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Abstract 

Introduction 

This thesis aims to address critical gaps in our understanding of the interplay between 

COVID-19 infection, Renin-Angiotensin-Aldosterone System (RAAS) dysregulation, and 

hypertension. The first objective investigates whether COVID-19 infection increases the 

risk of developing hypertension post-recovery by conducting a prospective follow-up of 

non-hypertensive individuals over a 12-month period, assessing blood pressure and 

endothelial function. The second objective explores the role of RAAS dysregulation in 

post-COVID-19 hypertension by analysing RAAS pathway components and blood 

pressure changes in the same cohort. The third objective seeks to determine if whether 

individuals post COVID-19 have any differences in QoL utilising EQ-5D-3L instrument 

(EQ-5D-3L Index and Visual Analog Scale (VAS) scores). The fourth objective examines 

the association of ACE inhibitors and different antihypertensive drug classes and statins 

on the risk of SARS-CoV-2 infection using longitudinal studies and machine learning 

techniques to analyse linked electronic health records, adjusting for confounding 

variables.  

Methods 

To assess whether COVID-19 increases the risk of hypertension post-recovery, we 

conducted a 12-month follow-up of non-hypertensive individuals. Blood pressure and 

endothelial function were monitored using ambulatory blood pressure monitoring and 

brachial flow-mediated dilation. Quality of life (QoL) was measured with the EQ-5D-3L 

questionnaire. RAAS components and blood pressure changes were analysed to 

investigate RAAS dysregulation. Advanced machine learning techniques were applied to 

estimate individual treatment effects (ITE) for the four major classes of antihypertensive 

drugs in comparison to statins across two distinct time frames of the COVID-19 pandemic. 

Results 

There was a significant rise in blood pressure among recovered COVID-19 patients, with 

systolic pressure increasing by 4.57 mmHg and diastolic by 4.46 mmHg over 12 months 

compared to controls. A 3.15% reduction in flow-mediated dilation (FMD) suggested 

endothelial dysfunction. No significant difference in RAAS fingerprinting was observed. 

While recovered COVID-19 participants reported lower QoL, this was not statistically 

significant at 12 months follow-up. Our machine learning model found ACE inhibitors and 

statins were associated with increased SARS-CoV-2 infection risk, while thiazides showed 
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mixed effects, and beta blockers and calcium channel blockers were associated with 

decreased risk. 

 

Discussion 

The increase in blood pressure seen 12 months after recovery from COVID-19 suggest 

the need for prioritising cardiovascular monitoring in post-COVID-19 era. Although RAAS 

fingerprinting showed no significant difference, the blood pressure rise and reduced FMD 

suggest RAAS dysregulation may contribute to post-infection hypertension. Machine 

learning-based ITE estimation could potentially revolutionise studies of drug efficacy and 

adverse reactions, especially when randomised controlled trials are impractical. 

Conclusion 

This thesis advances our understanding of COVID-19's cardiovascular consequences and 

provides insights for future mechanistic studies and clinical and public health policies. The 

observed blood pressure rise, and potential endothelial dysfunction post-recovery indicate 

the need for vigilant cardiovascular monitoring. The use of machine learning to estimate 

individual effects of antihypertensive drugs on COVID-19 risk underscores the importance 

of personalised treatment. Further research should elucidate long-term cardiovascular 

impacts and develop targeted interventions. 
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Chapter 1 Introduction 

As we navigate through the aftermath of the coronavirus disease 2019 (COVID-19) 

pandemic, the significant human cost of this viral illness becomes increasingly apparent. 

However, the history of humankind is marked by pandemics that have repeatedly ravaged 

societies, influenced the outcomes of wars, annihilated entire populations, and yet, 

paradoxically, paved the path for groundbreaking advancements in various fields, 

including medicine, public health, the economy, and political systems. In my early years of 

my PhD, I submitted a prize-winning Stanley Peart Essay which summarised the nearly 2 

millennia years of hypertension and 2 years of COVID-19 experiences which evoked 

hidden parallels between these two conditions. (Figure 1) (1) 

Figure 1 COVID-19 pandemic and Hypertension  

 

“It is a far, far better thing that I do, than I have ever done; it is a far, far better rest I go to than I 

have ever known.” Dr. Stefanie Lip draws inspiration from the sacrifices and scientific advances 

during the COVID-19 pandemic to envision how hypertension research can be transformed. 

Illustration by Dr. Kushal K Choudhuri (The copyright belongs to the author – Stefanie Lip). 

 

This thesis describes a set of studies investigating the long-term cardiovascular 

consequences of COVID-19, RAAS dysregulation with a specific emphasis on 
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hypertension as a complication following infection. It investigates if COVID-19 increases 

hypertension risk post-infection by studying recovered non-hypertensive patients over a 

year, explores Renin-Angiotensin-Aldosterone System (RAAS) dysregulation's role in 

mediating post-COVID-19 hypertension risk, and examines how different antihypertensive 

drug classes affect COVID-19 risk and severity. 

In this introduction, I start with a historical review of pandemics and their profound health, 

social, economic, and political ramifications followed by describing the COVID-19 

pandemic and focusing on its cardiovascular consequences and specifically its 

relationship with hypertension. By examining the potential long-term health effects on 

hypertension—a widely prevalent cardiovascular risk factor—we can derive insights into 

public health prevention strategies. These strategies are pertinent for reducing the burden 

of future cardiometabolic risks.  

1.1 Definitions 

The distinctions among the terms "pandemic," "epidemic," "endemic," and "outbreak" are 

important for understanding the scope and impact of diseases.(2, 3) These terms, each 

with their specific definitions, help public health officials, researchers, and the general 

public grasp the extent of health challenges posed by various diseases and conditions.(3) 

Outbreak: This marks the beginning of an epidemiological concern and is characterised 

by an unexpected increase in the number of cases of a disease or the emergence of 

cases in a new geographical area.(4) It serves as an early warning for potential epidemic 

or pandemic situations, depending on the disease's subsequent spread and control 

measures implemented. 

Epidemic: Defined by the Centres for Disease Control and Prevention (CDC) as a 

sudden increase in the number of disease cases within a specific geographical area, an 

epidemic exceeds the normal expectancy of disease occurrence.(5) Not confined to 

contagious diseases alone, epidemics can also include non-infectious diseases or health-

related behaviours, such as obesity rates, that surge beyond typical levels in a community 

or region.(4) Diseases like yellow fever, smallpox, measles, and polio are historic 

examples of epidemics. 

Endemic: When a disease consistently exists within a particular region or population but 

remains relatively stable in its spread and impact, it is considered endemic.(4) These 

diseases are predictable and manageable to a certain extent due to their localised nature. 

Malaria in certain tropical regions is a prime example of an endemic disease.(4) 
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Pandemic: A pandemic occurs when a disease's growth becomes exponential across 

several countries and continents, surpassing the epidemic stage.(4) The World Health 

Organisation (WHO) declaration of a pandemic focuses on the geographic spread and 

exponential growth rate of cases, rather than the disease's severity or the population's 

immunity levels.(6) Pandemics lead to significant social, economic, and public health 

disruptions due to their wide-reaching effects.(7) 

1.2 Cause of outbreaks of infectious diseases: 

The emergence and outbreak of infectious diseases are influenced by a myriad of factors 

involving interactions between humans, animals, and the environment.(8) These factors 

create a complex web that can facilitate the spread of diseases under certain conditions. 

Key contributors to the outbreak of infectious diseases include: 

Weather Conditions: The prevalence of certain infectious diseases is closely linked to 

specific weather patterns.(9) For instance, whooping cough shows increased incidence in 

the spring, while measles outbreaks are more common during the winter months.(10, 11) 

This pattern can be attributed to the direct effects of weather on the survival and 

transmission of pathogens, as well as indirect effects on human behaviour and immunity. 

Exposure to Chemicals or Radioactive Materials: Diseases can also result from 

exposure to toxic substances.(12) A notable example is Minamata disease, caused by 

consuming seafood contaminated with mercury.(13) Such environmental exposures 

highlight the intersection between industrial activity, environmental health, and infectious 

diseases. 

Social Aftermath of Disasters: Natural disasters such as storms, earthquakes, and 

droughts can disrupt societies, leading to conditions that favour the spread of infectious 

diseases.(14) The displacement of populations, overcrowding in shelters, and the 

breakdown of sanitation and healthcare systems create fertile grounds for disease 

transmission.(15) 

Environmental Factors: The quality of water supply, food, air, and sanitation facilities 

plays a crucial role in the spread of infectious diseases.(16) Poor sanitation and 

contaminated water sources are well-known catalysts for outbreaks of diseases such as 

cholera and typhoid fever.(17) Similarly, air quality and food safety are vital in preventing 

respiratory and foodborne illnesses, respectively.(18, 19) 
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Disease Origins of Unknown Causes: Some infectious diseases emerge without a clear 

understanding of their cause.(16) These may result from new or modified pathogens, 

natural toxins, undetected chemical releases, or unknown exposure to ionising radiation. 

For example, the Nodding disease identified in Southern Sudan, where it is a progressive 

neurological disease with seizures and causes growth retardation where the aetiology 

remains a mystery.(20) The emergence of such diseases poses significant challenges to 

public health systems, requiring vigilant surveillance, research, and response strategies to 

identify and mitigate their spread.(21) 

Understanding the multifactorial nature of infectious disease outbreaks is important for 

developing effective prevention and control measures.(22) It necessitates a 

multidisciplinary approach involving epidemiology, environmental science, public health 

policy, and community engagement to address the diverse factors contributing to disease 

spread.(22) 

1.3 Historical Overview of Pandemics and their impacts 

Throughout history, humanity has been periodically ravaged by pandemics, each leaving 

its indelible mark on society, economy, and long-term health consequences.(23) Unlike 

natural disasters such as tsunamis, earthquakes, and floods, which are typically localised 

and have immediate impacts, pandemics have the unique ability to cross borders, 

affecting global populations and systems over extended periods. The WHO categorises 

pandemics as disasters that not only cause immediate health crises but also disrupt 

societies by causing extensive material, economic, and environmental losses, often 

surpassing local capacities to respond effectively.(24) 

A key aspect that distinguishes pandemics from other disasters is their dual impact: direct 

effects stemming from the infectious agent itself and indirect consequences on the social, 

economic, and environmental fabric of society demonstrated by the West African Ebola, 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 virus) or Middle East 

respiratory syndrome (MERS) pandemic.(25) Moreover, critical periods of exposure, such 

as during childhood, can have profound implications for later-life disease risk, suggesting 

that pandemics can initiate a cascade of risk or accumulate risks across an individual's 

life-course.(25) 

I shall now provide a brief overview of the major pandemics that have affected humanity 

over history, causative agents and their estimated death tolls on humanity (Table 1 
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adapted from Piret and Boivin et al) (26, 27)and describe their relevant long-term 

consequences. 

The Antonine Plague 

The Antonine Plague weakened the Roman Empire significantly, undermining its military 

and economic strength and paving the way for new religious movements, including the 

spread of Christianity.(28) 

The Justinian Plague 

The Justinian Plague is often considered the first recorded pandemic. It led to a drastic 

population decline in the Byzantine Empire, eroding its physical, economic, and cultural 

foundations, which facilitated the rapid expansion of Islam.(28) 

The Black Death 

The Black Death caused a global population to decrease (from 450 million to below 350 

million).(29) It struck Europe in the mid-14th century, claiming up to 60% of the European 

population.(29) The cultural impact of this pandemic was profound, influencing art, 

religion, and societal structures and leading to significant economic and social changes. 

(30) The emergence of Danse Macabre, or the Dance of Death, in visual arts and 

religious scripts, reflects the societal preoccupation with mortality and the transient nature 

of life during this period.(30) 

Quarantine 

The concept of quarantine, a critical public health measure still in use today, traces its 

origins back to this era. In 1377, the chief physician of Ragusa, the city-state now known 

as Dubrovnik, established a facility outside the city limits to isolate patients based on the 

theory of contagion.(31) Initially, affected individuals were isolated for 30 days (trentine), a 

period that was later extended to 40 days (quarantine), giving birth to the term we use 

today.(31) This measure proved to be one of the few effective strategies for controlling the 

spread of the plague, and the practice of quarantine quickly spread throughout Europe. 

(31) 
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Table 1  Brief overview of major pandemics that have affected humanity over 

history  

This table presents an overview of the pandemics, including their time periods, associated 

pathogens, transmission vectors, and estimated death tolls. 

Period Pandemics Pathogens Vectors 
Estimated 
Death Toll 

430 BC 
Plague of 

Athens 
?Typhoid  

750K – 
110K 

165-180 AD 
The Antonine 

Plague 
Unknown 

Believed to be 
either small pox or 

measles 
5 million 

541-543 
Plague of 
Justinian 

Yersinia Pestis 
Fleas (Wild 
Rodents) 

30 – 50 
million 

1347-1351 Black Death Yersinia Pestis 
Fleas (Wild 
Rodents) 

200 million 

1817-1824 
First Cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

1 million 

1827-1835 
Second cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

1839-1856 
Third Cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

1863 – 1875 
Fourth Cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

1881 – 1886 
Fifth cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

1885-ongoing Third Plague Yersinia Pestis 
Fleas (Wild 
Rodents) 

12 million 

1889 – 1893 Russian Flu 
Influenza 
A/H3N8? 

?Avian 1 million 

1899 – 1923 
Sixth cholera 

pandemic 
Vibrio cholerae 

Contaminated 
Water 

800K 

1918 – 1919 Spanish Flu 
Influenza 
A/H1N1 

Avian 
40 – 50 
million 

1957-1959 Asian Flu 
Influenza 
A/H1N2 

Avian 1.1 million 

1961-ongoing 
Seventh 
Cholera 

Pandemic 
Vibrio cholerae 

Contaminated 
Water 

570K 

1968-1970 Hong Kong Flu 
Influenza 
A/H3/N2 

Avian 1 million 

21st Century 

2002-2003 

Severe acute 
respiratory 
syndrome 

(SARS-CoV 
virus) 

SARS-CoV Bats, palm civets 770K 

2009-2010 Swine Flu 
Influenza 
A/H1N1 

Pigs 200K 
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2013-2016 
Ebola 

Pandemic 
Ebola viruses Bats 11.3K 

2015 - 
ongoing 

Zika Virus 
Epidemic 

Zika virus 

Aedes 
mosquitoes (A. 
aegypti and A 

albopictus) 

 

2015 – 
ongoing 

Middle East 
respiratory 
syndrome 
(MERS) 

MERS-CoV 
Bats, dromedary 

camels 
850K 

2019-ongoing COVID-19 SARS-CoV-2 Bats, pangolins 
18.2 to 

33.5 million 

 

The Spanish Flu 

The Spanish Flu of 1918-1919 stands as one of the most devastating pandemics in 

human history, with a mortality rate estimated between 10% and 20%.(32) Given that over 

a quarter of the world's population contracted the flu at some point, the death toll reached 

an astonishing figure, possibly up to 100 million people, surpassing the fatalities caused 

by the Black Death across a century.(32) Unlike typical flu outbreaks that severely impact 

the very young, the elderly, or those with preexisting health conditions, the Spanish Flu 

notably targeted young, healthy adults, a phenomenon attributed to the triggering of a 

cytokine storm, an overreaction of the body's immune system.(32) 

The pandemic's impact extended beyond the immediate health crisis, influencing global 

events and societal structures, including potentially affecting the outcome of World War I. 

(33) It marked the first instance where the prolonged consequences of a pandemic on 

subsequent generations could be quantitatively assessed. (33)Studies leveraging United 

States census data from 1960 to 1980 revealed that individuals born to mothers who were 

pregnant during the pandemic faced more health issues, earned lower incomes, and 

achieved lower educational and socioeconomic statuses compared to those born just 

before or after the pandemic.(34) A 2006 study published in the Journal of Political 

Economy highlighted the significant long-term impacts on the cohorts exposed in utero, 

including reduced educational attainment, increased physical disabilities, and a reliance 

on social welfare programs.(35) 

Despite its severe impact, the Spanish Flu receded as swiftly as it had emerged, 

concluding its devastating run within a mere nine months. Its rapid disappearance from 

public and scientific discourse led to its characterisation as the "forgotten pandemic" by 

some historians, like Alfred W. Crosby, emphasising the transient collective memory of 
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such global health crises.(36) This historical episode underscores the importance of 

remembering and learning from past pandemics to better prepare for future outbreaks, 

acknowledging the profound and lasting effects they can have on society.(36) 

HIV/AIDS pandemic 

The Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) 

pandemic represents a unique and prolonged crisis in global health, distinguishing itself 

by its slow progression and broad reach across continents and populations, each phase 

introducing new challenges.(37) Unlike the swift onslaught seen in historical pandemics, 

HIV/AIDS has unfolded over decades, allowing for an extensive and focused public health 

response from both national governments and international bodies.(38) This sustained 

attention has facilitated significant advancements in treatment and understanding of the 

disease, including its psychological impacts, making HIV/AIDS one of the few infectious 

diseases that have been closely examined through the lens of mental health.(39) 

HIV/AIDS and chronic mental health 

The intersection of HIV/AIDS with mental health reveals profound insights into the broader 

challenges posed by infectious diseases.(39) Notably, the lifetime prevalence of 

depression among individuals living with HIV is approximately 22%, more than double that 

of the general population.(39) This elevated risk underscores the complex interplay 

between physical health and mental well-being, where depression is not only a comorbid 

condition but also a factor that can influence the effectiveness of treatment for HIV/AIDS 

through its association with substance abuse and adherence to antiretroviral therapy.(40) 

The stigma, guilt, and shame associated with HIV/AIDS further compound the challenges 

faced by those living with the disease.(41) These psychosocial factors can deter 

individuals from seeking diagnosis and treatment, exacerbating the public health 

challenge of controlling the pandemic.(41)  Recognising these issues, there has been a 

concerted effort to address the mental health needs of HIV-positive individuals, with a 

wealth of research focusing on the medical treatment of depression and the development 

of psychotherapeutic interventions tailored to this population.(41) 

The comprehensive approach to HIV/AIDS, encompassing both the medical and 

psychological aspects of the disease, exemplifies a holistic model of infectious disease 

management.(42) It highlights the necessity of integrating mental health care into the 

response to pandemics, acknowledging the intricate connection between psychological 

well-being and the success of public health interventions.(43) Through the study of 

HIV/AIDS and its impact on mental health, valuable lessons can be learned about 
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addressing the multifaceted challenges posed by infectious diseases, emphasising the 

importance of comprehensive care strategies that include mental health support for 

affected individuals.(43) 

Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV) 

The outbreak of Severe Acute Respiratory Syndrome (SARS) in the early 21st century 

highlighted the mental health impacts of infectious diseases on patients, families, and 

healthcare workers, underscoring the need to integrate mental health considerations into 

public health responses.(44) As the first major outbreak of the century to draw global 

attention, SARS illuminated the psychological burdens of isolation, such as loneliness, 

anxiety, and distress, and revealed that survivors often faced long-term effects, including 

post-traumatic stress disorder, depression, and anxiety. Studies across various cultures 

deepened understanding of these impacts, stressing the importance of mental health 

support alongside physical health interventions.(45, 46)  

Healthcare providers working on the frontlines during the SARS outbreak also faced 

significant mental health challenges.(45) The high-stress environment, coupled with the 

fear of contracting the virus and spreading it to loved ones, led to increased reports of 

burnout, anxiety, and depression among medical staff.(45) These findings underscored 

the need for mental health support systems and interventions tailored to healthcare 

workers exposed to high-risk environments during infectious disease outbreaks.(45) 

In addition to the mental health aspects, respiratory sequelae emerged as a common 

physical aftermath of SARS, as well as other respiratory viruses such as influenza and 

MERS-CoV.  A systematic review reported respiratory sequelae as a prevalent finding, 

with 80% of the literature on influenza, 67% on Severe acute respiratory syndrome 

coronavirus 1 (SARS-CoV-1), and 50% on MERS-CoV highlighting this issue.(46) This 

indicates the lasting impact of respiratory viruses on physical health, further complicating 

the recovery process for affected individuals and necessitating comprehensive care that 

addresses both physical and mental health needs. 

The SARS outbreak served as a critical learning opportunity, demonstrating the 

importance of integrating mental health considerations into public health responses to 

infectious diseases. It highlighted the need for preparedness plans that include mental 

health support for patients, survivors, and healthcare providers, ensuring a holistic 

approach to managing health crises. 

 



25 

 

 

 

2009 H1N1 Pandemic 

The 2009 H1N1 pandemic, often reminiscent of the 1918 Spanish Flu in its causative 

agent, presented a stark contrast in its outcomes, infecting over 10% of the global 

population but resulting in a considerably lower mortality rate, with estimates ranging from 

20,000 to over 500,000 deaths.(47) Unlike the catastrophic impact of its predecessor, the 

2009 pandemic's mortality rate was lower than that typically observed for seasonal 

influenza. However, the threat perception was heightened due to its unusual impact on 

healthy young adults, leading to severe respiratory issues more rapidly than expected. 

(48) This phenomenon, partly attributed to a cytokine storm similar to that of the 1918 

pandemic, was also thought to be mitigated in older adults who might have had residual 

immunity from a similar H1N1 strain in the 1970s.(49) 

The 2009 H1N1 pandemic notably advanced the understanding and inclusion of mental 

health in pandemic preparedness and response. For one of the first times, policy reports 

recognised mental health as a critical element of public health strategies during 

pandemics, highlighting the importance of addressing the psychological impacts of 

pandemics alongside physical health challenges.(50) 

However, the pandemic also highlighted the complexities of managing public perception 

and response to health crises.(51) There was a noticeable dissonance between public 

sentiments, which initially veered towards panic due to the WHO’s and national health 

institutions' warnings, and the eventual realisation that the pandemic's impact was less 

severe than feared.(52, 53) This discrepancy led to widespread discontent and mistrust, 

with accusations of overreaction ("panicdemic") and skepticism towards the motivations 

behind the rapid production and distribution of vaccines, suggesting an undue influence of 

pharmaceutical companies.(53) 

The experience of the 2009 H1N1 pandemic underscored the challenges inherent in 

communicating the risks and recommended precautions of a pandemic to the public.(54) 

It demonstrated the pitfalls of simplifying complex public health threats into terms like 

"mild," "moderate," or "severe," which may not adequately convey the nuances of the 

threat and can lead to confusion or mistrust among the public.(54) This pandemic served 

as a crucial learning opportunity, highlighting the need for clear, transparent, and nuanced 

communication strategies in public health efforts and the importance of including mental 

health considerations in the planning and response to global health emergencies.(54, 55) 

 

F 
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Zika 

The Zika virus outbreak serves as a prime example of the complexities and challenges 

posed by global disease transmission in the modern era.(56) Initially emerging from 

Micronesia, the virus swiftly traversed across the Pacific to Brazil, from where it spread 

further, demonstrating the rapid pace at which infectious diseases can disseminate 

globally in today's interconnected world.(56) However, what sets the Zika outbreak apart 

is its distinction as a "media pandemic," with social media platforms playing a pivotal role 

in shaping public awareness and response to the crisis.(57, 58) 

In early 2016, at the height of the outbreak, mentions of Zika surged to an unprecedented 

50 times a minute on Twitter, illustrating the intense public and media interest in the virus. 

(59, 60)Social media served as a useful tool for disseminating information, educating the 

public, and expressing concerns. For the first time, the widespread use of social media 

during a public health crisis allowed researchers to study public sentiment and emotional 

epidemiology in real time. (59) This analysis provided insights into how people perceived 

and reacted to the outbreak, blending traditional epidemiological studies with an 

understanding of the social and emotional dimensions of public health emergencies.(59, 

60) 

While both public health institutions and the general populace utilised social media to 

voice their concerns about Zika, a notable divide emerged in the content being 

shared.(61) Scientists and health officials primarily focused on the educational aspect, 

striving to inform and guide the public with accurate information.(62) In contrast, the 

general public's posts often reflected a desire to have their emotional and personal 

concerns acknowledged and addressed.(61) This dichotomy highlights the dual role of 

social media as both a source of reliable information and a platform for expressing 

personal anxieties and fears. 

Interestingly, despite the predominance of accurate information—with four out of five posts 

on Zika being factually correct—the posts that gained significant traction and "trended" 

were often those containing inaccurate content or "fake news."(63-65) This phenomenon 

underscores a critical challenge for public health communication in the digital age: the 

propagation of misinformation can easily outpace and overshadow fact-based discourse, 

potentially undermining public health efforts.(64) 

The experience of the Zika outbreak underscores the importance of addressing the 

phenomenon of misinformation and the role of social media in shaping public perceptions 

during health crises.(66) As the world prepares for future outbreaks, understanding and 
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leveraging social media's influence will be crucial not only for effective preparedness but 

also for the successful execution of public health plans, including measures like 

quarantine and immunisation.(67) Navigating the intricacies of digital communication and 

public sentiment will be essential for public health officials to ensure that accurate, 

science-based information prevails over misinformation, thereby safeguarding public 

health and well-being.(67) 

Each of these pandemics has contributed to our understanding of the multifaceted impact 

of infectious diseases, not only in terms of immediate health effects but also in their ability 

to alter the course of history, influence public health policy, and shape societal norms and 

behaviours. The legacy of past pandemics underscores the importance of preparedness, 

effective communication, and comprehensive public health strategies to mitigate the 

impacts of future outbreaks. 

1.4 Cardiovascular impact of pandemics 

Pandemics can cause long-term health consequences, including a variety of 

cardiovascular complications.(68) Historical and recent pandemics offer valuable insights 

into these effects, with varying degrees of documentation and understanding. Here are 

examples of cardiovascular consequences from pandemics other than COVID-19 which 

will be described separately: 

1.4.1 1918 Influenza Pandemic (Spanish Flu) 

Research has shown that survivors of the 1918 influenza pandemic experienced higher 

rates of cardiovascular disease in the following decades, attributed to both the virus’s 

direct damage to cardiovascular tissues and the strain placed on the cardiovascular 

system.(69, 70) Studies suggest that individuals exposed to the Spanish flu early in life 

had a heightened risk of heart diseases later, including heart failure and myocardial 

infarction.(71, 72)Two key studies offer insight into this lasting cardiovascular effect, 

particularly for those who have been exposed in utero. Mazumder et al and colleagues 

conducted a longitudinal analysis comparing infants born during the height of the 

pandemic to those born shortly after, revealing an increased prevalence of diabetes and 

heart disease in adulthood, particularly notable in the second quarter of 1919 with a 

36.7% excess in diabetes cases.(34)  Conversely, Myrskyla et al and colleagues 

broadened the comparative scope to include infants born between 1917 and 1919 against 

a control group from 1920 to 1924, focusing on cardiovascular mortality.(71) Their findings 

did not show a significant uptick in cardiovascular mortality hazard ratios, indicating a 

nuanced picture of the pandemic's long-term cardiovascular impacts.(71) 
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1.4.2 H1N1 Influenza Pandemic (2009) 

During the H1N1 influenza pandemic, there was an observed increase in hospital 

admissions for acute myocardial infarction during the H1N1 pandemic.(73)  The 

inflammation triggered by the viral infection is believed to have played a role in plaque 

destabilisation and subsequent heart attacks.(74) Myocarditis which causes inflammation 

of the heart muscle that can affect the heart’s electrical system and reduce the heart’s 

pumping function were reported following H1N1 infection.(73) There have been multiple 

larger studies have associated influenza with a temporarily elevated risk of acute heart 

failure. Acute heart failure may be the most common cardiovascular influenza-associated 

complication.(74) 

1.4.3 HIV/AIDS Pandemic 

Individuals with HIV/AIDS are at an increased risk of early atherosclerosis, partly due to 

the chronic inflammatory state induced by the virus and potential effects of antiretroviral 

therapy.(75) Due to the increased risk of cardiovascular diseases, HIV-infected individuals 

have a higher risk of developing cardiovascular diseases including myocardial infarction, 

stroke, peripheral arterial disease when compared to the general population. (75) 

1.4.4 H5N1 Avian Influenza 

Although, H5N1 is primarily a respiratory disease, H5N1 has been associated with direct 

viral invasion of myocardial tissue, leading to myocarditis and other cardiac complications 

in severe cases.(76) 

1.4.5 Zika Virus Epidemic 

While the primary concern with Zika virus infection has been its association with 

microcephaly and other congenital anomalies in baby born to infected mothers, there 

have also been reports of congenital heart defects among these infants.(56) 

1.4.6 SARS-CoV-1 and MERS-CoV 

The cardiovascular sequelae of SARS-CoV-1 infection remain underexplored, with the 

literature largely comprising anecdotal evidence and isolated reports of acute coronary 

syndrome, myocardial infarction, transient diastolic dysfunction, and other cardiovascular 

abnormalities.(77) A notable postmortem study highlighted thromboembolic disease in 

patients. Similarly, detailed information on cardiovascular involvement in MERS is limited, 

with existing knowledge primarily derived from case reports or investigations into the 

prevalence of comorbidities among affected individuals.(77) 



29 

 

 

 

These examples highlight the importance of monitoring and managing cardiovascular 

health in the aftermath of pandemics, given the potential for long-lasting health impacts 

beyond the immediate effects of the viral infections themselves.(77) 

1.4.7 Putative Pathways in Pandemic Viruses and Cardiovascular 

Effects 

The mechanisms through which pandemic viruses exert their cardiovascular effects are 

complex and multifaceted. For SARS-CoV-2 virus, as well as its predecessors, the 

interaction with the host's immune system, direct viral effects on cardiovascular tissues, 

and the exacerbation of pre-existing conditions are all contributing factors.(78) Table 2 

outlines the putative pathways involved in the cardiovascular impact of pandemic viruses 

adapted from Savedchuk et al.(78) 

1.5 COVID-19: A Modern Pandemic 

Emergence and Global Impact 

The COVID-19 pandemic, caused by the SARS-CoV-2 virus which was first identified in 

December 2019 in Wuhan, Hubei Province, China. Reports of a cluster of cases of 

pneumonia of unknown cause prompted immediate investigation, leading to the 

identification of a novel coronavirus in early January 2020.(79) The WHO declared the 

outbreak a Public Health Emergency of International Concern on January 30, 2020, and a 

pandemic on March 11, 2020, as cases surged globally.(80) 

Epidemiology of COVID-19 

COVID-19 spread rapidly across the globe, affecting millions of people in every continent. 

As of late 2021, there have been over 250 million confirmed cases and more than 5 

million deaths globally, marking it as one of the deadliest pandemics in history.(6) By 2024 

there have been 703 million affected with nearly 7 million deaths globally.(81) The disease 

manifests with a wide range of symptoms, from asymptomatic or mild to severe 

respiratory distress and death, particularly in older adults and those with underlying health 

conditions.(82,83) 

Virology of COVID-19 

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, belongs to the 

coronavirus family, a group of viruses known for their crown-like appearance under an 

electron microscope. (83) This appearance is due to the spike (S) proteins on the virus's 

surface. (83) The virus is a positive-sense, single-stranded ribonucleic acid (RNA) virus, 
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with its genome encoding both structural and non-structural proteins critical for its 

replication and pathogenesis.(84) 

Table 2 Putative pathways involved in the cardiovascular impact of pandemic 

viruses  

This table outlines pandemic viruses linked to cardiovascular impacts, detailing their host 

receptor(s), cellular targets, species tropism, and proposed mechanisms of hypertension 

pathogenesis. 

Virus 
Host 

Receptor(s) 
Cell Targets 

Species 
Tropism 

Proposed mechanism of 
hypertension 
pathogenesis 

Influenza Sialic Acid 
Tracheal 

Epithelium 

Human 

Inflammatory response 
leading to systemic 
complications. 

- Direct viral effects on 
cardiovascular tissues. 

- Increase in vascular 
intimal cellularity and 
endothelial infiltrates 

- Plaque destabilisation 

- Hypoxaemia 

- Hypercoagulability 

- Increased myocardial 
oxygen demand 

Birds 
Ang II upregulation, ACE2 
downregulation 

MERS-CoV 
Dipeptidyl-
peptidase 4 

(DPP4) 

Non-ciliated 
epithelial cells 

Human 
Similar to SARS-CoV-1, 
with a focus on pre-existing 
comorbidities enhancing 
susceptibility to 
cardiovascular 
complications. 

Bronchiolar 
epithelial cells 

alveolar 
epithelial cells 

Camel 

SARS-CoV-1 

SARS-CoV-2 

Angiotensin-
Converting 
Enzyme 2 

(ACE2) 
Bronchial 
epithelia 

Human 

- Direct interaction with 
ACE2 receptors, leading to 
endothelial dysfunction. 

- Cytokine storm 
contributing to acute 
cardiovascular events. 

- Long-term sequelae 
including hypertension and 
myocarditis. 

TMPRSS2 

CD147 

Nasal 
epithelia 

Bats 

Downregulation of ACE 2 
after viral infection leading 
to activation of the RAAS 
and increased Ang II 

Type II 
Alveolar Cells 

Genome Organisation and Structure 

The genome of SARS-CoV-2 is approximately 30,000 nucleotides long, making it one of 

the largest among RNA viruses.(83) The genome organisation is characteristic of 

coronaviruses, with two-thirds of the genome at the 5’ end encoding for two large 
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polyproteins, pp1a and pp1ab, which are cleaved into 16 non-structural proteins 

(nsps).(83) These nsps form the replication-transcription complex essential for viral RNA 

synthesis.(83) The remaining one-third of the genome encodes for four main structural 

proteins as described by Hu et al and colleagues : 

- Spike (S) Protein: The spike protein facilitates viral entry into host cells by binding to 

the angiotensin-converting enzyme 2 (ACE2) receptor. The S protein is a primary 

target for neutralising antibodies and vaccines. 

- Envelope (E) Protein: Involved in viral assembly and release. 

- Membrane (M) Protein: The most abundant structural protein, it gives shape to the 

viral envelope. 

- Nucleocapsid (N) Protein: Binds to the viral RNA, forming the nucleocapsid. 

Life Cycle of the SARS-CoV-2 virus 

The SARS-CoV-2 virus is a zoonotic coronavirus characterised by a complex life cycle 

that facilitates its entry and replication within host cells.(85) The life cycle of SARS-CoV-2 

virus can be delineated into five main steps, pertinent for understanding the virus's 

pathogenicity and implications for treatment and prevention strategies which is 

demonstrated below in Table 3.(85) The virus specifically targets cells expressing the 

ACE2 receptor, such as type 2 pneumocytes, macrophages, perivascular pericytes, 

cardiomyocytes, and endothelial cells. (86) This indicates the varied routes of infection the 

SARS-CoV-2 virus can exploit within the human body.(85) 

1.5.1 Pathophysiology of the SARS-CoV-2 virus and implications 

on the cardiovascular system 

The interaction between the SARS-CoV-2 virus and the cardiovascular system has 

highlighted several mechanisms through which COVID-19 can exacerbate existing 

cardiovascular conditions or potentially give rise to new ones, such as hypertension.(78) 

This is demonstrated as a broad overview in Figure 2.(87, 88)  

Transmission 

The SARS-CoV-2 virus is predominantly transmitted through respiratory droplets, with the 

virus entering the body through the nasal or oral mucosa and then binding to the ACE2 

receptors found on the surface of cells, particularly in the lungs, heart, kidneys and blood 

vessels.(89) (Figure 3) 
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Table 3 Life cycle of the SARS-CoV-2 virus  

This table outlines the life cycle of the SARS-CoV-2 virus. 

1. Viral Entry 

The initial step involves the binding of the viral spike (S) protein to 
the ACE2 receptor on the host cell surface. The S protein's 
interaction with ACE2 is facilitated by the host cell's serine 
protease TMPRSS2, which primes the S protein for membrane 
fusion 

2. Release of 
RNA 

Following membrane fusion, the viral RNA is released into the 
host cell cytoplasm. 

3. Translation and 
Replication 

The viral RNA serves as a template for the translation of viral 
replicase polyproteins and the synthesis of negative-sense RNA 
intermediates, which are then used to produce genomic and sub-
genomic RNAs. 

4. Assembly 
Viral structural proteins and genomic RNA assemble at the 
endoplasmic reticulum and Golgi apparatus to form new viral 
particles. 

5. Release 
Newly formed viral particles are transported in vesicles and 
released from the host cell via exocytosis. 

6. Endocytosis 
and ACE2 
shedding 

Following the virus's entry into the host cell via endocytosis, there 
is an increase in ADAM metallopeptidase domain 17 (ADAM17) 
activity. This leads to the shedding of ACE2's ectodomain from the 
cell surface, disrupting the physiological balance between ACE 
and ACE2 activities. 

Figure 2 ACE2 Expression  

This figure depicts the expression of ACE2 receptors across various organ systems in the body. 
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Figure 3 Interactions between SARS-CoV-2 virus and the Cardiovascular System  

This figure illustrates the interactions and pathogenesis of the SARS-CoV-2 virus, highlighting its 

effects on the cardiovascular system and its impact on blood pressure. 
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ACE2 and interaction of SARS-CoV-2 virus with ACE2 

ACE2 plays a critical role in the renin-angiotensin-aldosterone system (RAAS) and is 

widely expressed across major organ systems.(90) Its significance is rooted in the 

historical discovery of key RAAS components, starting with renin and leading to the 

identification of angiotensin (hypertensin), Ang I, Ang II, the counter-regulatory axis of 

RAAS, ACE2, and the Ang-(1-7)/Mas receptor axis, as outlined in Figure 4.(90) In addition 

to its cardioprotective effects, ACE2 has been identified as the receptor for the SARS-

CoV-2 virus, a dual role illustrated in Figure 5.(90) 

Under normal conditions, ACE2 converts Ang II—a potent vasoconstrictor and pro-

inflammatory molecule—into angiotensin-(1-7), which exerts vasodilatory and anti-

inflammatory effects.(91, 92) However, by binding to ACE2, the SARS-CoV-2 virus 

reduces its surface expression, thereby diminishing these protective effects.(78) 

Elevated plasma levels of ACE2, which are associated with cardiovascular disease and 

mortality, suggest that COVID-19 triggers RAAS modulation.(93) This modulation likely 

increases blood pressure (BP) through mechanisms linked to the correlation between Ang 

II levels and the severity of COVID-19.(94, 95) 

Shift in Balance in ACE2 activity and RAAS Dysregulation 

The interaction of the virus with ACE2 receptors leads to a shift in balance of ACE 2 

activity and RAAS dysregulation, which is crucial in regulating BP and vascular function. 

(Figure 5) (78) This observed shift in ACE2 activity is decreased leading to an 

accumulation of Ang II. The shedding and internalisation of ACE2 enhance Angiotensin II 

(Ang II) activity due to the reduced availability of ACE2 to convert Ang II into Angiotensin 

1-7 (Ang 1-7). This results in a pivotal shift from the protective ACE2/Ang 1-7/Mas axis to 

the deleterious ACE/Ang II/AT1R axis. This results in increased Ang II effects, including 

pulmonary vasoconstriction, sodium retention, aldosterone secretion, increased BP, 

pulmonary oedema, and potentially leading to acute respiratory distress syndrome and 

death.(78, 91, 96)  Additionally, elevated Ang II levels have proinflammatory effects and 

fibrosis which is further explained below.  

