
 
 
 
 
 
 
 
Rennie, Gordon (2025) Automatic detection of laughter in spontaneous 
conversations. PhD thesis. 
 
 
 
https://theses.gla.ac.uk/84936/ 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

mailto:research-enlighten@glasgow.ac.uk


Automatic Detection of Laughter in Spontaneous
Conversations

Gordon Rennie

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow

September 2024



Abstract

Laughter is an important expression used to communicate in a variety of important ways. It
is used to signal enjoyment and humour, to control and maintain the flow of conversations, to
help mediate the discussion of controversial conversation topics and is used to help speakers
bond. Given laughter’s wide range of uses, if they are to engage in effective human-computer
interactions, it is vital for computers to be able to detect laughter. However, laughter is not
homogeneous. There are two broad types of laughter: voiced and unvoiced. In addition, many
individuals have different and unique ways of laughing. The pitch, volume, length and fre-
quency of laughter has a wide divergence across speakers. Furthermore, it is used infrequently.
These factors make the application of machine learning approaches, to the automatic detection
of laughter, difficult.

This thesis initially shows, through a literature review, that the task of laughter detection has
been widely addressed previously. However, the field has placed constraints upon the task of
laughter detection. These constraints are shown to split the field into three broad tasks. Type
1 classification tasks involve short clips of between 1 and 3 seconds and contain only one kind
of speech event (i.e., laughter, speech, sighs or fillers) being classified. Type 2 tasks make use
of medium length clips of between 3 and 11 seconds. Each clip of this type contains multiple
speech events: however, laughter can constitute a large amount of the total audio of each clip,
i.e., between 10-30%. Finally, type 3 tasks employ long form conversations that are between
10 minutes to an hour. Laughter makes up less than 10% of the audio in this case: there is
no guarantee of any laughter being present. Initially, it is shown that these three types of tasks
vary in difficulty. Evidence of this is given by examining the F1 score achieved by the same
methodology when applied to the three tasks. Scores vary from 80-100% in type 1 tasks and 50%
in type 2 tasks to 25% in type 3 tasks. Furthermore, a disparity in the effectiveness of laughter
detection methods, as estimated by different evaluation metrics, is found. This is shown to lead
to an over-estimation of the effectiveness of state-of-the-art methods in types 2 and 3 laughter
detection tasks.

This thesis replicates the state-of-the-art research on a publicly available type 2 corpus,
achieving a frame level F1 of 40% and an event level F1 of 52%. It then applies these methods
to the SSPNet Mobile Corpus, a private type 3 dataset, and shows the same methods achieve a
frame level F1 of 15% and an event level F1 of 26%. An extensive performance analysis illus-
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trates that the longer length of the audio introduces a large number of false laughter detections
that are centred on speech. It is then demonstrated that methods that specifically target the re-
moval of these false detections, by leveraging automatic speech recognition, are able to achieve
a frame level F1 of 30% and an event level F1 of 45%. This enables an almost two-fold increase
in performance over the state-of-the-art approaches for type 3 tasks.

Transformers are then applied to the task. It is demonstrated that these transformers, pre-
trained on audio tasks such as automatic speech recognition, can be used to extract attention
embeddings in terms of low level descriptors of the audio data. Such embeddings are shown
to be more effective than hand-crafted features for training laughter detectors. This method is
then demonstrated to achieve a frame level F1 of 60% and an event level F1 of 80%, i.e., the
best results achieved in type 3 laughter detection. The effectiveness of this approach is then
replicated on the SSPNet Vocalisation corpus, which achieves a frame level F1 of 77% and an
event level F1 of 88%. Furthermore, it is shown to be as effective at the task of automatic filler
detection by achieving a frame level F1 of 70% and an event level of 80%. The final section
applies a selection of the laughter detection systems to detect differences in laughter behaviour
due to the gender composition of the speakers in a conversation. This demonstrates an initial
use-case of automatic speaker information extraction. Overall, this thesis accomplishes effective
laughter detection in a type 3 task.
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Chapter 1

Introduction

1.1 Motivation

The words used during person-to-person communication represent only a part of what is being
said [2]. The way the words are said, the speaker’s body language and use of paralanguage all
contribute to the listener’s understanding. Laughter specifically has been shown to serve vari-
ous purposes such as nullifying a previous statement and helping control the flow of conversa-
tion [3], manage delicate conversation topics such as divergences in opinion [4] and can be used
in meetings to create collegiality or end a discussion on a topic [5]. For computational agents
to effectively communicate with users, it is vital that they have the ability to understand and
interpret these other channels of communication [2]. Furthermore, laughter can be an important
marker for health and well-being. It has already been demonstrated that there are detectable dif-
ferences in the laughter of healthy control subjects and those with depression [6, 7], autism [8],
brain damage [9] and Parkinson’s disease [10]. Meaning that laughter detection and analysis
could aid in the detection of these disorders.

If computers are to fully engage in effective communication with humans, it is necessary
for them to have an understanding of paralanguage due to its central role in human-to-human
communication. This issue has long been recognised in the field of human-computer interaction
and strides towards developing tools for computers to understand paralanguage have already
been made. The INTERSPEECH challenge exemplifies this quickly growing field of research
with tasks involving recognising age, gender and affect in 2010 [11]; social signals, conflict,
emotion and autism in 2013 [1]; and atypical and self-assessed affect, crying and heart beats in
2018 [12], to mention only a few. This thesis intends to contribute to this field by developing
methods to improve the efficacy of laughter detection systems. Moreover, it is planned to test and
extend these methods into other forms of paralanguage; namely, filler and back-channel cues.
Finally, laughter detection systems will be tested for their ability to identify common speaker
traits, as an early validation of their ability to extract meaningful information from speech.

1
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1.2 Thesis Statement

This thesis states that current State-Of-The-Art (SOTA) laughter detection has focused on con-
strained tasks where the ratio of laughter to non-laughter is artificially high and the total amount
of audio is low compared to natural spontaneous conversations. It is demonstrated that the meth-
ods developed in the field are ineffective when those experimental constraints are removed. It
further shows that the standard metrics used in the field are not fit for purpose in this less con-
strained environment. It then investigates and states that pre/post processing, especially using
linguistic information, can be leveraged to improve laughter detection but that these methods are
limited in their effectiveness. Finally, it is demonstrated that pre-trained transformer attention
embeddings are effective representations of audio for the task of laughter detection. It is shown
that this methodology quadruples the event level F1 performance of the best-performing SOTA
laughter detection systems.

1.3 Research Questions

The thesis is organised a set of research questions. These are initially created by gaps in the
literature. Each question then follows from issues discovered with each solution investigated. In
Section 2.3 the literature review shows clearly that the field of laughter detection can be split into
three different task types of increasing difficulty. Further, it is shown that the most difficult task
has been under-addressed in the field although initial attempts show poor experimental results.
This led to the creation of the first research question:

RQ1: Are State-Of-The-Art laughter detectors effective when common experimental
constraints are removed?

It is then shown in Chapter 4 that when applied to this difficult task the methods developed
in the field show relatively poor performance. A performance analysis demonstrates that the
largest issue facing laughter detectors is that of false positives caused by speech. A research
question was then created to address these issues:

RQ2: Can the incorporation of linguistic data lead to improvements in laughter detec-
tion?

Further to the above a second research question was created from the results garnered from
RQ1. It was hypothesised that it would be easier for detectors to differentiate between verbal and
non-verbal communication and then differentiate different types of non-verbal communication
(such as laughter, fillers, and back-channel) leading to overall better laughter detection results.
The following research question was therefore created to address this idea:

RQ3: What is the effect of broadening the scope of laughter detectors to include multi-
ple cues?

Finally, the results from RQ2 and RQ3 were shown to improve laughter detection but to
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only achieve F1 scores of around 50%. To further improve these results a new neural network
architecture is investigated. Transformer based architectures have been shown to be highly ef-
fective in various machine learning tasks. They were therefore selected as a potential route for
improving laughter detection and thus the final research question:

RQ4: Are transformers effective when applied to the task of laughter detection?

1.4 Contributions

The main contributions of this thesis are as follows. Initially, a literature review (Chapter 2)
is carried out, which determines key issues in relation to the field of paralanguage detection.
Firstly, that common constraints are placed upon the task, such as clip length and ratio of laugh-
ter to non-laughter and that when these constraints are removed the task becomes more difficult.
Secondly, that Area Under the (receiver operator) Curve (AUC) is a widely used metric, which
overestimates the effectiveness of detection systems due to the data imbalance inherit in laugh-
ter detection tasks. Thirdly, that laughter detection is generally carried out in isolation of other
speech events. Fourth, the field has not utilised transformers as an architecture to create laugh-
ter detectors. The literature review demonstrated that SOTA methods achieve an F1 of 30% on
laughter detection in spontaneous, naturalistic conversations. This thesis develops approaches
to address this task. It then extends these methods to other forms of paralanguage, namely
fillers and back-channel, to test the generalisability of the methods. Finally, it presents an initial
use-case for laughter detectors demonstrating their utility.

Chapter 4 replicates SOTA detection methods on a publicly available corpus. These methods
are then applied to a less constrained version of the task and are shown to reach performance
ceilings of 15-30% in F1. A performance analysis demonstrates that the cause for these perfor-
mance issues is centred on the following issues. Firstly, that speech is the most common cause
of mistaken detections, even when controlling for its proportion of the data. Secondly, that the
SOTA pre/post-processing methods are effective at improving precision or recall but not both.

In Chapter 5, methods are developed that directly address the issues identified in the previous
chapter’s performance analysis. The false detections caused by speech are addressed by using
ASR to filter the output of the laughter detectors. Specifically, the estimated minimum Bayes
risk (MBR) of a word is used to filter laughter detection results. This method is shown to
double the performance of the SOTA laughter detection systems, which demonstrates that by
including data about other speech events laughter detection can be improved. These methods
currently achieve a F1 performance of 50%. This presents a promising route for future research.
However, to further improve laughter detection using this approach would require improving the
ASR systems, which is outside the scope of this thesis.

Instead, in Chapter 6, transformers are explored as an underlying architecture for laughter
detection. Transformers were investigated as they have been effective at other difficult detection



CHAPTER 1. INTRODUCTION 4

tasks but have only been applied to laughter classification to date. It is shown that transformers,
which are pre-trained on other related tasks, can be used as feature extractors. That the attention
embeddings created by these transformers are effective representations of the audio for the task
of laughter detection. Using these embeddings leads to an almost four-fold increase in perfor-
mance over the SOTA methods. This approach is also validated on a publicly available dataset
to enable comparison with the rest of the field.

The limits of this approach are then explored by extending the detectors to include other
forms of paralanguage. The approach is demonstrated to also be effective at filler detection but
not back-channel. Finally, an initial use case for laughter detection is presented. The laughter
detection systems are shown to be able to reliably detect the differences, in terms of the total
amount and frequency of laughter, in laughter behaviour due to the gender composition of the
conversation.

1.5 Organisation of Thesis

The remainder of the thesis is organised as follows:
Chapter 2 provides an overview of SOTA in the laughter detection field. The detection

methods used in the literature to date are explored. Moreover, the constraints placed upon the
task are explained, leading to the development of a three-way split taxonomy. The datasets that
have been developed are also explored before an examination of the evaluation methods used,
and their relative strengths and weaknesses.

Chapter 3 details the two datasets used throughout this work. Their relative size and quality
are compared with others in the field. Chapter 4 presents a replication of the SOTA detection
systems in the laughter detection field. Initial results are given for performance on a publicly
available corpus, showing that they achieve SOTA performance. Following this task, the same
systems are applied to a less constrained task. It is shown that, on this more difficult task, the
SOTA methods do not reliably detect laughter. A performance analysis is additionally presented
that investigates why these methods fail and possible routes for improvement.

In Chapter 5, a series of novel detection systems are presented that address the issues iden-
tified in the performance analysis from the previous chapter. These systems focus on using the
output from an ASR system to remove false positives. Furthermore, a set of systems are pre-
sented that carry out a multi-class classification. The goal of these systems is to address the
class imbalance issue. The best of the resulting methods, which doubles the effectiveness of the
SOTA methods, is again analysed using a performance analysis to understand its shortcomings.
It is demonstrated that improvements in the ASR system would further improve laughter detec-
tion, however, this is outside the scope of this thesis. Instead of continuing to develop pre/post
processing methods, different underlying neural networks architectures were tested.

In Chapter 6, the possibility of using transformers as an underlying architecture for laughter
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detection is explored. Novel neural network architectures, such as long short-term memory net-
works, are effective at laughter detection, particularly when those systems included context of
how the audio changes across time. Transformers have only been used in laughter classification
tasks to date but have seen success in other detection tasks. Laughter detection transformers
are trained but due to limitations in the amount of data available, this approach did not improve
on SOTA methods. It is then demonstrated that transformers, pre-trained on other related au-
dio tasks, can be leveraged through transfer learning to reduce the amount of data needed. This
transfer learning system is then shown to be the most effective system found to date. This system
is then extended to filler and back-channel detection. This work tests the method’s generalisabil-
ity to other paralanguage cues. Furthermore, its ability to detect commonly found differences
in laughter behaviour present in gender pairings is shown. This demonstrates an initial use-
case where laughter detection can be used to automatically extract speaker information. Finally,
Chapter 7 presents the conclusions of this work and potential routes for future work.

1.6 Publications

The research presented in Chapter 4 was first presented in the following publication:
G. Rennie, O. Perepelkina, and A. Vinciarelli, “Which Model is Best: Comparing Methods

and Metrics for Automatic Laughter Detection in a Naturalistic Conversational Dataset," in Proc.

Interspeech 2022, 2022, pp. 4008-4012.



Chapter 2

State-of-the-Art Laughter Detection

This section describes previous work undertaken in the field of laughter detection. Section 2.1
defines laughter. Section 2.2 describes the detection methods used including feature extraction,
classification and post-processing methods. Section 2.3 outlines the three main task definitions.
Section 2.4 provides an overview of the datasets used. Finally, Section 2.5 explores the evalua-
tion metrics and methodologies used.

2.1 What is Laughter

Laughter can be broadly split into two types: voiced and unvoiced. Voiced laughter is typified
as having a ‘tonal, song-like quality’ and ‘evident periodicity’ of distinct bouts of sound [8].
Voiced laughter can be thought of as classical laughter. Unvoiced laughter, however, is char-
acterised as ‘noisy exhalation through nose or mouth and the vocal folds are not involved in
laughter production’ [13]. Furthermore, unvoiced laughter can be split into two groups, i.e.,
whether the sound is emitted through the nose (unvoiced snort-laughter) or mouth (unvoiced
grunt-like laughter) [14]. These distinctions need to be emphasised due to the different role each
type of laughter plays in communication. It has been demonstrated that voiced laughter elicits
positive reciprocal emotions in listeners, whereas unvoiced laughter does not [15, 16]. These
differing definitions and characteristics offer evidence as to why laughter is such a challeng-
ing phenomenon to detect. Laughter’s variability in use, as described above, coupled with this
multi-faceted characterisation shows why it is an important part of human communication and
why its detection is a useful ability for computers to have.

2.2 Detection Approaches

Independent of the type of task, laughter detection is generally approached by carrying out the
three steps that are displayed in Figure 2.1. First, the raw audio signal is converted into a series
of frames S f in the feature extraction step. Second, these frames are then classified using a frame

6
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Figure 2.1: General Form of a Laughter Detection System

classifier to produce a series of estimates Pf that a frame belongs to the ‘class laughter’. Third,
these classifications can then be altered using a post-processing step to produce a sequence of
refined estimations PR f before a final classification is produced.

There are three ways in which features can be extracted from the audio signal: hand-crafted
features, spectrograms and transformer embeddings. In all cases, feature extraction begins with
the splitting of the audio input into a series of analysis windows. As can be seen from Tables 2.1
and 2.2, these windows have time lengths of 20 to 1220 ms with a hop of 10 to 400 ms. Each of
these analysis windows then has a series of features extracted from it. In the case of hand-crafted
feature extraction, pre-defined descriptors of sound are used to represent the audio segment.
Tables 2.1 and 2.2 show the features used by each laughter detection study; common choices
include MFCCs, pitch, intensity, F1 etc. These features each represent an aspect of the audio
signal and enable analysis of the importance of each feature to the classification of a particular
event. For example, ref. [17] carried out a principal component analysis and found that laughter
events can be classified as polite or sincere based on the relative power of the laughter.

A further process by which features can be extracted from audio is through the use of spec-
trograms. This process can be used to visually represent the amplitude of the audio signals at
variable frequencies over time. This type of representation enables the application of machine
learning techniques from the field of image recognition [18]. In previous work, it has been
shown that spectrograms can be effectively employed in the field of laughter detection [19],
however, they do not see any improvement over the hand-crafted features described above.

The third and final approach is that of transformer embeddings extraction. Transformer
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models have been used effectively in other audio tasks such as speech recognition [20], emo-
tion recognition [21] and speaker diarization [22]. Transformers are, in the general case, made
up of an encoder and a decoder. For the purpose of embedding extraction, only the encoder
side is required. Transformers take as input windows either the raw audio signal or its spectro-
gram. These windows then go through a process of input embedding, followed by positional
encoding and then multi-head attention embedding (for full details of transformer operations,
see Section 6.1).

To use transformers for laughter detection, a novel transformer could be initialised and
trained to classify individual laughter frames. However, transformer networks are generally
larger than other machine learning approaches. This means they have more trainable parameters
and, consequently, often need large datasets to be trained effectively [23]. Due to the size of
the dataset and the number of trainable parameters, they also require large amounts of computa-
tional power. A different option, which eliminates these issues, is to apply transfer learning [24].
The latter is a process where pre-trained transformers are leveraged to create feature vectors. In
this case, the embeddings output (after the attention step) are extracted from the transformers
trained on similar tasks. These are then used as input into a new neural network, which can be
trained on the target task - in this case, laughter detection.

Following the feature extraction step, a series of frames S f are produced. In the case of
hand-crafted features and spectrograms, each frame is represented without taking temporal in-
formation into account. This presents an issue in the case of laughter detection since even the
shortest laughter event spans multiple frames and can contain many different audio markers.
For example, it has been shown that laughs can be composed of loud vocalisations separated
by periods of silence [25]. As such, extending the representation of frames to include informa-
tion from those frames surrounding the target frame is often included. This can be undertaken
through methods such as frame concatenation, where multiple frames are stacked. These frames
can originate from before or after the target frame. There is no accepted number of frames
that should be used in such a case; some studies have shown as few as 10 frames can be ef-
fective [26, 27], while others have tested over 20 [26, 28]. A second method for including this
information could be the calculation of feature values over multiple frames [29].
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Table 2.1: Part 1. Summation of Laughter Detection Studies. MFSB: mel-scale filter bank. PLP: perceptual linear prediction. MOD: modulation
spectrum. MFCC: mel-frequency cepstral coefficients. HNR: harmonic noise ratio. HMM: hidden Markov model. FFN: feedforward neural
network. SVM: support vector machine. CNN: convolutional neural nets. LSTM: long short-term memory recurrent neural network. Bi-
LSTM: bidirectional LSTM. GMM: Gaussian mixture models. ESN: echo state network. RF: random forest. ALISP: automatic language
independent speech processing models. BEA: BEA Hungarian spoken language database (conversation sub-set). AMI: AMI meeting (subset
of 7 meetings). NDC-ME: nonverbal dyadic conversation on moral emotions (NDC-ME) (sub-set). IFADV: IFA corpus (sub-set). IEMOCAP:
interactive emotional dyadic motion capture database. SVCFS: baseline SVC feature set from [1] 12 MFCCs, energy (1st and 2nd order
derivatives), voicing probability, HNR, F0 and zero crossing rate (deltas, mean and std)

Study

Window
Size

(Time
Step)
ms

Input
Vector
Size

Audio Markers Dataset Architecture
Pre/Post-

Processing
Task
Type

Precision Recall F1
AUC
(%)

[30]
25

(12.5)
16

8 MFCCs,
Energy, ZCR

Unnamed
[30]

HMM Deltas 2 79.1 95.9 86.700 NR

[31] 40 (20) 18
7 PLP, Pitch,

RMS
AMI FFN Delta 2 NR NR 53-68 76-88

[32] 40 (20) 14 7 PLP AMI FFN Delta 1 68-76

[33] NR 41
13 MFCCs,
Log-Energy

ICSI HMM Derivative 3 36-55 25-27 31-34 NR

[34]
200
(20)

8 Mel Filter Bank FreeTalk ESN
Exclusion of

Speech Laugh
Overlap

2 Average Error Rate 13%

[25]
100

(100)
13 MFCCs, Log

Energy
ICSI HMM

Removal of
Unvoiced
Laughter

3 NR NR 26-32 NR

[35] NR NR PLP, MOD Freetalk HMM None 1 NR NR
24.9 -
62.6

NR

[36]
200

(180)
8 Mel Filter Bank

FreeTalk,
AVIC

SVM +
ESN +
HMM

Delta 2
64 ±

10
80 ±

18
49 - 72
± 18

NR
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Table 2.2: Part 2. Summation of Laughter Detection Studies

Study

Window
Size

(Time
Step)
ms

Input
Vector
Size

Audio Markers Dataset Architecture
Pre/Post-

Processing
Task
Type

Precision Recall F1
AUC
(%)

[37] NR NR MFCCs
SEMAINE-DB,

MAHNOB
ALISP

Transfer
Learning

1 90 64 75 NR

[38] 20 (10) 141 SVCFS SVC FFN
Two-Stage

Stacked FFNs
2 NR NR NR 97

[1] 20 (10) 141 SVCFS SVC SVM
Deltas,

Derivatives
2 NR NR NR 83

[39] 25 (10)

12 MFCC, PLP,
F0, Jitter, RMS,

HNR, ZCR,
Spectral Slope,

LPC-CoF
(Center of
Gravity)

BEA
GMM
+ SVM

Derivative 1 72-100 93-96 81-98 NR

[40] 40 (10) 6 MFCCs, ZCR MAHNOB FFN
Majority Voting,
Undersampling

1 NR NR 84.7 NR

[29]
25-40
(10)

NR

39 MFCCs, 8
Pitch, Intensity, 8

Formants, 28
Voice Quality

SVC GMM
Median Filter,
Delta, Mean

2 Equal Error Rate 9.3%

[41] 25 (10) 39
13 MFCCs, 26

MSFB
SVC HMM None 2 35-67 61-80 48-63 NR

[42] 20 (10) 141 SVCFS SVC FFN
Multiple Post

Processing
Filters

2 NR NR NR 95

[43] 25 (10) 141 SVCFS SVC
FFN +

Bi-
LSTM

Derivative 2 NR NR NR 94
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Table 2.3: Part 3. Summation of Laughter Detection Studies

Study

Window
Size

(Time
Step)
ms

Input
Vector
Size

Audio Markers Dataset Architecture
Pre/Post-

Processing
Task
Type

Precision Recall F1
AUC
(%)

[27] NR
141-
182

SVCFS
Switchboard

Fisher,
UT-Opinion

FFN
and

CNN

Low Pass Filter,
Frame

Concatination
3 NR NR NR 83- 97

[44] 30 (10) 168 Energy Contour MAHNOB RF

Derivative,
Median Filter

Over Input
Features

1 92 93 NR NR

[45] NR 301

ZCR, Spectral
Slope + Flatness,

Specific
Loudness, Pitch,

Formants,
Prosody

ARMEN,
ROMEO2,

OFFICE, JEMO
SVM Delta, Mean, SD 1 NR

59.2-
87.2

NR NR

[46] 20 (10) 13 MFCCs ROMEO2 SVM Majority Voting 1 54 80.1 NR NR

[47]
40-100

(10)
10

MFCCs, Pitch,
Jitter

MAHNOB SVM Mean, SD 2 NR NR 90.1 NR

[48] 20 (10) 141 SVCFS SVC FFN
Smoothing,

Frame
Concatenation

2 NR NR NR 95

[26] NR 65
12 MFCC, 12

PLP, 40 MSFB,
RMS Energy

SVC and BEA FFN

Deltas,
Derivatives,

Frame
Concatenation,
Undersampling

2
64-
100

89-
100

73-
100

NR

[49] 25 (10) 32
12 MFCC,

Energy, Speech
Intensity, Pitch

IEMOCAP
FFN +
SVM

Undersampling,
Bagging

3 15 41 22 88
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Table 2.4: Part 4. Summation of Laughter Detection Studies

Study

Window
Size

(Time
Step)
ms

Input
Vector
Size

Audio Markers Dataset Architecture
Pre/Post-

Processing
Task
Type

Precision Recall F1
AUC
(%)

[50] 20 (10) 140
50 Mel-Spectra,

20 MFCCs
SVC LSTM Delta 2 NR NR 54.31 92

[51]
NR
(10)

123
40 MSFB,

Log-Energy
SVC, ERATO

Bi-
LSTM-

CTC

Delta and
Derivative

2 65-89 35-66 50-66 NR

[28]
NR
(10)

120
40 Mel Filter

Bank Energies
BEA

GMM
+ FFN

Upsampling,
Derivatives,

Frame
Concatenation

1 +
2

NR NR 15.3 NR

[19]
1000
(NR)

128
Spectrograms,

MFCC
Switchboard and

Audioset
FFN +
ResNet

Delta 2 30-67 70-84 43-75 NR

[52]
1220
(400)

NR NR
NDC-ME,

IFADV
CNN

Transfer
Learning

2 34-49 36-47
35.55-
48.45

NR

[53] 20 NR
Wav2Vec2 and

Whisper
Embeddings

Hume-VB Transformer
Transfer
Learning

1 NR NR 78-91 94
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2.3 Task Definition

Laughter detection work can be split into three sub-tasks with each task representing an increase
in difficulty. Type 1 tasks take audio clips of stand-alone audio events (such as laughter, speech,
filler and pause). Depending on the overall goal of the process, they then either classify those
clips into multiple classes [53] or distinguish one type of audio event from all the others [40].
The length of clips used in type 1 tasks can vary from 1.5 s [32] to 2.88 s [44] and contain
either 100% laughter or not. Type 2 tasks use longer audio clips (for example, 11 s [41] or 3-10
s [30]), which can contain multiple possible audio events. These clips are guaranteed to contain
at least one target audio event. The laughter can comprise 10% [41] to 30% [31] or as high as
39% [19] of the audio of each clip. In type 2 tasks, the goal is to identify where the audio event
occurs in the clip via a detection type task. This can be done by identifying a point in time in
which the audio event is expected to occur, the start and end points of the audio event or by
classifying the event using a frame-by-frame approach in which each frame is assigned a class.
The analysis for Type 3 case is similar to type 2, with the difference being a further relaxing of
the constraints placed on the task. Type 3 tasks use recordings that can last minutes or hours.
There is no guarantee of the frequency or distribution of the target audio events. In terms of
the percentage of data that is composed of laughter, it can vary from 8% in the BEA Hungarian
spoken language database (conversation sub-set) [26] to 1.3% in IEMOCAP [49]. The three
goals that apply to type 3 tasks are identical to the ones for type 2. It is important to distinguish
the different task types since results found in one task do not generalise to others. The type
of task a particular study addresses can be determined by the underlying dataset, the ratio of
laughter to non-laughter and the pre/post-processing used. A summary of laughter detection
studies, alongside their associated task definition, are shown in Tables 2.1, 2.2, 2.3 and 2.4.

Previous results obtained from Type 1 tasks suggest that the detection of laughter has already
been successfully achieved. One study used the MANHOB database, a collection of posed and
elicited laughter clips [40]. In this study, the events were pre-segmented, meaning that there is
a defined start and end point for each audio event. This enables a majority rule classification
approach to be used. As outlined in Section 2.2, each audio clip was split into a series of
frames, each one receiving a classification of laughter or not. The majority rule then takes an
average of all the frames classifications to create one final class decision for each clip. The final
results are reported in regard to this final overarching classification decision, meaning that, if
49% of an audio clip’s frames were misclassified, the results would still report that laugh had
been correctly detected. In this study, an F1 of 84.7% was reported. However, as stated, using
the majority rule could lead to an inflation of these results. A similar approach was used in
conjunction with transformers, where pre-trained audio classification transformers were fine-
tuned to classify clips of different types of paralanguage such as sighs, gasps and laughs [53].
Each clip was between 2 and 10 s and was classified by passing the entire clip to the transformer,
which then generated one label per clip. As with the previous study, the results here were
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between 78-91% F1 and 94% AUC across all classes. However, it is doubtful that these results
from a type 1 task could be maintained when addressing either a type 2 or 3 task. There are
consistent and detectable morphology differences between posed laughter (used in ref. [53])
and spontaneous laughter [54]. Furthermore, neither of the above studies have datasets with
distributions of laughter (and other paralinguistic vocalisations) typical of spontaneous speech
[55]. The effect of this class distribution issue is clearly shown by three studies [26, 28, 39]. In
these studies, the goal was to detect laughter segments. All the studies used the BEA Hungarian
spoken language database (conversation sub-set) dataset. In the first and second study, the non-
target class was down-sampled to achieve balanced datasets with 332 laughter clips and 331
speech clips. Using this balanced dataset, F1 scores from 91 to 98% [39] and 70-100% [26]
were achieved depending on the feature extracting methods used. However, in the third study
where there was no down-sampling laughter, laughter made up only 8% of the dataset. In this
study, F1 results of 15% were achieved [28]. This difference of between 50-80% in F1 clearly
shows the advantages of simpler type 1 tasks with respect to the previous studies and the non-
generalisability of these results.

Type 2 tasks broaden the scope of possibilities compared with the above type 1 tasks. Type
2 tasks can be distinguished from type 1 tasks by the underlying data. The data is made up of
longer clips of audio with multiple different audio events present. However, type 2 clips remain
short (between 2 and 11 s, as outlined above) compared with the length of average conversations
(for instance, 12 min and 42 s [55] and ∼1 h [33]). An example of this kind of type 2 task
dataset is the SSPNet vocalisation corpus (SVC), which comprises 2763 audio clips that are 11 s
long, each of which contains at least one laugh or filled pause event. Type 2 tasks represent less
constrained tasks compared with type 1 due to the fact that the event boundaries and the number
of audio events in the clip are both unknown. However, type 2 tasks still have the advantage of
a more balanced class distribution than type 3 tasks. Type 2 tasks were popularised due to the
2013 INTERSPEECH paralinguistic challenge [1]. This challenge introduced the SVC to the
field and provided baseline detectors. As can be seen from Tables 2.1, 2.2 2.3 and 2.4, multiple
studies have been carried out on the SVC. Results vary with area under the (receiver operator
characteristic) curve (AUC) from 83% to 97%, with a variety of deep learning architectures
being tested. These results would suggest that although type 2 tasks may be more difficult
than type 1, research produced in this field is still able to effectively detect laughter. However,
these results contrast with the F1 scores of 15% reported above [28]. This disagreement can
be found within the same work, with one study reporting an AUC of 92% alongside an F1
score of 54% [50] when detecting laughter in the SVC. The discrepancy between these results
is explained in Section 4.2.8. In spite of the disagreement, the F1 scores show a clear difference
in performance from type 1 to type 2.

Finally, type 3 tasks involve detecting laughter in long recordings. In type 3 tasks, there are
no known event boundaries and the percentage of audio that is laughter is lower than in type 2
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tasks, as described above. Furthermore, there may or may not be laughter, or other cues, present
in the data. Type 3 tasks have been previously addressed in the literature [25, 27, 49]. However,
these studies have some limitations. In ref. [49], the corpus used is the interactive emotional
dyadic motion capture database (IEMOCAP) (for full details, see Tables 2.5, 2.6 and 2.7), which
is comprised of 5 conversations. These conversations are both scripted and spontaneous inter-
actions between 2 actors, leading to a total of 10 speakers. This is a relatively small number of
speakers, leading to a lack of generalisability in the results. Moreover, the scripted/posed parts
of the interaction may lower the quality of the laughter audio within the corpus, as discussed
above. In addition, the results showed mixed performance with an AUC of 88% and a precision,
recall and F1 of 15.8%, 40.9% and 22.8%, respectively. Again, the discrepancy in AUC and F1
is fully explained in Section 4.2.8. Similar AUC scores were seen elsewhere for type 3 tasks,
with one study reporting AUC scores between 85-95% [27]. These AUC results would suggest
a similar level of performance from type 1, 2 and 3 tasks. Furthermore, when examining F1,
similar levels of performance for type 3 tasks are seen in other studies. In two related studies,
F1 performance was shown to vary from 21% [33] to between 25-30% [25]. In the latter study,
the authors reclassified unvoiced laughter so that it was not included in the overarching laughter
class, which may have contributed to the increase in F1. However, taken together, all 3 studies
suggest a maximum F1 of 30% for type 3 laughter detection. This demonstrates that this is an
incomplete task that needs further investigation and, as such, this is what is addressed in this
body of work.

In summary, type 1 tasks classify audio clips of <3 s into laughter or not laughter. Each clip
is composed entirely of laughter or not. In type 2 tasks, the audio clips are between 3 and 11
s in length. Multiple audio events may occur, though generally it is known at least one target
event will occur. In type 3 tasks, the audio clips can vary from 10 min to 1 h. There is no
guarantee that any target audio events will occur. Each task represents an increase in difficulty,
as demonstrated by the difference in performance, with F1 scores of >95% in type 1 tasks, 50-
86% in type 2 tasks, and 21-30% in type 3 tasks. Given the clearly insufficient performance
ceiling seen for type 3 tasks, this thesis addresses this type of task with the goal of achieving
much more effective laughter detection.

2.4 Dataset Review

The type of task addressed is an important lens through which the widely variable results re-
ported in the field of laughter detection can be understood. A further important consideration
are the datasets that have been used. This is because some offer advantages or unique difficul-
ties. A summary of the datasets used in the studies shown above are displayed in Tables 2.5,
2.6 and 2.7.
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Table 2.5: Part 1. Summation of Datasets Used in the Laughter Detection Field

Name Elicitation of Laughter
Number Of
Speakers

Gender
Split

Male/Female
Age Laughs

Laugh Duration
Total (mean±std)

Seconds

Total
Duration

(all)

MANHOB
Laughter Dataset

Participants Viewed Funny Video
Clips, Spoke for 90 s, Tried to Pose

a Laugh
22 12/10 27-28 563

930.72
(1.65±2.32)

61 m

ARMEN
Interacted With Wizard-of-Oz

Virtual Agent Making Small Talk
77 NR 18-90 253 NR 68 m

ROMEO2

Interacted With Wizard-of-Oz Nao
Robot on Four Tasks: Take

Medicine, Call a Relative, Greeting
and Song Recoginition

27 3/24 75-99 205 NR 98 m

OFFICE

Two Tasks Where a Nao Robot 1)
Told Jokes and 2) Asked the

Participants to Act Out Named
Emotions

7 NR 18-50 123 NR 10 m

JEMO
Participants Acted an Emotion in
an Attempt to Have a Computer

Recognise their Emotion
59 NR 16-48 73 NR 29 m

BEA Hungarian
Spoken

Language
Database

(Conversation
Sub-Set)

Meetings Between Participants in
Sound Proofed Rooms

NR NR 20-90 775 720 (0.91±0.61) 148 m

AMI Meeting
( [31] Sub-Set)

Participants Engaged in
Spontaneous Speech in Meetings

8 6/24 NR 40 58.4 (1.46±1.09) 2 m 56 s

FreeTalk
Participants Engaged in

Spontaneous Speech in Meetings
4 NR NR 300 NR ( ∼1) 180 m
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Table 2.6: Part 2. Summation of Datasets Used in the Laughter Detection Field

Name Elicitation of Laughter
Number Of
Speakers

Gender
Split

Male/Female
Age Laughs

Laugh Duration
Total (mean±std)

Seconds

Total
Duration

(all)
Iranian Laughter
Database (With
Supplementary

Data)

Taken From Iranian TV Shows NR NR NR 3953 NR NR

Teleoperated
ERICA

Human-Robot (Wizard-of-Oz)
Interactions by Phone in a Speed

Dating Free Talk Scenario
61 61/0 NR 1206 NR NR

TUM AVIC
Experimenter Presents Products to

Participants in a Posed
‘Commercial Presentation’

21 11/10 29.9 261 NR
10 h 22 m

30 s

Nonverbal
Dyadic

Conversation on
Moral Emotions

(NDC-ME)
(Sub-Set)

Dydactic Conversations Elicited by
Open Questions about Emotional

Topics
14 10/4 NR 446 NR 90 m

IFA Corpus
(IFADV)
(Sub-Set)

Participants Were Interviewed and
Asked to Read Aloud from Scripts

18 9/9 15-66 NR NR 46 m

JOKER Project
Human Robot

Humorous
Interactions

Participants Interacted with the
JOKER Robot System (Nao)

Which Told Jokes, Riddles and
Questioned the Participant

37 23/14 21-62 NR NR
7 h 58 m 50

s

Interactive
Emotional

Dyadic Motion
Capture Database

(IEMOCAP)

Professional Actors Engaged in
Dydactic Conversations in Both

Spontaneous and Scripted
Conversations

10 NR NR 248 382 (1.54±NR) 8 h
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Table 2.7: Part 3. Summation of Datasets Used in the Laughter Detection Field

Name Elicitation of Laughter
Number Of
Speakers

Gender
Split

Male/Female
Age Laughs

Laugh Duration
Total (mean±std)

Seconds

Total
Duration

(all)

ICSI Meeting
Corpus

Participants Engaged in
Spontaneous Speech in Meetings,

Each Meeting Had Specific
Focuses Such as Natural Language

Theories

53 40/13 20-60 11515 24282 (NR) 72 h

Switchboard
Corpus

Spontaneous Telephone
Conversations Between Two

Participants
543 302/221 NR 24485 18600 (NR) 260 h

AudioSet
Clips of YouTube Videos From a
Variety of ‘In-The-Wild’ Settings

NR NR NR 1492 3480 (NR) 2 h 28 m

Hume Vocal
Burst

(Hume-VB)

Participants Were Played Clips of
Paralinguistic Events and Asked to

Replicated Them
4080 NR 18-92 NR NR

194 h 26 m
35 s

ERATO
Human-Robot

Interaction
Corpus

Participants Spoke With a Human
Operated Robot

91 NR NR 984 NR 16.8 h

SEMAINE-DB
Participants Spoke With an

Operator Playing a Role
20 NR NR NR 389 (NR)

6 h 30 m 41
s

Unnamed [30]
Samples Extracted from TV

Recordings
NR NR NR 100 NR 30 m

SSPNet
Vocalisation

Corpus

Clips Extracted from SSPNet
Mobile Corpus

120 57/63 18-64 1158 1091 (0.94±0.70) 8 h 25 m

SSPNet Mobile
Corpus

Participants Engaged in Dydactic
Conversations Around the Winter

Survival Task
120 57/63 18-64 1009 1456 (0.72±0.54)

12 h 41 m
55 s
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The manner in which audio and audio events, such as laughter, are elicited is a central dis-
tinction between different corpora. Audio elicitation methods create three broad categories of
audio: spontaneous, posed and mixed. In spontaneous datasets, participants can be told to
engage in small talk [31], complete a task that requires discussion [55] or participate in an inter-
view [52, 56]. In all of these cases, the participants speak naturally. During the course of these
conversations, paralanguage events, such as laughter and fillers, occur spontaneously. In the
posed scenarios, the participants may be asked to mimic a sound played to them [40], act out a
script [49] or make a sound described to them [45]. In these cases, the targeted audio events are
guaranteed to occur. However, as mentioned above, there are consistent detectable differences
between posed and spontaneous laughter [54]. This creates a weakness in the datasets, which
utilize elicitation methods that produce posed vocalisations.

The elicitation method impacts another important dimension, which is the ratio of laughter to
speech. Tables 2.5, 2.6 and 2.7 display descriptive statistics for each corpus’s laughter content.
The total amount of laughter varies from as little as 73 laughs in the JEMO corpus [45] to
24485 in the Switchboard corpus [57]. However, more important than the total amount is the
percentage of audio that is comprised of laughter. This can vary from 25% in the MANHOB
laughter dataset [40] and 8% in the BEA Hungarian spoken language database (conversation
sub-set) to 1.3% in the IEMOCAP [49]. This displays large differences in the amount of laughter
present. It is important to note that the reporting of the laughter descriptive statistics is sporadic
and non-standardised; the above statistics are not calculable for all the datasets.

