

Neill, Oliver D. (2025) Optimisation of optical neuromorphic computing
systems. PhD thesis.

https://theses.gla.ac.uk/84943/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/84943/
mailto:research-enlighten@glasgow.ac.uk

OPTIMISATION OF OPTICAL NEUROMORPHIC

COMPUTING SYSTEMS

Oliver D. Neill

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School of Physics and Astronomy
College of Science and Engineering

University of Glasgow

© Oliver D. Neill 2024

Abstract

As the exponential scaling of computing systems predicted by Moore’s law begins to slow,
in part due to reaching fundamental physical limitations in the continued miniaturisation
of transistors, the development of novel unconventional computing technologies with
improved scaling laws is becoming increasingly important. Unconventional computing
systems use substrates other than silicon transistors to encode and process information.
As an umbrella term, it encompasses fields such as analogue, physical and neuromorphic
computing, which focus on computation through continuous variables, complex physical
processes, and artificial neurons respectively.

While there exist a wide range of physical processes and dynamics which one could
imagine exploiting to process information, the key challenge is in designing scalable
systems which can be easily programmed to solve specific tasks. The success of existing
computing technologies relies on the strong predictions which can be made about their
behaviour. When using alternative physical processes for computing, one must work
against noise, instabilities, and unmeasurable internal dynamics, which can limit the
determinism and predictability of a system.

In the following work, we present a series of results on optimising physical computing
systems with these factors in mind, where we focus primarily on optical substrates due
to their natural potential for energy efficiency, speed and parallelism. We approach this
in two ways, first considering the design of high-level system architectures suitable for
computing, and secondly considering ways of programming and optimising these systems
to solve specific tasks. In the case of the former, we introduce a new physical computing
architecture which uses quantum resources to improve scaling over an equivalent
classical counterpart, and which is realisable with currently available technologies. In
the latter, we apply meta-learning and reinforcement learning techniques to develop
new optimisation strategies for training physical neural networks in situ in a scalable
way. Throughout, we analyse the criteria necessary for efficiency and scalability, while
also considering ways in which we can ensure the resulting systems are accessible and
sustainable.

Beyond these examples, we discuss the broader motivations and requirements for the
practical adoption of unconventional and neuromorphic computing systems, and the po-
tential impact they could have on the scaling of future computing technologies, including
the efforts towards realising artificial general intelligence and artificial consciousness.

iii

Contents

Abstract iii

Contents iv

List of Tables vii

List of Figures viii

Acknowledgements ix

Declaration of originality x

1 Introduction 1

2 Background 10
2.1 A brief history of computing . 10

2.1.1 Optical computing . 14
2.1.2 Neuromorphic computing 15

2.2 Optimisation and learning . 17
2.2.1 Mathematical optimisation 17
2.2.2 What does it mean to learn? 22

2.3 Training neuromorphic systems 23
2.3.1 Gradient-based optimisation 24
2.3.2 Gradient-free optimisation 26
2.3.3 Reservoir computing . 28

3 Photonic quantum reservoir computing 31
3.1 Introduction . 31
3.2 Background . 33

3.2.1 Quantum machine learning 33
3.2.2 Current approaches to quantum machine learning . . 34
3.2.3 Proposed QRC overview 36

3.3 Theory . 37
3.3.1 Input states . 37
3.3.2 Linear optical networks 39
3.3.3 Mode coupling . 40

iv

Contents v

3.3.4 Sampling random mode couplings 44
3.3.5 Polarising optical components 45
3.3.6 Scattering of quantum states 48
3.3.7 Encoding data . 51
3.3.8 Output state measurement 53
3.3.9 Analytic quantum reservoir computer model 54
3.3.10 Quantum reservoir computer training 57
3.3.11 Feature space: shape, scaling and metrics 57
3.3.12 Fair comparison of states 62

3.4 Quantum reservoir computer simulations 62
3.4.1 Encoding schemes . 63
3.4.2 Random network . 63
3.4.3 States . 65
3.4.4 Simulation . 65

3.5 Results . 67
3.5.1 Characterising the effect of number resolved mea-

surement . 68
3.5.2 Metrics of performance for different states 71
3.5.3 Function approximation tasks 73

3.6 Discussion . 77
3.6.1 Initial experimental implementation 77
3.6.2 Future prospects . 79
3.6.3 Conclusion . 81

3.7 Notation . 83

4 Reinforcement learnt optimisation 85
4.1 Introduction . 85
4.2 Reinforcement learning . 90

4.2.1 To model or not to model. 91
4.2.2 Environments . 92
4.2.3 Agents . 93
4.2.4 Reward structures . 94
4.2.5 Value functions . 95
4.2.6 On- vs off-policy learning 97
4.2.7 Importance sampling . 98
4.2.8 Value estimation . 99
4.2.9 Policy optimisation . 101

4.3 Optics . 102
4.3.1 Optical PNN . 103
4.3.2 Error propagation . 105
4.3.3 High fidelity model . 107

Contents vi

4.3.4 Simulation details . 112
4.4 Learnt PNN optimiser . 113

4.4.1 Environment . 114
4.4.2 Tasks . 117
4.4.3 Reward function . 118
4.4.4 Choosing an RL algorithm 120
4.4.5 Network architectures . 121
4.4.6 End-to-end learnt optimiser algorithm 124
4.4.7 SAC results . 126

4.5 Learnt optimisation for deep networks 129
4.5.1 Network architecture . 132
4.5.2 Training the deep learnt optimiser 135
4.5.3 Results . 138

4.6 Discussion . 141
4.6.1 Remaining challenges . 141
4.6.2 Towards experiments in hardware 144
4.6.3 Conclusion . 145

4.7 Notation . 147

5 Conclusion 148

A Terminology 152

B Derivations 155
B.1 General beamsplitter ellipse derivation 155
B.2 Computational complexity of permanent calculations . . . 157

Bibliography 158

Notation 181

Abbreviations 182

List of Tables

4.1 Importance sampling statistics . 99
4.2 Median training samples required for stopping criteria 140

vii

List of Figures

1.1 Software 2.0 . 6

3.1 Quantum machine learning taxonomy 36
3.2 Example LON implementations . 40
3.3 Valid mode coupling support . 43
3.4 Poincaré encodings . 53
3.5 QRC outcome probability estimates . 56
3.6 QRC training overview . 58
3.7 QRC schematic overview . 64
3.8 Comparison of coherent state simulations 66
3.9 Reservoir output examples . 68
3.10 Quantum-classical detection comparison 70
3.11 Singular value spectra . 72
3.12 Function approximation . 74
3.13 Random function approximation statistics 75
3.14 Proposed experiment in MMF . 79

4.1 RL learnt gradient-free descent in low-dimensional spaces 89
4.2 Importance sampling example . 99
4.3 RL taxonomy . 102
4.4 Optical physical neural network (PNN) implementation 104
4.5 Optical encoding and decoding . 109
4.6 High-fidelity simulation examples . 114
4.7 MNIST task distribution by macropixel decoding 119
4.8 SAC RL network architectures . 123
4.9 SAC learnt optimiser test accuracy . 127
4.10 MPO reinforcement learning (RL) network architectures 133
4.11 Deep MPO test accuracy . 139

viii

Acknowledgements

Firstly, thanks go to my supervisor Daniele Faccio, for taking on a new student when
least expected, enabling me to work on the projects I found most interesting, and
providing guidance and belief in both me and the work. I also give many thanks to
those others who have provided mentorship throughout this PhD: to Alex Turpin, who
I initially started out with on this PhD journey; and especially to Giulia Marcucci, who
provided insights, guidance, and much needed humour throughout the latter stages of
this PhD, and without whom this thesis would look very different.

Thanks go to everyone in the Extreme Light group, past and present, for being such a
welcoming group of people. The range of experience, skills, and diversity of relentlessly
interesting work undertaken in this group has been a constant source of inspiration,
and has undoubtedly made me a better scientist.

This thesis represents a tiny fraction of the work done and experiences gained over
the last four years. Thanks to those at the UGRacing autonomous driving team, in
particular Jim and Joe, who provided many welcome distractions throughout the PhD,
and taught me to be a better software engineer. Thanks also to all those on the ZEUS
‘Fly Your Thesis’ team, for giving me the opportunity to experience microgravity, despite
my day-to-day research being far removed from satellite attitude control.

Starting a PhD during a pandemic was far from optimal, and I am grateful to all who
have helped me throughout, and made these years as enjoyable as they have been.
Cameron Houston, for everything over the many years. Valentin Kapitany, sir, for your
persistent optimism*. Philip Binner and Khaled Kassem, for the companionship and
encouragement throughout the writing process. Sam Nerenberg, for advice on both
science and life, for bringing me into your work and being a great collaborator, and for
the plethora of jokes of dubious quality.

Beth, thanks for getting me back out on snow in the mountains. Sorcha—you have
made this PhD infinitely easier and more enjoyable. I am grateful for your support,
your patience, and your love. And finally, my parents, who have always supported me in
all my endeavours, and known when to balance that support with a pragmatic kick to
get things done. You fostered my curiosity and love of science from the very beginning,
and I hope that the incessant questions and discussions have paid off. I won’t be doing
another PhD, I promise.

ix

Declaration of originality

Statement

I hereby declare that this thesis is my own original work, except where explicit reference
is made to the work of others, and has not been presented in any previous application
for a degree at this or any other institution. The material in this thesis is either my
own work with or without collaborators, or my own survey of relevant prior work given
as context.

Contributions

Chapters 1 and 2 contain introductory material and overviews of the techniques used
throughout this thesis, along with a review of the literature, and as such entirely
comprise my own work.

The work in Chapter 3 is partially detailed in the paper Photon Number-Resolving
Quantum Reservoir Computing [Ner+24]. Sam Nerenberg conceived the project, per-
formed initial polarised network simulations, introduced the hybrid input states, and
performed the spectral entropy analysis. I developed the Fourier analysis of the network
(subsequently matched with prior analyses published in [GLA22; SSM21; VT20]), devel-
oped the encoding and decoding schemes, and implemented the end-to-end simulation
of the system. In addition to that covered in the paper, I also include here analysis of
system performance with respect to procedurally generated fitting tasks and different
sampling distributions for the random reservoir.

Chapter 4 develops custom optimisers for training physical systems through the use
of reinforcement learning. This project was my original idea, and I implemented and
analysed the various systems detailed in this chapter, aspects of which were published
in Optical neural networks trained in situ with reinforcement learning [NF24]. The work
extending and analysing the reinforcement learnt optimiser for deep physical neural
networks is in preparation.

In all works, Daniele Faccio contributed through discussions as my supervisor. Giulia
Marcucci provided insights and contributed to discussions throughout the latter stages
of Chapters 3 and 4.

x

xi

All figures and tables in this thesis were created by myself unless stated otherwise.

Publications

∗ indicates equal contributions

• S. Nerenberg*, O. D. Neill*, G. Marcucci, and D. Faccio, Photon Number-
Resolving Quantum Reservoir Computing , 2024, doi: 10.48550/arxiv.2402.
06339, arXiv: 2402.06339 [quant-ph].

• O. D. Neill and D. Faccio, “Optical neural networks trained in situ with
reinforcement learning”, in: Machine Learning in Photonics , ed. by F. Ferranti,
M. K. Hedayati, and A. Fratalocchi, vol. 13017, International Society for Optics
and Photonics, SPIE, 2024, p. 130170L, doi: 10.1117/12.3021870.

https://doi.org/10.48550/arxiv.2402.06339
https://doi.org/10.48550/arxiv.2402.06339
https://arxiv.org/abs/2402.06339
https://doi.org/10.1117/12.3021870

Chapter 1

Introduction

There is a scalability problem at the heart of modern computing. The demand for
fast, parallel hardware, in part driven by recent successes in the fields of machine
learning (ML) and artificial intelligence (AI), has never been higher, while the ability
to meet this demand is beginning to slow as we reach fundamental limits in the scaling
of silicon computing technologies [Moo06]. Combined with the pressing concerns
over the sustainability and energy efficiency of these systems, it becomes clear that
in order to continue to scale our computational capacity, a hardware revolution is
required [Mar+20b]. Today, there is significant interest and investment being directed
towards developing new energy-efficient hardware which can scale with these modern,
data-intense computing modalities [23; Wri+23].

While some continue to develop new architectures which retain silicon transistors as
the primary mechanism of operation, there is a growing focus on unconventional com-
puting approaches, which deviate from conventional digital electronics for processing
information [Ada18]. These systems may sacrifice some of the flexibility and con-
trol of conventional computers for properties such as speed, parallelism and energy
efficiency [McM23].

Two related forms of unconventional computing which have shown promise are physical
and neuromorphic computing. Physical computing refers to the use of physical processes
with interesting mathematical properties, which can be adapted to perform computation.
A familiar example is the quantum computer, which was originally proposed by Feynman
in 1982 as a way to simulate quantum systems directly using quantum processes.
However, there are a wide range of classical platforms which can be used for information
processing, including systems as conceptually simple as a bucket of water [FS03; MP23].

Neuromorphic computing and neuromorphic systems (NMSs) on the other hand take in-
spiration from the human brain. This may include mechanisms for learning, information
transport, processing and storage, improved energy efficiency and computational density,
but in a surrogate physical system which is more interpretable and manufacturable,
and ideally which can be integrated with existing computing technologies.

1

2

While it may seem natural that mimicking properties of the brain, which is the most
efficient computer we have access to, would be a good route to improved computing,
the field is still comparatively undeveloped. Currently, proposed NMSs have yet to see
significant real world impact—most are only practical at small scales, solving niche or
trivial tasks, and are very much still an early research field, rather than a competitive
computing paradigm [20].

To move beyond this, the first challenge is to design NMSs which can be scaled to sizes
where they can solve useful tasks, beyond toy problems. This has to come from both the
design of the system and the method used to program it to solve a task. It is important
to recognise that the programming strategy is a vital part of the overall design process.

The second challenge is to make this competitive with silicon computing, in at least
some area. The cost or efficiency of a particular system can be measured by a range of
metrics depending on application, of which a few include financial cost, energy efficiency,
speed, reliability, and utility. For a system to be scalable, it must perform well across
all of these criteria, in particular utility, determined by the classes and complexity of
the problems which can be solved by it.

In practice, some metrics will be more important than others, and hence there must
be trade-offs. In this work, we will focus on optimising primarily for scalability and
accessibility. This will lead us to consider new approaches to designing both the
architectures, and the methods of programming NMSs. We will make heavy use of
ideas from machine learning (ML), which is founded in mathematical optimisation
and statistics, and has proven highly successful in recent years at solving large scale,
complex tasks. We ‘optimise’ in two senses—firstly, we consider how to make good
decisions when designing the architecture of a NMS and secondly, develop new methods
for the literal mathematical optimisation (or programming) of these systems.

The first case considers the design of a computing architecture, where we define the
fixed features of the system. These typically cannot be optimised mathematically, as
they exist in too large or difficult a search space. Instead, we have to rely on intelligent
design, where the decisions made determine the class of tasks that can be solved,
the time complexity on those tasks, and the overall energy efficiency of the system.
This is analogous to designing the circuitry of a central processing unit (CPU), or the
connectivity of an artificial neural network (ANN) in machine learning.

Programming concerns tuning the free parameters provided by the architecture, and
can take several forms depending on the type of computing system. The most familiar
would be conventional programming, where we choose a sequence of instructions from
some set of well-defined primitives, which control the flow of information through the
system. We do this by constructing logical algorithms and translating these into a
minimal set of universal operations, and while most of the world’s software is written in

3

high-level languages which abstract away the underlying hardware, the result is always
the same—a set of instructions which are executed sequentially by the hardware. In
machine learning, we can view the architectures as parameterised mathematical models,
and the programming as the mathematical optimisation over the free parameters. We
will be loose from here on out in our use of programming (in the mathematical sense),
programming (in the modern computing sense), training (in the machine learning sense),
and optimisation (our blanket term). In all cases, we seek to choose a set of parameters
from some available continuous or discrete set (defined by our computing system) which
specialise our computing system to solving a task we care about. This is only possible
if the task exists within the class of tasks solvable by the system.

In conventional computing, the separation of architecture from programming (i.e.
hardware and software) is a deliberate design decision, facilitated by many layers of
abstractions. These abstractions allow for end users to focus on the task at hand,
and for hardware and software to evolve largely independently, however the overhead
induced by these layers of abstraction can be a bottleneck for performance.

In unconventional computing, and especially neuromorphics, the intention is to reduce
or remove these layers of abstraction, and to have the hardware and software more
closely integrated. This is motivated by the potential for improved performance, energy
efficiency, and scalability, however it introduces new challenges in terms of programming
and optimisation.

Improvements in these two areas are both key for practical use and accessibility of
NMSs, and developing these require very different approaches.

Let’s examine these areas in a little more detail, to better understand the considerations
which go into selecting platforms, and designing architectures and programming methods
for unconventional computing systems.

Architecture. How do we design NMSs which are good at solving some class of task?

We need to design and build systems with interesting dynamics. While the component
parts don’t necessarily need to be complex, they should be rich enough that complexity
can emerge at scale. Silicon transistors in digital systems are, to first approximation,
extremely simple devices, however when combined intelligently, they can perform
complex computations—indeed generating a universal set of operations for a Turing
complete computer.

If universality isn’t required or possible in a particular dynamical system, then we need
to consider the maximal class of tasks which is solvable by the system, and use this to

4

evaluate whether it is suitable for a particular application. Typically, it may not be
possible to exactly define this, but we can use our understanding of the dynamics to
make reasonable assumptions about the types of tasks which a particular system might
be applicable to.

Overall, we tend to look for systems which have rich, complex dynamics, such that
matching the system to the task becomes less important, and so that development of a
particular architecture leads to a wide range of potential applications.

For example, in neuromorphic computing, excitable dynamical systems may be used,
as this matches how information is encoded and communicated in the brain, through
the use of action potentials, or spikes, which propagate between neurons. Alternatively,
quantum systems provide access to entirely new dynamics, which enable new classes of
algorithm which give improved performance on certain classes of task. This is made
possible by features such as interference, superposition, and large, potentially infinite
dimensional state spaces.

The common feature is that we need to design systems which are complex enough that
they can perform the task we care about, but simple enough that we can understand
and control them. Scalability comes from the connectivity present within a system,
including how easily we can add new computational units, energy consumption during
operation, and how universal the operations which can be performed are.

Platform. Which sorts of substrates are amenable to performant neuromorphic
computing?

A similar question to that of architectures, choosing a substrate selects the types of
physical processes available for performing computation. There are many possible
options here, with some physical systems being more amenable to computation than
others. Electronics, for instance, is well understood, and has been developed over the
last century to be extremely reliable and efficient at performing computation. New
electronics-based technologies such as memristors and spiking neuromorphic chips are
promising, however they tend to face many of the same scaling limitations as silicon
computing [Wan+18; Dav+18].

Optical systems are another attractive option. Light has many degrees of freedom in
which to encode information, and its non-interacting nature is suited to parallelism
through multiplexing and 3D spatial scaling. Speed is another natural benefit, with op-
tical processes and bandwidths orders of magnitude faster than current digital switching
transistors. The technology is mature, with much developed by the telecommunications
industry, as optics is currently the standard for long distance high-speed data transfer.
This means that there is already considerable expertise and technology for interoperat-
ing digital electronics and optical systems for information transfer. If we are already

5

comfortable transmitting data in optical form, then it is natural to consider processing
this information in transit, in the optical domain. Efficiency and energy consumption
are also key benefits of optical systems, with the potential for very low energy operation,
and the ability to operate at room temperature without the need for cryogenic cooling.

Optics is also interesting as it is a strong candidate platform for future quantum com-
puting, with much investment and interest in this area [Mad+22; Mar+24]. Quantum
computing may be built on different foundations to neuromorphic computing, but the
two share many of the same challenges, and optical systems are excellent candidates for
bridging this gap and sharing development resources.

Programming. How do we optimise this system for a specific task within its domain?

In this thesis, we largely focus on the data-driven, machine learning approach to
programming, where we seek to do a numeric optimisation over a set of free parameters
to solve our task. This relaxes the requirement to model and make mappings from
conventional algorithms to unconventional hardware, at the expense of curating large
datasets and potentially a reduction in interpretability.

This notion of moving away from deterministic, hand-crafted algorithms built from a set
of predetermined simple instructions, towards a more data-driven, optimisation based
programming, was coined ‘Software 2.0’ in 2017 by Karpathy [Kar21]. In this article,
he states ‘Gradient descent can write code better than you’. At first this may seem
controversial—even today, the wide majority of software in the world was written by
humans, not learnt by machines. However, the point becomes clearer when we consider
the boundary of the class of tasks which are realistically solvable by humans versus
that of learnt programs. Until recently, generating realistic looking fake human faces,
automatically translating between languages, or generating diagnoses from medical
images were all tasks beyond the capabilities of computers. It turned out that wasn’t
the case: they were just beyond the capabilities of human programmers. For most of
the history of digital computers, we have been limited to solving tasks which can be
solved with tractable algorithms, devisable and implementable by humans through
conventional programming. With the developments in ML, we can now access a wider
scope of tasks with greater complexity, illustrated in Figure 1.1, where the scale of the
problem is beyond human capability to solve directly, at least without significant effort.

While the use of ‘complexity’ in the original article is left vague, it should not be
confused with a program’s time or memory complexity. Rather, it should be interpreted
more akin to the entropy of the program’s source code. A measure such as Kolmogorov
(algorithmic) complexity could be employed to concretely compare different programs’
complexity, with simpler programs more likely to be devisable by human programmers.
For instance, a simple program which uses a for-loop to print the first one million
integers may perform more operations at runtime than a simple two-layer dense neural

6

PNNa

DNNb

Program Space

C
om

pl
ex

it
y

Learning
architectures

Conventional
programs

Optimisation
trajectory

Figure 1.1: Software 2.0. The space of possible programs. The space explored by all
current algorithms and software is schematically illustrated in grey (note, conventional
computers remain Turing complete: this diagram illustrates programs which have
been written by humans, not the entire set of possible programs implementable with
conventional programming). The spaces of programs realisable for a set of specific
learning architectures (i.e. a particular physical neural network (PNN), a particular deep
neural network (DNN)) are illustrated in colour. These may overlap with conventional
programming and each other, and span a greater area and complexity range in the
total space of possible programs, where complexity increases radially. For a given
architecture’s subspace, iterative optimisation on a task using that architecture generates
trajectories within this space. Figure adapted from [Kar21].

network with 10× 10 matrices which has been pretrained to solve some task. However,
each value in those matrices must be individually specified and computed, meaning the
program is not easily compressible. It would be difficult for a programmer to hand-pick
these matrices to solve the same task. Under algorithmic complexity, the neural network
would be considered more complex than the for-loop.

It is important to point out here that this is not a fundamental limit of the computa-
tional tools we have been using—we can rigorously prove through the Church-Turing
thesis that any algorithm1 can be implemented on modern computers [Chu36; Tur37].
Instead, it speaks to the limitations of human ability to effectively search the space of
possible programs, at least with our current approaches of developing logically rigorous
algorithms.

As a result, this Software 2.0 landscape is unfriendly and alien to humans, which
introduces challenges. We sacrifice interpretability and often go against what our
intuitions may tell us is the ‘right’ way to solve a problem, in favour of what performs
well. With this comes fewer guarantees and reduced predictability, which may be

1We sweep some of the nuance under the rug here—what we mean when we say algorithm is one of
the key points of Church-Turing, and requires us to define the concept of a ‘calculable function’.

7

necessary in safety critical applications.

We can broadly divide approaches in physical computing according to this paradigm,
where on one hand there are approaches which attempt to implement conventional
mathematical operations and instructions in unconventional hardware, allowing a
conventional algorithm and programming approach, while on the other hand there are
approaches which attempt to use the physical system as a black box (albeit intelligently
designed according to the requirements laid out in the earlier discussion on architectures),
and train it to solve a task through data-driven methods and mathematical optimisation.
In the latter case, we can see again that conventional programming, mathematical
programming, mathematical optimisation, and training all take on the same meaning—
discovering the parameters for a given architecture which best solve a task.

Beyond the motivation of being able to discover new types of algorithms, which humans
may not be able to devise by hand, there is one other key reason for using mathematical
optimisation to program physical computing systems. In many cases, traditional
programming techniques are simply not feasible, due to incomplete knowledge of the
internal dynamics and state of the physical system and an inability to directly map the
mathematical operations of a particular algorithm to specific physical processes.

Treating a physical system as a physical neural network (PNN), where we expose some
set of tunable parameters, and apply data-driven training methods, allows us to avoid
having to encode particular task-specific algorithms or operations by hand. However,
there remains one main problem when attempting to apply iterative optimisation
schemes common to ML to PNNs—the lack of an analytic, differentiable model for the
dependence of the measurable output on the controllable input. This prohibits the use
of the gradient-based optimisation algorithms, which form the backbone of modern ML,
for training the PNN parameters directly [Mom+24].

Currently, there are two main approaches to getting around this problem—training
in simulation and only using the hardware for inference, or gradient-free optimisation
techniques such as evolutionary strategies or finite-difference schemes. Simulation-based
methods can be effective, allowing established gradient-based optimisation techniques to
be used, however misalignment between simulation and physical system tends to limit
final inference performance, especially as the system scales and simulations become
prohibitively slow or infeasible without high-performance computing, even for fairly
simple physical systems [Wri+22; Zho+21]. Gradient-free methods have the advantage
that they can be used directly with the physical system, however have their own issues
with scaling, with performance dropping dramatically as the dimensionality of the
parameter space increases.

Beyond these two options, it is worth mentioning that there are ways we can restrict the
types of systems we consider in order to make this programming easier, and one such

8

approach which has seen success in neuromorphic computing, and which will feature
prominently in our work, is the reservoir computing (RC) paradigm. Made popular
by its ability to use arbitrary complex physical systems to solve tasks while avoiding
difficult training processes, RCs have been demonstrated on a range of complex tasks
with good performance, are extremely easy to train, fairly scalable, and amenable to
a wide range of physical and dynamical systems. They can also be relatively well
understood through the lens of dynamical systems theory.

This thesis aims to serve two main purposes: firstly, to attempt to take a small chip out
of the block in designing new approaches for optimising physical computing systems; and
secondly, in doing so, to lower the barrier to entry for performing useful computation
with physical systems. The greater the access that the scientific community has to
implement and train these types of system, the faster the pace of development will be,
and the greater the potential impact for improving the efficiency and capabilities of ML
and AI systems will be.

We will first introduce some preliminaries, covering the state of physical computing,
diving into neuromorphics and complex systems, then optimisation strategies, starting
from state of the art in computer science and ML. We then cover technical details
required from a physicist’s point of view in developing new optimisation techniques,
including current approaches to training physical computing systems.

The main contributions in this thesis are then broken down into two chapters. The first
project considers whether we can efficiently scale the reservoir computing paradigm
through the use of quantum resources. Our focus is on cost-efficient scaling of a
simple quantum reservoir computer through the introduction of photon number resolved
detection, practical quantum states, and random linear optical scattering. The modelling
is deliberately general, allowing implementation in a wide range of optical systems.
This is detailed in [Ner+24].

The second project detailed in the thesis, split into two sections, switches focus from
architecture to programming, and introduces the idea of using reinforcement learning
(RL) to generate custom application specific optimisation algorithms tailored to a
particular physical neuromorphic system. The first half introduces the key RL concepts
used, and the principles applied to train a simple diffractive optical layer to classify
images. We discuss model-based vs model-free RL and how physical priors can be
leveraged to improve training, comparing the performance of the new method with
existing optimisation techniques. This is detailed in [NF24]. The second half of this
chapter details the extension of the RL optimiser to deep neuromorphic systems, which
enables training sequential chains of physical systems in a scalable way.

9

Finally, we analyse the potential future opportunities stemming from these works,
placed within the context of the current interest in neuromorphic hardware and the
recent advances in ML and AI.

Before we begin, some prerequisites and comments on notation.

We assume the reader has some familiarity with modern ML and deep learning methods,
however we will introduce key concepts as and when needed. For further reference, we
provide some key texts. [Goo+16] provides an excellent overview of the foundations
of deep learning, however is out of date with respect to the most recent advances in
the field. [Ant20] is more up to date, taking a hands-on, practical approach. [Sut20]
remains the canonical reference on reinforcement learning, which plays a core role in
Chapter 4.

On the topic of neuromorphic and physical computing, we review the history of the
field in Section 2.1.2, however we also refer the reader to [Abr+24] and [McM23], which
provide overviews of physical and optical computing, and [Bru19] which provides an
introduction to the specific case of photonic reservoir computing. While the terminology
used throughout should be clear, we provide an overview of the main terms relating to
neuromorphic computing, and how we interpret them, in Appendix A.

We largely follow the mathematical notation in Goodfellow [Goo+16], and any other
notation used is either explained in context or included in the Notation section. Addi-
tionally, each results chapter has a dedicated notation section at its end, summarising
the main notation specific to that chapter. Similarly, for abbreviations see Abbreviations.
Some notation may differ between chapters in order to remain consistent with the
existing literature, and in these cases the intention should be clear from context.

Chapter 2

Background

2.1 A brief history of computing

To understand how the computing landscape was shaped into its current form, we need
to consider the evolution and constraints present through the development of computing
systems. While we may think of computing as being a relatively recent invention, humans
have been designing systems to assist with computation and prediction throughout
antiquity. The earliest examples tended to focus on predictions of the heavens, from
astrolabes which were able to assist in tracking stars and planets, to the earliest known
example of a true, analogue computer, the Antikythera mechanism, which was used to
predict astronomical positions and eclipses.

In modern history, the development of computation arose from ideas in mathematics
and logic, and it was Charles Babbage and Ada Lovelace who pioneered the fields of
computing and programming in the early nineteenth century. Babbage’s analytical
engine was the first general purpose computer1, and Lovelace’s work on the engine’s
algorithms is considered the first computer program. The development of the Turing
machine, and the work of Turing and Church on the theory of computation, laid the
groundwork for modern computing, and the development of the first digital computers
in the 1940s [Chu36; Tur37]. These early systems were unwieldy, slow and expensive,
even despite the shift from mechanical systems to electrical systems using thermionic
valves. The use of binary representations of information allowed improved robustness,
avoiding some of the complications of analogue computing. These valve systems
were the foundation of what we recognise as the modern computer, however it was the
development of semiconductor transistors, and the subsequent development of integrated
circuits through new lithography manufacturing techniques which truly allowed scalable
computing to become a reality.

With the ability to manufacture and interconnect transistors, logic gates could be
built, and from these, mathematical operations implemented. A second benefit of

1Despite the theory of general purpose computing and computability not being developed for a
further hundred years.

10

2.1. A brief history of computing 11

the transistor was the ability to store information for long periods of time, where
memory cells which could be efficiently written to and read from allowed the close
integration of the separate compute and memory units. The organisation of these
components in a modern computer is generally attributed to John von Neumann, who,
among a plethora of contributions to physics, mathematics and foundational work
in computer science, developed the ideas behind the von Neumann architecture of
computing [Neu93]. This model comprises an arithmetic unit, which does computation,
a control unit which sequentially executes instructions, memory which allows storing
of data and the instructions themselves, and input/output devices which allow the
computer to interact with the world. Even eighty years after the first description of
this architecture, it remains by far the dominant model used in devices today.

For several decades, hardware development focussed on scaling—building faster and
larger CPUs, faster and larger memory, better data storage and networking capacity, to
allow for distributed computing and communication, and improving energy efficiency,
fault tolerance, robustness and speed to allow for the scaling of these systems. As clock
speeds started to plateau due to fundamental bandwidth limits in silicon transistors,
parallelism became more important, with multicore CPUs being developed, and advanced
strategies for speculative execution and application specific circuitry for tasks such as
cryptography and floating point arithmetic being developed. As demand for multimedia
applications increased, the development of even more application specific circuits for
video processing became common, and the dedicated graphics processing unit (GPU)
was born. GPUs were designed to perform a single instruction on multiple data in
parallel. Restricting each processor to perform the same instruction at the same time
made scaling the number of processors much easier than independent processors in
conventional CPU, and with a different memory hierarchy and architecture, GPUs were
able to efficiently process large arrays of data.

In software, the improvements have focussed on choosing good abstractions which
allow for the development of complex algorithms, and improving the efficiency of these
algorithms through intelligent design and rigorous logic.

The most recent paradigm shift in this field has been the progress in machine learning and
AI, which has largely been facilitated by a shift to using hardware which is particularly
efficient at parallel computing—the GPU. While these devices originated as a way of
doing the large scale linear algebra and simple, parallel operations needed for graphics
processing, this parallelism has turned out to be highly useful for the matrix operations
which are at the heart of many machine learning algorithms.

In 2012, AlexNet broke the floodgates on modern ML, by demonstrating that not only
could GPUs be used to train large neural network models capable of performing previ-
ously difficult image classification tasks, but that the training could be implemented

2.1. A brief history of computing 12

efficiently through a combination of parameterised convolutional operations (convolu-
tional layers) and the backpropagation algorithm, which made use of the analytic form
of the neural network to calculate numeric derivatives, giving a linear approximation to
the system compatible with iterative, gradient-based optimisation [KSH12]. The boom
in deep learning research, and subsequently AI, has been well documented since.

The resulting decade of advances has seen a noticeable shift in certain applications, from
hand-designed algorithms, to data-driven algorithms which are optimised for specific
tasks through the use of example data. Even here though, application specific models
have been key, with architectures such as the convolutional neural network (CNN),
the recurrent neural network (RNN), and the transformer all being designed to be
efficient at particular tasks. These work through identifying symmetries of the task we
are trying to solve, such as translation invariance in images which motivates CNNs,
position invariance in sequences which gives rise to RNNs, or relationships between
different segments of an input which are important for context that can be modelled
well using transformers. These architectures have been particularly successful in image
and speech recognition, generative modelling and natural language processing, with
‘AI’ now a part of many people’s day-to-day lives. While there is still a large gap
between these AI systems and human intelligence, the progress has been rapid, and the
field is still growing at an exponential rate. Concerted efforts toward artificial general
intelligence (AGI) are likely to succeed, even if perhaps over a longer term than the
current excitement would suggest.

Today we find ourselves in this new landscape, where the balance between Karpathy’s
‘Software 1.0’ and ‘Software 2.0’ is still being negotiated. One thing is abundantly clear
however, and that is that AI development has already reached significant limits in terms
of the hardware and the sustainability of current practices. The GPU industry is one
of the largest and most lucrative in the world, and many manufacturers have begun
developing more specialised hardware for AI, including neural processors integrated in
consumer devices, tensor processing units (TPUs) for training large models, and more
recently dedicated neuromorphic chips, such as Intel’s Loihi [Dav+18], which deviate
from the von Neumann architecture to better mimic aspects of the brain’s structure
and function.

These devices are dependent on a few large manufacturers, creating monopolies and
ethical issues regarding access, and exploitation of resources, including the raw materials
needed to build them—rare earth metals and natural resources which fuel conflict and
environmental damage. They have typically short lifespans due to wear, and consumers’
requirements to remain competitive as new devices are released. Recycling of devices
is still not well established, and ultimately they suffer many of the same issues as

2.1. A brief history of computing 13

conventional silicon chips, resulting in huge data centres being established with power
consumption requirements comparable to that of small nation states [Kaa+22].

These properties are all incompatible with the sustainability practices deemed necessary
to avoid global environmental catastrophe, and encourage practices where the benefits
of these new technologies are limited to those with the resources to invest in their
development, and the costs are borne by those who benefit least and who are least
well-placed to object.

These challenges will not be solved easily, and in many cases require policy changes
and regulation, however, it is important to recognise that a) the genie is out of the
bottle, and demand for these tools will not decrease, b) these tools and technologies
have potential to introduce positive changes in the world, in otherwise intractable areas,
and at scale, and c) there are key inefficiencies in the current approaches which are
tractable and where progress can be made.

While we have skipped over many of the details and important contributions to the field,
this history has aimed to highlight three continued trends throughout the development
of computational systems.

First, the initial trend towards generality and universality, with analysis of the minimal
requirements for computation, which once satisfied, subsequently led to the sacrificing
of some generality in exchange for application-specific performance. Evidence includes
the creation of dedicated circuits for floating point arithmetic and encryption, despite
both operations being possible on the minimal Turing machine through software, and
recently the trend towards general-purpose GPU (GPGPU) computing and TPUs for
AI.

Second, the trend towards increasing complexity and efficiency, which come in discrete
steps as breakthroughs are made either in algorithms or, more typically, in hardware.
These include the advent of electrical computers, then transistors, then integrated
circuits, and more recently, the development of parallel computing, including the use of
GPUs for general purpose computing.

Finally, the increase in capability which comes with greater networking and connectivity.
This applies at all scales, from improved connectivity and parallelism in individual
CPUs, to within specific machines, to large-scale data-centres which allow for large
scale distributed computing, and to the global network which allows for the sharing of
information and computation across the world.

2.1. A brief history of computing 14

2.1.1 Optical computing

While the von Neumann architecture clearly won the hardware lottery, there remain a
range of other computing paradigms which have been studied and are now relegated to
the class of ‘unconventional computing’ approaches [Ada18]. Here we will give a brief
overview of the evolution of optical computing in particular, given the dominant role it
will play in the remainder of this thesis.

The Stanford multiplier is one of the earliest examples of an optical computing device,
where cylindrical lenses are used to implement matrix-vector multiplication in diffractive
optics [Goo96]. Throughout the latter half of the twentieth century, there were many
analogue optical computing architectures and schemes proposed [Goo85; Psa+90].
Psaltis et al. demonstrated early implementations of optical neural networks, using
an optical system to perform facial recognition in the 1980s and 90s[CP76; Far+85;
LQP93]. A recent example showing large-scale matrix-matrix multiplication in optics
demonstrates the scaling potential of diffractive optical neuromorphic systems, by
exploiting both spatial and frequency degrees of freedom [Lat+24]

While there have been periods of stagnation in the field throughout its history, today
there is significant renewed interest in novel optical computing, with commercial
enterprises developing and selling access to new forms of optical accelerator [McM23].
One example is the use of a coherent random scattering process as a high-dimensional
random projection, where information can be encoded in the spatial modes of a beam of
light, processed by the scattering process, and read out via detection. This is equivalent
to a high-dimensional random matrix multiplication, which is comparatively expensive
to perform in silico [Cav+22].

This progress has largely been driven by two separate developments: the availability
of low-cost electro-optic devices including light modulators, improved detectors, and
integration possibilities through photonic circuits; and, partly with the development of
new ML approaches, new algorithms and processes for programming optical devices
to solve complex tasks. The latter point should not be undervalued—the ability to
frame an optical computer as a neuromorphic computer, where we can use data-driven
training schemes from ML to learn solutions to tasks, opens the door to a range of
previously unfeasible optical architectures.

For wide scale adoption, commercialisation and integration are important considerations,
and again this is an area where optical computing is promising. Photonic circuits, which
can be manufactured using similar processes as conventional electronic circuits, are a
potential way to integrate optical processors, mitigating many of the irregularities and
misalignment issues in free space optics, while also providing excellent compatibility
with existing digital electronic computers.

2.1. A brief history of computing 15

More generally, there have been many examples of application specific tasks being
performed using optical systems, such as nonlinear optical waves, spiking neurons
implemented in optics, and multimode programmable neural networks [CD10; Raf+20;
MPC20; Mar+20b; BP21; Lat+24; Wan+24].

As a final point, optical systems are also interesting due to the crossover with cur-
rent research trends in quantum computing. Photonics is a natural candidate for
implementing qubits, and there are several demonstrations now of quantum machine
learning architectures designed on optical platforms [Arr+21; Muj+21]. Implementing
neuromorphic systems in optics allows us to make use of benefits of both fields, and
this is an area we explore in more detail in Chapter 3.

2.1.2 Neuromorphic computing

Initial approaches to neuromorphic computing were energy-based, with Hopfield net-
works being one of the earliest examples. These networks, based on the Ising model from
statistical physics and exhibiting similarities to spin glass systems [Tar15], represent a
form of associative memory. In Hopfield networks, the system’s energy is minimised
to find a stable state corresponding to a pattern to be recalled. The Ising model is an
energy function based on the configuration of coupled nodes, defined as

H(σ) = −
∑

ij

Jijσiσj −
∑

i

hiσi, (2.1)

where σi ∈ {−1, 1} is the state vector, Jij is the coupling matrix which defines interac-
tions between nodes, and hi represents an external field biasing the network. Since the
system is discrete, there is a finite number of configurations, each associated with its
own energy.

Hopfield proposed using such a system for pattern recognition. By optimising the
couplings, the network evolves from an initial configuration encoding an input, under an
update rule which minimises energy, until it converges to a stable state corresponding
to the stored pattern [Hop82].

This concept was later extended into Boltzmann machines and their simpler variant,
the restricted Boltzmann machine (RBM) [AHS85]. In these models, a subset of nodes
designated as inputs is initialised, and the system evolves according to an update rule
based on the Boltzmann probability distribution over energy states. Eventually, the
system converges to thermal equilibrium. These networks are trained by adjusting the
couplings to make predictions on input data, with the final converged state providing the
output. Various implementations of these systems have been developed, including optical
versions [Far+85]. Today, energy minimisation remains a central motif throughout
neuromorphic computing, conventional machine learning, and theories of learning in
biological systems.

2.1. A brief history of computing 16

In the decades since these initial architectures were devised, we have seen the emergence
of multilayer perceptrons, neural networks, architectures such as convolutional neural
networks, recurrent neural networks, and transformers. These models have been
employed across a wide range of applications, including image recognition, speech
recognition, natural language processing, and generative modelling.

In parallel, substantial progress has been made in the neuroscience community to
understand biological learning mechanisms. The human brain, the most energy-efficient
computing system known, consumes around 20 watts of power, yet performs tasks
beyond the reach of today’s supercomputers [Len03; SS14]. This is due to the brain
being developed under an entirely different set of evolutionary constraints, which selected
for energy efficiency and performance in selected tasks most correlated with survival
and propagation, while features which we see as desirable in our computing systems,
such as interpretability and scalability, provided no benefit and as such never featured.

The brain operates as an analogue, massively parallel, and distributed system in a
low-precision, high-noise environment. It trades off efficiency in time for space, with
relatively slow speeds but highly efficient utilisation of resources, where distinct areas
in the brain perform multiple roles. It is capable of learning and adapting to new tasks
and making good use of sparse data, and operates over a wide range of timescales
and memory scales. While we can see the brain as an ideal in terms of some metrics
(efficiency, adaptability, lifelong learning, multimodality), there are areas where current
computing systems outperform, such as speed, precision, reproducibility, and scalability.
There are many tasks which humans struggle to perform which are simple for computers,
and vice versa. Neuromorphic computing, then, seeks to bridge the gap between these
two computing regimes, aiming to build systems which combine the best attributes of
both.

Our understanding of the internal dynamics of the brain are now at a point where we
can identify specific brain regions responsible for various tasks and observe how these
regions interact to perform complex functions. At a microscopic level, we can analyse
individual neurons and their collective behaviour. This has led to the development of
neuron models, including the original leaky integrate-and-fire model [Abb99], which,
despite its simplicity, captures a range of biological neuron behaviours. Such models
have in turn inspired the creation of continuous-time neuromorphic systems which
replicate neuron behaviour, advancing novel computing architectures [Wu+22; Sub+24;
Sta+24].

Today, the fields of neuroscience, computing, and engineering are converging through
the development of neuromorphic computing systems, aiming to build brain-inspired
hardware that efficiently handles tasks difficult for conventional computers. Beyond
just improvements in computing, there is scope for lessons which are learnt in designing,

2.2. Optimisation and learning 17

building, and training neuromorphic systems to inform our understanding of biological
learning. Neuromorphic chips, like Intel’s Loihi [Dav+18], enable programming of
spiking neural networks in software, which can then be executed efficiently on hardware.
Such systems are a strong first step to understanding and building efficient biologically
inspired artificial learning systems.

In-Memory Computing. In-memory computing is another rapidly developing area
that addresses the inefficiencies of the von Neumann architecture associated with the
separation of compute and storage. This is important, as in current systems, data
transfer can account for up to 40% of total energy consumption, making it a key
target for optimisation [Mut+19]. By embedding memory and processing in the same
physical location, in-memory computing reduces data movement and the associated
energy costs. This is particularly useful for tasks such as matrix multiplication, where
large datasets must be processed in parallel. However, challenges remain, particularly
in efficiently interconnecting the distributed computing nodes, and such systems are
typically programmed using conventional algorithms, which limits their capacity to
learn or adapt to new tasks.

Mortal Computation. In a recent paper, Hinton proposed the notion of ‘mortal
computation’ [Hin22], advocating for blurring the boundaries between hardware and
software in order to reach the next level of performance. The motivation for this
is that the most efficient computing systems, such as the brain, have no separation
between hardware and software, or layers of abstraction. They are designed purely
for performance. In the brain, ‘hardware’ and ‘software’ are inseparable, co-evolving
over time in response to environmental stimuli, and one cannot in principle take an
‘algorithm’ implemented in one brain, execute it on another, and expect to be able to
reproduce the same behaviours. By removing some of the layers of abstraction present
in conventional computing, systems can achieve higher efficiency, although at the cost
of generality and configurability. Even interpretability may be sacrificed, provided the
necessary constraints and safety guarantees are met.

2.2 Optimisation and learning

2.2.1 Mathematical optimisation

We have already motivated viewing the programming of a variety of computing systems
as an optimisation problem, and in this section we will give an overview of the types
of optimisation methods we might want to consider. Optimisation is of course a wide
field, and so we will limit ourselves to the most relevant methods for training machine
learning models and neuromorphic systems.

Optimisation theory has a long and rich history, and as such, there are many classes of
problems and methods of solving them. There are certain properties of a given problem

2.2. Optimisation and learning 18

which turn out to be more or less useful for categorising them, whereby categorising
and comparing with known solvable problems, we can often make deductions about the
best methods to use to solve it. For instance, there are some optimisation problems
with proven analytic solutions, meaning that if we can find similarities between a task
of interest and one of these known tasks, we can adapt existing methods to obtain an
optimal solution on our new case.

An optimisation task is given by some objective function f and a set of constraints, such
as the objective’s valid domain X . To optimise this objective is to discover the point or
points in the domain which maximise or minimise the objective function, written as

θ∗ = argmin
θ∈X

f(θ). (2.2)

A common class we would like to consider is that of linear problems, where we describe
an optimisation problem as being linear if the objective function is linear in terms of
the tunable parameters of the model. This means that the influence on the objective of
changing a particular parameter in some way can directly be predicted, which makes
linear systems easier to analyse, and as a result, there is a wealth of tools which have
been developed for solving them.

Even in the cases of a linear system, the complexity of the problem can make it difficult
to solve, for instance, if the optimisation is under-constrained2. In these cases, we tend
to have to introduce some form of prior knowledge in order to regularise the problem,
i.e. we constrain the solution space to give a better global optima. Linear systems can
be solved in this way with ridge-regression, which solves a system by inverting a matrix,
and is known to be optimal in the case of a linear system with Gaussian noise and
a mean-squared error objective function. In the case where the matrix defining the
system is not invertible, we need to introduce a small regularisation term, known as
Tikhonov regularisation, to ensure the system is well-posed. For a problem with form

θ∗ = argmin
θ
∥y −Xθ∥22 + λ ∥θ∥22 , (2.3)

the solution can be found as

θ∗ = (XTX + λI)
−1
XTy. (2.4)

Here, the Tikhonov parameter λ can be seen as introducing a prior on the solution,
which penalises large parameter values. While other regularisations can be used, this is
the most common, has a closed-form solution, and is often well motivated by wanting
our parameters to be small, to avoid stability issues such as overfitting.

In nonlinear optimisation, there are many subclasses with different methods for solving,
2Equivalently, the terms ill-conditioned and ill-posed are often used to describe such systems.

2.2. Optimisation and learning 19

and in general the field of optimisation becomes a warren of rabbit holes and special
cases. The vast majority of these do not have analytic solutions, meaning we need to
rely on numerical methods. While these can allow us to solve a much wider range of
problems, they may come perhaps with less intuition for, or fewer guarantees about,
the solution.

Typically, numerical methods rely on some form of iterative parameter update rule,
which allows us to start from a random initial point in the parameter space, and make
changes such that the performance improves. These methods aim to reduce the difficulty
associated with high-dimensional parameter spaces, where we cannot hope to evaluate
the objective function at every point, and instead must rely on local information to
guide our search.

One of the most successful methods is gradient-based optimisation, where we use the
gradient of the objective function to guide our search. This is also referred to as
‘hill-climbing’, where we imagine the objective function as a landscape, and we move in
the direction of the steepest gradient, hoping to reach the highest peak, or equivalently
in gradient-descent, the lowest valley. The main limitation of gradient-based methods is
that they require a differentiable objective function, so we can evaluate not only f(θ),
but also ∂f/∂θ. These methods can be seen as a way of turning our nonlinear problem
into a locally-linear, equivalent problem. By calculating the Jacobian of the objective,
we linearise the system around the current point, and then make a step in the direction
of the optima in this new problem. These steps will only be well-founded within the
region where this linearisation holds, meaning that this only works on continuous,
relatively well-behaved functions.

We can extend this region of validity by including even more information about the
local landscape, for instance through the second derivative (or Hessian), which tells
us about the local curvature of the objective, allowing us to correct for the differences
between the linear approximation and the true function. It is therefore useful to classify
optimisation algorithms according to the order of the derivatives they have access to,
with regular gradient descent being a first-order method, and options such as Newton’s
method being second-order methods.

Second-order information can help in a range of different ways, beyond just better
approximation of the local objective function. If we are optimising a probabilistic model,
where we want to find, for instance, a set of parameters for a probability distribution
such that we maximise the likelihood of the model predicting some observed data3,
then what we find is that using the regular gradient gives suboptimal results, as the
parameter updates we use have a fixed step size and depend on the way we parameterise
the distribution. To correct for this, we can use the natural gradient, which gives

3A problem which is common in machine learning and will feature heavily in Chapter 4.

2.2. Optimisation and learning 20

the best bounded update according to the difference between the prior and posterior
distributions as measured by the Kullback-Leibler (KL) divergence [Ama98]. This no
longer depends on the parameterisation, and can be more efficient than standard gradient
descent, however it does require the calculation of the Fisher information matrix, a
second-order measure which can be expensive to calculate, and can be ill-conditioned
in high-dimensional spaces.

While gradient methods are excellent options for optimising complex problems, there
are cases where it is not feasible to even calculate the first derivative of the objective
function—for instance in the case of a black-box system, where we can evaluate the
objective function at a given point, but we do not know the analytic form with which to
construct a derivative. This leaves us with zeroth-order, or gradient-free, optimisation
algorithms. The simplest naïve approach to gradient-free optimisation is simply to test
many parameter configurations and choose the best one. We can do this randomly,
or in a more structured way, such as using a grid over the parameter domain. These
methods are simple to implement, and can be effective in low-dimensional spaces, but
quickly become infeasible as the number of parameters grows. This is due to the curse
of dimensionality, where the number of samples required to cover the parameter space
grows exponentially with the number of parameters.

We can attempt to approximate gradients by sampling, through the use of finite-
difference methods, where we evaluate the system at two points close to each other
in parameter space, and use the difference in the objective function to estimate the
gradient. However, as with random search, this method becomes infeasible as the
number of parameters grows, as a single gradient estimate in an n-dimensional space
requires at least n + 1 evaluations of the system—an origin, plus one evaluation for
each dimension.