Direct Viral Invasion and Pathogenesis 

The SARS-CoV-2 virus employs multiple strategies to evade the host immune response, 

including interfering with interferon production and signalling, which delays the immune 

response and allows for higher viral replication and spread. The immune evasion 

mechanisms, combined with the host's immune response, contribute to the pathogenesis  
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Figure 4 Timeline of discovery of the major renin-angiotensin system (RAAS) 

components and ACE 2   

This figure presents a historical timeline showcasing the discovery of key components of the renin-

angiotensin-aldosterone system (RAAS), including ACE2, along with significant advancements in 

understanding their physiological roles. 
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Figure 5 The classical renin-angiotensin-aldosterone system (RAAS) enzymatic 
cascade 
(A): In a normal state the RAAS is in equilibrium and blood pressure is normal. The mechanism of 
action of common antihypertensives ACEIs and ARBs are shown. (B): The SARS-CoV-2 virus 
causes a change following binding to ACE2 receptor which causes a cascade of changes where 
there is a shift towards the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II pathway 
away from the ACE2(angiotensin-converting enzyme 2)/Ang-(1-7) pathway. AT1R indicates type 1 
Ang II receptor. This triggers a cascade of pro-oxidant, pro-inflammation, vasoconstriction, vascular 
leakage and profibrotic cascade leading to lung injury. (C): The effect of SARS-CoV-2 virus 
pathway is seen in conjunction with the use of ACEI/ARBs and the effects on the RAAS indicative 
there is a protective/harmful effect leading to debates. There is an observed upregulation or 
overactivation of the vasoactive part of RAAS contributing to the pathogenesis and underlying 
mechanisms of cardiovascular disease, hypertension and kidney diseases with Ang II stimulating 
the AT1 receptor being the key end player. 
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and clinical manifestations of COVID-19. The SARS-CoV-2 virus can directly infect 

endothelial cells, leading to inflammation, cell injury, and apoptosis.  

Pro-inflammatory Effects and Fibrosis 

The dysregulation of RAAS with elevated Ang II levels, can stimulate the production of 

pro-inflammatory cytokines which contributes to the systematic inflammtory observed in 

those with severe COVID-19.(78, 97) This inflammation can further damage 

cardiovascular tissues and exacerbate heart and kidney diseases.(78) This hypothesis is 

supported by observations of inflammatory infiltrates in vessel walls and endothelial 

apoptosis in COVID-19 patients.(98) The persistent inflammation accompanied, with 

elevated Ang II levels, can promote fibrotic changes in the heart and lungs, contributing to 

long-term complications such as heart failure and pulmonary fibrosis.(99) 

Cytokine Storm 

A hyperactive immune response to SARS-CoV-2 infection triggers a cytokine storm, 

characterised by excessive release of pro-inflammatory cytokines such as IL-6, TNF-α, 

and MCP-1, as well as chemokines.(100) This overwhelming inflammatory response 

induces widespread endothelial dysfunction, contributing to vascular permeability, 

inflammation, and a procoagulant state.(100) The elevated cytokines not only exacerbate 

systemic inflammation but also promote the generation of reactive oxygen species (ROS). 

(100) 

This cytokine storm, in conjunction with the virus-induced downregulation of ACE2, has 

significant implications for BP regulation. By disrupting the balance between vasodilatory 

and vasoconstrictive factors, it promotes vascular inflammation, increases vascular 

resistance, and leads to hypertension.(99, 101) Together, these mechanisms further 

aggravate endothelial dysfunction, amplifying the cardiovascular complications associated 

with COVID-19. 

Endothelial Dysfunction 

The endothelium plays a pivotal role in vascular health by regulating blood flow, 

thrombosis, and inflammation.(102) Endothelial dysfunction is a hallmark of COVID-19, 

characterised by reduced nitric oxide availability, an imbalance between vasoconstrictors 

and vasodilators, and manifestations such as inflammation, oxidative stress, 

hyperpermeability, and a prothrombotic state, which significantly contribute to the 

cardiovascular complications associated with the disease.(102, 103) This dysfunction may 

arise directly from the interaction between the SARS-CoV-2 virus and ACE2, which 
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disrupts the renin-angiotensin-aldosterone system (RAAS) and leads to elevated levels of 

angiotensin II (Ang II) which has been previously described. 

The increased Ang II promotes endothelial dysfunction through multiple mechanisms, 

including the generation of reactive oxygen species (ROS).(102) The overwhelming 

production of ROS during COVID-19 can deplete the body's antioxidant reserves, 

including glutathione, superoxide dismutase, and catalase.(104) The reduction in 

antioxidant capacity exacerbates oxidative stress by leaving cells less equipped to 

neutralise ROS.(104) 

The virus-induced downregulation of ACE2 exacerbates these effects, promoting 

increased vascular permeability, leukocyte adhesion, and vascular inflammation through 

heightened expression of pro-inflammatory cytokines and adhesion molecules.(99) 

Viral proteins, particularly those involved in the replication process, can induce 

mitochondrial dysfunction, resulting in increased production of reactive oxygen species 

(ROS) and impaired antioxidant defences.(105) Additionally, activated immune cells 

generate ROS as part of their antimicrobial defence mechanisms, further amplifying 

oxidative stress.(100) The infection induces a significant oxidative stress burden on the 

endothelium, reducing nitric oxide bioavailability and contributing to vascular 

dysfunction.(106) This oxidative stress is a key factor in the development of hypertension. 

(87, 107) 

Hypercoagulability and Thrombosis 

COVID-19 enhances pro-thrombotic mechanisms through endothelial injury, leading to 

microthrombi formation and increased risk of major thrombotic events, including deep 

venous thrombosis and pulmonary embolism.(102) The disruption of endothelial integrity 

by the infection triggers a cascade of events that promote a prothrombotic state, including 

the exposure of pro-coagulant surfaces and the release of von Willebrand factor and 

factor VIII, which are pivotal in clot formation.(102) The virus-induced endothelial 

dysfunction leads to decreased production of anticoagulant factors like nitric oxide and 

prostacyclin.(103) At the same time, there is an increased expression of tissue factor, the 

primary initiator of the coagulation cascade, and a reduction in the activation of protein C, 

an important natural anticoagulant. These alterations favour thrombin generation and 

fibrin clot formation.(103) Complement activation leads to the formation of the membrane 

attack complex, which can cause endothelial cell damage and further promote 

thrombosis.(108) The virus can directly activate platelets or do so indirectly through the 

action of inflammatory cytokines.(108) Activated platelets release prothrombotic 
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microparticles and form aggregates, both of which are potent promoters of coagulation. 

(108) 

Hypoxia 

Severe COVID-19 often leads to respiratory distress and hypoxia.(109) Hypoxia itself can 

induce oxidative stress by altering mitochondrial electron transport chain activity, leading 

to an overproduction of ROS.(109) Moreover, the hypoxia-inducible factor (HIF) pathway, 

activated in response to low oxygen levels, can also contribute to oxidative stress through 

various mechanisms, including the upregulation of enzymes involved in ROS production. 

(109) COVID-19-related lung injury and ARDS can result in hypoxia, which has been 

shown to enhance pro-coagulant activity and reduce fibrinolysis, creating a predisposition 

to clot formation.(110) 

Neutrophil Extracellular Traps, Cell Death and Tissue Damage. 

The formation of neutrophil extracellular traps (NETs), composed of DNA, histones, and 

neutrophil-derived proteins, is increased in COVID-19.(110) While NETs play a protective 

role by trapping pathogens, their formation involves the generation of reactive oxygen 

species (ROS). Excessive NETs formation can exacerbate tissue damage and further 

amplify oxidative stress.(110) This process, combined with direct viral effects, 

inflammation, endothelial dysfunction, and hypoxia, leads to cell death through both 

apoptotic and necrotic pathways, resulting in significant tissue damage.(98) The 

breakdown of cells releases additional intracellular ROS and diminishes cellular 

antioxidant defences, further compounding the oxidative stress burden.(111) 

1.5.2 Clinical Manifestations and Disease Classification 

The incubation period of SARS-CoV-2 virus, from infection to the onset of symptoms, 

typically spans 2-14 days, with the disease progression varying significantly among 

individuals.(Figure 2) (112) Certain populations are at a higher risk of developing severe 

or critical illness, including older adults and individuals with underlying health conditions 

such as cardiovascular disease, diabetes, chronic respiratory disease, hypertension, and 

cancer.(113) COVID-19 can be broadly categorised based on the severity of the disease, 

as outlined in Table 4, which helps in understanding the diverse clinical outcomes and 

guiding treatment strategies.(114) 
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Table 4 COVID-19- disease category.  

This table outlines disease category for COVID-19 with associated clinical features, 

clinical manifestations and proportion of patients globally. 

Disease category Clinical Features 
Clinical 
manifestations 

Proportion of 
patients Globally 

Mild disease 
Non/mild 
pneumonia 

- 

75–85% 

Moderate disease Pneumonia 
Gastrointestinal 
symptoms 
(diarrhoea, cramps) 

Severe disease 

Severe pneumonia, 
Dyspnoea, 
Respiratory 
rate ≥ 30/min, 
Oxygen saturations 
≤ 93%, Peak Flow 
ratio < 300, Lung 
infiltrates > 50% 
(within 24–48 hours) 

Neurological 
symptoms such as 
headache, altered 
mental status, 
Guillain–Barre 
syndrome (GBS) 
and Stroke 

10–15% 

Critical disease 

Acute respiratory 
distress syndrome, 
Respiratory failure, 
Sepsis (multiple 
organ dysfunction / 
failure) 

 

Septic shock 

Cardiovascular 
events such as 
myocarditis, 
arrhythmias and 
heart failure. 

 

Ocular 
manifestations such 
as conjunctival 
hyperaemia, 
chemosis 

 

Anosmia and 
dysgeusia 

5–10% 

 

1.5.3 Important COVID-19 Variants 

The emergence and evolution of the SARS-CoV-2 virus have been marked by the 

development of numerous variants, each with mutations in critical structural proteins such 

as the spike glycoprotein, envelope protein, membrane protein, and various non-structural 

and accessory proteins.(114) The spike (S) protein, responsible for virus entry into host 

cells via the ACE2 receptor, has been a focal point of mutation and consequential 

changes in virus transmissibility, pathogenicity, virulence, or resistance to neutralising 

antibodies.(114) Significant mutations in the S1 and S2 domains of the spike protein, 

notably the D614G mutation, have led to the emergence of variants with altered 

properties, impacting the spread of the virus and the severity of disease they cause.(116) 

The emergence of the SARS-CoV-2 virus variants poses challenges to existing diagnostic 
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methods, therapeutic interventions, and vaccine efficacy. (117) Variants with mutations 

that lead to antigenic drift can result in decreased sensitivity of diagnostic tests, reduced 

effectiveness of therapeutic antibodies, and diminished vaccine-induced immunity. 

Consequently, ongoing surveillance of variant evolution and prompt adaptation of 

diagnostic and therapeutic strategies are critical to managing the pandemic. (118) Below 

are descriptions of several important COVID-19 variants that have been designated as 

Variants of Concern (VOCs) or Variants of Interest (VOIs) by health authorities worldwide. 

(118, 119) 

Figure 6 Clinical Course of COVID-19  

This figure illustrates the clinical progression of COVID-19, divided into the virological phase (Day 

0–7) and the immunological phase (from Day 7 onward). It highlights the acute symptom phase, 

often requiring hospitalization or critical care. This visualization is based on the author's original 

work, designed for community assessment of acute COVID-19 and referral to secondary care as 

outlined in the Acute COVID-19 Scottish Primary Care Hub Triage Guide.(115) 

 

Alpha Variant (B.1.1.7) 

First identified in the United Kingdom in September 2020, the Alpha variant quickly 

became dominant due to its increased transmissibility. (119) It contains a significant 

mutation (N501Y) in the spike protein, which enhances the virus's ability to bind to human 

ACE2 receptors.(120) Studies indicated that the Alpha variant was associated with an 

increased risk of hospitalisation and death, although vaccines have remained effective 

against it.(121) 

ARDS 
Shock
Renal Failure 
Cardiovascular 
collapse

Day 7Day 0

Clinical Course

Viral illness with possible pneumonitis Immunological stage where most recover

Mild Self Limiting Illness in 
80%

20 – 30% require 
hospitalisation

Worsening hypoxia 
occurs around day 7

Virological phase Immunological phase

Unwell, deteriorating

2-5% poor outcome
requiring critical care
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Beta Variant (B.1.351) 

Detected in South Africa in May 2020, the Beta variant carries mutations that allow it to 

partially evade the immune response generated by previous infection or vaccination. (122) 

Key mutations include K417N, E484K, and N501Y in the spike protein.(122) These 

changes have raised concerns about vaccine efficacy, with some vaccines showing 

reduced neutralisation capacity against the Beta variant.(123) 

Gamma Variant (P.1) 

This variant emerged in Brazil in November 2020 and contains several mutations of 

concern, including K417T, E484K, and N501Y.(124) Like the Beta variant, Gamma has 

shown the ability to escape from neutralising antibodies, posing challenges for vaccine 

effectiveness. It has been associated with increased transmissibility and potential 

increases in disease severity.(125) 

Delta Variant (B.1.617.2) 

First identified in India in October 2020, the Delta variant has been linked to the 

devastating second wave of COVID-19 in the country.(125) Characterised by mutations 

such as L452R and P681R, Delta is significantly more transmissible than earlier variants 

and has been associated with increased hospitalisation rates.(125) While vaccines remain 

effective in preventing severe disease and death, breakthrough infections have been 

reported.(125) 

Omicron Variant (B.1.1.529) 

Detected in multiple countries in November 2021, the Omicron variant has an extensive 

mutation profile, comprising over 46 mutations in the spike protein, which enhances its 

capacity to bind ACE2 receptors and evade neutralising antibodies.(126) Evidence 

suggests that Omicron is highly transmissible and may be capable of evading immunity 

from previous infection or vaccination to some degree.(126) However, the severity of 

disease it causes appears to be less than that of the Delta variant, and vaccines continue 

to provide significant protection against severe illness and hospitalisation.(127) 

1.6 Therapeutic strategies 

The management of COVID-19 has significantly evolved, with therapies tailored to 

disease stage, symptom severity, and patient-specific factors like age and comorbidities. 

As new variants emerge, strategies continue to adapt through ongoing research and 

clinical trials. Below are key therapeutic examples: 
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1.6.1 Antiviral Therapies 

1.6.1.1 Oral antivirals 

Remdesivir 

The first antiviral drug authorised by the FDA for treating COVID-19, Remdesivir inhibits 

viral replication by targeting the RNA-dependent RNA polymerase.(128) Clinical trials 

have shown that it can shorten the recovery time in hospitalised patients, particularly 

those requiring oxygen therapy.(128) 

Molnupiravir 

An oral antiviral that introduces errors into the viral RNA, impairing its ability to replicate. 

(129) Molnupiravir has been authorised for use in certain countries for treating mild to 

moderate COVID-19 in adults at risk of developing severe disease.(129) 

Paxlovid (Nirmatrelvir/Ritonavir) 

This oral antiviral combination has shown high efficacy in preventing severe COVID-19 

when administered early in the disease course.(130) Nirmatrelvir inhibits a protease 

enzyme that the virus needs to replicate, while ritonavir slows down nirmatrelvir's 

breakdown to help it remain in the body for a longer period at higher concentrations.(130) 

1.6.1.2 Immunotherapies 

Corticosteroids (e.g. Dexamethasone) 

Dexamethasone has been shown to reduce mortality among severely ill COVID-19 

patients requiring supplemental oxygen or mechanical ventilation. (131) It acts by 

reducing inflammation and the immune system's overreaction to the infection.(131) 

Monoclonal Antibodies 

Drugs like casirivimab and imdevimab (administered together) have been used to 

neutralise the virus, preventing it from entering cells.(132) Tocilizumab acts by preventing 

IL-6 damage to cells.(114) These are particularly effective in early-stage infection and for 

patients at high risk of progressing to severe disease.(114) Their usage has been evolving 

with the emergence of new variants with varying levels of susceptibility. 

1.6.1.3 Supportive Care 

Oxygen Therapy and Mechanical Ventilation 

For patients with severe respiratory distress, supplemental oxygen and, if necessary, 

mechanical ventilation can be lifesaving.(133) 

Anticoagulants 
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Given the increased risk of thrombosis associated with COVID-19, anticoagulants are 

commonly used in hospitalised patients to prevent clot formation.(134) 

Convalescent Plasma 

Early in the pandemic, plasma from recovered COVID-19 patients was used in hopes that 

the antibodies it contained would help fight the virus. Its efficacy remains subject to 

ongoing research and debate.(135) 

1.6.1.4 Preventative Therapies - Vaccination 

While not a treatment per se, vaccination is the cornerstone of COVID-19 prevention. 

Multiple vaccines have been developed and authorised globally.(136) Vaccinations 

strategies have focused on achieving widespread immunity to reduce transmission, 

severe disease, and deaths.(136) 

Vaccination strategies 

Vaccination strategies include three campaigns, mass vaccination, booster doses and 

achieving vaccine equity.(137) Mass Vaccination Campaigns focuses on achieving herd 

immunity which can significantly reduce the virus's spread within communities.(137) By 

prioritising high-risk groups such as healthcare workers, the elderly, and individuals with 

comorbidities, these campaigns aim to protect the most vulnerable segments of the 

population first, thereby reducing the overall burden of disease.(138) Booster doses 

represent another critical strategy, especially in the context of waning immunity and the 

emergence of new variants. (138) These additional doses are designed to reinforce the 

body's immune response, and the recommendation and administration of booster doses 

are based on scientific evidence and are adjusted as new data emerges about vaccine 

effectiveness over time.(138) Vaccine equity remains a significant challenge and a priority 

as ensuring that all countries, especially those with fewer resources, have access to 

vaccines is important for a global recovery.(139) Initiatives like COVID-19 Vaccine Global 

Access (COVAX) play a pivotal role in this aspect, striving to distribute vaccines equitably 

worldwide, thus preventing the emergence and spread of vaccine-resistant variants that 

could arise in unvaccinated populations.(139) 

1.6.1.5 Vaccine types 

mRNA Vaccines 

The Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) vaccines use messenger 

RNA (mRNA) technology to instruct cells to produce a harmless spike protein of the virus, 

triggering an immune response.(140) They have shown high efficacy in preventing 

COVID-19 infection and severe outcomes.(140) 
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Viral Vector Vaccines 

The viral vector vaccines are Oxford-AstraZeneca (ChAdOx1 nCoV-19) and Johnson & 

Johnson (Janssen, Ad26.COV2.S). These vaccines use a harmless virus (not the 

coronavirus) to deliver genetic material that codes for the SARS-CoV-2 spike protein into 

cells, inducing an immune response.(141, 142) 

Inactivated Virus Vaccines 

There are two main inactivated virus vaccines which are Sinovac-CoronaVac and 

Sinopharm BBIBP-CorV.(143) These vaccines contain the inactivated SARS-CoV-2 virus, 

which cannot cause disease but still prompts an immune response. 

Protein Subunit Vaccines 

The Novavax (NVX-CoV2373) vaccine contains harmless pieces (proteins) of the SARS-

CoV-2 virus instead of the whole virus to stimulate an immune response.(144) 

1.7 Long COVID 

Long COVID, also referred to as Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), 

is a complex, multifaceted syndrome following the resolution of acute COVID-19.(145) 

This condition underscores the enduring impact of the SARS-CoV-2 virus, extending 

beyond the acute infection phase into a prolonged period of convalescence that can last 

several months to over a year.(146) Long COVID is characterised by persistent symptoms 

and health complications that continue for more than three months after the initial 

infection, affecting a significant portion of COVID-19 survivors.(146) Long COVID 

encompasses a wide range of new-onset conditions, including but not limited to 

cardiovascular diseases, thrombotic and cerebrovascular disorders, type 2 diabetes, 

myalgic encephalitis/chronic fatigue syndrome (ME/CFS), and dysautonomia, notably 

postural orthostatic tachycardia syndrome (POTS).(147) Among these, cardiovascular 

symptoms such as stroke, chest pain, electrocardiographic abnormalities, postural 

tachycardia syndrome, atrial fibrillation, acute coronary syndrome, and venous 

thromboembolism stand out as particularly common manifestations.(146) 

The incidence of Long COVID is notably variable, with estimates suggesting that 10-30% 

of hospitalised patients, 50-70% of those requiring hospitalisation, and 10-12% of 

vaccinated individuals may experience these prolonged health issues.(147) Interestingly, 

Long COVID predominantly affects individuals aged 36-50 years and is more common 

among non-hospitalised patients who had a mild form of the acute illness.(147, 148) The 

condition seems to have a predilection for women, with 55-75% of Long COVID cases 

reported in females aged 40-60 years.(147) Factors predictive of developing Long COVID 
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include higher BMI, lower levels of SARS-CoV-2 antibodies, older age, severe acute 

COVID-19 requiring hospitalisation, and the presence of symptoms affecting multiple 

organ systems during the acute phase.(148) 

Research suggests a combination of biological, immunological, and physiological factors 

contributing to its development.(148) The following outlines several hypothesised 

mechanisms or causes of Long COVID: 

1. Persistent viral reservoirs: It is proposed that remnants of the SARS-CoV-2 virus 

might persist in some individuals, particularly in tissues where the virus is not 

easily cleared.(149) This persistent viral presence could stimulate a continuous 

immune response or cause direct tissue damage over time. (149) 

2. Immune dysregulation and autoimmunity: Long COVID might result from an 

abnormal immune response.(147) Some patients exhibit persistent inflammation, 

immune activation, or dysregulation even after clearing the virus. Elevated levels 

of pro-inflammatory cytokines, a phenomenon akin to a cytokine storm, and 

autoantibodies targeting the body's own tissues have been observed, suggesting 

that autoimmunity plays a role in symptom persistence.(147) Studies have 

highlighted alterations in immune cell populations, such as exhausted T cells and 

activated innate immune cells, which persist for months following the initial 

infection.(150, 151) 

3. Endothelial dysfunction: Endothelial dysfunction can result in impaired blood flow, 

increased clotting, and other cardiovascular complications that contribute to the 

symptoms of Long COVID.(152-154) 

4. Microvascular injury and thrombosis: COVID-19 can cause damage to the 

microvasculature, leading to microclots and reduced blood flow to various organs. 

(155) This vascular damage might underlie some of the persistent symptoms seen 

in Long COVID, such as fatigue and brain fog. 

5. Mitochondrial dysfunction: There is evidence to suggest that SARS-CoV-2 

infection could affect mitochondrial function, leading to energy metabolism issues. 

(156) This could explain the profound fatigue and exercise intolerance seen in 

many Long COVID patients.(156) 

6. Neurological impact: SARS-CoV-2 has been shown to affect the nervous system, 

potentially leading to neuroinflammation and changes in brain structure and 

function. (157) These neurological impacts could contribute to a wide range of 

Long COVID symptoms, including cognitive impairment, headache, and sensory 

disturbances.(158, 159) 



47 

 

 

 

7. Reactivation of latent viruses: In some individuals, the immune system's 

dysregulation during and after COVID-19 infection could lead to the reactivation of 

latent viruses like Epstein-Barr virus and human herpesvirus 6 has been observed 

in Long COVID patients, suggesting a potential link to the chronic fatigue and 

cognitive dysfunction seen in ME/CFS.(160) 

8. Tissue damage and organ injury: Direct damage from the virus, as well as the 

body's immune response to it, can cause lasting tissue and organ injury.(161) This 

damage, particularly to the lungs, heart, and kidneys, may underpin some of the 

long-term health issues associated with Long COVID.(161) 

9. Hypoxia and oxygen uptake issues: Persistent issues with oxygen uptake and 

utilisation post-COVID-19 could contribute to symptoms of Long COVID.(162) 

Damage to the lungs and alterations in blood flow might impede efficient oxygen 

exchange, leading to ongoing symptoms of dyspnoea and fatigue.(163, 164) 

10. Psychosocial Factors: The psychological impact of COVID-19, including stress 

from illness, isolation, and the overall pandemic situation, can exacerbate or 

contribute to the persistence of symptoms.(165, 166) Mental health issues such as 

anxiety and depression might intersect with physical health to create a complex 

clinical picture.(167) 

Understanding Long COVID requires a multidisciplinary approach, integrating insights 

from virology, immunology, neurology, and psychology.(147) Ongoing research is crucial 

to unravel these mechanisms fully and to develop targeted therapeutic strategies to 

support those affected by Long COVID as it becomes increasingly clear that this 

syndrome represents a significant public health challenge. 

1.8 Impact on Global Health 

The COVID-19 pandemic has profoundly impacted global health, placing unprecedented 

pressure on healthcare systems, disrupting public health initiatives, and exacerbating 

existing disparities.(168) Hospitals and medical facilities worldwide were overwhelmed, 

leading to shortages of beds, medical supplies, and healthcare personnel.(169, 170) This 

has disrupted routine and emergency services for non-COVID conditions, as well as 

vaccination programmes, maternal and child health services, and chronic disease 

management, causing a broader health crisis.(171-173) Efforts to control other infectious 

diseases, such as tuberculosis, HIV/AIDS, and malaria, were severely affected, reversing 

decades of progress in some regions.(174) Beyond physical health, the pandemic 

triggered a global mental health crisis, with increased rates of anxiety, depression, 
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substance misuse, and domestic violence fuelled by fear, grief, economic instability, and 

social isolation.(175, 176) Economically, widespread lockdowns and restrictions led to 

business closures, job losses, and a contraction of the global economy.(177) These 

economic disruptions worsened poverty, food insecurity, and access to healthcare, further 

aggravating health inequalities.(178, 179) Marginalised groups, including the elderly, racial 

and ethnic minorities, and those with pre-existing conditions, were disproportionately 

affected.(180, 181) 

Whilst the rapid development and deployment of COVID-19 vaccines marked a historic 

achievement, disparities in vaccine access and misinformation hindered global efforts to 

control the virus.(182, 183) The pandemic exposed vulnerabilities in public health 

infrastructure, emphasising the need for stronger systems for disease surveillance, 

emergency preparedness, and international cooperation.(3) It highlighted the importance 

of addressing health inequalities, strengthening global health governance, and balancing 

public health priorities with economic stability.(3) 

1.9 COVID-19 and Hypertension 

Hypertension is one of the most common preexisting conditions and comorbidities 

worldwide, affecting 1.13 billion adults in 2015 due to advancing age, higher prevalence in 

those individuals older than 50 years of age, with a small proportion affecting those who 

were younger.(184) Hypertension alone accounts for more than 10 million deaths and 218 

million disability-adjusted life years worldwide. Hypertension control appears to be 

suboptimal, ranging from 7% to 65% worldwide with the prevalence increasing yearly.  

(185) 

COVID-19 affects the cardiovascular system through complications like arrhythmias, 

myocardial injury, heart failure, pulmonary embolism, and coagulation disorders.(186) It 

also disrupts RAAS and endothelial dysfunction, key factors in hypertension and related 

complications which have been mentioned previously. Additionally, stress from COVID-19 

can activate the sympathetic nervous system, raising heart rate and vascular resistance, 

potentially causing transient or persistent BP elevation.(187) 

The interplay between COVID-19 and hypertension is complex, with the virus influencing 

BP and hypertension management through both direct effects on the cardiovascular 

system and indirect impacts resulting from the societal response to the pandemic. This 

relationship has been a focal point of medical research since the onset of the pandemic. 

Early research revealed that individuals with pre-existing hypertension were at a greater 

risk of mortality from COVID-19. Hypertension emerged as one of the most common 
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comorbidities among COVID-19 patients, with its prevalence being twice as high in severe 

cases compared to non-severe ones.(188, 189) 

Elderly patients, who are more likely to have hypertension and related cardiovascular 

comorbidities, account for a higher incidence of severe COVID-19. Contributing factors 

include cardiac damage from long-standing hypertension, the presence of end-organ 

damage, interactions between COVID-19 and antihypertensive therapies, and the higher 

prevalence of hypertension in older age groups.(190, 191) 

Although the exact reasons why individuals with pre-existing hypertension are at higher 

risk for severe COVID-19 remain unclear, it is evident that hypertension management 

typically involves four major drug classes: angiotensin-converting enzyme 

inhibitors/angiotensin receptor blockers (ACEIs/ARBs), calcium channel blockers (CCBs), 

diuretics, and beta blockers (BB).(192) These medications and their potential interactions 

with COVID-19 continue to be areas of active investigation. 

1.9.1 Indirect Effects on Blood Pressure Regulation 

The indirect effects of COVID-19 and hypertension stem from the widespread societal, 

behavioural, and healthcare system changes that have occurred in response to the 

pandemic.(193, 194) 

The psychosocial impact of the pandemic—including anxiety, isolation, and economic 

stressors—has triggered activation of the sympathetic nervous system. This response has 

been linked to hypertension and poorly controlled BP, highlighting the interconnected 

effects of stress on physical health.(187) 

Lockdown measures further compounded these challenges by limiting physical activity 

and disrupting daily routines. Many individuals experienced weight gain and a decline in 

cardiovascular fitness, both of which indirectly affected BP control.(195-197) 

Adding to these difficulties, routine healthcare services were significantly disrupted during 

the pandemic. For chronic conditions like hypertension, delays in diagnosis, treatment 

adjustments, and reduced monitoring created additional barriers to effective management, 

leaving many patients vulnerable to worsening health outcomes.(198) 

One of the most notable consequences of healthcare disruption was a decline in routine 

BP monitoring and management. As lockdowns curtailed in-person healthcare visits, many 

individuals missed opportunities for regular assessments, leading to poorer control of 

hypertension and increased risks of complications.(199-201) 
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This decline in healthcare access was not limited to monitoring alone. Research also 

documented a marked reduction in visits for hypertension management overall. Limited 

access to care likely exacerbated BP control issues and elevated cardiovascular risks for 

affected patients, illustrating the ripple effects of strained healthcare systems.(199) 

Compounding these challenges, the pandemic also disrupted medication adherence 

among hypertensive patients. Interruptions in healthcare access and medication supply 

chains made it more difficult for individuals to maintain consistent treatment, further 

jeopardising their ability to manage their condition effectively.(202) 

In response to these disruptions, healthcare providers rapidly adopted telemedicine and 

remote BP monitoring as alternative solutions. While these approaches offered new ways 

to address gaps in care, they also introduced challenges, particularly for individuals with 

limited digital literacy or access to technology. This highlights the importance of equitable 

access to digital tools in maintaining effective hypertension management.(203) 

Amid these shifts, studies reported a general increase in BP levels across the population. 

Reduced physical activity, heightened stress, and disruptions in healthcare services 

collectively contributed to this trend, underscoring the multifaceted impact of the pandemic 

on cardiovascular health.(204) 

Beyond individual health outcomes, the pandemic has had a profound global impact. 

While 5.4 million COVID-19-related deaths were reported in the first two years, this figure 

does not fully account for indirect effects, such as deaths resulting from delayed or 

forgone care for non-COVID conditions. Analyses of excess mortality suggest that these 

indirect effects significantly influenced cardiovascular disease outcomes, including 

hypertension.(205, 206) 

These findings are particularly concerning given that patients with hypertension face an 

increased risk of severe COVID-19 outcomes. Higher rates of hospitalisation, intensive 

care admission, and mortality among hypertensive individuals further highlight the urgent 

need for improved strategies to manage both hypertension and its associated risks during 

public health crises.(205) 

1.9.2 Impact on New-Onset Hypertension and Relevant Studies 

Emerging evidence suggests a potential link between COVID-19 and new-onset 

hypertension, which may result from direct viral effects, disruption of the renin-

angiotensin-aldosterone system (RAAS), or the physiological stress of illness. (207) 
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However, this relationship is not yet fully understood, and further research is needed to 

clarify the underlying mechanisms.  

Studies have consistently shown that COVID-19 survivors face an increased risk of 

cardiovascular sequelae, including hypertension, compared to individuals not exposed to 

SARS-CoV-2. (207, 208) This suggests that the virus may have lasting impacts on 

cardiovascular health. 

A meta-analysis conducted by Zuin et al. investigated the risk of new-onset hypertension 

in COVID-19 survivors within one year of the initial infection.(209) The pooled analysis 

revealed that recovered COVID-19 patients had a significantly increased risk of 

developing new-onset hypertension (HR 1.70, 95% CI 1.46–1.97, p < 0.0001, I² = 78.9%) 

within seven months, supporting a direct association between COVID-19 and 

hypertension. 

A retrospective cohort study by Zhang et al. analysed electronic health records from 277 

international hospitals. (210) Their findings indicated that even patients diagnosed with 

COVID-19 in the outpatient setting had a heightened risk of developing hypertension, 

suggesting a possible connection between mild COVID-19 cases and subsequent 

hypertension. (210) 

Further research has shown a high risk of incident cardiovascular disease, including 

hypertension, beyond 30 days of infection in non-hospitalised COVID-19 patients.(211) 

This highlights the potential for COVID-19 to contribute to new-onset hypertension even in 

cases that did not require hospital admission. 

Comparative studies have demonstrated that hospitalised COVID-19 patients are 

significantly more likely to develop persistent hypertension than those hospitalised for 

influenza, emphasising the unique cardiovascular impact of COVID-19.(212) 

1.9.3 ACE Inhibitors and RAAS Inhibitors 

1.9.3.1 ACE Inhibitors and the COVID-19 pandemic 

The COVID-19 pandemic unveiled a surprising and unexpected link between an infectious 

disease and the treatment of a chronic condition like hypertension. Central to this 

connection is the role of ACE2, which is pivotal in the pathogenesis of the SARS-CoV-2 

virus and the regulation of BP and fluid balance through the RAAS, as previously 

discussed. Consequently, ACEIs, commonly used to manage hypertension, were thrust 

into the spotlight. (213) These medications, by modulating the RAAS, inadvertently 

influence ACE2 expression levels, leading to widespread speculation and concern about 



52 

 

 

 

their role in COVID-19 susceptibility and severity. There were fears that the use of ACEIs 

might exacerbate COVID-19 outcomes or increase risk of COVID-19 infection by 

increasing ACE2 expression, potentially facilitating viral entry into cells.(213) 

Additionally, early in the pandemic, several observational reports highlighted a heightened 

mortality risk among individuals with pre-existing hypertension. This added additional 

complexities amplifying the uncertainty in establishing whether ACEIs might adversely 

impact patients taking these medications during the pandemic. An analysis of 44,672 

confirmed COVID-19 cases revealed an overall case-fatality rate of approximately 2.3%, 

which escalated to 6% among those with pre-existing hypertension. Additionally, 

hypertension emerged as one of the most prevalent comorbidities in COVID-19 patients, 

with reported rates ranging from 8.0% to 31.2%. A meta-analysis demonstrated that the 

incidence of hypertension was twofold in severe cases compared to non-severe 

cases.(188) Another study found that the proportion of hypertension in 406 patients who 

died from COVID-19 infections was 39.7%, which was higher than the general population 

(12.6%) however this study was not adjusted for clinical characteristics.(214) There still 

remain controversies on whether hypertension is a risk factor for severe COVID-19 where 

in a retrospective study they observed that those with hypertension were more likely to 

develop severe COVID-19, however pre-existing hypertension was not independently 

associated with high risk of severe COVID-19.(189) However, many of these early studies 

had limitations, including confounding factors such as age, comorbidities, and the severity 

of hypertension (see section 1.9.3.4 Key Studies). Since elderly patients are more likely to 

have hypertension and additional cardiovascular comorbidities, this could potentially 

explain the higher incidence of severe COVID-19 illness observed in this population. 

1.9.3.2 Protective effect of ACEIs 

Alongside the growing concerns about ACEIs, which were primarily based on 

observational evidence, a strong opposing view emerged suggesting that ACEIs and 

ARBs might offer protective effects against severe COVID-19.(201, 215, 216) 

Upregulation of ACE2 might enhance the protective effects of ACE2 which 

counterbalances the effects of Ang II by generating Ang 1-7 a peptide with anti-

inflammatory and vasodilatory properties. By mitigating the harmful effects of Ang II, and 

additionally by directly reducing the formation of Ang II, ACEIs may reduce inflammation, 

fibrosis, and thrombosis, contributing to better cardiovascular outcomes in infected 

patients. The proponents of this viewpoint supported the continued use of ACEIs and 

ARBs in patients with hypertension during the pandemic.(217) In contrast to this, 

cardiopulmonary diseases are associated with a reduction in ACE2 activity which limits 
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the effects of Ang II on the heart and vasculature, thus highlighting that ACE2 could be 

protective against the severe complications of COVID-19 infection. (218) 

1.9.3.3 Mechanism of ARBs 

ARBs are another class of antihypertensive drugs that target the RAAS and its 

mechanism of action of ARBs which is like ACEIs may influence the expression and 

activity of ACE 2.(218) ARBs antagonises the action of Ang II by blocking blocks Ang II 

type 1 receptor (AT1R). There is also a potential decrease in the inflammatory response 

as ARBs attenuate the inflammatory response associated with COVID-19 by modulating 

pathways downstream of the AT1R receptor. This in turns reduces the cytokine storm and 

acute respiratory distress syndrome (ARDS). Recent evidence has suggested ARBs as a 

potential treatment for COVID-19 where ARBs can increase soluble ACE2 in the blood 

stream which can bind SARS-CoV-2 virus to reduce the injury of organs with expression 

of ACE2.(219) 

All these sparked intense debate within the medical community and led to fears of 

disrupting established cardiovascular prevention strategies. Patients and healthcare 

providers faced difficult decisions regarding the continuation or cessation of ACEIs, 

balancing the need for effective hypertension management against the potential risk of 

heightened COVID-19 susceptibility. 

1.9.3.4 Key Studies 

There have been several studies which looked at the association of ACEI/ARBs with risk 

of hospitalisation or from death of COVID-19. The investigators of the BRACE-CORONA 

trial found no significant difference in the number of days alive and out of hospital in 

patients with mild to moderated COVID-19 between patients continuing or discontinuing 

ACEI/ARBs.(220) However, their study was underpowered. A systematic review and meta-

analysis recently published found that there was no evidence that ACEI/ARBs use 

affected the risk of COVID-19 infection, severity or mortality.(221) A large Swedish study 

which observed 1.4 million individuals, found that the use of ACEI/ARBs were not 

associated with increased risk of hospitalisation or from death from COVID-19.(222) This 

study acknowledged limitations where observational studies preclude establishing any 

causal relationship between exposures and outcomes. In addition to this, there were no 

data on clinical variables – BP, renal function, glycaemic control and variables associated 

with disease severity which may affect treatment decisions and study outcomes were 

unavailable. 
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In a population-based case-control study in Lombardy, Italy, Mancia et al. examined the 

potential association between the use of ARBs and ACEIs and the risk of COVID-19.(201) 

The study included 6272 confirmed COVID-19 patients and 30,759 matched controls, with 

a mean age of 68 years and 37% women in both groups. The use of ACEIs and ARBs 

was more common among COVID-19 patients, who also had a worse clinical profile. 

However, logistic regression analysis showed no significant association between the use 

of ARBs (adjusted odds ratio [aOR], 0.95; 95% CI, 0.86-1.05) or ACEIs (aOR, 0.96; 95% 

CI, 0.87-1.07) and COVID-19 risk. Similarly, there was no association among those with 

severe or fatal disease outcomes (aOR, 0.83; 95% CI, 0.63-1.10 for ARBs and aOR, 0.91; 

95% CI, 0.69-1.21 for ACEIs), and no differences were observed based on sex. The study 

concluded that ACEIs and ARBs do not affect the risk of COVID-19. 

Following this an international cohort study (Morales et al.) analysed electronic health 

records from Spain and the USA to determine if ACEI/ARBs were associated with 

increased COVID-19 susceptibility in hypertensive patients. (223)The study included 

1,355,349 antihypertensive users, comprising 363,785 ACEI or ARB monotherapy users, 

248,915 CCBs or thiazide diuretic (THZ) monotherapy users, 711,799 ACEIs or ARBs 

combination users, and 473,076 CCB or THZ combination users. The analysis found no 

association between COVID-19 diagnosis and ACEI or ARBs monotherapy (HR 0.98, 95% 

CI 0.84–1.14) or combination use (HR 1.01, 95% CI 0.90–1.15). ACEIs alone showed no 

significant risk difference compared to CCB or THZ monotherapy (HR 0.91, 95% CI 0.68–

1.21) or combination use (HR 0.95, 95% CI 0.83–1.07). A direct comparison of ACEIs with 

ARBs indicated a moderately lower risk with ACEIs in combination use (HR 0.88, 95% CI 

0.79–0.99), but not in monotherapy (HR 0.85, 95% CI 0.69–1.05). There were no 

significant differences between drug classes for risks of hospital admission with COVID-

19, pneumonia, or severe complications. The study concluded that ACEI/ARBs use does 

not increase COVID-19 risk, suggesting these medications should not be discontinued to 

reduce COVID-19 risk. 

