

Simpson, Robbie (2017) Formalised responsibility modelling for
automated socio-technical systems analysis. PhD thesis.

http://theses.gla.ac.uk/8495/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior

permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given

Enlighten:Theses

http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/8457/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

FORMALISED RESPONSIBILITY
MODELLING FOR AUTOMATED

SOCIO-TECHNICAL SYSTEMS ANALYSIS

ROBBIE SIMPSON

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

OCTOBER 2017

c© ROBBIE SIMPSON

Abstract

Modelling the structure of social-technical systems as a basis for informing software system
design is a difficult compromise. Formal methods struggle to capture the scale and com-
plexity of the heterogeneous organisations that use technical systems. Conversely, informal
approaches lack the rigour needed to inform the software design and construction process or
enable automated analysis.

We revisit the concept of responsibility modelling, which models social technical systems
as a collection of actors who discharge their responsibilities, whilst using and producing
resources in the process. In this thesis responsibility modelling is formalised as a structured
approach for socio-technical system specification and modelling, with well-defined semantics
and support for automated structure and validity analysis.

We provide structured definitions for entity types and relations, and define the semantics of
delegation and dependency. A constraint logic is introduced, providing simple specification
of complex interactions between entities. Additionally, we introduce the ability to explicitly
model uncertainty. To support this formalism, we present a new software toolkit that supports
modelling and automatic analysis of responsibility models in both graphical and textual form.

The new methodology is validated by applying it to case studies across different problem
domains. A study of nuclear power station emergency planning is validated by comparison
to a similar study performed with earlier forms of responsibility modelling, and a study of
the TCAS mid-air collision avoidance system is validated by evaluation with domain experts.
Additionally, we perform an explorative study of responsibility modelling understanding and
applicability through a qualitative study of modellers.

Acknowledgements

Supervisorial thanks to Tim Storer for his advice, guidance and employment offers over the
course of this PHD; also to Karen Renaud, even if this research didn’t quite turn out how we
expected at the start.

Thanks to all my colleagues in the Systems Engineering subsection for their support over the
years, participation in experimental studies and for helping to ensure a sufficient supply of
biscuits. Thanks also to the teaching office, tutors and students I’ve worked with over the
many years; teaching does keep you sane at times.

Parts of this research was carried out in conjunction with Sophrodyne Ltd. and supported by
a Scottish Funding Council Innovation voucher. Thanks to them for their involvement, and to
SFC for the money.

Ultimate thanks should go to my parents for their multi-faceted support over the duration of
this PHD, without which it would never have been completed.

ii

Contents

Abstract

Acknowledgements i

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 3

1.3 Research Questions . 3

1.4 Research Contributions . 4

1.5 Thesis Structure . 6

2 Survey 8

2.1 Introduction . 8

2.2 Socio-technical systems . 9

2.3 Early requirements engineering . 12

2.4 Formal approaches . 15

2.5 Goal-oriented approaches . 18

2.6 Agent-oriented approaches . 22

2.7 Business Process Modelling . 28

2.8 Systems of Systems modelling . 31

2.9 ‘Soft’ approaches . 34

2.10 Safety Analysis . 37

2.11 Deontic logic . 42

2.12 Timebands . 44

2.13 Responsibility Modelling . 46

2.13.1 Responsibility origins . 46

2.13.2 Graphical Models of Responsibility 49

2.13.3 Responsibility Modelling . 51

2.14 Conclusion . 57

3 Research Methodology 59

3.1 Introduction . 59

3.2 Evaluation approaches in socio-technical analysis 61

3.3 Criteria & Metrics . 64

3.4 Research Philosophy . 66

3.5 Research Frameworks . 68

3.5.1 Action Research . 69

3.5.2 Design Science . 70

3.6 Research Methods . 71

3.6.1 Case Studies . 71

3.6.2 Interviews . 73

3.7 Evaluation Methodology . 74

3.7.1 Research Strategy . 75

3.7.2 Case Study Methodology . 75

3.7.3 Threats to Validity . 78

3.8 Conclusion . 79

4 Notation & Semantics 81

4.1 Introduction . 81

4.2 Meta-Model . 82

4.3 Primitive Entities . 83

4.3.1 Responsibilities . 84

4.3.2 Actors . 86

4.3.3 Resources . 86

4.4 Relations . 87

4.4.1 Production & Consumption . 88

4.4.2 Actor Assignment . 88

4.4.3 Required Responsibilities . 89

4.5 Delegation, Supervision & Dependency 90

4.6 Constraint Language . 91

4.7 ‘?’ - Explicit Uncertainty . 94

4.8 Temporal Behaviour . 98

4.9 Instantiation . 100

4.10 Transformations . 101

4.11 Applications . 103

4.12 Modelling Examples . 104

4.12.1 Meeting Scheduler . 105

4.12.2 Scrum . 108

4.13 Conclusion . 111

5 Analysis 112

5.1 Introduction . 112

5.2 RESME Toolkit . 113

5.3 Automatic Analysis Methods . 115

5.3.1 Overload . 116

5.3.2 Unassignment . 118

5.3.3 Reliance . 119

5.3.4 Criticality . 121

5.3.5 Discharge . 122

5.4 Modelling Problems . 123

5.5 Patterns . 125

5.6 Actor Roles . 127

5.7 What-If Analysis . 128

5.8 Conclusion . 130

6 Case Study - A Re-Engineered Responsibility Modelling Study 132

6.1 Introduction . 132

6.2 Background . 134

6.3 Initial Modelling . 136

6.4 Analysis . 141

6.4.1 Model Inspection . 141

6.4.2 Automatic Analysis . 142

6.5 Comparison with Previous Modelling Effort 146

6.6 Comparison with Updated Documentation 147

6.7 Emergency Exercises . 148

6.8 Simulation of Exercises . 149

6.8.1 Exercise Indus . 152

6.8.2 Exercise Kilchattan . 153

6.9 Conclusion . 154

7 Case Study - Airborne Collision Avoidance System 155

7.1 Introduction . 155

7.2 Background . 157

7.3 Modelling . 159

7.4 Initial Automated Analysis . 163

7.5 Revised Model . 167

7.6 Interviews . 169

7.7 Interview Results . 171

7.8 Comparison to Similar Studies . 184

7.9 Conclusion . 186

8 User Study - Modellers’ Application of Responsibility Modelling 189

8.1 Introduction . 189

8.2 Similar Studies . 191

8.3 Experimental Design . 192

8.4 Results . 195

8.4.1 Participant A . 195

8.4.2 Participant B . 199

8.4.3 Participant C . 201

8.4.4 Participant D . 205

8.4.5 Participant E . 208

8.4.6 Participant F . 211

8.4.7 Participant G . 213

8.5 Discussion . 215

8.5.1 System Definition . 216

8.5.2 Notation . 218

8.5.3 Modelling . 221

8.5.4 Previous Experience . 223

8.6 Threats to Validity . 224

8.7 Conclusion . 226

9 Conclusion 228

9.1 Introduction . 228

9.2 Research Questions . 229

9.3 Research Contributions . 233

9.4 Threats to Validity . 235

9.5 Future Work . 237

9.5.1 Contradictions . 238

9.5.2 Enhanced Qualifiers . 239

9.5.3 Realisations . 241

9.5.4 Enhanced Temporal Behaviour . 242

9.5.5 Application of Enhanced Notation 242

9.5.6 Tool Support . 243

9.5.7 Integration with other techniques 245

9.5.8 Overload Analysis . 246

9.5.9 User Studies . 247

9.5.10 Industry Uptake . 248

9.6 Conclusion . 249

Bibliography 250

Appendices 267

A User Study Materials 267

viii

List of Figures

2.1 Overview of techniques examined . 9

2.2 SSADM Data-flow diagram for the meeting scheduler described by van
Lamsweerde et al. [188] . 15

2.3 Z state declaration and SetPrefs model operation for the meeting scheduler
described by van Lamsweerde et al. [188] 17

2.4 Fragment of KAOS meta-model (from [36]) 19

2.5 Sample of KAOS specification language (adapted from [36]) 20

2.6 Example i* Strategic Dependency Model (redrawn from [203]) 23

2.7 Example i* Strategic Rationale Model (redrawn from [203]) 24

2.8 BPMN model of the meeting scheduler described by van Lamsweerde et al.
[188] . 30

2.9 SysML Block Definition Diagram showing requirements satisfaction, compo-
sition and refinement . 32

2.10 SSM System model of the meeting scheduler described by van Lamsweerde
et al. [188] . 35

2.11 Simplified MORT logic tree (abstracted from [94]) 37

2.12 Decomposition of a responsibility, showing processes and actors (from [166] 49

2.13 Entity and relationship types (from [116]) 53

2.14 Responsibility model for the meeting scheduler described by van Lamsweerde
et al. [188] using a generic notation . 55

3.1 Modelling methods and evaluation strategies 62

4.1 Ecore / EMOF Meta-model for responsibility modelling 83

4.2 Graphical responsibility model for a university exam 85

4.3 Textual responsibility model for entities in university exam 85

4.4 Textual responsibility model showing relationships 87

4.5 Example responsibility model showing constraint logic satisfaction criteria . 93

4.6 Syntax diagram for the constraint language 94

4.7 Labelled key to formalised responsibility modelling notation 105

4.8 Responsibility model of the meeting scheduler described by van Lamsweerde
et al. [188] . 106

4.9 Responsibility Model of Scrum . 108

4.10 Refinement of ‘Sprint’ Responsibility. 109

5.1 Analysis in the RESME toolkit, showing reliance, overload and selectively
disabled responsibilities . 114

5.2 Example responsibility model demonstrating overload 117

5.3 Example responsibility model showing unassigned entities 119

5.4 Reliance example - the Student relies on the Lecturer 120

5.5 Example responsibility model annotated with criticality scores 121

5.6 Co-ordination patterns . 126

5.7 Responsibility model showing selectively disabled entities 129

6.1 Map showing the location of the Hunterston site (circled) and surrounding
communities . 134

6.2 Sub-model showing responsibilities for Rest Centre management 137

6.3 Completed responsibility model of the Hunterston emergency plan 138

6.4 Sub-model showing establishment of working groups 140

6.5 InDeED sub-model representing Coastguard and activities 147

6.6 Revised responsibility model of the Hunterston emergency plan 150

7.1 Contents of the ICAO ACAS Manual [84] 160

7.2 Responsibilities showing attribution to source 161

7.3 Initial responsibility model of TCAS . 162

7.4 Features of mid-air collisions with fatalities > 100 166

7.5 Revised responsibility model of TCAS . 168

7.6 STAMP process control loop for TCAS (from [111]) 185

8.1 Tutorial example of a responsibility model 193

8.2 Participant A’s responsibility model . 196

8.3 Participant B’s responsibility model . 199

8.4 Participant C’s responsibility model . 202

8.5 Participant C’s annotated system definition 204

8.6 Participant D’s responsibility model . 206

8.7 Participant E’s responsibility model . 209

8.8 Participant F’s responsibility model . 211

8.9 Participant G’s responsibility model . 214

8.10 Participants’ prior experience and selected characteristics of their modelling 216

1

Chapter 1

Introduction

“It is very important to use a modelling language which is well-understood, both
by its authors and by its users. This points towards the disciplined use of small,
expressive, languages that have a formal semantics, that are implemented with a
high-degree of integrity, and which employ constructs that naturally support the
modelling idiom.” Collinson et al. [32]

1.1 Motivation

Social-technical systems models which capture technical, human and organisational concerns
are recognised as an important element of software development [11], but modelling and
analysing them is often a difficult compromise. These systems involve complex interactions
between humans, machines and the environment around the system. They cannot be treated
purely as technical problems or as human factors issues, as complex interactions between
technical elements and human elements are vital to their correct understanding [11]. Such
systems generally feature multiple system goals and multiple ways for achieving these
goals; the design and implementation of socio-technical systems requires techniques that can
effectively balance competing goals while accurately modelling both human and technical
elements.

Large-scale social-technical systems are becoming increasingly prevalent as purely manual
or paper-based processes are updated to take advantage of computing capabilities. Many
of these projects suffer embarrassing delays, cost overruns or complete failure due to poor
requirements specification. Other systems are completed but fail to provide key functionality
or fail to integrate with existing operational procedures. For example, consider the United
States’s ‘HealthCare.gov’ integrated healthcare system project, which failed to integrate a
range of state-level, Federal and private-sector organisations [30] or the TAURUS trading

1.1. Motivation 2

system for the London Stock Exchange, which at one point consisted of seventeen different
system designs [46].

In addition, the complexity of these systems can often lead to serious and unexpected failures.
While these failures can ultimately be traced to poor specification or understanding of the
requirements, a system may appear to be completed successfully according to well-specified
requirements, only to later fail in stressed conditions not envisioned by the system designers.
For example, the crash of Air France Flight 447 in difficult weather conditions can be
considered a failure of the combined socio-technical system of the pilots and the aircraft’s
fly-by-wire system, rather than as an individual failure by the pilots or the technical system
alone [153].

Formal approaches to requirements elicitation and system modelling such as Z [144] or
Communicating Sequential Processes (CSP) [78] can provide many useful benefits, such as
a clear and unambiguous syntax and a wide range of tool support such as model checking
or vulnerability analysis. However, their choices of formalism rarely include concepts that
specifically address human and organisational concerns, so modelling social elements is
difficult, unnecessarily complex and sometimes impossible.

Alternatively, less formal methodologies can be used, such as Soft Systems Methodology
[26] or i* [203]. Approaches such as goal-oriented modelling or systems-theoretic techniques
allow reasoning over the full scope of social-technical systems, capturing both social and
technical issues. These approaches can however cause problems at the development stage, as
they are open to subjective interpretation. Comparisons between different system versions or
levels of abstraction are also difficult, as the ambiguity inherent to the approach can lead to
inconsistency.

Responsibility modelling is an informal approach to requirements gathering and systems
analysis built around the concept of responsibilities that should be discharged. These respon-
sibilities are assigned to actors and may depend upon or produce resources. Proponents of
responsibility modelling argue that responsibilities are a more natural abstraction of system
behaviour than goals or tasks [40]. Additionally, the concept of obligations (upon actors)
provides a richer model of user behaviour compared to similar goal-based approaches.

However, responsibility modelling remains a semi-structured approach. There is no consistent
notation, formal rules for transformation of models or well defined semantics over complex
issues such as delegation of responsibilities. This makes providing effective tool support
difficult and prevents consistent application of the technique.

These limitations make the effective use of responsibility modelling difficult. Inconsistent
notations make understanding models difficult, and the unclear semantics of important features
makes them impossible to analyse consistently. However, responsibility modelling’s strengths
such as its wide range of abstraction, intuitive underlying concepts and breadth of application

1.2. Thesis Statement 3

could prove effective if its current shortcomings are addressed.

1.2 Thesis Statement

In order to provide effective and structured analysis of socio-technical systems, responsibility
modelling can be formalised with well-defined semantics that retain its abstractive power and
ease-of-use, enabling significant amounts of model analysis to be automated and allowing
new forms of analysis.

A formalised variant of responsibility modelling can act as an effective compromise, combin-
ing much of the useful rigour of formal methods while maintaining the scope and flexibility
of usage of more informal approaches. Effective tool support becomes possible, allowing
for a range of automatic analyses such as completeness, validity and overload checking.
Models can be created at multiple levels of abstraction and can be directly related by model
transformations and discharge checking. Ambiguity is reduced, especially over complex actor
relationships, which allows the technique to be more consistently applied using a well-defined
process.

1.3 Research Questions

In order to fully elaborate formalised responsibility modelling we propose the following
research questions:

Q1 - Can responsibility modelling be formalised in a consistent manner?

Q2 - Can automatic analysis techniques and tooling be developed for formalised responsibility
modelling?

Q3 - Can formalised responsibility modelling be applied consistently and without specialist
knowledge?

Q4 - Does formalised responsibility modelling provide easier or more detailed analysis than
previous responsibility modelling approaches?

Q5 - Does the application of formalised responsibility modelling produce models and results
that are comparable to domain-specific approaches or expert analysis?

Question 1 addresses the core of the thesis - is it possible for responsibility modelling to be
defined in a consistent, well-structured manner? A more formal definition can add valuable
rigour, but poorly constructed formalisms can limit the flexibility of a technique or lead
to unresolvable inconsistencies. We will show that such a formalisation is possible while
maintaining the key advantages of the responsibility modelling approach.

1.4. Research Contributions 4

Question 2 emphasises one of the core claims of the thesis - that the formalisation of re-
sponsibility modelling will allow for automated analysis of models, and a key part of this
is effective tool support. We will define multiple forms of analysis that can be completely
or partly automated, and present a toolkit that enables modelling and analysis using these
techniques and evaluate their efficacy in comprehending socio-technical system structure.

Question 3 covers the reproducibility of the technique. Many social-technical modelling and
analysis techniques are highly subjective, with the results of the analysis dependent on the
skill and background of the analyst. By defining modelling and analysis processes we aim to
show that this technique can be applied with a significantly lower level of subjectivity.

Question 4 addresses the value of formalised responsibility modelling as an analysis technique.
The value of responsibility modelling is already well argued in the literature, so we show
that formalisation extends the technique with additional levels of analysis, while maintaining
the strengths of traditional responsibility modelling. In particular, we demonstrate the value
of automated analysis, which enables practical analysis of larger models and increases the
consistency of results.

Question 5 considers a more ambitious claim - that the results of responsibility modelling
(a general-purpose modelling technique) can be broadly comparable to the results of expert
analysis or the application of specialised, domain specific techniques. Proving or disproving
such a claim in general is impractical due to the range of potential techniques and domains,
but we will examine the application of responsibility modelling in several problem areas and
draw limited conclusions.

1.4 Research Contributions

Important contributions to the field of research in this thesis include:

A methodology for iterative modelling and evaluation of case studies

Many case studies of socio-technical modelling methods struggle to demonstrate effective
validation of their models, which potentially undermines confidence in the results and impli-
cations from these studies. We present a new iterative modelling and evaluation methodology
that draws on action research and design science to provide an effective process for iteratively
developing models while evaluating them against different data sources.

Formal definitions of core responsibility modelling concepts

In previous research the set of responsibility modelling entities and relationships has varied
substantially from paper to paper, in both the types used and the meaning of each type. We
select a minimal set of basic entities and relations that retains the full expressiveness of
existing approaches, while simplifying the range required. We provide concrete definitions for

1.4. Research Contributions 5

each of these, and demonstrate how they can be used to construct more complex interactions.
This is accompanied by a methodological discussion of difficult modelling issues, such as
levels of abstraction and scope.

Extensions to existing responsibility modelling notation

With the core primitives defined it becomes possible to develop modular extensions to the
notation with additional features and functionality. We define a satisfaction logic that allows
for the specification of complex relations between entities, incorporating common socio-
technical concepts such as fallback modes and redundancy. Support is added for explicitly
modelling uncertainty and indicating where lack of information may limit analysis. Formally
defined transformations are provided for common model changes such as the delegation of
responsibilities.

Tool support for construction and analysis of responsibility models

Introducing formally defined semantics to responsibility modelling allows for substantial
automated analysis, but this requires proper tool support. We have developed a software
toolkit that supports graphical creation and editing of responsibility models, and provides
automated analysis on these models. These analysis techniques include criticality detection,
overload analysis and reliance checks, enabling broader and more consistent analysis of
responsibility models.

A comparative case study of formalised and unformalised responsibility modelling

We provide direct comparison of formalised responsibility modelling against an early version
of the technique by re-examining a case study of the Hunterston Nuclear Power Stations
Off-Site Emergency Plan, which had previously been studied with responsibility modelling
by the InDeED consortium. Our analysis of this case study identifies the same core issues
as the previous study, but additionally detects several potential vulnerabilities that were not
previously detected.

Application and evaluation of responsibility modelling in the aviation domain

We perform a study on the use of responsibility modelling in aviation by modelling, analysing
and evaluating the TCAS aircraft collision warning system using responsibility modelling and
evaluating these results with domain experts. This provides two main contributions; firstly,
demonstrating the use of responsibility modelling in a new domain; secondly, evaluating
the correctness, understandability and relevance of responsibility modelling to experts in a
particular domain.

Qualitative evaluation of responsibility usage by non-expert users

We conduct a user study asking participants to construct a responsibility model of a simple
socio-technical system, and analyse the resulting models and evaluate participants’ use and
understanding of responsibility modelling. This study identifies responsibility modelling

1.5. Thesis Structure 6

concepts found difficult by users and examines common characteristics in the application of
responsibility modelling. Additionally, users’ recommendations for extensions to responsi-
bility modelling are presented and analysed. This is (to the best of our knowledge) the first
evaluation of responsibility modelling involving non-expert users.

1.5 Thesis Structure

This dissertation continues in Chapter 2 with a survey of related work in social-technical
systems modelling and analysis, including both formal and informal approaches and earlier
versions of responsibility modelling. This includes a range of techniques from the systems
modelling, requirements engineering and safety analysis fields.

Chapter 3 discusses modelling and evaluation methodologies in socio-technical systems re-
search, and proposes a new case-study based modelling and evaluation methodology based on
a synthesis of existing work. This methodology provides a structured approach to constructing
models based on iterative rounds of modelling and evaluation using different sources of
information.

The core concepts and notation of formalised responsibility modelling are then introduced
in Chapter 4, which provides well-defined semantics and logics for responsibility modelling
entities and relationships. In addition, it defines several extensions to the previous state-of-
the-art in responsibility modelling, including explicit uncertainty and a satisfaction logic for
expressing complex relationships. Important modelling issues are also discussed, and the
formalised notation is demonstrated in several worked examples.

This is followed by Chapter 5, which introduces several semi-formal analysis methodologies
and discusses automated analysis techniques. In addition, it presents new tool support for
constructing and analysing formalised responsibility models. A series of automated analysis
methods are defined and their applications discussed, and semi-formal techniques are explored
to provide broader analysis.

Two cases studies follow, showing the strengths and weaknesses of formalised responsibility
management in different settings. Chapter 6 provides a comparison to previous responsibility
modelling techniques by re-examining the Hunterston off-site emergency plan previously
analysed by the InDeED project. Chapter 7 applies responsibility modelling to the TCAS air
collision avoidance system, and assesses the conclusions reached and the understandability of
responsibility modelling through evaluation with domain experts.

Chapter 8 describes a user study to examine the use of responsibility modelling by non-expert
modellers. Experimental participants constructed a responsibility model of a simple socio-
technical system, and their understanding, application and experiences using the technique

1.5. Thesis Structure 7

are analysed. Finally, overall conclusions and suggestions for future research appear in
Chapter 9.

8

Chapter 2

Survey

2.1 Introduction

This chapter provides a comprehensive overview of relevant research in socio-technical
modelling and analysis. This includes material from system modelling, safety analysis,
software engineering and formal logics, representing the wide theoretical and practical
underpinnings of socio-technical techniques.

As a result, this survey includes material from a wide range of different backgrounds, and from
the early origins of software and systems engineering to the present day. A broad overview of
each technique or concept is provided, with a particular focus on the published demonstration
and evaluation of techniques via examples or case studies. Additionally, the functionality of
tool support for these methodologies is considered where such tooling exists.

Firstly, the chapter begins by examining the origins of the term ‘socio-technical system’ and
the underlying philosophy of socio-technical systems design, and discusses the relationship
between the narrow field of socio-technical research and the broad range of methods that can
be applied to socio-technical problems. This provides the context and terminology in which
the remainder of the survey is situated.

The chapter continues by considering early software development and the emergence of
requirements engineering as a field of research, as well as early requirements engineering
techniques. This provides an understanding of the core issues in the modelling of software and
socio-technical systems and shows the roots of modern methods. This is followed by a brief
examination of formal methods and their suitability for modelling socio-technical systems.
The complexity of such methods often renders them unsuitable for wide-scale use, but their
power and rigour highlight the advantages of more structured modelling. Recent requirements
engineering techniques such as goal-oriented and agent-based modelling techniques are then
covered, representing the current standard in requirements-driven system modelling.

2.2. Socio-technical systems 9

Technique Era Core Concept Applications
MORT 1970s Risk Trees Safety Analysis
HAZOPs 1970s Process Deviation Risk Analysis
SREM 1970s - Requirements Engineering
SSADM 1980s - Systems Analysis & Design
Z 1980s Set Theory Formal Specification
Soft Systems Methodology 1980s Holistic Systems Theory Process Improvement, Systems Analysis
i* 1990s Agent-based modelling Requirements Engineering, Process Improvement
KAOS 1990s Goal-based modelling Requirements Engineering
BPMN 2000s Data Flow Process Improvement, Systems Design
SysML 2000s Systems-of-Systems System Requirements & Design
STAMP 2000s Systems Theory Safety Analysis
Responsibility Modelling 2000s Responsibilities Requirements Engineering, System Analysis
Timebands 2000s Variable Timing Performance Timing
FRAM 2010s Functional Resonance Safety Analysis

Figure 2.1: Overview of techniques examined

We move on to consider business process modelling and system-of-systems modelling; both
demonstrate techniques for modelling large, real-world systems with a strong focus on socio-
technical components. We also examine several structured safety analysis techniques, which
provide tools for modelling and analysing complex systems with a particular consideration of
human elements.

Soft Systems Methodology is examined as an exemplar of holistic systems thinking ap-
proaches, and deontic logic and the Timebands approach are investigated as suitable formali-
sations for modelling obligations and temporal behaviour respectively.

Finally, the chapter ends by exploring the full history of responsibility modelling, beginning
with the use of responsibilities as a concept for requirements elicitation before covering
graphical techniques for modelling individual responsibilities. The chapter concludes with a
comprehensive examination of responsibility modelling as a technique for the specification
and analysis of socio-technical systems. An overview of the main techniques covered is
shown in Figure 2.1.

2.2 Socio-technical systems

Baxter and Sommerville [11] define a socio-technical system as ‘describ[ing] systems that
involve a complex interaction between humans, machines and the environmental aspects of the
work system’. This draws on the origins of the term ‘socio-technical’ in early work by Emery
and Trist, starting in the 1950s. Trist [184] provides an overview of their early work, which
began at the Tavistock Institute. Researchers there performed action research investigations
of working practices in coal mines, and examined how changes in technology and machinery
had led to the elimination of social collaboration in the working environment, but which had
recently been reintroduced along with new equipment. Inspired by this they sought to develop

2.2. Socio-technical systems 10

a theory of work organisations that combined these social and technological factors - socio-
technical systems theory. Trist’s focus is explicitly on work organisations, and specifically
the self-organisation of workers and the relationship between workers and management in
blue-collar occupations. This holistic view of work structure achieved international success
through the 1960s and 1970s, but began to decline in the 1980s due to changes in the business
climate [129]. Instead, several socio-technical researchers found a niche using socio-technical
frameworks in projects to deploy new computer systems in organisations. However, Baxter
and Sommerville describe these approaches as ‘philosophies’, rather than as structured
engineering methods.

Badham et al. [8] also trace the origins of socio-technical theory emerging from analysis of
worker participation in industry. They provide a definition of ‘open socio-technical systems’
which are

• Systems with interdependent parts.

• Open systems that adapt and pursue goals in external environments.

• Systems that possess an internal environment made up of separate but interdependent
technical and social subsystems.

• Systems that have equifinality - goals can be achieved by different means.

• Systems where performance depends on joint optimisation of the technical and social
subsystems

They describe socio-technical systems thinking as a framework that represents organisations
as purposeful systems, and that emphasises the importance of understanding social roles
and technical variance when analysing or re-designing systems. This framework is used for
purposes such as work re-design, process re-engineering and computer-supported work. They
also note that the general field of socio-technical theory is divided, with differences between
research groups over issues such as the level of involvement of workers in socio-technical
research projects and the level of autonomy implied by equifinality.

In the same volume Hendrick [74] defines a socio-technical view of systems as ‘viewing
organisations as open systems engaged in transforming inputs into desired outcomes’. Such
a system consists of three major components - the technological system, the personnel sub-
system and the relevant external environments. In this view, the technological and personnel
subsystems are mutually interdependent and operate under joint causation, both being affected
by events in the environment.

Herrmann and Loser [75] define socio-technical processes as ‘comprising the interdependen-
cies between persons, especially the mutually dependent activities of multiple persons’, with

2.2. Socio-technical systems 11

socio-technical systems also having ‘a technical side where artifacts, like computer systems in
computer science, are relevant.’ Unusually, this definition allows for socio-technical processes
that contain no technical elements.

Baxter and Sommerville [11] also note that socio-technical research exists in at least four
different research communities:

1. Researchers in work, workplaces and working conditions. This includes the early
origins of socio-technical systems theory, and aims to produce a more humanistic and
successful workplace.

2. Researchers in information systems. Information systems are large-scale systems
that support organisational and community work, and so socio-technical issues are
significant.

3. Researchers in computer-supported cooperative work (CSCW). This considers the
details of work and the interactions between working practices and computer systems.

4. Researchers in systems engineering. This community studies the relationship between
human interactions, organisational structure and systems failure.

They also note that there is little overlap and collaborative work between these distinct
communities, with research and reviews in each community showing little awareness of the
others. Additionally, there is ‘considerable variation’ in the exact meaning of the term ‘socio-
technical system’, with a particular divide between its origins in organisational psychology
and its adoption in management science and information modelling. This contributes to
the fragmented nature of socio-technical systems research; socio-technical studies draw on
methodologies and concepts from a wide range of fields, and similar concepts appear under a
range of different names in different areas.

The boundaries of socio-technical systems research are not well defined, especially given
the existence of multiple, generally unrelated fields of socio-technical study. In particular,
the term ‘socio-technical system’ is often used to describe systems that match the definitions
given above, but without the philosophical implications arising from the term’s origins in
participatory work studies.

Baxter and Sommerville define a discipline of ‘Socio-technical systems engineering’, which
encompasses the fourth of their listed research communities. They note that failures in
large, complex systems are not primarily failures of technology, but fail because they are
unable to prepare systems for the social and organisation complexity of their environment
- which manifests as problems such as poor requirements specification and ineffective user
interactions. This can be addressed by integrating the socio-technical perceptive into systems

2.3. Early requirements engineering 12

engineering, although it is important this occurs throughout the entire lifecycle of a project
and is not just used to define requirements at the start and analyse the finished system at the
end.

Baxter and Sommerville go on to identify five important research areas in socio-technical
systems engineering (STSE): STSE processes, modelling and abstraction, integrated human-
centric design, organisational learning and global systems. For modelling and abstraction
they note the shortcomings of current modelling techniques and abstractions, which are not
sufficient or intuitive enough to capture socio-technical behaviour. Additionally, they pose the
general question of whether organisational modelling can actually deliver useful information
for the purpose of socio-technical design. For global systems they note that STSE approaches
almost universally assume the context of a single integrated organisation, whereas many
systems are actually multi-organisational and geographically scattered.

Outside of specific research into socio-technical systems development itself, many research
areas show either the influence of socio-technical thinking or provide methods and tech-
niques that support the development and analysis of socio-technical systems. Requirements
engineering is often concerned with the specification of complex socio-technical systems;
most requirements engineering methods incorporate techniques for capturing socio-technical
activities, and many case studies are set in socio-technical domains. Similarly, contemporary
safety and security analysis techniques explicitly contain complex models of socio-technical
interaction, acknowledging that the technical aspects of safety cannot be separated from the
human and organisational factors surrounding their operation. Both these disciplines provide
techniques for modelling (and abstracting) socio-technical systems; in this sense, there is
considerably more research on socio-technical modelling occurring outside the field than
directly within.

2.3 Early requirements engineering

Kotonya and Sommerville [102] describe requirements engineering as ‘[a term] to cover all of
the activities involved in discovering, documenting and maintaining a set of requirements for
a computer-based system’. Problems in requirements engineering can include systems that
are under-specified (requirements are vague or missing) or over-specified (requirements are
too detailed, restricting implementation choice or limiting flexibility); systems that include
contradictory, ambiguous or unachievable requirements and systems where the achievement
of requirements cannot be accurately assessed.

The difficulty of accurately constructing requirements (and successfully mapping them to
designs and implementations) for software systems is not a newly identified problem, even
as solutions continue to be sought. The term ‘requirements engineering’ was in use from

2.3. Early requirements engineering 13

the mid-1970s [196], as large scale projects encountered problems with their requirements.
For example, in 1976 Bell and Thayer [15] reported an analysis of problems occurring with
software requirements. They had been commissioned by the United States government to
investigate this issue in order to improve the software engineering processes of large military
projects. They examined both small-scale projects (a two-month exercise set for graduate
students) and a large scale project (a one-million instruction component of missile defence
software). Formally submitted problem reports were studied to identify the frequency and
category of requirements problems.

Both cases had what the authors considered large amounts of identified problems. Approxi-
mately one reported error per page of requirements was detected in the small project, and one
error per two pages in the large project. In both cases these are likely to be underestimates,
as they do not include problems addressed informally, or minor issues left unreported. Both
projects also had similar types of problem - primarily requirements deemed incorrect by
developers, followed by incomplete specifications and unclear requirements (although the
proportion of unclear requirements tended to decrease rapidly as projects developed).

In particular, the authors note that a number of requirements problems in the missile defence
system could result in a non-responsive system - opening a large gap in the strategic defence
of the United States during the middle of the Cold War. Drawing from their experience, the
authors then recommend additional effort on identifying requirements problems early in the
development process, and note that requirements problems appear universal across a wide
range of systems.

The consensus that requirements problems are a significant and pervasive cause of soft-
ware failure has been established by decades of further empirical study; for example, Van
Lamsweerde [187] reports on multiple large-scale industrial surveys reporting that in failed
projects around the half the issues were attributed to requirements.

Early work addressing these requirements problems led to the development of SREM - the
Software Requirements Engineering Methodology [5]. This approach is based around the
notion of bottom-up design - that systems operate by coordinating low-level elements, while
requirements are normally specified top-down by decomposing abstract functions. This, it is
argued, leads to inconsistency and significant effort in transforming the requirements into a
useful form.

SREM consists of two main elements - R-nets for expressing functionality, and the RSL
(Requirements Specification Language) markup language for meta-requirements and analysis.
R-nets are essentially state machines - diagrams consisting of transformations, path selections
etc. Evaluation is performed by considering possible paths through the R-net, and this can be
used to obtain values for performance and accuracy requirements.

RSL can be used for a wide range of additions to the R-nets. They can be used to describe

2.3. Early requirements engineering 14

elements, specify transformation or establish constraints on the system. These statements are
fully machine-readable, and hence enable automatic analysis. Refinement of top-level goals
can be automatically checked and data flow consistency can be checked.

SREM is representative of many requirements engineering methods of the period, in that
the notation employed lacks support for refining detailed specifications from higher-level
objectives. Additionally, SREM’s support for expressing non-functional requirements is
extremely limited. The state machine structure is suitable for a number of project types,
especially real-time systems; however, it is not suited to expressing the context of complex
systems involving human elements.

By the 1980s, a wide range of requirements engineering methods were in use, based on a
range of approaches. In a review, Roman [151] identifies six different approaches - state
machines, dataflow models, stimulus-response paths, communicating concurrent processes,
functional composition and data-oriented models. Recent research had also identified the
need for broader coverage than earlier approaches. The need to model both the environment
around the system as well the system itself had been determined, while the difficulty of
expressing non-functional requirements was well known. Also noteworthy was the beginning
of movement away from the ‘waterfall’ approach of fixed steps of development - rapid
prototyping was showing some benefits, and required changes to requirements engineering
approaches.

In conclusion to the review, Roman identifies the core shortcomings in requirements engi-
neering as a lack of formalisation. Non-functional requirements still lacked a theoretical
foundation to match functional requirements; higher levels of automation were clearly de-
sirable, but this required more formality. Methods for formally capturing the full lifecycle
(including user interaction and maintenance) were still lacking, and the fragmented nature of
the field led to much duplication of research work.

Requirements engineering would often be integrated into full-cycle development methods, as
part of an increased focus on traceability and integrated development. For example, SSADM
(Structured Systems Analysis and Design Method) [44] was a UK government approved
methodology introduced in the mid 1980s incorporating techniques for problem definition
and requirements specification.

SSADM can be initiated with a feasibility phase, although this is optional and was only intro-
duced in later versions of the methodology. The feasibility stage is focused on analysing the
current system(s) and the operational context to identify problems or areas for improvement,
rather than working to pre-specified goals. For this, two types of modelling are used - data
flow diagrams and logical data structure diagrams; these modelling approaches are key to the
entire SSADM technique. SSADM uses standard data flow diagrams (Figure 2.2), illustrating
data flow between processes and datastores; logical data structure diagrams are more general,

2.4. Formal approaches 15

Initiator

Important
Participant

Active
Participant

Participant

Participant DatesD
1

LocationsD
2

Equipment Reqs.D
3

Participant ListD
4

Meeting DetailsD
5

2
Enter
Dates

1
Establish
Meeting

3
Preference
Locations

4
Express
Requirements

5
Schedule
Meeting

Preference set,
exclusion set

Invites

Lists

Preference set,
exclusion set

Prefered locations

Prefered
locations

Required
equipment

Required
equipment

Chosen
details

LEGEND
Datastore

External Entity

Process

Process Scope

Figure 2.2: SSADM Data-flow diagram for the meeting scheduler described by van Lam-
sweerde et al. [188]

and are essentially entity-relationship diagrams.

The core ‘specification of requirements’ phase proceeds in much the same way. Initially, data
flow diagrams should be constructed, based on the view of the current system. This should
produce a set of required functions, as well as any potential problems. Meanwhile security
and control requirements (essentially, NFRs) should be specified separately. Both these
steps are then combined with more abstract requirements generated earlier to produce a draft
requirements list. This is likely to produce several different potential ‘system specifications’;
discussion with users and the production of high-level dataflow diagrams should allow these
to be reduced to a particular system option. The requirements section continues by producing
highly detailed dataflow diagrams, catalogues of commonly used functions, logical data
diagrams etc. This leads to the lack of a clear division between requirements and design,
aiming to ensure the feasibility of requirements at an early stage.

2.4 Formal approaches

Structured requirements engineering techniques such as SSADM provided clear methodolo-
gies and notations for designing and analysing systems, but confidence in the final result was

2.4. Formal approaches 16

simply based on confidence that each step of the methodology had been followed correctly. It
was not possible to ‘prove’ the correctness of the results, either in terms of internal consistency
or the relations between the specification and the implementation.

The desire for more powerful requirements specification techniques was met by the use of
formal specification methods such as Z [90] [171], and VDM [95]. These approaches use
formal semantics and defined rules or laws to specify allowable system states and behaviour.
These approaches are more complicated and time-consuming than structured or informal
techniques and so are not necessarily advantageous for systems considered to be low-risk;
however, they are useful for problems of great technical complexity, and are almost universally
used for (safety) critical systems [19].

The Z notation is a model-based notation for system modelling; systems are represented by
defining a state, and a range of operations that can modify that state. Z is underpinned by set
theory and first-order logic. While initially intended as a ‘pen and paper’ notation a wide
range of tools have been developed to support Z, allowing much of the formal reasoning
(decomposition, correctness proofs etc.) to be automated [90].

Core features in Z include set definitions and operations (for defining variables and types),
standard logical operators (for conditions on state operations), relations and functions (for
modelling complex data relationships and transformations) and sequences (for ordered data
types). The notation is extensible, and many additional features are available in different
versions of the notation. Models are constructed by defining states and transitional operations
on those states. An example of the Z notation is shown in Figure 2.3.

When applied to requirements engineering, Z allows clear, unambiguous and concise statement
of requirements and specifications. Requirements can then be reasoned over using formal logic
so that system-wider properties can be checked. [144]. The resulting formal specifications
require a good level of mathematical or logical background to understand, but the formal
elements should be accompanied by natural language descriptions. Z specifications are not in
themselves executable, but guidelines exist for semi-automated conversion of Z statements
into high-level programming languages.

While offering many advantages when used on the right types of projects, Z and similar
notations do have disadvantages. They are understandable by relatively few stakeholders, and
it is possible for the formal and natural language descriptions to be contradictory [11]. The
scope for Z application is limited; it is not really suitable for modelling the complexities of
human behaviour, such as in social-technical systems. Modelling such systems using Z is
possible, but difficult - the inherent imprecision of social actions is not easily expressed using
Z concepts such as types and logical predicates.

More recently, Collinson et al. [32] propose a contemporary simulation model language called
Core Gnosis, which is intended to model large-scale information systems. Core Gnosis draws

2.4. Formal approaches 17

State
invitees : PPARTICIPANT
initiator : PPARTICIPANT
meeting : PDATE
exclusionSet : PDATE
preferenceSet : PDATE

SetPrefs
∆State
excludedDates? : PDATE
preferencedDates? : PDATE
agent? : PARTICIPANT

agent ∈ invitees
exclusionSet′ = exclusionSet ∪ excludedDates?
preferenceSet′ = preferenceSet ∪ preferencedDates?

Figure 2.3: Z state declaration and SetPrefs model operation for the meeting scheduler
described by van Lamsweerde et al. [188]

on formal process calculi such as SCRP [31]. Its core entities are processes, resources and
locations; these are used to produce executable models that use stochastic elements to simulate
system behaviour.

Core Gnosis is demonstrated using a boat docking example - boats arrive and must be assigned
a berth and crew from a small supply. Resources can be located, such as creating ‘secure’
berths for certain types of boats. While nominally a real world example, this scenario is ide-
alised such that it represents a classic resource allocation problem and the wider applicability
of the technique is uncertain.

Once written, Core Gnosis models can be translated into the LSCRP process calculus (a
restricted subset of Core Gnosis must be used, but Collinson et al. [32] argue that all important
elements are captured). This in theory allows Core Gnosis to act as an entry point to formal
modelling, providing the power of process calculi while being simpler to write and more
broadly applicable. However, the core primitives remain only really suitable for systems
where correct operation (according to the process specification) can be guaranteed, hence
limiting its wider application.

2.5. Goal-oriented approaches 18

2.5 Goal-oriented approaches

The inability of formal specification languages to model higher-level concepts inspired the
development of several approaches that used goals as the main focus of their methodology.
Dardenne et al. [36] first proposed a ‘Goal-directed’ approach to address problems with
existing techniques for requirements acquisition, the initial step of developing a requirements
specification. They identified several gaps in the requirement modelling tools of the time,
which the goal-directed approach would address. At the time, most specification methods
focused almost exclusively on functional requirements, which meant that non-functional
requirements had to be recorded purely as free text, or forcing non-functional requirements
to be modified in order to fit the available language constructs. Additionally, the formal
specification languages were intended primarily for use by system designers, and therefore
produced highly technical models. These models could not be understood by clients and
stakeholders, which limited the ability to discuss and reason over design decisions. The authors
created an specification language known as KAOS (Knowledge Acquisition in autOmated
Specification) to address this.

KAOS modelling operates on three levels - meta, domain and instance. The meta-model
describes a set of rules and standard relationships for constructing KAOS models. The
domain model is the main level used for requirements elicitation and is used in the KAOS
goal-directed elaboration process. Instance models represent the overall system view from the
domain model instantiated with actual actors and systems. In order to obtain the full strength
of the formalisation both the domain and instance models must obey the constraints set in the
standard meta-model.

First-order objects in a KAOS model include entities, events and agents, alongside multiple
types of goals. Entities are used to model any autonomous objects in the system domain at
any level of abstraction; agents differ from entities in that they can process actions and have
choice on their behaviour. These are linked by relationships such as responsibilities, wishes,
inputs/outputs and conflicts. While sometimes represented graphically (Figure 2.4), KAOS
models are formally represented in a specification language (Figure 2.5) that is similar to
contemporary formal languages like Z.

The KAOS specification language uses concepts, relationships and attributes; these can be
related as parts of a formula, which itself can be asserted using state-temporal logic (assertions
may hold in past, present or future system states). At the acquisition (system modelling)
level the abstract concepts of the specification language are partially instantiated, introducing
new primitives such as events, actions and agents. These are instances of concepts, while
relationships include inheritance and forms of composition. At this level, the details of goals
and constraints are expressed using logical operators such as implication, boolean algebra and
universal and existential quantifiers.

2.5. Goal-oriented approaches 19

Figure 2.4: Fragment of KAOS meta-model (from [36])
Reproduced by permission of Elsevier

The graphical notation provides an overview of the model, but the majority of important
details can be only be represented in the textual temporal logic. It is unclear whether graphical
and logical representations of the same system need to be equivalent; case studies tend to only
use the specification language [189].

The standard KAOS requirements acquisition method consists of seven steps. The first
step is to identify the goal structure, by decomposing high-level system goals into more
primitive goals that can later be operationalised (converted to constraints on a system state).
Secondly, the potential agents in the system should be analysed to ascertain their capabilities
for controlling the system. This is followed by the operationalisation of goals, where goals
are converted into constraints on the system state that can be manipulated by system agents.

By this stage new objects and actions may well have been introduced into the model, especially
during the operationalisation process. As a result, the fourth step is to refine and re-analyse
the set of objects and actions within the system to include new objects and new actions on
existing objects. The refinement carried out at the fourth stage may itself lead to model
changes that mean the previously defined constraints may no longer hold, so the fifth step is
to refine the constraints, strengthening objects where necessary.

This is followed by the analysis of potential responsibility assignments - the identification of

2.5. Goal-oriented approaches 20

Relationship Borrowing
Links Borrower {Role Borrows, Card 0:N}

Book Copy {Role Borrowed By, Card 0:1 }
% Borrowers may have no copy borrowed, and may borrow several copies at same
time; copy may not be borrowed, and may be borrowed at most one borrower %

Invariant (∀ lib: Library, bor: Borrower, bc: BookCopy)
[Borrowing(bor,bc) ∧ bc ∈ lib⇒
bc ∈ lib.checkedOut ∧ ♦ Requesting (bor,bc)]
(∀ lib: Library, bc: Book Copy)
[bc ∈ lib.checkedOut⇒
(∃ bor: Borrower) Borrowing (bor,bc)]

...

Figure 2.5: Sample of KAOS specification language (adapted from [36])

the range of agents that have suitable capabilities to enforce the constraints. The aim here is
to identify all the possibilities and hence formalise the different design options. Finally, the
model is completed by selecting the optimal assignment of constraints to agents, taking into
account issues such as load and agent reliability. Once complete, the model should represent
a system design that meets the original project goals at a suitable level of abstraction to begin
implementation.

Tool support for KAOS was provided by the GRAIL environment [37], which provided a
hybrid graphical and textual representation editor, multi-user concurrent editing and limited
support for integration with other CASE tools. Models could be constructed either visually or
textually, although formal assertions could only be edited in text form. The initial version of
GRAIL only provided for creation and editing of models, and could not perform any analysis.

Later versions of GRAIL provided some level of automated analysis [38], although it is
unclear what specific analysis methods were implemented. Notably, some functionality was
added for capturing source material such as interviews, so that specified goals and entities
could be traced back to their origins. GRAIL was eventually succeeded by the Objectiver
commercial toolkit [150], which is primarily a cosmetic update to GRAIL without significant
additional functionality.

A large number of extensions and variations to KAOS have been published, often attempting
to integrate other analysis concepts or methods with core KAOS [73, 101, 131].

Nakagawa et al. [131] developed a tool that converts KAOS specifications into the VDM++
formal specification language. Goals and requirements are not directly converted, as the tool
operates on the derived elements: operationalised constraints and entities. The KAOS pre- and
post- conditions are used to generate corresponding VDM++ input and output specifications
and hence the actual body of the function specification must be completed manually. The
converted version can be used with a wide range of VDM++ tools, enabling additional forms
of analysis such as verification of the specification using test cases.

2.5. Goal-oriented approaches 21

Koliadis and Ghose [101] proposed a methodology called GoalBPM, which links KAOS
with business process management models to improve the control and traceability of process
evolution. Firstly, models of the relevant system are constructed in both the Business Process
Modelling Notation (BPMN) 1 and KAOS. Relationships between the two models are then
established by creating traceability and satisfaction links. Traceability links are made between
BPMN activities and KAOS goals that affect that activity; satisfaction links between processes
and goals indicate that the process must meet the linked goal. The trajectories of the BPMN
model are then analysed, determining all possible paths through the system and their state on
completion. These paths can then be traced through with links to the KAOS goals, allowing
the performance of each path to be rated based on the satisfaction of goals. This allows
refinements to be made to the business processes, although the process of creating a linked
goal model requires significant effort.

Heaven and Finkelstein [73] produced a Unified Modelling Language (UML) profile for
KAOS, providing mappings between the outer layer of KAOS and corresponding UML
representations. Conversions for the KAOS temporal logic are not provided, but the authors
suggest either mapping into Object Constraint Language [191] expressions or tagging objects
with logic expressed in natural language. This conversion allows the use of KAOS for early-
phase requirements to be integrated into the wider development process and enables low-level
requirements to be traced back to goals. A demonstrative case study of a light rail train control
system is used to show that the full range of KAOS constructs can be captured in UML.

In comparison to the large number of publications on tooling and extensions there are
relatively few examples of KAOS case studies and evaluations in the published literature.
The original authors of KAOS published a case study in which they performed requirements
elaboration for a meeting scheduler [189]. This was intended as a exploratory exercise
(although based on actual scenarios), and the authors combined the roles of client, domain
expert and requirements analyst together. This allowed them to provide a wide-ranging view
of the elaboration process, but does not reflect real-world use of these techniques. Their case
study acts more as a worked example of the methodology than as a genuine application of the
technique; it is a helpful guide to using KAOS, but provides limited insight into general usage.
However, some weaknesses in the KAOS method are identified, including the inability to
capture non-functional requirements such as usability and the need to formulate (and change
if necessary) assumptions to model different versions of the system.

A study by Duboc et al. [47] described the use of KAOS to elicit the scalability requirements
for a large financial transaction analysis system. This system scans large amounts of transac-
tions and aims to detect unusual behaviour that could be fraudulent. A KAOS goal model was
constructed for the system and constraints were set on performance (time to complete) and

1For more detail on BPMN, see Section 2.7

2.6. Agent-oriented approaches 22

range (size of data input). The authors report a balance of advantages and disadvantages for
this approach: they praise the traceability and responsibility relations required for KAOS, but
criticise the lack of support in KAOS for ranged values and variations in assumptions over
time. Generally, it is unclear if their application of KAOS provides analysis that is distinct
from their domain knowledge.

Generally, KAOS fails to fully address the authors’ own concerns over the inability of
requirements models to be understood by wider system stakeholders, although the well-
written and detailed guide to applying the technique effectively encourages standardisation
and reproducibility. As such, KAOS does not offer a simpler or less formal requirements
process, but does provide considerably more flexibility for capturing higher-level concepts.

2.6 Agent-oriented approaches

In the mid 1990s Yu [203] argued that existing requirements engineering approaches were fail-
ing to address the ‘early phase’ of requirements engineering. These early- phase requirements
engineering activities include analysis of organisational goals, consideration of alternative
processes and systems and addressing the interests of stakeholders - which Yu describes as
the ‘whys’ of the requirements.

Yu argues that early-phase requirements engineering provides numerous advantages, including
promoting a greater understanding of the problem domain (and hence removing a common
cause of failure), addressing the increasing need for organisational integration and inter-
operability and the ability to trace systems requirements back to the original organisation
goals. These activities were generally performed in an informal manner, without a concrete
methodology or tool support, as existing techniques were aimed primarily for later stages of
requirements engineering.

To address this, the i* framework was created. The core concept behind i* is that of intent,
which draws heavily on previous work by Yu [201]. In that paper it is argued that the
common concept of treating requirements as meeting some system-wide goals is inaccurate,
as individual agents within an organisation have different aims and objectives. Instead,
systems can be thought of as a series of interactions between agents, who participate in order
to meet their own goals. A mathematical logic for formalising these inter-agent dependencies
was developed, and these relationships can be analysed to identify potential problems such as
the violation of constraints.

i* analysis begins by considering the intentional relationships between actors. Actors depend
on others to complete tasks, provide resources and to achieve goals. These relationships
can be expressed in a ‘Strategic Dependency’ (SD) model, an example of which is seen in
Figure 2.6. SD models portray processes as agent relationships, rather than tasks or flows of

2.6. Agent-oriented approaches 23

LEGEND
Depender Dependee

Resource Dependency

Task Dependency

Goal Dependency

Sogoal Dependency

CriticalOpen (uncommied)

ISA

Meeting

Participant

Important

Participant

Meeting

Initiator Proposed

Date (m)

Agreement

(m,p)

Preferred

Dates (p)

Exclusion

Dates (p)

Aends

Meeting (p,m)

Assured(

Aends

Meeting (ip,m))

Aends

Meeting (ip,m)

Figure 2.6: Example i* Strategic Dependency Model (redrawn from [203])

entities. This enables new forms of analysis at this level, such as opportunity (the ability to
delegate/transfer goals entirely) and vulnerability (determining where actors rely on others to
meet their goals).

The SD model provides a view of the external relationships between actors. Yu also argues
that in early-phase requirements engineering it is often beneficial to study why actors act
in the way they do and how their interests can be addressed. This can be determined using
‘Strategic Rationale’ (SR) models (see Figure 2.7), which use the same core entities as SD
models, but decompose the internal intent of the actors. As a result, it is possible to model the
internal interests of stakeholders and their attitudes towards different alternative systems.

Once routines to meet goals are specified in a SD model they can be assessed for workability
and viability. The ‘workability’ of elements in this routine can be examined in turn and used
to assess the workability of the routine as a whole. If it is not possible to accurately assess an
element then that is a sign that the element should be further refined. These properties are
evaluated by using a formal propagation algorithm, but the workability or viability of leaf
elements must be assessed manually.

2.6. Agent-oriented approaches 24

LEGEND

Resource

Task

Goal

Sogoal

Task-Decompo-

sition link

Means-ends link

Contribution to

sogoals

Actor

Actor Boundary

+
-

Organize

Meeting

Meeting

Initiator

ick
MeetingBe

Scheduled

Low

Effort

Schedule

Meeting

Obtain

Agreement
Find Suitable

Slot

Merge

AvailDates

Obtain

AvailDates

Exclusions

Dates

Preferred

Dates

Proposed

Date

Agreement

Aends

Meeting

Meeting

Participant

Aend

Meeting

Participate

InMeeting

ality

(ProposedDate)

Convenient

(Meeting, Date)

Agreeable

(Meeting, Date)

Find

Agreeable

Date

AgreeTo

Date

Min

Interruption

User

Friendly

Arrange

Meeting

Low

Effort

-

-

--
+

+

+

+

Figure 2.7: Example i* Strategic Rationale Model (redrawn from [203])

While workability assesses only the possibility of completion, viability assesses both the
possibility and desirability of a routine. i* also incorporates the notion of soft goals - goals
which are used to express desirable characteristics of a system rather than core functional
requirements. For example, a financial transaction system should process credit card orders
(a goal) and should ideally do so quickly (a softgoal). Potential routines can therefore be
assessed on how many of these desirable requirements they meet and which actors benefit
most from a particular design decision.

This emphasises the early-phase nature of i* - it is a technique intended to assess conflicting
interests and consider high-level design alternatives, and is not a technique for modelling
system designs themselves. The efficacy of i* is demonstrated in later papers, which provide
a number of detailed case studies and a developed modelling methodology.

Yu and Liu [204] extended i* to address trustworthiness. Trust is considered as a special
case of a non-functional requirement, and is hence modelled using a set of softgoals. The
core i* set of entities is not expanded; instead, sample models are provided for standard trust
relationships such as enforceable purchases and third-party assurance.

More elaborate trust relationships are demonstrated using several worked examples of a card
payment system. Design variations are evaluated by considering their positive or negative
contributions to softgoals. Potential attacks on the system are represented as tasks that

2.6. Agent-oriented approaches 25

contribute negatively to security and trust softgoals. These relationships can be labelled
with an indication of satisfaction (satisfied, denied, weakly satisfied etc.) which enables
the viability of the overall system to be determined using the same propagation system as
workability and viability.

As the i* core is itself not modified, this extension is more of a meta-model or extended case
study than an expansion of the technique itself. The subjectivity and lack of operationalisation
in assessing the trustworthiness of system components mean that this form of trust analysis
is primarily suited to system scoping and early-stage design rather than modelling specific
designs or existing systems.

