial element was chosen as the underlying epidemiological model

as these more accurately reflect rabies dynamics such as local susceptible depletion and

long distance movement, which allow rabies to persist at low incidence in the population

(ibid.). A generation interval was drawn for each new infection from a lognormal distri-

bution (meanlog = 2.96; sdlog = 0.82, fit to contact tracing data from Serengeti District,

Tanzania (ibid.); Figure 2.1), describing the time delay before it also became rabid and

made its assigned transmissions. The step-length distribution was also fitted using this

contact tracing data (ibid.). Branching process simulations were continued until 7 years

had passed or rabies went extinct. Each synthetic case was assigned an individual ID, and

for every case (except initial seed cases) we recorded the ID of the associated progenitor

case. Dates of infection and transmission were recorded for each case.
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Figure 2.1: Histogram of generation intervals from the Tanzanian contact tracing dataset
with the lognormal distribution used in simulations.

We isolated complete transmission trees descending from each of the 273 initial cases from

within one randomly selected synthetic outbreak. Transmission trees that contained over

100 cases (9 out of 273 trees in total, ranging in size from 533 - 19,382 cases) were then

used to generate synthetic sequence data. Across these trees, we see a mean generation

interval of 26.6 days, and 2.5 and 97.5 percentiles of 3.90 and 94.11 days (Figure 2.2). For

each of the 9 trees, the index case was assigned an initial 12kb genome sequence. Under

the per-unit time mutation model, we determined the expected number of mutations by

multiplying the substitution rate, the genome length and the length of the generation

interval, for each case along the resulting transmission chain (because we assume muta-

tions are neutral, the individual-level mutation rate is the same as the population-level
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substitution rate). The realised number of mutations was then drawn from a Poisson

distribution, with this mean. We then randomly chose positions to change and new nuc-

leotides to change them to. The resulting synthetic sequence data is referred to as the

“time-based sequence data”. The generation-based model of mutation works as above,

with the exception that the expected number of substitutions in a generation is constant

regardless of the generation interval length, and produces the synthetic “generation-based

sequence data”.

Figure 2.2: Histogram of generation intervals from the simulated outbreaks. Vertical
dashed lines represent the median (blue) and mean (red) generation interval.
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2.3.2 Divergence rate analysis

To investigate patterns of temporal divergence under the mutation models described

above, we generated synthetic data with values of substitution rates ranging from 0.05 to

3 substitutions per genome per generation (or the per unit time substitution rate equival-

ent) and 4 population sampling regimes (from 1% of cases to 20%, informed by a previous

study that estimated that routine surveillance for rabies rarely confirms more than 10%

of circulating cases; Townsend et al. 2013b). We calculated the genetic divergence as the

number of nucleotide differences from the index case to each sampled case. For each of the

nine transmission trees, we then compared genetic divergence with time under each scen-

ario (substitution rate and sampling regime combination), using linear regression through

the origin. In order to compare our synthetic patterns of divergence over time to real

rabies data, a root-to-tip divergence plot was also generated for a dataset of real RABV

sequences (data from Lushasi et al. (2023); Figure 2.3A) using TempEst (v1.5.3; Ram-

baut et al. 2016), with the best-fit root located (Figure 2.3B). These rabies cases occurred

between 2001 and 2017 and were primarily from the Serengeti district and Pemba Island,

with the remaining sequences from elsewhere in Tanzania (Figure 2.3A inset). Sequence

acquisition and tree building methods are detailed in Lushasi et al. (2023).

2.3.3 Calculating the per-generation substitution rate

We updated a method of calculating the per-generation substitution rate previously used

in eukaryotes (Slatkin and Hudson 1991) by using Bayesian posterior estimates of the

substitution rate and generation interval. We assessed this method’s accuracy using the

synthetic outbreak sequence data, before applying it to the aforementioned set of RABV

whole genome sequences.
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Figure 2.3: Phylogeny of real rabies virus whole genome sequences from Tanzania and
root-to-tip divergence. (A) The time-scaled tree Lushasi et al. (2023) used to generate
the root-to-tip divergence plot and to calculate the per-generation substitution rate. The
inset map shows the approximate locations that the samples were collected from and
the lineages present in each location. Map point size represents the number of sequences
in this dataset from district centroid locations. Base map data is from Natural Earth
(naturalearthdata.com), via the maps R package. (B) The corresponding root-to-tip
divergence plot. Point colours represent RABV lineage.

To estimate the mean per-generation substitution rate, we analysed sequence data with

BEAST, and multiplied the posterior rate estimate for each MCMC sample (excluding the

burn-in period) by the generation interval lengths sampled from the posterior of a simple

Bayesian analysis and then multiplied again by the genome length. The mean and 95%

credible interval of the estimate of the per-generation substitution rate for the RABV

dataset was calculated by taking the mean and the 2.5% and 97.5% percentiles of the

resulting multiplied posteriors.
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To evaluate the accuracy of this method in estimating the mean per-generation substitu-

tion rate, we also applied it to synthetic sequence data generated from outbreaks using the

per-generation mutation model as described above, under different substitution rates (11

values ranging from 0.05 substitutions per generation to 3 substitutions per generation)

and case sampling rates (1%, 5%, 10% or 20% of cases sampled) across the 9 transmis-

sion trees that contained at least 100 cases. Subsampled synthetic datasets containing

more than 2000 sequences were not analysed as this number exceeds the total whole-

genome RABV sequences currently available on the RABV-GLUE database (a repository

of RABV sequences regularly updated from the NCBI Nucleotide database, combined

with metadata from NCBI and the source publications, and assigned major and minor

clades; Campbell et al. 2022), and is unrealistic in the context of examining individual

rabies outbreaks. BEAST log files were generated from these sequences using BEAST-

Gen version 1.0.2 and BEAST version 1.10.4 (Suchard et al. 2018). We chose to use a

Jukes-Cantor (JC) substitution model with a strict clock, no site heterogeneity (due to

our per-generation mutation model used in the simulations having equal probability of

any site or base being chosen) and assumed a constant population size. We used a tracelog

frequency of 1000 and a sufficiently long chain length determined for each dataset so that

the effective sample size of each parameter exceeded 200 when analysed using Tracer

(Rambaut et al. 2018) with a 10% burn-in period. We applied the substitution rate cal-

culation method to these phylogenetic trees, and assessed the accuracy of the resulting

mean per-generation substitution rates by comparing them to the parameter values used

to generate the synthetic sequences, using the natural log of the ratio:

Deviation = ln(
µe

µa
) (2.1)

where µe is the mean estimated per-generation substitution rate and µa is the actual

substitution rate, where a deviation of zero means perfect accuracy.
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The same method was applied to the dataset of 153 RABV sequences sampled from

across Tanzania (data from Lushasi et al. (2023); Figure 2.3A). The mean per-generation

substitution rate was calculated, and distributions were fitted from the multiplied gen-

eration interval and substitution rate posteriors (generation interval posterior based on

values from Mancy et al. (2022) for the Tanzanian dataset, extracted directly from the

lognormal distribution used in simulations; substitution rate posteriors taken from the

BEAST log file of the time-scaled tree from Lushasi et al. (2023)) and genome length

as described above. We compared different distributions (Gamma and Lognormal) for

estimating substitution rates and selected the best fitting distribution by AIC. We also

calculated the probabilities of between 0 and 10 SNP differences occurring across 1, 5 or

10 infection generations. For this calculation we simulated mutations arising at a Poisson

rate with lambda drawn from the fitted substitution rate distribution. The means and

95% confidence intervals were calculated from the 10,000 simulations.

2.3.4 Data and code availability

All code is available at https://github.com/RowanDurrant/Rabies-Mutation. Ana-

lyses were conducted using the R programming language (R Core Team 2020). The beta

regression curve and prediction interval in Figure 2.4C was generated using the betareg R

package (Cribari-Neto and Zeileis 2010). RABV lineages were assigned using MADDOG

(Campbell et al. 2022).
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2.4 Results

2.4.1 Root-to-tip divergence analysis

At higher per-generation substitution rates (1 substitution per genome per generation and

above), distinct differences can be seen between root-to-tip divergence plots from the two

models of mutation (Figure 2.4A). The synthetic data generated from the per-generation

mutation model shows “stray” clusters or ridges of points both above and below the

main funnel of points, illustrated in the example in Figure 2.4A. Divergence plots from

synthetic data generated from the time-based model of mutation have less variance and do

not exhibit this pattern. At lower substitution rates (below 1 substitution per generation),

no such pattern is clearly distinguishable (Figure 2.4B). When the cases represented by

the high-divergence points from the per-generation model in Figure 2.4A are visualised in

a transmission tree, they are mainly confined to a single transmission chain (Figure 2.5).

Root-to-tip divergence plots derived from synthetic transmission trees using the time-

based mutation model had, on average, higher R2 values than those from synthetic trans-

mission trees using the per-generation mutation model, although this is more difficult to

distinguish below a substitution rate of 0.5 substitutions per genome per generation (Fig-

ure 2.4C). As the substitution rate increases, the R2 values across both mutation models

increase. The case sampling rate appears to have little effect on R2 (Figure 2.6). The

root-to-tip divergence plot of the Tanzanian RABV dataset more closely resembles those

of lower substitution rate simulations, where it is difficult to determine any difference

between the models of mutation (Figure 2.3). While most lineages surround the regres-

sion line, some (for example Cosmopolitan AF1b_B1) group below the line, but without

forming a distinguishable “ridge”.
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Figure 2.4: Temporal genetic divergence varies under two models of mutation. (A) Root-
to-tip divergence plots for synthetic sequences produced using time-based and generation-
based mutation models, equivalent to 2 substitutions per genome per generation and (B)
equivalent to 0.2 substitutions per genome per generation. Note that the y-axis scales
differ by an order of magnitude between A and B. These data are from running mutation
models over the same single synthetic outbreak where 5% of cases were sequenced (i.e.,
621 cases sequenced of 12,434 total). (C) The R2 values obtained from regression through
the origin of root-to-tip divergence of synthetic data from the time-based and generation-
based models. Point colour indicates the mutation model used to generate the data. Lines
represent beta regressions with logit links fit to data points, and shading represents the
95% prediction interval. The X axis is log scaled. 5% of cases were sequenced here; the
proportion of cases sequenced had little effect on R2 (Figure 2.6).
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Figure 2.5: Points in the offshoot ridge predominantly occur in one transmission tree.
(A) root-to-tip divergence plot (2 substitutions per genome per generation, 5% of cases
sequenced) with offshoot ridge points highlighted in red. Offshoot ridge points are defined
in this plot as having a divergence rate above 8×10−6 substitutions per day and occurring
after day 750. (B) transmission tree of the simulated outbreak with offshoot ridge cases
highlighted in red. Graph edge length is not proportional to time or divergence.

2.4.2 Substitution rate calculation

The accuracy of our method used to calculate per-generation substitution rate remains

similar at all but the lowest values of substitution rate (Figure 2.7), with a tendency

to underestimate the substitution rate (meaning that the estimated substitution rate is

below the substitution rate parameter used to generate the synthetic data; mean natural

log of the ratio of -0.18 and root-mean-square of 0.54, where values of 0 indicate perfect

estimates). Accuracy appears to be more influenced by the number of sequences used in

the BEAST analysis than by the case sampling rate itself; the mean natural log of the

ratio falls to -0.36 when fewer than 50 sequences are used (root-square-mean of 0.95).
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Figure 2.6: The proportion of cases sequenced does not impact the R2 of root-to-tip
divergence plots from synthetic data. Plot is faceted by the proportion of cases sequenced,
point colour represents the mutation model.