However, the elicitation method and laughter percentage are not the only important dimen-
sions. The number of participants, their nationalities, age and gender can also have an impact on
the quality of the dataset and the tasks it can be used for. The number of participants in a dataset
can vary from 4 in the FreeTalk corpus [36] to 4080 in the Hume-VB [53], with the median num-
ber reported in the studies in Tables 2.5, 2.6 and 2.7 being 32. A smaller number of participants
creates multiple issues. Aside from the obvious issue of there being uncertainty in the generalis-
ability of the results, the fewer participants mean that it is more difficult to split the dataset into
independent folds for training and testing purposes. In the case of the FreeTalk dataset, both the
training and testing folds contain audio and laughter from the same speakers [36]. This means
that the developed systems could be considered as recognition rather than detection systems, as
a result, when applied to other speakers, a performance drop would be expected. This issue is
not limited to cases in which there are very few participants. In the ISCI meeting corpus, 75
multi-party meetings were recorded [25] and, in total, there were 53 speakers. Each speaker
could appear in any number of the meetings and contribute any amount of audio. This makes it
difficult to create training and testing sets that are speaker independent. Finally, for ‘in-the-wild
data’ capture such as clips extracted from TV [58] or internet streaming sites [19], there is often
no reported information on the participants. This means that it is impossible to know how many
speakers are present and whether they appear in more than one clip. These corpora, therefore,
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also encounter the issue of whether they are addressing a recognition or detection task.
A final important issue is the definition of laughter for each dataset/study. This is not purely

a dataset issue since some studies alter datasets to better align with a particular definition of
laughter. A particular point of disagreement in the field is how voiced/unvoiced laughter and
laughter overlapping with other audio events should be treated. In some studies, it is argued
that voiced/unvoiced laughter should be considered as distinct classes to enable better detection,
due to breathing being often mistaken for unvoiced laughter [25, 33]. In other studies, laughter
overlapping with speech was excluded [34] while, in the creation of some datasets, only clear
laughter (that does not overlap with anything) is included [41]. These varied definitions of
what is considered laughter change the difficulty of the task and the usefulness of the detectors
created. In the SSPNet Mobile Corpus (SMC) both voiced and unvoiced laughter is labelled as
laughter. Both overlapping and clear laughter events are also included ensuring that the work in
this thesis addresses all types of laughter.

2.5 Evaluation Methods

Laughter detection presents unique challenges for evaluating deep learning approaches. The
central issue is that of class imbalance. In type 2 and 3 tasks, as explored in the previous
section, the percentage of target class in the total audio can be as low as 3% and is generally
less than 10%. This large class imbalance means some evaluation metrics are unsuitable, as
high scores may not correspond to effective detectors. Accuracy displays this issue. If a detector
marked all audio as not laughter, the accuracy score, in the case of 3% of the data being laughter,
would be 97%. This figure is deceptively high given that the model is not detecting laughter
whatsoever. Although the average is not directly used in the literature, the average error rate has
been employed [34], which is calculated as follows:

AverageErrorRate = 1−Accuracy. (2.1)

This metric suffers the same issue as accuracy by giving deflated error rate results; hence, the
accuracy can be overly inflated by a certain extent. Another evaluation method, which suffers
from similar issues, utilised in the literature is the equal error rate [29]. This is calculated by
varying the cut-off value for the classification. The cut-off value refers to what value a frame’s
posterior must be equal to or greater than to be classed as the target class. For each cut-off value,
the specificity (also termed false positive rate or true negative rate) and the false rejection rate
(FRR) are calculated. These rates can be expressed as follows, respectively:

Specificity =
FalsePositive

FalsePositive+TrueNegative
. (2.2)
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FRR =
FalseNegaive

FalseNegaive+TruePositive
. (2.3)

As the threshold is increased, the FRR must remain constant or decrease. While the specificity
will remain constant or decrease. This means that for a certain threshold value the FRR and
specificity will be equal. The equal error rate is then the percentage of misclassified frames at
that threshold value. This essentially means that equal error rate uses the same equation as the
average error rate above but with a optimised accuracy. This means that equal error rate suffers
from the same class imbalance issue which exaggerates the efficacy as estimated by the metric.

AUC is a commonly used metric [1, 27, 31, 38, 42, 43, 48–50, 53]. This form of metric is
calculated as the area under the receiver operating characteristic (ROC) curve (AUC). The ROC
curve expresses how effectively a detector can discriminate between two classes. To plot it,
the sensitivity (also termed recall or true positive rate) and specificity of the detector are calcu-
lated for every cut-off value for the classification. The sensitivity is calculated in the following
manner:

Sensitivity =
TruePositive

TruePositive+FalseNegative
, (2.4)

These values are plotted against one and other to create the ROC curve, then the area under
the curve is calculated, giving the AUC. A full examination of the strengths and weaknesses of
this method is given in Section 4.2.8. Finally, there are the measures of precision, recall and F1,
which are calculated in the following manner, respectively:

Precision =
TruePositive

TruePositive+FalsePositive
, (2.5)

Recall =
TruePositive

TruePositive+FalseNegative
, (2.6)

F1 =
2(precision× recall)

precision+ recall
. (2.7)

Since F1 is the harmonic mean of precision and recall, achieving high scores in either precision
or recall does not lead to a high score in F1. This makes F1 a more conservative estimate of a
detector’s efficacy relative to AUC.

The above metrics can operate at either a frame or event level. Type 1 task results can be
viewed as event level metrics when any form of majority voting rule is used, such as when the
performance at the individual frame level is ignored in favour of a label applied to the audio
clip as a whole. As outlined above, this can lead to a situation where the type 1 system can
be wrong in 49% of the cases and still achieve a perfect score. This example illustrates the
need to carefully select appropriate metrics and the appropriate level to apply these metrics.
Which metric and level to chose centres on the data used and the proposed end goal of the
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laughter detection system. For example, in an ASR system, the event level metrics are more
important since the placement of laughter in relation to other audio events is more important
than the exact start, end and length of the laugh. However, when using laughter detection for
pathology detection, the ‘makeup’ of the laugh is important [7, 59]. For example, how long is it
and how many vocal bursts were present are all relevant questions for which the start and end of
the laughter may be needed. In this case, the frame level metrics are more important since the
detection system must capture as much of the laughter as accurately as possible. In the present
work, an event level evaluation system is presented (see Section 4.2.4 for full details) alongside
frame level results.

AUC is provided throughout the thesis to enable comparison with previous studies in the
field as it is one of the most commonly used metrics (see Table 2.1 - 2.4). However, due
to the class imbalance issue inherent in type 3 tasks and AUCs inclusion of true negatives in
its calculation, as outlined above, it was not selected as a central metric for the estimation of
model effectiveness. Instead, F1 was selected as the central metric by which models would be
compared. This was chosen as F1 does not include true negatives in its calculation and so offers
an estimation of a models ability to detect where laughter is rather than where laughter is not.
Further, as it is the harmonic mean of precision and recall, only models which are effective at
both aspects of a detection task will be evaluated as effective. Both precision and recall are
equally important for laughter detection and F1 gives equal weight to both in model evaluation.



Chapter 3

Datasets

Two datasets are used in the present work. The SSPNet vocalisation corpus (SVC) [41] and
the SSPNet mobile corpus (SMC) [55]. The two datasets are closely linked, with the SVC
being composed of extracts from the SMC. The SVC is a type 2 dataset and was used to enable
comparison with previous work in the field. This work was carried out to ensure that State-Of-
The-Art (SOTA) laughter detection was achieved before attempts were made to address type 3
tasks. The SMC, as shown below, is a type 3 dataset and is the central focus of the thesis. It
was selected because type 3 tasks represent the least constrained version of laughter detection
currently addressed in the field. Further, type 3 tasks do not yet have an effective solution. The
following initially describes the SMC in detail before describing the SVC.

3.1 SSPNet Mobile Corpus

The SMC is composed of 60 two-person phone conversations. Each phone conversation had
different speakers, meaning 120 participants partook in the data creation. Audio was elicited
using ‘The winter survival task’ [60]. In this scenario, participants debate on which items from
a predefined list can increase the chances of survival after a plane crash in a polar environment.
The creators of the corpus selected the winter survival task since few people have knowledge
of how to survive an extreme scenario, such as the one presented to participants in the task.
Indeed, only one participant involved in the creation of the corpus had any sort of experience
in the task. This makes it likely that the outcomes of the conversations tended to depend on
social and psychological aspects rather than on the experience/knowledge of either of the two
speakers.

The participant gender divide was 57 male and 63 female, and all participants were native
English speakers. Participants’ age ranged between 18-64. Most were current students or staff at
university, with only 16 being former students. To avoid the effects that seniority of position may
have on the conversation, participants were unaware of their conversation partner’s background.

The total duration of the audio is 12 h, 41 min and 55 s, meaning that the average per call

23
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was 12 min and 42 s. The total amount of laughter events in the corpus is 1009. Previous
studies that utilise the SMC have reported a total laughter count of 1805 [55]. The difference in
laughter amount is due to the definition used in the present study and the merging step carried
out. In this work, a laughter event is defined as a sequence of audio in which at least one speaker
laughs. This includes voiced and unvoiced laughter and overlapping laughter. Furthermore, it is
important to note that, if both speakers laugh concurrently, this is counted as a single laughter
event. In other reports on the SMC, when two speakers laugh concurrently, this is counted as
two laughs rather than a one-laugh event. Moreover, there are occurrences in the SMC where
the gap between the two laughter events is short. This gives rise to the possibility that they
can be considered as a single laughter event, given the definition used here. For example, some
gaps between laughter events in the SMC were under 200 ms, which is shorter than the average
gap between bouts of vocalisation during voiced laughter found in other studies [7]. Other
studies have used arbitrary cut-offs to merge inter-word gaps to create one larger overarching
speech event of 0.3 s [33]. In the present work, a probabilistic based merging methodology was
developed. Given a set of gaps between laughter events G ={∆1,∆2,. . . ,∆E}, where E is the total
number of gaps and each gap ∆E is the number of frames from where one laughter event ends
and the next begins. Outliers where then identified as those gaps that had a length in the shortest
5% of G. This cut-off is a standard threshold in statistical testing for identifying outliers [61].

Every conversation includes, on average, 16.8 ± 12.9 laughter events showing that there
is high variability between one dyad and the other. However, one cannot exclude that this is
because there are different conversations’ duration. The average frequency (number of laugh-
ter events per minute) is 1.5 ± 1.0, with minimum and maximum of 0.0 and 4.6, respectively.
The high standard deviation suggests that the tendency to laugh changes significantly across
conversations. Summary statistics about the conversations by gender and role are displayed in
Table 3.1. Further descriptive statistics by gender pairing are given in Table 3.2; gender pair-
ing refers to the two speaker’s gender and, in the SMC, this can be either male-male (MM),
male-female (MF) or female-female (FF).

Examining the descriptive statistics for gender, an independent t-test found that male speak-
ers (M = 6.46, SD = 4.20) tended to utter sounds more often in a conversation than women (M =
4.96, SD = 2.55, t(118) = 2.37, p = 0.019). However, in terms of total amount of laughter, male
(M = 13.18, SD = 12.05) and female (M = 16.71, SD = 14.91) speakers showed no significant
difference (t(118) = 1.41, p = 0.16). This is explained by the significant differences between
male (M = 1.04, SD = 0.75) and female (M = 1.64, SD = 1.26) laughs per minute of conversation
(t(118) = 3.13, p = 0.0021). Showing that female speakers tend to laugh with greater frequency
than male speakers but, as male speakers vocalise more, there is no significant difference in total
amount of laughter. Of further interest is the significant difference in length of laughter events
with female speakers (M = 0.72, SD = 0.20) having longer laughs than males (M = 0.62, SD =
0.29, t(118) = 2.21, p = 0.030).
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In relation to the gender pairing of the conversations, a one-way Anova test found only one
significant difference between pairings. It was shown that the average length of laughter was
significantly different between pairings (F(2, 237) = 4.49, p = 0.012). A post-hoc Tukey HSD
test found that the average laugh was longer for MF (M = 0.76, SD = 0.26) than MM pairings
(M = 0.59, SD = 0.16, p = 0.004, 95% C.I. = [0.047, 0.29]). The Tukey HSD test found no
significant difference between MM and FF (M = 0.69, SD = 0.15, p = 0.19, 95% C.I. = [0.23,
0.035]) nor MF and FF (p = 0.29, 95% C.I. = [0.040, 0.18]).

Table 3.1: Descriptive Statistics for the SMC by Gender and Role
Male Female Caller Receiver

Number 57 63 60 60
Age 29.95 ± 11.01 28.11 ± 13.06 30.72 ± 12.83 27.25 ± 11.19
Total Laughs 13.18 ± 12.05 16.71 ± 14.91 15.87 ± 14.38 14.20 ± 13.02
Laugh Frequency (minute) 1.04 ± 0.75 1.64 ± 1.26 1.41 ± 1.13 1.30 ± 1.04
Length of Laughs (seconds) 0.62 ± 0.29 0.72 ± 0.20 0.70 ± 0.22 0.65 ± 0.28

Table 3.2: Descriptive Statistics for the SMC by Gender Pairing
MM FF MF

Number 14 17 29
Age 31.39 ± 11.16 29.62 ± 14.46 27.45 ± 10.87
Conversation Length (minute) 14.10 ± 7.85 9.73 ± 3.67 10.97 ± 6.03
Total Laughs 12.36 ± 11.75 15.56 ± 12.96 16.02 ± 14.86
Laugh Frequency (minute) 0.88 ± 0.69 1.59 ± 1.21 1.45 ± 1.10
Length of Laughs (seconds) 0.59 ± 0.16 0.69 ± 0.15 0.76 ± 0.26

This suggests that the gender composition of a conversation should have limited impact.
The shorter laughter duration of laughter in MM pairings may pose a challenge, but in all other
cases there is no difference. Gender is likely to present the most difficult issue. Male laughs are
significantly shorter and less numerous than female laughs, this results in less data available for
a system to learn about male laughs and could lead to performance issues in relation to males.

Finally, the SMC can be compared with the other datasets in the field for which type 3 tasks
can be carried out. The 5 relevant datasets are as follows: the teleoperated ERICA [62], the BEA
Hungarian spoken language database (conversation sub-set) [39], IEMOCAP [49], ICSI meeting
corpus [63] and the switchboard corpus [57]. All of these corpora contain spontaneous speech
much like the SMC, although the elicitation method differs between them. In terms of total
audio, only two corpora (i.e., ICSI (72 h) and switchboard (260 h)) are longer than the SMC.
Both of them also contain more laughter events than the SMC. Furthermore, the teleoperated
ERICA corpus reports 1206 laughs. However, they count shared/overlapping laughter as two
separate laughs; using the taxonomy of this project, the 508 shared laughs are each treated
as one laugh creating a total laughter event count of 952. This means that only the ICSI and
switchboard corpora have the larger laugh counts. When examining instead the percentage of
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audio that is laughter, both the BAE (8.11%) and ICSI (9.37%) have higher laugh percentages
than the SMC, with the SMC having a total laugh percentage of 3.19%. In terms of the number
of participants, the switchboard corpus has 543 participants, around 4.5 times more than the
SMC. The ICSI and all the other datasets have around half as much, or less, than the SMC.
Finally, in terms of gender balance, the SMC and switchboard corpora have close to a 50/50
split whereas in all the other corpora, which report the gender split, the ratio of male to female
is 3:1 or worse.

3.2 SSPNet Vocalisation Corpus

The SVC was created by extracting clips from the SMC [1]. Clips were taken from all 60
conversations in the SMC and, as a result, participant information remains the same as was
detailed in the previous section. The SVC consists of 2763 audio clips. Each clip is 11 s in
length, leading to a total audio time of 8 h 26 min. Each clip contains at least one laughter
or filler event of between 1.5 and 9.5 s duration. After carrying out the same merging task as
detailed in the previous section, there are 1158 laughter events (475 male and 683 female) in
the corpus with a total duration of 18 min 11 s of laughter. The average laughter duration is
0.94 ± 0.70 s. Laughter composes 3.59% of the total audio data. A total of 936 clips contain
laughter. Of the clips that contain laughter, it can account for up to 25% of the clip audio, with
an average of 10%. This amount is particularly important when considering the evaluation of
laughter detection methods for the SVC and how clips containing no laughter are treated (see
Section 4.1 for full details).



Chapter 4

Baseline Approaches

4.1 Motivation

The first goal of this work was to replicate the state-of-the-art approaches for laughter detection
based on the SSPNet vocalisation corpus (SVC) and then apply them to the SSPNet mobile
corpus (SMC). The SVC has received much attention within the field of laughter detection after
its publication and use in the 2013 INTERSPEECH paralinguistic challenge [1]. Section 3 offers
a full overview of the SVC. It is a type 2 corpus comprising short clips that are guaranteed to
contain at least one laughter or filler. Table 4.1 shows the performance achieved by studies on
the SVC.

The goal of this chapter is to build a detection system that could attain similar results using
the SVC and then apply such a system to the SMC. This was done to address RQ1. The SVC was
used to test the methods developed on a publicly available type 2 task and to allow comparison
with previous studies to ensure that those methods were operating at a SOTA level. Once those
methods were validated, they were then applied to the SMC. Laughter detection on the SMC
is a type 3 task as it does not have the constraints of laughter to non-laughter ratio and total

Table 4.1: Laughter Detection Results for the SVC. FFN: feed forward neural network. HMM:
hidden Markov model. Bi-LSTM: bidirectional long short-term memory neural network.
LSTM: long short-term memory neural network

Study System Architecture Precision (%) Recall (%) F1 (%) AUC (%)
[38] Stacked FFN NR NR NR 97.3
[1] Not Reported NR NR NR 82.9
[41] HMM 35-67 61-80 48-64 NR
[42] FFN NR NR NR 95.1
[26] FFN 80.9-87.4 87.3-94.5 84.0-90.8 NR
[48] FFN NR NR NR 95.3
[51] Bi-LSTM-CTC 0.65-0.79 0.49-0.66 0.54-0.66 NR
[43] Bi-LSTM NR NR NR 93.4
[50] LSTM NR NR 54.31 92.24

27
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audio time. As the SVC is extracted from the SMC (as outlined in Section 3), any different in
performance from the type 2 to type 3 task can readily be concluded to be caused, at least in
part, by the experimental constraints used in type 2 tasks and allow RQ1 to be answered.

From Table 4.1, it can be seen that studies have attained AUC results from as low as 80%
up to 97.3%. This provides a clear target for this section. Precision, recall and F1 are much
less reported in the field, with only three studies using the SVC having reported them. The
best results using the SVC show precision, recall and F1 at 80%-95% [26]. However, in this
study, the researchers carried out undersampling of the non-laughter class until both classes had
similar distributions. They did this for both the training and testing sets. This means that these
results were obtained by carrying out a type 1 task and, as such, provide an over-estimation
of the detector’s ability and an inflated baseline. Instead, previously obtained results in the
range of 65-79% are considered [51]. In this paper, they did not use a standard frame-by-frame
classification model and instead utilised a connectionist temporal classification (CTC) method.
CTC is a procedure that produces a sequence of labels, which may or may not be aligned with
the original input sequence. This means that the output of the CTC approach can be considered
an event level metric. This is one of two levels for which metrics can be calculated for; the
other one is a frame level metric. In the latter, each frame is assigned a classification and the
employed metrics take into account every frame. In contrast, the event level metrics identify
either time-stamps or sub-sequences of the frames that are classified as the target class. When
calculating the event level metrics, each target event is considered. If a time-stamp label occurs
within the ground truth event, then that event is considered detected (a true positive) otherwise
it is considered missed (a false negative). When a time-stamp occurs beyond a target event,
this is considered a mistake (a false positive). With these three measures, it is then possible to
calculate event level precision, recall and F1. CTC acts as an event level detection system since
it produces time-stamps rather than classifying each frame.

Previous results can provide an event level baseline. A frame level baseline can be drawn
from ref. [41], which has variable results ranging from 48-64% for F1 and has greater variation
in precision (35-60%) and recall (61-80%). In this paper, the authors utilised a multi-class
classification approach. Four classifiers were trained, each one a binary classifier for each of
the four classes (i.e., laughter, filler, speech and silence). Each model, therefore, produced the
posterior probability of a frame belonging to that model’s target class. The frame classification
was then set by selecting the class with the highest estimated posterior probability.

Taken together, these studies provide a baseline for performance on the SVC for AUC and
frame and event level precision, recall and F1. However, it is important to note one final issue.
Clips in the SVC contain either laughter (20.59%), fillers (66.12%) or both (13.28%). In the
case where a clip contains no laughter, it is not possible to calculate recall mathematically since
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recall is calculated using the following equation:

Recall =
TruePostives

TruePositives+FalseNegatives
. (4.1)

Namely, in the case where a clip contains no laughter, the value of both true positives and false
negatives will be zero creating a mathematically undefinable division by zero. Furthermore,
AUC is calculated as the area under the receiver operator characteristic curve. This curve is
plotted by calculating the recall and the false positive rate for every classification cut-off value.
AUC is then determined from the area beneath the resulting curve; however, as above, recall
cannot be calculated in the given circumstance. This again means that, for all the clips without
laughter, AUC cannot be calculated. How the above studies handled this issue is not clearly
reported. In one study, the authors report that “We adopt precision, recall, F-measure and their
average over all social signal events as evaluation metrics”. [51]. It is unknown if clips without
laughter were just ignored, treated as 100% or 0% recall or if some other method was used. If
they were ignored, this offers an advantage to the resulting system because any false positives
generated in the clips containing no laughter would simply be discarded. If instead all the clips
without laughter were assigned a recall score of either 100% or 0%, these clips would either
advantage or disadvantage the model unfairly. One option is to treat all the clips in the test
set as one. With precision, recall and F1 being calculated for all the clips at once rather than
for each individual clip and then averaged. Since it is unknown how this issue was solved by
the papers presented above, two different methods are applied in the present work. The first
method, henceforth termed exclusion, calculates the average performance for each clip of the
SVC, while ignoring all the clips that do not contain laughter. The second procedure, henceforth
termed merging, merges all the clips in the test set together, enabling the inclusion of the false
positives in the clips with no laughter for the calculation of the results.

For the following novel research, the type 3 corpus called SMC is used in automatic laughter
detection for the first time. This represents a more difficult challenge for the following reasons:
(i) the proportion of laughter to non-laughter is lower than in type 2 tasks (see Section 2.3); (ii)
the classification is carried out over conversations that can last 20 minutes in length, rather than
the 11 seconds of the SVC; (iii) laughter can overlap with any other audio events, including
laughter from others; (iv) laughter is not guaranteed to occur in a conversation, unlike the SVC
which guarantees either laughter or fillers will occur [41]. Taken together, these differences
mean that the SMC represents a closer-to-real-world approximation than the SVC and a more
difficult task.
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Figure 4.1: General Form of a Laughter Detection System

4.2 The Approach

Figure 4.1 displays the general form of the laughter detectors used in this section, all the detec-
tors followed the same approach for feature extraction, frame classification and event detection.
This general approach was then modified using different methodologies. These methods include
feature vector extension, class weighing and smoothing.

4.2.1 Feature Extraction

The process of feature extraction was the same for both datasets, i.e., the SVC and SMC. The
audio was initially split into windows of 20 ms duration, with a time step of 10 ms between
window start times. Both of these values are standard in the literature (see Section 3) and no
fine-tuning was attempted. Each window had the following features extracted from it:

• the first 13 mel frequency cepstral coefficients (MFCC),

• the signal intensity,

• the root mean square (RMS) energy,

• the fundamental frequency contour.

The features were extracted using the Python library named Surfboard v0.2.0 [64]. MFCCs,
signal intensities and RMS energies have all been shown to be effective representations of speech
for automatic speech recognition [65], pathology detection [66] and emotion recognition [67].
This feature extraction step resulted in a sequence of vectors F = { f⃗1, f⃗2, . . . , f⃗T}, where T is
the total number of vectors in the sequence. Each vector had the dimension D = 16.
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4.2.2 Frame Classification

The goal of the frame classification step is to map each vector f⃗ to its probability of belonging
to class laughter π f . To carry out this mapping, two deep learning architectures were used:
feed forward neural networks (FFN) and long short-term memory networks (LSTM). Table 4.1
shows that both of these architectures have been applied multiple times to the SVC and so were
replicated here.

Feed forward neural networks consist of an input layer, a number of hidden layers and an
output layer. Each layer consists of a pre-set number of neurons. Each neuron has an associated
weight and bias. In a binary classification task, such as laughter/non-laughter, the final output
layer consists of a single neuron that produces a single output. This output can be thought of as
the estimated posterior probability of the input feature vector belonging to the target class.

To train an FFN to predict a target class, a set of examples were used in which the class of
each frame f is known. During training for the weights and bias values of individual neurons,
all such values are adjusted through back-propagation [68]. In back-propagation, the error of
a network is calculated by comparing the target output for a frame with the output from the
network. This comparison is undertaken using a loss-function. In the current work, binary-cross
entropy loss was used, which is calculated via the following expression:

L f =−y f log(p f )− (1− y f )log(1− p f ), (4.2)

where L f is the loss for frame f , y f is the label of f and p f is the predicted probability of f

being the target class (in this case laughter) by the network. This loss represents the error in the
network, with higher values of L f corresponding to worse predictions. The goal of training is,
therefore, to lower the value of L f . This is done by calculating the derivative of the loss function
with respect to the weights and biases. As a result, each weight and bias is altered, according to
the learning rate, to lower the value of L f . In practice, this is not undertaken frame-by-frame but
rather in batches where the loss for multiple frames is averaged before updates to the weights
and biases are carried out. In the current work, a batch size of 100 was used.

The input layer size is determined by the dimensionality of the feature vectors; in this
case, there are 16 input neurons. The tested feed forward networks contain two hidden lay-
ers. These layers are composed of 100 densely connected neurons that use the ReLu activation
function [69]. Finally, there is a single output node, which utilises Sigmoid activation [69]. The
number of layers and nodes were set through a hyper-parameter optimisation process, which is
detailed in Section 4.2.5.

In addition to the FFN described above, the LSTM networks were also tested. LSTMs are
specialised recurrent neural networks that are able to process sequential data by creating both
long and short term memory representations of previous frames. LSTMs cells are composed of
five key components: forget, input and output gates, a cell state and a hidden state. Figure 4.2
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shows the LSTM cell used in this work.

Figure 4.2: Information Flow Through a Single LSTM Cell. Top Line Follows the Cell State C.
Bottom Line Follows the Hidden State H for the Current Frame f . The Three Gates: Forget F ,
Input I and Output O are Outlined in Red

.

The process of computing the output for a given frame via an LSTM is as follows. First,
the current hidden state from the previous step H f−1 and the input frame f are concatenated to
create the current state of the network S f for a given frame f . If this is the first frame in the
sequence, the values for both the cell state and the hidden state are zeroes. The variable S f is
then used to update the cell state through the following equation:

C f = F(S f )C f−1 + I(S f ), (4.3)

where C f is the cell state and C f−1 is the cell state of the previous frame; F is the forget gate
function and I is the input gate function. The forget gate uses a sigmoid activation function to
produce a value between zero and one for every value of S f . By then multiplying the output
of the forget gate and Ct −1, it is possible to ’forget’ the information by setting it to zero. The
sigmoid function is used to ensure that no values increase in size, meaning that the information at
this step can only be forgotten. The input gate I does the opposite, where initially a tan function
is used to constrain all the values between -1 and 1 multiplied again by the output of a sigmoid
function. This is done to calculate what information from the current state of the network should
be incorporated in the cell state through addition. After these steps have been completed, the
cell state C f is then used to update the current hidden state of the network via:

H = O(C f )S f , (4.4)

where H is the hidden state and O is the output gate function. The latter is a tan function,
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Figure 4.3: General Form of Laughter Detector With Pre/Post-Processing Methods Shown in
Red

which means that the long-term memory alters the output of the current step of the LSTM. This
step produces the hidden state for frame f , which can then be used for class prediction O or
passed as an input into the next step of the LSTM H f if there are more frames in the sequence.
The cell state and the hidden state of the LSTM can be considered its memory since both hold
the information sent between inputs. They differ in that the hidden state captures short term
dependencies and has an immediate effect on the current prediction (detailed below), while the
cell state maintains longer term dependencies and enables the long-term portion of the LSTM’s
memory.

The LSTM networks used in the present work were composed of 1 input layer, 4 hidden
layers and 1 output layer. The input layer took the target feature vector and the nine immediately
prior feature vectors, meaning it had 160 inputs. The first two hidden layers were composed of
100 densely connected standard neural network nodes while the third layer was composed of
100 LSTM nodes, all of which use ReLu activation. The output layer contained a single output
node that uses Sigmoid activation. Again, these parameters were set using the hyper-parameter
optimisation process detailed in Section 4.2.5.

4.2.3 Pre/Post-Processing

The previous text outlines the general approach for laughter detection. However, there are multi-
ple ongoing issues in the field. Examples of these include: class imbalance, spurious detections
and context inclusion, with multiple methodologies having been developed to address these is-
sues. Figure 4.3 shows the extra pre/post-processing steps used in addition to applying the
above classifiers to the SMC dataset; these steps are explained below.



CHAPTER 4. BASELINE APPROACHES 34

In type 1 tasks, datasets are often created so that laughter and non-laughter are balanced.
This is unrealistic in spontaneous conversations, as explained in Section 2.4; for type 3 tasks,
laughter comprises 10% or less of the total audio time. These large class imbalances present
issues for deep learning techniques because there are not enough frames for the target class
to learn how to properly distinguish them from the non-target class [70]. One solution to this
problem is to add a weight to the loss function. This technique, called class weighting, alters the
calculated loss for each prediction made during training according to a pre-determined weight.
The standard manner in which to calculate this predetermined weight is given by:

wc =
n f

ncn f c
, (4.5)

where wc is the weight the loss function is multiplied by for a particular class c, n f is the
total number of frames, nc is the total number of classes and n f c is the total number of frames
belonging to class c. This means that each frame’s loss is adjusted by multiplying the loss by
the inverse frequency of the frame’s class. Class weighting has been applied in the laughter
detection field [71] and other analogue fields [70], leading to improvements in detector error
rates; it has been tested in this work.

Due to speech audio events being produced by the same mechanisms, they share commonal-
ities that can lead to spurious detections in frame-by-frame classification [42]. Spurious detec-
tions are characterised by sharp spikes in the outputs of the frame classifier step. To remove these
spikes, the sequence of posterior probabilities estimated by the classifier, π f , can be convolved
with a Hamming window according to the following expression:

pk =
∞

∑
n=−∞

1
L

πnHk−n+L/2, (4.6)

where Hn is a Hamming window of length L. This means that pk is the convolution of the
samples in an interval of length L, centred on πk, with the Hamming window sample values.
Every sample is weighted by the Hamming window to emphasise the samples closest to πk. The
effect of this smoothing step is shown in Figure 4.4. The motivation behind the choice of the L

values is that it is comparable with the average duration of the laughter events in the corpus (see
Chapter 3). This step is able to effectively remove spikes in πk. Furthermore, it can fill gaps in
the detections where silence occurs between laughter bouts. However, it is unable to improve
detection of completely missed laughter events.

A further issue for FFNs is a lack of context. Context is recognised as the key for identifying
paralinguistic events in speech [51,72–75]. FFNs consider each frame in isolation, meaning that
they have no ability to receive context from the surrounding frames. This can result in detection
errors for both type 1 and 2. Pre-processing can incorporate context through the extension
of the input feature vector. This extension can be carried out by concatenating neighbouring
frames [26,58] or the inclusion in the feature vector of the deltas between frames [26,31,32,36,
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Figure 4.4: Frame Probabilities Before (left) and After (right) Hamming Window Convolution

58, 76]. In this part of the work, feature vectors were expanded to include the ∆ of each of the
16 features, calculated as the difference between the target frame’s values and the immediately
prior frame. This means that detection methods using this time-dependant information had input
feature vectors with the dimension of D = 32.

4.2.4 Event Detection

The frame classification step produces a sequence Ps ={ps1,ps2,. . . ,psk} or P ={p1,p2,. . . ,pk}
(depending on the presence or absence of smoothing), which are the estimated posterior proba-
bility that a frame belongs to class ‘laughter’. Of more interest than frame level classifications
is the ability to detect laughter events. This step is to enable downstream uses as outlined in
Section 2.5. Event detection was carried out by identifying time stamps in the sequence of
probabilities that should correspond to laughter events.

Laughter events were assumed to occur where there were peaks in the sequence Ps. Peaks
were defined as sub-sequences within Ps where pk > pk−1 and pk > pk+1. As this definition
allowed the value of pk to be small, a further condition was added where a cut-off was applied
such that peaks were only considered as event detections if pk > M. Here, M was a value
between 0 and 1 and was set through hyper-parameter optimisations (full details are given in
Section 4.2.5). It was a further possibility that sequences of Ps, which were above M, would
still oscillate locally, leading to many peaks occurring close together. As outlined in Section 3.1,
where the ground truth labels were merged, the same probabilistic-based merging was used here.
The values derived from the ground truth labels were applied to the merging of the event peaks.
In the case where two peaks were merged, a point equidistant from each peak in Ps was selected
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as the new time-stamp. Merging was carried out repeatedly until all the remaining peaks were
beyond the merge range from one peak to another. In accordance with the methodology in
ref. [51], only those peaks that co-occurred with laughter were considered true positives.

4.2.5 Training and Testing

A k-fold approach was used for the creation of the training and testing sets. For the SVC dataset,
each of the 11-second clips were initially grouped by which conversation they had been extracted
from. They were then split so that all the clips from a conversation would always be either in
the training or test fold; this ensured speaker independence. The fold splits were carried out
following a 40-10-10 rule, i.e., with 40 conversations being used for training, 10 for validation
and 10 for testing. For the SMC, a similar approach was used in which the training, development
and testing splits were again carried out at a conversational level with the same 40-10-10 split.

In the case of both datasets, this resulted in a total of 6 folds. To improve upon the reliability
of the results, each detection method experiment was repeated three times, each time initialising
random underlying models. The results are presented as the average AUC, precision, recall and
F1 across all six folds and the three repetitions of each experiment. Before training and testing,
each feature was normalised to a scale from 0 to 1. The normalization function was fitted for
each fold: this ensured no crossover of information between the training and testing data sets.
For evaluation purposes, the standard metrics of AUC, precision, recall and F1 were calculated
at a frame level. In addition, the event detection scheme was also evaluated using precision,
recall and F1.

The networks for frame classification were trained using binary cross entropy as a loss func-
tion coupled with the Adam optimizer, with a default learning rate of 0.001. The number of
training epochs was 5 and the batch size was 1000. All these values were set a-priori and no
attempts were made to use alternative values. The models were implemented using the Python
library called Keras (version = 2.4.3) [77].

4.2.6 Hyper-Parameter Optimisation

There were four hyper-parameters to be set. These were the number of hidden layers, the number
of nodes per layer, the size of the Hamming window used for smoothing and the percentage
cut-off for classifying peaks as events. In addition to the parameters that are optimised, the
metric that assists the optimisation of them could be AUC or F1 at either a frame or event level.
These three metrics were investigated to determine if there was an effect on the results of the
optimisation.

The number of hidden layers and nodes per layer were initially investigated with the Ham-
ming window (size = 51) and cut-off (percent = 11) set. For FFNs, the number of hidden layers
tested was 2 to 10 with a step of 2. The number of nodes tested was 100 to 1000 with a step
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of 100. For LSTMs, the same number of nodes was tested. The LSTM networks can have two
different types of hidden layer: an FFN layer or a LSTM layer. The number of LSTM layers
tested was 2 to 10 with a step of 2. The number of FFN layers tested was 0 to 4 with a step
of 2. A general rule was adopted where, if two parameters achieved the same performance, the
smaller network was selected. This would aid future investigation by reducing the training and
testing time. A complete grid search method was used, in which every possible combination of
parameters were paired.

A two-way ANOVA test was utilised to examine the differences in performance. For the
FFN networks, there was no significant difference in F1 due to the number of layers (F(4, 250)
= 0.58, p = 0.82) or nodes (F(9, 250) = 0.62, p = 0.65), nor a significant interaction (F(36, 250)
= 1.05, p = 0.41). As such, the number of layers was set at 2 and the nodes per layer was set to
100.

For the LSTM, a three-way ANOVA test was used. It was found that there was no significant
effect due to the number of LSTM layers (F(4, 750) = 1.92, p = 0.11) or nodes per layer (F(9,
750) = 1.39, p = 0.19). Nor was there any significant interaction between the number of LSTM
layers and the nodes per layer (F(36, 750) = 0.43, p = 1.00), the number of LSTM and FFN lay-
ers (F(8, 750) = 1.77, p = 0.080), nor the number of FFN layers and nodes per layer (F(18, 750)
= 1.02, p = 0.43). There was a significant interaction between all three variables (F(72, 750) =
1.54, p = 0.004) and a significant effect due to the number of FFN layers (F(2, 750) = 27481.2,
p < 0.001). A post-hoc Tukey HSD test found that two FFN layers (M = 24.09, SD = 1.58)
were significantly better than zero FFN layers (M = 1.55, SD = 0.26, p < 0.0001, 95% C.I. =
[23.21, 23.76]). Furthermore, four FFN layers (M = 25.08, SD = 1.26) were significantly better
than zero layers (p < 0.0001, 95% C.I. = [23.40, 24.30]). However, there was no significant
difference between two and four FFN layers (p = 0.24, 95% C.I. = [-0.086, 0.46]). As such, the
LSTM networks were given 2 FFN hidden layers and 2 LSTM hidden layers, with each of the
layers having 100 nodes.

Having set the architecture of the deep learning networks, the values for the Hamming win-
dow size and the percent cut-off were then optimised. The values for the Hamming window
ranged from 11 to 101 (inclusive) with a step of 10. For the percent cut-off, the values ranged
from 1 to 91% (inclusive) with a step of 10. A parameter optimisation was run for each of the
underlying deep learning architectures (i.e., FFN and LSTM) and for each underlying dataset
(i.e., SVC and SMC). The results of the optimisation for each of the models and the dataset
options are shown in Table 4.2. In cases where there was disagreement between the metrics with
regard to what parameters were optimal, the parameters found using event level F1 were initially
selected. If the event level F1 showed no effect, frame level F1 was then used. If that showed no
effect, then AUC was selected.
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Table 4.2: Hyper-Parameter Optimisation Results for Each Detector, Metric and Dataset. FFN:
feed forward neural network. LSTM: long short-term memory network. CW: class weight. D:
delta. S: smoothing. NE: no effect. All FFN have 2 FFN hidden layers. All LSTM detectors
have 2 LSTM and 2 FFN hidden layers. All hidden layers have 100 nodes

Model Architecture
Dataset Window Size

Cut-Off M
AUC F1 (frame) F1 (event)

FFN

SVC

No Effect 11 11 10
FFN+CW No Effect 11 41 10
FFN+D 11 11 11 100
FFN+CW+D No Effect No Effect 11 11
LSTM No Effect 11 11 70
LSTM+CW 11 No Effect 51 10
LSTM+D 11 No Effect 31 100
LSTM+CW+D No Effect No Effect 11 11
FFN

SMC

51 No Effect 11 60
FFN+CW No Effect No Effect 31 1
FFN+D No Effect No Effect 51 40
FFN+D+CW 11 No Effect 51 10
LSTM 41 31 11 80
LSTM+CW 61 No Effect 31 11
LSTM+D 41 No Effect 71 11
LSTM+CW+D No Effect No Effect 51 11

4.2.7 Experiments and Results

This section displays the results achieved for the SVC and SMC datasets. A total of sixteen
detection methods were trialled. These methods differed in terms of the underlying architecture
and post/pre-processing. Tables 4.3 and 4.4 show the results obtained using the merging evalu-
ation and the exclusion evaluation methodologies, respectively, for each detection method at a
frame level. Together they show the effect of the evaluation method, as discussed in Section 4.1.

Initially, the effect of either merging the test set or excluding non-laughter clips was tested.
This was undertaken using an independent t-test, which found no significant effect in relation to
AUC using merging (M = 81.29, SD = 4.50) compared to exclusion (M = 80.88, SD = 4.64,
t(574) = 1.16, p = 0.28). Since there is no significant effect on AUC performance, the exclusion
dataset was selected for further testing.

A one-way ANOVA test discovered significant effect in relation to the detection system
(F(15, 272) = 17.23, p < 0.0001). Post-hoc Tukey HSD tests were carried out to examine which
of the detectors performed best. No significant difference in AUC performance was found be-
tween LSTM+S and LSTM+CW+S, LSTM+D+S and LSTM+CW+D+S. All the other detectors
performed significantly worse than LSTM+D+S. Figure 4.5 displays the significant differences
between LSTM+D+S and all the other detectors. Table 4.4 gives exact values of AUC for all
the detectors, with LSTM+D+S achieving 90.02 ± 3.62. For exact p-values, lower and upper
confidence values see Table A.1. These results can be considered close to the state-of-the-art
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Figure 4.5: Average (STD) AUC Achieved by Detection System. Significant Differences Shown
in Relation to LSTM+D+S (**p < 0.005, ***p < 0.0005, ****p < 0.00005)

analyses. The lack of reporting on the standard deviation and the number of repetitions makes
it impossible to carry out significance testing to fairly compare these outcomes against other
studies in the field. However, these results suggest that the best detectors are achieving state-of-
the-art performance and that both LSTMs and smoothing are key to these optimal results.