Liu et al. [112] produced a more elaborate extension to i* by developing a framework for
security and privacy requirements specification and analysis. They also propose a seven-step
methodology that runs alongside the conventional i* entity identification process.

This methodology begins by identifying and analysing potential attackers, using the i* gener-
ated set of actors. All actors are initially considered possible attackers, and are considered
in turn by analysing their resources and capabilities to determine potential attacks. This is
followed by dependency analysis, which replaces actors in the SD model one-by-one with
attackers, and traces the dependency violations to determine the reach of such an attack.

This process identifies particularly vulnerable elements of the system, so the analysis continues
by identifying the different ways attackers could exploit these points. Means-ends analysis
is then used to suggest countermeasures to these exploits, although it may be necessary to
repeat the process to assess the security of these new countermeasures. Once complete, this
methodology produces a detailed system model of potential threats and defences, which can be
discussed and alternatives evaluated as with traditional i*. A refinement of the goal-labelling
approach (from Yu’s original paper [203]) is shown, which allows significant reduction of
the solution space of possible systems by labelling links on multiple criteria and then sorting
based on the relative priorities of the criteria.

Additionally, Liu et al. suggest that property verification can be carried out using the Alloy
language [89] and its associated tools. They provide a partial translation of core i* entities
into the Alloy language, and hence argue that rewriting i* models as Alloy specifications is
practical. Once rewritten, models can be checked using the Alloy Analyser which can validate
properties or produce counterexamples.

i* can also be integrated with other modelling techniques, both in software engineering and
systems thinking more generally. For example, Gordijn et al. [68] propose a methodology that
combines i* with the e3value economic modelling technique. The combination is intended to
be used to evaluate e-services: alternative business models or structures can be considered
based on profitability.

2.6. Agent-oriented approaches 26

The two techniques are interlocked - an i* SD model is used to produce an e3value actor
model, and the i* SR model is used to produce an e3value activity model. The e3value models
are used to generate estimates of costs and revenues attributable to the various actors in the
service model. The results of this analysis is then used to label the i* goals produced earlier.
The labels are then propagated, and the acceptability of the model for different actors can
be determined as before. If the particular structure does not ensure sufficient satisfaction for
enough actors then the design process can be iterated until suitable alternatives are found.

i* has also been integrated into a full lifecycle approach, in the form of Tropos [20]. Tropos
is a methodology for Agent-Oriented Programming that spans early-requirements to imple-
mentation. Conceptually, it seeks to address the same root issues as i* - the lack of attention
and support for early-phase requirements engineering in software engineering processes, as
well as the inability to link with later stages. Bresciani et al. [20] argue that conventional
object-oriented methodologies lack documented evidence in this early-phase, citing as an
example the use of UML, which begins at the use-case level.

Tropos begins with two requirements analysis phases - early and late. Both these phases are
built around goal diagrams, which are essentially carbon copies of i* SR models. In early
requirements analysis, they are used to describe the intentions and dependencies of actors,
exactly as in i*. For late requirements analysis, the diagrams are restructured by introducing
the system under development as an explicit actor. The new model is then used to assess
softgoal satisfaction etc. , as per i*.

Architectural design of the system is carried out by decomposing actors and goals from
the previous stages, and generating extended actor diagrams for the various subsections of
the system. The relevant capabilities actors need to meet all their goals are identified, and
hence a set of requirements for each sub-section of the system is produced. These can then
be modelled in conventional UML approaches (activity diagrams, sequence diagrams etc.)
which allows development either using specific agent-oriented platforms or conventional
programming languages.

Despite the wide academic interest in i*, there are very few reported case studies in the
literature. This lack of (reported) industrial application is explicitly mentioned by Maiden
et al. [119], who report a series of projects using i* they carried out for Eurocontrol (the
pan-European air traffic control body).

Maiden et al. developed a large-scale requirements process called RESCUE for Eurocontrol
that included i* as one of four main elements - i* is used (as a follow-on from context
models) to determine and elaborate system goals and rationale as well as establishing system
boundaries. The RESCUE methodology was then applied in three air-traffic control projects.

In the CORA-2 project, i* Strategic Dependency models were used to determine the system
requirements and to examine the system boundaries. The final SD model consisted entirely

2.6. Agent-oriented approaches 27

of goal and resource dependencies and was highly centralised, with more than 90% of
dependencies involving the new CORA software. These design decisions were identified as
originating in the routines and mindset of the analyst that modelled them. Dependencies were
adapted directly from information flows (leading to high resource-goal dependencies), while
the project team were focused on the development of CORA as a software system, rather than
on its integration with the wider user environment (leading to the centralised model). The use
of i* helped to identify these examples of closed thinking, but the report also emphasises the
high level of subjectivity and ‘systems view’ in the i* modelling approach.

In contrast, an i* model for the DMAN aircraft scheduling system showed that while the
new system under development was involved in a majority of dependencies there were also
substantial dependencies between non-system agents (Maiden et al. attribute this to a clear
project focus on the social-technical aspect).

In addition to describing the industrial use of i*, a series of recommendations based on this
experience are presented. These include useful applications of i* (such as heuristics for
determining the system boundary), techniques for communicating i* to stakeholders (free
text and tables) and suggestions for future work (such as developing superior tool support
). The authors also reflect generally on the effectiveness of i* in industrial environments.
They report that i* models (Strategic Rationale models in particular) are large and difficult to
manage and time consuming to develop. They also highlight areas where SR modelling is
particularly effective - use case discovery, soft-goal contributions and dependencies between
use cases. As a result, they recommend continued but more selective use of SR models in the
development process, focusing on areas that i* can model but use cases cannot.

Many i* extensions in the literature are essentially meta-models for particular problem
domains, demonstrated through small case studies [112, 204]. As a result, these meta-models
are rarely assessed independently, and hence their effectiveness is not easily assessed. A study
by Strohmaier et al. [180] investigated the use of patterns to improve i* modelling. This study
consisted of creating abstract i* models for specific types of system (such as a generic model
of a collaborative editing system) and then using these models as a building block towards
modelling real systems. The study found that there was no development speed advantage
in using generic models, and using these patterns increased the size of models (potentially
increasing model coverage, but also adding complexity).

Pastor et al. [140] carried out a similar study on core i* to assess the methodology on a number
of criteria generated from previous studies of agent-oriented methodologies. Their study
consisted of three small development groups (one with a modelling background, one with a
programming background and one with an i* background) who each used i* to separately
model three different business processes, all drawn from an industrial partner. Once the
modelling was completed, the groups were asked to rate i* on given criteria and discuss their

2.7. Business Process Modelling 28

reasoning.

i* was well rated for the wideness of its applicability in different domains, and the expres-
siveness of the technique, especially with regards to organisational structures. The evaluators
were generally sceptical of i*’s opportunities for refinement (due to a lack of abstract primi-
tives), repeatability (due to inconsistency in the notation in the literature), ability to handle
complexity (because of the lack of decomposition and multi-level models) and traceability
(because of the lack of guidelines when deriving SR models from SD models). i* was poorly
rated for modularity (again due to the lack of abstraction layers), reusability (models cannot
be reused in part, due to lack of modularity) and scalability (once again, due to the lack
of multiple layers and modularisation). Pastor et al. hence highlight the lack of granularity
and refinement as key extension points for i*, and suggest that Viewpoints (as discussed in
Section 2.9) may provide a suitable solution. These criticisms of i* reflect the tendency for
i* to be integrated with other techniques, such as with different varieties of business process
modelling or in the Tropos development lifecycle, rather than be used by itself.

Overall, i* provides an expressive and widely applicable modelling technique that is limited
by the lack of features for large-scale modelling, such as composition and modularity. The
underlying concept of actor relationships provides a clear contrast with earlier requirement-
or goal-based models, enabling a flexible and broadly applicable approach. However, i* lacks
support for effective large-scale and multi-level modelling due to the absence of features
such as entity composition. Additionally, several important areas of the methodology such
as workability analysis and mappings between SR and SD diagrams are subjective or poorly
described, which limits the rigour of modelling and analysis.

2.7 Business Process Modelling

Commercial and business systems and processes are commonly given as examples of social-
technical systems [181] and a wide range of methodologies and approaches have been
developed to suit this particular problem domain.

These approaches can be broadly divided into two categories - business modelling and
business process modelling [67], which reflect two different use cases for modelling. Business
modelling is concerned with profit and loss, stakeholders and the objectives of the business -
models of this type include concepts such as value and contract; they essentially express the
different commercial opportunities on offer.

In contrast, business process models express how different services will actually be provided
and operate. They can be used to define an implementation, either for standardisation or for
further analysis. They focus primarily on the internal actions within an organisation, with
contact with the outside world generally limited to the request or delivery of a service. They

2.7. Business Process Modelling 29

are often similar to workflow diagrams, describing the steps and internal interactions used to
deliver a result.

In a business modelling scheme such as e3value, business activity is defined in terms of value
exchanges. Entities expose services (known here as value activities) with value ports/interfaces
that define inputs and outputs in terms of their commercial value. This specifies the reciprocal
nature of the services provided (benefits are provided in exchange for an expected return of
value), although not any details about the relative values in the transaction. These approaches
can be seen as defining a series of interfaces to a business; details of the interface are not
provided, but the basic set of potential commercial transactions is expressed.

Aguilar-Savén [4] presents a comprehensive survey of approaches to business process mod-
elling. It is highlighted that business process models may be created for a range of reasons,
and that different motivations benefit from different approaches to modelling. Business
processes may be modelled in order to develop software for them, or to automate the process
in some other way - this requires modelling approaches that are diagrammatic (for ease of
use and understanding) and unambiguous. Alternatively, process models may be created with
the aim of refining or optimising the process under investigation. This benefits from models
that can be executed or can be used with simulation tools to evaluate potential changes to the
process. These may be more complex, and data capture to allow effective simulation is likely
to be time consuming.

In their survey, Aguilar-Savén examines around ten different business process modelling
techniques and categorises them based on their suitability for different purposes and the
static/dynamic nature of the model. In this categorisation the approaches cluster into two
main groups. Firstly, there are a range of static approaches that are primarily descriptive.
This includes a number of graphical approaches such as flowcharts and activity diagrams.
These approaches are easy to use and generally well understood, but may use incomplete or
inconsistent notations.

The second group of approaches are more structured and have support for evaluating dynamic
behaviour. These include a wide range of techniques with their origins in computing science
and software engineering, such as UML [152] and petri nets [130]. Other techniques here
such as GRAI (Graph with Results and Activities Interrelated) [27] instead originate from
general business or the manufacturing industries. These techniques are highly suited to
guiding software implementation, but they are complex and time-consuming.

The fragmented nature of this range of languages has a number of clear disadvantages, such
as inconsistent levels of tool support, lack of compatibility due to different notations, lack
of a common language used by both business and technology etc. As a result, a number
of stakeholders jointly produced the Business Process Modelling Notation (BPMN) [195],
a unified notation intended to be usable for both technology implementation and system

2.7. Business Process Modelling 30

Sc
he

du
le

r
Im

p
or

ta
nt

P
ar

ti
ci

pa
nt

A
ct

iv
e

P
ar

ti
ci

pa
nt

P
ar

ti
ci

pa
nt

In
it

ia
to

r

Receive
Participants

Choose
Participants

Send Meeting
Request

Receive
Meeting
Request

Receive
Meeting
Request

Receive
Meeting
Request

Send
Location
Preferences

Send
Equipment
Requirements

Send
Time
Preferences

Receive
Participant
Preferences

Determine
Meeting
Time

Inform
All

Receive
Details

Receive
Details

Receive
Details

Receive
Details

Figure 2.8: BPMN model of the meeting scheduler described by van Lamsweerde et al. [188]

analysis.

The BPMN has a small range of core elements. Flow objects are the main entities, and consist
of events, activities and gateways. Events represent some occurrence during the process, and
generally are either triggered by a cause or impact on some result. Activities represent any
subprocess or piece of work. Gateways are used to make decisions and otherwise manipulate
the flow of the process.

These objects are linked by three types of connections. Sequence flow is the standard link,
and represents the order of activities within the process. Message flow is used to represent
communication between separate participants (such as different business sections, or with
external actors). Finally, associations offer a generic link that can be used for input/output or
other miscellaneous purposes.

Organisational divisions are captured using either pools or lanes. A pool represents a distinct
process participant, and communication between different pools is performed using messages.
Lanes represent internal divisions within a participant, such as different divisions within
a company. No messages can be used within lanes, so only sequence flow can be used.
The choice of pools or lanes does retain a level of subjectivity, primarily the degree of
separation between participants (consider the common use of an ‘internal market’ within large
organisations). An example using pools is shown in Figure 2.8

In order to meet the needs of business analysis, BPMN models can be converted to executable
form [137]. A mapping is provided for converting BPMN models into the Business Process
Execution Language (BPEL4WS). The notation also allows extension through the use of
artifacts, which provide additional model detail without affecting the basic structure of the
diagram. These artifacts can be added based on context, such as from relevant domain-specific

2.8. Systems of Systems modelling 31

libraries [195].

As with other methodologies, there are relatively few published cases studies describing the
use of BPMN. Muehlen and Ho [128] report on their work with a truck repair and maintenance
firm to optimise their processes and perform task reengineering. They found that BPMN
models were surprisingly well understood by the firm’s workers, allowing easier and quicker
feedback on proposed changes. The authors also made modifications to the standard BPMN
constructs to improve the expressive power and ease of understanding of BPMN models, such
as allowing activities featuring collaboration to cross lanes.

Kirchberg et al. [99] demonstrate the use of BPMN to model the typical academic paper
review and submission systems. They present eight different BPMN model fragments, each
representing part of the wider paper review system. These show the use of BPMN for a realistic
system, but do not take advantage of its capabilities for analysis or process reengineering.

In a more general study, Recker et al. [149] conducted a series of semi-structured interviews
with BPMN users, testing a number of propositions regarding BPMN that they had defined
based on ontological studies. Issues regarding the lack of suitable modelling constructs in
BPMN (for state, history and structure) were generally not considered important by users
- they tended to use BPMN for high-level modelling and stakeholder discussions and felt
that the missing constructs would be more useful at lower levels. Ontological analysis also
identified that the similar types of construct in BPMN (pools and lanes, or the different
types of events) would lead to confusion. In contrast, users did not consider this a problem
and praised the breadth of modelling options available. However, the authors note that all
participants used BPMN alongside other tools, allowing weaknesses or shortcomings in
BPMN to be offset by other methods.

2.8 Systems of Systems modelling

The Systems of Systems concept is defined by several authors as referring to large-scale
collaborative systems where discrete sub-elements operate with some level of independence.
Maier [120] defines a system of systems as a system itself consisting of systems that obey
two properties: operational independence (the subsystems can operate independently) and
managerial independence (the subsystems are operated independently while remaining part
of the SoS). It is this second property that provides special complexity: central control is not
absolute and the SoS must be prepared for variation in the performance of individual systems.

The need to model large-scale, multi-level systems and systems of systems (SoSs) has led to
the development of specific techniques for systems integration such as SysML [71].

SysML [71] is an extension to the UML (specifically, UML 2.0) intended to provide tools for

2.8. Systems of Systems modelling 32

Meeting
Creator

<<block>>

Arrange
Meetings

<<requirement>>

Contact
Participants

<<requirement>>

1..1
Meeting
Scheduler

<<block>>

1..1 Satisfied by
<<block>> CommsSystem

Figure 2.9: SysML Block Definition Diagram showing requirements satisfaction, composition
and refinement

systems modelling as part of the wider UML framework. While core UML is very widely
used it lacks several important capabilities for modelling broader systems due to its focus
on ‘software systems’. These include very limited support for modelling physical elements
of systems and limited support for hierarchical structures. Consequentially there is limited
support for explicitly modelling or validating requirements.

SysML addresses these issues by adding additional elements into UML, including new
diagrams. SysML therefore consists of these additions plus a subset of re-used UML features,
although in effect any UML construct can be used in SysML if required. However, the
core methodology of SysML is defined as four ‘pillars’ of modelling - structure, behaviour,
requirements and parametrics.

Requirements are specified by a completely new Requirements Diagram. A << requirement >>

stereotype is extended from << class >> and contains a special shall statement that contains
a textual description of the requirement. Relationships are defined to derive sub-requirements
and to mark model elements as satisfying requirements. Rationales can also be added as tags to
explain certain elements. System structure is primarily modelled by the use of << blocks >>,
which are an extension of UML’s << structured >>. Blocks are collections of parts (of any
type) with connections that allow communication. Blocks have associated ports, which act as
input/output channels and so allow systems to built up from individual blocks. At the package
level the representation of blocks is black-box, possibly augmented with a parts listing or set
of constraints. Block Definition Diagrams provide an internal view of blocks (which may
themselves consist of sub-blocks) allowing for their creation and editing. An example is
shown in Figure 2.9.

Parametrics (in the form of a Parametric Diagram) are used to define constraints on the system
by the use of constraint blocks. Constraint blocks are associated with system blocks, and
can define constraints on properties and values of that block. These constraints can be both
environmental (such as limiting the range of inputs or defining physical laws) and internal
(such as restricting certain output values from a block).

2.8. Systems of Systems modelling 33

For system behaviour, standard UML approaches such as use cases and sequence diagrams are
re-used. Activity diagrams are also used, but have been extended from UML with additional
features for probabilistic techniques and improved decomposition.

In an evaluation, Herzog and Pandikow [76] analyse SysML to identify strengths and weak-
nesses. Overall they welcome the development of an systems engineering based extension to
UML, and conclude that no major issues have been raised against SysML. However, they do
note several minor concerns about the language. The flexibility of UML means that SysML
models can vary widely in the level of abstraction and the concepts used to model systems
- it is possible for critical parts of a system to be effectively hidden in the specification of a
low-level element.

Additionally, they emphasise the importance of effective tool support and the establishment
of a wider infrastructure around SysML; at the time of their evaluation (soon after the launch
of the notation) this was limited.

Several researchers have expanded SysML to produce executable or analysable models from
standard SysML diagrams. Huang et al. [81] aim to create simulation models directly from
SysML using standard OMG (Object Management Group) tools and standards. Their process
begins as normal by creating a domain model of the system in SysML using a block definition
diagram. They then build another block definition diagram containing an abstract model
of the simulation system - blocks such as queues, entities and processes are defined here.
The blocks in the simulation model are linked back to the domain model using the SysML
relationships generalisation and association.

Once these two corresponding models are created they are exported in the standard XMI
file representation. This file is then further processed using XML tools to produce a format
suitable for import into a system modelling package (Huang et al. use eM-Plant). It is unclear
how much of this process requires manual intervention, and how much could be automated;
additionally, it is unclear whether the simulation meta-model is suitably generic, or if it must
also be modified depending on the choice of simulation software target.

Jarraya et al. [91] demonstrate a conversion of SysML activity diagrams into Markov chains
that can be analysed using PRISM model checker [77]; they also extend activity diagrams to
include time constraints. Firstly, the relevant system elements must be modelled in a SysML
activity diagram. The two main areas that can be analysed using PRISM are probabilities
and timing, and so they should be expressed in the diagram - probabilities using the standard
SysML notation of labelling edges for decision nodes; timing is expressed using a simple
extension of SysML that allows activities to be annotated with times that are either fixed (x
time units) or equiprobable intervals ([a,b] implies the action will take at least a time units, at
most b time units).

The transformation of the SysML model is performed using an algorithm that effectively

2.9. ‘Soft’ approaches 34

converts threads within the activity diagram into reactive modules that can be interpreted
by PRISM; an algorithm is provided for this, but implementation details are not specified.
Once the PRISM-readable version is produced, properties of the system can be checked by
specifying them in the PTCL logic and testing them with the model checker. The probabilities
of reaching specific states in the system can be assessed, as can the probability of completing
activities within a specified time.

2.9 ‘Soft’ approaches

Systems engineering is a well-established discipline that aims to analyse, control and man-
age complex engineering systems. Traditionally, systems engineering is concerned with a
relatively narrow definition of ‘system’ - typically a large process system (e.g. a chemical
plant or steelworks) or an engineering development project (ranging from a space program
to the development of a new railway carriage) [26]. Understandably, techniques intended
to manage these types of systems were often not suitable for systems exhibiting substantial
social-technical aspects.

This inspired the development of Soft Systems Methodology (SSM) [26], intended to provide
a ‘soft’ form of systems engineering. The developers of SSM noted that classical systems
engineering was designed to manage systems that that had well defined requirements; when
the outputs were clear a system could be constructed to deliver them. However, in systems
more generally this may not be the case - requirements may be more abstract, or system
stakeholders may feel improvements are needed, but be unsure exactly what. SSM aims
to provide a system for reasoning about such systems, enabling definition and analysis. In
this regard, it shows many similarities to early-phase requirements engineering, although its
application is more general.

SSM retains a high level of flexibility (and variance) as an analysis tool; it is a system for
analysis, rather than a process per se. However, it has eventually converged on a set of analysis
methods and modelling techniques that can be considered standard.

Initially, the system(s) to be analysed must be defined. This is likely to include both overarch-
ing systems such as ‘the organisation as a system’, as well as subsystems of relevant interest.
Once chosen, these systems should be specified in terms of a root definition. The elements of
the definition can be specified using the CATWOE acronym - customers, actors, transforma-
tion process, Weltanschauung (worldview), owner and environment. Fundamentally, the root
definition should express the systems as a process set in a worldview that provides meaning.

Once defined, the systems need to be modelled in a series of steps. These are focused around
the transformation process; setting the specific task, obtaining resources and assessing the
output. This is intended as an iterative process, with several models produced, often at

2.9. ‘Soft’ approaches 35

Decide to
have
meeting

Set initial
date
range Invite

participants

Get info
from
participants

Choose
meeting
detailsInform

participants

Define
performance:
efficacy
efficiency

1
2 3

4
5

6

Monitor 1-6
7

Take
control
action

8

9

Monitor 1-9
10

Take
control
action 11

Define
performance
effectiveness

12

Understand
goals of project
comissioner

13

Figure 2.10: SSM System model of the meeting scheduler described by van Lamsweerde et al.
[188]

different layers of abstraction. For example, additional constraints could be added, or it
may be necessary to monitor performance. Classically, a two-level performance monitoring
system is used based on the 3 ‘E’s : efficacy, efficiency and effectiveness (as shown in Figure
2.10). The end result of this modelling process is essentially a (sub)task diagram, showing the
necessary steps without explicitly specifying implementation details.

SSM commonly uses three standard analysis types - named Analyses 1, 2 and 3. Analysis 1
is an analysis of system roles both within the system under analysis and the roles of those
conducting the study. This analysis should identify clients (who are commissioning the
analysis), problem-solvers (who wish to change the system) and problem owners (system
stakeholders).

Analysis 2 is a study of social elements within the system. A model of roles, social norms
and values is used; techniques for this are not specified, but the aim is to consider the social
interactions (influenced by norms and values) within the system.

Finally, Analysis 3 covers political issues; more specifically, how power is distributed within
the system. Power may be formal (through management structures etc.) or informal (reputa-
tional, or via a network of contacts etc.). Analysing the power structures and relationships
will give a clearer view of the system, although again no set methodology is provided.

2.9. ‘Soft’ approaches 36

SSM is often used as an initial step for problem definition and exploration before using ‘harder’
methods for later steps [142]. Design and analysis methods often assume the existence of a
well-defined problem and an agreed solution, which can be obtained by the use of SSM.

The flexibility of SSM provides wide applicability, but at the cost of consistency and rigour.
As a explorative modelling tool SSM is effective at identifying the core elements of a system,
including important social concepts that would not be captured by conventional systems
modelling approaches. Additionally, the generic nature of SSM means that it can be applied to
almost any system, regardless of the underlying paradigm. However, the ‘standard’ analysis
methods are poorly defined and highly subjective; they identify potentially important system
issues, but do not provide a structured approach for investigating them.

Finkelstein et al. [59] propose the use of Viewpoints as a technique to unify different ap-
proaches in systems development. In systems development, different participants may use
notably different views of the system during their activities - managers may see the system in
terms of personnel organisation, planners may use state machines and developers use block
diagrams or petri nets. This breadth of representations cannot easily be captured within one
modelling notation or schema, but it is often desirable to be able to consider the system as a
whole.

Viewpoints act as a framework that can be used to collect together different system views. A
viewpoint consists primarily of a work plan and a specification, written in some representation
style. For example, a developer may have a viewpoint represented as block diagrams; the
specification consists of the block diagrams for the relevant parts of the system, and the work
plan is the developer’s role in implementing and integrating their part of the system.

Viewpoints can be linked where it is necessary to check the consistency of the system. This is
clearly easiest when viewpoints share a representation style, such as when developing sub-
system components. However, the viewpoint structure also allows links between viewpoints
of different styles - in this case, it can be asserted that two viewpoints need to be consistent,
but the actual process of checking requires careful manual comparison.

Viewpoints also lend themselves to meta-construction - a system development approach
can be specified using viewpoints, with new viewpoints created dynamically to represent
development activities. When this approach is used a wide range of consistency checks are
generated, offering a clearer development strategy.

The viewpoint approach is not by itself a development approach or modelling language; it is
a framework for structuring processes in a way that encourages modularity and consistency.
Complex system elements can be encapsulated away as specific viewpoints, while remaining
linked to and defined by a higher-level system view. In particular, collaboration is encouraged
by this approach, as sub-system links are easily defined without requiring knowledge of the
implementation details, and checks can be delegated to specialists that are familiar with both

2.10. Safety Analysis 37

Figure 2.11: Simplified MORT logic tree (abstracted from [94])
Reproduced by permission of The Noordwijk Risk Initiative Foundation

notations.

2.10 Safety Analysis

Systems analysis draws on a wide range of techniques and concepts originally developed for
use in safety analysis and accident investigation. In this context, methodologies focus on
analysing failures - either to investigate after an accident has occurred, or to prevent them
from occurring in the first place. Common techniques in safety analysis include cause-and-
effect based techniques such as MORT [94], FMEA [23], and HAZOPS [182] as well as
systems-based approaches such as STAMP [109] and FRAM [80].

The MORT (Management Oversight and Risk Tree) [94] methodology is a logic tree approach
for accident analysis, drawing on lessons learnt from the use of fault trees [190]. The
core of MORT is a tree model (see Figure 2.11) , which models a wide range of technical,
organisational and mechanical elements of a generic industrial process. This graph of elements
is used in conjunction with a set of standard questions to analyse potential contributory factors
to an accident. By working through the various branches of the tree each relevant part of the
wider system is examined, and sections that are ‘less than adequate’ can be identified.

2.10. Safety Analysis 38

The analysis itself focuses on the concept of an accident as an unintended energy transfer.
While this extra energy may originate in some specific system sub-element, MORT analysis
aims to determine how and if such extra energy will be effectively dissipated or redirected.
Unlike many earlier accident approaches, both process elements and structural/managerial
elements must be considered as a contributory factors if an accident occurs.

The MORT approach employs standard analysis questions and a meta-model to reduce the
potential for subjectivity. However, other analysts such as Johnson [93] argue that MORT is
highly subjective, as particular scenario conditions can be attributed to different branches of
the fault tree depending on the arbitrary choices of the analyst.

The scale and breadth of coverage of the MORT meta-model potentially comes at the cost
of the analysis being more time consuming; Johnson [94] suggests that simple events can
be analysed very quickly, although this may require subjectivity in choosing which parts of
the model to focus on. Additionally, the core meta-model is designed to address a traditional
industrial process, and so modification to the approach would be required to utilise it for
information- or organisation-based scenarios.

An early systematic approach to systems analysis is the FMEA (Failure Modes and Effect
Analysis) methodology, which is used to analyse system safety by evaluating the potential
ways system components can fail [23].

Most applications of FMEA are applied at one level of the system (usually the lowest / most
detailed). All components of the system at this level are identified, and the potential failure
modes of each item is recorded. Failure modes are broad classifications of unintended item
behaviour (e.g. a water pump may fail entirely, reduce in output, start at the wrong time etc.),
and each failure mode may be caused by several different failure causes (specific faults, such
as worn-out valve, microprocessor failure etc.).

Once the failure modes are identified, the consequences of this type of failure are estimated,
both on directly related elements and on the wider system. This results in the production of
a comprehensive document describing the likely failures of the system, and can be used for
risk assessment or to consider countermeasures for common failings. FMEA is an efficient
approach for analysis when component failures have clear consequences on system perfor-
mance; it is generally not suited to complex systems that involve collaborating subsystems,
or where the system must be analysed at multiple layers of abstraction, as the quantity of
detailed information required becomes unmanageable.

The FMECA (Failure Modes, Effects and Critically Analysis) extends FMEA by also consid-
ering the severity and likely frequency of each failure mode. The combination of these two
factors allows the creation of a ‘criticality’ score reflecting the potential impact of the failure,
allowing the identification of the most serious system vulnerabilities for remedial action.

2.10. Safety Analysis 39

Safety cases [16] are a widely used method [17] for presenting evidence of system safety.
In a safety case, a claim is made about some system, asserting the correctness of some
attribute. The case is structured so that an argument is presented to validate the claim; the
argument is created by providing appropriate evidence, which is linked back to the claim using
inference rules. Arguments can constructed in a wide range of ways. Deterministic arguments
include exhaustive testing or mathematical proofs (e.g. railway signalling). Alternatively,
arguments can be probabilistic, based on statistical analysis and testing runs (e.g. mean time
to component failures). More abstract claims may require a qualitative argument, aiming to
show that procedures or processes meet the claim (e.g. ISO9000 compliance).

The HAZOP (Hazard and Operability Study) [182] is a long-established method for safety
analysis of processes. The technique was originally developed by ICI in the 1960s and 1970s
to analyse chemical plants but is now widely used in a large variety of fields.

HAZOP studies examine a system by considering the processes and subsystems within it.
This necessarily requires the system to be specified in sufficient detail for subsystems to
be revealed, but HAZOPs can be applied to both existing and proposed systems. Once the
subelements have been identified a set of guide words is used to identify potential deviations
from normal operation; for example an increase in temperature or late arrival of information.
The set of guide words often varies depending on context, consisting of both general and
domain-specific examples.

The analysis is carried out by examining each combination of process element and guideword
in turn. Many elements will offer no risk or operate safely up to very high tolerances, and
these can be marked as ‘no further action’. Elements that have only limited safety tolerances
or offer no protection against certain deviation should be referred for further analysis and are
generally prioritised by the likelihood of said deviation.

Applying this guideword approach in full on every subsystem is generally impractical, due to
the exponential number of guideword-process item combinations. HAZOP guides emphasise
the importance of using a skilled team to perform the analysis who can significantly reduce
the time taken by disregarding unnecessary combinations.

HAZOP inspired guidewords have been widely adopted into other methodologies. For
example, they have been used as part of ‘risk clauses’ in responsibility modelling [115],
hazards in Systems of Systems modelling [114] and trust analysis in e-government systems
[6].

Leveson [109] created the STAMP (Systems Theoretic Accident Model and Processes)
modelling technique, which differs from other accident analysis approaches by using a
systems-theoretic approach to analysis. This approach does not identify single points of
failure or accident causes, but considers the interactions of the combined system elements.

2.10. Safety Analysis 40

STAMP is built around three core conceptual areas: constraints, emergence and process. The
fundamental concept within the STAMP model is a constraint. Constraints are restrictions
placed upon layers of the system by layers above them in an attempt to control their behaviour.
Leveson argues that constraints can model all system levels, even at the component level.
Mechanical failures can be seen as failures to constrain the manufacturing or maintenance
processes.

The emergence and hierarchy concept embodies the view that safety cannot be assessed by
looking at individual layers of the system - safety is an emergent property of the system as a
whole. In this view, safety can only be obtained by some form of control structure that crosses
system levels, and this control process is a key area of analysis for STAMP.

The third core STAMP concept is the process logic or ‘process under control’ model. This is
a general model of process operation which can be instantiated for different systems. The
model consists of the controlled process (the operative part of the system or sub-system),
the controller(s) (which may be human agents or automated systems) and the actuators and
sensors used by the controllers to measure and manipulate the process. This model allows
the structure of process control to elaborated, and can be used to identify a wide range of
common vulnerabilities.

Leveson demonstrates the technique by a detailed analysis of a failed Milstar satellite launch.
The analysis incorporates the core STAMP concepts by dividing the overall launch into
subsystems (Launch Operations, Software Development etc.) and identifying constraints that
were violated and associated process model mistakes or control flaws. However, no defined
methodology is given in the paper and there is no description of how to identify violated
constraints or control flaws. The case study demonstrates that the approach can produce a
comprehensive result when applied by an expert in both the STAMP approach and the subject
matter, but it is not at all clear that STAMP could be effectively applied by other analysts
using the published details as a guide. Additionally, STAMP appears to act more as a method
for structuring information (in constraint-control-process tuples) rather than a direct technique
for accident investigation or system analysis that can elicit new insights.

Accident analysis methods typically draw cause-effect relations, attempting to trace back
steps to identify the origins of a failure. In contrast, the FRAM (Functional Resonance
Analysis Method) technique by Hollnagel [80] aims to address situations where systems may
be intractable and depend on complex linked processes (the ‘second cybernetics’).

The FRAM approach is underpinned by four principles. The equivalence of failures and
successes states that both correct and incorrect outcomes arise from the same starting point,
so it is not possible to identify obviously ‘incorrect’ actions without hindsight. The concept of
approximate adjustments highlights the great variability of human performance, and argues
that is not a negative but a positive, as it allows under-specified processes to operate correctly.

2.10. Safety Analysis 41

Emergence represents situations where cause-effect relationships cannot be determined due
to a lack of information or excessive complexity; resonance refers to potential amplifications
of multiple small performance deviations.

The FRAM method seeks to identify what is required for activities to ‘go right’ rather than
what caused them to fail. The method starts by identifying the functions within a system (here
functions refer to activities performed in an attempt to meet some goal). Functions are defined
in terms of inputs/outputs, resource consumption, control, timing and preconditions. FRAM
functions sit individually and are not explicitly interlinked in the style of most task-based
models; functions are analysed individually and only linked when the model is instantiated.

Once identified, functions should be assessed for their variability (variance in their outputs).
This can be approximated by qualitatively considering the timeliness and precision of the
function’s output. Alternatively, a more elaborate analysis can use HAZOPS-style failure
modes on properties such as duration, sequence or speed. Once the inherent variability of
function outputs is determined the next step is to evaluate the effects of variable inputs on the
variability of function outputs.

This again adopts a HAZOPS-like approach, with function inputs potentially being too early,
too late, imprecise etc. Most inputs are affected by variability in the same way, with late, early
or imprecise inputs increasing variability, and on-time and precise inputs reducing variability.
However, there are some exceptions such as the early arrival of resources having no effect on
variability of the output. In contrast to some other analysis techniques, there is no separation
of tasks and actors in FRAM - each function in the system has the actors involved explicitly
included in the function description.

Once this analysis is complete, measures can be taken to reduce the variability of the system,
and traditional techniques such as hazard prevention and protection can be applied. However,
FRAM also offers a new resolution technique - dampening of variability. When much of the
performance variability is caused by interactions (functional resonance) between different
elements of the system, the introduction of additional checks and safeguards can reduce
the chance of performance variations propagating throughout the system, providing more
consistent performance.

Hollnagel [80] provides three worked examples, covering healthcare, finance and transporta-
tion. As expected, these examples closely follow the methodology as previously outlined.
Functions are constructed by identifying a key point in the process of the system, and then
specifying the functions needed to produce the inputs and consume the outputs of that point,
continuing until the functions become trivial or out of scope.

The instantiation of the model involves producing a diagram showing the functions ‘wired’
together with corresponding inputs, outputs and other signals. This does not provide any
formal underpinning to the system model, but instead serves as another way of visualising

2.11. Deontic logic 42

the intricacies of the system and hence improving understanding. Analysis of potential
vulnerabilities in the system comes primarily from the details of the function specifications
rather than from the instantiated connections.

FRAM was explicitly intended to not rely on some form of internal world model, as such
models within methodologies are argued to constrain thinking [117]. The system specific
model created by performing FRAM on a scenario is not quantified; interrelations between
functions are recorded but their magnitudes are not. As such is not an approach that lends
itself to automated analysis or definite statements on cause and effect. Instead it acts as a way
of structuring information on a system while still requiring domain knowledge to produce
useful analysis.

Overall, the investigation of safety analysis techniques shows the difficulty of balancing
modelling and analysis detail with ease of use and time-effectiveness. The advantages of
structured analysis techniques such as the standard questions of MORT and HAZOPs, and the
meta-models of STAMP and MORT are clear - they reduce the subjectivity of the analysis
process and provide a guide for the inexperienced analyst to apply. However, the structured
approach demonstrated in these techniques has significant disadvantages - the structure may
limit the wider applicability of a technique (such as the underlying process model in MORT) or
require an intractably large amount of time to exhaustively apply (such as HAZOP keywords).
In contrast, concepts such as systems theory and functional resonance provide a useful way
to reason about a system, but have inherent subjectivity that makes consistent analysis more
difficult.

2.11 Deontic logic

Deontic logic is the logic of obligations and permission, and is considered by Meyer et al. [125]
as a formal underpinning for system modelling. Deontic logic has operators for permission,
obligation and prohibition, making it potentially useful for modelling a wide range of social-
technical agent relationships. Early computational applications of deontic logic included its
use for formal legal models as well as for system specification, where it was used to separate
the permission (or prohibition) to perform an action from the actual effects of the action,
allowing better modelling of fault-tolerant systems [124]. However, most forms of deontic
logic contain paradoxes (which are internally consistent, but paradoxical when applied to
real-world examples), so either special care must be taken when translating real specifications
or a custom variant of the logic should be used [125]. For example, Chisholm’s Paradox
highlights the formal inconsistency between "ought-to-be" and "ought-to-do" statements. In
standard deontic logic it is impossible to assert both that an understandable event should not
happen, that the response to this event should vary based on how undesirable it is, and that

2.11. Deontic logic 43

the undesirable event does actually happen. This set of occurrences is perfectly plausible
(consider any emergency response system) but impossible to consistently formulate.

Cholvy et al. [29] used deontic logic to specify different forms of responsibility (see Section
2.13.1 for a discussion of the forms), where Standard Deontic Logic (SDL) is used as a natural
formalisation for the duties agents hold towards each other.

Letier and Heaven [106] use deontic logic to extend labelled transition systems (LTSs) to
refine the model events - enabling the distinction between obligation and permission lacking in
standard LTSs. LTSs are system models consisting of concurrent components, each of which
is an event-driven state machine. With conventional LTSs, events are ‘forced’ to occur by
‘maximal process’ assumptions that emphasise the machine over the environment; this assump-
tion fails to hold in most requirements modelling scenarios, where the machine/environment
boundary is indistinct and global assumptions impede modularity of design.

To address this, LTSs are extended to include transient states - states which must be left if at
all possible. This enables ‘forced’ events to be modelled as transitions from a transient state
in a way that allows modular decomposition. It is then possible to formally check if agents
are capable of achieving their goals. This process involves deriving a satisfying interface and
then back-propagating from error states to determine if they can be avoided by the actions of
the agent. When combined by previous work by the same authors [107] this allows easier
analysis of models derived from higher-level approaches such as KAOS.

Padmanabhan et al. [138] propose the use of deontic logic to model business processes;
in particular, they wish to address the contractual relationships that exist between partners.
They construct a system of logic using actions (‘bring about’), directed obligations and
proclamations as primitives and augmented with standard axioms. Proclamations are in effect
public, generalised obligations and can be used to capture multi-agent commitments without
the need for a dedicated primitive.

Additionally, Padmanabhan et al. propose extending i* by introducing a deontic dependency
(at the SD level); it appears that this is intended to capture obliged behaviour, as the description
is unclear if other deontic operators (permitted / forbidden) can be used instead.

Deontic logic conceptually appeals as an ideal formal underpinning for social-technical
modelling; the concept of modelling systems in terms of actions between agents is an intuitive
one. In particular, this concept fits very well with agent-based modelling. Despite this, most
applications of deontic logic are focused on purely mathematical extensions or on small,
state-machine like systems; Padmanabhan et al. [138] works on combining deontic logic
with agent-based modelling but this provides no advantages for the modeller as areas such as
logic-based model checking are not examined.

2.12. Timebands 44

2.12 Timebands

Burns and Baxter [24] aimed to address the insufficient treatment of time in system modelling;
time is normally treated as a ‘flat’ concept that does not provide layers of abstraction. As a
result, temporal elements are often either underspecified (consider any action that must be
performed ‘immediately’) or specified to unnecessary detail (the distinction between a 0.01s
and 0.02s reaction time is superfluous in most human interactions).

To address this, they propose the idea of ‘timebands’ - bands that represent a certain level of
time. Bands are defined by their granularity (the scale of a meaningful unit of time within the
band) and their precision (in terms of distinguishing events within the band). For example,
an airline schedule could be modelled using a band with granularity fifteen minutes, and
precision one minute (as relevant events such as take-off and landing take ∼15 minutes, but
delays are counted to the minute).

Two types of occurrences may occur within a timeband. Events are occurrences that occur
in negligible time with respect to the granularity of the timeband - they are effectively
instantaneous within the context of the timeband. Activities are occurrences that have a
duration that can be expressed in terms of the granularity of the timeband. Within a band it is
possible to set precedence relations - constraints that indicate that one event or activity must
occur before another can start.

Multiple timebands can exist, and occurrences can be mapped between different bands.
Occurrences can be represented as events at more abstract timebands, and then by activities
in the more granular bands. Likewise, activities may become events as timebands become
broader. For example, the take-off of an aircraft is clearly an activity in a timeband for
modelling that particular flight, but would be treated as an event in a timeband modelling the
weekly performance of the airport.

This initial version of timebands provides a useful technique for modelling the temporal
behaviour of systems, especially across systems that involve order of magnitude differences in
temporal resolution. Separation of concerns becomes possible (both human interactions and
transistor-level performance can be modelled using the same methodology) while elements
at different bands can still be related to each other. It is unclear if this approach can support
formal techniques such as verification of inter-band relationships, but the core concept is
intuitive and addresses a genuine shortcoming in many other modelling approaches.

Having outlined the concept of timebands effort moved on to producing a working implemen-
tation. Baxter et al. [13] report on using timebands to model a hospital intensive care unit;
their model was implemented using constraint logic programming.

Initially, they began by modelling a single timeband, which featured a series of alarms in the
care unit. Upon executing the model the time taken to address these alarms was considerably

2.12. Timebands 45

less than appeared realistic. This was traced back to vagaries in the specification of the model
- activities were not explicitly ordered, and so the model was able to obtain a significant
speedup by (impossible in practice) parallelisation of activities.

Upon implementing a second timeband to run in parallel, the time taken to resolve the
incidents was again faster than expected. This time the problem originated in the actor model
of the system - actors were specified independently in each band, so it was entirely possible
for one (real) actor to be performing two actions simultaneously, once in each timeband.
This problem appeared difficult to resolve, as the authors did not attempt to eliminate the
duplication of actors, but instead ran each band separately and combined the results.

At this stage some of the classic modeling problems become apparent. Useful analysis
techniques appear to be in reach - in this case, the ability to determine the time needed to
perform activities. However, implementing these approaches in a suitable formal logic is often
difficult, as the problems with parallel activities show. Unfortunately, few implementation
details are given, but it seems likely that each timeband system must be modelled manually;
there is no timeband to constraint logic compiler mentioned. It is therefore not clear that the
conversion process is cost-effective.

Finally, the formalisation of timebands is taken to its logical conclusion by Wei et al. [193].
Rather than attempting to build a timebands model in an existing system of logic they instead
develop a new formal logic specifically defined to implement timebands.

This new logic (called TCSPm) is primarily derived from the classic Communication Sequential
Processes (CSP) logic, with some similarity to the pre-existing timed CSP. The key extension
over timed CSP is the ‘miracle’; the non-executable top element of the ordering. This
abstraction breaks some of the rules of classic CSP, but allows increased modelling flexibility
(as argued in previous work by Wei et al. [192]). Much of the paper is spent defining
the various properties of this new logic, with a comparatively short section on timebands
themselves.

To demonstrate the modelling power of this new logic the authors turn to the classic mine-
pump case study [193]. This is a classic problem from the dependable systems and formal
methods fields, where the necessity to pump out water from mineshafts must be balanced
against the need to maintain safe air levels (due to emissions from the pumps). This leads to the
construction of a relatively simple timeband model of mine operations, although assumptions
do have be made that the speed of water and carbon dioxide change can be consistently within
an order of magnitude (so that events always fit in the same timeband).

Having constructed this model, the authors wish to move onto automated verification. How-
ever, the extensions to CSP (in particular, the miracle) mean that TCSPm cannot be verified
by existing theorem provers or model checkers. The FDR model checker lacks support for
timed CSP and theorem provers are described as too time consuming. Timed automata are

2.13. Responsibility Modelling 46

suggested as a better fit for TCSPm, but the implementation required is described as a ‘massive
amount of work’. Instead, a manual conversion is made to a corresponding timed automata
model (lacking some of the temporal precision of the timeband model) which is used with the
UPPAAL model checker [105] to prove some useful safety properties. Given the complete
conversion to timed automata, is appears that no direct benefits can be obtained by the use of
TCSPm-formalised timebands.

However, by this stage of formalisation the Timebands approach no longer demonstrates a
clear socio-technical approach; it has become another new process logic, using the classic
process logic examples and lacking any suitable tool support. From a social-technical
perspective it appears complex and overly formal, requiring substantial formal methods skill
to apply effectively. This highlights the difficulty in determining the optimal level of formality
for modelling socio-technical systems; there are clear advantages in analytical power that
can be obtained by increased formalisation, but this should not come at the cost of excessive
modelling complexity or the lack of wide applicability.

2.13 Responsibility Modelling

2.13.1 Responsibility origins

As outlined in the introduction to this thesis, responsibility has been proposed by several
authors as a basis for modelling socio-technical systems [40, 166, 179]. These techniques
have links to many of the other methods discussed in this literature review. Further, Cholvy
et al. [29] note that responsibility can have three different meanings (causing something (bad)
to happen either by action or inaction; liability, blame or credit for an occurrence; the power
to make (potentially justifiable) decisions), each of which can have greater or lesser emphasis
in different responsibility modelling notations and methods.

The first and second meanings broadly correspond to causal and consequential responsibility
as used elsewhere in the literature (e.g. [39]); the third meaning is more abstract, but widely
used in normal language. While they are not able to completely formalise responsibility, the
authors are able to further subdivide these three meanings (into concepts such as responsibility
by fault, responsibility for agency etc.) and construct representations of them in deontic logic.

Feather [55] developed a system specification language called Gist. This paper is, as far as
we are aware, the first use of the concept of responsibilities in requirements specification or
system analysis. In Gist, systems are specified by defining all possible transitions (or deltas)
within a system and then generating the ‘set of acceptable histories’, a set of all paths through
the system that meet certain constraints. Constraints are enforced by pruning branches of
the full set of histories that fail to meet the constraint. This naive version of the approach is

2.13. Responsibility Modelling 47

limited as the order of evaluation may arbitrarily limit the options of a system agent; different
results can be obtained by considering agents in different order - such as in the case where
two agents must not both choose the same option.

This is addressed by defining an agent or agents as responsible for a certain constraint. This
responsibility means that an agent may not make any choice that will lead to a state where
the constraint is violated. Unassigned constraints are implicitly treated as the responsibility
of all actors. Shared responsibilities are however only weakly defined, as the logical system
proposed cannot differentiate between joint responsibility (AND relationship) and separate
responsibility (OR relationship) when multiple actors hold the same constraints.

Responsibilities were also used for system design by Wirfs-Brock and Wilkerson [198]; their
focus was on using the concept of responsibility as the core idea when designing the structure
of classes in object-oriented software design (once requirements had been agreed), rather than
using them them for requirements capture itself.

The initial version of the ORDIT methodology [18] used responsibilities as an intermediate
step to aid in reasoning about the more concrete elements of the approach; in particular
they were used to decide between different types of relationships between agents. Strens
and Dobson [178, 179] expand significantly on the use of responsibilities within the ORDIT
approach. Responsibilities are identified as a potential ‘boundary object’ - a conceptual view
of the system that can be understood in both a technical context (for system implementation)
and an organisational context (for evaluation and discussion of the model). Responsibilities
are treated as being held by some agent; much of the paper is devoted to the issue of
handling the delegation of responsibilities between agents. This is resolved by distinguishing
between functional obligations (which are linked to requirements in the system design) and
organisational obligations (which arise when tasks are delegated to other agents).

Strens and Dobson [179] further expanded this structure into a three-level system model; in
descending level of abstraction these are responsibility/agency, obligation/role and activity/a-
gent views. However, the paper explicitly excludes resources and actions from this approach
and instead argues that these should be modelled separately using data and process models.
As a result, the approach is not able to capture certain system aspects, such as responsibilities
that require resource availability to be completed.

Harper and Newman [70] proposed a simple design heuristic using responsibilities, intended
as a counterpart to more elaborate methodologies such as ORDIT. They investigated system
rejection, and identified clashes over perceived responsibilities to be a major cause of rejection.
As part of a case study they modelled (in a semi-formal manner) the responsibilities of staff
in a large multinational organisation. This model was created after ethnographic study, and
identified a number of non-formalised processes that staff felt responsible for. Concurrently a
new data management system was being installed, and the authors correctly predicted system

2.13. Responsibility Modelling 48

rejection by highlighting the lack of support for these perceived responsibilities in the new
system. As far as we are aware this is the first work to use the concept of responsibilities for
socio-technical analysis, rather than strictly for modelling.

As part of the large DIRC (Interdisciplinary Research Collaboration in Dependability) project
Dobson and Sommerville [43], Dobson and Martin [41] & Dobson [40] examined the use of
roles as a basis for system modelling and argue that roles are really sets of linked responsibility
relationships. They consider a responsibility to be a relationship between two roles (one
holding the responsibility and the other giving or issuing the responsibility) to perform some
task or maintain some condition where the holder is responsible (in some way) to the giver. In
this view responsibilities cannot be treated on their own, as all responsibilities must inevitably
have both holders and givers.

Responsibilities can be of different types, and the authors identify two main types. Conse-
quential responsibilities require an agent to answer for or justify some action or occurrence,
while causal relationships require an agent to perform activities to realise or prevent some
event. Sommerville [167] argues that it is generally not possible to delegate consequential
responsibilities, while causal responsibilities often are delegated by the original holder.

Dobson and Martin argue that correctly identifying and understanding the type of respon-
sibility is vital to prevent vulnerabilities, as wrongly defining a causal relationship as a
consequential relationship can easily lead to key actions not being performed. Overall, it is
argued that the one-sided view of roles leads to substandard system designs, and that better
results are obtained by considering roles as relationships between two entities.

Dobson also introduces the concept of conversations, which can be used to differentiate
between different roles held by the same actor. This can help to identify cases where an
actor holds conflicting responsibilities (consider a doctor in general practice who holds a
responsibility to treat patients, but also a responsibility to minimise the costs of his business)
by treating each set of responsibilities between an actor and another entity as a discrete role.

These themes are developed in further work by Dobson and Martin [42], who produce
several standard or meta-models of responsibility for common processes. These models
contain subresponsibilities (e.g. allocation, procurement, dispatch in the case of resource
management), agents, resources and communication channels. Particular focus is paid to
processes that cross organisational boundaries, as this can easily lead to confusion or dispute
over responsibility. The responsibility meta-models can be operationalised by dividing them
according to actual or potential organisation boundaries; this allows analysis of potential
communication problems in current situations as well as ‘what-if’ analysis of alternate options.
The concept of conversations is also employed here and is used to identify a set of potential
failure modes.

2.13. Responsibility Modelling 49

Figure 2.12: Decomposition of a responsibility, showing processes and actors (from [166])
Reproduced by permission of Springer.

2.13.2 Graphical Models of Responsibility

Sommerville [166] introduced the first methodology for explicitly modelling responsibilities.
In this approach, responsibilities are decomposed into abstract goals and concrete processes,
which are assigned to agents. Goals can be achieved by producing the appropriate evidence,
and evidence is generated as a result of processes. These concepts are represented using a
graphical notation, as demonstrated by the example in Figure 2.12.

The set of relationships between agents and processes is complex. Firstly, a distinction is
drawn between causal and consequential responsibility. As well as differentiating between
performing actions and justifying actions it is argued that consequential responsibility is
normally associated with goals and abstract processes (e.g. a building supervisor is responsible
for security), while causal responsibility is associated with concrete processes (e.g. a janitor
is responsible for locking the front doors at night) and evidence. Additionally, the notation
distinguishes between normal and exceptional causal responsibility, hence allowing modelling
of fall-backs and emergency procedures.

Six different types of responsibility vulnerability are identified, which can be used to analyse
a scenario once a responsibility model has been constructed. These include issues of unas-
signment, duplication of duties, uncommunicated assignment, lack of resources, overload
and fragility. Some of these issues can be identified easily (assignment problems, lack of
resources) while some are more complex. Fragility, for example requires an analysis of the
entire model to identify which tasks are most critical, and which of these critical tasks do not

2.13. Responsibility Modelling 50

have fallback tasks or multiple agents capable of discharging them.

The authors also discuss in some detail the role of authority, in the form of some entity that
is able to judge if a responsibility has been or can be discharged. They hence identify two
additional vulnerabilities arising from this - lack of authority (where an agent relies on other
agents they do not control) and conflicting authorities (where an agent is responsible to some
agent for some process, but is generally managed by another).

Sommerville demonstrates this technique using a hospital bed management system case study.
The process focuses on modelling individual, high-level responsibilities in detail, rather than
attempting to link related responsibilities. Typically, a responsibility is refined into several
processes with accompanying evidence. Notably, it is recommended to separately model
consequential and causal responsibility relationships (to reduce clutter and complexity) and
only integrate them into one version after any conflicts or inconsistencies are resolved. It is
also suggested that alternative notations may be used for some stages of the modelling, such
as using BPMN to construct a workflow diagram for causal responsibilities.

Sommerville [167] also proposes a pattern-based approach to responsibilities. A standard
template is provided, which lists potential responsibility properties. Standard fields include
descriptions of the responsibility and a description of the context; several new definitions are
also used. Responsibilities can be classified in terms of their activities and their approach, giv-
ing a classification such as {Rule-based, Monitoring}. For this, three types of implementation
strategy and three types of activity are defined. Other fields include pre- and post-conditions
on the overall state of the system, as well as workflow models where appropriate.

Increased emphasis is also placed on modelling the workflows of causal responsibilities
and several examples are stated in the BPMN notation. These models are not intended to
describe specific workflows such as those of a particular organisation; they are intended to
be reasonably generic, allowing them to be used in a range of situations. As such, they are
proposed as another aid to thinking about the design process, rather than a design solution
themselves.

Three main advantages are claimed for using this approach: contingency plans are more easily
formulated; responsibility assignment is less error-prone; workflows can be combined with
assignment models for vulnerability analysis. However, it is unclear how these benefits are
specifically obtained by using generic patterns, rather than individually modelling relevant
responsibilities. Benefits in reusability and standardisation may outweigh any lack of precision,
but this argument is not made explicitly.

This form of responsibility modelling is put in practice by Ramduny-Ellis and Dix [148] who
provide a worked example and a series of reflections. They broadly follow the approach
outlined in Sommerville [166], although they do not make use of responsibility patterns.

2.13. Responsibility Modelling 51

The modelling itself is straightforward, but interesting side issues are raised. Once again,
delegation and conflicts of responsibility are noted as complex issues, such as the conflict
between producing an artifact quickly and producing it to a high quality. Of particular concern
are the risks of ‘buck passing’ when responsibilities are delegated. It is argued that while
delegation is primarily intended to be causal in practice this often amounts to the delegation
of consequential responsibility as well. As a solution it is suggested that either systems are
effectively subdivided to compensate for small failures, or that processes should be ‘owned’
throughout by specific individuals.

Interestingly, all analysis of responsibility modelling in this period focused on modelling
existing systems, primarily to identify vulnerabilities. As such, the methodologies suggested
may be less suitable for modelling new systems or variations of existing systems.