The Tanzanian RABV dataset from which we estimated the per-generation substitution

rate contains 153 sequences in total, and the accompanying time-scaled phylogenetic tree

has a root-to-tip height of approximately 65 years, although the sequences spanned just

16 years as they were sampled from 2001 to 2017 (with 46.7% from years 2011-2012).

These sequences were largely complete; 98% of sequences were >95% complete (>11,327

kb in length). The mean per generation substitution rate of RABV in this dataset was

estimated to be 0.171 (95% credible interval: 0.127 - 0.219). The best fitting distribution

by AIC to the output of the multiplied Bayesian posteriors was a Gamma distribution

with the parameters shape = 51.69 and rate = 301.8 (Table 2.1).
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Figure 2.7: Accuracy of per-generation substitution rate predictions for different numbers
of sequences, substitution rates and sampling rates. Facets indicate the proportion of cases
sequenced. The dotted line represents perfect accuracy. The x-axis and colour scale are
log transformed.

Distribution Parameters ∆ AIC
Gamma shape = 51.69, rate = 301.8 0

Lognormal meanlog = -1.774, sdlog = 0.1402 1277.4

Table 2.1: Parameters and distributions used to estimate the per generation substitution
rate. The distributions fitted to the multiplied Bayesian output are shown, along with
their parameters and AIC.

Using the estimated per-generation substitution rates, we calculated the probability of

different numbers of substitutions occurring over 1, 5 and 10 generations, drawing the

per-generation substitution rate from the above distribution (Figure 2.8). Over many

generations it is still quite likely for zero substitutions to occur; after 10 generations, the

probability of zero substitutions having occurred is 0.19.
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Figure 2.8: Probability distributions of the mean per-generation substitution rate and
substitutions occurring over generations. (A) estimated probability distribution of the
per-generation substitution rate from Tanzanian RABV sequences. (B) probability distri-
bution of substitutions occurring over 1, 5 and 10 generations. The λ value for a Poisson
rate of substitution occurrence is drawn from the substitutions per generation distribution
fitted in Figure 2.8A. Black bars represent the 95% confidence intervals (which are very
tight).

2.5 Discussion

Some RABV sequence datasets show little to no temporal signal despite the sequences be-

ing gathered over many years, which we hypothesised could be due in part to its variable

incubation periods. We hypothesised that a per-generation model of mutation may be

more representative of RABV evolution than a purely time-based model. We found that

substantial differences in root-to-tip divergence patterns between synthetic outbreaks us-

ing generation-based and time-based models of mutation could be observed only at high

underlying substitution rates. The substitution rate for the Tanzanian RABV sequences

examined (∼0.17 substitutions per genome per generation) was in the range where diver-

gence patterns in the two models were extremely similar. We can thus assume that the

two models will give extremely similar results on the relevant time scale. As we observed

increasing divergence over time with reasonable R2 values within this substitution rate
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range, it implies that variable incubation periods alone do not fully account for the lack

of temporal signal. Therefore, other factors such as insufficiently long sampling windows

for the substitution rate are likely to be responsible (Duchêne et al. 2020b). This is an

important consideration for analysing RABV sequences from new outbreaks, or from en-

demic areas where sampling is opportunistic. As RABV has a substitution rate lower than

many other RNA viruses, longer sampling windows are required to construct a dataset

with sufficient temporal signal to conduct Bayesian phlyogenetic analyses.

The observation of little difference between root-to-tip divergence plots derived from the

two mutation models at substitution rates below 1 substitution per genome per generation

is likely due to averaging; multiple generations of infection are expected to have occurred

per substitution that arises on the viral genome. Over the many generations needed before

significant levels of viral genetic diversity are reached, the influence of any unusually long

incubation periods will be damped by the opposite influence of unusually short incubation

periods, eventually becoming indistinguishable from clock-like behaviour. On the other

hand, at higher substitution rates ridges form on the root-to-tip divergence plots under the

per-generation model of mutation but not under the per unit time model. Increasing both

the substitution rate and the variability of the generation interval length would likely lead

to the greatest differences between root-to-tip divergence plots between the two mutation

models, due to the combined increase in the frequency of substitutions occurring during

unusually long or short incubation periods.

While not affecting the overall substitution rate, these ridges reduce the overall R2, and

may be better analysed using a separate local clock (Featherstone et al. 2023). The cases

in these ridges almost all descend from a common ancestor (Figure 2.5), suggesting that

a single unusually long or short incubation period can affect which phylogenetic analyses

we perform. Ridges caused by these incubation periods can be distinguished from ridges

caused by rate variation between lineages as they will be parallel to the main cluster

of points in the plot, whereas points belonging to lineages with a different substitution

rate will have a different slope. Studies examining the number of substitutions occurring
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between successive sequenced cases, and whether this increases when the secondary case’s

incubation period is unusually long, could clarify the exact relationship between substi-

tutions, generations, and time in the rabies virus. More detailed data will be required to

investigate this further.

We calculated RABV’s mean per-generation substitution rate to be approximately 0.17

substitutions per genome per generation. This estimate is lower than those of other RNA

viruses, such as SARS (2 substitutions per genome per human passage; Vega et al. 2004),

SARS-CoV-2 (0.52 substitutions per genome per 5.8-day generation interval; Braun et al.

2021) and the Ebola virus (0.875 substitutions per genome per 14-day generation interval;

Kinganda-Lusamaki et al. 2020). RNA viruses that undergo periods of reduced replica-

tion or complete latency often show reduced per-unit time substitution rates, with one

extreme example being HTLV-1/2 (Holmes 2003; Van Dooren et al. 2001). However, we

would not expect these latent periods to affect the per-generation rate, as the longer gen-

eration interval would take this into account. The low per-generation substitution rate

seen in rabies is therefore likely due to mutation being constrained by other factors, such

as strong purifying selection (Holmes et al. 2002), and likely contributes to the observed

lack of temporal signal. Previous studies suggest that for viruses in this substitution rate

range, sampling windows of up to 30 years may be required to overcome the phylodynamic

threshold (Duchêne et al. 2015); for comparison, SARS-CoV-2 was observed to have suf-

ficient temporal signal to conduct these analyses within two months of the start of the

pandemic (Duchêne et al. 2020b).

We can predict from the estimated per-generation substitution rate that identical se-

quences are likely to have more than 5 intermediate generations between them; the prob-

ability of fewer than five generations occurring before a mutation occurs is 0.49, as de-

termined by repeated sampling of a Poisson distribution with a lambda of 0.17. While

the low substitution rate means that comparing the number of SNPs between sequences

alone may not be an effective method of determining infector-infectee relationships, it can

be used in conjunction with temporal and location data to make more accurate predic-
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tions of transmission events by ruling out relationships between more distantly related

transmission chains co-circulating in the same area, as in Cori et al. (2018). Notably,

our Poisson distribution of the number of substitutions occurring in one generation is

visually very similar to the genetic signature distribution reported in Cori et al.’s Figure

S1, despite different methods and RABV datasets being used in their calculations. It is

likely, however, that our estimate of the per-generation substitution rate is lower than

the mean number of SNPs expected between sequences from a primary and secondary

case, due to the time-based substitution rate being affected by purifying selection (Duch-

êne et al. 2014). Further analysis comparing the estimated per-generation substitution

rate to realised SNP distances between primary-secondary case pairs could quantify this

difference.

While the Jukes-Cantor model was the most appropriate to use on our synthetic data due

to the simplicity of the mutation models, phylogenetic analyses on real RABV genome

data usually use a more complex model, such as the GTR + G substitution model used

to generate the Tanzanian tree shown in this study (Lushasi et al. 2023). This, along with

the simplicity of our mutation model as well as sampling biases in the real dataset, may

affect how comparable synthetic root-to-tip divergence plots are to the real data.

While the molecular clock has proven critical for gaining insights into the history and

dynamics of disease outbreaks, the epidemiological characteristics of a virus should be

considered when choosing how to measure viral evolution. In this study, we determine

that the per-generation model is not likely to produce substantially different results from

the strict molecular clock model when analysing contemporary RABV evolution. We also

estimate the mean per-generation substitution rate of RABV for future use in transmission

tree reconstruction and efforts to estimate outbreak sizes and lineage emergence rates.
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Chapter 3

A simple method of estimating
rabies outbreak sizes from

phylogenies

3.1 Abstract

The ability to estimate the size of a disease outbreak is beneficial both for coordinating an

outbreak response and for retrospectively evaluating the effectiveness of response measures

and surveillance. Seroprevalence surveys and epidemiological modelling can be used for

this purpose, but can be computationally expensive or unsuitable for certain diseases,

and current phylogenetic methods do not explicitly estimate outbreak size. We develop

a simple formula to estimate the proportion of cases in an outbreak that have been

sequenced using only an estimate of the per-generation mutation rate and the mean

branch length of a phylogenetic tree, which can then be used to calculate the outbreak

size. We validate this method by applying it to simulated outbreaks, and then to an

ongoing rabies outbreak in the Romblon province of the Philippines. We find that in 95%

of simulated outbreaks the outbreak size is estimated to within 28.8% of its true value,

with a mean deviation of 16.3% from the true value, and that this method can be applied

to outbreaks with a range of substitution rates and values of R0 appropriate for rabies.
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We estimated that approximately 14.7% of cases from the Romblon province had been

sequenced, suggesting better than average case detection and case numbers consistent

with previous analyses. This method should make rabies outbreak size estimation more

accessible, but further work is required to improve its applicability to other diseases.

3.2 Introduction

In the early stages of responding to a disease outbreak it is often difficult to grasp the scale

of the problem, but having an accurate estimate of the number of infections is beneficial

in helping to plan resource distribution, contact tracing, and vaccination efforts. Current

methods for estimating outbreak sizes or the prevalence of a disease in a population often

involve epidemiological modelling (Choi and Ki 2020; Fraser et al. 2009; Shutt et al. 2017;

Zhang et al. 2020), randomised testing (Pouwels et al. 2021), or conducting serological

surveys (Gérardin et al. 2008), but these are not always appropriate for every outbreak.

Generating genomic data has increasingly become an important part of the outbreak

response process, with a recent example being the massive testing and sequencing efforts

of suspected COVID-19 cases across the world during the pandemic (Ko et al. 2022;

Meredith et al. 2020). As the capacity for viral genome sequencing increases, the resulting

data will have the potential to become another useful tool for estimating outbreak sizes.

Existing methods leveraging genomic data include Bayesian skygrid (Gill et al. 2013; Hill

and Baele 2019) and skyline models (Drummond et al. 2005; Stadler et al. 2013), and

GlnPipe (Smith et al. 2021). In actuality, however, these methods estimate the effective

population size (Ne), which is an abstract value usually much lower than the real outbreak

size and scaled by an unknown quantity (Waples 2022), and as such are mainly used to

investigate relative growth rates over time (Faria et al. 2014). To our knowledge, no

methods have been published that use genetic information to explicitly estimate outbreak

size at the time of writing.
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Rabies is an example of a disease where obtaining estimates of outbreak sizes would

be useful, but so far largely unsuccessful. As dogs in the regions where rabies is most

prevalent are often free-roaming, many rabies infections go unobserved unless they result

in a human exposure; human cases of rabies are also largely under-reported (Nel 2013).

Because of this, it is difficult to estimate how many rabies cases in total truly occur in any

given outbreak, although the prevalence of rabies is assumed to not exceed 1% of the dog

population (Mancy et al. 2022). As rabies is fatal once the victim becomes symptomatic

and infectious, serological surveys cannot be used to estimate historical rabies prevalence.

Testing for rabies in non-human animals involves acquiring a brain sample which requires

the animal to be deceased, which is not practical for randomised testing. Furthermore,

epidemiological modelling methods often fail to accurately replicate rabies’ ability to

persist at low prevalences, and require computational resources and specialised skill sets

that may make them inaccessible to local practitioners.