In contrast, Jeffery et al. undertook a large retrospective cohort study to evaluate the 

clinical outcomes of patients with hypertension taking ACEI/ARBs compared to those on 

other hypertension medications after acute viral respiratory illness (AVRI) during the 2017-

2020 influenza and COVID-19 seasons in the USA.(224) The study included 1,059,474 

AVRI episodes, with 653,797 involving ACEI/ARB users and 405,677 involving users of 

other hypertension medications. The cohort was predominantly women (58.6%) and those 

aged 65 or older (72.9%). During the COVID-19 influenza season, the ACEI/ARB group 

experienced a larger increase in risk for inpatient stays (additional 1.5 percentage points, 
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95% CI 1.2 to 1.9), ICU/CCU use (0.3 to 2.7 pp), acute respiratory distress (0.7 pp, 0.1 to 

1.2 pp), and ARD syndrome (ARDS) (0.9 pp, 0.4 to 1.3 pp), compared to the pre-COVID 

influenza seasons. However, there was no statistically significant difference in absolute 

risk of death (-0.2 pp, 95% CI -0.4 to 0.1 pp), though the relative risk of death was higher 

in the 2019/2020 season for the ACEI/ARB group (1.40, 95% CI 1.36 to 1.44) compared 

to the other hypertension medication group (1.24, 95% CI 1.21 to 1.28). Despite these 

findings, the small absolute differences do not suggest a need for changes in clinical 

practice. 

Using data from the French National Health Insurance databases, Semenzato et al. 

followed three exclusive cohorts of ACEI, ARB, and CCB users aged 18 to 80 years from 

February 15 to June 7, 2020, to determine if the risk of COVID-19 varies by 

antihypertensive drug class.(225) Patients with a history of diabetes, cardiovascular 

disease, chronic renal failure, or chronic respiratory disease were excluded to focus on 

those with uncomplicated hypertension. The study population included nearly 2 million 

hypertensive patients (566,023 ACEI users, 958,227 ARB users, and 358,306 CCB 

users). Over the 16-week period, 2338 patients were hospitalised and 526 died or were 

intubated for COVID-19. The findings indicated that ACEIs and ARBs were associated 

with a lower risk of hospitalisation for COVID-19 compared to CCBs, with hazard ratios of 

0.74 (95% CI, 0.65-0.83) for ACEIs and 0.84 (95% CI, 0.76-0.93) for ARBs. Additionally, 

these drugs were linked to a lower risk of intubation or death, with slightly better outcomes 

for ACEI users compared to ARB users. This large observational study suggests that long-

term use of ACEIs or ARBs may be associated with a lower risk of severe COVID-19 

outcomes in hypertensive patients compared to CCBs, potentially challenging previous 

hypotheses and prompting new ones. 

These large studies highlight the complexities of interpreting observational data and 

underscore the need for cautious consideration of confounding factors. The consistent 

finding across these studies is the lack of evidence for increased risk associated with ACE 

inhibitors and ARBs in the context of COVID-19, provided early reassurance to guide 

clinical decisions during the pandemic. 

Observational studies on the association between antihypertensive drugs and COVID-19 

have provided initial insights but are inherently susceptible to biases that impact 

interpretation and evidence generation. Confounding bias, where variables correlate with 

both the exposure and the outcome, can create false associations or obscure real ones. 

Techniques like propensity score methods can partially address this by balancing 

covariates across treatment groups. Selection bias, resulting from unrepresentative 
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samples such as only including tested or hospitalised individuals, can be mitigated by 

using population-based methodologies and registry data. Collider bias, introduced by 

selecting participants based on criteria influenced by both exposure and outcome, can 

lead to spurious associations and should be avoided by not conditioning on variables 

within the causal pathway. Many studies also overlook dose variations and combination 

therapies, necessitating analyses stratified by dose and therapy type. Early studies 

focused on the pandemic's first wave may not apply to later stages or emerging variants, 

highlighting the need for ongoing monitoring and updated analyses. While observational 

studies rely on correlation, they cannot establish causation, which requires randomised 

controlled trials (RCTs). RCTs, however, are time-consuming, expensive, and may not 

represent real-world populations, also facing ethical constraints. To overcome these 

limitations, accurate causal inference from observational data is crucial. Advances in 

machine learning and deep learning offer new opportunities to enhance causal inference 

frameworks. These observational studies were valuable during the early pandemic stages, 

but more rigorous studies are needed to establish true relationships. 

1.9.4 Guidelines and Recommendations 

Early in the pandemic, there were several health organisations and societies issued 

guidelines recommending the continuation of ACEI or ARB therapy in patients already 

receiving these medications unless clinically contraindicated.  This was due to the social 

media amplification of disinformation which were based on speculation where the use of 

ACEI/ARB could increase the risk of COVID-19 infection and worsen disease led to 

confusion and panic in particular amongst hypertensive patients.(213) This eventually led 

to harmful behaviour, where patients stopped their medications abruptly on their own 

accord.(213) The British and Irish Hypertension Society (BIHS) advised that all patients 

who were taking ACEI and ARBs should continue to do so as there was currently no 

evidence on whether there is increase susceptibility to COVID-19 infection or reduce the 

risk of serious lung disease following infection.(226) They informed that patients could be 

put at risk by stopping these effective treatments for their current condition and are 

encouraged to continue taking their medications.(226) This was also echoed by the 

International Society of Hypertension and the European Society of Hypertension where 

they affirmed the above and added that it was pertinent to ensure that management of 

raised BP is important to reduce cardiovascular risk and may improve outcomes among 

those infected by COVID.(227) 

Following the social media amplification that common antihypertensive medications in 

particular ACEIs and ARBs that patients with hypertension should stop taking these 
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medications. This led to the Council of Hypertension of the European Society of 

Cardiology informed that there was lack of evidence which supported the notion of the 

harmful effect of ACEI and ARB in the context of the pandemic COVID-19.(228) They 

strongly recommended that treatment should be continued with current anti-hypertensive 

therapy as there is currently no robust evidence that the treatment should be 

discontinued.(228) A joint statement given by the American Heart Association, Heart 

Failure Society of America and the American College of Cardiology stated that the use of 

ACEIs and ARBs should be continued as prescribed in those with COVID-19. (229) 

1.10 General Reflections on COVID-19 pandemic in the 

context of previous pandemics 

The COVID-19 pandemic, much like historical global health crises, has exerted 

unprecedented pressure on healthcare systems worldwide, echoing challenges 

encountered in past pandemics. Healthcare systems have faced substantial challenges 

including surges in patient numbers, critical shortages of medical supplies, and significant 

attrition among healthcare workers. This situation has been particularly severe in lower- 

and middle-income countries where the diversion of resources from non-communicable 

diseases and ongoing infectious disease control efforts has had profound impacts. These 

challenges have tested the resilience of healthcare infrastructures and emphasised the 

need for flexible and collaborative crisis management strategies.  

The economic repercussions of the pandemic have been severe, mirroring the 

socioeconomic disruptions observed in previous pandemics. Lockdowns and quarantine 

measures have led to business closures, widespread unemployment, and disruptions in 

global supply chains, exacerbating existing social inequities and vulnerabilities. Amidst 

these challenges, the use of social media has emerged as a double-edged sword, playing 

a complex role serving as both an important communication lifeline and a breeding ground 

for misinformation, complicating efforts to control the pandemic.  

Moreover, the urgency of the situation has catalysed clinical research speeding up trials 

for treatments and the development and distribution of vaccines in a remarkable display of 

global cooperation. Additionally, emerging evidence suggests a link between COVID-19 

and new-onset hypertension, suggesting an increased future cardiovascular burden and 

complicating the management of all the other health ramifications.  

Despite these obstacles, the COVID-19 response has drawn from past pandemic insights, 

highlighting the critical role of historical knowledge in formulating effective containment 



58 

 

 

 

and mitigation strategies. This reflection emphasises the necessity to address several 

research gaps and future directions. Key areas include exploring the mechanisms of new-

onset hypertension following COVID-19 infection, investigating long-term cardiovascular 

outcomes, assessing the impact of COVID-19 on individuals with pre-existing 

hypertension, and examining the role of antihypertensive therapy. Additionally, there is a 

pressing need to evaluate the impact of COVID-19 vaccinations on patients with 

hypertension, to explore healthcare access and management strategies during and after 

the pandemic, to address social determinants and disparities in health, and to develop 

effective prevention and public health strategies to mitigate cardiovascular complications.  

Continuing efforts to leverage collective insights and foster innovative solutions that 

prioritise public health and economic stability is crucial. These efforts will not only enhance 

the management of the current pandemic but also improve global preparedness for future 

pandemics. By integrating lessons learned from the COVID-19 crisis and implementing 

strategies that address both healthcare and economic challenges, the global community 

can build more resilient systems capable of withstanding future public health 

emergencies. This approach will ensure a coordinated and efficient response that 

minimises the impact on human health and the global economy, positioning us better for 

any similar challenges ahead. 

1.11 Research Gaps and Future Directions 

Identifying and addressing research gaps in the context of hypertension and COVID-19 is 

important for advancing our understanding of the disease's pathophysiology, improving 

patient care, and developing targeted interventions. Multidisciplinary collaboration and 

innovative research approaches are essential. Below are the prioritised areas for future 

research: 

Mechanisms of New-Onset Hypertension and Long-Term 

Cardiovascular Outcomes 

Research should focus on confirming the link between COVID-19 and new-onset 

hypertension, exploring the pathophysiological mechanisms such as endothelial 

dysfunction, RAAS dysregulation, and the impact of viral persistence on cardiovascular 

health. Additionally, longitudinal studies are needed to assess the long-term 

cardiovascular outcomes of COVID-19 survivors, particularly those with new-onset 

hypertension. These studies should examine the progression of hypertension, subsequent 

cardiovascular diseases, and impacts on mortality and morbidity. 
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Impact of COVID-19 on Pre-existing Hypertension and 

Antihypertensive Therapy 

Further investigation is required to determine how COVID-19 affects BP control in patients 

with pre-existing hypertension and its implications for cardiovascular risks and outcomes. 

There is also a need to evaluate the efficacy and safety of antihypertensive agents, 

including ACEIs and ARBs, in COVID-19 patients, to identify optimal hypertension 

management strategies. 

Role of Antihypertensive Therapy on COVID-19 

While current evidence suggests that ACEIs and ARBs do not worsen COVID-19 

outcomes, there is limited data from randomised controlled trials. Furthermore, the impact 

of evolving viral variants and vaccination is unknown. Future studies should examine the 

efficacy and safety of different antihypertensive agents in the risk of COVID-19 and its 

sequelae. 

Vaccine Impact on Hypertensive Patients and Healthcare Access 

As the global COVID-19 vaccination rollout continues, research should assess its efficacy 

and safety in hypertensive patients, including potential effects on BP and cardiovascular 

risk. Concurrently, the pandemic's impact on healthcare access and hypertension 

management needs to be addressed. Studies should evaluate the effectiveness of 

telemedicine and remote monitoring, identify barriers to effective care, and develop 

mitigation strategies. 

Social Determinants, Disparities and Public Health Strategies 

COVID-19 has underscored significant health disparities, necessitating research into how 

social determinants of health affect hypertension management and outcomes. This 

includes the impact of socioeconomic factors, race, and ethnicity on hypertension risk and 

care accessibility. Research into effective prevention and public health strategies is also 

critical to mitigate the risk of COVID-19 and its cardiovascular complications, with a focus 

on lifestyle factors like diet and physical activity to prevent new-onset hypertension and 

optimise cardiovascular health post-infection. 
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Chapter 2 Thesis Objectives 

The primary aim of this thesis is to address key gaps in our understanding of the interplay 

between COVID-19 infection, RAAS dysregulation, and hypertension. This work is 

intended to contribute to the formulation of enhanced clinical management strategies and 

the development of public health policies aimed at reducing the cardiovascular 

consequences of the COVID-19 pandemic. 

Objective 1: Examining the Association Between COVID-19 and Future Risk of 

Hypertension. This objective seeks to determine whether COVID-19 infection leads to an 

increased risk of developing hypertension post-recovery. I carried out a clinical 

phenotyping study which is a prospective follow-up of non-hypertensive individuals post-

COVID-19 recovery, assessing blood pressure and endothelial function periodically over a 

12-month period using ambulatory blood pressure monitoring and brachial flow mediated 

dilatation. 

Objective 2: The Association Between RAAS Dysregulation and Hypertension Post-

COVID-19. This objective focuses on elucidating the role of RAAS dysregulation in 

contributing to heightened hypertension risk following COVID-19 infection. This research 

will analyse RAAS pathway components and blood pressure changes in the cohort 

established in Objective 1, employing techniques such as RAAS fingerprinting over the 

same 12-month follow-up period. 

Objective 3: Assessment of quality of life in individuals who have recovered from 

COVID-19. This objective seeks to determine if whether individuals post COVID-19 have 

any differences in QoL utilising EQ-5D-3L instrument (EQ-5D-3L Index and Visual Analog 

Scale (VAS) scores) 

Objective 4: The evaluation of Transformer-Based Counterfactual Estimation of 

Individual Treatment Effects - Analysis of Angiotensin Converting Enzyme 

inhibitors (ACEIs) and risk of SARS-CoV-2 infection. This objective is to examine how 

the use of various antihypertensive drug classes prior to infection influences the risk of 

SARS-CoV-2 infection. This will involve longitudinal studies using machine learning 

techniques to analyse linked electronic health records, focusing on the long-term effects of 

antihypertensive drugs, while adjusting for confounding variables such as age, existing 

comorbidities, and other medications. 
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Chapter 3 General Methods 

This chapter is arranged as per the thesis objectives and closely describes the general 

methods used based on the sequence of the chapters and sections in this thesis. The 

general approach and methods to address the overall objectives are presented here, 

additional details, particularly those specific to individual result chapters are provided in 

detail in the dedicated chapters.  

3.1 Methods for Chapter 4: Clinical Phenotyping Study 

(Addresses Objective 1 and 2) 

In this section, I shall describe the methods for recruitment, phenotyping, follow-up and 

data collection for the Longer-term effects of SARS-CoV-2 infection on blood vessels and 

blood pressure (LOCHINVAR) clinical phenotyping study (Chapter 4). The study design 

has been published previously.(230) The details of statistical analyses are presented in 

the methods section of Chapter 4. 

Data sources, preparation, collection, management and retention 

All patients will be assigned a unique study identifier which will not contain any identifiable 

information.  Patients in Scotland has a unique community health index (CHI) number. 

Where linkage is required the key to CHI identification will be kept separate and only on 

an NHS computer. Data will be recoded in CASTOR EDC (www.castoredc.com) electronic 

case report forms (eCRF) held centrally on their ISO 27001 certified data management 

system. CASTOR EDC have been vendor assessed by the study sponsor NHSGG&C in 

accordance with regulatory guidelines. CASTOR EDC complies with all applicable laws 

and regulations, including ICH E6 Good Clinical Practice (GCP), 21 CFR Part 11, EU 

Annex 11, General Data Protection Regulation (GDPR), HIPAA (US), ISO 9001 and ISO 

27001. Data entry will be completed by either the study nurse, clinical fellow or an 

investigator.  Data will be validated at the point of entry into the eCRF and can be checked 

by sponsor audit if required. To enable evaluations and/or audits from regulatory 

authorities, records will be kept, including the identity of all participating subjects (sufficient 

information to link records), all original signed informed consent forms, source documents, 

and detailed records of treatment disposition in accordance with ICH GCP and local 

regulations. All samples will be retained by the investigators.  Data will be retained for a 

minimum of 20 years. 
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Study Population and Recruitment 

Participants who were admitted to the Queen Elizabeth University Hospital (QEUH) 

immediate assessment and acute receiving units from 1 September 2020 and 31 

December 2020 who presented with COVID-19 or non-COVID illness requiring 

hospitalisation. The participants were identified via clinical case note review of all patients 

during this time period. Anonymous data (using study ID) for the case note review and 

phenotyping study will be held within CASTOR EDC. 

Approval was obtained from NHS Information Governance (Caldicott Guardian) to obtain 

data from case note review and invite letter to be sent to potential participants and Safe 

Haven LPAC (data deposit and linkage). Identifiable data of participants taking part in the 

clinical phenotyping study which includes consent forms and patient letters 

correspondence will be stored in the Glasgow Clinical Research Facility (GCRF) at the 

QEUH. Identifiable data in electronic form will be stored on a password protected NHS 

computer. No patient identifiable data will leave the NHS premises or computers. Physical 

study documents will be stored in a locked filing cabinet within an NHS office with 

controlled access. The site file will be archived via the NHS R&I office. Each participant 

will be given a unique identifier which is LVXXX, the similar unique identifier will be used 

for CASTOR and specimens taken. For the different visits in the study the unique identifier 

will be LVXXX.Visit_Number to avoid any discrepancies in specimen processing. 

COVID-19 Blood Pressure Endothelium Interaction (OBELIX) Study: Participants, 

Methodology and Key Findings 

In Glasgow, the COVID-19 Blood pressure EndotheLium Interaction (OBELIX) study was 

carried out in non-hypertensive patients ≥12 weeks after admission to the Queen 

Elizabeth University Hospital between 1 April 2020 to 31 May 2020 with 

suspected/confirmed COVID-19 or with confirmed non-COVID-19 related condition 

(clinicaltrials.gov NCT04409847).(231) The study compared 30 non-hypertensive patients 

exposed to SARS-CoV2 and 18 contemporaneous controls, the study showed higher 

ABPM in the cases compared to controls (SBP 24-hour (beta [95%CI]: 8.6 [0.9-16.3]; 

p=0.03), SBP daytime (8.6 mmHg [1.5-17.3]; p0.02), DBP day-time (4.6mmHg [0.1-9.1]; 

p0.05) and lower plasma renin and Ang-1-10 (-0.4[-0.9-0.1]; p=0.08; -0.7[-1.2 - -0.1]; 

p=0.02 respectively). Paired analysis of hospital discharge office BP and study visit 

showed an 11mmHg difference in SBP between groups (11.5[3.12];19.8; p=0.008). 

Participants from the OBELIX study were invited to take part in the LOCHINVAR study for 

a follow up visit. 
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Data variables collected from clinical case note review 

Data variables collected from the clinical case note review will be entered into CASTOR 

EDC. Data on baseline demographics which include, anthropometric measures (height, 

weight, BMI), age, sex, ethnicity, smoking status and alcohol intake. From the admissions 

details, data on temperature, heart rate, hospital BP (systolic BP (SBP) and diastolic BP 

(DBP)), oxygen saturations, respiratory rate. We also collected data on presenting 

symptoms and duration of symptoms (fever, cough, dyspnoea, fatigue, myalgia, chest 

pain, gastrointestinal disturbance, loss of smell, loss of taste and cutaneous symptoms). 

Details on SARS-CoV-2 test and result was collected and relevant imaging investigations 

(chest x ray, abdominal x ray, computerised tomography scan, magnetic resonance 

imaging scan, ultrasound scan) and relevant cardiac investigations (electrocardiogram, 

echocardiogram) if indicated. Data pertaining to any critical care admission including 

details on ventilatory support and outcomes (death/discharge) was collected. The hospital 

admission outcome was also collected on whether the patient was discharged to home or 

care facility or other. Medication and prescription data was collected.  

Eligibility for clinical phenotyping study 

From the clinical case note review, participants who are potentially eligible for the clinical 

phenotyping study will be identified during the case note review. This will be based on the 

inclusion and exclusion criteria explained in Table 5. The participants if deemed eligible 

will be sent an invite, advert and participant information leaflet for the study. There will be 

recruitment of potential participants as controls using advert. Interested participants will 

contact the clinical research fellow (myself) if they wish to take part and they will be sent a 

patient information sheet about the study.  

3.1.1 Recruitment strategies for the clinical phenotyping study 

Due to the dynamic nature of the COVID-19 pandemic, the first year of the PhD was 

focused on the clinical phenotyping study to ensure there were enough participants 

recruited at baseline. The study design defined clear inclusion and exclusion criteria, but 

case control matching was not included. The reason for not including case-control 

matching was because this would add additional complexity to the recruitment and risk 

study failure due to not attaining target recruitment within the funded study period. There 

was a need to adapt analytic strategies which is described in Chapter 4 in more detail. 

3.1.2 Clinical phenotyping study visits  

Participants who have agreed to take part in the clinical phenotyping study will be 

screened to determine eligibility and consent will be obtained. (Figure 5) The data 
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collected from the phenotyping study visits (baseline and 12 months) will be entered into 

CASTOR EDC. 

Table 5 Inclusion and Exclusion Criteria 

Inclusion Criteria 

SARS-CoV-2 Positive Group 

 Age 30-60 years. 

 Admission between 1 September 2020 to 31 December 2021. 

 Clinically suspected or PCR confirmed COVID-19 on admission. 

 No history of hypertension or current drug treatment for hypertension. 

SARS-CoV-2 Negative Group 

 Age 30-60. 

 No history of hypertension. 

 No antihypertensive drugs. 

 Confirmed RT-PCR negative and admission through QEUH immediate 
assessment unit and acute receiving units 1 April 2020 to 31 December 2021 or 
no history of SARS-CoV-2 infection or COVID-19. 

Exclusion Criteria 

Inability to give informed consent/lack of capacity. 

Non-English, Arabic, Polish or Urdu speakers. 

BMI >40. 

eGFR <60 ml/min. 

Pregnancy. 

History of 

 Cancer within 5 years 

 Persistent atrial fibrillation 

 Severe illness, at investigator discretion 

Prescription of  

 BP lowering drugs 

 Oral Corticosteroid (chronic use) 

 Immunosuppressive agents 

 Oral NSAIDs (chronic use)  

3.1.3 Sampling Procedures 

3.1.3.1 Sampling Procedures 

Blood Sampling Procedures 

Venepuncture will be performed from the antecubital fossa with the limb in a downward 

position. Blood collection will be conducted using the BD Vacutainer® Push Button Blood 

Collection Set or BD Vacutainer® Safety-Lok™ Blood Collection Set. Other sites and 

needle sizes may be used if required. The blood draw will be in the appropriate blood 

bottles in the following order SST tube, EDTA tube and sodium citrate.  

Sampling and Sample Tube Labels 

All samples that are ordered through Trakcare for routine blood tests available will have 

the patient details. Routine clinical biochemistry and haematology samples are sent to the 

local NHS laboratory using the hospital pod system to the laboratory.  The results from 
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these tests will be entered into CASTOR EDC based on their allocated patient 

identification number in an anonymised form.  

For samples that are not ordered through Trakcare (RAAS fingerprinting, future vascular 

biomarkers) this would be labelled with the study ID (LOCHINVAR), participant ID 

(VPLVXXX.Visit Number), date/time, staff initials, and sample identity as above. A 

laboratory information management system (LIMS) will be employed with samples stored 

in a linked anonymised form.   

Indication for laboratory blood tests 

Biochemistry and haematology results were collected to include parameters potentially 

reflecting the systemic effects of COVID-19. These tests, conducted as part of the COVID-

19 study, aimed to assess complications associated with the disease. (Table 6) While not 

intended for hypothesis testing, these results served as baseline data to assess general 

background patient health and any changes post COVID-19. This analysis would help 

decide plans for future follow-on studies. 

RAAS Fingerprint 

Samples taken for RAAS fingerprinting (Attoquant Diagnostics, Vienna, Austria) and future 

biomarkers are centrifuged and serum is separated into 1ml aliquots (9 aliquots in total) 

and then stored in a -80°C freezer. Future biomarkers will be transported to the BHF 

Glasgow Cardiovascular Research Centre. 

The samples for RAAS Fingerprint were shipped to Attoquant Diagnostics, Austria 

following completion of all baseline visits. The methods for RAAS Fingerprint were 

provided by Mr Oliver Domenig of Attoquant Diagnostics which is described below. 

Equilibrium concentrations of angiotensin peptides (Ang II, Ang 1-7, Ang I, Ang 1-5) and 

aldosterone were quantified in serum samples by liquid chromatography-mass 

spectrometry/mass spectroscopy performed at a commercial laboratory (Attoquant 

Diagnostics, Vienna, Austria), using previously validated and described methods after ex 

vivo equilibration. (254-256) Briefly, samples were spiked with a stable isotope-labelled 

internal standard for each angiotensin and a deuterated internal standard for aldosterone 

(aldosterone D4) after equilibration, and analytes were extracted using C18-based solid-

phase extraction. Extracted samples were analysed using mass spectrometry analysis 

with a reversed-analytical column (Acquity UPLC C18, Waters) operating in line with a 

XEVO TQ-S triple quadrupole mass spectrometer (Waters Xevo TQ/S, Milford, MA) in 

multiple reaction monitoring mode. Internal standards were used to correct for analyte 
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recovery across the sample preparation procedure in each individual sample. Analyte 

concentrations were calculated from integrated chromatograms considering the 

corresponding response factors determined in appropriate calibration curves in serum 

matrix when integrated signals exceeded a signal-to-noise ratio of 10. The lower limits of 

quantification for the analytes in human serum were 3 pmol/L (Ang I), 2 pmol/L (Ang II), 3 

pmol/L (Ang1-7), 2 pmol/L (Ang1-5), and 13.9 pmol/L (aldosterone), respectively. 

Angiotensin-based markers for renin (PRA-S) and angiotensin converting enzyme (ACE-

S), were derived from Ang II and Ang I concentrations by calculating their sum and ratio, 

respectively, whereas the ratio of aldosterone/Ang II (AA2) was calculated to assess 

adrenal responsiveness after Ang II signalling resulting in the release of aldosterone. 

Urine sampling  

For urine samples, the participant will be provided two white top urine collection pots 

with/without a foil bowl. The participant was asked to wash their hands before and after 

the urine collection. The participant is advised to provide a mid-stream sample. The urine 

sample will be dipped for analysis before processing. The urine sample will be divided into 

3x 1ml aliquots and stored in the -80oC freezer.  A summary of sample collection is shown 

in Table 6. 

Action on blood results 

All routine and additional blood results were reviewed within 5 days of being resulted by 

me.  All abnormal results were reviewed by me and will be acted upon if deemed 

necessary. 

3.1.4 Study Procedures 

3.1.4.1 Office Blood pressure (oBP) 

Office BP (oBP) which is clinic BP will be measured as per the BIHS guidelines.(232) The 

patient will be seated for at least five minutes, relaxed and not moving or speaking.  oBP 

is measured in both arms; the arm with the highest oBP is selected.  oBP is then repeated 

a further 2 times, at least one minute apart, and the mean of readings 2 and 3 will be 

used. The appropriate cuff size will be used depending on brachial arm circumference. 

3.1.4.2 Ambulatory blood pressure monitoring (ABPM) 

Ambulatory blood pressure monitoring (ABPM), using Spacelabs 90217 ABPM will be 

performed following BIHS guidelines.(232) Patients will undergo ABPM for 24 hours with 

readings every 30 minutes during the daytime (0800-2159) and every 60 minutes during 

night-time (2200-0759). ABPM will be valid if 14 measurements are made during the 
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daytime as per BIHS guidance. The appropriate cuff size will be used depending on 

brachial arm circumference. 

Table 6 Summary of sample collection for every study visit 

Sample Sample Collected Total 
Volume 

Label 

Routine Haematology and Biochemistry  

Blood – 4 ml Serum Separator Tube (Gel) 

Yellow top x 1 

SARS-CoV-2 IgG  
Antibody test 

5 ml Paper Form 

Blood – 4 ml Serum Separator Tube (Gel) 

Yellow top x 1 

Urea and electrolytes, 
magnesium, bone 
profile, liver function 
tests, lipid profile, 
haematinics 

 

5 ml Trakcare 

Blood – Potassium EDTA 

Purple Top x 3 (2ml in each) 

 

 

Full blood count,  
Renin/Aldosterone, 
Glycosylated 
haemoglobin (HbA1c) 

6 ml 

Blood – Sodium Citrate x 1 Coagulation Screen 5ml 

Blood – Fluoride/oxalate 

Grey Top x 1 

Glucose 1 ml 

RAAS Fingerprinting 

1 x 4ml Serum Separator Tube (Gel) 
Yellow (RAAS fingerprinting) 

https://www.attoquant.com/faq/#sampling 

RAAS Fingerprinting 

serum SST 3x 1ml 
aliquots 

4mls VPLVXXX.Vi
sitNumber* 

Future Biomarkers (Blood and Urine) 

Vascular Biomarkers 

Blood – 1x9ml purple, 1 x yellow top (5ml) Future Biomarkers 14 ml VPLVXXX.Vi
sitNumber* 

Urine 

Urine (universal container) x 1 x (10ml) 
containers 

Urine Biomarkers 

 

Approx. 
10ml 

Urine 3x 
1ml 
aliquots 

VPLVXXX.Vi
sitNumber* 

24 hr Urine Collection 

 

Urine Sodium 10 ml of 
urine will 
be 
stored, 2 
L for 
analysis 
of 24 hr 
urine 
sodium 

Trakcare 

VPLVXXX.Vi
sitNumber * 
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Setting up the 24 hour ABPM before use 

The ABPM monitor will be fitted with 4 AA batteries. The ABPM will be connected to a 

computer with the computer interface cable which has Cardio-Navigator software.  A new 

patient folder will be created by entering the mandatory subject ID, patient number, patient 

initials, D.O.B and gender fields. The configuration for the ABPM monitor will be set up to 

determine the start time, time intervals (day and night), display pressure and limits as per 

study protocol. The configuration settings will be sent to the ABPM monitor. The ABPM 

monitor will be disconnected from the PC. This will be as per manufacturer guidelines 

(Spacelabs Medical, Inc Instruction Manual Model number 90207/90217) 

Preparation for patient use 

A record of the monitor ID number and patient details will be kept with the relevant study 

documentation and labelled with the participant’s LOCHINVAR ID.  The ABPM monitor will 

be fitted, with instructions/documentation provided to the participant. 

Completion of ABPM  

Following completion of the ABPM, the patient is encouraged to return the ABPM monitor 

the next day by dropping it off at the clinical research facility or a taxi to collect the device 

can be arranged. 

3.1.4.3 Brachial flow-mediated dilation (FMD) 

Brachial flow mediated dilatation (FMD) of the forearm arteries will be used to assess 

endothelial function. This technique is the most widely used non-invasive method of 

assessing endothelial function and is considered as the gold standard for non-invasive 

assessment of peripheral vasoreactivity. This technique relies on brachial artery imaging 

with high resolution ultrasound during a period of reactive hyperaemia.   

Training 

I received training to use the UNEXEF38G prior to the commenced on the study by an 

experienced operator Joanne Flynn and received an educational session from Mr Achim 

Schwarz (General Manager, UNEX system). I was deemed competent to conduct the 

FMD procedure independently. 

Equipment, setting and test duration 

The equipment that is required will be the ultrasound machine (UNEXEF38G). The 

operation manual UNEXEF38G which will be used in conjunction. The machine is used in 

conjunction with a BP monitor and ultrasound jelly. The duration of test will last 

approximately 20 minutes, with a 10-minute set up and baseline recording, 5 minutes for 
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occlusion and post-occlusion respectively.  The FMD procedure will be conducted on the 

patient couch in the clinical research facility room with curtains to ensure privacy. The light 

will be slightly dimmed to allow clear visualisation of the UNEXEF38G screen. 

Information provided to participants 

The participant undergoing the test will be informed that there may be feel some arm 

discomfort at the site of cuff inflation which may be slight numbness and tingling. When 

the cuff is deflated, the arm can feel tingly and hot. The participant will be reassured that 

this is a safe and well tolerated procedure.  

Standard operating procedure 

The participant is asked to lie supine with their arm outstretched for 10 minutes. A BP cuff 

is placed on the forearm. ECG clips are applied on each wrist (red clip on the right, green 

on the left). Brachial BP is measured on the left arm. In the measurement tab, the details 

for patient ID, initials, birth date and gender will be entered. A new registration is started 

and the FMD procedure is commenced. The brachial artery is identified in the short axis 

using the ultrasound probe.  It is important to obtain a clear longitudinal image as possible 

with the intima visible. Once the image of the artery is obtained with good clarity based on 

operator’s discretion, the centre of the artery is tapped in the short axis images which will 

activate the automatic tracking. The automated tracking system will adjust the probe 

position. A baseline (rest) image is obtained for 3 minutes, and flow velocity is recorded. 

When the baseline image has been obtained, ask the participant to lie still and commence 

the arterial occlusion. The cuff is occluded for 5 minutes. At the end of this 5-minute 

period, the cuff is deflated. The machine will start to measure the max diameter is 

measured automatically when the cuff pressure becomes 0 mmHg. When 1 minute is left 

on countdown, the machine will autotrack to tidy up the image and ensure clear as 

possible for ongoing measurements.  It will measure “base diameter” during this minute.  If 

the machine autotracks off the image, it will be able to refocus by clicking on the centre of 

the short axes again.  

Data collection  

The FMD procedure will end and provide automated outputs for %C-FMD, %FMD/L-FMC, 

Rest Diameter (mm), Base Diameter (mm), Max Diameter (mm), vasodilation amount 

(seconds), maximum blood flow rate (seconds) and basal intimal wall thickness (bIMT, 

mm).  
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Additional manual quality checks and analysis were performed by a single operator (SL) 

where required. The %FMD is calculated as [(Max Diameter-Rest Diameter)/Rest 

Diameter]*100. 

The result will be saved on a secure password protected USB stick and will be 

documented on CASTOR EDC based on the participant allocated LOCHINVAR ID. Details 

on the FMD procedure including cuff inflation pressure, test arm, completion of protocol, 

documentation of adverse event will be documented on the CASTOR EDC eCRF form.  

6-Minute Walk Test (6MWT) 

The original purpose of the 6-minute walk test (6MWT) was to assess exercise tolerance 

in patients with chronic respiratory disease and heart failure however the use has 

expanded to be used as a performance-based measure of functional exercise capacity in 

other populations. Level of shortness of breath and fatigue using the Borg scale, BP, 

oxygen saturations and heart rate will be measured pre and post 6MWT. This procedure 

has been modified from the ATS and the Australian Lung Foundation/Australian 

Physiotherapy Association guidelines. (233, 234) 

Training 

Prior to the study starting, I received training from the respiratory physiotherapists and 

clinical research nurses and respiratory physiotherapists who are experts in conducting 

6MWT at the Golden Jubilee National Hospital. I was deemed competent to conduct the 

6MWT independently. 

Equipment, setting and test duration 

The equipment required for the 6MWT will include a countdown timer, two small cones to 

mark the turnaround points, clipboard with a 6MWT proforma, Borg scale, BP machine, 

pulse oximeter and access to oxygen and telephone in case of emergency. 

Before the participant starts, the participant will be asked if they have any symptoms of 

unstable angina or cardiac event in the last month and a routine set of observations are 

taken to ensure there are no contraindications to the 6MWT (resting heart rate >120 bpm, 

SBP>180 mmHg, DBP > 100 mmHg, stable angina).  I will be the one supervising the test 

will ensure that it is a safe location where there is appropriate access to the emergency 

trolley. I am certified in cardiopulmonary resuscitation in Advance Life Support by the 

Resuscitation Council (UK) – approved cardiopulmonary resuscitation course. The test will 

be stopped if there are any clinical concerns about the participant’s health. The test will 

last at least 30 minutes. 
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Standard operating procedure 

The track will be 30 metres in length with turn around points marked with a cone. The 

starting line will be informed to the participant. The participant should rest for at least 15 

minutes before beginning the 6MWT.  After the subject has been at rest for 15 minutes, 

obtain and record measurements of BP, heart rate, oxygen saturation and Borg dyspnoea 

and fatigue scores. The participant is demonstrated the walking track. The lap counter will 

be set at zero, and the timer to 6 minutes (or stopwatch to zero). 

Standardised phrases will be used as specified below: 

"The object of this test is to walk as far as possible for 6 minutes. You will walk back and 

forth in this corridor. Six minutes is a long time to walk, so you will be exerting yourself. 

You may get out of breath or feel exhausted. You are permitted to slow down, to stop, and 

to rest as necessary. You may lean against the wall while resting, but resume walking as 

soon as you are able.  

You will be walking back and forth around the cones. You should pivot briskly around the 

cones and continue back the other way without hesitation. Now I'm going to show you. 

Please watch the way I turn without hesitation."  

"Are you ready to do that? I am going to use this counter to keep track of the number of 

laps you complete. I will click it each time you turn around at this starting line. Remember 

that the objective is to walk as far as possible for 6 minutes but don't run or jog.  

Start now, or whenever you are ready."  

The timer will start when the participant begins to walk with monitoring for any untoward 

signs and symptoms during the duration of the test. If the participant stops prior to the test 

being completed, the participant is asked why they stopped and reason, the time recorded 

for duration stopped, and if the patient wishes to continue or abandoned the test, the 

distance, time stopped and reason will be documented. 

The following standardised phrases are used below during each minute of the test: 

At minute one: “You are doing well. You have five minutes to go.” 

At minute two: “Keep up the good work. You have four minutes to go.” At minute three: 

“You are doing well. You are halfway done.” 
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At minute four: “Keep up the good work. You have only two minutes left” At minute five: 

“You are doing well. You have only one minute to go.”  

When the timer is 15 seconds from completion, the clinical research fellow (myself) will 

say:  

"In a moment I'm going to tell you to stop. When I do, just stop right where you are and I 

will come to you".  

When the time reaches exactly 6 minutes, the clinical research fellow (myself) will say:  

"Stop!". Consider taking a chair over to the subject if they look exhausted. Mark the spot 

where they stopped by placing a marker on the floor.  

Once the test has finished, the participant is invited to sit down. Immediately, oxygen 

saturation, heart rate, Borg dyspnoea and fatigue rating is recorded. BP is also measured.  

The total of the number of lengths/laps walked is counted. The tally of the total distance 

walked by the subject, rounded to the nearest metre, and record on the proforma and 

documented on CASTOR EDC. 

Borg Dyspnoea and Breathless Scale  

The Borg dyspnoea and breathless scale is used at the beginning and at the end of the 

6MWT. (Table 7) The scale is shown to the subject and standardised phrases are used to 

ask their level of breathlessness and fatigue. 

Table 7 Borg Scale 

SCALE SEVERITY 

0 None 

0.5 Very very slight (just noticeable)  

1 Very slight 

2 Slight 

3 Moderate 

4 Somewhat severe 

5 Severe 

6  

7 Very severe 

8  

9 Very very severe (almost maximum) 

10 Maximum 

Standardised phrases that will be used are: 

“Please grade your level of shortness of breath using this scale” 
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Then this is asked: “Please grade your level of fatigue using this scale” 

At the end of the exercise, the participant is reminded the number they previously chose 

before the 6MWT and the participant is asked to grade their shortness of breath level 

again. The participant is then ask to grade their level of fatigue, after reminding them of 

their grade before the 6MWT.  

Data collection 

Data from the 6MWT procedure will be entered into CASTOR eCRF for the screening 

assessment. Prior to commencing the test, data on clinical observation parameters at 

baseline will include oxygen saturation, heart rate, the baseline dyspnoea and fatigue 

BORG scale and BP. 

At the end of the test, clinical observations are measured including the completion 

dyspnoea and fatigue Borg scale and BP.  

The total of the number of lengths/laps walked is counted. The tally of the total distance 

walked by the subject, rounded to the nearest metre, and record on the proforma will be 

entered into CASTOR EDC. 

The optional procedures for the LOCHINVAR study is described below: 

3.1.4.4 Home blood pressure monitoring (HBPM) 

Home blood pressure monitoring (HBPM) will be performed using OMRON M3 device in 

accordance with BIHS guidelines.(232) Readings will be recorded, in triplicate, morning 

(0600-1200) and evening (1800-0000) for seven days. The first day’s readings will be 

excluded from the mean. A minimum of 5 sets of morning and evening readings will be 

required for HBPM to be valid within a 10-day period.  