2.13.3 Responsibility Modelling

Storer and Lock [175] expanded previous work on responsibility modelling to produce a
modelling system capable of representing a social-technical system using responsibilities
as the core entity. In contrast to earlier work that focused on modelling individual respon-
sibilities in detail this form of responsibility modelling encompasses whole systems, using
responsibilities and associated agents and resources.

Responsibilities are defined as either objectives or processes. These objectives and processes
are termed responsibility targets, and can be held by human or automated agents. Processes
are well-defined procedures that can be followed by the assigned agent, while objectives
are desirable conditions that should be maintained or reached by their assigned agents. The
responsibility for processes can be freely assigned, but it is not possible to assign objectives
to automated agents. When responsibilities are assigned there exists a responsibility authority,
which created the responsibility and holds overall responsibility for it.

Responsibilities can be further decomposed by the agents that hold them. This creates
subresponsibilities, which can be held by the original agent or later delegated. They are
constraints on the decomposition process: objectives can be freely decomposed to produce
subprocesses or subobjectives, but processes can only be decomposed into subprocesses.

Fundamental to this version of responsibility modelling is the idea of delegation. Initially,
responsibilities are linked to the agent that created them; that agent is required to discharge the
responsibility but is accountable only to itself. However, responsibilities are usually delegated
to other agents. In this case another agent becomes obliged to discharge that responsibility,
and is held accountable for this by the previous responsibility holder who now acts as an
authority. The delegation process is restricted such that only the creator of the responsibility

2.13. Responsibility Modelling 52

can delegate it; this prevents the hierarchy of accountability being broken by an agent that
delegates away responsibilities while remaining accountable for them.

Agents can be either human, technical systems or organisations; as mentioned, technical
agents can only be assigned to responsibilities that can be discharged using defined processes.
Agents can be structured in a hierarchy of superiors and subordinates, allowing analysis of
potential organisational conflicts.

Interrelations and dependencies may exist between responsibilities, especially when fine-
grained decomposition is applied. To support this, processes can be linked using follows

relationships, stating that one process may not begin unless a prior process has already
completed. Additionally, a special process subtype decision exists, which can be used to
select the appropriate choice of process to implement depending on some condition.

More complex relations between responsibilities can be expressed using information flows
or resources. Processes may exchange information artifacts by means of messages; these
messages are outputted by a process to the other processes that follow it. Processes can
depend on such information artifacts as inputs without which the process will not complete.

Resources provide a more general framework for treating responsibility requirements: infor-
mation artifacts and agents can both be treated as specific types of resource. Resources are
allocated to one or more agents to provide them with capability; no relationships between
resources and responsibilities are provided, so it is unclear how the necessary set of resources
can be determined for any specific process.

Sommerville et al. [168] contains a more detailed definition of a responsibility model. In this
version there are only two top-level entities - Resources and Responsibilities, with agents
being treated as a specialism of resources, which can themselves be further classified as
organisational, technical or human.

Notably, this version also includes several homogeneous relationships that do not appear
in other versions of responsibility modelling. Processes (but not objectives) can ‘follow’
other processes, indicating task ordering and a temporal model of activity. Agents can be
subordinate to other agents, allowing for explicit representation of organisational hierarchies.
Organisations can also be defined as being compositions of other agents, again allowing
explicit representation of organisational structures. Additionally, several model transforma-
tions are defined - equivalences are provided for delegation, decomposition and allocation.
However, while definitions are given for these relationships and transformations they are not
explained in any level of detail, and the exact semantic meaning of many of them is unclear.

Lock et al. [116] provide a summary of responsibility modelling, as well as presenting
a graphical notation for responsibility models. They present a simplified version of the
notation, with the difference between processes and objectives removed and resources used to
implement all preconditions on the discharge of responsibilities.

2.13. Responsibility Modelling 53

Figure 2.13: Entity and relationship types (from [116])
Reproduced by permission of Tim Storer.

This version of the responsibility model uses only three core entity types and five types of
relationship, as indicated in the key to the graphical notation (Figure 2.13). All of these are
drawn from the previous work [175] with the exception of the Association relationship: this
relationship acts a catch-all for interactions not covered by the model and is simply a free-text
description for links between entities.

HAZOPs-derived keywords are used for analysis. Some keywords are intended for analysis of
specific entities (such as early/late on resources), while some appear more suited to analysing
the system as a whole (such as insufficient information flow or insufficient management).
Interestingly, none of the provided keywords appear suitable for analysing relationships despite
the wide range of potential failures occurring in responsibility assignment or organisational
hierarchies.

Additionally, the use of standard questions is recommended as an aid to the construction of
responsibility models. The questions suggested focus primarily on identifying the information
necessary to complete responsibilities and how this information flows between agents.

Information requirements are the main focus of Sommerville et al. [169] which highlights
a number of difficulties in determining the requirements for complex information systems,
especially when they are produced by assembling pre-existing (COTS) system elements. In
particular, conventional requirements capture methods may identify a type of information to
be recorded but fail to consider that different users of this information may require different
views. For example, in a hospital it is clearly important to capture information on patient
outcomes; however, the definition of ‘patient outcomes’ and exactly what information should
be captured differs between medical staff and the hospital management.

2.13. Responsibility Modelling 54

To address this, responsibility modelling is recommended as a method for early stage require-
ments engineering, as responsibilities provide a natural notion for capturing organisational
activity. An outline is given of how such models should be constructed, using a combination
of document analysis (of process descriptions, business plans etc.), stakeholder interviews
and ethnographic study.

Standard questions are once again recommended for considering information requirements
(adopted almost directly from Lock et al. [116]) and augmented with worked examples. The
examples highlight the range and also the subjectivity of this approach - some insights appear
obvious from the context (emergency planning requires a map of the area) while others have
been carefully refined from considering the model (late evacuation information means that
police officers must be briefed in the field by radio, but radio controllers will be very busy).

The process is completed by then translating the information requirements needed to complete
these responsibilities into functional requirements for an information management system.
No defined process or methodology is provided for this step, but examples indicate a focus on
ensuring high availability of information (degraded records are better than nothing) and stress
linking these functional requirements back to their original responsibility-based purpose.

Finally, Sommerville et al. [169] conclude with a self-evaluation of responsibility modelling,
arguing that it works as an effective tool for requirements elaboration and discussion with
stakeholders. The intuitiveness of the concept of a ‘responsibility’ is argued to be accessible
when discussing with system actors and stakeholders, as well as being broad enough to cover
a wide range of social-technical systems and a wide range of abstraction levels. It is also
suggested that responsibility modelling can be used in combination with other techniques,
such as using responsibility modelling for early stage engineering before elaborating with
goal- or viewpoint- based approaches.

The responsibility modelling notation was later revised by Storer and Lock [176], which
provides a further simplified set of entities and semantics (similar to, but not exactly matching
those in Lock et al. [116]). The modelling environment has been simplified, such as by
replacing information artifacts completely by resources while the concept of process flows
is eliminated entirely. Figure 2.14 shows an example responsibility model using a notation
similar but not identical to that defined by Storer and Lock.

The semantics of responsibility modelling are formalised by expressing them as Z specifica-
tions that define entity types and relationships. However, the specifications do not include any
dynamic rules; the behaviour of relationships under transformations is not specified. As a
result, the semantics can only be enforced if the responsibility model is completely static: the
behaviour of entities and relationships when the model is modified (such as by delegating a
responsibility) is not defined. At this stage, the authors report that they were still attempting
to formalise the approach is a consistent manner; their aim was to settle on agreed semantics

2.13. Responsibility Modelling 55

LEGEND
Responsibility

Resource

Actor

Arrange
Meeting

Special
Preferences

Prefered
Times Express

Preferences

Express
Equipment
Requirements

Initiator

Important
Participant

Active
Participant

Replan
Meeting

Meeting
Times

Participant

Meet
Requirements

Obtain
Equipment

Meeting
Scheduler

Prioritise
Important

Determine
Time

Figure 2.14: Responsibility model for the meeting scheduler described by van Lamsweerde
et al. [188] using a generic notation

for a subset of the notation before moving onto more difficult areas.

While most of the paper focuses on redefining and streamlining existing concepts the issue of
shared responsibilities is significantly expanded. Responsibilities assigned to multiple agents
can be explicitly serial or parallel; either requiring one agent out of several or requiring full
and joint action. Serial assignments can be further specified by defining the conditions for
changing from primary to secondary agents - such handovers of responsibility can occur due
to unavailability, overload or privilege escalation.

Several case studies and investigations were carried out using graphical responsibility mod-
elling. Sommerville et al. [170] investigated flood management schemes in Northern England,
which were under review after a series of large floods several years earlier. Unexpectedly,
floods quickly reached important civic buildings such as the fire and police headquarters,
which required fallbacks to offsite control and impeded communications. Sommerville et al.
focus primarily on the evacuation processes during this incident - this involves escorting
people from areas at risk of flooding to safer ground (in contrast to search and rescue, which
involves removing those already in danger).

By creating small responsibility models they identified important information resources
that were shared by multiple responsibilities assigned to multiple actors but were not kept

2.13. Responsibility Modelling 56

updated and synchronised. As a result, actions taken by one organisation to aid another (e.g.
ambulances dispatched to assist the fire brigade) were unsuccessful, as they were directed to
the wrong locations. Responsibility analysis of the high-level evacuation plan also noted the
existence of a fundamental responsibility ‘Collect Evacuee Information’ that was not formally
assigned to any agents. While clearly vital to the plan, all organisations involved assumed that
this information would already be available without considering how it would be gathered.

Lock et al. [115] apply similar techniques to the 2007 Scottish elections, which were notably
the first major UK elections to use an e-counting system. This involved paper ballots being
filled out by voters which where then optically scanned and counted using recognition software.
By constructing responsibility models they were able to identify a number of vulnerabilities
and social issues, many of which had actually occurred in practice.

Analysis of the resources involved identified an interesting scenario where agents that did not
have any direct links were in fact utilising the same resource. The optical scanning machines
were being maintained (and often modified) by supplier’s technicians; meanwhile, observers
of the political parties were observing the machines and trying to produce an unofficial count
of votes. The technicians would therefore focus on their basic role of keeping the machines
operational, without realising this could raise concerns with the observers that the counting
was being manipulated.

Hazard keyword analysis also identified problems with responsibilities being discharged too
quickly. As the e-counting system was new, local authority staff had trained in its usage, and
become quite proficient. In contrast, party officials had almost no experience of the system
and so took much more time to understand its outputs. As a result, problems arose in the
adjudication process, where the meaning of unclear votes is decided. Council staff quickly
determined the meaning of these votes and processed them through the system, often before
party officials had an opportunity to examine the ballots themselves and potentially challenge
their intent. This problem was exacerbated by the system design that meant it was it was only
possible to return to the previous ballot, and not go any further back.

Generally, responsibility modelling at this time was focused on arguing for the advantages
of responsibilities as a modelling concept and creating an initial fully-featured modelling
language. While broad in terms of concepts, this notation was not consistent and never fully
formalised; different papers presented different views and different uses for the approach.
This lack of formality limited strong methodological approaches in case studies: useful
insights were generally obtained, but much of this may well have been possible with domain
knowledge alone.

2.14. Conclusion 57

2.14 Conclusion

This chapter examined different techniques that can be applied to socio-technical modelling
and analysis. These techniques come from a wide range of backgrounds, ranging from formal
methods and safety analysis to organisational analysis and dependency engineering.

The techniques face a number of different challenges. Some focus on addressing the scale of
modern systems, addressing large organisations and inter-operating systems. Some handle
complexity - the need for precise definitions of complex, specific events and process. Others
address the need for abstraction - methods that are broad enough to cover the important
aspects of a system without being restricted by unnecessary or unknown details. More still
target the reasoning behind systems, focusing less on how systems operate and more on why
they are set up in their current form.

The broad range of techniques also highlight the strengths and weaknesses of particular
approaches. Formal methods offer rigorous checks and analysis that other approaches cannot
match, but their complexity can make them expensive to produce and unintelligible to many
users. Requirements engineering and business process models provide flexible and often
intuitive approaches, but with limited analytical power. Similarly, the inherent flexibility of
holistic approaches such as SSM is both a strength and a weakness, allowing wide applicability
while causing severe subjectivity in analysis. Safety analysis techniques show well-structured
approaches to analysis that don’t require the complexity of formal methods, but their applica-
bility outside of specific domains is unclear. Throughout all these methods there is a clear
lack of effective validation and testing, with limited evidence of the effectiveness of many
techniques.

As a result, different methodologies are suited to different applications and different problem
domains. Technical systems and well-defined process are suitable for more formal methods,
where the extra rigour can deliver useful analysis. Systems with uncertain behaviour benefit
more from more abstract methods, which capture and model the relevant elements without the
assumptions and over-precision needed by other techniques. There is no unifying methodology
of socio-technical modelling - the choice of methodology is dependent on the problem domain,
the modeller’s knowledge of the system and the intended outputs of the modelling and analysis
effort.

While no one technique can be universally applied, responsibility modelling does offer a
methodology with wide application. The concept of responsibility is abstract enough to
capture broad influences such as social pressures and legislation but can also be used to
intuitively capture details of low-level processes. This combination of abstract and concrete
responsibilities also allows effective modelling of the reasoning and justification for partic-
ular system choices. However, the technique is currently informal, without a fully defined

2.14. Conclusion 58

semantics; this limits reproducibility and prevents tool support and formal checks or analysis.

59

Chapter 3

Research Methodology

3.1 Introduction

The scale and complexity of socio-technical systems has significant implications for their
study and evaluation. The characteristics of socio-technical systems, as described at the start of
Chapter 2, mean that it is rarely possible to perform controlled and reproducible experiments
in the classic scientific style [156] as the resources required to construct and test multiple
variations of a large system are beyond the reach of most research projects. Additionally, it is
difficult to separate out the benefits gained from the experience of constructing a particular
system from the benefits of applying any methodology. Attempting to control specific
variables is also difficult, as socio-technical projects cannot usually be isolated from the
context they operate in. Therefore a tension exists in socio-technical research: in order for
a project to be realistic and representative of the real world it should ideally be an existing
project that is subject to scientific observation, but in order for a project to be adequately
protected from confounding variables it should be a specially constructed and controlled
study.

These problems all apply to socio-technical modelling and analysis. Models cannot be
effectively verified or evaluated if the socio-technical system cannot be accurately measured
or subjected to testing and examination; predictions made or issues identified by analysis
cannot simply be verified by changing the system and observing the resultant behaviour.

Popper [143] suggests that attempting to prove a model or theory as universally true is
unproductive, and that instead validation efforts should focus on increasing confidence in the
model by a series of empirical tests.

This argument may initially seem to only apply to individual models, rather than to the more
general problem of modelling techniques. However, the two are very tightly coupled. Firstly,
a Popperian view of modelling techniques can see individual socio-technical models as the

3.1. Introduction 60

outputs of a socio-technical modelling technique, and so evaluating the models provides an
empirical test of the modelling technique. Secondly, evaluating techniques in the abstract
is difficult, and so many studies indirectly evaluate techniques either by comparing them to
others, or by providing demonstration or case studies in the form of individual models.

Naylor et al. [132] aim to combine these varying stances on modelling validation by suggesting
a three-step process of verification. Firstly, a list of hypotheses about the system that are
represented in the model must be constructed, using the best information available to the
researcher. Secondly, these hypotheses should be individually tested in an attempt to verify
them as well as possible. For many hypotheses this may be difficult due to a lack of empirical
evidence, but it is not necessary to abandon hypotheses merely because they cannot be tested.
Thirdly, the ability of the model to predict the behaviour of the modelled system must be
tested. This may consist of making forecasts of future predicted behaviour, or by comparing
the predictions of the model from previous information against the actual outcomes. In
particular, they stress the use of good statistical tests on numerical data.

An accompanying critique emphasises the importance of understanding the purpose of any
specific model, as simulation models are generally used when other techniques are not suitable,
such as when modelling interactions between many processes. This makes the analysis more
specific - does the model fulfil the purpose for which it was created? If it doesn’t, the
underlying hypotheses are refined, and so the modelling and verification steps are combined
as an iterative process.

These challenges appear in most forms of research attempting to understand complex struc-
tures of human organisation and interaction; there are significant similarities to many areas of
the social sciences, and socio-technical systems thinking itself emerged as a social science
framework or philosophy. This leads researchers to mainly apply qualitative methods such as
case studies and interviews, rather than attempt to construct complex quantitative experiments.
These similarities also lead to the common adoption of research approaches and frameworks
that are inspired by other disciplines outside the natural sciences, such as action research
[197] and design science research [141].

It can also be difficult to determine which metrics define a ‘good’ socio-technical model or
modelling technique. Accuracy may appear to be the most obvious property that defines a
good socio-technical model, but accuracy can be difficult to judge - for example, is it the
representation of the system in the model or the results generated from the model that should
be tested for accuracy? It is also not clear exactly what the accuracy of the model would
be tested against, as each instance of a socio-technical problem has subtly different factors
and implications. An alternative approach is to assess models on some usefulness function,
attempting to judge how well they assist in the performance of some analysis, improvement
or validation task. This reflects the multiple uses for which different models and modelling

3.2. Evaluation approaches in socio-technical analysis 61

techniques may be applied (for example, the differences between using a model for risk
analysis and using it for process improvement), but at the cost of generality as the usefulness
of the model in another context cannot be easily inferred. Assessing in terms of usefulness
is also subjective, as it reflects the intentions of the model user; for example, a model that
identifies security risks that require greater investment is unlikely to considered useful by
a manager who wishes to cut costs, even if the risk identification is accurate. This makes
effective evaluation of socio-technical models and techniques difficult - the purpose, criteria
and metrics that they should achieve are all varied or unclear.

This chapter explains the research methodology of this thesis, in the context of research
methodologies in socio-technical systems in general. This encompasses research structure
as well as individual research and evaluation techniques. The remainder of this chapter
is structured as follows. Section 3.2 surveys the research methodologies and validation
techniques of the papers previously studied in our literature review and identifies a consistent
lack of methodological validation techniques. Section 3.3 discusses metrics for assessing
socio-technical methodologies - what characteristics make a good model or a useful technique?

Section 3.4 considers research philosophies and their application to socio-technical study; in
particular, the arguments for against positivism and realism are explored. Section 3.5 examines
two research frameworks that often are applied in information science and socio-technical
modelling - design science and action research, and explores the differences and similarities
between them. Section 3.6 discusses case studies and interviews - two of the most common
validation methods in information modelling, with a particular focus on their application
to socio-technical problems. Section 3.7 then provides a comprehensive description and
discussion of the case study-based validation methodology that we apply in Chapters 6 and 7.
Finally, Section 3.8 provides an overview of the chapter.

3.2 Evaluation approaches in socio-technical analy-

sis

A survey of the evaluation strategies described for each of the methods reviewed in Chapter
2 was undertaken. The purpose of the survey was to establish which methods were used in
practice for evaluating socio-technical modelling methods. The results of this survey were
used to inform the selection of an evaluation strategy for the current research. An overview of
the socio-technical methods examined and evaluation strategies used is provided in Table 3.1.

Yu’s original paper on i* does not include an evaluation of the technique [203], although
reference is made to a case study by Briand et al. [22] using a variation of the actor-dependency
notation. This involved a study of maintenance processes at the NASA Software Engineering

3.2. Evaluation approaches in socio-technical analysis 62

Modelling Method Main Evaluation Strategy
i* Case studies
KAOS Worked examples
Responsibility Modelling Case studies with comparison
MORT Collection of case studies
HAZOPS Extensive use / Comparisons to other techniques
STAMP Worked examples

Figure 3.1: Modelling methods and evaluation strategies

Laboratory, using an existing audit methodology developed by Briand et al. [21] and adapted
to use actor-dependency models. This provides a structured approach for examining the
maintenance processes, but the construction of the actor-dependency model does not appear
to follow any defined methodology. Validation of the model was performed by interactions
with stakeholders during the process improvement process. Similarly, the extension of i*
to model trust by Yu and Liu [204] demonstrates the new features using examples drawn
from a case study. However, the efficacy of neither the model or the extension are evaluated.
Furthermore, there is no structured evaluation of the methodology in papers discussing i*
security analysis [112], e-service design [68] or in Yu’s own thesis [202], which all use case
studies for demonstration.

No validation is described in the original KAOS paper [36] of either the applicability or
usefulness of the notation, although a well-structured methodology for using the technique
is presented. The classic KAOS meeting scheduler case study [189] mentions the use of
operational scenarios for validation purposes, but gives no real details of how these were
applied. They note several elements of the problem domain that they were not able to model,
without a discussion of how that effects the accuracy of the model. Extensions of KAOS
such as mappings to BPM [101] and to VDM [131] are also unvalidated. An application of
KAOS to scalability requirements [47] provides some evaluation of the technique based on
comments from domain experts, but does not appear to use a structured methodology.

Sommerville et al. [169] present a set of criteria for evaluating requirements engineering
techniques and use these to informally assess their responsibility modelling method. Else-
where responsibility modelling is either presented without reference to validation [175] or
is demonstrated using case studies that are validated against system operation and previous
events [170].

In the field of safety-critical systems the need for validation is more apparent. The MORT
[94] method drew on existing knowledge from fault trees techniques, and was evaluated
through a collection of case studies of previous accidents. The evaluation compared the set of
contributing factors to accidents identified through MORT with those identified by existing
techniques used in accident reports and found that MORT detected all contributing factors

3.2. Evaluation approaches in socio-technical analysis 63

identified by previous methods as well as detecting additional contributory factors. However,
the details of the specific case studies and existing techniques chosen for comparison are
not stated, which obstructs reproducibility and potentially reduces the generalisability of the
study. The HAZOPs method has been tested by decades of application in the industrial sector
[182]; Dunjo et al. [48] report in their HAZOPs literature survey that validation of HAZOPs
was mainly carried out by comparison with other techniques and the reporting of industrial
experience. For example, Hoepffner [79] compared HAZOPs to fault trees and FMEA, while
Sweeney [183] provides insights from many years of experience applying HAZOPs in a
chemical company.

STAMP [109] is a safety analysis technique drawing on system theory; the original paper
demonstrates the technique and notation through a case study, but does not validate either
the case study or the technique itself - occasional references are made to a NASA incident
report, but these are primarily used as a data source, rather than as validation. FRAM likewise
provides demonstration of the technique through worked examples [80], but does not validate
it. This lack of validation in systematic accident models was the subject of a study by
Underwood and Waterson [186]. They study the STAMP, FRAM and Accimap techniques,
and identify a lack of formal validation and evaluation of usability and reliability across all
three techniques. They note the use of case studies to obtain empirical validation of systemic
accident models, but state that this is still ‘far from extensive’.

The lack of a consistent approach to model and modelling validation is clear; many models
and techniques are not validated at all, while case study demonstration and validation is by far
the most common method used to establish confidence in models and techniques. Different
variations of case study validations are used, ranging from demonstrations of the technique,
validation based on the modeller’s own experience and to more elaborate studies where models
are produced and then validated against previous system deployments and incidents or are
compared to the results of other, more established analysis techniques.

None of the studies cited directly attempt to argue the validity of their technique from first
principles, instead relying on more indirect forms of proof or confidence. This structure
broadly corresponds to the three-step process of Naylor et al. [132] : firstly a general un-
derlying framework or philosophy for the technique is constructed, generally using existing
research (such as systems theory in STAMP, or the concept of responsibilities in responsibility
modelling); secondly, a general argument is made as to why that underlying concept is useful
(such as the emergent properties of system theory, or the intuitiveness of responsibilities);
thirdly, examples and case studies are used to show the technique can be used effectively.

These studies contain many subjective elements that limit confidence in the correctness of
the models or techniques; in particular, the choice of case studies can hide the weakness
of methods in particular areas, and few methods are systematically deployed by modellers

3.3. Criteria & Metrics 64

other than the method’s creators. However, validation and verification in the socio-technical
space is an inherently difficult problem and incremental increases in confidence are the best
validation strategy available.

3.3 Criteria & Metrics

Baxter and Sommerville [11] note that socio-technical methods are rarely evaluated for their
efficacy, and that reports of successful use are ‘comparatively scarce’. They also argue that an
important barrier to assessing the success of socio-technical methods and projects is a lack of
suitable evaluation criteria, especially considering the social aspects of systems, and that the
wide range of stakeholders leads to multiple different viewpoints on ‘success’.

Sargent [154] provides a contemporary overview of verification and validation methods for
simulation models. They describe a wide range of validation techniques, which vary in
complexity from simple visual displays to complex statistical tests. Validation techniques that
are suitable for socio-technical problems include:

• Comparison to other models - the results and outputs are compared to those of other
models that are already accepted as valid

• Event validity - Simulating events in the model delivers similar results to real-world
events

• Face validity - asking knowledgeable system experts to assess the reasonability and
accuracy of the model

• Historical data collection - historical results (that were not used to design the model)
can be used to test model predictions

• Predictive validation - the model is used to forecast system behaviour, which can then
be observed

• Turing Tests - experts are presented with a scenario and two different results, and asked
to determine which result comes from the model and which from the real system

Not all techniques can be applied to particular socio-technical problems. In particular, socio-
technical models may focus on the behaviour of a system under specific circumstances which
may not regularly occur in normal operation (indeed, analysing such unusual circumstances is
a common use case for socio-technical modelling). This severely limits the use of predictive
validation and reduces the amount of data available for historical predictions. Expert-based

3.3. Criteria & Metrics 65

analyses such as face validity checks are more widely applicable as long as access to experts
is available, and model comparison is highly useful in well-studied domains.

Sommerville et al. [169] provide a list of potential criteria for evaluating requirements engi-
neering methods as part of their work on responsibility modelling, although their technique
overlaps heavily with socio-technical analysis. These are:

• Naturalness: Can stakeholders (without experience of the technique) understand the
models?

• Applicability: Can the method be applied across a wide range of domains?

• Scalability: Can the approach scale to model large, real-world systems?

• User involvement: Have end-users been involved in the development of the notation
and the models?

• Complementarity: Does the method compliment other techniques?

None of these criteria directly address either the ability of a technique to produce accurate
representations or the usefulness of models for a particular intended purpose; they address
secondary characteristics of the technique such as usability and breadth. However, there are
clear advantages from using techniques that meet these criteria. For example, scalability is
vital for any model intending to capture a large-scale system, while complementary methods
are necessary for any technique being deployed as a part of a larger project lifecycle. Con-
versely, a method meeting very few or none of these criteria is unlikely to be of practical use,
regardless of the intended purpose.

Costello and Dar-Biau [34] suggest a set of metrics for requirements engineering based on
a lifecycle approach, addressing such issues as volatility of requirements, traceability of
requirements and detection of defects. These metrics are intended for assessing full require-
ments engineering processes, rather than modelling notations or single-stage methodologies
and so their applicability to the specific area of socio-technical models is somewhat limited.
However, it is clear that for a socio-technical modelling technique to be of use in requirements
engineering it should support the overall process in meeting these types of metrics.

Three of these metrics are particularly relevant to socio-technical modelling. Requirements
traceability requires the ability to trace individual requirements to both their high-level
rationale and their lower-level specialisations or implementations. Socio-technical modelling
techniques can support this by providing explicit mechanisms for relationships such as
decomposition, specialisation and abstraction, and by enabling references to source documents.
Requirements completeness requires the ability to determine and specify requirements at
multiple levels of detail, and to indicate when the appropriate level of abstraction has been

3.4. Research Philosophy 66

reached. This requires modelling techniques that are capable of handling these multiple
levels of abstraction and that can easily match high- and low- level details. Finally, integrated
progress requires processes and tools that can operate collaboratively with common structure
and terminology; in socio-technical modelling terms this corresponds to Sommerville et al.
[169]’s ‘Complementarity’.

3.4 Research Philosophy

Philosophy of science is concerned with the underpinning foundations of science, such as
defining what activities can formally be defined as science, analysing different forms of
scientific reasoning and considering the nature of scientific truth. Many of these topics are still
subject to significant debate amongst philosophers without a clear resolution, and generally
not considered relevant to the day-to-day conduct of scientific research [136]. However,
there are two main areas of research philosophy that are particularly relevant to the study
of socio-technical systems, and that may influence a researcher’s choice of approach and
methods. These are the debates around positivism, especially outside of the natural sciences
(often contrasted with interpretivism) and the distinction between realist and anti-realist
interpretations of scientific theories.

Positivism is a school of thought that argues that (completely certain) knowledge can only
be based on natural phenomena and hence that observations of such phenomena form the
only valid basis for scientific knowledge. In this sense, positivism draws from empiricism,
where scientific observations are the only acceptable base for scientific theories. As such,
they reject the role of intuition and a priori (based on entirely on logical reasoning) arguments.
Positivism and its variants are implicitly are accepted and applied in most scientific research.
However, classical positivism has several vulnerabilities. For example, mathematical proofs
do not rely on any observations of experience; they are purely a priori arguments. Positivism
would therefore imply that mathematical proofs are not scientific, but mathematics is almost
universally accepted as a science.

In philosophy of science, critiques of positivism have lead to the development of new theories,
such as post-positivism which attempt to retain the desirable features of positivism while
acknowledging its original shortcomings. Post-positivism acknowledges that scientific re-
search is not truly neutral, and that characteristics of the research or researcher can influence
the observed evidence. An important contribution is Popper’s [143] argument in favour of
falsification as opposed to verifiability, which addresses the problem of theorising about
unobservable or unmeasurable phenomena. Post-positivists still favour obtaining scientific
evidence by conventional experimentation, but acknowledge that other approaches may also
be valid.

3.4. Research Philosophy 67

In the applied and social sciences positivism can be considered to be opposed by anti-
positivism, which critiques the use of the classic scientific method in these fields. This suggests
that social behaviour is inherently subjective, and can only be understood in conjunction
with theories and concepts. This makes it impossible to collect scientific evidence and then
construct a theory that explains this behaviour; the evidence can only be understood and
analysed in a certain context.

A related debate surrounds the topic of realism - whether or not scientific theories attempt
to explain the objective truth of their subjects, or instead should be treated only as effective
predictions. In particular, this debate applies most strongly where certain aspects of a
scientific theory are not directly observable. For example, in the Standard Model of particular
physics protons and neutrons are formed of quarks; elementary particles that cannot exist
independently. A realist interpretation of the Standard Model argues that particles really are
made of quarks, even though this cannot be directly observed; an anti-realist interpretation
suggests that the theory of quarks is simply a mathematical model that very accurately predicts
the behaviour of particles - it is irrelevant as to whether this is ‘true’, as long as the model
proves effective in prediction.

The realism debate ranges across a wide spectrum. Many definitions of realism admit the
possibility that scientific theories may not be objectively true; for example, it is now clear
that classical models of the atom such as the ‘plum pudding’ model are false, and that there
is no reason not to believe that currently accepted true theories will become obsolete in the
future. However, most realists would argue that the development of an objectively true theory
is possible, even if present theories are not. An extreme form of anti-realism, instrumentalism,
argues that there can be no truth beyond what is observable [136].

Particularly relevant to socio-technical studies is the recent concept of model-dependent
realism, as stated by Hawking and Mlodinow [72]. Considering the increased use of scientific
modelling, they argue that reality is considered by using observations to construct rules and
theories, which construct models. Situations may arise where multiple models accurately de-
scribe the same phenomena; for example, both Newtonian and Einsteinian physics accurately
describe low-speed motion. Conversely, a model may not accurately match all observations
within its applicability; for example, the Standard Model predicts that the universe should
consist of equal amounts of matter and anti-matter, but the observable universe is believed to
consist disproportionately of matter.

Hawking and Mlodinow argue that it if there are multiple models that agree with observations,
then there is no purpose to examining which is objectively true. The idea of objective truth
is not completely rejected, but it is acknowledged that it may be impossible to determine.
Therefore, scientific models should be judged on how accurately they predict phenomena and
match existing observations, without considering whether they are ‘true’.

3.5. Research Frameworks 68

A certain level of anti-realism is implicit in most socio-technical research. A socio-technical
model (such as a responsibility model or a STAMP instantiation) is clearly not intended to be
a literally true depiction of a system; it is an abstraction constructed to gain an understanding,
present the important features or enable an analysis. In socio-technical analysis the aim is to
make accurate and useful predictions, such as determining the potential causes of a failure
or the performance of a sub-system. The principles of this analysis are based ultimately on
knowledge obtained from observation; for example, an abstract concept such as the overload
of a system is derived from observations that systems often fail when handling an excessive
number of tasks. These principles should then hold predictive power, and further studies can
test whether or not the predictions are in correspondence with the observed behaviour of a
wider range of system.

Overall, most socio-technical and information science research can be considered to adopt
a broadly post-positivist approach. The scientific method is adopted, and the interpretivist,
subjective approach is broadly rejected. Individual studies or observations can certainly be
subject to bias and subjectivity, and different interpretations can produce different results.
However, a synthesis of studies can still meet the scientific standard. An approach similar to
model-based realism is implicit; models and rules for behaviour are constructed and tested,
and it is acknowledged that multiple techniques can provide similar predictive power, although
certain techniques may be more effective in certain domains or when considering certain
behaviours.

This philosophy has implications for the choice of research methods in socio-technical
study. The level of interpretation required should be strictly limited; this encourages the use
of experiments where possible and case studies (performed in an objective way, focusing
on the observed facts) where not, alongside the use of simulations and model predictions
[63]. Methods that grant the researcher subjectivity should be avoided. The difficulty of
experimentalism in socio-technical systems of non-trivial size has already been discussed, so
techniques that allow the impartial observation of socio-technical systems (such as participant
interviews, direct observation, case studies through document analysis etc.) are optimal.

3.5 Research Frameworks

As discussed earlier, the conventional experimentation-based scientific method is usually
impractical for studying socio-technical systems, due their scale and complexity. Instead,
other research frameworks offer principles and methodologies that are more suited to research
where elements of the system cannot be controlled, and where the process of performing
a study is itself part of the research outcomes. Two particularly relevant frameworks are
action research [123] (a dynamic approach that blends the roles of researcher and research

3.5. Research Frameworks 69

participant) and design science [141] (a methodology that focuses on the construction and
evaluation of a specific artifact).

3.5.1 Action Research

Action research is a research framework that combines the roles of researcher and participant;
research is carried out about some problem, while the problem is actively addressed as the
research is ongoing. As a consequence the nature of the problem may change during the
duration of the research. In particular, it is often used by professionals for investigation and
improvement of their own working practices [134]. This breaks down the traditional divide
between research (attempting to understand the problem) and action (trying to fix the problem,
usually based on a body of research-based evidence) [197]. Inquisitive research is performed
with the direct intent of causing change using an iterative cycle such as Observe, Reflect, Plan,
Act, Evaluate [123].

This leads to a dynamic structure of research where ideas are quickly generated and then tested
by applying them directly to the problem and analysing the resulting changes. Action research
is not tied to any specific set of methodological techniques; different research methods and
techniques can be applied within the framework of action research. Action research is by
definition highly subjective and often unreproducible; defences to the validity of action
research range from the use of ‘validation meetings’ with other participants/researchers [123]
to Marxist theory rejections of universal truths [197]. Action research (particularly in the
context of information systems) functions similarly to consulting, which raises practical and
ethical issues [9].

This form of ‘classical’ action research is the most common in information systems research.
Supporters of action research such as Baskerville and Wood-Harper [10] make strong argu-
ments for its widespread use: ‘Where a specific new methodology or an improvement to a
methodology is being studied, the action research method may be the only relevant method
presently available’. However, the acceptance of action research in computing is still widely
debated [134]. ‘New action research’ is common in other fields, and places greater emphasis
on the individual and moral outcomes of the research process, and less on delivering broader
contributions to the body of knowledge [134].

There is a long history of action research being linked with socio-technical systems - Mumford
[129] states ‘The story of socio-technical design is closely allied with action research’,
although this link is more philosophical (both action research and early socio-technical studies
were concerned with a participatory approach to change, especially in industry) rather than
implying consistent use as a methodology.

3.5. Research Frameworks 70

3.5.2 Design Science

Oates [134] defines the ‘Design and Creation’ research strategy (also known as design science),
where the purpose of the research is to create an artifact. Artifacts can be systems such as
computer programs, but also instances such as system models. Additionally, methods and
methodologies can themselves be treated as artifacts and the development of methodologies
falls under the design and creation paradigm. A typical design science project may consist of
five iterative steps:

• Awareness: the recognition of a problem or opportunity to be addressed

• Suggestion: the leap to having an initial idea to address the problem

• Development: the implementation of of the idea and construct of an artifact

• Evaluation: the assessment of the value and worth of the artifact

• Conclusion: the consolidation of the research, and examination of unexpected results

Similar structures are used throughout design science; Peffers et al. [141] study seven different
papers that propose broadly comparable processes and objectives, before constructing their
own process that consists of six steps: Problem Identification, Solution Objectives, Design and
Development, Demonstration, Evaluation and Communication. Notably, their process differs
by suggesting that research need not start at the first of these steps - for example, observing
a useful solution in practical deployment may lead to a post-hoc analysis of its origins and
development process. They also observe a surprising lack of application of design science in
information science domains such as requirements engineering, which they attribute at least
partially to the lack of well-defined methodologies.

In design science, the evaluation of the artifact can be contentious, and varies between
disciplines. In computing science, artifacts may not be subject to rigorous evaluation - the
aim is demonstrate a proof of concept that justifies the initial idea, and the testing of the
proof of concept may not be considered interesting. Alternatively, ‘proof by demonstration’
evaluation involves limited evaluation of the artifact, where a suitable evaluation technique
is used but on a limited scale. For example, a model may be tested using a small example
that is not as complex as real-world scenarios, or evaluated by academics and students rather
than actual users. In contrast, information science researchers place more importance on
real-world evaluation, such as case studies or action research.

Despite coming from different backgrounds there are clear similarities between action research
and design science. Jarvinen [92] compares the fundamental characteristics of design science
and action research, and notes a very high similarity between both approaches. For example,

3.6. Research Methods 71

both focus on action (or building) and evaluation, both generate knowledge that benefits
practice and both focus on assessing products and changes in terms of utility. In contrast,
Iivari and Venable [85] label action research and design science as ‘decisively dissimilar’.
They note the significant ontological and epistemological complexity within action research,
which is discussed less frequently in regards to design science. They also note that action
research is often carried out in order to understand existing reality, while design science by
definition seeks to produce new and innovative solutions. While there is significant scope for
action research and design science to be used together for mutual benefit, they conclude that
many similarities are superficial and they remain clearly distinct approaches.

3.6 Research Methods

Evaluation of models and modelling techniques require evidence to assess the accuracy or
utility of the model or techniques. The most common way to obtain such evidence in socio-
technical modelling is to conduct a case study - an examination or application in a specific
problem domain. Numerous methods can be used to gather information for a case study,
including analysis of records and documents, direct observation of the system and interviews
with system participants and stakeholders. Interviews are particularly notable as they can be
used both to gather information for a case study and for evaluating case studies, such as by
presenting models to domain experts.

3.6.1 Case Studies

Yin [200] defines a case study as an inquiry based on two main points:

• A case study investigates a complex contemporary phenomena within its real-life
context, especially when the boundaries between phenomena and context are not clearly
evident.

• A case study copes with the distinctive situation where there will be many more
variables of interest than data points, and hence relies on multiple sources of evidence
with data needed to converge in a triangulating fashion.

In particular, case studies are useful where ‘the investigator has little control over events’
[200] and where an experimental approach is impractical, which fits well with the scale
problems of socio-technical analysis. Yin writes with regard to the use of case studies within
the social sciences, where the aim is to investigate some scenario, and either explore, describe
or explain it. Oates [134] notes that in computing science disciplines the term ‘case study’ is

3.6. Research Methods 72

often used to mean the application of a particular technique or method to a particular scenario,
often not representative of real-world activities. This is in contrast to the more widespread
use of case study research, which examines the complexities of real-world issues. Many
case studies in requirements engineering and systems analysis fit this narrower definition,
where a model of a system is produced without attempting to compare it to real-world
practice. Instead, the production of the model (often accompanied by some form of analysis
of vulnerabilities, design options or a discussion about the application of the technique) is
intended to demonstrate the technique and show it can be applied in that particular context.

Oates [134] further distinguishes between three types of case studies:

• Exploratory case studies, which are used initially to identify areas of research for further
study

• Descriptive case studies, which provided detailed analysis and a narrative around the
context of the study

• Explanatory case studies, which seek to identify the causes and factors that cause
particular outcomes

Critiques of case study research contend that case studies cannot be generalised beyond a
single example, and state that they should be used only as the initial part of a study [1].
Flyvbjerg [61] aims to rebuke this and several other common misconceptions about case
studies. He emphasises that single case studies are perfectly capable of falsifying pre-existing
theories, and that case studies contribute to widening the body of scientific knowledge.
Flyvbjerg also attempts to rebut the potential subjective bias of case studies by demonstrating
that published case studies tend to focus on falsification, rather than validation. Ragin [147]
notes that small-scale studies provide the flexibility to reconsider and adapt based on the
experience of the study, which may be lost in larger research.

A common feature in case studies is the use of ‘archival analysis’ [200] , where analysis is
performed by studying existing documents and data sources without directly observing events
or communicating with the individuals involved. Case studies may use archival analysis
techniques for a significant proportion of their content - this may range from the use of
documentation to define initial hypothesis and points of interest, or documentation may be
used to construct an elaborate world view or model that is then examined by participants
or compared to direct observations. Oates [134] notes the advantages of document analysis
as information can be obtained quickly and easily, and can provide information that would
not otherwise be available (for example, historical details). However, official documents can
be particularly vulnerable to large differences between documentation and reality. Wohlin
et al. [199] notes that archival data consists of materials that were not initially intended for

3.6. Research Methods 73

research use and may be of variable quality, although more direct forms of information also
have disadvantages.

There are also overlaps between case study research and action research - both involve a
careful examination of a particular system, generally with the hope of generalising results
more widely. Action research differs from case study research in that action research also
involves the process of making change within the system as part of the research process, while
case studies are purely observational [199].

3.6.2 Interviews

In interview-based data collection participants are asked a series of questions about the area
of research. Tightly structured interviews (like face-to-face surveys) may collect primarily
quantitative results, but interviews can also be primarily qualitative in nature. This allows them
to generate ‘rich’ or ‘compelling’ data drawing on the personal experiences of the participant,
and is ideal for illustrative examples [66]. In particular, this can capture subtle nuances that
would not be detected by bulk collection techniques, and can be used to understand why
individuals act or feel in a particular way (rather than just how they act). However, care must
be taken that individual accounts are not overgeneralised or assumed to represent an entire
group.

Interviews are classically grouped into three types: open, semi-structured and structured,
referring to the level of pre-planned structure enforced on the interview by the researcher. In
case study research it is common to use semi-structured interviews in preference to open or
structured interviews [199]. According to Gillham [66], the semi-structured interview has
these defining characteristics:

• the same questions are asked to all participants

• the form and type of questions are developed to ensure focus

• prompts are used to cover areas that are not spontaneously addressed

• participants are interviewed for broadly the same time

• questions are open, without leading the participant

• probes are used to elicit additional comment from the participant

Semi-structured interviews generally consist of a series of open questions that cover the
relevant areas of interest, combined with short prompts that correspond to sub-areas covered
by that question. Participants may naturally cover all areas of interest in their response to the

3.7. Evaluation Methodology 74

main question; if they do not, the interviewer uses these prompts to redirect the participant
to the missing sub-area. This requires the interviewer to have evaluated the relevant areas in
preparation before the interview in order to ensure the correct coverage, ideally by means of a
pilot study. Analysis of the interview results is performed after transcription.

Semi-structured interviews provide a balance between the breadth of open interviews and
the consistency of structured interviews; this can provide the benefits of easier analysis
and consistent coverage associated with structured interviews, while retaining much of the
richness of unstructured interviews. However, they require a significant time investment in
both interview development (question and focus) and post-interview analysis (transcription
and evaluation) and can be reliant on the skill and experience of the interviewer to obtain
useful results.

3.7 Evaluation Methodology

The primary contribution in this thesis is the development of a formalised responsibility
technique, with an updated notation and significantly expanded automatic and semi-automatic
analysis techniques. We evaluate the extent of this contribution through two case studies and
one explorative study of modellers. These experiments are used to assess the extent to which
formalisation eases the modelling process and provides more consistent results. The focus
of these studies is to identify the strengths and weaknesses of the formalised responsibility
modelling notation and the related analysis techniques. These are both intrinsic features of
responsibility modelling, and represent both its most significant elements and the hardest
elements to adapt if they are proven unsuitable. In contrast, the procedure and style for
constructing models is only of secondary importance, as this can be substantially modified
without changing the core of the technique (and will vary between individual modellers).

Several areas of the modelling and analysis techniques are particularly important, and these are
the primary focus of our studies. The modelling notation should be flexible enough to capture
the full range of socio-technical behaviour without becoming overly convoluted or unintuitive.
However, it should also be powerful enough to capture the detail of complex responsibility
structures where necessary. Similarly, they should also be relatively easy to comprehend and
construct without requiring a full understanding of the underlying semantics. The analysis
techniques need to present consistent results that broadly correspond to real-world problems
or that are supported by domain-specific analysis methodologies; these results should also be
able to be interpreted effectively without requiring excessive domain knowledge.

3.7. Evaluation Methodology 75

3.7.1 Research Strategy

Our evaluation of formalised responsibility modelling consists of three studies - two case
studies (featuring the modelling and evaluation of a specific domain) and one hybrid case study
/ empirical evaluation (participants model a specific domain, and then discuss and evaluate
responsibility modelling as a technique). Each study evaluates particular characteristics and
applications of responsibility modelling, while also demonstrating its use in a specific domain.

The first case study re-examines a problem previously modelled by the InDeED consortium
using a previous version of responsibility modelling - the Hunterston Nuclear Power Sta-
tions Off-Site emergency plan. The primary aim of this study is to compare the results of
formalised responsibility modelling against the existing state-of-the-art, and demonstrate that
the revised technique is at least as effective. Additionally, we show that the extensions in our
technique (in particular, the automatic analysis techniques) provide additional insight that
earlier responsibility modelling did not.

The second case study models a specific problem domain (the TCAS aircraft collision
avoidance system) and then examines the resulting model with domain experts. This study
has two main purposes - firstly, an examination of how well responsibility models can be
understood by domain experts and used to elicit comments and design changes; secondly, an
evaluation of the accuracy and utility of responsibility modelling analysis results by domain
experts.

The third study aims to investigate the usefulness of formalised responsibility as a constructive
technique by requiring non-expert participants to construct responsibility models of a specific
domain. Responsibility modelling (like many similar socio-technical modelling techniques)
has rarely been applied by modellers other than the creators of the technique; this study exam-
ines whether responsibility modelling is an understandable and effective enough technique to
be applied successfully without specific experience with the technique.

3.7.2 Case Study Methodology

The research methodology used for the case studies in this thesis is broadly similar to
that in previous responsibility modelling approaches such as Sommerville et al. [169]. In
their studies, three main techniques are used to elicit information about the problem domain -
document analysis, stakeholder interviews and field observations, which each provide different
perspectives. Document analysis allows effective elicitation of planned responsibilities
(expected behaviour and planned duties), while field observations provide a clearer view of
operational responsibilities that may not be formally defined but emerge in response to events.
Stakeholder interviews provide a mix of both, indicating how formally defined responsibilities
meet with operational reality.

3.7. Evaluation Methodology 76

The purpose of these case studies is two-fold: the case studies should demonstrate that
responsibility modelling can be effectively applied (in that it can accurately model a range
of domains) and demonstrate that it can produce useful analysis and modelling insights for
real-world situations. These two outcomes are interlinked - analysis results can only be
valid if the model is an accurate (if abstract) representation of the problem system, but the
accuracy of a model is itself best tested by considering the model’s outputs. This requires a
methodology that is able to validate some of the outputs of the modelling process in order to
gain confidence that the other, novel outputs of the modelling are valid.

To address this, our methodology requires the use of different information sources; models
are constructed based on one category of domain information and are then validated using
a different source of information. There are no particular constraints on what types of
information can be used at each stage, but we generally begin by using definition documents
(manuals, guides, specifications etc.). These types of documents have the advantages of being
generally easy to obtain (often being in the public domain), containing substantial detail and
describing the ‘by the rules’ operation of the system.

Having acquired suitable documents we begin by constructing a responsibility model repre-
senting the systems described in the documents. It is important that the model is constructed
as much as possible based on the selected source documents, rather than using other resources
or relying on the modeller’s own background knowledge. This aims to limit the subjectivity
of the modelling process, improving reproducibility and ensuring that analysis results can be
linked back to the original sources.

Having constructed an initial model we then move to validate it by using other sources
of information. A wide range of sources can be used depending on the particular domain
- stakeholder interviews, field observations, incident reports and academic studies are all
possible choices for validation. The use of data generation methods at this stage provides
method triangulation [134], which increases confidence and validity in the results of the study.
Validation can be performed either interactively or non-interactively. Interactive validation
involving domain experts provides the broadest range of validation options, as it can be used
to validate either the model itself (by inspecting and discussing it) or the analysis results from
the model (by discussing the accuracy and relevance of the results). This tests the model’s
face validity (according to Sargent [154]) and may provide useful comments and critiques for
further revisions to the model.

Non-interactive validation is generally limited to comparing the results of model analysis with
analysis results and reported behaviour from other sources, although it may be possible to
compare the model with organisational charts or other types of model. This corresponds to
the third step of Naylor et al. [132]’s validation process, by testing the model’s output against
previous occurrences, as well as Sargent’s notion of historical data collection.

3.7. Evaluation Methodology 77

Validation should be used to gain confidence in the model, and to make any necessary changes
in light of the extra evidence. Analysis of the model should be performed at each stage of
the case study, firstly using the initial model derived from document analysis and then using
each revised model. If the model is valid, the concerns, vulnerabilities and incidents reported
in secondary sources should match those raised from analysing the model. This provides
confidence and suggests that non-replicated analysis results are also valid. If the results of
analysis do not match those in the secondary sources but are not contradicted by them then
the situation is unclear, as they may represent issues not previously detected, or they might
simply be inaccurate results created by an unrepresentative model. Contradictions between
modelling results and the actual system may represent the gap between the ‘on paper’ and
real-world definitions of the system rather than flaws in the modelling process. However,
consistent contradictions between modelling results and reported issues may mean that the
model has not correctly captured the behaviour of the subject.

This form of case study approach does not necessarily tend towards a clear moment of
conclusion. Multiple rounds of model revision and validation may be performed, leading
to an iterative cycle of increasing confidence in the validity of the model. This cycle may
be brought to an end due to diminishing returns at each iteration; alternatively, it might be
halted by a lack of new sources to validate it. The experience of performing the modelling and
evaluation process can be as valuable as any concrete end results (a finished model, results
of analysis etc.) and the final write-up of the study should provide a clear narrative of the
learning points for both the modelling technique and the domain being modelled.

This methodology can broadly be classified as design science or design and creation, although
there are some significant differences. The initial stages of design and creation are of
considerably lesser importance in our methodology; the awareness and suggestions stages are
reduced essentially to the decision as to whether or not the technique is a suitable fit for the
specific problem domain and that there is potentially some interesting behaviour to be studied.
The development and evaluation stages are more tightly linked; in the design and creation
framework the five steps are not necessarily carried out in order and are often iterative - in
our methodology the development and evaluation must be carried out in that order, although
the pairing is highly iterative. Compared to classical computing science this technique puts
greater emphasis on the use of evaluation methods that correspond to real-world behaviour,
and encourages the validation of the model using a range of techniques.

Although our methodology is not a direct application of action research it also takes several
strong inspirations from that framework. Our methodology does not adopt a strong separation
between model construction and model analysis, as both feed strongly into each other. Model
construction itself often provides insight into the target system, while analysis detects uncer-
tainties and ambiguities in the model that should be quickly corrected. Like action research,
our methodology produces research outcomes at each stage of the modelling and analysis

3.7. Evaluation Methodology 78

process, rather than generating only final results at the last step. Likewise, the iterative
modelling and analysis steps enables a process of continuous improvement where research
can continue as long as new results are achieved; this iterative approach and flexibility is
fundamental to action research.

The methodology described here is used to validate individual responsibility models of
specific domains. However, responsibility modelling itself is also a (very abstract) model,
representing a generic system of responsibilities, actors and resources. Certain aspects of
responsibility modelling can be considered as model outputs that should be validated, such as
the warnings generated by the use of analysis techniques. These results underpin a core part
of the responsibility modelling methodology, and it is important that sufficient confidence in
their relevance can be obtained. In the context of design science the responsibility modelling
methodology, notation and analysis techniques can all be treated as research artifacts, and
should therefore be subject to a structured process of evaluation.

However, we do not seek to validate responsibility modelling in general using a similar
technique to this methodology. Firstly, the usefulness and applicability of responsibility
modelling in general has already been argued and demonstrated by previous researchers, from
which our formalisation directly follows. Secondly, attempting to apply a structured validation
approach to such an abstract system model is impractical, as it is not possible to observe a
real-world responsibility structure without also capturing abstraction-breaking detail; other
validation techniques such as comparisons to other modelling methods are more practical.
Instead, performing structured validation of individual responsibility models has the indirect
effect of increasing (or decreasing) confidence in responsibility modelling as a whole, and in
particular its ability to be applied in particular domain areas. We adopt this strategy in addition
to other potential approaches to avoid some of the classic problems arising from ‘proof by
demonstration’ evaluations that attempt to directly evaluate design methodologies but are
rendered invalid by failing to address the true scale of real-world problems or to sufficiently
involve actual practitioners or domain experts.

3.7.3 Threats to Validity

This type of methodology is subjective, and naturally induces threats to validity. During an
iterative modelling process it is inevitable that shortcomings in the model will be detected
and corrected. However, if handled inappropriately this can lead to flaws essentially being
hidden, giving a false appearance of the final model as error-free. This should be mitigated
against by documenting the changes made during each cycle of modelling and analysis, and
by publishing not just the final model, but the working versions used at each stage. Conversely,
a study that does not detect any interesting problems may be considered unproductive and
uninteresting, as it appears that the modelling and analysis technique has failed to deliver any

3.8. Conclusion 79

results. In these cases, a comprehensive discussion of the modelling process and the multiple
stages of elaboration remains an important contribution.

It is also important to distinguish between mistakes in performing the modelling process (such
as mis-interpretation of a document section) and inherent flaws in the modelling technique or
notation. Model changes to correct mistakes in the light of new evidence are to be expected,
but are different from making changes due to the modelling notation’s inability to capture
a particular type of behaviour. Again, the modeller should be as explicit as possible when
describing their changes, and changes made without justification should be treated with
scepticism. Socio-technical analysis methods suffer from a general problem that there is a
tight coupling between modelling experience and domain experience, and it may not be clear
if insights are derived directly from the modelling process or from general knowledge of
the domain. This is partly addressed by the methodology’s focus on using specific source
materials at each stage, which tightens the focus and limits the temptation to build a general
model from background knowledge. Deviations from this should carefully controlled, and
based on a genuine expressed need, such as an absence highlighted in a stakeholder interview.

3.8 Conclusion

Numerous techniques and notations for modelling socio-technical have been developed, and
the literature contains a rich range of works based on different conceptual backgrounds and
different intended problem domains and modelling outcomes. However, validation of such
models remains an important problem. The difficulty of testing models that simulate or
predict complex, uncontrollable or unreproducible behaviour has been acknowledged for
more than fifty years. From first principles it is argued that validation techniques should
attempt to increase confidence in the accuracy and usefulness of models for their specific
intended purposes; the metrics used to judge the quality of a model follow from that purpose,
although the overall validation methodology should be clearly defined.

A survey of modelling and validation methodologies in socio-technical modelling, require-
ments engineering and safety analysis has revealed a lack of any consistent application of a
formally defined validation methodology, while many publications make no use of validation
techniques at all. However, many of those that do implicitly use the same informal validation
approach - demonstration of the technique by the creation of a model of a particular system or
problem domain, sometimes augmented by comparative analysis of the model. This represents
an unfortunate gap in the rigour of socio-technical modelling - while the ‘demonstration by
case study’ validation method has many positive qualities it should not be applied without a
suitable understanding of its strengths and weaknesses.