The effect of the evaluation criteria was then tested for frame level precision, recall and F1.
The independent t-tests were once again used and found that the evaluation method does have
significant effects. Precision was significantly higher when using exclusion (M = 49.85, SD =

17.82) as opposed to merging (M = 36.59, SD = 16.33, t(574) = 86.68, p < 0.0001). F1 was
also significantly higher when using exclusion (M = 23.50, SD = 6.89) as opposed to merging
(M = 14.42, SD = 5.63, t(574) = 295.27, p < 0.0001). However, there was no significant effect
on recall by the method (exclusion: M = 33.06, SD = 8.84. merging: M = 33.06, SD = 8.85,
t(574) = 0, p = 1.00). These results contrast with the above AUC results, which suggested no
effect due to the evaluation methodology. Improvements in F1 and precision were caused by
exclusion of the non-laughter clips. This makes logical sense since only false positives could be
removed through exclusion, thus improving precision. This also explains why some detectors’
performance increased significantly. Namely, if a detector’s precision was poor then, when
non-laughter clips were excluded, the detector’s precision significantly increased and led to a
significant increase in F1.

Examining the results of the exclusion methodology further, a one-way ANOVA test found
there were significant differences in F1 between detectors (F(15, 272) = 74.84, p < 0.0001).
Figure 4.6 shows the significance differences found using a post-hoc Tukey HSD test. For
exact p-values, lower and upper confidence intervals see Table A.2. LSTM+CW+S had the
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Table 4.3: Frame Level Performance of Each Detection Method for the SVC Using Merging of
All Test Clips - Allowing the Inclusion of Clips Without Laughter. FFN: feed forward neural
network. LSTM: long short-term memory network. CW: class weight. D: delta. S: smoothing.
Bold highlights the best performing detector for each underlying architecture.

Model Type Precision Recall F1 AUC
FFN 42.23 ± 20.38 3.92 ± 2.01 6.38 ± 2.85 73.50 ± 4.87
FFN+CW 9.86 ± 2.69 53.76 ± 8.94 16.38 ± 3.60 75.02 ± 3.66
FFN+D 50.82 ± 22.44 4.31 ± 3.13 6.45 ± 3.27 74.87 ± 4.51
FFN+S 49.33 ± 44.32 0.71 ± 0.86 1.15 ± 1.32 79.11 ± 6.81
FFN+CW+D 12.42 ± 4.57 49.16 ± 11.05 19.16 ± 5.00 76.52 ± 4.23
FFN+CW+S 16.27 ± 5.14 51.12 ± 11.58 23.78 ± 5.28 80.54 ± 4.64
FFN+D+S 58.44 ± 45.48 1.04 ± 1.41 1.47 ± 1.55 81.19 ± 5.55
FFN+CW+D+S 22.65 ± 9.08 46.09 ± 13.22 28.43 ± 7.68 81.87 ± 5.57
LSTM 60.94 ± 20.15 11.27 ± 4.78 17.73 ± 5.78 83.06 ± 4.92
LSTM+CW 10.78 ± 4.24 72.88 ± 10.74 18.35 ± 6.34 80.84 ± 4.90
LSTM+D 69.45 ± 15.34 9.96 ± 7.82 15.71 ± 10.38 83.80 ± 3.97
LSTM+S 72.57 ± 24.12 5.47 ± 3.55 9.61 ± 5.63 89.36 ± 4.06
LSTM+CW+D 9.16 ± 3.70 66.77 ± 21.70 15.77 ± 5.99 80.03 ± 3.56
LSTM+CW+S 13.43 ± 5.72 76.64 ± 11.76 22.10 ± 8.34 85.88 ± 3.59
LSTM+D+S 75.68 ± 28.77 5.43 ± 6.11 9.26 ± 9.24 90.02 ± 3.62
LSTM+CW+D+S 11.36 ± 5.10 70.45 ± 22.86 18.93 ± 7.86 85.07 ± 3.49

Table 4.4: Frame Level Performance of Each Detection Method for the SVC Using Exclusion
of All Clips Not Containing Laughter. FFN: feed forward neural network. LSTM: long short-
term memory network. CW: class weight. D: delta. S: smoothing. Bold highlights the best
performing detector for each underlying architecture.

Model Type Precision Recall F1 AUC
FFN 60.60 ± 21.90 3.92 ± 2.01 6.84 ± 3.10 73.33 ± 5.22
FFN+CW 24.95 ± 4.93 53.76 ± 8.94 33.50 ± 4.52 75.05 ± 3.77
FFN+D 65.19 ± 23.06 4.31 ± 3.13 7.02 ± 3.86 74.86 ± 5.02
FFN+S 54.57 ± 46.72 0.71 ± 0.86 1.23 ± 1.43 78.49 ± 6.68
FFN+CW+D 29.75 ± 7.87 49.16 ± 11.05 35.82 ± 6.02 76.29 ± 4.48
FFN+CW+S 34.18 ± 8.66 51.11 ± 11.57 39.68 ± 6.70 79.78 ± 4.60
FFN+D+S 61.08 ± 46.19 1.04 ± 1.41 1.63 ± 1.87 80.74 ± 5.59
FFN+CW+D+S 41.76 ± 13.12 46.06 ± 13.20 41.43 ± 8.58 81.01 ± 5.54
LSTM 73.18 ± 15.96 11.27 ± 4.78 18.79 ± 6.68 82.52 ± 5.61
LSTM+CW 27.49 ± 7.02 72.88 ± 10.74 38.87 ± 7.82 80.92 ± 4.75
LSTM+D 81.29 ± 9.98 9.96 ± 7.82 16.48 ± 11.42 83.21 ± 4.43
LSTM+S 79.87 ± 21.74 5.45 ± 3.54 9.81 ± 5.90 88.20 ± 4.66
LSTM+CW+D 24.51 ± 8.93 66.77 ± 21.70 34.57 ± 11.31 80.17 ± 3.54
LSTM+CW+S 31.18 ± 8.82 76.65 ± 11.75 42.83 ± 9.47 85.71 ± 3.23
LSTM+D+S 80.14 ± 29.23 5.42 ± 6.10 9.46 ± 9.74 88.93 ± 3.69
LSTM+CW+D+S 27.81 ± 10.96 70.46 ± 22.86 38.09 ± 13.26 84.89 ± 3.48
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highest overall score. However, the Tukey HSD test showed that it was not significantly different
to other detectors using class weighting other than FFN+CW. Furthermore, it was shown that
LSTM+CW+S was significantly better than all other detectors without class weightings. These
results suggest that class weighting is key to improving frame level F1. However, in contrast
to the AUC results, there are few significant differences between the FFN- and LSTM-based
architectures. Class weighted detectors had the highest average frame level F1 of 40%, with
some folds achieving state-of-the-art performance.

Figure 4.6: Average (STD) Frame Level F1 Achieved by Detection System on the SVC Using
Exclusion Evaluation Method. Green and Pink Significance Lines Relate to LSTM+CW+S.
Blue Significance Line Relates to FFN+CW+D+S (*p < 0.05, ****p < 0.00005)

For exact p-values, lower and upper confidence intervals see Table A.2
Finally, the event level performance is displayed in Table 4.5 for merging and Table 4.6

for exclusion. In agreement with the frame level F1 results, an ANOVA test once again found
significant differences in detector performance depending on the evaluation method and detector
type. An independent sample t-test found a significant decrease in precision when using merging
as opposed to exclusion (t(574) = 579.38, p < 0.0001). This effect was also found in precision,
with merging showing significantly poorer results than exclusion (t(574) = 289.07, p < 0.0001),
and F1 with merging showing significantly poorer results than exclusion (t(574) = 118.68, p <

0.0001). These results follow the frame level precision, recall and F1 results of the evaluation
methods.

As stated earlier, the exclusion-based results were carried forward for further analysis. A
one-way ANOVA test was used to compare detector performance, it found that detector type
had a significant effect (F(15, 272) = 317.55, p < 0.0001). A post-hoc Tukey HSD test was used
to compare model performance with the results shown in Figure 4.7. For exact p-values, lower
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and upper confidence intervals see Table A.3. The LSTM+CW detector had the highest overall
F1 score, although this was not significantly better than LSTM+CW+D. However, LSTM+CW
was significantly better than all the other detectors. Again, this is probably caused by the class
weighting increasing recall at the cost of producing more false positives, some of which are
removed by the exclusion of non-laughter clips. The best performing detector (LSTM+CW)
achieves an F1 of 57.65 ± 0.78 at an event level that is on par with optimal event level perfor-
mance in the field of 54-66% [51].

Figure 4.7: Average (STD) Event Level F1 Achieved by Detection System on the SVC Using
Exclusion Evaluation. Significance Shown in Relation to LSTM+CW (*p < 0.05, **p < 0.005,
***p < 0.0005)

4.2.8 SSPNet Mobile Corpus

The above results show that the detection system performance can approach the state-of-the-art
in frame level metrics and can be in line with the state-of-the-art in event level metrics. In this
section, the detection systems are now applied to the SMC. Table 4.7 shows the attained frame
level results for each detector on the SMC. Conversations in the test set were merged into one
and results were calculated based on this. This decision has less of an impact compared to the
SVC since all conversations have laughter, meaning none would be excluded if a conversation-
by-conversation approach was used instead.

As with the SVC corpus, AUC was examined using a one-way ANOVA test, which found
significant differences between detector performance (F(15, 272) = 16.25, p < 0.0001). Fig-
ure 4.8 displays the differences shown by a post-hoc Tukey HSD test between the LSTM+S
detector, which achieved the overall best score, and all the others. For exact p-values, lower
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Table 4.5: Event Level Performance of Each Detection Method on the SVC Using Merging of
All Test Clips - Allowing the Inclusion of Clips Without Laughter. FFN: feed forward neural
network. LSTM: long short-term memory network. CW: class weight. D: delta. S: smoothing.
Bold highlights the best performing detector for each underlying architecture.

Detector Precision Recall F1
FFN 40.71 ± 19.22 18.06 ± 7.26 23.55 ± 8.87
FFN+CW 11.19 ± 3.30 77.98 ± 8.12 19.38 ± 5.01
FFN+D 48.36 ± 21.79 14.47 ± 7.89 20.89 ± 10.86
FFN+S 70.14 ± 30.79 4.03 ± 1.92 7.51 ± 3.58
FFN+CW+D 14.54 ± 6.09 74.06 ± 11.71 23.78 ± 7.81
FFN+CW+S 24.72 ± 7.83 45.93 ± 16.31 31.31 ± 9.12
FFN+D+S 73.97 ± 32.98 3.40 ± 2.18 6.34 ± 4.07
FFN+CW+D+S 32.71 ± 13.06 45.98 ± 15.91 37.01 ± 12.03
LSTM 63.37 ± 22.33 20.84 ± 7.74 29.56 ± 8.31
LSTM+CW 18.01 ± 8.48 81.74 ± 5.01 28.58 ± 11.32
LSTM+D 73.19 ± 15.67 20.30 ± 13.31 28.57 ± 15.04
LSTM+S 75.84 ± 24.52 8.75 ± 2.59 15.32 ± 4.15
LSTM+CW+D 14.68 ± 5.53 82.12 ± 8.43 24.42 ± 8.03
LSTM+CW+S 29.51 ± 12.91 68.45 ± 7.37 39.48 ± 13.69
LSTM+D+S 87.12 ± 12.25 8.07 ± 5.60 14.20 ± 9.03
LSTM+CW+D+S 24.85 ± 9.22 68.10 ± 11.60 34.89 ± 10.81

Table 4.6: Event Level Performance of Each Detection Method for the SVC Using Exclusion
of All Clips Not Containing Laughter. FFN: feed forward neural network. LSTM: long short-
term memory network. CW: class weight. D: delta. S: smoothing. Bold highlights the best
performing detector for each underlying architecture.

Detector Precision Recall F1
FFN 55.59 ± 13.05 11.02 ± 3.43 18.28 ± 5.26
FFN+CW 26.46 ± 4.04 70.62 ± 1.87 38.38 ± 4.46
FFN+D 67.49 ± 2.27 10.11 ± 5.49 17.09 ± 8.15
FFN+S 95.24 ± 6.73 3.20 ± 1.04 6.17 ± 1.95
FFN+CW+D 34.47 ± 3.21 63.46 ± 6.25 44.31 ± 1.35
FFN+CW+S 45.76 ± 5.79 37.94 ± 2.17 41.21 ± 2.04
FFN+D+S 100.00 ± 0.00 2.85 ± 2.26 5.45 ± 4.21
FFN+CW+D+S 57.40 ± 7.44 30.38 ± 6.48 38.67 ± 3.01
LSTM 84.39 ± 4.48 14.88 ± 2.92 25.21 ± 4.31
LSTM+CW 48.64 ± 0.90 70.89 ± 3.00 57.65 ± 0.78
LSTM+D 91.67 ± 6.80 8.39 ± 6.38 14.66 ± 10.66
LSTM+S 100.00 ± 0.00 7.21 ± 0.23 13.46 ± 0.40
LSTM+CW+D 41.65 ± 1.54 71.43 ± 1.91 52.61 ± 1.53
LSTM+CW+S 58.60 ± 2.42 47.28 ± 0.79 52.31 ± 1.02
LSTM+D+S 100.00 ± 0.00 3.70 ± 2.34 7.03 ± 4.41
LSTM+CW+D+S 54.85 ± 2.26 46.47 ± 3.64 50.25 ± 2.76
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Figure 4.8: Average (STD) AUC Achieved by Detection System on the SVC. Significance
Shown in Relation to LSTM+S (***p < 0.0005)

and upper confidence intervals see Table A.4. The tests show many of the detectors achieved
AUCs that were not significantly different from the LSTM+S. All the other detectors were
shown to perform significantly worse than the LSTM+S system. Only one LSTM-based de-
tector (LSTM+CW+D) showed a significantly poorer AUC performance. Meanwhile, the FFN-
based detectors showed weaker performance in all but three cases, suggesting that the LSTM
networks are better suited to a type 3 task. Comparing the best performing detector on the SVC
(LSTM+D+S exclusion: 88.93 ± 3.69) and the SMC (LSTM+S: 87.48 ± 2.19), an independent
sample t-test found no significant difference between performance (t(34) = 2.06, p = 0.16). This
suggests that the optimal methods found in the literature to date can effectively operate on the
larger and more difficult type 3 task presented by the SMC.

Further to the AUC results, the frame level precision, recall and F1 were examined. An
ANOVA test found significant differences in performance between detectors at an F1 level
(F(15, 272) = 13.70, p < 0.0001). A post hoc-Tukey HSD test was used to examine differ-
ences between the detectors. Figure 4.9 shows the significant differences found between the
FFN+CW+D+S detector and all the others. For exact p-values, lower and upper confidence
intervals see Table A.5. The FFN+CW+D+S system was found to have the highest overall per-
formance. However, Multiple detectors were shown to have no significant difference from it.
In terms of LSTM-based detectors, LSTMs with class weighting performed significantly bet-
ter than those without. This suggests class weighting is a requirement for LSTM performance.
Meanwhile, using the FFN architecture, the results are less clear. FFN detectors with smooth-
ing perform significantly worse, except when coupled with both class weighting and delta, in
which case they achieve results in line with the best detectors on the corpus. Furthermore, just
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Figure 4.9: Average (STD) Frame Level F1 Achieved by Detection System on the SMC. Signif-
icance Shown in Relation to FFN+CW+D+S (*p < 0.05, **p < 0.005, ***p < 0.0005)

using class weighing with the FFN on the SMC results in significant drops in performance. Now
comparing the best F1 results on the SMC (FFN+CW+D+S: 15.86 ± 8.27) to those on the SVC
(FFN+CW+D+S exclusion: 41.43 ± 8.58), an independent sample t-test found significant dif-
ferences, with the SMC detectors performing significantly worse than the SVC detectors (t(34)
= 82.87, p < 0.0001). These results contrast to those found using AUC and suggest that the
detection methods previously developed in the field are less effective when used on the SMC
when F1 is considered.

Finally, the detector results based on the SMC at an event level are shown in Table 4.8. A
one-way ANOVA test found significant differences in terms of F1 between the models (F(15,
272) = 9.65, p < 0.0001). A post-hoc Tukey HSD test was used to examine differences between
detectors, the results of which can be seen in Figure 4.10. For exact p-values, lower and upper
confidence intervals see Table A.6. The overall best performing detector was the LSTM+CW+S.
The event level F1 is generally in agreement with the frame level for LSTMs, with LSTM-based
detectors with class weighting significantly outperforming all the cases without it (except in the
case of LSTM and LSTM+CW+D). However, the advantage of the LSTM-based detectors over
the FFN is reduced at an event level. Only three of the FFN detectors performed significantly
worse than the LSTM+CW+S detector; in all cases, these involved coupling the FFN with class
weighting. A second point of interest is the precision, recall and F1 for the LSTM, LSTM+D,
LSTM+S and LSTM+D+S. They have relatively good precision and recall averages, but their
average F1 is lower. This fact seems unlikely since F1 is the harmonic mean of precision and
recall. However, all four models have high standard deviation in relation to both precision and
recall. This, coupled with the low average F1, suggests that, although both precision and recall
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Table 4.7: Frame Level Performance of Each Detection Method for the SMC. FFN: feed forward
neural network. LSTM: long short-term memory network. CW: class weight. D: delta. S:
smoothing. Bold highlights the best performing detector for each underlying architecture.

Model Type Precision Recall F1 AUC
FFN 21.49 ± 9.05 9.62 ± 5.07 10.99 ± 4.62 69.63 ± 7.50
FFN+CW 8.25 ± 11.10 46.99 ± 29.86 6.75 ± 4.27 58.21 ± 14.02
FFN+D 18.80 ± 9.20 10.45 ± 4.91 12.29 ± 5.34 70.52 ± 7.49
FFN+S 43.65 ± 31.75 4.42 ± 3.40 7.28 ± 4.92 79.05 ± 6.70
FFN+CW+D 6.59 ± 3.43 40.95 ± 19.05 11.23 ± 5.65 70.89 ± 3.52
FFN+CW+S 7.63 ± 7.45 44.52 ± 29.20 9.54 ± 6.55 61.59 ± 20.16
FFN+D+S 43.57 ± 23.89 5.16 ± 3.16 8.75 ± 4.90 79.78 ± 7.58
FFN+CW+D+S 10.03 ± 5.59 43.70 ± 20.93 15.86 ± 8.27 79.79 ± 4.24
LSTM 47.41 ± 26.19 3.27 ± 3.21 5.69 ± 5.15 81.73 ± 2.05
LSTM+CW 7.09 ± 1.81 69.77 ± 10.13 12.73 ± 2.83 79.96 ± 1.78
LSTM+D 17.88 ± 32.01 1.12 ± 3.77 1.44 ± 4.43 78.69 ± 3.96
LSTM+S 43.39 ± 38.98 0.95 ± 1.49 1.79 ± 2.71 87.48 ± 2.19
LSTM+CW+D 5.86 ± 3.55 63.90 ± 26.09 10.21 ± 5.44 74.17 ± 12.14
LSTM+CW+S 8.25 ± 2.30 73.30 ± 11.72 14.62 ± 3.50 84.16 ± 1.70
LSTM+D+S 8.31 ± 24.96 0.76 ± 2.96 1.22 ± 4.69 83.95 ± 3.66
LSTM+CW+D+S 7.07 ± 5.66 65.97 ± 28.20 11.65 ± 6.99 78.23 ± 11.12

can be high, neither of them are both high at the same time, suggesting an unreliability in some
LSTM detectors. Finally, the best performing SVC event level detector (LSTM+CW: 57.65 ±
0.78) was compared with the best performing SMC event level detector (LSTM+CW+S: 26.30 ±
5.14) by using an independent sample t-test, which found a significant difference in performance
(t(34) = 654.54, p < 0.0001). This again supports the above conclusion that the current methods
in the field are ineffective when applied to a type 3 dataset.

An immediate issue with the above results is the disagreement between AUC and F1. With
regard to the SVC results, there is a ∼20% difference between AUC and F1. For the SMC, this
difference is inflated to a ∼50-60% decrease. Table 4.1 shows that AUC is a widely used met-
ric in the laughter detection field, especially when evaluating performance on the SVC. Despite
the widespread use of this metric in the field, its validity has previously been called into ques-
tion [78]. This is due to how it is calculated, specifically that specificity includes true negatives
in its calculation. To examine this point further, consider three cut-off conditions: low, medium
and high. At a high cut-off, there will be very few false positives and a high number of true
negatives - leading to specificity being close to zero. For both the medium and low cut-offs,
in comparison, there will be more false positives. However, due to the number of non-laughter
frames, the ratio of true negatives to false positives is likely to remain imbalanced, with many
more true negatives than false positives; thus, still resulting in a specificity value close to zero.
Therefore, when plotting the ROC, the specificity value remains close to zero for most cut-off
values. As specificity is plotted along the x-axis, this in effect pulls the curve to the left and, as
a result, inflates the AUC value above what is reasonable.
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Figure 4.10: Average Event Level F1 Achieved by Detection System on the SMC. Significance
Differences Shown in Relation to LSTM+CW+S (**p < 0.005, ***p < 0.0005)

Table 4.8: Event Level Performance of Each Detection Method for the SMC. FFN: feed forward
neural network. LSTM: long short-term memory network. CW: class weight. D: delta. S:
smoothing. Bold highlights the best performing detector for each underlying architecture.

Detector Precision Recall F1
FFN 21.55 ± 10.50 42.89 ± 16.93 24.30 ± 9.11
FFN+CW 8.59 ± 9.36 70.02 ± 29.89 10.06 ± 4.60
FFN+D 17.69 ± 8.89 46.77 ± 20.55 23.87 ± 10.49
FFN+S 50.45 ± 23.80 15.85 ± 6.84 20.86 ± 8.28
FFN+CW+D 7.92 ± 4.52 79.05 ± 25.12 13.45 ± 6.13
FFN+CW+S 13.00 ± 15.31 39.71 ± 24.09 12.52 ± 9.15
FFN+D+S 41.52 ± 20.82 17.55 ± 7.92 23.01 ± 10.32
FFN+CW+D+S 17.00 ± 9.88 49.74 ± 18.39 22.32 ± 11.67
LSTM 49.93 ± 26.12 28.27 ± 31.55 19.36 ± 9.76
LSTM+CW 10.23 ± 2.39 86.94 ± 7.70 18.18 ± 3.76
LSTM+D 22.56 ± 30.80 67.56 ± 40.81 10.28 ± 7.07
LSTM+S 62.89 ± 31.76 19.07 ± 30.79 10.72 ± 6.69
LSTM+CW+D 8.06 ± 4.28 76.73 ± 26.98 14.28 ± 6.86
LSTM+CW+S 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14
LSTM+D+S 32.03 ± 38.32 61.02 ± 39.66 11.68 ± 8.18
LSTM+CW+D+S 12.77 ± 7.38 63.66 ± 24.21 20.41 ± 9.68
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Table 4.9: Frame Level Performance of LSTM+CW+S for Each Metric by Group Split
Group Precision Recall F1 AUC
Caller 10.58 ± 9.55 77.80 ± 20.66 17.00 ± 12.78 80.54 ± 9.59
Receiver 20.46 ± 14.30 66.99 ± 23.12 28.20 ± 16.28 88.67 ± 5.82
Male 14.45 ± 14.75 67.85 ± 26.75 20.32 ± 16.76 84.33 ± 8.35
Female 16.49 ± 11.37 76.50 ± 16.97 24.67 ± 14.30 84.84 ± 9.35
MM 8.51 ± 10.13 62.73 ± 25.91 13.19 ± 13.73 84.26 ± 6.91
FF 11.88 ± 8.10 78.37 ± 13.25 19.07 ± 11.21 87.21 ± 5.75
MF 9.69 ± 7.27 72.56 ± 18.61 16.01 ± 9.81 84.02 ± 6.25

Table 4.10: Event Level Performance of LSTM+CW+S for Each Metric by Group Split
Group Precision Recall F1
Caller 11.51 ± 8.60 81.07 ± 12.52 18.96 ± 12.07
Receiver 25.19 ± 17.08 58.33 ± 20.36 31.34 ± 16.49
Male 15.04 ± 12.90 63.96 ± 21.39 21.21 ± 14.32
Female 21.14 ± 16.30 74.52 ± 18.11 28.47 ± 16.08
MM 21.85 ± 9.62 61.18 ± 13.03 31.62 ± 11.57
FF 21.33 ± 2.84 62.78 ± 4.89 31.81 ± 3.64
MF 21.82 ± 5.49 63.64 ± 7.41 32.10 ± 6.21

Furthermore, the above issue results in the AUC score being mostly dependent on the sen-
sitivity value. It was shown above that detectors that produce more false positives are not pe-
nalised heavily. However, the presence of more positive cases raises the chance of identifying
true positives. The creation of more false positives has little impact on the final score, while true
positives have a greater impact. This means that, if a detector were to take more risky chances,
then both the true positive and false positive scores would increase. While the false negative
and true negative scores would decrease. However, because true negative scores begin so much
higher than all other scores, this has little negative impact on the specificity score and so leads
to an overall net positive. This means that AUC encourages the increasing of sensitivity almost
universally compared with specificity and does not give a clear view on how effective a given
detector is.

4.2.9 Performance Analysis

A performance analysis on the best performing detector was carried out in an attempt to under-
stand when a specific approach works and when it does not. The LSTM+CW+S detector was
selected for this analysis. Initial testing compared the detector’s performance by gender, role
and conversation pairing. Frame level results from this analysis are displayed in Table 4.9 with
event level results shown in Table 4.10.

By first addressing the effect of role, an independent sample t-test was run that compares
caller and receiver scores for each metric. It was found that there was a significant difference



CHAPTER 4. BASELINE APPROACHES 49

Figure 4.11: LSTM+CW+S Performance by Role on the SMC (***p < 0.0005)

between roles across five out of the seven metrics (see Figure 4.11 and for exact t statistics and
p values Table A.7). Receivers saw a significantly better performance than callers in frame level
AUC, precision and F1. However, in frame and event level recall callers showed significantly
better performance than receivers. These results are surprising given that both callers and re-
ceivers were treated the same across all the conversations, with the same type of microphone
and mobile phone being used.

Now examining the effect of the speaker’s gender. Independent sample T-tests were again
run to compare the performance of each metric (the results are shown in Figure 4.12 for exact
t statistics and p values Table A.8). For frame level recall, F1, event level precision, recall
and event level F1 female speakers showed significantly better performance than male speakers.
There were no significant differences in frame level precision or AUC between female and male
speakers.

These gender differences are probably due to the underlying distribution of laughs in the
dataset. As described in Section 3, women laugh significantly more than men during the conver-
sations. This issue of imbalances in the training data has caused similar issues for performance
in other applications. In face recognition, it was shown that systems with high effectiveness
experienced performance drops when applied to races, age groups and genders that were under-
represented in the training set [79]. Mitigation of this issue is possible by training classifiers
on datasets that represent a more under-performing group [80, 81]. As such, the gender per-
formance imbalance in the current system would probably be overcome through the creation of
more data with male laughter.

In addition to performance differences at the level of a speaker’s gender, the effect of gender
pairing on a conversation was investigated. One-way ANOVA tests were used to compare the
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Figure 4.12: LSTM+CW+S Performance by Gender on the SMC (*p < 0.05, **p < 0.005,
***p < 0.0005)

three gender pairings on each metric (the results are shown in Figure 4.13, for exact confidence
intervals and p values see Table ??). No significant differences were found due to pairing for
frame level precision (F(2, 177) = 2.07, p = 0.13), nor were significant differences found for
event level precision (F(2, 177) = 0.12, p = 0.89), recall (F(2, 177) = 1.18, p = 0.31) or F1
(F(2, 177) = 0.067, p = 0.94). However, significant differences were found for frame level
recall (F(2, 177) = 7.64, p = 0.0007) with a post-hoc Tukey HSD test showing MM pairings
performed significantly worse than FF pairings and that MM pairings performed significantly
worse than MF pairings. However, there were no significant differences from MF to FF.

Regarding frame level F1, a one-way ANOVA test found significant differences due to pair-
ing (F(2, 177) = 3.19, p < 0.044), with a post-hoc Tukey HSD test showing MM pairings had
significantly worse performance than FF pairings. However, MM pairings were not significantly
different from MF pairings. Nor were MF pairings significantly different from FF pairings.

Regarding AUC, a one-way ANOVA test found significant differences due to pairing (F(2,
177) = 4.51, p < 0.012), with a post-hoc Tukey HSD test showing that MF pairings were signif-
icantly worse than FF pairings. However, MM pairings and FF pairings were not significantly
different. Nor were MM pairings and MF pairings. The gender effects described above go some
way towards explaining these differences. Conversations that only contained female speakers
generally saw better results because the detectors perform best for this gender.

The selected detector has relatively good recall (frame = 73.30 ± 11.72, event = 70.62 ±
9.73). However, its precision is poor (frame = 8.25 ± 2.30, event = 16.41 ± 3.95). This suggests
that this detector creates too many false positives. Although smoothing is shown to improve this
problem by improving precision by ∼6% at an event level compared with the pre-smoothing
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Figure 4.13: LSTM+CW+S Performance by Gender Pairing on the SMC (*p < 0.05, **p <
0.005, ***p < 0.0005)

detector, these gains come at the cost of only a ∼16% recall. Figure 4.14 shows that, although
the Hamming window is effective, the gains made reach a ceiling, in terms of F1, due to the
effect of recall dropping at around twice the rate of the rise in precision.

Given the above results, false positives have the largest impact on detector performance.
Table 4.11 displays the average count of audio events that caused false positives across the 6
folds and 3 repetitions. A chi-square goodness of fit test found that the distribution of event
level false positives differed significantly from the underlying distribution of events (X2 (4, N
= 120) = 10044.22, p < 0.001). Pearson residuals showed this effect was driven by three large
differences. Pauses accounted for less false positives than expected with a residual value of
-14.27 ± 1.68. This is surprising given previous results in the field, which found breathing
(classified in this dataset as pauses) to be commonly mistaken for unvoiced laughter [33]. It
is possible that there is less unvoiced laughter in the SMC, so the detectors were maybe not as
badly influenced as in other works. However, no data exists to confirm or refute this. Receiver
fillers also have a large negative residual (-4.95 ± 3.85), with a similar although less strong effect
seen for caller fillers, suggesting that fillers are mistaken for laughter less often than expected.
This suggests that laughter and fillers are sufficiently different to not be confused with each
other, even with the poorly performing detectors. This finding is also replicated in the field
more generally [27]. Finally, the largest residual was found for caller speech (17.95 ± 1.94).
Coupled with the negative residual associated with receiver speech (-6.14 ± 3.73), this suggests
that caller speech is more often confused with laughter than was expected. This result offers
support for the findings above, in terms of performance differences by role, with caller speech
seeming to differ from receiver speech; the former also causes more false positives. Finally,
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Figure 4.14: Effect of Different Hamming Window Sizes on Precision, Recall and F1 at an Event
Level

although the Pearson residual for the caller is larger compared to the receivers, both callers and
receivers contribute the most to the false positives, showing that speech is the main source of the
false positives. This must be addressed to improve laughter detectors.

Table 4.11: False Positives by Class. Class_r: receiver. Class_c: caller
Observed Expected Residual Pearson Residual

Pause 38.28 ± 33.65 276.07 ± 88.65 -237.79 ± 62.52 -14.27 ± 1.68
Receiver 301.33 ± 96.03 202.22 ± 138.24 -99.11 ± 57.40 -6.14 ± 3.73
Caller 659.39 ± 148.23 337.23 ± 116.98 322.16 ± 45.90 17.95 ± 1.94
Filler_r 24.61 ± 33.84 63.85 ± 22.04 -39.24 ± 32.41 -4.95 ± 3.85
Filler_c 52.00 ± 30.50 75.61 ± 32.28 -23.61 ± 18.12 -2.63 ± 1.97
Overlapping Speech 314.94 ± 92.32 261.10 ± 103.16 53.85 ± 50.06 3.74 ± 3.49

Overlapping Breakdown:
Receiver - Caller 197.17 ± 78.72 131.60 ± 61.06 65.57 ± 35.65 5.83 ± 3.59
Filler_r - Caller 11.44 ± 8.88 8.87 ± 6.95 2.57 ± 5.02 0.90 ± 1.55
Filler_c - Receiver 15.78 ± 10.83 18.37 ± 9.60 -2.59 ± 5.05 -0.62 ± 1.14
Receiver - Bc_c 24.17 ± 13.23 22.81 ± 10.74 1.36 ± 9.82 0.38 ± 2.07
Caller - Bc_r 7.47 ± 4.55 8.89 ± 8.01 1.42 ± 5.23 0.42 ± 1.52

A final possibility for the event level false positives is that the detectors are ‘near missing’
the events. Given that the peaks are merged across time, it is possible that a correct detection
at the edge of an event and a incorrect detection next to an event, may result in a merged peak
that is slightly off from the event. The first step to test this possibility is to define a ‘near miss’.
The average gap between laughter events is 41.66 ± 64.00s with a median of 18.27 s. This
suggests that the furthest a false positive could generally be from a laughter event is 9.10 s.
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Figure 4.15: Number of False Positives (Average (STD) Per Fold) by Their Distance, in Seconds,
from a Laughter Event (95% of False Positives Shown)

A near miss was defined as anything within 5% of this distance, or 0.46 s. If false positives
were distributed randomly, it would therefore be expected that 5% of false positives would exist
within this distance. Figure 4.15 shows the average number of false positives by distance from a
laughter event. It clearly shows that the majority of the missed events are within a few seconds
of the laughter events. Table 4.12 shows the percentage of false positives that fell within a given
time and the associated event level precision, recall and F1 if those near missed were reclassified
as true positives. It shows that, by reclassifying near misses as true positives, the event level F1
rises by ∼5% to 32.17 ± 5.78. This rise is caused by increases in both precision and recall,
which suggests that near misses existed close to both already detected events and missed events.
However, despite the increases in all event level metrics with the reclassification of near missed
false positives, the detector’s F1 remains below 40%. This shows that it is still ineffective; false
positives remain the greatest issue.

Table 4.12: Percentage of False Positives Within a Given Time of Laughter Events and the
Associated Precision, Recall and F1 if They Were Reclassified as True Positives

Time (s) Percentage of False Positives Precision Recall F1
Original - 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14

0.1 9.90 ± 2.44 17.22 ± 4.01 72.74 ± 9.86 27.51 ± 5.18
0.46 23.99 ± 5.55 20.49 ± 4.64 78.89 ± 9.27 32.17 ± 5.78
0.5 25.06 ± 5.72 20.95 ± 4.65 79.52 ± 9.06 32.79 ± 5.74
1 36.99 ± 8.21 24.34 ± 5.12 83.90 ± 8.28 37.36 ± 6.12
2 53.21 ± 10.08 28.94 ± 5.80 88.22 ± 7.20 43.17 ± 6.60
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4.2.10 Conclusion

This chapter replicated the work undertaken in laughter detection for the SVC. It was success-
ful in applying the methods developed in the field to laughter detection in terms of AUC and
precision, recall and F1 at both a frame and event level. The chapter then extended this work
by applying the same methods to the SMC. Using the SMC for laughter detection ensured that
two common experimental constraints were removed, those being the ratio of laughter to non-
laughter and the total audio time of the corpus. It was clearly shown that, in terms of precision,
recall and F1 at both the frame and event level, that the state-of-the-art methods reach a per-
formance ceiling of ∼25%. These experiments were carried out with the goal of answering
RQ1: Are state of the art laughter detectors effective when common experimental constraints
are removed? The results provide strong evidence that state-of-the-art methods are not effective.

This was shown to be driven by a decrease in precision due to false positives caused by
speech. This issue is directly caused by the removal of the constraints on total audio time and
the ratio of laughter to non-laughter. Longer audio and a lower percentage of laughter inevitably
leads to more speech frames. To improve the performance of laughter detectors in a type 3
context, therefore, it is imperative to develop methods that can reduce these false positives.
Chapter 5 addresses this major issue with the development of novel approaches to laughter
detection.



Chapter 5

Improving Laughter Detection

5.1 Motivation

Chapter 4 demonstrated that the current methods used in the laughter detection field suffer sig-
nificant drops in performance when applied to a type 3 task. In this chapter, novel approaches
are created and tested in an attempt to mitigate these drops in performance. The chapter is con-
sidered in two-parts. The first leverages automatic speech recognition (ASR) and voice activity
detection (VAD) in an attempt to reduce false positives and carry out automatic undersampling
to mitigate the class imbalance issue. This work was carried out to provide answers to RQ2: Can
the incorporation of linguistic data lead to improvements in laughter detection? The second part
extends the detectors to address fillers and back-channel events to also address the class imbal-
ance issue. Other works have examined laughter and filler detection concurrently [26,27,29,41];
however, one study also included back-channels [51]. Furthermore, this work is the first to apply
multi-cue detection to a type 3 task. This portion of the work directly addresses RQ3: What is
the effect of broadening the scope of laughter detectors to include multiple cues?. Section 5.2 ex-
plores this multi-cue work, while the remainder of this section focuses on the ASR/VAD related
approaches.

The performance analysis at the end of Chapter 4 showed that the best performing models
had high recall but poor precision. This precision issue was caused by false positives, which
were shown to be generally caused by speech events. This led to the creation of RQ2. It was hy-
pothesised that by providing linguistic information to the laughter detectors these false positives
could be removed. Exactly what information to provide and how to provide it was the subject of
the research and experiments of the first half of this chapter.

ASR information has been used in the field for laughter detection purposes. In one study,
the authors used the entropy in ASR predictions to mask the posteriors produced by a laughter
detection system [41]. Where the entropy in the ASR predictions was higher, it was hypothe-
sised that laughter would occur. This method led to improvements in laughter detection AUC of
between 5-10%. In a separate study, an ASR system was used to produce phoneme predictions,

55
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a second-stage then attempted to learn patterns in these phonemes, which aligned with laugh-
ter [37]. This approach achieved a precision and recall of around 90% in a type 1 task. In the
present work, ASR is leveraged in multiple novel ways and applied to a type 3 task for the first
time.

Further to the above issue of false positives, there remains the issue of large class imbalances
in laughter detection. Large class imbalances present obstacles to leveraging machine learning
algorithms [82]. In laughter detection, it has been shown that undersampling the data, which
leads to more balanced classes, improves laughter detection in the SVC [26]. However, no
method of automatic undersampling was proposed. Developing an automatic method, which
does not need to know a-priori the labels of the data, could improve laughter detection results.
Four ASR-based systems were developed and termed as follows:

• anti-detector,

• undersampling,

• feature vector extension,

• confidence-based alteration.

For each of the above methods, the approach as described in Section 4.2 is modified. Fig-
ure 5.1 shows the general approach along with each of the additional methods tested here. Build-
ing an ASR system was outside the scope of this project and, as such, an off-the-shelf system
was used. ASR was performed using VOSK [83]. VOSK accepts audio files as input and re-
turns the start and end time of each word detected. For each word detected, a list of possible
words that might have been spoken is generated. Each word in this list has an estimated risk
value attributed to it, calculated using minimum Bayes risk (MBR). VAD was detected using
ref. [84]. For each audio file, the system returns time stamps for the estimated start and end
times for all the voiced segments of that audio file. All frames that started within these start and
end times received a VAD value of 1, otherwise a value of zero was assigned. The following
subsections describe how each method operated. Results are displayed and discussed at the end
of the chapter.

5.1.1 Anti-Detector

The anti-detection system attempts to solve both the class imbalance issue and the false posi-
tive issue. The system works by identifying sequences in the audio in which the VAD system
detects vocal activity, but the ASR system does not output any words. In these sequences, the
VAD system would be used to identify all the vocalisations and ASR would be used to remove
vocalisation detections that were words, leaving behind only paralinguistic utterances. This anti-
detection system would then be trained to discriminate between all the remaining utterances to
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Figure 5.1: Modified Version of the Laughter Detection System. Red Route Shows Feature
Vector Extension. Blue Route Shows Confidence-Based Alteration. Purple Route Shows Un-
dersampling

group them into the various paralinguistic classes. By removing all ASR detections, a majority
of the false positives created by speakers speech should also be removed, leading to an increase
in precision. Furthermore, by only training on frames that the VAD system identified as speaker
vocalisations, it was theorised that the class imbalance issue would also reduce.