3.1.4.5 24-hour Urine Collection 

A 24-hour cannister and an instructions sheet will be provided to participants to perform a 

24-hour urine collection. The volume of 24-hour urine collected will be measured and 10 

mls from the 24-hour urine sample will be aliquoted for storage while the rest will be 

processed in the local NHS laboratory for measurement of urine electrolytes. 

3.1.5 Data Outputs and Cleaning 

Following the completion of the last participant visit at 12 months. The data outputs from 

CASTOR EDC will be downloaded into an excel file format.  The data will have the list of 

all variables created in the study and list of all the option groups with the option group 
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names and values. The data was cleaned for analysis by ensuring that there were no 

implausible results (e.g indeterminate SARS-CoV-2 status, biochemistry values which 

were not within physiological range). Those with missing covariables were excluded; no 

imputation was performed. The code for analysis will be written in R on the Safe Haven 

platform. Data will be downloaded from CASTOR EDC will be following completion of last 

patient, last visit. 

3.1.6 Data Linkage with Previous OBELIX Participants. 

In the clinical phenotyping study, there will be participants that have taken part in the 

OBELIX study. The data will be extracted for analysis on Safe Haven, and this will be 

mapped to pre-existing OBELIX participant IDs. If an OBELIX participant attended the 

LOCHINVAR baseline visit, this will be re-coded as a 12 month visit. 

3.1.7 Study sponsorship, monitoring and audit 

The study is sponsored by the NHS GG&C and is coordinated in the GCRF. The study will 

be subject to audit by the Sponsor to ensure quality of study data and compliance with 

regulations. Any change in the study protocol will require an amendment which will be 

initiated by the Chief Investigator in discussion with the sponsor and will be ethically 

approved.  

3.2 Methods for Chapter 5: Quality of Life (Addresses: 

Objective 3) 

In this section, the methods used to assess Quality of Life in participants who have 

recovered from COVID-19 is explained here.  

3.2.1 EQ-5D-3L 

The EQ-5D-3L, developed by Williams in 2005, is a widely recognised instrument 

designed to assess health status, offering a comprehensive measure for evaluating and 

comparing health outcomes.(235) Its key purpose was to facilitate the calculation of 

quality-adjusted life years (QALYs), required for economic evaluations of healthcare 

interventions and policy-making in health. This instrument's uniqueness lies in its 

simplicity and the ability to assign a single summary value, known as EQ-5D values or 

values, to each possible health profile, utilising country-specific value sets.  

3.2.2 Components of EQ-5D-3L 

EQ-5D-3L consists of three primary elements: 
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1. EQ-5D Descriptive System and EQ-5D-3L Index (236, 237): This encompasses 

five dimensions of health—mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression, measured on a three-level scale (no problems, some 

problems, and extreme problems). The responses across these dimensions are 

amalgamated into a 5-digit code, representing the health state of an individual 

across the five assessed dimensions. To convert this health state code into a 

single summary index value (EQ-5D-3L Index), a country-specific value set is 

employed. Each value set contains weights assigned to different levels of severity 

in each dimension, reflecting the societal preferences for different health states. 

The index value is calculated by applying these weights to the individual's health 

state code, often incorporating adjustments for interactions between dimensions 

(i.e., if the presence of problems in multiple dimensions has a compound effect 

beyond the sum of individual dimensions' effects). 

2. Visual Analog Scale (VAS): The VAS component complements the descriptive 

system by capturing subjective assessments of overall health. Participants rate 

their health on a scale from 0 (worst imaginable health) to 100 (best imaginable 

health), providing an additional perspective on the perceived health-related quality 

of life (hrQoL). 

3.2.3 Uses and Applications 

Beyond its use in calculating QALYs for economic health evaluations, EQ-5D-3L's 

versatility extends to various domains. These include summarising EQ-5D profiles for 

statistical analysis, describing population health, comparing health across regions or over 

time, delineating illness severity, and prioritising treatments. Recently, its application has 

expanded into routine outcome measurements, assessing healthcare performance, and 

gauging healthcare systems' productivity. 

The EQ-5D-3L's major strengths lie in its brevity, generic nature, and the ability to provide 

a singular summary value for health profiles, enhancing its utility in economic evaluations 

and policy-making. Additionally, its design allows for broad applications across different 

health and policy contexts, making it a versatile tool in health assessment. 

Despite its strengths, EQ-5D-3L is not without limitations. Its value distributions can exhibit 

gaps, spikes, or clusters due to ceiling effects and the model's inherent design, potentially 

complicating data interpretation. Moreover, the three-level scale may not capture the 

nuances of health states as finely as desired, leading to a potential underestimation of 

health variations. 
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For analytical purposes, EQ-5D-3L data often require careful handling due to its specific 

distribution characteristics, such as skewness and the presence of ceiling effects. 

Statistical analyses typically involve the use of central tendency measures (mean or 

median), dispersion measures (SD, IQR), and shape (skewness, kurtosis). However, 

given the data's unique distribution, median values and non-parametric tests, like the 

Kruskal-Wallis test, are frequently employed for more accurate analyses. Additionally, 

graphical illustrations and advanced econometric techniques are utilised to handle 

heterogeneity and to extrapolate values across the health state spectrum. 

The final dataset comprised subjects with EQ-5D-3L assessments at both baseline and 12 

months. Prior to analysis, subjects with missing data in any of the dimensions were 

identified. Incomplete data at either time point were identified and excluded for the paired 

comparisons. Descriptive analyses were conducted to summarise the EQ-5D-3L Index 

and VAS scores at baseline and 12 months for both groups. Mean, SD, median, and IQR 

provided measures of central tendency and dispersion of the data, acknowledging the 

potential non-normal distribution of EQ-5D-3L values. 

3.2.4 Euroqol (EQ5D-3L) Questionnaire 

Permission to use the Euroqol (EQ5D-3L) Questionnaire was obtained from the Euroqol 

Research Foundation on the 21st of April 2021. Terms of use for using the Euroqol (EQ5D-

3L has been accepted and approved for use. The questionnaire was submitted for use 

with the ethics application for the clinical phenotyping study. 

At baseline and 12-month visits, the participant will be asked to complete the Euroqol 

(EQ5D-3L) questionnaire. (260).  

3.2.5 Data Collection 

Baseline data were collected through structured questionnaires administered in-person or 

online, depending on participant preference and pandemic-related restrictions. At 

baseline, demographic and clinical variables, including age, sex, body mass index (BMI), 

and comorbidities, were recorded. Follow-up data were collected 12 months later using 

the same structured format. Participants were reminded via email or phone to ensure high 

follow-up rates. 

3.2.6 Data Preparation 

Before analysis, data were cleaned and pre-processed to address inconsistencies and 

missing values. Missing data were managed differently for the full dataset and per 

protocol analyses. In the full dataset, missing values were assumed to occur at random, 
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and sensitivity analyses were conducted to assess their potential impact. The per protocol 

dataset excluded participants with missing data at baseline or follow-up, providing a 

stricter analysis of those who adhered to the study protocol. 

3.2.7 Statistical Analyses 

All statistical analyses were conducted using R software (version 4.4.1). Baseline 

demographic and clinical characteristics were summarised using descriptive statistics. 

Continuous variables were reported as means with standard deviations, while categorical 

variables were expressed as frequencies and percentages. Group differences at baseline 

were assessed using independent t-tests for continuous variables and chi-square tests for 

categorical variables. Fisher’s exact test was applied when expected cell counts were 

small.  

For longitudinal analyses, changes in EQ5D-VAS, EQ5D-Index, and EQ5DL dimensions 

from baseline to 12 months were analysed using mixed-effects models. These models 

included a fixed effect for SARS-CoV-2 status (positive or negative) and covariates such 

as age, sex, and BMI. Random intercepts for participant ID were included to account for 

within-participant correlations. To further evaluate group differences in change scores, 

linear regression models were used. Models adjusted for baseline scores to account for 

initial differences in health status. Separate models were run for the full dataset and per 

protocol dataset to assess robustness and consistency of the findings. 

For EQ5DL dimensions, logistic regression was applied to evaluate the likelihood of 

reporting problems in each dimension at baseline and 12 months. Change scores for each 

dimension were also analysed using linear regression, adjusting for covariates and 

baseline values. Sensitivity analyses were conducted to test the robustness of the models 

to potential confounders. 

Missing data were handled using complete case analysis for descriptive and regression 

analyses. Sensitivity analyses were performed using the per protocol dataset to examine 

the robustness of the findings. 

Analyses were performed using the lme4, broom. mixed, and dplyr packages in R. 

Visualization of results was conducted using ggplot2. Model assumptions were assessed 

using residual plots, and multicollinearity among predictors was evaluated using variance 

inflation factors. Statistical significance was set at p < 0.05. 
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3.3 Methods for Chapter 6: Evaluation of Transformer-

Based Counterfactual Estimation of Individual 

Treatment Effects - Analysis of Angiotensin 

Converting Enzyme inhibitors (ACEIs) and risk of 

SARS-CoV-2 infection (Addresses Objective 4) 

In this section I shall describe the methods for data extraction, data curation and machine 

learning estimation of individual treatment effects (ITE) for the studies presented in 

Chapter 6. The statistical analyses using ITE are presented in Chapter 6. 

3.3.1 Data source 

The cohort was identified from routinely collected patient episodes occurring between 1 

Jan 2014 and 31 December 2022 in NHS GG&C, the largest health board in Scotland, 

which provides services to 1.2 million people (approximately a quarter of Scotland’s 

population). The data are held in the West of Scotland Safe Haven (a Trusted Research 

Environment) and record linkage was used to combine data relating to the same patient.  

The Prescribing Information System collects data on all dispensed medications prescribed 

in the community, coded using the British National Formulary. The Scottish Morbidity 

Record 01 (SMR01) collects data on all hospitalisations including date of admission and 

diagnoses coded using the International Classification of Diseases 10 (ICD-10). Death 

certificates provide date and cause of death, also coded using ICD-10. The Scottish Index 

of Multiple Deprivation (SIMD) uses postcode of residence to derive a measure of area-

based deprivation from aggregated data collected in the census on employment, income, 

health, education, housing, crime, and access to local services. A lower number indicates 

a higher socioeconomic deprivation. The digital health records of diabetic patients are 

obtained from the Scottish Care Information - Diabetes (SCI-Diabetes) dataset. 

3.3.2 NHS Greater Glasgow and Clyde Safe Haven 

NHS GG&C Safe Haven with the Robertson Centre for Biostatistics provides a secure 

trusted research environment for data analysis and the opportunity to access various 

linked datasets for patients across NHS GG&C. NHS GG&C Safe Haven specialise in 

producing custom datasets linking patient cohorts and their routinely collected electronic 

health record data for clinical service and academic purposes. The NHS acts as the data 

custodian.  The datasets are available for linkage and access via a tier system. Tier 1 

datasets are available to all and are national collected datasets which are used in 
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everyday health care. Tier 2 datasets are locally/regionally generated by services for 

patient care and their use in research must be approved by the relevant data controller. 

Tier 3 datasets are NHS GG&C research databases.  

For this thesis, I submitted an application to use reference data sets, as with traditional 

datasets are reviewed by the Safe Haven Local Privacy and Advisory Committee (LPAC). 

All access is strictly controlled within the Safe Haven Trusted Research Environment 

hosted at the University of Glasgow. The data that leaves the environment will be 

subjected to strict statistical controls, designed to make sure there are no patient 

identifiable information.   I have obtained Safe Haven LPAC approval for the use of the 

datasets for the project. 

3.3.3 Description of Selected Cohort  

For the NHS GG&C Safe Haven data set, we obtained data of all patients that were 

admitted to an NHS GG&C hospital or who were tested positive for SARS-CoV-2. The 

cohorts that were selected were adults over the age of 17 years, admitted to a West of 

Scotland Hospital between 1 April 2020 and 31 December 2022. The control group were 

adults over the age of 17 years, had a SARS-CoV-2 RT-PCR test in the community 

between 1 Jan 2020 and 31 December 2022. Comparison will be made with a cohort of all 

patients admitted from the 1 Jan 2019 – 31 December 2019. 

3.3.4 Description of Derived Variables 

In Chapter 6, the study utilised linked data from four databases: the Prescribing 

Information System (PIS), the Scottish Morbidity Record 01 (SMR01), death certificates, 

and patient demographic information. The PIS collects data on all medications dispensed 

in the community, coded according to the British National Formulary (BNF). The SMR01 

records data on hospital admissions, including admission dates and diagnoses, which are 

coded using the International Classification of Diseases, 10th Revision (ICD-10). Death 

certificates provide information on the date and cause of death, also coded using ICD-10. 

Demographic data includes patient age, sex, and the Scottish Index of Multiple 

Deprivation (SIMD). The SIMD is an area-based measure of deprivation derived from 

aggregated census data on employment, income, health, education, housing, crime, and 

access to local services. A lower SIMD value indicates a higher level of socioeconomic 

deprivation. 

Data was also gathered from SCI Store, an information repository interfacing with other 

local systems that contains laboratory data. In addition, data will be collected in greater 

detail than is available in the Safe Haven, including broader demographic data (e.g., 
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occupation), presenting symptoms, clinical observations, drug history, in-hospital 

prescribing, hospital progress (including critical care data), enrolment in clinical trials, and 

discharge information. All data will be anonymised, with participants assigned a study ID. 

A key linking study IDs to CHI numbers will be stored separately in a password-protected 

format. This data will then be linked to the Safe Haven dataset and returned to 

researchers in an anonymised form. Once transferred to the Safe Haven, the CHI link will 

be destroyed. This process was successfully employed in the OBELIX study, and the 

number of variables collected for LOCHINVAR has been refined (reduced) following a 

review of the OBELIX data. All analyses will be conducted on anonymised data. 

The dataset will include demographic information, data on prevalent cardiovascular 

disease and other comorbidities, prescribing data, laboratory results, imaging data, 

discharge outcomes, and vaccination status. Appendix 1 lists the main data extracted 

from the NHS Greater Glasgow and Clyde (NHS GG&C) Safe Haven dataset for analysis, 

along with relevant filters and data ranges. Updates to the dataset will occur at 6, 12, 18, 

and 24 months. 

3.3.5 Data Outputs 

After our analysis is complete, the requested outputs (tables/figures/scripts) are placed in 

a specified “outputs” folder which is then reviewed by the NHS GG&C Safe Haven data 

management team. This review is to ensure that there is no risk of identification of 

patients (e.g low numbers in specific group or rare condition). Once approved, the output 

files have been transferred for the purpose of this thesis.  

3.3.6 Missing Data 

If there were missing data, this was demonstrated in the results tables in proportions and 

percentages.  

3.3.7 Study population 

The study population consisted of patients who had a record in the Patient Information 

System between 1 October 2019 and 1 October 2020. Inclusion was restricted to patients 

who were 40 years of age and older on 1 October 2019. Patients were excluded if there 

was no information on their demographical data, specifically of sex, age, and SIMD.  

The study population was separated into two subpopulations: One for the first wave of the 

pandemic (beginning 1 April 2020) and one for the second wave (beginning 1 October 

2020). Patients with COVID-19 were allocated to the first-wave or second-wave 

population based on the first date of their positive COVID-19 diagnosis. Patients without 
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recorded COVID-19 diagnosis were stratified into the two study populations using a ratio 

that mirrors the proportion of COVID-19 cases observed in the first and second waves. 

This stratified sampling technique aims to achieve representativeness of the original 

dataset's entire data distribution within the newly created sub-datasets. 

3.3.8 Exposure 

Exposure to each medication of interest was defined as at least one PIS record of the 

medication being dispensed during two specified time periods: from 1 October 2019 to 1 

April 2020 for the first COVID-19 pandemic wave, and from 1 April 2020 to 1 October 

2020 for the second pandemic wave. ACE inhibitors (ACEIs), beta-blockers (BBs), 

calcium channel blockers (CCBs), thiazides and thiazide-like diuretics (THZs), 

antiplatelets, biguanides, sulfonylureas, and selective serotonin reuptake inhibitors 

(SSRIs) were identified using their respective British National Formulary (BNF) codes: 

0205051, 0204000, 0206020, 0202010, 0209000, 0601022, 0601021, and 0403030. 

Statins were identified by the following BNF codes: 0212000B0, 0212000C0, 0212000X0, 

and 0212000Y0. 

Exposure was defined as having at least one prescription of any relevant medication 

dispensed and recorded in the Prescribing Information System. ACEIs, BBs, CCBs, and 

THZs were identified using their respective BNF codes: 0205051, 0204000, 0206020, and 

0202010. While we initially aimed to include angiotensin receptor blockers (ARBs), their 

small sample size resulted in the machine learning model being unable to fit ARB data 

optimally. 

3.3.9 Follow-up and outcomes 

The primary combined endpoint was the first COVID-19-specific hospitalisation or death 

(ICD-10 codes: U07.1/U07.2) within 180 days from either 1 April 2020 (the beginning of 

the first wave) or 1 October 2020 (the beginning of the second wave). Individuals were 

followed until the earliest occurrence of a COVID-19-specific hospitalisation, 31 December 

2020 (end of the first wave analysis), 1 April 2021 (end of the second wave analysis), or 

death. 

The machine learning models developed by Tran Quoc Bao Tran are detailed in Appendix 

2, with an overview of the methodology illustrated in Figures 7 and 8. 

The first pandemic wave began on 1 April 2020, while the second wave started on 1 

October 2020, coinciding with the UK national COVID-19 vaccination rollout, initiated on 8 

December 2020. Given the differing circumstances—such as non-vaccinated versus 
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partially vaccinated populations and evolving public health responses—analysing the data 

for the first and second waves separately allows for a clearer understanding of the impact 

of medications on the risk of incident COVID-19. 

Patients registered with NHS Greater Glasgow and Clyde (NHS GG&C) and alive as of 1 

April 2020 were included in the first pandemic wave analysis. To facilitate separate 

analyses of the two pandemic waves and address class imbalance, undersampling was 

performed. This process involved removing samples from the COVID-19-negative group, 

which constituted the majority of the study population during the first wave. A stratified 

sampling approach was employed, based on age, sex, and SIMD, using a ratio that 

mirrored the proportion of COVID-19 cases observed in each wave. Patients excluded 

during undersampling of the first wave were used to form an independent cohort for the 

second wave analysis. 

The outcome measure was incident COVID-19, defined as a composite endpoint 

comprising the first positive SARS-CoV-2 test result, the first COVID-19-specific 

hospitalisation, or death attributed to COVID-19 (ICD-10 codes: U07.1/U07.2) within a 

180-day period from the start of either wave. Patients were followed until the earliest of 

these events or the end of the follow-up period (1 October 2020 for the first wave, and 1 

April 2021 for the second wave), whichever occurred first. 

3.3.10 Average treatment effect and individual treatment effects 

This is further explained in Chapter 6. 

3.3.11 Ethics 

Delegated research ethics approval was granted for linkage to National Health Service 

(NHS) patient data by the Local Privacy and Advisory Committee at NHS Greater 

Glasgow and Clyde. Cohorts and de-identified linked data were prepared by the West of 

Scotland Safe Haven Research Database at NHS Greater Glasgow and Clyde. 
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Figure 7 Base Model Inputs  
This figure demonstrates the base model inputs. The dates of the first COVID pandemic wave is 

shown as an example and this is repeated for the second wave. There are two data inputs :(1) The 

study data set which include medications, admissions and commodities which will be flattened into 

a time series linking consecutive events. Multi-head attention modelling will be applied to efficiently 

capture simultaneous interactions among various elements of the dataset simultaneously (2) 

Demographics which include age, sex and Scottish Index of Multiple Deprivation (SIMD). Feed-

forward neural network will be applied which acts as a decision-making pathway. Through the 

machine learning modelling methods, classification of the COVID-19 hospitalisation/mortality in the 

next 6 months can be obtained. The base model is then trained in Figure 8 multiple times. 
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Figure 8 Transformer Model  

This figure demonstrates the whole population where patients who had a record in the patient 

information system from the 1 October 2019 - 1 October 2020, for patients whose age >40 years 

as of 1 October 2019. The first stage includes study data inputs of selecting patients with the 

selected drug and patients without the selected drug, to predict their COVID-19 outcomes. The 

basal model (Figure 7) is then applied to create two distinct models (Model 1 and 2) Model 1 is 

trained on patients that did not take the selected drug. Model 2 is trained on the patients that did 

take the selected drug. The two models were subsequently applied to the respective training 

populations of each other to generate counterfactual outcomes. Specifically, Model 1 was used to 

predict outcomes on Model 2's training population, and vice versa. The counterfactual outcomes 

were then compared with the factual outcomes to calculate the imputed ITE for each patient. In the 

second stage, the ITEs for both counterfactual and factual groups were used to train the base 

models to develop Model 3 and 4. Combination of Model 3 and Model 4 is then used to provide an 

analysis of individual treatment effects and weighted ATE. The output of the model undergoes 

further rigorous statistical analysis. Propensity score matching of the whole population getting the 

selected drug will be applied to obtain ITE and weighted ATE. 
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Chapter 4 Clinical Phenotyping Study 

4.1 Introduction 

This chapter explores the long-term effects of COVID-19 on BP, presenting findings from a 

clinical phenotyping study aimed at addressing Objective 1 and 2 outlined in Chapter 2.  

The LOCHINVAR study, a single-centre clinical investigation, builds upon the findings of 

the OBELIX pilot study (clinicaltrials.gov NCT04409847).(231) The detailed methods for 

this chapter is explained in Chapter 3.  This study aims to further explore the longitudinal 

changes in blood pressure post-COVID-19 and the underlying mechanisms thereof. It 

compares these individuals to a control group without a history of COVID-19 infection, by 

firstly establishing if COVID-19 results in long-term increased BP and then focus on the 

possible involvement of the RAAS pathways in any observed BP changes.  

4.2 Study Outcomes 

4.2.1 Primary outcome 

The primary outcome is the average 24-hour ABPM SBP (all day and night) at 12 months 

in both SARS-CoV-2 positive and SARS-CoV-2 negative groups.  

4.2.2 Secondary outcomes 

The secondary outcomes are the average of the following measures in both SARS-CoV-2 

positive and SARS-CoV-2 negative groups at 12 months: 24-hour ABPM DBP; Day ABPM 

SBP; Day ABPM DBP; Night ABPM SBP; Night ABPM DBP; 24-hour ABPM heart rate and 

24-hour Urine Sodium. 

4.2.3 Tertiary outcomes 

The tertiary outcomes are the assessment of endothelial function (% FMD), 6MWT, quality 

of life (QoL), and HBPM metrics at 12 months.  

4.3 Ethics approval and study registration 

Ethical approval was granted by the West of Scotland Research Ethics Committee 5; 

21/WS/0075, Scotland United Kingdom. The study is registered on clinicaltrials.gov; trial 

identifier NCT05087290 and UK Clinical Research Network; GN20CA501. Current 

protocol version 1.1 (24/06/2021) Written informed consent will be given by each study 

participant and participants are allowed to withdraw at any given time. 
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4.4 Funding  

This study is funded by HEART Research UK (Registered Charity, No.1044821, 

RG2690/21/24) 

4.5 Statistical Methods 

4.5.1 Sample size calculation 

Based on the OBELIX pilot study's findings, we anticipate the ABPM SBP to follow a 

normal distribution with a standard deviation (SD) of 10mmHg. Considering a clinically 

significant mean difference of 5mmHg in ABPM SBP between the SARS-CoV-2 positive 

and negative groups, we estimate that a sample size of 64 participants per group is 

necessary to achieve 80% power to detect this difference at a 5% significance level. 

Factoring in an anticipated 15% attrition rate due to missing data and ABPM 

discrepancies, our recruitment target is set at 150 participants, aiming for 128 

completions. This calculation incorporates the recruitment of OBELIX participants into the 

LOCHINVAR study to fulfil the required sample size.  

4.5.2 Statistical analysis 

The primary outcome, the average 24-hour ABPM SBP at 12 months, will be analysed 

using linear regression to compare between SARS-CoV-2 positive and negative groups, 

adjusting for age, sex, and BMI. We will report the adjusted mean difference with a 95% 

confidence interval (95% CI) and p-value. Secondary outcomes will employ similar 

regression models to explore the effect of baseline characteristics and potential 

interactions with COVID-19 status. Longitudinal changes in ABPM SBP will be assessed 

using linear mixed models, adjusting for baseline ABPM SBP and other covariates and 

this will be used for analysis of longitudinal changes for other variables. Group 

characteristics will be summarised with means ± standard deviation (SD) for continuous 

variables and frequencies (percentages) for categorical data. Non-normally distributed 

variables (renin, NT-pro-BNP, Ang II [1-8], Ang [1-7], Ang I [1-10], Ang [1-5]) will undergo 

log transformation for analysis. Aldosterone will be analysed as a binary variable, split at 

the local NHS laboratory threshold, to address its non-normal distribution. Group 

comparisons will utilise independent t-tests or chi-square tests as appropriate. Linear 

regression will explore the association between COVID-19 status and various outcomes, 

progressively adjusting for demographics and clinical measurements. Significance is set 

at p < 0.05. We applied the Bonferroni correction to account for multiple testing, setting a 

threshold for significance to minimise over-interpretation and reduce the risk of missing 
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true results. Given the sample size, this approach was deemed appropriate to identify 

potential signals warranting further investigation. 

All statistical analyses will be performed using R Software version 4.3.3. 

4.5.3 Adapting analytic strategies to the changing landscape of 

COVID-19 

The evolving nature of the COVID-19 pandemic introduced complexities into our study 

design and participant recruitment, necessitating a revised approach to our analysis to 

maintain the integrity and relevance of our findings. The OBELIX study enrolled 

participants from 23 July 2020 to 10 December 2020, all of whom had been hospitalised 

due to COVID-19 or with a non-COVID-19 diagnosis between April and September 2020. 

For the LOCHINVAR study, recruitment began with the first participant on 16 November 

2021 and concluded with the enrolment of the last participant on 17 November 2022. 

4.5.4 Strategy and Justification 

The LOCHINVAR study was conceptualised to expand on the OBELIX study's initial 

observations. However, the dynamic landscape of the COVID-19 pandemic, marked by 

the emergence of new viral variants, changes in public health policies, the introduction of 

vaccines, and changes in public risk perception about COVID-19 led to a heterogeneity in 

the participant population that was not initially anticipated. To address these challenges, 

we bifurcated our analysis into two distinct datasets: the full dataset analysis and the per-

protocol analysis. This is demonstrated graphically in Figure 9.  

4.5.5 Full Dataset Analysis 

The full dataset incorporates all participants from the OBELIX study who consented to 

continue their participation in the LOCHINVAR study and new recruits to the LOCHINVAR 

study (83 participants), totalling 97 participants. This dataset aims to provide a 

comprehensive overview of our research population, encompassing a broad spectrum of 

COVID-19 experiences and outcomes. 

4.5.6 Per-Protocol Analysis 

The per-protocol analysis is more stringent, including only those participants who met 

specific eligibility criteria, such as a baseline visit timeframe of 41-200 days post-COVID-

19 infection, with all baseline visits conducted after the year 2020, totalling 66 participants. 

The baseline visit timeframe was limited to 41-200 days due to significant delays in 

scheduling participants for their initial visits within a consistent period. This restriction was 

necessary for standardising the estimation of BP changes. Participants who enrolled too 
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soon after infection might not have fully recovered, making it premature to assess whether 

any observed BP variations are indeed long-term effects of COVID-19. Conversely, 

participants joining the study more than six months post-infection might have BP 

influenced by factors unrelated to COVID-19, complicating the analysis of the virus's direct 

impact. This dataset is designed to minimise the variability introduced by the evolving 

pandemic context, allowing for a more controlled examination of the long-term effects of 

COVID-19 on BP. 

Figure 9 LOCHINVAR study flow diagram 

This figure outlines participant flow in the LOCHINVAR study, including eligibility assessment, 

exclusions, and study procedures. It highlights SARS-CoV-2 status (negative or positive) in the full 

and per-protocol datasets. 

 

The decision to split the analysis may draw criticism for potentially diluting the statistical 

power of our findings. Critics may argue that separating the participants into two groups 

could introduce bias or limit the ability to generalise the results to the broader population 

affected by COVID-19. Furthermore, the per-protocol analysis, by its nature, excludes a 

portion of the study population, which may lead to questions about the representativeness 
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of its findings. Despite these critiques, the bifurcated approach was deemed necessary to 

account for the substantial heterogeneity introduced by the intervening variables since the 

onset of the pandemic. The full dataset analysis allows us to capture a broad snapshot of 

the pandemic's impact, while the per-protocol analysis provides a more controlled 

environment to discern the specific effects of COVID-19 infection on BP, accounting for 

variables such as vaccination status, variant pathogenicity, and changing public health 

guidelines. 

The rationale for adopting this dual-analysis strategy lies in its ability to balance 

comprehensiveness with specificity. By analysing the full dataset, we can ensure that our 

findings are inclusive of the diverse experiences of our participants. Conversely, the per-

protocol analysis allows for a focused examination of the pandemic's impact under more 

controlled conditions, enhancing the robustness of our conclusions regarding COVID-19's 

long-term effects on BP. Importantly, this analytical strategy and the statistical analysis 

plan were established prior to the commencement of any data analysis. This pre-emptive 

planning was critical to avoid post-hoc adjustments that could introduce bias or undermine 

the study's integrity. The bifurcated approach to analysing the LOCHINVAR study data 

was a strategic decision made in response to the unprecedented and evolving challenges 

posed by the COVID-19 pandemic. It represents a balanced effort to ensure that our 

findings are both comprehensive and methodologically sound, providing valuable insights 

into the long-term BP consequences of COVID-19 infection. 

4.6 Results 

In the LOCHINVAR study, participant demographics were analysed both as a full dataset 

and a per-protocol dataset, the latter defined by specific criteria due to the dynamic 

landscape of COVID-19 and vaccination roll out. This has been described previously in 

the Methods Section 4.5.3: Adapting analytic strategies to the changing landscape of 

COVID-19. This chapter will explain results as per full data set and per-protocol dataset. 

4.6.1 Baseline characteristics (Full Data Set and Per-protocol 

Data Set) 

There were 97 participants included in the full dataset and 66 included in the per-protocol 

dataset. Table 8 presents the baseline characteristics of the full and per-protocol datasets, 

demonstrating that both datasets are matched in terms of demographics and laboratory 

features. This provides reassurance that there are no obvious systematic biases 

introduced in the selection of the per-protocol dataset.  
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The participants in SARS-CoV-2 negative and SARS-CoV-2 positive groups in both 

datasets were of similar age range group 49.5 (IQR: 41.0-54.0) years vs 48.0 (IQR: 44.0-

54.0) years. The majority were females in both groups (SARS-CoV-2 positive group: 48 

(80%) vs SARS-CoV-2 negative group: 19 (51%)) and this difference was statistically 

significant (p=0.006) within groups. The major ethnic group was white Caucasian in both 

groups. The majority were not smokers, had no history of diabetes and admitted to 

consuming 1-14 units of alcohol a week. There was no significant difference in BMI 

between the groups (SARS-CoV-2 positive group: 28.2 (SD: 4.7) vs SARS-CoV-2 

negative group: 26.6 (SD: 5.0)). Office SBP and oDBP were also similar between the 

groups. ABPM SBP were 114.9 mmHg (SD: 9.8) and 119.4 mmHg (SD:12.5) for SARS-

CoV-2 negative group and positive group respectively, p=0.052. ABPM DBP was similar 

between the groups as were day and night ABPM SBP and DBP. Haematology laboratory 

parameters (Hb, WBC, neutrophils, lymphocytes) were not statistically different between 

the groups while some biochemistry parameters demonstrated significant differences 

(Serum sodium (Na), urea, creatinine, urine ratios – urine sodium creatinine (uNaCr), 

urine potassium creatinine (uKCr) and urine chloride creatinine (uClCr). Renin, 

aldosterone and RAAS Fingerprinting parameters (Ang II [1-8], Ang 1-7, Ang 1(1-10), Ang 

1-5, AA2-Ratio, PRA-S, ACE-S and log of each parameter was not significantly different 

between the groups. The SARS-CoV-2 positive group had a lower FMD median (IQR): 4.5 

(2.4-6.5) compared to SARS-CoV-2 negative participants which was 4.7 (2.0-8.5) however 

this did not attain statistical significance (p=0.461). Both the SARS-CoV-2 negative and 

positive participants had slightly different waking distances at 6 minutes (Median: 654 

(IQR: 570.0-750.0) vs 624.0 (544.5 to 727.5)).  

4.6.2 12 months characteristics (Full Data Set and Per-Protocol 

Data Set) 

Table 9 presents the characteristics of participants who attended their 12-month visit 

including both the full and per-protocol datasets. At 12 months, the participants in SARS-

CoV-2 negative and SARS-CoV-2 positive groups were similar in terms of age, gender, 

ethnicity, smoking status, diabetes status, alcohol intake and BMI. Both oSBP and oDBP 

at 12 months were similar between the groups for both datasets at 12 months.  ABPM 

SBP 12 months were 114.7 mmHg (SD: 9.5) and 121.6 mmHg (SD: 10.8) for SARS-CoV-

2 negative and positive group respectively, p=0.007. ABPM DBP, day ABPM SBP and 

DBP, and night ABPM DBP and SBP were similar between the groups at 12 months. 

Haematology laboratory parameters (Hb, WBC, neutrophils, lymphocytes) were not 

statistically different between the groups. Serum urea, serum creatinine, urine ratios – 
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urine NaCr and urine ClCr were the only biochemistry parameters which demonstrated 

significant differences. At 12 months, the SARS-CoV-2 virus positive group demonstrated 

a lower %FMD 2.4 (1.1-4.0) compared to SARS-CoV-2 negative group 5.0 (2.6-7.4) which 

attained statistical significance p=0.002. Both the SARS-CoV-2 negative and positive 

group, had higher walking distances at 6 minutes compared to baseline with the positive 

group (897.0 metres (816.0 to 1011.0)) having a higher walking distance at 12 months.  

4.6.3 Multivariable linear regression at baseline and 12 month 

visits for full dataset and per-protocol dataset. 

Multivariable linear regression analysis was conducted to assess the difference between 

the groups on a range of health outcomes after adjusting for relevant confounders, at 

baseline and at 12-month for both datasets (full dataset and per-protocol dataset). The 

findings from the univariable and multivariable analyses of the full and per-protocol data 

sets are detailed in Table 10 and Table 11 respectively.  

Primary Outcomes 

Ambulatory Blood Pressure Monitoring (ABPM)  

At baseline and 12 months, ABPM SBP and ABPM DBP did not reach statistical 

significance in either dataset. In the full dataset, both ABPM SBP (1.41 [-2.88 to 5.70], 

p=0.515) and ABPM DBP (0.87 [-2.00 to 3.74], p=0.549) showed no significant 

differences. Similarly, in the per-protocol dataset, ABPM SBP (-1.15 [-6.96 to 4.66], 

p=0.694) and ABPM DBP (-2.54 [-6.33 to 1.25], p=0.185) also did not achieve statistical 

significance. 

Secondary Outcomes 

Brachial Flow Mediated Dilation (FMD) 

At baseline in the full dataset, flow mediated dilation was not different between the groups 

across all models (-5.78 (-14.38 to 2.82, p=0.185)) and this was mirrored in the per-

protocol dataset. At 12 months both the full and the per-protocol datasets showed 

significantly lower %FMD between groups (Full: -1.98 (-3.92 to -0.04, p=0.046); Per-

protocol: -2.90 (-5.49 to -0.31, p=0.029)). 

6-Minute Walk Test (6MWT) 

At baseline, there were no significant differences in the 6MWT distances, suggesting 

preserved physical function at this point (-16.19 (-88.57 to 56.19, p=0.657)) which was 

similar in both datasets. At 12 months in the full dataset, the 6MWT distance was similar 
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between both datasets in the fully adjusted model (126.39 (18.64 to 234.14, p=0.022)) 

and reached significance. 

Office Blood Pressure (Office Systolic Blood Pressure and Office Diastolic Blood 

Pressure) 

Office systolic blood pressure (oSBP) was comparable between the two groups across all 

models, with no statistically significant differences observed (5.73 [-1.15 to 12.62], 

p=0.101). Similarly, office diastolic blood pressure (oDBP) showed no significant 

differences. A marginally higher value in the unadjusted model (3.87 [-0.26 to 7.99], 

p=0.066) disappeared after adjustment for covariates (2.25 [-1.87 to 6.37], p=0.281). Both 

oSBP and oDBP were also comparable between groups in the per-protocol dataset. 

Laboratory tests 

All haematological markers ((Haemoglobin (Hb), white blood cells (WBC), Neutrophils, 

Lymphocytes) showed no differences between both datasets at baseline and 12 months. 

For electrolytes, sodium levels in the full dataset were significantly higher at baseline 

(1.22 (0.44 to 2.00, p=0.002)) and this was similar in the per-protocol dataset. However, at 

12 months, sodium, potassium and chloride were similarly observed in both the full and 

per-protocol dataset.  At baseline, urea levels, log-transformed to account for non-normal 

distribution, was significantly higher in the univariable model (0.17 (0.06 to 0.29, p=0.003)) 

and the significance persisted in the multivariable model (0.12 (0.01 to 0.24, p=0.037)). 

However, this lost significance in the per-protocol dataset. Creatinine levels showed a 

higher level in the univariable model (8.11 (2.03 to 14.19, p=0.009)), but this disappeared 

in the multivariable model 1.48 (-3.41 to 6.36, p=0.550). This was similar in the per-

protocol dataset. Urea levels at 12 months demonstrated similar patterns to baseline as 

described (univariable model: 0.19 (0.06 to 0.32, p=0.004) multivariable model: 0.09 (-

0.05 to 0.22, p=0.215) in the full data set. This was similarly observed in the per-protocol 

dataset. Creatinine at 12 months demonstrated similar patterns to baseline (univariable 

model: 8.11 (2.03 to 14.19, p=0.009), multivariable model: 1.48 (-3.41 to 6.36, p=0.550) 

which was similarly observed in the per-protocol dataset at 12 months. For NT-proBNP 

(log-transformed), glucose, HbA1c, cholesterol, triglycerides and HDL showed no 

significant differences between groups across all models for both datasets. This finding 

was the same for urinary markers uNaCr , uKCr, and uClCr. 

 



Table 8 Baseline demographics for full and per-protocol data set  

This table presents the baseline demographics and clinical characteristics of the participants in the full dataset and per-protocol dataset stratified by SARS-CoV-2 status 

(positive or negative). Continuous variables are reported as mean (standard deviation), median (IQR) if data is skewed and does not follow a normal distribution, and 

categorical variables are presented as frequency (percentage). P-values indicate group differences assessed using independent t-tests for continuous variables and chi-

square tests for categorical variables. 