Evolutionary algorithms aim to improve on these finite difference methods by taking
inspiration from biological evolution, i.e. they use trial-and-error across a population,
with stochastic updates and some selection criteria. This can be seen as a refinement
of the random or grid search methods, where we still have some element of random
sampling, however we condition these random changes on past parameters which
performed well.

Genetic algorithms (GAs) treat the parameters as a form of genome, and evolve it
according to the principles of genetic evolution, such as mutation, crossover, and selection.
Evolutionary strategies (ESs) share similarities with GAs, in that they maintain a
population and use selection, however they don’t tend to use crossover, instead relying
on random mutations and adaptive step sizes to explore the parameter space. Where
GAs act on discrete representations of a problem, ESs can act in continuous, real-valued
spaces, making them suited to optimisation tasks such as training machine learning

2.2. Optimisation and learning 21

models. There are a number of different ESs, which maintain different statistics over
their population, and use different methods for selecting the next generation. A popular
and effective method is the covariance matrix adaptation evolutionary strategy (CMA-
ES), which maintains a covariance matrix over the population, and uses this to adapt
the step size and direction of the mutations. We can view this as using the population to
generate a privileged direction in parameter space, similar to finite-difference, however
using potentially many fewer samples than the dimension of the space. The disadvantage
of course is that the covariance matrix is quadratic in the dimension of the space, leading
to poor scaling. Methods such as rank-m evolutionary strategy (Rm-ES) attempt to
mitigate this by using a low-rank approximation to the covariance matrix, which can
be more efficient in high-dimensional spaces [LZ18].

In the case of these iterative type algorithms, it is common for issues to arise due to
the shape of the objective function. One issue which often arises is the presence of local
optima, points where the objective landscape is stationary, meaning that gradient-based
methods, or methods which rely on searching in local neighbourhoods, can become stuck.
This has resulted in the classifying of optimisation problems according to properties
such as convexity of the objective, which determines the existence of local optima, and
smoothness, which allows us to make deductions about the convergence of iterative
methods such as hill-climbing. In general, it is strongly in our interests to use whatever
freedoms we have in specifying an optimisation problem to ensure that the objective is as
‘well-behaved’ as possible, with few local optima, and a smooth, continuous landscape.

Finally, it is worth mentioning Bayesian methods, which are a popular class of algorithm
within gradient-free optimisation, and which have seen significant use in a range of ML
applications, as they can allow us to find the global optima of a system. They work by
modelling a distribution over the parameters of the system, and then sampling from
this distribution to determine the next point to evaluate. By modelling the system as a
distribution, we get uncertainty estimates which allow us to make optimal choices about
parameters to test against the optimisation objective. These methods can therefore
be highly effective in systems which are expensive to evaluate, however, due to the
modelling method, they can become very expensive as the number of free parameters
increases, and the methods for approximating the posterior distribution can be slow to
converge. As such, we mention them here for completeness but do not consider them
further in this work.

Even with the power of modern computing tools and numerical optimisation, there
are limits which stem from the complexity of the problem, such as smoothness of the
objective function, the dimensionality of the problem, and the presence of local optima.
More practically, when choosing an optimisation strategy, we must consider factors

2.2. Optimisation and learning 22

such as the cost of evaluating the objective function, as this may not be trivial in many
cases, and can place limits on the time taken to solve a problem to a given level of
accuracy. It is also useful to consider that even if we cannot necessarily find the global
optima for a particular problem, we may be able to get estimates of our uncertainty, or
the likely difference in performance between our solution and the global optima.

In the context which we primarily care about, neuromorphics, physical systems, and
non-differentiable black boxes, we will investigate applying both gradient-based and
gradient-free methods, and we will also see how optimisation can be made significantly
easier in some cases through inclusion of knowledge of the system, such as having a
forward model of the system, or identifying symmetries in the parameterisation and
objective function.

2.2.2 What does it mean to learn?

Learning, both in humans and machines, can be seen as a form of optimisation. In
machines this is abundantly clear from the way we write learning problems mathemati-
cally, and from the tools we use to solve them. For instance, the way we train most
machine learning methods comprises a dataset of pairs D = {(x, y)}, a parameterised
model fθ : Rdx → Rdy , and an objective, or loss, function L : Rdy × Rdy → R which
compares the label y to the predicted label for a given input, fθ(x).

The goal of training is to find the parameters θ which minimise the loss function, and
hence make the model fθ as good at predicting the labels y for the inputs x as possible,
over the entire dataset. The global optima would be given as

θ∗ = argmin
θ

∑

(x,y)∈D
L(y, fθ(x)),

which looks very similar to our general optimisation given in Equation 2.2. All three
elements dictate what is learnt, and how well the learning generalises to new data.

In humans, learning is a more complex process, with different types of learning, but
can still be seen as a form of optimisation. The way we learn to recognise faces, for
instance, is very different to the way we learn to ride a bike. In the former, there are
inbuilt mechanisms which are specialised to this type of pattern recognition, allowing
us to very quickly, and subconsciously, learn to recognise a particular person, even from
seeing them only briefly. In the latter, we learn through trial and error, and through
practice, to balance on the bike, steer, and pedal. In all cases, we are trying to find
the best model of the world, given the data we have available to us. This model is
used to make predictions about the future, and to make decisions which maximise our
utility. One way of characterising human learning is that we aim to minimise surprise,
in essence training our model of the world to make good predictions about the future,
so that we are able to make inferences about how to affect the world around us in

2.3. Training neuromorphic systems 23

desirable ways, avoid undesirable outcomes, and generally plan.

Two theories of learning in the human brain include predictive coding, and the free
energy principle, where both posit that we learn internal models which can make
predictions about the world around us from observed data. Predictive coding theorises
that the human brain learns by constantly making such predictions and then updating
prior beliefs to match the new data [RB99; LMK22]. However, such a scheme also
needs to be able to discriminate between good new data, and erroneous information,
and hence it is important to maintain a discriminative model which can maintain prior
beliefs and stability, avoiding constantly changing the world model in response to noise.
This was put forward in Friston’s free energy principle [Fri10]. The free energy is equal
to −L(x), where

L(x) = ln p(x)−DKL(q(z|x) || p(z|x)), (2.5)

DKL is the KL divergence between the approximate posterior and the true posterior,
and ln p(x) is the log-likelihood of the data under the model.

This equation is also known as the evidence lower bound (ELBO), which plays a
prominent role in variational Bayesian methods as a lower-bound on the log-likelihood
of observing some data, i.e. ln p(x) ≥ L(x) for some model p. Maximising the ELBO
can be seen as encouraging alignment of the model with the true data through the
first term in Equation 2.5, while encouraging the model to be stable, and not shift
too much in response to new data, via the second term. The ELBO is useful in
optimising various distributional models, commonly seen in ML architectures such as
variational autoencoders, which learn low-dimensional latent representations of some
data distribution, or in the expectation-maximisation (EM) algorithm, which is used
to find a maximum likelihood estimate for parameters θ in a model which depends on
unobserved, hidden variables z [DLR77; Ber20].

While it is perhaps unsurprising that the fields of neuroscience and artificial learning
systems would converge on similar ideas, the fact remains that the ways these two types
of systems actually update their models in response to new data are very different.

2.3 Training neuromorphic systems

Optimisation is hard even in well studied or perfectly modelled systems. In systems with
only partial information, such as many physical or neuromorphic computing systems,
this becomes even harder.

In conventional computing, we can get away without knowing the exact voltages at
the gates of the transistors, due to the robust design of the system, and inbuilt fault
tolerance. This removes the influence of noise and small perturbations, resulting in
a system which we, as end users, can consider to be entirely deterministic. This

2.3. Training neuromorphic systems 24

determinism, coupled with the high-level abstractions we use for programming, allow
us to program the analytic equations for the derivatives of various numeric operations,
to save intermediate values produced during a computation, and then combine these
to calculate numeric derivatives. This is the basis of the backpropagation algorithm,
which is used to train most modern machine learning models.

In neuromorphic systems, we often don’t have this luxury, for the precise reason that
the abstractions and generality provided in conventional computers are often part of
the bottleneck we are trying to overcome by using a neuromorphic computer in the first
place. In most systems we want to study, there will be some hidden information, state
or dynamics we can’t measure or estimate.

Consider the simple case of an information-carrying wave propagating through some
bulk scattering medium. While we may be able to write down the equations for encoding
information in the carrier, and the method of detection at the output of the system,
the scattering process is a mystery to us. If the system is linear, and we can probe
the system through controlling the encoded information, we can perform an inverse
retrieval to understand the scattering process, but even this only provides a model of
this particular linear system. If the medium physically moves, we can’t easily make
predictions about the new system’s behaviour. This assumes that the physical process
even can be measured and modelled. In many cases there are fundamental limitations
due to noise, complexity, or even, as will be seen in Chapter 3, quantum effects. In
these cases we have no choice but to accept that the system is non-deterministic, and
find optimisation strategies which are robust to this. Aside from the fact that modelling
can be hard or even impossible, attempting to model and simulate the physical system
often defeats the point of using it in the first place.

2.3.1 Gradient-based optimisation

The first approach to training such systems is to use established gradient-based optimi-
sation, which requires either a model or simulation of the physical system of interest,
which can be used as a proxy for training, while the real system is reserved only for
inference. This ‘training in the dream’ ([HS18]) or in silico training falls under the
category of digital twins, which have proven successful in a range of problems that
require interaction with the real world, such as control, robotics and autonomous
systems [Mat+22; FJL24]. This approach does enable fast learning, and a greater
understanding of the dynamics and behaviour of the system during the learning process.
On the other hand, it rather defeats the point of using a physical or neuromorphic
system in the first place—if we can solve the problem we care about in a simulation
then why bother with the physical system at all.

Additionally, training in a simulation assumes that the model we use is well aligned
with the real world system, such that we see the same performance on both. This is

2.3. Training neuromorphic systems 25

almost never the case, even if the real system has high signal-to-noise ratio, stability and
determinism, and misalignment can lead to suboptimal performance, especially during
gradient-based training. Consider an approximate model m̂ which aims to reproduce a
real system m, assume that both are smooth and that we can bound the error such that
|m(x) − m̂(x)| ≤ ε ∀x ∈ S where S is the support of m. In general there is no such
bound on the error of the gradient |m′(x)− m̂′(x)|. This can be seen by considering m
to have some oscillation about a mean µ(x) i.e. m(x) = ε sin(kx) + µ(x). Then m̂ := µ

satisfies the error bound, but the gradient error grows arbitrarily large as k →∞. This
can cause stability issues when training, and while typically we would choose to work
with ‘well-behaved’ physical systems where these effects are limited, the compounding
of small errors in gradient propagation through larger systems can lead to failure just
as in the case of vanishing or exploding gradients in conventional deep learning.

One improvement to in silico training can be made by only using the model for the
backward pass, and using the physical system for all forward passes. This was introduced
as physics aware training (PAT) [Wri+22], where a differentiable forward-model of a
neuromorphic system is first generated, and then used in backpropagation with inputs
measured from the physical system.

Regardless, whether using sim-to-real transfer or more sophisticated techniques like PAT,
a forward model needs to be built. This can be a significant challenge depending on the
system at hand, with difficulties ranging from having a good approximate model but
being unable to account for small misalignments and noise, to simply being intractable
due to the scale of the physical system. Developments in simulations, and especially
physics informed neural networks [RPK19], differentiable physics engines [VV22], and
neural differential equations [Che+18], all contribute to more effective models, but the
fundamental challenge remains.

In some cases there are still advantages of using a simulated model, for instance in
ultra-fast applications beyond conventional computers’ capabilities, a fast neuromorphic
system that we are confident we can accurately model may be the only viable option,
and we can accept slow training times for the gain in deployed inference speed.

Beside modelling, it may in some cases be possible to engineer a system such that it not
only computes the forward model, but in doing so also produces the required derivatives
as outputs. This is highly dependent on the physics of the system being used, with
difficulty increasing as we work with systems with fewer abstractions and predictable
dynamics. An example of such a system comes from diffractive optics, where a system
was designed carefully such that the same hardware used in a forward pass could also
be used to propagate errors back to parameters [Guo+21]. Such systems are, however,
an exception, and while this may prove to be an important technique for future systems,
we would like to be able to explore other, easier options in the interim.

2.3. Training neuromorphic systems 26

2.3.2 Gradient-free optimisation

Avoiding modelling is important for making the best use of a neuromorphic computing
system. It avoids issues with misalignment between model and hardware, and potentially
expensive simulations which scale poorly with the complexity of the system. We therefore
should aim to optimise directly on the physical hardware, which requires using some
form of zeroth-order method. These only require the ability to evaluate the system
on different inputs, and so are compatible with physical computing, however the lack
of a gradient means that choosing where in the parameter space to sample is not an
easy task. Bayesian methods provide a principled approach to sampling the parameter
space in order to minimise uncertainty, but range from expensive to unfeasible in
high-dimensional spaces. There are a range of iterative approaches using different
heuristics to improve sampling efficiency, of which evolutionary strategies are a popular
and well established option, but all suffer as the parameter space grows.

Beyond evolutionary strategies and common zeroth-order optimisation techniques, there
are a range of methods developed specifically for training machine learning models and
neuromorphic systems, which directly target some of the main issues unique to these
fields.

The first which we discuss is feedback alignment (FA), which has subsequently been
extended to direct feedback alignment (DFA) [Nøk16; Lil+16; NE19]. Loosely speaking,
these methods allow us to estimate an update to the parameters in a nonlinear system,
by propagating the error on the output backwards through a different model than the
forward system. At first sight, this may seem ill-posed—there is no reason to believe
that using an unrelated backpropagation model should produce any meaningful result.
The key to the method’s success lies in the form of the error propagation model, which
is a usually chosen to be a fixed random projection. Direct feedback alignment [Nøk16]
illustrates learning systems can even adapt to wildly different error signals, by mapping
gradients in the output of a deep network back to the parameter space through fixed
random projections which, by the Johnson-Lindenstrauss lemma [JL84], roughly preserve
orientation. There are many demonstrations that approximate gradients are ‘good
enough’ for training, and while training performance may be degraded, they still
outperform zeroth-order methods.

This motivates the idea of general gradient alignment, and whether we can perform
optimisation without the exact gradient, provided we can calculate some approximate
pseudo-gradient, which is close enough to the true value that the system can learn
to accommodate the differences, similarly to DFA. Already we have seen that there
are several analytically justified gradient-based updates which can be used to train
networks, such as the regular first-derivative, and second derivative methods such as
the natural gradient. Indeed, there are several examples where systems have been

2.3. Training neuromorphic systems 27

successfully trained without exact gradients, and these ideas will be explored further in
Chapter 4 [Lil+16; Lau+20; Wri+22; Fil+22].

Aside from pseudo-gradient-based approaches, there are a number of methods which
have taken inspiration from biological systems, and which have been shown to be
effective in training neural networks. There is no known mechanism in the brain for
error signals to propagate backwards through the same pathways as the forward signal,
and that the brain is able to learn effectively without this mechanism. This highlights
that the brain does not learn via backpropagation as it is used in ML, and prompts us
to consider more biologically-plausible rules. These work either by allowing for different
pathways for update information to flow through, similar to FA, or use local learning
rules which only require information about the local state of the system to update
the parameters. These types of rules are harder to map to our original optimisation,
as they don’t have access to the objective function to gain any estimate for good
updates. Instead, they need to rely on local, general objectives which, when optimised
for, hopefully correlate with performant behaviour on the true task. An example of this
which we have already discussed is the idea of surprise minimisation in the brain, where
individual neural circuits aim to update their weights to better match the predictions
they made before observing a particular stimulus. While this doesn’t directly correspond
to optimising for tasks like recognising faces, the emergent behaviour of the system can
end up performing well on these types of tasks.

A particular form of local learning is described by Hebb’s rule, which is often summarised
as “neurons which fire together, wire together” [Heb05]. This describes the tendency
for connections between neurons to strengthen when one is active directly before, and
contributes to, the firing of the other. This can be seen as a form of unsupervised
learning. Another form was put forward by Hinton in 2022, where he described the
forward-forward algorithm [Hin22]. This is another unsupervised approach based on
contrastive learning, where we train a model to discriminate between different classes
of inputs in such a way that a model for the underlying distribution emerges. Instead
of using a forward evaluation pass, followed by a backward pass with updates, forward-
forward performs two forward passes, one with the normal input, and second with an
out-of-distribution, or corrupted input. The local parameters are then updated to better
discriminate between the two, in a process which is independent of the updates made
to other parameters in the network. This has been shown to perform well on certain
types of task, including classification, and spurred a range of new contrastive learning
approaches to neuromorphic computing, including application of the algorithm to both
regular deep learning models and optical neuromorphic systems [Mal+23; Ogu+23].

The final approach we will discuss here is the use of meta-learning. As with other
computing systems, we distinguish between the architecture of a neuromorphic system,
and the way it is programmed or trained. There are however some approaches that

2.3. Training neuromorphic systems 28

blur this line by directly optimising network structures, using techniques such as learnt
optimisers or model discovery methods [ZL16; Bel+17; Wic+17; EMH19; Hos+22].
It is important to note that even in these cases, the methods build on decades of
experience developing effective models—we don’t throw out CNNs and transformers in
the hope of discovering something new by throwing neurons at the wall and seeing what
sticks. That said, learnt optimisers, and more generally, meta-learning, which aims
to learn some aspect of the learning process itself, have shown promise in optimising
network architectures and hyperparameters, with the principle being that algorithms
discovered through learning hold the potential to be more effective than those designed
by hand [And+16; LM17; Bel+17; KS20; Met+22; Che+23a].

Meta-learning can take several forms, such as learning base models which can be trained
once on a range of tasks, such that they can easily be fine-tuned with few examples on
downstream tasks, or learning algorithms which are capable of tuning model parameters
for us, such as the learnt optimisers mentioned above [Hos+22]. Meta-learning will
form the foundation of the work in Chapter 4.

2.3.3 Reservoir computing

We have established that programming is a key challenge in physical neuromorphic
computing, which arises ultimately from imperfect knowledge of the underlying system.
This presents in two ways—an inability to accurately model the internal dynamics of
the system, and the difficulties in accessing or measuring the specific internal system
state during operation. Without these, we cannot calculate numeric derivatives for
use in gradient-based optimisation, and of the remaining zeroth-order optimisation
techniques, most do not scale to high dimensional systems.

However, all is not lost—we can neatly side-step these issues by restricting the way we
use the physical platform slightly, through the theory of reservoir computing [Cuc+22].
Instead of having a tunable system, we choose to use a fixed, random physical system
with interesting dynamics which we think will be suited to solving the types of task we
are interested in. In order to solve different tasks, we use a tunable matrix multiplication
on the output of the reservoir which gives us our final output. The fact the system
is linear in its parameters allows us to train it using well-established linear regression
techniques, such as ridge-regression. This consists of a single matrix inversion and a
couple of multiplications, performed once. Avoiding iterative training rules and complex
algorithms both simplifies the training greatly, and satisfies our low energy consumption
criteria. That said, this linearity does mean that if the necessary dynamics are not all
generated by the reservoir, then they cannot be learnt by the system. Much of the work
in reservoir computing therefore focusses on choosing or designing systems which have
a wide range of complex dynamics, such that there is either a surjective mapping to,
or synchronisation with, the task’s target dynamics. Reservoir computing is a blanket

2.3. Training neuromorphic systems 29

term, covering several classes of algorithm capable of using fixed complex systems for
computation.

Extreme learning machine. Extreme learning machines (ELMs) use a single random
layer as a nonlinear projection of the input data,

h = σ(x),

for input data x ∈ Rdx , output activation h ∈ Rdh and nonlinearity σ : Rdx →
Rdh [HZS06]. The nonlinearity σ is random, high-dimensional, and left untuned. The
network is trained on a particular task using linear regression on the output h, giving us
a weight matrix W which is used to get the trained output of the system as y = W ·σ(x).
It can be shown that the ELM is a universal interpolator, but not approximator, as
in the case of the multilayer perceptron (MLP). This means that it can interpolate
functions, but will not necessarily generalise well to new data.

Echo state network. By adding recurrence, we allow fading memory, making the
reservoir computer suitable for use on sequential data such as time-series problems.
There are many forms for these systems, but a general forward model can be written as

ht+1 = (1− α)ht + ασ (Whht +Wxxt) . (2.6)

Here, α ∈ [0, 1] balances between the previous state and the new input, giving some
control over the stability of the system. Wh and Wx are the internal state and input
weight matrices, respectively, and σ is our nonlinearity as before.

During training, we take labelled data {(xt, yt)}, pass each xj through the system, and
collect them into a design matrix Dij, where each column is the output of the network
at time j. We then train a linear model on the output of the reservoir to predict the
target yt, i.e. we learn the weights Wout in the equation.

Compared to ELMs, the addition of the echo state property and fading-memory make
echo state networks (ESNs) universal function approximators [GO18; GO21]. A second
consequence of adding recurrence is that we can model the reservoir as a dynamical
system, where Equation 2.6 can be seen as the discrete-time approximation of a
continuous-time system,

dh

dt
= α (σ (Whh(t) +Wxx(t))− h(t)) . (2.7)

As such, metrics from dynamical systems theory such as Lyapunov exponents and
synchronisation can be used to characterise the behaviour of the system.

ESNs have strong connections with concepts such as RNNs and neural differential
equations (NDEs), which are prevalent in the traditional machine learning literature. In

2.3. Training neuromorphic systems 30

an RNN, we repeatedly apply the same neural network to a sequence of inputs, with the
output at each iteration being fed back into the network as persistent state. In this way,
an RNN can be seen as a differentiable, trainable ESN. NDEs on the other hand are a
more general class of model suited to solving problems which can be described using
differential equations. Here, a neural network parameterises the form of a differential
equation, which can then be solved using standard numerical methods. They can be
seen as the continuous extension of recurrent and residual networks.

Liquid state machine. Liquid state machines (LSMs) are a distinct approach
developed at the same time, but independently of, the ELM. The principle here is
largely the same, where computation takes place in a large randomly initialised recurrent
network, with linear learnt parameters used to train on a given task. The key difference
is that the LSM are biologically inspired, using spiking neurons, making them suited to
continuous-time tasks.

Chapter 3

Photonic quantum reservoir computing

Quantum computing is an example of unconventional physical computing with
huge potential for increasing computational performance on specific tasks.
However, a large gap has developed between our theoretical understanding of
quantum information processing, and our current experimental capabilities,
as efforts to build scalable hardware with acceptable noise and error rates
continue. Here, we propose a new way of doing application-specific computing
using quantum resources which aims to be practical, scalable, and imple-
mentable with existing commercial hardware. In particular, we use the infinite
dimensional Hilbert space generated by multiphoton interference and photon
number resolved detection to create a reservoir computer, a novel paradigm
for dynamics-driven machine learning detailed in the previous chapter, with
rich dynamics, while considering realistic quantum state preparation, losses,
and detection efficiencies. This work is partly detailed in the paper [Ner+24].

3.1 Introduction

Chapter 2 introduced the concept of reservoir computing as an efficient method of
solving various problems which is well suited to unconventional computing hardware,
however we have yet to discuss an implementation in a physical system. Indeed, one of
the main advantages is that it allows us to leverage the properties of complex, physical
systems for computing, by providing an easy and efficient method for training. As
reservoir computers are linear in their tunable parameters, there is no requirement
to be able to interrogate the internal reservoir dynamics, allowing us to use complex
dynamical systems without needing to model them or make measurements of internal
state.

There are many examples of physical reservoir computers which have been developed in
a range of substrates over the last decade or so, showing state-of-the-art performance in
certain classes of task—for instance time series prediction, classification, and function

31

3.1. Introduction 32

interpolation [Raf+20; Por+21; Gar+23; McM23; Bru19; Tan+19]. A particularly
interesting example is quantum reservoir computing, which extends the usual reservoir
computing paradigm to use a non-classical reservoir. While quantum computing and
reservoir computing have individually seen significant research and successes, each
has its own challenges which can limit their practical usage. Conventional reservoir
computing efficiently exploits the complex dynamics of classical systems for computation,
including noise or instabilities, removing the need for difficult programming or training.
However, as with any analogue computing system, it requires a one-to-one mapping or
synchronisation with the target dynamics, and so it can be challenging to identify or
design systems which have useful dynamics in the first place. Quantum computing, on
the other hand, exploits a richer set of dynamics than is available in classical computing,
through the use of quantum phenomena such as superposition and entanglement,
however current approaches struggle to realise a large-scale, practical system [Wai24;
Fed+22]. This is due to either needing a highly stable, noise-robust platform on which to
implement hand-crafted quantum algorithms, or needing new data-driven programming
methods which are robust to non-ideal, real-world experimental conditions.

Combining the two fields, we can ask whether the dynamics of a quantum system would
prove useful in a reservoir computer, and whether reservoir computing’s simple training
process can allow us to make use of non-ideal quantum systems which otherwise would
be unsuitable for computation. We are not the first to ask these questions—recently
there have been several proposals for quantum reservoir computing systems, in a range of
substrates including photonics [Gar+23; Muj+21; Xio+23; Gho+20; AAM24; GLG23].

In this chapter, we put forward a new approach for building a quantum reservoir
computer, specifically an extreme learning machine [HZS06]—a feedforward (and de-
generate) variant of reservoir computing with proven performance in regression and
interpolation tasks in optical substrates [PMC21; ZLM23; SRF24]. Our method applies
photon number resolved detection (PNRD) to access a combinatorially large Hilbert
space of quantum measurements. The next section begins with background on the
state of quantum computing and quantum machine learning research, motivating the
use of reservoir computing, and continues with an overview of the proposed system.
Section 3.3 builds up the necessary mathematical tools to model our quantum reser-
voir computer, followed by Section 3.4, showing results in numerical simulations, and
Section 3.5, comparing measurements for both classical and quantum states of light,
and characterising their performance in interpolation tasks. The chapter concludes by
providing an overview of initial experiments and areas for further investigation.

Throughout the chapter, we highlight how scaling to a combinatorially large Hilbert
space allows our reservoir computer to access a high-dimensional space in which we can
perform machine learning. We pay particular attention to the practical realisation of
this system, analysing the impact of noise, detector performance and sampling on the

3.2. Background 33

performance of the system. This work is partly detailed in the paper [Ner+24].

3.2 Background

3.2.1 Quantum machine learning

There are many parallels with quantum computing and classical physical and neuromor-
phic computing. In particular, both fields deviate from the conventional von Neumann,
in silico computing paradigm, instead opting to implement new forms of computing
using novel physical dynamics. While the motivation for classical neuromorphic com-
puting mainly hinges on improved efficiency over conventional computing approaches,
quantum computing aims to implement entire new classes of algorithms and thus open
up new classes of problems, previously intractable with classical computers.

Quantum computing approaches have seen significant investment of late, however still
face challenges in scaling and noise robustness, which delay their practical usage and
limit access. Quantum computing as a field started out with a focus on implementing
quantum gates, analogues of the digital logic gates from which all conventional CPUs
are built. These controllable gates modify the state of a qubit, a two level quantum
system which provides the quantum analogue of a classical bit of information. By
controlling these gates, we can program a device with quantum algorithms which can,
in principle, solve problems which are intractable for classical computers.

It is clear that this scheme is heavily inspired by the way we build conventional
computers, and yet there have been several bottlenecks in the development of practical
systems, such that after decades of research there are still very few large scale, practical
quantum computers available. Even those that do exist are limited to the order of
hundreds of usable qubits [Ich+24].

The difficulty in building such a computer stems from the range of criteria which an
implementation needs to satisfy [DiV00]. The operations provided by the device must
be universal, and there must be a way to initialise the system in a known state. For
practical usage, the system must also be scalable in the number of quantum resources,
as even the simplest quantum computing algorithms require many qubits [Dal+20].
It also needs to guarantee temporal stability and robustness to noise, as noise and
decoherence can quickly destroy the quantum information stored in the system. Finally,
it must allow us to encode information in the quantum states, and read out results
through measurements, in a robust, repeatable way.

One of the main advantages of quantum systems for computing is their ability to
use quantum effects to improve the time complexity of solving certain mathematical
problems. There exist certain problems, such as the classic example of factoring large
numbers, which are intractable for classical computers, but which can be solved on a

3.2. Background 34

quantum computer. In these cases, where quantum computers allow us to solve problems
which otherwise would take infeasible lengths of time on any classical system, there is
said to be a ‘quantum advantage’. Some in the field argue a quantum advantage if a
system simply outperforms an equivalent classical counterpart, although this requires
some justification of what a fair choice of equivalent classical system may be [Fed+22].
As a result, ‘quantum advantage’ has become something of a loaded term, with many
potential interpretations depending on the area of research and the way in which a
quantum system is compared with a classical equivalent. However, it is important to
point out that there can still be an advantage or performance improvement in using
quantum systems for computing, even in cases where the problem can already be solved
classically. This may come in energy efficiency, speed, utilisation of available hardware
resources, or even the ability to process data which is already encoded in a quantum
state.

3.2.2 Current approaches to quantum machine learning

There have been many approaches to building quantum computers, although currently
there are a few substrates used to implement qubits which dominate the research
landscape. Qubits based on the Josephson effect rely on superconductivity to generate
a two level quantum system. On-chip systems can be manufactured with existing
fabrication technologies, allowing for a high level of control, however the need for
cryogenic cooling makes them difficult to implement, and large scale coupling of qubits
remains hard [Kja+20].

Trapped ions are an alternative means of implementing qubits, where individual ions
are trapped in an electromagnetic field and manipulated using lasers, however they are
difficult to couple and scale into a feasible quantum computer, and also require cooling
in order for quantum effects to dominate over thermal variations [Bru+19].

A third approach is to use photons as qubits, where a quantum state of light is used to
encode information [SP19]. Photons can be easily manipulated using existing optical
technologies while avoiding the need for cryogenic cooling, however they are difficult to
store, making quantum optical memory a challenge. That said, light has many degrees
of freedom for encoding information, quantum states can be generated relatively easily,
and single-photon detectors are becoming increasingly available. Despite photons not
easily interacting with one another, we can couple optical qubits through probabilistic
processes such as scattering, interference effects, or nonlinear optical processes. These
properties make quantum light an attractive option in certain applications.

Even with a wide range of available platforms, each with their own pros and cons,
many of the current gate-based, universal approaches to quantum computing face

3.2. Background 35

difficulties. These may be in realising memory, scaling quantum resources and coupling,
or engineering challenges such as cryogenic cooling, noise mitigation, and achieving
the robustness required for repeatable experiments. Although these approaches show
great promise to scale as a result of years of hard efforts [Mad+22; Arr+21; Bog+20;
Luo+23; Kja+20], their current difficulties place the technology out of reach for most
laboratories.

Many of the issues stem specifically from the universality requirement, as the need to
implement a full set of quantum gates and operations places significant constraints on
the system. If we can relax this constraint, then we may be able to dodge some of the
larger obstacles and use quantum resources for useful computation. There are several
approaches which eschew gates and universality in favour of ‘simpler’ quantum systems,
enabling nearer-term, application specific quantum computing.

One such example is Boson sampling, a non-universal quantum computing approach
which provides a quantum advantage on a specific task: sampling from the output
distribution of number resolved measurements when n indistinguishable particles are
scattered into m modes. Boson sampling is #P-hard, intractable with current algorithms
and classical computers, meaning that a physical system which solves this problem
truly does provide a quantum advantage [CC18; TT96; AA11]. A natural platform for
implementing a Boson sampling system is photonics, as linear scatterers are relatively
easy to construct, and single photons can be generated to serve as the Bosonic inputs to
the network. This has been demonstrated experimentally on large scales, most notably
in [Wan+19a; Zho+20].

Another example which has seen significant interest in recent years is quantum machine
learning (QML), which introduces principles from machine learning to quantum com-
puting [Bia+17]. QML architectures take many forms, and it is useful to classify them
according to three properties as illustrated in Figure 3.1: whether they use quantum or
classical inputs, a quantum or classical substrate, and whether they are used for solving
quantum or classical problems [Muj+21].

The range of combinations here illustrates the potential ambiguity when we talk about
quantum machine learning—it is important to specify which elements of the system use
quantum resources. For instance, while some QML approaches aim to provide speed-ups
for classical tasks, others are more suited to processing information which is already
encoded in quantum states, leading to new methods for extracting and manipulating
quantum information [Gho+19; Hua+22].

Within QML, we can build quantum neural networks (QNNs)—parametrised artificial
neural networks (ANNs) formed from linked quantum states and their interactions,
which may be trained analogously to conventional ANNs. While QML algorithms
may be implemented on gate-based quantum computers, there is potential for new,

3.2. Background 36

Quantum
substrate

Quantum
input

Quantum
task

CQC

CQQ

QQC

QQQ

CCQ

QCQ

QCC

CCC

Input,Substrate,Task

Figure 3.1: Quantum machine learning taxonomy. Taxonomy of different machine
learning systems based on the quantum or classical (Q/C) nature of the input, substrate
and task being performed.

quantum neuromorphic hardware which can be specialised to various tasks on classical
or quantum data with minimal experimental overhead, where the same arguments for
classical neuromorphic hardware (see Section 2.1.2) hold here.

In this case, reservoir computing becomes particularly relevant—while some quantum
systems may be easy to build in the lab, they may also be difficult to model and train
using conventional machine learning training schemes. Reservoir computing simplifies
the training, and reduces computational and environmental costs compared to more
typical ANNs which require iterative training of models which are nonlinear in their
parameters.

3.2.3 Proposed QRC overview

Our approach to quantum reservoir computing takes inspiration from Boson sampling,
where the required complexity is generated through a quantum state scattering in a
random linear optical network. We do not however adhere to the strict requirements of
the Boson sampling problem, and instead use the network as a reservoir which, under
photon number resolved detection, generates a high-dimensional output space suitable
for use in reservoir computing.

Due to the general modelling approach we employ, we can realise the linear optical
network with a range of different physical systems, such as bulk scattering media
or multimode fibres (MMFs) [Def+16; Raf+20]. Similarly, there are many degrees of
freedom open to us for encoding information, such as phase or polarisation. The benefits
conferred by the use of quantum resources and photon number resolved (PNR) detection
in the following analysis therefore apply in a range of physical reservoir implementations.

3.3. Theory 37

We examine a range of quantum and classical states of light such as Fock and coherent
states. Our system is compatible with all variants shown in Figure 3.1, where our
substrate (e.g. Fock or coherent states, with or without PNR detection), input (e.g.
real values encoded in polarisation, or quantum information encoded in quantum input
states) and task (e.g. linear quantum operations, or classical ML tasks) can all be either
quantum or classical. In our analysis, we primarily consider the CQC regime, using a
quantum substrate to solve classical function interpolation tasks.

Our analysis shows that while performance improves with average photon number, we
can achieve good performance with states which can be easily generated in a modern
photonics laboratory. We pay attention to the implications of noise and detection losses
on the performance of the system, incorporating these in simulation, and we introduce
and test a set of metrics to quantify the behaviour of different designs in light of these
conditions.

3.3 Theory

In this section we develop the theory needed to construct our quantum reservoir
computer. This is composed of three main elements. We cover the types of states we
can encode information in and the form of these encodings, the theory of linear optical
networks which we use to implement the reservoir which transforms the states, and
finally the detection of the resulting output states.

3.3.1 Input states

In order to describe a range of quantum and classical states, we introduce notation for
the three main classes of state from which we will build all other states from: Fock
states, distinguishable photon states, and coherent states.

For an m-mode state, we denote indistinguishable photon occupancies with an ordered
set n = (n1, . . . , nm), distinguishable photon occupancies with d = (d1, . . . , dm), and
coherent states with coherent state amplitudes α = (α1, . . . , αm). When necessary to
specify values for these, we will write indistinguishable states using regular integers,
distinguishable states using subscripted 1s, where each 1k represents a single photon
which is distinguishable from any photon with different subscript k, and coherent states
using italicised decimals. For example:

• Fock state: n = (2, 1, 0, 0) implies a three photon state |n1, n2, n3, n4⟩ = |2, 1, 0, 0⟩,
where all photons are indistinguishable.

• Distinguishable state: d = (2, 1, 0, 0) implies a three photon state |d1, d2, d3, d4⟩ =
|1011, 12, 0, 0⟩, where all photons are distinguishable.

• Coherent state: α = (0.5, 1, 0, 0.1) implies a coherent state |α1, α2, α3, α4⟩ =

3.3. Theory 38

|0.5, 1.0, 0, 0.1⟩, where all constituent photons are indistinguishable.

From this we can write more complex states, such as photon-added coherent (|α+ 1⟩ =
|α1 + 1, . . . , αm + 1⟩) and subtracted coherent states (|α− 1⟩ = |α1 − 1, . . . , αm − 1⟩).
For instance, |0.5 + 2, 1.0 + 1, 0, 0⟩ should be read as two photon-added coherent states
with amplitudes 0.5 and 1.0 denoted by the italicised decimals, and 2 and 1 additional
photons denoted by the roman integers.

In terms of creation and annihilation operators a† and a, we can write a Fock state as

|n⟩ = a†√
n
|n− 1⟩ = a†

n

√
n!
|0⟩ ,

while the equivalent multimode Fock state is given as

|n1, n2, . . . , nm⟩ =
m∏

i=1

a†i
ni

√
ni!
|0, 0, . . . , 0⟩ , (3.1)

where we index the creation operators according to the mode they act on.

The same form applies for distinguishable photon states, with the creation operators
distinct according to each photon’s distinguishability.

Similarly, we can express multimode coherent states in the Fock basis as the tensor
product of sums of Fock states,

|α1, α2, . . . , αm⟩ =
m∏

i=1

eαia
†
i−α∗

i ai |0, 0, . . . , 0⟩

=
m⊗

i=1

∞∑

j=0

e−
|αi|2

2
αi
j

√
j!
|j⟩ . (3.2)

A coherent state has mean photon number ⟨n⟩ = |α|2, and the probability of detecting n
photons is given by the Poisson distribution. Coherent states are useful for our purposes
as we can consider them in both the quantum and classical pictures, allowing us to
compare the performance of our reservoir computing system with both number resolved
detection and intensity detection. They are considerably easier to generate in the lab
than Fock states, simply using a laser, while the latter requires nonlinear processes or
single photon sources.

We can artificially add photons to a coherent state, giving a photon-added coherent
state (also referred to in this work as a hybrid state), which is no longer describable

3.3. Theory 39

with classical fields, written as

|α+ n⟩ = |α1 + n1, . . . , αm + nm⟩ =
m⊗

i=1

∞∑

j=0

e−
|αi|2

2
αi
j

√
j!

√
(j + ni)!√

Lni
(− |αi|2)ni!j!

|j + ni⟩

(3.3)
where Ln(x) is the Laguerre polynomial of degree n1. Setting αm = 0 simplifies
Equation 3.3 to the standard form of a Fock state, while setting nm = 0 simplifies it to
a multimode coherent state.

Finally, N00N states, which will feature in later discussion, are given as a superposition
of two maximally bunched Fock states,

ψN00N =
1√
2
(|N, 0⟩+ |0, N⟩). (3.4)

3.3.2 Linear optical networks

In order to perform computation with these states, we need to encode information in
their degrees of freedom, perform some sort of useful transformation on them, and then
measure the output. These transformations can be modelled using the theory of linear
optical networks (LONs).

LONs are useful for several reasons. Firstly, they are highly versatile—any multimode
linear optical system can be described within the theory of LONs. As a result, one can
experimentally realise a LON in a wide range of physical systems, including multimode
fibres, complex scattering media, linear photonic circuits, and many other optical
systems, with some examples illustrated in Figure 3.2. Due to their ubiquity, they
have been extensively studied, with both classical and quantum descriptions well
understood in the literature. They are passive, multimodal systems, making them ideal
candidates for energy-efficient and scalable physical computation [McM23], and they
can be designed to realise any finite unitary transformation [Rec+94], making them
highly general and allowing a LON-based reservoir computer to be tailored to specific
applications. Indeed, they have already been used to demonstrate several forms of
quantum computation [TR19; Gar+14; PJ95; Mee+21; Wan+19a; Bro+13; Mad+22;
Mar+20a; AA11].

In order to use LONs as the random layer in a reservoir computer, we need to understand
how we can model them, which degrees of freedom are available to us, and how we can
simulate their effect on the quantum states of light which carry our information.

1The normalisation can be found by writing the
√
j + 1 . . .

√
j + ni factors produced by the creation

operators as a binomial coefficient, and then using the expression
∑

n x
n/n!

(
n+m
m

)
= exLm(−x).

3.3. Theory 40

VC

FC PS

PNRD

a)

1

2

3

4

5

1

2

3

4

5

BS PNRDPS WP

Mirror
b)

MMF

SLM PNRD

c)

Figure 3.2: Example LON implementations. a) Photonic circuit LON with
variable couplings (VC) (composed of 50:50 fixed couplings (FC) and phase shifters
(PS)). b) LON implemented with a triangular arrangement of beamsplitters (BS), phase
shifters (PS) and waveplates (WP). c) LON implemented as a multimode fibre (MMF),
where a spatial light modulator (SLM) determines the network input. All examples can
be paired with PNRD to measure the output state.

3.3.3 Mode coupling

A LON can be modelled simply as a matrix mapping a set of input modes to output
modes. A general m-mode scattering matrix takes the form of

S =

s1,1e
iϕ1,1 s1,2e

iϕ1,2 · · · s1,me
iϕ1,m

s2,1e
iϕ2,1 s2,2e

iϕ2,2 · · · s2,me
iϕ2,m

...
...

sm,1e
iϕm,1 sm,2e

iϕm,2 · · · sm,me
iϕm,m

,

with si,j ∈ [0, 1], ϕi,j ∈ [0, 2π). The complex amplitudes introduce interference effects
when coupling different modes which, along with energy conservation, constrains the
possible values of the coefficients and phases in S. Conservation of energy constrains
the absolute values of the eigenvalues of S to be less than or equal to one, with the
case where they are all exactly 1 corresponding to a unitary, lossless transformation,
and any other case representing a lossy process.

As independent phase shifts in each mode don’t affect the overall eigenvalues of the
matrix, we can use pre- and post-multiplication with diagonal phase-shift matrices to
reduce the number of free parameters in S. The pre-matrix is given as P = diag

(
eiθi
)

with θi = ϕi,1 and the post-matrix as P ′ = diag
(
eiθ

′
j

)
with θ′j = ϕ1,j − ϕ1,1, such that

we can write S as

3.3. Theory 41

S = PS ′P ′

=

eiθ1 · · · 0
...
0 · · · eiθm

s1,1 s1,2 · · · s1,m

s2,1 s2,2e
iϕ′2,2 · · · s2,me

iϕ′2,m

...
...

sm,1 sm,2e
iϕ′m,2 · · · sm,me

iϕ′m,m

eiθ
′
1 · · · 0

...
0 · · · eiθ

′
m

 ,

where ϕ′
i,j = ϕi,j − θi − θ′j. We can therefore limit ourselves to considering matrices of

the form S ′, and drop the prime notation for simplicity.

If we apply S to a set of general, classical input fields Ein = (A1e
iδ1 , . . . , Ame

iδm) to get
Eout = SEin, energy conservation dictates that

∑
m |Eout

m |2 ≤
∑

m |Ein
m|2. By setting all

Am to zero except Aj, we can show that
∑

i |si,j|2 ≤ 1 , ∀j. In the case of a lossless
process, these inequalities become strict equalities.

If we have a lossy m-mode network, we can construct an equivalent unitary process
by introducing ancillary modes to represent the extra degrees of freedom which couple
energy out of the lossy system. This can be seen by considering a loss in a single mode
as a variable 2× 2 unitary matrix (simply a rotation matrix) coupling the original mode
to a virtual loss mode. In doing so we must be careful to avoid reusing virtual loss modes
due to interference effects, which could couple losses back into the network. The naïve
solution to this is to add a new loss mode for every point loss in the network, however
this is prohibitive in simulation due to the computational complexity scaling with mode
number. Hernández and Liberal show that we can always accomplish this with only m
additional modes, and provide a method for constructing the new 2m-mode unitary S
through a singular value decomposition of the lossy matrix S ′ = U ·diag (σi) ·V † [HL22],

S =

(
S ′ −A
A S ′

)
, (3.5)

where A = U · diag
(√

1− |σi|2
)
· V †. We append m zeros to our original input state,

evaluate the effect of S, and discard the final m values in our output to recover the
exact same output as in the lossy case.

With the ability to consider both lossless and lossy processes, the final component we
need is a method of constructing scattering matrices in a principled, general way. The
key here is found in the work of Reck et al., who showed that we can decompose any
m-mode unitary into the product of a series of 2-mode unitaries, which simplifies the
problem of constructing a network to one of understanding only the possible 2-mode
couplings [Rec+94].

3.3. Theory 42

Our general 2× 2 can be written as

S =

(
r1 t2

t1 r2e
iϕ

)
,

where we denote reflectances and transmittances as ri and ti, and the phase difference
ϕ. Uppu et al. [Upp+16] demonstrate that in the general lossy case we must obey the
inequality

t21r
2
2 + t22r

2
1 + 2t1r2t2r1 cosϕ ≤ (1− t21 − r21)(1− t22 − r22). (3.6)

Given a free choice of r1 ∈ [0, 1], t1 ∈
[
0,
√

1− r21
]

and ϕ ∈ [0, 2π], we can rearrange in
order to define the valid support for t2 and r2 as

1 ≤ 1− r21 − t21
r22 + t22 − 2r1r2t1t2 cos(ϕ)− r21r22 − t21t22

d22 ≤
1− d21

1− d21
d22d

2
1
|t1t2 + r1r2eiϕ|2

≤ 1− d21
1− d21| cos(γ1) cos(γ2) + sin(γ1) sin(γ2)eiϕ|2

≤ 1− d21
1− d21 12(1 + cos(2γ1) cos(2γ2)− cos(ϕ) sin(2γ1) sin(2γ2))

, (3.7)

where we have switched coordinate system with d2i = t2i + r2i , γi = arctan(ri/ti). We are
now free to choose γ2 ∈ [0, π/2], which defines the ratio r2/t2 and in turn determines
the maximum value of d2.

Equation 3.7 corresponds to a series of ellipses in the t2r2-plane, parameterised by t1,
r1 and ϕ, which enclose the valid choices of t2 and r2. The equation for the ellipse is

(t2 cos(β)− r2 sin(β))2
a2

+
(r2 cos(β) + t2 sin(β))

2

b2
= 1

and the parameters can be calculated (see Appendix B.1) as

β =
1

2
arctan

(
cos(ϕ)

2r1t1
r21 − t21

)
(3.8a)

a2 =
2(1− r21 − t21)

2− r21 − t21 − |r21 + t21e
i2ϕ| , (3.8b)

b2 =
2(1− r21 − t21)

2− r21 − t21 + |r21 + t21e
i2ϕ| . (3.8c)

Figure 3.3.b demonstrates these ellipses for a variety of (t1, r1, ϕ) values.

In the lossless case d1 = d2 = 1, which is only satisfied when ϕ = π and γ2 = γ1, making

3.3. Theory 43

0.0 0.2 0.4 0.6 0.8 1.0

t1

0.0

0.2

0.4

0.6

0.8

1.0

r 1

a)
0.70,0.40

0.20,0.85

0.50,0.87

0.0 0.2 0.4 0.6 0.8 1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

r 2

b)
φ = 0

φ = π/3

φ = π/2

φ = 3π/4

φ = π

Figure 3.3: Valid mode coupling support. Support for the five degrees of freedom
of a 2-mode lossy mode coupling, according to energy conservation conditions. a)
White region is the set of possible (t1, r1) values, with three example pairs shown.
b) Corresponding supports for (t2, r2) for each pair, considering different values of ϕ,
denoted by ellipse transparency. All valid (t2, r2) lie in the white region, and are further
constrained to lie within the region bounded by the ellipse given by the set (t1, r1, ϕ),
according to Equations 3.8.

the most general lossless 2× 2 coupling

S =

(
r t

t −r

)
, (3.9)

with r ∈ [0, 1] and t =
√
1− r2.

This general coupling can be viewed in a LON as the combination of fixed 50:50
beamsplitters and phase shifts in a Mach-Zehnder interferometer setup,

S = P ·BS · P ·BS · P (3.10)

=

(
1 0

0 eiπ/2

)
· 1√

2

(
1 1

1 −1

)
·
(
1 0

0 ei(π−2γ)

)
· 1√

2

(
1 1

1 −1

)
·
(
ei(γ−π/2) 0

0 eiγ

)

=

(
sin γ cos γ

cos γ − sin γ

)

=

(
r t

t −r

)
.

The phase shift at the start and end of the sequence allow the reintroduction of the
phases which were extracted in the earlier pre- and post-multiplication, giving this as
the most general form for the lossless 2× 2 unitary.

3.3. Theory 44

3.3.4 Sampling random mode couplings

We would like to be able to construct random LONs, to reflect some of the random
scattering systems we find in the real world which we would like to use for computation.
In order to generate a random reservoir we need to be able to couple modes randomly,
which is achievable now that we have defined the support for both the lossy and lossless
cases of the 2-mode coupling. A natural start is to sample uniformly across the support,
as this will give us a broad range of possible networks to explore.

Sampling uniformly in the lossless case is simple—the support is one dimensional, and
we only need to choose a point uniformly on the unit circle restricted to the positive
quadrant. This can be achieved with γ ∼ U(0, π/2), ϕ = π and r/t = tan(γ).

Sampling uniformly across the support in the lossy case is harder, as the support is not
a simple geometric shape. In practice, methods such as rejection sampling can be used
to generate beamsplitters by uniformly sampling the 5-dimensional hypercube enclosing
the support, and rejecting the sample if the validity criterion (Equation 3.6) is violated.

While certain platforms capable of realising this reservoir computing scheme are able to
generate any arbitrary unitary transformation (e.g. programmable photonic circuits),
the effect of the distribution of the random reservoir on computation performance
is especially important when considering non-configurable reservoirs (e.g. multimode
fibres).

A prime example can be seen by considering a variable 2-port beamsplitter. In the
case of indistinguishable photons incident on both ports, we observe bunching, where
the output photons are increasingly likely to be detected in the same output port,
as the beamsplitter tends to the 50:50 balanced case (i.e. r = t). This is a quantum
interference effect known as the Hong-Ou-Mandel (HOM) effect [HOM87].

The bunching can be seen by considering a lossless beamsplitter,

S =
1√
2

(
r

√
1− r2√

1− r2 −r

)
,

which gives the operator relations

a†1 =
rb†1 +

√
1− r2b†2√
2

,

a†2 =

√
1− r2b†1 − rb†2√

2
.

If we input the state
ψin = |1, 1⟩in = a†1a

†
2 |0, 0⟩

3.3. Theory 45

then we can calculate the output state as

ψout ∝
1

2
(rb†1 +

√
1− r2b†2)(

√
1− r2b†1 − rb†2) |0, 0⟩

=
1

2
(r
√
1− r2b†1

2
+ (1− r2)b†2b†1 − r2b†1b†2 − r

√
1− r2b†2

2
) |0, 0⟩

=
r
√
1− r2√
2

(|2, 0⟩out − |0, 2⟩out) +
1− 2r2

2
|1, 1⟩out . (3.11)

We see that as r2 → 0.5, the commutation of different b†i causes only bunched states to
remain, the basis of the quantum Hong-Ou-Mandel effect.