The success of the anti-detector system hinges on the presupposition that paralanguage exists
in frames where VAD occurs, independent of ASR detection. Before attempting to train/test
automatic detectors, this assumption was tested using the ground truth labels.

In total, there were 4533002 frames in the dataset, of these 52.52% were labelled as contain-
ing words by the ASR system, while 54.11% were detected as frames that contained voicing by
the VAD system. In terms of overlap, 55.03% of frames with a word associated with it also had
a voice activity detected. This suggests there was weak agreement between the two systems.
Some disagreement is expected given that the VAD system is attempting to detect all the vocal-
isations instead of just linguistic ones. However, all ASR frames should be detected by VAD as
well.

In terms of frames where VAD occurred independently of ASR (which is where paralan-
guage was initially theorised to occur), the actual labels of these frames can be broken down as
follows: 75.07% were speech frames, 16.50% were pauses, 4.34% were laughter, 2.27% were
fillers and 0.80% were backchannels. The 4% of laughter that occurred in the independent VAD
frames represents 38.70% of all the laughter frames. This means that, on a frame level, the
anti-detector was not a viable solution. This is because, before even beginning to detect laughter
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in the independent VAD frames, 61.30% of laughter would already be mislabelled as a false
negative.

However, it was possible that the anti-detector system could work at an event level. For ex-
ample, if the 38% of laughter frames were spread throughout all the laughter events, it would be
possible to detect them in the final system. To test this theory, each laughter event was examined
and tested for the presence of VAD, independent of word detection. Only 39.86% of the laughter
events contained at least one frame of independent VAD detection. Unfortunately, these results
replicated the issue seen above that around 60% of the events would be false negatives before
any detection took place, essentially rendering the anti-detector useless.

5.1.2 Undersampling

Undersampling has been shown in the literature to improve results in paralinguistic detection,
with ref. [26] showing some of the best results in both the BEA and the SVC, with F1 scores
for both in the range of 75-95%. However, these results were demonstrated on an undersampled
test set. The authors selected all the laughter segments and then extracted an equal number of
non-laughter segments, essentially ensuring that the class-distribution in both the training and
test sets was 50/50. Although undersampling in this manner is accepted practice when creating
a training set, the method is rarely applied to the test dataset. Undersampling the test set in
this way makes the task significantly easier for a detector to perform, meaning results are often
unjustifiably inflated. Furthermore, by undersampling the test set, it becomes impossible to
generalise the models’ efficacy on real-world audio since undersampling of the real-world data
would be impossible. The proposed system leverages the idea that the words detected by the
ASR system may be wrong but will probably line up with where actual words occurred.

In this system, during training, all the frames that overlapped with words output by the ASR
were removed from the dataset and the detectors were trained on what remained. The remaining
frames should be comprised of silence, paralanguage and any linguistic vocalisations the ASR
missed. After being trained on the undersampled dataset, the system was tested by providing
predictions on the entirety of the test dataset. However, all the frames in the test set that were
labelled as words by the ASR had their predictions set to zero.

Around 82% of the audio data is speech. The ASR system labelled 61.20% of that speech
data correctly as containing speech. Only 5% of the frames that the ASR detected as having
words were incorrect. Some of these incorrect labels did occur on laughter frames. A total of
9.42% of the laughter frames were labelled as speech by the ASR. At an event level, 126 events
had more than 50% of their frames labelled as speech, with only 22 of those being fully labelled
as speech. This means that 93.01% of laughter events had at least 50% of their frames untouched
by the ASR, with a total of 73.06% of events having none of their frames labelled as speech.
These results supported the idea of using the ASR system to undersample the data prior to train-
ing. This method enabled the removal of around 50% of the training data while only removing
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a small amount of laughter and was a method of undersampling that was independent of human
coded labels, meaning it could be used in real world applications. These results showed that
the undersampling technique maintains the majority of the laughter data while removing a large
chunk of the overall data. All the systems that utilise undersampling are henceforth labelled
with U .

5.1.3 Feature Vector Extension

In this detection method, the ASR information was included in the feature vectors created in
the feature extraction step. This method does not address the class imbalance issue, as none
of the underlying data is removed. However, it was theorised that the additional information
would enable the neural networks to reduce the false positives associated with speech. In both
of the above methods, mistakes in the ASR and VAD systems can lead to the removal of laughter
frames/events. In this method, there is a chance that, in those cases where mistakes are made by
ASR and VAD, the remainder of the feature vector’s information may enable the system to still
identify it.

To extend the feature vectors in this way, the ASR and VAD information was summarised in
terms of two features: whether there was speech or not (1 or 0) and the MBR confidence in the
estimated most likely word (a value between 0 and 1). Aside from the alteration of the size of
the input feature vector, the remainder of the approach is unchanged. All the systems that use
the extended feature vectors are henceforth labelled with E.

5.1.4 Confidence-Based Alteration

In this system, the ASR information is incorporated through alteration of the posterior proba-
bilities output by each detector. The alteration is based on the MBR estimated for each frame.
Alterations are undertaken using the following equation:

pa = pe(1− pw), (5.1)

where pa is the probability for each frame after adjustment, pe is the original estimated posterior
probability that a frame is laughter and pw is the estimated MBR probability that the detected
word is the actual word. The MBR adjustment is carried out before the convolution with the
Hamming window. This method ensures that, in cases where the ASR is certain or nearly certain
of a detected word, the laughter detector will zero the probability for the necessary frames.
However, in the case where the ASR is less certain, as is predicted to be the case when the ASR
mistakenly detects paralanguage as language, these probabilities will be lowered but not zeroed.
This approach has a similar advantage as the feature vector extension system, in comparison to
both undersampling and anti-detection, in that it incorporates an amount of uncertainty into the
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Table 5.1: Hyper-Parameter Optimisation Results for Each Detector and Metric Using ASR
Approaches. FFN: feed forward neural network. LSTM: long short-term memory network. CW:
class weight. U: undersampling. E: feature vector extension. C: confidence-based alteration. All
FFN detectors had 2 FFN hidden layers. All LSTM detectors had 2 FFN hidden layers and 2
LSTM hidden layers. All hidden layers had 100 nodes

Model Architecture
Window Size

Cut-off M
AUC F1 (frame) F1 (event)

FFN+CW No Effect No Effect 31 10
FFN+CW+U 31 No Effect 31 1
FFN+CW+C 11 No effect 11 1
FFN+CW+E 41 No effect 71 10
LSTM+CW 61 No Effect 31 10
LSTM+CW+U No Effect No Effect 41 1
LSTM+CW+C 51 No Effect 11 1
LSTM+CW+E No Effect No Effect 81 10

ASR prediction rather than removing everything labelled as words by the ASR. All the systems
that utilise confidence-based alteration are henceforth labelled with C.

5.1.5 Training and Testing

Since the above methods generally attempt to improve F1 by improving precision, it was decided
that the models with the best recall would be used as the underlying detector systems. From the
results in Chapter 4, the model with the highest recall from each underlying architecture was
the LSTM+CW and the FFN+CW. Each of the above four methods were applied to each of
these models and the results examined. Multiple of the tested methods adjusted the posteriors
produced by the detectors to zero. If there are mistaken detections centred around these areas,
it is possible therefore that these methods may create extra peaks in the sequence, which would
negatively impact both frame and event level metrics. As such, all the tested methods and
architectures results are reported with and without the Hamming window convolution applied.

A k-fold approach was again used by employing the same folds as the previous chapter. The
same hyper-parameter optimisation process was used, with each detector being optimised. The
results are displayed in Table 5.1.

5.1.6 Results: Frame Level

Table 5.2 displays the frame level metrics by model and method. First examining AUC, a one-
way ANOVA test found significant differences between detectors (F(15, 272) = 25.70, p <

0.0001). A post-hoc Tukey HSD test was used to identify which models differed. The baseline
detector LSTM+CW+S was not significantly outperformed by any of the new methods on either
architecture. For exact p-values, lower and upper confidence intervals see Table B.1. These
results would suggest that none of the new methodologies have a positive impact.



CHAPTER 5. IMPROVING LAUGHTER DETECTION 61

Figure 5.2: Frame Level Precision Performance by Detector and Method Using ASR Ap-
proaches. Significance Differences Shown in Relation to FFN+CW (***p < 0.0005)

Examining instead the effect that the tested methods had on the frame level precision of the
detectors, a one-way ANOVA test showed significant differences between models (F(15, 272) =
8.55, p < 0.0001). A post-hoc Tukey test found that the baseline model FFN+CW was signifi-
cantly outperformed by FFN+CW+U+S, FFN+CW+C+S, LSTM+CW+U+S and LSTM+CW+C+S
detectors. Figure 5.2 displays the changes in precision and their significance. For exact p-values,
lower and upper confidence intervals see Table B.2. LSTM+CW+C+S saw the highest frame
level precision; it significantly outperformed FFN+CW+C+S. However, there was no significant
difference between LSTM+CW+C+S and the two other detectors that outperformed the base-
line, FFN+CW+U+S and LSTM+CW+U+S, suggesting equal improvements between them.
The results indicate that both architectures benefit from undersampling and confidence-based
alteration, but only after convolution with the Hamming window.

Turning now to the frame level recall results, a one-way ANOVA test once again found sig-
nificant differences between detectors (F(15, 272) = 15.70, p <0.0001). A post-hoc Tukey HSD
test revealed multiple significant differences, which can be seen in Figures 5.3 and 5.4. For
exact p-values, lower and upper confidence intervals see Table B.3. Due to the LSTM and FFN
baseline architectures having significant performance differences between them, the results of
the additional methods trialled here are given with respect to both baselines. FFN+CW+C+S
had significantly worse recall than the FFN+CW baseline. While four of the new methods, i.e.,
FFN+CW+E, FFN+CW+E+S, LSTM+CW+E and LSTM+CW+E+S, and the two LSTM base-
line detectors, all performed significantly better than the FFN+CW baseline. However, when
comparing these four detectors with the LSTM+CW-based baseline, there were no significant
differences. Furthermore, three of the new methods, i.e., FFN+CW+C+S, LSTM+CW+U and
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LSTM+CW+U+S performed significantly worse than the LSTM+CW baseline. These results
are promising since the methods tested were intended to increase precision without affecting re-
call. Unfortunately, although the negative impact on recall was localised to a few detectors, two
of these detectors (FFN+CW+C+S and LSTM+CW+U+S), which showed significant decreases
in recall, were also two of the detectors that saw significant increases in precision. This may
result in any gains being negated by the losses.

Figure 5.3: Frame Level Recall by Detector and Method Using ASR Approaches. Significance
Differences Shown in Relation to FFN+CW (*p < 0.05, **p < 0.005, ***p < 0.0005)

Figure 5.4: Frame Level Recall by Detector and Method Using ASR Approaches. Significance
Differences Shown in Relation to LSTM+CW+S (*p < 0.05, ***p < 0.0005)
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Examining frame level F1, a one-way ANOVA test was run that found significant differ-
ences in F1 performance between detectors (F(15, 272) = 21.93, p < 0.0001). A post-hoc Tukey
HSD test was used to identify differences between methods, the results of which (given in re-
lation to the LSTM+CW+S baseline) are provided in Figure 5.5. For exact p-values, lower and
upper confidence intervals see Table B.4. The best performing baseline (LSTM+CW+S) was
significantly improved upon by six detectors FFN+CW+U+S, FFN+CW+E+S, LSTM+CW+U,
LSTM+CW+U+S, LSTM+CW+C and LSTM+CW+C+S. Of these LSTM+CW+C+S achieved
the highest overall score. The post-hoc Tukey test found that two of these six were significantly
worse than this (FFN+CW+E+S and LSTM+CW+U). The remaining three saw no significant
difference (FFN+CW+U+S, LSTM+CW+U+S and LSTM+CW+C) with exact p-values, lower
and upper confidence intervals in relation to LSTM+CW+C+S given in Table B.5. This leaves
a total of four top performing detectors that significantly outperformed the best baseline de-
tector. Taken together, the main driver for three of these improved detectors appears to be the
significant improvements in precision (FFN+CW+U+S, LSTM+CW+U+S, LSTM+CW+C+S).
The final significantly better detector, LSTM+CW+C, did not show significant improvements in
precision over the best performing baseline. However, it did have significant precision improve-
ments over the LSTM architecture baselines, which enabled it to significantly outperform that
baseline in terms of F1.

Figure 5.5: Frame Level F1 Performance on the SMC by Detector and Method Using ASR
Approaches. Significant Differences Shown in Relation to LSTM+CW+S (*p < 0.05, ***p <
0.0005)

In the case of the FFN architecture, undersampling is the most effective method. With
confidence-based alteration and undersampling effectively performing when coupled with the
LSTM architecture. The FFN-based architecture shows an increase in recall when using un-
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Table 5.2: Frame Level Performance of Each Detection Method and Architecture for the SMC
Using ASR Approaches. FFN: feed forward neural network. LSTM: long short-term memory
network. CW: class weight. S: smoothing. C: confidence-based alteration. E: feature vector
extension. U: undersampling. Bold highlights the best performing detector for each underlying
architecture

Model Precision Recall F1 AUC
FFN+CW 8.25 ± 11.10 46.99 ± 29.86 6.75 ± 4.27 58.21 ± 14.02
FFN+CW+S 7.63 ± 7.45 44.52 ± 29.20 9.54 ± 6.55 61.59 ± 20.16
FFN+CW+U 13.32 ± 3.44 58.22 ± 4.58 21.42 ± 4.50 78.21 ± 1.44
FFN+CW+U+S 20.28 ± 5.53 56.36 ± 5.55 29.24 ± 5.97 83.87 ± 1.58
FFN+CW+C 16.97 ± 20.01 36.77 ± 23.17 12.09 ± 8.55 70.38 ± 8.65
FFN+CW+C+S 23.92 ± 19.65 29.19 ± 18.09 19.13 ± 13.65 75.27 ± 12.25
FFN+CW+E 9.50 ± 3.24 70.54 ± 4.25 16.48 ± 4.90 83.70 ± 0.99
FFN+CW+E+S 14.07 ± 5.07 73.13 ± 5.64 23.02 ± 6.97 89.26 ± 1.06
LSTM+CW 7.09 ± 1.81 69.77 ± 10.13 12.73 ± 2.83 79.96 ± 1.78
LSTM+CW+S 8.25 ± 2.30 73.30 ± 11.72 14.62 ± 3.50 84.16 ± 1.70
LSTM+CW+U 15.51 ± 6.66 51.80 ± 13.81 23.20 ± 8.44 78.66 ± 1.75
LSTM+CW+U+S 22.90 ± 9.91 49.57 ± 12.81 30.34 ± 10.41 83.54 ± 2.09
LSTM+CW+C 17.31 ± 4.45 54.57 ± 7.71 25.67 ± 4.68 82.06 ± 1.61
LSTM+CW+C+S 25.53 ± 7.19 54.40 ± 8.77 33.47 ± 5.85 86.43 ± 1.97
LSTM+CW+E 8.72 ± 3.17 74.19 ± 12.36 15.24 ± 4.84 83.20 ± 3.99
LSTM+CW+E+S 11.10 ± 5.34 77.09 ± 14.16 18.42 ± 7.14 87.44 ± 2.92

dersampling. This is despite some laughter frames predictions being set to zero since the ASR
misclassified them as speech. The results suggest that the effect of better balanced classes out-
weighs these mistakes.

With respect to the LSTM-based architecture. A decrease in recall in the undersampling
methods was expected. However, this drop was compensated for by the intended increase in
precision. This suggests that some of the methods employed were effective in reducing the
number of false positives produced by the detection methods, achieving the stated goal at a
frame level. These methods led to significant improvements in terms of F1. However, despite
these improvements, the overall performance of all the detectors remains below 40%.

5.1.7 Results: Event Level

Table 5.3 displays the event level performance by model and method applied. Once again ex-
amining the effect on precision, a one-way ANOVA test was carried out that revealed significant
differences between detectors (F(15, 272) = 11.23, p < 0.0001). Figure 5.6 displays the results
of a post-hoc Tukey test, in relation to the LSTM+CW+S baseline. For exact p-values, lower
and upper confidence intervals see Table B.6. It found that three detectors (FFN+CW+U+S,
LSTM+CW+U+S and LSTM+CW+C+S) showed significantly better precision. The detector
with the highest overall score, LSTM+CW+C+S, showed no significant difference from the
other two best performing detectors (FFN+CW+U+S: p = 0.86, 95% C.I. = [-5.76, 20.28],
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Table 5.3: Event Level Performance of Each Detection Method and Architecture for the SMC
Using ASR Approaches. FFN: feed forward neural network. LSTM: long short-term memory
network. CW: class weight. S: smoothing. C: confidence-based alteration. E: feature vector
extension. U: undersampling. Bold highlights the best performing detector for each underlying
architecture

Model Precision Recall F1
FFN+CW 8.59 ± 9.36 70.02 ± 29.89 10.06 ± 4.60
FFN+CW+S 13.00 ± 15.31 39.71 ± 24.09 12.52 ± 9.15
FFN+CW+U 13.93 ± 4.25 88.89 ± 3.08 23.84 ± 6.21
FFN+CW+U+S 31.14 ± 7.58 67.49 ± 4.12 42.12 ± 7.47
FFN+CW+C 18.53 ± 20.17 69.61 ± 28.37 17.20 ± 11.09
FFN+CW+C+S 23.62 ± 25.04 38.80 ± 24.80 22.00 ± 18.09
FFN+CW+E 12.11 ± 3.84 91.92 ± 2.87 21.17 ± 5.92
FFN+CW+E+S 24.23 ± 7.95 75.72 ± 4.45 35.91 ± 9.05
LSTM+CW 10.23 ± 2.39 86.94 ± 7.70 18.18 ± 3.76
LSTM+CW+S 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14
LSTM+CW+U 23.42 ± 10.28 75.31 ± 7.71 34.25 ± 11.58
LSTM+CW+U+S 34.54 ± 14.60 60.79 ± 8.58 41.59 ± 11.63
LSTM+CW+C 27.26 ± 6.19 78.69 ± 7.48 39.90 ± 6.51
LSTM+CW+C+S 38.40 ± 8.41 60.25 ± 7.96 45.89 ± 6.00
LSTM+CW+E 13.81 ± 5.65 86.74 ± 5.57 23.32 ± 8.28
LSTM+CW+E+S 19.02 ± 6.99 75.13 ± 7.61 29.50 ± 8.82

LSTM+CW+U+S: p = 1.00, 95% C.I. = [-16.88, 9.16]). These results are, in general, in agree-
ment with the frame level results. This is because the same detectors, at both levels, achieved
better results with the exception of FFN+CW+C+S, which failed to achieve a significant differ-
ence at an event level.

Examining the recall scores, a one-way ANOVA test found significant differences (F(15,
272) = 20.23, p <0.0001). The results of a post-hoc Tukey test, shown in relation to the
LSTM+CW baseline, are displayed in Figure 5.7. For exact p-values, lower and upper con-
fidence intervals see Table B.7. No detector achieved a significant increase in recall with re-
spect to the best performing baseline LSTM+CW . Five of the new methods (FFN+CW+U+S,
FFN+CW+C, FFN+CW+C+S, LSTM+CW+U+S and LSTM+CW+C+S) performed significantly
worse in recall compared with this baseline. Unfortunately, all three of the detectors that showed
improvements for precision are in this group, suggesting that, at an event level, the methods may
be too detrimental to recall for them to be useful.

Examining event level F1, a one-way ANOVA test once again found significant differ-
ences between detectors (F(15, 272) = 27.27, p < 0.0001). Figure 5.8 displays the results of
a post-hoc Tukey HSD test in relation to the LSTM+CW+S baseline. For exact p-values, lower
and upper confidence intervals see Table B.8. It found that four detectors (FFN+CW+U+S,
LSTM+CW+U+S, LSTM+CW+C and LSTM+CW+C+S) significantly out-performed the base-
line. This suggests that, despite the negative impact on recall, the improvements in precision
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Figure 5.6: Event Level Precision on SMC by Detector and Method Using ASR Approaches.
Significant Differences Shown in Relation to LSTM+CW+S Baseline Detector (*p < 0.05,
***p < 0.0005)

Figure 5.7: Event Level Recall by Detector and Method on SMC Using ASR Approaches. Sig-
nificant Differences Shown in Relation to LSTM+CW Baseline Detector (*p < 0.05, ***p <
0.0005)
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Figure 5.8: Event Level F1 Performance on the SMC by Detector and Method Using ASR
Approaches. Significant Differences Shown in Relation to LSTM+CW+S Baseline Detector
(***p < 0.0005)

are enough to still create significant improvements overall. Taken together, the frame and event
level results agree that the confidence-based alteration and undersampling method are the most
effective, with the underlying neural network architecture mediating each method’s effective-
ness.

5.1.8 Performance Analysis

The following section describes a performance analysis carried out on the best performing detec-
tor from this chapter: LSTM+CW+C+S. The latter is henceforth termed the confidence-based
alteration system (CBA). This detector saw a significant increase in precision compared with
the baseline, but this was coupled with a significant decrease in recall. However, overall, the
increase in precision outweighed the recall issue, resulting in a significant improvement in F1
performance at both a frame and an event level.

The first step in this performance analysis is to examine between-group differences that may
be affecting detector performance. Descriptive statistics for the CBA’s system performance by
gender, role and gender pairing are displayed in Table 5.4 for frame level metrics and Table 5.5
for event level metrics.

In terms of role, independent t-tests were used to compare the performance of the CBA
system for each metric. Much like in the previous chapter, there were significant differences.
However, where those differences were found, the direction of them had changed. These differ-
ences, for both the CBA system and the baseline, are shown in Figure 5.9 for frame level results
and Figure 5.10 for event level outcomes.
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Table 5.4: Frame Level Performance of LSTM+CW+C+S for the SMC by Group Split
Precision Recall F1 AUC

Caller 39.93 ± 23.89 57.97 ± 20.32 41.76 ± 18.79 88.48 ± 6.55
Receiver 41.71 ± 24.56 46.99 ± 20.28 38.53 ± 18.37 84.83 ± 9.59
Male 35.48 ± 24.87 48.37 ± 21.97 35.45 ± 19.49 84.79 ± 9.28
Female 45.65 ± 22.61 56.20 ± 19.39 44.39 ± 16.76 88.22 ± 7.24
MM 25.04 ± 21.02 47.38 ± 21.34 26.76 ± 18.33 86.74 ± 6.92
FF 34.21 ± 19.64 60.31 ± 18.14 37.00 ± 15.01 89.85 ± 5.86
MF 27.41 ± 15.02 54.56 ± 17.18 33.54 ± 13.61 86.50 ± 6.94

Table 5.5: Event Level Performance of LSTM+CW+C+S for the SMC by Group Split
Precision Recall F1

Caller 24.70 ± 16.05 72.97 ± 15.55 33.84 ± 16.98
Receiver 22.06 ± 13.66 45.47 ± 18.07 26.88 ± 13.48
Male 20.43 ± 15.16 53.27 ± 21.52 26.41 ± 15.06
Female 25.87 ± 14.39 64.77 ± 20.48 33.78 ± 15.55
MM 31.24 ± 26.30 51.59 ± 24.38 33.24 ± 22.76
FF 52.77 ± 26.90 69.09 ± 20.54 52.14 ± 19.41
MF 43.61 ± 22.80 62.71 ± 17.75 48.39 ± 19.22

CBA frame level precision has no significant performance differences in relation to role
(t(358) = 1.16, p = 0.69), suggesting that the CBA system negated the issues of the baseline
system. This change also impacted the frame level F1, which is also no longer significantly
different (t(358) = 1.65, p = 0.10). However, in both the CBA and baseline systems, there were
significant differences in frame level recall with callers, which sees significantly better perfor-
mance than receivers (t(358) = 5.12, p < 0.0001). In AUC, the CBA system was significantly
better with callers than with receivers (t(358) = 4.13, p < 0.0001). However, in contrast to this,
the baseline system saw receivers with significantly better performance.

At an event level, the CBA saw the introduction of a significant difference in performance
in both recall (t(358) = 7.55, p < 0.001) and F1 (t(358) = 2.67, p = 0.0086). Recall was signif-
icantly better for callers compared with receivers, mirroring the frame level results, and shows
the same trend from baseline to CBA. However, the CBA system also saw the introduction of
a significant difference in the event level F1 metric, with callers seeing significantly better per-
formance. This differs from the baseline system, in which no significant differences between
roles were found in event level F1. Since the CBA system did not attempt to address the differ-
ences found between callers and receivers, as in the previous chapter’s performance analysis, it
is unsurprising that significant differences in performance remain. The differences in the trends
between the baseline and CBA systems is probably due to the low caller precision seen in the
baseline detector. As the CBA system specifically addressed precision, it removed the differ-
ences in roles. Further support for this can be seen in the recall results, which have the same size
and direction of the difference as seen in the baseline.
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Figure 5.9: Frame Level LSTM+CW+C+S Performance by Role for the SMC. B: baseline
LSTM+CW+S. C: confidence-based alteration LSTM+CW+C+S (***p < 0.0005)

Figure 5.10: Event Level LSTM+CW+C+S Performance by Role for the SMC. B: baseline
LSTM+CW+S. C: confidence-based alteration LSTM+CW+C+S (***p < 0.0005)
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Figure 5.11: Frame Level Performance by Gender for the SMC. B: baseline LSTM+CW+S. C:
confidence-based alteration LSTM+CW+C+S (***p < 0.0005)

Now examining the differences in performance by gender, the t-tests were once again used
to test for significant differences in performance by metric. Figure 5.11 displays frame level
and Figure 5.12 shows event level differences for both the CBA and baseline systems. Signif-
icant differences in CBA performance by gender were found in all metrics (exact significance
values given in Table B.9) In all cases, female performance was significantly better than male
performance. This suggests a worsening of the performance differences found in the baseline
system. This is because there was no significant difference by gender in the baseline system
in frame level precision or AUC. The underlying distribution of laughter, with female speakers
tending to laugh more than males, was suggested as an explanation in the previous chapter for
the gender differences seen. However, this interpretation cannot explain why the CBA system
would introduce more/worse differences. It is possible that, when the CBA system reduces false
positives, the higher number of possible true positive events for females leads to unequal in-
creases in precision. The equation for calculating precision is given in Section 2.5. If there
are an equal proportion of male and female laughs spotted, the value of female true positives
would be greater than male false positives. With an equal reduction of false positives for both
genders, the resulting precision statistic would, therefore, rise further for female speakers. As
explained in the performance analysis at the end of the previous chapter, similar data distribu-
tion effects have been solved in other fields through the collection of more data representing the
under-represented class.

In relation to performance by the gender pairing of a conversation, Figures 5.13 (frame level)
and 5.14 (event level) show the significant differences found using a one-way ANOVA test for
each metric. Exact values for each ANOVA and associated post-hoc Tukey tests can be found
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Figure 5.12: Event Level Performance by Gender for the SMC. B: baseline LSTM+CW+S. C:
confidence-based alteration LSTM+CW+C+S (*p < 0.05, **p < 0.005, ***p < 0.0005)

in Table B.10. As seen with the gender effects above, the increase in precision at both a frame
and event level has not been distributed equally and, thus, significant differences in pairing
performance are seen in the CBA system.

In frame level precision, recall, and F1 MM pairings had significantly worse performance
than FF pairings. However, in all three metrics there was no significant difference between FF
pairings and MF pairings, nor between MF and MM pairings. In AUC MF pairings performed
significantly worse than FF pairings. There were no significant differences found between MF
and MM pairings, nor between MM and FF. Similarly in event level precision, recall, and F1
MM pairings performed significantly worse than FF pairings. In addition, MM pairings per-
formed significantly worse than MF pairings in all three event level metrics. For FF and MF
pairings there was no significant difference in any event level metric. The differences in pairing
performance are probably due to the gender differences seen above, especially given the increase
in the differences seen in gender introduced by the CBA system.

The CBA system saw a significant decrease in recall compared with the baseline detectors.
To investigate the cause of this fact, a comparison between the LSTM+CW+C+S and the base-
line was carried out. This investigated which events were spotted by the baseline but missed by
the CBA system. It was found, on average, that the confidence-based alteration detector failed to
detect 36.40 ± 16.08 laughter events per fold that the baseline detector did detect. The average
length of these events was 0.77 ± 0.08 s, which is above the average for laughter events in the
corpus (see Chapter 3, Table 3.1, for full details), suggesting that the issue is not the length of
the laughter events.

Of the missed events, 91.38 ± 12.29% of them had speech detected by the ASR system.
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Figure 5.13: Frame Level Performance by Gender Pairing for the SMC. B: baseline
LSTM+CW+S. C: confidence-based alteration LSTM+CW+C+S (*p < 0.05, **p < 0.005)

Figure 5.14: Event Level Performance by Gender Pairing for the SMC. B: baseline
LSTM+CW+S. C: confidence-based alteration LSTM+CW+C+S (*p < 0.05, ***p < 0.0005)
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Table 5.6: Average Percentage of Events That Overlapped with Laughter Events Missed by the
LSTM+CW+C+S Detector but Detected by the LSTM+CW+S Baseline

Event Type Missed Events
Speech 76.57 ± 12.03
Filler 9.96 ± 6.28
Back-Channel 1.70 ± 3.33
Laughter 11.77 ± 8.01

The average coverage of events by the ASR detections was 49.03 ± 10.56%, meaning that, for
∼90% of the events, half of that event’s frames were classed as having ASR. Given that ∼10%
of missed events had no ASR detection and of the 90% of events that did have ASR detections
around half of their frames were not tagged as ASR, these events could still be detected by the
CBA system. However, it is likely that the confidence-based alteration manages to suppress any
peaks in the posterior sequence, which could give rise to an event detection in these cases. This
suppression is done by creating zero or near zero values in the posterior sequence that, when
coupled with the smoothing step, suppress the amplitude of any peaks below the cut-off percent
threshold that would have counted them as event detections. For the 10% of events that have no
ASR detections, this suppression is probably caused by zeroing or near zeroing of the frames
either side of an event, having the similar effect of lowering the maximum amplitude after the
smoothing step.

Despite the majority of events having ASR detections, only 62.19 ± 9.31 of these events
actually had overlapping events according to the ground truth labels; the distribution of what
type of event was overlapping with the missed laughter event is displayed in Table 5.6. This
clearly shows that the majority of the overlaps were caused by speech, so ASR detections are
expected. However, as only ∼60% of events actually had overlapping events and only ∼75% of
these overlaps were caused by speech, this leaves around 50% of the mistaken ASR detections
unexplained. This suggests that, in around half the cases of these missed laughter events, the
ASR system made a mistake. Support for this claim can be found by examining the MBR
confidence. The MBR confidence of the ASR system detections of these missed events was on
average 51.05 ± 7.50% (min = 11.04 ± 5.76, max = 85.65 ± 3.69), whereas the average MBR
confidence across each fold was 83.27 ± 0.62%. An independent T-test found these averages
to be significantly different (t(1002) = 8893.51, p < 0.0001), showing that the ASR was indeed
less confident at detecting overlapping with laughter. However, the average confidence remains
over 50%, which means that the equation used to implement the adjustment (see Section 5.1)
would halve the posterior probability of the laughter frames - leaving them below the frame level
classification for laughter and suppressing the smoothed posteriors. This leads to the lowering
of any peaks that may have occurred during the event and, thus, the event not being detected
even in the case of the ASR system being uncertain.

It may be possible that a more conservative incorporation of the ASR MBR confidence may
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Table 5.7: Event Level Precision, Recall and F1 for LSTM+CW+C+S Using a Threshold-Based
Alteration System

Confidence Level Precision Recall F1
Original System 38.40 ± 8.41 60.25 ± 7.96 45.89 ± 6.00

0 38.99 ± 8.76 59.92 ± 7.90 46.16 ± 6.11
0.1 38.99 ± 8.76 59.92 ± 7.90 46.16 ± 6.11
0.2 38.96 ± 8.78 59.96 ± 7.94 46.15 ± 6.13
0.3 38.27 ± 8.45 60.28 ± 7.85 45.80 ± 6.03
0.4 36.50 ± 7.73 61.31 ± 7.95 44.84 ± 5.86
0.5 33.67 ± 7.17 62.62 ± 7.82 42.98 ± 5.82
0.6 30.85 ± 6.87 64.29 ± 8.06 40.92 ± 5.89
0.7 28.79 ± 6.38 65.62 ± 7.99 39.35 ± 5.96
0.8 26.80 ± 6.15 66.47 ± 8.27 37.55 ± 6.04
0.9 25.06 ± 6.00 67.67 ± 8.64 35.98 ± 6.30
1 23.67 ± 5.60 68.28 ± 8.40 34.64 ± 6.14

result in better recall. To test this possibility, a new system was tested where if the MBR for
a frame was above a threshold value that frame’s posterior would be set to zero. This means
that the effect of high confidence ASR detections would remain the same as the original system,
with the posteriors being zeroed. However, for lower confidence ASR detections, the posteriors
would be preserved. Table 5.7 shows the precision, recall and F1 for difference threshold levels.
At a threshold level of zero, there is no significant difference between the threshold approach
and the original approach. This offers further evidence that, in the event when the ASR MBR
confidence is low, it is still high enough to practically zero the posteriors. Moving from a
threshold value of 0.3 to 0.4, there is some recovery of recall; however, this is offset by a
lowering of precision. This drop in precision is greater than the increase in recall, meaning that
the threshold system has no advantage over the original one. As was the case in Chapter 4, there
is a ceiling on how effective methods can be and, in the case of confidence-based alterations,
that ceiling is an F1 of ∼45%.

Finally, the issue of near misses was investigated. It was shown in the previous chapter that
25% of the false positives generated by the best performing detector were near-misses. This
was 20% above what would be expected if false positives were randomly distributed. The same
analysis was carried out for the CBA system, with results shown in Table 5.8. The results show
that 29.49 ± 8.95% of the false positives were near misses. This is around 5% higher than the
baseline model. This increase suggests that the CBA system removed false positives that existed
further from laughter events, meaning the system was effective in removing the type of false
positive that it was intended to address. Furthermore, when reclassifying the near misses as true
positives, the performance of the system in terms of event level F1 increases to 50.61 ± 5.70.
This is the first time that any system has had an average performance above 50%.
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Table 5.8: Percentage of False Positives Within a Given Time of Laughter Events and the Asso-
ciated Precision, Recall and F1 if They Were Reclassified as True Positives for the CBA System
Time (s) Percentage of False Positives Precision Recall F1
Original - 38.40 ± 8.41 60.25 ± 7.96 45.89 ± 6.00

0.1 14.59 ± 5.16 39.45 ± 8.55 61.79 ± 8.05 47.11 ± 5.90
0.46 29.49 ± 8.95 42.73 ± 8.66 65.35 ± 8.99 50.61 ± 5.70
0.5 30.26 ± 9.20 43.11 ± 8.73 65.74 ± 9.01 50.99 ± 5.73
1 40.92 ± 10.17 46.16 ± 8.99 69.69 ± 9.77 54.46 ± 6.03
2 57.72 ± 11.65 49.68 ± 9.27 74.26 ± 9.65 58.51 ± 6.24

5.2 Multi-Cue Detection

The previous section explored the feasibility and effectiveness of the inclusion of ASR data
through various new pre/post-processing methods. It showed that these methods all led to sig-
nificant improvements over the state-of-the-art procedures displayed in Chapter 4, with the per-
formance of the best detector achieving an event level F1 of ∼50%. This section explores
another method for improving laughter detection by addressing the class imbalance issue.

The SMC contains annotations for two other paralanguage cues: filler and back-channel.
Fillers comprise 4.51% of the SMC and back-channel events consist of 1.00%. Fillers, also
called filled pauses, are short utterances (“Um", “ah", “er") made by a speaker [85]. They have
been found to signal a speaker’s uncertainty [86] and to help manage the turn-taking and struc-
ture of a conversation [87, 88]. Back-channel are utterances that can consist of short words
or sounds similar to fillers. Back-channel are used by a conversation participant who is not
currently holding the floor of the conversation, to signal that they are still engaged in the con-
versation [89]. This means that they always overlap with another speaker’s speech. All three of
these cues (i.e., laughter, filler and back-channel) can be considered forms of non-verbal com-
munication (NVC). When considered as a single super class, they account for around 9% of the
total data in the SMC. It is possible that by extending the detection systems by including these
labels, the class imbalance issue may be lessened and the performance of the detectors improved.
Further, this may aid in the reduction of the false positives cause by speech. By drawing a clear
distinction between verbal and non-verbal communication it was theorised that possible causes
of confusion during training would be lessened. These ideas led to the creation of RQ3: What
is the effect of broadening the scope of laughter detectors to include multiple cues? As with the
above inclusion of linguistic information there were multiple ways of extending the detectors to
other cues. Three approaches were developed to test this research question:

• multi-label system,

• joint NVC with individual detectors,

• joint NVC with NVC distinguisher.
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In the multi-label system the detectors were modified from binary classifiers to multi-class
classifiers. Rather than defining the problem as a target class versus not, the problem was instead
extended so that all the classes in the SMC (i.e., laughter, filler, back-channel, speech and pause)
were assigned a label. The detectors were then trained to output five posteriors, one associated
with each class. Multiple cues can occur at the same time since speakers can speak over each
other. As such, during classification, a single frame could be classed as multiple classes.

In both forms of joint NVC fusion approaches, the detectors comprised of a two-stage classi-
fication system. The first stage was shared and involved grouping all three paralanguage classes
(i.e., laugh, filler and back-channel) into one super-class of NVC. A first stage binary classifi-
cation detector was then trained to distinguish between NVC and all the other classes. After
jointly detecting the cues as a super-class, two systems were then developed that take as input
the frames marked as NVC by the joint-cue detector. These systems then attempt to differenti-
ate these cues and class them as either laughter, filler or back-channel. These approaches were
differentiated based on the amount of the initial training data the secondary detection systems
underwent and how the decisions of the NVC detectors and the secondary detectors were fused.

In the case of the joint NVC fusion with independent detectors, the second stage was devel-
oped as separate detectors. With an individual detector for laughter, filler and back-channel each
being created, each detector was trained on the entirety of each training fold in the same manner
as laughter detectors were in the previous chapter. This resulted in a unique detector for each of
the target classes. Each frame identified as containing NVC by the first stage detector was then
passed to the cue independent detectors.

Similarly to the multi-label system, each frame could again receive multiple classes. Here,
if any of the individual detectors estimated a posterior above 0.5 and the NVC had detected
paralanguage, the frame received this label. If none of the individual detectors had a posterior
greater than 0.5, the frame was instead labelled as not NVC.

In the second approach, i.e., joint NVC fusion with a NVC distinguisher, a single secondary
detector is developed that carried out cue classification. This detector has three possible out-
puts: laughter, filler and back-channel. It is trained on the laughter, filler and back-channel
frames present in the training fold only. During the testing of all the frames that are detected
by the multi-cue detection system, they are passed to this secondary differentiation system. The
second-stage NVC distinguisher then produces a posterior for each class. Again, a frame can
receive multiple classes if more than one of the class posteriors is above 0.5; it will instead be
labelled as not NVC if none of the class posteriors are above 0.5.

For each of the above three approaches, it is possible to calculate precision, recall, F1 and
AUC for each cue using a one-versus-rest process. Results are then given that align with each
cue and then averaged across them. This prevents superior performance on a single cue from
making a detection system appear better (or worse) than it is in reality. Furthermore, if a system
is effective for one cue and none of the others, it could then be used as a detector for that cue
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alone.

5.2.1 Multi-Label System

This approach mirrors that of all the previous detectors, save for the extension of the target class
to include filler, back-channel, speech and pauses. As described in Section 4.2.5, the audio
data is split into a sequence of frames, each representing a 20 ms window of audio through 16
features. Unlike in the laughter detection systems where each frame is classed as either laughter
or not, in the multi-label system the frames are labelled using a vector of dimension D = 5.
Each position in this vector is either a one or a zero, with the position representing the class. As
multiple audio events can co-occur, this labelling vector will always have at least one positive
position and may have multiple.

With the resulting labelled frames, the remainder of this approach remains the same. Both
LSTM and FFN architectures were tested. The experiments were again performed according
to the k-fold protocol used in previous sections and chapters. The results are calculated for
each class before an average is taken, to give an overall score for each detector. This average
performance is computed using a “macro-F1” approach, due to the existence of heavily under-
represented classes [90, p. 260]. Macro-F1 is calculated by taking the unweighted F1 of each
class and averaging them. Similarly, the macro-precision and recall are also calculated and dis-
played. No previous study has attempted a multi-label classification system over a type 3 corpus
for paralanguage cue detection. Therefore, there is no baseline in the field to set against. As
such, in this section, results are compared against the CBA detector from the previous section.
This is done to provide context on how effective or not the detector is at detecting paralinguis-
tic cues compared with the best laughter detector that is currently available. Hyper-parameter
optimisation was carried out using macro-F1. The results from this optimisation for each of the
tested models are displayed in Table 5.9.