  Full Dataset (n=97) Per-Protocol Dataset (n=66) 

Label 

(Baseline) 
levels 

SARS-CoV-2 
Neg 

(n = 60) 

SARS-CoV-2 
Pos 

(n = 37) 
p 

SARS-CoV-2 
Neg 

(n = 51) 

SARS-CoV-2 
Pos 

(n = 15) 
p 

Age (years) Median (IQR) 
49.5 (41.0 to 

54.0) 
48.0 (44.0 to 

54.0) 
0.680 

50.0 (42.0 to 
54.0) 

49.0 (43.0 to 
53.5) 

0.939 

Sex (n,%) Female 48 (80.0) 19 (51.4) 0.006 42 (82.4) 6 (40.0) 0.003 

 Male 12 (20.0) 18 (48.6)  9 (17.6) 9 (60.0)  

Ethnicity (n,%) Asian Indian 1 (1.7) 1 (2.7) 0.196    

 
Asian 

Pakistani 
1 (1.7) 2 (5.4)   1 (6.7)  

 Caucasian 58 (96.7) 32 (86.5)     

 
Afro-

Carribean 
 2 (5.4)     

Smoking (n,%) Ever Smoker 6 (10.0) 7 (18.9) 0.233 3 (5.9) 1 (6.7) 1.000 

 
Never 

Smoker 
54 (90.0) 30 (81.1)  48 (94.1) 14 (93.3)  

Alcohol (n,%) 0 28 (46.7) 17 (45.9) 0.712 24 (47.1) 7 (46.7) 1.000 

 1-14 30 (50.0) 20 (54.1)  25 (49.0) 8 (53.3)  

 14 2 (3.3)   2 (3.9)   

Hospital SBP (mmHg) Mean (SD) 135.1 (18.0) 122.8 (16.8) 0.058 156.0 (NA) 123.7 (12.0) 0.022 

Hospital DBP (mmHg) Mean (SD) 75.9 (14.7) 76.0 (11.4) 0.985 107.0 (NA) 76.0 (8.5) 0.004 

Year of Visit (n, %) 2020 7 (11.7) 7 (18.9) 0.112    

 2021 12 (20.0) 2 (5.4)     
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 2022 41 (68.3) 28 (75.7)  39 (76.5) 14 (93.3)  

Days to Visit (days) Median (IQR) 
146.0 (120.8 to 

167.0) 
190.0 (145.0 to 

309.0) 
<0.001 

147.0 (127.0 to 
167.0) 

147.0 (143.0 to 
173.0) 

0.270 

Visit Interval (days) Median (IQR) 
371.5 (365.2 to 

386.5) 
363.0 (356.0 to 

369.0) 
0.002 

370.0 (365.0 to 
380.0) 

358.5 (356.0 to 
366.0) 

0.002 

Vaccination Status (n, 
%) 

No 2 (3.3) 7 (18.9) 0.013 1 (2.0) 3 (20.0) 0.034 

 Yes 58 (96.7) 29 (78.4)  50 (98.0) 12 (80.0)  

 (Missing) 0 (0.0) 1 (2.7)  4 (7.8) 0 (0.0)  

 (Missing) 0 (0.0) 1 (2.7)  4 (7.8) 0 (0.0)  

Height (cm) Mean (SD) 1.7 (0.1) 1.7 (0.1) 0.115 1.7 (0.1) 1.7 (0.1) 0.075 

Weight (kg) Mean (SD) 73.6 (16.5) 80.8 (16.7) 0.040 73.5 (16.4) 82.1 (17.3) 0.080 

BMI (kg/m2) Mean (SD) 26.6 (5.0) 28.2 (4.7) 0.129 26.6 (4.9) 27.9 (3.8) 0.325 

Office SBP (mmHg) Mean (SD) 122.1 (12.8) 123.6 (12.9) 0.594 122.6 (13.2) 122.8 (13.1) 0.945 

Office DBP (mmHg) Mean (SD) 75.4 (10.1) 79.3 (9.6) 0.066 74.8 (10.4) 78.7 (5.6) 0.169 

Office Heart Rate Mean (SD) 66.9 (11.8) 69.5 (11.4) 0.290 65.4 (10.2) 69.9 (11.3) 0.155 

ABPM SBP (mmHg) Mean (SD) 114.9 (9.8) 119.4 (12.5) 0.052 114.7 (10.0) 117.8 (12.3) 0.327 

ABPM DBP (mmHg) Mean (SD) 73.1 (6.4) 75.1 (7.3) 0.148 73.3 (6.7) 72.9 (4.6) 0.827 

ABPM SBP (day) 

(mmHg) 
Mean (SD) 117.9 (10.1) 121.5 (13.0) 0.127 117.6 (10.3) 121.9 (12.0) 0.177 

ABPM DBP day) 

(mmHg) 
Mean (SD) 75.6 (6.9) 76.6 (8.4) 0.514 75.5 (7.2) 76.1 (4.5) 0.760 

ABPM SBP (night) 

(mmHg) 
Mean (SD) 104.7 (10.1) 108.6 (14.2) 0.121 104.7 (10.1) 105.3 (14.0) 0.862 

ABPM DBP (night) 

(mmHg) 
Mean (SD) 64.6 (6.0) 66.5 (9.4) 0.223 64.9 (6.1) 62.2 (5.8) 0.137 

Hb  

(g/L) 
Mean (SD) 135.2 (11.5) 139.6 (13.0) 0.082 134.6 (10.7) 141.8 (12.9) 0.033 
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WBC  

(x10^9/L) 
Mean (SD) 5.8 (1.4) 5.8 (1.1) 0.912 5.7 (1.3) 5.7 (0.9) 0.980 

Neutrophils  

(x10^9/L) 
Mean (SD) 3.5 (1.2) 3.4 (0.9) 0.544 3.4 (1.2) 3.4 (0.6) 0.824 

Lymphocytes  

(x10^9/L) 
Mean (SD) 1.7 (0.4) 1.8 (0.6) 0.241 1.7 (0.4) 1.7 (0.5) 0.642 

Na  

(mmol/L) 
Mean (SD) 138.8 (1.8) 140.2 (1.6) <0.001 138.6 (1.8) 140.4 (1.7) 0.001 

K  

(mmol/L) 
Mean (SD) 4.2 (0.3) 4.2 (0.3) 0.760 4.2 (0.3) 4.2 (0.2) 0.478 

Cl  

(mmol/L) 
Mean (SD) 104.8 (2.0) 104.6 (2.0) 0.704 104.9 (2.0) 104.8 (1.7) 0.911 

Urea  

(mmol/L) 
Median (IQR) 3.9 (3.4 to 4.6) 4.7 (4.2 to 5.4) 0.003 3.9 (3.5 to 4.7) 4.9 (4.3 to 5.5) 0.011 

Creatinine  
(μmol/L) 

Mean (SD) 65.2 (13.0) 73.3 (17.0) 0.009 65.2 (11.7) 75.7 (18.7) 0.010 

Mg  

(mmol/L) 
Mean (SD) 0.8 (0.1) 0.8 (0.1) 0.402 0.8 (0.1) 0.9 (0.1) 0.400 

Ca(adj)  

(mmol/L) 
Mean (SD) 2.3 (0.1) 2.3 (0.1) 0.352 2.3 (0.1) 2.3 (0.1) 0.962 

Albumin  

(g/L) 
Mean (SD) 40.9 (2.4) 39.2 (6.9) 0.089 40.9 (2.3) 41.1 (1.8) 0.819 

Bilirubin  
(μmol/L) 

Median (IQR) 11.5 (9.0 to 14.2) 10.0 (8.0 to 14.0) 0.401 12.0 (9.0 to 14.5) 10.0 (9.0 to 15.0) 0.884 

ALT  

(U/L) 
Mean (SD) 20.0 (11.7) 23.6 (12.5) 0.151 18.9 (10.7) 21.7 (11.6) 0.377 

Glucose  

(mmol/L) 
Mean (SD) 8.7 (15.6) 13.2 (20.8) 0.241 9.3 (16.7) 20.8 (26.8) 0.052 

HbA1C  

(mmol/mol) 
Mean (SD) 34.5 (2.6) 37.1 (5.5) 0.003 34.3 (2.6) 37.1 (2.9) 0.001 

Cholesterol  Mean (SD) 3.6 (13.0) 5.3 (1.0) 0.441 3.4 (14.1) 5.2 (0.6) 0.616 
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(mmol/L) 
Triglyceride  

(mmol/L) 
Median (IQR) 0.9 (0.7 to 1.1) 1.1 (0.8 to 1.4) 0.207 0.8 (0.7 to 1.1) 0.8 (0.8 to 1.2) 0.454 

HDL  

(mmol/L) 
Mean (SD) 1.6 (0.5) 1.5 (0.6) 0.502 1.6 (0.5) 1.7 (0.7) 0.908 

Renin  

(mIU/L) 
Median (IQR) 

18.7 (11.9 to 
24.8) 

20.8 (13.5 to 
28.4) 

0.380 
18.1 (10.9 to 

24.1) 
21.4 (14.5 to 

31.4) 
0.227 

Aldosterone (pmol/L) Median (IQR) 
163.5 (130.0 to 

246.8) 
177.0 (130.0 to 

312.2) 
0.348 

156.5 (130.0 to 
246.8) 

183.0 (130.0 to 
276.0) 

0.708 

NT-pro-BNP (ng/L) Median (IQR) 
48.0 (34.2 to 

84.5) 
42.5 (30.2 to 

78.5) 
0.537 

49.0 (37.5 to 
80.5) 

38.0 (32.0 to 
63.5) 

0.281 

Ang II (1-8) (pmol/L) Median (IQR) 
80.1 (49.4 to 

109.5) 
65.3 (39.5 to 

111.6) 
0.491 

71.7 (48.2 to 
106.0) 

70.4 (45.2 to 
111.1) 

0.941 

Ang 1-7 (pmol/L) Median (IQR) 2.5 (2.5 to 2.5) 2.5 (2.5 to 2.5) 0.927    

Ang I (1-10) (pmol/L) Median (IQR) 
21.1 (14.1 to 

32.2) 
16.3 (12.3 to 

26.7) 
0.166 

21.0 (14.3 to 
30.6) 

19.8 (14.5 to 
26.0) 

0.605 

Ang 1-5 (pmol/L) Median (IQR) 2.6 (1.5 to 3.6) 3.0 (1.5 to 5.0) 0.237 2.4 (1.5 to 3.4) 2.9 (1.5 to 4.3) 0.294 

Aldosterone (pmol/L) Median (IQR) 
151.3 (109.1 to 

223.2) 
181.8 (106.4 to 

261.8) 
0.467 

150.4 (105.5 to 
223.3) 

147.4 (98.7 to 
253.7) 

0.824 

AA2-Ratio (pmol/L) Mean (SD) 2.7 (2.2) 3.3 (2.6) 0.279 2.9 (2.3) 3.1 (3.1) 0.743 

PRA-S (pmol/L) Median (IQR) 
110.1 (63.9 to 

138.0) 
86.7 (49.9 to 

138.3) 
0.375 

94.6 (63.6 to 
135.6) 

92.2 (59.8 to 
137.1) 

0.915 

ACE-S (pmol/L) Mean (SD) 3.9 (2.1) 4.5 (2.3) 0.209 3.6 (1.3) 4.1 (1.6) 0.212 

AngII_1_8 (log) Mean (SD) 4.3 (0.6) 4.2 (0.7) 0.649 4.3 (0.6) 4.3 (0.6) 0.926 

Ang1_7 (log) Mean (SD) 0.8 (0.2) 0.8 (0.2) 0.848    

AngI_1_10 (log) Mean (SD) 3.0 (0.7) 2.8 (0.8) 0.154 3.0 (0.6) 2.9 (0.5) 0.477 

Ang1_5 (log) Mean (SD) 0.9 (0.6) 1.1 (0.7) 0.218 0.9 (0.5) 1.0 (0.6) 0.317 

PRA-S (log) Mean (SD) 4.6 (0.6) 4.5 (0.7) 0.490 4.5 (0.6) 4.5 (0.6) 0.845 

Aldosterone (log) Mean (SD) 5.1 (0.5) 5.1 (0.7) 0.552 5.1 (0.6) 5.0 (0.6) 0.585 
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uNaCr  

(mmol/L) 
Median (IQR) 11.3 (8.7 to 15.6) 11.9 (9.0 to 14.2) 0.922 11.3 (8.7 to 15.6) 9.4 (8.1 to 14.4) 0.712 

uNaCr(log) Mean (SD) 2.5 (0.4) 2.4 (0.3) 0.816 2.5 (0.4) 2.4 (0.4) 0.736 
uKCr  

(mmol/L) 
Mean (SD) 7.0 (2.2) 5.6 (2.2) 0.022 7.0 (2.2) 5.6 (2.2) 0.067 

uClCr (log) Mean (SD) 2.5 (0.4) 2.4 (0.3) 0.527 2.5 (0.4) 2.4 (0.5) 0.569 

%FMD Median (IQR) 4.7 (2.0 to 8.5) 4.5 (2.4 to 6.5) 0.461 4.7 (2.0 to 8.5) 4.6 (2.6 to 6.8) 0.662 

6MWT Distance 
(metres) 

Median (IQR) 
654.0 (570.0 to 

750.0) 
624.0 (544.5 to 

727.5) 
0.656 

654.0 (570.0 to 
750.0) 

642.0 (534.0 to 
747.0) 

0.800 
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Table 9 12 month Characteristics (Full Data set and Per-Protocol Data Set) 

This table presents the 12-month demographics and clinical characteristics of the participants in the full dataset and per-protocol dataset stratified by SARS-CoV-2 status 

(positive or negative). Continuous variables are reported as mean (standard deviation), median (IQR) if data is skewed and does not follow a normal distribution and 

categorical variables are presented as frequency (percentage). P-values indicate group differences assessed using independent t-tests for continuous variables and chi-

square tests for categorical variables. 

  Full Dataset (n=97) Per-protocol Dataset (n=66) 

Label 

(12 months) 
Levels 

SARS-CoV-2 
Neg 

n = 60 

SARS-CoV-2 Pos 

n = 37 
p 

SARS-CoV-2 Neg 

n = 51 
SARS-CoV-2 Pos 

n = 15 
p 

Age Median (IQR) 
49.5 (41.0 to 

54.0) 
48.0 (44.0 to 

54.0) 
0.680 50.0 (42.0 to 54.0) 49.0 (43.0 to 53.5) 0.939 

Sex (n, %) Female 48 (80.0) 19 (51.4) 0.006 42 (82.4) 6 (40.0) 0.003 

 Male 12 (20.0) 18 (48.6)  9 (17.6) 9 (60.0)  

Ethnicity (n, %) Asian Indian 1 (1.7) 1 (2.7) 0.196    

 
Asian 

Pakistani 
1 (1.7) 2 (5.4)   1 (6.7)  

 Caucasian 58 (96.7) 32 (86.5)     

 
Afro-

Carribean 
 2 (5.4)     

Smoking (n, %) Ever Smoker 6 (10.0) 7 (18.9) 0.233 3 (5.9) 1 (6.7) 1.000 

 Never Smoker 54 (90.0) 30 (81.1)  48 (94.1) 14 (93.3)  

Alcohol (n, %) 0 28 (46.7) 17 (45.9) 0.712 24 (47.1) 7 (46.7) 1.000 

 1-14 30 (50.0) 20 (54.1)  25 (49.0) 8 (53.3)  

 14 2 (3.3)   2 (3.9)   

Days to Visit (n, 
%) 

Median (IQR) 
146.0 (120.8 to 

167.0) 
190.0 (145.0 to 

309.0) 
<0.001 

147.0 (127.0 to 
167.0) 

147.0 (143.0 to 
173.0) 

0.270 



99 

 

 

 

Visit Interval Median (IQR) 
371.5 (365.2 to 

386.5) 
363.0 (356.0 to 

369.0) 
0.002 

370.0 (365.0 to 
380.0) 

358.5 (356.0 to 
366.0) 

0.002 

Vaccination Status 
(n, %) 

No 2 (3.3) 7 (18.9) 0.013 1 (2.0) 3 (20.0) 0.034 

 Yes 58 (96.7) 29 (78.4)  50 (98.0) 12 (80.0)  

 (Missing) 0 (0.0) 1 (2.7)     

BMI Mean (SD) 26.8 (4.9) 27.7 (5.1) 0.432 26.6 (4.5) 27.9 (4.5) 0.343 

Office SBP 

(mmHg) 
Mean (SD) 119.9 (12.8) 127.8 (14.6) 0.017 119.5 (13.2) 128.0 (15.0) 0.051 

Office DBP 

(mmHg) 
Mean (SD) 76.7 (8.9) 80.5 (8.3) 0.074 76.3 (8.9) 81.2 (6.2) 0.069 

ABPM SBP 

(mmHg) 
Mean (SD) 114.7 (9.5) 121.6 (10.8) 0.007 114.2 (9.5) 123.9 (9.6) 0.004 

ABPM DBP 

(mmHg) 
Mean (SD) 72.4 (6.8) 75.3 (5.6) 0.072 72.4 (6.9) 76.3 (4.7) 0.085 

ABPM SBP(day) 

(mmHg) 
Mean (SD) 117.2 (10.4) 124.5 (11.2) 0.008 116.9 (10.3) 127.5 (10.4) 0.004 

ABPM DBP(day) 

(mmHg) 
Mean (SD) 74.2 (7.9) 77.6 (6.2) 0.071 74.5 (7.3) 78.7 (5.9) 0.077 

ABPM SBP(night) 

(mmHg) 
Mean (SD) 104.0 (10.6) 110.8 (10.7) 0.012 104.0 (10.7) 112.8 (9.3) 0.015 

ABPM DBP(night) 

(mmHg) 
Mean (SD) 64.7 (7.6) 66.5 (6.4) 0.332 65.0 (7.7) 67.5 (4.1) 0.304 

Hb  

(g/L) 
Mean (SD) 134.1 (12.0) 140.4 (14.0) 0.044 134.0 (11.6) 141.2 (13.5) 0.060 

WBC (x10^9/L) Mean (SD) 6.2 (1.4) 5.6 (1.3) 0.103 6.2 (1.5) 5.5 (1.2) 0.098 
Neutrophils 
(x10^9/L) Mean (SD) 3.8 (1.2) 3.3 (1.0) 0.125 3.8 (1.2) 3.3 (0.9) 0.150 
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Lymphocytes 
(x10^9/L) Mean (SD) 1.8 (0.4) 1.7 (0.4) 0.205 1.8 (0.4) 1.6 (0.4) 0.203 

Na  

(mmol/L) 
Mean (SD) 138.8 (2.1) 139.6 (1.9) 0.107 138.9 (2.1) 139.5 (1.7) 0.272 

K  

(mmol/L) 
Mean (SD) 4.2 (0.3) 4.2 (0.3) 0.441 4.2 (0.3) 4.2 (0.2) 0.486 

Cl  

(mmol/L) 
Mean (SD) 104.9 (2.2) 105.2 (1.7) 0.530 105.1 (2.2) 105.2 (1.8) 0.969 

Urea  

(mmol/L) 
Median (IQR) 4.1 (3.3 to 4.8) 5.2 (4.1 to 5.5) 0.004 4.1 (3.3 to 4.8) 5.2 (4.2 to 5.4) 0.041 

Creatinine (μmol/L) Mean (SD) 67.2 (13.1) 77.8 (15.3) 0.002 67.7 (11.6) 80.0 (16.3) 0.003 
Mg  

(mmol/L) 
Mean (SD) 0.9 (0.1) 0.9 (0.1) 0.302 0.9 (0.1) 0.9 (0.0) 0.983 

Ca(adj) (mmol/L) Mean (SD) 2.3 (0.1) 2.4 (0.1) 0.355 2.3 (0.1) 2.4 (0.1) 0.392 

Albumin (mmol/L) Mean (SD) 39.8 (5.5) 41.2 (2.3) 0.220 39.8 (5.8) 41.8 (1.6) 0.234 

Bilirubin (μmol/L) Median (IQR) 10.0 (8.0 to 12.0) 11.0 (9.0 to 14.0) 0.613 10.0 (8.0 to 12.5) 11.0 (9.0 to 12.0) 0.801 
ALT  

(U/L) 
Mean (SD) 20.2 (10.5) 25.7 (13.5) 0.053 19.8 (10.6) 26.5 (16.8) 0.087 

Glucose (mmol/L) Mean (SD) 12.3 (22.1) 19.0 (27.3) 0.251 13.2 (23.4) 20.5 (25.0) 0.331 

HbA1C (mmol/mol) Mean (SD) 35.6 (2.8) 37.5 (5.1) 0.043 35.5 (2.9) 37.5 (2.0) 0.023 
Cholesterol 

(mmol/L) Mean (SD) 5.4 (1.0) 5.3 (1.0) 0.519 5.4 (1.0) 5.4 (0.8) 0.948 

Triglyceride 
(mmol/L) Median (IQR) 1.1 (0.8 to 1.5) 1.2 (0.8 to 1.8) 0.177 1.0 (0.8 to 1.3) 1.1 (0.7 to 1.5) 0.583 

HDL  

(mmol/L) 
Mean (SD) 1.6 (0.4) 1.4 (0.3) 0.055 1.6 (0.4) 1.4 (0.3) 0.116 

Renin  

(mIU/L) 
Median (IQR) 

20.6 (11.8 to 
30.9) 

19.1 (16.3 to 
24.3) 

0.750 20.6 (11.7 to 29.2) 21.6 (16.4 to 30.3) 0.602 

Aldosterone 
(pmol/L) Median (IQR) 

270.0 (191.2 to 
365.2) 

298.5 (149.8 to 
410.8) 

0.627 
266.0 (189.8 to 

355.8) 
255.0 (153.0 to 

360.0) 
0.939 
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NT-pro-BNP (ng/L) Median (IQR) 
63.0 (42.0 to 

96.0) 
49.0 (32.0 to 

77.0) 
0.104 63.0 (41.0 to 91.0) 38.0 (32.0 to 78.0) 0.251 

uNaCr (mmol/L) Median (IQR) 11.8 (8.9 to 14.7) 8.8 (7.5 to 10.7) 0.007 11.9 (9.0 to 14.8) 8.6 (7.5 to 9.2) 0.014 
uKCr  

(mmol/L) 
Mean (SD) 7.2 (3.4) 5.9 (2.0) 0.129 7.2 (3.2) 5.1 (1.6) 0.063 

uNaCr(log) Mean (SD) 2.3 (0.7) 2.1 (0.4) 0.167 2.3 (0.7) 2.0 (0.5) 0.253 

uClCr(log) Mean (SD) 2.5 (0.5) 2.1 (0.4) 0.032 2.4 (0.5) 2.1 (0.4) 0.081 

%FMD Median (IQR) 5.0 (2.6 to 7.4) 2.4 (1.1 to 4.0) 0.002 4.6 (2.6 to 7.0) 1.8 (1.4 to 3.5) 0.009 

6MWT Distance 
(metres) 

Median (IQR) 
750.0 (672.0 to 

912.0) 
897.0 (816.0 to 

1011.0) 
0.015 

768.0 (708.0 to 
930.0) 

900.0 (858.0 to 
1002.0) 

0.022 

  



RAAS Fingerprinting 

RAAS fingerprinting parameters ((renin (log-transformed), aldosterone (categorised and 

log-transformed), Ang II (1-8) (log-transformed), Ang 1-7 (log-transformed), Ang 1 (1-10) 

(log-transformed), Ang 1-5 (log-transformed), PRA-S (log-transformed), AA2-Ratio, and 

ACE-S) showed no differences at baseline. RAAS fingerprinting was not carried out at 12 

months as explained in our methods section that this was only conducted at baseline.  

Renin and aldosterone showed no significant difference between the groups across all 

models. Given that the RAAS fingerprinting parameters were not significant, further 

analysis at 12 months was not conducted.   

4.6.4 Longitudinal Analysis of Blood Pressure and 

Cardiometabolic Parameters post-COVID 

Longitudinal analysis of BP, cardiometabolic variables compared changes between 

baseline and 12-month measurements in SARS-CoV-2 negative and positive groups. In 

these analyses, results are presented for the 12-month measurement after adjustment for 

covariates including the baseline measurement of the dependent variable. Additionally, 

paired analyses were conducted for each parameter and presented as box plots with 

Wilcoxon test results presented for each group separately. Table 12 (full dataset) and 

Table 13 (per-protocol dataset) demonstrates the multivariable regression analysis of the 

effect of SARS-CoV-2 status and longitudinal cardiometabolic parameters for 12 months 

measurements adjusted for baseline after accounting for potential confounders such as 

age, sex, BMI.   

Primary Outcomes 

Ambulatory Blood Pressure Monitoring (ABPM) 

The clustered boxplots (Figure 10 and Figure 11) depict the distribution of ABPM SBP and 

DBP at baseline and 12 months across SARS-CoV-2 status for both the full dataset and 

the per-protocol dataset respectively.  Though paired analysis showed higher median 

values for both ABPM SBP and DBP, these did not reach statistical significance. In the 

multivariable adjusted analyses, both ABPM SBP and DBP showed directionally 

consistent point estimates but only the per-protocol dataset showed clear statistical 

significance for ABPM DBP (4.46 (1.01 to 7.90, p=0.012)) while ABPM SBP 4.57 (-0.04 to 

9.18, p=0.052) (Table 13).  
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Figure 10 ABPM SBP Paired 

This figure illustrates the paired ambulatory blood pressure monitoring (ABPM) systolic blood 

pressure (SBP) for the full dataset (left) and the per-protocol dataset (right). Each graph includes 

two panels: the left panel displays box plots for the SARS-CoV-2 negative group at baseline and 12 

months, while the right panel shows box plots for the SARS-CoV-2 positive group at the same time 

points. The paired t-test p-values are indicated above the square brackets in each graph. 

 

Figure 11 ABPM DBP Paired 

This figure illustrates the paired ambulatory blood pressure monitoring (ABPM) diastolic blood 

pressure (DBP) for the full dataset (left) and the per-protocol dataset (right). Each graph includes 

two panels: the left panel displays box plots for the SARS-CoV-2 negative group at baseline and 12 

months, while the right panel shows box plots for the SARS-CoV-2 positive group at the same time 

points. The paired t-test p-values are indicated above the square brackets in each graph. 

 



Table 10 Baseline Characteristics Univariable and Multivariable Regression Analyses 

This table shows the univariable, and multivariable regression analyses based on dependent variables at baseline for both the full and per-protocol dataset. 

 Full Dataset Per-protocol Dataset 

Dependent Univariable Multivariable Univariable Multivariable 

Office SBP (mmHg) 
1.43 (-3.88 to 6.75, 

p=0.594) 
-0.46 (-5.81 to 4.88, 

p=0.864) 
0.27 (-7.48 to 8.02, 

p=0.945) 
-1.33 (-9.45 to 6.79, 

p=0.744) 

Office DBP (mmHg) 
3.87 (-0.26 to 7.99, 

p=0.066) 
2.25 (-1.87 to 6.37, 

p=0.281) 
3.90 (-1.70 to 9.51, 

p=0.169) 
2.40 (-3.30 to 8.10, 

p=0.403) 

ABPM SBP (mmHg) 
4.48 (-0.03 to 9.00, 

p=0.052) 
1.41 (-2.88 to 5.70, 

p=0.515) 
3.05 (-3.13 to 9.24, 

p=0.327) 
-1.15 (-6.96 to 4.66, 

p=0.694) 

ABPM DBP (mmHg) 
2.07 (-0.74 to 4.88, 

p=0.148) 
0.87 (-2.00 to 3.74, 

p=0.549) 
-0.41 (-4.12 to 3.31, 

p=0.827) 
-2.54 (-6.33 to 1.25, 

p=0.185) 

ABPM SBP (day) (mmHg) 
3.62 (-1.05 to 8.30, 

p=0.127) 
1.06 (-3.47 to 5.59, 

p=0.644) 
4.28 (-1.98 to 10.54, 

p=0.177) 
0.56 (-5.57 to 6.70, 

p=0.855) 

ABPM DBP (day) (mmHg) 
1.03 (-2.08 to 4.14, 

p=0.514) 
0.26 (-2.97 to 3.50, 

p=0.872) 
0.60 (-3.32 to 4.53, 

p=0.760) 
-1.06 (-5.23 to 3.11, 

p=0.613) 

ABPM SBP (night) (mmHg) 
3.93 (-1.06 to 8.93, 

p=0.121) 
0.72 (-3.96 to 5.40, 

p=0.761) 
0.57 (-5.99 to 7.14, 

p=0.862) 
-4.09 (-10.03 to 1.85, 

p=0.174) 

ABPM DBP (night) (mmHg) 
1.94 (-1.20 to 5.08, 

p=0.223) 
1.02 (-2.21 to 4.25, 

p=0.532) 
-2.70 (-6.28 to 0.88, 

p=0.137) 
-4.30 (-8.02 to -0.58, 

p=0.024) 

Hb  

(g/L) 
4.45 (-0.57 to 9.47, 

p=0.082) 
-1.26 (-5.19 to 2.67, 

p=0.526) 
7.21 (0.62 to 13.80, 

p=0.033) 
-0.95 (-6.10 to 4.20, 

p=0.713) 

WBC  

(x10^9/L) 
0.03 (-0.50 to 0.56, 

p=0.912) 
-0.01 (-0.56 to 0.54, 

p=0.968) 
0.01 (-0.68 to 0.70, 

p=0.980) 
0.17 (-0.59 to 0.93, 

p=0.657) 

Neutrophils (x10^9/L) 
-0.14 (-0.61 to 0.32, 

p=0.544) 
-0.13 (-0.61 to 0.36, 

p=0.602) 
-0.07 (-0.70 to 0.56, 

p=0.824) 
0.12 (-0.57 to 0.81, 

p=0.731) 

Lymphocytes (x10^9/L) 
0.12 (-0.08 to 0.32, 

p=0.241) 
0.09 (-0.11 to 0.30, 

p=0.372) 
0.06 (-0.18 to 0.29, 

p=0.642) 
0.07 (-0.20 to 0.34, 

p=0.610) 

Na  

(mmol/L) 
1.40 (0.66 to 2.13, 

p<0.001) 
1.22 (0.44 to 2.00, 

p=0.002) 
1.81 (0.76 to 2.86, 

p=0.001) 
1.57 (0.41 to 2.74, 

p=0.009) 
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K  

(mmol/L) 
-0.02 (-0.13 to 0.09, 

p=0.760) 
-0.03 (-0.15 to 0.08, 

p=0.550) 
-0.05 (-0.20 to 0.09, 

p=0.478) 
-0.05 (-0.21 to 0.11, 

p=0.518) 

Cl  

(mmol/L) 
-0.16 (-1.00 to 0.68, 

p=0.704) 
-0.03 (-0.89 to 0.83, 

p=0.947) 
-0.06 (-1.19 to 1.06, 

p=0.911) 
0.39 (-0.78 to 1.55, 

p=0.509) 

Urea (log) 
0.17 (0.06 to 0.29, 

p=0.003) 
0.12 (0.01 to 0.24, 

p=0.037) 
0.20 (0.05 to 0.34, 

p=0.009) 
0.09 (-0.06 to 0.24, 

p=0.222) 
Creatinine  

 

(μmol/L) 

8.11 (2.03 to 14.19, 
p=0.009) 

1.48 (-3.41 to 6.36, 
p=0.550) 

10.54 (2.61 to 18.46, 
p=0.010) 

0.20 (-5.77 to 6.16, 
p=0.948) 

Ca(adj) (mmol/L) 
0.02 (-0.02 to 0.05, 

p=0.352) 
0.01 (-0.02 to 0.05, 

p=0.506) 
0.00 (-0.05 to 0.05, 

p=0.962) 
0.01 (-0.04 to 0.06, 

p=0.768) 

Glucose  

(mmol/L) 
4.45 (-3.05 to 11.95, 

p=0.241) 
0.99 (-6.81 to 8.79, 

p=0.802) 
11.49 (-0.10 to 23.07, 

p=0.052) 
7.04 (-5.43 to 19.51, 

p=0.263) 

HbA1C  

(mmol/mol) 
2.53 (0.87 to 4.20, 

p=0.003) 
1.97 (0.27 to 3.67, 

p=0.024) 
2.79 (1.22 to 4.35, 

p=0.001) 
2.24 (0.68 to 3.80, 

p=0.006) 

Cholesterol (mmol/L) 
1.71 (-2.67 to 6.08, 

p=0.441) 
0.67 (-3.94 to 5.27, 

p=0.775) 
1.84 (-5.46 to 9.15, 

p=0.616) 
0.61 (-7.28 to 8.50, 

p=0.878) 

Triglyceride (mmol/L) 
0.15 (-0.07 to 0.36, 

p=0.170) 
0.04 (-0.18 to 0.26, 

p=0.731) 
0.08 (-0.16 to 0.31, 

p=0.526) 
-0.04 (-0.27 to 0.20, 

p=0.749) 

HDL 

 (mmol/L) 
-0.08 (-0.30 to 0.15, 

p=0.502) 
-0.01 (-0.24 to 0.22, 

p=0.937) 
0.02 (-0.31 to 0.35, 

p=0.908) 
0.12 (-0.24 to 0.47, 

p=0.524) 

Renin(log) 
0.11 (-0.15 to 0.37, 

p=0.398) 
0.14 (-0.13 to 0.41, 

p=0.306) 
0.17 (-0.16 to 0.50, 

p=0.312) 
0.15 (-0.20 to 0.50, 

p=0.407) 

Aldosterone(cat) 
0.04 (-0.17 to 0.25, 

p=0.721) 
-0.01 (-0.23 to 0.22, 

p=0.961) 
0.03 (-0.27 to 0.33, 

p=0.824) 
0.06 (-0.26 to 0.39, 

p=0.710) 

BNP(log) 
-0.01 (-0.31 to 0.29, 

p=0.935) 
0.09 (-0.22 to 0.39, 

p=0.563) 
-0.17 (-0.55 to 0.21, 

p=0.367) 
-0.07 (-0.48 to 0.34, 

p=0.739) 

Ang II (1-8)(log) 
-0.06 (-0.35 to 0.22, 

p=0.649) 
0.03 (-0.25 to 0.31, 

p=0.844) 
-0.02 (-0.39 to 0.36, 

p=0.926) 
-0.02 (-0.40 to 0.37, 

p=0.929) 
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Ang 1-7(log) 
-0.01 (-0.10 to 0.08, 

p=0.848) 
-0.01 (-0.11 to 0.09, 

p=0.866) 
-0.00 (-0.06 to 0.06, 

p=0.978) 
-0.00 (-0.07 to 0.06, 

p=0.940) 

Ang I (1-10)(log) 
-0.23 (-0.54 to 0.09, 

p=0.154) 
-0.14 (-0.46 to 0.18, 

p=0.395) 
-0.13 (-0.47 to 0.22, 

p=0.477) 
-0.08 (-0.44 to 0.28, 

p=0.647) 

Ang 1-5(log) 
0.17 (-0.10 to 0.43, 

p=0.218) 
0.21 (-0.07 to 0.48, 

p=0.134) 
0.15 (-0.15 to 0.46, 

p=0.317) 
0.05 (-0.25 to 0.36, 

p=0.730) 

PRA-S(log) 
-0.10 (-0.37 to 0.18, 

p=0.490) 
-0.00 (-0.28 to 0.27, 

p=0.972) 
-0.04 (-0.40 to 0.32, 

p=0.845) 
-0.03 (-0.39 to 0.34, 

p=0.889) 

Aldosterone(log) 
0.08 (-0.19 to 0.35, 

p=0.552) 
0.11 (-0.17 to 0.40, 

p=0.432) 
-0.09 (-0.43 to 0.25, 

p=0.585) 
-0.09 (-0.47 to 0.29, 

p=0.634) 

AA2-Ratio (pmol/L) 
0.55 (-0.45 to 1.55, 

p=0.279) 
0.24 (-0.79 to 1.26, 

p=0.649) 
0.25 (-1.26 to 1.76, 

p=0.743) 
0.01 (-1.61 to 1.62, 

p=0.992) 

ACE-S (pmol/L) 
0.60 (-0.34 to 1.53, 

p=0.209) 
0.57 (-0.43 to 1.57, 

p=0.258) 
0.50 (-0.30 to 1.30, 

p=0.212) 
0.35 (-0.53 to 1.23, 

p=0.429) 

uNaCr(log) 
-0.02 (-0.21 to 0.17, 

p=0.816) 
0.05 (-0.16 to 0.26, 

p=0.646) 
-0.04 (-0.31 to 0.22, 

p=0.736) 
0.08 (-0.19 to 0.35, 

p=0.555) 

uKCr (mmol/L) 
-1.35 (-2.49 to -0.20, 

p=0.022) 
-0.17 (-1.31 to 0.96, 

p=0.761) 
-1.41 (-2.93 to 0.10, 

p=0.067) 
-0.53 (-2.02 to 0.96, 

p=0.477) 

uClCr(log) 
-0.06 (-0.24 to 0.12, 

p=0.527) 
0.02 (-0.18 to 0.23, 

p=0.806) 
-0.07 (-0.33 to 0.19, 

p=0.569) 
0.06 (-0.21 to 0.33, 

p=0.648) 

%FMD 
-6.76 (-14.75 to 1.24, 

p=0.096) 
-5.78 (-14.42 to 2.86, 

p=0.186) 
-6.30 (-17.37 to 4.76, 

p=0.259) 
-4.18 (-16.39 to 8.04, 

p=0.496) 

6MWT Distance (metres) 
-10.74 (-77.22 to 55.73, 

p=0.748) 
-16.19 (-88.57 to 56.19, 

p=0.657) 
-10.59 (-98.04 to 76.86, 

p=0.810) 
-27.91 (-121.88 to 66.06, 

p=0.555) 
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Table 11 12-month Characteristics Univariable and Multivariable Regression Analyses 

This table shows the univariable, and multivariable regression analyses based on dependent variables at 12-months for both the full and per-protocol dataset. 