Genomic surveillance has become a common part of rabies outbreak responses in recent

years (Gibson et al. 2022; Lushasi et al. 2023; Zinsstag et al. 2017), with the development of

portable sequencing technologies and more cost-effective protocols leading to an increase

in capacity for in-country whole genome sequencing (Bautista et al. 2023; Brunker et al.

2020). While genomic data is becoming increasingly available, the rabies virus evolves

relatively slowly, leading to some datasets having insufficient temporal signal to carry

out advanced phylogenetic analyses such as skyline and skygrid methods on emerging

outbreaks despite samples being collected over multiple years, as discussed in chapter 2.

On top of this, these methods require specialist knowledge that it is unreasonable to

assume local responders would possess, and as previously mentioned any estimates of Ne

are likely to be much lower than the true outbreak size. Developing a simple method

of outbreak size estimation which utilises genomic data could aid in making outbreak

estimation more accessible to responders in the worst affected areas.
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Figure 3.1: Diagram showing a phylogenetic tree of a hypothetical outbreak where every
new case gains µ mutations, and trees with 50% and 75% of tips removed.

A feature of phylogenetic trees which may aid in this goal is that two branches are removed

when a tip is removed from a perfectly observed tree (a tree where every case in the

outbreak of interest has been sequenced), but the tree length (the sum of all branch

lengths) will only be reduced by the length of one of these branches (and in some cases,

this reduction will be 0). This means that as tips are removed from the fully observed

tree, the mean branch length (tree length divided by the number of branches) will almost

always increase. This is shown in the following phylogenetic tree of a hypothetical outbreak

(Figure 3.1), where each new case gains µ mutations, and L̄ is the mean branch length,

which increases as 50% and 75% of cases are removed from the tree in this example.

If there is a consistent relationship between the proportion of cases sequenced and the

mean branch length across outbreaks and sequence datasets of different sizes, it could be

exploited to estimate the proportion of cases in an outbreak that have been sequenced,

and thus the outbreak size.

In this study we develop a simple method of estimating rabies outbreak sizes using only

a phylogenetic tree of viral sequences acquired from the outbreak and an estimate of

the per-generation substitution rate, assuming that the sequences have been collected in

an unbiased manner across the course of the outbreak. We test this method within our

simulation frameworks, and then apply it to data from a recent outbreak of rabies in the

Romblon province of the Philippines.
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3.3 Methods

3.3.1 Simulation framework

Rabies outbreaks were simulated in R (R Core Team 2020) using a branching process

model (as in chapter 2; Durrant et al. 2024). Simulations were allowed to run for seven

years (or sooner if rabies went extinct before this time) after which time they were stopped,

allowing us to treat the simulated data as an ongoing outbreak. Synthetic genetic data

were generated based on the resulting synthetic outbreaks, using a mutation model that

has variable substitution rates per site. Synthetic outbreaks were generated with two val-

ues of R0 (1.05 and 1.7) and genetic data was generated with three substitution rates

(2×10−3, 2×10−4, or 2×10−6 substitutions per site per year). 273 outbreaks originat-

ing from a single introduction were generated for each value of R0, but only outbreaks

containing over 500 cases were kept for analyses to ensure that phylogenetic trees could

be generated for datasets with the sparsest sampling strategy used. This resulted in 6

outbreaks with an R0 of 1.05 and 40 outbreaks with an R0 of 1.7, ranging in size from

1,048 to 15,287 cases.

The per-generation substitution rate (substitutions per site per generation) was calculated

by multiplying the generation interval length (converted from days, as typically reported,

into years) by the unit-time based substitution rate (substitutions per site per year). In

order to produce synthetic sequences which more closely replicate real rabies sequences,

the site of each mutation in the genome was selected based on site-specific substitution

rates, and the substitution itself based on transversion rates, both estimated from rabies

Cosmopolitan AF1b clade genetic data. This clade was chosen as it is one of the most well

sequenced dog-associated rabies clades. A dataset of 127 rabies whole genome sequences

from the Cosmopolitan AF1b clade was acquired from RABV-GLUE (Campbell et al.

2022), and site-specific substitution rates and transversion rates for these sequences were
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estimated in IQtree (Nguyen et al. 2015). Simulated mutations were neutral and had no

impact on transmission or sequencing probability. Subsets of the resulting synthetic se-

quences were randomly sampled to emulate between 1% and 90% of cases being sequenced.

Maximum likelihood trees were generated using IQtree, and the mean branch length was

calculated in R from trees imported using the ape package (Paradis and Schliep 2019).

Two further synthetic outbreaks with “extreme” topologies were also generated: a “star”

shaped outbreak, where the initial case has a single generation of 999 secondary cases; and

a “line” outbreak, where each case has exactly one secondary case for 1000 generations.

Both of these outbreaks have a substitution rate of 2× 10−4 substitutions per site per

year, with substitutions assigned with no site or transversion bias across a 11923 base

genome. In order to investigate the effect of higher R0s than are realistic for rabies on our

method, synthetic outbreaks were also generated with R0 values of 1.05, 1.5, 2, 3, 4, 6 and

8 over a sequencing probability of 10 to 90%. These outbreaks are generated using a very

simple branching process model, with the number of secondary cases for each case being

drawn from a Poisson distribution and the lambda parameter being the given value of

R0. Each case gained exactly 1 SNP at a random position on a 10,000 base genome. The

branching process was run until the outbreak size after the latest full generation of cases

had been assigned exceeded 2000 cases.

3.3.2 Accuracy testing

We tested the accuracy of the method developed in this study using synthetic outbreak

and genetic data, where sequencing was conducted randomly across the entire course of

the outbreak. Accuracy testing was undertaken on synthetic outbreaks with R0 values of

1.05 or 1.7, which are both within the plausible range of R0s estimated for rabies outbreaks

(Li et al. 2024). We also tested how the method performed across a range of substitution

rates, of either 2×10−3, 2×10−4 or 2×10−6 substitutions per site per year, to represent
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plausible substitution rates across different viruses, of which 2×10−4 substitutions per site

per year represents the substitution rate of rabies. We calculate the ratio of the estimated

proportion of cases sequenced to the actual proportion of cases sequenced, where a value

of 1 represents perfect estimation.

3.3.3 Application to the 2022 Romblon rabies outbreak

In September 2022 the first new rabies case since 2012 was detected on Tablas Island in

the Romblon province of the Philippines, which had previously been declared rabies free.

The outbreak response has included enhanced surveillance through integrated bite case

management (Swedberg et al. 2023), resulting in 45 confirmed cases between September

2022 and September 2023; two of these cases were human deaths, with the remaining 43

being animal cases. From these confirmed cases 24 whole genome sequenced were produced

using an Oxford Nanopore MinION-based protocol (Bautista et al. 2023). Further details

of the outbreak and the ensuing response, including details of how the RABV sequences

were generated, are available from Yuson et al. (2024).

One thousand maximum likelihood trees were generated using all available sequences

from Romblon using IQTree, and for each a subtree consisting of 14 sequences identi-

fied as potentially resulting from a single introduction to the region (“cluster 1”) was

extracted. The remaining sequences were identified as likely resulting from separate in-

troductions, and were too few in number to make accurate estimates from (1, 1, 3 and 5

sequences per cluster). We took the mean branch length from across these 1000 subtrees

and calculated the per-generation substitution rate by multiplying the mean generation

interval estimated from the reconstructed transmission tree (ibid.) by a Philippines-wide

substitution rate estimate. This was generated from 299 whole genome sequences using a

BEAST (Drummond et al. 2012) coalescent Bayesian skyline plot with a GTR F+I+G4

uncorrelated relaxed substitution model.
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To construct a 95% credible interval we sampled 10,000 values from the posterior dis-

tribution for substitution rate (acquired from the BEAST log file), the posterior for the

generation interval (by fitting, and then sampling from, a lognormal distribution based

on the transmission tree estimates) and the mean branch lengths from the 1000 subtrees

and calculated the proportion of cases sequenced for each combination of sampled values.

We then extracted the 2.5% and 97.5% percentiles from the resulting 10,000 values.

3.4 Results

3.4.1 Curve fit

In synthetic outbreaks, the mean branch lengths of trees that contain sequences sub-

sampled randomly across their entire duration were observed to increase as the proportion

of cases sequenced decreased (Figure 3.2). This trend was observed to follow a curve of

approximately the equation:

L̄ =
µ

2
√ρ

(3.1)

where ρ is the proportion of cases sequenced, L̄ is the mean branch length of the phylo-

genetic tree, and µ is the per-generation substitution rate. This relationship is very strong

in synthetic outbreaks with substitution rates of both 2×10−3 and 2×10−4 substitutions

per site per year; the association is less clear at 2×10−6 substitutions per site per year,
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however. This is likely due to stochasticity in the simulation process producing outbreaks

with a realised substitution rate of less than 2×10−6 substitutions per site per year, or

insufficient accumulation of genetic diversity over the simulated time frame resulting in

poor trees.

Figure 3.2: The mean branch length of a maximum likelihood tree generated from syn-
thetic data plotted against the proportion of cases in the outbreak that were sequenced.
The curve is of Equation 3.1. Point colour represents the total size of the outbreak; facet
titles describe the parameters of the simulation. The Y axis and colour are log10 scaled.

3.4.2 Extreme outbreak shapes

The relationship between the mean branch length and the proportion of cases sequenced

also ceases to fit well to Equation 3.1 when the phylogenetic tree has an “extreme” shape,

such as those generated from the “line” outbreak where every case has exactly 1 secondary

case for 1000 generations, and from the “star” outbreak where the one initial case has

a single generation of 999 secondary cases (Figure 3.3A). This may be due to how well

the tree length over different proportions of cases sequenced approximates a square-root
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relationship; while the synthetic outbreaks with rabies-appropriate R0 values approximate

this well, the “star” outbreak tree length has a linear relationship with the proportion of

cases sequenced, and the tree length of the “line” outbreak is seemingly unaffected by the

proportion of cases sequenced (Figure 3.3B).

This suggests that there is a suitable range of R0 values where Equation 3.1 will apply

sufficiently well to an outbreak; further simple simulations suggest that outbreaks with an

R0 between 1.05 and 2 approximate the square-root relationship well, whereas outbreaks

with an R0 above this begin to more closely resemble a linear relationship (Figure 3.4).
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Figure 3.3: Comparison of the relationship between the mean branch length and the pro-
portion of cases sequenced for different tree topologies. (A) Points represent the mean
branch length of a phylogenetic tree generated with a certain proportion of cases se-
quenced. The dashed line is of Equation 3.1. (B). Points represent the tree length of a
phylogenetic tree. The dashed line represents the square root of the proportion of cases
sequenced; the tree length has been normalised to one in order to better compare the
three outbreak simulations. (C-E) The phylogenetic trees shown are generated with 10%
of cases sequenced from the “line” outbreak (C), a rabies outbreak with an R0 of 1.05,
(D) and the “star” outbreak (E). The x-axes are scaled in substitutions per site.
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Figure 3.4: Outbreaks with R0s of 1.5 and 2 best fit the square-root relationship with tree
length. (A) The relationship between the proportion of cases sequenced and observed tree
length in outbreaks of varying R0 compared to a square root relationship (dashed grey
line). (B) The relationship between the proportion of cases sequenced and the observed
mean branch length compared to Equation 3.1 (dashed grey line).
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3.4.3 Deriving Equation 3.1

As established in the last section, the tree length when the proportion of cases sequenced

is ρ in an outbreak with an R0 typical of rabies can be approximated as:

Tρ = T1 ×
√

ρ (3.2)

Where Tρ is the tree length when the proportion of cases sequenced is ρ , and T1 is the

tree length of the fully observed tree. This tree length can also be expressed as:

T1 = µ(N −1) (3.3)

Where µ is the per-generation substitution rate and N is the total outbreak size (N − 1

being the number of transmission events within the outbreak). The mean branch length

at ρ (the tree length at ρ divided by the number of branches) can thus be expressed as:

L̄ =
µ(N −1)

√ρ
2ρN −2

(3.4)

as the number of branches in a bifurcating phylogenetic tree is 2 times that number of

tips minus 2. If we assume that N and ρN are sufficiently large that N ≈ N − 1 and

ρN ≈ ρN −1, so that N−1
ρN−1 ≈ 1

ρ , we can then simplify Equation 3.4 to Equation 3.1.
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As ρN is the number of sequences in our phylogenetic tree, this presents us with the

possibility of calculating a minimum number of sequences required to sufficiently satisfy

this assumption. As we simplify N−1
ρN−1 to 1

ρ , the ratio between these two values should be as

close to 1 as possible to minimise the error introduced by this assumption. By calculating

the 1
ρ to N−1

ρN−1 ratio for differing values of ρ and N, we find that at approximately 20

sequences are required to keep the ratio above 0.95, or approximately 10 sequences for a

ratio above 0.9 (Figure 3.5).