HOM is useful as it is a fundamentally quantum effect, and so it can be used to
verify the quantum nature of a system. It is also a useful tool for characterising the
indistinguishability of photons, which is important for many quantum information
protocols. Here however, Equation 3.11 implies that the way we sample our random
coupling matrices can have a large effect on the bunching of the states in the reservoir,
and consequently the types of output states we measure.

3.3.5 Polarising optical components

While the 2-mode lossless beamsplitter shown in Equation 3.10 can be viewed as a
variable beamsplitter acting on two spatial modes, we would also like to be able to
model common polarising elements, as polarisation is a convenient degree of freedom
with which we can encode information.

In the classical picture, we can represent polarisation as a two-mode system, in the
horizontal and vertical polarisation basis. Jones vectors (EH , EV) let us describe
polarisation states in terms of the electric field in each mode, and 2× 2 Jones matrices
represent the action of birefringent optical elements on these states.

A phase delay in the V mode is given by the matrix

Pη =

(
1 0

0 eiη

)
,

while a rotation of coordinate system is given by rotation matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

With these two matrices we can describe any birefringent element, using the form

B(ϕ, θ, η) = PϕRθPηR
†
θP

†
ϕ =

(
cos2 θ + eiη sin2 θ (1− eiη)e−iϕ cos θ sin θ

(1− eiη)eiϕ cos θ sin θ sin2 θ + eiη cos2 θ

)
(3.12)

3.3. Theory 46

where θ is the fast-axis angle with respect to the H-axis, ϕ the circularity, and η the
retardation between fast and slow axes.

The rotation matrices in Equation 3.12 are equivalent to the general lossless beamsplit-
ters in Section 3.3.3. This means that not only can we be sure that this is the most
general birefringence form, but, provided we have some way of inducing a controllable,
continuous-valued phase retardation between two polarisation axes, we can implement
any arbitrary polarisation transformation. Methods of implementing continuous con-
trolled birefringence include using the Pockels effect, liquid crystal waveplates, or liquid
crystal on silicon (LCoS) spatial light modulators (SLMs).

If we only wish to be able to generate an arbitrary polarisation state starting from
a known input state, we can restrict ourselves to using half- and quarter-waveplates,
linear retarders (i.e. ϕ = 0) with (η = π) and (η = π/2) respectively. The case of
ϕ ̸= 0 gives a circular or elliptical retarder and will largely be ignored here. The Jones
matrices for the half- and quarter-waveplates are given by

Bλ/2(θ) = B(0, θ, π) =

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)

and

Bλ/4(θ) = B(0, θ, π/2) =
e−iπ/4√

2

(
i+ cos 2θ sin 2θ

sin 2θ i− cos 2θ

)

respectively.

Polarising beamsplitters are 4-mode devices, with 2 polarisation modes for each of the
2 spatial modes. Throughout all remaining sections, we order the tensor product of
spatial and polarisation modes such that mode i is the ⌊i/2⌋th spatial mode,

H, i mod 2 = 0

V, i mod 2 = 1
, polarisation mode.

A classical state would then be represented as (E1H , E1V , . . . , EmH , EmV).

While general 4× 4 scattering matrices can be derived following the same procedure as
in Section 3.3.3, the number of parameters to solve for grows as 2n2 − 2n+ 1, so for
simplicity we restrict ourselves to polarising beamsplitters of the form

rH 0 tH 0

0 rV 0 tV

tH 0 tHe
iϕH 0

0 tV 0 tV e
iϕV

. (3.13)

We assume no coupling between polarisation modes, meaning Equation 3.13 can be

3.3. Theory 47

decomposed as a set of two commuting 2× 2 general beamsplitters, acting on H and V
independently. In the case of non-polarising beamsplitter acting on polarised light, we
constrain rH = rV , tH = tV , and ϕH = ϕV .

The final piece of polarisation machinery we need is the Stokes parameters, another
convenient way of describing polarisation states, especially due to their relationship
with the Poincaré sphere representation, i.e. the position on the Poincaré sphere is given
by the final three Stokes parameters normalised by the first parameter. The Stokes
parameters and Jones vectors are related by transformations

S0 = |EH |2 + |EV |2

S1 = |EH |2 − |EV |2

S2 = 2Re(EHE
∗
V)

S3 = 2Im(EHE
∗
V)

and

EH =
S2 + iS3√
2
√
S0 − S1

EV =

√
S0 − S1√

2
.

Note, the Stokes parameters carry no information about global phase, meaning that
two equivalent Stokes states may be generated by different Jones vectors. Phase is
important in our LON as it dictates the interference, therefore we must always consider
the full Jones vector when comparing states.

For systems with many spatial modes, we build up linear optical networks using
sequences of components acting on one or two modes at a time, where waveplates couple
polarisation modes, beamsplitters couple spatial modes, and phase shifts introduce delays
between modes. The full S matrix is built using Givens rotations Gm (Equation 3.14),
where for a set of optical elements {S(i)} applied sequentially to a state, coupling ki
different spatial and polarisation modes {(mi,1, . . . ,mi,ki)}, we embed the 2×2 coupling
matrix contributed by each element in an m×m identity matrix, and then multiply all
of these embedded matrices together in order, giving

S = Gm(S
(i); (mi,1, . . . ,mi,ki)) · · ·Gm(S

(0); (m0,1, . . . ,m0,k0)),

where

3.3. Theory 48

Gm(S2×2; (p, q)) =

1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · S11 · · · S12 · · · 0
...

...
...

0 · · · S21 · · · S22 · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1

. (3.14)

1 p q m

1

p

q

m

3.3.6 Scattering of quantum states

There are two classes of simulation we can perform with quantum states scattering
through a LON: strong simulation and weak simulation. The strong simulation aims to
use a classical algorithm to compute the full output state which arises from a given
input state being scattered by the network, while the weak simulation only aims to
sample from a set of measurement outcomes on this output state. Boson sampling is
exactly this weak simulation problem, where the measurement is a number resolved,
multiphoton coincidence detection, and can be calculated efficiently using Clifford and
Clifford [CC18; CC20]. In our case, we wish to calculate the actual probabilities of
these outcomes, and so need to perform the strong simulation2.

Consider an m-mode LON with scattering matrix S. In the classical case, the effect of
this LON on a set of input fields injected into each mode is simply the matrix product
of S and the input fields Ein,

Eout = S · Ein. (3.15)

In the quantum case, the LON maps states from the input Hilbert space to the
output space, acting as a unitary operator Û . Working in the Fock basis, we can
write Û =

∑
ij Uij |ni⟩ ⟨nj| for some consistent enumeration of all m-mode Fock state

occupancies {nj}.

Valid occupancies (and equivalently, measurement outcomes) correspond to weak integer
compositions, i.e. all possible solutions of x1 + x2 + · · ·+ xm = n where xi ≥ 0 , ∀ i ∈
{1, . . . ,m}, interpreted as all possible ways of distributing n indistinguishable objects
across m bins. There are Mn,m of these weak compositions, given by the multiset
coefficient3

Mn,m =

((
m

n

))
=

(n+m− 1)!

(m− 1)!n!
. (3.16)

2Technically, any real experiment would make estimates through samples, meaning the weak
simulation would be sufficient. However, the strong simulation provides a complete deterministic
characterisation of a given system, allowing for deeper analysis.

3The multiset coefficients, a generalisation of the binomial coefficients, are given as
((
n
k

))
=
(
n+k−1

k

)
.

3.3. Theory 49

One effect of Û being unitary is that for a particular Fock state input, total photon
number is conserved—despite Û acting on an infinite dimensional space, it is block
diagonal, with finitely many non-zero scattering amplitudes which must be calculated
for a given input Fock state. This makes it possible to calculate exact output states for
a Fock input state.

The main convenience of the Fock basis however is the connection it affords between Û
and S, as S describes the effect of the LON on the creation operators: it maps input
mode creation operators {a†j} to output mode creation operators {b†j} according to

b†i =
∑

j

Sija
†
j. (3.17)

As discussed in Section 3.3.3, any valid S is either unitary, or can be made unitary
through the introduction of m ancillary modes according to Hernández and Liberal’s
singular value decomposition [HL22]. We can therefore invert Equation 3.17 to express
the input operators as a†i =

∑
j S

†
ijb

†
j.

In order to calculate a specific scattering amplitude Uij in Û , we could first express
the input Fock state as a product of creation operators acting on the vacuum, and
then replace the input creation operators with the linear sum of the output creation
operators according to S. Then we collect common powers of output creation operators
and identify the coefficients Uij,

|nj⟩in =
m∏

k=1

(
a†k

)njk

√
njk!

|0⟩

=
m∏

k=1

(∑
l S

†
klb

†
l

)njk

√
njk!

|0⟩

!
=
∑

i

Uij

m∏

k=1

(
b†k

)n′
ik

√
n′
ik!
|0⟩

=
∑

i

Uij |n′
i⟩out ,

where we differentiate between the input and output bases.

A complete derivation of this is given in [Sch04], where it is shown that these coefficients
can be compactly written as the permanent of a sub-matrix Λn,n′ , constructed from the
elements of S and the input and output photon occupancies n and n′. The columns
of these Scheel matrices Λn,n′ are the nk repetitions of the kth column of S for all
k ∈ {1, . . . ,m}, while the rows are the n′

k repetitions of the kth row of S. For example,

3.3. Theory 50

given n = (2, 2, 0) and n′ = (1, 0, 3), the Scheel matrix is

Λn,n′ =

S11 S11 S12 S12

S31 S31 S32 S32

S31 S31 S32 S32

S31 S31 S32 S32.

,

coming from the sectioning of the scattering matrix as

S11 S12 S13

S21 S22 S23

S31 S32 S33

×2 ×2
×1

×3

The permanent of an N ×N matrix Aij is given as

perm(A) =
∑

σ∈SN

N∏

i=1

Aiσ(i),

where SN is the symmetric group. While structurally this is very similar to the matrix
determinant,

det (A) =
∑

σ∈SN

sgn(σ)
N∏

i=1

Aiσ(i),

the presence of the permutation signature in the determinant allows for efficient cal-
culation by cancellation of terms, in as little as O(N2.373) time using efficient matrix
multiplication [Le 14]. In contrast, calculation of the permanent is challenging, with the
most common exact method, Ryser’s algorithm, calculating the permanent in O(2NN2)

time

perm(A) =
∑

S⊆{1,...,N}
(−1)|S|+N

N∏

i=1

∑

j∈S
Aij.

Modifying Ryser slightly4, we can get complexity of O(2NN), however this is still
intractable for large matrices [Nij14, pp. 220–221]. See Appendix B.2 for details on the
complexity of these algorithms.

4If we process subsets S in Gray code order, then each sum over j goes from summing |S| − 1 terms
to adding a single new term to the result from the previous subset calculation.

3.3. Theory 51

This allows us to write the full form for the scattering amplitude between two Fock
states as

⟨n′| Û |n⟩ =
(

m∏

j=1

nj!

)−1/2(m∏

j=1

n′
j!

)−1/2

perm(Λn,n′). (3.18)

Even with modified Ryser, this is intractable for large n or m. Through the remainder of
this work, we use the strong linear optical simulator (SLOS) algorithm, an improvement
upon the basic permanent approach with computational complexity O (nMn,m), which
is linear in the number of output Fock states, allowing us to simulate states of modest
m ⪅ 18 and n ⪅ 15 in reasonable time [Heu+23b].

The distinguishable photon states can be calculated similarly, except we prevent coherent
interference between the different photons by performing an incoherent sum, i.e. the
probability of detecting n′ = (n′

1, . . . , n
′
m) photons in the output modes based on an

input distinguishable state |d⟩ is proportionate to perm(|Λd,n′ |2), where the absolute
value squared is taken element-wise. Finally, general quantum states can be simulated
by first writing the density matrix ρ in the Fock basis and then calculating the new
state as ÛρÛ †.

3.3.7 Encoding data

In order to use linear scattering of a quantum state as a reservoir computer, we need
to encode data somehow, such that by measuring the output state in some basis, we
realise a high-dimensional nonlinear random projection of this data. We have to define
the free parameters which we can vary to encode information, and we can classify these
based on whether they modify the input state or the mode coupling matrix.

In the first case, there are several degrees of freedom which parameterise the input state,
including polarisation, phase, spatial mode, photon number, wavelength, or time delay.
The total photon number and number of independent modes are discrete variables and
determine the size of the space of PNR measurement outcomes, so we leave these as
hyperparameters, fixed for a particular reservoir implementation. Varying wavelength
or time delay introduces a continuous degree of distinguishability. Seeing as we already
can model distinguishable photons, we choose to ignore these for now.

The second option, parameterising the mode coupling matrix, can be done in simulation
by varying the values of the internal couplings and phase delays. In an experiment,
this would be done in a programmable photonic circuit, or a beamsplitter network with
rotating waveplates.

When using phase and polarisation (mathematically equivalent as shown in Section 3.3.5),
the distinction between parameterising the input state and the mode coupling matrix
disappears, as we can start from any state with fixed polarisation, and apply param-
eterised waveplates to generate an arbitrarily polarised version of the state. These

3.3. Theory 52

waveplates can be incorporated as a new matrix E(x) premultiplied on the original,
fixed mode coupling matrix S, giving a new parameterised matrix S(x) = S · E(x).

Considering for a moment a single general birefringent waveplate acting on a fixed
input state, as we continuously vary the waveplate’s parameters, the output polarisation
state traces a smooth trajectory through the space of polarised states, which can be
visualised on the Poincaré sphere. The elements of the resulting S(x) will be sums of
products of the sinusoids present in the waveplate matrices, Equation 3.12.

A complete characterisation and optimisation over possible encodings is beyond the
scope of this work, however, we do propose a few natural options. We will define a
layer E(x), capable of realising a range of different Poincaré sphere trajectories. We
model this layer as a set of controllable waveplates which encode input data x in the
polarisation degree of freedom of a fixed input state, before it is injected into the random
optical network. Each spatial mode in E(x) consists of a quarter-waveplate followed
by a half-waveplate, parameterising the full E(x) matrix with a total of 2m waveplate
angles. We write these as a function of our input data (θQ,m(x), θH,m(x)). Any encoding
scheme using phase or polarisation states will be periodic, so without loss of generality
we constrain our input space to the domain [−1, 1]. For approximating non-periodic
functions, we can restrict the usable input range to [0, 1].

We now define a set of encodings which map our input data to these waveplate angles,
parameterised by (ρm, ξm, γm, νm) for each spatial mode m, as

x′ = mod(1 + x+ ρm, 2)− 1 (3.19a)

θQ,m(x) = ξm(1 + 2x′ − 4x′γmH(x′))
π

4
(3.19b)

θH,m(x) =
(
νmx

′ + ξm(γmH(x′)) + 2νmx
′γmH(x′)− 2νmx

′
)π
4
, (3.19c)

where H is the Heaviside step function. This allows us to generate a range of closed
trajectories on the Poincaré sphere, as shown in Figure 3.4, periodic on the interval
[−1, 1].

ρ ∈ [0, 2π] is a phase shift, ν ∈ Z determines the number of cycles we make around the
pole of the Poincaré sphere in one cycle [−1, 1], while ξ ∈ {0, 1} determines whether
we leave the equator and include elliptical polarisations. Finally, γ allows us to choose
whether the spiral trajectory is interleaved with itself (γ = 1), or overlaps itself (γ = 0).
In the case where we overlap, there are multiple input x values which map to the
same polarisation state. While this on its own would cause problems distinguishing
certain inputs, the use of multiple ports to encode the same data allows us to break
the degeneracy. The interleaved case avoids overlap, at the expense of discontinuities

3.3. Theory 53

|R〉

|L〉
|A〉

|D〉

|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉

|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉

|V 〉

|H〉

a) b) c)

Figure 3.4: Poincaré encodings. Poincaré sphere representations of a single port’s
polarisation trajectory as a function of the input parameter, for various encoding schemes.
a) Multilinear5 (ξ = 0, γ = 0, ν = 3). b) Interleaved spiral (ξ = 1, γ = 1, ν = 3). c)
Overlapping spiral (ξ = 1, γ = 0, ν = 3).

in the Jones vector representation of the state. While this introduces interesting new
dynamics in the system, we note here that it is not well-behaved under the Fourier
analysis approach discussed later in this chapter.

3.3.8 Output state measurement

So far we have seen how to calculate the output state of the LON for a given input
state, however to use this output state for computation we need to measure it, or at
least some property of it. One of the primary motivations for investigating this system
in the first place is the combinatorial scaling of the output Fock space generated by the
LON. Since we already calculate the output state in the Fock basis, it makes sense that
we detect in this basis.

We can do this with photon number resolved detection (PNRD), a projective mea-
surement where the probability of measuring a particular photon number occupancy
n′ = (n1, . . . , nm) across m detectors aligned with the LON output modes (our mea-
surement outcomes) is given by the square of the amplitude of the |n′⟩ component in
the output state. To make these measurements simpler, we will also only consider po-
larisation independent detection, tracing out this degree of freedom. This will generate
a set of outcomes, with each Fock basis component in the output state contributing
probability mass to a specific outcome.

A single PNR measurement of the state is not informative, as it cannot discriminate
different input data values. By repeated sampling however, we can estimate the
probabilities of these outcomes as a function of the encoded data. These probabilities
will discriminate inputs and can therefore be used as the reservoir outputs.

As we aim to produce a system which is accessible and implementable with existing
technologies, we need to consider the impact of this sampling, along with realistic, non-
ideal detection, to understand a real-world implementation of the reservoir computer

5The inset curves here are illustrative only. ν simply controls the number of cycles around the
equator, all states exist on the surface of the Poincaré sphere.

3.3. Theory 54

where we don’t have access to deterministic simulated values.

Let’s first consider non-ideal detection, and formulate a model which captures noise
and losses. Assuming perfect photon sources, noise in a LON can arise in two ways:
losses in the network and imperfections in the detectors. While losses in the network
will change the output statistics compared to a lossless network, we have already
established a method of representing them in Section 3.3.3, so we disregard them in this
section. Instead, here we will focus on losses due to non-unit detector quantum efficiency
and additional detections due to dark counts. These effects cause misclassification of
a Fock basis component as the wrong measurement outcome, and can be modelled
probabilistically. They also change the set of available outcomes: for instance, detector
losses mean that 0- and 1-count detections are possible for a 2-photon Fock state, which
under perfect detection would only ever yield 2-count events.

We consider the case of one PNR detector at each of the LONs output ports, and assume
identical independent noise processes for each. All detectors have quantum efficiency
η and average dark counts per acquisition window µ, which follow independent and
stationary binomial and Poisson processes respectively.

A final consideration is that we may not always wish to estimate the probabilities of
every available outcome for a particular state. Instead, we post-select on outcomes of
interest. In most of the following discussion, this is done by only considering detection
events with a total photon number in a certain range, and discarding any which fall
outside this range. This both simplifies the measurement process, and can help limit
the impact of detector losses.

3.3.9 Analytic quantum reservoir computer model

We have finally reached the point where we have all the necessary tools at our disposal
to write the complete analytic model of the quantum reservoir computer (QRC), taking
input data x all the way to sampled estimates of the outcome probabilities. Here we
will formally define the mathematics used to simulate the full reservoir computer.

We start by defining our measurement outcomes as the set of all polarisation independent,
photon-number resolved detection events,

O[a,b] =

{
(n1, . . . , nm)

∣∣∣∣∣
∑

i

ni ∈ {a, . . . , b}
}
, (3.20)

with cardinality K =
∑b

n=a

(
n+m−1
m−1

)
. Here, integers a and b act as a form of post-

selection, where we only count detections with the total number of counts across all m
PNR detectors falling in the range {a, . . . , b}, with any detections outside this range
discarded.

3.3. Theory 55

It is then useful to consider the set of Fock states occupancies which could give rise
to a particular outcome in this set, given that we don’t resolve polarisation. Given an
outcome n′ ∈ O[a,b], we denote these as the set of 2m-mode occupancies

Q(n′) = {(n1H , n1V , . . . , nmH , nmV) | niH + niV = n′
i, ∀ i ∈ {1, . . . ,m}} . (3.21)

Now, given a pure input state
∣∣ψin

〉
, post-selection range (a, b), and scattering ma-

trix S(x) with corresponding unitary operator Û(x), we calculate the probability of
measuring the ith outcome O[a,b]

i as

Fi(x) =
∑

j

∣∣∣
〈
Q(O[a,b]

i)j

∣∣∣Û(x)
∣∣∣ψin

〉∣∣∣
2

. (3.22)

These probabilities are for the ideal set of outcomes, but in reality the detection
properties generate a different set of K ′ non-ideal, noisy outcomes O′ and corresponding
probabilities F ′

i (x). We can model this by considering a detector with average dark
counts per event µ and detection efficiency η, where µ is the dark count rate multiplied
by the acquisition time.

Dark counts inflate the number of photons detected and can be modelled as a Poisson
distribution

Poisµ(n
′) =

µn
′
e−µ

n′!
, (3.23)

giving the probability of an additional n′ fictitious counts being detected in a given
detection event. Detection efficiency losses, on the other hand, decrease the total
number of photons detected, and can be modelled as a binomial distribution

Binomn,η(n
′) =

(
n

n′

)
ηn

′
(1− η)n−n′

, (3.24)

i.e. the probability of observing n′ counts given that n photons were actually present.

To combine these to get the overall probability of observing n′ counts given n photons,
we convolve the distributions

P noise(n′ | n) =
∑

p

Binomn,η(n
′ − p) Poisµ(p). (3.25)

We can then calculate the new non-ideal probabilities as

F ′
i (x) =

K∑

j=1

m∏

k=1

P noise
(
(O′

i)k | (Oj)k
)
Fj(x), (3.26)

where the product runs over the mode components of each measurement outcome.

Note that these F ′
i (x) are still entirely deterministic, and don’t capture the fact that we

3.3. Theory 56

0

1 n′1
n′2

n′3
n′4

n′5

Measurement outcomes

F̂ ′(x)

Input x

Estimated outcome
probabilities

Figure 3.5: QRC outcome probability estimates. The estimate of the outcomes’
probability mass function, F̂ ′

j(x), is generated by repeated sampling the device, Equa-
tion 3.28.

are sampling from the device. To model this sampling, we first define the probability
mass function over the outcomes as

p(n′) = P (n′ = O′
i) = F ′

i (x), (3.27)

and then sample Nsamp times from this distribution to produce a set of observations
P = {n′

i}Nsamp

i=1 ∼ p(n′).

We can then use these samples to estimate the values of F ′
i (x) according to

F̂ ′
i (x) =

1

Nsamp

Nsamp∑

j=1

I(Pj = O′
i), (3.28)

for indicator function I6. This gives a probability distribution, continuous in our input
x and discrete in our measurement outcomes O′, schematically illustrated in Figure 3.5.

This is the final step in simulating the output of the quantum reservoir computer, and
we can now use these probabilities as the input to our reservoir training step to solve
tasks. To recap, the estimates, and therefore the regression performance, depend on the
input data x, the input state

∣∣ψin
〉
, the random sampling and encoding used to generate

S(x), the post-selection range (a, b), detector properties µ and η, and the number of
samples Nsamp.

6Again, here we use F̂ ′
i to indicate an estimator for F ′

i , not an operator.

3.3. Theory 57

3.3.10 Quantum reservoir computer training

With the estimator for the probability mass function over noisy outcomes O′
i(x) now

defined, we can use it to learn some task with our reservoir computer. A supervised
learning task consists of a dataset of r pairs D = {(xi, yi)}ri=1 related by some function
yi = f(xi) which we want to learn to estimate, i.e. we want to model f̂ : Rdx → Rdy

such that we minimise some objective, typically a mean squared error
∑

i |f̂(xi)− yi|
2
.

Our reservoir computer is trained on this task by first estimating the various outcomes’
probabilities on each input in order to construct the K ′ × r design matrix

D =
(
F̂ ′
i (x1), F̂

′
i (x2), . . . , F̂

′
i (xr)

)
=

F ′
1(x1) · · · F ′

1(xr)
...

F ′
k′(x1) · · · F ′

k′(xr)

 . (3.29)

We then learn weights using ridge regression,

W = f(xj) ·DT · (D ·DT + λIk′)
−1
, (3.30)

where λ is a Tikhonov parameter. With these weights W , we now can write an estimate
for f as

f̂(x) =
∑

j

WijF̂
′
j(x), (3.31)

which is then used for inference. This process is illustrated in Figure 3.6.

3.3.11 Feature space: shape, scaling and metrics

Now that we can use the reservoir to approximate functions, it is natural to ask what
sort of functions can actually be learnt, and how this depends on the reservoir properties
such as modes, photon number, network couplings, input states, and encodings.

The best overall metric of performance is how well the system can solve a particular
task, which we measure using the mean squared error (MSE) between the output of the
trained reservoir computer and the target function on the validation dataset, however
this tells us little about how well the system will perform on a different task. To
characterise the system in a task-independent way, there are a range of metrics we can
use. An obvious starting point is to look a little closer at how the probabilities of a
particular measurement outcome change as we vary our input parameters.

We know that the size of a set of outcomes {O′
i} scales as K ′ =

∑nmax

n=0

(
n+m−1
m−1

)
,

combinatorial in modes m and maximum number of photons nmax. Each outcome O′
i

contributes a single probability F ′
i (x) which varies continuously and smoothly with

the free parameters which encode our input data. These probabilities can be viewed
as a set of (possibly overcomplete, non-orthornormal) basis vectors which generate a

3.3. Theory 58

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Training phase:

{xi} R(xi) Dij

(F̂ ′j(xi))

Wj

{f(xi)}

Inference phase:

x ×R(x)

F̂ ′j(x) Wj f̂(x)

Outcomes −1 1

a)

b)

Figure 3.6: QRC training overview. a) Training is achieved by passing labelled
data {xi} through the device, and storing the vectors F̂ ′

j(x) for each input in the design
matrix D. The elements of this array are then fit to labels {f(xi)} to learn weights, W .
b) During inference, the function f(x) is approximated as f̂(x) on new input data by
multiplying device output F̂ ′

j(x) by weights W , Equation 3.31.

space of functionals L = span{F ′
i (x)}, which we combine in our linear regression to

approximate a target function. The lack of guarantee that these basis functions are
orthogonal means that the dimension of the generated functional space |L| may be less
than or equal to K ′. This dimension determines the expressivity of the reservoir, i.e.
the range of functions which can be approximated.

Even if we can generate a large space, we need to consider the degree of similarity
between the generating functions. This is measured by cosine similarity, the normalised
inner product between two functions. If a set of functions are very similar, then
analytically they may span a large space, but in practice a small change to any one of
them can change the space, and if they are estimated through sampling, the span of
the estimates will be highly sensitive to the sampling used. This will reduce the quality
of our reservoir computer’s linear regression.

Even without considering sampling, using very similar functions as a basis for linear
regression will tend to lead to very large learnt weights, giving an ill-conditioned learnt
function f̂ , highly sensitive to small changes in the data. As an example, the vectors
(0, 1) and (ε, 1) have cosine similarity 1/

√
1 + ε2 and form a basis for R2 if and only if

ε ̸= 0. However, the coordinates of a general point within the spanned space, written in
this basis, are proportional to 1/ε making them extremely sensitive to small ε. This is
a situation we wish to avoid through tailoring our reservoir.

3.3. Theory 59

The characteristics of L and its generating set {F ′
i (x)} are therefore critical in deter-

mining the quality of approximation we can hope to achieve. Using the mathematical
understanding of the LON scattering matrix and the Fock states we have built up, we
can look a little deeper at the analytic form of the output probabilities over Fock states.

We have established that the scattering amplitude ⟨n′| Û(x) |n⟩ can be calculated as
the permanent of the Scheel matrix Λn,n′ , in turn constructed from the mode scattering
matrix S(x) according to the photon occupancies of the input and output states. This
means that the probability of detecting a particular output Fock state can be written
as a sum of products of S-matrix elements, with the particular form depending on the
input state used.

As we vary the input data x, the elements of S(x) vary smoothly as the sum of
products of sinusoids as determined in Section 3.3.7. The probabilities therefore
also vary smoothly as the sum of products of sinusoids. In general, multiplying n

sinusoids together gives a signal with bounded frequency comb spectrum, i.e. of the
form sinn(x) ≈∑⌊(n−1)/2⌋

m=0 cm cos((n− 2m)x) + dm sin((n− 2m)x).

The result is that each of the measurement outcome probabilities can be written as

F ′
i (x) =

∣∣∣∣∣
ωmax∑

ω=−ωmax

ci,ωe
iωx

∣∣∣∣∣

2

, (3.32)

which is a partial Fourier series of the input data, with some discrete number of
total frequencies, Nω. The number of frequencies, and the values of the frequencies,
are determined by the encoding scheme and the number of input photons, while the
coefficients cω are fixed by the network structure.

This idea is formalised in [GLA22; SSM21; VT20], and allows us to analyse the
network’s computation capabilities in terms of the frequencies it is capable of generating.
Consider attempting to learn a function f(x) using the quantum reservoir—a minimum
requirement for perfectly approximating f is that the support of Fourier transform
F [f(x)](k) matches the support of the reservoir’s spectrum i.e. the reservoir must be
capable of generating all frequencies present in the function.

The clearest path to generating a wider spectrum is by increasing the number of photons
in the input state, which increases the size of the Scheel matrices, meaning higher
harmonics of the base sinusoids are generated when we take the permanent. This
implies that scaling the feature space in our system requires using states with large
photon numbers. High photon number Fock states are an obvious option, but generating
these can be challenging in practice. This motivates us to consider alternate types
of high photon number, quantum states, which might be more practical to produce
experimentally, but which still provide good performance in our reservoir computer.

3.3. Theory 60

A secondary point to note here is that while having a frequency spectrum which matches
our target function is necessary for good approximation, it is not sufficient, as the
reservoir must be able to generate the required frequencies across independent outputs.
If the reservoir were to output a single signal which contained the correct frequency
components, but with different Fourier coefficients, clearly we cannot approximate f
as we cannot separate the individual frequency components to be recombined in the
linear regression, i.e. the generated functional space is one-dimensional |L| = 1. Having
many frequencies present in F ′

i (x) doesn’t guarantee these will all be present in our
estimates F̂ ′

i (x)—if we undersample some measurement outcomes due to them having
lower average probabilities, their frequency contributions will be missed.

The number of frequency components is therefore a useful metric to consider when
analysing the reservoir output, but doesn’t tell the full story when considering the
suitability of the reservoir for a particular task.

To better characterise the set of outputs, it would be helpful if we could develop a
metric which takes into account the dimension of the space spanned, L, along with the
average magnitudes of the functions which generate this space.

Design matrix rank. In a simulation, we have access to the true probabilities F ′
i (x),

allowing us to calculate the pair-wise inner-products and store them in a matrix

Gij = ⟨F ′
i (x), F

′
j(x)⟩. (3.33)

This is analogous to the Gram matrix DDT which we invert during the reservoir training
process Equation 3.30, except that D is composed of the estimated probabilities F̂ ′

i (x),
evaluated at finitely many points {xi}.

We can calculate the dimension of L directly as the rank of G. In the case of an
experiment, or using the design matrix from a learning task, we can calculate the rank of
DDT , however it will almost always be equal to the upper bound min(r,K ′) (for r points
and K ′ measurement outcomes). This is because the estimators F̂ ′

i (x) are generated
from samples taken from distribution F ′

i (x). As this is a non-uniform distribution, some
basis functions will not be accessible with a practical number of samples, thus reducing
the output’s effective rank. The outcomes which are undersampled will essentially be
noise, and are not useful for learning. Even for outcomes which can be well resolved, the
random variation introduced by sampling will artificially inflate the rank measurement.
For two outputs with cosine similarity CSE(F ′

i (x), F
′
j(x)) = 1, the cosine similarity of

the corresponding estimators will in general be CSE(F̂ ′
i (x), F̂

′
j(x)) < 1.

The singular value (SV) decomposition is another way of viewing this, as the rank of a

3.3. Theory 61

matrix is the number of its non-zero singular values. Comparing the SVs of analytic
G, and of DDT built from samples, the larger SVs in both will be similar, however,
any zero-valued SVs in G will be elevated to small, non-zero values in DDT due to
the sampling process artificially distinguishing between otherwise identical functions.
We can define a new, conditioned rank Rc as the number of SVs in DDT which are
above some threshold c, which filters out contributions from noise and gives a more
accurate measure of the dimension of the system, however this does require us to choose
a threshold.

The unconditioned rank is not an ideal metric to use, as when we calculate it on the
simulated F ′

i (x) it doesn’t tell us anything about the functions we can expect to access
after sampling, while calculating it on F̂ ′

i (x) is completely uninformative due to the
noise contributions.

Spectral entropy. While the rank may not be especially useful, we can still calculate
an effective rank, which takes into account the average probability of each outcome to
indicate whether we can estimate that outcome’s probability through sampling—we
can only estimate something if we can measure it.

If the average probabilities vary greatly between different outcomes, then we will need
to sample many more times to resolve the dependence on the input data of the low
probability outcomes versus the higher probability outcomes. This reduces the efficiency
of the system, as we either have a majority of our samples being uninformative, or we
limit ourselves to only resolve a small subset of the available measurement outcomes,
thereby reducing the functional space available for fitting. To avoid this scaling poorly,
we want to choose our reservoir computer’s input states, coupling network and encodings
to try to guarantee that the average probability of each outcome is as high as possible,
or as close to 1/K ′ as possible. This maximises the visibility of each outcome by
attempting to make F ′

i (x) as uniform over outcomes as possible.

To account for this we define the spectral entropy, based on recent studies in complex
networks [TAD24],

H = −
∑

i

σi log2 σi, (3.34)

where σi is the singular value spectrum of DDT , normalised such that
∑

i σi = 1.

One interpretation of H is that we are treating the SVs as a form of probability mass
function, and calculating the Shannon entropy. This is maximised when the distribution
is uniform, which corresponds to having all SVs of equal magnitude, and therefore all
outcomes having equal average probabilities. The spectral entropy provides a way of
distilling these singular values into a metric which increases both with the number of
independent basis functions, and the uniformity of their distribution.

3.4. Quantum reservoir computer simulations 62

H can be calculated for both F ′
i (x) and F̂ ′

i (x). In the former case, as spectral entropy
increases, we expect the dimension of our functional space to increase, and that we will
be able to efficiently estimate F ′

i (x) with fewer samples. In the latter case, it indicates
the effective dimension of the functional space after sampling, robust to undersampled
outcomes which don’t contribute meaningful basis vectors to the reservoir training.

3.3.12 Fair comparison of states

A challenge in comparing the performance of different input states is to establish a fair
equivalence between states of very different natures. Based on the Fourier analysis of
the reservoir, the maximum frequency of the output functions is determined in part
by the number of photons, hence it would be unreasonable to compare a single photon
Fock state with a coherent state with larger average photon number on this metric.

An obvious solution is to only compare states with equal average photon number, where
a Fock state with n photons should be compared to a coherent state with |α|2 = n.
However, if we can generate an n photon Fock state, which is hard to do in the lab,
then we would like to compare it to the best performing coherent state, which is easy
to produce in the lab, under the same set of outcomes, as this is what we would choose
to use in an experiment.

This means that for a particular Fock state input and set of outcomes, we should choose
a coherent state’s α such that the average probabilities over the same outcomes are
maximised—the best possible visibility. This gives us the greatest chance of resolving
the outputs under sampling, while only considering detection events with the same
number of photon counts. The same argument can be made for hybrid states |α+ n⟩,
taking into account the added photons when calculating α.

Note, that in experiment it is not necessarily the case that larger α is better. Even
though higher average photon numbers generate a wider range of frequencies and more
outcomes, the limits of our PNR detection make detecting and differentiating these
states harder, while the growth of the space means that either we sample for longer,
use stricter post-selection to limit the number of measurement outcomes, or aggregate
certain outcomes in order to build up sufficient statistics, at the expense of averaging
some of the available output functions.

3.4 Quantum reservoir computer simulations

We now focus in on the particular system which we will simulate, with a range of
different input states, encodings and random networks, and examine the performance
first through the lens of the task independent metrics we have established, and then by
applying the reservoir computer to solving a range of function approximation tasks.

3.4. Quantum reservoir computer simulations 63

3.4.1 Encoding schemes

Our encoding layer is as defined in Section 3.3.7. Using the general encoding in
Equations 3.19, we can define three specific examples7:

Uniform linear. The simplest encoding is one in which all modes are given the same
linear polarisation angle θ ∈ [0, 2π] which traverses two8 equatorial orbits over the data
domain, ξ = 0, γ = 0, ν = 2. Illustrated in Figure 3.4.a.

Multislope linear. In the uniform linear scheme, the number of frequencies in the
outputs F ′

i (x) depends only on the number of photons used. It is natural to try to
broaden this spectrum by encoding multiple frequencies directly in each port. One
method is to apply a different linear function to the polarisation of each spatial mode,
ξ = 0, γ = 0, ν = 2m. This causes each spatial mode to do a different number of
azimuthal cycles in the polarisation space, illustrated in Figure 3.4.a.

Spiral. By including elliptical polarisations, we can make better use of the topology
of the Poincaré sphere. A natural geometry is a spiral which traverses the sphere from
pole to pole and returns to form a closed curve, ξ = 1, γ = 0, ν = 4m. This encoding
undergoes a number of azimuthal revolutions over the domain of the data while also
providing low-frequency content from the zenith traversal. Illustrated in Figure 3.4.c.

In all encodings we consider, we choose the phase offsets ρ randomly for each mode, in
order to improve phase diversity in the measurement outcome probabilities, and in turn
fitting performance. This is important as otherwise there tend to be more degenerate
F ′
i (x), reducing the reservoir computer’s expressivity.

Note, that while most of our analysis will consider scalar x for simplicity, we can
generalise to multivariate inputs through encoding schemes which distribute input data
elements across the range of network parameters, for example with each waveplate angle
controlled by a different component of multivariate x.

3.4.2 Random network

For the random network, we construct a 5-mode, polarised linear optical network in the
triangular beamsplitter arrangement of Reck et al. [Rec+94], illustrated in Figure 3.7.
Each block in the triangular network couples two spatial modes, each represented
as Jones vector, with the full coupling represented as a 4 × 4 matrix as shown in
Section 3.3.5. A block consists of a randomly oriented quarter-waveplate followed by a
phase shifter in each spatial mode, followed by a non-polarising variable beamsplitter

7We find empirically that the interleaved and overlapping encodings provide similar performance,
and so will only show results for encodings with γ = 0.

8This is to ensure that we complete a full cycle in the Jones vector components, ensuring our
encoding is periodic over the domain [−1, 1]. One equatorial cycle produces the same polarisation
state, but with a π global phase shift.

3.4. Quantum reservoir computer simulations 64

|n1〉 |n1(θ1, φ1)〉
|n2〉 |n2(θ2, φ2)〉
|n3〉 |n3(θ3, φ3)〉
|n4〉 |n4(θ4, φ4)〉
|n5〉 |n5(θ5, φ5)〉

VC

FC PS WP

PNRD

Encoding E(x) Reservoir R

|R〉

|L〉
|A〉

|D〉

|V 〉

|H〉

Figure 3.7: QRC schematic overview. Polarised quantum states in m different
spatial modes are directed into block E(x), which encodes the input data, x, in a
multimode polarisation state. The polarisation at each port is parametrised on the
Poincaré sphere by x through azimuth and zenith angles θi and ϕi for i ∈ {1, . . . ,m}.
This state is fed into a random, fixed linear optical network built from variable couplings
(VC) (i.e. beamsplitters), waveplates (WP) and phase shifters (PS). Output states are
subject to polarisation-independent measurement by PNR detectors.

which couples the two spatial modes, finally followed by another phase shift in each
spatial mode. The scattering matrix for a single block is built from components as

Cab = Pa(θ14)Pb(θ24)BSab(θ3)Pa(θ12)Qa(θ11)Pb(θ22)Qb(θ21), (3.35)

where Q, P and BS are quarter-waveplate, phase shift, and lossless, non-polarising
beamsplitter respectively, and the subscript on each optical element indicates the spatial
mode to which it is applied. The parameters for each component are initialised randomly
from a uniform distribution U(0, 2π). We then write the triangular network in terms of
these random block as

R = [C12][C23][C12C34][C23C45][C12C34][C23][C12]. (3.36)

The full scattering matrix is then S = R · E(x).

We do not consider lossy networks here for two reasons: on the experimental side,
LONs can now be manufactured with tolerances such that losses are negligible for
modestly sized networks (for instance integrated photonic circuits), and in simulation,
the equivalent 2m-mode unitary systems quickly become intractable. It would be
valuable to investigate these lossy systems further, but we leave this for future work.

3.4. Quantum reservoir computer simulations 65

3.4.3 States

The number of modes in our states is determined by the LON, hence all the states we
consider will be polarised with m = 5. We start with a 4-photon Fock state |1, 1, 1, 1, 0⟩,
chosen to provide a good balance between complexity of the generated output space,
and simulation feasibility. With smaller m and n, the functional space generated by
the reservoir is too simple to do meaningful regression, while the simulations start to
become challenging as m and n grow beyond this, especially with polarisation doubling
the number of effective modes, and hybrid states with comparable ‘α’s requiring ever
more Fock basis elements to be simulated in order to maintain a good approximation
to the true quantum state. Using fewer photons also limits the number of input spatial
modes which can be excited, in turn limiting the encodings which can be tested.

In order to examine the impact of multiphoton interference on the reservoir’s perfor-
mance, the next state we consider is the distinguishable state |10, 11, 12, 13, 0⟩. We
can directly compare the output generated by this state with that produced by the
equivalent indistinguishable Fock state, where the only difference is the presence of this
interference.

Finally, we consider coherent |α, α, 0, 0, 0⟩ and hybrid |α′ + 1, α′ + 1, 0, 0, 0⟩ states, where
the ‘α’s are chosen as 1.5 and 0.5 respectively, to maximise average total probability of
the post-selected outcomes, as discussed in Section 3.3.12.

3.4.4 Simulation

In order to simulate the reservoir computer, we use the implementation of the SLOS
algorithm in the Perceval Python library [Heu+23a], which takes a unitary scattering
matrix and allows efficient calculation of individual elements of the corresponding Fock
space unitary operator Û . The code for generating the input states, the parameterised
reservoir unitaries, and for post-processing the outputs was written separately for this
project.

In all the following simulations, we choose to set detector parameters µ = 0 and η = 0.9.
To justify neglecting dark counts, we make a conservative estimate of dark noise for a
modern single photon detector as 100 cps. Assuming coincidence window of 10 ns, this
yields an average of µ = 10−6 dark counts per detector per integration window. We
cannot, however, discount the effects of detector quantum efficiency, with the current
best number resolving detectors reaching efficiencies of order 90%. This can have a
significant impact on the probabilities of the outcomes, especially as average photon
number increases.

While the coherent states can be simulated efficiently using classical methods, the
hybrid states derived from them are technically represented as infinite sums in the Fock

3.4. Quantum reservoir computer simulations 66

[0
0

0
0

0]
[0

0
0

4
1]

[0
0

2
0

1]
[0

0
3

1
2]

[0
1

0
1

0]
[0

1
1

2
1]

[0
1

4
0

2]
[0

2
2

0
2]

[1
0

0
2

3]
[1

0
2

0
0]

[1
0

4
0

2]
[1

1
1

2
1]

[1
2

1
0

2]
[2

0
0

3
0]

[2
0

2
1

2]
[2

1
1

0
0]

[3
0

0
1

0]
[3

0
3

0
0]

[4
0

0
1

0]
[5

0
0

1
2]

Measurement outcomes

10−19

10−16

10−13

10−10

10−7

10−4

10−1

P
ro

b
ab

il
it

y
F
i

Classical

SLOS

Figure 3.8: Comparison of coherent state simulations. We simulate a coherent
state |0 .2 , 0 .2 , 0, 0, 0⟩ through a 5-port random polarising network in two different
ways. In ‘SLOS’, we first write the state in the Fock basis, truncated at maximum of 5
photons per spatial mode, and then perform the quantum simulation using the SLOS
algorithm implemented in [Heu+23a]. In ‘Classical’, we directly multiply the random
S-matrix on the field representation of the state, giving us an H and V coherent state
amplitude for each spatial mode. We then write these coherent states in the Fock basis,
calculate their tensor product, and sum over polarisations to get probabilities of PNR
measurement outcomes which we compare with those calculated in ‘SLOS’. We plot these
probabilities over outcomes for both methods, and observe excellent agreement, with
‘SLOS’ providing fewer outputs due to the implementation only calculating amplitudes
for outputs with probabilities greater than ≈ 10−12 for efficiency.

basis, which is not practical for numerical simulation. Therefore, in all simulations, for
states with representations

∑∞
n=0 cn |n⟩, we truncate this series as

cn →

cn, if n ≤ 6 and |cn|2 > maxi(|ci|2)/100,
0, else.

In all cases, the maximum number of simulated photons in each input mode is 6, giving
the most expensive amplitude calculation’s parameters as 2m = 10 modes, nmax = 12

photons.

A nice sanity check which we can perform here is to simulate coherent states in our
network using both the quantum and classical method, shown in Figure 3.8. In the
first case, we write the state in the Fock basis as usual and simulate the output state.
In the second, we apply S(x) directly to the field representation Ein = (α1, . . . , αm)

3.5. Results 67

to produce S(x) · Ein = (αout
1 , . . . , αout

m), which we then write in the Fock basis and
compare coefficients with our quantum simulation. This allows us to verify that the
simulations align, and that in the limit where we only measure average photon number
in the quantum simulation, we get agreement with the classical intensity simulation.

As an indication of the cost of running these simulations, calculating the full output
state generated by the hybrid state (which is the most expensive to simulate in the
quantum picture, due to the large number of Fock basis components and the high
photon numbers), across 500 data points {xi}, takes approximately 22 minutes on an
28-core Intel i9-10940X CPU, with approximately 4GB RAM usage per core.

3.5 Results

We start by examining the typical outputs from the reservoir, independent of task.
Figure 3.9 shows PNR outputs for our four states and three encodings. Each curve is
the probability of measuring a particular PNR outcome as a function of x, with the
diversity of the curves varying with the state and encoding. The spectral entropy H
is given in the title of each subplot, along with the conditioned rank Rc, where c was
chosen to filter out undersampled outcome probabilities, and is fixed9 at c = 2× 10−7.

As one might expect, the spiral encoding generates the most complex output, due to
the additional harmonics introduced. Through visual inspection, it seems that the Fock
state has the greatest diversity in its outputs. The spectral entropies H correlate fairly
well with this visual hierarchy, however we see that coherent states perform especially
well in this metric. Conditioned rank Rc tracks the visual diversity better, with Fock
states performing well, and the both Rc and diversity increasing as we move left to
right through encodings.

Worth noting is the scale in the coherent and hybrid state outputs, with many of these
probabilities covering a wide range in the log-scale, and dropping below 10−4. We omit
the majority of the lower probability outputs here for clarity, however these figures
still indicate that, while these states may have relatively large average probabilities
over outcomes, the variation is larger. This in turn makes them more likely to be
undersampled in particular regions of the input domain, range(x). The Fock and
distinguishable states have consistently more measurement outcomes with higher average
probability, making them more likely to be well resolved across the entire input domain.
This doesn’t, however, say anything about the diversity of these outcomes.

9This is chosen according to the number of samples, and the singular values of the data matrix. See
Section 3.5.2 for details.

3.5. Results 68

F̂
′ i(
x

)

0 1

10−5

10−1

C
oh

er
en

t

H, Rc = [0.815, 9]

0 1

10−5

10−1

H
y
b

ri
d

H, Rc = [0.617, 9]

0 1

10−4

10−1

D
is

t.

H, Rc = [0.485, 9]

0 1

10−3

10−1

F
o
ck

H, Rc = [0.631, 9]

0 1

x

H, Rc = [0.947, 17]

0 1

H, Rc = [0.716, 15]

0 1

H, Rc = [0.389, 18]

0 1

H, Rc = [0.741, 21]

0 1

H, Rc = [1.023, 27]

0 1

H, Rc = [0.693, 26]

0 1

H, Rc = [0.367, 26]

0 1

H, Rc = [0.662, 41]

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

Figure 3.9: Reservoir output examples. Each inset displays the probabilities of
the fifty most probable measurement outcomes for a given state-encoding pair, as a
function of input x. The reservoir is a 5-port polarising device, and the states used
are Fock |1, 1, 1, 1, 0⟩, distinguishable |10, 11, 12, 13, 0⟩, hybrid (photon-added coherent)
|0 .5 + 1, 0 .5 + 1, 0, 0, 0⟩, and coherent |1 .5 , 1 .5 , 0, 0, 0⟩. Encodings (m ∈ {1, . . . , 5}
denotes the specific input port) are single linear (ξ = 0, γ = 0, νm = 2), multilinear
(ξ = 0, γ = 0, νm = 2m) and overlapping spiral (ξ = 1, γ = 0, νm = 4m). In all cases, we
perform PNR detection with detection parameters µ = 0, η = 0.9 and Nsamp = 107, and
post-select detection events of ≤ 4 photons to produce our set of outcomes. Spectral
entropies H and conditioned ranks Rc, (c = 2 × 10−7) are given in the title for each
configuration.

3.5.1 Characterising the effect of number resolved measurement

For a fixed optical network, we can highlight the benefit gained through PNRD by
comparing a coherent state measured under both PNRD and in intensity, where
intensity measurement serves as the simplest classical measurement without further
post-processing in the digital domain.

It is worth reiterating the motivation of performing PNRD in the first place—the

3.5. Results 69

scaling of the space of measurement outcomes. In an extreme learning machine such
as ours, a large output space is key to being able to approximate a wide range of
functions, and this space’s dimension will always be bounded by the number of linearly
independent measurement outcomes we have. In the intensity case, this is equal to the
number of output modes, in this particular case m = 5. Making polarisation sensitive
measurements at most doubles this. In the PNRD case, the number of measurement
outcomes scales combinatorially with the number of modes. This is true even for
classical states such as coherent states—even though the intensity of each output mode
completely determines the PNRD distribution for that mode, the individual probabilities
of PNRD measurement outcomes vary nonlinearly with the input data and generate
a larger set of linearly independent output functions than is available with intensity
alone. While these probabilities may be calculated or estimated relatively efficiently
from intensity measurements of classical states, this incurs an additional post-processing
step on a digital computer to either sample from the PNRD distribution, or calculate
the full outer product from Equation 3.2. As expected, non-classical states’ PNRD
distributions remain expensive to simulate, and cannot be recovered from intensity
measurement alone.

The consequences of PNRD’s scaling can be seen in Figure 3.10, where we plot the
analytic outputs of the fifty most probable outcomes for a coherent state with PNRD,
and the same coherent state with intensity detection, across our three encodings. Note,
that in the intensity simulation, we directly plot intensities and use these in the reservoir
training, treating them analogously to the PNR probabilities. For convenience, we
normalise the intensities to 1, and write them also as Fi(x), where in this case i runs
over the output modes of the network. Despite different encodings causing an increase
in the frequency content of the outputs, we can see in Figure 3.10.a that the rank of
the classical system is limited to 5, while the quantum system, with the exact same
optical network, reaches a rank of 111.

We also show the Fourier spectra generated by the network for each state-encoding pair in
Figure 3.10.b. This matches the frequency combs predicted by Equation 3.32, while also
demonstrating the improved scaling of Nω in the PNRD case compared to the intensity
measurement10. Comparing the non-classical Fock state to the classical coherent state
under PNR, we see that while the coherent state generates more frequencies and has a
higher rank, the Fock state frequencies have consistently greater magnitudes, making
them more robust to sampling.