 Full Dataset Per-protocol Dataset 

Dependent (12 months) Univariable Multivariable Univariable Multivariable 

Office SBP (mmHg) 
7.91 (1.43 to 14.39, 

p=0.017) 
5.73 (-1.15 to 12.62, 

p=0.101) 
8.50 (-0.02 to 17.02, 

p=0.051) 
4.94 (-4.09 to 13.96, 

p=0.278) 

Office DBP (mmHg) 
3.81 (-0.38 to 8.00, 

p=0.074) 
2.33 (-2.26 to 6.92, 

p=0.315) 
4.88 (-0.40 to 10.16, 

p=0.069) 
2.32 (-3.38 to 8.02, 

p=0.419) 

ABPM SBP (mmHg) 
6.94 (1.99 to 11.90, 

p=0.007) 
3.86 (-1.47 to 9.19, 

p=0.153) 
9.71 (3.30 to 16.12, 

p=0.004) 
5.38 (-1.96 to 12.71, 

p=0.147) 

ABPM DBP (mmHg) 
2.98 (-0.27 to 6.22, 

p=0.072) 
2.22 (-1.51 to 5.96, 

p=0.239) 
3.87 (-0.55 to 8.30, 

p=0.085) 
2.81 (-2.59 to 8.21, 

p=0.301) 

ABPM SBP (day) (mmHg) 
7.35 (2.00 to 12.69, 

p=0.008) 
4.18 (-1.68 to 10.04, 

p=0.159) 
10.54 (3.61 to 17.48, 

p=0.004) 
5.39 (-2.61 to 13.39, 

p=0.182) 

ABPM DBP (day) (mmHg) 
3.41 (-0.30 to 7.13, 

p=0.071) 
2.79 (-1.53 to 7.10, 

p=0.202) 
4.26 (-0.48 to 9.00, 

p=0.077) 
2.80 (-2.94 to 8.54, 

p=0.332) 

ABPM SBP (night) (mmHg) 
6.82 (1.52 to 12.13, 

p=0.012) 
3.47 (-2.40 to 9.33, 

p=0.242) 
8.86 (1.82 to 15.91, 

p=0.015) 
4.40 (-3.73 to 12.52, 

p=0.283) 

ABPM DBP (night) (mmHg) 
1.77 (-1.85 to 5.39, 

p=0.332) 
0.36 (-3.81 to 4.54, 

p=0.863) 
2.50 (-2.33 to 7.33, 

p=0.304) 
1.09 (-4.79 to 6.97, 

p=0.712) 

Hb  

(g/L) 
6.28 (0.17 to 12.40, 

p=0.044) 
-3.98 (-8.78 to 0.81, 

p=0.102) 
7.20 (-0.33 to 14.72, 

p=0.060) 
-5.65 (-11.49 to 0.19, 

p=0.058) 

WBC  

(x10^9/L) 
-0.56 (-1.24 to 0.12, 

p=0.103) 
-0.43 (-1.18 to 0.32, 

p=0.254) 
-0.75 (-1.64 to 0.14, 

p=0.098) 
-0.54 (-1.57 to 0.50, 

p=0.304) 

Neutrophils (x10^9/L) 
-0.43 (-0.97 to 0.12, 

p=0.125) 
-0.30 (-0.90 to 0.30, 

p=0.329) 
-0.53 (-1.25 to 0.20, 

p=0.150) 
-0.36 (-1.18 to 0.46, 

p=0.389) 

Lymphocytes (x10^9/L) 
-0.13 (-0.34 to 0.07, 

p=0.205) 
-0.12 (-0.35 to 0.11, 

p=0.310) 
-0.17 (-0.44 to 0.10, 

p=0.203) 
-0.14 (-0.46 to 0.18, 

p=0.387) 
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Na  

(mmol/L) 
0.81 (-0.18 to 1.79, 

p=0.107) 
0.36 (-0.74 to 1.46, 

p=0.521) 
0.69 (-0.55 to 1.93, 

p=0.272) 
0.17 (-1.26 to 1.60, 

p=0.813) 

K  

(mmol/L) 
0.05 (-0.08 to 0.19, 

p=0.441) 
-0.00 (-0.16 to 0.15, 

p=0.972) 
0.06 (-0.11 to 0.22, 

p=0.486) 
-0.02 (-0.21 to 0.16, 

p=0.814) 

Cl  

(mmol/L) 
0.32 (-0.68 to 1.31, 

p=0.530) 
0.20 (-0.93 to 1.34, 

p=0.723) 
0.03 (-1.31 to 1.37, 

p=0.969) 
-0.03 (-1.60 to 1.53, 

p=0.965) 

Urea (log) 
0.19 (0.06 to 0.32, 

p=0.004) 
0.09 (-0.05 to 0.22, 

p=0.215) 
0.14 (-0.02 to 0.30, 

p=0.094) 
-0.01 (-0.18 to 0.16, 

p=0.913) 

Creatinine  
(μmol/L) 

8.11 (2.03 to 14.19, 
p=0.009) 

1.48 (-3.41 to 6.36, 
p=0.550) 

10.54 (2.61 to 18.46, 
p=0.010) 

0.20 (-5.77 to 6.16, 
p=0.948) 

Ca(adj)  

(mmol/L) 
0.02 (-0.02 to 0.05, 

p=0.352) 
0.01 (-0.02 to 0.05, 

p=0.506) 
0.00 (-0.05 to 0.05, 

p=0.962) 
0.01 (-0.04 to 0.06, 

p=0.768) 

Glucose  

(mmol/L) 
4.45 (-3.05 to 11.95, 

p=0.241) 
0.99 (-6.81 to 8.79, 

p=0.802) 
11.49 (-0.10 to 23.07, 

p=0.052) 
7.04 (-5.43 to 19.51, 

p=0.263) 

HbA1C  

(mmol/mol) 
2.53 (0.87 to 4.20, 

p=0.003) 
1.97 (0.27 to 3.67, 

p=0.024) 
2.79 (1.22 to 4.35, 

p=0.001) 
2.24 (0.68 to 3.80, 

p=0.006) 

Cholesterol (mmol/L) 
1.71 (-2.67 to 6.08, 

p=0.441) 
0.67 (-3.94 to 5.27, 

p=0.775) 
1.84 (-5.46 to 9.15, 

p=0.616) 
0.61 (-7.28 to 8.50, 

p=0.878) 

Triglyceride(log) 
0.18 (-0.05 to 0.42, 

p=0.124) 
0.13 (-0.12 to 0.39, 

p=0.290) 
0.13 (-0.17 to 0.42, 

p=0.398) 
0.10 (-0.21 to 0.42, 

p=0.515) 

HDL  

(mmol/L) 
-0.08 (-0.30 to 0.15, 

p=0.502) 
-0.01 (-0.24 to 0.22, 

p=0.937) 
0.02 (-0.31 to 0.35, 

p=0.908) 
0.12 (-0.24 to 0.47, 

p=0.524) 

Renin (log) 
0.11 (-0.15 to 0.37, 

p=0.398) 
0.14 (-0.13 to 0.41, 

p=0.306) 
0.17 (-0.16 to 0.50, 

p=0.312) 
0.15 (-0.20 to 0.50, 

p=0.407) 

Aldosterone (cat) 
0.04 (-0.17 to 0.25, 

p=0.721) 
-0.01 (-0.23 to 0.22, 

p=0.961) 
0.03 (-0.27 to 0.33, 

p=0.824) 
0.06 (-0.26 to 0.39, 

p=0.710) 

NT-pro-BNP (log) 
-0.01 (-0.31 to 0.29, 

p=0.935) 
0.09 (-0.22 to 0.39, 

p=0.563) 
-0.17 (-0.55 to 0.21, 

p=0.367) 
-0.07 (-0.48 to 0.34, 

p=0.739) 
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uNaCr(log) 
-0.24 (-0.58 to 0.10, 

p=0.167) 
-0.17 (-0.55 to 0.21, 

p=0.381) 
-0.29 (-0.79 to 0.21, 

p=0.253) 
-0.05 (-0.64 to 0.55, 

p=0.873) 

uKCr  

(mmol/L) 
-1.30 (-3.00 to 0.39, 

p=0.129) 
-0.88 (-2.60 to 0.84, 

p=0.309) 
-2.09 (-4.29 to 0.11, 

p=0.063) 
-1.11 (-3.57 to 1.34, 

p=0.365) 

uClCr  

(log) 
-0.31 (-0.59 to -0.03, 

p=0.032) 
-0.25 (-0.56 to 0.06, 

p=0.106) 
-0.34 (-0.73 to 0.04, 

p=0.081) 
-0.13 (-0.57 to 0.32, 

p=0.572) 

%FMD 
-2.51 (-4.07 to -0.95, 

p=0.002) 
-1.98 (-3.92 to -0.04, 

p=0.046) 
-2.52 (-4.45 to -0.59, 

p=0.012) 
-2.90 (-5.49 to -0.31, 

p=0.029) 

6MWT Distance (metres) 
109.25 (16.98 to 201.52, 

p=0.021) 
126.39 (18.64 to 234.14, 

p=0.022) 
118.45 (21.01 to 215.90, 

p=0.018) 
153.86 (41.29 to 266.44, 

p=0.008) 
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Table 12 Longitudinal Regression Analyses - Full Dataset (Coefficient SARS-COV-2 Positive vs SARS-COV-2 Negative)  

This table shows the univariable, and multivariable regression analyses for both SARS-CoV-2 status (positive and negative) based on dependent variables at baseline after 

adjusting for relevant confounders (age, sex, BMI, baseline measure) for both the full dataset. 

Full Dataset Mean (SD) Multivariable (age, sex, BMI, baseline measure) 
Office SBP(mmHg) 127.8 (14.6) 6.30 (0.81 to 11.79, p=0.025) 

Office DBP(mmHg) 80.5 (8.3) 1.86 (-1.46 to 5.19, p=0.267) 

ABPM SBP(mmHg) 121.6 (10.8) 2.63 (-1.11 to 6.37, p=0.165) 

ABPM DBP(mmHg) 75.3 (5.6) 2.30 (-0.39 to 4.99, p=0.092) 

Na (mmol/L) 139.6 (1.9) -0.67 (-1.55 to 0.20, p=0.128) 

HbA1c (mmol/mol) 37.5 (5.1) 0.40 (-0.86 to 1.65, p=0.529) 

%FMD 2.5 (2.1) -2.32 (-4.82 to 0.17, p=0.067) 

6MWT Distance (metres) 919.6 (138.1) 132.13 (48.79 to 215.48, p=0.002) 

Urea (log) 1.6 (0.3) 0.05 (-0.07 to 0.16, p=0.417) 

Hb (g/L) 140.4 (14.0) -1.06 (-4.67 to 2.54, p=0.559) 

uNaCr(mmol/L) 9.2 (3.0) -1.31 (-4.33 to 1.71, p=0.385) 

uKCr(mmol/L) 6.2 (2.1) -0.08 (-1.93 to 1.76, p=0.926) 

Creatinine(μmol/L) 77.8 (15.3) 0.15 (-2.95 to 3.24, p=0.926) 
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Table 13 Longitudinal Regression Analyses - Per-protocol (Coefficient SARS-COV-2 Positive vs SARS-COV-2 Negative)  

This table shows the univariable, and multivariable regression analyses for both SARS-CoV-2 status (positive and negative) based on dependent variables at baseline after 

adjusting for relevant confounders (age, sex, BMI, baseline measure) for both the per-protocol dataset. 

Per-protocol Dataset Mean (SD) Multivariable (age, sex, BMI, baseline measure) 
Office SBP (mmHg) 128.0 (15.0) 5.13 (-1.10 to 11.37, p=0.105) 
Office DBP (mmHg) 81.2 (6.2) 0.61 (-3.22 to 4.44, p=0.750) 
ABPM SBP (mmHg) 123.9 (9.6) 4.57 (-0.04 to 9.18, p=0.052) 
ABPM DBP (mmHg) 76.3 (4.7) 4.46 (1.01 to 7.90, p=0.012) 

Na (mmol/L) 139.5 (1.7) -1.12 (-2.19 to -0.05, p=0.040) 
HbA1C  (mmol/mol) 37.5 (2.0) 0.95 (-0.76 to 2.66, p=0.271) 

%FMD  2.5 (1.8) -3.15 (-6.33 to 0.04, p=0.053) 
6MWT Distance (metres) 925.4 (108.3) 145.60 (49.14 to 242.06, p=0.004) 

Urea (log) 1.5 (0.2) -0.03 (-0.18 to 0.12, p=0.698) 
Hb (g/L) 141.2 (13.5) -3.73 (-8.61 to 1.16, p=0.132) 

uNaCr (mmol/L) 8.4 (3.0) -1.63 (-5.71 to 2.46, p=0.424) 

uKCr (mmol/L) 5.0 (1.3) -0.62 (-3.11 to 1.87, p=0.615) 
Creatinine (μmol/L) 80.0 (16.3) 0.15 (-4.01 to 4.30, p=0.944) 
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4.6.4.1 Secondary Outcomes 

Out of all the measurements carried out, we carried out longitudinal analyses on the set of 

variables that showed nominally significant differences between groups at baseline. The 

variables analysed are serum sodium, HbA1c, %FMD, 6MWT Distance, oSBP, oDBP, 

serum urea, haemoglobin, uNaCr, uKCr, and creatinine and the results are presented in 

Figures (17 to 27) and Tables (12 and 13). Given the multiple tests carried out, a 

Bonferroni correction was applied to determine significance threshold, and this was set at 

p<0.0055. Only the 6MWT crossed the Bonferroni threshold for significance and this will 

be presented first.  

6-Minute Walk Test (6MWT) 

Figure 12 presents the paired t-test comparison showing the distribution across groups for 

both datasets. There was a significantly higher 6MWT at 12 months (p <0.0055) 

compared to baseline in both the SARS CoV-2 positive and negative groups for both 

datasets. Table 12 and Table 13 presents the multivariable regression analysis between 

COVID-19 status and longitudinal 6MWT between baseline and 12 month after accounting 

for potential confounders such as age, sex, BMI and baseline 6MWT for both datasets. In 

the full dataset, the multivariable analysis adjusted for potential confounders including 

baseline 6MWT, indicated a more pronounced increase of 132.13 metres in 6MWT at 12 

months from baseline in the SARS CoV-2 positive subjects compared to negative subjects 

(132.13 (48.79 to 215.48, p=0.002)). (Table 12) This was observed also in the per-protocol 

dataset 145.60 (49.14 to 242.06, p=0.004) (Table 13). 

Office Systolic Blood Pressure and Office Diastolic Blood Pressure 

The clustered boxplots (Figure 13 and Figure 14) depict the distribution of oSBP and 

oDBP at baseline and 12 months across SARS-CoV-2 status for both the full dataset and 

the per-protocol dataset respectively.  The Wilcoxon paired t-test p-values are presented 

separately for the SARS-CoV-2 positive and negative participants. Paired analysis for 

oSBP in the per-protocol dataset showed a significant difference (p=0.048) (Figure 13). In 

the multivariable adjusted analyses, oSBP showed a significant longitudinal increase of 

6.3 mmHg increase in the SARS-CoV-2 positive participants compared to SARS-CoV-2 

negative participants (6.30 (0.81 to 11.79, p=0.025), this was not evident in the per-

protocol dataset although the point estimate of 5.13 was directionally concordant (Table 

12 and Table 13). oDBP did not demonstrate any difference in longitudinal trajectory in 

both datasets.  
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Figure 12 6-Minute Walk Test  

This figure illustrates the paired 6-MWT for the full dataset (left) and the per-protocol dataset (right). 

Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 negative 

group at baseline and 12 months, while the right panel shows box plots for the SARS-CoV-2 

positive group at the same time points. The paired t-test p-values are indicated above the square 

brackets in each graph. 

 

 

Figure 13 Office SBP Paired  

This figure illustrates the paired office SBP for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph. 
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Figure 14 Office DBP Paired  

This figure illustrates the paired office DBP for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph. 

 

Brachial Flow Mediated Dilation (FMD) 

Though FMD did not cross the Bonferroni threshold for significance, the results are 

interesting in the context of the significant differences observed in the ABPM data. Figure 

15 provide box plots for the full and per-protocol datasets respectively, showing the 

distribution of FMD across groups. Figure 15 presents the paired t-test comparison, with 

lower FMD at 12 months compared to baseline in only the SARS CoV-2 positive groups 

which attain statistical significance in both data sets (Full: p=0.0076; Per-protocol: 

p=0.039). In the full and per-protocol datasets, multivariable analysis showed a similar 

point estimate for reduction in FMD at 12 months (Full: -2.32 (-4.82 to 0.17, p=0.067); Per-

protocol: -3.15 (-6.33 to 0.04, p=0.053)) (Table 12 and 13). 

Serum Sodium  

Serum sodium was only nominally significant in the per-protocol multivariable analyses 

reflecting the results in the paired analysis. Figure 16 provide box plots for the full and per-

protocol datasets respectively, showing the distribution of serum sodium across groups. It 

illustrates the paired t-test comparison, with lower serum sodium at 12 months compared 

to baseline in the SARS CoV-2 positive group reaching statistical significance (Full: 

p=0.033, Per-protocol: 0.047) while there was no difference in the SARS-CoV-2 negative 

group.  In the full dataset (Table 12), the multivariable full model adjustment demonstrated  
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Figure 15 FMD Paired 

This figure illustrates the paired FMD for the full dataset (left) and the per-protocol dataset (right). 

Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 negative 

group at baseline and 12 months, while the right panel shows box plots for the SARS-CoV-2 

positive group at the same time points. The paired t-test p-values are indicated above the square 

brackets in each graph. 

 

Figure 16 Serum Sodium Paired 

This figure illustrates the serum sodium for the full dataset (left) and the per-protocol dataset (right). 

Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 negative 

group at baseline and 12 months, while the right panel shows box plots for the SARS-CoV-2 

positive group at the same time points. The paired t-test p-values are indicated above the square 

brackets in each graph. 
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a 0.67 mmol/L decrease in serum sodium at 12 months compared to baseline in the SARS 

CoV-2 positive participants compared to negative participants (-0.67 (-1.55 to 0.20, 

p=0.128)) (Table 12). In the per-protocol dataset (Table 13), there was a reduction in 

serum sodium by 1.12 mmol/L at 12 months compared to baseline in the SARS-CoV-2 

positive participants (-1.12 (-2.19 to -0.05, p=0.040)).  

Serum HbA1c (Glycosylated Haemoglobin) 

Figure 17 provide box plots for the full and per-protocol datasets respectively, showing the 

distribution of serum HbA1c across groups. It illustrates the paired t-test comparison, with 

higher serum HbA1c at 12 months in both SARS-CoV-2 negative (p=0.00047) and 

positive (0.011) in the full data set. Similar effects were seen in the per-protocol dataset for 

both SARS-CoV-2 negative (p=0.00023) and positive (0.041) participants. The 

multivariable full model adjustment demonstrated a 0.40 mmol/L increase in serum 

HbA1C at 12 months compared to baseline in the SARS CoV-2 positive subjects 

compared to negative subjects. (0.40 (-0.86 to 1.65, p=0.529)) in Table 12. This was 

similarly observed in the per-protocol dataset. 0.95 (-0.76 to 2.66, p=0.271) in Table 13. 

Serum Urea (log), creatinine, haemoglobin (Hb), urine NaCr and urine KCr 

Paired t-test comparisons for the following variables serum urea (log) (Figure 18), 

creatinine (Figure 19), haemoglobin (Hb) (Figure 20), urine NaCr (Figure 21) and urine 

KCr (Figure 22) were not significant in both full and per-protocol datasets. For both 

univariable and multivariable analysis for both data sets (Table 12 and Table 13), serum 

urea (log), creatinine, haemoglobin (Hb), urine NaCr and urine KCr were not significant 

across all models.  

4.7 Discussion  

4.7.1 Study Findings 

In this study, we conducted a comprehensive assessment of longitudinal BP changes after 

recovery from SARS-CoV-2 infection. This study measured a wide range of clinical (BP, 

cardiometabolic, and laboratory) parameters at the first visit after recovery from SARS-

CoV-2 infection and after 12 months. We compared with a contemporaneous group of 

subjects who were not exposed to SARS-CoV-2. All subjects did not have hypertension 

and were at low cardiovascular risk. 
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Figure 17 Serum HbA1c Paired  

This figure illustrates the paired HbA1c for the full dataset (left) and the per-protocol dataset (right). 

Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 negative 

group at baseline and 12 months, while the right panel shows box plots for the SARS-CoV-2 

positive group at the same time points. The paired t-test p-values are indicated above the square 

brackets in each graph. 

 

 

Figure 18 Serum Urea Paired  

This figure illustrates the paired serum urea for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph 
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Figure 19 Serum Creatinine Paired 

This figure illustrates the paired serum creatinine for the full dataset (left) and the per-protocol 

dataset (right). Each graph includes two panels: the left panel displays box plots for the SARS-

CoV-2 negative group at baseline and 12 months, while the right panel shows box plots for the 

SARS-CoV-2 positive group at the same time points. The paired t-test p-values are indicated above 

the square brackets in each graph. 

 

 

Figure 20 Serum Hb Paired 

This figure illustrates the paired serum Hb for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph. 
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Figure 21 Urine NaCr Paired 

This figure illustrates the paired urine NaCr for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph. 

 

Figure 22 Urine KCr Paired 

This figure illustrates the paired urine KCr for the full dataset (left) and the per-protocol dataset 

(right). Each graph includes two panels: the left panel displays box plots for the SARS-CoV-2 

negative group at baseline and 12 months, while the right panel shows box plots for the SARS-

CoV-2 positive group at the same time points. The paired t-test p-values are indicated above the 

square brackets in each graph. 
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Our study highlights an increase in ambulatory BP, with ABPM SBP rising by 4.57 mmHg 

and DBP by 4.46 mmHg over a 12-month period post-SARS-CoV-2 recovery compared to 

SARS-CoV-2 negative counterparts. This rise coincided with a 3.15% reduction in FMD 

among SARS-CoV-2 positive participants, suggesting a potential vascular basis for the 

observed BP changes. This study observed a significantly improved 6MWT distance of 

145 m, which is an improvement compared to SARS-CoV-2 negative participants, 

suggesting an overall improvement in overall health in the SARS-CoV-2 positive 

participants. These results were obtained after adjustment for confounders and were 

mirrored in the parallel paired analyses.  

Cross-sectionally, baseline oBP, ABPM and FMD were matched between the two groups 

in the full and per-protocol analyses. At 12 months, BP was similar between groups and 

%FMD was significantly lower in the SARS-CoV-2 positive group in both the full and per-

protocol analyses.  Our FMD findings are similar to a previous study that compared 

participants who had COVID-19 infection with normal controls; they found that %FMD was 

higher in the control group compared to those with COVID-19 at a single time point. (238) 

A study of 12 female participants (COVID-19 cases) matched with 11 age-matched 

controls without COVID-19 had FMD and brachial BP measured where they demonstrated 

higher brachial BP (SBP 126 ± 19 vs.109 ± 8 mmHg; P = 0.010 and lower FMD (cases: 

4.69 ± 2.68 vs. control: 5.73 ± 2.69%; P= 0.381) however, this particular study was limited 

by its sample size. (239) In this study, we did not find significant differences in RAAS 

fingerprinting results at baseline between the two groups. Thus, we did not repeat the 

RAAS fingerprinting at 12 months. 

Among laboratory measurements as secondary outcomes, we found nominally significant 

changes in Hb, HbA1c and serum sodium cross-sectionally at baseline and in paired 

analyses but these parameters did not survive multiple testing correction (Bonferroni 

corrected for the p-value P<0.0055).  There was an observed increase in HbA1c at 12 

months post SARS-CoV-2 virus infection in both groups, but this did not pass multiple 

testing considerations, which is interesting and worth pursuing. A recent meta-analysis by 

Chen et al and colleagues provides evidence that severe COVID-19 is associated with 

increased blood glucose (weighted mean difference 2.21, 95% CI: 1.30-3.13, P < 0.001) 

however this was not demonstrated in those with mild COVID-19 (weighted mean 

difference 0.29, 95% CI: -0.59 to 1.16, P = 0.52), highlighting the need for monitoring not 

only BP but also glycaemic control. (240) Another meta-analysis, demonstrated that there 

is a higher risk of incident diabetes after hospital discharge or at least 28 days after 
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COVID-19 diagnosis and screening is essential regardless of disease severity or history of 

steroid treatment use. (241) It is postulated that blood glucose may be high in recovered 

individuals after COVID-19 infection where overt hyperglycaemia was identified in those 

without a diagnosis of diabetes, but persistent hyperglycaemia could lead to the 

development of new onset diabetes or put the individual at high risk of developing 

diabetes remains debatable, highlighting the need for further longitudinal studies. (242) 

In current literature, studies linking COVID-19 with elevated BP or new-onset hypertension 

exhibit several limitations, including retrospective and observational study designs, 

reliance on self-reporting, small sample sizes, absence of control groups, and short follow-

up durations. Hence, a cautious interpretation of these findings is essential.(243)  For 

instance, Akpek et al.  found elevated BP in only 18 out of 153 confirmed COVID-19 

patients after a brief follow-up period of 31.6 ± 5.0 days. (94) Similarly a single-centre 

prospective study, reported no significant increase in BP after three and six months, 

although their study was limited by a small sample size. (244) A cross-sectional 

observational study in COVID-19 positive adults, with over a quarter reporting 

hypertension post-infection; however, caution is warranted due to variability in cardiac-

related symptoms and study design. (211) Another study observed a heightened risk of 

incident cardiovascular disease beyond 30 days post-infection, with hypertension showing 

a high hazard ratio HR: 15.18 (95% CI: 11.53 to 18.62). (245)Two studies, a longitudinal 

prospective study found only 29.7% of survivors developing hypertension at one year and 

another observed new-onset hypertension in 33.2% of hospitalized COVID-19 patients at 

one year. (246, 247). Additionally, Alfadda et al. (2022) reported an increase in SBP at six 

months in COVID-19 survivors (124.68 ± 14.9 vs. in follow-up 131.26 ± 15.3, p <0.001). 

(248) Another retrospective and prospective observational cohort study that looked at 185 

participants who had been discharged 23 days following COVID-19 infection found that 40 

(21.6%) had uncontrolled BP that required therapeutic change. (249) Gameil et al who 

conducted a study observed that SBP was elevated in COVID-19 survivors (Control 

120.63 ± 8.49 vs. Cases 126.70 ± 10.31, ) in the univariate analysis (crude odds ratio 1.07 

(1.03–1.109), p<0.001)  but lost significance in the multivariate analysis. (250)These 

findings underscore the need for further research with robust study designs and longer 

follow-up periods to elucidate the true relationship between COVID-19 and hypertension.  

This leads to demonstrates that our study presents several notable strengths when 

compared to existing literature. Firstly, we offer longitudinal data points collected at both 

baseline and 12 months, complemented by sequential ABPM measurements, widely 

acknowledged as the gold standard for diagnosing and classifying hypertension. It's worth 
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noting that our participants had no prior history of hypertension, a crucial factor in 

minimising confounding variables and accurately tracking longitudinal BP changes 

potentially attributable to COVID-19 infection.  

Additionally, our study assessed FMD as a marker of endothelial dysfunction at two time 

points, providing valuable insights into vascular health dynamics post-SARS-CoV-2 

recovery. However, it is necessary to acknowledge the study's recruitment challenges 

amidst evolving pandemic dynamics, including vaccine rollout and emerging variants with 

potentially differing pathogenicity. This resulted in longer delays between the diagnosis of 

COVID-19 and baseline visit assessment and required the formulation of a per-protocol 

analysis in addition to analysis of the full dataset. This ensured that the participants in the 

per-protocol data set were similar in terms of the time of their baseline BP and other 

assessments and their 12-month assessments.  

The 6MWT serves as a key marker of recovery, reflecting improvements in physical 

fitness and cardiopulmonary function. (234)Over time, individuals recovering from COVID-

19 may experience enhanced lung function, muscle strength, and overall endurance as 

they recover from the acute effects of the illness. (146, 251) Additionally, the resolution of 

systemic inflammation may contribute to improved vascular and endothelial function, 

thereby reducing exertional fatigue and enhancing physical performance—despite the 

observed signal in BP at 12 months. Participants may also develop greater awareness of 

their baseline physical functioning and strive to improve it, addressing muscle 

deconditioning through intentional efforts. Familiarity with the test protocol and motivation 

to perform better are additional factors that could influence performance, albeit 

representing a common limitation in repeated assessments. The observed improvement in 

the 6MWT highlights the complex interplay between physical recovery, cardiometabolic 

health, and vascular changes post-COVID-19. This underscores the need for further 

research to elucidate the mechanisms driving these improvements and to better 

understand their implications for long-term rehabilitation strategies. 

Limitations 

We acknowledge several limitations in our study that may influence the interpretation of 

our findings. The LOCHINVAR study was conducted at a single centre with a relatively 

small sample size, which included an overrepresentation of females. Additionally, factors 

such as lifestyle changes, medication use, or psychological stress during the pandemic 

may have confounded the observed relationship between COVID-19 and cardiovascular 

outcomes. Recruitment challenges, influenced by the dynamics of the pandemic—such as 

vaccination rollouts and emerging variants—led to delays between COVID-19 diagnosis 
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and baseline assessment. Participants were not screened for repeated infections, long 

COVID-19 symptoms were not quantified, and data on specific SARS-CoV-2 variants 

were not collected. Recruitment relied on an opt-in approach to minimise participant 

burden, potentially limiting the diversity of the sample. Furthermore, urinary albumin 

excretion was not measured, and most cases in our cohort were mild to moderate in 

severity, which may affect the generalisability of the findings. A per-protocol analysis was 

conducted to ensure comparability between baseline and 12-month follow-up data, though 

this reduced statistical power. 

The study cohort primarily included individuals who contracted SARS-CoV-2 but did not 

develop severe illness requiring intensive care. While this reflects the current 

epidemiological landscape amidst widespread vaccination efforts, it may not fully capture 

the spectrum of disease severity. Participants were recruited a minimum of 12 weeks 

post-hospital admission, without an upper limit on enrolment, possibly skewing the sample 

towards highly motivated individuals. Recruitment strategies were further influenced by 

the public’s evolving perceptions of COVID-19 and the return to normal NHS services. For 

instance, during the early pandemic OBELIX pilot study, there was significant interest in 

participation, but recruitment rates declined as mandatory testing was phased out and 

public risk perception diminished, particularly among those without comorbidities. 

These limitations highlight potential systematic errors and selection biases that may 

impact the internal validity of our results. Measurement errors in ABPM and FMD, despite 

rigorous quality control, and the lack of analysis of BP dipping and variability, as well as 

aldosterone-renin ratio, further constrain the depth of insights into hypertension 

pathophysiology in COVID-19 patients. To our knowledge, no participant was started on 

BP medication during the follow up period. 

Nevertheless, our findings provide important insights into longitudinal changes in BP 

among individuals recovering from SARS-CoV-2 infection. A statistically significant 

increase in both SBP and DBP was observed over 12 months, alongside a reduction in 

FMD, suggesting a vascular underpinning to the hypertensive changes. Improvements in 

6MWT further indicate a complex interplay between recovery and cardiometabolic health. 

While our results do not establish a causal relationship, they underscore the importance of 

continued cardiovascular monitoring in post-COVID-19 recovery. Future studies 

leveraging larger, more diverse cohorts and real-world data will be crucial to validate these 

findings and better understand the long-term cardiovascular risks associated with COVID-

19. 
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4.8 Clinical Implications 

Despite the need for validation, our findings underscore the critical importance of vigilant 

monitoring of BP and vascular health among individuals’ post-recovery from SARS-CoV-2 

infection. This is required irrespective of pre-existing hypertension status or COVID-19 

disease severity. Healthcare providers should prioritise comprehensive post-COVID 

cardiovascular assessments to proactively address potential long-term complications. 

Moreover, the observed improvements in the six-minute walk test outcomes suggest a 

complex interplay between recovery trajectories and cardiovascular health, lending further 

credence to our BP findings. While these improvements may offer some reassurance, 

they also underscore the need for continued monitoring and proactive management of 

cardiovascular health in the post-COVID period. 

4.9 Future Plans and Considerations 

Looking ahead, our study opens avenues for further investigation into several aspects of 

post-COVID cardiovascular health. Firstly, increasing the sample size and extending the 

follow-up period beyond 12 months could provide valuable insights into the long-term 

implications of SARS-CoV-2 infection on BP and vascular function. Additionally, 

incorporating a broader range of cardiovascular markers, such as measures of arterial 

stiffness, direct vascular function assessments, and evaluations of metabolic parameters 

like HbA1c, can offer a more comprehensive understanding of the underlying mechanisms 

driving the observed changes. Furthermore, exploring the impact of different SARS-CoV-2 

variants on cardiovascular health and assessing the potential mitigation role of vaccination 

in future cardiovascular risk warrants attention. Additionally, considering the evolving 

nature of the pandemic, ongoing research is essential to elucidate the specific effects of 

emerging variants and evolving public health measures on post-COVID cardiovascular 

outcomes. Moreover, investigating the potential benefits of lifestyle interventions, 

pharmacological treatments, or rehabilitation programs tailored to post-COVID 

cardiovascular health management could offer actionable strategies for improving patient 

outcomes. 

Given the myriad challenges and uncertainties associated with the evolving landscape of 

COVID-19, future research endeavours must explore innovative approaches to generate 

robust evidence on the impact of SARS-CoV-2 recovery on BP. One promising avenue for 

advancing our understanding is the utilisation of real-world evidence derived from big data 

studies of healthcare records or large cohort studies. These studies can leverage 

sophisticated statistical methodologies to adjust for confounding variables and explore the 
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association between SARS-CoV-2 infection and subsequent changes in BP while 

accounting for factors such as age, sex, comorbidities, medication use, and 

socioeconomic status. Moreover, by incorporating data from multiple healthcare systems 

and geographic regions, these studies can enhance the generalisability and external 

validity of the findings, providing a more comprehensive understanding of post-COVID BP 

dynamics. 

Additionally, prospective cohort studies involving large and diverse participant cohorts can 

further elucidate the temporal relationship between SARS-CoV-2 recovery and BP 

changes over time. Longitudinal assessments conducted at multiple time points post-

recovery can capture the trajectory of BP alterations and identify potential predictors or 

modifiers of these outcomes, shedding light on the underlying mechanisms driving 

cardiovascular sequelae following COVID-19. 

Furthermore, integrating machine learning and artificial intelligence, can enable the 

identification of novel risk factors or biomarkers associated with post-COVID hypertension, 

facilitating personalised risk stratification and targeted interventions for at-risk individuals. 

4.10 Conclusion 

In conclusion, while our findings highlight the importance of post-COVID cardiovascular 

assessments, it is essential to recognise the need for validation and the potential 

limitations of our study. By incorporating real-world evidence into future research 

endeavours, we can enhance our understanding of post-COVID cardiovascular dynamics 

and improve clinical care practices to mitigate long-term cardiovascular risks in individuals 

recovering from SARS-CoV-2 infection. 
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Chapter 5 Quality of Life 

5.1 Background 

Long COVID-19 significantly impacts psychosocial factors, impairing daily functioning and 

well-being (Chapter 1). This chapter extends Chapter 4 by providing a more detailed 

exploration of quality of life (QoL). Findings from a 12-month follow-up post-recovery 

indicate increased BP and reduced flow-mediated dilation (FMD) among COVID-19 

survivors. These observations suggest a critical link to hypertension; however, the causal 

relationship requires clarification, as long COVID may act as a confounder for BP 

changes, potentially exacerbating or being exacerbated by diminished QoL. 

QoL is a multidimensional construct reflecting overall well-being, encompassing physical 

health, psychological state, independence, social relationships, and personal beliefs. The 

EuroQol-5 Dimension (EQ-5D) is a validated tool used here to assess self-reported 

health. Its five dimensions—Mobility, Usual Activities, Self-care, Pain & Discomfort, and 

Anxiety & Depression—enable comprehensive health evaluations through questionnaires. 

A deeper exploration of QoL in the context of long-term BP changes post-COVID has two 

main objectives. First, it provides insights into the lived experiences of individuals, offering 

a broader perspective beyond clinical measurements and capturing recovery trajectories. 

Second, it examines the interplay between cardiovascular health and QoL, highlighting a 

potential vicious cycle where declining physical health leads to reduced QoL, which in turn 

further impacts physical health. 

This chapter presents QoL measures, assessed using the EQ-5D-3L (including the EQ-

5D-Index and EQ-5D-VAS), from participants in the LOCHINVAR study. The analysis 

compares QoL between SARS-CoV-2-positive and negative participants at baseline and 

at 12 months, assessing whether changes persist over time. These findings complement 

BP and FMD results, broadening the understanding of COVID-19 recovery and 

emphasising the importance of patient-centred approaches to managing long COVID. 

5.2 Methods 

The detailed methods for patient recruitment and phenotyping are presented in the 

General Methods Chapter 3. The statistical analysis full and per-protocol datasets are 

described in the methods section of Chapter 4. 
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5.3 Results 

5.3.1 Demographics and Baseline Characteristics 

In the full dataset, demographic and baseline characteristics (Tables 14 and 15) show that 

the mean age of participants was comparable between SARS-CoV-2 positive and SARS-

CoV-2 negative groups (48.6 vs. 47.9 years, p = 0.221). A significantly greater proportion 

of SARS-CoV-2 positive participants were male (48.6%) compared to SARS-CoV-2 

negative groups participants (20%, p < 0.001), and SARS-CoV-2 positive participants had 

a higher mean BMI (28.2 vs. 26.6, p < 0.001). 

5.3.2 EQ5DL Dimensions 

At baseline (Table 14 and 15), SARS-CoV-2 positive participants reported significantly 

more problems across all EQ5DL dimensions, except self-care, than SARS-CoV-2 

negative participants. At 12 months, significant differences persisted for activity, mobility, 

and pain in the full dataset, though these associations were attenuated compared to 

baseline. In the per protocol dataset, the significance of these associations was reduced, 

particularly for mobility and pain, reflecting potential heterogeneity in adherence or 

recovery trajectories. (Table 17)  

5.3.3 EQ5D-VAS and EQ5D-Index 

Baseline EQ5D-VAS scores were significantly lower in SARS-CoV-2 positive participants 

than SARS-CoV-2 negative participants (74.0 vs. 85.4, p < 0.001). EQ5D-Index scores 

were also lower in SARS-CoV-2 positive participants (0.95 vs. 0.85, p < 0.001). By 12 

months, both groups showed slight declines in EQ5D-VAS and EQ5D-Index scores, with 

SARS-CoV-2 positive participants continuing to lag behind (EQ5D-VAS: 74.9 vs. 82.0, p < 

0.001; EQ5D-Index: 0.95 vs. 0.86, p = 0.011). (Table 14 and 15) The box plots of EQ5D-

VAS and EQ5D-Index over time for each dataset are presented in Figure 23 and Figure 

24. 

Adjusted Analyses 

Linear regression models adjusting for age and BMI revealed that SARS-CoV-2 positive 

status was associated with significant reductions in EQ5D-VAS at 12 months in both the 

full dataset (-6.39, p < 0.001) and per protocol dataset (-7.9, p < 0.001). For EQ5D-Index, 

the association was significant only in the full dataset (-0.02, p = 0.049). (Table 16) 
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Table 14 : Overall Demographics – Full Dataset 

This table presents the baseline demographic and clinical characteristics of participants in the full 

dataset, stratified by SARS-CoV-2 status (positive or negative). Continuous variables are reported 

as mean (standard deviation), and categorical variables are presented as frequency (percentage). 

P-values indicate group differences assessed using independent t-tests for continuous variables 

and chi-square tests for categorical variables.  

 Baseline 12 months 

label levels 

SARS-CoV-
2 

Negative 

SARS-CoV-
2 

Positive 
P 

SARS-
CoV-2 

Negative 

SARS-CoV-
2 

Positive 
P 

Age (years) Mean SD) 47.9 (7.5) 48.6 (6.7) 0.221    

Sex (n, %) Female 288 (80.0) 114 (51.4) <0.001    

 Male 72 (20.0) 108 (48.6)     

BMI (kg/m2) Mean SD) 26.6 (5.0) 28.2 (4.7) <0.001    

Mobility 

No problems 339 (94.2) 177 (79.7) <0.001 328 (91.1) 179 (80.6) 0.008 

Some 
Problems 

20 (5.6) 44 (19.8)  25 (6.9) 30 (13.5)  

(Missing) 1 (0.3) 1 (0.5)  7 (1.9) 13 (5.9)  

Self-care 

No problems 359 (99.7) 215 (96.8) - 318 (88.3) 144 (64.9) - 

Some 
Problems 

0 (0.0) 6 (2.7)  0 (0.0) 0 (0.0)  

(Missing) 1 (0.3) 1 (0.5)  42 (11.7) 78 (35.1)  

Activity 

No problems 340 (94.4) 160 (72.1) <0.001 314 (87.2) 167 (75.2) 0.004 

Some 
Problems 

19 (5.3) 55 (24.8)  39 (10.8) 42 (18.9)  

A lot of 
Problems 

0 (0.0) 6 (2.7)  0 (0.0) 0 (0.0)  

(Missing) 1 (0.3) 1 (0.5)  7 (1.9) 13 (5.9)  

Pain 

No problems 352 (97.8) 147 (66.2) <0.001 279 (77.5) 148 (66.7) 0.005 

Some 
Problems 

0 (0.0) 68 (30.6)  68 (18.9) 61 (27.5)  

A lot of 
Problems 

7 (1.9) 6 (2.7)  6 (1.7) 0 (0.0)  

(Missing) 1 (0.3) 1 (0.5)  7 (1.9) 13 (5.9)  

Anxiety 

No problems 347 (96.4) 148 (66.7) <0.001 287 (79.7) 162 (73.0) 0.052 

Some 
Problems 

12 (3.3) 67 (30.2)  60 (16.7) 47 (21.2)  

A lot of 
Problems 

0 (0.0) 6 (2.7)  6 (1.7) 0 (0.0)  

(Missing) 1 (0.3) 1 (0.5)  7 (1.9) 13 (5.9)  

EQ5D_VAS Mean (SD) 85.4 (11.3) 74.0 (15.3) <0.001 
82.0 

(15.3) 
74.9 (15.6) <0.001 

EQ5D_index Mean (SD) 0.95 (0.1) 0.85 (0.2) <0.001 0.95 (0.1) 0.86 (0.1) 0.011 
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Table 15  Overall Demographics – Per Protocol Dataset 

This table summarizes the baseline demographic and clinical characteristics of participants 

included in the per protocol dataset. The table includes age, sex distribution, BMI, and EQ5D 

scores (VAS, Index, and dimensions). Statistical comparisons between SARS-CoV-2 positive and 

negative groups were conducted using similar methods to Table 14.  