Figure 3.5: a dataset of more than 20 sequences is required to keep the introduced error
from the assumption that N−1

ρN−1 ≈ 1
ρ below 5%. Contour colours represent the 1

ρ to N−1
ρN−1

ratio. The dotted curve represents 20 sequences; the dashed curve represents 10 sequences.

3.4.4 Accuracy testing

Equation 3.1 can be rearranged as:
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ρ = (
µ
2L̄

)
2

(3.5)

to give an estimate of the proportion of cases sequenced. The estimated total number of

cases in the outbreak can then be calculated as the total number of sequences divided by

the estimated proportion of cases sequenced. Applying Equation 3.5 to synthetic outbreaks

results in estimated outbreak sizes within 28.8% of the true proportion sequenced in 95%

of outbreaks (Figure 3.6), and a mean deviation of 16.3% from the true value. Accuracy

decreases as the estimated proportion of cases sequenced falls below 0.1. The method

tended to under-estimate the proportion of cases sequenced in simulated outbreaks with

an R0 of 1.05, whereas estimates appeared equally above and below the true value at an R0

of 1.7. Based on Figure 3.4, we would expect this method to over-estimate the proportion

of cases sequenced more severely as the R0 of the outbreak increases above 2.

3.4.5 Application to the 2022 Romblon rabies outbreak

We estimated that 14.9% (95%CI: 11.6%, 19.7%) of cases from the Romblon outbreak

were sequenced, suggesting that during this outbreak period 163 cases (95%CI: 122, 206)

occurred in total, 95 (95%CI: 71, 120) of which belonged to cluster 1 (Figure 3.7). This is

consistent with the number of undetected cases estimated previously (Yuson et al. 2024).

Specifically, the maximum-likelihood trees constructed using the 14 cluster 1 sequences

had a mean branch length of 2.90×10−5 substitutions per site. Using the Philippines-wide

substitution rate estimate of 3.07×10−4 substitutions per site per year and an estimated

mean generation interval of 26.6 days, we calculated a per generation substitution rate of

2.24×10−5 substitutions per site per generation. Dividing the per-generation substitution

rate by twice the mean branch length and squaring the result gives an estimated propor-

tion of cases sequenced of 0.147, and dividing the number of sequences (14 from cluster
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Figure 3.6: The accuracy of our method when applied to simulated rabies outbreaks with
two values of R0 and substitution rate.

1) by this value results in 95 total cases being estimated in cluster 1. Assuming that there

was no bias towards a certain cluster being more likely to be sequenced than any other,

adding the 10 sequences from the other clusters to the total number of sequences (24 in

total) gives an estimate of 163 cases across the introductions to Romblon.
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Figure 3.7: Estimated case numbers in Romblon cluster 1 and across the entire outbreak
suggest extensive undetected transmission of rabies. A: Example of a cluster 1 subtree used
to estimate the outbreak size. The x-axis is scaled in substitutions per site. B: Comparison
of the numbers of sequenced, detected and estimated cases within cluster 1 and across
the entire outbreak. Error bars represent the 95% credible interval.

3.5 Discussion

We developed a simple method of estimating outbreak sizes which is simple, computation-

ally inexpensive, reasonably accurate, and only requires information routinely gathered

during an outbreak response that incorporates genomic surveillance. This presents an

improvement in usability over previous methods. Using this method, we estimated that

cluster 1 of the ongoing Romblon outbreak contains 95 cases, with 163 being estimated

for the total outbreak. When compared with the 45 confirmed cases, this suggests that

there has been extensive undetected transmission in Romblon, which reflects the findings

of the main outbreak report (Yuson et al. 2024).
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This method relies on the observed tree length having an approximately square-root

relationship with the proportion of cases sequenced. Interestingly, such a relationship

has been previously noted in a study downsampling human genome data (Karczewski

et al. 2020), but other than this little attention has been paid to this relationship. In

simple branching process simulations (i.e., the same as described above but without a

spatial or temporal element, and where every case is assumed to generate one SNP),

the observed tree length points pass from above to below the square root curve as R0

increases from below to above approximately 1.5. This suggests that it is unlikely that

this is truly a square-root relationship, but an exponential relationship that takes R0 into

account to some degree, and in its current form this method will work best for outbreaks

of diseases with an R0 between 1 and 2. Further work is required to determine what the

true relationship between tree length, R0 and proportion of cases sequenced is to improve

estimation accuracy and widen this method’s applicability to diseases with higher values

of R0.

As R0 is kept stable during these simulations, future work should also consider the effect of

Rt changing through time, for example as a result of increased vaccination, on the accuracy

of this method, and whether it can be accounted for. The effect of overdispersion of the

secondary case distribution while maintaining the same R0 should also be investigated.

As in the simplified system shown in Figure 3.1, tree length only decreases when a tip

with no descendants is removed, and as such the relationship between tree length and

the proportion of cases sequenced may rely on the proportion of cases in the tree with

no descendants. In this case, the overdispersion of secondary cases is likely to have some

effect on how well the square-root assumption of the relationship between tree length and

proportion of cases sequenced applies to outbreaks a suitable R0 range for this assumption.

This method also relies on the assumption that sequencing effort is even over time and

unbiased; in reality, this is unlikely to occur for rabies outbreaks in settings such as

Romblon, as sampling is usually only carried out when a human bite case is reported;

in contrast, in the Serengeti district the opportunistic sampling of animals found dead
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may represent a less biased approach. Increased sequencing effort in later stages of the

outbreak, as is more likely to occur during rabies outbreak responses, may result in an

overestimation in the proportion of cases sequenced, as some lineages may go extinct

before they can be sampled from.

An important aspect to consider when applying this method is the possible error intro-

duced through estimating the per-generation substitution rate, especially when using a

wider dataset’s substitution rate to calculate this value, as it is necessary to do with new

rabies outbreaks where there is insufficient temporal signal to conduct Bayesian phylo-

genetic analyses (Durrant et al. 2024). As purifying selection has a strong effect on RNA

virus genomes (Hughes and Hughes 2007), and the substitution rate estimate decreases

over a wider temporal sampling window because of this (Duchêne et al. 2014), the es-

timated per-generation substitution rate using the wider dataset may be lower than the

per-generation substitution rate of the dataset being investigated. Further analysis is re-

quired to determine whether this has a significant impact on outbreak size estimates using

this method, and how more accurate estimates can be acquired.

The error introduced from the assumption made that N and ρN are sufficiently high during

the derivation is also important to consider. We would recommend using a minimum of 10

sequences to conduct this analysis to conserve funds and resources, but using 20 sequences

or more would be optimal. The effect of this assumption is likely why we see a decline

in accuracy when analysing outbreaks with a proportion of cases sequenced below 0.1.

We also observe that in synthetic outbreaks with an R0 of 1.7, some outbreaks with

a substitution rate of 2× 10−3 substitutions per site per year appear to have a lower

accuracy than those with a substitution rate of 2×10−4 substitutions per site per year.

This may be due to the combination of a high substitution rate, a substitution model

that incorporates site-specific rates and large outbreak sizes causing site saturation to be

achieved over the relatively long time scale of the simulation.
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We describe a novel, simple method of estimating rabies outbreak sizes from phylogenetic

trees, which we hope can assist in expediting the roll-out of rabies control measures at

an appropriate scale in the case of an outbreak, and be used more generally in assessing

surveillance performance. This will be essential in monitoring our progress towards the

global goal of achieving zero human rabies deaths by 2030.
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Chapter 4

Differences in codon usage and CpG
content between host-species-specific

rabies clades

4.1 Abstract

Viruses favour the usage of certain codons due to their nucleotide content, translational

efficiency, and pressure from the host immune system. Rabies is a negative strand RNA

virus which can infect a broad range of mammalian hosts, with some clades circulating

predominantly in specific host species. While previous studies have investigated codon

usage in the rabies virus, sequences have only been split into bat- or carnivore-related

groups, or into the major clades. Here we investigate whether codon usage varies between

minor rabies clades that circulate in specific host species and what drives these differences.

We acquired a dataset of publicly available nucleoprotein gene sequences and investigated

how biased codon usage was between clades, how these biases differ, and calculated the

CpG content of each clade. We found that codon usage varies most between bat- and

carnivore-associated RABV groups, and varies more subtly between host-species-specific

minor clades within these groups. Codons containing CpG dinucleotides were found to

be among the most influential in a principal component analysis, and we found that
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CpG content was considerably higher in carnivore-associated rabies clades than in bat-

associated clades. We also found that bat-associated rabies clades appear to be under

higher selection pressure from the host’s zinc-finger antiviral protein than other clades,

warranting further investigation of the mechanism underpinning this change.

4.2 Introduction

Despite encoding the same amino acids, synonymous codons are often not used equally.

This phenomenon, called codon usage bias, is driven mainly by two factors (Hershberg

and Petrov 2008): the first being mutation pressure, where codon usage is biased due

to the non-randomness of mutation patterns, such as biases in guanine and cytosine

content (GC content) in the genetic code. The second is natural selection, where the

codon used affects the fitness of the organism; for example, using codons corresponding to

more abundant tRNAs (either belonging to the organism itself, or to the host in the case

of viruses) to increase translational efficiency. This is more common in eukaryotes and

prokaryotes, but codon bias driven by natural selection has also been observed in some

viruses, such as henipaviruses (Kumar et al. 2018). In general, however, codon bias appears

to be shaped more by mutational pressure in both RNA and DNA viruses (Jenkins and

Holmes 2003; Shackelton et al. 2006). Positive-strand RNA viruses with a narrow host

range have stronger codon usage biases than those with a broad host range, and have

a more similar codon usage to their host species (Tian et al. 2018), likely to maximise

translational efficiency, whereas negative-strand RNA viruses do not appear to mimic their

host species’ codon usage (Rima 2015), despite both being reliant on the host’s translation

machinery. This may be due to the transcription of the negative-strand virus’ RNA by

its own polymerase being dependent on the RNA’s stability, which can be influenced by
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codon usage biases (Gumpper et al. 2019). Despite this, using machine learning methods,

codon usage together with nucleotide and dinucleotide content have previously been found

to accurately predict the hosts of coronaviruses (Brierley and Fowler 2021) and other RNA

viruses (both positive- and negative-strand; Babayan et al. 2018).