Results

Tables 5.10 (frame level) and 5.11 (event level) show the performance by metric, architecture
and cue by the multi-label system. Independent T-tests were used to compare the average per-
formance by metric of the underlying architectures (for exact results see Table B.11. It was
found that across all metrics the FFN architecture performed significantly better than the LSTM
architecture. Given this, FFN was selected for further comparisons and analyses.

One-way ANOVA tests were then used to compare the performance across cues. Figure 5.15
shows the performance by metric and cue of the FFN multi-label system against the best per-
forming laughter detector from earlier in this chapter, i.e., CBA, which acts as a baseline. For
frame level AUC, a one-way ANOVA test found significant differences by cue (F(6, 119) =
261.86, p < 0.0001). A post-hoc Tukey HSD test determined that the CBA laughter perfor-
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Table 5.9: Hyper-Parameters by Metric and Architecture of the Multi-Cue Detection Systems.
All hidden layers had 100 nodes. No effect on frame level F1 was found, so it is omitted from
the table. All systems used smoothing. FFN: feed forward neural network. LSTM: long short-
term memory. All FFN detectors had two FFN hidden layers. All LSTM detectors had two FFN
hidden layers and two LSTM hidden layers. All hidden layers had 100 nodes

Architecture Window Size
Percent

Cut-
Off

System AUC
F1

(frame)
F1

(event)

Multi-Label System
FFN 11 11 41 10

LSTM 41 11 11 1

Joint NVC with Individual Detectors
FFN 11 21 21 10

LSTM 31 71 61 10

Joint NVC with NVC Distinguisher
FFN 11 11 31 1

LSTM 51 11 31 1

mance was significantly better than the multi-label system performed for every cue (for exact
statistics see Table B.12).

One-way ANOVAs found that for frame level precision (F(6, 119) = 187.07, p < 0.0001),
recall (F(6, 119) = 381.47, p < 0.0001), and F1 (F(6, 119) = 432.17, p < 0.0001) there were
significant differences between the CBA baseline and the multi-label performance by cue. Post-
hoc Tukey tests found that in all three metrics the CBA system was significantly better than the
multi-label system for back-channel, laughter and filler. However, the multi-cue system was
significantly better at pause and speech. There was no significant difference when comparing
CBA and the average performance across cues of the multi-label system (for exact post-hoc
Tukey values see Table B.13 for precision, Table B.14 for recall and Table B.15 for F1)

Similarly for the event level metrics of precision (F(6, 119) = 236.63, p < 0.0001), recall
(F(6, 119) = 106.36, p < 0.0001), and F1 (F(6, 119) = 368.98, p < 0.0001) one-way ANOVAs
found significant differences between the CBA and multi-label systems. In all three metrics
post-hoc Tukey HSD tests determined that the CBA system was significantly better than the
multi-label system at back-channel, laughter, filler, pause detection and on average. However,
the multi-label system was significantly better at speech detection (for exact post-hoc Tukey
values see Table B.16 for precision, Table B.17 for recall and Table B.18 for F1) .

A consistent relationship between cue and performance was found across frame level preci-
sion, recall and F1, with speech and pause seeing significantly better performance than that of the
CBA baseline; while back-channel, laughter and fillers all saw significantly worse performance.
The average performance across all the cues for the multi-label system was not significantly dif-
ferent compared with the CBA. The fact that both speech and pause saw significant performance
increases was expected, given that both speech and pause classes comprise a larger proportion
of the dataset relative to the other three cues. Their comparatively good performance is also
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Table 5.10: Frame Level Performance by Metric, Cue and Architecture of the Multi-Label Sys-
tem. BC: back channel. FFN: feed forward neural network. LSTM: long short-term memory.
CBA: confidence-based alteration system. Both architectures included smoothing

Cue Architecture Precision Recall F1 AUC
BC

FFN

3.16 ± 0.99 6.57 ± 4.64 3.67 ± 1.96 76.27 ± 2.48
Laugh 14.66 ± 4.04 35.40 ± 5.44 20.24 ± 3.91 78.85 ± 2.02
Filler 11.05 ± 3.20 28.23 ± 13.71 14.62 ± 3.19 72.12 ± 1.66
Pause 37.88 ± 4.95 90.51 ± 4.53 53.14 ± 4.45 91.24 ± 1.03
Speech 44.13 ± 5.15 100.00 ± 0.00 61.05 ± 5.08 56.14 ± 5.99
BC

LSTM

1.70 ± 0.58 18.14 ± 15.70 2.51 ± 0.79 60.64 ± 5.27
Laugh 13.96 ± 14.58 3.76 ± 5.32 2.94 ± 2.51 55.82 ± 4.52
Filler 5.83 ± 1.48 60.85 ± 27.28 9.96 ± 2.45 61.44 ± 4.62
Pause 25.67 ± 10.70 36.23 ± 31.48 26.07 ± 16.57 71.39 ± 15.66
Speech 44.13 ± 5.16 99.96 ± 0.12 61.05 ± 5.10 48.49 ± 1.85
CBA LSTM 25.53 ± 7.19 54.40 ± 8.77 33.47 ± 5.85 86.43 ± 1.97

Table 5.11: Event Level Performance by Metric, Cue and Architecture of the Multi-Label Sys-
tem. BC: back channel. FFN: feed forward neural network. LSTM: long short-term memory.
CBA: confidence-based alteration system. Both architectures included smoothing

Cue Architecture Precision Recall F1
BC

FFN

3.33 ± 1.27 27.21 ± 11.34 5.75 ± 2.09
Laugh 7.82 ± 2.45 66.12 ± 7.89 13.92 ± 4.06
Filler 6.29 ± 1.83 34.30 ± 10.24 10.54 ± 2.90
Pause 25.78 ± 4.42 68.77 ± 7.80 37.22 ± 4.69
Speech 44.95 ± 5.66 88.05 ± 4.74 59.39 ± 5.81
BC

LSTM

1.27 ± 0.32 26.84 ± 6.62 2.42 ± 0.59
Laugh 3.58 ± 1.63 45.22 ± 13.09 6.51 ± 2.68
Filler 4.54 ± 0.90 35.90 ± 7.28 8.02 ± 1.50
Pause 15.36 ± 4.61 52.10 ± 15.42 23.60 ± 6.96
Speech 46.36 ± 6.05 71.97 ± 15.33 55.37 ± 7.08
CBA LSTM 38.40 ± 8.41 60.25 ± 7.96 45.89 ± 6.00

why there is no significant difference when comparing the average cue performance against the
CBA, as they balance the comparatively poorer performance of the other cues. The performance
in terms of laughter shows a significant decrease in performance, suggesting that adding more
classes, and with it more explicit label information to the models, does not result in any gains in
performance.

Also of interest is the event level metrics. Figure 5.16 displays the result of the post-hoc
Tukey HSD tests used to compare performance on each metric across all cues. In terms of
event level precision and F1, the multi-label system saw significantly worse performance in all
the cases, except speech where the multi-label system was significantly better. The event level
results reinforce the above conclusion that extending the number of labels/classes available to the
system does not lead to better performance for individual cues. As before, the better performance
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Figure 5.15: Frame Level Performance by Cue and Metric of Multi-Label Classification System.
Significance Differences Shown in Relation to CBA Baseline Detector (***p < 0.0005)

in some metrics for pause and speech classes is probably due to the larger proportion of training
data available for these classes.

5.2.2 Two-Stage Detection

Here, the inclusion of additional cues is incorporated through a two-stage detection process. In
the first stage, all the non-verbal cues (i.e., laugh, filler and back-channel) are grouped into one
super-class. This detector classes all the frames as either NVC or verbal communication (VC).
The second stage then differentiates the NVC frames into individual classes. Two approaches
were developed as second stage detectors: individual detectors and NVC distinguisher.

For the second stage consisting of individual detectors, three separate detectors were trained.
Each detector followed the same approach and training procedure as the laughter detectors in
Chapter 4, but each had a different target cue, i.e., either laughter, filler or back-channel. The ef-
fectiveness of each of these individual detectors without the first stage NVC detector is presented
in this section. Then the impact of combining the NVC detector and the individual detectors is
given. To combine the NVC detector and the individual cues, the following rule-based fusion
was used. The NVC detector and each of the three individual detectors all produced classifica-
tions. Where the NVC detector classified frames as VC, the individual detector’s classifications
were zeroed. In the case where a frame was classed by the NVC system as containing NVC,
the individual detector classifications were unchanged and used as classifications for each of
the three paralanguage classes. The resulting filtered classifications are used to compute perfor-
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Figure 5.16: Event Level Performance by Cue and Metric of Multi-Label Classification System.
Significant Differences Shown in Relation to CBA Baseline Detector (**p < 0.005, ***p <
0.0005)

mance metrics for each paralanguage class.
The other two-stage approach uses a NVC distinguisher. Here, the frames produced by

the feature-extraction step are down-sampled to only include frames that are labelled as having
laughter, filler or back-channel. This reduced dataset is then used to train a single detector, which
outputs estimated posteriors for each of the three classes. This two-stage system mirrors the one
given above but, rather than individual detectors producing a class probability for each frame,
the paralanguage differentiator does these tasks in one place. Again, the NVC detector is used as
a first stage and only frames classed as NVC are considered by the paralanguage differentiator.

Results: NVC super-class detector

The following three subsections address the two-stage detectors. In this first section, the ability
to classifying NVC rather than VC is examined. Then, in the following two sections, the NVC
detectors are coupled with the secondary stages to create individual cue detectors. Table 5.12
displays the performance of the NVC detector that treats laughter, filler and back-channel as
one super-class. Since the intention is to use this as a first stage that filters out false positives,
performance is given according to different threshold cut-offs for the frame level classification.
Performance is given for frame level metrics because the detector is intended to be used as a
frame level filter. Note that, for all the threshold levels, the AUC score is unaffected since it is
calculated by varying the threshold between zero and one.

By first examining precision, a two-way ANOVA test was used to compare the effect of
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Table 5.12: Performance by Metric and Architecture of the NVC Super-Class Detection System.
FFN: feed forward neural network. LSTM: long short-term memory

Threshold Architecture Precision Recall F1
Percent of

Data Filtered
0.5

FFN

17.55 ± 4.95 53.85 ± 9.69 25.52 ± 4.44 74.69 ± 7.90
0.4 12.48 ± 2.56 79.43 ± 6.82 21.38 ± 3.62 49.67 ± 8.64
0.3 10.07 ± 1.73 93.49 ± 3.05 18.12 ± 2.79 27.60 ± 6.51
0.2 8.85 ± 1.50 98.65 ± 0.81 16.21 ± 2.52 13.36 ± 4.37
0.1 8.02 ± 1.32 99.90 ± 0.13 14.82 ± 2.26 3.35 ± 2.37
0.5

LSTM

31.70 ± 33.11 1.69 ± 5.43 1.39 ± 3.11 92.92 ± 23.26
0.4 31.39 ± 30.20 4.08 ± 11.47 2.76 ± 4.58 96.43 ± 11.66
0.3 21.90 ± 19.07 8.23 ± 18.00 4.87 ± 5.76 92.52 ± 18.37
0.2 16.11 ± 14.24 16.73 ± 23.95 8.64 ± 5.82 84.61 ± 23.94
0.1 11.41 ± 8.45 39.28 ± 27.66 12.91 ± 3.90 63.44 ± 28.23

architectures and thresholds. It found that both architecture (F(1, 9) = 19.55, p < 0.001) and
threshold values (F(4, 9) = 4.97, p< 0.001) had a significant effect on precision, but there was no
significant interaction between them (F(4, 9) = 1.15, p = 0.34). Since the architecture had only
two variable levels (i.e., FFN and LSTM), the two-way ANOVA test results directly show that
the LSTM architecture performs significantly better than the FFN. Post-hoc Tukey HSD tests
were used to examine the effect of the thresholds, with the results being shown in Figure 5.17
(for exact p-values and confidence values see Table B.19). It was found that threshold 0.1
performed significantly worse than thresholds 0.4 and 0.5. Furthermore, threshold 0.2 performed
significantly worse than threshold 0.5. This suggests that, as expected, higher thresholds lead to
better precision scores.

Regarding recall, a two-way ANOVA test once again found significant differences between
architectures (F(1, 9) = 1087.34, p < 0.001) and thresholds (F(4, 9) = 43.26, p < 0.001), with a
significant interaction between them (F(4, 9) = 8.66, p < 0.001). In terms of the architecture, the
opposite effect compared with the above is determined, with FFN significantly outperforming
LSTM architectures. Figure 5.18 shows the interaction between the threshold and architecture
for recall. It shows that, as the threshold is lowered, the recall increases for both architectures. A
post-hoc Tukey HSD test was employed to compare the threshold recall performance; the results
are shown in Figure 5.18 (for exact p-values and confidence values see Table B.20). Threshold
0.5 is significantly worse than 0.4; threshold 0.4 is significantly worse than 0.3. However, thresh-
old 0.3 is not significantly different from 0.2 but is significantly worse than 0.1. Threshold 0.2 is
not significantly different from 0.1. These results suggest that there is no effect when lowering
the threshold for filtrating below 0.2. Although a lower threshold leads to higher recall it also
limits the effectiveness of the super-class filtration system with only ∼15% of the overall corpus
data being removed when using the FFN architecture and a 0.2 threshold.

Performance in terms of F1 was compared for each threshold and architecture using a two-
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Figure 5.17: Precision of NVC Detection System by Threshold and Architecture (*p < 0.05,
**p < 0.005)

Figure 5.18: Interaction Between Threshold and Architecture on Recall for the NVC Detector
(***p < 0.0005)
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Figure 5.19: Interaction Between Threshold and Architecture on F1 for the NVC Detector (*p<
0.05, **p < 0.005, ***p < 0.0005)

way ANOVA test. It found a significant effect due to architecture (F(1, 9) = 441.52. p < 0.001)
but not for threshold (F(4, 9) = 1.98. p = 0.10). However, a significant interaction between
architecture and threshold was found (F(4, 9) = 39.63. p < 0.001). The significant differences
found in architecture show that the FFN architecture performed significantly better than the
LSTM architecture. The interaction between architecture and threshold is shown in Figure 5.19.
It shows that the difference between architectures is diminished as the threshold increases, until
performance is almost equal at 0.1. Given that threshold has a significant effect when considered
with architecture, and given that the FFN architecture was found to significantly outperform the
LSTM architecture, a one-way ANOVA test was carried out to compare threshold level with
regard to the FFN architecture alone. It found that threshold had a significant effect on F1 (F(1,
3) = 30.23. p < 0.0001). A post-hoc Tukey test was used to examine the effect of thresholds
on FFN F1; the results of which are displayed in Figure 5.19 (for exact p-values and confidence
values see Table B.21). It was determined that threshold 0.5 had the highest average F1 score
that was significantly better than all the lower thresholds.

Finally, the percentage of data removed was compared across both the thresholds and archi-
tectures. A two-way ANOVA test found that there were significant differences due to the thresh-
old (F(4, 9) = 51.43, p < 0.0001) and architecture (F(1, 9) = 448.30. p < 0.0001); there was also
a significant interaction between the threshold and architecture (F(4, 9) = 14.54, p < 0.0001).
In terms of the architecture, the LSTM-based detector removed significantly more than the FFN
across all the thresholds. One-way ANOVA and post-hoc Tukey tests were run for each archi-
tecture, with the results displayed in Figures 5.20 (for the LSTM-based system) and 5.21 (for
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Figure 5.20: Interaction Between Threshold and Architecture on the Percentage of Data Re-
moved by LSTM-Based NVC Detector (**p < 0.005)

the FFN-based system). The LSTM-based architecture removed more data than the FFN. Due to
the two-way ANOVA test showing a significant interaction between the threshold and architec-
ture, a one-way ANOVA test was carried out on the LSTM performance only to investigate the
optimal threshold for the LSTM system. It found significant differences between the thresholds
(F(4, 1) = 6.33, p < 0.0001). Post-hoc Tukey HSD tests showed that the highest overall percent
of data removed was achieved by threshold 0.4. However, this was not significantly different
to thresholds 0.5, 0.3 or 0.2. It was significantly better than threshold 0.1 (for exact p-values
and confidence values see Table B.22). This would suggest that if the LSTM architecture was
utilized the threshold value of 0.2 would be best as it one of the highest F1 scores with no signifi-
cant change in the percentage of data removed. A one-way ANOVA test also showed significant
differences in percent removed by the FFN architecture (F(4, 1) = 30.23, p < 0.0001). The
results of a post-hoc Tukey HSD test found that a threshold of 0.5, 0.4 and 0.3 each removed
significantly more data than all values below them (for exact p-values and confidence values see
Table B.23).

The NVC detector is intended to be used as a filter. The perfect filter would have a recall of
100% and remove all the frames that do not contain NVC (around 90% of the data). Therefore,
the goal of choosing an architecture and threshold is to maximise both a high recall and a high
percentage of data removed. Most important is recall since, with a low recall, the second stages
will be unable to detect any NVC and this would, therefore, make the system ineffective. As
FFN architectures have significantly better recall, they were selected as the base architecture.
Threshold 0.3 and those with a value below it all had a recall of over 90%. However, they
removed less than a third of the data, meaning their effect as a filter may be considered insub-
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Figure 5.21: Interaction Between Threshold and Architecture on the Percentage of Data Re-
moved by FFN-Based NVC Detector (*p < 0.05, **p < 0.005, ***p < 0.0005)

stantial. Increasing the threshold to 0.4 reduces recall to ∼80%; however, around half of the
data would then be filtered out. Therefore, selection of threshold 0.4 is the best balance between
capturing NVC and filtering out non-NVC frames.

Results: Individual Detectors

The performance of each individual cue detector is shown in Table 5.13 for frame level results
and Table 5.14 for event level outcomes.

Table 5.13: Frame Level Performance of Each Individual Class Detector for the SMC. FFN:
feed forward neural network. LSTM: long short-term memory. CW: class weight. S: smoothing
Cue Architecture Precision Recall F1 AUC

Back-Channel
FFN+CW+S 1.98 ± 0.20 76.16 ± 6.92 3.85 ± 0.38 75.58 ± 2.29
LSTM+CW+S 1.26 ± 0.64 53.01 ± 31.51 2.27 ± 1.10 49.78 ± 10.27

Filler
FFN+CW+S 9.65 ± 2.45 40.37 ± 10.59 15.16 ± 2.95 71.04 ± 1.64
LSTM+CW+S 8.73 ± 8.95 27.48 ± 28.94 6.90 ± 4.62 55.51 ± 7.06

Laughter
FFN+CW+S 7.63 ± 7.45 44.52 ± 29.20 9.54 ± 6.55 61.59 ± 20.16
LSTM+CW+S 8.25 ± 2.30 73.30 ± 11.72 14.62 ± 3.50 84.16 ± 1.70

First examining the effect of architecture, independent t-tests were used to compare the per-
formance of each architecture for each cue on each metric. Figure 5.22 displays the results of
this significance testing. For back-channel detection, the FFN architecture saw significantly bet-
ter performance using the FFN architecture than the LSTM (for exact t statistics and p-values see
Table B.24). This offers strong support for using FFN as the architecture for the back-channel
detector.
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Table 5.14: Event Level Performance of Each Individual Class Detector for the SMC. FFN: feed
forward neural network. LSTM: long short-term memory. CW: class weight. S: smoothing

Cue Architecture Precision Recall F1

Back-Channel
FFN+CW+S 3.12 ± 0.79 34.35 ± 6.92 5.71 ± 1.37
LSTM+CW+S 1.51 ± 0.87 21.40 ± 6.07 2.71 ± 1.38

Filler
FFN+CW+S 8.03 ± 2.17 28.30 ± 5.78 12.44 ± 3.06
LSTM+CW+S 8.33 ± 9.43 19.16 ± 12.43 8.39 ± 3.92

Laughter
FFN+CW+S 13.00 ± 15.31 39.71 ± 24.09 12.52 ± 9.15
LSTM+CW+S 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14

Figure 5.22: Comparison of Performance by Metric and Architecture for Each Cue (**p <
0.005, ***p < 0.0005)

For filler detection, the FFN architecture was significantly better in frame level F1, AUC,
event level recall and F1. There was no significant difference in frame level precision, recall or
event level precision (for exact t statistics and p-values see Table B.25). Although some metrics
saw no significant difference, these results once again suggest that the FFN-based detector is the
better choice for filler detection.

Finally, the opposite to the above is found in regard to laughter. Here, t-tests found that the
LSTM architecture significantly outperformed the FFN architecture in frame level recall, F1,
AUC, event level recall and F1. There was no significant difference found in frame or event
level precision (for exact t statistics and p-values see Table B.26). These results suggest that,
for the two-stage detection process using the individual cues, the FFN-based networks should
be used for back-channel and fillers and the LSTM network for laughter.
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Results: Joint NVC with Individual Detectors

Tables 5.15 (frame level) and 5.16 (event level) display the results achieved for each cue and
the overall average of the two-stage detector using individual cue detectors. Furthermore, the
table displays the results achieved by each individual detector without the second stage to act as
a baseline.

Table 5.15: Frame Level Performance on Each Class for the Two-Stage Detector Using Individ-
ual Detectors for Each Cue Alongside the Baseline. FFN: feed forward neural network. LSTM:
long short-term memory

Architecture Precision Recall F1 AUC
Back-Channel FFN 2.34 ± 0.27 51.71 ± 10.50 4.46 ± 0.49 74.81 ± 2.29
Filler FFN 10.63 ± 2.99 33.04 ± 7.39 15.58 ± 3.02 71.07 ± 1.20
Laugh LSTM 21.90 ± 10.69 1.46 ± 2.26 2.27 ± 2.84 56.90 ± 3.77
Average - 11.62 ± 4.65 28.74 ± 6.72 7.44 ± 2.12 67.59 ± 2.42

Baseline
Back-Channel FFN 1.98 ± 0.20 76.16 ± 6.92 3.85 ± 0.38 75.58 ± 2.29
Filler FFN 9.65 ± 2.45 40.37 ± 10.59 15.16 ± 2.95 71.04 ± 1.64
Laugh LSTM 8.25 ± 2.30 73.30 ± 11.72 14.62 ± 3.50 84.16 ± 1.70

Table 5.16: Event Level Performance on Each Class for the Two-Stage Detector Using Individ-
ual Detectors for Each Cue Alongside the Baseline. FFN: feed forward neural network. LSTM:
long short-term memory

Architecture Precision Recall F1
Back-Channel FFN 3.21 ± 0.78 33.87 ± 7.03 5.85 ± 1.38
Filler FFN 8.45 ± 2.31 29.68 ± 5.87 13.09 ± 3.24
Laugh LSTM 12.90 ± 7.91 30.07 ± 11.99 16.33 ± 5.12
Average - 8.19 ± 3.67 31.21 ± 8.30 11.76 ± 3.25

Baseline
Back-Channel Baseline FFN 3.12 ± 0.79 34.35 ± 6.92 5.71 ± 1.37
Filled Baseline FFN 8.03 ± 2.17 28.30 ± 5.78 12.44 ± 3.06
Laugh Baseline LSTM 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14

The effect of the two-stage detector was tested using t-tests to compare its performance
against the baseline for each cue and metric. The results of this testing are displayed in Fig-
ure 5.23 (for exact t statistics and p-values for back channel see Table B.27). Regarding back-
channel, the two-stage detector saw significantly better performance than the baseline in frame
level precision and F1. While the baseline was significantly better in frame level recall. Further-
more, there were no significant differences in AUC, event level precision, recall or F1. Despite
the success in increasing precision and F1 at a frame level, the effect was small. Moreover, at
an event level, these effects disappear, suggesting that the two-stage detector is ineffective for
back-channels.
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Figure 5.23: Results Achieved by Individual Class Detectors Alone (Baseline) and With the
Two-Stage System (*p < 0.05, ***p < 0.0005)

Regarding fillers, the baseline system was significantly better in frame level recall than the
two-stage system. In all the other metrics no significant difference was found (for exact t statis-
tics and p-values for filler see Table B.28). These results again suggest that the two-stage detec-
tor was ineffective in aiding in the detection of fillers.

Finally, with regard to laughter, the two-stage detector was significantly better in frame level
precision. However, the two-stage detector was significantly worse in frame level recall, F1,
AUC, event level recall and F1. There was no significant difference found in event level preci-
sion (for exact t statistics and p-values for laughter see Table B.29). This again reinforces the
conclusion that the two-stage detector, which utilises the individual detectors as a second stage,
is ineffective for improving detection of paralinguistic cues.

Results: Paralanguage Distinguisher Effectiveness

This section reports the results on the detection of each cue in the undersampled SMC dataset.
In this case, the undersampled dataset only contained frames that have a paralinguistic cue label.
Tables 5.17 (frame level) and 5.18 (event level) show the results for each cue individually and
the overall macro average for each metric.

Initially, the underlying architecture was compared by cue using independent t-tests; the
results are shown in Figure 5.24. For back-channel, the FFN architecture was significantly
better than the LSTM architecture in frame level precision, F1, AUC, event level precision and
F1. There was no significant difference found for frame level recall or event level recall (for
exact t statistics and p-values for back-channel see Table B.30). This suggests that the FFN
distinguisher should be used for back-channel detection.
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Table 5.17: Frame Level Performance on Each Class for the Paralanguage Distinguisher on the
Down-Sampled SMC. FFN: feed forward neural network. LSTM: long short-term memory

Architecture Precision Recall F1 AUC
BC

FFN

21.82 ± 7.10 35.94 ± 17.56 23.58 ± 5.71 66.47 ± 5.45
Laugh 53.96 ± 9.28 83.01 ± 5.44 64.64 ± 5.81 82.60 ± 2.92
Filler 64.99 ± 5.29 83.80 ± 7.06 72.91 ± 4.14 74.21 ± 3.32
Average 40.92 ± 7.22 67.58 ± 10.02 53.71 ± 5.22 74.43 ± 3.90
BC

LSTM

12.67 ± 3.15 33.33 ± 34.29 13.29 ± 9.24 52.23 ± 4.68
Laugh 51.23 ± 18.13 56.40 ± 27.33 46.23 ± 12.58 66.43 ± 7.53
Filler 58.43 ± 11.07 74.35 ± 28.84 61.45 ± 17.58 59.35 ± 9.94
Average 40.78 ± 10.78 54.69 ± 30.15 40.32 ± 13.13 59.34 ± 7.38

Table 5.18: Event Level Performance on Each Class for the Paralanguage Distinguisher on the
Down-Sampled SMC. FFN: feed forward neural network. LSTM: long short-term memory

Architecture Precision Recall F1
BC

FFN

23.15 ± 8.07 99.22 ± 1.47 36.85 ± 9.80
Laugh 56.02 ± 9.61 100.00 ± 0.00 71.33 ± 7.89
Filler 67.15 ± 5.33 99.74 ± 0.20 80.13 ± 3.92
Average 48.77 ± 7.67 99.65 ± 0.56 62.77 ± 7.20
BC

LSTM

12.91 ± 2.55 97.21 ± 4.38 22.70 ± 3.94
Laugh 46.15 ± 18.29 99.96 ± 0.16 61.23 ± 15.29
Filler 51.32 ± 13.87 98.20 ± 3.68 66.44 ± 12.59
Average 36.79 ± 11.57 98.46 ± 2.74 50.12 ± 10.61

Regarding the filler cue, the FFN architecture was significantly better for frame level preci-
sion, F1, AUC, event level precision and F1. There was no significant difference in frame level
recall or event level recall (for exact t statistics and p-values for filler see Table B.31).

Examining the performance of the architectures with respect to laughter detection, indepen-
dent t-tests found that the FFN architecture significantly outperformed the LSTM architecture
in frame level recall, F1, AUC, event level recall and event level F1. No significant differences
between architectures were found in frame or event level precision (for exact t statistics and
p-values for laughter see Table B.32).

Finally, regarding the macro-average across cues, the FFN architecture was again signifi-
cantly better than the LSTM in frame level F1, AUC, event level precision and F1. There were
no significant differences found for frame level precision, recall or event level recall (for exact t
statistics and p-values for the macro average see Table B.33).

These results further support that the FFN architecture is a significantly better choice than
LSTM for the cue distiguisher. As such, it was selected as the base architecture moving forward.
It is important to note that the increase in absolute performance for both architectures is almost
certainly due to the down-sampling of the SMC. The task addressed by the distinguisher is closer
to a type 1 task rather than a type 3 task.
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Figure 5.24: Performance by Architecture and Metric for Each Cue on the Down-Sampled SMC
(*p < 0.05, ***p < 0.0005)

Results: Joint NVC Distinguisher effectiveness

In this section, the paralanguage distinguisher presented in the previous section is coupled with
the NVC detector. This two-stage system was applied to the entirety of the SMC dataset. Frame
level results by cue are shown in Table 5.19, with event level results shown in Table 5.20. The
individual cue detectors are once again shown to provide a baseline.

Table 5.19: Frame Level Performance on Each Class for the Two-Stage Detector with NVC
Distinguisher on the SMC

Precision Recall F1 AUC
BC 3.23 ± 0.94 15.12 ± 8.40 4.81 ± 1.22 75.02 ± 2.25
Laugh 10.10 ± 3.36 56.84 ± 6.00 16.77 ± 4.59 78.62 ± 1.66
Filler 9.04 ± 2.62 46.38 ± 7.78 14.81 ± 3.29 70.66 ± 1.52

Baseline
BC 1.98 ± 0.20 76.16 ± 6.92 3.85 ± 0.38 75.58 ± 2.29
Laugh 9.65 ± 2.45 40.37 ± 10.59 15.16 ± 2.95 71.04 ± 1.64
Filler 8.25 ± 2.30 73.30 ± 11.72 14.62 ± 3.50 84.16 ± 1.70

The performance of the two-stage detector with paralanguage distinguisher was compared
with the baseline for each metric using independent t-tests. The results of this analysis are dis-
played in Figure 5.25. With regard to back-channel performance, there were mixed results. The
two-stage system was significantly better in terms of frame level precision and F1. However, the
baseline system was significantly better in frame level recall and event level recall. Furthermore,
there was no significant difference in AUC, event level precision or F1 (for exact t statistics and
p-values for back channel see Table B.34).
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Table 5.20: Performance on Each Class for the Two-Stage Detector with NVC Distinguisher on
the SMC

Precision Recall F1
BC 3.54 ± 0.96 24.09 ± 7.55 5.99 ± 1.32
Laugh 8.82 ± 2.85 66.14 ± 5.95 15.46 ± 4.54
Filler 7.10 ± 2.13 31.64 ± 7.85 11.55 ± 3.22

Baseline
BC 3.12 ± 0.79 34.35 ± 6.92 5.71 ± 1.37
Laugh 8.03 ± 2.17 28.30 ± 5.78 12.44 ± 3.06
Filler 16.41 ± 3.95 70.62 ± 9.73 26.30 ± 5.14

Figure 5.25: Performance by the Two-Stage Detection System with Cue Distinguisher on the
SMC Alongside Individual Cue Detector Baseline

Finally, when applied to the filler class, it was found that the baseline approach was signif-
icantly better for frame level recall, AUC, event level precision, recall and F1. No significant
difference was found in frame level precision or F1 (for exact t statistics and p-values for filler
see Table B.35).

With regard to laughter, different results were found, with the two-stage detector having sig-
nificantly better frame level recall, AUC, event level recall and F1. With no significant difference
found in frame level precision, F1 or event level precision (for exact t statistics and p-values for
laughter see Table B.36).

These results suggest that the two-stage approach with a cue distinguisher was somewhat
successful. However, this success was very limited in, for example, the back-channel class in
which the absolute size of the significant increase in performance for frame level precision and
F1 is comparatively small. Moreover, with regard to fillers, the two-stage system is consistently
worse than the baseline.



CHAPTER 5. IMPROVING LAUGHTER DETECTION 93

5.3 Conclusion

The methods explored in the first half of this chapter addressed RQ2: Can the incorporation
of linguistic data lead to improvements in laughter detection? The results were variable. The
inclusion of the ASR information was effective at increasing F1, with the effect being more
pronounced at the event level compared with the frame level. For the ASR-based methods, this
increase was driven by these new methods improving precision, with a smaller drop in recall
when compared with the methods explored in Chapter 4. Overall, this led to an almost two-fold
increase in frame and event level F1. Unfortunately, due to how the methods operate, it is not
possible to couple multiple of them together. Furthermore, improvements to the methods require
improvements to the underlying ASR technology. This means that, as ASR improves, it is likely
that these methods will provide better results. However, improving ASR is outside the scope of
this project and so, for the moment, the current results are the limit of what these methodologies
can achieve. Therefore, in relation to RQ2, it has been demonstrated that linguistic informa-
tion can improve laughter detection results. However, limitations in ASR create a performance
ceiling that is difficult to improve upon using these methods.

With respect to the multi-cue multi-layer approaches presented in the second half of the chap-
ter, the majority of these approaches saw significant decreases in performance by cue. Moreover,
any gains made were generally at the cost of significant drops in other performance metrics.
These methods addressed RQ3: What is the effect of broadening the scope of laughter detectors
to include multiple cues? The results suggest that, although some gains could be made by further
researching these methods, any gains are likely to be limited.

Having investigated both RQ2 and RQ3 it is apparent that, although ASR data was effective
at improving laughter detection, both methodological approaches have performance ceilings.
Further, although approaches centred on RQ2 were more effective that the state-of-the-art, their
performance ceiling peaked at around an F1 of 50%. As such new approaches had to be investi-
gated to achieve effective laughter detection.



Chapter 6

Transformer-Based Laughter Detection

6.1 Motivation

In Section 4.2.9, it was shown that pre/post processing methods from the field were unable to
increase recall without severe drops in precision. The previous Chapter explored novel pre/post-
processing methods that aimed to improve laughter detection through the improvement of recall
without effecting precision. This was done by specifically targeting the cause of the poor pre-
cision while attempting to not affect recall at all, namely, speech being mistaken for laughter.
These methods were shown to be more effective, with a significant increase in F1 of between
10-20%. However, these methodologies also reach a performance ceiling of below 50% F1 on
average. Passing this performance ceiling was not possible without improving the underlying
ASR or VAD effectiveness.

In this chapter a different approach was trialled. Rather than attempting to improve alter
the output from the detectors to address mistakes made by them a model driven approach was
used. New underlying deep learning architectures were explored alongside new methods of
extracting features from the underlying data to improve detector performance. Both of these
goals were addressed through the use of transformers. Transformers have been widely used for
ASR [91–93], image processing [94–96] and healthcare [94, 97, 98]. In all of the above fields,
transformers have yielded significantly better results than other machine learning architectures
based on benchmarks in multiple fields [95, 99]. Due to these promising results RQ4 was cre-
ated: Are transformers effective when applied to the task of laughter detection? Transformers
were applied in two distinct ways. Firstly, encoder only transformers were built and trained on
the SMC. Secondly, pre-trained transformers were used to extract features and these features
were then employed to train detectors. The results show this second method lead to significant
improvements in all metrics compared with all other models. The limits of these more effective
detectors are then tested before possible use-cases are explored, including understanding the
effects of gender on laughter in a conversation.

Transformers leverage an attention mechanism to enable a longer look back through sequen-

94
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Figure 6.1: General Form of an encoder only Transformer

tial data than other deep learning architectures such as LSTMs. They can do this because the
attention mechanism only selects relevant parts of the input data [100]. This targeted look-back
allows input sequences to be of any length, while also allowing information contained at any
point in the input sequence to have an effect on the output. The LSTM models used in previous
chapters had an input sequence length of 10 frames, meaning it had access to data spanning
a context of 0.12s to make a prediction. Although it is possible to extend this context window
further, the forget gates within LSTMs (explained in Section 4.2.2) ensure that data from pre-
vious frames is forgotten meaning that there are limits to how far back an LSTMs context can
be extended before new frames become meaningless [101]. As the average length of laughter in
the SMC is 0.5s it seems likely that a longer context, than afforded by LSTMs, could result in
better detection results. Transformers are capable of handling longer context and it was for this
reason that transformers were applied to the current work of laughter detection.

The general form of an encoder only transformer is shown in Figure 6.1 from ref. [100].
The encoder layer takes as input a sequence of real world data (i.e., an audio clip, a sequence of
words or frames from a video) and creates a numerical embedding of this data. This embedding
represents each individual part of the input sequence (words, sound frames and picture frames)
in relation to all the other relevant parts of the sequence. What is considered most relevant is
a learned parameter of the attention mechanism described below. This embedding can then be
used to create labels for classification tasks or tokens representing words, objects or sounds.
Since this project labels data as laughter or not there is no practical use for a decoder and, as
such, encoder only transformers were utilised.

All transformers begin by taking input data and creating input embeddings of that data.
In the case of audio classification, the process for creating these input embeddings is similar
to what has been done in previous chapters: the audio signal is split into distinct overlapping
windows. In previous chapters, these windows then have summary statistics extracted to form a
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descriptive feature vector of the underlying audio. These feature vectors could be used as input
into a transformer. However, it is more common to use the underlying waveform of the audio
window as an input. This waveform is a 1-dimensional sequence of integers that represent the
amplitude of the audio signal at a given time. If a 20 ms window size is used along with a
sampling rate of 16000 Hz (used by refs [102, 103]) then each window would be composed of
320 amplitude values. These values are then passed through a small convolution neural network
(CNN) to create a feature vector embedding of these values. It is important to note that, as
the initial representation of the audio data, some architectures use spectrograms rather than
waveforms [104]. Spectrograms are again passed through a CNN to create a feature vector
embedding. At the conclusion of the input embedding step, the initial audio stream is converted
into a sequence of vectors I = {F⃗1, F⃗2, . . . , F⃗T}, where T is the total number of vectors in the
sequence.

Transformers do not use recursion, as such the position of each vector in I must have its
relative position in the sequence encoded within itself. To undertake this task, a positional
encoding layer is applied to I. Here, the input embeddings I are either convolved with a function
or another CNN. When a function is used to inject positional information, each feature f within
F⃗pos at position pos is added to the value of the sine or cosine curve. The value added to each
feature depends on the feature’s position in the input vector and the pos of the vector in sequence
I, with the value being calculated as follows:

PE(pos,2i) = sin(pos/100002i/dmodel), (6.1)

PE(pos,2i+1) = cos(pos/100002i/dmodel), (6.2)

where pos is the position of F⃗pos in I, dmodel is the total dimension of F⃗ and i is the position
of the feature within F⃗pos being addressed. If instead a CNN is used, then the vector F⃗pos is
utilised as the input and the positional encoding is a learned parameter of the network, which
outputs a vector of the same dimensionality as the input. It has been demonstrated that there is
no performance difference between a functional as opposed to a learned approach. However, the
functional approach results in fewer parameters in the final network and, thus, less computation
at training time and, as such, is often used [100]. Furthermore, the functional approach can be
extended to any length of I. The positional encoding step takes as input the input embedding
sequence I and outputs the sequence M = {m⃗1, m⃗2, . . . , m⃗T}, where each vector m⃗ represents
both the frame audio content and its relative position in the input audio.

Key to the effectiveness of the transformers is the ability to select relevant sections of the
input sequence upon which to create the internal embedding for each window. This selection is
carried out using an attention mechanism. Attention is calculated as follows. Given the sequence
M = {m⃗1, m⃗2, . . . , m⃗T}, where T is the total number of vectors in the sequence, the goal of the
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attention layer is to create an embedding that represents p⃗et in the context of the surrounding
vectors. To undertake this task for every vector in PE, three values are calculated: the Query,
Key and Value. These three values are calculated by multiplying each vector in sequence S by
weights Qw, Kw and Vw. This creates, for each vector p⃗et , an associated Q, K and V vector.
These vectors are then used to calculate the similarity of p⃗et compared with all the other vectors
in the input sequence and itself. Similarity is calculated by determining the dot-product of

To begin this stage of the work, multiple transformer models were created and trained on the
SMC. Two approaches were used for the initial input embedding: waveform and spectrogram.
While, for the remaining of the encoder, only transformer architecture was shared across both
models.

For input embedding, the two methods attempted were spectrogram and waveform. In both
cases, features were extracted from windows of length 20 ms and time-step of 10 ms. In the
case of waveform features, this resulted in feature vectors of dimension D = 320 while, for
the spectrogram, the dimensionality was D = 128. In both cases, these input dimensions were
convolved using a CNN to create a dimensionality of D = 512.