 
 

Baseline 12 months 

label levels 
SARSCoV2

-Neg 
SARSCoV2-

Pos 
P 

SARSCoV
2-Neg 

SARSCoV2-
Pos 

P 

Age 
Mean 
(SD) 

48.2 (7.3) 48.5 (7.1) 0.698    

Sex Female 252 (82.4) 36 (40.0) <0.001    

 Male 54 (17.6) 54 (60.0)     

BMI 
Mean 
(SD) 

26.6 (4.9) 27.9 (3.7) 0.014    

Mobility 

No 
problems 

293 (95.8) 72 (80.0) <0.001 290 (94.8) 88 (97.8) 0.076 

Some 
Problems 

12 (3.9) 18 (20.0)  12 (3.9) 0 (0.0)  

(Missing) 1 (0.3) 0 (0.0)  4 (1.3) 2 (2.2)  

Selfcare 

No 
problems 

300 (98.0) 90 (100.0) - 282 (92.2) 78 (86.7) - 

Some 
Problems 

0 (0.0) 0 (0.0)  0 (0.0) 0 (0.0)  

(Missing) 6 (2.0) 0 (0.0)  24 (7.8) 12 (13.3)  

Activity 

No 
problems 

293 (95.8) 60 (66.7) <0.001 295 (96.4) 76 (84.4) <0.001 

Some 
Problems 

12 (3.9) 30 (33.3)  7 (2.3) 12 (13.3)  

A lot of 
Problems 

0 (0.0) 0 (0.0)  0 (0.0) 0 (0.0)  

(Missing) 1 (0.3) 0 (0.0)  4 (1.3) 2 (2.2)  

Pain 

No 
problems 

299 (97.7) 66 (73.3) <0.001 256 (83.7) 68 (75.6) 0.059 

Some 
Problems 

0 (0.0) 24 (26.7)  40 (13.1) 20 (22.2)  

A lot of 
Problems 

6 (2.0) 0 (0.0)  6 (2.0) 0 (0.0)  

(Missing) 1 (0.3) 0 (0.0)  4 (1.3) 2 (2.2)  

Anxiety 

No 
problems 

293 (95.8) 54 (60.0) <0.001 266 (86.9) 74 (82.2) 0.154 

Some 
Problems 

12 (3.9) 36 (40.0)  30 (9.8) 14 (15.6)  

A lot of 
Problems 

0 (0.0) 0 (0.0)  6 (2.0) 0 (0.0)  

(Missing) 1 (0.3) 0 (0.0)  4 (1.3) 2 (2.2)  

EQ5D_VAS 
Mean 
(SD) 

86.8 (10.3) 75.0 (14.1) <0.001 84.7 (12.1) 76.2 (13.0) <0.001 

EQ5D_index 
Mean 
(SD) 

0.9 (0.1) 0.9 (0.1) <0.001 0.9 (0.1) 0.9 (0.1) 0.414 
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Figure 23 Changes in EQ5D-VAS Over Time 

The box plot below shows the changes in EQ5D-VAS scores for SARS-CoV-2 positive (SARSCoV2-Pos) and negative (SARSCoV2-Neg) groups from baseline to 12 

months for both the full dataset and per protocol dataset 
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Figure 24 Changes in EQ5D-Index Over Time  

The box plot below shows the changes in EQ5D-Index scores for SARS-CoV-2 positive (SARSCoV2-Pos) and negative (SARSCoV2-Neg) groups from 

baseline to 12 months. 
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Table 16 Adjusted Analyses for EQ5D VAS and EQ5D Index at 12 Months  

This table shows the adjusted regression analyses evaluating the association between SARS-CoV-

2 status and EQ5D outcomes (VAS and Index) at 12 months. Models adjust for age, sex, BMI, and 

baseline scores (where applicable). Results are reported as adjusted estimates with standard 

errors (SE) and p-values. Separate analyses were conducted for the full dataset and per protocol 

dataset. 

12 months 

Full Dataset Per Protocol 

Estimate 
(SE) 

P 
value 

Estimate 
(SE) 

P 
value 

EQ5D-VAS adjusted for Age and BMI -6.39 (1.35) 
< 

0.001 
-7.9 (1.5) < 0.001 

EQ5D-Index adjusted for Age and BMI -0.02 (0.01) 0.049 0 (0.01) 0.605 

EQ5D-VAS adjusted for Age, BMI and 
Baseline EQ5D- VAS 

1.24 (1.18) 0.293 -0.9 (1.37) 0.511 

EQ5D-Index adjusted for Age, BMI and 
Baseline EQ5D-Index 

0.03 (0.01) 0.003 
0.04 

(0.01) 
< 0.001 

 

Table 17 Likelihood of reporting problems in EQ5DL Dimensions at baseline and at 

12 months. 

This table provides results from logistic regression models assessing the likelihood of reporting 

problems in EQ5DL dimensions at 12 months. Adjusted estimates (standard error) and p-values 

are shown for each EQ5DL dimension, adjusted for covariates including age, sex, and BMI. 

Results are presented for baseline and 12 months for both datasets separately. 

  Full Dataset Per Protocol 

EQ5DL 
Dimensi

on Baseline 12 Months Baseline 12 Months 

  

Adj. 
Estim

ate 
(SE) P 

Adj. 
Estimate 

(SE) P 

Adj. 
Estimate 

(SE) P 

Adj. 
Estimate 

(SE) P 

Activity 
1.94 

(0.29) <0.001 
0.69 

(0.25) 0.005 
2.48 

(0.37) 
<0.0
01 

2.05 
(0.52) 

<0.00
1 

Anxiety 
2.58 

(0.33) <0.001 
0.19 

(0.21) 0.376 
2.84 

(0.38) 
<0.0
01 

0.23 
(0.35) 0.523 

Mobility 
1.38 

(0.29) <0.001 
0.92 

(0.28) <0.001 
1.79 

(0.41) 
<0.0
01 

-17.45  
(1 867.32) 0.993 

Pain 
3.33 

(0.44) <0.001 
0.46 
(0.2) 0.025 

2.94 
(0.49) 

<0.0
01 

0.41 
(0.31) 0.188 

 

When further adjusted for baseline values, SARS-CoV-2 positive status was not 

significantly associated with EQ5D-VAS change, but a significant positive association was 

observed for EQ5D-Index in both datasets. (Table 16) Table 17 demonstrates the results 

from logistic regression models assessing the likelihood of reporting problems in EQ5DL 

dimensions at 12 months for both datasets separately with activity being significant in both 

datasets. 
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Change in EQ5DL Dimensions 

Analysis of changes from baseline to 12 months (Table 4) indicated significant differences 

between groups for anxiety (full dataset: -0.262, p = 0.005; per protocol: -0.347, p = 

0.006) and pain (full dataset: -0.203, p = 0.024). Changes in other dimensions (e.g., 

mobility, activity) were not statistically significant. (Table 18) 

Table 18 Changes in EQ5DL Dimensions from Baseline to 12 Months 

This table reports the changes in EQ5DL dimensions (mobility, self-care, activity, pain, and anxiety) 

between baseline and 12 months for SARS-CoV-2 positive and negative groups. Results are 

stratified by dataset type (full vs. per protocol). P-values reflect the significance of group differences 

in change scores, adjusted for age, sex, and BMI. 

EQ5DL Dimension Full Dataset Per Protocol 

  Adj. Estimate (SE) P Adj. Estimate (SE) P 

Activity -0.128 (0.076) 0.095 -0.18 (0.027) <0.001 

Anxiety -0.262 (0.092) 0.005 -0.347 (0.121) 0.006 

Mobility -0.034 (0.066) 0.609 -0.2 (0.052) 0.992 

Pain -0.203 (0.088) 0.024 -0.168 (0.103) 0.11 

 

5.4 Discussion 

This study highlights the substantial impact of SARS-CoV-2 infection on quality of life 

(QoL), as measured by EQ5DL dimensions, EQ5D-VAS, and EQ5D-Index, both at 

baseline and over a 12-month period. SARS-CoV-2 positive participants consistently 

reported worse baseline QoL across all dimensions, particularly in pain and anxiety, 

supporting existing evidence that SARS-CoV-2 infection exerts a profound physical and 

psychological toll. 

By 12 months, improvements were observed in SARS-CoV-2 positive participants across 

dimensions such as activity and mobility, indicating recovery from the acute phase of 

infection. However, persistent disparities in pain and anxiety suggest potential long-term 

sequelae of infection, aligning with reports of “long COVID.” 

The per protocol dataset revealed slightly larger effects in some dimensions, particularly in 

anxiety and activity. This may reflect a selection bias in participants who adhered to the 

full study protocol, potentially those with better health or motivation to recover. 

Strengths 



134 

 

 

 

A key strength of this study lies in its use of the validated EQ5D framework, which allowed 

for a comprehensive and multidimensional assessment of QoL. This framework not only 

measured global health outcomes through summary scores such as EQ5D-VAS and 

EQ5D-Index but also captured granular details on specific health dimensions, including 

mobility, self-care, activity, pain, and anxiety. This dual approach provided a holistic view 

of the QoL impacts of SARS-CoV-2 infection, addressing both overall health perceptions 

and specific functional impairments. The ability to link summary measures with detailed 

dimension-level data adds depth to the analysis, enabling nuanced insights into recovery 

trajectories that would be overlooked by aggregate measures alone. 

The longitudinal design is another major strength, as it allowed the study to capture both 

short-term and medium-term changes in QoL. By assessing participants at baseline and 

12 months, this design provided a temporal perspective on recovery, distinguishing 

between acute effects of SARS-CoV-2 infection and longer-term residual impacts. This 

approach is particularly valuable given the emerging recognition of long COVID, which 

necessitates tracking persistent health deficits over time. The inclusion of both SARS-

CoV-2 positive and negative participants further enhanced the study’s robustness by 

offering a comparative lens to examine pandemic-related health impacts beyond infection 

status. 

The study employed a rigorous statistical approach, leveraging adjusted regression 

analyses to account for potential confounders such as age, sex, and BMI. This method 

reduced the risk of spurious associations and provided a clearer understanding of the 

independent effects of SARS-CoV-2 infection on QoL outcomes. Moreover, the statistical 

significance observed in baseline comparisons and longitudinal changes bolsters the 

reliability of the findings. These results align with existing literature, which has consistently 

documented poorer QoL among SARS-CoV-2 positive individuals during acute infection 

and partial recovery over time. Notably, our findings corroborate the persistence of issues 

such as pain and mobility impairments, particularly in individuals experiencing post-acute 

sequelae of SARS-CoV-2 infection. 

Despite these strengths, it is important to acknowledge that the study's reliance on the 

EQ5D framework may introduce certain limitations, as discussed below. 

Limitations 
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One of the principal limitations of this study is the potential confounding by unmeasured 

factors. While the analysis adjusted for key variables such as age, sex, and BMI, it did not 

incorporate psychosocial determinants of health, including socioeconomic status, mental 

health history, or access to healthcare. These factors are particularly relevant for 

dimensions like anxiety and pain, where contextual influences may play a significant role. 

The absence of these variables limits the ability to fully interpret the drivers of QoL 

differences, particularly in the SARS-CoV-2 negative group, where worsening anxiety and 

pain trends were observed. 

Another limitation arises from the use of self-reported measures such as EQ5D-VAS and 

EQ5DL dimensions. While these tools are validated and widely used, self-reported data 

are inherently subject to recall bias, especially for retrospective baseline assessments. 

Participants may have underreported or over reported their baseline QoL, leading to 

potential inaccuracies in the measurement of changes over time. Furthermore, the 

subjective nature of these measures means that individual perceptions of health can vary 

widely, introducing variability that may obscure subtle group differences. 

Unaccounted heterogeneity within the SARS-CoV-2 positive group is another critical 

issue. The analysis treated all SARS-CoV-2 positive participants as a homogeneous 

cohort, ignoring potential variability based on disease severity, vaccination status, or pre-

existing comorbidities. These factors likely influence both the immediate impact of SARS-

CoV-2 infection and the trajectory of recovery. For instance, individuals with severe initial 

infections or underlying health conditions may experience prolonged or more severe 

impairments compared to those with milder cases. The lack of stratification by these key 

variables may have diluted the observed associations and limits the generalisability of the 

findings. 

Additionally, while the study captured significant QoL impairments compared to the SARS-

CoV-2 negative group, the underlying causes of these trends were not explored in depth. 

Worsening anxiety and pain in this group could reflect broader pandemic-related stressors 

such as social isolation, economic instability, or restricted access to healthcare. However, 

without additional data to contextualize these findings, the conclusions remain 

speculative. This highlights the need for more nuanced investigations into the indirect 

health impacts of the pandemic. 
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Finally, while the findings align with much of the existing literature, some discrepancies 

warrant further exploration. For example, while many studies report full recovery among 

SARS-CoV-2 survivors, our results indicate persistent impairments in mobility and activity. 

(252-255) These differences may reflect variations in study populations, methodological 

approaches, or follow-up durations. (256) Similarly, while our findings on anxiety in SARS-

CoV-2 negative participants align with general population studies during the pandemic, 

the observed decline in physical health measures, such as pain, remains less well-

documented, raising questions about potential unmeasured confounders or biases in our 

dataset. 

5.5 Conclusion 

This study demonstrates that SARS-CoV-2 infection significantly impairs QoL at baseline, 

with partial recovery over 12 months. While the study provides valuable evidence on the 

impact of SARS-CoV-2 infection on QoL, it also highlights the complexity of recovery and 

the multifaceted nature of post-COVID health challenges. Persistent deficits in pain and 

anxiety underscore the need for targeted interventions addressing both physical and 

psychological health post-infection. Overall, the study’s strengths lie in its comprehensive 

scope, robust statistical methodology, and alignment with existing evidence. The use of a 

validated framework, combined with a longitudinal design, allowed for a detailed and 

multidimensional analysis of SARS-CoV-2’s impact on QoL. However, the study is limited 

by its inability to fully account for contextual and psychosocial factors, its reliance on self-

reported measures, and its lack of stratification within the SARS-CoV-2 positive group. 

These limitations underscore the need for future research to adopt more granular and 

context-sensitive approaches. 

To address these gaps, future studies should incorporate a wider range of covariates, 

including socioeconomic and clinical data, and stratify analyses by disease severity and 

vaccination status. Moreover, qualitative methods could complement quantitative findings 

by providing deeper insights into the lived experiences of participants. Despite these 

limitations, the study provides valuable evidence on the long-term impacts of SARS-CoV-2 

infection and offers a robust foundation for future research. 

The findings from this study underscore the significant and multidimensional impact of 

SARS-CoV-2 infection on QoL, both during acute illness and in the recovery period. 

However, they also highlight critical gaps that require further investigation and action. 
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Future research and clinical strategies should aim to address these gaps through robust, 

multidimensional approaches that account for the complexities of post-COVID recovery. 

5.6 Future Research Directions 

A key priority for future work is extending the longitudinal follow-up beyond the 12-month 

period explored in this study. While the observed improvements in some QoL dimensions 

among SARS-CoV-2 positive participants suggest partial recovery, the persistence of 

deficits in areas such as pain and anxiety raise concerns about long-term sequelae. 

Extending follow-up to 24 months or beyond will provide a clearer picture of recovery 

trajectories, particularly for individuals experiencing long COVID symptoms. Additionally, 

this extended timeline will allow for the exploration of delayed or secondary impacts that 

may not manifest within the first-year post-infection. 

Another critical area for future research is the inclusion of a broader range of covariates, 

particularly those capturing psychosocial and socioeconomic determinants of health. This 

study demonstrated the importance of adjusting for factors such as age, sex, and BMI, but 

the exclusion of variables like mental health history, access to healthcare, and economic 

stability limits the interpretability of findings, especially for anxiety and pain dimensions. By 

incorporating these variables into future analyses, researchers can better disentangle the 

direct effects of SARS-CoV-2 infection from the broader contextual impacts of the 

pandemic. 

Stratification of participants based on disease severity, vaccination status, and 

comorbidities is another essential avenue for exploration. This study treated SARS-CoV-2 

positive participants as a homogeneous group, but evidence suggests that recovery 

trajectories differ significantly between individuals with mild versus severe disease and 

between vaccinated and unvaccinated individuals. Stratified analyses will provide a more 

nuanced understanding of which subgroups are most vulnerable to prolonged 

impairments and inform tailored interventions. 

Finally, future studies should integrate qualitative methods to complement the quantitative 

findings presented here. While validated tools like the EQ5D provide valuable insights into 

QoL changes, they cannot fully capture the lived experiences of individuals navigating 

post-COVID recovery. Qualitative interviews or focus groups with participants could shed 
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light on the specific challenges they face and the factors that facilitate or hinder their 

recovery. 

5.7 Clinical Implications 

The findings from this study have potential implications for clinical practice, if validated 

independently, particularly in the management of post-COVID recovery. The persistence 

of impairments in pain and anxiety among SARS-CoV-2 positive participants suggests the 

need for integrated, multidisciplinary rehabilitation programs. These programs should 

address both physical and mental health, incorporating pain management strategies 

alongside psychological support. Given the multidimensional nature of QoL deficits, such 

interventions should be designed to target specific domains of impairment rather than 

adopting a one-size-fits-all approach. 

The worsening trends in pain and anxiety observed among SARS-CoV-2 negative 

participants also warrant clinical attention. These findings suggest that the broader 

impacts of the pandemic—such as social isolation, economic instability, and disrupted 

access to healthcare—have significant consequences for population health, even among 

those not directly affected by the virus. Clinicians should consider screening for and 

addressing these indirect effects as part of routine care, particularly for patients presenting 

with new or worsening symptoms during the pandemic period. 

From a policy perspective, the results highlight the importance of investing in long-term 

post-COVID care infrastructure. This includes expanding access to rehabilitation services 

and mental health support for individuals recovering from SARS-CoV-2 infection, as well 

as developing public health initiatives to address the indirect impacts of the pandemic on 

non-infected populations. Furthermore, these findings underscore the need for ongoing 

surveillance of QoL outcomes at the population level, both to monitor recovery trajectories 

and to identify emerging health disparities. 
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Chapter 6 Evaluation of Transformer-Based 

Counterfactual Estimation of Individual 

Treatment Effects - Analysis of Angiotensin 

Converting Enzyme inhibitors (ACEIs) and risk 

of SARS-CoV-2 infection.  

6.1 Introduction 

The mechanism of action of ACEIs/ARBs, their protective effects, and their relevance to 

the COVID-19 pandemic, along with key studies, have been comprehensively detailed in 

Chapter 1. This chapter will address Objective 4. 

6.2 Role of Machine Learning (ML) 

Machine learning (ML) and Artificial Intelligence (AI) algorithms are rapidly replacing 

traditional logistic regression-based methods as the preferred tool for estimating 

propensity scores in observational studies. The benefits of ML and AI models include the 

ability to effectively capture complex relationships between covariates and treatment 

assignment, handle high-dimensional data, and automatically identify relevant covariates 

for propensity score estimation.(257-259) Additionally, AI and ML models do not require a 

priori assumptions about the true underlying form of the propensity model.(260) These 

models thus offer greater flexibility in estimating propensity scores and exhibit greater 

robustness against model misspecification compared to logistic regression methods. 

Traditional statistical models (such as autoregressive models) often struggle with 

capturing complex dependencies over extended time intervals. Deep learning algorithms 

can model long-range dependencies more effectively than traditional statistical methods. 

Specific neural network architectures allow them to maintain memory over long-time 

intervals. (261) Furthermore, deep neural networks allow for end-to-end training, 

eliminating the need for manually crafting spatial contextual features. This streamlined 

approach allows the model to learn directly from raw data, making it more adaptable to 

temporal variations.(262) Finally, neural networks are efficient in capturing relationships 

between distant elements in a sequence, making them suitable for accurately capturing 

complex temporal dynamics.(263) 
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Thus, neural networks have emerged as powerful tools that can emulate the rigor and 

causal inference capabilities of a randomised controlled trial. By integrating various 

techniques, such as propensity score matching and temporal dynamics analysis, into 

these models, we can achieve accurate estimations of treatment risks. These approaches 

address inherent confounding due to the lack of randomisation, allowing us to separate 

design from analysis and explicitly examine confounder overlap. The result is a robust 

framework that ensures scientific rigour in assessing drug treatments. 

6.3 Average and individual treatment effects. 

6.3.1 Average Treatment Effect (ATE) 

The concept of Average Treatment Effect (ATE) is central to causal inference and 

statistical analysis, serving as a key measure to estimate the overall impact of a treatment 

or intervention across a population.(264, 265) Essentially, ATE represents the difference in 

average outcomes between those who receive the treatment and those who do not, 

thereby providing insight into the causal effect of the treatment on the outcome of interest. 

(264, 265) 

6.3.1.1 Considerations in Estimating ATE 

A fundamental aspect of estimating ATE is the random assignment of participants into 

treatment and control groups. Randomisation ensures that any differences observed 

between the groups can be attributed to the treatment effect rather than pre-existing 

differences among participants. This method aims to eliminate biases and confounding 

factors, leading to an unbiased estimation of the ATE. 

In scenarios where randomisation is not feasible, such as observational studies, 

confounding variables that influence both the treatment and the outcome must be carefully 

accounted for. Various statistical techniques, including regression adjustment, matching, 

stratification, and instrumental variables, are employed to mitigate the impact of these 

confounders and achieve an accurate estimation of the ATE. 

While ATE provides an average effect across the population, it may not capture the 

variability in individual responses to the treatment. Different subgroups within the 

population might respond differently to the treatment, which means that the average effect 

might not be representative of the effect on any specific individual. Understanding this 

heterogeneity is necessary for an accurate interpretation of the ATE. 

For more complex observational studies, advanced statistical methods such as propensity 

score matching, difference-in-differences (DiD), and regression discontinuity designs 
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(RDD) are used. These methods are designed to control for confounding variables and 

biases, providing a more robust estimation of the ATE in the absence of randomisation. 

6.3.1.2 Interpreting the Average Treatment Effect 

Interpreting the ATE involves a comprehensive analysis that goes beyond the numerical 

value. It requires an understanding of the magnitude, direction, and significance of the 

treatment effect, as well as its practical implications. Additionally, careful consideration of 

the study design, context, and population is necessary to accurately interpret and 

generalise the findings. 

6.3.1.3 Magnitude of the Effect 

The value of the ATE quantifies the average change in the outcome variable attributed to 

the treatment. For example, an ATE of 5 points implies that, on average, the treatment 

results in a 5-point change in outcomes compared to no treatment. 

6.3.1.4 Direction of the Effect  

The sign of the ATE indicates whether the treatment has a positive or negative impact on 

the outcome. A positive ATE suggests a beneficial effect, while a negative ATE indicates a 

detrimental effect on the treatment group relative to the control group. 

6.3.1.5 Statistical Significance 

Assessing the statistical significance of the ATE involves hypothesis testing to determine if 

the observed effect is unlikely to be due to chance. A statistically significant ATE provides 

evidence that the treatment has a real effect on the outcome, beyond random variation. 

6.3.1.6 Clinical Significance 

Beyond statistical significance, the clinical significance of the ATE must be considered. 

This involves evaluating whether the magnitude of the effect is large enough to be 

meaningful in real-world contexts. A statistically significant ATE might be practically 

insignificant if the effect size is too small to have real-world implications. 

6.3.1.7 Generalisability and contextual factors 

Understanding the contextual factors and mechanisms through which the treatment 

affects the outcome is essential. This context provides valuable insights into why and how 

the treatment works, enhancing the interpretation of the ATE. The generalisability of the 

ATE depends on the representativeness of the study sample. If the sample accurately 

reflects a larger population, the findings can be generalised more broadly. However, if the 

sample is highly specific, the generalisability of the ATE may be limited. 
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Exploring the variability of treatment effects across different subgroups within the 

population is important. This analysis can reveal who benefits most or least from the 

treatment, offering a deeper understanding of the ATE's implications. 

6.3.2 Individual treatment effect (ITE) 

The Individual Treatment Effect (ITE), also referred to as the Conditional Average 

Treatment Effect (CATE), refers to the effect of a treatment or intervention on an individual 

or a specific subgroup within the population, as opposed to the entire population. (266) It 

aims to capture the heterogeneity in treatment effects across individuals, recognizing that 

different people may respond differently to the same treatment. The ITE for an individual is 

defined as the difference in outcomes for the same individual if they were to receive the 

treatment versus if they were not to receive the treatment. Since both potential outcomes 

cannot be observed for the same individual (a problem known as the fundamental 

problem of causal inference), statistical methods and models are employed to estimate 

ITEs. Unlike ATE, which provides an overarching estimate of a treatment's impact on the 

entire population, ITE focuses on the unique response of each individual or subgroup to 

the treatment, recognising that the same intervention can have different effects on 

different people, in other words ITE captures the heterogeneity in treatment effects across 

individuals. 

In practice, for each subject, only one of the potential outcomes is observed (the factual 

outcome if they have actually received treatment), while the other remains unobserved 

(the counterfactual outcome), because it is impossible for a subject to simultaneously 

experience both the treatment and the control conditions.(267) Mathematically, it is the 

difference between both potential outcomes - under treatment and control conditions for a 

given individual.  

 

6.3.2.1 Estimation of ITE 

Estimating ITE involves more complexity than estimating ATE because it requires 

capturing the response of each individual to the treatment. This often necessitates the use 

of advanced statistical techniques and machine learning models, which can predict 

individual outcomes based on specific characteristics and covariates. Techniques such as 
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Bayesian hierarchical models, random forests, and causal machine learning algorithms 

are commonly used to estimate ITE, leveraging rich datasets that include detailed 

individual-level information. 

6.3.3 Differences Between ITE and ATE 

6.3.3.1 Level of Aggregation 

The most significant difference between ITE and ATE lies in their level of aggregation. ATE 

measures the average effect of the treatment across the entire population, yielding a 

single summary statistic that represents the overall impact. In contrast, ITE measures the 

effect of the treatment at the individual level or for specific subgroups, reflecting the 

heterogeneity in treatment responses.  

6.3.3.2 Purpose and Application 

ATE is particularly useful for understanding the overall impact of a policy or intervention, 

making it a valuable tool for policymakers and researchers focused on broad-scale 

outcomes. It informs decisions at the policy level by providing a general picture of the 

treatment's effectiveness. On the other hand, ITE is essential for personalised decision-

making and targeted interventions. It is critical in fields such as precision medicine, where 

treatments must be tailored to individual patients based on their unique characteristics, 

and in education and social policy, where interventions may need to be customised for 

different demographic groups. The strengths and limitations of ATE versus ITE is 

demonstrated in Table 19. 

Table 19 Strengths and Limitations for ATE and ITE 

 Strengths Weaknesses 

Average Treatment Effect Provides a clear, concise 
measure of the overall 
treatment effect; useful for 
policy decisions and broad-
scale interventions; 
relatively easier to estimate 
from experimental and 
observational data. 

Does not capture individual 
variability in treatment 
response; may obscure 
important differences 
among subgroups; less 
useful for personalised 
decision-making. 

Individual Treatment Effect Captures the heterogeneity 
in treatment effects; 
essential for personalised 
medicine and targeted 
interventions; allows for 
more nuanced and effective 
decision-making. 

More complex to estimate; 
requires sophisticated 
statistical and machine 
learning models; depends 
on detailed individual-level 
data, which may not always 
be available. 
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6.3.3.3 Estimation Complexity 

The estimation of ATE is generally more straightforward than that of ITE. ATE can often be 

estimated directly from randomised controlled trials or well-designed observational studies 

with appropriate statistical adjustments to account for confounding factors. Estimating ITE, 

however, requires more sophisticated modelling to predict individual-level outcomes 

accurately. These models must account for the variability in treatment effects and often 

rely on high-dimensional data and complex algorithms. 

6.3.3.4 Use in Precision Medicine and Personalised Policies 

ITE estimation is paramount in precision medicine, where the goal is to identify which 

treatments work best for which patients. This personalised approach can lead to more 

effective and efficient healthcare interventions. Similarly, in education, social policy, and 

marketing, understanding the ITE allows for the design of interventions that are tailored to 

the specific needs and characteristics of different subgroups, thereby optimising 

outcomes. 

The rationale for this chapter stems from the need to understand the actual impact of 

ACEIs on the risk of COVID-19 infection. Given the widespread use of ACEIs in managing 

hypertension and the COVID-19 pandemic, it is critical to determine how these 

medications influence COVID-19. The evolving landscape of the COVID-19 pandemic with 

the spread of new variants with differing infectivity and pathogenicity, the roll-out of 

vaccination makes any randomised controlled trial challenging. In this chapter, I propose 

to leverage the power of machine learning and ITE analysis to provide insights into the 

specific impact of ACEI on COVID-19. 

The aim of this chapter is to investigate the effect of ACEIs on the risk of COVID-19 

infection using routinely collected healthcare data from NHS GG&C, the largest health 

board in the UK. By applying advanced machine learning techniques, this analysis will 

estimate ITEs for the four major classes of antihypertensive drugs over two distinct 

timeframes of the COVID-19 pandemic. This approach aims to elucidate the specific 

effects of ACEIs, thereby contributing to advancing our understanding of RAAS inhibition 

and SARS-CoV-2 infection and help support effective clinical decision-making in the 

management of hypertension during this pandemic and future pandemics that involve the 

RAAS system. 
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6.4 Methods 

The methods for this chapter have been described in detail in Chapter 3 and in the 

appendices. The Machine Learning models for estimation of ITEs and ATEs were 

developed by Tran QB Tran, a BHF MBPhD student working in my supervisor’s research 

group. Tran’s expertise is ML and he developed and tested the novel models to estimate 

ITE from the SafeHaven dataset. I was provided the estimated ITE and ATE values and I 

performed the subsequent analyses to test the relationship between ACEI and other 

antihypertensive drugs on the risk of SARS-CoV-2 infection. The evaluation and 

assessment of ML models that was utilised in the ITE estimation is beyond the scope of 

this PhD project and will not be described. The machine learning (ML) model incorporated 

time series data using the X Learner Framework for all hospital admissions and 

prescriptions, excluding cardiovascular drugs. This comprehensive approach enabled the 

model to automatically adjust for a full range of comorbidities, inferred either through 

hospitalisation records or prescription history. 

6.4.1 Statistical Analysis 

Demographic characteristics of the cohort are summarised using descriptive statistics, 

including medians and IQRs for continuous variables (e.g., age) and frequencies and 

percentages for categorical variables (e.g., gender, SIMD decile). These statistics were 

presented for the overall population and stratified by drug exposure. The distribution of 

ITEs was assessed using box plots and density plots. Box plots summarised the 

distribution of ITEs for each drug, showing medians, quartiles, and outliers, providing a 

clear picture of central tendency and variability. Density plots illustrated the overall 

distribution shape, while conditional density plots visualised how ITE distributions varied 

across different values of covariates such as age, gender, and SIMD decile. Paired tests 

of ITEs between ACEIs and each of the other drugs (BBs, CCBs, THZs, statins) were 

conducted using the Wilcoxon signed-rank test. This non-parametric test compared the 

median differences in ITEs, accounting for the paired nature of the data. The magnitude of 

differences in ITEs between ACEIs and the other drugs was assessed using the effect 

size, estimated by the correlation coefficient (r). Effect sizes were classified as small (0.1 ≤ 

r < 0.3), medium (0.3 ≤ r < 0.5), or large (r ≥ 0.5), providing an interpretation of the clinical 

significance independent of sample size. 

6.4.2 Software and Tools 

All statistical analyses were conducted using R (version 4.3.3) and Python (version 3.8). 



146 

 

 

 

6.5 Results 

For this chapter, I will be focus on the comparisons of ACEIs with BBs, CCBs, THZs and 

statins. The study flow diagram is demonstrated in Figure 25. 

Figure 25 Study Flow Diagram  

This figure demonstrates the study flow diagram for the number of participants included in the 

analysis with exposure to antihypertensive drugs and statins for the first-wave and second wave 

cohort.  
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6.5.1 Overall study population 

The overall study population comprised 303,220 individuals, with 58,380 (19.3%) from the 

first wave and 244,840 (80.7%) from the second wave and the patient characteristics are 

presented in Table 20. The top 10 comorbidities incorporated in the ML model is in Table 

21. The median age of participants was 60.5 years (IQR: 51.5 to 72.3), with a slightly 

higher median age in the first wave (61.5 years; IQR: 52.2 to 73.3) compared to the 

second wave (60.2 years; IQR: 51.4 to 72.0) (p < 0.001). The gender distribution was 

balanced, with 56.2% female (170,263) and 43.8% male (132,957), showing no significant 

difference between the waves (p = 0.063). Socioeconomic status, as measured by the 

SIMD 2016 decile, was varied across the population. Approximately 22.8% of the 

participants were in the most deprived decile (decile 1), with similar distributions between 

the first (22.7%) and second waves (22.8%) (p = 0.003). Other deciles ranged from 6.0% 

to 10.2%, indicating a broad representation of socioeconomic backgrounds in the study. 

6.5.2 First wave study population 

The first wave study population (Table 22) was stratified by the use of different drugs, 

including ACEIs, BBs, CCBs, THZs and statins by factual drug exposure. The total 

number of participants varied across these drug categories, with the highest number of 

participants using statins (19,270; 33.0%) and the lowest using THZs (4247; 7.3%). The 

median age of participants ranged from 67 years (IQR: 58.0 to 76.5) for those using 

ACEIs to 70.5 years (IQR: 61.6 to 78.8) for those using statins indicating that these drugs 

were predominantly used by older individuals. Gender distribution also varied among the 

different drug categories. The proportion of females was highest among those using 

THZs. For ACEIs, BBs, CCBs, and statins, the female proportions were 45.2%, 52.5%, 

50.8%, and 47.5%, respectively. Socioeconomic status, as measured by the SIMD 2016 

decile, showed a diverse distribution across the drug categories. Participants using THZs 

and statins had a relatively lower representation in the most deprived decile (21.3% and 

25.6%, respectively). The proportions in the least deprived decile for ACEIs, BBs, CCBs, 

THZs and statins were respectively 6.8%, 6.6%, 7.6% and 8.2%. 
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Table 20 Demographic and Socioeconomic Characteristics of the Overall Study 

Population Across Two Waves of the COVID-19 Pandemic  

This table summarises the demographic and socioeconomic characteristics of 303,220 participants, 

stratified by the first and second waves of the COVID-19 pandemic. Variables include median age 

(with IQR), gender distribution, and socioeconomic status (measured by SIMD 2016 deciles). 

Statistical significance between waves is indicated. 

label levels First Wave Second Wave Total p 

Total N 

(%) 

 58380 (19.3) 244840 (80.7) 303220  

Age Median 

(IQR) 

61.5 (52.2 to 

73.3) 

60.2 (51.4 to 

72.0) 

60.5 (51.5 to 

72.3) 

<0.001 

SEX F 32982 (56.5) 137281 (56.1) 170263 (56.2) 0.063 

M 25398 (43.5) 107559 (43.9) 132957 (43.8) 

SIMD 1 13078 (22.7) 55024 (22.8) 68102 (22.8) 0.003 

2 8560 (14.9) 34993 (14.5) 43553 (14.6) 

3 5207 (9.1) 22236 (9.2) 27443 (9.2) 

4 4559 (7.9) 19578 (8.1) 24137 (8.1) 

5 4004 (7.0) 16409 (6.8) 20413 (6.8) 

6 3755 (6.5) 15623 (6.5) 19378 (6.5) 

7 3553 (6.2) 14358 (5.9) 17911 (6.0) 

8 4303 (7.5) 17665 (7.3) 21968 (7.4) 

9 5672 (9.9) 24760 (10.3) 30432 (10.2) 

10 4816 (8.4) 20679 (8.6) 25495 (8.5) 

Diabetes No 53660 (91.9) 224920 (91.9) 278580 (91.9) 0.692 

Yes 4720 (8.1) 19920 (8.1) 24640 (8.1) 

Incident 

COVID-

19  

No 53036 (90.8)  221319 (90.4) 274355 (90.5) <0.001 

Yes 5344 (9.2) 23521 (9.6) 28865 (9.5) 
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Table 21 Comorbidities in the ML Model 

The top 10 comorbidities are shown - all other comorbidities, although not shown in the table, were 

also incorporated as inputs for the neural network model. 

 Levels First Wave Second Wave Total 

Comorbidities 

included in the ML 

model – showing 

Top 10 comorbidities 

by ICD10 codes 

based on prior 

hospital admissions. 

(n, % of patient 

population) 

No admission 44653 (76.5) 212745 (86.9) 257398 (84.9) 

Cataract 828 (1.42) 654 (0.27) 1482 (0.49) 

Unspecified 

acute lower 

respiratory 

infection 

389 (0.67) 619 (0.25) 1008 (0.33) 

Urinary tract 

infection 
374 (0.64) 999 (0.41) 1373 (0.45) 

Chronic 

obstructive 

pulmonary 

disease 

280 (0.48) 534 (0.22) 814 (0.27) 

Atherosclerotic 

heart disease 
272 (0.47) 774 (0.32) 1046 (0.34) 

Unspecified 

sepsis 
229 (0.39) 617 (0.25) 846 (0.28) 

Malignant 

breast 

neoplasm 

206 (0.35) 633 (0.26) 839 (0.28) 

Unspecified 

chest pain 
187 (0.32) 717 (0.29) 904 (0.30) 

Syncope and 

collapse 
140 (0.24) 429 (0.19) 569 (0.19) 

 

6.5.3 Second wave study population 

The second wave study population (Table 23) included 244,840 individuals stratified by 

their use of different drugs by factual drug exposure. Among them, 47,833 (19.5%) were 

using ACEIs, 51,873 (21.2%) were using BBs, 44,993 (18.4%) were using CCBs, 17,867 

(7.3%) were using THZs, and 79,672 (32.5%) were using statins. The median age varied 
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across drug groups, with ACEIs users having a median age of 66.0 years (IQR: 57.1 to 

75.8), BBs users at 67.3 years (IQR: 56.7 to 77.5), CCBs users at 68.7 years (IQR: 59.9 

to 77.5), THZs users at 70.0 years (IQR: 61.1 to 77.7), and statins users at 69.7 years 

(IQR: 61.0 to 77.9). Gender distribution showed that females constituted 45.0% of ACEIs 

users, 52.8% of BBs users, 50.4% of CCBs users, 61.5% of THZs users, and 47.5% of 

statins users. Consequently, males made up 55.0% of ACEIs users, 47.2% of BBs users, 

49.6% of CCBs users, 38.5% of THZs users, and 52.5% of statins users. Socioeconomic 

status, as measured by the SIMD 2016 decile, indicated a varied distribution among drug 

users. For those on ACEIs, 24.1% were in the most deprived decile, while 7.4% were in 

the least deprived decile. BBs users had 24.3% in the most deprived decile and 7.1% in 

the least deprived. Among CCBs users, 23.0% were in the most deprived decile, and 

8.0% were in the least deprived. THZs users showed 21.6% in the most deprived decile 

and 8.5% in the least deprived. Statins users had 25.5% in the most deprived decile and 

7.0% in the least deprived. 

6.5.4 Distribution of ITE 

The density plots of ITE by wave are presented in Figure 26. Both plots show BBs and 

CCBs show ITE effects in the negative range while ACEIs and Statins show a positive 

effect. 

6.5.5 Conditional Density Plots of ITEs 

The conditional density plots of ITEs were generated to visualise the distribution of ITEs 

across different categories of age, gender, and SIMD (Figures 28-30 respectively). These 

plots allow for an examination of how the treatment effect might vary as a function of 

these covariates. Conditional density plots of ITEs across age, gender, and SIMD 

categories revealed consistent treatment effects across these demographic and 

socioeconomic groups. This uniformity suggests that the impact of the studied drug 

classes on COVID-19 infection risk does not vary significantly based on age, gender, or 

socioeconomic status 
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Table 22 Patient Characteristics Stratified by Drug Exposure During the First Wave of the COVID-19 Pandemic 

This table details the demographic and socioeconomic distribution of patients stratified by their use of ACEIs, BBs, CCBs, THZs, and statins during the first wave. 