The rabies virus (RABV) is a negative strand RNA virus that can infect a broad range of

mammal species. The RABV genome consists of five genes, which encode the nucleoprotein

(N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA polymerase (L;

“large” protein). RABV can be broadly split into bat- and carnivore-associated clades,

with the main bat to carnivore host shift being predicted to have occurred approximately

600 years ago (Troupin et al. 2016). Bat to carnivore shifts have also occurred in more

recent history, with one example being the shift from bats to skunks and raccoons which is

estimated to have occurred 250 years ago (Ding et al. 2017), and spillover events continue

to occur in the present day (Kuzmin et al. 2012). Rabies clades are known to sometimes

circulate among specific host species; for example, sustained transmission cycles have

been observed in Chinese ferret badger populations (Zhang et al. 2013) associated with

the minor clade Asian SEA2b, as opposed to the clade circulating sympatrically in dogs,

Asian SEA2a. There has been debate as to whether these host-species-specific transmission

cycles are due to adaptation or ecological circumstances (Marston et al. 2018; Mollentze

et al. 2014), with evidence of positive selection over host shifts being mixed (Kuzmin

et al. 2012; Troupin et al. 2016; Streicker et al. 2012b). These studies have focused on

non-synonymous substitutions, and not the possible effect of synonymous substitutions

(through changes in codon usage bias or dinucleotide bias) on host adaptation.

Previous codon usage studies have been conducted with the rabies virus as a focus. RABV

has the lowest codon usage bias among lyssaviruses (Zhang et al. 2018), perhaps due to its

broad host range compared to other members of the family (Marston et al. 2018). While

natural selection is thought to contribute the most to codon bias on the RABV N gene

(He et al. 2017) and over the whole genome (Li et al. 2023), mutation pressure dominates

on the G gene (Morla et al. 2016). Viral replication is inhibited when the RABV matrix
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protein is reconstructed with suboptimal codon usage (Luo et al. 2020a), indicating that

codon biases are an important factor in rabies evolution. These previous studies either

subdivide the sequences into dog-, bat-, or human-derived sequences based on the species

of the host animal the sample was acquired from, or into the major rabies clades (Bat,

Africa-2, Arctic, Cosmopolitan, Asian and Indian subcontinent major clades in He et al.

(2017); these plus Africa-3 and South-East Asian in Li et al. (2023)). Differences in codon

usage bias between host-specific minor clades have not been investigated.

In this study we aimed to quantify differences in codon usage biases between host-species-

specific RABV minor clades, and investigate what factors underpin these differences. We

hypothesised that clades that diverged more deeply in the virus’ evolutionary history

(i.e., from bats to carnivores) would show clear codon usage biases, while more recent

host shifts (i.e., Chinese ferret badgers) would show less obvious differences to their most

closely related clades due to genetic drift rather than to adaptation to their host, as host

mimicry does not appear to drive codon usage biases in negative-strand RNA viruses.

4.3 Methods

4.3.1 Data acquisition

We downloaded complete RABV N gene sequences from the RABV-GLUE sequence data-

base (Campbell et al. 2022). We searched for sequences with 100% N gene coverage from

host-specific minor clades, including those mentioned in Troupin et al. (2016), with the

addition of bat-associated clades. The full list of clades and the search terms used to filter

sequences on RABV-GLUE are shown in Table 4.1.

RABV-GLUE Clade Host RABV-GLUE host search term
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Asian SEA2a Domestic dog “Canis familiaris”, “Canis lupus familiaris”

Asian SEA2b Chinese ferret badger “Melogale moschata”, “Chinese ferret badger”

Arctic A Arctic fox “Vulpes lagopus”

Cosmopolitan AM2a Mongoose (Caribbean) “Mongoose”, “Herpestes”

Cosmopolitan AF1b Domestic dog “Canis familiaris”, “Canis lupus familiaris”

RAC-SK Raccoon “Procyon lotor”

RAC-SK Skunk “Mephitis”, “skunk”

Bat DR Vampire bat “Desmodus rotundus”

Bat TB1 Mexican free-tailed bat “Tadarida brasiliensis”

Bat EF-E2 Big brown bat “Eptesicus fuscus”

Bat LC Hoary bat “Lasiurus cinereus”

Table 4.1: RABV-GLUE clades and search terms used when downloading RABV se-
quences.

Raccoon sequences and raccoon-related skunk sequences were removed from the study

after initial phylogenetic analysis suggested substantial transmission between raccoons

and skunks, with the exception of sequences noted as belonging to the southern cent-

ral skunk variant (SCSK) within the RAC-SK major clade, which did not contain any

raccoon-derived sequences and were therefore retained. Five additional sequences from

the Arctic A minor clade were added to the dataset which had been collected from Vulpes

lagopus according to the original publications, but were mislabelled as originating from

Vulpes vulpes on RABV-GLUE. Sequences containing ambiguous bases (i.e., N, R or Y)

were removed from the dataset, leaving 430 complete N gene sequences in total. The Gen-

Bank accession numbers for these sequences are available in the supplementary materials

(Supplementary Table 6).
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4.3.2 Phylogenetic trees

Phylogenetic trees were constructed using IQtree (Nguyen et al. 2015) with a Gannoruwa

bat lyssavirus sequence (accession no. NC_031988) used as an outgroup. The best fitting

model of the tree shown was GTR+F+I+G4. Visualisation was carried out in R version

4.3.2 (R Core Team 2020) using the ggtree package (Yu et al. 2017).

4.3.3 Codon usage

In order to compare how biased the codon usage of each rabies clade is, the effective

number of codons (a measure of overall codon usage bias accounting for amino acid

composition, with values ranging from 20 to 61, where a value of 20 represents strict

bias towards one codon per amino acid, and 61 represents no bias in codon usage; ENC)

was calculated using the equations shown in Wright (1990). Raw codon usage and relative

synonymous codon usage (RSCU) values were calculated for each species group using the

CAIcal web server (Puigbò et al. 2008). The raw codon usage was analysed using principal

component analysis (PCA) using the stats R package (R Core Team 2020). Nucleotide

content, including GC content at each position, was also calculated using CAICal. GC3

content (guanine and cytosine content at the third codon position) was compared to both

ENC values and GC12 content (guanine and cytosine content at the first and second codon

positions) to assess to what extent codon usage biases were influenced by GC content.

Codon adaptation index (CAI) values and expected CAI (eCAI; the upper limit of CAI

of 500 sequences with identical amino acid usage and GC content but randomised codon

usage, not exceeded by 95% of the sequences with a 95% confidence limit) values were

calculated for each RABV clade against four host species using CAIcal to measure the

similarity in codon usage between each rabies clade and the corresponding host species.
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The reference codon usage datasets were obtained for Canis familiaris, Vulpes lagopus,

Eptesicus fuscus and Desmodus rotundus from CoCoPUTs (Alexaki et al. 2019); other

host species had no available codon usage data. The CAI values were divided by the eCAI

values to give a normalised CAI (nCAI).

4.3.4 CpG content

The ratio of observed to expected CpG content for each sequence was calculated as in

Gardiner-Garden and Frommer (1987). In order to determine when in rabies’ evolutionary

history changes in CpG content may have occurred, ancestral sequence reconstruction

was carried out using IQtree and the ratio of observed to expected CpG content for

these predicted ancestral sequences was also calculated. Corrected relative synonymous

dinucleotide usage (RSDUc) values, a measure of dinucleotide usage that accounts for

nucleotide and amino acid usage biases, were calculated using the DinuQ python package

for CpG content (Lytras and Hughes 2020). These were then analysed using the R package

PhylogeneticEM (Bastide et al. 2018), which predicts when environmental (i.e., host

species or tissue in the case of viruses) shifts may have occurred in the phylogeny.

4.4 Results

The RABV phylogeny is broadly split into carnivore-associated clades and bat-associated

clades, with the south-central skunk clade grouped more closely with the bat-related

clades (Figure 4.1). All minor clades were monophyletic with the exception of the Asian

SEA2a domestic dog minor clade, which contains the Asian SEA2b Chinese ferret badger

(CFB) clade.
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Figure 4.1: A maximum-likelihood phylogenetic tree of all the sequences used in analyses.
A Gannoruwa bat lyssavirus sequence was used as an outgroup (NC_031988). Tips are
coloured and annotated by host-specific minor clade. The x-axis is scaled in substitutions
per site.
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4.4.1 Codon usage

The effective number of codons (ENC) used by the rabies virus had a mean value of

54.0 (where a value of 20 denotes the strictest possible bias of one codon per amino acid,

and 61 denotes no bias) with a standard deviation of 2.30, and varied between host-

species-specific minor clades (Figure 4.2). The dog-associated AF1b rabies minor clade

was the most biased in its codon usage (mean ENC of 51.8), with the big brown bat and

arctic fox-associated clades also being more biased than other clades. The Chinese ferret

badger-associated clade was the least biased (mean ENC of 57.6).

Figure 4.2: The effective number of codons (ENC) across different host-species-specific
rabies clades. Points are coloured by species-specific minor clade. An ENC of 61 denotes
no bias in codon usage, whereas an ENC of 20 denotes strict bias towards one codon per
amino acid.
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Certain amino acids appear to have stronger codon biases than others (Figure 4.3; Supple-

mentary Table 7); arginine codon AGA has an RSCU value above 2 in every host species

investigated (RSCU values above 1.6 suggest significant over-representation). Preferred

codons varied between host-specific rabies clades for almost all amino acids; only arginine

had a common preferred codon across all of the host-specific rabies groups investigated.

Codons containing a CpG dinucleotide were almost universally underrepresented.

Figure 4.3: Strength of codon preference varies by amino acid. Cell colour represents
RSCU value, where white indicates no codon preference, red indicates preference towards
the codon, and blue preference against.

The ENC-GC3 plot (Figure 4.4A) is used to investigate whether the effective number of

codons is a result of GC3 content (i.e., GC content in the third codon position), where

the curve represents the expected ENC if codon bias was due purely to GC3 content. As

almost all of these points sit below the expected curve and do not follow it, we can assume

that codon bias is not due purely to GC3 bias, and may be due to other factors such as

natural selection.

67



Figure 4.4: Codon usage is minimally influenced by mutation pressure. (A) ENC in relation
to GC content at the third position. (B) GC12 content plotted against GC3 content for
all sequences. Lines and equations represent the linear models fitted to data from each
major host group, i.e. bats (dotted line, upper equation) and carnivores (solid line, lower
equation). Points have been jittered to prevent overplotting. Point colour represents the
rabies clade. Point shape represents whether the host species is a bat or a carnivore.

Plotting GC12 content against GC3 content can be used to determine how much GC

content, and therefore mutation pressure, influences codon usage bias, where a linear

regression slope of 1 suggests GC content alone is responsible for the observed codon

usage biases, and a slope of 0 denotes no effect of GC content. The slope of the regression

line fitted to all data points is 0.1009, suggesting that codon usage is not influenced by

GC content to a great extent, matching the findings of the ENC-GC3 analysis. When

split into bat- or carnivore-associated groups (Figure 4.4B), the slope of the regression

line fitted to the bat-related points is 0.072 whereas the carnivore-related slope is 0.025.