Based on two common research frameworks (action research and design science) and utilising

3.8. Conclusion 80

some of the most common data sources in socio-technical research (interviews, case studies
and document analysis) we propose and define a methodologically sound process for evaluat-
ing socio-technical models. This methodology focuses on iteratively increasing the confidence
in models by continuously analysing and revising models based on the acquisition of new
sources of domain information. The acquisition of new information is carefully structured
to enable both model evaluation and model development to be conducted using the same
information; the modeller must explicitly discuss which parts of the model are supported
by the information and which require modifications. Accuracy gaps between the model and
reality are a natural part of any complex model, especially in early stages or when working
with data sources of limited accuracy, so openness and explicitness in the methodology forces
careful discussion of whether these shortcomings are flaws in the model or flaws in the
information. As an iterative process the model should tend towards increasing fidelity as
more sources of information are obtained - if the reverse is true then it is clear that either the
modeller or the modelling technique is failing, and the resulting model is not valid.

We apply this methodology in our case studies of formalised responsibility modelling in
Chapters 6 and 7. We do not attempt to define a methodology for validating modelling
techniques themselves (such as responsibility modelling), which is a more abstract problem
than validating a specific instance model. Instead, we seek to show the general validity of
formalised responsibility modelling by demonstrating that it can produce valid and useful
models across a range of problem domains.

81

Chapter 4

Notation & Semantics

4.1 Introduction

Previous versions of responsibility modelling differed greatly in their notation and semantics,
both in terms of visual and textual representation as well as in the selection of entities and
relationships available. The technique was still in its early stages of development, with
individual authors seeking variants more suited to their interests and applications.

These variations make applying responsibility modelling in a consistent way difficult, as
no two papers present a unified methodology or notation. Additionally, certain difficult
issues of semantics are overlooked or set aside, such as the complexities of delegating
responsibilities or the behaviour of relationships when models are transformed. As well as
limiting reproducibility and consistency, these shortcomings make providing meaningful tool
support and automated analysis difficult.

Some of these issues can be addressed by increasing rigour and standardising the existing
notation, or by small changes and expansions to existing concepts. However, some ambiguities
in existing responsibility modelling approaches require the introduction of new features to
the technique in order to allow precise definitions of complex behaviour and provide the
associated benefits of more formal analysis.

While formalised, responsibility modelling retains its flexibility across different system
domains and levels of abstraction. Responsibility models are models of the structure of
a socio-technical system; in particular, the structure of inter-related responsibilities that
should be discharged. We define a responsibility model as a set of responsibilities, resources
and actors linked by relations to form a system or systems that aim to discharge a set of
responsibilities. As structural models, they do not include specific details about individual
responsibilities, such as the physical details of implementation or precise details of their
timing. Instead, they show how responsibilities are linked to actors, resources and other

4.2. Meta-Model 82

responsibilities. Formalised responsibility modelling is not intended to be a replacement for
low-level analysis or domain-specific modelling techniques, as it not designed to capture
details below the responsibility level; it is instead intended to model and analyse large-
scale socio-technical systems in order to understand the implications of interactions and
dependencies between responsibilities.

This chapter will present a well-defined semantics, together with consistent graphical and
textual notations for responsibility modelling. We define the semantics using the Eclipse
Modelling Framework’s Meta-Object Facility [50]. We begin by formalising definitions and
representations for the core set of primitive entities and relationships. Differences between
the formalisation presented here and other responsibility modelling approaches such as Lock
et al. [116] and Sommerville et al. [170] are also discussed.

The next step is the introduction of a constraint or specification language, which allows for
the precise description of complex relationships. A significant advance is provided by the
introduction of explicit uncertainty - a notation for capturing uncertainty (lack of domain
knowledge or inherent randomness) allows modellers and analysts to differentiate between
unspecified areas due to simplification or scope reduction and areas where full specification is
not possible.

Formalised responsibility modelling incorporates mechanisms for assessing the timeliness
of responsibility discharge and techniques for modelling multi-layered domains as well as
defining possible model transformations. Finally, two examples demonstrate the use of both
basic and advanced modelling features in socio-technical domains.

[An earlier version of the initial parts of this chapter was published as:

Robbie Simpson and Tim Storer. Formalising Responsibility Modelling for Automatic
Analysis. Lecture Notes in Business Information Processing, 231:125–140, 2015. doi:
10.1007/978-3-319-24626-010]

4.2 Meta-Model

The structure of responsibility modelling is formally defined using the Eclipse Modelling
Framework’s [50] Ecore meta-modelling system, as shown in Figure 4.1. Ecore is an im-
plementation of the Object Management Group’s EMOF (Essential Meta-Object Facility)
standard [135], which provides a domain-specific language for defining meta-models, pro-
ducing a type system and rules for interactions between objects. Ecore is used to produce a
definition of responsibility modelling’s semantics and to generate a skeleton of Java classes
representing the meta-model, which aids the development of tool support.

4.3. Primitive Entities 83

Figure 4.1: Ecore / EMOF Meta-model for responsibility modelling

The different objects within responsibility modelling (responsibilities, actors and resources)
are represented in the meta-model as entities. Properties common to all are defined in a
generic entity type, while responsibilities, actors and resources are each implemented as
specific types extended from the original entity type. All the standard entity types (Resource,
Actor, Responsibility) are contained within a higher-level Scenario entity.

Similarly, relations are first defined with a general relations type, while each particular variant
of relation is defined as a specific class in one-to-many associations with the appropriate
entities. This enforces constraints on the possible relations between different types of entity;
for example, it is impossible for an actor to be part of a production relation. Relations are
always bi-directional - each entity has full knowledge of all the relations it forms part of.

4.3 Primitive Entities

The core of the responsibility modelling language is a set of three primitive entities: responsi-
bilities, actors and resources. Previous versions of responsibility modelling have included
special subdivisions of these three entity types. For example, Lock et al. [116] differentiates
between physical resources and information resources and between human agents and organi-
sation agents; other papers distinguish human actors and automated actors. Other entities have
also been introduced - Sommerville [166] refines responsibilities into goals that are satisfied

4.3. Primitive Entities 84

by following processes.

We have chosen to use the smallest possible set of entities in our formulation of responsibility
modelling. Limiting the number of core primitives should increase the ease of understanding
the technique and greatly simplifies the operation of automated analysis and tool-supported
modelling. Removing the specialised entity types may shift some effort from the modelling
phase to the analysis phase, as there are valid reasons to treat different types of actors or
resources differently, such as distinguishing between human actors and machine actors when
considering load or dependency. However, these distinctions are not absolute, and some level
of extra consideration when analysing would always be required. Assumptions made about
the types of entities may not always hold; for example, information resources may not always
be easily transferable (consider heavy boxes of files) and human actors may be instructed to
only follow very tightly defined routines.

Choosing to remove the additional, separate entity types (goals and processes) has only
limited effects on the expressiveness of the technique, as they can often be represented using
just responsibilities. Many goals can be simply rephrased as responsibilities, and drawing a
clear distinction between goals and responsibilities is difficult - an abstract responsibility such
as a policeman ‘upholding the law’ is clearly a goal, but is also definitely a responsibility.
Processes are a less natural fit for responsibilities, as the concept of responsibilities applies
less clearly to small, well-defined tasks. However, the notation remains suited to modelling
them; an approach that responsibility modelling papers after Sommerville [166] took, despite
the reduction in intuitiveness.

Entities can be represented in either a graphical or textual form. Figure 4.2 provides a simple
example of the graphical notation for entities, produced using a responsibility modelling
toolkit. Figure 4.3 shows the textual representation. The graphical model also uses the basic
relationship types, which are described in detail in Section 4.4; these relationships have been
removed from the textual model for clarity.

4.3.1 Responsibilities

Responsibilities are the core concept in a responsibility model of a socio-technical system.
The modelling language in this thesis adopts the definition of a responsibility provided
by Sommerville et al. [169], as an abstraction to describe behaviours in a socio-technical
system as a duty or obligation that should be discharged by actors in that system. Therefore
in responsibility modelling the behaviour of a system is characterised by the discharge of
responsibilities (both successful and unsuccessful) by system actors.

Responsibilities can represent behaviour at a range of levels of abstraction, from high level
duties (example: maintain law and order) through to specific implementation strategies

4.3. Primitive Entities 85

Figure 4.2: Responsibility model for a university exam: The Exam Papers resource is produced
and consumed; the Sit Exam responsibility is dependent on both the actor Student and the
responsibility Prepare Exam Hall. The Prepare Exam Paper responsibility both requires the
Lecturer and is held by them.

Sit Exam:: Responsibility
Set new Exam:: Responsibility
Prepare Exam Hall:: Responsibility

Exam Papers:: Resource

Student:: Actor
Lecturer:: Actor

Figure 4.3: Textual responsibility model for entities in university exam

4.3. Primitive Entities 86

(example: complete charge sheet). However, there is a separation of concern between the
responsibilities that must be discharged (and the conditions under which a responsibility is
considered to be discharged) and the manner in which the discharge takes place.

Graphically, responsibilities are represented by simple rectangles with the name written inside.
Textually, they are represented in the form NAME:: Responsibility.

4.3.2 Actors

Actors are entities within the system that are able to discharge responsibilities. Actors in
responsibility modelling do not necessarily represent individual people in the real world;
actors can flexibly represent roles defined within the system. These roles may represent
individual positions (‘Head of Security’), computational or technical systems (‘Payment
Processing Software’, ‘Mechanical Deadlocks’) or organisations (‘Police Scotland’).

In many modelling cases it is not necessary to know which actual individuals fit these roles;
it is often enough to simply know the role is filled. However, there is nothing stopping
one individual or organisation filling multiple roles in the same system, which can lead to
vulnerabilities. As a result, it can be necessary to analyse or constrain the allocation of roles;
options for doing so are discussed later in Chapter 5.

Graphically, actors are represented as stick-figure characters with their name attached. Textu-
ally, they are represented in the form NAME:: Actor.

4.3.3 Resources

Resources represent any objects that are produced or consumed by or within the socio-
technical system. Resources can be physical items or digital information; they can also
represent more abstract concepts such as authorisations and goodwill.

Resources are either available or unavailable, depending on the current state of the system.
They do not have quantities; either a sufficient amount of the resource exists or it does not.
Likewise, the quality of resources is not specified - the resource is either of sufficient quality
and sufficient size (and so is available) or of insufficient quality or size (and hence unavailable).
This simplifies modelling by removing the need to specify the output levels or productivity of
processes.

Graphically, resources are represented as rounded ovals with their name written inside.
Textually, they are represented in the form NAME:: Resource.

4.4. Relations 87

Lecturer => Set new Exam
Lecturer -> Set new Exam

Set new Exam -> Exam Papers

Exam Papers -> Sit Exam

Student -> Sit Exam

Prepare Exam Hall -> Sit Exam

Figure 4.4: Textual responsibility model showing relationships, using the entities defined in
Figure 4.2

4.4 Relations

The core entity types can be linked using five kinds of relationships. Resources can be
produced or consumed by responsibilities; responsibilities can require the discharge of other

responsibilities or require certain actors; actors can hold responsibilities.

These five relationship types broadly correspond to those used in previous versions of respon-
sibility modelling. The main difference is the introduction of the ‘holds’ relationship between
actors and responsibilities; previously, a ‘responsible for’ relationship was used that combines
elements of both ‘holds’ and ‘requiredActor’. This distinction emphasises the different ways
an actor can be linked to a responsibility; they can be required on a practical level to complete
the responsibility in some way (‘requiredActor’) or hold some authority or accountability
over it (‘holds’). These two variations are not mutually exclusive, and are discussed further in
Section 4.4.2.

Figures 4.2 & 4.4 show the graphical and textual representations of relationships, respectively.
Graphically, all relationships share the same basic arrow representation, with the exact
relationship type being determined by the two entities linked and the direction of the arrow.
For example, a link between a resource and a responsibility leading from the resource to
the responsibility is a consumption relationship, while a link in the opposite direction is a
production relationship. The sole exception is the difference between the ‘holds’ and ‘required
actor’ relationships; these both share the same direction, so ‘holds’ is indicated by the use of
an unfilled arrow head. Textually, all relationships use the same dash and right angle bracket
notation (->) with the exception of holds, which uses an equals and right angle bracket (=>).

4.4. Relations 88

4.4.1 Production & Consumption

Resources are produced or consumed by responsibilities; a responsibility requiring resources
cannot be successfully discharged if the required resources are not available. Resources
cannot be directly created by actors, as the responsibility reflects the duty, obligation or intent
behind the resource creation activity.

Resources are successfully produced if a responsibility that produces them is successfully
discharged. Additionally, resources without any producing responsibilities are by default
available. When produced, resources are in effect available immediately and there is no con-
cept of waiting for production to complete; this is a consequence of responsibility modelling’s
temporal model, which is covered in Section 4.8.

Resource consumption by responsibilities indicates that those resources is required to complete
the responsibility. The alternative description ‘required resource’ offers a clearer descrip-
tion of the underlying behaviour, as resources that are consumed by one responsibility are
still available for consumption by other responsibilities; as available resources are always
considered to exist in sufficient quantities it is not possible to use up the entire capacity of a
resource.

4.4.2 Actor Assignment

Relationships between actors and responsibilities can take two distinct forms, although in
many cases both forms apply. Firstly, actors can be required for a responsibility to be
discharged - the activity of the actor is in some way necessary for the responsibility to be
met. Secondly, an actor can be accountable or ‘responsible’ for a responsibility, but not be
required to play an active role in its discharge. The first relationship is formulated as the
‘requiredActor’ relationship, while the second is represented by the ‘holds’ relationship. This
is akin to the notion of the cause & answerability / accountability definitions of responsibility
by Cholvy et al. [29].

Where a responsibility is linked to an actor by a ‘requiredActor’ relationship it is necessary
for the actor to be active in order for the responsibility to be discharged; if the actor is disabled
in any circumstance it is not possible to complete the responsibility.

When an actor is linked to a responsibility with a ‘holds’ relationship (and is not also linked by
‘required actor’) the actor is not necessary for the completion of the responsibility - if the actor
is disabled the responsibility continues as before. However, if this leaves the responsibility not
being held by any actors then there is a risk of organisational confusion, as the responsibility
is required to occur without any particular actor being accountable for a failure to discharge it.

4.4. Relations 89

These two relationships are closely related, and in the majority of cases both types of rela-
tionship will exist. Most versions of responsibility modelling use the assignment of actors
to responsibilities in the sense of the definition given in Lock et al. [115] : ‘A duty, held by
some agent, to achieve, maintain or avoid some given state... It also encompasses aspects of
accountability’. Modelling in this style can easily be achieved by always using both forms of
relationship together and only using them individually in special cases.

This separation of the active role and the accountability role is not new. Sommerville et al.
[170] use a notation where delegation of responsibilities transfers the active element (which
they term ‘responsible for’) to a new actor, while the original (or creating) actor remains
an ‘authority’ for the responsibility (who decides if the responsibility has been correctly
discharged, and is some way accountable for the result).

The ability to separate the two relationships becomes most useful when considering fairly
abstract responsibilities. For example, in the British government each department is headed
by a senior minister, who is the public face of the department is accountable to the public
and her party colleagues. The actual operations of the department are carried out by civil
servants, the most senior of which is the Permanent Secretary. In practice this means the
minister ‘holds’ the responsibilities of the department (as they take the credit or blame, but
the department can function perfectly well without them) while the Permanent Secretary is a
‘requiredActor’ (without them the management of the department is severely impaired, but
they hold no public responsibility for the department’s actions).

4.4.3 Required Responsibilities

Responsibilities can also require other responsibilities to be successfully discharged; the
requiring responsibility can only be discharged if the required responsibility is also discharged.
There is natural overlap between this ‘required responsibility’ relationship and the more
general pattern of a responsibility producing a resource, which is then required by another
responsibility. The resource creation and consumption pattern is best suited to cases where the
resource is meaningful, such as when it can be produced in multiple ways or when its presence
is audited by another responsibility. In other cases the ‘required responsibility’ relationship is
more suited, as it does not require the creation of potentially unnecessary extra resources. For
example, modelling with a resource is suited to situations where a responsibility produces a
notification of success (an alert, a report etc.), while directly using a required responsibility
relation is suited to situations where the success of a previous responsibility must be taken on
trust, without notification.

The notion of a required responsibility is similar to but distinct from the previous concept of
sub-responsibility. In Storer and Lock [175], decomposition is formally defined as a transfor-
mation on an existing responsibility that replaces it with a set of sub-responsibilities which

4.5. Delegation, Supervision & Dependency 90

remain bound by the same relationships as the original responsibility. Later, Sommerville
et al. [169] features decomposition where the original responsibility remains intact; this
represents refinement and composition rather than full transformation and replacement. The
first meaning of sub-responsibilities is really a model transformation, which will be defined in
Section 4.10.

The notion of the ‘required responsibility’ is closer to the second meaning, but some differ-
ences remain. In classic responsibility modelling, a sub-responsibility relationship indicates
that the sub-responsibility is required to complete the original responsibility, and this is true of
‘required responsibility’. However, it also indicates that the sub-part is a component or integral
part of the original responsibility; in effect, it is a element of the original responsibility that
has been chosen to specify in detail rather than abstract away, usually because it features some
interesting behaviour or requires specific actors or resources. This provides very little extra
expressiveness (as the meaning of a sub-responsibility varies between different contexts, and
so little can be inferred) while not allowing the direct modelling of responsibilities that are
interrelated but not sub-parts of each other.

This is not true of the ‘required responsibility’ relationship defined here, which merely
indicates the need for the responsibility without implying that it is part of the original
responsibility. For example, the responsibility of a voter to ‘Vote in election’ requires that
candidates discharge the responsibility ‘Stand for election’ so that there are candidates to
vote for; however, standing for election is clearly not a sub-unit of voting in an election. This
provides extra flexibility in specifying interrelated responsibility, while the expression of
explicit decomposition is discussed in Section 4.10.

4.5 Delegation, Supervision & Dependency

In many socio-technical systems responsibilities are initially held by an actor that then
delegates away some or all of these responsibilities. This often involves the refinement and
decomposition of high-level responsibilities - the original actor holds the top responsibility,
and the various lower-level responsibilities that contribute to it are held by different actors.

In previous versions of responsibility modelling this would be modelled using sub-responsibilities.
By default, sub-responsibilities would be assigned to the same actor as the main responsibil-
ity. If a sub-responsibility is explicitly assigned to a different actor, then that responsibility
has been delegated. A different approach is adopted in this formalisation of responsibility
modelling, as requiring a responsibility does not necessarily imply that that responsibility
composes part of another. If explicit decomposition is desired, a model transformation is
performed instead (see Section 4.10).

4.6. Constraint Language 91

As a result decompositions of responsibilities are not declared explicitly in formalised re-
sponsibility models. Rather than modelling ‘as defined’ hierarchical responsibility and actor
relationships it instead models ‘in practice’ structures. Previously, implicit supervisory re-
lationships could be identified by locating sub-responsibilities that had been delegated - the
discharge of the original responsibility requires the discharge of the sub-responsibilities, and
so the actor holding the original responsibility is dependent on the success of the actors hold-
ing the sub-responsibilities. The use of sub-responsibilities implies a hierarchical organisation
structure within the system, and so this could be considered an example of senior actors
supervising junior actors. In many socio-technical systems this can enable useful analysis, as
the hierarchical model generated by considering sub-responsibilities may well differ from the
formal managerial structure, for example.

However, this approach can be limiting, especially in multi-organisation systems that embody
Systems-Of-Systems like behaviour [114]. In this context the hierarchical concept of supervi-
sion is inappropriate - the relationships between actors are not hierarchical, and instead reflect
collaborative or contract-based agreements. The underlying meaning of the relationship is
the same - an actor can only complete their objectives with the support of other actors, so
there are clear benefits to some form of oversight or supervision. We call this implication
‘dependency’, which is effectively a generalisation of the original ‘supervision’ concept.

Dependency occurs in any case where an actor directly or indirectly relies upon another actor.
Dependency can occur directly via actors (an actor holds a responsibility that requires another
responsibility to be successfully discharged) or indirectly via resources or responsibilities
(an actor holds a responsibility that requires a resource or responsibility, and this other entity
requires a different actor to be discharged). Dependency relations can be very deep and
difficult to detect by simple inspection - the actor depended on may exist at the far end of a
long chain of resource and responsibilities.

4.6 Constraint Language

Entity relationships provide the basic building blocks for constructing responsibility models,
and can be used to express complex interdependencies such as delegation. However, the exact
semantics of relationships can become unclear and limiting in more complex cases.

For example, it may be necessary to model a situation where two actors are in an Required
Actor relationship with a responsibility. Does this mean that both actors are necessary to
discharge the responsibility, or that either actor can do it alone? Both of these are perfectly
plausible scenarios, but using just relationships alone cannot distinguish between the two
different cases. We might also wish to indicate that one actor is the default and that the second

4.6. Constraint Language 92

actor only intervenes if the first is unavailable; again, this cannot be clearly expressed using
only sets of relationships.

Other scenarios involving multiple interacting entities are also impractical to model. Many
systems feature elements where responsibilities can be discharged if a certain threshold of
entities are successful - for example, a voting circuit such as used in safety-critical systems. A
small-scale threshold problem can be modelled using the existing notation by pairing together
individual elements as sub-responsibilities, but this quickly leads to a complex model as the
number of entities increases.

Fundamentally, the additive nature of conventional relationships helps comprehension and
ease of modelling, but does not allow the specification of many common and significant parts
of socio-technical systems. We therefore propose a constraint language of responsibility
which allows the specification of satisfaction criteria; complex relationship details and pre-
requisites for entities can be specified in a predicate logic. By default, all relationships
maintain their classical meanings and priorities, but exact definitions can be given for shared
responsibilities and alternative discharge options where required.

A responsibility is discharged or a resource produced if all related entities are available;
for example, a responsibility is successfully discharged if all required actors are active, all
required resources available and all required responsibilities discharged (a logical conjunction
of all required entities). However, the constraint logic allows for specification of more complex
scenarios. All types of relation can be augmented with constraint logic, with the exception of
‘holds’, which represents accountability and authority rather than the functional requirements
of the other types.

Figure 4.5 shows an example of a model defined using satisfaction criteria. In this example, a
shipbuilder can produce a vessel either by designing the ship themselves, or by buying in pre-
existing plans. The resource and actor requirements take their default condition of conjunction,
as expressed by the & operator. Specifying the either-or nature of the different design requires
the use of the || operator to distinguish the OR relation, and the use of parenthesis to limit the
operator to the appropriate items.

More generally, any combination of AND and OR relationships can be specified and bracketed
using parenthesis to any necessary depth. The criteria are evaluated left-to-right and top-down,
subject to bracketing. This allows for the modelling of complex combinatorial relationships,
including threshold cases like voting circuits.

When no satisfaction criteria are explicitly defined, a conjunction of all the defined relation-
ships is assumed. For example, in the ship building case without the given satisfaction criteria
for Produce Hull, the diagram would be interpreted as a conjunction of all the related entities:

Produce Hull:: Shipbuilder Active & Steel Exists & DesignShip Discharged & Bought-in

Plans Exists

4.6. Constraint Language 93

Produce Hull:: Shipbuilder Active & Steel Exists & (DesignShip Discharged || Bought-in
Plans Exists)

Figure 4.5: Example responsibility model showing constraint logic satisfaction criteria

This form of constraints allows specification of different options for satisfying responsibilities.
However, it does not specify the ordering or likeliness of a particular technique being used;
it can specify a choice of two options, but not distinguish between the ‘normal’ option and
the ‘emergency’ option. This limits the precision of analysis techniques based on assessing
the number of relationships an entity is involved in - an actor required in many fall-back
cases (such as the emergency services) may appear to have a crushing load, when in reality
it is highly unlikely that they will be required by all responsibilities at once. Assessing the
maximum possible load on an entity is still a useful technique, but it is also beneficial to
capture scenarios where there is a sudden increase in demand.

This is supported by extending the constraint logic to incorporate ranked priorities. For
example, the shipbuilding example can be amended to specify that designing the ship in-house
is the preferable option, and that plans will only be bought in if that responsibility cannot be
discharged:

Produce Hull:: Shipbuilder Active & Steel Exists & ([1] DesignShip Discharged || [2]

Bought-in Plans Exists)

The [n] notation indicates that the different discharge options have a specific order, with
lower-numbered options being preferable to higher-numbered options. This replaces the
standard ‘joint and equal’ format of requirements, and so allows for more nuanced evaluations
of the load on different entities. Entities that are required as a second or third priority option
clearly receive less load than those required as a first option, which can be reflected in analysis

4.7. ‘?’ - Explicit Uncertainty 94

Figure 4.6: Syntax diagram for the constraint language

techniques. The exact treatment may vary depending on the analysis technique and context;
in some cases it may be sensible to discount the load from low priority relationships entirely,
while in other cases weighting down the low priority relationships on a sliding scale may be
more appropriate.

The syntax diagram in Figure 4.6 provides a formal representation of the constraint language
grammar, incorporating explicit uncertainty as described in the next section.

4.7 ‘?’ - Explicit Uncertainty

Most socio-technical modelling techniques make the implicit assumption that their models are
a complete representation of a problem domain - details may be abstracted, but all possible
scenarios can be covered by them. This assumption requires the modeller to have a perfect
understanding of the domain, which is impractical in the vast majority of cases. Such a strong
assumption can be supported when modelling very tightly defined problems (for example,
interlocks in safety-critical systems) but not in the wider body of socio-technical systems. This
leads to a variety of potential shortcomings in modelling. In order to produce a fully-defined

4.7. ‘?’ - Explicit Uncertainty 95

model the modeller may focus on very specific parts of a system that can be effectively
captured, which can neglect the overall socio-technical context of the system. Alternatively,
complex details may be overlooked in modelling in favour of producing a complete model,
but this missing detail weakens the conclusion of any analysis. Finally, attempting to produce
a model that is both fully detailed and that covers the full scope of the problem is likely to
result in an intractably complex model.

Generally, any model of a system will feature two types of uncertainty [100]. Epistemic
uncertainty is uncertainty ‘about the world’ - uncertainty caused because the modeller does
not have enough knowledge about the problem to specify it exactly. This type of uncertainty
can (in theory) be eliminated or greatly reduced by acquiring more information about the
domain - more precise measurements, longer observations, more source materials and so on.

Epistemic uncertainty may also occur when a modeller deliberately limits the information
they use when constructing a model - for example choosing to ignore edge cases in order to
produce a simpler but less accurate model. A similar uncertainty is introduced when models
are refined to produce sub-components. Sometimes elements are refined completely, such
that the element is composed entirely of the related sub-parts. In other cases, the sub-parts
reflect only part of the original element - usually elements that are of special interest to the
modeller. In the first case it is possible to determine the validity of the original element by
considering the subelements; in the second case there are factors influencing completion that
have not been explicitly modelled. As a result, not performing complete refinement introduces
epistemic uncertainty by leaving some of the model behaviour undefined.

The second form of uncertainty is aleatory uncertainty - uncertainty ‘in the world’. This arises
where there is an inherent randomness in the system being modelled that cannot be eliminated
by defining the system in more detail. This can occur because of fundamental physical or
social reasons (no system can exactly measure both the position and velocity of an object)
or because the information required is outside the agreed scope of the system. In particular,
aleatory uncertainty can occur in socio-technical modelling where different viewpoints of
the system (actor interviews, system documents, ethnographic studies etc.) give inconsistent
results; this indicates that there is uncertainty within the system itself, which clearly cannot
be resolved by more measurement. The inconsistency leads to unpredictability in the system
operation.

These two forms of uncertainty arise from different causes, but their effects on the modelling
and analysis of socio-technical systems are very similar. The difference between the two
types has been long discussed, and it has been argued that they are essentially the same [100].
Both introduce a level of imprecision to system models, and hence limit the confidence and
accuracy of analysis implications derived from those models. Once a model is constructed,
the two types of uncertainty are effectively indistinguishable, as they both produce the same

4.7. ‘?’ - Explicit Uncertainty 96

results. The difference occurs primarily at the modelling phase - epistemic uncertainty can be
minimised by more extensive study of the domain, but aleatoric uncertainty is irresolvable.

Explicit handling of uncertainty is rare in socio-technical modelling techniques, despite socio-
technical systems often containing high levels of uncertain behaviour. A notable exception
to this is the ‘SeeMee’ modelling method [75] which allows for the explicit expression of
‘vagueness’ within models. This notation enables explicit statement of incompleteness for
abstraction purposes as well as due to a lack of detail about the system or a lack of confidence
about the modeller’s understanding of the system, and can be applied both to the definitions
of entities and to relations between those entities. However, vagueness is discussed only in
terms of the modeller’s understanding of the world (epistemic uncertainty) and SeeMee does
not appear to support explicit expression of aleatory uncertainty.

Both forms of uncertainty can be explicitly expressed in responsibility models by extending the
constraint logic. By default, any set of satisfaction criteria completely define the corresponding
responsibility, and there is no uncertainty or randomness explicitly modelled. (However,
this does not exclude the possibility of the model being inaccurate due to errors in the
modelling process) If a responsibility does feature uncertainty (either epistemic or aleatoric)
this can be explicitly specified by including the symbol <?> in the satisfaction criteria for the
responsibility incorporating the uncertainty. For example:

Protect Military Base:: SecureGates Discharged & CheckForTunnels Discharged & AirSpaceSe-

cured Discharged & <?>

states that the modeller is aware there are other failure cases than the three dependent
responsibilities listed, but is either unable or unwilling to explicitly model all of them. This is
primarily aleatory uncertainty - more elaborate modelling can include more forms of safety
checks, but providing exhaustive security is ultimately impossible.

In contrast, consider attempting to model counter-terrorism activity in the UK:

Intercept Terrorist Communications: GCHQ Active & <?>

It is clear that GCHQ (the UK’s signal intelligence division) is involved, but it is very difficult
to be any more specific given publicly available information. There are certainly additional
requirements needed to satisfy this responsibility in practice (international collaboration,
listening equipment, cryptographic backdoors etc.) but it is impossible to specify these
accurately. As a result, the best modelling compromise is to specify only the elements that is
it possible to be certain about, and to use <?> to indicate the substantial epistemic uncertainty.

Introducing uncertainty to a responsibility also changes the way that the discharge of a
responsibility can be evaluated. The presence of uncertainty indicates that the modeller or
analyst cannot perfectly predict whether or not the responsibility is discharged; they may
be able to determine cases where the responsibility will definitely succeed or definitely fail,

4.7. ‘?’ - Explicit Uncertainty 97

but may not be able to generalise across all occurrences. This introduces the concept of
‘conditional’ success, where the final result rests solely on the modelled uncertainty.

For example, consider a model of the responsibility for safely storing some important docu-
ments:

SafeStorage:: DocumentsUndamaged Discharged & <?>

In this fragment, it is defined that the documents being undamaged is a necessary (but
not sufficient) criteria for success. The responsibility will definitely not be discharged if
the documents are damaged, but may also not be discharged in some other case (e.g. the
documents could be stolen) as encapsulated by the explicit uncertainty. This leaves two
possible outcomes for the responsibility - it can definitely fail to be discharged (damaged
documents) or achieve ‘conditional success’ - it will not fail based on the information available
to the model, but success is not guaranteed.

Conversely, a responsibility may have defined success criteria but undefined failure criteria:

EmergencySurgery:: PatientAlive Discharged || <?>

In medical surgery on a critically injured patient the responsibility may be considered a
success if the patient lives, regardless of any side effects or complications - the severity of
the injury means that any survival is a success. However, the death of a patient does not
necessarily reflect a failure on behalf of the doctor or health organisation; despite their best
efforts some fatalities are inevitable. Of course, it is still possible for the operation to be a
failure in a particular case if the patient dies due to avoidable negligence. In this case, the
responsibility accurately represents the two possible outcomes - either success (the patient
lives) or ‘conditional success’ (success depends on individual medical details that are not
modelled).

This extension allows for clear specification of uncertainty and incompleteness, but only when
the modeller is able to acknowledge the existence of this uncertainty. It does not address the
‘unknown unknowns’ - uncertainties that are not recognised during the model process. The
strength of the extension is its ability to capture the ‘known unknowns’, allowing the modeller
to document areas of uncertainty, rather than forcing them to make unjustifiable assumptions
of perfect information and predictability.

Incorporating explicit uncertainty into modelling also changes the analysis that can be per-
formed on these models. Without uncertainty the model is assumed to be a complete (subject
to some assumptions) representation of the problem domain, and hence assertions and proofs
made on the model can be directly transferred to the underlying domain. This is no longer
true in responsibility modelling, as it is explicitly acknowledged that the model contains
uncertainty. Consequently, responsibility models can be used to identify vulnerabilities in
the responsibility structure of the socio-technical system, but cannot be used to assess the

4.8. Temporal Behaviour 98

robustness of the system with respect to underlying implementation details.

Based on this, analysis can produce three possible results. If it is possible to identify an
undischargable responsibility in any model, then it can be stated that the system may fail
due to a responsibility vulnerability. If no undischarged responsibilities exist, and no <?> is
present then the system will not fail due to vulnerabilities in the responsibility structure and it
can be stated that there is no undefined behaviour that could cause it to fail.

If there are no undischarged responsibilities, but <?> is present then it can be stated that the
system will not fail due to the responsibility structure. It is not possible to claim definitively
if the system will work due to the undefined behaviour indicated by <?>, but it is safe to say
that there will be no vulnerabilities caused by the system structure proposed and modelled.
Of course, unmodelled implementation details may cause the system to fail in practice. The
advantage of formalised responsibility modelling is to isolate and be explicit about the areas
of the model that could represent potential failures.

4.8 Temporal Behaviour

Previous responsibility modelling research has adopted an informal approach to incorporating
temporal behaviour in modelling. Responsibilities are discharged, resources are produced and
consumed etc. without defining how long it takes for these actions to occur, or the order in
which they occur. As a result, it is not possible to incorporate in a responsibility model the
concept of ‘timeliness’ of action - the action will occur at some point, but it is not possible to
determine when.

Temporal behaviour is only implied by the domain context - a responsibility to rescue evacuate
flooded houses should happen before the inhabitants drown; however, this becomes difficult
to interpret when a model features activities that are clearly at different orders of magnitude in
duration or response time. Additionally, this complicates the analysis of dependencies between
entities. The discharge of a responsibility may rely on a resource, and this resource may be
produced by another responsibility. This implies a temporal ordering - firstly the resource
production responsibility must be discharged, and only then can the resource consuming
responsibility operate. The resource production responsibility has a clear potential to delay
the consuming responsibility and hence the overall function of the system, but the temporal
model of responsibility modelling lacks a defined semantics to interpret this.

Later work on responsibility modelling recognised the benefits of this form of analysis.
HAZOP-style keywords were introduced to the methodology and the temporal keywords
Early, Late & Never feature significantly. These keywords are used (such as in Lock et al.
[115]) to analyse the consequences and severity of variations in the timeliness of responsibility
discharge. The lack of any underlying semantics for timeliness means that the analysis is not

4.8. Temporal Behaviour 99

directly performed on the model; the analyst applies the keywords to the list of entities and
uses their understanding of the domain to predict the likely impact. A further disadvantage is
that it is difficult to assess cascade effects across whole responsibility models rather than just
single responsibilities.

To address this, formalised responsibility modelling adopts a single time frame within which
responsibilities are discharged. This approach is similar to the concept of ‘epoch time’ used
by the BAN logic [25], where time is divided simply into the past and present. Burrows
et al. [25] argue that such an approach simplifies the modelling of problems without losing
significant modelling precision. Under this formalism, a resource produced by a responsibility
will be produced ‘eventually’, but it could take an unlimited amount of time. Similarly, a
responsibility missing a required resource will ‘eventually’ fail in some circumstance where
the resource is called upon - but the socio-technical system could operate for its entire lifetime
without the failure actually occurring. This representation in the responsibility model does
not represent direct failures but potential vulnerabilities which may never actually occur in
practice.

A useful analogy is to the clock cycle of an integrated circuit. The chip is configured
to perform various calculations and determine results by using various intermediate steps
implemented with simple logic gates. Different routes through the chip take different times to
complete; reading output values before the clock cycle ends may provide inaccurate results.
Setting the correct clock cycle guarantees that all calculations will have been completed and
results propagated correctly. Responsibility modelling is similar - after some arbitrarily long
time period the system will operate as modelled, but expecting results too quickly is risky -
sometimes the system will operate exactly as expected, but at other times incomplete activities
will not function as intended.

This approach to timing offers a number of useful simplifications. As bounds are not placed
on the time needed to discharge responsibilities or produce resources the problem of race
conditions is eliminated - required entities are either ready in time or never available at
all. It is not necessary to carefully evaluate the discharge speed of entities, instead only
judging if the time taken is acceptable or unacceptable. It provides a meaningful semantics for
actors holding multiple responsibilities - they will ensure that responsibilities are eventually
completed, but this does not mean that they are working on all the responsibilities at once.
Similarly, with shared responsibilities there is no need to know which actor(s) are discharging
the responsibility - only that it will be eventually discharged.

The analysis methods are unaffected by this paradigm, as they are based on structural rather
than temporal principles. Some HAZOPs-type keywords do invoke temporal behaviour,
such as Early/Late discharge of responsibilities. In these cases, the timeliness (or not) of
responsibility discharge is local to other responsibilities in the system, rather than absolute.

4.9. Instantiation 100

Responsibility modelling has not previously used strict definitions of time, and this relativity
has always been implicit when performing this type of analysis.

4.9 Instantiation

Responsibility models are abstract representations of a particular system, even though they
are constructed in the context of a specific instance. For example, the model of flood response
in Sommerville et al. [170] is based specifically on the city of Carlisle, but the entities used in
the model remain generic - ‘Fire Brigade’ rather than ‘Cumbria Fire’ or specifying a particular
fire station. Likewise, a responsibility is defined as ‘Establish Reception Centres’, rather than
‘Establish City Hall reception centre’ or ‘Establish reception centre at University of Cumbria’.

This abstraction can be useful in hiding unimportant or irrelevant aspects of implementation -
for example, the overall structure of flood response does not depend on the particular order
in which streets are evacuated. It is also provides a degree of flexibility in the analysis of
different scenarios; for example, operational changes to implementation details may not
require corresponding changes to the responsibility model.

However, excessive use of abstraction can hide specific details that may be important. For
example, an emergency plan may span an area that has several different police forces or fire
brigades; if only the generic actor is used, then it is unclear which force (all of them?; some
of them?; just one?) is responsible for assuming the responsibilities of that actor. In particular,
there might be complex interactions between linked entities - one police force responsible for
urban reception centres and another responsible for rural reception centres, for example.

More generally, this relationship between different levels of abstraction of responsibility
structure can be useful for modelling insight and analysis. Socio-technical systems can be
defined at multiple levels, and the interactions and mappings between these levels represent a
significant amount of the system’s complexity (such as Leveson [109]’s concept of a hierarchy
of levels). Many important questions about such systems can be answered by considering
the links between views of the system at different abstraction levels - for example, whether a
proposed government program is compatible with the current law, or whether a fully developed
software system actually matches the original requirements.

To enable this the concept of instantiation is introduced - the idea that one responsibility
model can contain entities at different levels of abstraction. Each level (or layer) of the model
can contain the full range of entities and can be linked across levels by realisation relations -
uni-directional relationships that indicate that the source entity is a specialisation or concrete
example of the target entity. This allows modellers to explicitly indicate implementation
details where relevant, without affecting the semantics of the general model. Instantiation
allows mappings between all types of entities for both abstract and specific cases.

4.10. Transformations 101

Currently, these relationships serve a descriptive and indicative function, and do not affect
the results of any formal analysis. As a result, they are best used to visualise potential
implementation options (such as for discussion with stakeholders) or to assist with manual
evaluation and analysis (such as displaying instance-level actors for use with role analysis).
Automatic analysis techniques using these relations are certainly possible, but are rendered
difficult by ambiguities in parts of the relation semantics and hence are reserved for future
work.

4.10 Transformations

As part of the modelling process it is often necessary to refine and expand an existing
responsibility model. In many cases modellers may wish to modify one part of an existing
model (such as to model a particular aspect in more detail) without deliberately changing the
rest of the model. This can be complex when the parts to be modified are linked by relations
to other entities, potentially leading to unintended effects on other parts of the model. The
need for a consistent way to perform these changes was recognised by Sommerville et al.
[168], who provided ‘Operations’ that allowed the delegation, decomposition and reallocation
of responsibilities. These are similar to the concept of refactoring in software engineering
[62], as the intent is to perform a specific change to one part of a model without affecting the
model as a whole.

In order to provide a simple and consistent approach to such model changes axiomatic
transformations are defined - transformations that do not affect parts of the model other than
those being explicitly modified. Using these transformations allows modellers to change
specific parts of the model with the confidence that their changes will not unintentionally
affect other, unrelated areas of the model.

These axioms define rules for modifying entities that preserve their relations with other entities
by providing instructions on how to convert each type of relation involving the entity under
the particular transformation. Some transformations are reversible, but others are not; this
depends on whether information regarding the responsibility structure can be preserved by
the transformation.

We define these transformations for decomposition, aggregation and delegation; the realloca-
tion defined by Sommerville et al. [168] has effectively the same semantics as delegation in
formalised responsibility modelling.

Responsibilities can be substituted by decomposing them in full into sub-responsibilities
or by aggregating them into higher-level responsibilities; it should be possible to make this
transformation on individual responsibilities while leaving the rest of the model unchanged.
However, the responsibilities being decomposed or aggregated may be linked to other entities

4.10. Transformations 102

For responsibilities R, S, R1, R2, Resource X and Actor A; where responsibility R is
decomposed into responsibilities R1 & R2 the axiomatic transformation for each type of
relation affecting the decomposed responsibility R:

Relation Declarative Notation Constraint Notation
Production R -> X⇔ R1 -> X, R2 -> X X:: R⇔ X:: R1 & R2

Consumption X -> R⇔ X -> R1, X -> R2 R:: X⇔ R1:: X, R2:: X
Reqd. Responsibility R -> S⇔ R1 -> S, R2 -> S S:: R⇔ S:: R1 & R2

Required Actor A -> R⇔ A -> R1, A -> R2 R:: A⇔ R1:: A, R2:: A
Holds A => R⇔ A => R1, A => R2 n/a

Table 4.1: Transformation of relations under decomposition

For responsibilities R, S, T, R1, R2, Resources X, Y and Actors A, B; where the responsibili-
ties R1 & R2 are aggregated into responsibility R the axiomatic transformation for each type
of relation affecting the aggregated responsibilities R1 & R2:

Relation Declarative Notation Constraint Notation
Production R1 -> X, R2 -> Y⇒ R -> X, R -> Y X:: R1, Y:: R2⇒ X:: R, Y:: R

Consumption X -> R1, Y -> R2⇒ X -> R, Y -> R R1:: X, R2:: Y⇒ R:: X & Y
Reqd. Responsibility R1 -> S, R2 -> T⇒ R -> S, R -> T S:: R1, T:: R2⇒ S:: R & S

Required Actor A -> R1, B -> R2⇒ A -> R, B-> R R1:: A, R2:: B⇒ R:: A & B
Holds A => R1, B => R2⇒ A => R, B => R n/a

Table 4.2: Transformation of relations under aggregation

by relations, and so these relations must be modified to refer to the new responsibilities. Table
4.1 shows the transformation rules for decomposition.

As shown in the table, all relations involving a responsibility that is to be decomposed
are transferred jointly and equally to the resulting new responsibilities. Decomposition
itself cannot be used to divide up operations such as resource production - a decomposition
of responsibility structure does not affect the mechanics of actually producing a resource.
Decomposition is fully reversible as long as the definition is strictly followed; but is only
valid if the decomposed responsibilities share the same exact set of related entities. If they
do not (for example, the responsibility R2 has been modified to produce a different resource
from responsibility R1) then the transformation is not reversible, as it would be impossible to
distinguish the differences in resource production once they were combined.

More generally it is possible to aggregate multiple responsibilities into one larger responsi-
bility. However, this process is not reversible - the original responsibilities can no longer be
distinguished once they have been merged, and this makes it impossible to divide them up
according to the original structure. Table 4.2 shows the transformation rules for aggregation.

Aggregation behaves similarly to decomposition, with the new aggregate responsibility
replacing the original responsibilities in all relations and the aggregate responsibility consisting

4.11. Applications 103

of a conjunction of all the original responsibilities.

Decomposition and aggregation have relatively limited effects on the wider model, such as
increasing the measured load on an actor when their responsibilities are decomposed into
more numerous responsibilities. Important changes can occur when the model is rationalised
or adapted after performing decomposition or aggregation - for example, a resource produc-
tion responsibility that is decomposed may then have different constraints defined for each
responsibility, which will affect the likelihood of the resource being successfully produced.
However, these changes do not occur directly as a result of the decomposition.

For delegation of responsibilities the ‘holds’ relation is transferred from the old actor to the
new actor, and all other relations between the actor and responsibility remain the same. This
leaves no explicit link between the old actor and the new actor; if the old actor is only linked
to a responsibility by a holds relation it is possible to make a ‘clean break’ by delegating
it away. This reflects the new structure of relations in formalised responsibility modelling -
required Actor relations indicate a functional requirement between the responsibility and the
actor and so cannot be changed by delegation; delegation can only change the accountability
indicated by the holds relation.

The implications of delegation arise when these existing relations are not compatible with
the change of structure, or where this change exposes vulnerabilities. For example, if the
delegated responsibility is required for another responsibility still held by the original actor
then this has the effect of creating a dependency between the old actor and the new actor,
which can lead to a vulnerability. This type of vulnerability can be detected by reliance
analysis.

4.11 Applications

Responsibility modelling can be applied at two main levels - requirements analysis and system
analysis. When used at the requirements level, responsibility modelling can produce sets
of responsibilities, resources and relevant actors based on business requirements, regulation
and legal requirements and technical proposals. At the requirements level the model may
consist of unrelated fragments that are not directly linked - for example, there may be a
legal requirement for a pilot to sign-off on a cargo manifest, and a business requirement for
cargo containers to be scanned as they loaded onto the aircraft. These two requirements are
completely separate, but are both in the scope of an aircraft cargo management system.

At the requirements stage, models can be used to visualise the problem domain, identify
potential flaws in the stated requirements and engage with stakeholders. Incompleteness
is natural at this level of modelling, and responsibility modelling can be used to discuss
and examine issues of concern. This is similar to the original motivation for responsibility

4.12. Modelling Examples 104

modelling; the changes made during formalisation do not significantly reduce the ability
to use responsibility modelling as technique for informal discussion and analysis. At this
stage, automated analysis techniques can be used and can deliver some useful results (such as
highlighting areas of the requirements that are too vague), but their results require additional
interpretation to detect false warnings that will be resolved during later development.

At the system analysis level the responsibility modeller should aim for completeness. By this
stage of development the system scope and model structure should be decided, and hence any
ambiguity or omissions in the responsibility model represent ambiguities and omissions in the
system structure itself. Separated or unattached sections indicate a lack of integration within
the system, or that certain elements are not related to the core duties of the system.

Many process and structure models (in all types of domains) contain unformalised behaviour
that is nonetheless implied or referred to by the formal element of the model. This may
be an explicit decision to keep parts of the system out of scope or may reflect uncertainty
over the use of that part in practice. In some models these unformalised elements are clearly
signposted; however, many models do not distinguish them clearly. This opens up the
possibility of inconsistent application of the model and important elements left undone due to
their non-formalised nature. Responsibility modelling can clearly identify non-formalised
or ambiguous formalised elements, allowing clear discussion of potential issues. Equally,
where these variations are not pertinent to a discussion responsibility modelling provides for
convenient abstraction.

Responsibility modelling is especially appealing when comparing deployments or implemen-
tations against the theoretical standard. The complexity and variation of social-technical
systems means that many real systems vary significantly from their conceptual model, but
these differences may not be modelled. As a result, analysis is often performed on abstract
models of the system that do not represent real-world usage, leading to analysis that does not
capture actual behaviour and provides a false sense of security.

Responsibility modelling can potentially alleviate this by allowing both high-level and
implementation-level models of the system to be produced using the same notation, which will
allow easier comparison of the two views. Ideally, these multiple views of the system could
be mapped together, allowing direct checking of the implementation against requirements.
However, there are ambiguities in the potential semantics of this relationship, which are
discussed in Section 9.5.

4.12 Modelling Examples

This section illustrates the use of responsibility models to construct representations of the
structure of socio-technical systems. First a basic model of the meeting scheduler system

4.12. Modelling Examples 105

Figure 4.7: Labelled key to formalised responsibility modelling notation

(as defined by van Lamsweerde et al. [189]) is used to introduce examples of the notation,
before considering a more complex model of the Scrum agile development team structure
described by Schwaber and Beedle [155]. These examples are used to demonstrate the
modelling notation and elements of the constraint language and show how they can be used to
model systems of moderate complexity. Some informal evaluation is performed, but formal
analysis is not demonstrated here and is the subject of Chapter 5. A recap of the formalised
responsibility modelling notation is shown as a labelled diagram in Figure 4.7.

4.12.1 Meeting Scheduler

The meeting scheduler as defined by van Lamsweerde et al. [188] is a common socio-technical
case study, and has been modelled using KAOS [189] and i* [202]. Figure 4.8 shows a
responsibility model of the scheduler using graphical responsibility modelling notation.

The Meeting Scheduler System is intended to support the organisation of meetings. Meetings
are arranged in the following way. A meeting initiator asks potential attendees to list dates
within some range that they would prefer to attend a meeting (the preference set) and dates
where they cannot attend (the exclusion set). Additional preferences may be expressed by
attendees, such as requirements for special equipment or choices about the meeting location.
A proposed meeting date should belong to as many preference sets as possible, and not be a
member of the exclusion sets; if this cannot be achieved, a date conflict has occurred.

The model proposes a system structure containing four distinct roles. The meeting initiator
is responsible for defining the list of participants and initially setting up the meeting; the
meeting scheduler system then performs the practicalities, such as determining the time and
location. Meeting participants provide their availability times, expressed as the preference
set and exclusion set, and can also specify equipment requirements. Additionally, important
participants can also specify their preferences for the location.

4.12. Modelling Examples 106

Figure 4.8: Responsibility model of the meeting scheduler described by van Lamsweerde
et al. [188]

4.12. Modelling Examples 107

The particular version of the system described by this model contains some important sub-
tleties. Of the three types of information that participants (either normal or important) can
provide only one of them is held by the corresponding actor. This implies that there is
no obligation that participants provide information other than timing information; this is
consistent with the definition that states that providing these types of information is optional.
However, responsibilities of the meeting scheduler (specifically, Choose Location) depend
on the availability of expressed location preferences and equipment needs, and so would not
be discharged if no preferences are provided. This problem is not addressed in the original
definition - it is unclear how the location is determined, and if factors other than preferences
are taken into account.

The Meeting Scheduler System also holds no responsibilities itself, and is merely the required
actor for the responsibilities that are held by others to be discharged. This expresses a
particular view of system deployment - the scheduler is a piece of software, and therefore
cannot be held to the same standards of accountability as a human or an organisation. However,
this means that a responsibility failure due to the scheduler cannot be traced or attributed
at all, which may be unsatisfactory. Alternatively, the scheduler could be provided with
‘holds’ relations, which would allow failures to be directly attributed (although this may not
be meaningful, for the reasons mentioned earlier). Another option would be to introduce an
additional actor, the system developer or maintainer, which could hold a responsibility for
ensuring the scheduler operates correctly.

This example also demonstrates some of the difficulties in effectively dividing up responsibili-
ties in manageable units. ‘Choose Date’ and ‘Choose Location’ are both sub-responsibilities
of ‘Arrange meeting’, which initially appears to be a sensible division of two important
parts of arranging a meeting, given that they both require different sources of information.
However, both responsibilities are really dependent on the same resource and are irreversibly
interlinked - the availability of certain locations is presumably time dependent, so separately
selecting time and location (as this model describes) could lead to arranging meetings where
the location is unavailable. At this level of abstraction the use of two separate responsibilities
does not indicate that the selection of date and location must be completely independent (the
actual logic for selection is not defined), but does also not specify that they must be connected
(which is necessary to avoid potential conflicts).

The role-based nature of actors is also clearly demonstrated in this model. The separate
responsibilities for Meeting Participant and Important Participant do not imply that individuals
who are important participants cannot provide timing information and state equipment needs;
such a real-world individual fulfils two responsibility modelling roles.

4.12. Modelling Examples 108

Figure 4.9: Responsibility Model of Scrum

4.12.2 Scrum

The Scrum process is an agile development framework for software development [155]. Scrum
is an iterative process, where the product is developed in a series of sprints, and requirements
are expressed by a product owner. Additionally, the Scrum team lacks a hierarchy and does
not contain managers or assigned roles and groupings. Instead all team members take part
in all Scrum activities, which are overseen by a Scrum Master who acts as a facilitator. Our
model of the responsibilities in the Scrum process are illustrated in Figure 4.9.

The figure shows that work is organised around responsibilities for planning, undertaking and
reviewing a sprint. The iterative structure of the responsibilities (and thus the overall process)
is evident in the model, in contrast to more linear models of development.

Additionally, the model shows that Scrum is a collaborative process where all roles collaborate
in many different responsibilities in different ways. For example, Developers operate in
collaboration with the Scrum Master and Product Owner for Sprint Planning, in which the set
of objectives for the next Sprint is decided. Similarly, all actors collaborate in the conduct of
the Retrospective and Sprint Review, although they each perform different elements of the
process.

Note that this example demonstrates that actors are roles, not individuals; in Scrum, it is
common for the Scrum Master to also be a Developer. As a result, extra care (ideally aided by
tool support) is necessary when considering the risk of overload, as one actual individual or
organisation may be acting in a number of different roles.

The model also shows the difference between being required for a responsibility and being
responsible for it. In most cases, actors are both required by and responsible for (holding)
certain responsibilities. For example, the Product Owner is required to complete the Sprint

4.12. Modelling Examples 109

Figure 4.10: Refinement of ‘Sprint’ Responsibility.

Review, and is also accountable for its success or failure. However, some other responsibilities
are only held by one actor. For example, the Scrum Master is the sole actor to hold Sprint
Planning and Retrospective; this indicates they they alone hold ultimate responsibility for
ensuring its completion. These responsibilities still require other actors to be successfully
completed, and so the Scrum Master must rely on the Product Owner and Developer in order
to fulfil their duties.

A responsibility can be decomposed in order to understand how agents collaborate to discharge
the overall responsibility. Figure 4.10 illustrates how the Sprint responsibility is decomposed
to show the assignment of sub responsibilities. The Developers retain responsibility for
undertaking development of new features or remedy of features, as prioritised during the
Daily Scrum. However, the Scrum Master takes responsibility for coordinating the Daily
Scrum. The exact division of responsibilities within the Daily Scrum may be identified by
further refinement if desired.

The figure also illustrates the modelling of heterogeneous human, organisational and technical
components consistently as agents with responsibilities. The development team is an organi-
sational agent consisting of several (unidentified) developers. Responsibility for integration
testing is delegated to a Continuous Integration Environment, a software application that is
configured to monitor for changes to the target system’s code base.

The decomposed model is consistent with the overall model presented in Figure 4.9. Resources
that are inputs and outputs to the Sprint responsibility (Sprint Backlog and Done Increment
respectively) are similarly represented as boundary elements for the decomposed diagram.
Similarly, the agents that hold the overall responsibility for the Sprint (Developer and Scrum
Master) are present in the decomposed diagram. The Continuous Integration environment does
not hold responsibility for conducting the overall Sprint, so only appears in the sub-diagram
in association with its specific responsibilities. Depending on the modeller’s preference and
the target audience, these refinements can either be presented separately, or used to expand
the core responsibility model.

4.12. Modelling Examples 110

This initial model of Scrum can also be expanded to describe more complex behaviour using
the new additions to the responsibility modelling notation. For example, Development is
currently discharged and features and issues produced as long as the developer is active and
daily objectives are available. This is an idealised representation of software development, as
numerous reasons can lead to seemingly well-planned development failing to complete. We
can explicitly model this by introducing uncertainty into the definition of Development, with
the following satisfaction criteria:

Development:: Developer Active & Daily Objectives Exists & ?