Medication counts represent the number of patients exposed to each drug, either as monotherapy or in combination with others. Percentages for each medication were 

calculated relative to the total study population of 58,380 patients in the first pandemic wave. All 58,380 patients were used in the transformer model to estimate the 

individual treatment effect of each drug. 

label  levels  ACEis  BBs  CCBs  THZs  Statins  

Total N (%)  
 

11369 (19.5)  12092 (14.1)  10680 (18.3)  4247 (7.3)  19270 (33.0)  

Age  Median (IQR)  67.0 (58.0 to 76.5)  68.9 (58.2 to 79.2)  69.5 (60.7 to 78.0)  70.1 (61.5 to 77.9)  70.5 (61.6 to 78.8)  

Sex  Female 5143 (45.2)  6351 (52.5)  5422 (50.8)  2592 (61.0)  9160 (47.5)   
Male 6226 (54.8)  5741 (47.5)  5258 (49.2)  1655 (39.0)  10110 (52.5)  

SIMD  1 2726 (24.3)  2856 (23.9)  2396 (22.7)  895 (21.3)  4863 (25.6)   
2 1763 (15.7)  1893 (15.9)  1605 (15.2)  653 (15.5)  3005 (15.8)   
3 1095 (9.7)  1166 (9.8)  1005 (9.5)  381 (9.1)  1818 (9.6)   
4 884 (7.9)  970 (8.1)  886 (8.4)  345 (8.2)  1467 (7.7)   
5 787 (7.0)  820 (6.9)  742 (7.0)  295 (7.0)  1282 (6.7)   
6 735 (6.5)  808 (6.8)  668 (6.3)  261 (6.2)  1233 (6.5)   
7 675 (6.0)  681 (5.7)  640 (6.1)  256 (6.1)  1122 (5.9)   
8 772 (6.9)  815 (6.8)  758 (7.2)  328 (7.8)  1229 (6.5)   
9 1032 (9.2)  1135 (9.5)  1031 (9.8)  450 (10.7)  1698 (8.9)   

10 766 (6.8)  787 (6.6)  802 (7.6)  345 (8.2)  1297 (6.8)  
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Table 23 Patient Characteristics Stratified by Drug Exposure During the Second Wave of the COVID-19 Pandemic  

This table details the demographic and socioeconomic characteristics of patients using ACEIs, BBs, CCBs, THZs, and statins during the second wave. Medication counts 

represent the number of patients exposed to each drug, either as monotherapy or in combination with others. Percentages for each medication were calculated relative to 

the total study population of 244,840 patients in the second pandemic wave. All 244,840 patients were used in the transformer model to estimate the individual treatment 

effect of each drug. 

label  levels  ACEIs  BBs  CCBs  THZs  Statins  

Total N (%)   47833 (19.5)  51873 (21.2)  44993 (18.4)  17867 (7.3)  79672 (32.5)  

Age  Median (IQR)  66.0 (57.1 to 75.8)  67.3 (56.7 to 77.5)  68.7 (59.9 to 77.5)  70.0 (61.1 to 77.7)  69.7 (61.0 to 77.9)  

Sex  Female 21526 (45.0)  27386 (52.8)  22692 (50.4)  10994 (61.5)  37818 (47.5)  

 Male 26307 (55.0)  24487 (47.2)  22301 (49.6)  6873 (38.5)  41854 (52.5)  

SIMD  1  11379 (24.1)  12456 (24.3)  10208 (23.0)  3815 (21.6)  20110 (25.5)  

 2  7230 (15.3)  8006 (15.6)  6555 (14.7)  2532 (14.3)  12413 (15.8)  

 3  4661 (9.9)  4969 (9.7)  4331 (9.7)  1775 (10.0)  7678 (9.8)  

 4  3903 (8.3)  4260 (8.3)  3642 (8.2)  1424 (8.0)  6278 (8.0)  

 5  3265 (6.9)  3589 (7.0)  3122 (7.0)  1258 (7.1)  5360 (6.8)  

 6  3001 (6.3)  3256 (6.4)  2860 (6.4)  1098 (6.2)  4815 (6.1)  

 7  2731 (5.8)  2941 (5.7)  2650 (6.0)  1108 (6.3)  4448 (5.6)  

 8  3206 (6.8)  3373 (6.6)  3156 (7.1)  1284 (7.3)  5108 (6.5)  

 9  4398 (9.3)  4748 (9.3)  4374 (9.8)  1902 (10.8)  6996 (8.9)  

 10  3509 (7.4)  3618 (7.1)  3572 (8.0)  1497 (8.5)  5528 (7.0)  
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Figure 26 Density Plots of Individual Treatment Effects (ITE) by Drug Class and 

Pandemic Wave  

These density plots illustrate the distribution of ITEs for each drug class during the first and second 

waves. Drugs with protective effects (negative ITEs) and increased risk (positive ITEs) are visually 

distinguished. 

  

Figure 27 Conditional Density Plot of ITEs by Age Group   

This plot demonstrates the distribution of ITEs stratified by patient age assessing differences in 

treatment effects vary across age groups for each drug class.  
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Figure 28 Conditional Density Plot of ITEs by Gender 

This figure demonstrates the distribution of ITEs stratified by gender, assessing differences in 

treatment effects between male and female participants for each drug class. 

  

Figure 29 Conditional Density Plot of ITEs by Socioeconomic Status (SIMD Deciles)  

The plot demonstrates the distribution of ITEs across SIMD deciles, assessing differences 

in socioeconomic status on treatment effects. 
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6.5.6 ATE analyses 

Table 24 presents the results of the ATE analyses for four major classes of 

antihypertensive drugs and statins, a non-antihypertensive cardiovascular drug used as a 

comparator, during the first and second waves of the COVID-19 pandemic.  

Table 25 presents the overall weighted ATE combining both waves. THZs showed the 

highest risk increase (ATE: 4.3% ± 10.8%), while ACEIs occupied a neutral position (ATE: 

0.97% ± 5.5%). BBs (-8.3% ± 7.3%) and CCBs (-9.7% ± 8.1%) continued to exhibit 

protective effects, whereas statins (3.5% ± 6.1%) demonstrated an increased risk.  

Table 24 Average Treatment Effect (ATE) by Drug Class Across the First and Second 

Waves of the COVID-19 Pandemic 

This table shows the mean (SD) ATEs for ACEIs, BBs, CCBs, THZs, and statins during each wave. 

Differences between the waves are statistically evaluated, and the direction of effect is highlighted. 

Drug First Wave Second Wave p 

ACEIs 0.0245 (0.0782) 0.0231 (0.1065) 0.004 

BBs -0.0169 (0.1244) -0.1784 (0.1188) <0.001 

CCBs -0.0209 (0.1058) -0.2119 (0.1105) <0.001 

THZs 0.0033 (0.0877) 0.0820 (0.1717) <0.001 

Statins 0.0565 (0.1590) 0.1209 (0.1936) <0.001 

 

Table 25 Overall Weighted Average Treatment Effect (ATE) for Drug Classes 

Combining Both Pandemic Waves 

The table shows the overall weighted ATEs for each drug class, combining data from both waves. 

This provides an integrated view of the treatment effect on COVID-19 risk. 

Drug Overall Weighted ATE 

ACEIs 0.0097 (0.0552) 

BBs -0.0829 (0.0730) 

CCBs -0.0969 (0.0813) 

THZs 0.0427 (0.1083) 

Statins 0.0353 (0.0614) 

 

6.5.7 ITE Analyses 

Table 26 presents the results of the ITE analyses for four major classes of 

antihypertensive drugs and statins during the first and second waves of the COVID-19 

pandemic. The weighted ITE of the overall population combining both waves and the 

results are maintained with THZs showing a negative median ITE with the lowest absolute 

magnitude of ITE of all the drugs. 
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Table 26 Median Individual Treatment Effect (ITE) by Drug Class During the First 

and Second Waves of the COVID-19 Pandemic  

This table reports the median ITE values (with IQR) for each drug class in both waves. Statistical 

significance between waves is also presented. 

Drug label levels First Wave Second Wave p 

ACEIs ITE Median 

(IQR) 
0.0282 (-0.0156 

to 0.0428) 
0.0364 (-0.0041 

to 0.0452) 
<0.001 

BBs ITE Median 

(IQR) 
-0.0226 (-0.0738 

to 0.0116) 
-0.2035 (-0.2382 

to -0.1817) 
<0.001 

CCBs ITE Median 

(IQR) 
-0.0367 (-0.0861 

to -0.0254) 
-0.2102 (-0.2759 

to -0.2034) 
<0.001 

THZs ITE Median 

(IQR) 
0.0083 (-0.0292 

to 0.0189) 
-0.0042 (-0.0117 

to 0.0993) 
<0.001 

Statins ITE Median 

(IQR) 
0.0238 (-0.0114 

to 0.0315) 
0.0288 (0.0260 

to 0.1386) 
<0.001 

 

During the first wave, ITE analyses revealed that patients taking ACEIs experienced a 

slight increase in COVID-19 risk, with a median risk difference of 2.8% (interquartile range 

[IQR]: -1.6% to 4.3%) compared to those not on ACEIs. Similarly, statins and THZs were 

associated with small increases in COVID-19 risk with median risk differences as follows: 

statins, 2.4% (IQR: -1.1% to 3.2%); THZs, 0.8% (IQR: -2.9% to 1.9. In contrast, BBs and 

CCBs showed protective effects against COVID-19, with reductions in risk. The median 

risk reductions were 2.3% (IQR: -7.4% to 1.2%) for BBs and 3.7% (IQR: -8.6% to -2.5%) 

for CCBs.  

During the second wave of the COVID-19 pandemic, the ITEs of most drug classes 

mirrored those observed in the first wave. ACEIs showed a slight increase in infection risk, 

with a median increase of 3.6% (IQR: -0.4% to 4.5%). Similarly, statins was associated 

with a small increase in risk, with median increase of 2.9% (IQR: 2.6% to 13.9%). In 

contrast, BBs and CCBs continued to demonstrate protective effects, with significant 

reductions in infection risk. The median reductions were 20.4% (IQR: 18.2% to 23.8%) for 

BBs and 21.0% (IQR: 20.3% to 27.6%) for CCBs. Interestingly, the second wave revealed 

a negligible effect for THZs, with a median change of -0.4% (IQR: -1.2% to 9.9%).  

6.5.8 Paired ITE Analyses – ACEI versus other drug classes 

Table 27 presents the results of paired analyses during the first wave, comparing ACEIs 

with BBs, CCBs, THZs, and Statins. The table includes the median ITE, Wilcoxon two-

sided p-values, Cohen's D, effect sizes, and the magnitude of the effect.  
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Paired analyses across both waves revealed significant differences between ACEIs and 

other drug classes. BBs and CCBs consistently exhibited large protective effects 

compared to ACEIs. For THZs, the effect size was moderate in the first wave but 

diminished to small in the second wave. Statins consistently demonstrated small effect 

sizes.(Table 28) 

6.6 Discussion 

The study evaluated the advanced transformer-based model with counterfactual X-learner 

framework estimated individual and average treatment effects of antihypertensive 

medications on the risk of COVID-19 infection. By leveraging real-world data from over 

300,000 patients, our findings provide robust insights into the safety profile of ACEIs and 

highlight differential effects across other drug classes. The model's accuracy indicates its 

ability to effectively relate infection risk to the dynamic chronological interactions between 

background medications, comorbidities, and demographics.  

Our findings reaffirm the safety of ACEIs during the COVID-19 pandemic, with minimal 

overall impact on infection risk. These results align with prior observational studies and 

meta-analyses, which reported no substantial increase in COVID-19 risk among ACEI 

users.(201, 268, 269) Our findings also align with biological hypothesis, suggesting that 

ACEIs may enhance SARS-CoV-2 cellular entry by upregulating ACE2 expression, while 

also being consistent with the predominantly null effect on clinical outcomes reported in 

observational studies, reinforcing the safety of ACEIs.  

BBs and CCBs demonstrated protective effects against COVID-19 infection across both 

pandemic waves. These findings may reflect their underlying mechanisms, including 

modulation of immune responses, and attenuation of ACE2 expression by BBs and 

inhibition of calcium-dependent viral entry pathways by CCBs.(270-272) Previous 

observational studies showed beneficial effects of BB and CCBs.(273-276) CCBs were 

also shown to inhibit the post-entry replication events of SARS-CoV-2 in vitro, while no 

similar effect was observed for ACEIs.(276) The consistency of these effects across 

demographic and socioeconomic groups highlights their potential as therapeutic options 

deserving further investigation. 

THZs were associated with a slight increase in COVID-19 risk, possibly due to their 

impact on sodium and RAAS regulation - their diuretic effect decreases sodium 

concentrations, thereby increasing angiotensin II and ACE2 expression.(277-279) These 

findings warrant further exploration, particularly in light of the widespread use of these 

medications in cardiovascular disease management. 
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Traditional methods for estimating individual treatment effects (ITEs), such as propensity 

score matching, inverse probability weighting, and linear regression-based approaches, 

often struggle with high-dimensional, time-series data and nonlinear confounding 

relationships. While methods like causal forests or generalized additive models address 

some of these challenges, they often fall short in capturing complex temporal 

dependencies and interactions between covariates. The transformer-based model 

integrated with the X-learner framework represents a significant advance over these 

traditional approaches. Transformers excel at modelling sequential data by leveraging 

self-attention mechanisms, which enable the identification of intricate temporal patterns 

and relationships. In this study, these capabilities were utilized to analyse the interplay 

between medication use, comorbidities, and COVID-19 infection risk, providing a granular 

understanding of treatment effects. 

The Transformer model consistently outperformed other models in terms of F1 score and 

AUPRC across both waves, making it the most suitable choice for this study’s objective of 

assessing increased COVID-19 risk associated with specific drug classes. Its strong 

performance in precision-recall balance indicates a higher reliability in identifying true risk 

cases while minimising false positives in the presence of class imbalances. While Logistic 

Regression offered the highest accuracy, its lower AUPRC highlights its potential 

limitations in this study context. Overall, these results suggest that the Transformer model  
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Table 27 Paired Analysis of ITEs Between ACEIs and Other Drug Classes During the First Wave of the COVID-19 Pandemic.  

The paired analysis compares the ITEs of ACEIs with BBs, CCBs, THZs, and statins. Statistical measures, including Wilcoxon p-values and effect sizes, highlight 

significant differences in treatment effects. 

First 
Treatment 

Second 
Treatment 

N 
First ITE, 
median 
(IQR) 

Second ITE, 
median (IQR) 

Wilcox 2-
sided 

Wilcox First 
greater 

Wilcox 
First lower 

Cohens D 
(C.I.) 

Effect 
Size 

Magnitude 

ACEIs BBs 43,545 0.034 (0.044) -0.018 (0.083) 0.0E+00 0.0E+00 1.0E+00 
-0.43 (-0.44 

- -0.42) 
0.602 large 

ACEIs CCBs 44,635 0.034 (0.039) -0.032 (0.039) 0.0E+00 0.0E+00 1.0E+00 
-0.48 (-0.49 

- -0.43) 
0.611 large 

ACEIs THZs 46,536 0.033 (0.042) 0.012 (0.042) 0.0E+00 0.0E+00 1.0E+00 
-0.26 (-0.27 

- -0.25) 
0.497 moderate 

ACEIs Statins 42,301 0.034 (0.039) 0.026 (0.032) 0.0E+00 0.0E+00 1.0E+00 
0.13 (0.12 - 

0.14) 
0.202 small 
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Table 28 Paired Analysis of ITEs Between ACEIs and Other Drug Classes During the Second Wave of the COVID-19 Pandemic.  

This table provides a paired comparison of ACEIs against other drug classes during the second wave. Statistical measures, including Wilcoxon p-values and effect sizes, 

highlight significant differences in treatment effects. 

First 
Treatment 

Second 
Treatment 

N 
First ITE, 
median 
(IQR) 

Second ITE, 
median (IQR) 

Wilcox 2-
sided 

Wilcox 
First 

greater 

Wilcox 
First lower 

Cohens D 
(C.I.) 

Effect 
Size 

Magnitude 

ACEIs BBs 182,808 
0.039 

(0.035) 
-0.202 (0.052) 0.0E+00 0.0E+00 1.0E+00 

-1.62 (-1.75 
- -1.61) 

0.794 large 

ACEIs CCBs 188,708 
0.039 

(0.033) 
-0.208 (0.037) 0.0E+00 0.0E+00 1.0E+00 

-2.04 (-2.23 
- -2.03) 

0.829 large 

ACEIs THZs 194,984 
0.038 

(0.035) 
-0.006 (0.069) 0.0E+00 0.0E+00 1.0E+00 

0.22 (0.24 - 
0.24) 

0.128 small 

ACEIs Statins 179,725 
0.039 

(0.029) 
0.028 (0.030) 0.0E+00 1.0E+00 0.0E+00 

0.40 (0.44 - 
0.44) 

0.096 small 
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provides the best combination of sensitivity, specificity, and predictive power for testing the 

hypothesis of drug related COVID-19 risk. 

Strengths and Limitations 

This study represents a significant advance in the application of AI for causal inference in 

healthcare. By integrating transformers and X-learners, the methodology accounts for 

both temporal dynamics and confounding factors, enabling more precise estimations of 

drug effects. Key strengths of this study include a large sample size, enhancing the 

generalisability of findings, and the use of deep learning and detailed visualisation 

techniques to strengthen the robustness and interpretability of results. Our counterfactual 

frameworks create virtual counterparts for each individual, enabling estimation of ITEs and 

accounting for heterogeneity, thereby providing more robust information on treatment 

impacts. While studies from the pandemic's first wave may have limited relevance to later 

stages due to changes driven by new viral variants and global vaccination rollouts, our 

study showed generally consistent findings across different drugs in both waves, 

highlighting the model's ability to produce generalisable results.  

Despite its strengths, several limitations should be acknowledged. Transformers are 

inherently complex, and the black-box nature of the model may hinder clinical adoption - 

clinicians and policymakers often require interpretable outputs to trust and act upon model 

predictions. The model's reliance on large, high-quality datasets with rich temporal and 

static variables can limit its applicability in settings with incomplete or inconsistent data. 

Training transformer-based models is resource-intensive, potentially restricting their use in 

real-time or resource-constrained environments. Although advanced, the model cannot 

completely eliminate residual confounding, particularly from unmeasured variables. 

Additionally, the findings may not fully capture the evolving context of the pandemic, 

including changes in viral variants, vaccination status, and treatment protocols.  Future 

work should focus on addressing some of the key limitations. This includes enhancing 

interpretability by integrating explainability techniques, such as SHAP values, to highlight 

the features driving predictions; reducing computational burden by implementing 

lightweight transformer variants; expanding the framework to diverse populations and 

datasets can enhance its generalisability and reliability; incorporating additional causal 

inference methods, such as targeted maximum likelihood estimation or doubly robust 

estimators, could enhance the accuracy of ITE estimation; adding dynamic covariates, 

such as real-time healthcare interventions or vaccination status, would improve the 

model's ability to adapt to evolving clinical contexts. Finally, our study did not specifically 

examine ARBs, as clinical practice often initiates ARBs after ACEI failure, introducing 

potential bias.  



162 

 

 

 

Clinical Implications 

The findings of this study have several important clinical implications. The identification of 

differential effects among antihypertensive drugs can inform more personalised treatment 

strategies for patients with COVID-19, particularly those with hypertension. BBs and CCBs 

consistently showed positive effects on COVID-19 outcomes across both waves, 

suggesting their potential benefit in managing hypertensive patients and other 

cardiovascular conditions during the pandemic. Clinicians can consider these results 

when selecting antihypertensive medications for patients at risk of COVID-19, potentially 

opting for drugs associated with lower infection risk. The uniform treatment effects across 

age, gender, and socioeconomic status underscore the broad applicability of these 

findings. Insights into the socioeconomic distribution of treatment effects can help tailor 

public health interventions to ensure equitable healthcare access and outcomes. 

Future Directions 

The protective effects of BBs and CCBs against COVID-19 infection merit further 

investigation in randomised controlled trials or pragmatic studies. Mechanistic studies 

could elucidate the pathways underlying these effects, informing potential repurposing 

strategies. Furthermore, the integration of advanced machine learning models with real-

world data presents opportunities to address other pressing clinical questions in dynamic 

healthcare settings. 

Conclusions 

This study not only provides critical evidence on the differential impacts of 

antihypertensive drugs on COVID-19 infection risk but also highlights the transformative 

potential of machine learning in medicine. By combining advanced modelling techniques 

with real-world data, we can move closer to personalised, data-driven healthcare solutions 

that improve patient outcomes and resilience during global health crises.  This study 

contributes valuable evidence on the differential impacts of antihypertensive drugs on 

COVID-19 outcomes. While the study supports the continued use of ACEIs in 

hypertensive patients, it also suggests a re-evaluation of their risk profile during 

pandemics. The protective effects of BBs and CCBs highlight potential therapeutic 

benefits, while findings on THZs emphasize the need for further investigation.  
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Chapter 7 Overall Discussion 

This thesis encompasses three interconnected studies that collectively investigate the 

long-term cardiovascular and quality-of-life consequences of SARS-CoV-2 infection, 

leveraging advanced machine learning techniques and real-world data. These findings 

collectively emphasize the intersection of cardiovascular health, post-viral sequelae, and 

advanced analytical methods in understanding and managing health outcomes during and 

after pandemics. 

Clinical Phenotyping Post-COVID-19: A longitudinal analysis revealed sustained 

increases in BP and reduced endothelial function (measured by flow-mediated dilation, 

FMD) among post-SARS-CoV-2 individuals over 12 months. These changes, despite 

baseline similarity in cardiovascular metrics, underscore potential vascular implications of 

the virus. However, the study found no significant impact on baseline RAAS markers, 

necessitating further exploration of mechanistic pathways. The increase in BP and 

reduction in FMD provide compelling evidence of the vascular impact of COVID-19. These 

findings resonate with broader literature on endothelial dysfunction in viral infections and 

emphasize the need for routine cardiovascular monitoring post-COVID. 

Quality of Life Impacts: The study documented substantial impairments in quality-of-life 

dimensions such as pain, mobility, and anxiety among SARS-CoV-2-positive participants. 

QoL assessments revealed the broader psychosocial and physical toll of SARS-CoV-2 

infection. While improvements occurred over a year, persistent issues in pain and anxiety 

highlighted the recovery trajectories, with potential implications for long COVID 

management aligning with the emerging narrative of long COVID and highlight the 

importance of addressing mental health and chronic pain in recovery strategies. 

Transformer-Based Counterfactual Modelling for Antihypertensive Drugs: By 

applying cutting-edge AI methodologies, the analysis demonstrated differential effects of 

antihypertensive medications on COVID-19 risk. Angiotensin-converting enzyme inhibitors 

showed neutral effects, while BBs and CCBs exhibited protective properties. THZs were 

associated with increased risk, suggesting the need for tailored pharmacological 

strategies in managing cardiovascular conditions during pandemics. The integration of 

transformer-based models demonstrates the transformative potential of AI in deriving 

granular insights from complex, high-dimensional datasets. This approach not only 

advances causal inference methodologies but also provides actionable insights into drug 

safety and efficacy during pandemics. 
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Building on the findings, several avenues for research and clinical translation are 

proposed: 

Longitudinal and Multidimensional Follow-Up Studies: Extending follow-up beyond 12 

months is critical to capturing delayed or evolving cardiovascular and QoL changes. 

Incorporating a broader range of biomarkers (e.g., arterial stiffness, inflammatory markers) 

and stratifying by disease severity, comorbidities, and vaccination status will enhance the 

understanding of post-COVID sequelae. 

Mechanistic Studies and Interventional Trials: The vascular and pharmacological 

findings necessitate mechanistic investigations into endothelial dysfunction and the 

protective effects of specific antihypertensive drugs. Randomized controlled trials should 

evaluate the repurposing potential of BBs and CCBs for mitigating COVID-19 

complications. 

Integration of Psychosocial and Contextual Data: Future studies should incorporate 

socioeconomic, mental health, and healthcare access variables to contextualise QoL 

findings. Qualitative methodologies can complement quantitative analyses, providing 

deeper insights into lived experiences and recovery barriers. 

ML estimation of ITE: The wider potential of using ML based estimation of ITE extends 

far beyond our first use in this study, offering transformative opportunities in establishing 

causality and conducting natural experiments. By leveraging advanced ML algorithms, 

researchers can uncover causal relationships that traditional methods might overlook, 

enabling a more precise understanding of how specific treatments affect different 

subpopulations. This approach is particularly valuable in the context of natural 

experiments, where randomised controlled trials are impractical or unethical. For instance, 

during a pandemic, ML can be employed to analyse observational data and simulate 

randomised conditions, thus deriving insights into the effectiveness of various 

interventions. 

Scalable and Explainable AI Models: Enhancing the interpretability of AI models through 

techniques like SHAP values will address barriers to clinical adoption. Additionally, 

adapting lightweight transformer variants for resource-constrained settings can 

democratise the use of advanced analytics in healthcare. 

Real-World Evidence and Policy Implications: Leveraging large-scale healthcare 

datasets can provide robust evidence on long-term outcomes and inform public health 

strategies. Policymakers should prioritise investments in post-COVID care infrastructure, 

encompassing multidisciplinary rehabilitation programs and mental health services. 
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Chapter 8 Overall Conclusions 

In conclusion, this thesis advances our understanding of the cardiovascular and QoL 

impacts of COVID-19, while also showcasing the transformative potential of machine 

learning in deriving actionable insights The observed increase in BP and endothelial 

dysfunction post-COVID-19 recovery underscores the need for vigilant cardiovascular 

monitoring. The differential effects of antihypertensive drugs on COVID-19 risk highlight 

the importance of personalised treatment approaches. The findings underscore the 

importance of integrating advanced analytics with robust clinical methodologies to address 

pressing healthcare challenges. By bridging the gaps between data science, clinical care, 

and public health, this work lays a strong foundation for improving patient outcomes and 

system resilience during global health crises. These findings provide a foundation for 

future research to further elucidate the long-term cardiovascular impacts of COVID-19 and 

develop targeted interventions to mitigate these risks.  
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Chapter 10 Appendices 

Appendix 1: Data extracted from NHS GG&C Safe Haven 

Main Data and 
Descriptors 

Filters Date Ranges 

Demographics DOB, age, sex, height, weight, smoking status, SIMD 01/01/2019-
31/12/2021 

Deaths – Combined 
death data from 
General Registry 
Office 

Sex, age, ethnic group, Date of death, institution, 
primary cause of death, secondary cause of death, 
place of death. 

01/01/2014-
31/12/2023 

Prescriptions Paid date, BNF item code, BNF item description, 
BNF chapter code, BNF chapter description, BNF 
section code, BNF section description, BNF 
subsection code, BNF subsection description, BNF 
paragraph description, approved name, drug 
formulation, item strength, dispensed quantity, 
number of dispensed items 

01/01/2014-
31/12/2023 

Lab Results Serum/blood 
Haematology 
Full blood count (Hb, WCC, neutrophils, 
lymphocytes, eosinophils, monocytes, basophils, 
platelets, haematocrit, mean cell volume, red cell 
distribution width, coagulation screen (PT, APPT,TT, 
PTR), fibrinogen, INR, d-dimer  
Biochemistry 
Sodium, potassium, chloride, urea, creatinine, 
eGFR,HCO3, Mg, Ca, PO4, Alk phos, AST, ALT, 
bilirubin, LDH, CRP, glucose, HBA1c, Total 
cholesterol, HDL, cholesterol, triglycerides, cortisol, 
hsTNI, NTproBNP, renin, aldosterone, ferritin, 
vitamin D, CK, myoglobin 
Virology 
SARS-Cov-2, Influenza, HIV, Hepatitis B, C, CMV 
Lighthouse data 
Urine 
ACR, PCR, urine electrolytes 
Imaging (if available in anonymised form) 
Chest xray, CT chest, chest/abdomen, 
chest/abdomen/pelvis, CTPA, HRCT chest, CT head, 
CT venogram, MRI brain, MR venogram, Ultrasound 
renal 

01/01/2014-
31/12/2023 

SMR00 – General 
acute outpatient 
attendance 

GGC and WoS. 
Date, sex, ethnic group, specialty/discipline, 
significant facility, referral type, attendance status, 
referral source, attendance follow up, mode of 
contact 

01/01/2014-
31/12/2023 

SMR01 – General 
acute inpatient & day 
case discharges 

GGC and WoS 
Date, sex, ethnic group, specialty, significant facility, 
management of patient, admission type, 
admission/transfer from, discharge type, 
discharge/transfer to, ICD diagnosis 

01/01/2014-
31/12/2023 

SMR04 – Psychiatric 
and mental handicap 
hospitals & units 

GGC and WoS 
Sex, ethnic group, specialty/discipline, significant 
facility, management of patient, admission type, 
admission/transfer from, admission, referral from, 
previous psychiatric care, discharge type, 

01/01/2014-
31/12/2023 
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discharge/transfer to, type of psychiatric care 
provided, arrangements for after care. 

Other Data Filters Date ranges 

SMR02 – Maternity 
inpatient and day case 
discharges. 

GGC and WoS 
Ethnic group, specialty/discipline, significant facility, 
management of patient, admission reason, 
admission type, previous pregnancies, diabetes, 
booking smoking history, drug misuse during 
pregnancy, drug used, ever injected illicit drugs, 
number of births this pregnancy, presentation at 
delivery, mode of delivery, outcome of pregnancy, 
resuscitation, Apgar score, sex (baby), neonatal 
indicator, baby discharged, first feed given, deed on 
discharge, discharge type, 

01/01/2014-
31/12/2023 

SMR06 – Cancer 
Registry 

GGC and WoS  
Date of incidence, age, date of death, sex, site, type, 
clinical stage 

01/01/2014-
31/12/2023 

MINAP – Myocardial 
Ischaemia National 
Audit Project 

Age, gender, date of admission, initial diagnosis, 
ECG;  determining treatment, cardiac markers 
raised, systolic BP, pulse rate, Killip class on 
admission, reperfusion treatment and procedure, 
date of discharge, discharge diagnosis, death in 
hospital 

01/01/2014-
31/12/2023 

SERPR – NHS GGC 
Renal service 
database 

Blood pressure, haemodialysis, haemodialysis date, 
peritoneal dialysis, peritoneal dialysis date, 
transplant status, date of transplant, transplant 
rejection date, vascular procedures, vascular 
procedure date, immunosuppressant therapy 

01/01/2014-
31/12/2023 

SCI diabetes – 
National diabetes 
register (For GGC 
only) 

Sex, age, ethnic group, pulse rate, heart rate, 
systolic blood pressure, diastolic blood pressure, 
blood pressure, height, weight, body mass 
index,waist circumference, diagnosis, family history, 
type of diabetes, diabetes complications, date of 
diagnosis diabetes 

01/01/2014-
31/12/2023 

SBR – Scottish Birth 
Record 

GGC and WoS 
Mother – smoking history, smoking during 
pregnancy, alcohol intake pre-pregnancy, current 
alcohol intake, problem with alcohol, ever injected 
illicit drugs, drugs misuse during this pregnancy, drug 
used. Birth – onset, induction 
augmentation,antenatal steroid, pain relief, number 
of births, membrane rupture, sex, Apgar, 
resuscitation, place of birth, 

01/01/2014-
31/12/2023 

MUSE – ECGs and 
Echos 

ECG/Echo  

Charlson Matrix - 
Charlson Comorbidity 
Index matrix; 
calculating 1-year 
mortality risk for all in 
CHI 

 01/01/2014-
31/12/2023 

OBELIX and serology 
contributed data 

All data from previous OBELIX workspace All – 2023 
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Appendix 2 Machine Learning Model provided by Tran 

Quoc Bao Tran  

Our work is inspired by the self-attention mechanism of the Transformers neural networks, 
which is the architecture underlying the success of the large language model chatbot 
systems such as Chat Generative Pre-trained Transformer (ChatGPT).  
By applying the logic of self-attention to longitudinal EHR data, we can capture 
interactions between different drug prescriptions in space and time. Our proposed model 
consists of four primary components: 
1. A preprocessing pipeline that transforms and encodes the raw time-series data 

into a suitable format for the neural network. 
2. A transformer-based architecture with self-attention mechanism designed to 

capture the spatiotemporal patterns present in the EHR data. 
3. A feed-forward multilayer perceptron to process the static and numerical data. 
4. A causal inference system aimed at estimating the causal effect of the selected 

drug to the risk of hospitalisation or death from COVID-19. 
Our model incorporated all diagnoses and medication records prior to the start of two 
COVID-19 waves for each patient, with static attributes of age, sex, SIMD, and diabetes 
status at baseline. 
Preprocessing pipeline 
We create spatiotemporal sequences by flattening the drugs and comorbidities time series 
into individual “sentences” with drug prescriptions and admission diagnoses being the 
“words”. Each word was subsequently tokenised and embedded as high-dimensional 
trainable vectors that allow the representation of concepts in numerical form, for which 
similar concepts have similar numerical representations. Instead of the positions in the 
sequence, the positional embedding index for each token was the month and year a drug 
or a diagnosis appeared in the 6-month study period. 
Transformer architecture 
When reading a sentence, each word is not processed in isolation, but rather consider its 
relationship to those before and after. Self-attention in a transformer neural network 
captures this essence, allowing them to "attend" to relevant parts of an input sequence 
when making predictions. 
In the first step, the embedding for each word in a transformer neural network is 
generated by adding a word embedding vector and a positional embedding vector. The 
word embedding vector represents the meaning and context of the “words”, which are 
drug prescriptions and admission diagnoses in our prosed model. The positional 
embedding vector represents the location or index of the word in the sequence, which are 
the drugs dispensing dates or the dates of admissions. The addition of the two vectors 
thus preserves both the semantic and chronological information of an item in the EHR. 
The resulted vector was subsequently used as the input for the self-attention layers.  
Self-attention computes the relevance of each word to every other word in a given 
sequence, using scaled dot products between query, key, and value vectors. The query 
and key vectors are derived from the word embeddings. The query vector represents the 
word that the model wants to focus on or retrieve information from the input. The key 
vector represents the word that the model wants to compare with the query vector. The 
dot product between a query and a key vector measures how similar they are. The dot 
products are then passed through a softmax function, which normalises the dot product 
values to obtain a probability distribution that sums up to one. The outputs from the 
softmax function are subsequently multiplied by the value vectors, which are usually the 
same as the key vector. The results are added together to produce the attention scores. 
The self-attention output for each word is thus a new vector that combines the information 
from all the other words in the sentence, weighted by their relevance to the index word. 
The same process is repeated for the other words to generate the self-attention outputs 
for every word in the sentence. The result is a matrix of self-attention outputs, where each 
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row corresponds to a word in the sentence, and each column corresponds to a dimension 
of the embedding. The matrix has the same shape as the original input matrix, but it has 
different values that reflect the attention mechanism. In this way, self-attention allows 
Transformers to capture dependencies between words, regardless of their distance from 
each other in the sentence. This is particularly useful for understanding the context and 
semantics of a sentence, making Transformers powerful tools for tasks like machine 
translation, text summarisation, and sentiment analysis. 
In this study, the attention layer was configured to apply the input to itself (i.e., the same 
input). This self-attention operation allowed each element in the input sequence to attend 
to all other elements in the same sequence. By computing the attention scores between 
each pair of elements, our model learned to weigh and combine the relevant information 
from different drugs or admissions at different time within the study period when producing 
the output representations. 
Finally, the transformer architecture was concatenated to a multi-layer perceptron (MLP), 
which is more efficient in modelling the static variables, which include sex (male/female), 
ethnicity (White/non-White), SIMD decile (ordinal), and Diabetes status (0/1).  
Causal inference: X-learner 
The transformer neural network was then used as the base model for the construction of 
the X-learner, which is a meta-algorithm specifically designed for studying causal 
inference and estimating individual treatment effects. While most classification or 
regression models focus on finding patterns from the input features that are associated 
with the target variable, meta-learners aim to estimate the effect of an intervention on the 
outcome, also known as conditional average treatment effect (CATE). Classification or 
regression models thus often struggle to distinguish between correlations and causal 
relationships in the data, whereas meta-learners are designed to make causal inferences. 
Traditionally, X-learner utilises base learners such as logistic regressions, random forests, 
or boosting algorithms to predict individual outcomes and treatment effects. However, 
these models often struggle to capture complex temporal and spatial interactions within 
the data. 
In our study, we propose an innovative approach to incorporate the transformer model as 
the base learners into the X-learner framework. By utilising the ability of transformer 
models to capture complex spatiotemporal information, we aim to significantly improve the 
accuracy and interpretability of X-learner's estimated CATEs. 
The training of our transformers-based X-learner algorithm consists of three stages.  
First stage:  
Two models were trained on time-series medication and admission data and demographic 
data to predict the occurrence of COVID-19-related admission or mortality in the next 6 
months. One model was exclusively trained on patients from the treated group, while the 
other model focused solely on the control group. To estimate counterfactual outcomes, we 
applied the control model to input features from the treated group and vice versa for the 
control group. Essentially, this method estimated counterfactuals by predicting what the 
treated group would have obtained, had they received the control and what the control 
group would have obtained, had they received the treatment. 
Based on the counterfactual predictions, we computed the Individual Treatment Effect 
(ITE) for each patient. Specifically: 

 For the treated group, the ITE represents the difference between the actual 
outcomes and the counterfactual outcomes predicted by the control model. 

 Conversely, for the control group, the ITE corresponds to the difference between 
the counterfactual outcome predicted by the treated model (from stage one) and 
the actual outcome. 

Second stage: We constructed two other models to predict the ITE, using the same input 
as the stage-one models. We applied both models to input features from the entire 
population. By imputing ITEs for both treated and untreated individuals, we essentially 
create a counterfactual scenario for each person, allowing us to compare their outcomes 
under both treatment and no treatment. 
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Third stage:  
We developed a separate transformer model to estimate the propensity score of receiving 
treatment. This model was trained on the same input features as the models from stage-
one and stage-two, excluding the time series data for the investigated drug. 
The final ITEs will be estimated by getting the propensity-score-weighted average of the 
stage two model predictions for each patient. The ATE for each medication is the average 
individual treatment effect across the entire population. 
Metrics 
The performances of the models were evaluated using stratified five-fold cross-validation. 
This approach provides a more reliable estimate of a model's performance compared to 
using a single train-test split. By dividing the data into five non-overlapping subsets (folds), 
and iteratively using four folds for training and one fold for testing, the evaluation process 
captures a broader range of data variations. Furthermore, through multiple rounds of 
training and testing on different subsets, the evaluation becomes less sensitive to any 
irregularities or biases that may have been coincidentally introduced in a single train-test 
split. 
Performance of models was reported using the area under the receiver operating 
characteristic curve (AUROC), accuracy, and F1-score (the harmonic mean of precision 
and recall). The performance of a model was obtained by averaging the performance 
across all five folds. Results were reported as mean ± standard deviation (SD).  
As mentioned earlier, the treatment effects from our causal inference analysis were 
measured using the Average Treatment Effect (ATE) and the Individual Treatment Effects 
(ITE). The ATE represents the average difference in outcomes between the treated and 
control groups, providing an estimate of the overall causal impact of the treatment. This 
average effect, however, may mask important heterogeneity in how individuals respond to 
the treatment. The ITE captures the causal effect for each individual, allowing researchers 
to understand how the treatment impact varies across the population By considering both 
the ATE and ITEs, causal inference analyses can offer a more nuanced understanding of 
the treatment effect and identify subgroups that may benefit most from the intervention. 
Attention score 
To better understand how the neural-network models arrived at the predictions, we 
extracted the attention weights computed during the forward pass of the model. These 
tensors were computed as part of the multi-head attention mechanism within our model’s 
encoder layer. The attention weights represent the extent to which each element within 
the input data attends to other elements during the modelling process for predicting 
COVID-19 hospitalisation or mortality outcomes. In other words, the attention scores allow  
The attention weights were retrieved as a 4-dimensional tensor with shape (batch_size, 
num_heads, sequence_length, sequence_length). Each 2D slice (sequence_length, 
sequence_length) within this tensor corresponds to the pairwise attention scores between 
all input positions for a particular patient and attention head.  To calculate the final overall 
attention score, we took the average of all the individual attention scores across the 
samples (e.g. patients) in the study population. This provided a single aggregated 
attention score that summarised the attention patterns in the model for the entire dataset. 
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