We see that the choice of encoding can have a large impact on the types of functions the
reservoir computer can approximate, influencing both the rank of the spanned space
(as measured through both effective ranks, H and Rc), and the frequency content of

10A reminder, the coherent state is still fully classical. PNRD allows us to measure a different set of
properties (the Fock basis representation) compared to intensity measurement, which is more useful
for generating a diverse basis for linear regression. See Equation 3.32.

3.5. Results 70

∑
i
|F

[F
i(
x

)]
(ω

)|
F
i(
x

)

−50 0 50

10−5

10−2

101

C
oh

er
en

t
In

te
n

si
ty

Nω = 1

−50 0 50

10−5

10−2

101

C
oh

er
en

t
P

N
R

Nω = 8

−50 0 50

10−5

10−2

101

F
o
ck

P
N

R

Nω = 4

0 1

10−2

101

C
oh

er
en

t
In

te
n

si
ty

H, R = [0.509, 3]

0 1

10−5

10−1

C
oh

er
en

t
P

N
R

H, R = [0.898, 19]

0 1

10−5

10−1

F
o
ck

P
N

R
H, R = [0.673, 9]

−50 0 50

ω

Nω = 4

−50 0 50

Nω = 26

−50 0 50

Nω = 10

0 1x

H, R = [0.601, 5]

0 1

H, R = [1.194, 53]

0 1

H, R = [0.825, 21]

−50 0 50

Nω = 8

−50 0 50

Nω = 58

−50 0 50

Nω = 46

0 1

H, R = [0.619, 5]

0 1

H, R = [1.241, 111]

0 1

H, R = [0.798, 69]

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

|R〉

|L〉
|A〉

|D〉
|V 〉

|H〉

a)

b)

Figure 3.10: Quantum-classical detection comparison. Comparison of outputs
and metrics for quantum and classical light. We compare reservoir outputs for a Fock
state |n⟩ = |1, 1, 1, 1, 0⟩ and a coherent state |α⟩ = |1 .5 , 1 .5 , 0, 0, 0⟩ under perfect PNR
detection, and also the intensity measurement for the same coherent state. Both cases
use the same 5-mode, polarised reservoir, and encodings (uniform linear, multilinear
ν = 2m, and spiral ν = 4m). a) shows the analytic output functions of the fifty most
probable output functions as a function of input data x for each case, while b) shows
the corresponding frequency content generated by each state-encoding configuration. R
and H refer to the rank (unconditioned, as these outputs aren’t estimated from samples)
and spectral entropy of the data matrix respectively, while Nω denotes the number of
unique frequencies present in the reservoir’s output (excluding the DC component).

3.5. Results 71

the outputs. This highlights that for function approximation tasks, it is important to
choose an encoding scheme in a principled way which balances rank, spectral entropy,
and frequency content, rather than simply maximising any one of these metrics.

Note, the data displayed in Figure 3.10 (and the spectral entropies) come from the
analytic probabilities of measuring a particular outcome, i.e. without detector noise,
quantum efficiency, post-selection or sampling. This allows us to look at the true
frequency content. The spectral entropy H can be interpreted slightly differently here
compared to H from sampled data. Here, H is used as a measure of effective rank, or
dimension, of the spanned functional space L, acting as a metric of reservoir complexity.
This is also true in the case of sampled data, however, there H also provides an insight
into the effect of the sampling. Too low an H indicates the outputs are undersampled,
or that too harsh a post-selection filter was applied. Too narrow a post-selection reduces
the number of outcomes and in turn the size of L, while too few samples limits the
resolution of the basis functions used to perform our linear fit to the task’s data.

3.5.2 Metrics of performance for different states

Figure 3.11 shows the normalised singular values of DDT for a range of encodings
and states. Remembering that we ideally want as many of these values to be as large
as possible, we see that Fock states consistently have the slowest drop-off across all
encodings, while the distinguishable states have the fastest. This is correctly tracked by
the spectral entropy H which is higher for Fock than distinguishable. However, we see
that the largest spectral entropies consistently come from the coherent state, which is
due to its SVs initially staying higher, despite a subsequent steep drop.

A clear feature in all spectra is the inflection at around 10−7, which is due to the noise
introduced by the finite number of samples, and whose level scales proportionally to
the number of measurement outcomes K ′, and inversely with Nsamp. This demonstrates
why the standard rank of DDT is unsuitable as a metric, unless we manually choose a
condition number. When we do use a condition number, chosen here by inspection from
the inflection point as 2× 10−7 for all state-encoding pairs, we see that the resulting
rank, Rc, is consistently higher for the Fock state than the other states, and lower for
the distinguishable state.

On the whole, H and Rc correlate relatively well with one another, although there are
some differences in the hierarchies they create between states and encodings. We expect
Rc to better measure the true dimension of functional space L as it entirely ignores the
effect of the undersampled measurement outcome probability estimators. H is a more
general metric, also robust to the effects of undersampling, but with the added benefit
of not requiring us to choose a condition number.

While H does not guarantee performance on a particular task, it does give us information

3.5. Results 72

100 101 102

10−16

10−12

10−8

10−4

100

lo
g
(σ

)

Uniform lineara)

Fock
H, Rc = [0.631,9]

Dist
H, Rc = [0.485,9]

Hybrid
H, Rc = [0.617,9]

Coherent
H, Rc = [0.815,9]

100 101 102

Singular value

Multilinearb)

Fock
H, Rc = [0.741,21]

Dist
H, Rc = [0.389,18]

Hybrid
H, Rc = [0.716,15]

Coherent
H, Rc = [0.947,17]

100 101 102

Spiralc)

Fock
H, Rc = [0.662,41]

Dist
H, Rc = [0.367,26]

Hybrid
H, Rc = [0.693,26]

Coherent
H, Rc = [1.023,27]

Figure 3.11: Singular value spectra. Normalised singular values of Gram matrix
DDT for a combination of states and encodings. All spectra are calculated with detector
parameters µ = 0, η = .9, Nsamp = 107, with measurement outcomes post-selected for
detection events of ≤ 4 photons. The states used are Fock: |1, 1, 1, 1, 0⟩, distinguish-
able: |10, 11, 12, 13, 0⟩, hybrid: |0 .5 + 1, 0 .5 + 1, 0, 0, 0⟩ and coherent: |1 .5 , 1 .5 , 0, 0, 0⟩.
Encodings are a) uniform linear, b) multilinear, and c) spiral. Spectral entropies H
and rank Rc with condition number 2× 10−7 are given for each. Shadows of the other
encodings are provided in each panel for easier comparison.

about the robustness of the system to sampling-based estimation of reservoir outputs
F ′
i (x). Rc, on the other hand, gives us a precise measure of the dimension of the

functional space spanned by the reservoir, once sampling has been performed. Larger
Rc increases the chances that our reservoir will be able to approximate a specific target
function.

Beyond these, metrics such as Nω can be tuned through the choice of encoding, to
match the frequency output of the reservoir with that of our target. However, typically
in machine learning, we don’t know the form of our target function. This makes it
impractical to tune the reservoir’s encoding for a specific frequency spectrum, meaning
we would be better suited trying to maximise the size of the functional space spanned
by the reservoir outputs, which is why we emphasise the importance of H and Rc in
characterising a reservoir.

A key observation regarding Figure 3.11 is the low entropy of the output produced
by the distinguishable photon state compared to the Fock and hybrid states. As the
only discrepancy between this state and the Fock state is the presence of multiphoton
interference, it indicates that quantum interference does play an important role in our
system. Even our coherent state, which can be described classically, leads to higher
spectral entropy compared to the distinguishable state when measured with photon
number resolving detectors. Multiphoton interference still occurs in this case—we can
see this in the way we simulate the Fock representation of the state passing through the

3.5. Results 73

network—however, the action of a linear optical network on a coherent state ensures
that the output state remains representable with classical fields. This is verified by
matching the outputs of the same coherent state under both quantum and classical
simulations.

Finally, we note that in our tests we observe that the results presented here are robust
to different samplings of our random network parameters and encoding phase offsets. A
more complete statistical analysis would be desirable, however with simulation time
constraints we leave this for future work. Similarly, our choice of 5 polarised modes and
a maximum of 12 photons was based on practical simulation times, and a larger scaling
analysis with higher photon numbers and more modes would be valuable to understand
the limits of our system. We expect that the ongoing efforts to demonstrate this system
in experiment will be a more efficient way to explore these limits than pushing our
compute capabilities for further simulations.

3.5.3 Function approximation tasks

While these metrics allow us to better understand the properties of the reservoir, the
ultimate performance metric is how well the reservoir can learn a target function from
training data.

To test this, we first define a set of target functions which we want to approximate.
We start with a sinc and step function, defined on the range [0, 1]. The sinc function
was chosen to provide a target which could feasibly be learnt by the network, with a
bounded frequency spectrum, but also a nonlinear component which makes it harder
than a simple sinusoid. The step function, on the other hand, tests the reservoir’s
ability to approximate highly nonlinear functions, where a perfect fit would require
infinitely many frequency components. We sample these functions 500 times, and then
randomly split these samples into two sets of 250 pairs, {(xi, yi)}train and {(xi, yi)}test.

We demonstrate the trained QRC’s performance on these two functions in Figure 3.12,
where the training and inference was performed as in Section 3.3.10.

The Fock state input yields the lowest error for both functions. The hybrid state’s
performance is similar to Fock on both tasks, outperforming the coherent state despite its
lower spectral entropy. The distinguishable photon state performs poorly on both tasks,
while the classical measurement predictably fails to learn any meaningful approximation
due to its extremely limited rank.

While not perfectly predictive, the correlation of spectral entropy to MSE across different
target functions suggests H does measure robustness to realistic measurement conditions,
with sources which generate higher H performing better after sampling.

The difference between the hybrid and coherent state is particularly interesting. Here,

3.5. Results 74

0 1x

0

1

C
oh

er
en

t
In

te
n

si
ty

0.588, 5, 0.048

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

D
is

t.

0.367, 26, 0.018

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

C
oh

er
en

t
P

N
R

1.023, 27, 0.002

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

H
y
b

ri
d

0.693, 26, 0.001

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

F
o
ck

0.662, 41, 0.001

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

T
ar

ge
t

f
(x

)

H, Rc, MSE

0 1x

0

1

0.588, 5, 0.091

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

0.367, 26, 0.015

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

1.023, 27, 0.042

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

0.693, 26, 0.005

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

0.662, 41, 0.003

f̂(xTRAIN)

f̂(xTEST)

f(x)

0 1

0

1

H, Rc, MSE

Figure 3.12: Function approximation. Compares the approximation f̂(x) to the
target function f(x). All trials use spiral encoding as defined in Section 3.4.1, and
post-selection on ≤ 4 photon events with η = .9 and Nsamp = 107. Performance metrics
H, Rc (c = 2 × 10−7) and test-set MSE are listed in the title for each task-state
combination. The states used are Fock: |1, 1, 1, 1, 0⟩, hybrid: |0 .5 + 1, 0 .5 + 1, 0, 0, 0⟩,
coherent: |1 .5 , 1 .5 , 0, 0, 0⟩, distinguishable: |10, 11, 12, 13, 0⟩ and classical coherent:
|1 .5 , 1 .5 , 0, 0, 0⟩. All states use PNR except coherent intensity, which uses intensity
measurement, with the intensity in each output mode used as the estimated measurement
outcome F ′

i (x). Each trial uses a 50:50 test-train data split, arbitrarily chosen.

the spectral entropy and rank metrics fail to predict the performance difference. The
addition of a single photon to each coherent state makes this a non-classical state.
Silberberg et al. showed that higher order number states can be generated using photon-
added coherent states, where the interference between a single photon and a classical
laser source generates N00N states with arbitrary occupation numbers [AAS10; Win+10;
Bar+10; LB02; ZVB04]. We hypothesise that we see similar effects in our network, where
we generate high photon number N00N states with comparatively greater probability

3.5. Results 75

Uniform linear Multilinear Spiral
10−7

10−5

10−3

10−1

101

M
S

E

H
Rc

[[[

0.63
9

0.74
21

0.66
41

0.49
9

0.39
18

0.37
26

0.62
9

0.72
15

0.69
26

0.81
9

0.95
17

1.02
27

0.51
3

0.58
5

0.59
5

Performance on random tasksb)

Fock Dist. Hybrid Coherent PNR Coherent Intensity

0 1x

Random target functionsa)

Figure 3.13: Random function approximation statistics. a) A set of 32 random
functions, generated by randomly fixing a bandwidth, sampling amplitudes and phases
uniformly across this bandwidth, and Fourier transforming. Note, they are vertically
separated for clarity, but all have similar amplitude and DC offset in practice. b) Mean
squared error of the reservoir computer’s approximation on the random tasks. We
show MSEs for all five states, and three encodings, with the box plot overlays showing
standard statistics (median, first quartile Q1, Q1 +1.5 interquartile range IQR).

than in the Fock representation of the coherent state, and that these states scatter in our
network similarly to Fock states, contributing to the hybrid state’s good performance
on the step task.

In order to better understand the performance of the reservoir across a range of tasks,
we now generate a set of random target functions and examine the statistics of the
approximation errors. Figure 3.13.a shows 32 randomly generated functions which
have been passed through different low-pass filters, with passed bandwidth also chosen

3.5. Results 76

randomly for each function. Figure 3.13.b shows the resulting mean squared error of the
approximation on test data, for our established set of states and encodings. H and Rc

are provided above each state-encoding pair’s data. The box plots show the distribution
of the MSEs across the 32 functions, with the median, first quartile on either side of
the median, and first quartile plus 1.5 times the interquartile range shown.

Here, we again see a trend of improved performance as we move left to right across
encodings, which is expected. The classical coherent state still performs worst out of
the states tested, with distinguishable photons consistently second. Fock performs well
in all cases, with the hybrid and PNR coherent states performing similarly, but with
hybrid seeing noticeably better performance in the spiral encoding case.

In terms of analysing the reservoir in a task independent manner, the size of the
frequency spectrum generated in the outputs is a clear, easy to interpret metric, and
we can justify that matching reservoir and target function spectra is a necessary
condition for good approximation. Conditioned rank provides our clearest estimate of
the output functional space dimension, and tracks the performance on our tasks well.
Spectral entropy, while well-founded in the desire to have as uniform a distribution over
measurement outcomes as possible, is less clear in its interpretation. We can view it as
an effective rank of the outputs space, but it isn’t necessarily a good predictor end task
performance. We have also seen that H can vary substantially for the same state with
different reservoir samplings, and that this is likely due to differences in the random
mode couplings changing the level of quantum interference present in the network, a
multimode analogue of the 2 × 2 case which produces the HOM effect. More work
is needed to properly understand the spectral entropy its uses in our system. More
generally, developing better metrics for understanding the reservoir’s properties and
performance is an ongoing process.

A better predictor of end performance is the type of state used, and we show a fairly
clear and consistent hierarchy over the states we consider, with the trend being that
more classical states perform worse, and that multiphoton quantum interference plays
a role in delivering good performance. The performance achieved using hybrid states is
particularly encouraging from a practical standpoint—photon-added coherent states
with high average photon numbers can easily be generated with current technologies,
while high-photon number Fock states remain challenging. Our results thus far suggest
that these states could be a practical alternative to Fock states in quantum reservoir
computing, allowing us to efficiently access large functional spaces with ‘cheap’ quantum
resources.

Beyond the increase in performance from ‘more quantum’ resources, we emphasise

3.6. Discussion 77

that in all cases we see a significant increase in performance from photon number
resolved detection: this alone is a quantum process and grants an improvement over
the fully classical case due to the scaling of the output Hilbert space, even under the
practical considerations of detector noise and sampling. We reiterate that in the case
of classical states, this is not a ‘quantum advantage’ in the sense of outperforming
classical systems or using quantum information, but rather a demonstration of the
utility of quantum resources in a hybrid classical-quantum system. Classical states
such as coherent states may be efficiently simulated on a classical computer, however
PNRD provides easy access to a different representation (i.e. the probability of observing
particular multiphoton coincidences) which has a greater diversity and faster scaling
that intensity measurements, necessary properties for efficient reservoir computing.

3.6 Discussion

3.6.1 Initial experimental implementation

The work presented here is based in theory and validated in simulation, however the
ultimate goal is to build a practical implementation of the QRC which can be used
to solve interesting tasks. The first step towards that, implementing our system in
experiment, is currently underway. We provide a brief overview of the experiment in
progress, and discuss some of the challenges faced thus far.

The goal of the experiment is to demonstrate the improved performance on function
approximation using PNR detection, therefore, in order to keep things simple, so far we
focus on using coherent states as our input states. These are easy to generate, modulate,
and have been shown to perform well in our simulations on simple tasks.

For our reservoir, we choose to use a MMF, as they are widely available, by definition
can have many spatial modes, which are randomly coupled as light propagates through
the fibre, and can have birefringence introduced through stress, making them suitable
for use with polarisation encodings.

In order to encode information in the input state, we use a phase-only LCoS SLM, which
allows us to generate spatially varying, phase modulated states in a very similar way to
the rotating waveplate scheme discussed earlier. The controllable nature of the SLM lets
us easily program the encoding via computer, while the high-resolution phase control
also lets us optimise coupling of the modulated states into the fibre. While LCoS SLMs
are not the fastest phase modulators in the world, the technology is ever improving, and
the SLM is not the bottleneck in our reservoir’s data throughput—rather it is limited
by the integration time of our detectors and the number of samples needed for a given
input data-point to suitably estimate the outcome probabilities.

Choosing a detector is a harder process. There are a wide range of options capable of

3.6. Discussion 78

detecting single photons to select from. These tend to operate through one of two differ-
ent mechanisms: statistical analysis of multiplexed single photon detections [You+20;
Che+23b; Fit+03; Kri+24; Ach+04], and low noise detectors which are able to resolve
signals which scale discretely with the number of photons [Los+24; Ham23; Sch+18].
The former is more common, while the latter is more difficult to implement, but is more
useful for our purposes as the efficiency of these two methods scale differently [Fit+03].

This difference comes from the fact that even with multiplexed single-photon sensitive
detectors with unit quantum efficiency, the performance is capped by the likelihood of
two photons being absorbed by the same detector and classed as a single click. In a
detector where the signal scales discretely with the number of photons, this is not an
issue, meaning that a device with perfect quantum efficiency could perfectly identify
the incident state. We therefore settle on using a Hamamatsu qCMOS camera [Ham23],
which allows us to resolve individual photons above the noise floor in the analogue
voltage output of each pixel.

It is worth noting that our detection scheme doesn’t necessarily need to perfectly resolve
photon numbers, only that the measurements we make are consistent. If we lose photons
due to network losses or low detector quantum efficiency, or if we incorrectly classify a
state due to, for instance, performing PNRD with multiplexed single-photon detectors,
it doesn’t change the operation of the network, it just changes the mapping between
the true quantum state and the set of measurement outcomes. This may affect the
overall performance on a given task, but it means our detection process is not ‘all or
nothing’—we can still expect to get improvements over intensity measurement even
with non-ideal PNRD for both quantum and classical states11.

The initial experiment is schematically illustrated in Figure 3.14.a, while Figure 3.14.b
shows the physical experiment in the lab. This is currently early in its development,
however, initial data does show features similar to those in our simulations. Currently,
the read-out rate of the camera is the limiting factor, restricting the number of samples
we can take and therefore the signal-to-noise ratio we can achieve in our estimates of
the outcome probabilities.

The camera takes one exposure every 2ms, however, we are limited to approximately
40 frames per second due to inefficiencies in the way data is transferred to the control
computer and written to disk. This is a bottleneck which can be overcome, where faster
frame rates will allow us to gather more samples, better resolving the output functions
generated by the reservoir.

11As usual, this assumes no further digital post-processing, i.e. for the same physical system and
computational resources.

3.6. Discussion 79

a)

(1)

(3)

(2)

b)

c)

2

1

0

d) [0, 0, 1, 0, 1] [0, 0, 0, 0, 2] [0, 0, 2, 1, 1]

PNRD

MMF

Input state

Figure 3.14: Proposed experiment in MMF. a) Example reservoir configuration,
with spatially varying, phase modulated states injected into a multimode fibre, where
path interference occurs via the MMF coupling modes, before detection of the output
state with PNRD. b) Initial experiment setup, with a SLM (1) used to generate the
input states, MMF acting as the reservoir (2), and a qCMOS camera (3) used for
detection. Beam path in green. c) Example time integrated speckle output from the
qCMOS in an 8× 8 region of interest, with 5 pixels selected to act as detection modes.
Intensity in arbitrary units. d) Example number resolved output frames, where each
pixel gives the number of detected photons. Title indicates the decoded multiphoton
coincidence event from the 5 pixels, reading left to right, top to bottom.

3.6.2 Future prospects

In terms of optimising the reservoir scheme, there are four main areas of investigation—
reservoir samplings, encodings, states, and detection.

While the MMF and qCMOS combination is a relatively practical and fast way to realise

3.6. Discussion 80

and test our reservoir design, it is likely that in the long term, this scheme would best
be implemented using integrated devices such as programmable photonic waveguides.
These devices can realise mesh coupling geometries similar to that in Figure 3.7, with
very low losses, full reconfigurable control over the scattering matrix S, and good
stability. Implementations of these systems already exist for optical quantum computing
(i.e. [Mar+24]), however, to our knowledge there are currently no systems using number
resolved detection. In the short term, one of the key advantages of our system is that
many of the selling points of integrated photonics don’t apply here—specifically, we
can implement it in the lab with low-cost optical components, and still achieve many
modes, necessary for generating the complexity required for machine learning tasks.
Known issues such as losses and temporal instability in MMFs can be mitigated (i.e.
through temperature control, vibration isolation, and high-quality components), and in
many cases may be a worthwhile trade-off for relative ease and cost of implementation.

We examine several encoding schemes in detail in this work, which, based on the Fourier
analysis of the network and with ease of practical implementation in mind, we believe
were well-informed and remain good candidates for continued research. However, there
are many other possible ways to encode information in phase and polarisation, across
many spatial modes, and it is likely that further optimisation can be made in this
area. We have already demonstrated that the encoding must be tuned according to
the task at hand, and we expect that moving towards higher dimensional tasks, with
multivariate inputs, will require more complex encoding schemes. This is a further
advantage of using an integrated waveguide system as the reservoir, as these devices
typically have many degrees of freedom which can be precisely controlled with digital
logic. Efficient integration with existing digital computers is essential for practical use.

In terms of states, we have seen in simulation that high photon number Fock states
provide best-in-class performance within our system, but there are many other types
of non-classical states which may be more practical to generate using fewer quantum
resources. We hope to be able to experimentally investigate more complex states once
the coherent state experiment shown above is running effectively, with the photon-added
coherent states a natural starting point based on their performance in our simulations.
These are more difficult states to generate than coherent states, requiring more complex
optical setups, however they are well within the capabilities of modern quantum optics
labs. We envisage that this would be done using an spontaneous parametric down-
conversion (SPDC) process to generate a photon pair, where one photon is combined
with a coherent state of the same wavelength and the other photon is used to herald the
presence of the photon-added coherent state [ZVB04]. Beyond these, we expect that
improvements in quantum sources will open up even more options for us to investigate.
For instance, quantum dots provide a promising alternative to parametric processes
for generating Fock states, even though currently they struggle to scale to higher
number-states.

3.6. Discussion 81

When it comes to detection, things are less obvious. It is clear that PNRD is key
to the performance of our system, reducing required digital computation even with
coherent states, which are otherwise entirely classical. It is also clear that as the
number of photons we wish to count increases, the quantum efficiency of our detector
becomes increasingly important in order to consistently measure the correct outcome.
Multiplexed click detectors do not scale well for these applications, as explained in
Section 3.6.1. While detector such as superconducting nanowire single-photon detectors
(SNSPDs) provide excellent quantum efficiency, they are expensive and difficult to
couple to, making them impractical for our purposes. Currently, we believe that devices
such as the qCMOS camera are the best option for this type of experiment, due to
their ability to distinguish individual photons above the noise floor. As the quantum
efficiencies and frame rates of these detectors are ever improving [Cec+21; Hum+23;
SGZ21; Ham23], we anticipate that we will be able to push our reservoir to higher
photon numbers, generating larger functional spaces with which to learn more complex
tasks.

One final point to keep in mind, is that as we increase the average number of photons
in our system, the overall space of number resolved measurement outcomes grows
combinatorially. Indeed, this is one of the main advantages of our system. However,
it does mean that the number of samples needed to resolve these additional outcomes
also grows, which is not practical with detectors with limited frame rates. This will
necessitate either capping the overall number of photons we use, or developing new
post-selection schemes which preserve the reservoir’s complexity, but reduce the number
of samples needed to estimate the outcome probabilities.

Post-selection aside, we have to be cautious with arbitrarily increasing the average
photon number, as we have the potential to introduce a disruptive degeneracy into our
output space if we have non-unit detection efficiencies. This is because higher-number
Fock states which are incorrectly measured due to losses will be increasingly likely to
collapse into the same, low-number measurement states. This then averages out the
independent features present in each of the original low-photon number measurement
outcomes, reducing the information across the measured states, even with the exact
same detection properties. This remains an issue unless we can achieve extremely
high detection efficiency, which likely requires further development of devices like the
qCMOS.

3.6.3 Conclusion

The main message we believe we have conveyed in this chapter is that photon number
resolving detection is a powerful and increasingly accessible quantum resource which
can open up new avenues for performing scalable computation using relatively simple
optical systems.

3.6. Discussion 82

Beyond the use of PNRD, we have also shown evidence of differences in reservoir
expressivity and resulting computational performance across different quantum states
and encodings. Our analysis of a range of input states shows that we can achieve
good performance using classical or ‘cheap’ quantum states such as photon-added
coherent states, avoiding the difficult task of preparing high-photon number Fock states.
Our reservoir architecture, based on linear optical networks, may be implemented
with a range of simple, widely available optical systems, such as multimode fibres.
Using a reservoir computer, specifically an extreme learning machine, allows us to use
the complex dynamics generated by the system with simplified training and reduced
parameter tuning compared to other, more general, programmable quantum machine
learning approaches.

Distilling the network properties further would allow us to make better predictions
about the performance of a given network, and potentially allow for more intelligent
design, for instance in choosing encodings, or identifying examples of multimode optical
systems with scattering properties which are naturally suited to being used in a QRC.
We have seen that the frequency content, spectral entropy and conditioned rank of
the reservoir outputs provide some insights, and are necessary but not sufficient for
good performance. Further analysis will likely require the use of new metrics which
better correlate the reservoir’s properties with the performance on a given task. There
is also much left to investigate when it comes to the connection between the sampling of
the random reservoir and the overall system performance. Initial experiments indicate
that the way we sample the couplings in our random LON has a large effect on the
performance of the system, and this in turn implies that not all multimode scattering
systems are created equally when it comes to building a QRC.

In our evaluation of the system, we tested performance on a set of function approximation
tasks, however we have also seen good performance in early work on classification tasks
and multivariate inputs. We note that while our analysis focusses on classical tasks,
using a quantum substrate and input, the QRC may also be well suited to quantum
tasks such as state tomography, state generation, or quantum communication—again,
all areas for further investigation.

Finally, while advancements in quantum technologies are likely to mitigate some of
the current challenges in the field—for instance, generating complex quantum states,
improving detector performance, and efficiently training nonlinear quantum machine
learning systems—quantum computing remains a formidable challenge, despite decades
of development. Nevertheless, we believe that the approach presented here, though
not universal, offers a practical and accessible means of approaching certain quantum
machine learning tasks using current technologies. Scalability is always a challenge in
physical computing systems. Our hope is that the insights gained from this work will
be valuable in the continued development of practical quantum computing systems.

3.7. Notation 83

3.7 Notation

For reference, we summarise some of the main notation specific to this chapter12.

• m The number of spatial modes in a linear optical network. In the case
of a polarised network, each spatial mode is formed of two orthogonal
polarisation modes.

• n The total number of photons injected into the network.

• x The input to the reservoir computer, potentially multivariate.

• S(x) The mode scattering matrix of the network, which maps input modes
to output modes, where some properties of the network are varied as
a function of the reservoir input.

• U(x) The unitary operator over Fock space generated by network topology
S.

• Fi(x) The true probability of observing the ith measurement outcome given
the jth input is encoded in the reservoir, assuming perfect detectors.

• O′ The set of all possible measurement outcomes, given imperfect detec-
tion and some post-selection rule.

• K ′ The number of outcomes in set O′.

• F ′
i (x) The true probability of observing the ith measurement outcome given

the jth input is encoded in the reservoir.

• cL The space of functionals spanned by the set of {F ′
i (x)}.

• F̂ ′
i (x) The estimate of the probability of observing the ith measurement

outcome given the jth input is encoded in the reservoir.

• D The design matrix, where Dij is the estimated probability F̂ ′
i (xj) of

observing the ith measurement outcome given the jth input is encoded
in the reservoir.

• σ The singular values of matrix DDT .

• W The learnt weights which map our reservoir outputs to the target
function estimate.

12Note, the notation used in this chapter differs slightly from that in the paper [Ner+24].

3.7. Notation 84

• Rc Conditioned rank, giving an estimate of the effective dimension of L
after sampling.

• H The spectral entropy of the reservoir, calculated from the normalised
singular values of DDT .

• Nω The total number of unique, discrete frequency components in the
output spectrum of the various F ′

i (x).

• Λn,n′ The Scheel matrix formed from elements of S and used to calculate
the scattering amplitude ⟨n′| Û |n⟩.

• f(x) The target function being approximated.

• f̂(x) The learnt estimate of the target function.

Chapter 4

Reinforcement learnt optimisation

We have established that performing gradient-based optimisation directly on a
physical system is difficult without a good, differentiable model of the system,
and that good models are hard to build. This severely limits the performance
of available optimisation strategies for such systems. Here, we propose a new
method for learning an approximate model for propagating errors backward
through the system, similar to gradient methods. This allows for simpler learnt
models, specialised to the hardware, providing robustness to imperfections
not captured in an idealised model. By optimising not for accurate gradients
but for the ultimate goal, performance on the end task, the method allows
improved convergence over vanilla gradient-descent on certain tasks. This
work is partly detailed in the paper [NF24].

4.1 Introduction

This chapter shifts focus from the architectural design of neuromorphic systems, to
exploring optimisation strategies capable of programming (i.e. training) these systems
at the task-specific level. In the examples of neuromorphic systems we’ve seen so far,
the training of the system’s free parameters have been intentionally simple—in most
cases linear regression or some limited evolutionary optimisation. This is largely due to
the fundamental challenge in training physical systems—the differentiability problem.

As discussed in Section 2.3, the non-differentiability of physical systems prohibits the
use of gradient-based optimisation algorithms to train the system parameters directly.
This is a huge barrier to developing practical physical neural networks (PNNs), as
gradient-based optimisation is the workhorse of modern machine learning and has thus
far been the key to large-scale learning systems.

Currently, in the neuromorphic and physical computing community there are two
main approaches to bypass this roadblock, delineated by whether they attempt to
use gradients regardless (despite the non-differentiability), or instead use alternative

85

4.1. Introduction 86

information to guide the evolution of our tunable parameters [Bru19; McM23; FDB24;
Mom+24].

To access gradient-based training, we have two options. The first is to model and
simulate the physical system of interest, use this as a proxy for training, and then
evaluate and perform inference on the real system. Such digital twins provide the
efficiency of gradient-based optimisation in high-dimensional systems, however the
simulations can be costly or even intractable, and misalignment between the simulation
and the real system degrades performance. Often, using a simulation undermines the
key benefits of using a physical computing system such as speed, computational capacity
and energy efficiency. The second approach to using gradients is to carefully design
a physical system where we can either measure all the internal states necessary to
manually calculate the analytic derivative of the system’s output with respect to the
parameters, or to design a system where the physical dynamics naturally manifest these
derivative themselves. The former is a brute force approach, and can quickly become
expensive in terms of measurements. The latter is a more elegant solution, but is
difficult to achieve as it relies on clever exploitation of the physical system’s dynamics.
In both cases, the types of systems which admit these schemes are limited, restricting
the generality of the approaches.

On the other hand, if we dispense with gradients entirely we are left with zeroth-order
methods, which use alternative heuristics gathered purely from forward passes through
our physical system to iteratively update parameters, such as sparse finite differences
or evolutionary strategies. These methods are typically sample inefficient, requiring
many evaluations of the system to converge, and are not scalable to high-dimensional
systems. This is largely because they don’t have any model of the system to guide their
search, which is especially inefficient in cases where we do actually have an approximate
or low-dimensional model of the system.

Overall, model-based methods such as gradient descent tend to underutilise the physical
system, suffer from poor alignment with the physical system, and require many simu-
lation evaluations, although they can achieve reasonable performance with relatively
little effort. Zeroth-order methods can provide excellent alignment due to using the
physical system directly, but are sample inefficient, in part due to underutilisation of
priors we have on the system dynamics.

We would like to design a new optimisation strategy with the best of both worlds. The
approach we take here will rely on training a separate, conventional machine learning
model which is able to approximate the backpropagation process through the otherwise
non-differentiable physical system, where we make use of reinforcement learning (RL)
to train this learnt optimiser model. In order to understand the reasoning for this
approach, we will start from first principles and consider the way we might design a

4.1. Introduction 87

novel optimisation algorithm which effectively balances the benefits of both model-based
and zeroth order optimisation techniques.

To begin, we can quickly dismiss any approaches which resemble random search of the
parameter space, as these are incompatible with our scalability requirement. Instead,
we need an iterative algorithm which is capable of improving the objective over time by
conditioning its decisions on prior experience. We therefore need to generate some form
of privileged direction in parameter space to move in, given a starting set of parameters.
Evolutionary methods do this by maintaining a population of parameter vectors and
combining the best performing individuals to create a new population. This is essentially
a combination of a sparse finite difference method and multiple parallel optimisations,
and therefore still suffers from the curse of dimensionality. Gradient-based methods
typically use the first-order linearisation of the system to get this direction, moving from
the best previously-found parameter vector in the direction which locally minimises the
objective. While we may not have a model for a physical system’s derivative, we know
that such a linearisation does exist, and in the extreme, sample-inefficient case, this
could be calculated by finite differences. We have also seen (Section 2.3.2) that there
are a number of approximate gradients which can be used, i.e. reasonable alignment
with the true gradient can be sufficient for getting good performance in training.

Physical systems typically have symmetries or analytic approximations which, while not
capturing the full dynamics, could be used to inform an optimisation process. Ideally,
this would take the form of a low-dimensional model which is simple and cheap to
evaluate. This could then be used to provide a preferred direction to move in parameter
space, conditioned on information from the evaluations performed on the physical
system in order to remain robust to misalignment.

Consider passing some input x through a physical system fθ(x) with a particular set of
parameters θ, and measuring an output y. We have an error on that output ∆y, i.e.
a direction we want the output to move in, based on some change to the parameters
∆θ. All approaches discussed above take the form of some model m(∆θ | ∆y), giving
this update to the parameters in terms of the desired change of the output. In gradient
descent, m uses the linearisation of the system ∆θ ∝ ∆y · ∂fθ(x)

∂θ

∣∣∣
x
, which requires

the analytic model of f along with the input and parameters in order to evaluate the
derivative at the particular point of interest.

A potentially naïve approach might be to ask whether it’s possible to parameterise this
m as a regular neural network and learn it from the physical system. This is partly
inspired by recent successes in the field of meta-learning ([And+16; LM17; Bel+17;
KS20; Met+22; Che+23a]), where instead of training a model to solve some task directly,
we train it to be able to independently learn to solve a range of tasks.

Learning m can be seen as somewhat similar to physics aware training (PAT) [Wri+22],

4.1. Introduction 88

in that we learn a black-box model relating to the physical system. The difference
here is that we are not aiming to learn the full dynamics of the system, only a model
which gives us some preferred direction in parameter space which is a good heuristic for
conditioning the parameter updates when training a PNN on a set of tasks. Note that
m should ideally be independent of the task we are training the PNN on, as it provides
a direction in parameter space based on the PNN’s properties, not the properties of
the task. For instance, in the example above, the task-dependent information which
influences the parameter updates is entirely encoded in ∆y. Enforcing this condition
would allow us to generate a custom optimisation algorithm tailored to the specific
PNN architecture, which would be reusable on a range of different tasks.

We also note that, assuming it is possible to learn m, which predicts updates to our
tunable parameters, it may be possible to learn a second model which is able to predict
‘updates’ to the PNN’s input, echoing the form of the full backpropagation algorithm
∆x ∝ ∆y · ∂fθ(x)

∂x

∣∣∣
x
. This would allow us to embed a PNN in a larger deep network,

with tunable parameters before and after the PNN, and then train all the parameters
together, using backpropagation for components which we have analytic forms, and our
learnt models for the physical components.

In order to train this model using our deep learning toolbox, we need to provide it with
inputs and target outputs and ask it to learn the mapping between them. The first
challenge is that we don’t know the target outputs, as these are the ‘pseudo-gradients’
we are interested in—if we could calculate these directly, our work would be done. What
we do have is a performance metric, such as the loss on a particular task, which we
want our learnt model to minimise.

This approach has certain similarities with nonlinear control problems, where we have a
plant with some control inputs (our PNN and parameters), and a controller (our model
m) with its own parameters which we want to tune to be able to predict the control
inputs at each time step.

One technique which has recently seen significant success in solving such control problems
is reinforcement learning (RL), specifically deep reinforcement learning (DRL). DRL
provides a method for solving complex decision-making problems by training a neural
network to predict optimal actions, based on a potentially non-differentiable objective
function. This is achieved by interacting with the system, observing the results of
actions taken, and updating the policy for choosing actions based on these observations
and the change in the objective.

We could therefore imagine using RL to train the parameters of m such that we are left
with a model which is tailored to the physical system, and provides us with estimates
for parameter updates which can be used to train the system on specific tasks. RL has
already been used for training physical neural networks [Bue+18; Tan+22], however to

4.1. Introduction 89

GD
RL

a) b)

θ 1

θ0

Figure 4.1: RL learnt gradient-free descent in low-dimensional spaces. Ex-
amples of RL for gradient-free (ascent) descent, in low-dimensional spaces. a) Classic
RL toy control problem ‘MountainCar’, where the agent has to learn to control a car
to reach the top of a hill. b) Toy example of learnt RL optimiser versus traditional
gradient descent (GD) in 2d parameter space with smooth, random loss landscape, and
multiple stationary points, with five different initialisations. In contrast to large ML
tasks, the input dataset is not stochastic, making this optimisation easier.

our knowledge this is the first work which uses RL for meta-learning in a PNN.

To further motivate using RL as a way of learning our optimiser m, we can consider an
example of a classic benchmark control problem used to test RL algorithms, ‘Mountain-
Car’, illustrated in Figure 4.1.a. In this picture, we have a vehicle which we control,
with the goal of reaching the flag at the top of the hill. The feedback given is extremely
sparse, with a constant negative signal at every time step, which only stops when
we are at the flag, where the signal becomes zero. In the original problem, the car
is underpowered, requiring a complex control policy which is able to build potential
energy through oscillations, to reach the top. We can view this hill climbing task as a
convenient analogy for learning to reach an optima without gradient signals, one which,
while challenging for RL agents, is known to be solvable. In hill-climbing optimisation
tasks, we can do better than ‘MountainCar’, as we have access to a more informative
signal—the objective value (i.e. the height of the car below the flag).

This is further shown in Figure 4.1.b, where we demonstrate an RL controller (using
the deep deterministic policy gradient (DDPG) [Lil+19] algorithm, detailed in the
coming sections), referred to as an agent, which has been trained to solve a simple
2d optimisation problem with a smooth, random loss landscape. The landscape and
starting points are randomly initialised, and the agent receives the current loss as its
error signal to minimise. This is a dense, informative signal which can be followed to
reach a local optima. We compare it with regular gradient descent (GD), and while

4.2. Reinforcement learning 90

both RL and GD do get stuck in local minima, their performance is comparable on
this toy task. One point to note is that the learnt RL step size is typically larger than
the step size of the GD method1. While this is a hyperparameter in GD, in our RL
controller, this step size is learnt, potentially allowing the agent to converge to an
optima faster in well-behaved loss landscapes. We will discuss these points further in
the larger results sections, but this example serves to illustrate the potential of RL for
gradient-free optimisation.

In the remainder of this chapter, we formally introduce RL and apply it to learn a
custom gradient-free optimiser for training general PNNs in situ. We will consider a
relatively simple, simulated high-dimensional PNN implemented with diffractive optics
as a case study, and train it to solve a range of tasks using this RL-based meta-learning
approach. We then extend the scheme to consider training networks composed of
multiple, sequentially stacked PNNs, where our learnt optimiser’s complexity scales
with the complexity of the individual PNNs, not the complexity of the overall network.

We show that our learnt optimiser can improve training time and final accuracy compared
to existing gradient-free methods, although in the analyses we have performed so far,
we see that it remains more sensitive to initial conditions and is somewhat brittle to
task distribution and PNN architecture. We go on to discuss the implications of these
results and avenues for future work to further stabilise this approach, making it a viable
option for future physical computing.

4.2 Reinforcement learning

Reinforcement learning has existed in one form or another since the earliest days of
computing. In 1948, Alan Turing hypothesised a type of computer which could react to
pleasure and pain in order to learn, comparing it to how a child learns [Tur04; Web11].
These ideas of experimentation and observing the consequences of our actions are
considered to be fundamental parts of how humans learn, and it’s natural to consider
how this might apply to machine learning systems, and indeed neuromorphic systems.

The key idea in RL is to frame the task to be solved as a form of game, where an
‘agent’ (a decision-making process) can interact with an ‘environment’ (a task) and
perform trial-and-error learning. For instance, if you want to teach a dog to sit, then
backpropagation is unlikely to be particularly useful. You have to make use of the tools
at your disposal, which in this case are the dog’s ability to observe and correlate actions
with rewards. If you give the dog a treat every time it successfully sits on command,
eventually this becomes learnt behaviour, and the dog sits on command regardless of

1This can be seen in the relative smoothness of the trajectories. The arrow-heads in GD do not
correspond one-to-one with steps.

4.2. Reinforcement learning 91

reward provided on completion.

In the language of RL, the dog is the agent, and the environment is the game of listening
to commands, choosing an action, and potentially receiving a reward. Every time you
give a command, the dog will react in some way. You could imagine that if you just
repeat the word ‘sit’ over and over again, little will be achieved. The dog may wander
around, but unless it happens to choose to sit at the exact correct moment, it will never
receive a reward and will remain unaware of the potential rewards which come from
sitting.

RL is therefore a balance of exploration (trying new behaviours) and exploitation
(using what you have learnt to solve tasks). In the following sections, we will formalise
the concepts, language and notation used in RL, the various means with which we
can achieve this balance, and some key challenges in implementing robust RL, before
applying it to our meta-learning system.

4.2.1 To model or not to model. . .

There are two high-level classes of reinforcement learning algorithms, delineated by the
prior information about the environment they have access to.

Model-based RL algorithms have access to a model of the environment, which allows
them to predict the outcome of actions before they are taken. This allows the agent
to plan ahead and avoid actions which are likely to lead to poor outcomes. There are
many similarities here with ideas in control theory such as model predictive control
(MPC), which uses a model to predict the optimal control for a system up to some
finite-time horizon. The complexity of the model limits the achievable planning horizon,
and typically requires some form of linearisation in order to make the optimisation
tractable. Model-based RL differs from MPC in that the policy can use the model in
different ways to improve the action (control) predictions.

A ‘world model’ is an extreme model-based approach, where not only is the agent’s
policy based off its internal model, but the training occurs in the model, referred to
in [HS18] as ‘training in the dream’. This approach is powerful in cases where the real
environment is expensive or unsafe to evaluate, for instance in robotics.

However, all the same challenges with model-based methods for training a PNN apply
here. The most common barrier is the lack of a suitable model of the environment. A
model can either be built by hand based on the known dynamics of a system, can be
empirically measured through techniques such as system identification, or can be learnt
directly using techniques such as deep learning. In the case of the latter two, significant
interaction with the environment can be required in order to build a suitable proxy for
the system.

4.2. Reinforcement learning 92

In any model-based system there will be issues with model bias. Modelling inaccuracies
led to differences between the model and the real system, which can be exploited by an
agent in potentially unexpected ways. This can lead to an agent which performs well
in simulation against the model, but poorly when deployed against the real system of
interest.

The alternative is to use model-free algorithms, which are less sample efficient, but tend
to be easier to build, and will be our primary focus in the coming sections.

These are most similar to our example of training a dog to sit, in that the understand-
ing of the game and the potential rewards is built up through experimentation and
observation alone. The agent learns to predict the value of different actions based on
the rewards it receives, and uses this information to guide its future actions. There
is no explicit model, however through this experimentation, the agent will learn some
empirical rules about the environment which can be used to plan and make decisions.
These rules may be simpler than the true environment dynamics, and may even incor-
rectly attribute cause and effect—all that matters is that they are able to successfully
guide decision-making.

4.2.2 Environments

The first task in setting up any RL problem is to define our environment E . For the
reader more familiar with supervised learning, this is a wrapper around our task, used
to generate data with which to train our agent’s control policy neural network, πϕ,
which serves as the m in the previous section. The main distinction with supervised
learning is that here, we build up extra machinery to automatically label this data,
based on performance on the task.

The environment is a process which takes actions and returns observables, along with
some performance metric which we call the reward r. We will only consider finite,
discrete-time environments, where we take some action each time step, and get back an
observation of the environment, up to a maximum number of time steps T . Examples
of environments include the game of sit as described earlier, or a robotic arm tasked
with stacking blocks, where final height is the performance metric.

We can simplify life for ourselves by restricting our environments to be Markov chains.
A process is said to have the Markov property if the conditional probability distribution
of future states depends only upon the present state, not on the sequence of events
that preceded it. In other words, the process is memoryless. A Markov chain is a
stochastic process, either continuous or discrete in time, with the Markov property,
defined by a set of states S = {si}, a transition probability P (s′ | s), and an initial state
distribution P (s0). This means that the probability of transitioning from one state to
another depends solely on the current state, which lets us avoid having to consider the

4.2. Reinforcement learning 93

environment having memory of past events.

Markov chains are a useful tool for modelling a wide range of (potentially stochastic)
systems. The assumption of the Markov property allows us to simplify the analysis
of a system, and in cases where memory is important, it is often possible to turn a
non-Markovian process into a Markovian one at the expense of increasing the state-space
to include all relevant information.

When using a Markov chain to model a stochastic system, the type of model depends on
the observability of the state and whether the process is autonomous. Fully observable
autonomous systems are the simplest and are represented by normal Markov chains. In
the case where the system is controlled (i.e. there is an external input a ∈ A at each
time step for some set of actions A), the transition probability now also depends on the
action at each time step. This is known as a Markov decision process (MDP), (S,A, P),
as the agent can influence the evolution of the state over time through its actions.

If we only partially observe the process, then we have a partially observable Markov
decision process (POMDP), (S,A,O, P,Q). Here, S is the set of possible states as
before, A is the set of possible actions, P (s′ | s, a) is the transition probability, O is the
set of possible observations, and Q(o | s′) is the observation probability, for s ∈ S and
a ∈ A.

In all examples we will consider, we operate in discrete time. This means that the
environment functions as a mapping E : (st, at) → (st+1, ot+1, rt+1, ct+1) from state-
action pairs to a new state, new observation, reward r, and termination condition c. The
reward is the signal the environment provides to indicate the value of the current state,
and is the only way we have of assessing performance on the task. For our purposes, r
may take any real value, with negative rewards corresponding to penalties, aiming to
discourage a particular state. The environment is probabilistically initialised to some
state s0, and for simulation purposes is restricted to run a finite maximum number of
time steps T . Additionally, the environment can terminate early (indicated by c) in the
case of a success or failure condition i.e. the dog sits, the dog died.

4.2.3 Agents

The other half of the RL equation is the agent. This is the decision-making process
which implements some policy πϕ : S → A mapping a state to an action, parameterised
by ϕ. Our entire goal in RL is to optimise this policy to be as close to the optimal
policy π∗, i.e. the policy which will best achieve the intended goal, as defined by the
rewards.

The design of the agent can have a large impact on the learning performance. We need
to ensure that the actions taken by the agent are diverse so that there is sufficient
exploration of the state space to experience as complete a range of possible rewards as

4.2. Reinforcement learning 94

possible. This can be done either through initialisation of the policy of the agent, or by
overriding or forcing the actions during learning. In the case of our dog, we don’t have
direct control over the initial behaviour, but in custom-built agents we can design their
initial reactions to various stimuli.

4.2.4 Reward structures

The reward is the only signal that the agent receives to guide its behaviour, and as
such is critical to the learning process. Every environment is equipped with a reward
function, which maps state to a single real value. There are two main approaches to
writing reward functions: sparse and dense. In finite-length environments the ideal
situation is to provide positive reward only when the task is solved i.e. the robot gets to
the goal, or the dog sits. This is the least ambiguous, as it is clear what good behaviour
looks like, however it can be extremely difficult to learn, as the agent has to rely on
accidentally solving the task during exploration in order to ever receive a positive signal.
If you and your dog play the game of ‘sit’ millions of times, then statistically the dog
will receive some rewards, but due to the sparsity, the learning process is incredibly
inefficient.

The alternative is to provide dense, continuously varying rewards at each time step.
This provides more information to the agent and encourages behaviours which led to
the desired goal, but it requires being able to define what partial completion looks like,
and a prior understanding of which behaviours might lead to the desired goal.

For more complex tasks, the biases of a dense reward system may actually be detrimental
to learning, as an agent can develop strange, unexpected behaviour to gain rewards.
Indeed, RL algorithms are notorious for exploiting loopholes in reward functions.
Consider providing small negative rewards at every time step to encourage a task to be
completed quickly. A common failure mode here is the agent learning to terminate the
task as fast as possible, for instance by driving the system towards invalid or illegal
states. The reward function leads to suicide being more desirable than attempting to
complete a difficult task, even with a large reward at the end.

Reward scale is another important consideration: too small, and the agent may not
learn fast enough; too large and the agent may learn to farm reward, not exploring
the state space any further. In a dense reward function, the aim is to provide a steady
reward gradient towards the goal, which can be used to guide the agent towards the
optimal policy. A challenge here is that it risks imposing human bias in how we think
the task should be solved versus the actual optimal solution.

Consistency is important, as highly stochastic environments where the reward changes
for the same state-action pair can confuse the agent and lead to slower learning, or even
completely impede learning in the worst case. Even if rewards are deterministic, but

4.2. Reinforcement learning 95

the process is partially observable, as far as the agent is concerned this is a stochastic
environment, and the benefit of targeting a reward is conditioned on the likelihood of
the hidden variable(s) being in a favourable state(s).

Designing a reward function which is both informative and not too complex can be a
significant challenge.

4.2.5 Value functions

In reinforcement learning (RL), one constant is that we need some form of value function
in order to estimate performance of the method. While rewards indicate immediate
quality of a given action in a state, value functions extrapolate to include all future
rewards, giving a long-term metric, critical for planning in decision-making processes.
This means that they intrinsically depend on the choice of policy used to select future
actions. Once defined, a value function can be used to select actions, to estimate
desirable states, and for optimising the decision-making process, in the absence of a
ground truth model of how actions will influence overall task performance.