After creating the initial input embeddings of the audio data, the remainder of the approach
was shared across the transformers. The positional encoding step was carried out using the
functional approach, as described above. For the attention step, multiple numbers of attention
heads were trialled (5 to 20 with a step of 5). Finally, a feed forward neural network (FFN)
was applied to the attention embeddings to produce a classification for each frame. This FFN
had 3 layers: an input layer with 512 nodes, a hidden layer with 100 nodes and an output layer
composed of a single node using Sigmoid activation.

None of the tested transformers showed performance beyond chance. In most folds, the
transformer model learned to predict the non-laughter class. In all the other cases, the trans-
former predictions were random. A possible explanation for this failure can be found in the
number of parameters in the model in comparison to the amount of available data. Each model
contained ∼700 K parameters, which is around 10 times the size of the models used elsewhere
in this work. With around 10 hours of training material for each fold, a total of 3600 K examples,
only around 108 K of these were laughter frames. It appears that despite the SMC being one of
the largest datasets in the field in terms of laughter and total audio time, it is not large enough to
train an encoder-only transformer.

6.2 Pre-Trained Transformers for Laughter Detection

In this section, pre-trained audio processing transformers were used to extract attention-based
embeddings to be used as input for laughter detectors. Due to the limitations found in training
transformers from initialisation in the previous section, it was instead decided to test pre-trained
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Table 6.1: Descriptive Statistics for Each Pre-Trained Transformer Model
Transformer Embedding Size Training Size (hours) Parameters
HuBERT S 768 960 95 M
HuBERT L 1280 60 K 1 B
WHISPER S 512 680 K 74 M
WHISPER L 1280 5 M 1.55 B
Wav2Vec2 S 768 960 95 M
Wav2Vec2 L 1920 436 K 2 B

transformers ability to transfer learning from another task. In this case, the embeddings created
by a transformer are extracted after the attention embedding step but before the CNN step. These
attention embeddings are then used as input to a newly initialised neural network (either FFN or
LSTM based), which is trained to carry out a different task to the original transformer; in this
case, laughter detection. It was theorised that the attention embeddings created by transformers,
which had been trained on audio tasks, would effectively represent the underlying audio for other
tasks. A similar approach of using detectors for laughter detection, which were pre-trained
on a different audio task, was previously attempted in the field [37]. However, this was only
attempted on a type 1 task and used patterns in the phonetic outputs of an ASR to detect laughter.

Three pre-trained transformers were selected for testing: HuBERT [102], Whisper [104] and
Wav2Vec2 [103]. Each transformer has multiple different sizes, differentiated by the number
of parameters, embedding size and training set size. To test the effectiveness of these different
sizes for each transformer, the ‘small’ and ‘large’ versions were tested (henceforth denoted as L
for large and S for small). The differences between them are displayed in Table 6.1.

Each transformer has a unique methodology, which may offer advantages to using its atten-
tion embeddings for laughter detection. Wav2Vec2 creates learned embeddings for the input
audio through self-supervised unlabelled training data. This creates a unique learned repre-
sentation of the input audio and was shown to improve results compared with standard feature
extraction methodologies [103]. HuBERT similarly creates learned representations for audio
data. However, in the HuBERT approach, the goal is to incorporate both auditory and linguistic
information into the representation of the audio [102]. Whisper does not use custom speech rep-
resentations, instead using Mel spectrograms to represent audio inputs. Whisper is differentiated
by its training data. The data is around 1000 times larger than what was used to train the other
two transformers (when comparing similar sized models). Furthermore, ∼30% of the data is not
English speech audio. By using non-English audio, the system is exposed to, and can learn, a
wider array of sounds and accents [104].

For attention embedding extraction, the window and hop length for splitting the audio was
constrained by each underlying transformer, as the same length and hop had to be used as when
they were trained. Furthermore, the size of the resulting feature vector was constrained by the
internal embedding size each transformer used. These values are included in Table 6.1. Attention
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embeddings were extracted using pre-trained transformers available through Hugging Face 1.
This resulted in a sequence of feature vectors. These feature vectors could then follow the same
approach as described in Section 4.2.1. Both LSTMs and FFNs based architectures were tested.
Initially, no additional methodologies tested in the previous chapters were applied to ensure the
effect of the transformer embeddings in isolation could be understood. After displaying the
results of the various transformer embeddings, the methods described in the previous chapters
are then applied to the best performing transformer-based detector. Next, the best performing
detector is applied to the SVC to enable comparison with the field at large.

6.2.1 Training and Testing Methodology

As in the previous chapters, the training and testing methodology followed a k-fold approach.
Fold splitting was carried out at a conversational level, using the same splits as previous chapters
to ensure comparability between results. Descriptive statistics for each fold can be found in
Section 4.2.5. Networks again used binary cross entropy as a loss function coupled with the
Adam optimizer with a default learning rate of 0.001. The number of training epochs was 5 and
the batch size was 1000.

As with previous chapters, hyper-parameter optimisation was carried out for each trans-
former and size. Results of the hyper-parameter optimisation step found no advantage compared
with deeper or wider networks. For both frame level F1 and AUC, there was no significant effect
due to Hamming window size in most of the architectures. However, in Whisper L, Wav2Vec2 S
and Whisper S, the smaller Hamming windows performed significantly better. This contrasts, in
parts, with the previous chapters in which multiple models saw that larger windows led to better
results. This suggests that the transformer embedding results required less alteration to achieve
the best frame level results.

Regarding event level F1, a Hamming window size of 11 was consistent across all the detec-
tors and provided significantly better results. Again, this offers support for the lack of a need to
adjust posteriors. Moreover, all the detectors had a percent cut-off of 50% or more. This again
contrasts with the previous chapters, in which the most effective detectors had lower cut-offs be-
tween 1 and 10%. This suggests that the peaks that occurred in the posteriors, produced by the
transformer embedding networks, were better aligned with actual events; thus, a great propor-
tion of them could be included in the final classification decision. Overall, the hyper-parameter
optimisation process suggests that the transformer embedding detectors achieve more reliable
detections.

Figures 6.2, 6.3 and 6.4 show why this is the case. Figure 6.2 displays the posteriors as
produced by Whisper L and CBA for a laughter event. The Whisper L detector output is charac-
terised by sharp changes from ∼0 to ∼100%, whereas the hand-crafted feature detector shows
greater variation and uncertainty in its posteriors. The two histograms shown in Figure 6.3

1https://huggingface.co/
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Figure 6.2: Posteriors Produced by the CBA and Whisper L Detection Systems

Table 6.2: Hyper-Parameter Optimisation Results for Each Transformer Based Detector and
Metric. S: small. L: large. All systems had two FFN hidden layers with 100 nodes per layer

Model Architecture
Window Size

Percent Cut-Off
AUC F1 (frame) F1 (event)

Wav2Vec2 S No Effect 11 11 70
Wav2Vec2 L No Effect No Effect 11 50
HuBERT S No Effect No Effect 11 60
HuBERT L No Effect No Effect 11 50
Whisper S No Effect 11 11 80
Whisper L 21 No Effect 11 70

(Whisper L) and 6.4 (CBA) confirm that this trend is not an isolated one. Posteriors are almost
exclusively constrained to bins 0-0.1 and 0.9-1 for Whisper L. Whereas, in the case of the CBA
detection system, there is a greater spread across the bins. The lack of variability in the out-
put of the transformer-based detector leads to fewer spurious peaks in the output sequence and,
therefore, a greater percentage of the output can be considered without increasing the number of
peaks considered as events compared with previous detectors.

6.2.2 Results: Transformer Embeddings as Input

This section explores the performance of each transformer and how that performance is affected
by each different network type. In all cases, LSTM-based architectures saw performance of
below 5% in both frame and event level precision, recall and F1. As such, the LSTM architecture
was discounted as a possibility and only FFN networks were carried forward. The metrics used
mirror those in previous chapters to enable comparison with previous models. Table 6.3 displays
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Figure 6.3: Histogram Showing the Average Count of Posteriors Probabilities as Estimated by
the Whisper-L-Based Detection System

Figure 6.4: Histogram Showing the Average Count of Posteriors Probabilities as Estimated by
the CBA Detection System
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Table 6.3: Frame Level Precision, Recall, F1 and AUC Results for Each Feature Extraction
Methodology Using a Feed Forward Neural Network on the SMC. S: small. L: large. Bold
highlights the best performing detector.

Precision Recall F1 AUC
Baseline 10.03 ± 5.59 43.70 ± 20.93 15.86 ± 8.27 79.79 ± 4.24
Wav2Vec S 74.64 ± 11.24 37.74 ± 3.85 49.48 ± 2.70 95.40 ± 0.86
Wav2Vec L 77.96 ± 8.24 52.52 ± 4.52 62.25 ± 2.29 96.75 ± 0.66
HuBERT S 73.78 ± 8.75 35.10 ± 7.14 46.82 ± 7.32 95.01 ± 0.97
HuBERT L 70.39 ± 12.84 51.54 ± 12.29 57.27 ± 9.17 96.35 ± 0.69
Whisper S 81.89 ± 5.36 48.38 ± 1.97 60.74 ± 2.22 94.41 ± 1.09
Whisper L 81.94 ± 4.34 46.27 ± 6.85 58.68 ± 4.38 93.09 ± 1.33

Table 6.4: Event Level Precision, Recall and F1 for Each Feature Extraction Methodology Us-
ing a Feed Forward Neural Network. S: small. L: large. Bold highlights the best performing
detector.

Model Precision Recall F1
Baseline 15.77 ± 8.58 48.09 ± 21.86 23.28 ± 11.83
Wav2Vec S 54.92 ± 13.18 85.46 ± 3.54 65.75 ± 10.30
Wav2Vec L 58.83 ± 13.82 89.23 ± 2.96 69.77 ± 10.08
HuBERT S 51.08 ± 10.79 86.43 ± 3.79 63.36 ± 8.28
HuBERT L 55.23 ± 16.12 84.66 ± 7.67 64.66 ± 10.78
Whisper S 61.21 ± 8.86 88.12 ± 2.76 71.78 ± 6.08
Whisper L 81.57 ± 6.72 84.27 ± 4.10 82.60 ± 3.04

the results for frame level precision, recall, F1 and AUC for FFN. Event level metrics are shown
in Table 6.4.

First addressing the AUC scores seen in Table 6.3, a one-way ANOVA test was carried
out that showed significant differences between the models (F(6, 119) = 188.86. p < 0.0001).
A post-hoc Tukey HSD was carried out and found that the baseline was significantly outper-
formed by all the transformer embedding models. Wav2Vec L achieved the highest overall
score. Wav2Vec L was significantly better than Whisper S and Whisper L. However, there were
no significant differences between Wav2Vec L and the other transformer based detectors (for
exact confidence intervals and p-values see Table C.1). Comparing the large and small variants
of each foundational model, it was found there was no significant difference between Wav2Vec
L and S (p = 0.30, 95% C.I. = [-3.18, 0.48]), HuBERT L and S (p = 0.31, 95% C.I. = [-3.17,
0.49]) or Whisper L and S (p = 0.33, 95% C.I. = [-0.51, 3.15]). This suggests no advantage to
using large over small variants of the transformer models. These results show a consistent and
significant increase of ∼15% from hand-crafted features to transformer embeddings.

In terms of frame level recall, a one-way ANOVA test found significant differences between
detectors (F(6, 119) = 7.66, p < 0.0001). A post-hoc Tukey HSD test determined that the base-
line detector (M = 43.70, SD= 20.93) was not significantly different from any of the transformer
embedding detectors. Wav2Vec L again achieved the highest overall score and the post hoc tests
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found this to be significantly better than Wav2Vec S and HuBERT S. However, no significant
difference was found from it to HuBERT L, Whisper S or Whisper L (for exact confidence inter-
vals and p-values see Table C.2). Comparing foundational model size, there was no significant
difference between Whisper L and S (p = 1.00, 95% C.I. = [-8.07, 12.29]). However, there were
significant differences between Wav2Vec L and S (p = 0.00056, 95% C.I. = [24.96, 4.60]) and
HuBERT L and S (p < 0.0001, 95% C.I. = [26.62, 6.26]), suggesting some advantage to using
the larger foundational models.

With regard to frame level precision, a one-way ANOVA test found significant differences
between detectors (F(6, 119) = 160.26. p < 0.0001). A post-hoc Tukey HSD test determined
that the baseline detector was significantly outperformed by all the transformer-based detec-
tors. Whisper L achieved the highest overall precision. The post-hoc tests found this to be
significantly better than HuBERT L (for exact confidence intervals and p-values see Table C.3).
However, there was no significant difference between it and any other transformer detector. In
terms of foundational model size, there was no significant difference found between Whisper L
and S (p < 1.00, 95% C.I. = [-8.62, 8.52]), Wav2Vec L and S (p < 0.91, 95% C.I. = [-11.89,
5.25]) or HuBERT L and S (p < 0.90, 95% C.I. = [-5.18, 11.96]).

For frame level F1, a one-way ANOVA test found significant differences between detectors
(F(6, 119) = 135.78. p < 0.0001). A post-hoc Tukey HSD test determined that the baseline
detector was significantly outperformed by all the transformer-based detectors. The highest
overall score was achieved by Wav2Vec L. This was significantly better than Wav2Vec S and
HuBERT S. However, it was not significantly better than any other detector (for exact confidence
intervals and p-values see Table C.4). Examining the difference in performance based on the
foundational model size, there was a significant difference found between Wav2Vec L and S
(p < 0.0001, 95% C.I. = [18.66, 6.88]) and HuBERT L and S (p < 0.0001, 95% C.I. = [16.34,
4.56]). However, there was no significant difference between Whisper L and S (p = 0.94, 95%
C.I. = [-3.83, 7.95]).

The above results show a clear advantage to using transformer embeddings as input over
hand-crafted features. The effect of using large as opposed to small foundational models is less
clear and varies by the metric tested.

Now addressing event level precision, a one-way ANOVA test found significant differences
between detectors (F(6, 119) = 51.65. p < 0.0001). A post-hoc Tukey HSD test determined
that the baseline detector was significantly outperformed by all the transformer-based detectors.
Whisper L achieved the highest overall precision. Post-hoc tests found this to be significantly
better than all the other detectors (for exact confidence intervals and p-values see Table C.5).
Comparing foundational model size, there were significant differences found between Whisper
L and S (p < 0.0001, 95% C.I. = [31.94, 8.78]) but no significant differences between Wav2Vec
L and S (p= 0.95, 95% C.I. = [-15.48, 7.67]) or HuBERT L and S (p= 0.93, 95% C.I. = [-15.73,
7.43]).
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For event level recall, a one-way ANOVA test found significant differences between detec-
tors (F(6, 119) = 44.86. p < 0.0001). A post-hoc Tukey HSD test determined that the base-
line detector was significantly outperformed by all the transformer-based detectors. Wav2Vec
L achieved the highest overall score; however, this was not significantly better than any other
transformer-based detector (for exact confidence intervals and p-values see Table C.6). Examin-
ing the effect of foundational model size, post-hoc tests found no significant difference between
Wav2vec L and S (p = 0.88, 95% C.I. = [-13.00, 5.46]), HuBERT L and S (p = 1.00, 95% C.I.
= [-7.46, 11.00]) and Whisper L and S (p = 0.87, 95% C.I. = [-5.38, 13.08]).

A one-way ANOVA test, similarly, found significant differences in detector event level F1
performance (F(6, 119) = 76.04. p < 0.0001). A post-hoc Tukey HSD test determined that
the baseline detector was significantly outperformed by all the transformer-based detectors. The
highest overall F1 was achieved by Whisper L, post-hoc tests found this to be significantly better
than all the other transformer-based detectors (for exact confidence intervals and p-values see
Table C.7). Comparing the performance based on the size of the foundational model, there was
a significant difference found between Whisper L and S (p = 0.0091, 95% C.I. = [1.73, 19.91]).
However, there was no significant difference found between Wav2Vec L and S (p = 0.84, 95%
C.I. = [-13.11, 5.07]) or HuBERT L and S (p = 1.00, 95% C.I. = [-10.39, 7.79]).

Taken together, these results show that the transformer embedding based detectors are sig-
nificantly and consistently better than the baseline. The best performing model at an event level
was Whisper L, with the main driver of the differences in F1 being caused by differences in
precision performance. Of interest is the improvement of the recall metrics from frame to event
level for Whisper L, rising by ∼40%. This would suggest that the relatively poor recall seen
in the frame level metrics is caused by the detectors missing frames within laughter events that
were actually detected. Furthermore, the difference from small to large transformer models is
much less pronounced at an event level, suggesting the increase in F1 in the frame level statistics
is caused by the transformers missing fewer frames within events but both sizes of model being
able to detect the same events.

6.2.3 Results: Effect of Pre/Post-Processing Methods on Whisper Large

From the previous section, multiple detectors that utilised the attention embeddings performed
equally effectively while outperforming all the previous detectors. These results were achieved
without using any of the pre/post-processing methods examined in previous chapters. In an
attempt to further increase the performance of the detectors, this section applies these methods
on the Whisper Large attention embedding based detectors. Table 6.5 displays the frame level
results for each additional method trialled.

For frame level AUC, a one-way ANOVA test found significant differences between detec-
tors (F(13, 238) = 147.09. p < 0.0001). The results of a post hoc Tukey test are displayed in
Figure 6.5 (for exact confidence intervals and p-values see Table C.8). The post-hoc test deter-
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Figure 6.5: AUC Score for Each Different Detection Method on the SMC. Significant Differ-
ences Shown in Relation to Whisper L (*p < 0.05, ***p < 0.0005)

mined that Whisper L was significantly better than Whisper L+D, Whisper L+CW+D, Whisper
L+U and Whisper L+C. Some methods did lead to significant improvements in AUC (Whisper
L+S, Whisper L+CW+S, Whisper L+CW+D+S, Whisper L+C+S, Whisper L+E+S). All others
had no significant effect (Whisper L+CW, Whisper L+D+S, Whisper L+U+S, Whisper L+E).
Whisper L+CW+S achieved the highest overall AUC. Compared with the other detectors that
improved on the baseline, it was not significantly different to Whisper L+E+S or Whisper L+S.
It was, however, significantly better than both Whisper L+CW+D+S and Whisper L+C+S (for
exact confidence intervals and p-values see Table C.9). Overall, this suggests that some of the
additional methods trialled in the previous chapters were successful in increasing AUC but at a
maximum of ∼5%.

In terms of frame level precision, a one-way ANOVA test found significant differences in
performance between detectors (F(13, 238) = 32.62. p < 0.0001). A post-hoc Tukey HSD
test, shown in Figure 6.6, determined that, in three cases, Whisper L performed significantly
better (Whisper L+D, Whisper L+CW+D, Whisper L+D+S). In all the other cases, there was no
significant effect (for exact confidence intervals and p-values see Table C.10).

In terms of recall, a one-way ANOVA test found significant differences in performance be-
tween detectors (F(13, 238) = 108.75. p < 0.0001). A post-hoc Tukey HSD test, shown in
Figure 6.7, determined that Whisper L was significantly outperformed by Whisper L+CW. Four
detectors were significantly worse (Whisper L+D, Whisper L+CW+D, Whisper L+D+S and
Whisper L+CW+D+S). All the other detectors showed no significant effect (for exact confi-
dence intervals and p-values see Table C.11).

For frame level F1, a one-way ANOVA test found significant differences in performance
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Figure 6.6: Frame Level Precision for Each Different Detection Method on the SMC. Significant
Differences Shown in Relation to Whisper L (**p < 0.005, ***p < 0.0005)

Figure 6.7: Frame Level Recall for Each Different Detection Method on the SMC. Significant
Differences Shown in Relation to Whisper L (**p < 0.005, ***p < 0.0005)
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Figure 6.8: Frame Level F1 for Each Different Detection Method on the SMC. Significant Dif-
ferences Shown in Relation to Whisper L (***p < 0.0005)

(F(13, 238) = 185.58. p < 0.0001). Figure 6.8 shows the results of a post-hoc Tukey HSD
test. The latter determined that Whisper L was significantly better than four of the new detec-
tors (Whisper L+D, Whisper L+D+S, Whisper L+CW+D and Whisper L+CW+D+S). No other
significant differences were found (for exact confidence intervals and p-values see Table C.12).
Though some methods saw significant increase in precision and recall, there was no improve-
ment in F1. This is due to each method only seeing increases in one of the two metrics and not
both. This means that, when F1 is calculated, the differences negate each other. One further
point to note is that the inclusion of deltas has a universal detrimental impact on Whisper L per-
formance. This is probably due to lack of temporal constraints in the transformer embeddings,
resulting in deltas that are meaningless.

Table 6.6 displays the event level results. First examining the effect on event level precision,
a one-way ANOVA test found significant differences in performance (F(13, 238) = 19.68. p <

0.0001). Figure 6.8 shows the results of a post-hoc Tukey HSD test. The latter determined that
Whisper L was significantly better than two of the new detectors (Whisper L+D and Whisper
L+CW+D). No other significant differences were found (for exact confidence intervals and p-
values see Table C.13). These results align with the frame level results above in that including
deltas in the input feature vector has a significant negative effect on performance. However, at
the event level, smoothing appears to mitigate this effect since the method Whisper L+D+S was
not significantly different at an event level but was at a frame level.

With regard to event level recall, a one-way ANOVA test again found significant differences
between methods (F(13, 238) = 109.78. p < 0.0001). Figure 6.10 displays the results of a
post-hoc Tukey HSD test. This determined that Whisper L was not significantly different to
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Table 6.5: Affect of Methodology Presented So Far on the Performance of the Whisper Large
Transformer Embedding Extractions on the SMC at a Frame Level. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension. Bold highlights the best performing detector.

Detector Precision Recall F1 AUC
Whisper L 83.35 ± 4.67 46.19 ± 7.47 58.90 ± 4.82 92.99 ± 1.38
Whisper L+CW 72.56 ± 6.63 56.24 ± 6.37 62.79 ± 2.23 92.98 ± 1.08
Whisper L+D 61.83 ± 17.86 1.80 ± 0.89 3.48 ± 1.70 84.34 ± 2.48
Whisper L+S 91.66 ± 2.68 41.84 ± 8.38 56.90 ± 7.03 97.16 ± 0.90
Whisper L+CW+D 60.13 ± 11.42 21.58 ± 11.01 29.70 ± 14.26 86.86 ± 3.74
Whipser L+CW+S 86.44 ± 4.35 52.86 ± 7.50 65.13 ± 4.65 97.19 ± 0.95
Whisper L+D+S 16.67 ± 37.27 0.03 ± 0.10 0.06 ± 0.20 93.90 ± 1.33
Whisper L+CW+D+S 72.76 ± 33.44 10.78 ± 7.97 18.24 ± 12.61 95.03 ± 1.11
Whisper L+U 82.45 ± 5.13 42.83 ± 7.41 55.80 ± 5.04 81.53 ± 2.03
Whisper L+U+S 91.60 ± 3.10 38.15 ± 8.27 53.25 ± 7.16 93.89 ± 1.54
Whisper L+C 85.50 ± 5.04 42.40 ± 6.83 56.14 ± 4.57 88.80 ± 1.80
Whisper L+C+S 92.26 ± 2.75 38.18 ± 7.75 53.47 ± 6.85 96.08 ± 1.06
Whisper L+E 82.68 ± 5.05 47.15 ± 7.70 59.45 ± 4.43 92.99 ± 1.46
Whisper L+E+S 90.85 ± 3.08 43.15 ± 9.12 57.86 ± 7.13 96.97 ± 1.04

Figure 6.9: Event Level Precision for Each Different Detection Method on the SMC. Significant
Differences Shown in Relation to Whisper L (***p < 0.0005)
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Figure 6.10: Event Level Recall for Each Different Detection Method on the SMC. Significant
Differences Shown in Relation to Whisper L (***p < 0.0005)

Whisper L+CW, Whisper L+U, Whisper L+C or Whisper L+E. In all other cases Whisper L was
significantly better (for exact confidence intervals and p-values see Table C.14). Of note is the
fact that the methods developed in Chapter 5 have no significant effect on recall until smoothing
was also incorporated, in which case they saw significant drops. This is to be expected because
smoothing is a method that improves precision at the cost of recall. However, as precision was
already high, smoothing failed to contribute positively at an event level and instead only the
negative effects relating to recall descent were seen. As for the methods explored in Chapter 4,
only CW had no significant impact on recall.

Regarding event level F1, a one-way ANOVA found significant differences between detec-
tors (F(13, 238) = 118.00. p < 0.0001). Figure 6.11 displays the results of a post-hoc Tukey
HSD test. There was no significant difference between Whisper L and Whisper L+CW+S, Whis-
per L+CW, Whisper L+U, Whisper L+C and Whisper L+E. In all other cases Whisper L was
significantly better (for exact confidence intervals and p-values see Table C.15). These results
are expected given the negative impact on recall seen above.

Taken together, this section shows that using transformer embeddings as input into FFN is
effective. However, improving on these results using previously developed methods in the field
and those presented in this work have shown conflicting results depending on the metric con-
sidered. AUC suggests that smoothing can have significant positive effects when used alone
or when coupled with class weighting, confidence based alteration or feature vector extension.
However, at both a frame and an event level, all the methods had either no effect or a signifi-
cantly negative effect on performance. Given the issues with AUC, perhaps a misleading metric
as described at the end of Section 4.2.8, the results in terms of F1 should be given more weight.
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Figure 6.11: Event Level F1 for Each Different Detection Method on the SMC. Significant
Differences Shown in Relation to Whisper L (**p < 0.005, ***p < 0.0005)

Table 6.6: Affect of Methodology Presented So Far on the Performance of the Whisper Large
Transformer Embedding Extractions on the SMC at an Event Level. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension. Bold highlights the best performing detector.

Detector Precision Recall F1
Whisper L 81.57 ± 6.72 84.27 ± 4.10 82.60 ± 3.04
Whisper L+CW 72.40 ± 7.99 89.94 ± 3.28 79.83 ± 4.58
Whisper L+D 56.27 ± 26.59 11.31 ± 5.63 18.75 ± 9.16
Whisper L+S 92.56 ± 4.85 56.86 ± 8.45 69.98 ± 5.83
Whisper L+CW+D 52.43 ± 16.85 62.87 ± 27.81 49.13 ± 20.67
Whisper L+CW+S 87.71 ± 7.39 66.45 ± 5.84 75.18 ± 3.06
Whisper L+D+S 76.10 ± 23.84 5.22 ± 2.74 9.69 ± 4.87
Whisper L+CW+D+S 80.27 ± 11.37 39.49 ± 18.17 49.66 ± 21.21
Whisper L+U 83.42 ± 6.97 78.90 ± 6.15 80.69 ± 3.32
Whisper L+U+S 92.71 ± 4.92 54.82 ± 7.94 68.40 ± 5.19
Whisper L+C 83.97 ± 7.56 81.16 ± 4.36 82.17 ± 3.16
Whisper L+C+S 93.11 ± 4.34 53.48 ± 8.85 67.39 ± 6.19
Whisper L+E 80.56 ± 7.07 84.68 ± 4.11 82.23 ± 2.95
Whisper L+E+S 92.46 ± 4.92 57.44 ± 8.10 70.38 ± 5.23
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Table 6.7: Frame Level Performance of Whisper L for Each Metric by Group Split
Group Precision Recall F1 AUC
Caller 83.78 ± 18.90 45.96 ± 18.28 57.47 ± 18.03 93.37 ± 4.82
Receiver 78.85 ± 21.62 39.31 ± 17.91 50.51 ± 17.97 90.86 ± 5.72
Male 76.91 ± 26.51 40.98 ± 19.93 51.52 ± 21.49 92.18 ± 5.64
Female 85.30 ± 11.30 44.13 ± 16.76 56.22 ± 14.55 92.06 ± 5.26
MM 68.26 ± 26.06 44.12 ± 20.87 50.60 ± 19.66 93.97 ± 3.37
FF 80.83 ± 7.78 47.07 ± 15.48 57.57 ± 10.94 93.30 ± 4.51
MF 82.82 ± 10.65 45.39 ± 14.04 57.28 ± 13.09 92.82 ± 4.12

Table 6.8: Event Level Performance of Whisper L on Each Metric by Group Split
Group Precision Recall F1
Caller 86.42 ± 19.56 87.21 ± 20.83 86.00 ± 19.40
Receiver 81.06 ± 22.67 83.86 ± 22.94 81.65 ± 22.07
Male 79.13 ± 28.07 80.24 ± 29.12 78.64 ± 27.88
Female 87.92 ± 10.85 90.32 ± 10.20 88.51 ± 9.04
MM 71.48 ± 26.33 80.93 ± 26.42 74.90 ± 24.99
FF 83.54 ± 9.37 90.52 ± 8.14 86.32 ± 6.08
MF 85.55 ± 10.95 88.93 ± 11.69 86.42 ± 9.85

Hence, it can be concluded that the additional methodology is ineffective when applied to Whis-
per L and, as such, Whisper L remains the best performing detection approach.

6.2.4 Performance Analysis

A performance analysis of the best detector, Whisper L, was carried out to better understand
the effectiveness of the transformer embeddings. The initial testing compared the detector’s
performance by gender, role and conversation pairing. Frame level results from this analysis are
displayed in Table 6.7, with event level results shown in Table 6.8.

First examining the effect of role, independent t-tests were used to compare Whisper L per-
formance by role on each metric. Figure 6.12 displays the frame level results and Figure 6.13
shows the event level outcomes. Significant differences were found in frame level precision,
recall, F1, AUC, event level precision and F1. No significant difference was found in event
level recall (for exact t statistics and p-values see Table C.16). These findings indicate Whisper
L introduced new significant differences by role compared with the previous best performing
system: the CBA system. Although the size of the difference found in the Whisper L system is
smaller than those seen in the CBA.

With regard to gender, independent t-tests were once again used to test for significant differ-
ences, with frame level results being shown in Figure 6.14 and event level outcomes displayed
in Figure 6.15. The tests found significant differences in frame level precision, F1, event level
precision, recall and F1. No significant difference was found for frame level recall or AUC (for
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Figure 6.12: Frame Level Whisper L Performance by Role on the SMC. B: baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, ***p < 0.0005)

Figure 6.13: Event Level Whisper L Performance by Role on the SMC. B: Baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, ***p < 0.0005)
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Figure 6.14: Frame Level Whisper L Performance by Gender on the SMC. B: baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, ***p < 0.0005)

exact t statistics and p-values see Table C.17). This means that, in 5 out of the 7 metrics, the
Whisper L system saw significantly better performance for female than male speakers. This is
a continuation of the trend seen in the baseline CBA system and in all the previous systems.
However, in frame level recall and AUC, there was no significant difference found in terms of
gender performance. In Chapter 4, the LSTM+CW+S system also saw no significant difference
in terms of AUC, but the Whisper L system is the first time that a detector has seen no signif-
icant difference in frame level recall. Although these results seem promising, the significant
differences in performance at an event level are seen in all the metrics, which suggests that the
Whisper L detector still suffers from gender bias.

As has been the case in previous chapters, the gender differences described above led to
significant differences in performance by conversational pairing. One-way ANOVA tests were
used to compare the performance of each of the three gender pairings. Post-hoc Tukey HSD
tests were utilised to identify which pairings experienced significant differences, with results
shown in Figure 6.16 for frame level and Figure 6.17 for event level. In frame level precision, a
one-way ANOVA test found significant differences in pairing performance (F(2, 177) = 13.68,
p < 0.0001). Post-hoc Tukey HSD tests determined that MM pairings had significantly worse
performance than FF and MF pairings. No significant difference was found between FF and
MF pairings. For frame level recall, a one-way ANOVA test revealed no significant differences
by pairing (F(2, 177) = 0.39, p = 0.68). For frame level F1, a one-way ANOVA test found
significant differences by pairing (F(2, 177) = 3.60, p = 0.029). A post-hoc Tukey HSD test
determined that MM pairings performed significantly worse than MF pairings. No significant
differences were found between MM and FF pairings nor between FF and MF pairings. In AUC,
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Figure 6.15: Event Level Whisper L Performance by Gender on the SMC. B: baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, ***p < 0.0005)

a one-way ANOVA test found no significant differences by pairing (F(2, 177) = 1.14, p = 0.32).
For event level precision, a one-way ANOVA test determined significant differences by pairing
(F(2, 177) = 12.00, p < 0.0001). Post-hoc Tukey tests found that MM pairings performed
significantly worse than FF and MF pairings. No significant difference was found between FF
and MF pairings. For event level recall, a one-way ANOVA test found significant differences
by pairing (F(2, 177) = 4.98, p = 0.0079). MM pairings performed significantly worse than FF
and MF pairings. For event level F1, a one-way ANOVA test determined significant differences
by pairing (F(2, 177) = 10.50, p < 0.0001). Post-hoc Tukey HSD tests found that MM pairings
performed significantly worse than FF and MF pairings. No significant difference was found
between MF and FF pairings (for exact confidence intervals and p-values see Table C.18).

In addition to the above analysis of performance by group, an examination of the false pos-
itives created by the system were also investigated. The frame and event level precision of the
Whisper L detection system are both high, at around ∼80%. However, there remains multi-
ple false positive detections. In previous chapters, it was shown that an above random chance
number of the event level false positives occurred within 0.46 s of a laughter event, with the
LSTM+CW+S detector seeing 23.99 ± 5.55% and the CBA system seeing 29.49 ± 8.95%. With
regard to Whisper L, Table 6.9 shows the percentage of false positives within various times of
a laughter event. At the 0.46 s cut-off, there was around 72.40 ± 10.06% of event level false
positives. This represents an increase of ∼40% in comparison to the CBA system and results in
an event level F1 of almost 90%. This suggests that, even when the Whisper L system makes
mistakes, in the majority of cases these mistakes are almost correct. It is possible, therefore, that
the merging of peaks may be causing the system to move peaks away from correctly identified
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Figure 6.16: Frame Level Whisper L Performance by Gender Pairing on the SMC. B: baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, **p < 0.005, ***p < 0.0005)

Figure 6.17: Event Level Whisper L Performance by Gender Pairing on the SMC. B: baseline
LSTM+CW+C+S. W: Whisper L (*p < 0.05, ***p < 0.0005)
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events.

Table 6.9: Percentage of False Positives Within a Given Length of Time from Laughter and the
Associated Precision, Recall and F1 if They Were Reclassified as True Positives
Time (s) Percentage of False Positives Precision Recall F1
Original - 81.57 ± 6.72 84.27 ± 4.10 82.60 ± 3.04

0.1 31.39 ± 12.11 85.99 ± 5.70 85.54 ± 4.24 85.52 ± 2.30
0.46 72.40 ± 10.06 91.09 ± 5.37 87.68 ± 4.03 89.13 ± 1.91
0.5 73.44 ± 10.76 91.13 ± 5.38 87.81 ± 4.02 89.22 ± 1.91
1 81.98 ± 9.86 92.56 ± 5.06 89.38 ± 3.84 90.74 ± 1.80
2 91.00 ± 6.04 93.45 ± 4.43 91.29 ± 3.37 92.22 ± 1.73

It was theorised that, if multiple peaks occurred close together and that the current system
of merging is causing the final merged peak to be shifted away from the actual event, then a
different approach to merging may reduce the issue. It was hypothesised that, in the case where
there are multiple peaks close to each other with some occurring in conjunction with laughter and
others occurring close to an event, then those peaks that occur over the event would have a higher
posterior, as estimated by the Whisper Large detector. As such, a new merging process was
developed and tested. Where multiple peaks were close enough together to trigger the merging
process, rather than picking a point equidistant between the peaks (as had been done before), the
position of the peak with the highest associated posterior probability of belonging to laughter
was instead selected as the merged position. Table 6.10 shows the event level performance of
the two different merging methods for the Whisper L system. A t-test found no significant
difference between the two merging methods, suggesting that the near misses are not caused
by the merging method moving peaks away from actual events, but that the detector is missing
these events.

Table 6.10: Whisper L Event Level Precision, Recall and F1 by Method of Peak Merging
Precision Recall F1

Equidistant 81.57 ± 6.72 84.27 ± 4.10 82.60 ± 3.04
Maximum 81.93 ± 6.67 84.20 ± 4.10 82.75 ± 2.98

A further issue with the Whisper L system is that, at a frame level, its recall is relatively poor
with a value at under 50%. The high event level recall and precision of ∼80% suggest that the
Whisper L detector is effectively detecting most events and making few mistakes, suggesting
that, at a frame level, the system is missing frames within events that are detected. In previous
chapters, this issue was addressed by using a Hamming window to convolve the posteriors ini-
tially output by the system. However, when using the Hamming window with Whisper L, no
significant difference in recall was found, although there were significant differences in AUC
and event level recall and F1 (as presented above). As explained in Section 6.2.1, the distribu-
tion of the posteriors produced by Whisper L is different from that of the previous detectors.
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Whisper L posteriors are characterised by sharp changes from the ∼0-10 to 90-100% range.
Here, the Hamming convolution is less effective since multiple values are zero or close to zero,
leading to the posteriors being suppressed beyond the goal. A different filter option is to use a
median filter.

Median filters follow a similar approach to the Hamming window procedure that was used
previously. A sliding window is applied to the sequence of posteriors, all posteriors in the win-
dow are ordered by magnitude and the value in the middle position is adopted as the new poste-
rior value [105]. Median filters have been used in denoising [106] and image processing [107].
A key characteristic of the median filter is that it can preserve edges in a sequence, periods where
the sequence switches from one average to another, while also removing noise [108]. In the case
of Whisper L, it is theorised that a median filter maintains the switch between no laughter and
detected laughter, while removing the noise in the detected laughs by maintaining the detection
from the onset to offset. Further to the median filter, a variant was tested termed the MinMax
filter. In this case, a sliding window was once again applied to the output posteriors. For each
window, a detection decision was made in which, if a majority of posteriors were over 0.5, the
maximum posterior would be output for the window. In the case where the majority of posteri-
ors were below 0.5, the output would be the minimum of the window. The size of the window
for both novel features was treated as a hyper-parameter and was tuned in the same manner as
the Hamming window size, as described in Section 4.2. Table 6.11 shows the frame level results
achieved from each filter when it was applied to the Whisper L system; Table 6.12 displays
the event level results. A one-way ANOVA test was used to compare the unaltered Whisper L
performance on each metric with the performance given by each filter method.

Table 6.11: Whisper L Frame Level Precision, Recall and F1 by Method of Filtering/Smoothing.
Bold highlights the best performing detector.

Window Size Precision Recall F1
Original 0 83.35 ± 4.67 46.19 ± 7.47 58.90 ± 4.82
Hamming 10 91.66 ± 2.68 41.84 ± 8.38 56.90 ± 7.03
Median Filter 10 90.08 ± 3.61 45.36 ± 8.41 59.75 ± 6.23
Maximum Filter 10 65.08 ± 7.30 73.36 ± 5.46 68.44 ± 3.32

Table 6.12: Whisper L Event Level Precision, Recall and F1 by Method of Filtering/Smoothing.
Bold highlights the best performing detector.

Window Size Precision Recall F1
Original 0 81.57 ± 6.72 84.27 ± 4.10 82.60 ± 3.04
Hamming 10 92.56 ± 4.85 56.86 ± 8.45 69.98 ± 5.83
Median Filter 10 91.50 ± 4.17 71.35 ± 6.29 79.92 ± 3.38
Maximum Filter 10 78.08 ± 7.66 78.43 ± 4.74 77.86 ± 3.57

In terms of improving frame level precision, a one-way ANOVA test found significant dif-
ferences between filter methods (F(3, 68) = 112.19, p < 0.0001). A post-hoc Tukey HSD test
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determined that, compared with the Hamming window approach, there was significantly bet-
ter performance by the MinMax approach. However, there was no significant difference from
Hamming to median. For frame level recall, a one-way ANOVA test found significant differ-
ences by approach (F(3, 68) = 67.47, p < 0.0001). A post-hoc Tukey test determined that the
Hamming approach was significantly improved upon by the MinMax approach with no sig-
nificant difference found between the Hamming and median approaches. In frame level F1,
a one-way ANOVA test found significant differences between approaches (F(3, 68) = 15.31,
p < 0.0001). Post-hoc Tukey HSD tests determined that the Hamming approach was signifi-
cantly outperformed by the MinMax approach. No significant difference was found between
Hamming and median approaches. For event level precision, a one-way ANOVA test found
significant differences between approaches (F(3, 68) = 25.80, p < 0.0001). A post-hoc Tukey
HSD test determined no significant difference between the Hamming approach and the median
approach. However, the Hamming approach was significantly better than the MinMax approach.
In event level recall, a one-way ANOVA test found significant differences between approaches
(F(3, 68) = 67.00, p < 0.0001). Post-hoc Tukey HSD tests determined that no filtering was
significantly better than the median approach and the MinMax approach. For event level F1, a
one-way ANOVA test found significant differences by approach (F(3, 68) = 31.52, p < 0.0001).
Post-hoc Tukey HSD tests determined that no filtering was significantly better than MinMax.
However, no significant difference was found between no filtering and the median approach (for
exact p-values and confidence intervals see Table C.19). These results suggest that the MinMax
filter was partially successful at a frame level, with the balancing of precision and recall, for the
Whisper L system. However, at an event level, it only negatively affected performance. These
results mean that the usefulness of the filter rests upon the end goal or tasks that the system
intends to fulfil. If frame level F1 is important, the MinMax filter can lead to significant gains
of performance, i.e., ∼10%. However, if event level metrics are the focus then the original
unaltered system is best.