In this version of the system the activity of the developer and availability of the objectives are
still necessary to successfully discharge development, but they are not necessarily sufficient -
this definition of Development can still fail, even when both requirements are correct. This
then weakens the strength of claims that can be made about the system as a whole, as it is no
longer possible to guarantee complete and successful discharge of all responsibilities.

Additionally, responsibilities can also be augmented with constraint logic to indicate more
complex relations. Currently, the Daily Scrum requires two resources - Sprint Backlog
(representing work remaining) and Issues (representing new problems that have been detected),
which are then used to plan the objectives for the next phase. However, there are situations
where only one of these inputs may be required - for example, when no issues are raised
during a particular day’s development. As currently expressed in the model this could lead to
inappropriate failures - the scrum is dependent on Development (which produces the Issues),
but it might in practice be possible to perform a scrum without associated development (such
as if dividing up a backlog). Instead, the Daily Scrum responsibility could require one of
either Sprint Backlog or Daily Objectives, and this can be expressed with the following
constraint logic:

Daily Scrum:: Developer Active & (Sprint Backlog Exists || Issues Exists)

This version more accurately describes certain edge cases by still discharging successfully
when one resource is unavailable. However, it now means that the Scrum always succeeds as
long as the developer is active and one resource is available, while there are some scenarios
where this might be inappropriate (such as when there are live issues discovered by developers,
but the Scrum Master forgets to discuss them). In effect, removing ‘false failures’ may now
introduce ‘false successes’. This highlights the difficulty of producing models that are both
suitably abstract and suitably accurate - specifying the organisational processes in exact
detail is complex and potentially contradictory, but more abstract models may provide system
definitions that deviate from the intended reality.

This section focused on the initial modelling of scenarios, and simple analysis by inspection
of the models’ structure. A key contribution of formalised responsibility modelling is that it
enables more rigorous and complex analysis to be performed, based on an understanding of

4.13. Conclusion 111

the formal semantics. This type of analysis is discussed further in the following chapter.

4.13 Conclusion

This chapter has presented a consistent definition of responsibility modelling by formally
defining the semantics of entities and relations. Entities retain the same meanings as in
previous responsibility modelling systems, but with slight changes to the notation. Relations
are restructured to provide clearer modelling - sub-responsibilities are generalised into required
resource relationships, and actor assignment is separated into two distinct relations - the
required actor relation (which models the direct need for a particular actor) and the holds
relation (which models the responsibility / accountability relationship). These changes
lead to a reworking of traditional responsibility modelling concepts such as delegation and
dependency.

The inability of responsibility modelling to handle complex relations between entities is
addressed by the introduction of satisfaction criteria - a simple logic for expressing additional
details in relations where appropriate. This allows explicit modelling of common relations
such as alternative implementation options and fallback systems.

This logic is then used to introduce an explicit method for capturing uncertainty in models.
Socio-technical system models often make the assumption that they completely represent the
underlying problem domain, even if requirements capture has left some parts of the model
partly or completely unspecified. By tagging any entity with an uncertainty marker these
gaps can be identified and modelled, distinguishing between intentional and unintentional
uncertainty. In addition, this explicit uncertainty redefines analysis by identifying areas where
modelling cannot accurately analyse the system due to a lack of certainty.

The temporal nature of responsibility modelling is also more carefully examined. Models
have always featured implicit temporal elements (a resource must be produced before it can be
consumed), but the detailed meaning was left undefined. We therefore define the principle that
responsibilities are ‘eventually’ discharged - that responsibilities must be completed within an
arbitrary time period appropriate to the problem scenario. This eliminates the need for careful
evaluation of discharge times and removes the potential for race conditions. Transformations
are also defined for common modelling changes to eliminate unintentional effects on other
parts of the model.

Short analyses of methodological issues such as model scope and abstraction are given, before
this chapter concludes by demonstrating the full range of the revised notation in small-scale
worked examples of a meeting scheduling system and the Scrum agile development process.

112

Chapter 5

Analysis

5.1 Introduction

In the previous chapter we presented a consistent, formalised notation for responsibility
modelling. However, modelling socio-technical systems is a means to an end, rather than
a complete task in itself. Socio-technical models are used to analyse systems on criteria
including safety, security, performance and usability [13, 109, 112, 181]. In previous respon-
sibility modelling studies, analysis has consisted of informal or semi-formal inspections of
the model and semi-formal analysis using guidewords. The key advantage of formalising
responsibility modelling is that analysis can be performed on a much more structured basis,
and that different forms of analysis can be automated according to set rules.

This chapter describes both formal and informal analysis techniques developed during this
research. Firstly, the RESME toolkit is introduced and described. This Eclipse-based toolkit
provides a graphical interface for the creation, editing and analysis of responsibility models; in
particular, it provides full support for automatic analysis techniques. Formal analysis consists
of five different automated techniques: overload detection to identify overstressed actors;
assignment checks to locate unheld responsibilities and unproduced resources; reliance analy-
sis to identify inter-dependencies between different actors holding related responsibilities;
criticality analysis to identify the most vulnerable single points of failure and full discharge
analysis, which evaluates the discharge and production of entities according to specified
satisfaction criteria.

The informal approaches are the use of patterns and anti-patterns to recognise responsibility
structures and potential vulnerabilities and the identification of common modelling problems.
Additional semi-formal approaches include role analysis to identify potential overloads and
conflicts of interest caused by one individual holding multiple actor roles and the use of
what-if analysis to selectively disable certain model entities and examine the knock-effects on

5.2. RESME Toolkit 113

other parts of the model.

5.2 RESME Toolkit

Tool support is desirable for modelling of non-trivial systems, allowing for the automatic or
semi-automatic application of analysis and proof techniques that would be time-consuming
and impractical to perform by hand [203]. Previously, responsibility models were constructed
with general purpose imaging programs (e.g. [12, 169]) or with the aid of plugins to general
purpose modelling tools such as Microsoft Visio (e.g. [174]). These plugins included a
definition of the graphical notation, providing consistency, but did not enable any form of
automated analysis.

To address this we have developed the RESME toolkit [157] to support the construction
and analysis of formalised responsibility models. This toolkit provides a user interface for
graphically constructing new responsibility models and then applying a range of automated
analysis techniques. The user interface of the toolkit is shown in Figure 5.1.

The RESME toolkit is used as the primary mechanism for implementing automated analysis,
and is used to both construct and present responsibility models for the case studies in the
following chapters. Given the importance of the tool in these case studies, this section provides
an overview of the key features, interfaces and implementation details of the RESME toolkit.

The RESME toolkit is implemented using the Eclipse Sirius framework [49] and the Eclipse
Modelling Framework (EMF) [50] . The EMF is used to model the underlying data structures
(entities and relations) and generate corresponding Java code from this model; the generated
classes from this process are then extended with hand written functions that perform model-
wide analysis. It also provides a cross-platform XML representation of user-generated
responsibility models. Sirius provides a standard graphical editor for EMF models which
enables the visual representation of models and simple drag-and-drop editing; complex editing
details and model validation is performed by customised rules defined in the Acceleo [51]
model transformation language. Finally, the ANTLR [139] parser system is used to define
and parse the satisfaction criteria logic, with evaluation performed by native Java code.

This toolkit is implemented as Eclipse plugins grouped into an Eclipse feature, which allows
easy deployment using the Eclipse update-site mechanism. This allows the toolkit to be
installed into any existing Eclipse installation without the need to manually configure depen-
dencies or settings. A ready-to-deploy package of the toolkit is hosted as an Eclipse update
site [163] and the full source code and version history is available as a GitHub project [157].

Models can be constructed and edited graphically, with all standard entity and relation types
supported. In addition, several special purpose entities and relations have been added to

5.2. RESME Toolkit 114

Figure 5.1: Analysis in the RESME toolkit, showing reliance, overload and selectively
disabled responsibilities

support modelling extensions developed for specific case studies. Models are constructed
by first dragging entities from the toolbar and placing them in the main modelling screen;
relations can then be added by selecting the appropriate relation type from the toolbar and
then selecting the two entities to be linked. Details for each entity can be viewed and edited
using a tabbed detail browser. The visual layout of the model is purely for aesthetic purposes.
The automated layout system is usually capable of producing an uncluttered diagram, or
a user may apply their own manually. Alternative tree and table representations are also
available, which provide a clear way of viewing entities but obscure the source and destination
of relations.

Large responsibility models can be complex and confusing, and so the toolkit offers several
tools to make them easier to understand. Extensions to the basic set of entities and relations
can be toggled on and off using layers; when a layer is disabled any entities or relations of
that type are removed from the diagram and from the toolbar, but remain unchanged in the
underlying model.

Models can also be structured using sections, which are used to display and edit specific parts
of the system. Sections can contain any number of entities and relations, but due to tooling
restrictions, each entity can only be within one section. These sections can be displayed
separately using Section diagrams and changes made in section diagrams are automatically
transferred to the underlying model and the main responsibility diagram. This enables
visualisation of model sub-areas, and can also be used to construct a model incrementally out

5.3. Automatic Analysis Methods 115

of sections. The use of sections is purely to divide up visual representations of the model, and
does not divide the model itself - for this entirely separate model files should be used.

RESME also provides partial support for realisation relationships and multi-level modelling
via the instance layer. This enables the addition of instance actors to the model, which can be
linked to normal actors using realisation relations. This relation indicates that the instance
actor is a implementation of or special case of the original actor. The more general concept of
instantiation across all entity types is not supported in the current release.

Satisfaction criteria can be specified for any entity using the properties view. Satisfaction
criteria are not visually represented - any existing relations remain displayed, and new links
introduced only in satisfaction criteria are not displayed. Likewise, local forms of analysis
are not affected by specifying satisfaction criteria, and still operate based on the standard
definitions of relations. Satisfaction criteria are used to modify the results of satisfaction
analysis, which uses a naive evaluator by default (all required entities must be available, and
there are no additional requirements); each entity that has custom satisfaction criteria defined
uses these in place of the default.

Explicit uncertainty in satisfaction criteria is handled by the generation of warnings on each
entity containing uncertainty. The effects of this uncertainty are not automatically analysed,
but instead draw the attention of the modeller to the entities they need to examine. This
provides a quick overview of potential sources of wider system uncertainty, but requires the
modeller to manually consider the effects of uncertainty propagating throughout the model,
which may induce additional vulnerabilities.

5.3 Automatic Analysis Methods

The existence of a formal structure for responsibility modelling enables wide ranging anal-
ysis to be performed automatically and semi-automatically on models that adhere to the
formal structure. This section presents five distinct analysis techniques that benefit from this
formalisation or that would not be feasible without the use of computerised tool support.
These techniques include both methods that rely on local analysis (such as analysing the
direct relations of an entity) and methods that analyse the model (such as the identification of
critical points of failure). These techniques are static analysis methods that identify potential
vulnerabilities by analysing the structure of a responsibility model.

For each technique the motivation and basic principles are introduced, the main applications
described, common results discussed and results that may require special interpretation
considered. The identification of potential vulnerabilities by automatic analysis may indicate
either a flaw in the actual domain or a flaw in the model, so care must be taken to fully

5.3. Automatic Analysis Methods 116

understand the implications of any result. This section defines and introduces these methods;
we leave validation to case studies in later chapters.

Sommerville [166] discussed eight different forms of responsibility vulnerability in an infor-
mal manner, six of which have corresponding automatic analysis techniques in formalised
responsibility modelling. Unassignment of actors and lack of resources are directly imple-
mented, as is overload. Sommerville’s ‘fragility’ is essentially identical to our concept of
criticality - identifying the most vulnerable parts of a system. Sommerville’s ‘lack of authority’
can be analysed using formalised responsibility modelling’s reliance analysis, as can their
concern over conflicting authorities for actors. Duplication of duties and uncommunicated
assignment are the only analysis forms that are not automated; these are difficult to identify
automatically because they are not directly represented in the responsibility structure.

All these forms of analysis are supported by the RESME toolkit. Local (overload, assignment,
reliance) checks are performed by validating the model file (invoking validation applies all
local checks to all entities simultaneously) while global (criticality, discharge) checks are
triggered by selecting the appropriate analysis method from the toolbar and applying it to the
model. In both cases the results of the analysis are presented in the standard Eclipse format
as warnings or information points; these are shown as icons with tooltips on the graphical
representation of each entity, and are listed in full in the Problems view.

5.3.1 Overload

Failures in socio-technical systems can occur when parts of the system are stressed or
overloaded - in particular, individuals and organisations may struggle when attempting to
deal with unexpectedly large or complex tasks, or simply because they have to handle more
duties than they can give full attention to. For example, Adams et al. [2] describe how
pilots lost situational awareness when attempting to process multiple tasks simultaneously.
Adler and Benbunan-Fich [3] show that increased multitasking leads to a significant loss
in task accuracy. These overloaded actors could be relieved by assigning some of their
responsibilities elsewhere, or by providing them with additional resources, but only if they
are correctly identified.

Thresholds can be set to determine potentially overloaded actors that are required for an
excessive amount of responsibilities, potentially leading to degraded operation. Overload on
actors indicates either a risk due to multiple significant responsibilities potentially requiring to
be discharged simultaneously or due to the actor being required to oversee or supervise a large
number of responsibilities. The thresholds for these types of risk are generally quite different
- discharging more than 2 or 3 responsibilities simultaneously is likely to lead to problems
as discharging tasks simultaneously requires more effort than the total of discharging them

5.3. Automatic Analysis Methods 117

Figure 5.2: Example responsibility model demonstrating overload

separately [97], while an actor may be able to manage substantially more responsibilities if
they are less complex or do not require direct action.

This makes the concept of overload in responsibility modelling more complex than in a
task- or process-based modelling system. Actors may be overloaded if they are required to
discharge multiple responsibilities concurrently, as in task-based modelling. However, actors
may also be overloaded if they are required for a large number of distinct responsibilities,
even if they play only a minor role in the discharge of these responsibilities. This ‘cognitive’
overload occurs as actors are required to continuously track and evaluate the responsibilities
for which they are required. The abstraction inherent to the concept of responsibilities means
that this distinction cannot be formally analysed, and so these two distinct forms of overload
are represented as one metric.

Formally, an actor is overloaded if they are required for a number of responsibilities above
a set threshold, which was initially set to four. This value was selected to exclude actors
holding several responsibilities from being declared overloaded in order to avoid excessive
false positives. The reliability of this metric is improved by modelling responsibilities at
consistent levels of abstraction to ensure that the effective loads are comparable.

Figure 5.2 shows a simple responsibility model for teaching responsibilities within a university.
The Lecturer is required for six different responsibilities, while the Teaching Assistant is
only required for two. As a result, the Lecturer is an overloaded actor, as the number
of responsibilities they are required for is above the threshold. The fact that two of the
responsibilities are shared (they require both the Lecturer and the Teaching Assistant) does
not affect the results of overload analysis, as is not possible at the responsibility level to
determine how the effort of these responsibilities is divided.

The generation of an overload warning is not definite evidence of a vulnerability, but a warning
sign that requires further investigation. A model is likely to feature responsibilities across
different scales and different levels of importance, and holding a large number of ‘small scale’

5.3. Automatic Analysis Methods 118

responsibilities need not be more demanding than holding fewer, larger responsibilities.

This can be addressed by specifying the load value of responsibilities - representing the
amount of attention and effort required to discharge them. By default, all responsibilities have
a standard load value of 1; load values are relative to other responsibilities, so increasing the
load to 3 indicates a responsibility that places three times the standard load on its respective
actors. This has a corresponding effect on overload warnings; it is easily possible for an actor
holding one responsibility to be overloaded if that responsibility has a particularly high load
value.

However, care should be taken not to over-specify responsibility loads. The load value is
a broad representation of the complexity of the responsibility, not an exact specification of
the time taken or resources required. Overload detection is an advisory warning, and so
minute differences in load make little difference; differences in load values are best used
for responsibilities that have appreciable differences in complexity within the context of the
model.

Overload detection is most effective when a model of a problem domain represents responsi-
bilities and actors at the same level of abstraction. For example, a police force is responsible
for maintaining law and order, whereas a traffic officer who is a member of that police force
is responsible for enforcing traffic laws. Misleading results can occur if these two levels of
abstraction are mixed. For example, a police service could be modelled as being responsible
for the traffic laws, investigating cyber crime, responding to emergency calls, etc. Overload
analysis would consider the police service overloaded, whereas in practice this is an effect of
inappropriate mixing of abstractions. This is best addressed by aiming to maintain the same
level of abstraction across the entire model, but like all forms of automated analysis a certain
level of human judgement is required to interpret the results.

5.3.2 Unassignment

The correct operation of a system depends on the availability of resources and actors - the
failure to produce resources via the discharge of responsibilities is a vulnerability within the
model of the system. A full analysis of resource production or responsibility discharge can be
complex, especially when complex satisfaction constraints are defined. However, a subset of
potential vulnerabilities can be detected using unassignment checks.

Unassignment warnings are generated for each resource that does not have an associated
Production relation, and for each responsibility that does not have a Required Actor relation.
Relations to disabled entities are excluded, but no other checks are made as to the viability of
the related entities.

5.3. Automatic Analysis Methods 119

Figure 5.3: Example responsibility model showing unassigned entities

Figure 5.3 shows a partial responsibility model for assessing university students. Grading
students requires a Lecturer, Exam Marks and Coursework Marks. Unassignment warnings
are generated for Mark Coursework and Exam Marks; Mark Coursework has no Required
Actors, while Exam Marks is not produced by any responsibility. However, no warning is
generated for Coursework Marks, as these are produced by Mark Coursework, even though
Mark Coursework itself is subject to a warning. Unassignment checks are local to each entity,
and do not check further than their direct relations. Instead, a full-system wide analysis can
be performed using discharge detection.

In most cases, unassignment indicates that the resource cannot be produced or the responsi-
bility cannot be discharged; this can reflect an issue in the modelling process (an attempt to
limit the model scope, or an entity missed out) or an oversight in the actual system, such as an
undocumented process or an assumption of constant availability.

5.3.3 Reliance

Interactions and interdependency occur routinely between actors in socio-technical systems.
Actors can share certain responsibilities, where multiple actors must collaborate in order to
achieve a common goal. These types of relationship are observed in a responsibility model by
looking at the requirements for a particular responsibility.

However, a more subtle form of interdependency occurs when an actor indirectly relies upon
another in order to be able to discharge their own responsibilities. For example, an actor may
hold a responsibility that requires a resource in order to be discharged, and so the actor’s
responsibility can only be discharged if the resource is successfully produced. If the resource
is produced through the discharge of a responsibility held by a different actor, the original
actor relies on the second actor. Without them the original actor cannot discharge its own
responsibilities. This places actors in a difficult position - their own success in discharging
responsibilities can be reliant on those they have no direct control over.

5.3. Automatic Analysis Methods 120

Figure 5.4: Reliance example - the Student relies on the Lecturer

In particular, this dependency produces problems when entities hold responsibilities where
the activity of the work is performed completely by another agent. This can easily occur
when there is uncertainty about the responsibilities of particular agents, or where work is
delegated away. For example, drivers may blame the local authorities for the state of the
roads, even if these are trunk roads managed by central government. In such a case it can
be said that the local authority holds a responsibility to manage the roads, which itself can
be refined into local roads (requiring the local authority) and major roads (requiring central
government). As a result, the local authority is dependent on central government to discharge
its responsibilities, but has no ability to influence them.

Despite this, dependency is a core part of most large systems. Where dependency relationships
match organisational hierarchies or contractual obligations the system has the required control
mechanisms to successfully discharge its responsibilities. Dependency only leads to vulner-
abilities where there is a mismatch between the relationships implied by the responsibility
structure and the actual relationships within the system.

Reliance analysis generates a corresponding set of actors for each actor within a responsibility
model. This set contains all other actors that are directly or indirectly required by the
responsibilities held by the original actor; this includes both direct relations (i.e. a required
Actor relation) and indirect relations (where a responsibility requires another entity, which
directly or indirectly relies on another actor).

Figure 5.4 shows an example model displaying the use of reliance analysis. A Student holds
the responsibility to Sit an Exam, but to discharge this they need the Exam Paper resource.
This resource is produced by the responsibility Write Exam, which is held by a Lecturer. The
Lecturer is required by a responsibility that is indirectly required by a responsibility held
by the Student, so the Student therefore relies on the Lecturer. Without the Lecturer there
would be no Exam Paper to be sat, and so the Student would be unable to discharge their
responsibility.

This form of reliance can be a source of potential vulnerabilities. Actors can be placed in a
situation where they are held accountable for responsibilities that they cannot discharge by
themselves; they are expected to discharge their own responsibilities regardless of the necessity
of external support. This is particularly problematic where reliance crosses organisational

5.3. Automatic Analysis Methods 121

Figure 5.5: Example responsibility model annotated with criticality scores

boundaries, as this leaves actors without the ‘soft influence’ on others that they have by virtue
of being within the same organisation [166].

The set of actors relied upon can be compared to management structures. If an actor relies on
another actor that they manage or supervise it is more reasonable to blame them for failings
than if they have no control over the second actor. For example, the manager of a team is
likely to rely on the members of their team in order to discharge all their responsibilities, but
they have the authority to ensure that the team members act as required. If an actor relies on
others over whom they have no authority there is little the actor can do to ensure that what
they require is done, and the appearance of such relationships is a sign that the model lacks an
appropriate authority structure.

5.3.4 Criticality

Two forms of analysis are also possible which operate across the entire model. Criticality
analysis detects the most critical entities - those that contribute the most to the system and
would cause the highest number of responsibility failures if they were non-functional.

Criticality is calculated by identifying the number of responsibilities that depend on an entity
in order to be discharged, such as needing a resource or requiring other responsibilities. This
is calculated by traversing the graph of all entities in the model. The criticality score of a
responsibility is the sum of the criticality score of all entities that depend on it. The criticality
score indicates the number of other responsibilities that would not be discharged if the critical
entity was unavailable.

5.3. Automatic Analysis Methods 122

Figure 5.5 shows a responsibility model of serving food in a restaurant, annotated with the
criticality score of each entity. The most critical actors are the Waiter and Customer (tied
with a score of 3 each), the most critical actor resource is the Order and the the most critical
responsibility is Take Order. Criticality scores are calculated by evaluating the dependencies
of each responsibility; for example, Cook Meal is required for Enjoy Meal (which gives
Cook Meal a criticality score of 1), Order is required for Cook Meal which is itself required
for Enjoy Meal (giving Order a criticality score of 2) and so on. Criticality considers only
required entities and not Holds relations, so the Restaurant Manager has a score of 0, as they
hold a responsibility but are not required by it.

In practice, there are two main cases of criticality. Firstly, an entity may receive a high
criticality score because it is at the start of a chain - for example, the first resource in a
complex production/consumption process, or the root responsibility at a chain of dependencies.
Alternatively, a high criticality score may arise simply when an entity is directly involved in a
large number of relations.

In either case, the critical entity warning can be used to identify the need for fault-tolerance
and redundancy in the system. In a long chain of entities, this redundancy can be provided by
allowing for multiple ways to initiate the process (eliminating a single point of failure at the
start), and by multiple routes throughout the chain (preventing the chain from failing part way
through). If a single entity is involved with a large number of relations this can be addressed
by transferring some of their relations to other entities where possible. Alternatively, the
entity itself can be made more redundant - for example, responsibilities can be replaced with
primary and alternate modes, and actors can be augmented with automated fallback systems.

Criticality analysis relies on a consistent level of detail and abstraction in a model. Each
responsibility is considered to have the same level of importance, so a cluster of specific
responsibilities is considered more critical than a single overarching responsibility. If one
part of the model is specified in more low-level detail than another then the low-level part
of the model will contain a higher density of entities, and hence receive a higher criticality
score. This can be partially addressed by breaking the model down into sub-models and
analysing each one separately; this requires very careful construction in order to avoid ignoring
interactions between the different sub-models.

5.3.5 Discharge

The second form of model-wide analysis is responsibility discharge detection, which is
augmented with the constraint language described in Section 4.6. By default, responsibilities
are considered to be successfully discharged if all required elements (the entities to which
they are linked by relations) are active. However, sometimes the discharge criteria for a

5.4. Modelling Problems 123

responsibility are more complicated. A responsibility may for example be dischargable by
either one of two separate actors, or may rely on the availability of a subset of different
resources. In these cases, the more complex behaviour can be expressed using the constraint
language.

When discharge analysis is performed, initial checks are made on entities without complex
constraints to determine if they can be discharged. After this, the constraints defined on
complex entities are evaluated by a constraint parser, and responsibilities that fail to discharge
are indicated. If combined with the selective disabling of model elements this technique allows
for an effective analysis of system failure modes. This allows for the examination of fault
tolerance and redundancy within the system, and further automation allows the most serious
points of failure to be determined by checking the number of undischarged responsibilities
caused when each object in the system is disabled.

5.4 Modelling Problems

Responsibility models may exhibit certain characteristics that are potentially indicative of
mistakes in the modelling process, such as missing relations or complex responsibility
structures. Understanding these common problems allows the identification and correction
of such mistakes easily and in a consistent manner. These problems are akin to the software
engineering concept of ‘bad smells’ - indicators of poor software design practice that may
cause difficulties in the future [14]. In systems modelling, bad smells in a model may represent
a mistake or a non-optimal modelling choice, but they may also represent a genuine problem or
uncertainty in the problem domain. It is therefore important to fully understand any apparent
problem before addressing it, as changing a model so that is ‘correct’ may actually make it
less representative of the system it is attempting to describe. In this section, several common
modelling problems that may be indicative of either poor modelling or issues in the actual
system are described and evaluated. These problems have been observed in the construction
of responsibility model for this thesis, as well as in previous responsibility modelling studies.

Ideally, all responsibilities in a model should be at a broadly similar level of abstraction.
This helps to make the scope of the model clear, and makes analysis more meaningful, as
responsibilities are more likely to be of similar effort and importance. However, it is common
for responsibility models to have varying levels of abstraction. This is not inherently a problem,
but can indicate several potential causes that require investigation. Firstly, inconsistent
abstraction levels may simply represent an example of confused modelling, where the modeller
has inadvertently mixed levels of detail without due cause. In this case, a restructuring of the
model will provide greater consistency and improve the reliability of analysis results.

Alternatively, confusion around levels of abstraction may represent actual inconsistencies

5.4. Modelling Problems 124

or wide variance in the domain itself, or at least in the sources of information used to build
the model. This may arise from combining sources that take different views of the system
(such as operational records vs. regulatory requirements) or because individual sources cover
wide-ranging areas and focus in more detail on specific topics. In this case, the inconsistency
in the model is inherent to the representation of the system and cannot easily be eliminated;
instead, the multi-level structure of the model should be taken into account when performing
analysis.

Issues around the abstraction of responsibilities can also have implications for actors. Actors
that appear to hold large numbers of responsibilities may only do so because the responsibili-
ties they hold have been decomposed to a high level of detail compared to other responsibilities
in the same model. This can potentially be addressed by restructuring the responsibilities as
mentioned above; if this structure arises because of complexities in the domain the only option
is to carefully consider the results of actor analysis, especially when drawing comparisons
between actors that may have responsibilities modelled at different levels of abstraction.

The distinction between the ‘holds’ relation and the ‘required actor’ relation can potentially
lead to confusion; in particular, actor-responsibility relationships that use one but not the
other. Each possible combination represents a different type of interaction; ‘holds’ indicates
accountability and duty; ‘required actor’ indicates practical need and both ‘holds’ and ‘re-
quired actor’ indicates both practical participation and accountability. Each option has its
uses, and this may be informed by the information used to construct the model. For example,
a model based on the implementation of a system (using procedures, staff interviews, field
observations etc.) is likely to feature more uses of ‘required actor’ and fewer of ‘holds’, as
these sources focus on practical details. In contrast, a system based on higher-level sources
(specifications, regulations, organisational structures etc.) may contain more ‘holds’ relations,
and may lack ‘required actor’ relations where the details of how a specification or regulation
should be met are not described.

Some responsibilities or resources may appear underspecified; for example, a resource that
is not produced or a responsibility that has no required actors. This may occur for at least
three different reasons. Firstly, the entity might be described with deliberately vague detail in
order to avoid unnecessarily extending the scope of a system, such as a resource that is simply
assumed to always be available to avoid showing the details of its production. Secondly, the
entity might not have a clear and practical definition in the problem domain, such as fairly
abstract legal requirements that organisations might hold, but where the details of how such
obligations would be ensured in practice is unclear. Thirdly, it may simply be an oversight by
the modeller.

5.5. Patterns 125

5.5 Patterns

Responsibility models are models of socio-technical system structures. These structures may
be formal or informal, and may or may not cross conventional organisational boundaries [42].
The complexity of socio-technical systems in breadth and scope may initially imply that there
is little commonality between different systems, and that each responsibility model must be
constructed and analysed independently from any others. However, common structures often
appear across different domains and systems, and the recognition of these structures allows
for effective model and system analysis.

These patterns represent common structures in responsibility models - akin to design patterns
in other forms of engineering. Software design patterns originated as a method for addressing
common problems with a standard but adaptable solution to small-scale design problems
[64]. Socio-technical design patterns have been studied in other contexts, such as Martin and
Sommerville [121]’s ethnomethodologically-based patterns of work and Storer et al. [177]’s
patterns of information security.

When used to analyse existing systems, patterns provide a library of structures that allow
analysts to quickly identify features of the model and get insight to the vulnerabilities of
that structure. When used for requirements engineering patterns provide simple structures
with well-known strengths and weaknesses and guidance as to what contexts that structure is
suitable or not suitable for.

This section defines and analyses common patterns for multi-agent co-ordination - a common
activity in socio-technical systems [35], and a disproportionate source of potential vulnerabili-
ties due to the common complexity and ambiguity of human communication, especially across
organisational boundaries [170]. These definitions can be used to recognise and understand
co-ordination within a system, and demonstrate the efficacy of the pattern analysis technique,
which can be potentially extended to many other types of structure.

As models of organisational structures, responsibility models often feature implicit and
explicit examples of multi-agent co-ordination. This co-ordination is required to meet some
common goal, or to operate effectively as part of a (possibly virtual) organisation. While
there are significant differences between different types of organisation at an abstract level
there are very few distinct forms of co-ordination. Mintzberg [126] suggests that there are
just five basic forms of co-ordination - ultimately, co-ordination is either ad-hoc at a flat level,
or intermediated by some system or actor. Each abstract type of co-ordination has strengths
and weaknesses, which lead to particular types of vulnerabilities in the actual system.

Explicit co-ordination generally takes the form of one of three patterns: a hierarchy, a co-
ordinator or a co-ordination team. Both the hierarchy and the co-ordinator patterns are
variations of Mintzberg’s ‘Direct Supervision’, and the co-ordination team is equivalent to

5.5. Patterns 126

(a) Hierarchy

(b) Co-ordinator

(c) Co-ordination team

Figure 5.6: Co-ordination patterns

‘Mutual Adjustment’. Implicit co-ordination occurs when multiple actors are assigned to the
same responsibility; potential vulnerabilities arise when co-ordination may be necessary but
is not specified, such as between actors working in a long production-consumption chain.
Mintzberg’s three other co-ordination forms all represent types of implicit co-ordination.
Figure 5.6 shows responsibility models of the three types of explicit co-ordination, using
resource production/consumption as the shared work.

In the hierarchy pattern, actors are linked by the chain of actors above them - at some level
these chains meet either by being supervised by the same superior actor, or by sharing a com-
mon responsibility. This structure provides weak co-ordination and loses power as it scales.
Automatic analysis of this responsibility structure shows that dependency links are broken as
low-level staff do not hold any responsibility for co-ordinating their activities; instead, senior
management staff perform high-level co-ordination but rely on middle management below
them, who are themselves reliant on the low-level staff. Middle managers are particularly at
risk of overload if they manage large numbers of low-level actors. Additionally, this pattern
creates critical actors that act as single points of failure - if a top-level actor fails large numbers
of lower-placed actors will fail to co-ordinate. However, the hierarchy minimises load on
lower-level actors by reducing their communication overload and also minimises the number
of actor roles required.

In the co-ordinator pattern, actors with shared responsibilities communicate via an explicit
third-party actor, the co-ordinator. The co-ordinator acts as a proxy, relaying communications
between the other actors. When there are too few co-ordinators compared to other actors, this
pattern shares the same strengths and weaknesses as hierarchy. When used more substantially,
the co-ordinator pattern leads to a decentralised system that scales effectively and can retain
robust communication. However, additional resources are required to provide the extra

5.6. Actor Roles 127

co-ordinators, and communicating with multiple co-ordinators may overload actors. The
co-ordination pattern places (potentially multiple layers of) co-ordinators directly above
frontline staff, making each co-ordinator directly reliant on those actors. If co-ordinators hold
responsibilities for excessive numbers of projects or staff then they face the same overload
problem as middle managers in a hierarchy.

In the co-ordination team pattern actors with shared responsibilities do not use a separate
co-ordinator and instead together form a co-ordination group with shared responsibility. In
comparison to the co-ordinator pattern, this approach reduces the amount of actors required
while retaining communication at the individual rather than the hierarchical level. It is
counter-indicated when the co-ordination group would be excessively large, or where one
actor would be part of multiple groups - in both cases it becomes impractical for effective
communication to occur. In a co-ordination team actors communicate directly with each other
without any intermediate layers. This increases the number of responsibilities held by each
actor, potentially leading to overload. Additionally, this is the only pattern where co-operating
actors directly rely on each, rather than having this link removed by intermediation.

A wide range of other pattern definitions are possible. For example, there are patterns apparent
in resource management (assembly line, pooled resources, information alerts), responsibility
delegation (matrix management structures, managerial hierarchies, team working) and inter-
related responsibilities (check and audit, iterative processes, checklists etc.)

5.6 Actor Roles

In responsibility modelling actors represent roles, rather than actual individuals or organi-
sations. One role might be fulfilled by several different organisations (an emergency first
responder may be from the police, fire or ambulance services), while one organisation might
fulfil multiple roles (a GP simultaneously fills the roles of medical advisor, NHS contractor
and small business owner). This complexity in actor roles was recognised in Lock et al. [116],
where the ‘Act As’ relationship was introduced to provide a link between individuals and
roles (for example, ‘Bob acts as an administrator’). Unfortunately, neither a formal definition
or an illustrative example were provided.

However, this approach risks muddying the definition of actors by introducing both roles and
the agents performing the roles in the same model. This would require introducing more
types of entities and relations, with a corresponding increase in model complexity. Given
that role allocations are ultimately an implementation detail (the responsibility model is a
general, abstracted view of the system, while role allocations may vary according to particular
circumstances) it is best not to include them directly in the model. Alternatively, if directly

5.7. What-If Analysis 128

modelling actors is essential then it is possible to remove the roles and model entirely in terms
of actual actors, accepting the reduction in generality that this entails.

Despite this, there are clear advantages to studying the relationships between actor roles and
those fulfilling them. Conflicts of interest can arise if two seemingly separate roles are filled
by the same actor - consider a regulator who also owns a business in their area of regulation.
Simplistic versions of actor load analysis can also be subverted by actors holding multiple
roles - two individual roles may each have manageable loads, but if performed by the same
actor the combined load becomes excessive.

In addition, the ability of actors to fulfil multiple roles also impacts on criticality analysis
and vulnerability detection. Individual roles may may not be critical to the system, but a
combination of roles occupied by the same actor could be. Likewise, disabling all roles played
by an actor may cause the system to fail, but disabling only one role will not.

A low-effort technique to study this is to introduce an additional, optional phase of actor
analysis. In this phase, mappings are constructed between roles and actors, which indicate
which actors fulfil which roles. In conjunction with the criticality and load values for the roles
(produced by the toolkit) this can quickly be used to determine potential vulnerabilities in
terms of actors. If it is necessary to examine the effectiveness of actors failing to discharge
multiple roles then simply disable all roles they currently hold, and perform analysis as normal.
By constructing a simple table of mappings between roles and actual actors it is possible to
perform this analysis with relative ease and without relying on specific tool support. This is
similar to Lock et al. [116]’s ‘Act As’ relationship, but separating the mapping of roles and
actors from the model itself simplifies the semantics of the relationship.

When constructing the model, modellers can also place constraints on role allocation that
should be checked during this process. For example, they can constrain the role of the
regulator and the regulated person such that no individual can hold both roles. By explicitly
identifying potential sources of vulnerabilities at the time of modelling it becomes extremely
simple to detect them once the model is instantiated with actors. Again, this can provide
useful warnings without the need to extend the responsibility notation and add additional
complexity.

5.7 What-If Analysis

One use of socio-technical analysis is the evaluation of potential failures, and the effects
that failures of individual components and subsystem have on the overall system. This type
of evaluation can help to detect and correct vulnerabilities in a deployed system, or can
be used to incorporate more redundancy into requirements or a system design. In many
socio-technical methodologies this is obtained by performing a static analysis of the system

5.7. What-If Analysis 129

Figure 5.7: Responsibility model showing selectively disabled entities

(e.g. workability analysis in i* [202] or process analysis in STAMP [109]) - evaluating the
structure and details of the model, and identifying single points of failure and potentially
stressed elements; formalised responsibility modelling’s automatic analysis techniques work
in this way.

However, additional insight can be obtained by using dynamic analysis - modifying the model
to represent particular scenarios or failure states, and then analysing how the model operates
in these degraded conditions. This may involve re-applying static analysis techniques in
the new situation, or evaluating the satisfaction of entities under the new conditions. To
enable this form of ‘what-if’ analysis the RESME toolkit allows for the selective enabling
and disabling of individual entities and relations; this has the effect of temporarily removing
them from the semantic model while they remain visible (but clearly disabled) in the visual
model. Model elements (both relations and entities) can be selectively enabled and disabled
by double-clicking on them - disabling an element has the effect of removing it from the
model for the purposes of analysis, which is visually indicated by greying-out the element.

Figure 5.7 shows a simple responsibility model of purchases in a supermarket. Two of the
entities in this model have been disabled (as indicated by the italic text on the label, the grey
border on the entities and the broken lines on their relations) - the resource Cash and the actor
Shop Assistant. Visually, certain effects of these disabled entities are apparent - for example,
the responsibility Check for Shoplifting cannot be discharged. However, more interesting
results can be obtained by comparing the results of automated analysis run before and after
the entities are disabled. In this example the most critical actor changes as a result of the
disabled entities; with all entities enabled the most critical actor is the Shop Assistant with a
score of three, while once disabled the most critical actor is now the Customer, with a score
of two.

5.8. Conclusion 130

This process allows for ‘what-if’ analysis to be used much more widely than in notations
where manual copies and variations of the model must be made for each change. As the
responsibility model is formally defined and tool-supported, the state of the model updates
immediately as each entity is disabled, and analysis can be quickly re-run to understand the
implications of the change to the system.

‘What-if’ analysis can be performed with two main strategies. Firstly, the disabling of
individual entities or small groups of entities allows for the simulation of the failure of specific
subsystems or actors, and can be used to test the resilience of the system against small,
individual failures. These can be combined into larger and larger sets of failures, allowing
the system to be tested to destruction. Conversely, this can also be used to detect potentially
over-engineered systems - if multiple sub components can be disabled without compromising
the wider system then the level of redundancy provided may be overspecified.

Alternatively, ‘what-if’ analysis can be used to reproduce known failure cases or incidents.
Initially, these can be used to calibrate and validate the model as an accurate representation of
the actual domain. Running the model with the appropriate failed elements disabled should
produce a result that is broadly similar to the results of the incident - a large difference
between the simulated result and the actual result shows a lack of fidelity in the model. Once
confidence has been established in the model it can then be used to predict the consequences of
incidents, which is particularly useful when considering changes to alleviate future problems.
Additional safeguards and preventative systems can be added to the model and the incident
reconstructed, allowing the model to predict whether or not the changes will eliminate (or
reduce the severity of) similar incidents in the future.

5.8 Conclusion

In this chapter we have presented a comprehensive package of analysis techniques for for-
malised responsibility modelling. By utilising the consistent definitions of entities and
relations provided by formalised responsibility modelling we are able to define automated
analysis techniques to quickly detect potential vulnerabilities in a model. Overloaded actors,
resource production, points of failure and implicit organisational structures can all be detected
automatically. Additionally, the use of satisfaction criteria allows for the detailed specification
of the success requirements for individual entities, allowing model-wide evaluation of the
success or failure of the system. A guide is provided to common model ‘problems’, which
examines whether potentially concerning elements in models represent genuine problems
with the model, or are in fact signs of unusual or incomplete definition in the socio-technical
system itself.

Common traits in models also allow for the definition of patterns, which use responsibility

5.8. Conclusion 131

structures to provide insights into the strengths and weaknesses of the underlying system.
Role analysis enables the investigation of the complex relationship between responsibility
modelling actors and individual people or organisations, who may often act in more than one
actor role. Structured and semi-formal techniques enable more insightful and probing analysis.
‘What-if’ analysis allows the simulation of individual entity failures to examine the impact
on the operation and redundancy of the system. The majority of formal and semi-formal
techniques are implemented in our RESME toolkit, which also provides easy-to-use graphical
creation and editing of responsibility models.

132

Chapter 6

Case Study - A Re-Engineered
Responsibility Modelling Study

6.1 Introduction

This chapter analyses a case study that was previously studied by conventional responsibility
modelling. We have chosen the Hunterston emergency plan study, as previously analysed by
the InDeED consortium [86] and validated against field exercises. The core of this study is
the Hunterston Nuclear Power Stations Off-Site Emergency Plan [133]. This case study was
chosen for two reasons: firstly, to evaluate whether formalised responsibility modelling is
consistent with the original responsibility modelling approach; secondly, to investigate the
advantages of the new approach by performing a more structured analysis, emphasising the
value of tool support and the iterative and dynamic aspects of the analysis enabled by formal
semantics.

By law in the UK, a local government authority area that contains a nuclear power station must
produce an Off-Site Emergency Plan to collate the emergency arrangements of the various
agencies that would respond to a radiation incident at the nuclear plants [185]. The Off-Site
Emergency Plan for the Hunterston Nuclear Power Stations in North Ayrshire [133] is the
subject of our analysis. The plan details the agencies involved, the communication between
them and many of the actions taken in the surrounding area; it does not describe the actual
process of emergency action at the site itself, which is the internal responsibility of the site
owner.

By analysing this document, we show the utility of formalised responsibility modelling in a
number of ways. These include:

• showing that responsibility models can be used to effectively represent complex scenar-
ios (the plan runs to over 100 pages)

6.1. Introduction 133

• showing that construction and analysis of responsibility models does not require domain-
specific knowledge (we have no special knowledge of nuclear power or emergency
planning)

• demonstrating that automatic analysis methods can provide insights as to the structure
of the responsibilities in a system

• showing that our updated responsibility modelling is compatible with previous ap-
proaches, while offering useful new features

This scenario was previously studied by the InDeED Project, which developed the first forms
of responsibility modelling. We have obtained copies of their models, observations and initial
analysis. As a result, this study can be compared with theirs, which both validates our models
and allows comparison between the two different techniques. The InDeED models were not
externally validated or evaluated; the comparison allows for relative validation against the
previous state-of-the-art but does not make claims about the inherent quality of the models
and analysis.

Models produced and notes referenced during this study are available online in two GitHub
repositories: [158] contains the responsibility models themselves (in the file format of the
RESME toolkit), while [87] contains the model (in Visio format) and observational notes
from InDeED’s previous study.

The remainder of this chapter is laid out as follows. Section 6.2 provides the relevant
background material for this study. This includes details on the Hunterston power complex
and organisations involved in the emergency response, as well as discussing the scope and
content of the Off-Site Emergency Plan itself. Section 6.3 presents the modelling process and
its results. This includes an overview of the modelling procedure and comments on particularly
interesting parts of the model, as well as challenges encountered during the process. Section
6.4 describes our analysis of the constructed model, based on both informal observation and
automated analysis. Potential vulnerabilities in the emergency plan are examined, and the
effectiveness of the approach is considered. Sections 6.5, 6.6 & 6.7 compare the results of
our analysis with the earlier InDeED Project work, an updated version of the emergency plan
and against observations obtained from emergency planning exercises. In Section 6.8 the
dynamic features of the responsibility modelling toolkit are used to re-run elements of the
field exercises and identify problems that arise. Finally, Section 6.9 provides a final overview
and conclusion.

6.2. Background 134

Figure 6.1: Map showing the location of the Hunterston site (circled) and surrounding
communities
Map c©OpenStreetMap contributors, available under the Open Database License

6.2 Background

The Hunterston nuclear power complex consists of two separate facilities - Hunterston A, a
now-closed Magnox nuclear power station and Hunterston B, a currently operational AGR
(Advanced Gas Cooled Reactor) nuclear power station. Hunterston is located on the Ayrshire
coast in western Scotland approximately 30 kilometres from the city of Glasgow, as illustrated
in Figure 6.1.

The Hunterston power stations are of two distinct generations. Hunterston A was commis-
sioned in 1964 and decommissioned in 1990. While no longer operational, decommissioning
and maintenance work continues by British Nuclear Group. The adjacent Hunterston B was
commissioned in 1976 and is currently (as of 2016) operational. It is operated by EDF Energy
(formally British Energy Generation UK). Both sites contain hazardous nuclear material
capable of causing significant harm to the surrounding population.

Hunterston is located just off the A78 road in North Ayrshire. The Clydeport coal terminal
and Largs-Glasgow railway line are within 1km of the site to the north-east. To the south
is the small town of West Kilbride, with the larger multi-town conurbation of Ardrossan,
Saltcoats and Stevenson a short distance further. The town of Largs lies to the north.

6.2. Background 135

The Off-Site Emergency Plan is a legally required document, produced by North Ayrshire
Council on behalf of the Strathclyde Emergencies Coordinating Group (a umbrella group
consisting of emergency services, NHS bodies, local authorities etc.). The exact meaning of
the term ‘off-site emergency’ is not defined in this document, although several examples are
given (significant release of airborne radioactivity, discharge of radioactive material likely
to cause a hazard to the public). A similar document prepared for Wylfa power station by
the Isle of Anglesey Council provides the clearer definition: ‘A hazardous condition which
results, or is likely to result in the need to consider urgent countermeasures to protect the
public outside the site security fence from a radiological hazard’ [88].

The document can broadly be divided into three parts. Firstly, the process for declaring
an off-site emergency, and informing all relevant organisations. Secondly, the actions to
be taken in the surrounding area during and immediately after the incident - evacuating
local residents, activating roadblocks, informing the media etc. Thirdly, a description of
the roles and responsibilities of the participating agencies (which includes much of what
appears in the previous sections, but with some additions, deletions and inconsistencies).
Much of the content consists of responsibilities that are broadly inter-agency in nature, such
as co-ordination between the emergency services and the local authority, although the third
section provides significant detail on specific, non-cooperative tasks. No detail is provided on
emergency action on the site itself; only reactions and associated work in the surrounding
area.

The particular version of the document used in this study is dated March 2006. There are two
main reasons for using this version, rather than the most up-to-date. Firstly, our 2006 copy
is significantly less redacted than the publicly available current version, and so allows us to
perform a fuller analysis given the security restrictions on this type of material. Secondly, but
more importantly, it is this version that was subject to analysis performed by the InDeED
consortium, using an earlier version of responsibility modeling. We have performed our
modeling separately, without consulting the original models until the analysis stage; we
intend to show that our technique provides comparable analysis with the potential for more
detailed evaluation. Additionally, it is possible to check any detected vulnerabilities with the
current version, which may indicate the effectiveness of responsibility analysis compared to
the regular document review process.

The roles and responsibilities section of the plan lists 16 different participating agencies.
Some agencies are mentioned in the process-based sections of the plan, but not listed in
the set of agencies (a potential vulnerability that will be examined in Section 6.4). The
main stakeholders are the site operators (British Nuclear Group, British Energy Generation
UK), emergency services (NHS Ayrshire & Arran, Strathclyde Police, Scottish Ambulance
Service) and government authorities (North Ayrshire Council, Scottish Executive, HM Nuclear
Installations Inspectorate).

6.3. Initial Modelling 136

6.3 Initial Modelling

In order to model a scenario of this size subdivision of the problem is required. Firstly the
sections of the emergency plan referring to specific sets of responsibilities were modelled. In
practice, these were split by chapter, as each chapter of the report broadly describes a self-
contained set of responsibilities. The details of each chapter were used to produce submodels
describing these activities. Generally the content of these models corresponds directly to the
chapter title, with the occasional exception (such as Chapter 7, ‘Key Locations’ corresponding
to a model describing the establishment of various field sites). These exceptions generally
arose when a chapter contained both information for reference and planned action - the
title would correspond to the reference information, but it is the planned action that can be
modelled.

For clarity and brevity, certain trivial responsibilities have been omitted such as ‘Send
representative to NAECC’ (the emergency co-ordination centre), and such agents will not
appear if they are only planned to attend, and not to perform any substantive action. Certain
abstract responsibilities (for example, ‘discharge legal requirements’) have also been omitted,
as they are too imprecise to analyse. Likewise, ‘standard responsibilities’ have been omitted
if they restate normal day-to-day activity (for example, the NHS running hospitals). These
responsibilities are unlikely to play an important role in the discharge of the system, and their
omission simplifies the modelling and analysis process.

Additionally, it is important to emphasise that the model focuses on representing the off-site
aspects of the emergency; the Off-Site Emergency Plan occasionally features aspects of
on-site emergency planning, which have not been included. This effectively excludes certain
agencies. For example, the Fire Service plays a vital role in dealing with the emergency
on-site, but is described as having only advisory duties with regards to the off-site aspects.

Within each chapter, we first aimed to identify the relevant responsibilities. These were
generally actions to be performed or processes to be followed. We have not attempted to
model more abstract responsibilities (public duties, legal requirements) as the model concerns
responsibilities described in this document, which generally contains specific contextual
actions rather than overarching duties. Having identified responsibilities, corresponding actors
and resources were determined. In most cases this was straightforward, as the clear language
of the plan contained the required information. The main issue was identifying the difference
between responsibilities that required an organisation in general (e.g. Strathclyde Police) and
responsibilities that required a specific part of an organisation (e.g. the ‘Incident Commander’,
who in most circumstances is a senior officer of Strathclyde Police). The division in chapters
led to submodels being of a manageable size (4-10 responsibilities). A typical submodel is
shown in Figure 6.2. This submodel is accessible as ‘Rest Centre.responsibilitymetamodel’ in
[158], as are all other submodels.

6.3. Initial Modelling 137

Figure 6.2: Sub-model showing responsibilities for Rest Centre management

This model shows the establishment of Rest Centres to accommodate those displaced by
the emergency. Responsibilities are divided between different agencies - the Police are
responsible for initiating the evacuation and tracking casualties, the Ambulance Service are
responsible for decontamination of evacuees and the NHS are responsible for operating the
centres and treating evacuees. Some responsibilities are explicitly defined in the plan but not
assigned to any particular agency - responsibilities for handling evacuees who are forced to
discard their clothing due to contamination. Only one responsibility requires resources that
are explicitly mentioned - the iodate tablets for preventing thyroid cancer.

The process chapters of the emergency plan identify most of the responsibilities to be modelled.
However, they are not the only relevant sections of the plan. Chapter 14 of the plan provides a
comprehensive list of agencies and their agreed actions and responsibilities. This includes a
combination of more abstract responsibilities and duties, as well as restatement of actions
already covered in the previous chapters. We chose to model this section as one large model,
which included all the listed stakeholders and the actions they had agreed to. After creating
this model, it was combined with the individual subject-specific sub-models created earlier.
This process was straightforward as there were very few direct inconsistencies between the
two different views of the scenario, although many responsibilities described in the final
section were not present in the individual sections, and vice versa. The combined model is a
substantial construction, containing over fifty entities, as shown in Figure 6.3. This full model
is accessible as ‘Combined.responsibilitymetamodel’ in [158].

The standard responsibility modelling notation presented in Chapter 4 was sufficient to
capture the vast majority of the scenario. However, extensions were required to model

6.3. Initial Modelling 138

Figure 6.3: Completed responsibility model of the Hunterston emergency plan

6.3. Initial Modelling 139

6.3. Initial Modelling 140

Figure 6.4: Sub-model showing establishment of working groups

the establishment of working groups (as part of establishing the Emergency Co-ordination
Centre) in an intuitive way. In this part of the plan various committees and working groups
(Media Working Group, Strategic Co-ordination Group) are established, and then take on
responsibility for certain actions.

In the core responsibility modelling notation, only resources can be produced by responsi-
bilities. We could therefore model these committees as resources - they are created by a
responsibility ‘Establish working group’, and the tasks they perform can be stated to require
these resources. Unfortunately, this approach is inelegant in two ways. Firstly, it is unintuitive
- a committee is not a resource, it is an organisation - ease of understanding and reasoning by
non-expert users is one of responsibility modelling’s strengths, and over-use of this pattern
would jeopardise this. Secondly, this type of mis-classification undermines the effectiveness
of analysis. For example, reliance analysis will fail to include committees if they are modelled
as resources. Likewise, attempting to determine implicit supervisory relationships will be
affected and any actors sitting below the committees will be ignored.

Instead, we extended the notation by introducing a ‘Produce Actor’ relationship between
responsibilities and actors, as shown in Figure 6.4. This is essentially the same as ‘Produce
Resource’ but with a different output type. As a result, actors are no longer inherently satisfied
without conditions; actors can be specified as being produced in the same way that resources
are. Actors produced in this way are available and active if a responsibility that produces
them is successfully discharged; actors without any producing responsibilities are assumed by
default to be available, subject to any specified satisfaction criteria. Both graphical and textual
representations are inherited from ‘Produce Resource’ with the relevant types exchanged.

6.4. Analysis 141

6.4 Analysis

This section presents the analysis of the Hunterston Off-Site Emergency Plan responsibility
model. Firstly, analysis is carried out by inspection and non-formalised evaluation of the
model, as well as observations drawn from the process of modelling itself. Secondly, the
model is analysed using the automatic analysis techniques of the RESME toolkit, which
provides five different forms of structured analysis.

6.4.1 Model Inspection

The modelling process itself reveals potential vulnerabilities in the plan, even without the
need to perform model analysis. The initial process chapters of the plan contain organisational
actors that are not then included in the list of stakeholders. Most notably, the Ministry of
Defence (MoD) is expected to participate in the extended radiation monitoring (Chapter 9.8).
There are several MoD sites within travel distance of Hunterston, and the military can be
expected to have the required training and equipment. However, neither the MoD or any part
of the armed forces are listed as having agreed actions. They are not on the distribution list
for the emergency plan. No mention is made in the plan about how the MoD will be contacted
in an emergency, or which agency will be responsible for calling them in. As a result, there is
a risk that the MoD will not respond when the plan calls for their support. Likewise, extended
radiation monitoring calls for personal monitoring of individuals that have left the immediate
area. However, individuals leaving the immediate area are likely to leave the area of NHS
Ayrshire & Arran, and other health boards are left out of the plan in the same way as the MoD.
Neighbouring local councils are called on to provide services and the other Ayrshire councils
to the south are included, but councils to the north and east are ignored.

Reviewing the model it becomes apparent that there are certain core actors (site operator,
NHS, North Ayrshire Council etc.) and a good number of actors that have only a peripheral
involvement (Coastguard, British Telecom, Food Standards Agency). These core actors are
linked to each other by shared responsibilities, required responsibilities or resource interac-
tions, while the peripheral actors have responsibilities that stand alone. This is indicative
of a lack of consistency in the plan, where responsibilities have been added due to legal or
organisational obligations rather than an inherent functional need or priority. However, this
does not mean that all peripheral responsibilities are oblique or unnecessary. The provision of
uncontaminated drinking water is clearly important (but is not integrated with other aspects of
the evacuation process). The Coastguard certainly have a role to play, especially given there
is a major coal unloading terminal within two miles of the site. In contrast, British Telecom’s
responsibility to manage their network effectively does not seem to be a priority, or to require
them to act differently from a non-emergency situation.