The foundation of value estimation in RL is the Bellman equation [Bel10],

V (s) = Eπ [rt + γV (st+1) | st = s] , (4.1)

which allows one to understand the value of a particular state s (or action a) at a
point in time, based on the immediate reward r and the (discounted, γ ∈ [0, 1]) value
of the subsequent state, under a particular policy π. This was originally derived in
the context of dynamic programming2, and provides a proven necessary condition for
optimal optimisation of a recursive process [Sut20]. In the context of reinforcement
learning, each step in a time-domain task can be viewed as a step in a recursive process,
allowing us to use value functions which satisfy the Bellman equation as tools for
optimising a control policy.

Note that the type of task can influence the form of the value function. In tasks where
there is a natural time limit, it makes sense to use a finite-horizon value function, which
only considers the future up to a certain time step. This results in a time-dependent
value function, and in turn can lead to time-dependent policies. The alternative is an
infinite-horizon value function, which considers all future rewards (i.e. is stationary)
and which is more suited to open-ended tasks.

In both cases, it is important to weight future influence with a discount factor γ. This
ensures convergence of the potentially infinite sums, while also weighting towards longer
or shorter-term outlooks.

2Much of the theory behind RL was developed in the context of dynamic programming, control
theory, and optimal control.

4.2. Reinforcement learning 96

The form of the value function, often determined by the space of states and actions in
the task of interest, has significant implications on how we can develop a control policy.
Tasks with spaces which are either discrete, or small enough that they can reasonably
be discretised, allow tabular methods to be used. Here, the value function is stored
in a learnt lookup table, from which we can look up the value for all possible actions
from a given state and choose the best one. For more complex, continuous or stochastic
tasks, we tend to use function approximation methods to estimate the value function.
To generate a good policy from such a function is a challenging optimisation problem,
and sets the scene for most modern reinforcement learning algorithms.

In contrast to typical supervised machine learning approaches, one large challenge in
this form of RL is that we need to simultaneously learn the value function and the
policy. The coupling between the two make this a non-stationary learning problem,
where the balance between stability, exploration of the state-action space, and overall
performance is critical for solving the task at hand.

There are several types of value functions, each with a different purpose and use case,
and we provide an overview of the common ones here.

State-value function (V-function). Denoted as V (s), this represents the expected
return (total future reward) when starting in state s and following a particular policy
π, and is given as

V π(s) = Eπ

[∞∑

t=0

γtrt+1 | s0 = s

]
, (4.2)

where γ is the discount factor (between 0 and 1), and rt+1 is the reward at time t+ 1.
It provides a measure of how good it is to be in a specific state under a given policy,
allowing policy evaluation and comparison.

As V is always measured according to a policy, it is common to also define the optimal
state-value function V ∗, i.e. the value under the optimal policy π∗.

Action-value function (Q-function). The action-value function Q(s, a) develops
the state-value function to also include the next action. Starting from state s, taking
action a, and following a policy π for all future actions, the action-value function is
defined as

Qπ(s, a) = Eπ

[∞∑

t=0

γtrt+1 | s0 = s, a0 = a

]
. (4.3)

This is key for planning algorithms, as it allows us to understand the consequences of
choosing a particular action. Again, it is common to consider the optimal action-value
function Q∗, where the optimal policy is followed when generating future actions.

Closely related is the expected state-value function Qπ(s), which is used to evaluate

4.2. Reinforcement learning 97

the expected return under stochastic policies, and is defined as

Qπ(s) =
∑

a

π(a | s)Qπ(s, a). (4.4)

Advantage function. The advantage function A(s, a) measures the difference in
value of an action a compared to the average (or baseline) action in state s, according
to the policy π, and is given as

Aπ(s, a) = Qπ(s, a)− V π(s). (4.5)

By decoupling the value from the absolute value of the current state, advantage can
reduce variance and improve stability in policy gradient methods, in turn improving
learning efficiency. Many implementations of current state-of-the-art policy gradient
methods use the advantage function in the policy updates [Sch+15; Mni+16].

4.2.6 On- vs off-policy learning

While we can easily write out a given value function, in practice generating one for
a specific task needs to be done through statistical estimation from data gathered by
interacting with the environment. When we start to consider the practical consideration
of using RL on real tasks and the challenges with learning a policy from data generated
by a constantly changing policy, the first distinction which should be made is how the
data is gathered, and this falls into one of two camps.

On-policy learning is the simplest approach, where the policy which is being optimised
is also used to generate the data which is used to optimise it. This is the most common
form of RL and is used in many of the state-of-the-art algorithms. The advantage of
on-policy learning is that it is simple to implement, and the policy is guaranteed to
improve over time. However, it can be sample inefficient, as the policy is constantly
changing, so prior generated data cannot be used. This means that the policy must
be good at exploring the state-action space in order to learn about it, which can be
inefficient in large or complex state-spaces. Exploration strategy is key for the policy
to improve, meaning that the policy must be forced to take actions it would consider
suboptimal some percentage of the time in order to potentially find better actions.

Off-policy learning by contrast uses a different policy to generate the data from the one
which is being optimised. This allows for more efficient use of data, as the policy can
be trained on old data, i.e. from a different training run, an older version of itself, or
specifically a policy which is good at exploring the state-action space for data generation.
This can lead to more sample-efficient learning, as the policy can be trained on a larger
dataset, with better diversity. There is however a trade-off, in that the difference in
distribution between the data being used and the policy being trained needs to be
accounted for to ensure stability in the learning process. This can be reconciled through

4.2. Reinforcement learning 98

importance sampling .

Finally, it is worth briefly mentioning another distinction in how data is used: online
and offline learning. These refer respectively to learning through real time interaction
with the environment, versus learning from a previously gathered, fixed dataset of
interaction experience. Most examples we consider are online, however we discuss offline
learning later due to the benefits it can bring in data utilisation efficiency.

4.2.7 Importance sampling

Importance sampling is a method to estimate properties of one distribution by sampling
from another. Consider that we have some random variable x ∼ f , and we want
to estimate the statistic ĥx = Ef [h(x)] for some function h. Importance sampling
allows us to write this in terms of samples from a different distribution y ∼ g as
ĥ′x = Eg [h(y)f(y)/g(y)]. This can be seen by rewriting as

Ef [h(x)] =
∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx = Eg [h(y)f(y)/g(y)] (4.6)

An important consideration here is that while the estimates may coincide (i.e. ĥ′x is
unbiased), the variances are not equal, as can be seen below:

Varf [h(x)] = Ef
[
h(x)2

]
− Ef [h(x)]2

= Eg
[
h(x)2

f(x)
g(x)

]
− Eg

[
h(x)

f(x)
g(x)

]2

̸= Eg

[(
h(x)

f(x)
g(x)

)2
]
− Eg

[
h(x)

f(x)
g(x)

]2

= Varg

[
h(x)

f(x)
g(x)

]
.

This has implications when considering the confidence in an estimate, as the standard
error on some estimate x̂ is σx̂ = σx√

n
for n samples. If the importance sampled estimator

has high variance, then it may be infeasible to get a good estimate of the statistic,
even with many samples. There are several variants which address this, with one
simple approach to clip and weight the ratio of likelihoods such that the quadratic
term in the variance is prevented from growing too large, introduced in the Retrace
algorithm [Mun+16]. While this does bias the estimator, it significantly improves the
variance and has guaranteed convergence when used to estimate certain classes of value
function.

An illustrative example of importance sampling can be seen in Figure 4.2, where we
sample from a truncated normal distribution x ∼ T[0,1](2, 1) and a uniform distribution
y ∼ U(0, 1), and estimate the value of h(x) = x2 under both distributions. The statistics
for both are shown in Table 4.1.

4.2. Reinforcement learning 99

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

{yi} ∼ U(0, 1)c)

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

{xi} ∼ T[0,1](2, 1)a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0

5000

10000

15000

20000

25000

h(yi)f(yi)/g(yi)d)

IS

Retrace

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

4000

5000

6000

h(xi)b)

Figure 4.2: Importance sampling example. Histograms of a) 105 samples {xi} from
the truncated normal distribution T[0,1](2, 1) with p.d.f. f(x), b) h(x) = x2 evaluated
on {xi}, c) 105 samples {yi} from the uniform distribution U(0, 1) with p.d.f. g(x),
and d) Importance sampling (IS) h(x)f(x)/g(x) and Retrace h(x)min{1, f(x)/g(x)}
evaluated on {yi}. Statistics for both b) and d) are shown in Table 4.1.

Off-policy algorithms which use importance sampling derive their improved sample
efficiency from being able to reuse old data generated by earlier versions of the policy,
or even from entirely different training runs. The is achieved through replay buffers—
temporary stores of trajectories recorded earlier in training, which are used with
importance sampling to update the policy.

Table 4.1: Importance sampling statistics.

Ground Truth
r = {xi}

q(x) = h(x)

Importance Sampling
r = {yi}

q(x) = h(x)f(x)/g(x)

Retrace
r = {yi}

q(x) = h(x)min{1, f(x)/g(x)}
Er [q(x)] 0.452954 0.452420 0.323891
Varr [q(x)] 0.304588 0.500734 0.304616

4.2.8 Value estimation

Now that we have the value functions defined, methods for gathering the data, and
methods for estimating relevant statistics on these the data, we need a way to turn this
into an algorithm for calculating values and using them to inform the control policy.
Specifically, how do we update an initial guess for the value function to better align
with the ground truth.

4.2. Reinforcement learning 100

One of the simplest techniques is Monte Carlo (MC) estimation, which samples many
trajectories originating from each state under a given policy and averages the final
return. While this will converge to the ground truth in the limit, it typically requires
many samples to converge and reduce noise, especially in environments with large
state-spaces, where some states may be visited infrequently. MC also only considers
finite tasks where there is a definite endpoint, and open-ended tasks must be manually
truncated to provide a return. Considering only the final return gives the long-term
quality of a particular state, however it may also be desirable to consider shorter term
rewards.

Temporal difference (TD) learning is a practical alternative for value function estimation
and is core in many of the modern RL techniques. It can be seen as a direct solution to
the Bellman equation, where the value of a state is calculated as the immediate reward
plus the estimated value of the next state. Estimates are updated based on other learnt
estimates (i.e. bootstrapping), making it well-suited for ongoing, real-time learning and
environments where episodes can be very long or even infinite. As TD typically only
considers the immediate next state’s estimated value during this bootstrapping process,
it is in some sense opposite to Monte Carlo, which only considers the terminal states’
values, weighted by the probability of reaching each state. While this may change the
resulting value estimates, the ability to learn from partial sequences of data is important
for efficiency, as we don’t need the full episode trajectory and can update estimates
continuously.

In order to actually use TD to update the value function estimates, we calculate the
TD error δ, which is the difference between the predicted value and the newly observed
value. For a state s when taking action a and moving to state s′ with reward r, δ is
given by

δ = r + γV (s′)− V (s), (4.7)

where γ is the discount factor as before.

This provides a signal which can be used to update the value estimate, as minimisation
of this error corresponds to aligning the estimate value function with the ground truth.
In the simplest cases, where we maintain a table of values, we can directly add this
error to the current state’s value estimate, which is what’s done in the TD(0) algorithm.
TD(λ) is a more general algorithm which introduces eligibility traces, a method for
taking into account future value estimates [Sut20]. The parameter λ controls the
balance between TD(0), using only the next state, and MC methods, which use the
entire episode.

In the more complex tasks where the tabular approach is infeasible, we use function
approximation to represent the value estimates, and in turn develop a control policy.
There are a range of algorithms which use the TD error to achieve this, differentiated

4.2. Reinforcement learning 101

by which samples they use, how they update the value function, and how they balance
exploration and exploitation. SARSA (State-Action-Reward-State-Action) is an on-
policy TD control method where updates are made using the state-action pairs that the
agent actually follows. Q-Learning is an off-policy TD control method where the agent
updates its Q-values using the maximum possible reward of the next state, regardless of
the action it actually takes, i.e. it assumes we take one step and then follow the optimal
policy thereafter.

One feature briefly worth mentioning which is used in many RL algorithms is the
concept of ‘target networks’. These are copies of the policy or value estimation networks
which are updated less frequently than the main networks, improving stability. The need
for target networks comes from wanting to both continually update our approximation
of the value function, while also using it to derive a policy. By using a target network,
we allow more experiences to be gathered and applied before deploying the updates to
the main networks which decide our actions.

The ability to use TD methods in on-policy and off-policy settings makes it flexible,
and TD learning still forms the backbone of the state-of-the-art models. Algorithms
which don’t use TD include REINFORCE, which is less widely used these days, MC
methods, and some model-based methods which may not explicitly use TD.

4.2.9 Policy optimisation

Tabular, value-based methods are excellent where it is possible to actually enumerate
states and actions, but most real-world tasks have state-spaces which are too large. In
these cases, we need to use function approximation to estimate the value function, and
in turn develop a control policy. Assuming the value function can be learnt accurately,
deriving a policy consists of maximising this with respect to available actions. This is
often non-trivial.

The policy-gradient is one method, which allows us to take the derivative of the policy
in order to optimise its parameters based on an error signal on the predicted action,
which can in turn be obtained by differentiating the value function. The REINFORCE
algorithm, developed in 1987, is one of the earliest policy gradient methods, allowing
the use of the derivative of the learnt policy to optimise the policy parameters [Wil92].
Today, policy gradient methods are the most common form of RL used in practice,
and have been used to solve a wide range of complex problems, including solving Atari
games, playing Go, protein folding, and controlling robots and fusion reactors [Sil+17;
Jum+21; Deg+22]. This has been made possible by the development of GPGPU
compute and deep learning, providing tools for efficiently parameterising and training
complex policies.

This form led to the current set of actor-critic methods which, despite having been

4.3. Optics 102

RL

Model-Based Model-Free

Dyna-Q MuZero Value-Based Policy-Based Actor-Critic

On-Policy Off-Policy

SARSA Q-Learning DQN Double DQN

On-Policy Off-Policy

REINFORCE PPO MPO

On-Policy Off-Policy

A2C A3C DDPG TD3 SAC

Figure 4.3: RL taxonomy. Set of common RL algorithms, classified by their main
features. In this work, we use DDPG, MPO and SAC, which are all model-free off-
policy methods. Model-based methods have seen use in DeepMind’s Alpha- series of
models, demonstrating state-of-the-art performance in chess, go and protein folding
problems [Jum+21; Ber22], while deep neural network based model-free methods have
seen significant use recently in robotics and control tasks, with milestone successes
including learning Atari [Mni+13] (Q-learning), and tokamak control [Deg+22] (MPO).

known of for many years [BSA83; PS08], only became practical and successful on larger
tasks recently, again on the coattails of deep learning.

For the interested reader, we provide a brief taxonomy of some historically relevant
and common modern RL methods in Figure 4.3. Of these, DDPG, maximum a
posteriori policy optimisation (MPO) and soft actor-critic (SAC) (all off-policy actor-
critic methods) will be discussed in the coming sections.

4.3 Optics

While the focus of this chapter is primarily on the optimisation algorithms, we do
need some sort of physical system to test them on. We now turn our attention to the
particular PNN we will be using and the theory behind it.

In order to demonstrate scalability in our learnt optimiser, any PNN we use should
be high-dimensional, nonlinear and non-differentiable. It should be stable over the
expected lifetime, low in noise, and high efficiencies in speed, energy consumption and
cost are also desirable.

We have already established the benefits which optical systems can provide in the
context of neuromorphic computing. The many degrees of freedom of light make
it an excellent candidate for encoding information. Both diffractive and integrated
optics have been used in currently-available, commercialised, high-dimensional optical
accelerators [Cav+22]. However, with high-speed, high-dimensional optical modulators
now available, diffractive optics is particularly well suited to fast, parallel information
processing in a research setting [Hu+24].

Here we will develop a simple diffractive optical PNN capable of performing operations
equivalent to general convolutions and matrix multiplications to test our optimisation

4.3. Optics 103

algorithms on, which satisfying the high-dimensional and nonlinear3 requirements that
our PNN should have to be an interesting candidate for RL-based optimisation.

In order to do this, it would be useful to have a working understanding of the theory
behind some optical elements that we will be using. This will allow us to simulate the
system, and also leads us to identify useful physical properties which we can exploit in
the optimisation process.

4.3.1 Optical PNN

Here, we introduce a coherent, diffractive optical PNN, based around the use of LCoS
SLMs for encoding digital data in the wavefront of a propagating beam.

SLMs are pixelated displays controlled by a computer which can imprint the data
displayed on them in various degrees of freedom of an optical field, i.e. they modulate
the field. They typically act on either phase, amplitude or polarisation, they are capable
of operating between 100–10 kHz, with newer devices and schemes ever-increasing in
speed and resolution [Tza+19; Wan+19b; Par+20]—modern devices can have resolutions
of several megapixels. The fastest devices, digital micro-mirror devices (DMDs), use
an array of controllable micromirrors which can deflect light in one of two directions.
There are imaging schemes which can be used to generate complex phase and amplitude
distributions despite the binary nature of the device, however this is at the expense
of spatial resolution. LCoS devices apply a voltage across a liquid crystal layer to
induce controllable phase retardation in one linear polarisation axis, which in turn
allows modulation of the phase or polarisation of light. While typically slower than
DMDs due to the limits of the liquid crystal’s response time, they are capable of
continuous phase modulation with 8 and 16bit dynamic ranges, and are more suited
to high-resolution applications. Demand from a range of industries has driven the
development of high-speed, high-resolution, relatively economic commercial devices,
and new technologies hint at even faster modulation devices in the near future.

As discussed in Section 2.1.1, diffractive optical systems have long been known to
provide analogue approaches to mathematical operations such as matrix multiplications
and Fourier transforms [Goo96]. With the Fourier transform, we can also naturally
implement a range of integral transforms such as convolutions. SLMs allow digital
control of the optical fields needed to implement these operations on data of our
choosing.

We consider a system where a coherent beam illuminates a phase-only SLM which
encodes our input data x. The encoding is a linear mapping from integer pixel values
in the range {0, . . . , 255} to phase values in the range [0, 2π]. The encoded field is then
Fourier imaged onto a second phase-only SLM which applies trainable parameters θ.

3In the input data.

4.3. Optics 104

Laser SLM1 SLM2 Camera

Class

Phase ∈ [0, 2π] Phase ∈ [0, 2π] Intensity ∈ [0, 1]

x θ fθ(x)

8 5 4 1
9 6 3

2 7
0

0 1 2 3 4 5 6 7 8 9

0.00π

0.25π

0.50π

0.75π

1.00π

1.25π

1.50π

1.75π

2.00π

0.00π

0.25π

0.50π

0.75π

1.00π

1.25π

1.50π

1.75π

2.00π

Figure 4.4: Optical PNN implementation. Phase-only spatial light modulators
(SLMs) encode data x and parameters θ. Output y = fθ(x) is far-field intensity imaged
via camera. The white grid corresponds to macropixels used in classification tasks, with
class labels determined by task-specific permutation. See below for discussion of the
tiled input encoding scheme.

This in turn is Fourier imaged onto a camera, with the intensity image used as the
output of the PNN. This is illustrated in Figure 4.4.

This system can then be used for a range of tasks such as regression or classification,
where the output dimension can be reduced through the use of macropixels. Figure 4.4
shows the PNN in use as an MNIST digit classifier, where the input image is displayed
on the first SLM with some encoding4 mapping data to SLM pixels. The output
intensity is binned into macropixels, with each assigned a label and the most intense
macropixel taken as the predicted label.

We can write a simplified model of this system as

y(u′, v′) =
∣∣F
[
eiθ(ku,kv)F

[
eix(u,v)

]
(ku, kv)

]
(u′, v′)

∣∣2 , (4.8)

where (u, v) are the spatial coordinates in the input plane, and k□ and □′ are the spatial
coordinates in the parameter and camera planes respectively.

This simple model is nonlinear, making training parameters θ without gradient-based
methods challenging. The primary advantage of the proposed PNN lies in the parallelism
and scalability of its input, parameter, and output spaces, as the SLMs and camera can
all be high resolution. The ability to use macropixels allows us to reduce the dimension
of the system to match that of smaller optimisation tasks.

4Here, the tiling improves performance at no extra cost by providing multiple channels to be
processed in parallel. This is an empirical observation and depends on the task at hand, and specific
form of PNN.

4.3. Optics 105

4.3.2 Error propagation

While the hardware implementation of the PNN is non-differentiable, we can still
consider this approximate, analytic model of the system, and use this to understand
how errors propagate. This deeper understanding of the dynamics of the forward model
allows us make more informed decisions when designing the optimisation algorithm.

For clarity of notation, we will first introduce a conjugation operator C, as a map on
the space of multivariate functions from the reals to the complex numbers, G(Rn,Cm),
defined as

C : G(Rn,Cm)→ G(Rn,Cm)

such that for any function f ∈ G(R,C), we have

(Cf)(x) = f ∗(x)

for all x ∈ Rn, n,m ∈ Z, where f ∗(x) denotes the element-wise conjugate of f(x).

Now taking the simplified forward model of the PNN in Equation 4.8, in order to
calculate the derivatives of this, we break it down as

y(u′, v′) = |Y (u′, v′)|2 = Y (u′, v′)⊙ Y ∗(u′, v′) (4.9a)

Y (u′, v′) = F [H(ku, kv)] (u
′, v′) (4.9b)

H(ku, kv) = Θ(ku, kv)⊙G(ku, kv) (4.9c)

G(ku, kv) = F [X(u, v)] (ku, kv) (4.9d)

X(u, v) = eix(u,v) (4.9e)

Θ(ku, kv) = eiθ(ku,kv). (4.9f)

We can write the partial or functional derivative of each intermediate step as

∂y(u′, v′)

∂Y (ũ′, ṽ′)
= δ(ũ′ − u′, ṽ′ − v′)(Y ∗(ũ′, ṽ′) + Y (ũ′, ṽ′)C)

δY (u′, v′)

δH(ku, kv)
= F [δ(ku, kv)](u′, v′) = e−i2π(u

′ku+v′kv)

∂H(ku, kv)

∂G(k̃u, k̃v)
= Θ(ku, kv)δ(k̃u − ku, k̃v − kv)

∂H(ku, kv)

∂Θ(k̃u, k̃v)
= G(ku, kv)δ(k̃u − ku, k̃v − kv)

δG(ku, kv)

δX(u, v)
= F [δ(u, v)](ku, kv) = e−i2π(uku+vkv)

∂X(u, v)

∂x(ũ, ṽ)
= iX(u, v)δ(ũ− u, ṽ − v)

∂Θ(ku, kv)

∂θ(k̃u, k̃v)
= iΘ(ku, kv)δ(k̃u − ku, k̃v − kv).

4.3. Optics 106

We can now calculate the full derivatives of the output with respect to the inputs
and parameters through the chain rule. Taking care with the integral over functional
derivatives, we have

∂y(u′, v′)

∂x(u, v)
=

∂y

∂Y
·
∫∫ ∞

−∞

δY

δH
· ∂H
∂G
· δG
δX
· ∂X
∂x

= (Y ∗ + Y C)

∫∫ ∞

−∞

(
e−i2π(u

′ku+v′kv)
)
(Θ(ku, kv))

×
(
e−i2π(uku+vkv)

)
(iX(u, v)) dku dkv

= 2Re
[
iY ∗(u′, v′)Fku,kv

[
Θ(ku, kv)e

−i2π(uku+vkv)X(u, v)
]
(u′, v′)

]
(4.10)

and

∂y(u′, v′)

∂θ(ku, kv)
=

∂y

∂Y
·
∫∫ ∞

−∞

δY

δH
· ∂H
∂Θ
· ∂Θ
∂θ

= (Y † + Y C)

∫∫ ∞

−∞

(
e−i2π(u

′ku+v′kv)
)

× (G(ku, kv)δ(k̃u − ku, k̃v − kv))
(
ieiθ(ku,kv)

)
dk̃udk̃v

= 2Re
[
iY ∗(u′, v′)e−i2π(u

′ku+v′kv)H(ku, kv)
]
. (4.11)

These derivatives can then be used to backpropagate any error signal on y through to
the input x and parameters θ, allowing for training of the network using gradient-based
methods.

Examining these derivatives more closely, we see that to calculate the error on θ, we
need to know or recalculate H and Y , the fields immediately after the second SLM and
at the camera respectively5. For the error on x, we also need the complex encodings X
and Θ. To calculate these errors for a real optical system would therefore require a setup
capable of making full field measurements at a number of points, greatly complicating
the system.

For the purposes of numerically simulating this system, we need to discretise the
equations. The forward model becomes

yi =

∣∣∣∣∣
∑

j,k

Fije
iθjFjke

ixk

∣∣∣∣∣

2

, (4.12)

while the derivatives become

∂yi
∂θj

= 2Re [iY ∗
i FijHj] (4.13a)

5While we need to know the fields, and take the real part of the product, this is still independent of
global phase as expected, due to the conjugate Y phase cancelling with the H phase.

4.3. Optics 107

∂yi
∂xj

= 2Re

[
iY ∗
i

∑

l

FilΘlFljXj

]
. (4.13b)

The Fourier transform F is now represented as the discrete Fourier transform (DFT)
matrix Fij, and x and θ are represented as vectors, where we have flattened the 2D
input and phase vectors into 1D vectors for clarity.

4.3.3 High fidelity model

This idealised system is a good starting point, but misses much of the complexity in a
real optical system.

The input illumination to the system is not going to be a perfect plane wave. SLM
phase modulation is nonlinear and discretised according to addressable voltage levels.
Accuracy of phase-voltage calibration may introduce differences between the true and
simulated holograms. The SLM has a finite pixel pitch and active area, and non-unit
fill factor, which lead to diffraction grating effects and a sinc intensity envelope in the
far field. Unmodulated light needs to be filtered in order to observe the diffraction
pattern induced by the hologram, which typically requires masking out some region of
the addressable k-space. Manufacturing tolerances mean the active area of the SLM
isn’t perfectly optically flat, leading to erroneous wavefront differences compared to
the simulation which may or may not be calibrated out. Any Fourier transform is, in
practice, performed by lenses with finite aperture, thickness and aberrations. Choice of
lenses affects magnification and therefore there may be differences in scale compared
to the model, for instance when imaging field G onto the second SLM encoding the
parameters θ. Alignment of optical components at each stage is also a challenge to
match, with six degrees of freedom at each position. The camera used to measure the
output has similar issues to the SLM in terms of finite area, fill factor, and discretisation,
while the dynamic range and exposure constrain the information which can be captured
in a single measurement. Saturation can lead to bloom artefacts in charge-coupled
device (CCD) cameras, and particularly high intensities (i.e. from unmodulated light)
will completely obscure the speckle signal of interest.

These are all factors which cause our simulated model to differ from reality, in turn
limiting the effectiveness of any model parameters trained in simulation, when deployed
on equivalent hardware.

We can build some of these effects into the model, for instance aberrations can be
accounted for by extending the model to include parameterised phase masks between
elements, using for instance a low-rank Zernike basis. Discretisation can be baked into
the model. Using Rayleigh-Sommerfeld propagation and phase masks for lenses instead
of Fourier transforms allows flexibility in the imaging of each pixel-device onto the next,

4.3. Optics 108

and the 6-DoF positioning of each element can be parameterised6.

There comes however a point of diminishing returns, and the complexity of the model
can quickly become unwieldy, where the extra free parameters introduced cannot easily
be fit to the real system. Even with all of these factors, we have neglected drift in
the powered devices (SLM, camera, laser), vibration and noise. While drift on longer-
timescales can in theory be repeatedly calibrated out, the faster processes are more
challenging and would require a non-stationary, stochastic model.

In order to train our optimiser on a representative model of the system we will write a
higher-fidelity model taking into account some of these features, and use this to simulate
the PNN. While it is correct that much of our work in designing a new optimiser aims
to avoid complex simulations, for the purposes of development of the algorithms, it
will be useful to have a ‘cheat’ model from which we can get ground truth gradients,
and compare our optimiser against. The RL optimiser remains ignorant whether the
forward model is simulated or implemented in hardware.

Given L(X, Y) is the space of continuous functions mapping space X to space Y , and
B = {0, . . . , 2b − 1} for bit depth b, a more complete model y : Bdu×dv × Bdku×dkv →
Bdu′×dv′ of our PNN can be written as

yi,j = D
[
P2

[
Edku×dkv [θ](ku, kv)P1 [A(u, v)Edu×dv [x](u, v)] (ku, kv)

]
(u′, v′)

]
i,j

(4.14)

Decoding

Parameter encoding Data encoding

with input field A ∈ L(R2,C), encodings Ed : Bd → L(R2,C), propagators P{1,2} :

L(R2,C)→ L(R2,C) and decoding D : L(R2,C)→ Bdu′×dv′ .

The encoding can be written as

E[x](u, v) = eiϕ(u,v)rect

(
u

du∆u

)
rect

(
v

dv∆v

)

(
(1− r) + r

du−1,dv−1∏

i,j=0

exp
[
i2π⌊xi,j/2b⌋Ke(u, v, i, j)

]
)

(4.15)

where (du, dv) is the number of pixels, (wu, wv) is the pixel fill factor, (∆u,∆v) is the
pixel pitch, ϕ(u, v) is a phase function to account for a non-flat SLM surface, r is the
fraction of light which is modulated, and

6Although the freedom here is limited by the discretised simulation domain, which can introduce
artefacts (i.e. aliasing) if care is not taken.

4.3. Optics 109

−10 −5 0 5 10

u

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
li
tu

d
e

0 4 8 12 16 20 24 28

Pixel

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
te

n
si

ty

Decoding function
du, wu, IT = [32, 0.8, 15]

0

π

2π

P
h

as
e

Encoding function
∆u, r, du, wu = [0.5, 0.95, 32, 0.8]
a)

0

255

C
am

er
a

ou
tp

u
t

b)

Figure 4.5: Optical encoding and decoding. a) Encoding function Equation 4.15
for a 32 pixel input xn = 2πn, n ∈ {0, . . . , 31}. ϕ = 0 for clarity. b) Decoding function
Equation 4.18, for arbitrary intensity, demonstrating discretisation and saturation.

Ke(u, v, i, j) = trap

(
u−∆u

(
i− du−1

2

)

∆uwu
,
1

wu
− 1

)

trap

(
v −∆v

(
j − dv−1

2

)

∆vwv
,
1

wv
− 1

)
, (4.16)

with the trapezoid function given as

trap(x,w) =

1, |x| < 0.5

0, |x| > w + 0.5

1 + 1
w
(0.5− |x|) , otherwise.

(4.17)

The decoding can be written as

D[f(u′, v′)]i,j = min

{
2b − 1,

⌊
2b

IT

∫∫ −∞
−∞ du′dv′|f(u′, v′)|2Kd(u

′, v′, i, j)
∫∫ −∞

−∞ du′dv′Kd(u′, v′, i, j)

⌋}
, (4.18)

where we have exposure threshold IT , rect is the boxcar function, and

Kd(u, v, i, j) = rect

(
u−∆u

(
i− du−1

2

)

∆uwu

)
rect

(
v −∆v

(
j − dv−1

2

)

∆vwv

)
. (4.19)

Both encoding and decoding functions are illustrated in Figure 4.5. Note in Figure 4.5.a,
the non-unit modulation r causes attenuation which depends on the encoded pixel
values. This results in the encoding not being purely phase-affecting as desired.

To describe the propagation, the most general starting point is the full vector wave
equation. For our purposes we can make scalar field and steady-state approximations,
leading to the Helmholtz equation. From this, the Rayleigh-Sommerfeld equation can be

4.3. Optics 110

derived, which, provided we know the field in one specific plane, allows us to calculate
the full 3D field as

U(x, y, z) =
1

iλ

∫∫ −∞

−∞
U(x′, y′, 0)

zeikr

r2

(
1 +

i

kr

)
dy′dx′. (4.19, RS)

The main challenge here is the dependency on r =
√
z2 + ρ2 with ρ2 = (x− x′)2 +

(y − y′)2. We can simplify by making the approximation

r =
√
z2 + ρ2

= z

√
1 +

ρ2

z2

≈ z

(
1 +

ρ2

2z2

)

= z +
ρ2

2z
.

We can use this to substitute the r term in the exponential provided that the quadratic
and higher binomial terms we drop are less than the period of the exponential, 2π, i.e.

kρ4

8z3
≪ 2π.

For the denominator of Equation 4.19, RS, we take the stronger approximation that
r ≈ z i.e. z ≫ ρ. This gives the form for the inner term of the integral as

zeikr

iλr2

(
1 +

i

kr

)
≈ zeik(z+

ρ2

2z
)

z2

(
1

iλ
+

i

iλkz

)

≈ eik(z+
ρ2

2z
)

(
1

iλz
+

1

2πz2

)

≈ eik(z+
ρ2

2z
)

z
,

where only the 1/iλz term is large enough to contribute, giving us the Fresnel diffraction
integral,

UFresnel(x, y, z) =

∫∫ −∞

−∞
U(x′, y′, 0)

eik(z+
ρ2

2z
)

iλz
dy′dx′. (4.20)

One can represent this using the Fourier transform, which is useful for numeric calcula-
tions,

UFresnel(x, y, z) =
eikz

iλz
ei

k
z
(x2+y2)

∫∫ −∞

−∞
U(x′, y′, 0)ei

k
z
(x′2+y′2)ei2π(

x
λz
x′+ y

λz
y′)dy′dx′

=
eikz

iλz
ei

k
z
(x2+y2)F

[
U(x′, y′, 0)ei

k
z
(x′2+y′2)

] (x
λz
,
y

λz

)
. (4.21)

4.3. Optics 111

While Equation 4.21 allows us to calculate the propagation efficiently using a single
fast Fourier transform (FFT) and motivates the Fourier representation in Equation 4.8,
it does restrict the coordinates in the output plane for which we can calculate the
field. A more general approach is Rayleigh-Sommerfeld convolution (RSC), which
treats Equation 4.19, RS as a convolution with kernel hRS

z (x, y) = zeikr

iλr2

(
1 + i

kr

)
where

r =
√
x2 + y2 + z2, leading to the convolutional form

URSC(x, y, z) = U(x, y, 0) ∗ hRS
z (x, y)

= F−1
[
F [U(x, y, 0)] (kx, ky) · F

[
hRS
z (x, y)

]
(kx, ky)

]
(x, y, z). (4.22)

Alternatively, we can view Equation 4.19, RS purely in k-space to derive the angular
spectrum method (ASM), where we treat each plane wave component of U separately.
Propagating between planes separated by distance z, each plane wave picks up a
phase-offset corresponding to the relative optical path length.

Consider we have the plane wave decomposition of monochromatic field U at z = 0,
Uz=0(kx, ky) = F [U(x, y, 0)](kx, ky), then the field at U(x, y, z) can be seen as the
integral of each plane component weighted by the phase ∆ϕ = k⃗ · r⃗ = kxx+ kyy + kzz

accumulated as it propagates the distance z,

UASM(x, y, z) =

∫∫ −∞

−∞
Uz=0(kx, ky)e

i∆ϕdkxdky

=

∫∫ −∞

−∞
Uz=0(kx, ky)e

iz
√
k2−k2x−k2yei(kxx+kyy)dkxdky

= F−1
[
F [U(x, y, 0)] (kx, ky) e

iz
√
k2−k2x−k2y

]
(x, y, z). (4.23)

Note that in both ASM and RSC we avoid making approximations, and come straight
from the Equation 4.19, RS.

Both Equation 4.22 and Equation 4.23 are equivalent in the form written here—the
difference comes when we attempt to calculate them numerically. The discretisation and
finite domain in a numeric calculation can introduce aliasing artefacts in our solution,
depending on the sampling pitch (dx, dy), number of samples (Nx, Ny), and propagation
distance. We need to consider these values in order to choose the appropriate algorithm.
In [ZZJ20], a critical propagation distance

zc =
2Nxdx

2

λ

√
1−

(
λ

2dx

)
(4.24)

(and similarly for y) is derived based on the sampling theorem. Propagating distances
less than this requires the angular spectrum method, while propagating distances greater
than this requires the Rayleigh-Sommerfeld convolution. If we choose (dx, dy) both less
than λ/2 then RSC is valid for any distance z. Note, that in all cases, when computing

4.3. Optics 112

numeric Fourier transforms used by these methods, it is important to zero-pad the
input to twice the size in order to satisfy the sampling theorem [Goo96].

All above methods assume propagation in a homogeneous medium. In the case of
propagation through thick inhomogeneous media, we need to use split-step methods.
In all the coming discussions however, we will assume that any phase objects are thin,
i.e. can be represented as multiplicative phase masks in the spatial domain.

One point to note is that these methods do not necessarily conserve energy when used
in numeric calculations, which can be seen in RSC by considering that

∣∣F
[
hRS
z (x, y)

]
(kx, ky)

∣∣ ̸= 1

i.e. this is no longer an all-pass filter. Any numeric calculation has to sample with a
finite pitch, truncating the high-frequency components of the spectrum. Even in ASM
which truly is an all-pass filter, energy losses are to be expected due to the zero-padding
followed by cropping, needed to prevent aliasing. Methods to correct this are omitted
here as absolute intensity correctness is not especially important for our purposes—we
only require that relative intensity between pixels is correct, as the simulated camera
exposure can be set to correct for global reduction in intensity.

Finally, for the purposes of our model, we can write the propagation as

P [f(u, v)](u′, v′) = F [F [f(u, v)] (ku, kv)H(ku, kv)] [u
′, v′] (4.25)

where H is the transfer function of the optical system and, depending on z and the
field sampling, will either use the ASM or RSC.

With this high-fidelity model defined, a similar error propagation analysis as performed
in Section 4.3.2 could be conducted. In practice, despite the added complexity in the
high-fidelity model, the overall structure of the gradient dependencies will remain largely
the same. We therefore leave the specifics of the error calculations to a more competent
mathematician—auto-differentiation software.

4.3.4 Simulation details

We implement both models in simulation, using a custom python package with the
differentiable computing framework JAX [Bra+18] as its numeric backend. This allows
easy GPU parallelisation, and auto-differentiation of the models.

The high-fidelity simulation is performed on a grid with a pitch of 620 nm and spatial
extent of around 0.7mm, light wavelength of 532 nm, propagated using the Rayleigh-

4.4. Learnt PNN optimiser 113

Sommerfeld method. As the field is undersampled for the chosen wavelength, we use the
RSC method for propagation with all propagation distances greater than the critical
distance. For propagation, we make use of the general chirp Z-transform (CZT) to
perform Fourier transforms, as this allows us to choose number of samples and the
pitch of the output field’s coordinate grid [Hu+20]. The CZT is a generalisation of
the discrete Fourier transform, framed in a way which is still efficiently calculable via
the FFT algorithm. While we have to be careful of aliasing and ensure valid sampling
conditions, the additional flexibility of the CZT lets us calculate a version of the discrete
Fourier transform with arbitrary grid spacing.

Lenses placed between the SLMs and the readout camera use the ideal thin lens model
and have focal lengths chosen to image the full Fourier spectrum of the previous plane
onto the active region of the target plane, with some fixed but random misalignment of
order 0-30 µm introduced between each plane to emulate experimental conditions.

The SLMs are modelled as a grid of phase modulating pixels, with a pixel pitch of
6.2 µm and fill factor of 0.9. Each SLM is angled off-axis to ensure that the diffraction
orders in the Fourier plane originating from the pixelated grid is diffracted to the edges
of the region of interest in the Fourier plane. At each SLM, an additional small, fixed,
random wavefront distortion is added, modelled using the first 10 Zernike polynomials,
simulating misalignment and non-ideal optical components. The camera readout is in
intensity with a fixed exposure and time-varying sensor noise.

Figure 4.6 shows some example optical fields generated by the high-fidelity simulation.

4.4 Learnt PNN optimiser

With the foundations for the reinforcement learning model and the optical PNN defined,
we can now formulate the system we use to build our learnt optimiser.

For any given PNN, there is a two-step process we need to follow. Firstly, the optimiser
model itself is trained, in a relatively expensive process termed meta-training, which
learns the policy πϕ, using reinforcement learning and a distribution of tasks which we
can train the PNN to solve. This is performed once for a particular PNN.

Secondly, the learnt policy πϕ is fixed and used to learn optimal PNN parameters θ
for each new task of interest during PNN training. This is done online using the same
system which performs the final inference on unlabelled data.

Here we will focus on the meta-training stage, where there are several important
components which we need to define. Firstly we need to formalise the environment—the
form of the MDP which will represent training a PNN, the reward function, and the
range of tasks the agent will be trained on during meta-training. Designing as good
reward function is critical, as it generates the signal which guides the agent in its

4.4. Learnt PNN optimiser 114

Intensity

Intensity weighted phase

IntensityPhasePhasea)

c)

b)

Figure 4.6: High-fidelity simulation examples. Various examples of propagated
fields using the high-fidelity simulation. a) An SLM with a structured phase hologram,
illuminated by a Gaussian beam. The columns show phase and intensity, while the
rows show the field in the plane immediately after the SLM, and in the far-field,
respectively. b) An SLM with a random hologram, illuminated by a wide Gaussian
beam, approximating a plane wave. The rows correspond to planes immediately after
the SLM, a short propagation distance after the SLM, and the far-field. c) An intensity-
weighted phase image taken as a yz-plane cross-section through the field generated by
a random SLM phase mask illuminated by a plane wave, where we observe the various
k-space components propagating outwards.

learning, while the set of tasks we use will determine the agent’s ability to generalise to
new, unseen tasks. Finally, we need to define the agent itself. This will consist of an
RL algorithm, and the parameterised neural networks which serve as policy and value
estimator.

4.4.1 Environment

When we train a conventional neural network with supervised learning, we are solving
a numerical optimisation problem of the form

argmin
θ

|D|∑

i=0

L(fθ(xi), yi), (4.26)

4.4. Learnt PNN optimiser 115

for neural network f with parameters θ, objective (equivalently, cost or loss) function L,
and dataset of pairs D = {(xi, yi)}. The objective L can be seen as a way of comparing
the prediction of the network, fθ(xi), with the target yi.

For most problems which we want to solve with machine learning, we do because the
optimisation is not solvable analytically, so we rely on iterative stochastic gradient-based
methods such as stochastic gradient descent (SGD), which sample from the dataset and
update parameters incrementally, according to some function (which we write here as
m) of the local gradient-estimate,

θ → θ +m

(
∂L

∂θ

∣∣∣∣
fθ(x),y

)
, (x, y) ∼ D. (4.27)

The stochasticity in the optimisation comes from randomly sampling data (x, y) at each
iteration. This provides a couple of benefits—firstly, learning can be fast, as we don’t
need to optimise over the entire dataset at each step, and secondly, we avoid averaging
too many different gradients generated by different data samples in each step, which
otherwise can prevent learning.

It is usually not possible to guarantee discovery of the global optima (i.e. the value
of θ which globally minimises L), but SGD has proven successful in a wide range of
applications, and we can condition the loss landscape with regularisers—additional terms
in the objective function which constrain the optimisation—to improve the likelihood
of finding a good solution.

For our learnt optimiser, we want to replace the function m, which estimates the
parameter update ∆θ, with a learnt policy πϕ, but we need to consider what form this
should take, and how we can frame our optimisation as a game, or environment, which
a reinforcement learning algorithm can interact with.

The first observation we make is that the gradient of the forward system for a particular
input and parameter vector,

∂L

∂θ

∣∣∣∣
fθ(x),y

,

depends only on x, y and θ. The update ∆θ therefore also only depends on these terms,
and the value of the loss7.

We can consider the tuple st = (xt, θt, Lt) to fully characterise the state of the system
at a particular step t in the iterative process, as the update ∆θt should depend only on
these quantities. This allows us to consider a step in our optimisation as a step in a
Markov chain, which we can use as the basis of the environment in our RL meta-learning

7For convenience, we ignore the many, often necessary, layers of additional features present in
modern gradient-based optimisers such as momentum, adaptable learning rates, etc. These will be
revisited later.

4.4. Learnt PNN optimiser 116

task.

A couple of points to note here. In gradient-descent, the values we have constructed our
state from give the next value of θ deterministically. However, once we have updated
θ, we immediately sample a new data point xt+1, meaning that the new overall state
st+1 = (xt+1, θt+1, Lt+1) remains stochastic, but only in the x and L components.

Another point to note is that providing the loss value directly in the state definition
has some important implications. In GD, the parameter updates for a particular layer
depend on the loss implicitly through the error at the output of that layer, ∆y, which
is derived from L. If we form a state with L directly, then this would allow the RL
algorithm to correlate overall performance on a task with the rewards it sees, and should
encourage overall performance on the task at hand, rather than constraining predictions
to the true gradients. However, it introduces a dependence on the task itself, as the
agent would need to develop some understanding of how to map the scalar valued L to
an approximate gradient in the parameters, where different tasks with exactly the same
L would need potentially very different parameter updates. This makes the update
prediction problem highly ill-posed, however we can solve this in two ways. The first is
to allow the RL agent to remember past actions and observed losses by expanding the
state vector it sees. This has some conceptual similarities to evolutionary strategies
such as CMA-ES, which builds estimates of the loss landscape through many samples
taken over time in order to learn preferred directions in parameter space. The second
approach is to remove the dependence on task, as in SGD, by manually backpropagating
the loss to the output of the PNN and using the resulting error on the PNN output,
∆y, to create our state, s = (x, θ,∆y). Both approaches have costs and benefits, and
we will consider their differences in more detail in the coming sections.

Given these two options for the state, we can define an episode to consist of training
the PNN from some randomly initialised θ0 on a particular task, where a task is defined
as a dataset and a loss function (D, L). At every step t, we sample a pair from the
dataset, and use these with the loss function to form the state st = (xt, θt, Lt) (or
st = (xt, θt,∆yt)). The environment returns this state as the observation, and the agent
then provides an action ∆θ which we apply to the current parameters. The environment
then calculates the new state as the observation for step t+1, and the (as yet undefined)
reward for step t, and moves to the next step. This process repeats either for a fixed
number of steps or until some stopping condition on the loss value is satisfied.

As we would like our RL agent to experience a wide range of different states, so that it
may learn a general rule for calculating parameter updates, we want to maximise the
diversity in the states. This requires us to train over a range of different tasks, and on

4.4. Learnt PNN optimiser 117

each task, to gather many example states.

Let’s imagine a trajectory taken through parameter space under SGD, from a randomly
initialised parameter vector, all the way through to a local optima. The types of updates
which SGD makes to the parameters will change considerably along this trajectory. For
instance, at the start, the step sizes may be larger and the direction we move in may
be well-defined by the dataset, however as we get closer to an optima, the gradients
will tend to become smaller and noisier, as different influences in the dataset pull the
parameters in different directions. It is important that our RL agent experiences all
different types of region in the parameter space, so that it is able to generate good
parameter updates across the entire length of an episode.

Consider teaching an agent to play chess—with enough experience it may be able to
learn to play reasonable openings, however if you then show it an endgame, it will fail
to choose good moves, as it hasn’t been trained on these sorts of states. The only way
for it to learn endgames naturally, is to first get good enough at playing openings and
middlegames that it starts to experience endgames. We can cheat the system here a
bit, as we may know what common endgames look like and so—exploiting the Markov
property— we can show the agent these endgames during its training, without asking
it to play the game up to that point.

In our case, we would need to know a priori what good parameters look like on a
specific task in order to start the agent out at the ‘endgame’. Otherwise, we have
to rely on the agent getting to these near-completion states naturally. This requires
training on many, long episodes, and is a major contributor to the overall cost of
meta-training. Truncating episodes early may generate an agent which can optimise a
PNN well initially, but whose final performance on a task is capped due to generating
bad updates in the later stages of PNN training.

4.4.2 Tasks

We define a task to consists of a dataset of pairs x, y, and a loss function L which
evaluates the network predictions ŷ against the target ‘y’s. We also implicitly include
an encoding and decoding strategy, which tells us how to map our x to the pixel values
of the SLM, and how to interpret the camera pixel intensities as an output label. As
discussed, we want to create a set, or distribution, of different tasks which we can
sample from during meta-training, to encourage our learnt optimiser to perform well
independent of task.

The diversity of this task distribution will dictate the capacity of the optimiser to
generalise to new tasks, but also the complexity of training the optimiser in the first
place. Too narrow a distribution, with all tasks very similar, and the policy is likely
to overfit, learning specific parameters which solve members of this task distribution,

4.4. Learnt PNN optimiser 118

instead of good general-purpose updates. Too broad a distribution, and meta-training
will take too long or fail to converge. We need to construct our tasks intelligently such
that we can tune this diversity.

During the course of this work, there were many task distributions tested, however
the majority of them fell into one of the two categories above—too narrow, leading to
overfitting, or too broad, preventing meta-training convergence. Indeed, designing a
good task distribution turned out to be harder than expected, and remains one of the
main areas for further development in this work.

Considering just image classification tasks, the best performing method of generating
a task distribution that we tested turned out to be varying the output decoding for
a fixed parent task. In the case of image classification, the decoding is an assignment
from intensity macropixels to class labels, which can then be used in the standard
categorical cross-entropy loss. We create different tasks by using randomly permuting
the map between macropixels and class labels. As our learnt parameters function as
a diffraction grating in the PNN, changing the decoding changes the locations on the
camera which the PNN must focus light on, in order to classify a given input. Two
generated tasks may admit very similar optimal parameter vectors θ in the case where
only two macropixels’ labels are swapped, or very different optimal parameter vectors
for more complex permutations. Once the tasks have been generated, we split them
into a training and a test task distribution. Figure 4.7 demonstrates the differences
in learnt parameters θ based on different macropixel assignments. We see that the
brightest macropixels in the camera output track the permuted labels. While the
learnt parameters do vary across the four tasks shows, we also see that there is certain
structure common to all solutions. Looking at the similarity of the optimal parameters
across different tasks provides a way of quantitatively measuring the diversity of the
task distribution.

4.4.3 Reward function

We have discussed in fair detail the importance of getting the reward function right,
and the failure modes when we don’t. In our case, we want to design a reward which is
informative, to ensure that the agent learns quickly, but which doesn’t excessively bias
the agent, or give rise to unfortunate exploitations.

There are two views on how reward should depend on the current performance on
the task (i.e. the loss). The first is that reward should depend only on the change in
performance, so that the agent isn’t penalised for finding itself in a difficult region of
the parameter space, only on its ability to move towards better regions. The second
is that the reward may also depend on the absolute performance, so that the agent is
encouraged to explore the parameter space more thoroughly. The scale of the reward is
important, and many RL algorithms can be brittle to this. We would like to encourage

4.4. Learnt PNN optimiser 119

0.00π

0.25π

0.50π

0.75π

1.00π

1.25π

1.50π

1.75π

2.00π

a)

b)

6 0 8 4
7 5 2

9 1
3

0 6 7 9
2 8 4

5 3
1

1 6 4 0
8 3 7

2 9
5

1 3 7 0
5 9 4

2 6
8

Figure 4.7: MNIST task distribution by macropixel decoding. Examples of a)
trained parameters θ in range [0, 2π] for four different tasks, where each task is MNIST
classification with a different assignment from macropixels in b) output intensity to
class labels. Inset MNIST image is the input which generates this particular intensity
output.

the agent to continue to improve on the loss, across a wide range of loss scales, and
across different tasks which may start and finish on very different loss scales.

Given ℓ = L(ŷ, y) and ℓ′ = L(ŷ′, y), where ŷ′ is the PNN output after the parameter
update derived from the previous reward, some of the more obvious reward forms
include:

• Absolute loss value, i.e. r ∝ −ℓ′. Encourages decreasing loss, but is overly sensitive
to the specific task. Large range of scales makes learning difficult.