6.2.5 Results: Whisper Large Performance on SVC

The previous sections have demonstrated that the transformer embeddings are effective input
feature vectors for training feed forward neural networks for laughter detection. Furthermore, it
was shown that, at both an event and a frame level, the methods used to improve results in the
previous chapters are ineffective when coupled with the transformer embeddings. In this section,
the transformer embeddings are tested on the SVC. It is expected that the results will remain
stable or increase, as the work presented in this section represents moving from a type 3 to a
type 2 task. However, the results enable comparison with the wider field and, as a consequent,
they are included here.

The methodology applied to the SVC is the same as explained in Chapter 4, with the fea-
ture extraction step replaced with the embedding extraction of Whisper Large. For complete-
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Table 6.13: Frame Level Performance on the SVC for Whisper L Using Both Merging and
Exclusion Criteria. CW: class weight. D: delta. S: smoothing

Evaluation
Criteria

Precision Recall F1 AUC

Whisper L Merged 83.42 ± 2.99 71.93 ± 4.33 77.18 ± 3.01 96.62 ± 1.78
Whisper L Excluded 82.45 ± 25.11 70.33 ± 28.38 72.47 ± 25.44 94.75 ± 10.87
FFN+CW+D+S Merged 22.65 ± 9.08 46.09 ± 13.22 28.43 ± 7.68 81.87 ± 5.57
FFN+CW+D+S Excluded 41.76 ± 13.12 46.06 ± 13.20 41.43 ± 8.58 81.01 ± 5.54
[26] x 80.9-87.4 87.3-94.5 84.0-90.8 x
[38] x x x x 97.3

Table 6.14: Event Level Performance on the SVC for Whisper L Using Both Merging and
Exclusion Criteria. CW: class weight. D: delta. S: smoothing

Evaluation
Criteria

Precision Recall F1

Whisper L Merged 82.20 ± 0.34 95.17 ± 1.02 88.21 ± 0.55
Whisper L Excluded 78.81 ± 30.64 92.21 ± 25.74 83.19 ± 27.56
LSTM+CW+S Merged 29.51 ± 12.91 68.45 ± 7.37 39.48 ± 13.69
LSTM+CW+S Excluded 58.60 ± 2.42 47.28 ± 0.79 52.31 ± 1.02

ness, both the exclusion and merging results are included here (see Section 4.1 for full details).
Table 6.13 displays the frame level performance by the Whisper L model alongside the best
performing detectors from Chapter 4 and the field at large. Table 6.14 displays the event level
results.

Initially, the effect of merging or exclusion was tested for each metric using t-tests, which
found no significant difference on any metric. As the exclusion criteria was assumed to be used
in the field, these results were selected for further analysis. Independent t-tests were used to
compare the performance of the best performing detectors from Chapter 4, i.e., FFN+CW+D+S
for frame level and LSTM+CW+S for event level, on the SVC with Whisper L. A comparison
was carried out over the results using the exclusion evaluation criteria, as explained in Chapter 4.
In all cases Whisper L was significantly better than baseline (for exact t statistics and p-values see
Table C.20). These results show that, for all the metrics, Whisper L significantly outperformed
all the other detectors. This is unsurprising given that Whisper L performed better than all these
detectors on the SMC, which is a more difficult task. However, when examining the Whisper
L system’s performance against the best reported performances in the field, it appears that its
performance is worse. Statistical testing was not possible given that standard deviations and fold
numbers have not been published for the best performing models detailed in Tables 6.13, as such
it is impossible to state whether the difference in performance is significant or not. Especially
given that, in multiple folds, the Whisper L performance exceeded that of the best in the field.
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Table 6.15: Frame Level Performance on Filler and Back-Channel Detection by Whisper L and
Baseline Detectors. CW: class weight. S: smoothing

Detector Precision Recall F1 AUC
BC Whisper L 54.75 ± 8.83 15.36 ± 4.04 23.77 ± 5.26 84.68 ± 2.66
BC FFN+CW+S 1.98 ± 0.20 76.16 ± 6.92 3.85 ± 0.38 75.58 ± 2.29
Filler Whisper L 83.24 ± 2.34 63.53 ± 4.54 71.90 ± 2.66 93.97 ± 0.72
Filler FFN+CW+S 9.65 ± 2.45 40.37 ± 10.59 15.16 ± 2.95 71.04 ± 1.64

Table 6.16: Event Level Performance on Filler and Back-Channel Detection by Whisper L and
Baseline Detectors. CW: class weight. S: smoothing

Detector Precision Recall F1
BC Whisper L 46.87 ± 8.75 47.47 ± 6.56 46.80 ± 6.79
BC FFN+CW+S 3.12 ± 0.79 34.35 ± 6.92 5.71 ± 1.37
Filler Whisper L 80.66 ± 2.40 83.38 ± 2.75 81.95 ± 1.77
Filler FFN+CW+S 8.03 ± 2.17 28.30 ± 5.78 12.44 ± 3.06

6.3 Transformer Embedding for Filler and Back-Channel De-
tection

The previous sections demonstrate the effectiveness of the transformer embeddings for auto-
matic laughter detection in both type 2 and 3 tasks. In this section, the same process is now
applied to filler and back-channel events. The only adjustment to the approach compared with
previous sections was the target class. Tables 6.15 (frame level) and 6.16 (event level) display
the results achieved by Whisper L alongside the filler and back-channel individual detectors
created in Section 5.2.2, which act here as a baseline.

First examining the performance on filler detection, independent t-tests were used to com-
pare the performance of the Whisper Large detector against the baseline. The results of these
tests are shown in Figure 6.18. These results show that, for every metric, the Whisper L de-
tector performed significantly better than the baseline (for exact t statistics and p-values see
Table C.21). These results again show advantages when using the attention embeddings as input
features, as the performance of filler detection is on par with laughter detection.

The performance regarding back-channel was also examined using independent t-tests. Fig-
ure 6.19 displays the results of this significance testing. Independent t-tests found Whisper L
was significantly better in all metrics except frame level recall were it was significantly worse
than baseline (for exact t statistics and p-values see Table C.22). These results suggest there
were some advantages when using the Whisper L embeddings. The significant increase in pre-
cision at both a frame and an event level is promising. Furthermore, the event level recall results
suggest that around half of all the back-channels are being detected, although the detectors are
struggling to identify boundaries (as shown by the low frame level recall). The difference in
performance from laughter and filler events to back-channel is probably due to the nature of
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Figure 6.18: Performance of Whisper L and Baseline Detectors at Filler Detection in the SMC
(***p < 0.0005)

Table 6.17: Frame Level Performance on Back-Channel Detection by Whisper L with Pre/Post-
Processing. CW: class weight. S: smoothing. D: delta. Bold highlights the best performing
detector.

Model Type Precision Recall F1 AUC
Whisper L 54.75 ± 8.83 15.36 ± 4.04 23.77 ± 5.26 84.68 ± 2.66
Whisper L+CW 27.89 ± 4.08 35.80 ± 6.11 31.01 ± 3.87 85.45 ± 2.29
Whisper L+D 55.44 ± 7.84 20.57 ± 4.93 29.76 ± 5.89 87.29 ± 2.66
Whisper L+S 1.98 ± 0.20 76.16 ± 6.92 3.85 ± 0.38 75.58 ± 2.29
Whisper L+CW+D 22.60 ± 2.73 56.48 ± 5.06 32.20 ± 3.29 90.45 ± 1.65
Whisper L+CW+S 45.71 ± 5.40 31.62 ± 6.40 36.99 ± 5.51 89.80 ± 2.38
Whisper L+D+S 68.50 ± 11.31 16.47 ± 4.78 26.20 ± 6.44 92.17 ± 1.91
Whisper L+CW+D+S 35.62 ± 3.91 57.74 ± 5.64 43.88 ± 3.74 93.99 ± 1.41

these events. Back-channel, as outlined in Chapter 5.2, are short utterances that a listener makes
to signal they are still engaged and listening to what the other speaker is currently saying. They
always overlap with another speaker’s speech. Given the overlapping nature of back-channel
and speech, the methods developed in Chapter 5 are not applicable to back-channel detection.
However, it is possible that the pre/post-processing methods explored in Chapter 4 would be
effective, so they were tested.

Tables 6.17 (frame level) and 6.18 (event level) show the results achieved by the various
pre/post-processes. For each metric, one-way ANOVA tests were used to compare the detec-
tion methods results against the baseline Whisper L performance. In cases where significant
differences were found, post-hoc Tukey tests were carried out to identify which methods were
significantly different from others.
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Figure 6.19: Performance of Whisper L and Baseline Detectors at Back-Channel Detection in
the SMC (***p < 0.0005)

Table 6.18: Event Level Performance on Back-Channel Detection by Whisper L with Pre/Post-
Processing. CW: class weight. S: smoothing. D: delta. Bold highlights the best performing
detector.

Model Type Precision Recall F1
Whisper L 46.87 ± 8.75 47.47 ± 6.56 46.80 ± 6.79
Whisper L+CW 17.86 ± 3.50 71.42 ± 9.64 28.39 ± 4.77
Whisper L+D 46.59 ± 7.11 56.33 ± 6.61 50.77 ± 6.32
Whisper L+S 3.12 ± 0.79 34.35 ± 6.92 5.71 ± 1.37
Whisper L+CW+D 12.25 ± 2.90 74.25 ± 8.27 20.94 ± 4.40
Whisper L+CW+S 31.82 ± 5.55 60.34 ± 8.31 41.31 ± 5.70
Whisper L+D+S 63.69 ± 8.89 37.43 ± 4.59 46.92 ± 5.21
Whisper L+CW+D+S 24.82 ± 4.50 73.09 ± 6.24 36.93 ± 5.61
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Figure 6.20: Frame Level Precision on Back-Channel Detection by Method and Metric. Signif-
icant Differences Shown in Relation to Whisper L (***p < 0.0005)

In terms of frame level precision, a one-way ANOVA test found significant differences be-
tween detectors (F(7, 136) = 196.44, p < 0.0001). A post-hoc Tukey HSD test, shown in Fig-
ure 6.20, determined that Whisper L was significantly worse than Whisper L+D+S. One detector
was not significantly different (Whiser L+D). All others were significantly worse (for exact con-
fidence intervals and p values see Table C.23).

In frame level recall, a one-way ANOVA test found significant differences between detectors
(F(7, 136) = 292.09, p < 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.21, found no
significant difference was found between Whisper L and Whisper L+D or Whisper L+D+S. In
all other cases the detectors with post processing out-performed Whisper L (for exact confidence
intervals and p values see Table C.24).

In frame level F1, a one-way ANOVA test found significant differences between detectors
(F(7, 136) = 114.06, p< 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.22, determined
that Whisper L was significantly better than Whisper L+S. No significant difference was found
between Whisper L and Whisper L+D+S. In all other cases Whisper L was significantly worse
(for exact confidence intervals and p values see Table C.25)

In AUC, a one-way ANOVA test found significant differences between detectors (F(7, 136)
= 123.53, p < 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.23, determined that
Whisper L was significantly better than Whisper L+S. No significant difference was found be-
tween Whisper L and Whisper L+CW. In all other cases Whisper L was significantly worse (for
exact confidence intervals and p values see Table C.26). These results show that multiple of
the pre/post-processing methods presented in Chapter 4 are effective at improving back-channel
detection using transformer embeddings as input. However, overall F1 remains below the 50%
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Figure 6.21: Frame Level Recall on Back-Channel Detection by Method and Metric. Significant
Differences Shown in Relation to Whisper L (***p < 0.0005)

Figure 6.22: Frame Level F1 on Back-Channel Detection by Method and Metric. Significant
Differences Shown in Relation to Whisper L (*p < 0.05, **p < 0.005, ***p < 0.0005)
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Figure 6.23: AUC on Back-Channel Detection by Method and Metric. Significant Differences
Shown in Relation to Whisper L (*p < 0.05, ***p < 0.0005)

mark.
For event level precision, a one-way ANOVA test found significant differences (F(7, 136)

= 214.50, p < 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.24, determined that
Whisper L was significantly worse than Whisper L+D+S. No significant difference was found
between Whisper L and Whisper L+D. In all other cases Whisper L was significantly better (for
exact confidence intervals and p values see Table C.27).

In event level recall, a one-way ANOVA test found significant differences (F(7, 136) = 85.32,
p < 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.25, determined that Whisper L was
significantly better than Whisper L+S and Whisper L+D+S. Whisper L was significantly worse
than all others (for exact confidence intervals and p values see Table C.28).

For event level F1, a one-way ANOVA test found significant differences (F(7, 136) = 155.56,
p < 0.0001). A post-hoc Tukey HSD test, shown in Figure 6.26, determined that Whisper L was
not significantly different from Whisper L+D and Whisper L+D+S. In all other cases Whisper L
was better (for exact confidence intervals and p values see Table C.29). These event level results
suggest that the pre/post-processing methods presented in Chapter 4 are ineffective at improving
back-channel detection.

Transformer-based embeddings were shown to enable significantly better detection of laugh-
ter and fillers but failed to reliably detect back-channel. The above results show that some of
the methods developed in the field of laughter detection can be transferred to the back-channel
detection problem and led to significant increases in performance at a frame level but not at
an event level. Moreover, the best detectors here only achieve an F1 of ∼50%, leaving much
room for improvement. This leaves back-channel detection an open question, especially com-
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Figure 6.24: Event Level Precision on Back-Channel Detection by Method and Metric. Signifi-
cant Differences Shown in Relation to Whisper L (***p < 0.0005)

Figure 6.25: Event Level Recall on Back-Channel Detection by Method and Metric. Significant
Differences Shown in Relation to Whisper L (**p < 0.005, ***p < 0.0005)
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Figure 6.26: Event Level F1 on Back-Channel Detection by Method and Metric. Significant
Differences Shown in Relation to Whisper L (***p < 0.0005)

pared with laughter and fillers, and shows that, although effective for some tasks, transformer
embeddings are not a silver bullet that can solve all detection challenges.

6.4 Automatic Detection of Common Laughter Traits

In this final section, the now effective laughter detectors are applied to the SMC in an attempt
to automatically extract speaker information. Although the most effective detectors discovered
so far use the Whisper Large attention embeddings as the input, this analysis was extended and
carried out on the HuBERT S detector and the CBA detectors from Chapter 5 as well. This was
done to test how effective a detector is required to be before it can reliably automatically detect
speaker information.

There are well-documented gender effects on laughter behaviour. Namely, that female
speakers tend to laugh more than male speakers [109]. This effect is found in the SMC, for
the exact numbers see Chapter 3. In this section of the work, three detection methods are tested
for their ability to reliably detect this tendency to laugh differently by gender pairing at a con-
versation level in both laughter frequency and total amount.

The three systems used are as follows: Whisper L, HuBERT Base and CBA. For each con-
versation in the SMC, the detector that had not seen that conversation during training was used
to automatically estimate the number of laughter events present using the laughter event schema
described in Section 4.2.4. Furthermore, the same event detection steps were applied to the
ground truth labels to find the actual number of laughter events per conversation. This gave the
total laughter events per conversation. As the conversations were of variable length, the fre-
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Figure 6.27: Correlation of Actual and Detected Frequency of Laughter Per Minute of Conver-
sation Achieved by CBA System

quency of events (both actual and detected) was also calculated in terms of laughs per minute of
conversation.

Initially, the correlation between actual and detected total laughs and laughter frequency was
tested. In terms of total laughter, both HuBERT S (r(2) = 0.76 ± 0.020, p< 0.0001) and Whisper
L (r(2) = 0.86 ± 0.014, p < 0.0001) detectors achieved a statistically significant correlation.
However, the CBA system’s correlation was non-significant after a bonferroni adjustment (r(2)
= 0.36 ± 0.13, p = 0.043). Both HuBERT and Whisper achieved strong correlations of around
0.8. With regard to frequency, all three models achieved significant correlations (CBA: r(2) =
0.44 ± 0.095, p = 0.0023, HuBERT S: r(2) = 0.81 ± 0.017, p < 0.0001, Whisper L: r(2) = 0.83
± 0.0062, p < 0.0001). The correlation achieved by the CBA system was low, whereas both the
transformer-based systems achieved strong correlations. Figures 6.27, 6.28 and 6.29 show the
laughter frequency correlation achieved by each detection system.

It was shown above that there were strong and significant correlations between detected and
actual laughter. Therefore, detected laughter events should be sufficiently reliable to reflect
differences associated with social and psychological phenomena. For each detection system,
two-way ANOVA tests were used to test the effect of gender pairing (MM, FF and MF) and
method (actual or detected) and their interaction. Both total laughter and laughter frequency
were tested.

With regard to the CBA system and total laughter per conversation, a two-way ANOVA test
found no significant effect on gender pairing (F(2, 114) = 0.27, p = 0.77) and no significant
interaction between gender pairing and method (F(2, 114) = 0.10, p = 0.90). However, there
was a significant difference by method (F(1, 114) = 14.26, p< 0.0001), suggesting that the CBA
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Figure 6.28: Correlation of Actual and Detected Frequency of Laughter Per Minute of Conver-
sation Achieved by HuBERT S System

Figure 6.29: Correlation of Actual and Detected Frequency of Laughter Per Minute of Conver-
sation Achieved by Whisper L System
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detector performance was significantly different to the ground truth labels. This agrees with the
above findings, in which the CBA system did not correlate with the ground truth labels when
the total laughter is considered. When examining the frequency of laughter, the same behaviour
is seen with the two-way ANOVA test; finding no significant difference by gender pairing (F(2,
114) = 2.24, p = 0.11) and no significant interaction between gender pairing and method (F(2,
114) = 0.36, p= 0.70). However, once again a significant effect by method was found (F(1, 114)
= 19.92, p < 0.0001). Again, this confirms the above correlation finding that the CBA system
had no significant correlation with the actual labels. Taken together, these results show that the
CBA system does not perform well enough to be useful for this task.

Examining the HuBERT S system, in terms of total laughter, a two-way ANOVA test found
no significant effect on gender pairing (F(2, 114) = 1.66, p = 0.20), method (F(1, 114) = 2.92,
p = 0.090) or interaction between gender pairing and method (F(2, 114) = 0.21, p = 0.81). This
suggests that, in terms of total laughter, there are no significant differences between HuBERT
S and the ground-truth labels. In terms of laughter frequency, a two-way ANOVA test did find
a significant effect on gender pairing (F(2, 114) = 7.04, p = 0.001). There was no significant
difference by method (F(1, 114) = 3.83, p = 0.053) or interaction between method and gen-
der pairing (F(2, 114) = 0.36, p = 0.70). This suggests that, at a frequency level, there were
differences in laughter tendency by gender pairing and that HuBERT S was as capable as the
ground truth labels at representing this. A post-hoc Tukey HSD test determined that MM pair-
ings (M = 1.08, SD = 0.63) laughed significantly less than FF pairings (M = 2.20, SD = 1.55,
p = 0.001, 95% C.I. = [0.39, 1.85]). MM pairings also laughed significantly less than MF pair-
ings (M = 1.90, SD = 1.20, p = 0.011, 95% C.I. = [0.16, 1.47]). No significant difference was
found between MF and FF pairings (p = 0.48, 95% C.I. = [-0.31, 0.92]).

Whisper L saw significant effects regarding total laughter by method (F(1, 114) = 11.97,
p < 0.0001). No significant effects were seen by gender pairing (F(2, 114) = 0.40, p = 0.67) and
no significant interaction was seen between method and pairing (F(2, 114) = 0.039, p = 0.96).
This suggests that, in terms of total laughter, Whisper L produces different results compared
with group truth labels for estimating laughter in a conversation. When addressing frequency of
laughter, a two-way ANOVA test found significant differences by gender pairing (F(2, 114) =
5.20, p = 0.007) and method (F(1, 114) = 15.01, p < 0.0001). No significant effect was found
in the interaction between method and gender pairing (F(2, 114) = 0.30, p = 0.74). A post-hoc
Tukey HSD test determined that MM pairings (M = 1.08, SD = 0.75) laughed significantly less
than FF pairings (M = 1.99, SD = 1.49, p = 0.007, 95% C.I. = [0.21, 1.61]). Furthermore, MM
pairings laughter significantly less than MF pairings (M = 1.77, SD = 1.24, p = 0.027, 95% C.I.
= [0.063, 1.33]). No significant difference was found between MF and FF pairings (p = 0.66,
95% C.I. = [-0.38, 0.81]). These differences match those found with the HuBERT S system.
However, a significant effect by method was also seen in Whisper L. To examine this further,
a one-way ANOVA test was used to examine only Whisper L’s detected laughter frequency.
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The test found no significant difference between the detected laughter frequency of each gender
pairing (F(1, 57) = 2.47, p = 0.094). However, a significant effect was found when a one-way
ANOVA test was used to test the differences by gender pairing with the actual labels (F(1, 57)
= 3.60, p = 0.034). A post-hoc Tukey HSD test determined that MM (M = 0.73, SD = 0.42)
laughed significantly less than MF pairings (M = 1.38, SD = 0.86, p = 0.048, 95% C.I. =
[0.0058, 1.29]). No significant difference was found between MM and FF pairings (M = 1.44,
SD = 0.98, p = 0.053, 95% C.I. = [-0.0068, 1.42]), nor between FF and MF pairings (p = 0.66,
95% C.I. = [-1.42, 0.67]). These results suggest that Whisper L was unable to correctly identify
gender pairing laughter differences.

The above results show that the CBA system is ineffective at estimating the laughter in a
conversation (both frequency and total). However, both HuBERT S and Whisper L approaches
were able to capture both the frequency and total amount of laughter in conversations relative to
the other conversations. However, only HuBERT S was able to reliably capture the differences
in tendency to laugh based on the gender pairing of a conversation.

6.5 Conclusion

This chapter addressed RQ4: Are transformers effective when applied to the task of laughter de-
tection? Two methods using transformers were tested, using them as an underlying deep learning
architecture and as a method of feature extraction. It was found that, with the current amount
of data available in the SMC for laughter detection, training a transformer from initialisation is
ineffective. However, transformers pre-trained on other related audio detection tasks were found
to provide an effective means of feature extraction. This suggests that with enough data it would
be possible to train a transformer laughter detector from initialisation but that this is unnecessary
given the effectiveness of the transfer learning approach. These results offer strong evidence in
answer to RQ4: that transformers are effective when applied to laughter detection.

Furthermore, these features were also effective when applied to fillers. However, they were
less effective when applied to back-channel events, requiring the pre/post-processing methods
to achieve an F1 of 50%, at both a frame and an event level. Finally, three different laughter
detection systems were tested for their ability to effectively detect the frequency and total amount
of laughter in a conversation. They were tested for their ability to detect common differences in
tendencies to laugh in a conversation due to the gender pairing of the speakers. It was shown
that Whisper L was the most effective at estimating both laughter frequency and total amount,
in terms of the correlation with the ground truth. HuBERT S was shown to effectively capture
differences in gender pairings’ tendency to laugh. This is despite having an event level F1 score
of 60%, around ∼20% less than Whisper Large.



Chapter 7

Conclusions and Future Work

This thesis addressed the task of automatic laughter detection in spontaneous conversations. It
was shown, through an initial review of the field, that the task definition and evaluation methods
varied. The choices made affected the estimation of the effectiveness of the field’s methods.
In particular, the use of area under the (receiver operator) curve (AUC) had led to inflated esti-
mations of detector effectiveness due to its inclusion of true negatives in its calculation and the
inherent class imbalances present in laughter detection datasets. Moreover, the more constraints
placed upon the task of laughter detection, the easier the task and the higher the score. Important
constraints include the length of the clips analysed, the laughter to non-laughter class balance
(both within each clip and the datasets as a whole), the number of laughs per clip and the spon-
taneity of the laughter generation method. A total of 4 research questions addressed these issues
over the course of the thesis. These were:

• RQ1: Are State-Of-The-Art laughter detectors effective when common experimental
constraints are removed?

• RQ2: Can the incorporation of linguistic data lead to improvements in laughter de-
tection?

• RQ3: What is the effect of broadening the scope of laughter detectors to include
multiple cues?

• RQ4: Are transformers effective when applied to the task of laughter detection?

Chapter 4 addressed RQ1. It was initially demonstrated that detection systems were able
to achieve state-of-the-art (SOTA) detection performance on the publicly available SSPNet vo-
calisation corpus (SVC [41]). These systems were then applied to the SSPNet mobile corpus
(SMC [55]) and it was shown that the best-performing detection system achieved a frame level
F1 of 15% and an event level F1 of 25%. These results provided evidence that SOTA methods
were ineffective when the constraints on total audio time and the ratio of laughter to non-laughter
were removed. These results offered answers to RQ1. A performance analysis found that the

132
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central issue limiting performance was the creation of false positives due to speech being mis-
taken for laughter. Furthermore, it showed that the most effective method for improving laughter
detection, i.e., smoothing, could only improve precision at the cost of decreased recall. The re-
sults of this performance analysis led to the creation of two more research questions RQ2 and
RQ3.

Chapter 5 addressed both of these questions. RQ2 was investigated through the creation
of novel pre/post-processing methods which incorporated linguistic information in a variety of
ways. This was done as speech was the leading cause of mistakes. Linguistic data was automat-
ically extracted by both an automatic speech recognition (ASR) and a voice activity detection
(VAD) system. It was demonstrated that the incorporation of this data into the detection system
could double the F1 achieved (i.e., a frame level of 33% and event level of 45%) by the SOTA
methods in the previous chapter. This offered evidence that laughter detection could be improved
through the incorporation of linguistic information, answering RQ2. RQ3 was addressed by the
second half of Chapter 5. The detectors were broadened to detect multiple cues in an effort to
address the class imbalance issue and provide the networks with more context during training.
However, the results of this section of the work were not promising with large reductions in F1.
The result of RQ3 was therefore negative and this direction of research was abandoned.

Chapter 6 investigated RQ4 but using new underlying architecture - transformers. It was
found that the amount of data currently available was not sufficient to train a randomly initial-
ized laughter detection transformer. However, multiple pre-trained transformer models exist that
address related tasks. These pre-trained models were investigated for their ability to effectively
represent audio data with their attention embeddings. These embeddings were used as features
to train a new classifier in laughter detection. This was found to be the most effective means
of carrying out laughter detection, with F1 scores almost doubling from the previous chapter
(i.e., a frame level of 62% and event level of 82%). These results addressed RQ4 and suggested
that Transformers are effective when applied to the task of laughter detection. Having achieved
effective laughter detection it was then shown that this method of detection was equally effec-
tive when applied to filler detection. However, back-channel detection proved a more difficult
task. Finally, the ability of different laughter detection systems to detect differences in laugh-
ter behaviour by the speakers’ gender pairing was investigated. It was shown that one of the
transformer-based detection systems was able to reliably replicate differences in laughter ten-
dency by gender pairing and that it did not differ significantly from the results found when using
the ground truth labels.

In summary, laughter detection was achieved in a type 3 task setting. Over the entirety of
the work, the effectiveness of SOTA detectors was almost quadrupled.
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7.1 Directions for Future Work

This section discusses possible future directions for this work: both to improve laughter detec-
tion, but also to improve paralanguage detection, and understanding of it more broadly.

• Further reduce constraints. This work addresses a type 3 laughter detection task. This
represents the least constrained type of task in the field of laughter detection. However,
constraints were still present, such as the phone conversations occurring in a controlled en-
vironment, each conversation being comprised of only two speakers and all conversations
addressing the same topics. It is possible that, by removing these constraints, a similar
performance difference from type 1 to 2 and 2 to 3 task would be seen.

• Investigate and address the effect of gender/gender pairing. Each of the three best-
performing laughter detection systems saw significant differences in their performance by
gender and gender pairing, with female speakers generally seeing better performance. It
was suggested that, by gathering more data from male speakers, this performance gap
could be narrowed or eliminated, but this has not been tested yet.

• Investigate the detection of other non-verbal cues. Initial work addressing filler and
back-channel cues is presented. Filler events were shown to be as reliably detected as
laughter. However, detection systems were shown to be ineffective at detecting back-
channel at both a frame and an event level. This shows the need for further work that
properly addresses back-channel, which calls for an investigation into other non-verbal
cues such as sighs, cries and gasps. Each non-verbal cue carries important communication
between speakers; this work shows that methods that are effective at detecting one non-
verbal cue may not generalise to all of them.

• Expand the ability to understand speaker traits. In Section 6.4, it was shown that
common differences in the tendency to laugh by pairing can be detected as well as when
the ground truth labels are used. This work could be extended to include other traits. For
example, personality detection, conflict detection and gender detection.

• Explore contrastive learning. Laughter detection was improved through the application
of longer contexts and better representation of feature representation through the use of
transformers. It is possible that through the use of contrastive learning the underlying
representation of laughter may be improved to further increase the effectiveness of detec-
tors and remove the need for large foundational transformer models to be used for feature
extraction.

• Investigate Loss Functions Class weighting from Chapter 4 was the only method which
directly changed the loss function calculation. It had a marked effect on the performance
and behaviour of the laughter detectors. It is possible that further changes to the loss
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function, or selecting different loss functions entirely, may have a positive impact on the
detectors. There are loss functions designed for environments where there are large class
imbalances such as Focal loss or Dice/Tversky loss. As with the direction above, improv-
ing the underlying detectors could remove the need for large foundational transformer
models.

7.2 Concluding Remarks

This thesis achieved a four-fold increase in the event level F1 score over state-of-the-art ap-
proaches for the task of laughter detection. This was achieved through the application of the
attention embeddings created by publicly available transformer models. It was shown, initially,
that the least constrained laughter detection task was under-researched in the literature. Fur-
thermore, the efficacy of laughter detection systems on this type of task was shown to be over-
inflated by the use of AUC as a metric. An extensive performance analysis revealed multiple is-
sues with the state-of-the-art methods. It was demonstrated that the state-of-the-art performance
could be doubled, in terms of event level F1, through post-processing methods that specifically
addressed the central issues identified. It was then demonstrated that transformer attention em-
beddings could be used to further double the performance of these laughter detection systems.
This final method achieved effective laughter detection in spontaneous conversations. Finally,
the methodology was then extended and was shown to achieve the same level of effectiveness
for automatic filler detection in spontaneous conversations. This approach used publicly avail-
able pre-trained transformer models. This means it can be applied by anyone. As a result, this
approach is practical and useful to the field at large.



Appendix A

Significance Statistics Tables for Chapter 4

Table A.1: Significance values for each model in relation to the best performing detector
(LSTM+D+S) for frame Level AUC Performance on the SVC Using Merging of All Test Clips.
FFN: feed forward neural network. LSTM: long short-term memory network. CW: class weight.
D: delta. S: smoothing.

Model Type
Confidence Interval

p-value
Lower Upper

FNN 11.2339 21.8061 0
FNN + CW 9.7139 20.2861 0
FNN + D 9.8639 20.4361 0
FFN + S 5.6239 16.1961 0
FFN + CW + D 8.2139 18.7861 0
FFN + CW + S 4.1939 14.7661 0
FFN + D + S 3.5439 14.1161 0
FFN + CW + D + S 2.8639 13.4361 0.00002
LSTM 1.6739 12.2461 0.00086
LSTM + CW 3.8939 14.4661 0
LSTM + D 0.9339 11.5061 0.00609
LSTM + S -5.9461 4.6261 1
LSTM + CW + D 4.7039 15.2761 0
LSTM + CW + S -1.1461 9.4261 0.33059
LSTM + D + S x x x
LSTM + CW + D + S -0.3361 10.2361 0.09497
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Table A.2: Significance values for each model in relation to the best performing detectors (Right:
LSTM+CW+S and Left: FFN+CW+D+S) for frame Level F1 Performance on the SVC Using
Merging of All Test Clips. FFN: feed forward neural network. LSTM: long short-term memory
network. CW: class weight. D: delta. S: smoothing.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

FNN 27.0389 44.9411 0 -43.5411 -25.6389 0
FNN + CW 0.3789 18.2811 0.03147 -16.8811 1.0211 0.15043
FNN + D 26.8589 44.7611 0 -43.3611 -25.4589 0
FFN + S 32.6489 50.5511 0 -49.1511 -31.2489 0
FFN + CW + D -1.9411 15.9611 0.33067 -3.3411 14.5611 0.71884
FFN + CW + S -5.8011 12.1011 0.99787 -10.7011 7.2011 1
FFN + D + S 32.2489 50.1511 0 -48.7511 -30.8489 0
FFN + CW + D + S -7.5511 10.3511 1 x x x
LSTM 15.0889 32.9911 0 -31.5911 -13.6889 0
LSTM + CW -4.9911 12.9111 0.97808 -11.5111 6.3911 0.99981
LSTM + D -35.3011 -17.3989 0 -33.9011 -15.9989 0
LSTM + S -41.9711 -24.0689 0 -40.5711 -22.6689 0
LSTM + CW + D -0.6911 17.2111 0.108 -15.8111 2.0911 0.36847
LSTM + CW + S x x x -7.5511 10.3511 1
LSTM + D + S -42.3211 -24.4189 0 -40.9211 -23.0189 0
LSTM + CW + D + S -4.2111 13.6911 0.90283 -12.2911 5.6111 0.99598

Table A.3: Significance values for each model in relation to the best performing detector
(LSTM+CW) for event Level F1 Performance on the SVC Using Exclusion Methodology. FFN:
feed forward neural network. LSTM: long short-term memory network. CW: class weight. D:
delta. S: smoothing.

Model Type
Confidence Interval

p-value
Lower Upper

FNN 34.263 44.477 0
FNN + CW 14.163 24.377 0
FNN + D 35.453 45.667 0
FFN + S 46.373 56.587 0
FFN + CW + D 8.233 18.447 0
FFN + CW + S 11.333 21.547 0
FFN + D + S 47.093 57.307 0
FFN + CW + D + S 13.873 24.087 0
LSTM 27.333 37.547 0
LSTM + CW x x x
LSTM + D -48.097 -37.883 0
LSTM + S -49.297 -39.083 0
LSTM + CW + D -10.147 0.067 0.05739
LSTM + CW + S -10.447 -0.233 0.03032
LSTM + D + S -55.727 -45.513 0
LSTM + CW + D + S -12.507 -2.293 0.00011
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Table A.4: Significance values for each model in relation to the best performing detector
(LSTM+S) for AUC Performance on the SMC. FFN: feed forward neural network. LSTM:
long short-term memory network. CW: class weight. D: delta. S: smoothing.

Model Type
Confidence Interval

p-value
Lower Upper

FNN 8.0201 27.6799 0
FNN + CW 19.4401 39.0999 0
FNN + D 7.1301 26.7899 0
FFN + S -1.3999 18.2599 0.1908
FFN + CW + D 6.7601 26.4199 0
FFN + CW + S 16.0601 35.7199 0
FFN + D + S -2.1299 17.5299 0.33028
FFN + CW + D + S -2.1399 17.5199 0.33251
LSTM -4.0799 15.5799 0.81029
LSTM + CW -2.3099 17.3499 0.37166
LSTM + D -1.0399 18.6199 0.13993
LSTM + S x x x
LSTM + CW + D 3.4801 23.1399 0.00049
LSTM + CW + S -6.5099 13.1499 0.99866
LSTM + D + S -6.2999 13.3599 0.99734
LSTM + CW + D + S -0.5799 19.0799 0.09088

Table A.5: Significance values for each model in relation to the best performing detector
(FFN+CW+D+S) for Frame Level F1 Performance on the SMC. FFN: feed forward neural net-
work. LSTM: long short-term memory network. CW: class weight. D: delta. S: smoothing.

Model Type
Confidence Interval

p-value
Lower Upper

FNN -10.8724 1.1324 0.27203
FNN + CW -15.1124 -3.1076 0.00004
FNN + D -9.5724 2.4324 0.79029
FFN + S -14.5824 -2.5776 0.00015
FFN + CW + D -1.3724 10.6324 0.35706
FFN + CW + S -12.3224 -0.3176 0.02791
FFN + D + S -13.1124 -1.1076 0.00549
FFN + CW + D + S x x x
LSTM -16.1724 -4.1676 0
LSTM + CW -9.1324 2.8724 0.91328
LSTM + D -20.4224 -8.4176 0
LSTM + S -20.0724 -8.0676 0
LSTM + CW + D -11.6524 0.3524 0.09063
LSTM + CW + S -7.2424 4.7624 1
LSTM + D + S -20.6424 -8.6376 0
LSTM + CW + D + S -10.2124 1.7924 0.52994
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Table A.6: Significance values for each model in relation to the best performing detector
(LSTM+CW+S) for Event Level F1 Performance on the SMC. FFN: feed forward neural net-
work. LSTM: long short-term memory network. CW: class weight. D: delta. S: smoothing.

Model Type
Confidence Interval

p-value
Lower Upper

FNN -7.5471 11.5471 1
FNN + CW 6.6929 25.7871 0
FNN + D -7.1171 11.9771 0.99996
FFN + S -4.1071 14.9871 0.83913
FFN + CW + D 3.3029 22.3971 0.00056
FFN + CW + S 4.2329 23.3271 0.00012
FFN + D + S -6.2571 12.8371 0.99832
FFN + CW + D + S -5.5671 13.5271 0.98752
LSTM -2.6071 16.4871 0.46444
LSTM + CW -9.5471 9.5471 1
LSTM + D -25.5671 -6.4729 0
LSTM + S -25.1271 -6.0329 0
LSTM + CW + D 2.4729 21.5671 0.00198
LSTM + CW + S x x x
LSTM + D + S -24.1671 -5.0729 0.00003
LSTM + CW + D + S -3.6571 15.4371 0.74166

Table A.7: Significance values for t-tests comparing LSTM+CW+S laughter detection by role.
Level Metric t statistic p-value
Frame AUC 9.53 <0.0001

Precision 7.69 <0.0001
Recall 4.66 <0.0001
F1 2.77 <0.0001

Event Precision 0.26 0.38
Recall 5.71 <0.0001
F1 0.38 0.74

Table A.8: Significance values for t-tests comparing LSTM+CW+S laughter detection by Gen-
der.

Level Metric t statistic p-value
Frame AUC 0.53 0.59

Precision 1.48 0.14
Recall 3.69 0.0003
F1 2.65 0.0085

Event Precision 2.29 0.024
Recall 3.58 0.0005
F1 2.75 0.0068
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Table A.9: Significance values for one-way ANOVAs and associated post-hoc Tukey tests comparing performance of LSTM+CW+S detector on
each metric by gender pairing in a conversation.