6.4. Analysis 142

The Off-Site Emergency Plan is an overview and co-ordination document, rather than a
detailed guide to implementing emergency procedures - such implementation details are more
likely to managed in the individual response plans for each responding agency. While some
inconsistencies were identified in the involvement of agencies by examining those missing
from the distribution list, it is likely there are more cases where the response outlined in the
emergency plan does not correspond with the agency’s own plans. However, identifying
and analysing these inconsistencies would require access to the internal operational plans
of emergency services like the police and fire brigade, as well as government agencies such
as the Nuclear Installations Inspectorate and the Scottish Executive’s emergency response
team; for understandable reasons these detailed documents are not in the public domain.
Without access to these documents it is assumed that the response indicated by the emergency
plan corresponds directly to the planned response by the agency, although there is reason to
believe that undetected inconsistencies remain. As a result, analysis of the emergency plan
alone cannot reveal all potential vulnerabilities in the emergency response, but instead reveals
vulnerabilities within the emergency plan itself.

6.4.2 Automatic Analysis

The previous section provided an informal analysis, informed by the process of creating a
responsibility model, as was undertaken in the InDeED project. The strength of formalising
responsibility modelling is that analysis can be applied automatically by the toolkit, reducing
analyst effort and producing consistent results. In this case study, five relevant analysis
methods were applied: criticality analysis, overload detection, resource evaluation, assignment
checks and reliance. The results of each type of analysis are discussed separately below.

Production & Assignment

Resource production analysis checks to see if any resources are featured in the model without
being produced by a corresponding responsibility; similarly, assignment analysis identifies
responsibilities that are not held by any actors. In both cases these checks identify either parts
of the model that have not been specified in sufficient detail, or detect genuine oversights in
the actual system.

Analysis of resource production reveals three cases of resources being consumed without
previously being produced. These are two cases of potassium iodate tablets (a useful counter-
measure to prevent thyroid cancer) not being made available and no production of emergency
preparation documents (sent to residents and to be referred to in an emergency). However,
these may not directly represent a vulnerability. The processes and responsibility for creating
these resources do not appear in the model because they do not appear in the plan; this is

6.4. Analysis 143

presumably because they are out-of-scope, as their creation occurs well before the emergency
actually happens. This is not necessarily a vulnerability of the emergency plan, but instead
amounts to a set of preconditions that are assumed to be in place.

In this scenario, regular checks or audits of these resources would be useful, to ensure that they
will be available if necessary. This may actually happen already, but the plan does not mention
them. This lack of detail in planning can lead to failures when assumed resources are not
made available. For example, Sommerville et al. [170] report that several emergency agencies
required evacuation information, but no agency held the responsibility for collecting it; as a
result, this information was not available when an emergency occurred. In general, this can
be seen as a weakness of the plan that contains only actions that occur during the emergency
itself; the plan could be strengthened either by including a set of required preconditions
(resources, organisational links etc.) or by including validation and review processes that
occur regularly despite the absence of emergency.

Two warnings are generated for responsibilities that are not held by any actors. These two
responsibilities are both part of the Rest Centre management plan - the disposal of contami-
nated clothing and the provision of showers and replacement clothes. Neither has an actor
assigned. In some cases, it could be assumed that these responsibilities would be discharged
by the actor assigned to their top-level responsibility: in this case, North Ayrshire Council,
who hold the ‘Activate Rest Centres’ responsibility. The breakdown into sub-responsibilities
would therefore be for clarity, or to more accurately model resource consumption. However,
in this particular scenario that is not the case: the other sub-responsibilities of Rest Centre
Management contain explicit assignments to actors within the emergency plan and these
two responsibilities are the only ones that are not specified in this manner. In an emergency
scenario it is entirely possible that no organisation will consider providing these facilities
their responsibility, and hence it will not be possible to deal with evacuees that have been
exposed to surface contamination.

Criticality Analysis

Criticality analysis identifies the entities (one each of actors, resources and responsibilities)
that are most often relied upon to discharge the system’s responsibilities - the entities that
would cause the highest number of consequential failures if they failed themselves. This
highlights the most vulnerable single points of failure in a system, and can be used to check if
adequate safeguards or fallback mechanisms are in place.

In this case, criticality analysis provides a clear result. The most critical actor, resource and
responsibility are all part of the chain for declaring an offsite emergency - ‘Site Emergency
Controller’, ‘Declaration of Off-Site Emergency’ and ‘Declare Off-Site Emergency’ respec-
tively. This might be considered obvious in the analysis of an emergency plan - all other

6.4. Analysis 144

reactions to a emergency are not initiated until the emergency actually occurs. However, this
may lead to a failure in particularly catastrophic circumstances. Only the site controller (or
their deputy) can declare an off-site emergency, and the emergency plan is specifically built
around reactions to such a declaration. If the site controller is incapacitated as a result of the
initial incident there is no mechanism documented in the plan for an off-site emergency to be
declared. Although it is reasonable to expect that first responses to the incident would still
occur by the appropriate bodies, it would likely be ad-hoc response until a command structure
is established.

Disabling the emergency declaration chain and re-running criticality analysis leads to a wider
spread of critical entities, but also reveals some limitations in the analysis. The most critical
actor is Strathclyde Police, who hold more than half a dozen distinct responsibilities. This
is very clearly correct - the police are responsible for important tasks such as securing the
site, considering evacuation and handling casualties. There are multiple candidates for the
most critical responsibility and most critical resource that share the same criticality score,
and so it is not possible to identify the single most significant point of failure. The model is
relatively flat, with few complex interactions between entities. This represents the modular
nature of the emergency plan, which is defined in chapters with minimal cross-links. The
analysis therefore indicates the decentralised and federated nature of the system, rather than
pinpointing specific vulnerabilities.

Overload Analysis

Overload analysis identifies actors holding large numbers of responsibilities, which may
indicate that they are at risk of impaired performance due to the difficulty of satisfying
multiple responsibilities simultaneously. Overload detection (using a threshold of three
responsibilities) shows that five actors in this model are overloaded. Three of these are
organisational actors, while two are individuals. Overloaded individuals are of particular
concern, as individuals may be less capable of discharging multiple concurrent responsibilities.

The first overloaded individual is the Site Emergency Controller. In this case vulnerability
is unlikely, as their responsibilities are temporally distinct. The controller is responsible for
declaring an emergency (possibly on- or off-site), jointly responsible for establishing the
emergency control centre and jointly responsible for standing down from the emergency state.
In practice, these responsibilities are discharged consecutively so they are never responsible
for more than two active responsibilities at the same time. The other overloaded individual
actor is the Strategic Co-ordinator, who holds a number of responsibilities to establish and
chair working groups. These responsibilities all require action at broadly the same time so
there is a clear risk of delays or mistakes due to overload. However, the co-ordinator is
likely to be supported by other staff in the emergency co-ordination centre, so the risk is less

6.4. Analysis 145

substantial than an individual operating entirely alone.

Of the three overloaded organisational actors Strathclyde Police are the most overloaded,
holding nine different responsibilities. The main focus of their responsibilities is securing the
area and establishing control points, and their secondary focus is managing the evacuation of
civilians. As a large police force this range of responsibilities is understandable, and should
be within the ability of the force to cope. However, it is important that they effectively balance
their resources and deploy themselves proportionality to the right responsibilities; impaired
performance could occur if they over-prioritise some responsibilities while under-prioritising
others.

North Ayrshire Council is the second most overloaded actor. Their main responsibilities are
activating rest centres for evacuees as well as establishing the emergency co-ordination centre.
This provides a useful geographic and functional split between the organisational work of
their headquarters staff in establishing the co-ordination center and the practical, distributed
work in the rest centres. As a result this overload should not be a problem as long as it is
properly prepared for. Finally, the site operator is overloaded. As with the site controller
(themselves part of the site operator organisation) their tasks are temporally distributed -
including some responsibilities (‘Provide Prior Information’) that occur before any emergency
has been declared. Given this, serious vulnerabilities are unlikely to occur.

Reliance

Reliance analysis generates lists of actors that rely on other actors in order to discharge
their own responsibilities. This shows the interdependencies between actors, while relying
on actors in different organisations highlights potential vulnerabilities caused by lack of
control. Reliance analysis on the model highlights the high interconnectedness of the system.
No individual actor stands out as either strongly independent or highly dependent; all the
main actors (those holding multiple responsibilities) demonstrate substantial reliance on
others. This is to be expected - the Off-Site Emergency Plan is a multi-agency planning and
co-ordination document, so a significant focus is given to interactions between actors.

It is clear that the emergency plan can only function as a combined effort of the relevant
bodies; it is not possible for any particular organisation to heroically substitute itself for others.
The set of actors not relied upon by any other is essentially identical to the ‘peripheral’ actors
discovered by visual inspection, providing a more methodological definition of the same
concept.

6.5. Comparison with Previous Modelling Effort 146

6.5 Comparison with Previous Modelling Effort

The InDeED consortium previously modelled the Hunterston Off-Site Emergency Plan using
an earlier form of responsibility modelling. As part of a wider research investigation into
responsibility and trust in socio-technical systems, responsibility analysis was carried out on
several domains broadly focused around infrastructure - voting procedures [115], emergency
flood planning [170] and nuclear safety planning [174].

However, the Hunterston study differs from the other InDeED responsibility studies as it was
never formally written up and published; a full model was produced with some accompanying
notes, but it never progressed to a working paper. It should therefore be taken with certain
caveats as a non-published, non-peer reviewed source. Additionally, the evaluation performed
on the InDeED model is own our, rather than InDeED’s; only the model itself was produced
by InDeED and any errors or omissions in the discussion are our own.

Their study consists of 26 different sub-models, covering both the organisational and func-
tional elements of the plan [174]. These sub-models are broadly comparable to the sub-models
produced during the development of our model, but elaborated to contain more detail. For
example, Figure 6.5 shows the InDeED model for responsibilities involving the Coastguard.
Our model (Figure 6.3) contains only one (abstract) responsibility involving the Coastguard,
while the InDeED model also contains a breakdown of different nautical communication
methods and a taxonomy of different types of shipping. This information is all contained
in the relevant Coastguard section in the emergency plan; InDeED chose to model the plan
effectively unabridged, while we simplified for ease of modelling and analysis.

This trend holds throughout the InDeED model. Sections from the emergency plan are fully
modelled, containing all responsibilities listed. Organisations are often decomposed into
sections or individual roles (for example, North Ayrshire Council is decomposed into Social
Work Department, Chief Executive, Communications Officer etc.). Approximately one third
of the model consists of these decompositions with the remainder consisting of responsibility
assignments. At no point are the sub-models explicitly linked; conceptually they could be
linked by identifying common elements (the same actors and responsibilities appear across
multiple sub-models) but the modelling package used by InDeED (Microsoft Visio) does not
support this directly.

In comparison to InDeED, our model is smaller and more compact, but lacks detail in some
areas. This is not fundamental to formalised responsibility modelling or the construction
methodology; this level of abstraction seemed most efficient for obtaining useful results,
but we could model to the same level as InDeED as well. This would require a increase in
modelling time as our approach is to model in sections, and each section must be manually
linked together; the time taking for linking quickly increases as the number of sections

6.6. Comparison with Updated Documentation 147

Figure 6.5: InDeED sub-model representing Coastguard and activities

increases.

On the contrary, formalised responsibility modelling does not have an easy way of expressing
the actor decomposition that InDeED has. The concept of instance layers allows the mapping
between abstract roles and specific organisations or individuals, but does not allow the
modelling of situations where one actor is divided into subcomponents. Responsibility
decomposition is supported, and this can be used to create implied actor decomposition by
assigning sub-responsibilities to clearly labelled actors. While this slightly limits the coverage
of the modelling it is this relatively simple set of relationships that allows effective automatic
analysis, which is the key improvement over previous versions of the methodology.

6.6 Comparison with Updated Documentation

Having performed our analysis on the same 2006 plan as InDeED it is possible to compare
issues raised by the analysis to changes made in the plan since, with the latest version being
issued in June 2015 [7, pgs. 5, 8, 65]. (This version is subject to more substantial redaction
than the 2006 version, particularly around site and operational locations). The plan has
been extended and sections expanded, with additional detail on facilities in the evacuation
zone, post-accident recovery and related documents. Additionally, a number of participating
agencies have changed name and structure as a result of the Scottish Government’s merger of
emergency services.

6.7. Emergency Exercises 148

Some of the issues raised by our analysis have since been detected and addressed during the
annual revisions of the plan. The distribution list has been updated to include a wider range of
neighbouring local authorities and health boards, and the previously required but unincluded
Ministry of Defence has been removed from the plan entirely. However, most of the issues
identified remain relevant.

The Site Emergency Controller remains the only entity able to declare an off-site emergency
and initiate the plan; there is still no secondary measure to account for their unavailability.
Details around the operation of rest centres remain unclear, but the duties of the relevant
departments of North Ayrshire Council have been expanded and managerial (if not operational)
authority clearly rests with the social work department. Communication between agencies
has been improved by specifying some additional details (such as more information on
communications equipment within the emergency centre) but the general process of inter-
agency communication is still not documented.

6.7 Emergency Exercises

InDeED attended two emergency planning exercises testing the plan. ‘Exercise Kilchattan’
tested reactions to a waste spillage from Hunterston A [173], while ‘Exercise Indus’ reacted
to a fire and gas leak from Hunterston B [172]. Notes from Exercise Kilchattan mainly
critiqued the running of the exercise itself, but noted some more general issues. The number
of organisations involved meant that discussion were sidetracked by the interests of peripheral
agencies - the Coastguard were identified as being particularly keen to contribute despite not
being relevant to the vast majority of tasks (the peripheral nature of the coastguard and similar
agencies was identified in Section 6.4). The exercise was also impaired by communications
problems - the phone lines at the Nuclear Installations Inspectorate were down, and the plan
does not contain fallback procedures to address this. Geographical factors also impaired the
smooth running of the emergency response - the Central Emergency Support Centre (CESC)
would normally deploy a team to the site as the situation developed, but this is not practical
given the location of CESC in southern England. As a result, communications problems
emerged given the need to co-ordinate between CESC and local staff.

Notes from Exercise Indus also emphasised problems with communication. Communications
between British Energy (the site operator) and the emergency control room were sporadic and
incomplete, leading to confusion about casualty details and the extent of the radioactive gas
leak. Communications between the different responding agencies were also poor. Most were
co-located in the same control room and had deployed with their own computers and recording
equipment. However, no provisions were made for exchanging information electronically
between agencies so messages were passed by using double-copy carbon paper. Some use was

6.8. Simulation of Exercises 149

made of shared artifacts such as a whiteboard used for status updates but this was sporadically
updated and so often inaccurate.

Problems also arose with some of the on-ground activities. Restrictions on traffic movement
were imposed too slowly, allowing a passenger train to move through the area of radioactive
gas. Traffic control and operational points were moved as the plume of gas spread, but this
was recorded only in the police’s STORM command & control system and not adequately
expressed to other agencies. As one employee was said to have ‘died’ during the incident the
site of the power plant was declared a crime scene, which led to conflicts between the police’s
responsibility to secure the crime scene and their responsibility to stabilise the site and effect
repairs.

A number of plan areas were not tested during these exercises - for example, neither medical
treatment or rest centres were covered. As a result it was not possible for some of the problems
identified by our analysis to occur. No actors were incapacitated during the exercises, so
criticality problems did not arise. There was some evidence of overload problems, especially
amongst the police (identified as the most vulnerable actor) exacerbated by communication
issues.

In general, communication issues emerged as the most serious problem and led to some
impaired operation. Modelling communications mechanisms and resources in more detail
in the responsibility model therefore appears to be a useful way to identify additional issues.
Unfortunately while the emergency plan is clear on what is to be communicated it lacks detail
on the communications channels to be used. General knowledge and comments from the
field exercises suggest a mix of medium-range radio and landline telephones are used for
communication with the field, while a memo system is used to pass messages within the
control room. Neither of these are documented within the plan and may not hold true in the
future; additionally, there are number of special purpose communication links in use, such as
the TiiMs system for communicating with British Energy.

6.8 Simulation of Exercises

Our analysis identified limitations in both the responsibility model and the emergency plan
itself. It is clear that the model is not a completely accurate representation of either the plan
or the underlying emergency response. This is entirely to be expected, as the plan itself does
not fully or comprehensively reflect the reality of the emergency situation, and a semi-formal
model cannot be expected to capture the entirety of a free-text document.

However, the model can be modified to more accurately reflect the underlying scenario. This
requires deviating from the strict structure laid down by the emergency plan and redesigning
the model to more closely follow operational realities. Non-core and non-immediate (not

6.8. Simulation of Exercises 150

Figure 6.6: Revised responsibility model of the Hunterston emergency plan

6.8. Simulation of Exercises 151

relating to the period directly following the declaration of an off-site emergency) actors
and responsibilities were removed. These included the removal of BT’s management of
communications networks and the Food Standards Agency’s protection of the food chain;
the first is is non-core and difficult to clearly specify, while the second is important but
unlikely to begin until the situation has been brought under general control. The model was
also updated with relevant information from the revised public version of the emergency
plan - deleted actors like the MoD were removed, and details on previously ambiguous
assignments such as the roles of various NHS bodies clarified. However, the structure and
names of agencies were kept at their 2006 versions, rather than updating to reflect changes
in nomenclature (such as the establishment of a national police force). These updates align
the model more closely to the situation ‘on the ground’ in 2006, as described in the plan and
examined by field exercises. This revised model shown in Figure 6.6 and is accessible as
‘Hunterston2.responsibilitymetamodel’ in [158].

Now that the model has been updated to reflect (with a reasonable degree of fidelity) the oper-
ational situation at the time of the emergency plan it can be used to simulate similar scenarios
to the planning exercises observed by InDeED. The responsibility modelling toolkit offers
the ability to disable selected elements of a model, and to then perform analysis indicating
the effects of these changes on the wider system. This can be used to simulate an accident
that triggers the emergency plan and knocks out certain parts of the emergency response, and

6.8. Simulation of Exercises 152

indicates the effectiveness of the response under these constrained circumstances. In effect,
partially automated paper or tabletop exercises can be performed that test the emergency
plan and suggest areas for improvement, using considerably fewer resources than full-scale
multi-agency exercises. This type of analysis is not a direct substitute for full-scale exercises,
but may allow some issues to be identified earlier and at lower cost.

6.8.1 Exercise Indus

Exercise Indus simulated an incident involving the release of airborne radioactive materials
from Hunterston B, as well as an on-site fire. Specific constraints occurring in this exercise
included the failure of the TiiMs computerised information system and substantial delays
in establishing contact with British Energy staff on-site. To simulate these issues, the Site
Operator actor in our model was disabled (reflecting the inability to reach either site staff or
automated information). The Site Emergency Controller was left activated despite being an
on-site member of British Energy staff, as according to the exercise documentation the site
controller was successfully able to declare an off-site emergency.

With these constraints simulated, analysis of the model reveals a number of failures and
vulnerabilities. Firstly, responsibilities directly dependent on the Site Operator are not
discharged. This includes the failure to establish the CESC (Central Emergency Support
Centre; the support group at British Energy headquarters) and shortcomings in alerting nearby
residents to the incident (this process is partly automated, and so it is unclear if additional
activity is required by the site operator after first declaring an emergency). Some failures
at this stage are not problematic - the disabled site operator cannot distribute emergency
planning leaflets, but these are distributed in advance of an accident, not during one.

Second-order effects from this failure are surprisingly limited. The Site Operator has no
interactions or shared responsibilities with other actors, and does not produce resources that
are needed by others. This is primarily due to the off-site nature of the plan and model - the
site operator is responsible for a great deal of important activities during an emergency (safety
of staff, on-site firefighting, reactor shutdown and containment etc.) which are purely internal
to the power plant and hence do not feature in the plan or model.

None of these effects were explicitly reported from observations of the field exercise. CESC
was not mentioned during any stage of the exercise, although it is possible that it was eventually
established by different means (as communications with British Energy offices resumed later
in the exercise). The actual activities of CESC during the emergency do not feature in the
emergency plan (only its establishment), so the lack of mentions may reflect a lack of clarity
over CESC’s intended duties during the emergency. Likewise no explicit mentions were made
of the emergency communication systems for local residents. This was not tested in practice

6.8. Simulation of Exercises 153

during the exercise, but testing of the communication and control systems for it would be
useful. Reports from the exercises suggest that communication problems are not uncommon,
and the lack of clarity over triggering the warnings could be a serious hindrance if these
problems occurred in a real emergency.

These results correspond with earlier analysis of the plan-based model - there are gaps,
ambiguities and irrelevant elements in the plan that made understanding and operating the
plan difficult. Without access to the detailed plans of individual agencies it is not possible to
determine if these problems are shortcomings of the plan itself (due to excessive abstraction,
lack of clarity etc.) or if they are problems with the emergency response itself. In either case
a process of review and revision would be beneficial.

6.8.2 Exercise Kilchattan

Exercise Kilchattan simulated an spillage of radioactive waste from storage tanks at Hunterston
A, exacerbated by the failure of water drainage pumps. The response was hindered by storm
damage blocking the main access route, and the need to handle a sponsored dog-walk
occurring around the site perimeter. This was simulated by disabling responsibilities that
required close access to the plant site - Establish Forward Control Point and Establish Traffic
Control Points.

Disabling these responsibilities has almost no effect on the model, as they are not relied
upon by any other entities. In theory this reduces the load on the police (who hold the most
responsibilities within the plan) by eliminating two of their responsibilities. However, in
practice this is more likely to increase their load as they abandon planned responsibilities and
have to reallocate resources temporarily. Additionally they need to coordinate removal of
the storm damage and re-establish access to the site. The dog-walking is also likely to place
additional load on them, although is not modelled directly, as it is unclear who holds primary
responsibility for this activity.

These overload issues did not arise in reports from the exercise; as with Exercise Indus, issues
reported were more general problems with inter-agency communication and the structure
of the exercise. However, neither exercise was particularly suited to investigating potential
vulnerabilities in the off-site emergency response due to the choice of scenarios used. Both
scenarios featured unexpected failures either directly on-site (pump failure, staff problems) or
directly connected to the site (access roads, site communication links). These provide good
opportunities to test on-site performance under degraded conditions, but do not provide a
chance to test the robustness of the off-site response - in both scenarios the off-site agencies
responded in a textbook manner without any deliberately induced failures. This may reflect a
gap between the motivations of the site operators (who are primarily concerned with testing

6.9. Conclusion 154

their own procedures) and the external partners in these exercises; the report from Exercise
Indus hints that a lack of detail in some parts of the exercise could be due to British Energy
not caring about off-site elements [173].

6.9 Conclusion

By examining the Hunterston Emergency Plan and modelling it using formalised responsibility
modelling we have been able to provide useful analysis while comparing our approach to the
previous work by the InDeED consortium.

The analysis identified several shortcomings within the plan. These included vulnerable,
critical chains of responsibilities as well as overloaded actors and unproduced resources.
Many of these have been validated as valid issues by observations of emergency exercises or
by their correction in more recent versions of the emergency plan. Additionally, those not
directly validated by experience are still reasonable causes for concern; the lack of emerging
problems due to them in field exercises reflects the operation and scope of the exercise rather
than any fundamental irrelevance of the concerns.

The model produced broadly corresponded with the early work by InDeED, although InDeED
modelled to a lower level of abstraction. The advantage of the refined responsibility modelling
technique is clear - while InDeED’s analysis was limited to separate models of individual
areas, our analysis comprehensively covers the entire system and is guided by automatic
analysis methods, providing valuable consistency.

In particular, management of communications and communication methods was identified as
a key area where vulnerabilities could occur. A useful extension to the present model would
be to explicitly model communication methods as resources, and use these resources to assess
criticality. This is likely to be a useful technique in general when studying systems that rely
on complex, multi-agency responses.

Toolkit-based simulations were also used to complement existing field exercises used to test
the operation of the plan. These simulations generally revealed separate and contrasting
vulnerabilities to those identified by observing field exercises, providing a low-resource
method for identifying plan areas in need of refinement.

This chapter has set out a re-implementation of a previous InDeED modelling exercise. Our
revised technique has demonstrated its suitability for modelling large and complex systems
and generating useful automatic analysis from this model; the results show a strong similarity
to previous work while improving considerably in the quality and consistency of the analysis.

155

Chapter 7

Case Study - Airborne Collision
Avoidance System

7.1 Introduction

In this chapter we will model and analyse the use of the TCAS (Traffic Collision Avoidance
System) aircraft collision avoidance system. This case study provides an opportunity to study
a complex socio-technical system that has not previously been examined with responsibility
modelling but that has been subject to substantial study and analysis in the field of aviation
safety. This study allows the examination of the effectiveness of formalised responsibility
modelling when applied to a new domain. In particular, it demonstrates that responsibility
modelling can be used to capture the complex behaviour of socio-technical systems and that
the methodology and notation cover the full range of interesting system elements.

The choice of domain is a complex socio-technical system, where a computerised alert and
guidance system (TCAS) is used to provide additional protection against potential errors
made by pilots and air traffic controllers. The combination of human and technical factors
can lead to complex error states that would not occur if they each operated independently, and
this may pose a threat when using TCAS. We will model and analyse the TCAS ecosystem
using the publicly available standards documents and operating manuals and then validate via
structured discussions with domain experts in order to detect inconsistencies, oversights and
vulnerabilities within the operation or documentation of TCAS.

This study was conducted in co-operation with Sophrodyne, a socio-technical systems consul-
tancy, which enabled the validation of the resulting responsibility model and analysis results
with expert users of the TCAS system - a pilot and an air traffic controller.

TCAS was chosen as the choice of domain as it is well documented and studied system that
exhibits substantial socio-technical features, but has not previously been examined using

7.1. Introduction 156

responsibility modelling. Additionally, the expertise and access to domain experts of our
industrial partner enables substantial validation of our models, which would be more difficult
in other domains. This evaluation by domain experts provides an important understanding
of how responsibility modelling is interpreted by users and how accurately it can capture
complex system behaviour.

This case study demonstrates the benefits of formalised responsibility modelling as a mod-
elling, analysis and elicitation technique. In particular, this study shows:

• the application of responsibility modelling to a new problem domain

• that responsibility modelling can be used as a technique to elicit additional domain
information from system participants

• that formalised responsibility models can be generally understood by domain experts,
without requiring extensive training

• that formalised responsibility modelling can accurately model TCAS, a complex socio-
technical system, and its interactions

• that formalised responsibility modelling analysis results correspond broadly to docu-
mented issues, or issues encountered by system participants

The responsibility models produced during this study are available online in a GitHub reposi-
tory: [159].

The remainder of this chapter is structured as follows. Section 7.2 provides the relevant
background material for this study. This includes a discussion of TCAS’s functionality
and design, its integration within wider aviation operations and reports of incidents where
TCAS was utilised. Section 7.3 describes the initial modelling of the TCAS system and
environment, including the documents used and extensions to the standard responsibility
modelling notation. Section 7.4 describes the analysis of this initial model by inspection
and automatic analysis, alongside identifying relevant areas of interest not covered by the
first version of the model. Section 7.5 describes the revised model developed based on the
analysis results and study of mid-air collisions. Section 7.6 describes the methodology of the
evaluation of the model and analysis results using semi-structured interviews with domain
experts. Section 7.7 analyses the results of these interviews, considering the understandability
of the model, the effectiveness of the analysis techniques and the accuracy and scope of the
model. Section 7.8 examines other studies of TCAS and compares their structure and results
with those of this study. Finally, Section 7.9 provides a final overview and conclusion.

7.2. Background 157

7.2 Background

TCAS (Traffic Collision Avoidance System) is an automated warning system intended to
reduce the number of mid-air collisions between passenger aircraft. The term TCAS is
often used interchangeably with ACAS (Airborne Collision Avoidance System), which is
an international standard that TCAS implements. TCAS uses transponder information from
nearby aircraft to generate alerts and advisories; alerts provide the pilots with avoidance
information, but responsibility for avoiding collisions still rests with the pilots. TCAS is
estimated to have reduced the risk of mid-air collision by 80% [53] but complexities and
confusion regarding the use of TCAS may have contributed to several fatal accidents.

These complexities arise for a number of reasons. While standard operating procedures insist
that pilots follow TCAS alerts exactly, pilots retain the ultimate authority to act in other ways.
TCAS alerts may conflict with previous instructions or procedures, and so pilots may choose
to ignore them. In particular, the risk of collision may be increased (compared to not using
TCAS) if the crew of one potentially intersecting plane follow the TCAS instructions and
the other do not. In other cases, over-reliance on TCAS may hide fundamental problems in
aviation or flight management. While TCAS has certain technical limitations, most potential
vulnerabilities arise from the interaction between TCAS and the pilots, and between the pilots
and other aviation actors. As a result, this problem naturally lends itself to socio-technical
analysis.

Improvements to aviation safety can be made by increasing the performance and reliability of
aircraft (such as significantly reduced engine failure rates), introducing safer and more reliable
procedures (such as the increased emphasis on crew resource management) and providing
automation where possible (such as improved autopilots, or the use of flight directors).

Some types of incidents are not easily resolved by automated systems, but can be (poten-
tially) detected by such systems, with this detection used to inform the crew. For example,
the widespread use of GPWS (Ground Proximity Warning System) has almost eliminated
occurrences of controlled flights into terrain (where an airworthy, controllable aircraft is
unintentionally flown into the ground) on suitably equipped aircraft.

Mid-air collisions represent a relatively rare but highly dangerous risk to aviation. While less
common than accidents during take-off and landing or accidents caused by mechanical failure,
mid-air collisions are almost always fatal to all those aboard. In controlled airspace (repre-
senting the majority of busy commercial aviation routes), collision avoidance is maintained
by instruction from air traffic control, who instruct aircraft to fly on specific routes at specific
altitudes and hence maintain separation - a safe distance between nearby aircraft.

However, this does not always prevent accidents. Air traffic control is normally based on
instrument flying - pilots controlling the aircraft not by looking at the surrounding environment,

7.2. Background 158

but navigating by the use of instruments such as altimeters (for height) and radio beacons (for
direction). If this equipment fails, pilots may be unable to accurately determine their location,
potentially bringing them into unsafe separation with other aircraft. Alternatively, pilots may
be operating under visual flight rules, where pilots can navigate by observing the ground
below and in most cases without control by ATC. In these cases, pilots are responsible for
maintaining safe separation themselves, and collisions can occur if pilots do not accurately
observe other aircraft. In particular, mixed airspace (where some parts are controlled, and
others are flown visually) can lead to confusion and potential risk. ATC maintained separation
is also vulnerable to small mistakes that can lead directly to collisions - such as clearing
an aircraft to the wrong altitude (placing it at the same height as another) or breakdowns
in communication with pilots (such as misunderstanding instructions, or reporting incorrect
information). Alternatively, pilots may simply make mistakes, by for example drifting out of
their assigned altitude, or inaccurately estimating the distance or speed of a nearby aircraft.

TCAS is intended to reduce these risks by adding an additional layer of protection. All
large aircraft (and many smaller aircraft) are equipped with transponders, which broadcast
information about their identity and altitude. TCAS works by interrogating the transponders
of nearby aircraft, and using this to construct a model of the locations and bearings of nearby
aircraft. By tracking aircraft over time, it is possible to identify aircraft that are on course to
pass dangerously close to the TCAS-operating aircraft. If another aircraft enters the protection
region around the TCAS-equipped aircraft TCAS will firstly raise a TA (Traffic Advisory), a
non-prescriptive warning alerting the pilots to a potential risk. If the intruding aircraft flies
further into the protection region (the predicted time to collision drops) then TCAS will issue
a RA (Resolution Advisory) - a specific instruction to the pilots to manoeuvre the aircraft to
avoid collision. TCAS RAs operate only in vertical space - an RA is either a command to
climb or descend. In response to the pilots’ actions, further RAs may instruct a faster rate of
climb or descent, or instruct the pilots to reduce their rate of altitude change or level off as the
risk reduces. While the pilots must manually make the manoeuvres required by TCAS the rest
of the process is completely automated, and no ground-based radar or air traffic instruction is
required.

TCAS operates as an additional layer of protection, and is not intended to replace separation
maintained by ATC in controlled airspace. It relies on all nearby aircraft operating fully-
functional transponders in order to provide the full range of protection - light aircraft flying
without transponders are invisible to TCAS. As an advisory system, TCAS is ultimately
reliant on pilots taking suitable action when an advisory is generated. Taking incorrect action
can still lead to a collision.

TCAS originated from the desire of the Federal Aviation Authority (FAA, the US aviation
regulator) to reduce the occurrence of mid-air collisions in the US. The basic principles and
technology behind TCAS (transponder interrogation and threat tracking) were developed

7.3. Modelling 159

as the Active Beacon Collision Avoidance System (BCAS) [194], which was eventually
expanded and re-branded as TCAS. In response to further mid-air collisions the US Congress
mandated the deployment of TCAS on medium and large aircraft (>30 seats) from 1993,
which was later extended to smaller aircraft. At the same time, the International Civil Aviation
Organisation (ICAO) was also supporting research and evaluation of collision detection and
avoidance systems. The two separate tracks of development were integrated in 1997, with
the launch of the Airborne Collision Avoidance System (ACAS) standard by the ICAO, and
the launch of TCAS Version 7, which implemented the ICAO’s ACAS standard. In 2003 an
similar obligation to the earlier US mandate was introduced by the ICAO, requiring all aircraft
with greater than 30 seats and with a recently issued type certificate1 to be equipped with
ACAS when travelling internationally. Aircraft flying purely domestic routes are exempt, but
countries or supranational bodies may enforce restrictions similar to those for international
travel, such as the US and the EU.

The deployment and operation of TCAS is governed by a range of documents, procedures
and regulations. The ICAO provides an ACAS manual, as well as operational guides for
aircraft operators and air traffic management providers and training materials for pilots and
controllers. ICAO standards and recommendations, including safety standards and required
equipment are detailed in the various ICAO Annexes. Additional regulatory materials are be
provided by national or pan-national authorities (e.g. Eurocontrol, FAA). The three TCAS
manufacturers (Honeywell, Rockwell Collins & ACSS) provide support and documentation
for their equipment, and aircraft operators and air traffic managers provide standard operating
procedures for their pilots and controllers. The public availability of these documents various
substantially. The ICAO and national regulators publish their documents and notices in an
open manner, while access to manufacturer and operator materials is restricted by commercial
pressures.

7.3 Modelling

Modelling of the TCAS system followed the iterative modelling and evaluation strategy
described in Section 3.7.2. Firstly, ICAO manuals were used to construct an initial model of
the TCAS system and related actors and activity. This initial model was then analysed using
responsibility modelling’s automatic analysis techniques. Accident reports on major mid-air
collisions were then used alongside these analysis results to refine the model. This revised
model was then evaluated with domain experts (a pilot and an air traffic controller) who
examined this model and the analysis results produced by the RESME toolkit. Throughout

1In effect, this requires all new or upgraded aircraft types to fit ACAS, while allowing older models to
continue to operate.

7.3. Modelling 160

Chapter Title Content
1 Introduction Document overview and intention of ACAS
2 Implementation of ACAS Obligations to install and use
3 Functions and capabilities ACAS logic, displays and performance requirements
4 ACAS performance, safety and airspace configuration Crowded airspace and pilot reaction times
5 Operational use and pilot training guidelines Pilot training and operational procedures
6 Controller training guidelines ATC processes, phraseology and training
7 Special uses of ACAS Interactions with military aircraft
8 Safety and electromagnetic environmental assessments Risk assessments and radio interference
9 ACAS performance monitoring ACAS monitoring processes
10 ACAS-related transponder performance monitoring Transponder problems
11 Certification and operational approvals Approved systems and organisational processes

Figure 7.1: Contents of the ICAO ACAS Manual [84]

the modelling process the scope of the study was focused on the events just before, during
and immediately after a TCAS alert, and entities outside that time period were only included
if they explicitly affected events within that period. Additionally, the models were frequently
discussed with the industrial partner, Sophrodyne, who provided feedback at regular intervals.

Modelling began by considering key elements from the ICAO manual describing the overall
function and operation of ACAS [84], as TCAS is the only system that currently implements
the ACAS standard. Specifically, this document refers to ACAS II (equivalent to TCAS 7) -
the first version of ACAS to incorporate both warning Traffic Advisories (TAs) and instructive
Resolution Advisories (RAs). This particular manual is intended to ‘provide guidance on
technical and operational issues’ for both operational and training purposes. It is aimed
at users of ACAS, and is not intended to be a full technical specification for developing
ACAS-compliant systems.

This document is extensive and covers both the technical functionality and the operational
usage of TCAS. Figure 7.1 shows the structure of the ACAS Manual, indicating the main
content of each chapter. The initial chapters provide primarily technical detail on the ACAS
logic and the integrated components, such as interference-limiting techniques for reading
transponder readings. Much of this is not relevant to a socio-technical perspective, but
abstractions of the technical details in Chapter 3 are used to define the key activities performed
by the TCAS system itself, such as threat detection and the generation of RAs and TAs. The
technical details of the TCAS system are deliberately abstracted, as the focus of the study is to
evaluate the efficacy of responsibility modelling for the analysis of the wider socio-technical
aspects of the wider system. As a result we choose to treat the TCAS hardware as one unified
actor, rather than as separate sub-components.

Chapter 5 describes the operational usage of TCAS, and is the source of most responsibilities
relating to the how the pilots react to TCAS alerts (when they respond to alerts is the subject
of the short Chapter 4, which provides performance and timing information). This includes
details on how to respond to changes in RA indications, and how to react when RAs are in

7.3. Modelling 161

Figure 7.2: Responsibilities showing attribution to source

conflict with other instructions such as ATC instruction or GPWS (Ground Proximity Warning
System) alerts or when they conflict with general operating rules.

Chapter 6 is focused on the operation of TCAS from the perspective of air traffic controllers,
and how pilots responding to RAs should communicate with ATC. In principle this should
represent exactly the same interactions as described in Chapter 5, merely discussed from the
opposite perspective. However, certain ambiguities exist. For example, Chapter 5 states that
pilots should perform the evasive actions indicated by the RA, and then inform ATC once
completing the RA manoeuvres:

“5.2.1.17 - If an RA requires a deviation from an assigned altitude, communicate
with ATC immediately after responding to the RA.”

In contrast, Chapter 6 states that pilot should inform ATC ‘immediately’ if their instructions
are in conflict with the RA, presumably before completing the RA avoidance manoeuvres:

“Table 6-1 - immediately inform ATC when they are unable to comply with a
clearance or instruction that conflicts with an RA.”

This small difference in wording opens up a period of time where the air traffic controller and
the pilots have a different view of the world - the pilots are busy responding to the RA, while
the air traffic controller believes all is well, as they would expect to be told immediately in
case of trouble.

During the development of this model it became clear that attributing the sources of entities
would be important, as even different chapters of the same document described differing
and at times contradictory processes. Responsibility modelling does not have a notation for
annotating or identifying sources is this way - previous versions have featured information
resources, but these represent data sources within the model rather than those used to create
the model.

To support traceability an extension to the responsibility modelling notation was introduced
that does not affect any of the underlying semantics. Details on the origin of entities can
now be modelled with ‘Source’ entities, which represent individual source materials such

7.3. Modelling 162

Figure 7.3: Initial responsibility model of TCAS

as documents (or parts of documents), interviews or field studies. Sources can be linked to
responsibilities via ‘Attribution’ relations which indicate that a responsibility was defined
based on details in the corresponding source materials. Only responsibilities can be attributed
in this manner as in our experience different source materials differ more in the responsibilities
they define than the resources or actors they list; attributing each actor or resource to multiple
sources add further modelling complexity without a corresponding analytical advantage. This
type of annotation can provide valuable information, enhancing traceability of model artifacts,
providing a mechanism for linking responsibility models with other domain representations
such as evidence artifacts in safety cases and enabling clearer indication of contrasting or
conflicting responsibilities within a wider system.

Figure 7.2 shows an example containing the use of attribution. The pilot has a duty to avoid
severe weather conditions (in the interest of safety) placed upon them by the regulations
of the Federal Aviation Authority - the US aviation regulator. They also have a duty to fly
the most efficient route between origin and destination (in the interests of speed and cost
saving), as defined in the operating practices of their airline. These two responsibilities come
from different sources and indicate a potential conflict of interests - if the most efficient route
involves flying through patches of severe weather, what decision should the pilot make?

Drawing on the content of Chapters 3-6 produced an initial draft of the TCAS environment
model, shown as Figure 7.3. This initial version can be accessed in the case study GitHub
repository [159] as ‘TCAS.responsibilitymetamodel’ in the release ‘Initial Model’. This is a
complex model that is not easily modularised, with many relations crossing between different
sets of actors and responsibilities. The aircraft pilots and responsibilities performed by them
are located on the right side of the model, with ATC activities in the bottom/left and operation
of the TCAS itself in the top-centre. The TCAS unit generates alerts based on interrogating

7.4. Initial Automated Analysis 163

the transponders of nearby aircraft, which are then displayed to the pilots, who must must
respond to them correctly within strict time limits. The pilots also need to remain in contact
with the air traffic controllers, and through the event still hold their basic duty of ensuring
safe flight.

Responsibilities are also laid out based on the particular chapter of the ICAO manual they
originate in, travelling clockwise from Chapter 3 in the top right. Alerts (in this version, only
RAs) are represented as information resources that are generated by one responsibility and
responded to (consumed by) another. Most interdependencies between systems and processes
are represented by required responsibility relations, showing the direct reliance of one section
on another, rather than creating arbitrary input and output resources.

Visual inspection of the model shows heavy load on the Pilot Flying (PF), who is required to
interact with ATC and TCAS while following operating procedures and guidance issued by
their operating and in compliance with ICAO standards. The TCAS unit generates appropriate
alerts, communicating with other aircraft’s TCAS units where necessary. ATC operatives only
need to acknowledge pilots indication of RAs, and wait for the situation to resolve. Clear
training and oversight roles are defined, including the CAAs (Civil Aviation authorities - the
national aviation regulators), ANSPs (Air Navigation Service Providers - the flight traffic
managers, including services such as ATC) and the aircraft operators. One part of the system
is explicitly disabled, as indicated by the grey lines and fading - the automatic reporting of
RAs by TCAS to air traffic control. This is defined in the ICAO manuals as a standard part of
ACAS operation, but has never been deployed in practice and no set of operating procedures
exists.

7.4 Initial Automated Analysis

Automated analysis of this initial version of the model does not reveal significant further in-
formation beyond that contained in the source documentation. There are no resources (alerts)
that are not produced by a corresponding responsibility, and all resources are appropriately
consumed and acted upon. No actors are defined but lack responsibilities and all responsibili-
ties are assigned to actors, with one subtle exception - the overarching responsibility "Ensure
safe flight" is held by the pilot flying, but the actors or resources required to discharge it are
not defined. This reflects the disconnect between responsibility and action - the pilots are
ultimately held accountable for the safety of the aircraft with minimal exceptions (massive
mechanical failure, for example) but cannot ensure this themselves, as they implicitly depend
on a wide range of other actors to maintain safety.

Load analysis shows that two actors may be overloaded - the TCAS unit and the Pilot Flying
(PF). The overload warning on TCAS itself is somewhat misleading - this doesn’t represent

7.4. Initial Automated Analysis 164

the potential large volumes of data that can impair TCAS performance (a known concern in
extremely busy airspace, and a justification for limiting TCAS deployment to larger, fixed-
wing aircraft) but is instead triggered by the subdivision of TCAS activities into individual
responsibilities (threat detection, transponder interrogation, RA negotiation etc.). These are
all integral parts of basic TCAS operation, for which the system is developed. This level
of load implies that TCAS is a complex system with many functions, rather than implying
that it will be unable to function. This warning could be addressed by separating the TCAS
actor into sub-components (communication, tracking, alerts) so that the actor definition is at
the same level of abstraction as the responsibility definition; this is more elegant in theory,
but TCAS is treated as a single unit by the source documentation, and failures of individual
TCAS components are not widely reported.

The risk of overload on the pilot is much clearer - they are required to respond to various alerts
and communicate with ATC, and are required to do so within very short timeframes. This is
in addition to their normal duties of actually flying the plane (not expressed in the model),
which is often a complex task; in particular, the situations that require TCAS response may
often be those that are more complex in general, such as flying approaches in busy airspace.
In practice, this is likely to lead to delayed responses to certain duties as the pilot attempts to
prioritise the most urgent tasks, which opens up a number of vulnerabilities - for example,
the mid-air collision at Uberlingen might have been averted by more timely communication
between the flight deck and ATC; busy or distracted pilots have been a contributing factor to
many accidents, and one of the major arguments for increased automation is to reduce the
load on pilots [145].

Reliance analysis detects the high level of interdependency within the operational system.
Civil aviation is a collaborative system, where each participant shares the duty of ensuring
safety. Regulators enforce overall standards, but safe operation is ultimately based on partici-
pants choosing to operate and interact in as safe as manner as possible, even if this may be
sub-optimal according to other metrics. Pilots rely on ATC providing them with safe routings,
and ATC relies on pilots accurately and quickly following their commands, even though
both can make reasonable claims to have the ultimate authority. On the edges of the system,
some actors do not depend on any others - for example, aviation regulators (the CAAs) can
complete their enforcement of standards without other actors in the system.

The organisational actors behind the individuals within the system - the air navigation
providers and the aircraft operators - sit in a middle ground, being dependent on their
employees (the ATC staff and the pilots) to participate in training and act as instructed, but
rely on no third parties. Again, this is a slight abstraction of reality (for example, some or all
training may be delivered by external training companies) but an appropriate one, as these
details are unlikely to be of direct relevance (the content or quality of training may be relevant,
but the nature of the provider less so).

7.4. Initial Automated Analysis 165

In the core of the system there are high levels of mutual dependence. Both the PF and the
ATC depend on each other in order to discharge their own responsibilities. The pilots and
ATC also depend on the correct functioning of TCAS. The pilot, responds to generated TCAS
alerts, whereas the ATC relies on TCAS indirectly when they temporarily suspend direct
control while the pilot manoeuvres in response to an advisory. TCAS itself is not modelled as
relying on any other actors - as a computer system, it cannot ultimately be held responsible
for any actions and hence does not need other actors to avoid responsibility. This abstraction
hides a significant part of the cause-finding / blame-apportioning process. The TCAS unit
itself cannot be held accountable, but the manufacturers or maintainers of it could be.

Criticality analysis shows that the TCAS unit is the most critical actor and the most severe
single point of failure (being ultimately required for 10 responsibilities, ahead of 9 for the
PF). This is natural for a model of TCAS - without TCAS there can be no alerts, and so
there can be no responses to advisories, RA-related communications etc. Similarly, the RA
notification is the most important resource, triggering the response from the pilots (and later,
ATC). The most critical responsibility is the ‘Interrogate Nearby Transponders’ functionality
of TCAS, which is required in order to generate any of the advisories. The entire process is
sequential (Scan airspace, generate alerts, respond to advisory, inform ATC) so the earliest
inputs consequently have the greatest criticality factor.

This initial analysis shows that the model conforms to expectations, with vulnerabilities in
the model representing well-known potential risks such as TCAS equipment failure and pilot
overload. The appropriateness of the model’s abstraction varies across different parts of the
domain - at times it may abstract away important elements (such as the obligations on the
manufacturers of safety-critical equipment), while other areas may feature unnecessary detail
(modelling the TCAS analysis process as a series of separate responsibilities does not appear
to have added any useful insight). Ultimately, the correct level of abstraction depends on
the intended purpose of the case study, and for this study we have chosen to focus on the
immediate short-term aspects of TCAS.

In order to refine the scope and abstraction of the model, an inspection was conducted of the
11 mid-air collisions that caused 100 or more fatalities using the Aviation Safety Network
[60], for which a brief summary is given in Table 7.4. Given this high causality threshold,
the majority of collisions in this sample occurred between large passenger aircraft. However,
three of the eleven accidents occurred in collisions with military aircraft, and two with light
private aircraft. These types of collisions may be more prevalent in the wider range of mid-air
collisions, as accidents involving only one commercial aircraft are likely to have a lower
number of deaths.

The two most common types of accident were collisions caused by failing to see another
aircraft in VFR conditions, and collisions caused by ATC problems - either failing to follow

7.4. Initial Automated Analysis 166

Flight Details Cause Year
TWA Flight 2 / United Flight 718 Collision under VFR 1956
United Flight 826 / TWA Flight 266 Deviation from ATC instruction 1960
MEA Flight 265 / Turkish Air Force Collision under VFR 1963
ANA Flight 58 / Japan Air Self Defence Force Military aircraft under instruction 1971
BA Flight 475 / Inex-Adria Improper ATC operation 1976
PSA Flight 182 / Private Cessna Collision under VFR 1978
Aeroflot Tu-134 x2 ATC error 1979
LAA Flight 1103 / Libyan Air Force Disputed 1992
Iran Air Tours / Iran Air Force Parallel takeoff/landing 1993
Saudia Flight 763 / KA Flight 1907 Deviation from ATC instruction 1996
GOL Flight 1097 / Private Embraer Systematic ATC failure 2006

Figure 7.4: Features of mid-air collisions with fatalities > 100

issued instructions, or by following inaccurate or poorly communicated instructions. TCAS
should be able to act as an additional safeguard in these circumstances, protecting against
oversights by pilots or ATC. Indeed, the only accident on the list to occur after the international
adoption of TCAS involved a faulty transponder on one of the aircraft, rendering it invisible
to TCAS. However, this is more complex in situations involving military aircraft or private
light aircraft.

Light aircraft are not subject to the same level of regulation as larger commercial aircraft, and
may not be required to operate TCAS. In particular, large casualty accidents have occurred
where commercial aircraft at low altitudes (usually on takeoff or approach to landing) collide
with general aviation aircraft operating on visual flight rules. This is a subtly different scenario
to the potential loss of separation between TCAS-equipped aircraft: in many cases general
aviation aircraft will be fitted with transponders, allowing their detection by other TCAS-
equipped aircraft but not receiving advisories themselves; in other cases they lack almost any
electronics (especially very light aircraft such as microlights and gliders) and are effectively
invisible to TCAS. This requires pilots to be actively aware of the surrounding airspace and
not rely solely on TCAS to detect threats, which is not incorporated in the current version of
the model.

Similar risks occur in interactions between TCAS-equipped aircraft and military airplanes.
Military aircraft are fitted with transponders, but these may not provide altitude information,
making accurate prediction of their trajectory more difficult. Additionally, TCAS is explicitly
not designed to handle the extreme climb rates of military jets, which can lead to inaccurate
advisories. Pilots attempting to respond to these advisories may be perceived by military
pilots as flying erratically, causing further difficulty in ensuring safe separation. This situation
can be further exacerbated in many countries by the separation of civil and military air traffic
control - civil and military aircraft may be completely unaware of each other until visual

7.5. Revised Model 167

contact is reached, seriously limiting the reaction time and the ability of pilots to take evasive
action.

7.5 Revised Model

Based on the results of initial analysis and the accident study a revised version of the model
was developed, and is shown in Figure 7.5. Changes to the ‘core’ elements of the model (the
generate-respond-inform approach to RAs) are minimal, with the main changes aiming to
restructure some of the more peripheral areas to abstract away detail where considered unnec-
essary, and add in additional detail where analysis showed this to be useful. These include
reducing the complexity of areas which caused automatic analysis to generate unnecessary
warnings, and expanding the detail of areas that contributed to major mid-air collisions (such
as VFR flight and ATC procedures). This revised version of the model can be accessed in the
GitHub repository [159] as ‘TCAS.responsibilitymetamodel’ in the release ‘Revised Model’.

The internal operations of TCAS were simplified by removing the ‘Threat Detection’ respon-
sibility and integrating it in to the ‘Interrogate Nearby Transponders’ responsibility, which
is now considered to hold all the internal logic of the system. These calculations are not
particularly relevant to a socio-technical view of the domain, and do not represent a common
point of failure.

The modelling of Traffic Advisories (TAs) was made more detailed, by adding both a resource
to indicate a TA alert (‘TA Notification’) and a responsibility held by the pilot to react to
this ‘Identify Nearby Aircraft’, which is an abstraction of the instructions given to pilots in
Chapter 4 of the ACAS manual. This aims to provide a more consistent treatment of alerts,
and eliminates the anomaly where TA generation was modelled as a responsibility, but TAs
were not generated or reacted to.

The need for pilots to perform visual observations (especially when reacting to RAs, as
they cannot then rely on ATC-induced separation) has been added to the model as the ‘See
and Avoid’ responsibility, which is a duty on both pilots that is a subset of their general
responsibility to ensure safe flight. This is derived from the same sub-section of the ICAO
manual as ‘Ensure Safe Flight’ and can be discharged by the pilots alone; it contributes
to ensuring safe flight, but that responsibility still cannot be discharged by just the pilots.
The other main issue raised by the analysis of major accidents, military aircraft, cannot be
addressed by revising the model as this is a fundamental weakness in the domain (fast moving,
agile military jets can confuse both TCAS and pilots) and not an oversight in the construction
of the model.

Additional details have been added to the workflow of air traffic controllers by introducing the
STCA (Short Term Conflict Alert) [54] system and its corresponding alerts, as well as ATC

7.5. Revised Model 168

Figure 7.5: Revised responsibility model of TCAS

7.6. Interviews 169

actions in response to them, in conjunction with pilots. STCAs are generated by computer
systems that analyse aircraft positions and headings to detect possible loss of separation
incidents, at which it point it generates an alert to the controller. In some ways STCA can
be considered the ATC equivalent of TCAS - they both generate warnings ahead of loss of
separation, but with some important differences. STCA alerts are purely advisory and do not
indicate a potential resolution, requiring the controller to choose their own course of action.
STCAs ‘look ahead’ from current positions up to around 2 minutes into the future, and have
the potential to overlap with TCAS alerts responding to the same potential incident.

The most significant change is the introduction of the actor ‘TCAS Manufacturer’, which
is responsible for designing and producing the TCAS units used in planes. This addresses
the shortfall of accountability in the previous model - errors in the design or manufacture of
TCAS equipment are serious issues where there is a need to apportion responsibility or blame,
but it is meaningless to hold a technical component accountable for a fatal accident. The
manufacturers are modelled as producing the relevant equipment (using the Produce Actor
relation introduced in Chapter 6), and so a failure caused by TCAS itself can be traced back
to its origins. Additionally, this allows a clearer expression of the the CAAs duty to enforce
the TCAS standards by requiring the participation of the manufacturers in the discharge of
that responsibility.

7.6 Interviews

In order to validate our model and methodology a series of interviews were conducted with
domain experts to discuss the model and the results of our earlier analysis. These interviews
had two main purposes. Firstly, to determine if the responsibility model of TCAS accurately
represented the realities of TCAS operation and air traffic management, and if the concerns
and vulnerabilities identified by the analysis corresponded to real-world problems. Secondly,
discussing the models with domain experts would test the understandability of the model, and
that of the core responsibility modelling concepts in general. This portion of the study was
approved by the University of Glasgow College of Science & Engineering Ethics Committee
under application number 300150172.

Two interviews were conducted with experienced experts representing the main actors in
the systems - an air-traffic controller and a pilot. Firstly, Controller M was interviewed, an
air-traffic controller with ten years experience as an area controller. Secondly, Captain A was
interviewed, a pilot with fifteen years experience, including as a training and check captain.

The interviews were initially designed as semi-structured interviews [66] using the responsi-
bility model and analysis results (presented using the RESME toolkit) as artifacts to discuss.
Interviews began with a short presentation of the responsibility modelling notation and an

7.6. Interviews 170

introduction to the toolkit using a worked example. Participants were then shown a series
of sub-models representing different parts of the system (ATC, TCAS & Pilots) and asked
to write short descriptions of them (to test the model’s understandability). For each sub
model, participants were asked to discuss the similarity between the model representation
and their experience of these sub-systems in the real world; prompted points of discussion in-
cluded correctness, scope, level of abstraction and relevancy. After examining each submodel
participants then inspected the whole model, with prompted focus on interactions between
sub-systems and the identification of missing elements. The interviews then concluded by
discussing the model-wide analysis results with the participant - the results of each type of
analysis were introduced and presented, and the accuracy and relevance of these warnings
were discussed. Participants were also asked to identify any important vulnerabilities that
they felt had not been detected.