• Change in loss value, i.e. r ∝ ℓ− ℓ′. Less sensitive to task specifics, but the range
of scales is still problematic.

• Ratio in loss value, i.e. r ∝ ℓ/ℓ′ − 1. Encourages relative improvement, but is
sensitive to the initial loss value.

• Logarithmic change in loss value, i.e. r ∝ log(ℓ)− log(ℓ′)

• Alignment with target change, i.e. r ∝ CSE
(
∂ℓ
∂ŷ
, (ŷ′ − ŷ)

)
. Encourages alignment

with the true gradient, but risks biasing the system away from the true goal, loss
minimisation.

From empirical data gathered over a range of these rewards, we settled on a balanced

4.4. Learnt PNN optimiser 120

approach with

Rα(L, ŷ
′, ŷ, y) = α(log(L(ŷ, y))− log(L(ŷ′, y))) + (1− α)CSE

(
∂L(ŷ, y)

∂ŷ
, (ŷ′ − ŷ)

)
,

(4.28)
depending only on the changes in loss and the resulting change in the PNN output,
with α interpolating between the two extremes. We find that α = 0.7 performed well,
beating α = 0 or α = 1 in our tests, however due to the cost of running meta-training
this value hasn’t been fully optimised.

While the reward function should technically depend only on the values from the current
time step (Markov property), more complex schemes, such as basing reward off the
moving average of the change in loss over episode steps, have been found to perform
fairly well in small tests, but have not been fully explored. Tests where the reward is
scaled by the step size have also shown promise, as this penalises the network more
for taking large steps in areas where it is unsure, but encourages large steps in regions
where the network is confident.

4.4.4 Choosing an RL algorithm

The development of this project was very much an iterative process, with several
algorithms and architectures tested. To provide some context for the range of different
approaches discussed in the coming results sections, we give a brief chronological
overview of the evolution of our learnt optimiser, detailing the reasons behind the
decisions made, the experiments performed, and the challenges with each approach.

When choosing an initial algorithm, we were immediately able to dismiss the use of
on-policy approaches, as making forward evaluations of the PNN carries a certain cost
in both simulation and hardware, making meta-training sample efficiency a priority.

We chose to begin with DDPG [Lil+19]. This is an established actor-critic algorithm
which uses off-policy data gathered with a noisy exploration policy, and is relatively
simple to implement, with several reference implementations available. This was used
to generate the toy example in Figure 4.1.b.

However, through our tests it soon became apparent that deterministic policies were
a poor choice in our application, as they rely heavily on having a good exploration
strategy. DDPG also suffers from a certain brittleness to hyperparameters, and proved
particularly difficult to tune in our use case. This led us to search for an alternate
algorithm, which would provide good state-space exploration, while prioritising sample
efficiency.

We settled on soft actor-critic (SAC) [Haa+18], which allows the use of stochastic
policies, has inbuilt exploration, good robustness to hyperparameters, and is widely

4.4. Learnt PNN optimiser 121

used in the community, meaning there are several stable implementations available.

It’s worth mentioning that at this point, we also strongly considered maximum a
posteriori policy optimisation (MPO) [Abd+18b; Abd+18a], which provides inbuilt
exploration through KL regularisation, state-of-the-art sample efficiency, and has
been demonstrated on a range of complex control tasks [Deg+22]. Ultimately, it was
the availability of stable, robust implementations of SAC and popularity within the
community which were the main deciding factors.

Both SAC and MPO support stochastic policies, where instead of predicting optimal
actions, we calculate a probability distribution over actions, in turn letting us quantify
the model’s uncertainty about a particular update. We can write the policy as a
deep neural network πϕ with trainable parameters ϕ, which maps from our state to a
probability distribution over possible parameter updates,

π(∆θ | s), (4.29)

where state s is one of the two forms given in Section 4.4.1. By sampling from the
distribution during meta-training, we can encourage exploration, as two identical states
will produce different updates. During inference, we can dispense with exploration
and choose the maximum likelihood update, which gives a single update step in our
optimisation as

θ → θ + α argmax
∆θ

πϕ(∆θ | s = (x, θ,∆y)), x, y ∼ D. (4.30)

We worked with SAC for several months, and initial results training the PNN in
simulation were promising, however subsequent efforts to replicate these results proved
challenging. Significant efforts were made to analyse SAC, and attempt to improve
its stability, however all indicators pointed to the method being extremely sensitive
to random initialisations, at least on our problem. While there remain avenues of
investigation which could help improve SAC’s performance, the sample efficiency limits
the rate at which we could iterate and test improvements. As a result, we made
the decision to change tack and move to MPO, for its improved sample efficiency and
robustness to hyperparameters, where we used the reference implementation in [Hof+20].

In the coming sections, we present the results from SAC, focussing primarily on learning
to optimise a single PNN. We subsequently discuss the work with MPO, which mainly
concerns the extension of our meta-learning approach to training deep networks.

4.4.5 Network architectures

SAC works by training three deep neural network function approximators, where two
of them, a state-value estimate and a state-action value estimate, act as auxiliary

4.4. Learnt PNN optimiser 122

estimators used to train the policy. As with any supervised deep learning, the structure
and parameterisation of these networks will determine the types of functions we can
learn, and in turn, the upper limit of performance on the learning task. While we
expect that the networks will need to learn some sort of representation of the dynamics
of the PNN in order to make good estimates, we want to avoid training a model which
perfectly reproduces the PNN, as in digital twin methods, due to the expense involved.
Even if we wanted to, we have already seen that training a black-box digital twin from
data can be a hard task due to the volume and diversity of data required to capture
the full dynamics of a system and improve the conditioning of the inverse problem.

We therefore have to balance the overall performance of a network architecture with
its size and computational costs. It is desirable for the policy to be fast to evaluate,
to improve inference time, and as small as possible while still retaining the capacity
to map inputs to pseudo-gradients. Based on the theory of direct feedback alignment
(DFA), we know that a random map from the output error to the parameter space
will with high likelihood preserve the relative orientations of the backprojected errors,
and that networks can accommodate these—technically incorrect—gradients to learn
good solutions. Further, assuming that the parameter and output spaces are of similar
dimension, we know from Johnson-Lindenstrauss (Section 2.3.2) that the random map
can have lower rank and still maintain this orientation preserving property.

Unlike DFA, we use a trainable nonlinear neural network rather than a fixed random
matrix, allowing us to train the backprojection based on the observed reward and
further improving the alignment with the true gradients. As we would like to be able to
work with high-dimensional spaces, we need to build the networks using layers which
can scale well. One option is to use convolutional layers, however we find empirically
that on this task and PNN they don’t perform especially well. Instead, we opt for dense
layers, however we represent these using low-rank matrix multiplications to reduce the
number of trainable parameters and improve computational efficiency. Each layer is
represented by two rectangular matrices, Rk×d and Rd/2×k, where d is the dimension
of the input, k ≪ d is the rank of the map, and the output has half the number of
elements. This form gives a computational complexity of O(3dk − k − d/2) for each
layer, improving over the full rank matrix complexity O(d2 − d/2).

Our SAC algorithm networks are shown in Figure 4.8. The policy is a simple U-net
approach, which performs a tunable low-rank matrix multiplication, as described above,
at each stage. The value networks are also kept intentionally simple, with both reusing
the first half of policy the U-net, denoted H. We process the output of the policy
through a final long short-term memory (LSTM) block, which provides fading memory
of previous updates. This is a feature common to many state-of-the-art gradient based
optimisers, such as Adam [KB14], which implement time-dependent features, such as
momentum, by calculating the running average of the calculated gradients. In contrast

4.4. Learnt PNN optimiser 123

x

θ

s

∆θ

π(x, θ)

H(x, θ)

x
θ H

∆y

V

V (x, θ,∆y)

x
θ H

x
θ + ∆θ H

∆θ

∆y

q

q(x, θ,∆y,∆θ)

Q LSTM D J

Figure 4.8: SAC RL network architectures. Architecture of the policy, state-value,
and state-action value networks π, V and q used in the SAC algorithm. The H blocks
used in V and q refer to the head of the policy, outlined in the left panel. See text for
details of accompanying sub-blocks.

to the usual method of applying these recurrent layers, each forward pass through our
network performs only one step of the LSTM8, and the hidden state is reset at the start
of each episode. While this episodic memory does break the Markov assumption, we
find empirically that it improves performance of the agent.

To ensure stable policy outputs, we use a logarithmic nonlinearity on the output

sign(x) log(1 + |x|). (4.31)

This helps restrict predictions to lie in the region around the origin, such that we avoid
making excessively large updates to the PNN parameters in a single step.

The details of the sub-blocks in Figure 4.8 are given as follows:

• Q(hi) = LReLu(Wl ·Wr · concat(h1, . . . , hi))

A low-rank dense matrix operation. Concatenates all inputs, multiplies
by a Rk×d matrix Wr, then a Rd/2×k matrix Wl. For all experiments
we choose k = 1024 and d is the dimension of the inputs. The output
is passed through a leaky ReLu nonlinearity, with leakage-rate 0.01.

• LSTM(h, s)

Applies the LSTM operation on the output of the U-net, with LSTM
state s9. Models the parameter distribution as a multivariate Gaussian,
producing a mean and covariance matrix. The covariance matrix is
constructed through the Cholesky decomposition. Log nonlinearity
Equation 4.31 is used to bias the output towards the origin.

8Due to the computational scaling here, we only backpropagate through time a maximum of 3 steps
when training the network. This is an area where we would like to improve, but it currently adds
significant overhead to the training process.

9Different to the environment state.

4.4. Learnt PNN optimiser 124

• J(h1, h2) = W2 · LReLu(W1 · concat(h1, h2))

Two dense layers: Rk×d matrix W1, then LReLu nonlinearity, then
R1×k matrix W2, with no nonlinearity on the output.

• D(h1, h2) = concat(h1, h2, |h1|2 − |h2|2)

4.4.6 End-to-end learnt optimiser algorithm

With environment specified, algorithm chosen and networks defined, we can now outline
the high-level algorithm for both meta-training and PNN training. We start with
meta-training, which is outlined in Algorithm 1.

Note that in stochastic policies, the update is ∆θ ∼ πϕ(∆θ | s) and the likelihood πϕ(s)
is also stored in the replay buffer, such that the experience can be used later in off policy
updates via importance sampling. At evaluation time, the stochastic policy is converted
to a deterministic policy via maximum likelihood, i.e. πϕ(s) = argmax∆θ πϕ(∆θ | s).

With a trained policy network, we can now apply the learnt optimiser to train new
tasks on the PNN in a process outlined in Algorithm 2.

Algorithm 1 Learnt optimiser meta-training.
Initialise task distribution T , agent networks πϕ, VϕV and qϕq , forward model f ,
reward function R, experience buffer B.
for episode do

Sample dataset and loss function (D, L) ∼ T .
Initialise parameters θ0.
for t← 0 to tmax do

Sample (x, y) ∼ D.
Evaluate forward model ŷ = fθt(x).
if end_condition(t, L(ŷ, y)) then

break
end if
Package state s =

(
∂L(ŷ,y)
∂ŷ

, x, θt

)
.

Sample parameter update ∆θ ∼ πϕ(∆θ | s).
θt+1 = θ′ = θt + clip[−α,α](∆θ).
ŷ′ = fθ′(x).
Calculate reward r = R(L, ŷ′, ŷ, y).
Package new state s′ =

(
∂L(ŷ′,y)
∂ŷ′ , x, θ′

)
.

Store experience (s,∆θ, r, s′, πϕ(∆θ | s)) in buffer B.
end for
Update ϕ, ϕV and ϕq according to RL algorithm, sampling from B.

end for

4.4. Learnt PNN optimiser 125

Algorithm 2 Learnt optimiser deployment.
Load learnt policy πϕ, task (dataset and loss function) (D, L).
Initialise parameters θ0.
for t← 0 to tmax do

Sample batch {(xj, yj)}Bj=1 ∼ D.
Evaluate forward model ŷj = fθt(xj).
if end_condition(t, L(ŷj, yj)) then

break
end if

end for

One feature of SGD is that updating network parameters based on the gradient obtained
from a single data sample tends to lead to very poor performance. On the other hand,
aggregating the gradients from all samples in the dataset before updating the parameters
also performs poorly. In the former case, the gradient is too noisy, and doesn’t correlate
well with the true overall task’s gradient. In the latter, we see that the gradients tend
to average out, and it becomes very easy to get stuck in the parameter space.

The trick to get around this problem is to optimise on mini-batches of data, where we
update parameters with the aggregated gradients produced by a small subset of the data.
This helps to filter noise from the gradient estimates by averaging over samples, while
still giving a good local gradient estimate for a small sample of the data distribution.

The same challenge applies in our learnt optimiser, at two levels. The first is during the
meta-training. Here, we wish to force the task independence property in the optimiser,
i.e. to be able to generalise to new tasks. This requires us to average over some large
distribution of tasks, to learn the more fundamental ability to propagate errors through
the PNN, as opposed to the specific challenge of solving one particular task with the
PNN. By selecting a different task in each episode, we generate data from a wide range
of tasks, exploring a wider region of the state space. Storing this experience in a replay
buffer, which is randomly sampled in batches at each update of the agent’s networks’
parameters, helps to decorrelate the data and improve the stability of the learning
process.

The second instance where batching is important is in the individual episodes, during
the PNN training process. Here, we use the agent’s policy to estimate updates to
the PNN parameters on a particular task. As this is exactly the same as the normal
SGD picture, we should allow for batching of data to reduce the noise in the update
estimates. In practice, we can achieve this by passing a batch of data through our PNN,
evaluating the policy on each sample, and then averaging the updates to get the final
update. If we use this average update to generate a single reward for the batch, with
this reward saved in the experience tuple for each sample, then this effectively makes

4.4. Learnt PNN optimiser 126

the environment behave stochastically, from the agent’s point of view. We have several
options for how to proceed, choosing at what point to average updates and rewards
over the batch.

For each sample, we need to store a tuple of form (sj, a, r, s
′) in the replay buffer. For

the action a, we can choose either the sample-specific estimate ∆θj , or the averaged ∆θ.
The reward and next state can then be calculated as R(L, p, q, yj) and

(
∂L(p,yj)

∂p
, xj, a

)

respectively, for p ∈ {ŷ′j, ŷ′} and q ∈ {ŷj, ŷ}.

The case of a = ∆θj , p = ŷ′j and q = ŷj recovers the unbatched training of Algorithm 1.
Any other case is effectively acting under a different policy, which can be accounted for
through importance sampling, provided we can calculate the likelihood of the action
under the new ‘policy’. For simplicity and to ensure a well-behaved environment, we
choose to use p = ŷ′j and q = ŷj , with the batching simply affecting the parameters used
in next episode step. This batched meta-training algorithm is detailed in Algorithm 3.

Algorithm 3 Learnt optimiser batched meta-training.
Initialise task distribution T , agent networks πϕ, VϕV and qϕq , forward model f ,
reward function R, experience buffer B.
for episode do

Sample dataset and loss function (D, L) ∼ T .
Initialise parameters θ0.
for t← 0 to tmax do

Sample batch {(xj, yj)}Bj=1 ∼ D.
Evaluate forward model ŷj = fθt(xj).
if end_condition(t, L(ŷj, yj)) then

break
end if
Package states sj =

(
∂L(ŷj ,yj)

∂ŷj
, xj, θt

)
.

Sample parameter updates ∆θj ∼ πϕ(∆θ | sj).
θ′j = θt + clip[−α,α](∆θj).

θt+1 = θt + clip[−α,α]

(∑
j ∆θ

′
j/B

)
.

ŷ′j = fθ′j(xj).
Calculate rewards rj = R(L, ŷ′j, ŷj, yj).

Package new states s′j =
(
∂L(ŷ′j ,yj)

∂ŷ′j
, xj, θ

′
j

)
.

Store experiences (sj,∆θj, rj, s
′
j, πϕ(∆θ | sj)) for each sample in buffer B.

end for
Update ϕ, ϕV and ϕq according to RL algorithm, sampling from B.

end for

4.4.7 SAC results

We meta-train a policy using a set of 30 MNIST tasks for a total of 100 episodes,
where each task is generated according to the task distribution given in Section 4.4.2.
The meta-training was repeated 10 times with different random number generator
seeds, which influenced the initialisations for the RL agent’s networks’ parameters, the

4.4. Learnt PNN optimiser 127

0 1 2 3 4 5

Training samples ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
es

t
ac

cu
ra

cy

MNIST classification

RLOpt SGD

Figure 4.9: SAC learnt optimiser test accuracy. Accuracy by number of training
samples over 30 test tasks, for gradient descent on the high-fidelity model (SGD),
and for the learnt optimiser (RLOpt), using the best performing learnt πϕ of the 10
meta-trained models. The tasks are generated according to Section 4.4.2, based on the
MNIST classification dataset [LCB10], with 112× 112 pixels in the SLMs and camera.
For clarity, we omit the full set of 30 traces for SGD, as the distribution is approximately
normally distributed over time. Model is SAC, meta-trained in simulation with 1 layer
PNN, high-fidelity model.

PNN parameter initialisation, the task and batch sampling in a given episode, and the
sampling from the replay buffer used to update the agent’s parameters. The reward
function used was Equation 4.28 with α = 0.7. The forward model which we train the
agent to optimise is given by the PNN in Section 4.3.1 and is implemented using the
high-fidelity simulation.

Figure 4.9 shows the performance of the system on 30 generated tasks, unseen in
meta-training. We also show, in black, the average10 test accuracy on the same set
of test tasks achieved by training the PNN with regular SGD. This is made possible
by our use of the high-fidelity simulation, which, while the RL optimiser still only has
access to forward passes through the system, technically can be auto-differentiated
and optimised, giving us a baseline to compare against. Each curve corresponds to a
single procedurally generated task, i.e. a single column in Figure 4.7, where the example
optimal parameters in Figure 4.7.a show the final learnt solutions.

There are several features of note in this data. The most prominent is the variation in
performance of the learnt optimiser across the different tasks, which appears multimodal.
There are three main cases we can identify here. The first consists of traces which
fail to learn in the time given, although even for these, there is a general upward
trend in accuracy towards the end of training, indicating that we could likely continue

10The distribution is approximately normally distributed, so we omit the full traces for clarity.

4.4. Learnt PNN optimiser 128

training for longer to improve performance. There is a second set of tasks which train
in reasonable time, underperforming the SGD average however still achieving good
accuracy in the 70-90% range. The final set of tasks are those which initially outperform
the SGD average, increasing rapidly in accuracy and then plateauing. While some of
these are subsequently overtaken by the SGD average, others continue to improve and
achieve final accuracy upward of 90%. These cases arise from the fact that we do not
explicitly set the step size for the updates generated by the learnt optimiser, and that
there are some tasks where the agent is confident in its estimates and quickly takes
large steps in the parameter space.

This variability arises from two main sources. The first is the random initialisation
of the PNN parameters, as the learnt optimiser is not necessarily invariant to the
starting point in parameter space. The parameter update estimates are conditioned
on the current parameters, meaning that, depending on the experiences seen during
meta-training, the agent’s policy for estimating pseudo-gradients may perform better
or worse in different regions of the parameter space. The second is that, due to the
randomised task generation, there will be some decodings which perform better for
classification than others, and therefore different random tasks will have different levels
of difficulty. Harder tasks may still have good solutions, but there may be fewer of
these well performing local optima in the parameter space, and they may be harder to
reach from a typical initialisation. SGD tends to be more robust to this than the learnt
optimiser, which we hypothesise comes from the precise numeric gradient giving better
chances of finding rarer, high value solutions.

Despite the somewhat limited task distribution, this experiment demonstrates the
potential of the learnt optimiser to generalise to a range of related, previously unseen
classification tasks. We also note that we are optimising in a relatively high dimensional
space, with 1122 tunable macropixels on the parameter SLM, scales where zeroth order
methods would struggle.

All simulated experiments were performed on a workstation (WS1) with a single Nvidia
RTX 3090 GPU, an Intel i9-10940X CPU, and 256GB RAM. Another system (WS2)
was used to accelerate some experiments, and consisted of a single Nvidia RTX 2080
GPU and 64GB RAM. Where the two systems were used together, WS1 acted as
experiment controller and ran the ML workload, while the optical simulations were
distributed to WS2’s GPU, with communication over gigabit Ethernet.

The high fidelity optical simulations are performed using a custom library based on
JAX [Bra+18], the SAC implementation is available in SBX [Raf+21], and the custom
policy was built using Equinox [KG21].

4.5. Learnt optimisation for deep networks 129

The data shown in Figure 4.9 consisted of 10 meta-training runs, each with 100 episodes,
where each episode ran for a total of 10 epochs. For the MNIST dataset, 10 epochs
contributes 600,000 total steps. Each meta-training run had access to sampled data
from earlier runs through a persistent replay buffer, meaning later experiments could
benefit from the experience of earlier ones. Each meta-training run of 100 episodes,
with 600,000 steps per episode, took approximately 20 hours, and the 10 runs were
performed over the course of two weeks.

Ideally, and in most RL applications, one would want to train for orders of magnitude
more episodes than we did here, and for improved exploration of state space, also
increase the time step cut-off in each episode. We are however resource limited, and
the computational cost of a single meta-training run is already high. This is currently
the biggest limitation in our work, significantly hampering our ability to iterate on the
model and improve performance.

As mentioned earlier, the performance of the agent’s policy can depend on the region of
parameter space it finds itself in, something we would like to discourage. In gradient
descent, we can always calculate the gradient regardless of our current position. If the
learnt optimiser’s accuracy or precision varies with absolute position in parameter space,
then we will get inconsistent results depending on our PNN initialisation. The same
would apply also to the input data—we don’t want our ability to estimate gradients to
depend on the specific input data. The simplest method to regularise this would be to
simply meta-train with as much diversity in parameter and input vectors as possible.
We do our best to achieve this by sampling different tasks, but for high-dimensional
spaces it is not tractable to achieve any meaningful, uniform coverage of the full space.
The only alternative open to us is to structure our networks and loss functions to
encourage this invariance, however this is also difficult, requiring a good understanding
of the PNN dynamics. It is important to note that the updates we predict should
depend on the inputs and parameters, it is the quality of the alignment with the true
gradient which we want to ensure is consistent for different inputs and parameters.

4.5 Learnt optimisation for deep networks

While our learnt optimiser is able to perform relatively well on a small physical system,
the method currently does not scale well to large systems, as it requires learning a
complex mapping to pseudo-gradients for each parameter. A single nonlinear dense
layer can in theory act as a universal function approximator given enough nodes11,
however, in practice this is never done—in modern machine learning we always stack
layers sequentially, allowing for rich sets of hierarchical representations with fewer nodes.

11Indeed, this is the setup in reservoir computing.

4.5. Learnt optimisation for deep networks 130

Similarly, we can scale our existing PNN in two ways, either by increasing the resolution
of our SLMs and camera, or by adding additional parameter SLMs in series, similar to
multi-plane light conversion (MPLC) schemes for mode shaping [ZF23]. The former
mirrors the scaling of a single layer, and the latter the scaling of a deep network.
However, in both cases, our learnt optimiser’s complexity and meta-training time scales
with the total number of parameters, making neither approach feasible beyond a certain
limit. The only realistic way to scale, outside of local learning rules, is with some form
of error propagation, which would let us train deep networks independent of the number
of layers.

To attempt to build a system which is compatible with this ‘pseudo-backpropagation’
idea, we move away from all-optical PNNs, towards a new, hybrid electro-optic model,
composed of individual PNNs controlled by a digital computer. Despite the considerable
interest in all-optical deep PNNs, a hybrid system will have several advantages for
our purposes, and balances the strengths of conventional computing, in manipulating
data and coordinating hardware, with optical computing, acting as an accelerator for
otherwise computation and memory intensive tasks, such as matrix multiplication.
We will refer to the individual physical systems as physical neural layers (PNLs), to
distinguish that they are now only components of a larger network.

The main advantage of this approach is that we can combine it with our learnt optimiser
to get a trainable deep network, with good scaling properties. While we cannot train
the individual systems independent of one another, we can understand the benefits
of this mode by returning to the original motivation for our learnt optimiser. Thus
far, our learnt optimiser calculates parameter updates using a model trained to predict
vectors which are aligned with the gradient of the PNN output with respect to the
parameters. However, if we can estimate this gradient, then we should also be able
to learn approximates to the gradient of the output with respect to the inputs. We
already calculated this function for our low-fidelity model in Equation 4.13b, and
conceptually it makes sense that if we can approximate ∂f/∂θ then we could also learn
to approximate ∂f/∂x. This would allow us to approximately backpropagate the error
on the PNN’s output back to its input, which could in turn be backpropagated through
any layers preceding our PNN. These layers could, in principle, either be evaluated on
a computer, with exact backpropagation as usual, or other PNNs with matching learnt
error propagation models, giving us complete freedom to interleave conventional neural
network operations, implemented in silico, with optical layers.

The system we propose here changes the function of our learnt model slightly, from
acting as an optimiser, to a more general error propagation model, and this does
introduce some extra considerations. Firstly, the main advantage of the scheme is that
the complexity of the learnt model depends only on the complexity of an individual
PNL, not on the overall machine learning mode, which is key for scaling. If the same

4.5. Learnt optimisation for deep networks 131

PNL is reused multiple times in the network, then the same learnt model can be used for
each PNL, meaning we still only have to perform meta-training once, for arbitrarily12

complex deep networks. We will therefore continue to work with the same optical PNL
defined in Section 4.3.1.

The main disadvantage of the method is the same as in any DNNs—ensuring the
stability of error signals as they are propagated backwards. In conventional deep
learning, vanishing and exploding gradients are a common issue, which arise due to the
fact that each layer in a network can either amplify or reduce the magnitude of its input.
Normalisation in the forward direction can keep the signal stable during evaluation, but,
as we have already discussed in Section 2.3.1, guarantees on the stability of a forward
model don’t translate to guarantees on its gradient, required for training. Solutions
such as residual connections and weight initialisation strategies13 can help to alleviate
this problem, but careful architectural design is still required to ensure stability.

The problem of stable error propagation is exacerbated in our learnt optimiser. We
want to do meta-training independent of the structure of the deep network we plan
to use for inference, meaning we have to train using a single PNL, where our reward
function can be based either on loss, or on alignment with the true gradient. In the
first case, the agent is free to predict any update it likes, provided the loss decreases,
with no incentive to ensure that the error on the input will be well-suited for further
backpropagation. The second case, where we further restrict the agent to align with
the true gradients, is likely to be better for deep backpropagation, but this restriction
is hard to enforce. Even if we get ‘reasonable’ gradient alignment, such that a single
layer can solve a simple task, deep networks with more complex tasks are likely to
be more sensitive to the quality of the error signal. We need to either condition the
meta-training process through our reward to align with the true gradient, manually
stabilise the error signal through, for instance, enforcing small step sizes, restrict the
depth of our deep networks, or use a combination of all three.

In order to accommodate this new mode of operation, we will need to make some
modifications to the form of the networks we use and the reward function. Based
on the stability and sample efficiency issues we faced with SAC, and the discussion
in Section 4.4.4, we will also now switch to using the MPO algorithm. The main
reason for changing to MPO is the potential improvement in sample efficiency during
meta-training, in turn allowing us to iterate development faster, and, given that we
already need to modify our policy and value estimator neural networks, we will update
our training method to match.

12Theoretically. In practice, we will see that there remain challenges in scaling the depth of the
network.

13These aim to ensure that the eigenvalues of each layer’s linearisation, at initialisation time, are
close to 1.

4.5. Learnt optimisation for deep networks 132

4.5.1 Network architecture

The first step to updating our optimiser to work with deep networks is to modify the
network architecture. While the approach given in Section 4.4.5 performed relatively
well, its design was somewhat arbitrary. We predominantly used dense layers and
introduced low-rank maps to make the calculations tractable for the high-dimensional
state and action spaces we work with. Given the importance of adhering closer to the
true gradient of the system in a learnt error propagation model, which we wish to use for
optimisation of deep networks, we expect that we will need networks which are better
able to model the true physics of the PNN, while remaining flexible enough to account for
differences between our ideal model and the real system, and also remaining efficient to
execute. It seems natural that any extra information we can provide the RL agent about
the structure of the physical system will improve the learning efficiency—we therefore
need to investigate ways of adding additional physical priors in our meta-training
process, derived from the form of the PNN in Section 4.3.1.

In conventional neural networks, these sorts of priors are often embedded in the structure
of the networks. For instance, structures such as convolutional or recurrent layers allow
us to reduce network complexity by reusing weights. The performance of these types
of layers stems from some symmetry of the problem being solved, such as translation
invariance in images, or shift invariance in time series. Similarly, one of the main
motivations for this learnt optimiser was to blur the lines between methods such as
zeroth order algorithms, which have no information about the system being optimised,
and the model-based, digital twin methods, which, if anything, suffer due to their
overreliance on a mismatched model leading to an inability to adapt to real-world
conditions. We would like to be able to exploit symmetries present in our physical
system, and we can make some educated guesses about the types of transformations
which would be useful to embed in the network, based on the theoretical model of the
optical system.

For instance, consider the approximate model of both the forward and backward, error
propagation passes of our model, given in Equations 4.8, 4.13a, and 4.13b. Here,
information is encoded in the phase of spatially varying waves, making the complex
numbers a natural domain for studying the system. As a first step, we can therefore
choose to use complex-valued neural networks.

While we don’t know the exact model of the PNN, we expect that the function our
policy should learn would look something like Equation 4.13a, and so we can construct
the network using this as a guide. One way we do this is through the use of Fourier
layers [Li+21], and element-wise trainable phase-masks, which we embed in the network
blocks. While it is technically possible for a dense layer to replicate the Fourier transform
by learning a representation of the discrete Fourier transform matrix, in practice it

4.5. Learnt optimisation for deep networks 133

x

θ

H1

H2

H(x, θ)

∆y

H1

H2

∆p

sp

T p(H1, H2,∆y)

x
θ H

x+ ∆x
θ + ∆θ H

∆x
∆θ
∆y

q

q(x, θ,∆y,∆x,∆θ)

E

P

BPx

BPθ

C

M

LSTM

Q

D

J

Re(·)

Figure 4.10: MPO RL network architectures. Architecture of the policy and
state-action value networks π and q used in the MPO algorithm. Our policy is split
into a head network, H, and two tail networks, T θ and T x. See text for details of
accompanying sub-blocks.

is more efficient to manually provide the network with the ability to calculate this,
reducing the load on the training process. This gives a way for the model to estimate
the free space propagation and associated coordinate transforms. By implementing the
Fourier layers using the CZT14, we expose free parameters associated with the sampling
of the discretised integral transform, providing capacity to model optical misalignment
in the system.

In both Figure 4.10 and the following definitions, we use p as a placeholder for x or θ, as
we reuse elements of the network structures, most notably in the construction of the tail
networks T (x) and T (θ). Capitalised letters and their matching coloured blocks refer to
particular sub-neural networks. Two blocks of the same type do not share weights, only
their structure. The large blocks, which are never coloured, do reuse weights wherever
they are referenced. These include the policy head H, policy tails T (x) and T (θ), and
value estimation network q. For instance, the two E blocks in H will have different
weights, but all instances of H will share one common set of weights. This is to ensure
that the policy and value networks can share the same learnt representations of the
state, reducing the number of parameters which need to be learned.

Looking closely at the structure of H, we see that it mirrors the form of Equation 4.8,
although we do not constrain it to be exactly the same. Similarly, the policy tails T (x)

and T (θ) are designed to mirror the form of Equation 4.13, and the value network q is
very loosely designed around the structure of our reward function. At each layer in the
networks, we allow flexibility in the representations learnt, but provide guidance through
the structure of operations used. Low-rank operations remain critical for maintaining
efficiency in estimating updates, allowing us to work with high-dimensional state and
action spaces.

14Via Bluestein’s algorithm.

4.5. Learnt optimisation for deep networks 134

The details of the sub-blocks in Figure 4.10 are given as follows:

• E(h) = concat(h, exp(i(Wl ·Wr + I) · h))

Aims to emulate the effects of the SLM encodings. I is the identity
matrix, Wr and Wl are as detailed in the Q block below, and the
exponentiation is, as in the rest of this chapter, element-wise.

• P(h) = Zψ1(exp(iW) · Zψ2((Wl ·Wr + I) · h))

Aims to emulate the transfer function of the optical system between
devices, i.e. imaging the first SLM’s conjugate plane onto the second,
and similarly the conjugate plane of the second SLM onto the camera.
Z is the chirp Z-transform (CZT), with tunable parameters ψi.

• BPx(h1, h2) = (Q(h1, h2), h
†
2⊙exp(iW)⊙(h1 ·exp(iWl)·exp(iWr)·h1))

Represents the function mapping estimates of complex fields Y and H
(see Section 4.3.2), produced by policy head network, to the Jacobian
of the PNN output w.r.t. the input. Q is as defined below, and ‘W ’s
are real matrices of learnable weights.

• BPθ(h1, h2) = (Q(h1, h2), h
†
2 ⊙ exp(iW)⊙ h1)

Similarly, represents the function mapping estimates of Y and H to
the Jacobian of the PNN output w.r.t. the parameters.

• C(h1, h2) = concat(h1, h2, h1 ⊙ h2)

• M(h1, h2,∆y) = concat(h1, h2, h1 · h2 ·∆y,Wl ·Wr ·∆y)

Concatenates the inputs with their matrix product. This reflects the
form h1 ·h2 ≈ ∂y

∂p
. Wl and Wr are low-rank matrices as in the Q blocks.

• LSTM(h, sp)

LSTM block with carried state sp.

• Q(hi) = LReLu(Wl ·Wr · concat(h1, . . . , hi))

A low-rank dense matrix operation. Concatenates all inputs, multiplies
by a Rk×d matrix Wr, then a Rd/2×k matrix Wl. For all experiments
we choose k = 1024 and d is the dimension of the inputs. The output
is passed through a leaky ReLu nonlinearity, with leakage-rate 0.01.

• J(h1, h2) = W2 · LReLu(W1 · concat(h1, h2))

As in block J in Figure 4.8.

4.5. Learnt optimisation for deep networks 135

• D(h1, h2) = concat
(
Re(h1), Im(h1),Re(h2), Im(h2), |h1|2 − |h2|2

)

Assuming the output of the head block learns some representation of
the complex field Y , we calculate a loose representation of ∆y.

4.5.2 Training the deep learnt optimiser

We have now completed the transition to an MPO agent, with network architectures
which we believe should be well-suited to the task of training a deep network, with
stronger conditioning on the structure of our PNN. The next question is then how do
we train this agent. As much as possible, we would like our learnt error propagation
model to be independent of the deep network architecture, so that we can reuse this
optimiser on a range of tasks and architectures. This is the key property which makes
our optimisation scheme tractable as we scale the total number of network parameters,
as in regular backpropagation. We need to be able to assume that whatever input error
signal ∆x we calculate, it is backpropagated and correctly realised by the changes we
make to the parameters of earlier layers in the network. We also need to be able to
assume that if we then enact changes ∆x and ∆θ on the PNN input and parameters,
then the change we observe at the output will be consistent with the target error signal
∆y, which we used to generate the backpropagated errors. To ensure this, we change
our reward function to prioritise gradient alignment over loss minimisation by setting
α = 0.05.

The largest challenge we face is that we need to train the networks to predict the error
signal independent of the form of the input itself. If we meta-train only inputting values
of x which are recognisably images, then when we deploy this in a deep network, a PNL
in the middle of the network will receive a very different input distribution, where an
image has been transformed into some feature representation by the earlier layers. This
is essentially the same problem discussed at the end of Section 4.4.7.

The simplest approach is to train on random data, for instance randomly sampling
x ∼ U(−1, 1)dx and ∆y ∼ U(−1, 1)dy at each step, and set reward α = 0 such that
we only optimise for alignment with the target ∆y. This would provide the most
general training data, as we get task and dataset independence naturally. However, it
is incredibly difficult for the agent to learn anything useful from this data, as there
is no obvious correlation between samples. In theory with enough training data, this
approach could work, but it is not scalable and would require a prohibitive amount of
compute.

Instead, our approach to solve this problem is, in each meta-training episode, to sandwich
a single PNL in a procedurally generated, conventional deep network. Our full DNN is
then (gT ◦fθ ◦gH)(x), where gH and gT are the head and tail of the network respectively,

4.5. Learnt optimisation for deep networks 136

both implemented as regular differentiable neural networks. These are constructed
from a series of dense and convolutional layers, depending on the type of task we are
performing.

The head and the tail are separately constructed for each episode by uniformly sampling
a set of hyperparameters at the start of the episode:

• Number of layers ∈ {0, 1, 2}.

• Type of each layer, either dense or convolutional. The head layers are always
convolutional for image tasks. Convolutional layers have a kernel size of 5, a stride
of 1, and are zero padded to maintain the input dimension.

• Number of nodes (in {d/4, d/2, d, 2d, 4d} where d is the input vector length) or
channels (in {1, 4, 8, 16, 32}) per layer.

• Activation function per layer, between linear, GeLU, and sigmoid.

They are constrained to ensure the dimension of the PNL input and output match the
output and input of the head and tail respectively.

The reason behind this seemingly convoluted approach is to generate realistic synthetic
data with which to train the agent. In fact, this approach of randomising the network
we are training to allow generalisation to different deep architectures is identical to the
way we attempt to encourage generalisation across tasks—by randomly generating and
sampling from a distribution of synthetic tasks.

From a software point of view, we treat the deep network as any other neural network,
and train it using backpropagation. When we perform a forward pass, any time we
encounter a physical layer, we dispatch the input to the physical system, measure the
output, and then pass that on to the next layer in the network. When we perform a
backward pass, we auto-differentiate through any regular layers, and when we encounter
a physical layer, we replace the auto-diff code with a call to the learnt optimiser
πϕ. This makes it clear that the learnt model truly does act as an estimate for the
backpropagation operation through the physical layer.

The equivalent of meta-training Algorithm 1 for the deep network optimiser is therefore
given in Algorithm 415.

15For simplicity, we give the unbatched version. The batched version follows the same process as
from Algorithm 1 to Algorithm 3.

4.5. Learnt optimisation for deep networks 137

Algorithm 4 Deep learnt optimiser meta-training.
Initialise task distribution T , agent networks πϕ and qϕq , forward model f , reward
function R, experience buffer B.
for episode do

Sample dataset and loss function (D, L) ∼ T .
Initialise deep model head and tail (gHθH , g

T
θT).

Initialise PNL parameters θ0.
for t← 0 to tmax do

Sample (xin, y) ∼ D.
Evaluate x = gHθH (x

in).
Evaluate h = fθ(x).
Evaluate ŷ = gTθT (h).
if end_condition(t, L(ŷ, y)) then

break
end if
Package state s =

(
∂L(ŷ,y)
∂h

, x, θt

)
.

Sample updates (∆x,∆θ) ∼ πϕ(∆x,∆θ | s).
Calculate errors on head and tail parameters ∆θH and ∆θT with normal backprop,
where ∆x is the error on the output of gH .
Update parameters θ, θH , θT with Adam optimiser to get t + 1 values, from
∆θ,∆θH ,∆θT .
Evaluate x′ = gH

θHt+1
(xin).

Evaluate h′ = fθt+1(x
′).

Evaluate ŷ′ = gT
θTt+1

(h′).
Calculate reward r = R(L, ŷ′, ŷ, y).
Package new state s′ =

(
∂L(ŷ′,y)
∂ŷ′ , x′, θt+1

)
.

Store experience (s,∆θ, r, s′) in buffer B.
end for
Update ϕ and ϕq according to RL algorithm, sampling from B.

end for

4.5. Learnt optimisation for deep networks 138

4.5.3 Results

We train the deep network optimiser as detailed in Section 4.5.2. For evaluation, we
solve all test tasks using a 2-layer network where both layers are PNLs, i.e. unlike the
meta-training process, we do not use any conventional deep network layers, relying
instead only on the PNL transformations for feature extraction.

The PNL used follows the same optics model as in Section 4.3.1, where we take the
high-fidelity model as the ground truth system, and the low-fidelity model as a realistic
digital twin.

Compared with the results shown in Section 4.4.7, here we also broaden the task
distribution. While we still construct synthetic tasks from a seed classification task
according to the permutation method in Section 4.4.2, in addition to the MNIST dataset,
we also generate tasks for meta-training using the Fashion MNIST dataset [XRV17].
In evaluation, we also introduce the Iris dataset [DG17], which we exclude from the
meta-training task distribution. While this is an easy task to solve, the results here
demonstrate that the learnt optimiser is able to generalise to some tasks outside the
synthetic distribution we use in meta-training. All test tasks, where their datasets were
used in meta-training, are evaluated using generated tasks with different permutations,
ensuring there is no overlap between training and test tasks.

In order to better evaluate our learnt optimiser against alternative training strategies
commonly used in neuromorphic computing, we compare with three other methods:

• SGD on the high-fidelity model, which provides an expected upper bound on final
performance, due to the ability to calculate correct gradients.

• SGD on the low-fidelity model, which provides an example of sim-to-real train-
ing, with Fourier-optics approximations and no knowledge of the real system’s
distortion, misalignment and noise.

• Rm-ES [LZ18], which provides a comparison with a model-free, zeroth order
optimisation method.

Rm-ES was chosen from the set of available evolutionary strategies for its efficiency in
large parameter spaces, and we use the implementation from the evosax library [Lan22],
where we set the rank m = 32. As opposed to other covariance-based methods such
as CMA-ES [HO96; HMK03; ES15], Rm-ES allows us to scale sub-quadratically in
parameters by maintaining a low-rank approximation of the covariance matrix, making
problems with high-dimensional parameter spaces tractable, while maintaining some
second-order information for efficient search. This is yet another example of low-rank
approximations helping to balance tractability in large parameter spaces, with the
benefits obtained from higher-order information, such as covariance estimates.

4.5. Learnt optimisation for deep networks 139

MNIST Fashion
MNIST

Iris
0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

[[[

Classification accuracy by task

HF SGD LF SGD RmES RLOpt

Figure 4.11: Deep MPO test accuracy. Classification accuracy of different
optimisation strategies on a 2-layer PNN. Median test accuracy over 10 seeds is displayed
for each optimiser and task, with error bars showing the min-max variation. Each
task trained with SGD on high-fidelity model, SGD on low-fidelity model, rank-m
evolutionary strategy (RmES), and RL optimiser (RLOpt). Each trained for minimum
2 epochs, and then until test loss variation ≤ 5% over 3 epochs. Test accuracy for all
tasks evaluated on high-fidelity model with unseen data. Evaluated on three datasets:
MNIST, Fashion MNIST and Iris [LCB10; XRV17; DG17]. Iris encoded using 2 × 2
macropixels.

Rm-ES and RLOpt both perform forward passes through the high-fidelity model, and
then use their respective methods for updating parameters θ. HF SGD also uses the
high-fidelity model for the forward pass, but performs an additional backward pass
through this model, where our ability to differentiate in simulation lets us calculate a
ground truth SGD evaluation for comparison purposes. LF SGD uses the low-fidelity
model for both forward and backward passes, updating parameters using SGD, providing
a classic sim-to-real training example. All models’ learnt parameters are then evaluated
on the high-fidelity model with unseen tasks.

The final test accuracies for the three tasks, four optimisers, all evaluated on 10 seeds
(where the initial network parameters are the same for each optimisation method on
a given seed and task), are shown in Figure 4.11. The number of samples required to
reach the stopping criteria (minimum of 2 epochs, and then until test loss variation is
less than 5% over 3 consecutive epochs) are shown in Table 4.2.

The results shown here were obtained using an optimiser meta-trained for 2000 episodes,
each with up to 10 epochs (600,000 steps), following Algorithm 4. The entire training
process took 11 days, using the same hardware as in Section 4.4.7. The input data space
and parameter spaces are the same size, and are limited to a maximum of 112× 112

macropixels, giving approximately 25,000 tunable parameters in the 2-layer PNN.

4.5. Learnt optimisation for deep networks 140

Table 4.2: Median training samples required for stopping criteria.

MNIST Fashion MNIST Iris

HF SGD 1.2× 105 1.2× 105 3.0× 102

LF SGD 1.2× 105 1.8× 105 3.0× 102

RmES 1.1× 107 1.5× 107 9.0× 102

RLOpt 3.1× 106 5.6× 106 7.7× 103

We see in Figure 4.11 that, as expected, high-fidelity SGD performs the best, with the
lowest spread across seeds. The low-fidelity SGD has the worst median performance,
due to not being able to capture the true dynamics of the network which it is evaluated
on. The evolutionary strategy tends to outperform the low-fidelity SGD, but we can see
in Table 4.2 that it tends to require at least two orders of magnitude more samples to do
so. The learnt optimiser performs well, with median accuracies which outperform the
low-fidelity SGD, and in the case of Iris, also Rm-ES. We do see however that the learnt
optimiser has a larger variation on final performance, with some seeds outperforming
Rm-ES and approaching the performance of HF SGD. On the other hand, some seeds
struggle to learn well, with performance particularly poor on the Fashion MNIST
dataset.

Considering Table 4.2, we see that the SGD-based methods both converge quickly,
however the LF model’s accuracy plateaus at a lower level than the HF model. The
evolutionary strategy requires many more samples to converge, and the learnt optimiser
sits somewhere in the middle, outperforming Rm-ES on the two image classification
tasks, but not on Iris.

Notably, the number of samples needed by the learnt optimiser is considerably more
than the SAC model we saw earlier, on the same MNIST tasks. This is due to the
broader task distribution we used in the deep meta-training, along with the reward
function which prioritises gradient alignment over loss minimisation. The broader
distribution highlights that it is likely the SAC model was at least partially overfit to
the MNIST tasks, and had memorised good parameter vector features for this class of
tasks. We saw in Figure 4.7 that despite the different label permutations, the optimal
parameters still shared some common features, which could be learnt by the model
directly, breaking our task invariance criteria.

Overall, these results are encouraging, and demonstrate that the learnt optimiser is
able to train a deep PNN composed of individual, non-differentiable physical systems,
successfully achieving good performance on image classification tasks, and generalising
well to the Iris task, not seen during the meta-training process. While the learnt
optimiser is not competitive with SGD on the high-fidelity model, we would not expect

4.6. Discussion 141

it to be, and on more realistic baselines such as the low-fidelity SGD and evolutionary
strategies, it performs well, giving improved accuracy on the former, and improved
convergence time on the latter.

The variance and stability of the optimiser remain issues, however these are not issues
unique to our application [Hen+19]. We do see that the MPO model with physical
priors seems to have improved overall performance and reliability compared to the
SAC model, and we are confident that further tuning will continue to improve the
performance of the agent—the system has not yet been fully optimised.

As with the SAC model, meta-training time remains one of the largest barriers to
progress. While improved hardware, more compute, and moving from simulation to
real physical systems could improve the speed we can generate samples and, in turn,
training time, these are temporary solutions to the larger impediment to progress—the
low sample efficiency on current model-free reinforcement learning methods.

4.6 Discussion

4.6.1 Remaining challenges

We have seen that the learnt optimiser is able to perform well on both single PNNs,
where we optimise purely for performance on the end task, and when adapted to act
more as an error propagation model, such that we can train deep networks. However,
there are clearly still areas to improve on here, and in this section, we give an overview
of the most pressing challenges, and the potential ways to address them.

The overall goal of this work was to develop an optimisation scheme which could be
used without analytic gradients to train systems in a scalable way. While we have
worked with relatively high-dimensional systems, successfully training a deep PNN with
order 25,000 parameters, we have faced several issues in the reliability of the system.

The two main bottlenecks thus far have been the length of time needed to perform
a single meta-training run, and the stability of the training process. The latter in
particular means that for a given training run, there is a reasonable likelihood that
nothing meaningful will be learnt. It is worth noting that many of the issues faced
during the development of this work are known difficulties with modern RL approaches,
including the state-of-the-art algorithms, and a nice summary is provided in [Irp18].

The length of time we need to spend on meta-training is determined by the sample
efficiency, essentially how informative each experience gathered at a time step in an
episode is in updating our policy and value estimates. This in turn is determined
by the exploration strategy, the quality of the reward signal, and the capacity of the
neural networks to represent a function which aligns well with the true Jacobian of the
linearised PNN. These are the same factors which in part determine the stability of the

4.6. Discussion 142

training process.

Optimising the task distribution we train with would likely improve the sample efficiency
of the meta-training process, as we know that there is a fine balance to be struck between
having too broad a distribution, leading to poor performance on all tasks, and too
narrow a distribution, leading to poor generalisation. Our approach was based on
synthetic tasks, which allowed us to tune this distribution, however for generalisation to
more interesting tasks, we need to consider how we might build better distributions more
suited to generalisation to real-world tasks. This is a problem common in reinforcement
learning, and there have been several approaches to generating synthetic tasks and
benchmarks for training agents [RT20; Ope+21; Gis+21]. While these are not directly
applicable to our problem, they provide a good starting point for how we might improve
out procedurally generated tasks to encourage better generalisation.

In general, we have seen that we need to have some sort of dimensionality reduction in
our optimisation process in order to be able to scale to more complex systems. The
goal of scaling is not simply to increase the number of tunable parameters, but rather
to increase the complexity of the system we are training such that it can solve more
complex tasks. We need to increase this computational capacity while maintaining the
ability to train the system in a reasonable time frame.

Throughout this work we have made use of low-rank approximations in the structure
of our neural networks, making it possible to apply our methods to high-dimensional
systems. While this is a good start, and we do expect that a low-dimensional represen-
tation is needed, we didn’t choose the basis of these representations in any principled
way. One way to improve here, is through physical priors, which have also used in our
models to design small, efficient networks which should still be able to represent the
relatively complex dynamics of the physical systems we are training. We have seen that
priors can be introduced in several ways, such as network structure, conditioning the
data distributions, or regularisation on the loss terms.

We must still be careful baking in priors however, as this does potentially limit our
networks, restricting the representations they can learn to the ones we select for. In
effect, we bias the networks towards our idea of how the problem should be solved,
which may not be most effective, limiting the learning capacity in potentially unforeseen
ways. One of the advantages of using a trainable black-box model here is that it is
able to identify shortcuts, symmetries and correlations that it can exploit to solve the
problem, and constraining the model with too many priors can prevent it from making
good use of these freedoms.

Alternatively, we could imagine better incorporating existing knowledge and models
of our physical systems by designing a bootstrapping process, where we first train
parameters using a low-fidelity model which is cheap to evaluate, before using a learnt

4.6. Discussion 143

optimiser specialised to the target hardware to fine-tune the resulting parameters. For
instance, in [Zho+21] a deep optical neural network’s parameters are first trained in
simulation, transferred to the target hardware, and then iteratively updated in situ
on hardware to account for the sim-to-real misalignment, with other similar examples
including works [Lin+18; Lee+20]. While this method is expensive, due to the number
of additional parameter updates introduced by the fine-tuning process, it is still cheaper
than zeroth order methods, highlighting the potential improvements which can be
gained through a bootstrapping process with a—potentially lower fidelity—digital twin.

One of the reasons this approach—locating a region in parameter space which works
well in the low fidelity model and using it as a starting point in the real system—works,
is that there is a hierarchical representation of the system. What we mean by this is
that we can refine the quality of a model without drastically changing the layout of the
objective function in the parameter space, meaning that parameters which perform well
in a low-fidelity model will also likely perform well in the higher-fidelity system. This is
a property of the physical system and the way we model the different levels of fidelity.