Taken together with the ENC-GC3 analysis, this suggests that codon usage biases in bat-

related RABV are slightly more influenced by mutation pressure than in carnivore-related

RABV, while still mostly being influenced by other factors.
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We then conducted principal component analysis (PCA) on the raw codon usage values

to further explore any patterns in codon usage between clades and investigate which

codons have the most influence over these differences. The first and second principal

axes accounted for 24.2% and 21.8% of the total variation in codon usage respectively,

accounting for a total of 46.0% of the variation in codon usage (Figure 4.5). Some host-

specific rabies clades appear to group by major clades, i.e., Asian and Bat/RAC-SK, with

bat-related and carnivore-related clades broadly splitting along PC2 and Cosmopolitan

and Asian clades splitting along PC1. Some clades, however, are more tightly clustered

than others, and there is considerable overlap between the Cosmopolitan AM2a, RAC-SK

SCSC and Bat LC clades, suggesting similar codon usage patterns. The codons exerting

the most influence over PC1 (i.e., the Asian vs Cosmopolitan divide) were leucine CTT

(loading of -0.240), histidine CAC (-0.206), and cysteine TGT and TGC (0.228 and -

0.229 respectively). PC2 (i.e., the bat- vs carnivore- associated RABV divide) was most

influenced by leucine CTA (-0.226), valine GTC (-0.247) and arginine CGT and CGC

(-0.246 and 0.236 respectively).

To investigate whether RABV codon usage patterns resembled those of the clades’ host

species, we calculated the normalised codon adaptation index for each clade with Canis

familiaris, Vulpes lagopus, Desmodus rotundus and Eptesicus fuscus codon usage values

as references (Figure 4.6). The bat-associated rabies clades, along with the skunk clade,

had higher normalised CAI values than the carnivore-associated clades, but only the Bat

EF-E2, DR and TB1 clades had a mean nCAI above 1 for any host species, which is

associated with significant similarity to the host’s codon usage patterns. There was no

evidence of RABV codon usage being more similar to that of bats than to carnivores or

vice versa.
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Figure 4.5: Principal component analysis of raw codon usage values. Point colour rep-
resents the rabies clade. Point shape represents whether the host species is a bat or a
carnivore.

4.4.2 CpG content

As codons containing CpG dinucleotides were found to be among the most influential in

the PCA analysis, and are known to be selected against by the host immune system in

some viruses (Meagher et al. 2019), we investigated whether there were differences in CpG

content between the RABV clades. CpG underrepresentation (i.e., a ratio of observed to

expected CpG content less than 1) was seen across all host-species-specific minor clades
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Figure 4.6: Codon adaptation index (CAI) of each host-specific rabies clade. Canis fa-
miliaris, Vulpes lagopus, Desmodus rotundus and Eptesicus fuscus codon usage values are
used as reference sets; bar colour represents RABV minor clade.

(Figure 4.7), with bat-associated rabies clades having even lower CpG content than in

carnivore-associated clades. The Bat TB1 and Bat LC clades in particular displayed high

levels of CpG suppression, and this difference appears to be driven by the number of CpG

dinucleotides as opposed to differences in the underlying GC content.
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Figure 4.7: Ratio of observed to expected CpG content and GC content across host-specific
rabies groups. (A) Ratio of observed to expected CpG content, where a value of 1 indicates
no bias, >1 indicates overrepresentation of CpG, and <1 indicates underrepresentation.
(B) GC content by host species. (C) Number of CpG dinucleotides per host species..

In order to investigate whether the low CpG content in bat-associated clades developed

before or after the bat to carnivore host shift, we used ancestral sequence reconstruction

and calculated the CpG content of these sequences. This predicted that low CpG content

was the ancestral state of RABV (Figure 4.8), with the common ancestor of all the clades

having an observed to expected CpG content ratio of 0.428, and higher CpG content emer-

ging in carnivore-associated clades after the common ancestor of the carnivore-associated

clades.

More thorough analysis using PhylogeneticEM with RSDUc values of each sequence pre-

dicts 16 ancestral environmental shifts (i.e., changes in the type of host or tissue inhabited)

in our dataset that caused changes in CpG content across the 3 codon dinucleotide po-

sitions (Figure 4.9). In many cases, these shifts line up with a host shift event (i.e., the

descendants of the environmental shift encompass an entire host-specific rabies clade);

others appear to only have one descendant.
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Figure 4.8: Low CpG content appears to be the ancestral state of RABV. Phylogenetic
tree of all the N gene sequences with ancestral node sequences reconstructed and CpG
content calculated. Point colour represents the observed CpG content as a proportion of
the expected CpG content given guanine and cytosine content.

To determine whether this difference was caused by the hosts’ zinc-finger antiviral protein

(ZAP), we compared the frequency of ZAP’s optimal binding motif in mice C(n7)G(n)CG

(Luo et al. 2020b) to a similar but suboptimal motif C(n7)C(n)CG, as previously applied

to SARS-CoV-2 (Afrasiabi et al. 2022). We found that three bat clades (Bat TB1, Bat DR

and Bat EF-E2) showed very low levels of the optimal motif compared to the suboptimal

motif, suggesting high levels of selection against this motif by ZAP (Figure 4.10). Surpris-
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Figure 4.9: Multiple historic shifts in environment are predicted based on changes in CpG
content at the three codon positions. CpGpos1 denotes the probability of a dinucleotide
containing the first two nucleotides of a codon being CG; CpGpos2 notes the probability
of a dinucleotide containing the final two nucleotides of a codon being CG; CpGbridge
denotes the probability of a dinucleotide containing the final nucleotide of one codon and
the first nucleotide of the next being CG. Black points on the tree are the predicted
location of an environment shift. Coloured groups on the tree and bar plots represent the
ancestors affected by each shift (colour is not indicative of CpG shift direction).

ingly, the sequences from the East African domestic dog-associated clade Cosmopolitan

AF1b contained much higher levels of the optimal binding motif than the suboptimal mo-

tif, suggesting reduced selection pressure against the optimal motif and increased selection

pressure against the suboptimal motif.
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Figure 4.10: Frequency of optimal and suboptimal ZAP binding motifs suggest strong
selection pressure from ZAP in bat-related clades. Point colour represents rabies clade.
(A) Frequency of mouse-ZAP’s optimal binding motif C(n7)G(n)CG. (B) Frequency of a
suboptimal motif C(n7)C(n)CG.

4.5 Discussion

We investigated whether there were differences in codon usage biases between host-specific

rabies clades, and whether these differences were suggestive of host adaptation. We found

that codon usage differed mainly between the bat-associated and carnivore-associated

clades as opposed to between species-specific clades that were more closely related, and

that some of the codons determined to have the most influence over the differences between

these clades contained CpG dinucleotides. Multiple significant shifts in CpG content were

found to have occurred in RABV’s evolutionary past, with carnivore-associated clades

having higher CpG content than bat-related clades, which may be due to the easing of

selection against CpG dinucleotides by ZAP.
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CpG content in RNA viruses is almost universally lower than would be expected based on

GC content due to selective pressure from the host’s zinc-finger antiviral protein (ZAP)

which specifically targets CpG dinucleotides (Takata et al. 2017). The bat-associated

clades we investigated have CpG content considered average compared to other mam-

malian negative-strand RNA viruses, whereas the carnivore-associated clades’ CpG con-

tent is comparatively high, while remaining within the known range for single-strand RNA

viruses (Simmonds et al. 2013). Carnivores themselves don’t have a higher CpG content

than bats (Shaw et al. 2021), so this difference is likely not due to host mimicry. This

finding is also opposite to similar analysis conducted in coronaviruses, where coronaviruses

with bat hosts had a higher CpG content than coronaviruses in other mammals (Nchioua

et al. 2020). We also found that bat-related rabies clades had very few C(n7)G(n)CG

motifs compared to a negative control motif and to carnivore-related clades. While the

reason behind the observed difference in CpG content and ZAP-optimal motifs between

bat-associated rabies clades and carnivore-associated rabies clades is currently unknown,

one possible explanation is that carnivore-associated rabies is less exposed to ZAP and

therefore the selection pressure against CpG and the optimal binding motif is eased, lead-

ing to increased freedom to use codons or codon pairs that contain CpG dinucleotides

may confer some advantage in infecting carnivore hosts.

While there are differences in codon usage biases between host-specific rabies clades, and

RABV’s codon usage biases are attributed mostly to natural selection which is often asso-

ciated with translational efficiency, we believe it is unlikely that this is due to adaptation

to the host’s tRNA availability, and rather due to this easing of selective pressure against

CpG dinucleotides in carnivore-related clades and genetic drift. One reason for this is that

the Cosmopolitan AF1b and Asian SEA2a clades are the furthest clades apart along PC1

of our principal component analysis, despite both primarily infecting domestic dogs. The

RAC-SK south-central skunk clade is also still grouped within the bat clades, suggesting

that RABV’s codon usage strategy did not need to change to effectively infect the new

carnivore host.
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The results of the codon adaptation index analyses suggest that bat-associated RABV

codon usage is “better adapted” to both carnivore and bat hosts than carnivore-associated

RABV, but that RABV overall is not better adapted to bats or carnivores. While initially

it might seem interesting that rabies would become less well adapted over the bat to

carnivore host shift, codon adaptation index analyses are likely not very informative when

it comes to RNA viruses, as their codon usage is heavily influenced by immune evasion and

transcription efficiency (Mordstein et al. 2021). This topic was further discussed on the

Virological forum early in the COVID-19 pandemic, when studies were published claiming

SARS-CoV-2 originated from various host species based on high CAI values (Andersen et

al. 2020; Robertson et al. 2020). We included CAI analysis as a common and expected part

of a codon usage bias study, especially when investigating the possibility of a pathogen’s

adaptation to the host, but do not believe the associated results to be informative. It may

be that the higher CAI values observed in the bat rabies clades are simply reflective of

their lower CpG contents, as vertebrates also have low levels of CpG content due to the

deamination of methylated CpG sites (Sved and Bird 1990).

As this study only investigates the codon usage and CpG content of the RABV nucleopro-

tein gene, further analysis should be conducted to confirm whether the patterns observed

are present across the genome or vary between genes. Further study is also required to

elucidate what mechanisms have caused the easing of the selection pressure against CpG

during the bat to carnivore host shift, such as mechanistic differences between bat- and

carnivore- derived ZAP and its associated proteins or differences in the probability of the

exposure of the virus to ZAP. Other lyssaviruses should also be investigated to confirm

whether this pattern is consistent across the family.

We found that differences in codon usage between host-species-specific rabies clades were

unlikely to be due to adaptation to the host, but rather genetic drift over the scale of

decades to centuries of evolution. Combined with a lack of evidence for positive selection

over host shifts in previous studies, this suggests that host-specific transmission cycles may

be due to ecological circumstances of the host rather than adaptive evolution at the minor
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clade level. Differences in CpG content between bat- and carnivore-associated clades may

suggest underlying differences in host immune mechanisms between the host groups. This

may have implications for the efficacy of CpG-enriched live attenuated vaccines between

rabies clades should they be developed for the rabies virus, as they have been for Influenza

A (Sharp et al. 2023).
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Chapter 5

Discussion

Rabies sequence data are becoming increasingly available due to the growing accessibility

of sequencing technologies (Brunker et al. 2020; Bautista et al. 2023; Gigante et al. 2020)

and the sharing of sequences on platforms such as NCBI’s GenBank (Sayers et al. 2020)

and RABV-GLUE (Campbell et al. 2022). In this thesis I aimed to explore what this data

can tell us about rabies’ emergence and evolution, and how it can be used to aid in the

global goal of achieving zero human rabies deaths by 2030 (Minghui et al. 2018). In order

to achieve this, I developed a simulation framework that combines epidemiological and

mutational models to produce large datasets of synthetic rabies genomes linked to out-

breaks with known transmission dynamics. I then used these data to investigate whether

variable incubation periods could be behind the lack of sufficient temporal signal required

for phylodynamic analyses of rabies outbreaks to be conducted on some datasets, and

to develop a computationally inexpensive method of estimating outbreak sizes from viral

genetic data. I also used publicly available rabies sequence data to investigate whether the

host-species-specific rabies transmission cycles sometimes observed have been facilitated

by RABV’s codon usage becoming adapted to specific hosts.