Interviews were recorded using the Camtasia software, which records both the device screen
and the voices of the participant and interviewer. These recordings were then transcribed by
the interviewer, and full transcripts were deposited in the University of Glasgow’s Enlighten
service [160].

The case study was piloted using a representative of the industrial partner as the interviewee.
The interviewee has a background in aircraft accident investigation and was involved in
initial discussions of the project, but had not seen the final model and was unaware of the
structure of the interview in advance. Several issues were identified during this pilot study.
The introduction of the technique was limited by the use of a worked example in a domain
that was unfamiliar (the Scrum model of software development) and that did not contain
all types of relation. During the pilot the decision was taken for participants not to write
descriptions of the sub-models, but instead to describe them verbally, which led to a more
natural and faster-flowing interview. Some issues around terminology were also identified,
such as the differences between responsibilities and goals or tasks and the need to emphasise
the relationship between actors and roles. However, the overall structure of the interview
appeared to deliver good opportunities to identify potential issues and the supporting software
(the RESME toolkit and the Camtasia screen and voice recorder) worked without difficulties.

As a result the interview plan was restructured to eliminate written descriptions and make
fuller use of voice and screen recording by asking the participant to verbally describe the
model instead. A new worked example was created around the taking of orders and cooking of
food in a restaurant, which demonstrated the full range of relations in standard responsibility
modelling.

Between the first and second interviews a small change was made to the interview structure
- additional prompts were added to emphasise the initial description of each model by the
participant. In the first interview Controller M’s first response to each model was often to ask

7.7. Interview Results 171

questions and resolve ambiguities, which then led naturally to discussion of individual points
rather than getting a brief overall view of the model and its general understandability. This
change helped to ensure that clearer descriptions were provided by Captain A in the second
interview.

7.7 Interview Results

Firstly, this section discusses the participants’ understanding of responsibility modelling, and
highlights parts of the notation that appeared more difficult for them to understand and use
correctly. Secondly, issues around the scope of the model are examined, and whether this
captures the full range of TCAS-related interactions described by the participants. We then
discuss the implications of each form of responsibility modelling analysis by describing our
evaluation of the results with the domain experts. This is followed by an analysis of the
particular problems caused by the intersection of roles and ranks in this particular environment
and a discussion of emergent behaviour described by the participants but not documented
in the official TCAS standards. Finally, the interviews are evaluated as means of model and
analysis validation and we consider whether it is possible to evaluate both the understanding
of a technique and the validity of a model in the same experiment.

Understanding

The difference between the two different actor-responsibility relations (Required Actor and
holds) was the most problematic element of the participants’ understanding of responsibility
modelling. This manifested most obviously when one of these relations was present without
the other; this often led to confusion over what that relationship indicated, such as the idea
that it was possible to be accountable for a responsibility without having any involvement
in discharging it. Both participants’ understanding of the model itself was good, although
Controller M took significantly more time to process each part of the model before describing
it or asking clarifying questions.

Controller M appeared to have a slightly incorrect interpretation of the distinction between
holding a responsibility and being required for a responsibility - they described “the solid

black arrow [Required Actor] is they are responsible for that, but the empty one [Holds]

is that they’re also accountable for that”. This is a correct definition of Holds (indicating
responsibility and accountability), but is not strictly correct for Required Actor - it is possible
to be required for a responsibility without any concept of being responsible (in the sense of
duty, liability etc.) for it.

7.7. Interview Results 172

Controller M also asked several questions to clarify their understanding when presented with
each part of the model. These generally related to a lack of detail in the short description of
each responsibility - for example, he asked for more detail on ‘Update location and monitor
RA’, which described the Pilot Not Flying’s duty to keep track of the plane’s location, the
positions of nearby aircraft, the status of the RA etc. Using relatively short names for each
entity is important to maintain the ‘first glance’ understandability of the model and to minimise
its size, but it may be beneficial to include more detailed descriptions, such as via a notes tab
for each entity.

Captain A often used the phrase “lack of direct control” to refer to cases where an actor held
a responsibility, but was not a required actor for it. Similarly he occasionally used ‘direct
control’ to describe the Required Actor relation. These descriptions do not strictly match the
meaning of the Required Actor and Holds relations, but they are a reasonable approximation.
A Holds relation (without a corresponding Required Actor) does imply a lack of a direct
control, but that is only part of the relation’s meaning - most importantly, the holds relation
indicates a sense of authority or accountability with regards to a responsibility. Similarly,
describing a Required Actor relation as ‘direct control’ is only partially accurate. An actor
required by a responsibility is directly involved in that responsibility - without them it cannot
be discharged. However, being required for a responsibility does not imply that they have
any control over that responsibility; responsibility modelling does not explicitly feature the
concept of control, instead using functionality (required entities) and accountability (holds).
It is possible for a required actor to have no control over a responsibility at all; they may be
required only to complete a trivial task, or their mere presence or existence may contribute
towards the discharge of the responsibility.

However, Captain A was also able to use the difference between these two relations to pick
up on potential ambiguities within the model. He inquired as to how the Pilot Flying held but
was not required for the responsibility ‘Ensure Safe Flight’ (in his words “When you have

Pilot Flying not having control of safe flight”), where no required entities had been specified
because of the abstract and overarching nature of this responsibility. This is an important
subtlety, as the pilot is held responsible for safe flight, but the model does not indicate which
agent is required to actually discharge the responsibility, as the actions required to do this
are unclear. This could potentially lead to a unexpected responsibility failure, and it was
reasonable to identify this as an anomaly.

Overall, he appeared to grasp the notation quickly, and had no difficulty providing quick and
reasonably accurate descriptions of the models he was presented with. In particular, he noted

“It’s quite easy to interpret and it’s very familiar language to a pilot” - the use of the correct
technical terminology contributed to his understanding of the model. While Captain A made
no comments that implied he was using his own experience to describe a situation rather than
the model, the speed at which he described models and responded to questions suggests either

7.7. Interview Results 173

an extremely quick reading and comprehension speed or some use of pre-existing knowledge
to interpret the responsibility models.

No observations were made about the RESME toolkit, and the graphical representation of the
models did not appear to impede comprehension (with the exception of infrequent comments
about overlapping relations, or entities laid in an non-intuitive way). The optional sourcing
layer (showing which entities had been derived from which parts of the source materials) did
not appear to add any extra information for the participants, and so was disabled to increase
the clarity of the model.

Overall, the participants appeared to understand the model and the notation well, given the
limited time they had to inspect and understand them. The notation itself was unproblematic
with the exception of the difference between holds and Required Actor relations, which led
to confusion over the different ways actors and responsibilities could be linked. The model
was well understood, although short descriptions led to uncertainty over the full meaning of
certain entities. Given that both participants were experienced experts in this particular system
there is the possibility that other shortcomings in the model were hidden by their domain
experience, although no obvious evidence of this (such as responses contrary to the details
described in the model) was evident.

Scope

An implicit assumption made during the modelling process was that all activities described in
the model were occurring in controlled airspace, where air traffic control monitors and controls
the movements of aircraft. Most airspace in built-up areas and around busy commercial
airports is controlled, but uncontrolled and procedural (where instructions are issued based on
timing and routing, but controllers cannot track aircraft movements) airspace is widespread in
rural areas and across large seas and oceans. Controller M noted that the general structure of
the model would work in both controlled and uncontrolled airspace - “I think this scenario

would work anywhere”, but with the role of air traffic control being reduced in procedurally-
controlled airspace and uncontrolled airspace.

In principle it would be possible to model this type of operation in uncontrolled airspace
by reducing the existing model to a subset - the interactions involving air traffic control are
removed, leaving just TCAS and the pilots as the main operational actors. This approach
requires no changes to the model and can be easily studied using ‘What-if’ analysis. How-
ever this does not accurately represent the reality of aviation operations in uncontrolled or
procedural airspace - when air traffic control is reduced or removed pilots assume additional
co-ordinating functions. Captain A described how they control their flights in rural Africa -

“you can’t reach anybody on the radio, so again you’re relying on your TCAS, you’re speaking

to other people, position reports” and when operating out of uncontrolled airfields - “we rely

7.7. Interview Results 174

on TCAS to work out where we are with other traffic; we’ll be talking with other traffic to

organise our own air traffic control effectively”. These additional tasks place extra load on
the pilots and add extra complexity to the overall system, which may have indirect effects on
their ability to respond to TCAS advisories. Additionally, these additional responsibilities
may generate conflicts between TCAS instructions and other forms of guidance; for example
a TCAS advisory may require pilots to deviate from a particular track in procedural control,
which could potentially bring them into the path of another aircraft. As a result, it is clear
that a cut-down version of the existing model would not accurately represent behaviour in
uncontrolled airspace.

To model these different situations accurately would ultimately require multiple models -
each model would share the same core entities covering standard pilot and TCAS activities,
but would be augmented with the appropriate ATC or pilot co-ordination and planning
responsibilities appropriate to that type of airspace. These augmentations will affect overload,
reliance and other indicators of system safety and performance, so a new analysis is required
for each variation of the model. Unfortunately, responsibility modelling does not provide a
practical way for models to share a common core of entities, and instead requires manual
duplication of the same entities across multiple distinct models. This makes maintaining
multiple models impractical, as changes must be manually synchronised and each model
risks unintentional deviation from the common core. As a result our responsibility model of
TCAS can only be considered accurate for aircraft in controlled airspace, although many of
the discussion points raised and vulnerabilities suggested may apply in other contexts as well.

Overload Analysis

Controller M noted that pilots were probably overloaded, but not to the extent that their
performance was impaired - “you’re probably right that he’s overloaded with responsibilities...

I’m not sure it’s to the extent that it would impair his ability to resolve the situation”. In
contrast, they felt that air traffic controllers were potentially overloaded to the extent that
their performance was affected, especially under difficult conditions - “you basically not only

loose control but you loose awareness of what’s actually happening”.

Captain A generally noted that while pilots often had to consider many responsibilities their
ability to react and respond promptly was not affected. For example, he noted that “we have

to respond within five seconds of an RA - that’s actually quite a long time when you think

about it” and felt that maintaining the required levels of performance was not a problem.
They also felt that controllers could become overloaded, especially in impaired conditions
like bad weather, which led to delays and reduced responsiveness - “we’re listening to them

and we’re spending like five minutes just to check in and tell them you’re speaking to them,

and that’s just the way it is”.

7.7. Interview Results 175

Discussion of overload analysis highlighted the differences between human or organisational
actors and technical actors. The RESME toolkit generates overload warnings for TCAS itself,
as it holds a large number of responsibilities. However, interviews revealed that TCAS has
no difficulties in tracking multiple aircraft and co-ordinating and generating multiple alerts
simultaneously - in that scenario overload is more likely to affect the pilots, as they attempt to
comprehend multiple warnings (Captain A: “I’ve never doubted that TCAS can cope. ... the

transponder will often be shouting at you - Traffic!, Traffic! and so you try and look for it and

can’t see it...”).

This reflects a general difference between technical and non-technical actors - technical
systems are usually designed to meet a certain performance level (in terms of throughput,
simultaneous actions, processing capability etc.) which simplifies overload analysis to
comparing expected demand to the technical system’s specifications and performance; it is
perfectly practical for such an actor to discharge a large number of responsibilities or perform
multiple activities simultaneously if it has been designed for this purpose. In contrast, there
are fundamental limitations on human performance in multitasking and working memory,
while organisations are often limited by logistical or structural inertia. As a result, it may
appear logical to differentiate between different types of actor when generating overload
warnings.

However, the distinction between these types of actors is not explicit. The name of an
actor may indicate its nature (e.g. ‘Scheduling System’), or it can be inferred from the
responsibilities held or that it is required for (responsibilities expressing accountability,
authority or problem-solving are indications of a non-technical actor). The inherent flexibility
of roles means that the implementation of an actor role by a specific entity may cross this
distinction - for example technical systems may replace individuals within an organisation
due to computerisation, or the failure of a specific computer system may lead to its duties
being taken on by human staff instead. This has no effect on the responsibility structure as all
relations remain the same and no explicit actor typing exists, but may affect the implications
of any potential overload warning. Hence, attempting to determine the type of actor at the
overload warning is impractical, but the status of the actor should be taken into consideration
when interpreting such overload warnings.

The interviews also revealed unintuitive effects of load, where adding additional tasks actually
reduced (temporarily) the effort and load required. Captain A noted that the generation
of a TCAS TA placed additional load on the pilots, as they had to try and identify (and
potentially manoeuvre to avoid) an intruder aircraft while still maintaining all their existing
responsibilities (such as flying within the constraints set by ATC). However, responding
to a TCAS RA was considered very simple, as almost all other tasks and duties could be
suspended due to the importance of the RA; the only outstanding responsibility was to fly in
the aircraft in a safe way (avoiding unnecessary stress), and other responsibilities such as fuel

7.7. Interview Results 176

management or navigation could be temporarily ignored.

This challenges the load and overload concepts used within responsibility modelling; adding
an additional high load responsibility (such as responding to an RA) to an actor with other
responsibilities should significantly increase the risk of that actor, as responsibility modelling
uses an additive model of load. This in contrast to the described behaviour for TCAS RAs,
where responding to a high load responsibility effectively disables other responsibilities for
the duration of the response. However, this does not directly contradict the structure of load
in responsibility modelling, although it can be counter-intuitive. Load (and overload) in
responsibility modelling does not directly represent the instantaneous effort of performing a
particular task, as Captain A expressed the effort of responding to an RA. Instead, load in
responsibility modelling represents the organisational effort of monitoring, preparing for and
evaluating responsibilities. This often correlates to the amount of effort required to actively
perform a responsibility, but this correlation does not always hold, particularly in cases of
high instant effort and reactive responsibilities like responding to an alert.

Overall, validation of overload analysis with domain experts provided a mixed result. Overload
warnings for the main non-technical actors (Pilot Flying & Air Traffic Controller) identified
actors that were definitely at risk of overload, but which differed in the experts’ opinion
of whether this risk would actually lead to impaired performance. This result fits within
the framework of automated vulnerability analysis, which is designed to detect potential
vulnerabilities and does not claim to identify guaranteed problems. However, the overload
warning for TCAS was less useful, as TCAS is designed to handle large numbers of potential
events and was not at risk of impaired performance due to load. Responsibility modelling’s
treatment of these technical actors provides flexibility, but may cause many technical actors
to generate false positive overload warnings. Additionally, potentially counter-intuitive
behaviour was discovered where domain experts observed that the net effect of adding
complex responsibilities on load was minimal due to prioritisation of tasks. Overload analysis
detects such actors as overloaded, but effective prioritisation minimises the negative impacts
of this condition.

Criticality Analysis

Criticality analysis identified the TCAS hardware and the responsibilities and resources
involved in RA generation as the most critical entities. Given the model focuses on the
response to RA incidents this is an unsurprising result, but it was used to generate discussion
around the possible failure modes of these critical components, and what effects that would
have on other actors in the system.

Controller M emphasised that TCAS is a bilateral system since it relies on obtaining accurate
information from other aircraft to generate alerts. The model shows the case where both

7.7. Interview Results 177

aircraft have a TCAS system installed, but it is also possible to successfully generate warnings
where only one aircraft has TCAS, but the other has a Mode C transponder (a transponder
providing altitude information). If a transponder is inoperable or provides inaccurate informa-
tion this eliminates or reduces the safety benefits of TCAS, which already operates to tight
margins of separation. Alternatively, a transponder without altitude information can lead
to Traffic Advisories that warn of a nearby aircraft without identifying its location, which
can disorientate the pilot and place extra load on the air traffic controller as they attempt to
identify the nearby aircraft. Problems can also arise due to incorrect altitude values from
transponders, which air traffic controllers may identify if the pilot’s reported altitude does not
match the transponder-derived altitude recorded by the ATC system.

Captain A discussed the implications of an absence of TCAS. TCAS-fitted aircraft can operate
without it being functional for a limited period of time, subject to certain restrictions on
airspace and the need to inform air traffic control. He noted the use of TCAS for a wide
range of functions, including those outside of the core TA / RA functionality, such as using
the traffic information screen to check for approaching aircraft before taking off. Without
it, he felt that he was missing important information - “It’s a huge gap in your awareness”.
He also noted a particular unusual situation where TCAS could generate spurious alerts.
Some ships are fitted with transponders, and these transponders can be interrogated by TCAS.
Naval transponders do not transmit altitude, so TCAS is unable to generate advisories but
does display this information on the traffic information screen. This alert can be difficult to
distinguish from an aircraft flying nearby without altitude information, leading to confusion
for the pilots - “That’s the only time that I’ve really encountered any kind of TCAS not being

helpful.”.

In this case study the effectiveness of criticality analysis is fairly limited - the most critical
entities are already apparent from the basic structure and scope of the system. This is a
consequence of the model being built around one particular chain of responsibilities: the
generation of and response to TCAS alerts. The potential strength of criticality analysis is
its ability to identify the key points of more distributed systems or test the effects of system
changes, but its utility in a centralised, unchanging system is minimal.

Reliance Analysis

The temporal scope of the model led to differences in the interpretation of the reliance between
actors. Controller M raised the issue of the Pilot Flying relying on ATC “in terms of an RA, I

would sort of question that they are relying on the air traffic controller during an RA” as they
felt that the responsibility to handle an RA lies with the pilots alone. During the response to an
RA the pilots are removed from ATC control until they successfully complete their response
to the RA. However as soon as the response to the RA ends the pilot must inform ATC that

7.7. Interview Results 178

they are now back under their control, and this communication with ATC is effectively the
end of the RA response process. As a result, whether or not the pilot relies on the air traffic
controller depends on which timescale is being considered.

In contrast, Captain A accepted the full range of actors that the Pilot Flying relied on (ATC,
PNF, TCAS, TCAS Manufacturer) and suggested additional actors not currently featured in the
model, such as aircraft maintenance and airline trainers who are responsible for ensuring the
TCAS and the PNF respectively are capable of operating to the correct standard. Additionally,
they noted that they rely on nearby aircraft also having TCAS, which is particularly important
outside of controlled airspace, as pilots must plan their own routes and manoeuvres with
minimal external guidance. This also requires direct communication and reliance on other
pilots in order to achieve mutual co-ordination; this is normally intermediated by ATC in
controlled airspace.

Indirect reliance identified by responsibility modelling also demonstrated complex interactions
in practice. Air traffic controllers are identified as relying on TCAS, which they never interact
with directly. However, Controller M described a scenario where a pilot under ATC instruction
also attempted to follow a TCAS Traffic Advisory; in doing so they flew their plane above the
safe altitude level that they had been cleared to by ATC. While TCAS Resolution Advisories
are explicitly intended to override ATC instructions TAs are for information only, yet if pilots
follow them without considering their compatibility with existing ATC instructions a loss of
separation can occur.

Throughout the model the high level of interaction and dependency between actors was
evident. Captain A agreed that the response to TCAS (and aviation as a whole) demonstrated
a high level of interdependency - the Pilot Flying and air traffic controllers both rely on almost
every other actor modelled in the system. A number of reliance listings were considered
self-explanatory and did not receive any substantial discussion by the interviewees , such
as an Air Navigation Service Provider (ANSP) relying on air traffic controllers (their staff).
However, all of these reliance links were considered reasonable, with no objections raised
against them.

Overall, reliance analysis produced results that were considered valid and occasionally identi-
fied points of interest that were not obvious, but most reliance results were self-explanatory.
In this particular case study that is not unexpected - the tight interdependency between pilots,
their aircraft and air traffic control is already well understood, and responsibility modelling
highlights this. While providing limited new insight none of the reliance relationships gen-
erated were identified as invalid, which provides confidence in the structure of the model
and the reliance algorithm, and could produce more interesting results in a domain where
interactions and dependency have not already been widely studied.

7.7. Interview Results 179

Roles and Ranks

Discussion of the differences in roles between the Pilot Flying (PF) and the Pilot Not Flying
(PNF) raised the issue of dynamic role swapping within a system. Responsibility modelling
actors represent roles, and so responsibility models (at least at the modelling stage) are
not concerned with the assignment of individuals to actor roles. However, our previous
discussions of roles in modelling and role analysis have made the implicit assumption that
role allocation is fixed - roles may be played by multiple individuals or organisations, multiple
roles may be held by individuals etc., but these allocations are stable and do not change during
the operation of the system, which simplifies modelling and analysis.

However, our interviews highlighted that swapping of roles between the PF and PNF is a
standard feature of commercial aviation - the PNF will step in if they feel that the PF is
overwhelmed or is making incorrect decisions. Currently, the TCAS responsibility model
features no representation of this swap - either as a specific responsibility, or as some form of
actor allocation, and is unclear which approach is the best fit to address this type of change.
Adding an explicit responsibility or responsibilities (i.e. ‘Monitor PF’ and ‘Switch roles
if required’) provides a clear description of the potential behaviour, but potentially breaks
abstraction by including role allocation information directly in the model itself. Alternatively,
handling this role exchange in analysis only makes an important aspect of the system invisible,
reducing the fidelity of the model in the eyes of stakeholders.

Additionally, the respective roles of pilots are further complicated by differences in rank. The
captain of an aircraft (also known as the Pilot in Command) holds overall responsibility for
the operation and safety of the aircraft [83]. Captains also have a supervisory relationship
with more junior pilots, and are trained to advise or intervene if they make mistakes (Captain
A: “when ... the first officer is flying the aircraft I’ll try and let him or her make all the

actual decisions - however if they make a wrong decision it’s my responsibility to correct

them.”) This places additional responsibilities on the captain as they are required to observe
the other pilot(s) even while they are themselves Pilot Flying, and are held responsible for
the entire flight crew. The difference in ranks also influences the social dynamics of the PNF
stepping into override the PF; several serious incidents have arisen when more junior pilots
have been reluctant to challenge more experienced and more senior captains, which is an
important focus of Crew Resource Management [33]. However, the ICAO ACAS manual
makes no references to ‘Pilot in Command’ and just one to ‘Captain’ (in describing frequency
of simulator training), implying that the issue of seniority (and any potential problems arising)
was not considered of concern by the ICAO.

Responsibility modelling does not have an explicit means for modelling these differences
between roles and ranks. Pilot in Command can be modelled as a distinct role, as it features
distinct responsibilities that are attributed to it specifically. However, there are no specific

7.7. Interview Results 180

relations and responsibilities that First or Second Officers would hold or be required for, with
the possible exception of supervision by the Pilot in Command. These roles could be used to
construct a small sub-model showing the supervisory and oversight relations between senior
and junior pilots, but this would be separate from the operational model of TCAS as described
in the documentation. However, the rank dynamics expressed in that sub-model may affect
the successful discharge of the main TCAS model, such as when the authority of the PF is
undermined by them being a more junior officer. This influence of the sub-model cannot be
explicitly modelled, and could lead to potential vulnerabilities going undetected. This occurs
because of the lack of a formal way to relate the rank-based classification (Captain, First
Officer) and the activity-based classification (Pilot Flying, Pilot Not Flying) of actors.

Alternatively, role analysis could be expanded to consider not just the interactions when actors
are assumed by the same entity but to also consider how actors that are working collaboratively
(such as being involved in relations with the same responsibilities or resources) relate to each
other. This would enable potential vulnerabilities caused by incompatibilities such as uneven
power balances to be analysed.

Emergent Behaviour

Our model of TCAS focuses on the use of TCAS to generate TAs and RAs - advisories that
warn and advise pilots of potential collisions. This the core functionality of TCAS - as the
ICAO ACAS Manual describes it: ‘The objective of ACAS is to provide advice to pilots for
the purpose of avoiding potential collisions. This is achieved through resolution advisories
(RAs) ... and through traffic advisories (TAs)’ However, Captain A described a number of
situations where TCAS functionality (most commonly, the traffic information display) is used
for flight planning, spatial awareness or co-ordination - none of which are explicit functions
of TCAS. This demonstrates the importance of supplementing system documentation with
descriptions of the system from stakeholders.

In busy airspace he noted that they used TCAS traffic information screen to locate nearby
aircraft and potentially modify their route - “we’ll change the way we are ascending or

descending to avoid the potential of becoming a TA or an RA [with another aircraft]”.
Similarly, they used the same information to manage their approach to airport holding - “if

we’re going through a holding pattern and see lots of aircraft below us we know there is a lot

of holding, so we’ll slow down”. TCAS was used in the same way when preparing to take
off - “we’ll use it when we line up on the runway - we’ll put the TCAS on and make sure

there’s nothing imminently on approach”. Finally, he reported on the use of TCAS traffic
information when in uncontrolled airspace as an alternative to air traffic control - “we go into

uncontrolled airspace, uncontrolled airfields where we rely on TCAS to work out where we

are with other traffic”.

7.7. Interview Results 181

This usage is given only a brief mention within the ACAS manual. The ACAS manual notes
‘The TA display presents the flight crew with a plan view of nearby traffic. The information
thus conveyed is intended to assist the flight crew in sighting nearby traffic.’ and also that
‘Continuous display of proximate traffic is not a requirement for ACAS.’. This discussion
of displays consists of just three paragraphs within a 203-page document, but represents an
important use of TCAS in practice.

Deviations between theoretical and real-world usage of systems are a common characteristic
of socio-technical systems [11]. In this case TCAS is used for a much wider range of
applications than is described in the standards documents, and hence also a wider range
of applications than specified in the responsibility model. This difference has potentially
problematic implications for the safe operation of the system if this unspecified behaviour
is not supported to the same level as the specified functionality. For example, the TCAS
traffic information display is only a minor component of responding to TCAS advisories,
and so an inoperable or substandard display might not be considered a serious problem
that requires a quick fix. However, the traffic information display is a key component of
much of the unspecified behaviour performed by pilots, so its absence would have strong
detrimental effects on the pilots’ awareness, placing them under additional stress and load.
Unless managed or recorded in a structured way these gaps in the specification of the system
will result in a lack of support for important but undocumented functionality.

Suggested Model Improvements

These changes are limited to those within the scope of TCAS alert-related interactions within
controlled airspace. Issues around the application of this model outside of that scope have
been discussed in a previous section.

Both interviews suggested that our strict allocation of responsibilities between the Pilot Flying
and the Pilot Not Flying was incorrect. Controller M noted that it could be the PNF that
informed the air traffic controller of an RA; he did not see it as specific to either role. Captain
A noted several responsibilities that the PNF was involved with - ensuring safe flight and
ensuring the RA is correctly followed. The PNF could override the PF if they were not
following the procedure. He noted that in practice these roles involved more flexibility than
the model expressed, but that there was also an overlap between responsibilities being shared
between pilots and pilots swapping the PF / PNF roles (as previously discussed in Section 7.7).
It is clear that our strict interpretation of the ICAO regulations does not match actual practice,
and that several responsibilities should be shared between both pilots. For example, ‘Inform
ATC of RA’ might be discharged by either of the pilots, and both pilots are obliged to ‘Ensure
safe flight’ (although the ultimate legal responsibility rests with the pilot in command). This
is partially in conflict with some of the details described in the ICAO manuals, so additional

7.7. Interview Results 182

reputable information sources (such as airline training documents) would provide evidence
that these changes are valid.

Captain A also mentioned a potential danger of strictly following a TCAS instruction if the
aircraft is at the edge of its performance envelope - such as when it is flying at close to
maximum altitude. TCAS logic prohibits descend instructions at low altitude, but does not
prohibit climb instructions to the aircraft ceiling. Responding to such a climb command could
put the aircraft above its certified maximum altitude, potentially causing it to stall and enter
the dangerous ‘coffin corner’ [65], which causes stalls that are difficult to recover from. This
potentially creates a safety obligation to avoid following RAs accurately if doing so would
leave the aircraft uncontrollable - this could be modelled by rewriting the ‘Respond promptly
and accurately within 5 seconds’ responsibility to ‘Respond promptly and accurately... if safe
to do so’, or by introducing an additional responsibility for the Pilot Flying - ‘Keep aircraft
within performance limits’. However, the pilot may ultimately be forced to ignore one of these
responsibilities to prioritise the other, such as when stalling the aircraft is the only option to
avoid a collision. As discussed in the previous section, Captain A mentioned the frequent use
of the TCAS information display for non-collision avoidance purposes, such as managing
holding patterns or observing other aircraft in non-controlled airspace. This behaviour is an
important yet sparsely documented application of TCAS, but does not fit our specific scope
for this model, as it is not directly related to the the generation or response to TCAS TAs and
RAs.

Controller M discussed the potential knock-on effects of TCAS, giving the example of
a holding stack where large numbers of aircraft follow the same paths and are separated
vertically. In this scenario, one aircraft deviating from its assigned height could trigger an RA
on the aircraft above or below, which would then react and trigger an RA in the next aircraft
in the stack, and so on. This highlights how the actions of one aircraft can have subsequent
effects on other aircraft, and that a response that is optimal for one aircraft may adversely
affect many others: Controller M mentioned that he would advise pilots of other aircraft in the
stack in order to try and limit the consequential effects. In contrast to this, the responsibility
model of TCAS considers the interactions between aircraft only in terms of whether or not a
potential intruder has a functional TCAS system; there is no discussion of potential effects on
other aircraft, and no discussion of the fact that a loss of separation may require responses
from multiple aircraft.

The most comprehensive approach to incorporating this into the model would be to signifi-
cantly expand the modelling of the intruder aircraft, such as by explicitly modelling its pilots
and their responsibilities. However, this duplicates the same set of responsibilities already
held by the PF and PNF actors in the current model, and may still fail to scale effectively to
incidents with more than two aircraft, such as in the stack example. Alternatively, the core
principles of this effect can be modelled simply by adding another responsibility that is held

7.7. Interview Results 183

by the Pilot Flying - ‘Minimise effects on other aircraft’, which encapsulates the various
duties and obligations of the pilot to avoid unnecessary side effects from their actions.

Controller M also suggested adding an additional responsibility for pilots to explicitly ac-
knowledge when they have completed their RA response and are now back under ATC control.
Currently the model features the pilot informing ATC of an RA, and ATC acknowledging
this, but it does not feature an acknowledgment of the end of the RA. This is a clear missing
responsibility, and can be resolved by adding an ‘Inform ATC of RA resolution’ requiring the
pilot(s)and the air traffic controller. Similarly, he also mentioned that air traffic controllers
may modify their instructions to aircraft in order to limit the knock-on effects and will inform
pilots of nearby aircraft so that they can try and reduce their knock-on effects. However, this
type of behaviour falls out of the scope of this model, which is focused on the responsibilities
immediately before, during and immediately after a TCAS alert (for a specific aircraft). These
activities by an air traffic controller occur outside of that limited window with respect to the
aircraft handling an RA as the aircraft is outside of ATC control at that point; they may advise
other aircraft, but not those currently responding to an RA.

Interview Evaluation

The domain expert interviews were primarily designed in order to validate the responsibility
model of TCAS, and partly to examine how well responsibility models and responsibility
modelling can be understood and used to perform requirements analysis and elicitation.
However, these two aims are tightly coupled and cannot easily be isolated from each other.
Both interview subjects appeared to obtain a reasonable understanding of the responsibility
modelling technique, and both also broadly agreed that the TCAS model was accurate
(subject to various comments and criticisms). However, their ability to effectively analyse the
TCAS responsibility model is dependent on their ability to understand the notation and core
principles of responsibility modelling. If their understanding of responsibility modelling is
weak then their ability to understand the specifics of the TCAS model is limited. Two distinct
outcomes might produce the same results - the participants might have a good understanding
of responsibility modelling and the TCAS model accurately represents their experience;
alternatively, they may have a limited understanding of responsibility modelling, which makes
them unable to detect subtle flaws in a TCAS model that is only average.

The positive results from the interviews allow us to rule out the least desirable outcomes - it is
clear that at least a basic understanding of responsibility modelling can be obtained, and that
the TCAS model does not feature significant amounts of serious errors. Participants were able
to understand the notation enough to be able to identify some errors in the modelling of the
problem domain, but did not find fault with most of the model. It is more difficult to assert
from this that responsibility modelling is very easily understandable or that the TCAS model

7.8. Comparison to Similar Studies 184

is extremely accurate, as this requires separating out two variables from a single data point.

Completely separating the quality of the model from the understanding of the technique
is an inherently difficult problem. Changing the first variable (the modelling notation /
methodology) is impractical, as using a different modelling notation always requires using
different models. With the choice of modelling technique fixed, changing the model offers
some ability to examine the understandability of the technique independently by for example
introducing deliberate flaws into a model to see if experts can detect them. Doing so eliminates
the opportunity to study the quality of the model (as it has been made deliberately flawed) but
could provide useful results about the understandability of the technique. However, unless the
model has already been evaluated and validated it may be difficult to determine false positives
and negatives (an error believed to be due to a poor understanding of the technique may in
fact arise because the model itself is wrong). Such a study should therefore be conducted only
after an initial validation has provided confidence in the models to be used.

7.8 Comparison to Similar Studies

Leveson [108] presents a socio-technical analysis of TCAS safety using the STAMP method-
ology [109], which takes a system-theoretic approach to safety analysis. For their analysis of
TCAS they consider the potential contribution of TCAS to causing ‘near midair collisions’
(a violation of minimum separations), and do not consider secondary interactions of TCAS
(such as confusing instructions causing the pilots to lose control of the aircraft). Their analysis
begins by the construction of a process control loop for TCAS, as shown in Figure 7.6.

Following the STAMP methodology, potentially inadequate control actions are considered,
which produces eight types of control failures (four each for TCAS itself and for the pilots).
For TCAS these control failures represent failures of RA generation (such as generating an
RA that actually reduces separation, or generating an RA too late to avoid an incident), while
for the pilots they represent inadequate responses to the RAs (such as ignoring the RA, or not
correctly following its instructions). Potential failures were analysed by using the SpecTRM
(Specification Tools and Requirements Methodology) [110] executable model language. This
requires constructing a model of the inputs and logic of both the pilots and TCAS - such as
specifying the sensor information obtained by TCAS, and the pilots’ mental model of their
aircraft and nearby airspace. However, Leveson does not actually present the model in the
case study [108]; given the scale and complexity of the system a complete model may not
have been constructed.

An informal analysis then identifies several potential causes of vulnerabilities. For example,
initialising TCAS after a plane is airborne will leave it non-functional until it obtains a first
altitude reading, but pilots may assume that TCAS is functional as soon as it is powered up.

7.8. Comparison to Similar Studies 185

Figure 7.6: STAMP process control loop for TCAS (from [111])
Reproduced by permission of Nancy Leveson

Input sensors may produce uncalibrated or inaccurate information (such as the difference
between measured altitude and true altitude), while time lags in processing may lead to false
results (such as using round-trip time to determine the distance to another aircraft). They
also note the importance of accounting for degraded operation over time, but do not provide
any TCAS-related examples. Their work does not provide a formal or structured analysis of
the vulnerabilities in TCAS. Their paper’s main purpose is to propose and describe a new
technique using TCAS as an example, rather than to perform a comprehensive case study of
TCAS.

Felici [56] also consider a socio-technical safety analysis of TCAS as part of a study of air
traffic management. They construct a SHEL [52] model of the Uberlingen mid-air collision,
which is used to identify the information and timing of exchanges between pilots and ATC.
They note that this incident arose as each participant had only partial knowledge of the full
situation, and hence each actor had a different perception of risk. They go on to propose
an evolutionary framework for modelling such complex interactions, but do not apply this
framework to TCAS. Their SHEL model is not used to perform a comprehensive analysis,
and is instead used to demonstrate its use as part of a broader technique.

Other approaches have also been used to model TCAS. Filipe et al. [58] create a model
of interactions during the Uberlingen incident using timed automata, but this is not used
to identify any vulnerabilities or make safety claims; the study is used to demonstrate the
technique rather than analyse the incident. Jun et al. [96] provides a validation of the TCAS

7.9. Conclusion 186

decision logic via a coloured Petri net formalism, but this type of approach cannot be used
to validate the interactions between TCAS, pilots and ATC. Similarly, Livadas et al. [113]
provides a model of TCAS for analysing situations involving ‘well-behaved aircraft’, while
Gotlieb [69] used constraint programming to assert safety properties of a fragment of TCAS
implementation code. Numerous similar analyses have been published, but formal methods
studies do not attempt to incorporate the socio-technical nature of TCAS operation. Instead,
they focus on proving the correctness or effectiveness of TCAS’s inputs and processing logic
or its implementation. Potentially serious problems of this nature existed in previous versions
of TCAS, such when issuing reversal RAs.

Studies have also been performed to examine the relationship between TCAS, pilots and
ATC. Pritchett et al. [146] present a experimental user study of pilots using a flight simulator
to observe and analyse professional pilot’s reactions to TCAS TAs and RAs. They identify
several interesting conclusions, including that pilots’ self-reporting of ATC interactions is not
reliable, and that there is a strong correlation between pilots’ use of the TCAS traffic screen
and their compliance with RAs.

In comparison to these techniques formalised responsibility modelling strikes a balance
between modelling complexity and analytical power. High-level modelling techniques such
as STAMP are used to construct models and informally identify potential vulnerabilities;
this identification is not exhaustive, but locates some points of concern. In contrast, more
complex modelling approaches such as timed automata can model a specific subset of the
domain in rigorous detail, but at the cost of not being able to consider the full socio-technical
nature of the domain. Formalised responsibility modelling provides a system-wide model of
the domain, while providing more structured analysis than other socio-technical approaches.
However, specialist modelling approaches may be still be needed to validate a higher-level
approach, or to provide specific detail in areas of high concern.

7.9 Conclusion

This chapter modelled and analysed the TCAS collision avoidance system using responsibility
modelling and evaluated the results of this technique with domain experts. Modelling TCAS
revealed several ambiguities in the formal definition of the system between different sections
of the same international standard and identified some features that are not in use, but the
overall TCAS structure was analysed and found to have no significant failings.

Interviews with domain experts evaluated the accuracy and correctness of the TCAS respon-
sibility model, as well as indirectly evaluating the understandability of the technique itself.
These interviews revealed that our model was mainly accurate. Differences between the
experts’ experience and the model tended to arise in the original source materials used to

7.9. Conclusion 187

construct the model or the limited scope of the modelled system rather than due to oversights
or inaccuracies in the modelling process. The experts were also satisfied they had achieved a
satisfactory level of understanding. Certain aspects of the notation required some additional
explanation (most notably the distinction between required and holds relations) but partici-
pants appeared able to quickly the grasp the general structure and semantics of responsibility
models.

Applying responsibility modelling to the domain of TCAS proved effective in eliciting
information from domain experts and moderately effective in identifying vulnerabilities, but
also exposed several shortcomings in the current state of the technique. In particular, the
effectiveness of several forms of analysis was challenged by the results of the interviews.

Overload analysis was shown to be of less use when applied to technical actors, as these
technical systems are usually designed to meet specific performance levels, and hence are not
at risk of overload when operating within a system as defined. Overload in technical actors
occurs due to the violation of these performance levels (such as due to increased transaction
levels, excessive numbers of users, etc.), while responsibility modelling identifies overload as
occurring due to actors having to handle an excessive number of distinct responsibilities. As a
result, overload analysis generates false positives for technical actors with large numbers of
responsibilities, while not considering potential performance problems at all.

The complexity of the role and rank structures within the flight deck also highlighted some
limitations of responsibility modelling. Actors in responsibility modelling are specific roles,
and individual real-world individuals or organisations can fulfil multiple roles in a responsi-
bility model. Responsibility modelling also provides techniques for considering the potential
implications of this, such as using role analysis to identify potential conflicts of interests
in such role allocations. However, this does not apply effectively to cases where there are
additional meaningful interactions between actors that are not based on their roles - such as
the rank/status dynamic between Captains and First Officers. In many cases this is captured
by the use of distinct roles (for example the roles and responsibilities of a Private and a
Captain in the army are quite distinct), but flight crew provide an interesting example where
role-swapping between Pilot Flying and Pilot Not Flying occurs regardless of the difference
in rank between the individuals.

The interviews also revealed an expanding use of TCAS outside the scope set for this model.
TCAS was primarily designed as a system for preventing mid-air collisions by issuing
warnings and advisories against short-term collision threats; detection and prevention of
potential collisions in general would be provided by air traffic control measures. However,
Captain A described significant use of TCAS not as a last-minute warning system, but as a
tool used proactively to track nearby aircraft and improve pilots’ awareness, allowing them to
plan their actions better and avert potential incidents before they could occur. This behaviour

7.9. Conclusion 188

was out of scope for this particular study, but would be an interesting study of emergent
behaviour in socio-technical systems and whether the technical aspects of these systems adapt
effectively to the new uses that they are put to.

This chapter has demonstrated the use of formalised responsibility modelling in a new problem
domain, and has shown that responsibility modelling can be used effectively to elicit comments
and feedback from domain experts. Additionally, it has shown that formalised responsibility
modelling’s analysis results broadly correspond to known problems in the domain as identified
by domain experts, and that the technique can be understood by domain participants with
minimal explanation.

189

Chapter 8

User Study - Modellers’ Application
of Responsibility Modelling

8.1 Introduction

In previous chapters the use of responsibility modelling to model and analyse complex socio-
technical systems has been demonstrated, and in doing so we have shown that responsibility
modelling can effectively capture the behaviour of complex systems and produce accurate
(Chapter 6) and relevant (Chapter 7) analysis results. However, there is an important limitation.
All studies were carried out by the developer of the notation. This introduces two potential
threats to the validity of the results. Firstly, the results may represent the skill or domain
knowledge of the single modeller, rather than any more general strengths of responsibility
modelling. Secondly, responsibility modelling may well be an effective technique when
applied by an expert but be ineffective when applied by other, non-expert modellers. This
tight coupling of technique development and modelling practice is not uncommon in socio-
technical modelling. For example, all previous case studies of responsibility modelling were
performed by developers or co-developers of the original notation. Baxter and Sommerville
[11] note that ‘In general, those who developed a method have had most success in applying
it.’

Given this uncertainty around the wider applicability of responsibility modelling we seek
to obtain more information by means of an empirical study. In order to investigate the
applicability of the technique it is necessary to understand whether responsibility modelling
is usable outside the community of expert methodology developers. This chapter describes a
laboratory experiment in which non-expert modellers are tasked with preparing a responsibility
model of a familiar domain - a meeting scheduler. Participants were first introduced to the
technique with a short tutorial, before constructing a model from a short specification in their
own time. Participants were then interviewed to understanding their experiences using the

8.1. Introduction 190

technique; their models were also analysed, as was the correspondence of their models to
their own views of the system.

The primary research question for this study is ‘Can responsibility modelling be effectively
applied by non-expert modellers?’, which is then refined as follows:

Q1 - Can the responsibility modelling technique be understood and applied by non-expert
modellers?

Q2 - Can non-expert modellers use responsibility modelling to produce models that represent
their view of a system?

Q1 tests the methodology itself - are the constructs, concepts and notation of responsibility
modelling understandable, and can modellers construct responsibility models that are syn-
tactically correct? If the technique is too complex, this could lead to confusion amongst
modellers and the production of syntactically invalid models. Q2 then examines whether the
produced models actually represent the modellers’ intended view of the system. It is possible
that the complexity of the domain or inadequacies of the modelling constructs means that
modellers cannot construct the model they wish to in responsibility modelling, even if they
fully understand the technique.

Additionally, the qualitative nature of this study allows the examination of other issues that may
occur during modelling or that are identified by participants, such as their modelling strategy,
their understanding of specific responsibility modelling concepts and their impressions of the
effort required. This is in contrast to previous studies of system modelling that have primarily
relied on quantitative assessment (e.g. [122] [180]).

This study does not seek to examine if the models produced by participants are accurate
representations of the problem domain. The level of accuracy is subject to a number of
factors, including the domain experience of the modeller and the different information sources
used. Additionally, it can often be difficult to define good metrics for the ‘accuracy’ of
socio-technical models in all but the most trivial examples. Instead, this study investigates
whether the models produced correspond to the modellers’ own internal view of the system,
and to understand why modellers produced their models in that way.

The remainder of this chapter is structured as follows. Section 8.2 examines previous studies
of socio-technical modelling and requirements analysis techniques that used inexperienced
participants to assess the understandability and usability of modelling techniques. Section 8.3
describes the experimental design of this study. Section 8.4 presents the results of the study,
providing detailed evaluations of each participant’s experience and displaying their models.
Section 8.5 analyses the results of the study, discussing common issues and identifying
participants’ challenges in using the technique. Section 8.6 discusses potential threats to the
validity of the study. Finally, Section 8.7 provides an overview of the study as a whole.

8.2. Similar Studies 191

8.2 Similar Studies

Matulevičius and Heymans [122] reported an experiment to compare i* and KAOS, by
dividing a graduate Computing Science class into two groups and allocating them a technique.
These groups produced models in their assigned technique, and then evaluated both the
technique and their models according to questionnaires based on a semiotic quality framework.
The framework related the knowledge and interpretation of social and technical actors and the
relationships between the domain, model and modelling language to produce eight quality
types [103]. Students were first given a one sentence problem description, and time to elicit
more detailed requirements from users. Student groups then constructed a model of the
problem domain using either i* or KAOS (two teams per technique) and then evaluated
both the methodology they had used and a model produced by another team using the other
methodology, using a set of ordinal questions mapped to semiotic quality types. Their results
comparing i* and KAOS were inconclusive, partly due to the small sample size, but they
identify a number of important qualities for modelling languages.

The semiotic quality framework was also used in a more elaborate study by Moody et al.
[127], which evaluated the quality of Entity-Relationship (ER) models while also assessing
the framework itself. In this experiment participants were given several lectures explaining the
framework, the ER notation and the evaluation exercise, and then assigned one of twenty case
studies for which to produce a model within two weeks. Once these models were submitted,
participants then made double-blind reviews of models using the quality framework. Finally,
participants used a mixed-question survey to review the framework. The full experiment was
carried out as part of a university course, using 192 students. Results were assessed using a
range of quantitative and qualitative methods. These results showed an inconsistency between
qualitative and quantitative methods, but validated the quality framework overall.

A study by Strohmaier et al. [180] investigated the use of patterns to improve i* modelling.
This study consisted of creating abstract i* models for specific types of system (similar to
architectural patterns) and then using these models as a building block towards modelling real
systems. In Part A of the experiment students created an i* model for a collaborative working
technology; in Part B they created a pattern for a different technology, and in Part C they
attempted to apply a pattern produced by a different student. The sample size was very small
(five students) and evaluations was conducted using a simple three question discussion, where
the participants were asked which of the three parts was most difficult, were asked to rate their
confidence on the correctness and completeness of the models and were asked which of the
Part A and Part C models they found easiest to understand. These results are then discussed
qualitatively, and Strohmaier et al. [180] conclude that patterns did not improve the quality of
system models.

Maiden and Sutcliffe [118] perform a similar empirical study to assess their AIR (Advisor

8.3. Experimental Design 192

for Intelligent Reuse) tool - essentially a tool that provides abstract domain models to aid in
requirements engineering. Participants used this tool to analyse requirements problems, and
then select between domain models. ‘Correctness’ of the choices was tested by examining
the defined facts of each domain, which were then assessed for statistical significance with
possible factors. Questionnaires were also used to gather additional information, but it
is unclear what exactly was measured. Additionally, the participants’ models themselves
are used to understand their correctness scores. The sample size was 14, consisting of
undergraduate and postgraduate students, as well as a single academic. Their study found that
inexperienced modellers were unable to obtain the expected benefits of the reuse tool.

8.3 Experimental Design

In order to examine the use of responsibility modelling by non-expert modellers we conducted
a qualitative, exploratory study where participants constructed a small (compared to those
in Chapters 6 and 7) responsibility model. The construction of the responsibility model
(after a brief introduction to the technique) allows examination of the first research question,
investigating whether participants understood the technique and were able to apply it. After
constructing the model participants were interviewed about the model they had constructed.

Our participants were drawn from postgraduate computing science students. This primarily
represents convenience sampling, as such participants can be obtained relatively quickly and
without the logistics of managing external participants. As an initial exploratory study it is
unclear that any particular target sample should be aimed for, other than those who would
make use of systems modelling techniques. Computing science students often (although not
universally) make use of these techniques, although they are clearly less experienced than
modellers in academia or industry.

This study consists of four parts:

1. Participants are introduced to the responsibility modelling technique

2. Participants produce a responsibility model of a specific domain

3. Each participant is interviewed about their model and their experience of using the
technique

4. Qualitative evaluation of interview results and comparisons between models

Initially, participants were given an introduction to the responsibility modelling notation
and technique in tutorial format, including descriptions of all entities and relations and a
worked example. This tutorial introduced the general motivation for responsibility modelling,

8.3. Experimental Design 193

Figure 8.1: Tutorial example of a responsibility model

the three entity and five relation types and described the graphical notation. This was
introduced by showing and describing a responsibility model of ordering and eating a meal in a
restaurant (Figure 8.1). Additionally it discussed some unusual characteristics of responsibility
modelling (the complexity of holding a responsibility without being required by it, and the
nature of time) and described a methodology for generating responsibility models from source
materials. This tutorial does not describe all features of formalised responsibility modelling
and omits topics such as the constraint language and automatic analysis, in order to reduce
the difficulty of participants in understanding the tutorial. Additionally, participants were
given a very brief introduction to the RESME responsibility modelling toolkit, which they
were recommended to use to construct their model. Participants also completed a short
questionnaire which asked about their previous experience with modelling techniques, in
order to explore whether past modelling experience with other techniques influenced their use
of responsibility modelling.

After being introduced to the technique participants were asked to construct a responsibility
model of a specific case study. For the purposes of this experiment the ideal case study should
describe a socio-technical system of moderate complexity (providing enough detail to make
the modelling task non-trivial, but not so much as to discourage novice modellers) without
using excessive domain-specific language and terminology. Additionally, there are advantages
to using a case study not specifically designed for the experiment - this limits the effect of
experimenter bias, which might lead to the introduction of features particularly suited to the
modelling notation being studied. This case study chosen is the meeting scheduler problem as
initially proposed and modelled in KAOS by van Lamsweerde et al. [189] and also modelled
in i* by Yu [202].

8.3. Experimental Design 194

The Meeting Scheduler System is intended to support the organisation of meetings. Meetings
are arranged in the following way. A meeting initiator asks potential attendees to list dates
within some range that they would prefer to attend a meeting (the preference set) and dates
where they cannot attend (the exclusion set). Additional preferences may be expressed by
attendees, such as requirements for special equipment or choices about the meeting location.
A proposed meeting date should belong to as many preference sets as possible, and not be a
member of the exclusion sets; if this cannot be achieved, a date conflict has occurred. Our
version of the problem definition is slightly different from the canonical version [188] as we
removed references in the introduction to the definition being deliberately vague, and removed
the list of potential extensions at the end of the specification in order to limit the scope of the
experiment.

The definition contains a number of non-functional requirements (such as the support for
concurrency) and secondary features (such as privacy rules), which can be considered auxiliary
to the main specification of the system. This means that the exact set of features included in
any particular model of the system can vary quite widely (for example, neither Yu’s i* model
or van Lamsweerde et al.’s KAOS model cover all of the requirements). This is helpful to the
study’s research goals, as it introduces variance into what the participants intend to model.

All these experimental materials are available online in a GitHub repository [161]. Addition-
ally, the case study definition and responsibility modelling tutorial are presented in Appendix
A.

Participants were asked to construct a responsibility model of the meeting scheduler problem
in their own time, ideally using the RESME toolkit. The participants were instructed to
construct their model unsupervised at a time and location of their choice, but were advised
not to spend more than a couple of hours performing this task. Participants contacted the
researcher after they had completed their model, and were then called back for a debriefing
interview.

These were semi-structured, individual interviews using a series of probes. Initially, par-
ticipants were asked to describe their model, providing their own interpretation of the re-
sponsibility model they had produced. This provides a baseline for assessing if the model
accurately represents the participant’s intention when they were constructing the model. After
this description questions were asked about elements of their model. These included questions
about the notation (such as if they had not used a particular feature of the notation, or if their
model did not conform to the notation described in the tutorial) and questions about the model
structure (such as if large areas appeared to be missing, or if it was difficult to follow the
design of the model).

After initially discussing the model, participants were then asked about their experiences of
responsibility modelling. Firstly they were allowed to respond to this unprompted, raising

8.4. Results 195

their own issues. Participants were then prompted to describe the parts of the technique they
found easiest and hardest to understand or use in order to gather additional information. At
this stage any deviations from the standard notation in their model were examined in more
detail. After this, participants were then asked if there were any parts of the system they could
not model in responsibility modelling, and to explain why if so.

Finally, the participant’s model and the original system definition were compared. Partici-
pants were asked about any significant differences between the model and the definition to
investigate why these had occurred, aiming to distinguish between differences that had arisen
due to the use of responsibility modelling (e.g. because responsibility modelling lacked the
ability to represent a particular area or function) and those that were due to other factors (such
as lack of time to model, or the participant not understanding a certain section).

8.4 Results

All participants were postgraduate students within the School of Computing Science at the
University of Glasgow. In total, seven participants took part in the study; all those who started
the study continued to completion.

8.4.1 Participant A

Participant A has a background in security research; their experience of modelling techniques
was limited to studies of entity-relationship diagrams [28] and the Unified Modelling Lan-
guage [152] as an undergraduate. They had not performed any substantial projects involving
systems modelling before, and had not previously encountered responsibility modelling.

Participant A’s responsibility model of the meeting scheduler is shown in Figure 8.2. To
initially construct their model they used a simple variation of the elicitation technique de-
scribed in the tutorial, underlining key words and phrases in the problem definition and then
classifying them as the appropriate modelling concept.

The overall structure of this model is broadly consistent with the responsibility modelling
notation presented in the tutorial - initial responsibilities such as ‘Get Meeting Info’ produce
resources that are then used to finalise the choice of date and meeting, which allows the
meeting to be scheduled and take place. The purpose of the Meeting Scheduler Definition
is to define a computerised meeting scheduler system that ‘supports the organisation of
meetings’ by automating communication and reducing overhead. Participant A’s model makes
no reference to such a computerised scheduling system - many of the responsibilities and
decisions within the model could be made by a scheduling system, but they could equally
describe a purely manual system. However, the definition document describes the process in

8.4. Results 196

Figure 8.2: Participant A’s responsibility model

8.4. Results 197

ambiguous terms and mentions a computerised system for the first time half-way through the
document, so overlooking it is understandable.

However, there is one obvious deviation from the standard responsibility modelling notation
- the diamond shape choice or decision objects (similar to those in the Unified Modelling
Language). These are used to represent the various conditions under which the meeting date or
room is determined, as the problem definition clearly describes the process for identifying and
resolving conflicts. The use of this extra notation is in conflict with the style of responsibility
modelling used in previous studies. Responsibility models have generally avoided describing
choices in detail, choosing instead to abstract away this level of detail. For example, the
‘within exclusion’ and ‘within preference’ decision objects might be abstracted into a ‘Choose
meeting date’ responsibility. However, this is not necessarily an inherent characteristic
of the methodology, and instead reflects the preferences of certain modellers. Indeed, the
desire to explicitly represent complex scenarios involving multiple possible options led to the
development of a constraint language for responsibility modelling, as described in Chapter 4.
The constraint language allows for the specification of alternative options for discharging a
responsibility or producing a resource. For example, Participant A’s decision chain for the
availability of a meeting room could be expressed as:

MeetingRoom: Room Available || NegotiateNewLocation Discharged & GetNewPreferences

Discharged.

Their use of the UML-inspired flowchart notation is effectively a less formal graphical
representation of the constraint logic already featured in responsibility modelling, but left out
of the participants’ tutorial for reasons of brevity. Participant A explained their use of these
flowchart elements as being inspired by the UML, explaining that human factors mean that a
system must have several options to be considered. They also noted that they had used the
UML notation because they “did not really know the [responsibility] model [notation] well”;
they felt the behaviour was important to capture, but had not seen any suitable notation to
capture it with.