For instance, consider once more our optical PNN described in Section 4.3.1. We
can interpret the operation of the PNN as a convolution on the input data, where
our parameters are the frequency domain representation of the convolution kernel. If
we start off by only tuning the central region of the parameter SLM, this acts as a
band-limited convolution kernel on the input data. For certain tasks, kernels with
low-frequency components may be sufficient to get good performance. We would expect
that if we solve this optimisation, and then reintroduce the higher frequency components,
that the overall form of the new, optimal kernel, will be similar to the band-limited one.
We can therefore improve training performance by iteratively increasing the number of
tunable parameters, only when the performance on previous resolution has stabilised.

We do a coarse optimisation over a smaller parameter space, then reintroduce some ad-
ditional parameters, where the progress made thus far in the optimisation is maintained
as the parameter space is expanded. In analogy, the low-fidelity model helps us identify
the mountain range in parameter-objective space with the highest peaks, refining the
model slightly lets us identify a specific mountain, and at the highest fidelity we focus
in on an exact peak. While the particular PNN we have considered may not be the
optimal example for such iterative refinement, we could imagine other systems which
are better suited to this kind of parameter annealing.

Even with improvements to the task distribution and conditioning of the agent, it
is likely that model-free RL will always have poor sample efficiency for our use case.
Introducing physical priors has helped here, and in doing so we are in effect making
our model-free algorithm more model-based. One of the main advantages of RL is its
generality—we can apply these methods to any physical system, regardless of whether

4.6. Discussion 144

we have a model. In practice however, we have seen that the generality has a cost,
relying on the meta-training process to solve our problems for us. With this in mind, we
could decide to switch entirely to a model-based approach, similar to MPC. MPC is well
established in control applications, and model-based RL has seen many uses in robotics
and games [Jum+21; Ber22]. Other model-based methods such as MuZero [Sch+20] are
able to learn a model containing only the important features for decision-making, and
then use this for planning, reducing the complexity of the problem by only considering
the vital components for solving the task at hand.

We have established that reinforcement learning has strong connections to control theory,
and we anticipate that bridging these domains and further utilising ideas from control
theory will provide more efficient methods of training complex physical systems for
use as application specific computational accelerators. This would allow us to use our
prior knowledge of the physical system’s dynamics to improve the training performance,
while remaining robust to dynamics not captured by our models. If we can develop a
model which allows us to plan, then we can improve the likelihood that the actions we
take will lead to positive rewards, and ensure that the experiences we generate during
exploration are informative. While we want to avoid fully relying on a model which
doesn’t match the real system, we could in principal use a low-fidelity model to get
gradient estimates, and use RL to map these gradients to gradients of the real system.
More work will be required to better understand how we might start to adapt these
schemes from classical control, to the rather unwieldy framework of meta-learning.

4.6.2 Towards experiments in hardware

While much of the work so far has been in simulation, the ultimate goal is to deploy the
learnt optimiser on a real optical system. However, so far, the instabilities in learning
and sensitivity to initial conditions have made it challenging to apply this work on
the hardware PNN in the lab. This difficulty is not necessarily due to the hardware
system’s complexity exceeding that of our simulations, but rather the rate at which we
can perform forward passes through the system.

In simulations, we can achieve high sampling rates, but only on relatively low-dimensional
systems due to memory limitations, which bound the number of SLM pixels and field
discretisations we can use. In the hardware PNN, we can achieve very high-dimensional
transformations, with megapixel SLMs readily available, but their frame rates are
approximately four times slower than the high-fidelity simulation. In meta-training,
we can choose to reduce the size of the input and parameter spaces, but maintaining
a high sample rate is critical, due to the low sample efficiency of the model-free RL
algorithms we are using. This means that while the overall data throughput of both
methods is comparable, total throughput is not the limiting factor. In other words, it
is the sheer number of forward model evaluations which matters most for learning a

4.6. Discussion 145

good policy, rather than the size of the input and parameter spaces.

Our meta-training process in simulation is currently measured in days to weeks, and,
despite the improvements made through tuning the algorithms, networks, task distribu-
tion, reward function and associated hyperparameters, we still occasionally encounter
meta-training runs which fail to converge on a good policy. We could apply our methods
in hardware, accepting that a meta-training run will take on order of weeks to converge,
however this assumes that we can guarantee that a meta-training run will be successful.
Given the sensitivity to initial conditions and the instability of the training process we
have seen in our simulations, this is not currently the case.

While we believe we have made significant progress towards improving robustness to
random initialisation and meta-training sample efficiency, further work is required to
make the meta-training process consistently repeatable. Once this is achieved, the
cost of meta-training on the PNN hardware can be warranted, enabling us to focus on
scaling the optimiser to PNNs with larger parameter spaces. At that point, the higher
dimensional transformations achievable in hardware offset the impact of low frame rates
compared to simulated systems.

The alternative is to revisit our choice of PNN, and consider moving to faster systems,
such as DMDs, or away from free space optics entirely. These are reasonable considera-
tions, and throughout this work we have intentionally tried to keep the learnt optimiser
as general as possible, to allow for easy transfer to different physical systems. The only
modifications which would be required would be to reevaluate the physical priors we
embed in the model to match the new system’s characteristics. That said, we have seen
in Section 4.4.7 that, at least on the PNN considered here, the method is able to learn
reasonable policies even with networks which aren’t heavily conditioned on the physical
system’s structure. We therefore expect that this approach would be applicable on a
range of physical and neuromorphic systems, provided that there is some tailoring of
the architecture and optimisation process to one another.

4.6.3 Conclusion

Reinforcement learning has been shown to be a viable approach to training non-
differentiable systems such as physical neural networks, holding potential for broader
applications in a wider range of physical computing and neuromorphic systems.

We have shown that it is possible to use reinforcement learning to learn a model which
maps from errors on the output of a non-differentiable physical system, to updates
to the system’s parameters which ultimately act to minimise some objective function,
allowing us to train the system to perform a range of tasks. While RL has been used
in the past to train physical computing systems on particular tasks, to our knowledge
this is the first time it has been used to train an optimiser specialised to such systems.

4.6. Discussion 146

This learnt optimiser allows us to learn rules which are robust to factors such as noise,
distortion, and misalignment, which are typically not considered in digital-twins and
sim-to-real transfer optimisation schemes. By training an optimiser, we can trade off
a relatively expensive initial training cost, for efficient inference—corresponding to
training the PNN on a task—over a range of tasks.

We extended this system to predict errors not just on the system’s parameters, but also
the inputs, demonstrating that it is possible to train a black-box model using RL to
approximate the full backpropagation process through an otherwise non-differentiable
system, such that we get good alignment with the true error gradients. With such
a model, we can then train deep networks composed of a mixture of conventional
silicon-based parameterised layers, and unconventional physical computing systems,
using proven iterative optimisers such as SGD or Adam.

The elegance of this approach is that it can be smoothly integrated with existing
gradient-based pipelines for training neural networks, where we simply dispatch to the
physical system and the learnt optimiser whenever we need to do a forward or backward
pass through the physical layer. Close integration with existing digital computing
technologies will be important for any future physical computing system, and this
method provides one path towards achieving this.

While there remain many areas where improvements could be made to this system, the
results presented here demonstrate the potential of this approach, and we have given a
comprehensive overview of what we believe to be the most important areas for future
work to focus on, to improve the performance and scalability of this method.

It seems clear that any scalable optimisation scheme for physical systems will need
to be co-designed with the physical system in order to reduce the effective size of the
parameter space, either through low-rank approximations, physical priors, or hierarchical
optimisation algorithms with better scaling laws.

We believe that learnt optimisers such as ours are particularly applicable in situations
where the physical system is hard to model effectively, is static over long periods of
time, and where a series of different but related tasks are to be performed on the same
system, making the initial meta-training costs acceptable for downstream efficiency
gains.

4.7. Notation 147

4.7 Notation

For reference, we summarise some of the main notation specific to this chapter.

• fθ(x): The physical system’s mapping from parameters θ and input
x to output.

• f̂θ(x): Approximate model of physical system.

• T : Distribution of tasks

• (D, L): Particular task with dataset D and loss function L. A dataset
consists of labelled pairs D = {(xi, yi)}, while L(ŷ, y) : Rdŷ ×
Rdy → R. Note, for simplicity, the output of f doesn’t
necessarily need to be the same dimension as the target y; in
this case the loss function is assumed to map ŷ to a space
where the two are comparable.

• R(L, ŷ′, ŷ, y): General reward function, which may depend on the loss func-
tion L, the PNN output after a parameter update ŷ′, the
previous PNN output ŷ, and the target y.

• □̂: An estimate or prediction of □, i.e. ŷ = fθ(x) is a learnt
estimate of label y.

• □′: The value of □ after a parameter update, i.e. θ′ = θ + ∆θ,
ŷ′ = fθ+∆θ(x).

• ℓ: The loss value at a particular set of x, y, θ, i.e. ℓ = L(fθ(x), y).

• πϕ(s): A policy network, parameterised by ϕ, which depends on
the current state s and predicts a parameter update. For
stochastic policies πϕ(∆θ | s), this is a conditional distribution
over updates, and the inference policy is obtained through
maximum likelihood πϕ(s) = argmax∆θ πϕ(∆θ | s).

• qϕq(s, a): A state-action value network parameterised by ϕq, trained
to estimate some joint value function of a state-action pair
(s, a).

• VϕV (s): A state value network parameterised by ϕV , trained to esti-
mate some value function of state s.

Chapter 5

Conclusion

While there is much that machine learning and AI can offer today, and we expect these
tools to become ever more useful, there remains a large gap between the capabilities of
biological systems such as the human brain, and these artificial systems.

Stemming from both fundamental human curiosity, and the desire to solve complex
problems which face our society, there is a huge drive to further develop these AI
systems beyond their current ‘stochastic parrot’ ([Ben+21]) forms, in order to achieve
artificial general intelligence (AGI), and potentially artificial consciousness.

Personally, I believe that these goals will inevitably be accomplished, and that there is
nothing inherently privileged about the human brain which, with enough time, human
endeavour could not replicate in an artificial system. However, it also seems clear
that there will need to be several fundamental changes in the way that we approach
computing before this is achievable. This can be seen even from a pure scaling point of
view, considering that currently, the largest AI models (GPT-o1) have several orders of
magnitude fewer connections than synapses in the human brain.

These changes need to be made first in the physical substrates which we use to process
information, allowing us to scale beyond Moore’s law by developing systems with
better thermal, power, and space efficiency compared to current silicon von Neumann
architectures, while maintaining some level of generality. As a direct result, this will
require new methods for programming these systems which scale in step with them,
allowing us to exploit the complexity and richness of these platforms to solve specific
tasks.

Consider a potential ‘ultimate’ computer designed according to fundamental physical
limits, such as the smallest scales on which we can design systems before noise and
quantum effects break deterministic operation, the largest three-dimensional energy
and connectivity densities which could be realised, and the fastest speeds at which we
can transfer information. In order to operate at these limits, such a system would likely
need to be analogue in at least some areas, and designed with minimal abstractions in
order to maximise the efficiency of the computation. At the very least, the abstractions

148

149

which would allow us to program such a machine would look very different to those we
operate with today.

While such a device may never exist, taking a shorter term, more realistic outlook,
there is definitely a resurgence of analogue and unconventional computing research in
academia and commercial enterprises alike, as the development of algorithmic and data-
driven methods outpaces the scaling of the platforms they run on [Cav+22; Mar+24;
ext24; Dav+18; Sha+21].

By exploiting new physics and dynamics, physical and neuromorphic computing systems
have the potential to unlock new scaling laws, and therefore play a large role in the
future of high-performance computing [Fil+22]. However, these efficiency and scaling
advantages often come with other costs, such as poor programmability, interpretability,
and limited generality. While we can in some cases build abstractions which allow us to
better understand and program these systems, we need to take care not to undermine
the performance advantages in doing so.

In this thesis, we characterised the developments of these unconventional computing
systems according to two main areas: the physical substrate, and the programming
model. These are delineated by which aspects of the system we consider to be ‘hardware’
and ‘software’, or which parts are fixed or tunable for specific tasks. While it is true that
the data-driven optimisation approaches to programming seen in machine learning blur
these boundaries, allowing us to optimise aspects of the substrates, we will always have
some hyperparameters or design decisions which need to be made in an intelligent way,
and which determine the types of problems we can solve with a particular architecture.

Based on this classification, we have examined two main examples in depth. Firstly,
by designing and analysing a new unconventional computing platform, our quantum
reservoir computer detailed in Chapter 3, we have shown that exploiting the physics of
photon number resolved measurement allows us to unlock a highly scalable and rich
space of dynamics which can be used for computing. Our focus on the use of simple
quantum resources, practical methods of realising unitary transformations through
linear optical networks, and realistic detection properties means that this system is
not only theoretically interesting, but also currently accessible with low-cost resources,
achievable in many optical laboratory settings.

Secondly, by identifying the key limitations in programming unconventional and neuro-
morphic computing platforms, we developed in Chapter 4 an entirely new approach to
training neuromorphic computing systems in a data-driven way, using a learnt optimiser.
This approach is based on the desire to balance model-free zeroth order optimisations
that are compatible with non-differentiable physical systems, while introducing physical
priors and models to improve the efficiency and scaling of the training process. The
optimiser we put forward has particular benefits in that it follows a scaling law similar

150

to that of backpropagation, allowing us to train deep networks composed of individual
physical systems.

While there are many avenues left for further development in both works, there are
certain common conclusions that can be drawn. A consistent feature that we relied on
throughout the thesis was the use of low-dimensional approximations to complex systems.
These took the form of low-rank matrix approximations, frequency decompositions,
low-fidelity models that capture broad stroke dynamics, and physical priors used to
condition neural network architectures. In all cases, they served the same purpose—
providing tractable ways to analyse or model the complex dynamics of our systems. The
coming hardware revolution will require the breaking of many layers of abstraction, but
it seems clear that any practical unconventional computing system will need to maintain
some principled method of reducing the complexity of the system into tractable parts.
Interpretability and provable deterministic behaviour will be necessary for any safety
critical applications, and these areas remain challenging even for conventional machine
learning, let alone neuromorphic computing.

It is also likely that meta-learning techniques, including those based on RL methods,
will begin to feature more heavily in the neuromorphic computing community, and they
have already begun to see use in QML applications. Reservoir computing is one avenue
towards realising QML, however there are a wide range of other approaches that are
not so easy to train, and these will need robust approaches to parameter tuning in
high-dimensional spaces [Don+08; Ver+19; Wil+21; He+22; YPK23].

There is much speculation that the large language models and generative image models
that have filtered into our daily lives, and which currently represent the largest trained
AI models, are heavily overparameterised for what they are capable of. This can be seen
in the success of fine-tuning techniques such as low-rank adaptation (LoRA) [Hu+21],
where a tiny fraction of the parameters in a pre-trained model can be updated to give
very different results. While overparameterisation may be necessary to some extent
for robust, stable predictions, it does hint at a problem in the way we optimise these
systems. The scaling of these models has been possible due to the relative efficiency of
backpropagation and GPU compute, but this is hitting limits now. We expect that for
these models to scale further, they will need to also adopt more efficient architectures
and optimisation techniques, which exploit the structure of the models and the tasks
they solve in a more principled way.

While much of the focus in unconventional computing is on computational efficiency,
we can also view the current investment and efforts in the field as an opportunity
for improving some of the sustainability and accessibility issues present in current,
conventional methods. From a practical point of view, it is important that new
computing systems are energy efficient, however there is an additional moral and ethical

151

imperative to ensure they are sustainable to operate, that their benefits are shared
widely, and that they are not used to further entrench existing divisions. Already, we
see a trend of groups formerly committed to open-source machine learning and AI
research going closed-source and proprietary, as commercial interests take over, and
this has huge implications for the future uses of these technologies, and who will benefit
most from them. This gradual limiting of transparency has been driven ultimately
by the lack of large scale accessible compute, limiting access to the forefront of the
field to those who are able to build data centres to train ever larger models, reducing
competition and diversity in the field. In the longer term, unconventional computing
has the potential to democratise access to large scale compute, just as accessible GPUs
have done over the last decade, by allowing for more efficient and scalable systems
which can be built and maintained by smaller groups or individuals. We need to ensure
that whichever unconventional computing systems win the performance lottery also
embody these principles of sustainability and accessibility.

To conclude, it is likely that unconventional computing architectures will play an
increasingly large role in future computing paradigms, including AI. This thesis aims
to take a small step towards realising improved, optimised neuromorphic computing
systems, and to provide a framework for understanding the critical criteria such systems
must meet. There are many applications where we expect neuromorphics to be useful—
not just in the traditional AI and machine learning domains, or even in the search
for AGI, but also in scientific computing, and specific applications which require, for
instance, extreme processing speeds. That said, biological learning systems like the
brain remain the most efficient that we have, and while they may not be the paragon
of possible computing architectures, it is their ability to learn quickly and efficiently
which is the true mark of intelligence. Until we can replicate this in artificial systems,
artificial general intelligence and artificial consciousness will remain in the realm of
science fiction.

Appendix A

Terminology

In the field of novel information processing and computing technologies, a wide range
of terminology is used. In an effort to provide clarity and context for our work, here we
summarise our uses of some key terms throughout this thesis.

Modern computing relies on one particular high level architecture—the von Neumann,
silicon transistor based computer. Algorithms are implemented in this model using a
set of abstract instructions which manipulate state stored in memory. We refer to this
as conventional computing, and from the Church-Turing thesis, it is provably able to
compute any computable function, making it extremely general.

Application specific systems, by contrast, sacrifice some aspects of general-purpose
computing, for an advantage in particular tasks. Early examples include specialised
cryptography hardware built into CPUs, and GPUs which are optimised for highly
parallel graphics processing, and have seen significant use in machine learning due
to this parallelism. The TPU is an extension of this, discarding graphics processing
features and optimising purely for tensor operations.

Unconventional computing refers to systems which deviate from the conventional
computing paradigm. These include methods that can be simulated on a traditional
computer, but operate in some fundamentally different way. This includes fields
as diverse as quantum, optical, memristor based, chemical based, and DNA based
computing, and we also consider machine learning within this category [Ada18].

Physical or natural computing refers to systems that use physical processes to encode
and process information1, and can be viewed as a subset of unconventional computing.
The prime example here is the human brain, which computes using the connectivity,
and electrical and chemical properties of neurons.

Analogue computing involves systems which encode and process information with con-
tinuous variables—for practical reasons many physical computing systems are analogue

1We distinguish physical computing from conventional digital silicon transistor methods, despite
these clearly having a physical substrate.

152

153

in their representation of information.

Neuromorphic computing draws inspiration from the brain. While some define it as
strictly adhering to biological principles (i.e. spiking neurons, local learning), there is a
trend (which we adopt here) to consider any system using artificial neurons as being
neuromorphic.

Physical neural networks are a subset of both physical and neuromorphic computing,
where we implement systems which look like traditional artificial neural networks in
physical systems, i.e. they have data inputs, artificial neurons with tunable parameters,
and use optimisation-based programming over these parameters, based on an objective
function on the dataset and the network’s output.

At a high level, this thesis aims to contribute some improvements to the field of physical
neuromorphic computing. We break this down into two themes: the architectural design
of a computing system, and the method of programming it.

Architectural design can be seen as an optimisation over the system’s fixed features,
which determine properties such as the class of tasks that can be solved, the limiting
time complexity on those tasks, and the energy efficiency of the system. Conventional
computers are the most familiar, and over the years, several layers of abstraction have
emerged, with the highest level being the programming languages which are used to
implement algorithms. The modern artificial neural networks used in machine learning,
represent an alternative architecture. Despite being implemented on conventional
computers, they are logically different, being built from parameterised elements (i.e.
dense, convolutional, attention layers) combined in specific ways, while hyperparameters
dictate the way they are programmed, a process typically referred to as ‘training’. In
physical computing systems, the architecture consists of the substrate, the information
carrying medium, coupling, time dynamics, and other physical features which influence
system behaviour.

Programming a computing system involves encoding a task into the architecture and
solving it by adjusting the degrees of freedom of the system. The result can be viewed
as the ‘algorithm’ running on top of the architecture. In a conventional computer, the
hardware is abstracted away, leaving a set of instructions with which humans design
and build algorithms by hand, choosing how to represent inputs and manipulate state
held in memory (Software 1.0). However, programming may also take the form of
a mathematical optimisation over the system’s parameters, a process of algorithmic
discovery, (Software 2.0). This is the case in ML, where a dataset and objective function
defines an optimisation problem, which can be solved to produce an algorithm i.e. a
fully trained neural network. In this case, computer programming and mathematical
optimisation, or programming, coincide.

154

In this thesis, all the unconventional computing systems we consider are analogue, phys-
ical neural networks and are programmed by optimising over the system’s parameters.
We therefore use ‘programming’, ‘training’, ‘learning’, and ‘optimising’ interchangeably
to refer to this process.

Appendix B

Derivations

B.1 General beamsplitter ellipse derivation

The derivation of the ellipse equations from the beamsplitter inequality (Equation 3.6)
can be seen below. We can rewrite the inequality as

r22 + t22 − r21r22 − t21t22 − 2r1r2t1t2 cos(ϕ) ≤ 1− r21 − t21. (B.1)

Rotating coordinate system with r2 → y cos(β) + x sin(β) and t2 → x cos(β)− y sin(β),
expanding and gathering terms, we get

1

2

(
2− r21 − t21 + (r21 − t21) cos(2β) + 2r1t1 cos(ϕ) sin(2β)

)
x2

+
1

2

(
2− r21 − t21 − (r21 − t21) cos(2β)− 2r1t1 cos(ϕ) sin(2β)

)
y2

+
(
(t21 − r21) sin(2β) + 2r1t1 cos(ϕ) cos(2β)

)
xy ≤ 1− r21 − t21. (B.2)

By gathering coefficients of x and y we can identify the cross-term, which for an ellipse
aligned with the axes should be zero. This allows us to solve for β,

0 = (t21 − r21) sin(2β) + 2r1t1 cos(ϕ) cos(2β)

sin(2β) =
2r1t1
r21 − t21

cos(ϕ) cos(2β)

tan(2β) =
2r1t1
r21 − t21

cos(ϕ)

β =
1

2
arctan

(
2r1t1
r21 − t21

cos(ϕ)

)
.

We can then rewrite Equation B.2 as

g+x
2 + g−y

2 ≤ 1− r21 − t21

with g± = 1
2
(2− r21 − t21 ± h) and h = (r21 − t21) cos(2β) + 2r1t1 cos(ϕ) sin(2β). The

155

B.1. General beamsplitter ellipse derivation 156

boundary of this region matches the equation for an ellipse with semi-major and -minor
axes, a2 = 1−r21−t21

g+
and b2 = 1−r21−t21

g−
. Solving for these values using the above solution

for tan(2β) and the identities

cos(2β) = cos(arctan(tan(2β))) = (1 + tan2(2β))
− 1

2

sin(2β) = sin(arctan(tan(2β))) = tan(2β)(1 + tan2(2β))
− 1

2

a2 + b2 + 2ab cos θ = |a+ beiθ|2,

we get

h = (r21 − t21) cos(2β) + 2r1t1 cos(ϕ) sin(2β)

= (r21 − t21)
r21 − t21

|r21 + t21e
i2ϕ| + 2r1t1 cos(ϕ)

2r1t1 cos(ϕ)

|r21 + t21e
i2ϕ|

=
(r21 − t21)

2
+ 4r21t

2
1 cos

2(ϕ)

|r21 + t21e
i2ϕ|

=
r41 + t41 + 2r21t

2
1 cos(2ϕ)

|r21 + t21e
i2ϕ|

= |r21 + t21e
i2ϕ|

⇒ g± =
1

2

(
2− r21 − t21 ± |r21 + t21e

i2ϕ|
)
.

This then gives the ellipse parameters as

β =
1

2
arctan

(
cos(ϕ)

2r1t1
r21 − t21

)
,

a2 =
2(1− r21 − t21)

2− r21 − t21 − |r21 + t21e
i2ϕ| ,

b2 =
2(1− r21 − t21)

2− r21 − t21 + |r21 + t21e
i2ϕ| .

B.2. Computational complexity of permanent calculations 157

B.2 Computational complexity of permanent calcula-

tions

Ryser’s algorithm calculates the permanent of an N ×N matrix A as

perm(A) =
∑

S⊆{1,...,N}
(−1)|S|+N

N∏

i=1

∑

j∈S
Aij.

A single subset comprises N(|S| − 1) additions a, followed by N − 1 multiplications b.
Total operations are then

#Ops =
∑

S⊆{1,...,N}
(N(|S| − 1)a+ (N − 1)b)

=
N∑

k=0

(
N

k

)
(N(k − 1)a+ (N − 1)b)

= Na
N∑

k=0

(
N

k

)
k + (−Na+ (N − 1)b)

N∑

k=0

(
N

k

)

= (N22N−1 −N)a+ (N − 1)2Nb

⇒ O(N22N).

If instead we process each subset in Gray code order (i.e. each subset differs from the
last only by inclusion or exclusion of a single index) and store the results from the inner
summation, then we only perform N additions for each subset,

#Ops =
∑

S⊆{1,...,N}
(Na+ (N − 1)b)

= 2N(Na+ (N − 1)b)

⇒ O(N2N).

Bibliography

∗ indicates equal contributions

[20] “Computing on the brain”, in: Nat. Electron. 3.7 (July 2020), pp. 347–347,
issn: 2520-1131, doi: 10.1038/s41928-020-0457-1.

[23] “AI hardware has an energy problem”, in: Nat. Electron. 6.7 (July 1, 2023),
pp. 463–463, issn: 2520-1131, doi: 10.1038/s41928-023-01014-x.

[AA11] S. Aaronson and A. Arkhipov, “The computational complexity of
linear optics”, in: Proceedings of the forty-third annual ACM symposium
on Theory of computing , Nov. 2011, pp. 333–342, doi: 10.48550/arXiv.
1011.3245, arXiv: 1011.3245.

[AAM24] A. H. Abbas, H. Abdel-Ghani, and I. S. Maksymov, “Classical
and Quantum Physical Reservoir Computing for Onboard Artificial In-
telligence Systems: A Perspective”, in: (June 2024), doi: 10.20944/

preprints202406.1128.v1.

[AAS10] I. Afek, O. Ambar, and Y. Silberberg, “High-NOON States by Mixing
Quantum and Classical Light”, in: Science 328.5980 (2010), pp. 879–881,
doi: 10.1126/science.1188172.

[Abb99] L. Abbott, “Lapicque’s introduction of the integrate-and-fire model
neuron (1907)”, in: Brain Res. Bull. 50.5–6 (Nov. 1999), pp. 303–304, issn:
0361-9230, doi: 10.1016/s0361-9230(99)00161-6.

[Abd+18a] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa,
D. Belov, N. Heess, and M. Riedmiller, Relative Entropy Regularized
Policy Iteration, Dec. 2018, doi: 10.48550/arxiv.1812.02256, arXiv:
1812.02256 [cs.LG].

[Abd+18b] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, Maximum a posteriori policy optimisation, June 2018,
doi: 10.48550/ARXIV.1806.06920, arXiv: 1806.06920 [cs.LG].

158

https://doi.org/10.1038/s41928-020-0457-1
https://doi.org/10.1038/s41928-023-01014-x
https://doi.org/10.48550/arXiv.1011.3245
https://doi.org/10.48550/arXiv.1011.3245
https://arxiv.org/abs/1011.3245
https://doi.org/10.20944/preprints202406.1128.v1
https://doi.org/10.20944/preprints202406.1128.v1
https://doi.org/10.1126/science.1188172
https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.48550/arxiv.1812.02256
https://arxiv.org/abs/1812.02256
https://doi.org/10.48550/ARXIV.1806.06920
https://arxiv.org/abs/1806.06920

Bibliography 159

[Abr+24] S. Abreu, I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, S.
Masaad, L. Nguyen, E. Picco, G. Pourcel, A. Skalli, L. Talandier,
B. Vettelschoss, E. A. Vlieg, A. Argyris, P. Bienstman, D. Brunner,
J. Dambre, L. Daudet, J. D. Domenech, I. Fischer, F. Horst,
S. Massar, C. R. Mirasso, B. J. Offrein, A. Rossi, M. C. Soriano,
S. Sygletos, and S. K. Turitsyn, “A photonics perspective on computing
with physical substrates”, in: Rev. Phys. 12 (Dec. 1, 2024), p. 100093, issn:
2405-4283, doi: 10.1016/j.revip.2024.100093.

[Ach+04] D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley,
M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson,
“Photon-number-resolving detection using time-multiplexing”, in: J. Mod.
Opt. 51-9 (10 2004), pp. 1499–1515, issn: 1362-3044, doi: 10.1080/

09500340408235288.

[Ada18] A. Adamatzky, ed., Unconventional Computing , SpringerLink, New York,
NY: Springer US, 2018, isbn: 9781493968831.

[AHS85] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A Learning Algorithm
for Boltzmann Machines*”, in: Cogn. Sci. 9.1 (Jan. 1985), pp. 147–169,
issn: 1551-6709, doi: 10.1207/s15516709cog0901_7.

[Ama98] S.-i. Amari, “Natural Gradient Works Efficiently in Learning”, in: Neural
Comput. 10.2 (Feb. 1998), pp. 251–276, issn: 1530-888X, doi: 10.1162/
089976698300017746.

[And+16] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman,
D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas, “Learning to
Learn by Gradient Descent by Gradient Descent”, in: Proceedings of the
30th International Conference on Neural Information Processing Systems ,
NIPS’16, Barcelona, Spain: Curran Associates Inc., 2016, pp. 3988–3996.

[Ant20] L. P. G. Antiga, Deep learning with PyTorch, ed. by E. Stevens and
T. Viehmann, Shelter Island, NY: Manning, 2020, isbn: 9781638354079.

[Arr+21] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J.
Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt,
J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik,
N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler,
M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi,
N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su,
J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon,
Z. Zabaneh, and Y. Zhang, “Quantum circuits with many photons on
a programmable nanophotonic chip”, in: Nature 591 (7848 Mar. 2021),
pp. 54–60, issn: 1476-4687, doi: 10.1038/s41586-021-03202-1.

https://doi.org/10.1016/j.revip.2024.100093
https://doi.org/10.1080/09500340408235288
https://doi.org/10.1080/09500340408235288
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1038/s41586-021-03202-1

Bibliography 160

[Bar+10] M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R. Blandino,
M. G. Paris, P. Grangier, and R. Tualle-Brouri, “Non-Gaussianity of
quantum states: An experimental test on single-photon-added coherent
states”, in: Phys. Rev. A - At. Mol. Opt. Phys. 82 (6 Dec. 2010), issn:
1050-2947, doi: 10.1103/PhysRevA.82.063833.

[Bel+17] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural Optimizer
Search with Reinforcement Learning”, in: Proceedings of the 34th Interna-
tional Conference on Machine Learning , PMLR, July 17, 2017, pp. 459–
468, url: https://proceedings.mlr.press/v70/bello17a.html.

[Bel10] R. Bellman, Dynamic programming , Princeton landmarks in mathematics,
Princeton: Princeton University Press, 2010, isbn: 1400835380.

[Ben+21] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”,
in: Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency , FAccT ’21, ACM, Mar. 2021, doi: 10.1145/3442188.
3445922.

[Ber20] M. N. Bernstein, Expectation-maximization: theory and intuition, May 13,
2020, url: https://mbernste.github.io/posts/em/.

[Ber22] D. P. Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive,
and AdaptiveControl , Athena Scientific, 2022, isbn: 978-1-886529-17-5.

[Bia+17] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, “Quantum machine learning”, in: Nature 549 (7671 Sept.
2017), pp. 195–202, issn: 1476-4687, doi: 10.1038/nature23474.

[Bog+20] W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon,
D. Englund, F. Morichetti, and A. Melloni, Programmable photonic
circuits , Oct. 2020, doi: 10.1038/s41586-020-2764-0.

[BP21] D. Brunner and D. Psaltis, “Competitive photonic neural networks”,
in: Nat. Photonics 15.5 (May 2021), pp. 323–324, issn: 1749-4893, doi:
10.1038/s41566-021-00803-0.

[Bra+18] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D.
Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,
and Q. Zhang, JAX: composable transformations of Python+NumPy
programs , 2018, url: http://github.com/google/jax.

[Bro+13] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson,
T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable
circuit”, in: Science 339 (6121 Feb. 2013), pp. 794–798, issn: 1095-9203,
doi: 10.1126/science.1231440.

https://doi.org/10.1103/PhysRevA.82.063833
https://proceedings.mlr.press/v70/bello17a.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://mbernste.github.io/posts/em/
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/s41586-020-2764-0
https://doi.org/10.1038/s41566-021-00803-0
http://github.com/google/jax
https://doi.org/10.1126/science.1231440

Bibliography 161

[Bru+19] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
“Trapped-ion quantum computing: Progress and challenges”, in: Appl.
Phys. Rev. 6.2 (May 2019), issn: 1931-9401, doi: 10.1063/1.5088164.

[Bru19] D. Brunner, Photonic Reservoir Computing , Berlin Boston: Gruyter,
Walter de GmbH, July 2019, isbn: 3110583496, url: https://www.ebook.
de/de/product/38427878/photonic_reservoir_computing.html.

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems”, in: IEEE
Trans. on Syst. Man, Cybern. SMC-13.5 (Sept. 1983), pp. 834–846, issn:
2168-2909, doi: 10.1109/tsmc.1983.6313077.

[Bue+18] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L.
Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic
recurrent neural network”, in: Optica 5.6 (June 20, 2018), pp. 756–760,
issn: 2334-2536, doi: 10.1364/OPTICA.5.000756.

[Cav+22] A. Cavaillès, P. Boucher, L. Daudet, I. Carron, S. Gigan,
and K. Müller, “A high-fidelity and large-scale reconfigurable photonic
processor for NISQ applications”, in: Opt. Express Vol. 30, Issue 17, pp.
30058-30065 (2022) 30.17 (May 3, 2022), p. 30058, issn: 1094-4087, doi:
10.1364/oe.462071, arXiv: 2205.01704 [quant-ph].

[CC18] P. Clifford and R. Clifford, “The Classical Complexity of Boson Sam-
pling”, in: Proceedings, Society for Industrial and Applied Mathematics,
Jan. 2018, pp. 146–155, doi: 10.1137/1.9781611975031.10, arXiv:
1706.01260 [cs.DS].

[CC20] P. Clifford and R. Clifford, Faster classical Boson Sampling , May 2020,
doi: 10.48550/arXiv.2005.04214, arXiv: 2005.04214.

[CD10] H. Caulfield and S. Dolev, “Why future supercomputing requires optics”,
in: Nat. Photonics 4 (May 2010), doi: 10.1038/nphoton.2010.94.

[Cec+21] F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, I. Rech, and
R. Osellame, “Recent Advances and Future Perspectives of Single-Photon
Avalanche Diodes for Quantum Photonics Applications”, in: Adv. Quantum
Technol. 4 (2 Feb. 2021), issn: 2511-9044, doi: 10.1002/qute.202000102.

[Che+18] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud,
“Neural ordinary differential equations”, in: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems , NIPS’18,
Montréal, Canada: Curran Associates Inc., 2018, pp. 6572–6583.

https://doi.org/10.1063/1.5088164
https://www.ebook.de/de/product/38427878/photonic_reservoir_computing.html
https://www.ebook.de/de/product/38427878/photonic_reservoir_computing.html
https://doi.org/10.1109/tsmc.1983.6313077
https://doi.org/10.1364/OPTICA.5.000756
https://doi.org/10.1364/oe.462071
https://arxiv.org/abs/2205.01704
https://doi.org/10.1137/1.9781611975031.10
https://arxiv.org/abs/1706.01260
https://doi.org/10.48550/arXiv.2005.04214
https://arxiv.org/abs/2005.04214
https://doi.org/10.1038/nphoton.2010.94
https://doi.org/10.1002/qute.202000102

Bibliography 162

[Che+23a] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, H. Pham, X. Dong,
T. Luong, C.-J. Hsieh, Y. Lu, and Q. V. Le, “Symbolic Discovery of
Optimization Algorithms”, in: Advances in Neural Information Processing
Systems, vol. 36, arXiv, 2023, pp. 49205–49233, doi: 10.48550/ARXIV.
2302.06675, arXiv: 2302.06675 [cs.LG].

[Che+23b] R. Cheng, Y. Zhou, S. Wang, M. Shen, T. Taher, and H. X. Tang,
“A 100-pixel photon-number-resolving detector unveiling photon statistics”,
in: Nat. Photonics 17 (1 Jan. 2023), pp. 112–119, issn: 1749-4893, doi:
10.1038/s41566-022-01119-3.

[Chu36] A. Church, “An Unsolvable Problem of Elementary Number Theory”, in:
Am. J. Math. 58.2 (Apr. 1936), p. 345, issn: 0002-9327, doi: 10.2307/
2371045.

[CP76] D. Casasent and D. Psaltis, “Position, rotation, and scale invariant
optical correlation”, in: Appl. Opt. 15.7 (July 1976), p. 1795, issn: 1539-
4522, doi: 10.1364/ao.15.001795.

[Cuc+22] M. Cucchi, S. Abreu, G. Ciccone, D. Brunner, and H. Kleemann,
“Hands-on reservoir computing: a tutorial for practical implementation”, in:
Neuromorphic Comput. Eng. 2.3 (Aug. 2022), p. 032002, doi: 10.1088/
2634-4386/ac7db7.

[Dal+20] A. M. Dalzell, A. W. Harrow, D. E. Koh, and R. L. La Placa,
“How many qubits are needed for quantum computational supremacy?”,
in: Quantum 4 (May 2020), p. 264, issn: 2521-327X, doi: 10.22331/q-
2020-05-11-264.

[Dav+18] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K.
Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J.
Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and
H. Wang, “Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning”, in: IEEE Micro 38.1 (Jan. 2018), pp. 82–99, issn: 1937-4143,
doi: 10.1109/mm.2018.112130359.

[Def+16] H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan,
“Two-photon quantum walk in a multimode fiber”, in: Sci. Adv. 2 (1 Jan.
2016), issn: 2375-2548, doi: 10.1126/sciadv.1501054.

[Deg+22] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. de las Casas, C. Donner, L.
Fritz, C. Galperti, A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay, A.
Merle, J.-M. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter, C.
Sommariva, S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu,
D. Hassabis, and M. Riedmiller, “Magnetic control of tokamak plasmas

https://doi.org/10.48550/ARXIV.2302.06675
https://doi.org/10.48550/ARXIV.2302.06675
https://arxiv.org/abs/2302.06675
https://doi.org/10.1038/s41566-022-01119-3
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.1364/ao.15.001795
https://doi.org/10.1088/2634-4386/ac7db7
https://doi.org/10.1088/2634-4386/ac7db7
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1126/sciadv.1501054

Bibliography 163

through deep reinforcement learning”, in: Nature 602.7897 (Feb. 2022),
pp. 414–419, issn: 1476-4687, doi: 10.1038/s41586-021-04301-9.

[DG17] D. Dua and C. Graff, UCI Machine Learning Repository , 2017, url:
http://archive.ics.uci.edu/ml.

[DiV00] D. P. DiVincenzo, “The Physical Implementation of Quantum Compu-
tation”, in: Fortschritte der Physik 48.9–11 (Sept. 2000), pp. 771–783,
issn: 1521-3978, doi: 10.1002/1521-3978(200009)48:9/11<771::aid-
prop771>3.0.co;2-e.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data Via the EM Algorithm”, in: J. Royal Stat. Soc.
Ser. B: Stat. Methodol. 39.1 (Sept. 1977), pp. 1–22, issn: 1467-9868, doi:
10.1111/j.2517-6161.1977.tb01600.x.

[Don+08] D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum Reinforcement
Learning”, in: IEEE Trans. on Syst. Man, Cybern. Part B (Cybernetics)
38.5 (Oct. 2008), pp. 1207–1220, issn: 1083-4419, doi: 10.1109/tsmcb.
2008.925743.

[EMH19] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A
Survey”, in: J. Mach. Learn. Res. 20.55 (2019), pp. 1–21, issn: 1533-7928,
url: http://jmlr.org/papers/v20/18-598.html.

[ES15] A. E. Eiben and J. Smith, “From evolutionary computation to the
evolution of things”, in: Nature 521.7553 (May 2015), pp. 476–482, issn:
1476-4687, doi: 10.1038/nature14544.

[ext24] extropic, Ushering in the Thermodynamic Future - Litepaper , Mar. 11,
2024, url: https://www.extropic.ai/future.

[Far+85] N. H. Farhat, D. Psaltis, A. Prata, and E. Paek, “Optical implemen-
tation of the Hopfield model”, in: Appl. Opt. 24.10 (May 1985), p. 1469,
issn: 1539-4522, doi: 10.1364/ao.24.001469.

[FDB24] N. Farmakidis, B. Dong, and H. Bhaskaran, “Integrated photonic
neuromorphic computing: opportunities and challenges”, in: Nat. Rev.
Electr. Eng. 1.6 (June 2024), pp. 358–373, issn: 2948-1201, doi: 10.1038/
s44287-024-00050-9.

[Fed+22] A. K. Fedorov, N. Gisin, S. M. Beloussov, and A. I. Lvovsky,
“Quantum computing at the quantum advantage threshold: a down-to-
business review”, in: (Mar. 31, 2022), doi: 10.48550/ARXIV.2203.17181,
arXiv: 2203.17181 [quant-ph].

[Fil+22] M. J. Filipovich, A. Cappelli, D. Hesslow, and J. Launay, “Scaling
Laws Beyond Backpropagation”, in: (Oct. 26, 2022), doi: 10.48550/
ARXIV.2210.14593, arXiv: 2210.14593 [cs.LG].

https://doi.org/10.1038/s41586-021-04301-9
http://archive.ics.uci.edu/ml
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/tsmcb.2008.925743
https://doi.org/10.1109/tsmcb.2008.925743
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.1038/nature14544
https://www.extropic.ai/future
https://doi.org/10.1364/ao.24.001469
https://doi.org/10.1038/s44287-024-00050-9
https://doi.org/10.1038/s44287-024-00050-9
https://doi.org/10.48550/ARXIV.2203.17181
https://arxiv.org/abs/2203.17181
https://doi.org/10.48550/ARXIV.2210.14593
https://doi.org/10.48550/ARXIV.2210.14593
https://arxiv.org/abs/2210.14593

Bibliography 164

[Fit+03] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Photon
number resolution using time-multiplexed single-photon detectors, 2003,
doi: 10.1103/PhysRevA.68.043814.

[FJL24] J. Feng, V. Jirsa, and W. Lu, “Human brain computing and brain-
inspired intelligence”, in: National Sci. Rev. 11.5 (Apr. 2024), issn: 2053-
714X, doi: 10.1093/nsr/nwae144.

[Fri10] K. Friston, “The free-energy principle: a unified brain theory?”, in:
Nat. Rev. Neurosci. 11.2 (Jan. 2010), pp. 127–138, issn: 1471-0048, doi:
10.1038/nrn2787.

[FS03] C. Fernando and S. Sojakka, “Pattern Recognition in a Bucket”, in:
Advances in Artificial Life, Springer Berlin Heidelberg, 2003, pp. 588–597,
isbn: 9783540394327, doi: 10.1007/978-3-540-39432-7_63.

[Gar+14] B. T. Gard, K. R. Motes, J. P. Olson, P. P. Rohde, and J. P.
Dowling, “An introduction to boson-sampling”, in: (June 2014), doi:
10.1142/9789814678704_0008.

[Gar+23] J. García-Beni, G. L. Giorgi, M. C. Soriano, and R. Zambrini, “Scalable
photonic platform for real-time quantum reservoir computing”, in: Phys.
Rev. Appl. 20 (1 July 2023), p. 014051, doi: 10.1103/PhysRevApplied.
20.014051.

[Gho+19] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H.
Liew, “Quantum reservoir processing”, in: npj Quantum Inf. 5.1 (1 Dec.
2019), issn: 2056-6387, doi: 10.1038/s41534-019-0149-8.

[Gho+20] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H.
Liew, “Reconstructing quantum states with quantum reservoir networks”,
in: IEEE Trans. on Neural Networks Learn. Syst. (2020), pp. 1–8, issn:
2162-237X, 2162-2388, doi: 10.1109/TNNLS.2020.3009716, arXiv: 2008.
06378.

[Gis+21] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar,
“Adversarial Reinforcement Learning for Procedural Content Generation”,
in: (Mar. 8, 2021), doi: 10.48550/ARXIV.2103.04847, arXiv: 2103.04847
[cs.LG].

[GLA22] B. Y. Gan, D. Leykam, and D. G. Angelakis, “Fock state-enhanced
expressivity of quantum machine learning models”, in: EPJ Quantum
Technol. 9 (1 Dec. 2022), issn: 2196-0763, doi: 10.1140/epjqt/s40507-
022-00135-0.

[GLG23] N. Götting, F. Lohof, and C. Gies, “Exploring quantumness in quantum
reservoir computing”, in: Phys. Rev. A 108.5 (Nov. 27, 2023), p. 052427,
issn: 2469-9926, doi: 10.1103/PhysRevA.108.052427.

https://doi.org/10.1103/PhysRevA.68.043814
https://doi.org/10.1093/nsr/nwae144
https://doi.org/10.1038/nrn2787
https://doi.org/10.1007/978-3-540-39432-7_63
https://doi.org/10.1142/9789814678704_0008
https://doi.org/10.1103/PhysRevApplied.20.014051
https://doi.org/10.1103/PhysRevApplied.20.014051
https://doi.org/10.1038/s41534-019-0149-8
https://doi.org/10.1109/TNNLS.2020.3009716
https://arxiv.org/abs/2008.06378
https://arxiv.org/abs/2008.06378
https://doi.org/10.48550/ARXIV.2103.04847
https://arxiv.org/abs/2103.04847
https://arxiv.org/abs/2103.04847
https://doi.org/10.1140/epjqt/s40507-022-00135-0
https://doi.org/10.1140/epjqt/s40507-022-00135-0
https://doi.org/10.1103/PhysRevA.108.052427

Bibliography 165

[GO18] L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal”,
in: Neural Networks 108 (Dec. 2018), pp. 495–508, issn: 0893-6080, doi:
10.1016/j.neunet.2018.08.025.

[GO21] L. Gonon and J.-P. Ortega, “Fading memory echo state networks
are universal”, in: Neural Networks 138 (June 2021), pp. 10–13, issn:
0893-6080, doi: 10.1016/j.neunet.2021.01.025.

[Goo+16] I. Goodfellow, J. Bengio, A. Courville, and F. Bach, Deep Learning ,
MIT Press Ltd, Nov. 2016, isbn: 978-0262035613, url: https://www.
ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_

aaron_courville_francis_bach_deep_learning.html.

[Goo85] J. W. Goodman, “Fan-in and Fan-out with Optical Interconnections”, in:
Opt. Acta: Int. J. Opt. 32.12 (Dec. 1985), pp. 1489–1496, issn: 0030-3909,
doi: 10.1080/713821684.

[Goo96] J. Goodman, Introduction to Fourier optics, New York: McGraw-Hill,
1996, isbn: 0070242542.

[Guo+21] X. Guo, T. D. Barrett, Z. M. Wang, and A. I. Lvovsky, “Backpropaga-
tion through nonlinear units for the all-optical training of neural networks”,
in: Photonics Res. 9.3 (Mar. 2021), B71, doi: 10.1364/PRJ.411104.

[Haa+18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor”, in: arXiv preprint arXiv:1801.01290 (2018), doi:
10.48550/arxiv.1801.01290, arXiv: 1801.01290 [cs.LG].

[Ham23] Hamamatsu Photonics, qCMOS ® : Quantitative CMOS technology en-
abled by Photon Number Resolving , 2023, url: https://www.hamamatsu.
com / content / dam / hamamatsu - photonics / sites / documents / 99 _

SALES_LIBRARY/sys/SCAS0149E_qCMOS_whitepaper.pdf.

[He+22] Z. He, C. Chen, L. Li, S. Zheng, and H. Situ, “Quantum Architecture
Search with Meta-Learning”, in: Adv. Quantum Technol. 5.8 (June 2022),
issn: 2511-9044, doi: 10.1002/qute.202100134.

[Heb05] D. O. Hebb, The Organization of Behavior , Hoboken: Taylor and Francis,
2005, isbn: 9780805843002.

[Hen+19] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, Deep Reinforcement Learning that Matters , arXiv:1709.06560,
Jan. 29, 2019, doi: 10.48550/arXiv.1709.06560, arXiv: 1709.06560[cs,
stat].

https://doi.org/10.1016/j.neunet.2018.08.025
https://doi.org/10.1016/j.neunet.2021.01.025
https://www.ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_aaron_courville_francis_bach_deep_learning.html
https://www.ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_aaron_courville_francis_bach_deep_learning.html
https://www.ebook.de/de/product/26337726/ian_goodfellow_joshua_bengio_aaron_courville_francis_bach_deep_learning.html
https://doi.org/10.1080/713821684
https://doi.org/10.1364/PRJ.411104
https://doi.org/10.48550/arxiv.1801.01290
https://arxiv.org/abs/1801.01290
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/sys/SCAS0149E_qCMOS_whitepaper.pdf
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/sys/SCAS0149E_qCMOS_whitepaper.pdf
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/sys/SCAS0149E_qCMOS_whitepaper.pdf
https://doi.org/10.1002/qute.202100134
https://doi.org/10.48550/arXiv.1709.06560
https://arxiv.org/abs/1709.06560 [cs, stat]
https://arxiv.org/abs/1709.06560 [cs, stat]

Bibliography 166

[Heu+23a] N. Heurtel, A. Fyrillas, G. d. Gliniasty, R. Le Bihan, S. Malherbe,
M. Pailhas, E. Bertasi, B. Bourdoncle, P.-E. Emeriau, R. Mezher,
L. Music, N. Belabas, B. Valiron, P. Senellart, S. Mansfield,
and J. Senellart, “Perceval: A Software Platform for Discrete Variable
Photonic Quantum Computing”, in: Quantum 7 (Feb. 2023), p. 931, issn:
2521-327X, doi: 10.22331/q-2023-02-21-931.

[Heu+23b] N. Heurtel, S. Mansfield, J. Senellart, and B. Valiron, “Strong
simulation of linear optical processes”, in: Comput. Phys. Commun. 291
(June 2023), p. 108848, issn: 0010-4655, doi: 10.1016/j.cpc.2023.
108848.

[Hin22] G. Hinton, “The Forward-Forward Algorithm: Some Preliminary Inves-
tigations”, in: (Dec. 2022), doi: 10.48550/ARXIV.2212.13345, arXiv:
2212.13345 [cs.LG].

[HL22] O. Hernández and I. Liberal, “Generalized approach to quantum
interference in lossy N-port devices via a singular value decomposition”,
in: Opt. Express 30.17 (Aug. 2022), pp. 31267–31286, doi: 10.1364/OE.
456495.

[HMK03] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES)”, in: Evol. Comput. 11.1 (Mar. 2003),
pp. 1–18, issn: 1530-9304, doi: 10.1162/106365603321828970.

[HO96] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation”,
in: Proceedings of IEEE International Conference on Evolutionary Com-
putation, ICEC-96, IEEE, 1996, doi: 10.1109/icec.1996.542381.