79



5.1 Main findings

It is often not possible to carry out Bayesian phylogenetic analysis of rabies datasets using

software such as BEAST due to insufficient temporal signal; many phylogenetic studies

of rabies do not carry out these analyses as a result (Jaswant et al. 2024). In chapter 2 I

investigated whether this may be due to rabies’ variable incubation periods leading to the

molecular clock hypothesis being violated. I found that while variable incubation periods

can disrupt root-to-tip diversity over time for viruses with a high substitution rate, there

appears to be no observable effect on viruses with rabies’ substitution rate. While the

rabies virus is often described as fast evolving due to it being an RNA virus, in actuality

it has a relatively low substitution rate compared to other RNA viruses (Biek et al. 2015).

This can lead to many datasets being too temporally “shallow” for phylogenetic analysis

to be conducted successfully due to a lack of measurable evolution over the timescale

that RABV sequences are being collected; at rabies’ substitution rate, sufficient temporal

signal for phylodynamic analyses may only emerge over decades’ worth of genomic data

(Duchêne et al. 2015). The lack of this depth of data is likely the cause of the difficulties in

conducting phylogenetic analyses, rather than the variability of the infectious period. This

depth of data required to conduct phylogenetic analyses makes it difficult to accurately

determine the substitution rate and date of emergence of new outbreaks.

In chapter 2 I argued that thinking about substitutions on a per-generation scale to

mirror how we measure the generation interval for temporal data and the distance kernel

for spatial data may be more useful than measuring substitutions per unit time in certain

contexts. This way of thinking is more commonly used in studies of eukaryotes, but

became instrumental to my work in chapter 3. In this chapter I found that the relationship

between the mean branch length and the proportion of cases sequenced followed a formula

within which the per-generation substitution rate was a component. This formula can be

rearranged to estimate the proportion of cases sequenced and thus the total outbreak size,

if the assumption that the tree length follows an approximately square-root relationship
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with the proportion of cases sequenced is met. I applied this method to a phylogenetic

tree of rabies virus whole genomes from a recent outbreak in the Romblon province of

the Philippines. I found that while there was likely to have been extensive undetected

transmission in the province, the surveillance of this outbreak was much more successful

in identifying cases than is usual for rabies outbreaks, with an estimated 26% of potential

cases being identified compared to less than 10% in areas with endemic rabies circulation

(Townsend et al. 2013b).

Despite having the ability to infect any mammal species, most rabies clades appear to

primarily circulate in specific host species, even when other known rabies host species

are present in the area; for example, the Asian SEA2a and SEA2b clades circulate sym-

patrically in domestic dog and Chinese ferret badger populations, respectively (Liu et al.

2010). There has been mixed evidence to support genetic adaptation of these clades to

their preferred host, however, with positive selection events associated with host shifts

being rare (Marston et al. 2018; Mollentze et al. 2014). While differences in codon usage

biases between minor rabies virus clades were observed, it does not seem plausible that

codon usage “adapts” to different host species. Very similar codon usage was observed

between the Cosmopolitan AM2a, Bat LC and SCSK clades, which primarily infect mon-

gooses, hoary bats and skunks respectively, all of which belong to different taxonomic

families. Conversely, codon usage was very different between the Cosmopolitan AF1b

and Asian SEA2a clades, which both primarily infect domestic dogs in East Africa and

China respectively. It is therefore likely that these similarities and differences are due to

coincidental genetic drift rather than adaptation. CpG content varied between carnivore-

and bat-associated clades, with carnivore-associated clades having a higher CpG content

than normal for RNA viruses. The host-specific minor clades differed in the frequency

of zinc-finger antiviral protein (ZAP) optimal and suboptimal binding motifs, suggesting

that some clades are less affected by ZAP, and the increase in CpG content following the

bat-to-carnivore host shift may be due to a relaxing of selection pressure against CpG

dinucleotides from the host immune system.
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5.2 Implications

The findings of this thesis have led to some recommendations as to how we should handle

rabies virus genomic data to improve surveillance and outbreak responses. While variable

incubation period lengths did not appear to have an effect on temporal signal in RABV

sequence datasets, this could complicate phylogenetic analysis in viruses with a higher

substitution rate. I would recommend using resources such as Clockor2 (Featherstone et

al. 2023) to assess the need for local clock models in datasets where variable incubation

periods are paired with high substitution rates.

Due to the temporal depth of sequence data required to successfully conduct phylogenetic

analysis on rabies virus data, using a wider dataset than the outbreak being investigated

is commonly required for acquiring estimates of the time of emergence or the substitu-

tion rate. This is especially true in newly emerging outbreaks where analyses such as

transmission tree reconstruction and outbreak size estimation are most useful. The time-

dependent rate phenomenon, where substitution rate estimates from temporally deeper

datasets are estimated to have a lower substitution rate perhaps due to purifying selec-

tion or site saturation (Duchêne et al. 2014), however, may become an issue in this case,

where the substitution rate estimate of the wider dataset used may be different to the

true substitution rate of the investigated outbreak. It is currently unknown to what ex-

tent purifying selection over long sampling windows affects phylogenetic analysis of rabies

virus data, but this should be further investigated in the future and taken into account

where necessary.
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The equation presented in chapter 3 provides a simple, non-computationally expensive

way to estimate the proportion of cases in an outbreak that have been sequenced, and in

turn the total size of the outbreak. This enables outbreak size estimation to be built into

the genomic surveillance pipeline without the use of any software or specialist skills that

are not already routinely used during genomic surveillance efforts. This will be helpful in

evaluating the effectiveness of responses and interventions, and will aid in tracking the

decline in numbers of rabies cases as elimination is approached.

The finding that there were potentially 117 undetected rabies cases in Romblon is unfor-

tunately unsurprising given that no routine surveillance was in place during the 10 year

period where the province was declared rabies free; continued mass dog vaccination after

this point, however, could have prevented the sustained onward transmission after the

five potential introduction events. The surveillance of the Romblon outbreak had more

success in detecting rabies cases than responses in other areas; surveillance achieved an

estimated 26.3% detection rate (45 cases confirmed out of an estimated 163 total cases),

whereas a detection rate of below 10% is to be expected in many rabies-endemic areas

(Townsend et al. 2013b), with an estimated 12% of cases being detected across Tanzania

(Hampson et al. 2016). The detection rate in Romblon falls short of the estimated detec-

tion rate of 83 - 95% of cases within the Serengeti district (Mancy et al. 2022), but this

is likely due to the Serengeti district being the subject of an extensive, long-term contact

tracing research effort, and this level of detection is unlikely to be required for effective

rabies control.

Our finding that the differences in codon usage between host-species-specific rabies virus

clades are likely due to genetic drift suggests that codon usage does not require adaptation

in order to effectively infect new host species. Differences in CpG content and ZAP-optimal

binding motifs, however, suggest that the evolution of bat-associated rabies clades has

been affected by a host environment which is under a strong selection pressure by zinc-

finger antiviral proteins, whereas this selection pressure may not be acting as strongly on

carnivore-associated clades. This may be because carnivore-ZAP has a different mode of
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function to bat-ZAP, such as binding to a different optimal motif, or that carnivore rabies

has traded being more susceptible to ZAP for some unknown evolutionary advantage.

Unfortunately little is known about ZAP, especially in bats, and there have been no

studies investigating how ZAP is activated by or interacts with RABV. This potential

difference in ZAP action should be considered if a CpG-enriched live attenuated vaccine

is ever developed for rabies, as it has been for Influenza A (Sharp et al. 2023), or when

using a CpG oligodeoxynucleotide as a rabies vaccine adjuvant (Yu et al. 2018), as its

efficacy may vary between bats and carnivores.

5.3 Future work

The findings in this thesis have raised questions that could be addressed through further

study. It is currently unknown to what extent purifying selection and site saturation over

long sampling windows affects phylogenetic analysis of rabies data, so the effect of the

time-dependency of substitution rates over datasets of different temporal depths on rabies

genomic analyses should be quantified and minimised. Studies of other organisms have

compared rates of synonymous and non-synonymous mutations (Soares et al. 2009) to

try and quantify and correct for this problem, but as I found in chapter 4 synonymous

substitutions can also be deleterious if they result in the formation of a CpG dinucleotide

and may also be subject to purifying selection in some RABV clades. Another method

of quantifying this effect is comparing the substitution rates of terminal and internal

branches (Ghafari et al. 2022). As the relationship between the width of the sampling

window and the observed substitution rate has been observed to follow a predictable

relationship and can therefore be corrected for using a power law rate decay model over

very long time scales (Aiewsakun and Katzourakis 2015, 2016; Ghafari et al. 2021), it

might be possible to correct for this effect over shorter, more rabies-relevant time scales

in a similar way.
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The exact relationship between the R0, tree length and proportion of cases sequenced

in an outbreak is still unknown at the time of writing. While assuming a square root

relationship between tree length and the proportion of cases sequenced works well for

outbreaks with rabies’ usual R0 range of between 1 and 2 (Li et al. 2024), the poor fit of

the square root curve for outbreaks with values above this limit the method’s applicability

to pathogens with high R0s such as measles or chicken pox (estimated R0s of 12-18 and

8-9 respectively; Anderson and May 1982). Determining the true relationship will make

this method applicable to a wider range of pathogens and is a priority for future research.

The relationship between the tree length and proportion of cases sequenced may not be

dependent on R0 itself, but some related measure such as the proportion of cases with no

descendants, as the removal of these tips from the tree is the main contributor to tree

length reduction.

CpG dinucleotides and ZAP-optimal motifs vary in frequency across minor rabies clades,

but it is unknown whether this is a response to differences in the form and function of ZAP

itself between the host species, or a trade-off with an advantageous change that makes

some clades more susceptible to ZAP. Further analysis to determine this could involve

a laboratory study comparing the optimal binding motifs of ZAP in dogs (or another

carnivore rabies host) and bats, or experimentally infecting bats and dogs and comparing

how ZAP and its associated proteins are expressed over the course of the infection. This

may help uncover details of how bat’s immune systems differ from other mammals, which

is still largely unknown.
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5.4 Conclusion

Here I have shown that genomic data can be a powerful tool in aiding in rabies elimination,

and that it has wider uses outwith advanced phylodynamic analyses as outlined in the

introduction. Genomic data can be used to monitor efforts to eliminate canine rabies, and

can tell us more about how rabies may behave differently in other host species when the

focus of elimination efforts shifts from domestic dogs to wildlife reservoirs. Nahata et al.