Level Metric
MM-MF MM-FF FF-MF
Confidence Interval

p-value
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper Lower Upper

Frame AUC -5.81 -0.57 0.012 -0.14 6.04 0.065 -3.03 2.55 0.98
Precision No difference
Recall 1.25 18.41 0.02 6.12 25.16 0.0004 2.24 13.86 0.201
F1 -2.16 7.8 0.38 0.35 11.41 0.034 -7.74 1.62 0.27

Event Precision No difference
Recall No difference
F1 No difference



Appendix B

Significance Statistics Tables for Chapter 5

Table B.1: Significance values for each model in relation to the baseline detector
(LSTM+CW+S) for AUC Performance on the SMC Using ASR Approaches. FFN: feed forward
neural network. LSTM: long short-term memory network. CW: class weight. S: smoothing. C:
confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW 17.4052 34.4948 0
FFN+CW+S 14.0252 31.1148 0
FFN+CW+U -2.5948 14.4948 0.54305
FFN+CW+U+S -8.2548 8.8348 1
FFN+CW+C 5.2352 22.3248 0.00001
FFN+CW+C+S 0.3452 17.4348 0.03216
FFN+CW+E -8.0848 9.0048 1
FFN+CW+E+S -13.6448 3.4448 0.7859
LSTM+CW -4.3448 12.7448 0.94535
LSTM+CW+S x x x
LSTM+CW+U -14.0448 3.0448 0.67787
LSTM+CW+U+S -9.1648 7.9248 1
LSTM+CW+C -6.4448 10.6448 0.99997
LSTM+CW+C+S -10.8148 6.2748 0.99993
LSTM+CW+E -7.5848 9.5048 1
LSTM+CW+E+S -11.8248 5.2648 0.99458

141
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Table B.2: Significance values for each model in relation to the baseline detector (FFN+CW) for
Frame Level Precision Performance on the SMC Using ASR Approaches. FFN: feed forward
neural network. LSTM: long short-term memory network. CW: class weight. S: smoothing. C:
confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW x x x
FFN+CW+S -11.0319 9.7919 1
FFN+CW+U -5.3419 15.4819 0.94939
FFN+CW+U+S 1.6181 22.4419 0.00803
FFN+CW+C -1.6919 19.1319 0.22373
FFN+CW+C+S 5.2581 26.0819 0.00004
FFN+CW+E -9.1619 11.6619 1
FFN+CW+E+S -4.5919 16.2319 0.85816
LSTM+CW -11.5719 9.2519 1
LSTM+CW+S -10.4119 10.4119 1
LSTM+CW+U -3.1519 17.6719 0.54059
LSTM+CW+U+S 4.2381 25.0619 0.00022
LSTM+CW+C -1.3519 19.4719 0.17203
LSTM+CW+C+S 6.8681 27.6919 0
LSTM+CW+E -9.9419 10.8819 1
LSTM+CW+E+S -7.5619 13.2619 0.99989

Table B.3: Significance values for each model in relation to the baseline detectors (Right:
FFN+CW, Left: LSTM+CW) for Frame Level Recall Performance on the SMC Using ASR
Approaches. FFN: feed forward neural network. LSTM: long short-term memory network.
CW: class weight. S: smoothing. C: confidence-based alteration. E: feature vector extension.
U: undersampling.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

FFN+CW x x x 5.0262 40.5338 0.00141
FFN+CW+S -20.2238 15.2838 1 7.4962 43.0038 0.00017
FFN+CW+U -6.5238 28.9838 0.70501 -6.2038 29.3038 0.6607
FFN+CW+U+S -8.3838 27.1238 0.90518 -4.3438 31.1638 0.39448
FFN+CW+C -27.9738 7.5338 0.8283 15.2462 50.7538 0
FFN+CW+C+S -35.5538 -0.0462 0.04864 22.8262 58.3338 0
FFN+CW+E 5.7962 41.3038 0.00074 -18.5238 16.9838 1
FFN+CW+E+S 8.3862 43.8938 0.00008 -21.1138 14.3938 1
LSTM+CW 5.0262 40.5338 0.00141 x x x
LSTM+CW+S 8.5562 44.0638 0.00006 -14.2238 21.2838 1
LSTM+CW+U -12.9438 22.5638 0.9999 -35.7238 -0.2162 0.04389
LSTM+CW+U+S -15.1738 20.3338 1 -37.9538 -2.4462 0.01005
LSTM+CW+C -10.1738 25.3338 0.98429 -32.9538 2.5538 0.19303
LSTM+CW+C+S -10.3438 25.1638 0.98737 -33.1238 2.3838 0.17848
LSTM+CW+E 9.4462 44.9538 0.00003 -13.3338 22.1738 0.99997
LSTM+CW+E+S 12.3462 47.8538 0 -10.4338 25.0738 0.9888
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Table B.4: Significance values for each model in relation to the baseline detector
(LSTM+CW+S) for Frame Level F1 Performance on the SMC Using ASR Approaches. FFN:
feed forward neural network. LSTM: long short-term memory network. CW: class weight. S:
smoothing. C: confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW -0.1765 15.9165 0.06286
FFN+CW+S -2.9665 13.1265 0.70792
FFN+CW+U -14.8465 1.2465 0.21086
FFN+CW+U+S -22.6665 -6.5735 0
FFN+CW+C -5.5165 10.5765 0.99941
FFN+CW+C+S -12.5565 3.5365 0.85557
FFN+CW+E -9.9065 6.1865 0.99999
FFN+CW+E+S -16.4465 -0.3535 0.0309
LSTM+CW -6.1565 9.9365 0.99998
LSTM+CW+S x x x
LSTM+CW+U 0.5335 16.6265 0.02392
LSTM+CW+U+S 7.6735 23.7665 0
LSTM+CW+C -19.0965 -3.0035 0.00037
LSTM+CW+C+S -26.8965 -10.8035 0
LSTM+CW+E -8.6665 7.4265 1
LSTM+CW+E+S -11.8465 4.2465 0.96086

Table B.5: Significance values for each model in relation to the best performing detector
(LSTM+CW+C+S) for Frame Level F1 Performance on the SMC Using ASR Approaches.
FFN: feed forward neural network. LSTM: long short-term memory network. CW: class weight.
S: smoothing. C: confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW 18.6735 34.7665 0
FFN+CW+S 15.8835 31.9765 0
FFN+CW+U 4.0035 20.0965 0.00005
FFN+CW+U+S -3.8165 12.2765 0.9079
FFN+CW+C 13.3335 29.4265 0
FFN+CW+C+S 6.2935 22.3865 0
FFN+CW+E 8.9435 25.0365 0
FFN+CW+E+S 2.4035 18.4965 0.00112
LSTM+CW 12.6935 28.7865 0
LSTM+CW+S -26.8965 -10.8035 0
LSTM+CW+U -18.3165 -2.2235 0.00155
LSTM+CW+U+S -11.1765 4.9165 0.99377
LSTM+CW+C -0.2465 15.8465 0.06868
LSTM+CW+C+S x x x
LSTM+CW+E -26.2765 -10.1835 0
LSTM+CW+E+S -23.0965 -7.0035 0
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Table B.6: Significance values for each model in relation to the baseline detector
(LSTM+CW+S) for Event Level Precision Performance on the SMC Using ASR Approaches.
FFN: feed forward neural network. LSTM: long short-term memory network. CW: class weight.
S: smoothing. C: confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW -5.1954 20.8354 0.77744
FFN+CW+S -9.6054 16.4254 0.99994
FFN+CW+U -10.5354 15.4954 1
FFN+CW+U+S -27.7454 -1.7146 0.01085
FFN+CW+C -15.1354 10.8954 1
FFN+CW+C+S -20.2254 5.8054 0.8665
FFN+CW+E -8.7154 17.3154 0.99896
FFN+CW+E+S -20.8354 5.1954 0.77744
LSTM+CW -6.8354 19.1954 0.95901
LSTM+CW+S x x x
LSTM+CW+U -6.0054 20.0254 0.8902
LSTM+CW+U+S 5.1146 31.1454 0.00027
LSTM+CW+C -23.8654 2.1654 0.23049
LSTM+CW+C+S -35.0054 -8.9746 0
LSTM+CW+E -10.4154 15.6154 1
LSTM+CW+E+S -15.6254 10.4054 1

Table B.7: Significance values for each model in relation to the baseline detector (LSTM+CW)
for Event Level Recall Performance on the SMC Using ASR Approaches. FFN: feed forward
neural network. LSTM: long short-term memory network. CW: class weight. S: smoothing. C:
confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW 0.0073 33.8327 0.04977
FFN+CW+S 30.3173 64.1427 0
FFN+CW+U -18.8627 14.9627 1
FFN+CW+U+S 2.5373 36.3627 0.00861
FFN+CW+C 0.4173 34.2427 0.0383
FFN+CW+C+S 31.2273 65.0527 0
FFN+CW+E -21.8927 11.9327 0.99973
FFN+CW+E+S -5.6927 28.1327 0.62819
LSTM+CW x x x
LSTM+CW+S -33.2327 0.5927 0.0718
LSTM+CW+U -28.5427 5.2827 0.5656
LSTM+CW+U+S -43.0627 -9.2373 0.00002
LSTM+CW+C -25.1627 8.6627 0.94865
LSTM+CW+C+S -43.6027 -9.7773 0.00001
LSTM+CW+E -17.1127 16.7127 1
LSTM+CW+E+S -28.7227 5.1027 0.53796
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Table B.8: Significance values for each model in relation to the baseline detector
(LSTM+CW+S) for Event Level F1 Performance on the SMC Using ASR Approaches. FFN:
feed forward neural network. LSTM: long short-term memory network. CW: class weight. S:
smoothing. C: confidence-based alteration. E: feature vector extension. U: undersampling.

Model Type
Confidence Interval

p-value
Lower Upper

FFN+CW 5.8439 26.6361 0.00002
FFN+CW+S 3.3839 24.1761 0.00075
FFN+CW+U -7.9361 12.8561 0.99998
FFN+CW+U+S -26.2161 -5.4239 0.00003
FFN+CW+C -1.2961 19.4961 0.1647
FFN+CW+C+S -6.0961 14.6961 0.98844
FFN+CW+E -5.2661 15.5261 0.94359
FFN+CW+E+S -20.0061 0.7861 0.1064
LSTM+CW -2.2761 18.5161 0.33525
LSTM+CW+S x x x
LSTM+CW+U -2.4461 18.3461 0.37236
LSTM+CW+U+S 4.8939 25.6861 0.00008
LSTM+CW+C -23.9961 -3.2039 0.00098
LSTM+CW+C+S -29.9861 -9.1939 0
LSTM+CW+E -7.4161 13.3761 0.99981
LSTM+CW+E+S -13.5961 7.1961 0.99954

Table B.9: Significance values for t-tests comparing performance of LSTM+CW+C+S detector
by gender.

Level Metric t-statistic p-value
Frame Precision t(358) = 4.05 0.0001

Recall t(358) = 3.58 0.00038
F1 t(358) = 4.66 0.0001
AUC t(358) = 3.86 0.00013

Event Precision t(358) = 2.56 0.12
Recall t(358) = 3.60 0.00047
F1 t(358) = 3.22 0.0017
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Table B.10: Significance values for one-way ANOVAs and associated post-hoc Tukey tests
comparing performance of LSTM+CW+C+S detector on each metric by gender pairing in a
conversation.

Level Metric Gender pairing one-way ANOVA
Post-Hoc Tukey

Confidence Interval
p-value

Lower Upper
Frame Precision MM-FF F(2, 177) = 3.51, p = 0.032 0.35 18 0.04

FF-MF 0.67 14.27 0.082
MM-MF 5.58 10.32 0.76

Recall MM-FF F(2, 177) = 5.63, p = 0.0043 3.83 22.03 0.0028
FF-MF 1.96 13.46 0.19

MM-MF 1.03 15.39 0.1
F1 MM-FF F(2, 177) = 5.35, p = 0.0056 2.75 17.73 0.0042

FF-MF 0.024 13.54 0.049
MM-MF 2.88 9.8 0.4

AUC MM-FF F(2, 177) = 4.45, p = 0.013 -0.16 6.38 0.067
FF-MF 0.58 6.12 0.013

MM-MF -3.19 2.71 0.98
Event Precision MM-FF F(2, 177) = 8.66, p = 0.0003 9.3 33.76 0.0001

FF-MF -1.19 19.51 0.095
MM-MF 1.34 23.4 0.024

Recall MM-FF F(2, 177) = 8.73, p = 0.0002 7.53 27.47 0.0002
FF-MF -2.06 14.81 0.18

MM-MF 2.13 20.11 0.011
F1 MM-FF F(2, 177) = 11.40, p < 0.0001 8.98 28.82 0.0001

FF-MF -4.65 12.14 0.54
MM-MF 6.2 24.1 0.0003

Table B.11: Significance values for t-tests comparing FFN and LSTM based architectures for
multi-cue detection.

Level Metric
T-test

t-statistic p-value
Frame Precision t(34) = 4.96 0.033

Recall t(34) = 4.37 0.044
F1 t(34) = 41.35 0.0001
AUC t(34) = 89.08 0.0001

Event Precision t(34) = 12.25 0.0013
Recall t(34) = 9.69 0.0037
F1 t(34) = 23.36 0.0001
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Table B.12: Significance values for AUC performance by the multi-label detection system com-
pared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 7.21 13.11 0.0001
Laugh 4.63 10.53 0.0001
Filler 11.36 17.26 0.0001
Pause 1.86 7.76 0.0001
Speech 27.34 33.24 0.0001
Average 8.56 14.45 0.0001

Table B.13: Significance values for frame level precision performance by the multi-label detec-
tion system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 7.21 13.11 0.0001
Laugh 4.63 10.53 0.0001
Filler 11.36 17.26 0.0001
Pause 1.86 7.76 0.0001
Speech 27.34 33.24 0.0001
Average 8.56 14.45 0.0001

Table B.14: Significance values for frame level recall performance by the multi-label detection
system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 40.57 55.09 0.0001
Laugh 11.74 26.26 0.0001
Filler 18.91 33.43 0.0001
Pause 28.85 43.37 0.0001
Speech 38.34 52.86 0.0001
Average -5 9.51 0.97

Table B.15: Significance values for frame level F1 performance by the multi-label detection
system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 25.61 33.99 0.0001
Laugh 9.04 17.42 0.0001
Filler 14.66 23.04 0.0001
Pause 15.48 23.86 0.0001
Speech 23.39 31.77 0.0001
Average 1.26 7.12 0.36
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Table B.16: Significance values for event level precision performance by the multi-label detec-
tion system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 30.55 39.59 0.0001
Laugh 26.06 35.1 0.0001
Filler 27.59 36.63 0.0001
Pause 8.1 17.14 0.0001
Speech 2.03 11.07 0.00057
Average 16.25 25.29 0.0001

Table B.17: Significance values for event level recall performance by the multi-label detection
system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 24.48 41.6 0.0001
Laugh 2.69 14.43 0.38
Filler 17.39 34.51 0.0001
Pause 0.039 17.08 0.052
Speech 19.24 36.36 0.0001
Average -2.18 8.9 0.23

Table B.18: Significance values for event level F1 performance by the multi-label detection
system compared to the Confidence Based Alteration system.

Confidence Interval
Detector Lower Upper p-value
Back-channel 35.73 44.55 0.0001
Laugh 27.56 36.38 0.0001
Filler 30.94 39.76 0.0001
Pause 4.26 13.08 0.0001
Speech 9.09 17.91 0.0001
Average 15.2 24.03 0.0001
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Table B.19: Significance values for comparing different threshold values for NVC super-class
detection system for precision.

Threshold Values p-value
95% Confidence Interval
Lower Bound Upper Bound

.1 .2 0.96 -0.14 0.08
.3 0.51 -0.17 0.05
.4 0.02 -0.23 -0.01
.5 0.00 -0.26 -0.04

.2 .1 0.96 -0.08 0.14
.3 0.90 -0.14 0.07
.4 0.13 -0.20 0.02
.5 0.02 -0.23 -0.01

.3 .1 0.51 -0.05 0.17
.2 0.90 -0.07 0.14
.4 0.57 -0.17 0.05
.5 0.19 -0.20 0.02

.4 .1 0.02 0.01 0.23
.2 0.13 -0.02 0.20
.3 0.57 -0.05 0.17
.5 0.96 -0.14 0.08

.5 .1 0.00 0.04 0.26
.2 0.02 0.01 0.23
.3 0.19 -0.02 0.20
.4 0.96 -0.08 0.14
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Table B.20: Significance values for comparing different threshold values for NVC super-class
detection system for recall.

Threshold Values p-value
95% Confidence Interval
Lower Bound Upper Bound

.1 .2 0.01 0.02 0.21
.3 0.00 0.09 0.28
.4 0.00 0.18 0.37
.5 0.00 0.32 0.51

.2 .1 0.01 -0.21 -0.02
.3 0.27 -0.03 0.16
.4 0.00 0.07 0.25
.5 0.00 0.21 0.39

.3 .1 0.00 -0.28 -0.09
.2 0.27 -0.16 0.03
.4 0.06 0.00 0.19
.5 0.00 0.14 0.32

.4 .1 0.00 -0.37 -0.18
.2 0.00 -0.25 -0.07
.3 0.06 -0.19 0.00
.5 0.00 0.05 0.23

.5 .1 0.00 -0.51 -0.32
.2 0.00 -0.39 -0.21
.3 0.00 -0.32 -0.14
.4 0.00 -0.23 -0.05



APPENDIX B. SIGNIFICANCE STATISTICS TABLES FOR CHAPTER 5 151

Table B.21: Significance values for comparing different threshold values for NVC super-class
detection system for F1 using only results obtained with FFN architecture.

Threshold Values p-value
95% Confidence Interval
Lower Bound Upper Bound

0.1 0.2 0.72 -0.04 0.02
0.3 0.03 -0.06 0.00
0.4 0.00 -0.10 -0.03
0.5 0.00 -0.14 -0.08

0.2 0.1 0.72 -0.02 0.04
0.3 0.42 -0.05 0.01
0.4 0.00 -0.08 -0.02
0.5 0.00 -0.12 -0.06

0.3 0.1 0.03 0.00 0.06
0.2 0.42 -0.01 0.05
0.4 0.03 -0.06 0.00
0.5 0.00 -0.10 -0.04

0.4 0.1 0.00 0.03 0.10
0.2 0.00 0.02 0.08
0.3 0.03 0.00 0.06
0.5 0.00 -0.07 -0.01

0.5 0.1 0.00 0.08 0.14
0.2 0.00 0.06 0.12
0.3 0.00 0.04 0.10
0.4 0.00 0.01 0.07
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Table B.22: Significance values for comparing different threshold values for NVC super-class
detection system for percentage of data removed using only results obtained with LSTM archi-
tecture.

Threshold Values p-value
95% Confidence Interval
Lower Bound Upper Bound

0.1 0.2 0.05 -0.42 0.00
0.3 0.00 -0.50 -0.08
0.4 0.00 -0.54 -0.12
0.5 0.00 -0.50 -0.09

0.2 0.1 0.05 0.00 0.42
0.3 0.83 -0.29 0.13
0.4 0.52 -0.33 0.09
0.5 0.80 -0.29 0.13

0.3 0.1 0.00 0.08 0.50
0.2 0.83 -0.13 0.29
0.4 0.98 -0.25 0.17
0.5 1.00 -0.21 0.20

0.4 0.1 0.00 0.12 0.54
0.2 0.52 -0.09 0.33
0.3 0.98 -0.17 0.25
0.5 0.99 -0.17 0.24

0.5 0.1 0.00 0.09 0.50
0.2 0.80 -0.13 0.29
0.3 1.00 -0.20 0.21
0.4 0.99 -0.24 0.17
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Table B.23: Significance values for comparing different threshold values for NVC super-class
detection system for percentage of data removed using only results obtained with FFN architec-
ture.

Threshold Values p-value
95% Confidence Interval
Lower Bound Upper Bound

0.1 0.2 0.00 -0.16 -0.04
0.3 0.00 -0.30 -0.18
0.4 0.00 -0.52 -0.40
0.5 0.00 -0.77 -0.65

0.2 0.1 0.00 0.04 0.16
0.3 0.00 -0.20 -0.08
0.4 0.00 -0.42 -0.30
0.5 0.00 -0.67 -0.55

0.3 0.1 0.00 0.18 0.30
0.2 0.00 0.08 0.20
0.4 0.00 -0.28 -0.16
0.5 0.00 -0.53 -0.41

0.4 0.1 0.00 0.40 0.52
0.2 0.00 0.30 0.42
0.3 0.00 0.16 0.28
0.5 0.00 -0.31 -0.19

0.5 0.1 0.00 0.65 0.77
0.2 0.00 0.55 0.67
0.3 0.00 0.41 0.53
0.4 0.00 0.19 0.31

Table B.24: Significance values for LSTM vs FFN performance on Back-channel cue detection.
Level Metric t statistic p-value
Frame Precision 20.75 <0.0001

Recall 9.27 0.0045
F1 33.18 <0.0001
AUC 108.02 <0.0001

Event Precision 33.79 <0.0001
Recall 35.63 <0.0001
F1 42.84 <0.0001

Table B.25: Significance values for LSTM vs FFN performance on Filler cue detection.
Level Metric t statistic p-value
Frame Precision 20.75 <0.0001

Recall 9.27 0.0045
F1 33.18 <0.0001
AUC 108.02 <0.0001

Event Precision 33.79 <0.0001
Recall 35.63 <0.0001
F1 42.84 <0.0001
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Table B.26: Significance values for LSTM vs FFN performance on Laughter cue detection.
Level Metric t statistic p-value
Frame Precision 0.11 0.74

Recall 15.06 0.0005
F1 8.42 0.0065
AUC 22.4 <0.0001

Event Precision 0.84 0.37
Recall 25.48 <0.0001
F1 31.03 <0.0001

Table B.27: Significance values for each metric comparing performance at Back Channel detec-
tion between baseline and two-stage detector using individual detector.

Level Metric t statistic p-value
Frame Precision 20.66 <0.0001

Recall 68.05 <0.0001
F1 17.42 0.0002
AUC 1.02 0.32

Event Precision 0.12 0.73
Recall 0.043 0.84
F1 0.093 0.76

Table B.28: Significance values for each metric comparing performance at filler detection be-
tween baseline and two-stage detector using individual detector.

Level Metric t statistic p-value
Frame Precision 1.16 0.28

Recall 5.8 0.022
F1 0.18 0.68
AUC 0.004 0.95

Event Precision 0.32 0.58
Recall 0.51 0.48
F1 0.38 0.54

Table B.29: Significance values for each metric comparing performance at laugh detection be-
tween baseline and two-stage detector using individual detector.

Level Metric t statistic p-value
Frame Precision 28.05 <0.0001

Recall 652.07 <0.0001
F1 135.14 <0.0001
AUC 782.09 <0.0001

Event Precision 2.84 0.1
Recall 124.13 <0.0001
F1 33.99 <0.0001
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Table B.30: Significance values for each metric comparing performance at back channel detec-
tion by architecture for the paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 24.98 <0.0001

Recall 0.083 0.78
F1 16.15 0.0003
AUC 70.73 <0.0001

Event Precision 26.35 <0.0001
Recall 36.36 0.074
F1 32.3 <0.0001

Table B.31: Significance values for each metric comparing performance at filler detection by
architecture for the paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 5.15 0.03

Recall 1.82 0.19
F1 7.25 0.011
AUC 36.19 0.0001

Event Precision 20.43 0.0001
Recall 3.14 0.085
F1 19.4 0.0001

Table B.32: Significance values for each metric comparing performance at laughter detection by
architecture for the paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 0.32 0.57

Recall 16.41 0.0003
F1 5.15 <0.0001
AUC 72.15 <0.0001

Event Precision 4.11 0.051
Recall 1.13 0.03
F1 6.2 0.018

Table B.33: Significance values for each metric comparing the macro average across all three
paralinguistic cues detection performance by architecture.

Level Metric t statistic p-value
Frame Precision 0.0021 0.96

Recall 2.96 0.094
F1 16.17 0.0003
AUC 58.83 <0.0001

Event Precision 13.41 0.0008
Recall 3.26 0.08
F1 17.52 0.0002
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Table B.34: Significance values for each metric comparing performance at back channel detec-
tion between baseline and two-stage detector using paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 30.45 <0.0001

Recall 566.21 <0.0001
F1 10.16 0.0031
AUC 0.55 0.46

Event Precision 2.054 0.16
Recall 18.065 0.0002
F1 0.39 0.54

Table B.35: Significance values for each metric comparing performance at filler detection be-
tween baseline and two-stage detector using paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 0.92 0.34

Recall 65.92 <0.0001
F1 0.028 0.87
AUC 630.82 <0.0001

Event Precision 77.47 <0.0001
Recall 174.99 <0.0001
F1 106.45 <0.0001

Table B.36: Significance values for each metric comparing performance at laughter detection
between baseline and two-stage detector using paralanguage distinguisher.

Level Metric t statistic p-value
Frame Precision 0.21 0.65

Recall 32.96 <0.0001
F1 1.57 0.22
AUC 189.93 <0.0001

Event Precision 0.88 0.36
Recall 374.56 <0.0001
F1 5.48 0.025



Appendix C

Significance Statistics Tables for Chapter 6

Table C.1: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for frame level AUC Performance on the SMC using transformer
based detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x 15.13 18.79 <0.0001
Wav2Vec S 13.78 17.44 <0.0001 -3.18 0.48 0.3
Wav2Vec L 15.13 18.79 <0.0001 x x x
HuBERT S 13.39 17.05 <0.0001 -0.093 3.57 0.075
HuBERT L 14.73 18.39 <0.0001 -1.43 2.23 0.99
Whisper S 12.79 16.45 <0.0001 0.51 4.17 <0.0001
Whisper L 11.47 15.13 <0.0001 1.83 5.49 <0.0001

Table C.2: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for frame level Recall Performance on the SMC using transformer
based detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x -1.36 19 0.14
Wav2Vec S -16.14 4.22 0.58 4.6 24.96 0.0006
Wav2Vec L -1.36 19 0.14 x x x
HuBERT S 0.16 1.58 0.16 7.24 27.6 <0.0001
HuBERT L -2.34 18.02 0.25 -9.2 11.16 0.99
Whisper S -5.5 14.86 0.81 -14.32 6.04 0.89
Whisper L -7.61 12.75 0.99 -16.43 3.93 0.52
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Table C.3: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for frame level Precision Performance on the SMC using transformer
based detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x 63.34 80.48 <0.0001
Wav2Vec S 56.04 73.18 <0.0001 -1.27 15.87 0.8
Wav2Vec L 59.36 76.5 <0.0001 -4.59 12.55 0.8
HuBERT S 55.18 72.32 <0.0001 -0.41 16.73 0.073
HuBERT L 51.79 68.93 <0.0001 2.98 20.12 0.0018
Whisper S 63.29 80.43 <0.0001 -8.62 8.52 1
Whisper L 63.34 80.48 <0.0001 x x x

Table C.4: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for frame level F1 Performance on the SMC using transformer based
detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x 40.5 52.28 <0.0001
Wav2Vec S 27.73 39.51 <0.0001 6.88 18.66 <0.0001
Wav2Vec L 40.5 52.28 <0.0001 x x x
HuBERT S 25.07 36.85 <0.0001 9.54 21.32 <0.0001
HuBERT L 35.52 47.3 <0.0001 -0.91 10.87 0.16
Whisper S 38.99 50.77 <0.0001 -7.4 4.38 0.99
Whisper L 36.93 48.71 <0.0001 -9.46 2.32 0.53

Table C.5: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for event level precision Performance on the SMC using transformer
based detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x 54.22 77.38 <0.0001
Wav2Vec S 27.57 50.73 <0.0001 15.07 38.23 <0.0001
Wav2Vec L 31.48 54.64 <0.0001 11.16 34.32 <0.0001
HuBERT S 23.73 46.89 <0.0001 18.91 42.07 <0.0001
HuBERT L 27.88 51.04 <0.0001 14.76 37.92 <0.0001
Whisper S 33.86 57.02 <0.0001 8.78 31.94 <0.0001
Whisper L 54.22 77.38 <0.0001 x x x
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Table C.6: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for event level recall Performance on the SMC using transformer
based detectors.

Model Type
Confidence Interval

p-value
Confidence Interval

p-value
Lower Upper Lower Upper

Baseline x x x 31.91 50.37 <0.0001
Wav2Vec S 28.14 46.6 <0.0001 -13 5.46 0.88
Wav2Vec L 31.91 50.37 <0.0001 x x x
HuBERT S 29.11 47.57 <0.0001 -6.43 12.03 0.97
HuBERT L 27.34 45.8 <0.0001 -4.666 13.8 0.75
Whisper S 30.8 49.26 <0.0001 -10.34 8.12 0.96
Whisper L 26.95 45.41 <0.0001 -14.92 4.27 0.68

Table C.7: Significance values for each model in relation to the baseline detector (Left) and best
performing detector (right) for event level F1 Performance on the SMC using transformer based
detectors.
Model Type Confidence Interval p-value Confidence Interval p-value

Lower Upper Lower Upper
Baseline x x x 50.23 68.41 <0.0001
Wav2Vec S 33.38 51.56 <0.0001 7.76 25.94 <0.0001
Wav2Vec L 37.4 55.58 <0.0001 3.74 21.92 0.0088
HuBERT S 30.99 49.17 <0.0001 10.15 28.33 <0.0001
HuBERT L 32.29 50.47 <0.0001 8.85 27.03 <0.0001
Whisper S 39.41 57.59 <0.0001 1.73 19.91 0.0091
Whisper L 50.23 68.41 <0.0001 x x x

Table C.8: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for AUC Performance on the SMC. All models used the FFN base archi-
tecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-based
alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 1.95 1.97 1
Whisper L+D 6.69 10.61 <0.0001
Whisper L+S 2.21 6.13 <0.0001
Whisper L+CW+D 4.17 8.09 <0.0001
Whisper L+CW+S 2.24 6.16 <0.0001
Whisper L+D+S 1.05 2.87 0.95
Whisper L+CW+D+S 0.08 5.05 0.032
Whisper L+U 9.5 13.42 <0.0001
Whisper L+U+S -1.06 2.86 0.95
Whisper L+C 2.23 6.15 <0.0001
Whisper L+C+S 1.13 5.05 <0.0001
Whisper L+E 1.96 1.96 1
Whisper L+E+S 2.02 5.94 <0.0001
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Table C.9: Significance values comparing the best overall score for Whisper L detectors with
post-processing. All models used the FFN base architecture. CW: class weight. D: delta. S:
smoothing. C: confidence-based alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L+S -1.93 1.99 1
Whisper L+CW+S x x x
Whisper L+CW+D+S 0.08 4 0.032
Whisper L+C+S 0.2 4.12 0.016
Whisper L+E+S -1.74 2.18 1

Table C.10: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level precision performance on the SMC. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -6.16 27.74 0.66
Whisper L+D 4.57 38.47 0.002
Whisper L+S -8.64 25.26 0.93
Whisper L+CW+D 6.27 40.17 0.0005
Whisper L+CW+S -13.86 20.04 1
Whisper L+D+S 49.73 83.63 <0.0001
Whisper L+CW+D+S -6.36 27.54 0.69
Whisper L+U -16.05 17.85 1
Whisper L+U+S -1.06 2.86 0.95
Whisper L+C -14.8 19.1 1
Whisper L+C+S -8.04 25.86 0.88
Whisper L+E -16.28 17.62 1
Whisper L+E+S -9.45 24.45 0.97
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Table C.11: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level recall performance on the SMC. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 1.61 18.49 0.0055
Whisper L+D 35.95 52.83 <0.0001
Whisper L+S -4.09 12.79 0.9
Whisper L+CW+D 16.17 33.05 <0.0001
Whisper L+CW+S -1.77 15.11 0.3
Whisper L+D+S 37.72 54.6 <0.0001
Whisper L+CW+D+S 26.97 43.85 <0.0001
Whisper L+U -5.08 11.8 0.99
Whisper L+U+S -0.4 16.48 0.079
Whisper L+C -4.65 12.23 0.96
Whisper L+C+S -0.43 16.45 0.82
Whisper L+E -7.47 9.4 1
Whisper L+E+S -5.4 11.48 0.99

Table C.12: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level F1 performance on the SMC. All models used the FFN base
architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-based
alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -3.98 11.76 0.92
Whisper L+D 47.55 63.29 <0.0001
Whisper L+S -5.87 9.87 1
Whisper L+CW+D 21.33 37.07 <0.0001
Whisper L+CW+S -1.64 14.1 0.3
Whisper L+D+S 50.97 66.71 <0.0001
Whisper L+CW+D+S 32.79 48.53 <0.0001
Whisper L+U -4.77 10.97 0.99
Whisper L+U+S -2.22 13.52 0.46
Whisper L+C -5.11 10.63 1
Whisper L+C+S -2.44 13.3 0.53
Whisper L+E -7.32 8.42 1
Whisper L+E+S -6.83 8.91 1



APPENDIX C. SIGNIFICANCE STATISTICS TABLES FOR CHAPTER 6 162

Table C.13: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level precision performance on the SMC. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -4.66 23 0.6
Whisper L+D 11.47 39.13 <0.0001
Whisper L+S -2.84 24.82 0.29
Whisper L+CW+D 15.31 42.97 <0.0001
Whisper L+CW+S -7.69 19.97 0.97
Whisper L+D+S -8.36 19.3 0.99
Whisper L+CW+D+S -12.53 15.13 1
Whisper L+U -11.98 15.68 1
Whisper L+U+S -2.69 24.97 0.27
Whisper L+C -11.43 16.23 1
Whisper L+C+S -2.29 25.37 0.22
Whisper L+E -12.82 14.84 1
Whisper L+E+S -2.94 24.72 0.3

Table C.14: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level recall performance on the SMC. All models used the FFN
base architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-
based alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -6.24 17.58 0.94
Whisper L+D 61.05 84.87 <0.0001
Whisper L+S 15.5 39.32 <0.0001
Whisper L+CW+D 9.49 33.31 <0.0001
Whisper L+CW+S 5.91 29.73 <0.0001
Whisper L+D+S 67.14 90.96 <0.0001
Whisper L+CW+D+S 32.87 56.69 <0.0001
Whisper L+U -6.54 17.28 0.96
Whisper L+U+S 17.54 41.36 <0.0001
Whisper L+C -8.8 15.02 1
Whisper L+C+S 18.88 42.7 <0.0001
Whisper L+E -11.5 12.32 1
Whisper L+E+S 14.91 38.74 <0.0001
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Table C.15: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level F1 performance on the SMC. All models used the FFN base
architecture. CW: class weight. D: delta. S: smoothing. U: undersampling. C: confidence-based
alteration. E: feature vector extension.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -7.6 13.14 1
Whisper L+D 53.48 74.22 <0.0001
Whisper L+S 2.205 22.99 0.004
Whisper L+CW+D 23.1 43.84 <0.0001
Whisper L+CW+S -2.95 17.79 0.47
Whisper L+D+S 62.54 83.28 <0.0001
Whisper L+CW+D+S 22.57 43.31 <0.0001
Whisper L+U -8.46 12.28 0.96
Whisper L+U+S 3.83 24.57 0.0005
Whisper L+C -9.94 10.8 1
Whisper L+C+S 4.84 25.58 0.0001
Whisper L+E -10 10.74 1
Whisper L+E+S 1.85 22.59 0.0065

Table C.16: Significance values for t-tests comparing Whisper L laughter detection by role.
Level Metric t statistic p-value
Frame AUC 4.42 <0.0001

Precision 2.3 0.022
Recall 3.48 0.0006
F1 3.66 0.0003

Event Precision 2.39 0.017
Recall 1.44 0.15
F1 1.98 0.048

Table C.17: Significance values for t-tests comparing Whisper L laughter detection by Gender.
Level Metric t statistic p-value
Frame AUC 0.19 0.85

Precision 3.96 <0.0001
Recall 1.63 0.11
F1 2.44 0.015

Event Precision 3.98 <0.0001
Recall 4.45 <0.0001
F1 4.59 <0.0001
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Table C.18: Significance values for post hoc Tukey tests comparing Whisper L laughter detec-
tion performance by gender pairing of a conversation.

Level
MM-MF MM-FF FF-MF
Confidence Interval Confidence Interval Confidence Interval

Metric Lower Upper p-value Lower Upper p-value Lower Upper p-value
Frame AUC No difference

Precision 7.83 21.29 <0.0001 5.11 20.03 0.0003 -4.32 8.3 0.74
Recall No difference

F1 0.3 13.06 0.038 -0.11 14.05 0.055 -6.28 5.7 0.99
Event Precision 7.14 21 <0.0001 4.37 19.75 0.0008 -4.5 8.52 0.75

Recall 1.02 14.98 0.02 1.85 17.33 0.011 -5.03 7.55 0.74
F1 5.21 17.83 0.0001 4.42 18.42 0.0005 -5.83 6.027 0.99

Table C.19: Significance values for post hoc Tukey tests comparing different filtering approaches
with the Hamming window.

Level Metric
Hamming vs MinMax Hamming vs Median
Confidence Interval

p value
Confidence Interval

p value
Lower Upper Lower Upper

Frame Precision 22.29 30.87 <0.0001 -2.71 5.87 0.77
Recall 24.91 38.13 <0.0001 -3.09 10.13 0.5
F1 6.68 16.4 <0.0001 -2.01 7.71 0.42

Event Precision 9.2 19.76 <0.0001 -4.22 6.34 0.95
Recall 7.54 18.3 <0.0001 0.46 11.22 0.028
F1 1.13 9.34 0.005 0.21 -0.92 6.28

Table C.20: Significance values comparing Whisper L with Baseline performance on the SVC
dataset.

Level Metric t statistic p-value
Frame AUC 22.83 <0.0001

Precision 37.13 <0.0001
Recall 10.82 0.0023
F1 24.06 <0.0001

Event Precision 7.78 0.0086
Recall 54.79 <0.0001
F1 22.57 <0.0001

Table C.21: Significance values comparing Whisper L with Baseline performance on filler de-
tection.

Level Metric t statistic p-value
Frame AUC 2950.16 <0.0001

Precision 8492.59 <0.0001
Recall 72.72 <0.0001
F1 3672.79 <0.0001

Event Precision 9069.92 <0.0001
Recall 1332.86 <0.0001
F1 6959.51 <0.0001
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Table C.22: Significance values comparing Whisper L with Baseline performance on back chan-
nel detection.

Level Metric t statistic p-value
Frame AUC 2950.16 <0.0001

Precision 642.54 <0.0001
Recall 1036.31 <0.0001
F1 256.81 <0.0001

Event Precision 446.36 <0.0001
Recall 34.08 <0.0001
F1 633.4 <0.0001

Table C.23: Significance values for the effect of each post-processing method in relation to
the Whisper L detector for frame level precision Performance on back channel detection in the
SMC. All models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 20.1 33.51 <0.0001
Whisper L+D -5.96 7.34 1
Whisper L+S 46.12 59.42 <0.0001
Whisper L+CW+D 25.5 38.8 <0.0001
Whisper L+CW+S 2.39 15.69 0.0013
Whisper L+D+S 7.1 20.4 <0.0001
Whisper L+CW+D+S 12.48 25.78 <0.0001

Table C.24: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level recall Performance on back channel detection in the SMC.
All models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 14.74 26.14 <0.0001
Whisper L+D -0.49 10.91 0.1
Whisper L+S 55.1 66.5 <0.0001
Whisper L+CW+D 35.41 46.82 <0.0001
Whisper L+CW+S 10.56 21.96 <0.0001
Whisper L+D+S -4.59 6.81 1
Whisper L+CW+D+S 36.68 48.08 <0.0001
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Table C.25: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level F1 Performance on back channel detection in the SMC. All
models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 2.45 12.03 0.0002
Whisper L+D 1.2 10.78 0.0043
Whisper L+S 15.13 24.71 <0.0001
Whisper L+CW+D 3.64 13.22 <0.0001
Whisper L+CW+S 8.43 18.01 <0.0001
Whisper L+D+S -2.35 7.22 0.77
Whisper L+CW+D+S 15.32 24.9 <0.0001

Table C.26: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for frame level AUC Performance on back channel detection in the SMC.
All models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW -1.49 3.03 0.97
Whisper L+D 0.35 4.87 0.012
Whisper L+S 6.84 11.36 <0.0001
Whisper L+CW+D 3.51 8.03 <0.0001
Whisper L+CW+S 2.86 7.38 <0.0001
Whisper L+D+S 5.23 9.75 <0.0001
Whisper L+CW+D+S 7.05 11.57 <0.0001

Table C.27: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level precision Performance on back channel detection in the SMC.
All models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 22.96 35.06 <0.0001
Whisper L+D -5.77 6.33 1
Whisper L+S 35.41 42.86 <0.0001
Whisper L+CW+D 28.57 40.67 <0.0001
Whisper L+CW+S 9 21.1 <0.0001
Whisper L+D+S 10.77 22.87 <0.0001
Whisper L+CW+D+S 16 28.1 <0.0001
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Table C.28: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level recall Performance on back channel detection in the SMC.
All models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 16.47 31.43 <0.0001
Whisper L+D 1.38 16.34 0.0088
Whisper L+S 5.64 20.6 <0.0001
Whisper L+CW+D 19.3 34.26 <0.0001
Whisper L+CW+S 5.39 20.35 <0.0001
Whisper L+D+S 2.56 17.52 0.0016
Whisper L+CW+D+S 18.14 33.1 <0.0001

Table C.29: Significance values for the effect of each post-processing method in relation to the
Whisper L detector for event level F1 Performance on back channel detection in the SMC. All
models used the FFN base architecture. CW: class weight. D: delta. S: smoothing.

Detector
Confidence Interval

p-value
Lower Upper

Whisper L x x x
Whisper L+CW 13.01 23.81 <0.0001
Whisper L+D -1.43 9.37 0.32
Whisper L+S 35.69 46.49 <0.0001
Whisper L+CW+D 20.46 31.26 <0.0001
Whisper L+CW+S 0.095 10.89 <0.0001
Whisper L+D+S -5.28 5.52 1
Whisper L+CW+D+S 4.47 15.27 <0.0001
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