[Hof+20] M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, N.
Momchev, D. Sinopalnikov, P. Stańczyk, S. Ramos, A. Raichuk,
D. Vincent, L. Hussenot, R. Dadashi, G. Dulac-Arnold, M. Orsini,
A. Jacq, J. Ferret, N. Vieillard, S. K. S. Ghasemipour, S. Girgin, O.
Pietquin, F. Behbahani, T. Norman, A. Abdolmaleki, A. Cassirer, F.
Yang, K. Baumli, S. Henderson, A. Friesen, R. Haroun, A. Novikov,
S. G. Colmenarejo, S. Cabi, C. Gulcehre, T. L. Paine, S. Srinivasan,
A. Cowie, Z. Wang, B. Piot, and N. de Freitas, “Acme: A Research
Framework for Distributed Reinforcement Learning”, in: arXiv preprint
arXiv:2006.00979 (2020), url: https://arxiv.org/abs/2006.00979.

[HOM87] C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond
time intervals between two photons by interference”, in: Phys. Rev. Lett.
59 (18 Nov. 1987), pp. 2044–2046, doi: 10.1103/PhysRevLett.59.2044.

https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.1016/j.cpc.2023.108848
https://doi.org/10.1016/j.cpc.2023.108848
https://doi.org/10.48550/ARXIV.2212.13345
https://arxiv.org/abs/2212.13345
https://doi.org/10.1364/OE.456495
https://doi.org/10.1364/OE.456495
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1109/icec.1996.542381
https://arxiv.org/abs/2006.00979
https://doi.org/10.1103/PhysRevLett.59.2044

Bibliography 167

[Hop82] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities.”, in: Proc. National Acad. Sci. 79.8 (Apr.
1982), pp. 2554–2558, issn: 1091-6490, doi: 10.1073/pnas.79.8.2554.

[Hos+22] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-
Learning in Neural Networks: A Survey”, in: IEEE Trans. on Pattern
Anal. Mach. Intell. 44.9 (Sept. 2022), pp. 5149–5169, issn: 1939-3539, doi:
10.1109/TPAMI.2021.3079209.

[HS18] D. Ha and J. Schmidhuber, “Recurrent World Models Facilitate Policy
Evolution”, in: Advances in Neural Information Processing Systems 31 ,
Curran Associates, Inc., 2018, pp. 2451–2463, arXiv: 1803.10122.

[Hu+20] Y. Hu, Z. Wang, X. Wang, S. Ji, C. Zhang, J. Li, W. Zhu,
D. Wu, and J. Chu, “Efficient full-path optical calculation of scalar and
vector diffraction using the Bluestein method”, in: Light. Sci. & Appl. 9.1
(July 2020), doi: 10.1038/s41377-020-00362-z.

[Hu+21] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L.
Wang, and W. Chen, “LoRA: Low-Rank Adaptation of Large Language
Models”, in: (June 17, 2021), doi: 10.48550/ARXIV.2106.09685, arXiv:
2106.09685 [cs.CL].

[Hu+24] J. Hu, D. Mengu, D. C. Tzarouchis, B. Edwards, N. Engheta, and
A. Ozcan, “Diffractive optical computing in free space”, in: Nat. Commun.
15.1 (Feb. 20, 2024), p. 1525, issn: 2041-1723, doi: 10.1038/s41467-
024-45982-w.

[Hua+22] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni,
H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean,
“Quantum advantage in learning from experiments”, in: Science 376.6598
(2022), pp. 1182–1186, doi: 10.1126/science.abn7293.

[Hum+23] R. Hummatov, A. E. Lita, T. Farrahi, N. Otrooshi, S. Fayer,
M. J. Collins, M. Durkin, D. Bennett, J. Ullom, R. P. Mirin, and
S. W. Nam, “Fast transition-edge sensors suitable for photonic quantum
computing”, in: J. Appl. Phys. 133 (23 June 2023), issn: 1089-7550, doi:
10.1063/5.0149478.

[HZS06] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications”, in: Neurocomputing 70.1–3 (Dec. 2006), pp. 489–
501, issn: 0925-2312, doi: 10.1016/j.neucom.2005.12.126.

[Ich+24] T. Ichikawa, H. Hakoshima, K. Inui, K. Ito, R. Matsuda, K. Mitarai,
K. Miyamoto, W. Mizukami, K. Mizuta, T. Mori, Y. Nakano, A.
Nakayama, K. N. Okada, T. Sugimoto, S. Takahira, N. Takemori, S.
Tsukano, H. Ueda, R. Watanabe, Y. Yoshida, and K. Fujii, “Current

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1109/TPAMI.2021.3079209
https://arxiv.org/abs/1803.10122
https://doi.org/10.1038/s41377-020-00362-z
https://doi.org/10.48550/ARXIV.2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1038/s41467-024-45982-w
https://doi.org/10.1038/s41467-024-45982-w
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1063/5.0149478
https://doi.org/10.1016/j.neucom.2005.12.126

Bibliography 168

numbers of qubits and their uses”, in: Nat. Rev. Phys. 6.6 (May 2024),
pp. 345–347, issn: 2522-5820, doi: 10.1038/s42254-024-00725-0.

[Irp18] A. Irpan, Deep Reinforcement Learning Doesn’t Work Yet , 2018, url:
https://www.alexirpan.com/2018/02/14/rl-hard.html.

[JL84] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings
into a Hilbert space, 1984, doi: 10.1090/conm/026/737400.

[Jum+21] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O.
Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko,
A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B.
Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein
structure prediction with AlphaFold”, in: Nature 596.7873 (July 2021),
pp. 583–589, issn: 1476-4687, doi: 10.1038/s41586-021-03819-2.

[Kaa+22] L. H. Kaack, P. L. Donti, E. Strubell, G. Kamiya, F. Creutzig,
and D. Rolnick, “Aligning artificial intelligence with climate change
mitigation”, in: Nat. Clim. Chang. 12.6 (June 2022), pp. 518–527, issn:
1758-6798, doi: 10.1038/s41558-022-01377-7.

[Kar21] A. Karpathy, Software 2.0 , Mar. 13, 2021, url: https://karpathy.
medium.com/software-2-0-a64152b37c35.

[KB14] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
in: (Dec. 22, 2014), doi: 10.48550/ARXIV.1412.6980, arXiv: 1412.6980
[cs.LG].

[KG21] P. Kidger and C. Garcia, “Equinox: neural networks in JAX via callable
PyTrees and filtered transformations”, in: Differ. Program. workshop at
Neural Inf. Process. Syst. 2021 (2021), arXiv: 2111.00254.

[Kja+20] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J.
Wang, S. Gustavsson, and W. D. Oliver, “Superconducting Qubits:
Current State of Play”, in: Annu. Rev. Condens. Matter Phys. 11.1 (2020),
pp. 369–395, doi: 10.1146/annurev-conmatphys-031119-050605.

[Kri+24] S. Krishnaswamy, F. Schule, L. Ares, V. Dyachuk, M. Stefszky, B.
Brecht, C. Silberhorn, and J. Sperling, “Retrieval of photon statistics
from click detection”, in: (Mar. 2024), doi: 10.48550/arXiv.2403.11673,
arXiv: 2403.11673.

[KS20] L. Kirsch and J. Schmidhuber, “Meta Learning Backpropagation And
Improving It”, in: 35th Conf. on Neural Inf. Process. Syst. (NeurIPS 2021)
(Dec. 2020), doi: 10.48550/ARXIV.2012.14905, arXiv: 2012.14905
[cs.LG].

https://doi.org/10.1038/s42254-024-00725-0
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41558-022-01377-7
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2111.00254
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.48550/arXiv.2403.11673
https://arxiv.org/abs/2403.11673
https://doi.org/10.48550/ARXIV.2012.14905
https://arxiv.org/abs/2012.14905
https://arxiv.org/abs/2012.14905

Bibliography 169

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks”, in: Advances in
Neural Information Processing Systems , ed. by F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, vol. 25, Curran Associates, Inc., 2012,
url: https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[Lan22] R. T. Lange, “evosax: JAX-based Evolution Strategies”, in: (2022), arXiv:
2212.04180.

[Lat+24] M. H. Latifpour, B. J. Park, Y. Yamamoto, and M.-G. Suh,
“Hyperspectral in-memory computing with optical frequency combs and
programmable optical memories”, in: Optica 11.7 (July 2024), pp. 932–939,
doi: 10.1364/OPTICA.522378.

[Lau+20] J. Launay, I. Poli, F. Boniface, and F. Krzakala, “Direct Feedback
Alignment Scales to Modern Deep Learning Tasks and Architectures”, in:
(June 23, 2020), doi: 10.48550/arxiv.2006.12878, arXiv: 2006.12878
[stat.ML].

[LB02] A. I. Lvovsky and S. A. Babichev, “Synthesis and tomographic charac-
terization of the displaced Fock state of light”, in: Phys. Rev. A - At. Mol.
Opt. Phys. 66 (1 2002), p. 4, issn: 1094-1622, doi: 10.1103/PhysRevA.
66.011801.

[LCB10] Y. LeCun, C. Cortes, and C. Burges, MNIST handwritten digit
database, 2010, url: http://yann.lecun.com/exdb/mnist.

[Le 14] F. Le Gall, “Powers of tensors and fast matrix multiplication”, in: Proceed-
ings of the 39th International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’14, ACM, July 2014, doi: 10.1145/2608628.2608664.

[Lee+20] J. Lee, J. Jeong, J. Cho, D. Yoo, B. Lee, and B. Lee, “Deep neural
network for multi-depth hologram generation and its training strategy”,
in: Opt. Express 28.18 (Aug. 2020), p. 27137, doi: 10.1364/oe.402317.

[Len03] P. Lennie, “The Cost of Cortical Computation”, in: Curr. Biol. 13.6 (Mar.
2003), pp. 493–497, issn: 0960-9822, doi: 10.1016/s0960-9822(03)
00135-0.

[Li+21] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Fourier Neural Operator for Parametric
Partial Differential Equations”, in: arXiv preprint arXiv:2010.08895 (2021),
doi: 10.48550/arxiv.2010.08895, arXiv: 2010.08895 [cs.LG].

[Lil+16] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman,
“Random synaptic feedback weights support error backpropagation for
deep learning”, in: Nat. Commun. 7.1 (Nov. 2016), issn: 2041-1723, doi:
10.1038/ncomms13276.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2212.04180
https://doi.org/10.1364/OPTICA.522378
https://doi.org/10.48550/arxiv.2006.12878
https://arxiv.org/abs/2006.12878
https://arxiv.org/abs/2006.12878
https://doi.org/10.1103/PhysRevA.66.011801
https://doi.org/10.1103/PhysRevA.66.011801
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1364/oe.402317
https://doi.org/10.1016/s0960-9822(03)00135-0
https://doi.org/10.1016/s0960-9822(03)00135-0
https://doi.org/10.48550/arxiv.2010.08895
https://arxiv.org/abs/2010.08895
https://doi.org/10.1038/ncomms13276

Bibliography 170

[Lil+19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, Continuous control with deep reinforcement
learning , tech. rep., July 2019, doi: 10.48550/arXiv.1509.02971, arXiv:
1509.02971.

[Lin+18] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M.
Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive
deep neural networks”, in: Science 361.6406 (July 2018), pp. 1004–1008,
doi: 10.1126/science.aat8084.

[LM17] K. Li and J. Malik, “Learning to Optimize Neural Nets”, in: (Nov.
2017), doi: 10.48550/arXiv.1703.00441, arXiv: 1703.00441 [cs.LG].

[LMK22] A. Luczak, B. L. McNaughton, and Y. Kubo, “Neurons learn by
predicting future activity”, in: Nat. Mach. Intell. 4.1 (Jan. 2022), pp. 62–
72, issn: 2522-5839, doi: 10.1038/s42256-021-00430-y.

[Los+24] J. W. N. Los, M. Sidorova, B. Lopez-Rodriguez, P. Qualm, J.
Chang, S. Steinhauer, V. Zwiller, and I. E. Zadeh, “High-performance
photon number resolving detectors for 850-950 nm wavelength range”,
in: APL Photonics 9.6 (June 2024), p. 066101, issn: 2378-0967, doi:
10.1063/5.0204340, arXiv: 2401.07265.

[LQP93] H.-Y. S. Li, Y. Qiao, and D. Psaltis, “Optical network for real-time face
recognition”, in: Appl. Opt. 32.26 (Sept. 1993), p. 5026, issn: 1539-4522,
doi: 10.1364/ao.32.005026.

[Luo+23] W. Luo, L. Cao, Y. Shi, L. Wan, H. Zhang, S. Li, G. Chen,
Y. Li, S. Li, Y. Wang, S. Sun, M. F. Karim, H. Cai, L. C.
Kwek, and A. Q. Liu, Recent progress in quantum photonic chips for
quantum communication and internet , Dec. 2023, doi: 10.1038/s41377-
023-01173-8.

[LZ18] Z. Li and Q. Zhang, “A Simple Yet Efficient Evolution Strategy for
Large-Scale Black-Box Optimization”, in: IEEE Trans. on Evol. Comput.
22.5 (2018), pp. 637–646, doi: 10.1109/TEVC.2017.2765682.

[Mad+22] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent,
J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins,
A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I.
Dhand, Z. Vernon, N. Quesada, and J. Lavoie, “Quantum computational
advantage with a programmable photonic processor”, in: Nature 606 (7912
June 2022), pp. 75–81, issn: 1476-4687, doi: 10.1038/s41586- 022-
04725-x.

https://doi.org/10.48550/arXiv.1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1126/science.aat8084
https://doi.org/10.48550/arXiv.1703.00441
https://arxiv.org/abs/1703.00441
https://doi.org/10.1038/s42256-021-00430-y
https://doi.org/10.1063/5.0204340
https://arxiv.org/abs/2401.07265
https://doi.org/10.1364/ao.32.005026
https://doi.org/10.1038/s41377-023-01173-8
https://doi.org/10.1038/s41377-023-01173-8
https://doi.org/10.1109/TEVC.2017.2765682
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x

Bibliography 171

[Mal+23] S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D.
Chen, and S. Arora, “Fine-Tuning Language Models with Just Forward
Passes”, in: Advances in Neural Information Processing Systems , ed. by
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, vol. 36, Curran Associates, Inc., 2023, pp. 53038–53075, url:
https://proceedings.neurips.cc/paper_files/paper/2023/file/

a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf.

[Mar+20a] G. Marcucci, D. Pierangeli, P. W. H. Pinkse, M. Malik, and C.
Conti, “Programming multi-level quantum gates in disordered comput-
ing reservoirs via machine learning”, in: Opt. Express 28.9 (Apr. 2020),
pp. 14018–14027, doi: 10.1364/OE.389432.

[Mar+20b] D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for
neuromorphic computing”, in: Nat. Rev. Phys. 2.9 (Sept. 2020), pp. 499–
510, issn: 2522-5820, doi: 10.1038/s42254-020-0208-2.

[Mar+24] N. Maring, A. Fyrillas, M. Pont, E. Ivanov, P. Stepanov, N.
Margaria, W. Hease, A. Pishchagin, A. Lemaître, I. Sagnes, T. H.
Au, S. Boissier, E. Bertasi, A. Baert, M. Valdivia, M. Billard, O.
Acar, A. Brieussel, R. Mezher, S. C. Wein, A. Salavrakos, P. Sinnott,
D. A. Fioretto, P.-E. Emeriau, N. Belabas, S. Mansfield, P. Senellart,
J. Senellart, and N. Somaschi, “A versatile single-photon-based quantum
computing platform”, in: Nat. Photonics 18.6 (Mar. 2024), pp. 603–609,
issn: 1749-4893, doi: 10.1038/s41566-024-01403-4.

[Mat+22] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M.
Sugiyama, E. Uchibe, and J. Morimoto, “Deep learning, reinforcement
learning, and world models”, in: Neural Networks 152 (Aug. 2022), pp. 267–
275, issn: 0893-6080, doi: 10.1016/j.neunet.2022.03.037.

[McM23] P. L. McMahon, “The physics of optical computing”, in: Nat. Rev. Phys.
5.12 (Dec. 1, 2023), pp. 717–734, issn: 2522-5820, doi: 10.1038/s42254-
023-00645-5.

[Mee+21] R. van der Meer, S. Huber, P. W. H. Pinkse, R. García-Patrón, and
J. J. Renema, “Boson Sampling in Low-depth Optical Systems”, in: (Oct.
2021), doi: 10.48550/arXiv.2110.05099, arXiv: 2110.05099.

[Met+22] L. Metz, J. Harrison, C. D. Freeman, A. Merchant, L. Beyer,
J. Bradbury, N. Agrawal, B. Poole, I. Mordatch, A. Roberts,
and J. Sohl-Dickstein, “VeLO: Training Versatile Learned Optimizers
by Scaling Up”, in: (Nov. 17, 2022), doi: 10.48550/ARXIV.2211.09760,
arXiv: 2211.09760 [cs.LG].

https://proceedings.neurips.cc/paper_files/paper/2023/file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf
https://doi.org/10.1364/OE.389432
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1038/s41566-024-01403-4
https://doi.org/10.1016/j.neunet.2022.03.037
https://doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.48550/arXiv.2110.05099
https://arxiv.org/abs/2110.05099
https://doi.org/10.48550/ARXIV.2211.09760
https://arxiv.org/abs/2211.09760

Bibliography 172

[Mni+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning”, in: (Dec. 19, 2013), doi: 10.48550/ARXIV.1312.5602, arXiv:
1312.5602 [cs.LG].

[Mni+16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous Methods
for Deep Reinforcement Learning”, in: ICML 2016 (Feb. 4, 2016), doi:
10.48550/ARXIV.1602.01783, arXiv: 1602.01783 [cs.LG].

[Mom+24] A. Momeni, B. Rahmani, B. Scellier, L. G. Wright, P. L. McMahon,
C. C. Wanjura, Y. Li, A. Skalli, N. G. Berloff, T. Onodera, I.
Oguz, F. Morichetti, P. del Hougne, M. L. Gallo, A. Sebastian, A.
Mirhoseini, C. Zhang, D. Marković, D. Brunner, C. Moser, S. Gigan,
F. Marquardt, A. Ozcan, J. Grollier, A. J. Liu, D. Psaltis, A. Alù,
and R. Fleury, Training of Physical Neural Networks , arXiv:2406.03372,
June 2024, doi: 10.48550/arXiv.2406.03372, arXiv: 2406.03372.

[Moo06] G. E. Moore, “Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114
ff.”, in: IEEE Solid-State Circuits Soc. Newsl. 11.3 (2006), pp. 33–35, doi:
10.1109/N-SSC.2006.4785860.

[MP23] I. S. Maksymov and A. Pototsky, “Reservoir computing based on
solitary-like waves dynamics of liquid film flows: A proof of concept”,
in: Europhys. Lett. 142.4 (May 2023), p. 43001, issn: 1286-4854, doi:
10.1209/0295-5075/acd471.

[MPC20] G. Marcucci, D. Pierangeli, and C. Conti, “Theory of neuromorphic
computing by waves: machine learning by rogue waves, dispersive shocks,
and solitons”, in: Phys. Rev. Lett. 125.9 (Aug. 2020), p. 093901, issn:
0031-9007, 1079-7114, doi: 10.1103/PhysRevLett.125.093901, arXiv:
1912.07044.

[Muj+21] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L.
Giorgi, M. C. Soriano, and R. Zambrini, “Opportunities in Quantum
Reservoir Computing and Extreme Learning Machines”, in: Adv. Quantum
Technol. 4.8 (2021), p. 2100027, doi: 10.1002/qute.202100027.

[Mun+16] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare,
“Safe and Efficient Off-Policy Reinforcement Learning”, in: Advances in
Neural Information Processing Systems , ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, vol. 29, Curran Associates,
Inc., June 2016, doi: 10.48550/arxiv.1606.02647, arXiv: 1606.02647
[cs.LG].

https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1602.01783
https://arxiv.org/abs/1602.01783
https://doi.org/10.48550/arXiv.2406.03372
https://arxiv.org/abs/2406.03372
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1209/0295-5075/acd471
https://doi.org/10.1103/PhysRevLett.125.093901
https://arxiv.org/abs/1912.07044
https://doi.org/10.1002/qute.202100027
https://doi.org/10.48550/arxiv.1606.02647
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1606.02647

Bibliography 173

[Mut+19] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun,
“Processing data where it makes sense: Enabling in-memory computation”,
in: Microprocess. Microsystems 67 (June 2019), pp. 28–41, issn: 0141-9331,
doi: 10.1016/j.micpro.2019.01.009.

[NE19] A. Nøkland and L. H. Eidnes, “Training Neural Networks with Local
Error Signals”, in: Int. Conf. on Mach. Learn. (Jan. 2019), doi: 10.48550/
arxiv.1901.06656, arXiv: 1901.06656v2 [stat.ML].

[Ner+24] S. Nerenberg*, O. D. Neill*, G. Marcucci, and D. Faccio, Photon
Number-Resolving Quantum Reservoir Computing , 2024, doi: 10.48550/
arxiv.2402.06339, arXiv: 2402.06339 [quant-ph].

[Neu93] J. von Neumann, “First draft of a report on the EDVAC”, in: IEEE Ann.
Hist. Comput. 15.4 (1993), pp. 27–75, issn: 1058-6180, doi: 10.1109/85.
238389.

[NF24] O. D. Neill and D. Faccio, “Optical neural networks trained in
situ with reinforcement learning”, in: Machine Learning in Photonics,
ed. by F. Ferranti, M. K. Hedayati, and A. Fratalocchi, vol. 13017,
International Society for Optics and Photonics, SPIE, 2024, p. 130170L,
doi: 10.1117/12.3021870.

[Nij14] A. Nijenhuis, Combinatorial Algorithms, ed. by H. S. Wilf and W.
Rheinboldt, Computer science and applied mathematics, Burlington: El-
sevier Science, 2014, isbn: 9780125192606.

[Nøk16] A. Nøkland, “Direct Feedback Alignment Provides Learning in Deep
Neural Networks”, in: Neural Information Processing Systems , Sept. 2016,
doi: 10.48550/arxiv.1609.01596, arXiv: 1609.01596 [stat.ML].

[Ogu+23] I. Oguz, J. Ke, Q. Weng, F. Yang, M. Yildirim, N. U. Dinc,
J.-L. Hsieh, C. Moser, and D. Psaltis, “Forward–forward training of an
optical neural network”, in: Opt. Lett. 48.20 (Oct. 2023), pp. 5249–5252,
issn: 1539-4794, doi: 10.1364/OL.496884.

[Ope+21] Open Ended Learning Team, A. Stooke, A. Mahajan, C. Barros,
C. Deck, J. Bauer, J. Sygnowski, M. Trebacz, M. Jaderberg, M.
Mathieu, N. McAleese, N. Bradley-Schmieg, N. Wong, N. Porcel,
R. Raileanu, S. Hughes-Fitt, V. Dalibard, and W. M. Czarnecki,
“Open-Ended Learning Leads to Generally Capable Agents”, in: (July 27,
2021), doi: 10.48550/ARXIV.2107.12808, arXiv: 2107.12808 [cs.LG].

[Par+20] J. Park, B. G. Jeong, S. I. Kim, D. Lee, J. Kim, C. Shin,
C. B. Lee, T. Otsuka, J. Kyoung, S. Kim, K.-Y. Yang, Y.-Y.
Park, J. Lee, I. Hwang, J. Jang, S. H. Song, M. L. Brongersma,
K. Ha, S.-W. Hwang, H. Choo, and B. L. Choi, “All-solid-state
spatial light modulator with independent phase and amplitude control for

https://doi.org/10.1016/j.micpro.2019.01.009
https://doi.org/10.48550/arxiv.1901.06656
https://doi.org/10.48550/arxiv.1901.06656
https://arxiv.org/abs/1901.06656v2
https://doi.org/10.48550/arxiv.2402.06339
https://doi.org/10.48550/arxiv.2402.06339
https://arxiv.org/abs/2402.06339
https://doi.org/10.1109/85.238389
https://doi.org/10.1109/85.238389
https://doi.org/10.1117/12.3021870
https://doi.org/10.48550/arxiv.1609.01596
https://arxiv.org/abs/1609.01596
https://doi.org/10.1364/OL.496884
https://doi.org/10.48550/ARXIV.2107.12808
https://arxiv.org/abs/2107.12808

Bibliography 174

three-dimensional LiDAR applications”, in: Nat. Nanotechnol. 16.1 (Oct.
2020), pp. 69–76, issn: 1748-3395, doi: 10.1038/s41565-020-00787-y.

[PJ95] S. S. Paivi Torma and I. Jex, “Hamiltonian theory of symmetric
optical network transforms”, in: Phys. Rev. A 52 (6 1995), doi: 10.1103/
physreva.52.4853.

[PMC21] D. Pierangeli, G. Marcucci, and C. Conti, “Photonic extreme learning
machine by free-space optical propagation”, in: Photonics Res. 9.8 (July
2021), p. 1446, issn: 2327-9125, doi: 10.1364/prj.423531.

[Por+21] X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D.
Brunner, “A complete, parallel and autonomous photonic neural network
in a semiconductor multimode laser”, in: J. Physics: Photonics 3.2 (Apr.
2021), p. 024017, issn: 2515-7647, doi: 10.1088/2515-7647/abf6bd,
arXiv: 2012.11153 [physics].

[PS08] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients”, in: Neural Networks 21.4 (May 2008), pp. 682–697, issn:
0893-6080, doi: 10.1016/j.neunet.2008.02.003.

[Psa+90] D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial
neural networks”, in: Nature 343.6256 (Jan. 1990), pp. 325–330, issn:
1476-4687, doi: 10.1038/343325a0.

[Raf+20] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan, “Large-
Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems
Prediction”, in: Phys. Rev. X 10 (4 Nov. 2020), issn: 2160-3308, doi:
10.1103/PhysRevX.10.041037, arXiv: 2001.09131 [physics.optics].

[Raf+21] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus,
and N. Dormann, “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”, in: J. Mach. Learn. Res. 22.268 (2021), pp. 1–8, url:
http://jmlr.org/papers/v22/20-1364.html.

[RB99] R. P. N. Rao and D. H. Ballard, “Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-field
effects”, in: Nat. Neurosci. 2.1 (Jan. 1999), pp. 79–87, issn: 1546-1726,
doi: 10.1038/4580.

[Rec+94] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental
realization of any discrete unitary operator , July 1994, doi: 10.1103/
PhysRevLett.73.58.

[RPK19] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations”, in:
J. Comput. Phys. 378 (Feb. 2019), pp. 686–707, issn: 0021-9991, doi:
10.1016/j.jcp.2018.10.045.

https://doi.org/10.1038/s41565-020-00787-y
https://doi.org/10.1103/physreva.52.4853
https://doi.org/10.1103/physreva.52.4853
https://doi.org/10.1364/prj.423531
https://doi.org/10.1088/2515-7647/abf6bd
https://arxiv.org/abs/2012.11153
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1038/343325a0
https://doi.org/10.1103/PhysRevX.10.041037
https://arxiv.org/abs/2001.09131
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1038/4580
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1016/j.jcp.2018.10.045

Bibliography 175

[RT20] S. Risi and J. Togelius, “Increasing generality in machine learning
through procedural content generation”, in: Nat. Mach. Intell. 2.8 (Aug.
2020), pp. 428–436, issn: 2522-5839, doi: 10.1038/s42256-020-0208-z.

[Sch+15] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-Dimensional Continuous Control Using Generalized Advantage Es-
timation”, in: (June 8, 2015), doi: 10.48550/ARXIV.1506.02438, arXiv:
1506.02438 [cs.LG].

[Sch+18] M. Schmidt, M. von Helversen, M. López, F. Gericke, E. Schlottmann,
T. Heindel, S. Kück, S. Reitzenstein, and J. Beyer, “Photon-Number-
Resolving Transition-Edge Sensors for the Metrology of Quantum Light
Sources”, in: J. Low Temp. Phys. 193 (5-6 Dec. 2018), pp. 1243–1250, issn:
1573-7357, doi: 10.1007/s10909-018-1932-1.

[Sch+20] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S.
Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver, “Mastering Atari, Go, chess and shogi by planning with
a learned model”, in: Nature 588.7839 (Dec. 2020), pp. 604–609, issn:
1476-4687, doi: 10.1038/s41586-020-03051-4.

[Sch04] S. Scheel, Permanents in linear optical networks , 2004, doi: 10.48550/
arXiv.quant-ph/0406127, arXiv: quant-ph/0406127 [quant-ph].

[SGZ21] S. Steinhauer, S. Gyger, and V. Zwiller, Progress on large-scale
superconducting nanowire single-photon detectors, Mar. 2021, doi: 10.
1063/5.0044057.

[Sha+21] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice,
H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial
intelligence and neuromorphic computing”, in: Nat. Photonics 15.2 (Feb.
2021), pp. 102–114, issn: 1749-4893, doi: 10.1038/s41566-020-00754-y.

[Sil+17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge”, in: Nature 550.7676
(Oct. 2017), pp. 354–359, issn: 1476-4687, doi: 10.1038/nature24270.

[SP19] S. Slussarenko and G. J. Pryde, “Photonic quantum information
processing: A concise review”, in: Appl. Phys. Rev. 6.4 (Oct. 2019), issn:
1931-9401, doi: 10.1063/1.5115814.

[SRF24] N. A. Silva, V. Rocha, and T. D. Ferreira, “Optical Extreme Learning
Machines with Atomic Vapors”, in: Atoms 12.2 (Feb. 2024), p. 10, issn:
2218-2004, doi: 10.3390/atoms12020010.

https://doi.org/10.1038/s42256-020-0208-z
https://doi.org/10.48550/ARXIV.1506.02438
https://arxiv.org/abs/1506.02438
https://doi.org/10.1007/s10909-018-1932-1
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.quant-ph/0406127
https://doi.org/10.48550/arXiv.quant-ph/0406127
https://arxiv.org/abs/quant-ph/0406127
https://doi.org/10.1063/5.0044057
https://doi.org/10.1063/5.0044057
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1038/nature24270
https://doi.org/10.1063/1.5115814
https://doi.org/10.3390/atoms12020010

Bibliography 176

[SS14] B. Sengupta and M. B. Stemmler, “Power Consumption During Neuronal
Computation”, in: Proc. IEEE 102.5 (May 2014), pp. 738–750, issn: 1558-
2256, doi: 10.1109/jproc.2014.2307755.

[SSM21] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on
the expressive power of variational quantum-machine-learning models”, in:
Phys. Rev. A 103 (3 Mar. 2021), issn: 2469-9934, doi: 10.1103/PhysRevA.
103.032430.

[Sta+24] A. Stanojevic, S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi,
and W. Gerstner, “High-performance deep spiking neural networks with
0.3 spikes per neuron”, in: Nat. Commun. 15.1 (Aug. 9, 2024), p. 6793,
issn: 2041-1723, doi: 10.1038/s41467-024-51110-5.

[Sub+24] A. Subramoney, G. Bellec, F. Scherr, R. Legenstein, and W. Maass,
“Fast learning without synaptic plasticity in spiking neural networks”,
in: Sci. Reports 14.1 (Apr. 12, 2024), p. 8557, issn: 2045-2322, doi:
10.1038/s41598-024-55769-0.

[Sut20] R. S. Sutton, Reinforcement learning , ed. by A. Barto, Adaptive
computation and machine learning, Cambridge, Massachusetts: The MIT
Press, 2020, isbn: 9780262039246, url: http://incompleteideas.net/
book/the-book.html.

[TAD24] V. Thibeault, A. Allard, and P. Desrosiers, “The low-rank hypothesis
of complex systems”, in: Nat. Phys. (Jan. 2024), issn: 1745-2473, doi:
10.1038/s41567-023-02303-0.

[Tan+19] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances
in physical reservoir computing: A review”, in: Neural Networks 115 (July
2019), pp. 100–123, issn: 0893-6080, doi: 10.1016/j.neunet.2019.03.
005, arXiv: 1808.04962.

[Tan+22] Y. Tang, P. T. Zamani, R. Chen, J. Ma, M. Qi, C. Yu, and
W. Gao, “Device-system Co-design of Photonic Neuromorphic Processor
using Reinforcement Learning”, in: (Mar. 9, 2022), doi: 10.48550/ARXIV.
2203.06061, arXiv: 2203.06061 [cs.ET].

[Tar15] A. Taroni, “90 years of the Ising model”, in: Nat. Phys. 11.12 (Dec. 2015),
pp. 997–997, issn: 1745-2481, doi: 10.1038/nphys3595.

[TR19] S. H. Tan and P. P. Rohde, The resurgence of the linear optics
quantum interferometer – recent advances and applications, Nov. 2019,
doi: 10.1016/j.revip.2019.100030.

[TT96] L. Troyansky and N. Tishby, “On the quantum evaluation of the
determinant and the permanent of a matrix”, in: Proc. Phys. Comput. 96
(1996).

https://doi.org/10.1109/jproc.2014.2307755
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1038/s41467-024-51110-5
https://doi.org/10.1038/s41598-024-55769-0
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html
https://doi.org/10.1038/s41567-023-02303-0
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.03.005
https://arxiv.org/abs/1808.04962
https://doi.org/10.48550/ARXIV.2203.06061
https://doi.org/10.48550/ARXIV.2203.06061
https://arxiv.org/abs/2203.06061
https://doi.org/10.1038/nphys3595
https://doi.org/10.1016/j.revip.2019.100030

Bibliography 177

[Tur04] A. Turing, “Intelligent Machinery (1948)”, in: The Essential Turing , Ox-
ford University PressOxford, Sept. 2004, pp. 395–432, isbn: 9780191916526,
doi: 10.1093/oso/9780198250791.003.0016.

[Tur37] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem”, in: Proc. Lond. Math. Soc. s2-42.1 (1937), pp. 230–
265, issn: 0024-6115, doi: 10.1112/plms/s2-42.1.230.

[Tza+19] O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun,
“Wavefront shaping in complex media with a 350 kHz modulator via a
1D-to-2D transform”, in: Nat. Photonics 13.11 (Aug. 2019), pp. 788–793,
issn: 1749-4893, doi: 10.1038/s41566-019-0503-6.

[Upp+16] R. Uppu, T. A. W. Wolterink, T. B. H. Tentrup, and P. W. H. Pinkse,
“Quantum optics of lossy asymmetric beam splitters”, in: Opt. Express
24.15 (July 2016), pp. 16440–16449, doi: 10.1364/OE.24.016440.

[Ver+19] G. Verdon, M. Broughton, J. R. McClean, K. J. Sung, R. Babbush,
Z. Jiang, H. Neven, and M. Mohseni, “Learning to learn with quantum
neural networks via classical neural networks”, in: (July 11, 2019), doi:
10.48550/ARXIV.1907.05415, arXiv: 1907.05415 [quant-ph].

[VT20] F. J. G. Vidal and D. O. Theis, “Input Redundancy for Parameterized
Quantum Circuits”, in: Front. Phys. 8 (Aug. 2020), issn: 2296-424X, doi:
10.3389/fphy.2020.00297.

[VV22] L. Valantinas and T. Vettenburg, A physics-defined recurrent neural
network to compute coherent light wave scattering on the millimetre scale,
arXiv:2208.01118, Dec. 2022, doi: 10.48550/arXiv.2208.01118, arXiv:
2208.01118.

[Wai24] X. Waintal, “The Quantum House Of Cards”, in: Proc. National Acad.
Sci. 121.1 (Jan. 2, 2024), e2313269120, issn: 0027-8424, 1091-6490, doi:
10.1073/pnas.2313269120, arXiv: 2312.17570[quant-ph].

[Wan+18] Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao,
P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon,
N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell,
Q. Wu, H. Wu, R. S. Williams, Q. Xia, and J. J. Yang, “Fully
memristive neural networks for pattern classification with unsupervised
learning”, in: Nat. Electron. 1.2 (Feb. 2018), pp. 137–145, issn: 2520-1131,
doi: 10.1038/s41928-018-0023-2.

[Wan+19a] H. Wang, J. Qin, X. Ding, M. C. Chen, S. Chen, X. You,
Y. M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema,
S. Höfling, C. Y. Lu, and J. W. Pan, “Boson Sampling with 20 Input
Photons and a 60-Mode Interferometer in a 1014 -Dimensional Hilbert

https://doi.org/10.1093/oso/9780198250791.003.0016
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1038/s41566-019-0503-6
https://doi.org/10.1364/OE.24.016440
https://doi.org/10.48550/ARXIV.1907.05415
https://arxiv.org/abs/1907.05415
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.48550/arXiv.2208.01118
https://arxiv.org/abs/2208.01118
https://doi.org/10.1073/pnas.2313269120
https://arxiv.org/abs/2312.17570 [quant-ph]
https://doi.org/10.1038/s41928-018-0023-2

Bibliography 178

Space”, in: Phys. Rev. Lett. 123 (25 Dec. 2019), issn: 1079-7114, doi:
10.1103/PhysRevLett.123.250503.

[Wan+19b] X. Wang, J. A. J. Fells, W. C. Yip, T. Ali, J.-d. Lin, C. Welch,
G. H. Mehl, M. J. Booth, T. D. Wilkinson, S. M. Morris, and S. J.
Elston, “Fast and low loss flexoelectro-optic liquid crystal phase modulator
with a chiral nematic reflector”, in: Sci. Reports 9.1 (May 2019), issn:
2045-2322, doi: 10.1038/s41598-019-42831-5.

[Wan+24] H. Wang, J. Hu, A. Morandi, A. Nardi, F. Xia, X. Li, R. Savo,
Q. Liu, R. Grange, and S. Gigan, “Large-scale photonic computing
with nonlinear disordered media”, in: Nat. Comput. Sci. 4.6 (June 2024),
pp. 429–439, issn: 2662-8457, doi: 10.1038/s43588-024-00644-1.

[Web11] C. S. Webster, “Alan Turing’s unorganized machines and artificial neural
networks: his remarkable early work and future possibilities”, in: Evol.
Intell. 5.1 (July 2011), pp. 35–43, issn: 1864-5917, doi: 10.1007/s12065-
011-0060-5.

[Wic+17] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G.
Colmenarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein, “Learned
Optimizers that Scale and Generalize”, in: (Mar. 2017), doi: 10.48550/
ARXIV.1703.04813, arXiv: 1703.04813 [cs.LG].

[Wil+21] M. Wilson, R. Stromswold, F. Wudarski, S. Hadfield, N. M.
Tubman, and E. G. Rieffel, “Optimizing quantum heuristics with meta-
learning”, in: Quantum Mach. Intell. 3.1 (Apr. 2021), issn: 2524-4914,
doi: 10.1007/s42484-020-00022-w.

[Wil92] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”, in: Mach. Learn. 8.3 (May 1, 1992),
pp. 229–256, issn: 1573-0565, doi: 10.1007/BF00992696.

[Win+10] A. Windhager, M. Suda, C. Pacher, M. Peev, and A. Poppe,
“Quantum Interference between a Single-Photon Fock State and a Coherent
State”, in: (Sept. 2010), doi: 10.1016/j.optcom.2010.12.019.

[Wri+22] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter,
Z. Hu, and P. L. McMahon, “Deep physical neural networks trained
with backpropagation”, in: Nature 601.7894 (Jan. 2022), pp. 549–555, doi:
10.1038/s41586-021-04223-6.

[Wri+23] D. Wright, C. Igel, G. Samuel, and R. Selvan, “Efficiency is Not
Enough: A Critical Perspective of Environmentally Sustainable AI”, in:
arXiv preprint arXiv:2309.02065 (Sept. 2023), doi: 10.48550/arXiv.
2309.02065, arXiv: 2309.02065 [cs.LG].

https://doi.org/10.1103/PhysRevLett.123.250503
https://doi.org/10.1038/s41598-019-42831-5
https://doi.org/10.1038/s43588-024-00644-1
https://doi.org/10.1007/s12065-011-0060-5
https://doi.org/10.1007/s12065-011-0060-5
https://doi.org/10.48550/ARXIV.1703.04813
https://doi.org/10.48550/ARXIV.1703.04813
https://arxiv.org/abs/1703.04813
https://doi.org/10.1007/s42484-020-00022-w
https://doi.org/10.1007/BF00992696
https://doi.org/10.1016/j.optcom.2010.12.019
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.48550/arXiv.2309.02065
https://doi.org/10.48550/arXiv.2309.02065
https://arxiv.org/abs/2309.02065

Bibliography 179

[Wu+22] Y. Wu, R. Zhao, J. Zhu, F. Chen, M. Xu, G. Li, S. Song,
L. Deng, G. Wang, H. Zheng, S. Ma, J. Pei, Y. Zhang, M.
Zhao, and L. Shi, “Brain-inspired global-local learning incorporated with
neuromorphic computing”, in: Nat. Commun. 13.1 (Jan. 10, 2022), p. 65,
issn: 2041-1723, doi: 10.1038/s41467-021-27653-2.

[Xio+23] W. Xiong, G. Facelli, M. Sahebi, O. Agnel, T. Chotibut, S.
Thanasilp, and Z. Holmes, On fundamental aspects of quantum extreme
learning machines, arXiv:2312.15124, Dec. 23, 2023, doi: 10.48550/
arXiv.2312.15124, arXiv: 2312.15124[quant-ph,stat] [quant-ph].

[XRV17] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”, in: CoRR
abs/1708.07747 (2017), arXiv: 1708.07747.

[You+20] C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong,
A. Perez-Leija, A. Javaid, R. D. J. León-Montiel, and O. S. Magaña-
Loaiza, “Identification of light sources using machine learning”, in: Appl.
Phys. Rev. 7 (2 June 2020), issn: 1931-9401, doi: 10.1063/1.5133846.

[YPK23] W. J. Yun, J. Park, and J. Kim, “Quantum Multi-Agent Meta
Reinforcement Learning”, in: Proc. AAAI Conf. on Artif. Intell. 37.9
(June 2023), pp. 11087–11095, issn: 2159-5399, doi: 10.1609/aaai.

v37i9.26313.

[ZF23] Y. Zhang and N. K. Fontaine, “Multi-Plane Light Conversion: A Practical
Tutorial”, in: (Apr. 22, 2023), doi: 10.48550/ARXIV.2304.11323, arXiv:
2304.11323 [physics.optics].

[Zho+20] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H.
Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J.
Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang,
L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum computational
advantage using photons”, in: Science 370.6523 (Dec. 2020), pp. 1460–1463,
issn: 0036-8075, 1095-9203, doi: 10.1126/science.abe8770.

[Zho+21] T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L.
Fang, and Q. Dai, “Large-scale neuromorphic optoelectronic computing
with a reconfigurable diffractive processing unit”, in: Nat. Photonics 15.5
(May 2021), pp. 367–373, issn: 1749-4893, doi: 10.1038/s41566-021-
00796-w.

[ZL16] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement
Learning”, in: (Nov. 2016), doi: 10.48550/ARXIV.1611.01578, arXiv:
1611.01578 [cs.LG].

https://doi.org/10.1038/s41467-021-27653-2
https://doi.org/10.48550/arXiv.2312.15124
https://doi.org/10.48550/arXiv.2312.15124
https://arxiv.org/abs/2312.15124 [quant-ph, stat]
https://arxiv.org/abs/1708.07747
https://doi.org/10.1063/1.5133846
https://doi.org/10.1609/aaai.v37i9.26313
https://doi.org/10.1609/aaai.v37i9.26313
https://doi.org/10.48550/ARXIV.2304.11323
https://arxiv.org/abs/2304.11323
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/s41566-021-00796-w
https://doi.org/10.1038/s41566-021-00796-w
https://doi.org/10.48550/ARXIV.1611.01578
https://arxiv.org/abs/1611.01578

Bibliography 180

[ZLM23] M. Zajnulina, A. Lupo, and S. Massar, “Weak Kerr Nonlinearity
Boosts the Performance of Frequency-Multiplexed Photonic Extreme
Learning Machines: A Multifaceted Approach”, in: (Dec. 19, 2023), doi:
10.48550/ARXIV.2312.12296, arXiv: 2312.12296 [physics.optics].

[ZVB04] A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-Classical Transi-
tion with Single-Photon-Added Coherent States of Light”, in: Science
306.5696 (Oct. 2004), pp. 660–662, issn: 1095-9203, doi: 10 . 1126 /

science.1103190.

[ZZJ20] W. Zhang, H. Zhang, and G. Jin, “Adaptive-sampling angular spectrum
method with full utilization of space-bandwidth product”, in: Opt. Lett.
45.16 (Aug. 2020), p. 4416, issn: 1539-4794, doi: 10.1364/ol.393111.

https://doi.org/10.48550/ARXIV.2312.12296
https://arxiv.org/abs/2312.12296
https://doi.org/10.1126/science.1103190
https://doi.org/10.1126/science.1103190
https://doi.org/10.1364/ol.393111

Notation

(a, b) Open interval over the reals, i.e. {x ∈ R | a < x < b}.
[a, b] Closed interval over the reals, i.e.

{x ∈ R | a ≤ x ≤ b}.
T[a,b](µ, σ2) Truncated normal distribution i.e. normal with mean

µ, variance σ2, truncated to the interval [a, b].
δ(x) Dirac delta distribution, (loosely) defined such that∫∞

−∞ f(x)δ(x) dx = f(0).
δi One-hot vector of lengthN , [δi1, δi2, . . . , δiN], i.e. only

non-zero entry is at index i.
δij Kronecker delta

δij =

1 i = j

0 i ̸= j
.

Ex∼p [f(x)] Expectation of f(x) under sampling from distribution
p.

F [f(x)](k) Fourier transform of f(x).
⟨x⟩ Expected value of x.
1A(x) Indicator function, given as

1A(x) =

1 x ∈ A
0 x /∈ A

.

N (µ, σ2) Normal distribution with mean µ and variance σ2.
U (a, b) Uniform distribution over range [a, b].
CSE(a, b) Cosine error, i.e. ⟨a,b⟩

|a||b| for a suitably defined inner
product ⟨·, ·⟩.

⊙ The Hadamard product (i.e. element-wise multipli-
cation of two matrices, vectors or tensors).

Rd1×···×dn Space of real tensors with shape (d1, . . . , dn).
∼ Distributed as, i.e. x ∼ p indicates that the random

variable x is distributed according to probability
distribution p.

181

Abbreviations

AGI Artificial general intelligence
AI Artificial intelligence
ANN Artificial neural network
ASM Angular spectrum method
CCD Charge-coupled device
CMA-ES Covariance matrix adaptation evolutionary strategy
CNN Convolutional neural network
CPU Central processing unit
CZT Chirp Z-transform
DDPG Deep deterministic policy gradient
DFA Direct feedback alignment
DFT Discrete Fourier transform
DMD Digital micro-mirror device
DNN Deep neural network
DRL Deep reinforcement learning
ELBO Evidence lower bound
ELM Extreme learning machine
EM Expectation-maximisation
ESN Echo state network
ESs Evolutionary strategies
FA Feedback alignment
FFT Fast Fourier transform
GA Genetic algorithm
GD Gradient descent
GPGPU General-purpose GPU
GPU Graphics processing unit
HOM Hong-Ou-Mandel
KL Kullback-Leibler
LCoS Liquid crystal on silicon
LON Linear optical network
LoRA Low-rank adaptation
LSM Liquid state machine
LSTM Long short-term memory

182

Abbreviations 183

MC Monte Carlo
MDP Markov decision process
ML Machine learning
MLP Multilayer perceptron
MMF Multimode fibre
MPC Model predictive control
MPLC Multi-plane light conversion
MPO Maximum a posteriori policy optimisation
MSE Mean squared error
NDE Neural differential equation
NMS Neuromorphic system
PAT Physics aware training
PNL Physical neural layer
PNN Physical neural network
PNR Photon number resolved
PNRD Photon number resolved detection
POMDP Partially observable Markov decision process
QML Quantum machine learning
QNN Quantum neural network
QRC Quantum reservoir computer
RC Reservoir computer
RL Reinforcement learning
Rm-ES Rank-m evolutionary strategy
RNN Recurrent neural network
RSC Rayleigh-Sommerfeld convolution
SAC Soft actor-critic
SGD Stochastic gradient descent
SLM Spatial light modulator
SLOS Strong linear optical simulator
SNSPD Superconducting nanowire single-photon detector
SPDC Spontaneous parametric down-conversion
SV Singular value
TD Temporal difference
TPU Tensor processing unit

	Thesis cover sheet
	2024NeillPhD
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Declaration of originality
	1 Introduction
	2 Background
	2.1 A brief history of computing
	2.1.1 Optical computing
	2.1.2 Neuromorphic computing

	2.2 Optimisation and learning
	2.2.1 Mathematical optimisation
	2.2.2 What does it mean to learn?

	2.3 Training neuromorphic systems
	2.3.1 Gradient-based optimisation
	2.3.2 Gradient-free optimisation
	2.3.3 Reservoir computing

	3 Photonic quantum reservoir computing
	3.1 Introduction
	3.2 Background
	3.2.1 Quantum machine learning
	3.2.2 Current approaches to quantum machine learning
	3.2.3 Proposed QRC overview

	3.3 Theory
	3.3.1 Input states
	3.3.2 Linear optical networks
	3.3.3 Mode coupling
	3.3.4 Sampling random mode couplings
	3.3.5 Polarising optical components
	3.3.6 Scattering of quantum states
	3.3.7 Encoding data
	3.3.8 Output state measurement
	3.3.9 Analytic quantum reservoir computer model
	3.3.10 Quantum reservoir computer training
	3.3.11 Feature space: shape, scaling and metrics
	3.3.12 Fair comparison of states

	3.4 Quantum reservoir computer simulations
	3.4.1 Encoding schemes
	3.4.2 Random network
	3.4.3 States
	3.4.4 Simulation

	3.5 Results
	3.5.1 Characterising the effect of number resolved measurement
	3.5.2 Metrics of performance for different states
	3.5.3 Function approximation tasks

	3.6 Discussion
	3.6.1 Initial experimental implementation
	3.6.2 Future prospects
	3.6.3 Conclusion

	3.7 Notation

	4 Reinforcement learnt optimisation
	4.1 Introduction
	4.2 Reinforcement learning
	4.2.1 To model or not to model…
	4.2.2 Environments
	4.2.3 Agents
	4.2.4 Reward structures
	4.2.5 Value functions
	4.2.6 On- vs off-policy learning
	4.2.7 Importance sampling
	4.2.8 Value estimation
	4.2.9 Policy optimisation

	4.3 Optics
	4.3.1 Optical PNN
	4.3.2 Error propagation
	4.3.3 High fidelity model
	4.3.4 Simulation details

	4.4 Learnt PNN optimiser
	4.4.1 Environment
	4.4.2 Tasks
	4.4.3 Reward function
	4.4.4 Choosing an RL algorithm
	4.4.5 Network architectures
	4.4.6 End-to-end learnt optimiser algorithm
	4.4.7 SAC results

	4.5 Learnt optimisation for deep networks
	4.5.1 Network architecture
	4.5.2 Training the deep learnt optimiser
	4.5.3 Results

	4.6 Discussion
	4.6.1 Remaining challenges
	4.6.2 Towards experiments in hardware
	4.6.3 Conclusion

	4.7 Notation

	5 Conclusion
	A Terminology
	B Derivations
	B.1 General beamsplitter ellipse derivation
	B.2 Computational complexity of permanent calculations

	Bibliography
	Notation
	Abbreviations