(2021) recommend that phylogeographic analyses of rabies sequence data become more

widely used to investigate the geographic origins and spread of rabies outbreaks. These

analyses, like the ones carried out in this thesis, will only help in the fight to eliminate

rabies if they lead to the implementation of control measures in real time, or inform

how we respond to future outbreaks. Without this, the money used on sequencing and

analysing samples may be better spent on dog vaccination or improving PEP accessibility.
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Appendices

A Chapter 4 Supplementary Tables

Clade Accession numbers

Asian SEA2a

DQ666289, DQ666290, DQ866105, DQ866106, DQ866108, DQ866109,

DQ866110, DQ866112, DQ866116, DQ866119, EU086182, EU086183,

EU159386, EU828653, FJ561726, FJ561727, FJ561728, FJ866829,

FJ866830, FJ866831, GQ472468, GQ472470, GQ472473, GQ472477,

GU358653, HM486355, HM486356, HM486357, HM486358, HM486359,

HM486361, HM486362, HM486364, HM486365, HM486366, HM486367,

HM486368, HM486369, HM486370, HM486371, HM486372, HM486373,

HM486374, HM486375, HM486379, HM486380, HM486381, JF819605,

JF819615, JF819622, JN974823, JN974824, JN974828, JN974829,

JN974838, JN974842, JN974845, JN974854, JN974870, JN974871,

JN974872, JN974873, JQ970480, KT221107, KT894558, KT894572,

KT894573, KT894577, KT894578, KX148264, KY451767, MG201879,

MG201880, MG201884, MG201919, MG201921

Asian SEA2b

FJ598135, FJ712195, FJ712196, GU647092, KF726852, KP319184,

KP319185, KP319186, KP319187, KP319188, KP319189, KP319190,

KP319191, KP319192, KP319193, KP319194, KP319195, KP319196,

KP319197, KP319198, KP319199, KP319200, KP319201, KP319202,

KP319203, KP319204, KP319205, KP319206, KP319207, KP319208,

KP319209, KP319210, KP319211, KP319212, KP319213
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Cosmopolitan AF1b

AB284509, AB284510, AB284511, AB284512, AB284513, AB284514,

AB285215, EU853582, EU853584, EU853585, EU853586, EU853587,

EU853588, EU853589, EU853590, HM179504, HM179505, HM179506,

KF155002, KR534217, KR534218, KR534219, KR534220, KR534228,

KR534229, KR534230, KR534231, KR534233, KR534238, KR534244,

KR534247, KR534249, KR534250, KR534251, KR534252, KR534253,

KR906734, KR906735, KR906736, KR906739, KR906741, KR906742,

KR906743, KR906744, KR906745, KR906746, KR906747, KR906748,

KR906749, KR906750, KR906751, KR906752, KR906754, KR906755,

KR906756, KR906757, KR906759, KR906760, KR906762, KR906763,

KR906765, KR906766, KR906767, KR906768, KR906770, KR906771,

KR906772, KR906773, KR906774, KR906776, KR906780, KR906782,

KR906784, KR906789, KR906790, KR906792, KT336432, KT336433,

KT336434, KT336435, KT336436, KT336437, KX148203, KX148204,

KX148205, KX148206, KX148208, KY210222, KY210223, KY210224,

KY210226, KY210227, KY210229, KY210231, KY210232, KY210234,

KY210235, KY210238, KY210239, KY210243, KY210244, KY210245,

KY210247, KY210248, KY210249, KY210250, KY210251, KY210252,

KY210253, KY210254, KY210255, KY210256, KY210257, KY210258,

KY210260, KY210263, KY210264, KY210265, KY210266, KY210267,

KY210269, KY210270, KY210271, KY210272, KY210273, KY210278,

KY210279, KY210280, KY210281, KY210282, KY210286, KY210287,

KY210288, KY210289, KY210290, KY210292, KY210293, KY210294,

KY210295, KY210296, KY210299, KY210300, KY210303, KY210304,

KY210307, KY210311, KY563717, LC029890, MN726804, MN726826,

MN726827, MT454631, MT454634, MT454635, MT454636, MT454637,

MT454639, MT454641, MT454643, MT454644, MT454645

Cosmopolitan AM2a AY854505, AY854525, AY854531, AY854544, AY854546, AY854558,

AY854567, AY854573, AY854576

RAC-SK SCSC AF483524, EU345002, EU345003, EU345004, JQ513553, JQ685938,

JQ685968, MW055084, MW055085, MW055086, MW055087
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Bat DR

AB519642, AF070449, AF351847, AF351852, AY854587, AY854592,

AY854594, AY877433, AY877434, AY877435, GU592648, KF656696,

KF656697, KF864234, KF864322, KF864397, KM594040, KM594041,

KM594042, KP202393, KT023101, KU523255, MN968374, MN968375,

MN968376, MN968377, MN968378, MN968379, MN968380, MN968381,

MN968382, MN968383, MN968384, MN968385, MN968386, MN968387,

MT891038, MW249020, MW249021

Bat EF-E2

AF351828, AF351831, AF351832, AF351833, AF351855, AF351861,

AF351862, AY039227, AY039228, AY039229, GU644652, GU644654,

GU644655, GU644656, GU644657, GU644658, GU644659, GU644660,

GU644661, GU644662, GU644663, GU644664, GU644665, GU644666,

GU644667, GU644668, GU644669, GU644670, GU644671, GU644676,

GU644677, GU644684, GU644689, GU644690, GU644695, JQ685925

Bat LC
AF351845, AF351846, AF351858, AF394883, AF394884, GU644712,

GU644713, GU644714, GU644715, GU644716, GU644717, GU644718,

GU644719, GU644720, GU644721, JQ685947

Bat TB1

AF351849, AF394876, GU644760, GU644761, GU644762, GU644763,

GU644764, GU644765, GU644766, GU644767, GU644768, GU644769,

GU644770, GU644771, GU644772, GU644773, GU644774, GU644775,

GU644776, GU644777, GU644778, GU644779, GU644780, GU644781,

GU644782, GU644783, GU644784, GU644785, GU644786, GU644787,

GU644788, JQ685905

Table 6: Accession numbers for the sequences used in our analysis by host species.
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Amino

acid
Codon Asian

SEA2b

Cosmo

AF1b

Asian

SEA2a

Arctic

A

Cosmo

AM2a

RAC-SK

SCSC

Bat

LC

Bat

EF-E2

Bat

TB1

Bat

DR

Phe TTT 0.885 0.636 0.819 0.772 0.642 1.01 0.972 1.07 1.12 0.867

TTC 1.12 1.36 1.18 1.23 1.36 0.990 1.03 0.932 0.877 1.13

Leu TTA 1.02 0.525 1.12 0.486 0.723 0.615 0.903 1.04 0.965 1.08

TTG 1.24 1.26 1.07 1.66 1.50 1.77 2.11 1.80 1.63 1.54

CTT 0.886 0.352 0.968 0.571 0.332 0.938 0.859 0.607 0.868 0.682

CTC 0.719 0.540 0.513 0.528 0.704 0.693 0.528 0.709 0.519 0.678

CTA 1.06 1.72 1.00 0.929 1.29 0.724 0.704 0.522 1.43 0.594

CTG 1.07 1.60 1.33 1.83 1.45 1.26 0.891 1.40 1.43 1.42

Ile ATT 1.15 1.01 1.12 1.06 1.07 0.948 1.03 0.853 1.04 1.09

ATC 0.740 0.889 0.837 0.935 0.915 0.842 0.858 1.03 1.04 0.871

ATA 1.11 1.10 1.04 1.00 1.02 1.21 1.11 1.11 0.921 1.04

Val GTT 1.17 1.01 0.983 1.07 0.989 0.983 1.28 1.07 1.22 1.16

GTC 1.34 1.43 1.39 1.17 1.46 1.09 1.00 0.737 0.932 0.987

GTA 0.669 0.574 0.958 0.862 0.548 0.637 0.711 0.752 0.634 0.732

GTG 0.812 0.984 0.667 0.899 1.01 1.29 1.00 1.44 1.21 1.12

Ser TCT 1.19 1.27 1.61 1.24 1.18 1.33 1.41 1.70 1.73 1.52

TCC 1.25 0.809 0.922 0.827 0.895 1.47 0.640 0.701 0.783 0.863
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TCA 1.61 1.83 1.28 1.72 1.89 1.22 1.74 1.82 1.58 1.53

TCG 0.487 0.763 0.599 0.656 0.667 0.646 0.305 0.388 0.320 0.418

AGT 0.980 0.982 1.04 0.826 1.05 0.677 1.27 0.894 0.955 0.972

AGC 0.483 0.348 0.554 0.727 0.324 0.662 0.640 0.497 0.631 0.701

Pro CCT 1.24 1.57 1.04 1.63 1.42 1.02 1.63 1.62 1.77 1.94

CCC 1.00 0.916 1.21 1.22 1.08 0.905 0.735 0.720 0.984 0.541

CCA 1.02 0.909 0.901 1.16 1.47 0.971 0.941 0.537 0.492 0.521

CCG 0.736 0.601 0.850 0 0.0278 1.11 0.691 1.13 0.758 0.995

Thr ACT 1.37 1.15 1.49 1.49 1.35 1.33 0.978 0.936 1.42 1.31

ACC 0.971 1.25 0.907 0.756 0.837 1.00 1.37 1.36 0.777 0.816

ACA 1.22 1.45 0.987 0.678 1.49 1.45 1.51 1.41 1.55 1.63

ACG 0.438 0.160 0.615 1.08 0.320 0.210 0.139 0.268 0.258 0.251

Ala GCT 1.28 0.968 1.44 1.36 1.06 1.45 0.852 1.13 1.48 1.35

GCC 1.08 1.09 0.833 0.851 0.990 0.730 0.982 0.986 0.883 0.846

GCA 1.50 1.72 1.49 1.66 1.69 1.74 1.80 1.84 1.15 1.42

GCG 0.143 0.216 0.239 0.132 0.257 0.0839 0.363 0.0443 0.480 0.392

Tyr TAT 1.07 1.25 1.16 1.48 1.28 1.25 0.851 1.41 1.33 1.20

TAC 0.930 0.748 0.836 0.516 0.720 0.748 1.15 0.592 0.670 0.796

His CAT 0.519 1.22 0.810 0.923 1.27 1.08 1.23 1.23 1.30 1.28
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CAC 1.48 0.780 1.19 1.08 0.735 0.918 0.769 0.771 0.700 0.722

Gln CAA 1.19 1.04 1.53 1.20 1.00 0.728 1.01 1.06 1.12 0.810

CAG 0.806 0.963 0.469 0.800 1.00 1.27 0.988 0.941 0.879 1.19

Asn AAT 0.955 1.08 0.953 1.14 0.883 1.09 0.918 1.33 1.24 1.27

AAC 1.05 0.924 1.05 0.826 1.12 0.914 1.08 0.671 0.764 0.726

Lys AAA 1.06 0.914 0.793 0.479 0.885 0.703 0.589 0.678 0.960 0.955

AAG 0.943 1.09 1.21 1.52 1.11 1.30 1.41 1.32 1.04 1.05

Asp GAT 1.02 0.997 0.772 1.04 0.992 0.982 0.867 0.900 0.956 0.956

GAC 0.977 1.00 1.23 0.964 1.01 1.02 1.13 1.10 1.04 1.04

Glu GAA 0.932 0.880 0.842 0.683 0.805 1.20 0.833 0.768 0.920 0.841

GAG 1.07 1.12 1.16 1.32 1.20 0.805 1.17 1.23 1.08 1.16

Cys TGT 1.02 1.97 0.610 1.36 1.43 1.13 1.06 1.01 1.33 1.02

TGC 0.981 0.0284 1.39 0.639 0.571 0.866 0.938 0.985 0.667 0.978

Arg CGT 0.781 0.804 0.781 0.786 0.746 0.495 0.480 0.531 0.504 0.360

CGC 0 0.0153 0 0 0.0303 0.522 0.240 0.225 0.252 0.403

CGA 0.781 0.368 0.777 0.262 1.06 0.378 0.480 0.0290 0 0.276

CGG 0.260 0.443 0.265 0.786 0.317 0.520 0.495 0.792 0.512 0.399

AGA 2.32 3.11 2.76 3.27 2.84 2.48 2.42 3.62 2.76 2.79

AGG 1.86 1.26 1.42 0.893 1.00 1.61 1.89 0.807 1.98 1.77
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Gly GGT 1.07 0.756 0.886 0.763 0.838 0.894 0.699 0.940 0.556 0.432

GGC 0.401 0.716 0.548 0.452 0.603 0.773 0.949 0.529 0.556 0.934

GGA 1.15 1.04 1.27 1.02 1.38 1.20 0.975 1.20 1.66 1.62

GGG 1.38 1.49 1.30 1.76 1.18 1.13 1.38 1.33 0.966 1.01

Table 7: Mean RSCU values across different clades. Bold indicates the most preferred codon for each amino acid and rabies clade.
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