In contrast, their model demonstrates effective use of the differences between the holds and
requiredActor actor-responsibility relations. All relations between actors and responsibilities
use the standard requiredActor notation, with two responsibilities also being held by the Ini-
tiator - the initial ‘Get Meeting Info’ responsibility and the final ‘The Meeting’ responsibility.
In both of these cases the Initiator holds the responsibility and the Attendees don’t, indicating
the authority and duty of the meeting’s original organiser. They also occasionally used labels
on relations to describe the nature of the interaction between entities: for example, both the
Initiator and the Attendees are linked to the Meeting Schedule - the Initiator is required to
update it, while the Attendees must be notified.

When asked to describe their model their verbal description of the system corresponded well

8.4. Results 198

to the responsibility model that they had produced. They described in some detail the process
required for a meeting initiator to set and then finalise a potential meeting date, given the
constraints placed upon it. This process is clearly expressed in the flowchart-type notation
used in the relevant section of the model. Similarly, they provided a clear explanation of the
process for obtaining a suitable and available meeting room, which is also expressed through
the flowchart notation.

Participant A’s experience of responsibility modelling was generally straightforward. They
found the hardest part of the exercise was “coming up with the requirements”; understanding
the problem specification and the logic within. Once they had understood the specification
“it was easy to follow” how the processes and logics could be captured using responsibility
modelling, by considering each element to determine if it should be modelled by a resource
or a responsibility. This modelling process demonstrated a learning curve, with the first
objects being difficult, but becoming easier once they had grasped the basics. In particular,
understanding and then modelling the complex logic for determining the meeting time and
location (by considering the options and constraints) was identified as the hardest area of
the task to complete, with understanding the specification the main issue - “I’m OK with
translating this once I’ve got the idea”.

When asked about parts of the specification that they were not able to model they mentioned
the parallel aspects of the system, such as ‘the meeting scheduler must in general handle
several meeting requests in parallel’. They expressed uncertainty over the meaning of this
phrase - did this refer to the system being run repeatedly, or the need to handle multiple
meetings at once? Would this would affect the rest of the system, such as needing to check if
participants were attending meetings simultaneously?

Their responsibility model did not feature separate actors for the different types of participants
(the definition mentions participants, active participants and important participants), instead
using a single, complex responsibility to model the different preferences expressed by the
participants. This makes that responsibility more complex, but Participant A noted that this
eliminates the need to specify how how the status of a participant is determined - “the more
complex thing is how you determine which one is important”. The model also lacks most
of the non-functional requirements expressed on the final page of the definition - Participant
A noted that these were subjective, and it was not clear how they could be modelled in the
notation. This is a known shortcoming of responsibility modelling, and occurs to some
extent in most socio-technical modelling techniques - if processes are abstractly modelled
then it is difficult to specify non-functional requirements, as these may vary depending on
implementation.

Overall Participant A was able to construct a reasonable responsibility model that matched
their understanding of the system, but was only able to do this by introducing their own

8.4. Results 199

Figure 8.3: Participant B’s responsibility model

notation to capture complex choice-based behaviour. The use of the decision objects allowed
them to represent all parts of the system definition that they wished to, with the exception of
the non-functional requirements. The most demanding part of the modelling process appeared
to be understanding the problem domain and the definition, rather than the responsibility
modelling itself; however, their model features a number of small deviations from the standard
responsibility modelling notation. This may reflect limitations in the tutorial, or producing a
fully compliant model may require additional effort or concentration.

8.4.2 Participant B

Participant B has previous experience in requirements engineering (using methods such as
misuse cases and TROPOS [20]) and had made use of these techniques in a study comparing
formal and informal requirements engineering techniques. They also have experience with
the use of safety cases and large-scale system models, but had not previously read about or
used responsibility modelling.

Participant B’s responsibility model of the meeting scheduler is shown in Figure 8.3. The
hand-drawn nature of this model leads to a notation that is often inconsistent with the notation
presented in the tutorial. For example, several relations are presented without directionality
(e.g. the relation between ‘Asks’ and ‘Meeting’, or between ‘Date and Time’ and ‘Arrange
Meeting’. This makes the model difficult to interpret, as both potential relations implied by

8.4. Results 200

this link (e.g. that arranging a meeting requires a date and time, or that the act of arranging
a meeting produces a date and time) are potentially valid. However, Participant B was able
to provide a description of these relations when asked; the lack of directionality appears to
indicate difficulties constructing the model or understanding the notation, rather than a lack
of understanding of the relationship in the domain.

Additionally, they use only one form of relation between actors and responsibilities, apparently
disregarding the ‘holds’ relation. When queried, they simply stated that they “missed that”, and
asked for a step-by-step process for modelling relations. The relation between the Scheduler
and ‘Asks’ also demonstrates a non-standard double-headed arrow, implying a bi-directional
relationship; Participant B explained this relationship as the Scheduler using the information
provided by the ‘Asks’ responsibility, but did not comment on the bi-directionality - “[the]
Scheduler uses these resources; it’s the Scheduler’s responsibility to do this.”. However, while
the relations are mainly non-standard the entities all correspond directly to those presented in
the responsibility modelling tutorial.

Participant B seemed unclear about many of the relations when asked to explain their model.
For example, resources are linked directly to actors (such as ‘Scheduler’ and ‘Date Time’)
and they were not able to provide a clear explanation of how these resources were produced.

They also expressed several problems with the task, unprompted. They felt the system
definition contained significant technical jargon, limiting understandability. They also wished
that they had a step-by-step process for constructing a responsibility model, such as identifying
entities, then identifying relations and so on - “it would be very nice if we had steps [for
making the model]”. Both of these are useful observations - parsing complex domain-specific
language is an integral part of many modelling methods.

In contrast to many other participants, Participant B explicitly included an actor representing
the computerised scheduling system. They stated that “it is very clear” from the tutorial that
actors could be computer systems, but suggested that the use of a stick-figure notation for
actors might confuse others.

Participant B also suggested improvements to the modelling notation. They argued that
relationships would be much clearer if labelled with short descriptions - “the arrows need
labelling”, which would make it possible to understand a model visually without having to
read a description to obtain the full detail. For example, they considered the relation between
the Manager and the ‘Enjoy Meal’ responsibility in the tutorial to be unclear (as show in
Figure 8.1), thinking that the manager enjoyed the meal with the customer. When asked
about areas of the notation that were particularly easy or particularly difficult to understand
they again referred to the use of labels or similar additions to the notation, with the intent of
making the diagram easier to understand.

When asked about parts of the specification that they were not able to model they mentioned

8.4. Results 201

the “functionality behind” arranging the meeting, the “process or implementation” details
involved. They suggested a pseudocode type notation for describing algorithms. They also
discussed the possibility of a deadlock situation, such as when no rooms met the required
preferences; this presumably requires some preferences to be dropped, but this is not included
in the model. Both of these issues are related to the model’s level of abstraction - responsibility
modelling would normally be used to abstract over certain implementation details, and the
core concept of a responsibility is not suitable for low-level implementation details, where a
process-based model may be more suited. Additionally, they mentioned the idea of “partial
accountability”; they noted that accountability “is not zero or one”, such as in the case of
the meeting scheduler, as some accountability should be placed on the participants for the
preferences they express. Responsibility modelling does not provide a clear solution to this.
Responsibilities are either held by actors or are not held, and there is no notation for indicating
the strength of the relation.

In several areas their responsibility model was very abstract, such as all interactions between
the scheduler and participants being covered by the one word responsibility ‘Asks’. However,
they were able to given a detailed description of these interactions when prompted, suggesting
that the level of detail was not due to a lack of understanding, but might be attributable to
a difficulty converting into responsibility modelling notation, or perhaps purely a lack of
time. Their responsibility model did not feature separate actors for the different types of
participants, nor did it mention how they expressed different types of preferences. Participant
B said that this was primarily “for simplicity”.

Overall, Participant B’s model was highly abstract, lacking the majority of details contained in
the system definition. Their model also demonstrated an inconsistent application of relations,
with a mix of non-directional, one-directional and bi-directional relationships indicated.
This might be partially be down to the pressures of time the participant indicated, but the
inconsistent notation suggests a difficulty in understanding responsibility modelling. This
is supported by Participant B’s suggestions for improvements, which primarily focused on
ways to make responsibility models easier to understand. Alternatively, the lack of detail may
be caused by a feeling that responsibility modelling lacks the right concepts for representing
detailed actions, as indicated by their comments on modelling details of processes.

8.4.3 Participant C

Participant C has previous experience with workflow and trust modelling, as well as a
basic understanding of UML and ER modelling. They had previously worked on a project
to implement workflow modelling in Python that could be ‘fuzzed’ - introducing random
changes to the model to determine a system’s robustness. They had also read some early work

8.4. Results 202

Figure 8.4: Participant C’s responsibility model

on responsibility modelling (such as Sommerville [167]) but had never used the technique
themselves.

Participant C’s responsibility model of the meeting scheduler is shown in Figure 8.4. They
constructed their model using the RESME toolkit, ensuring that it matches the standard
notation described in the tutorial. However, they used one part of the notation that is supported
by the RESME toolkit but was not described in the tutorial - the ‘Produce Actor’ relation,
which was used to model that Active Participants are created by the ‘Request Availability
Details’ responsibility. This is a logical relationship - participants are feasibly only active if
they are available (the system definition does not define active participants), and shows that
the participant was able to use features of responsibility modelling that had not been explicitly
introduced.

Their model shows heavy use of resource intermediation to convey interactions and responses
- for example, the responsibility ‘Identify possible meeting conflicts’ produces a resource
‘Resource Alteration’, which is then an input to the ‘Change meeting schedule details’ respon-
sibility. It also demonstrates the coupled use of the ‘holds’ and ‘Required Actor’ relations;
only once are these not used together - Possible Meeting Participants are only required by

8.4. Results 203

‘Request Availability Details’, which both requires and is held by the Meeting Initiator.

Participant C noted that they were unable to find a suitable way to represent choices between
different actions, which affected their construction of the model. They wanted to be able to
model “an obligatory choice between an arbitrary set of actions”, such as when identifying
meeting conflicts. In this case they used a resource that was generated when there was a
change of meeting schedules, which is then used to produce a new set of preferences and
exclusions. This type of behaviour can be formalised in responsibility model using the
constraint language, but this was not described in the tutorial presented to participants.

They also indicated that their model has an effective “arrow of time” - the system begins by
the initiator requesting availability details, which produces participants that will take part in
the meeting, which then produces a potential resource alteration, and so on. However, this
process can also loop. Timing in responsibility modelling is a complex issue without explicit
ordering, but inferred orderings like the ‘arrow of time’ occur in most models.

Participant C often indicated that they knew their model was incomplete, or that they were
not sure if they had applied responsibility modelling correctly. For example, they were
aware that the ‘Equipment Requirements’ resource was never used, but felt that “it didn’t
seem to be needed to be used”, based on the system definition. They also noted a number
of constraints in the definition that were not included in their model - primarily the non-
functional requirements on the final page of the definition. They expressed this as a separation
of concerns between the responsibilities that had to be modelled and the processes that were
modelled; the constraints applied more to the processes, while the responsibility model
naturally focuses on the responsibilities.

No part of their responsibility model explicitly features computerisation, as is implied by the
system definition. The model is abstract enough that the level of automation is left ambiguous;
there may be computer systems implementing some of the tasks described, but they are not
part of the responsibility structure. Participant C noted that they had thought about this, but
felt their model should not be implementation specific, and hence would not contain explicit
references to a computer system.

To initially construct the model they had used a similar technique of entity identification
to that described in the tutorial. They annotated the system definition document to identify
actors, responsibilities and resources, as shown in Figure 8.5. They used different notations to
identify each type of entity in the text - rectangles for responsibilities, ovals for resources and
diagonally-cut ovals for actors.

Participant C found the graphical representation of responsibility to be easy to use - “I
found the notation really, really easy to create and reason with”. They did not identify any
problematic areas of responsibility modelling, although they did note an initial learning curve.
They spoke highly of the RESME toolkit, describing it as “very easy to use”, although the

8.4. Results 204

Figure 8.5: Participant C’s annotated system definition

installation process was off-putting. Initially they found adding elements into the model
difficult, but “this got easy after about a minute”. They had learnt to use only one of the two
methods for adding entities to a model; without a tutorial on the toolkit itself they had to learn
by trial and error. Their actual creation of the responsibility model only took about half an
hour; the remainder of their time was spent understanding the definition and identifying the
various entities. They did have problems attempting to find a satisfactory layout for the model;
the toolkit’s automatic layout was unsatisfactory, and the complexity of layout encouraged
them to use fewer relations.

When asked about parts of the specification that they were not able to model they mentioned
resources - their model used several examples of sets of sets (such as ‘Set of Preference
Sets’). They wanted to be able to model a “plurality of a resource”, in that the participants
each produce a set of preferences, which are aggregated by the scheduling system. This
implies a one-to-one mapping between a set of preferences and a participant, and Participant
C would have liked to show this mapping explicitly, which would add clarity to the model, and
distinguish between singular and multiple actors (such as having only one Meeting Initiator,
but multiple Active Participants). More generally, plurality of entities could be used to
identify responsibilities that are repeated (such as identifying meeting conflicts). Some of this
behaviour can be modelled using the constraint language, but the structure of responsibility
modelling forces intermediation - for example, a resource cannot be produced by an actor;
instead, the actor should hold a responsibility that produces the resource.

Their model does not feature the selection of a location for the meeting, despite obtaining

8.4. Results 205

equipment requirements (which would be used to identify suitable rooms). They chose
not to include this as they were not sure how it would fit into their model; on reflection,
they felt that it could be added as another input to identifying meeting conflicts. More
generally, the equipment requirements display several oddities: the responsibility requires
possible participants, not active participants (implying that non-attendees could still express
preferences) and the resulting ‘Equipment Requirements’ resource is never used. Participant
C felt that this resource was not needed by any other part of the model; with hindsight they
felt this could be used as another source of potential conflicts, such as if the room selected
lacks the correct equipment.

Overall, Participant C constructed a substantial model that provided a detailed description of
the system. Their fidelity to responsibility modelling was enforced by the use of the RESME
toolkit for modelling, but they also showed effective use of relations, including those that
had not been introduced in the tutorial. They effectively grasped the standard responsibility
modelling approach to abstraction based on responsibilities rather than processes, possibly
driven by their reading of similar work. Their main limitation was the inability to express
more complex behaviour, such as complex relationships between actors and resources; this
can largely be expressed through using the constraint language, but the participant was not
introduced to this.

8.4.4 Participant D

Participant D has only limited experience with modelling techniques, having previously
studied the basics of UML modelling, but not had applied it in any meaningful projects.

Participant D’s responsibility model of the meeting scheduler is shown in Figure 8.6. This is a
simple model consisting of just seven entities. Their model adheres tightly to the responsibility
modelling notation defined in the tutorial. Their use of relations is clear, demonstrating logical
use of the differentiation between ‘holds’ and ‘required actor’. However, their naming
of responsibilities is unclear - the responsibility ‘Meeting’ is short and unspecific, while
‘Proposed Date’ implies an (information) resource rather than being a responsibility. They
were able to give substantial definitions of these responsibilities when asked, implying that
the short names are part of their desire for simplicity.

Participant D emphasised simplicity when constructing their model - “I wanted to try and
keep it as simple as possible”. They were concerned that a complex model would be difficult
to understand and would cause people to lose interest, but might still not be complex enough
to describe all possible scenarios - “If you try to capture everything you get a very complex
system”. For example, they noted that choosing the date of the meeting might require multiple
rounds of negotiation between different sets of participants, and so chose to abstract over

8.4. Results 206

Figure 8.6: Participant D’s responsibility model

this detail instead. They were aware of the possibility that more detail might be required in
some cases - “if there is a need to, you can have other subsections”. This simplicity extended
to the names of responsibilities, which were extremely short. However, Participant D was
able to provide an extensive description of the activities encapsulated in these responsibilities
when queried; they clearly had a strong understanding of the system definition and how
their model related to it, but chose simple descriptions to describe complex behaviour. Their
description of the ‘Proposed Date’ responsibility identified a potential flaw - they described
how participants would express their date preferences, but Participant was not a required actor
for the responsibility. However, Participant D quickly identified this as an oversight when
mentioned, and it is unclear why they did not include it originally.

They also introduced a new actor into the system - the Administrator, which does not directly
correspond to any of the agents mentioned in the system definition. They felt that “there was
too much work for the initiator” and that this addition would make the work of the initiator
easier. They suggested various duties for the administrator, such as ensuring the meeting starts
and ends on time and that the venue is ready and configured. The concern that the initiator has
too many responsibilities is a core part of the system definition, which is intended to enable
the design of a computerised scheduling system. However, the responsibilities indicated
for the scheduler are quite different from those Participant D assigned to the Administrator;
the scheduler is intended to automate the process of fixing a time, date and location, while
the Administrator’s responsibilities are actions that take place after the meeting has been
scheduled.

8.4. Results 207

Participant D began their modelling by studying the responsibility model tutorial. They
then successfully installed the RESME toolkit and constructed an initial model - “I got
everything set up and already created one [model]”; but then were unable to reload it due to
Eclipse updates and resorted to a general-purpose drawing tool. When analysing the system
definition they began by identifying actors, then identified the other entities. They deliberately
constructed an initial model that was considerably larger than their final model (for example,
it contained multiple types of participants) before simplifying and refining their model to
produce the final result. They generally found responsibility modelling straightforward,
and said they didn’t have any challenges understanding the technique. They also found
understanding the problem definition easy; they spent most of their time using the tooling
or revising and refining their initial model - “the problem definition was easy; it was just
implementing it [the model] that was the challenge”.

While they did not find themselves unable to model any parts of the system, they did express
some dissatisfaction with the use of resources. At times they would have preferred to link
actors directly to resources, rather than having to intermediate using a resource. This use of
responsibilities as intermediate elements is an important prerequisite to automatic analysis,
but ‘syntactic sugar’ could enable visual shorthands while retaining the original underlying
representation.

Compared to the system definition their model lacked many features, as they had sought to
simplify and reduce complexity. They deliberately simplified parts of the system that had
many options (such as choosing dates, or the types of participants) in order to make the
model easier to understand. Similarly, they chose not to model the replanning process, as this
process might take many rounds and was not guaranteed to produce a result - “you might
have a continuous loop... but you might never have everybody” . They suggested the use of
sub-models to provide more detail on individual responsibilities if that level of detail was
required. They also discarded most of the non-functional requirements, feeling them to be
overspecified and unnecessary for most cases of scheduling. This was also their justification
for not making explicit references to a computerised scheduler; their model was intended to
be abstract enough to cover most scenarios, and extra detail could be added for a specific
circumstance - “I felt it was adaptable...”.

Overall, Participant D constructed a relatively simple, highly abstract model of the system, but
this simplicity was an explicit modelling decision rather than due to any lack of understanding
of the domain. Their application of responsibility modelling was close to the notation provided
in the tutorial, but their desire for simplicity lead to deviations from the problem definition.
They appeared confident in the use of the technique; differences in their model arose from
their different perspective on and motivation for modelling, rather than any lack of knowledge.

8.4. Results 208

8.4.5 Participant E

Participant E has extensive past experience in systems modelling, having worked with large
consultancy firms on government IT projects. They have experience with UML, the Rational
Unified Process [104] and the Archimate enterprise modelling language [82], but had not
previously encountered responsibility modelling.

Participant E’s responsibility model of the meeting scheduler is shown in Figure 8.7. They
produced a complex model consisting of dozens of entities, arranged by type. Their model
contains almost all concepts described in the system definition. Actors are comprehensively
defined, including an explicit ‘System’ actor and the inclusion of a participant’s representative.
Similarly, an exhaustive listing of resources and responsibilities is provided, including both
functional elements (such as preferences and actions) and non-functional system character-
istics (such as concurrency and usability). There is significant overlap between the set of
resources and the set of responsibilities, as many concepts appear twice - for example, there
is a resource ‘preference set’ and a responsibility ‘preference sets’.

The model shows substantial interaction between entities, but the relations take very specific
forms. Actors are directly linked to both responsibilities and resources, and the ‘holds’ relation
is not used. Resources and responsibilities are linked, but the substantial majority of links
are from resources to responsibilities (production) with limited links from responsibilities to
resources (consumption). Additionally, resource to resource links are used (such as ‘special
requirements’ being linked to ‘meeting room’), but there are no homogeneous links between
responsibilities or between actors. This type of relation is a not a part of standard responsibility
modelling; conceptual links between resources are common (such as special requirements
influencing the choice of a meeting room), but these are intermediated through responsibilities.

Given the number of entities featuring in the model the structure is flat, with relatively
few complex interdependencies. The most interdependent section of the model resolves
around identifying strong and weak constraints - the constraints depend on the conflict date,
which itself relies on the meeting room, which then relies on special requirements, which is
ultimately reliant on the meeting initiator and attendees. However, many other entities are
only involved in one relation, such as the non-functional system requirements that are not
linked to any other features.

Participant E used “their usual habit” of identifying the “functionalities” of the system, which
they modelled as resources, and then the actors. They then constructed the relationship
between these functionalities and the actors. This suggests an uncertainty of the difference
between responsibilities and resources; in other responsibility modelling studies system
functionalities would be represented as responsibilities, with resources used to model their
inputs and outputs. The distinction between functionalities, resources and responsibilities
is not as clear in Participant E’s model - many of what they describe as functionalities

8.4. Results 209

Figure 8.7: Participant E’s responsibility model

8.4. Results 210

are pieces of information (such as ‘Preference Set’, ‘Special Requirements’ and ‘Proposed
Meeting Date’), while their responsibilities include both functionalities (e.g. ‘Add new dates
to preference set’) and more abstract concepts (e.g. ‘Domain theory’, ‘Conflict Resolution’).

They found it “very difficult” to determine the responsibilities. They noted that they were
very familiar with analysing actors and system functionality from using other modelling
techniques but that they had never considered the more abstract idea of responsibility, and
suggested that guides and tutorials should emphasise the nature of responsibilities as this
concept was less commonly known. In particular they were used to the idea of ‘sequence’
- “in our requirements we get the sequence of events”, while responsibility modelling uses
a different temporal concept. After constructing a set of responsibilities they had further
difficulty in deciding which actors would be responsible for which responsibilities. This
choice of language implies that they considered the responsibility / accountability relation
to be the main component of actor-responsibility notations, even though they only used the
‘required actor’ notation in their model. In contrast, they found it very easy to determine the
responsibilities for the ‘System’ actor, which consist primarily of non-functional requirements
- “I found it very easy to do this part. You know the clear-cut responsibilities”.

Participant E had particular difficulty in attempting to model the identification and resolution
of date conflicts, as there was no method in responsibility modelling to express the “alternative
flow”; that different actions might be taken depending on the state of the system, such as
depending on whether a suitable date could be found. This type of behaviour can be at
least partially modelled using the responsibility modelling constraint logic, but this was not
included in the tutorial given to participants. They also noted the absence of sequencing in
responsibility modelling, which does not have an explicit mechanism for timing.

They justified their lack of direct links between resources and responsibilities by describing
how they are linked indirectly - for example, the ‘Add new dates to preference set’ responsi-
bility is held by the ‘Meeting Initiator’ actor, which is linked to the ‘preference set’ resource -
“I have shown the link between the actor and the responsibilities, but I’ve not shown the link
between the resources and the responsibilities. It’s an indirect link”. This does not correspond
to the conventional structure of responsibility modelling (where direct actor-resource relations
do not exist, and responsibility-resource relations are standard) but may provide a simpler
representation given the large number of entities in their model. They also addressed the
similarities between some resources and some responsibilities (such as the two occurrences of
‘preference set’) by noting the convention that verbs in free text represent actions, while nouns
represent resources. Therefore the term ‘preference set’ can refer to both the information itself
(a resource) and the use of the preference set as part of another process (a responsibility).

Overall, Participant E constructed a very detailed model that provided an extensive repre-
sentation of the system definition but did not correspond to the responsibility modelling

8.4. Results 211

Figure 8.8: Participant F’s responsibility model

notation and style presented in the tutorial. Their model used relation types not defined in the
tutorial (such as resource to resource relations), while others defined in the tutorial were not
used at all. Many of their relationships between entities are indirect and implicit rather than
direct, leaving the details of such relationships unclear. However, their model does provide
a very comprehensive description of the concepts and activities in the system definition;
shortcomings arise in the description of the interactions between these concepts and activities
instead.

8.4.6 Participant F

Participant F has previous experience with safety analysis techniques, such as STAMP [109]
and Accimap [186]. They had applied a number of safety analysis techniques in a comparative
case study in the context of health informatics.

Participant F’s responsibility model of the meeting scheduler is shown in Figure 8.8. Their
model is closely aligned to the notation presented in the tutorial, using all elements of the
notation in a syntactically correct way. The model covers all the core system elements,
clearly containing responsibilities for expressing and checking the preferences of meeting
attendees. However, there is no interaction between responsibilities - responsibilities may
be linked to an actor or produce resources, but no responsibilities are required by other
resources, and no responsibilities require resources. For example, the responsibilities ‘Add
some new dates to their preference sets’ and ‘Modify preference set’ appear to change the
same set of information, but are not linked in any way in the model. Additionally, a clear

8.4. Results 212

separation is drawn between the ‘holds’ and ‘required actor’ relations - these are always used
as separate relationships, and are never combined to show that an actor is both required by
and accountable for a responsibility.

Participant F adopted an actor-by-actor approach to determining responsibilities. They first
aimed to identify the responsibilities of the meeting initiator before then considering the
responsibilities of the participants. They used just one actor to represent participants - “I
identified participants in a generic way, because obviously there might be diferent categories”;
they similarly abstracted rooms details as the resource ‘Special Equipment’. They found
deciding on the relations to be “tricky”, particularly the difference between ‘holds’ and
‘required actor’. They considered that the “major responsibilities” of an actor should be linked
by ‘holds’ relations, while ‘required actor’ was used for more minor responsibilities. Their
understanding of these relations was that they were exclusive, which is why they were never
used together. This is a clear variation from standard responsibility modelling process; these
relations are often used together, and the importance of responsibilities does not affect the
choice of relation.

When questioned about the lack of production / consumption links between responsibilities
operating using the same information, Participant E was clear that these responsibilities were
related. With hindsight they agreed that these responsibilities should be linked via resources,
but noted that they had been focused on modelling the links between responsibilities and
actors when constructing their model.

Participant F had some difficulty in defining all “valid activities” and linking them to actors.
They did not find the process of identifying the responsibilities difficult, but choosing the
right actors to link to them was. This was a factor in their use of a single generic ‘Participants’
actor, as it reduced the complexity of relating actors and responsibilities. They also expressed
some difficulty with the definition of resources - their final model only contains two resources,
but they felt that they may have missed some others. They also noted that the most time
consuming part of creating the model was understanding the system definition and then the
process of converting that into a model - “It was understanding the problem domain; that’s
how I really took my time, and how best to model it”. In particular, they noted that there
was not a structured approach to take for creating a model. In contrast, actually learning
the responsibility modelling concepts and notation was relatively quick - “Generally I didn’t
find the activities or the responsibilities difficult - it’s just trying to be certain about the
participants”.

They did not explicitly include an actor representing the scheduling system in their model,
but were aware of the concept; they discussed the non-functional requirements that applied
to it. They made a conscious decision not to include a specific actor, considering these
responsibilities to be an overarching part of the system; the scheduling computer system was

8.4. Results 213

considered part of the system context rather than an explicit part of the model - “I wasn’t sure
whether to include that as an actor, or if it should be the domain area”. They described how
many of the non-functional requirements could be not be applied to a specific responsibility
or actor, and so they took a system-wide approach.

While they did not find themselves unable to model any parts of the system they were uncertain
as to whether they had produced a complete model. They found adopting to the principles of
responsibility modelling difficult, at least to begin with, and so took a step-by-step approach -
“At first, how I was going to model was really difficult”. This left them unclear if they had
modelled all the relevant elements so they focused on modelling the ‘active’ responsibilities,
and were concerned that passive elements of the system may have been overlooked - “I’m
not certain if I got everything completely; I had to first identify those directly related to the
participants”.

Overall, Participant F produced a syntactically valid model providing a reasonably compre-
hensive representation of the system, with some details missing due to limited modelling, and
others due to an inconsistent application of responsibility modelling principles. Confusion
over the application of the ‘holds’ and ‘required actor’ relations led to unclear representations
of the links between actors and responsibilities, while missing resources hide important
interactions between responsibilities. Their confidence in the validity or completeness of
their model was relatively low and they were able to identify their model’s shortcomings with
hindsight, implying that they had achieved a strong understanding of the methodology once
they had completed the study.

8.4.7 Participant G

Participant G has limited experience with standard modelling techniques such as ER diagrams
and UML, but had not applied them outside of university coursework.

Participant G’s responsibility model of the meeting scheduler is shown in Figure 8.9. Their
model accurately uses the notation described in the tutorial, clearly distinguishing between
required actors and actors holding responsibilities. The model provides a clear description
of the core parts of the system definition - the Initiator is responsible for producing an
initial list of participants, which is then used by the Meeting System to request details for
participants. These details are then used to schedule the meeting and create the booking,
allowing participants to attend. It contains all the main functionality as described in the initial
parts of the system definition, but does not include the non-functional requirements expressed
later in the definition.

Participant G used an entity-identification strategy to begin their construction of the model.
They initially identified the actors in the system, before moving on to resources and respon-

8.4. Results 214

Figure 8.9: Participant G’s responsibility model

sibilities and ending by determining the relations. They spent most of their time in the
study actually constructing their model, and did not need to spend a significant amount of
time working to understand the notation or the system definition - “the actual drawing out
took the most time”. They found the responsibility notation easy to understand, and did not
encounter any major problems - “[Q: Were there any areas of the notation you found difficult
to understand?] Not really, no”.

They used an explicit actor to represent the meeting scheduling software system; they noted
that software systems were described in the tutorial, and that the system definition clearly
meant the scheduling system had “things to do”. They had a clear understanding of the
differences between ‘required actor’ and ‘holds’, expressing the reasons for each use of
the ‘holds’ relation. Participant G had some difficulty in using resources, in particular
determining the correct interactions between resources and other entities; they considered
the idea of creating direct links between participants and resources, rather than having to use
responsibilities.

Participant G was able to model all parts of the system that they wished to using responsibility
modelling, but deliberately chose not to model some elements of the system because they did
not fit with concept of responsibilities. They referred to these as “implementation details”,
such as the process for changing dates in response to conflicts. Such processes could be

8.5. Discussion 215

expressed as responsibilities (such as ‘Change date to avoid conflict’) but these might not
fit with a consistent level of abstraction, and excessive detail is likely to lead to a more
confusing model without providing additional insight. They took a similar approach to the
non-functional requirements described in the system definition - “Non-functional requirements
are not responsibilities”.

They also chose to model all types of participants under the one abstract actor ‘Participant’.
They had considered subtyping, but also believed that any participant that took part could be
regarded as ‘Active’. They also considered having a specific actor for Important Participants,
but wanted to express that this was a specialisation of ‘Participant’ rather than a completely
separate actor. They were keen to see support for inheritance in responsibility modelling,
favouring an approach similar to that in object-oriented programming. The version of respon-
sibility modelling described in the tutorial materials has no support for this type of inheritance,
although the concept of instantiation provides a limited ability to model this type of hierarchy.

Overall, Participant G produced a model that described the system in moderate detail and
that closely followed the responsibility modelling notation that they had been presented with.
They appeared to grasp the technique quickly, and did not express any significant problems
in applying the notation. They chose to not to model some significant areas of the system,
believing that they did not fit with the abstract concepts of responsibilities. However, the lack
of simple support for inheritance in responsibility modelling prevented them from specifying
the details of different types of participants.

8.5 Discussion

This section analyses participants’ models and their comments on and experiences with
responsibility modelling, identifying four main areas of interest. Firstly, factors relating to the
problem domain for this study are investigated; in particular the amount of effort participants
required to understand the system definition. Secondly, a comprehensive analysis is performed
of participants’ experience using the responsibility notation, identifying common mistakes
made and shortcomings caused by limitations in the technique. Thirdly, several modelling
decisions made by participants are discussed, including their process of modelling and use of
abstraction. Finally, the potential influences of previous modelling experience are investigated.
An overview of the more quantitative features of participants and their models is presented in
Figure 8.10.

8.5. Discussion 216

Participant Previous Experience Model Size Main Effort
A UML, ER Large Understanding the domain
B Safety Cases, RE Small Balanced
C Workflow modelling, UML, ER Medium Understanding the domain
D UML Small Constructing their model
E UML, Rational, Archimate Large Constructing their model
F Safety Analysis Medium Balanced
G UML, ER Medium Balanced

Figure 8.10: Participants’ prior experience and selected characteristics of their modelling

8.5.1 System Definition

Participants generally had a good understanding of the domain as expressed in the system
definition. They provided clear descriptions of the core concepts of the domain when asked,
and were able to explain their models in terms of the system definition. Only the non-
functional requirements (those described on the final page of the system definition) appeared
to cause any problems, with some participants unclear how these more abstract details could
be applied to the system.

Participants were divided over whether to include an explicit actor representing a meeting
scheduler computer system. Many of the details in the system definition (such as non-
functional requirements, the description of system users etc.) strongly imply that a computer
system is being described, but it is never explicitly stated that the ‘scheduling system’ cannot
be a manual process. Participants B, E and G included a system actor in their models (called
‘Scheduler’ or ‘System’), while Participants A, C, D and F did not. Motivations for this choice
varied - some participants simply considered including a system actor to be obvious, while
others noted that software actors had been mentioned in the tutorial, or that the functions
described in the definition were clearly those of a computer program.

Participants that did not include a specific actor often justified this by noting that their model
was an abstract representation of the system, and that the nature of the scheduling system
would be implementation specific. Others argued that the distinction between the system and
the system context was ill-defined, and that characteristics applied to the software system
could actually apply to the entire domain. Unusually, Participant D chose to not model a
distinct actor responsible for scheduling, but introduced an ‘Administrator’. This administrator
was intended to reduce the effort required by the Meeting Initiator (the same goal as the
Scheduler) but operated in a different area, assuming responsibilities that arose after the
meeting had been initially scheduled.

All participants were asked what was the ‘hardest’ or most time-consuming part of taking
part in the study and constructing their model. Most participants stated the most difficult
element was understanding the system definition and the problem domain, rather than applying

8.5. Discussion 217

responsibility modelling itself. Participant A felt the hardest part of their task was “coming
up with the requirements” - the process of understanding the details of the system. Once
they understood the system, converting system concepts to responsibility modelling entities
was relatively easy. Participant B noted that the overly technical language used in the system
definition made understanding it difficult, although they also found some parts of applying
responsibility modelling difficult. Participant C described a fairly even distribution of effort -
around half their time was taken to understand the definition, and the other half to construct
the model. Participant F felt that understanding the technique was not time-consuming, but
the combined process of understanding the system definition and deciding how to represent
that using responsibilities was.

In contrast, Participant D stated that they found both responsibility modelling and the system
definition easy to understand, and spent the majority of their time constructing and refining
their model. Participant E also spent more time constructing their model than understanding
the system definition. They produced a very detailed model containing dozens of entities,
but had difficulty in attempting to express some parts of the system using responsibility
modelling concepts. Participant G also found that they did not need much time to understand
the specification, and were able to spend the majority of their time constructing the model.

This distribution of effort was unexpected; most of the participants already had some experi-
ence with software requirements or systems modelling, and so would already be familiar with
understanding and interpreting system definitions and requirements. The systems definition
was of moderate size (3 pages / 1000 words) and had been shortened from its original form
[188], and so the level of difficulty attributed to it was unexpected. A difficult case study
potentially makes it more difficult to determine if flaws in a model lie in the participant’s
understanding of a the technique or of their understanding of the domain, but a certain level
of complexity is necessary to provide complex behaviour to be modelled. Difficulties with the
choice of domain are not reported by Matulevičius and Heymans [122] (whose participants
obtained domain information via interviews), while neither Maiden and Sutcliffe [118] or
Moody et al. [127] discuss the problems encountered by their participants. Strohmaier et al.
[180] did explicitly ask participants about their most difficult tasks, but used closed questions
that contained only constructing or understanding models as options.

These results raise an important question as to what proportion of systems modelling difficultly
and effort is attributable to the chosen technique, and how much is attributable to the choice of
case study. This may affect the results of empirical studies such as this one, with the difficulty
of the case study potentially being a more powerful effect than the technique being studied.
Additionally, it is possible that too much focus is placed on the development of modelling
techniques and notations, and that more focus should be directed at understanding the quality
of requirements and methodologies for understanding them. Given these concerns, the relative
impact of methodologies and cases studies on modelling is a prime area for more focused

8.5. Discussion 218

future research.

8.5.2 Notation

Participants generally appeared to have a clear understanding of the entities in responsibility
modelling, but had more difficulty understanding the various types of relations. Resources and
actors were well understood, with these being common concepts in many modelling notations.
Responsibilities were more difficult to understand, possibly due to a lack of familiarity. Some
participants tended to avoid using the term ‘responsibility’ when describing their models,
often referring to them as tasks instead. Several participants constructed responsibilities
that do not appear to fit any definition of the term, such as Participant E’s ‘Domain theory’
responsibility. Others modelled responsibilities that are vague or unclear (such as Participant
B’s ‘Asks’ responsibility), although they could generally describe such responsibilities in
detail when asked. Participant E made the useful observation that responsibilities would
require more detailed explanation as they were less familiar, and the recommendation to focus
more on uncommon features when introducing a methodology is a strong one.

Participants’ understanding and use of relations was more problematic, with many expressing
a difficulty in understanding the concepts or applying them in a way that is not consistent
with the ‘normal’ usage expressed in the tutorial. In particular, the distinction between the
‘holds’ and ‘required actor’ relations was difficult for some participants. Participants B and E
did not use the ‘holds’ relation at all, and only used ‘required actor’ for actor-responsibility
links. In Participant B’s case this appeared to be due to their difficulty in understanding
and applying the concepts of responsibility modelling; similarly, Participant E expressed
difficulty in adopting the new concepts in this technique, including the definition and use of
responsibilities. Participant F also had some difficulties applying the ‘holds’ relation. In their
model they used both ‘required actor’ and ‘holds’, but never used them both in combination.
Their understanding of responsibility modelling was that these relations cannot be used
together, and so they used ‘holds’ to indicate an actor’s most important responsibilities, and
‘required actor’ to indicate lesser responsibilities. However, the majority of participants were
able apply the ‘holds’ and ‘required actor’ relations in a manner consistent with their definition
in the tutorial.

Some participants used an incorrect or unclear notation, which made interpreting their intent
difficult. Participant B used bi-directional arrows on some of their relations, and used no
arrows on others. Some forms of entity links have different meanings depending on the
direction (e.g. a resource can be either produced or consumed by a responsibility), and
so the semantics of these relations are impossible to determine. Participant E used direct
resource-resource relations; these were intended to indicate associations between similar

8.5. Discussion 219

resources. Participant E indicated that their model also contained indirect relations, but the
semantics of such a relationship is also unclear.

Participants were also asked if there were parts of the system they were unable to model
due to shortcomings or missing features in responsibility modelling; some participants also
offered such suggestions unprompted. Participant A wanted to be able to express choices and
decisions in their model, which were not demonstrated in the tutorial. Rather than leave out
this behaviour they introduced a UML-inspired decision notation to support it. For example,
this was used to perform different responsibilities depending on whether or not a suitable
meeting room was available. Participant B expressed a desire for a similar feature to model
the implementation and process details of responsibilities. Participant E also wanted to be
able to explicitly model different options in their model, which they described as ‘alternative
flow’. Responsibility modelling adopts a level of abstraction where it is not always necessary
to specify the process taken to discharge a responsibility, but it is often beneficial to express
that there are several distinct ways a responsibility can be discharged, such as when these
distinct ways may consume different resources. This behaviour can be expressed in formalised
responsibility modelling using the constraint logic, but this was not presented to the user
study participants in order to simplify their introduction to responsibility modelling. However,
this is purely a logic-based approach that does not have any graphical representation, and the
notation used by Participant A appears suitable for representing the majority of constraint
logic specifications. Similar notations were used in previous responsibility modelling studies
for expressing the detailed workflows of responsibilities, such as in Sommerville [166].

Several participants suggested that models would be easier to understand if relations could
be labelled to explain their meaning; Participant A actually included labels in their model.
This is a sensible suggestion, and would be helpful for model users that have not be trained in
responsibility modelling. However, care would need to be taken that labels applied to relations
do not contradict the formal semantics of the relation. Labelling a ‘Required Actor’ relation
as ‘Requires’ would be accordance with the semantics, but labelling it ‘Performs’ would
introduce potential ambiguity. Alternatively, standard labels (such as ‘Required’, ‘Produces’
etc.) could be applied, which would remove the need to infer the relation type from the entities
and direction of the relation.

Participant B suggested the concept of partial accountability, as they felt the current system
of actors holding responsibilities was too restrictive. If an actor holds a responsibility they
are accountable for it; if they do not hold it, then they have no accountability for it at
all. Participant B described several scenarios where accountability was less clear-cut - for
example, several actors could be accountable for a responsibility, but one of them could be
considered more responsible than the others. This situation appears quite common (such
as almost any responsibility in an organisation involving both junior and senior staff), and
responsibility modelling currently forces full, equal and joint responsibility onto all actors

8.5. Discussion 220

holding a responsibility. However, it is not clear how a more detailed version of holding a
responsibility would be modelled, although it could be introduced into the satisfaction logic
in a similar manner to ranked priorities.

Participant G strongly encouraged the incorporation of inheritance for actors into responsibility
modelling. They wanted a clear way to model the various types of participant (Active,
Important etc.) separately, while also indicating that all these actors were also the basic
Participant. This type of inheritance is a core feature of object-oriented programming,
where it allows specialisations to be developed that retain the features of a common parent.
In standard responsibility modelling no such feature exists, but formalised responsibility
modelling introduces the concept of instantiation, which provides a means to map between
different levels of abstraction. Instantiation is best suited to cases where two separate models
of the same system at different levels of abstraction are linked. This is not suitable for the
Initiator example, as it is only actors that are defined at different levels.

However, there are difficulties in adopting object-oriented style inheritance more broadly. In
responsibility modelling, inheritance would be semantic (subtyping), and sub-actors could
replace super-actors. Some important distinctions are unclear. For example, would multiple
inheritance be supported, and should inheritance apply to entity types other than actors?
More generally, it is unclear what benefits inheritance hierarchies of actors provide, other
than increasing the visual clarity of models. Responsibility modelling actors represent roles,
and hence one real-world entity (an individual or organisation) may fulfil multiple roles; for
example, someone could be both the meeting initiator and a participant. It is therefore already
possible for the separate representations of participants (Active, Important etc.) to represent
the same real-world actor, and the benefits of inheritance appear limited.

Formalised responsibility models that we have produced (such as those used in the case studies)
tend to make extensive use of intermediation - relationships between actors and resources
inevitably feature a responsibility, as the formal definition of responsibility modelling does
not allow direct relations between these types. Several participants disregarded this in order
to produce direct relationships between actors and resources, presumably indicating the
resources are produced by the actor, while others would have liked to do so if the notation
allowed.

Participant A’s model featured direct links between actors and resources, such as allowing
the Initiator to directly update the Meeting Schedule. Participant B used direct links between
actors and resources to indicate the information used by the scheduler to arrange a meeting,
but they were unclear as to the semantics of this relationship. Participant C also considered
using non-intermediated relations, but for more specific reasons. They wanted to be able to
distinguish between singular and plural resources. More specifically, they wanted to indicate
a direct correspondence between the number of participants and the number of preference

8.5. Discussion 221

sets. This is not currently possible in responsibility modelling, as this link would have to be
expressed via a responsibility producing the preference sets. Participant D did not make use
of these direct links, but did express that in some cases they would have liked to so that the
complexity of the model could be reduced. Participant E’s model used a number of direct
links between actors and resources, again with unclear semantics. Their concept of indirect
links between entities provides a good understanding of which entities interact with each
other, but makes it more difficult to understand causal links.

The use of responsibilities as an intermediary is an important part of automatic analysis, which
uses responsibilities to evaluate properties of the system. Direct links between actors and
resources would require extensive changes to existing techniques, such as overload analysis.
However, a ‘syntactic sugar’ approach could allow the use of direct relations when constructing
and displaying a model, which would then be converted to an Actor-Responsibility-Resource
structure when performing analysis.

The majority of participants did not attempt to use the RESME toolkit to construct their model.
Only one participant fully used the toolkit, and two others attempted to use it but encountered
installation or configuration problems. The early-development nature of the toolkit makes it
relatively difficult to configure and problems on specific platforms are likely, but the majority
of participants did not begin the installation process. Participants were not provided with face-
to-face assistance in installing and using the toolkit as it was felt this might introduces biases
in modelling style and methodology. However, the perceived complexity of installing the
toolkit was underrated. Some participants described the installation instructions as complex
and were discouraged by them, while others did not appear confident or comfortable with
manually installing software regardless of the instructions. As a result most participants drew
their model in a general-purpose editor or on paper, which led to more variation in notation
than if the toolkit had been more widely used.

8.5.3 Modelling

Participants’ models demonstrated a very wide spread in terms of modelling detail and levels
of abstraction; one model consisted of just seven entities, while another featured more than
50 entities. The size of models does not appear to correlate to any other major factors;
participants who expressed some difficulties with responsibility modelling produced both
large and small models, as did participants with previous systems modelling experience.
Participants clearly had different interpretations of the appropriate level of abstraction, based
on a variety of factors. Some participants with simpler models did so because they wanted
their model to be easy to understand, or because they felt more detail was unnecessary. Others
chose not to model some parts of the system because they did not fit with the concept of
responsibility, considering parts of the system to be ‘implementation details’ not suitable for

8.5. Discussion 222

modelling as responsibilities. Some simple models were also due to the participant’s limited
time, or their lack of confidence applying the technique.

While there is substantial variation between models, some trends were clear. All but one
participant did not model the non-functional requirements that the system should aim to meet.
Modelling these without an explicit actor representing the system is very difficult, but the
majority of participants using an explicit system actor also did not include them, modelling
only the functional interactions of the system. All participants used the same basic types of
actors: an initiator, participants (possibly divided by type) and possibly assisting actors of
some form (such as a scheduler, representative or administrator).

Several participants raised the issue of completeness; they were either aware that their model
was incomplete, or concerned that it might be. This lack of completeness was not due to the
abstraction of details, but arose because participants chose to or were unable to model certain
parts of the system. Some potential incompleteness was also introduced by ambiguities in the
system definition or difficulties in understanding that definition - for example, Participant C
noted that they had unused resources, because the definition described how the information
was gathered, but not what it was used for. Participants were aware of this incompleteness
but were unable to explicitly express it in their models. As a result, any user of their model
could consider it a complete and accurate representation of the system, and would not be
aware of the modeller’s doubts as to its completeness, potentially leading to incorrect or
overly confident interpretation. The explicit expression of incompleteness can be achieved in
responsibility modelling using the concept of explicit uncertainty, but this was not introduced
to the participants.

Many participants used short descriptions for responsibilities and resources, such as Participant
D’s ‘Meeting’ or Participant B’s ‘Asks’. These descriptions are short to the point of being
confusing; it is not clear from the model itself what activity is being described without making
reference to the system definition. However, in each of these cases the participant was able to
describe in detail the one-word responsibility, making clear that they did understand that part
of the system. Their reasoning for choosing such short names is unclear; most participants
referred to the desire for simplicity. The tutorial given to participants used short descriptions
(the longest being just nine characters), and it is possible that the short descriptions in this
abstract example encouraged participants to use short descriptions in their more substantial
models.

Most participants used some form of entity identification as the initial stage of their modelling
process; for example, Participant C worked through the system definition, underlining and
annotating each concept they identified as a responsibility, resource or actor. Entity identifica-
tion was then followed by the construction of relationships between this entities, which led to
an initial system model. Some participants then performed a review or refactoring of their

8.5. Discussion 223

model, such as Participant D’s simplification of their initial model by reducing the number of
entities.

Some participants requested a more detailed guide to the process of constructing a responsi-
bility model; the tutorial focused on describing the concepts and notations of responsibility
modelling, rather than specifying a specific process for constructing models. There were
two main reasons that such a guide was not provided - the tutorial was kept short to ease
understandability, and it was felt that the optimal strategy for constructing a model was
variable, depending on the case study and the preferences of the modeller. However, it is clear
that participants felt that they would benefit from a clearer guide, and the misuse or absence
of certain responsibility features could be addressed if they were included as specific steps in
a structured modelling process. Dardenne et al. [36] provide a clear seven-step process for
constructing models in KAOS, and a similar approach could be adopted for responsibility
modelling.

8.5.4 Previous Experience

Participants were asked several brief questions about their previous experience with modelling
notations, both specifically in the socio-technical / systems modelling field and in information
modelling more generally. These questions were asked to investigate if their past experience
influenced their use of responsibility modelling, such as by causing them to produce responsi-
bility models in a particular style or by affecting their speed of uptake. Overall there are no
conclusive links between previous experience and participants’ application of responsibility
modelling, although there are several areas of interest.

There is some evidence that modellers previous experience affects the structure of their
models; for example, Participant A’s model shows a layout and heavy use of decisions in
a style very similar to a UML activity diagram. However, other participants’ models do
not show an influence from the techniques they are familiar with - Participant F’s model
shows no characteristics distinctive of systems theory safety models, and Participant E’s
model features a very complex structure that quite distinct from the enterprise modelling
techniques they were familiar with. The participants that produced models closest in style to
the ‘classic’ responsibility model structure consisted of both experienced and inexperienced
system modellers, suggesting that the effects of past modelling experience are not especially
strong. Participants with more modelling experience were more likely to identify shortcomings
in the reduced version of responsibility modelling that they were introduced to, but their
requests for extra features varied widely, without a clear link to the techniques they had
already used.

Additionally, there does not appear to be a clear link between participants’ past modelling

8.6. Threats to Validity 224

experience and their difficulty understanding or applying responsibility modelling. Partic-
ipants with substantial systems modelling experience appeared more likely to report some
difficulty in understanding or applying the more complex parts of the notation (such as the
difference between ‘holds’ and ‘required actor’), perhaps because these distinctions were not
present in the techniques they had used before. However, this group of participants were more
likely to produce large models, which suggests that any difficulties in understanding did not
deter them from applying responsibility modelling. Participant E observed that they found
responsibilities more difficult to understand than the other entities (actors, resources) which
they had encountered in other modelling notations, but this does not suggest that they found
responsibilities inherently difficult to understand. However, this does suggest that tutorials
and guides for responsibility modelling should place extra focus on the concepts that are not
widely used in other modelling and analysis techniques.

8.6 Threats to Validity

There are clear issues with the use of university students as experimental participants. Stu-
dents are relatively homogeneous in background and demographics, and are unlikely to be
representative of any wider sample. The ideal sample of participant for this type of experiment
is unclear and often left undefined or only implicitly stated; in this case the ideal sample
would consist of modellers and analysts from across different domains and with different
backgrounds, including requirements engineering, safety analysis, organisational and business
modelling etc. Our sample of students differs from this in several important ways; it is likely
to be overweighted for experience with computing science modelling techniques (such as
UML diagrams and entity-relationship modelling) and short of those with any background in
other forms of modelling. As a result, students may deliver better results for techniques that
are similar to those they have recently studied, and poorer results where a technique clashes
with their previous experience. However, others argue that use of student samples does not
adversely affect external validity [45].

Despite this, it is noted by Moody et al. [127] that most experimental studies of concep-
tual modelling use computing science students, presumably due to their availability to the
researchers. No specific effort was taken to obtain a representative or random sample of par-
ticipants as convenience sampling was used. Given that the study is explorative, convenience
sampling may be appropriate [164].

Obtaining non-subjective assessment of participants’ understanding and effective application
of a modelling technique is difficult. Analysing models they produce provides a reasonable
indication of their understanding and skill at usage, but is subject to potential risks. Firstly,
assessing a model is itself a subjective task as differences in scope, detail and style all cause

8.6. Threats to Validity 225

a model to vary, and the optimal choice of these variables varies between each modeller or
analyst. Secondly, a participant’s model may not correlate with their level of understanding -
the quality of their model might be influenced by factors unrelated to their understanding, such
as the amount of time available to them. Alternatively, asking direct questions to participants
(via interview or questionnaire) about their understanding relies on their own self-assessment
of their knowledge, which may be unreliable. This study uses a combination of inspecting
participants’ models and asking indirect questions; this provides some protection against
unreliability and subjectivity, but a level of subjective interpretation remains.

Some characteristics of the participants were considered as potential factors that might explain
the variance in participants’ models, but were ultimately discarded. The native language
of participants was considered, as non-native English speakers might require more time to
interpret the problem definition or have more difficulty understanding it. However, there is no
clear common pattern amongst the three non-native speakers - their estimation of effort is not
notably different from the native speakers. Similarly, there are no obvious model features that
appear disproportionately in the models of non-native speakers.

Our choice of case study also induces potential threats to validity. The meeting scheduler
example is familiar in the literature and has been modelled before, which allows comparison
with other modelling techniques. The description has only been lightly modified from
previous versions, which limits the risk of experimental bias in constructing a problem
definition that is particularly suited to responsibility modelling. The meeting scheduler is
broadly representative of the wider set of socio-technical problems - it has a reasonable
amount of depth, and contains both technical, individual and organisational roles. However, it
is small compared to the problems considered in Chapters 6 and 7 (although this a inherent
flaw to case studies with limited resources) and lacks any particular flaws, holding a strong
degree of internal consistency. As a result, the external validity is partly limited.

The sample size of this study is small, which limits the generalisability of its findings.
However, we do not argue that this is a representative sample of modellers and hence draw
general conclusions about the application of responsibility modelling by such modellers;
instead, the study examines the experience of each participant individually to identify points
of interest without inferring that they are applicable to all modellers. The purpose of this
exploratory study is to identify points of interest around responsibility modelling that may
not have been previously considered and to provide initial information about modellers’
experience, which can be further investigated in more substantial studies.

The participants’ inconsistent use of different modelling or drawing software may affect
the results of this study if these packages influence the models that participants construct.
For example, the RESME toolkit enforces the use of relations in the exact format specified,
eliminating the possibility for syntactic errors. In contrast, participants drawing freehand on

8.7. Conclusion 226

paper can construct any notation they wish. Examples of this were apparent in the study, such
as Participant A’s use of UML-inspired decisions in a drawing package that provided special
support for UML.

The uptake of the RESME toolkit was overestimated in the planning of this study, and
this may contribute to the wide range of notations used by participants. Some interesting
results were obtained by its lack of use (such as the demonstration of several alternative
notations), but the use of a standard tool would be more representative of real-world usage.
Participants appeared to be discouraged by the complexity of the installation process of
RESME (potentially requiring the installation of Eclipse and additional dependencies), and
apparent incompatibilities with specific Eclipse configurations were also problematic. This
could be averted in future studies by providing participants with a computer preconfigured
with the toolkit (such as in a computer lab), although this would likely require that the
experiment be completed in a single block of time.

8.7 Conclusion

This user study has investigated non-expert modellers’ understanding and use of responsibility
modelling. Seven participants took part in an exploratory study where they were introduced to
responsibility modelling and produced responsibility models of a meeting scheduling system.
Participants were then interviewed to determine their experiences of using responsibility
modelling, and the models they produced were analysed. Overall, this study suggests that
responsibility modelling can be applied by non-expert modellers with a reasonable degree
of effectiveness, although this is subject to a significant variation between participants. A
number of issues around the notation and explanation of responsibility modelling, as well as
the process of constructing a model were identified, and are candidates for further investigation
in future work.

Two main research areas were addressed by this study. Firstly, ‘Can the responsibility
modelling technique be understood and applied by non-expert modellers?’. This user study
has found that non-expert modellers were generally able to understand the main concepts
of responsibility modelling and construct models. Participants understanding of the core
concepts was good, although some features were more difficult for them to understand.
In particular, the abstract nature of responsibilities was more difficult to apply for some
participants, and the distinction between the ‘required actor’ and ‘holds’ notation was often
unclear. All participants produced a model using the main features of the responsibility
modelling notation, although there was significant variance in the scope of these models and
the fidelity to the presented notation. In particular, the very limited use of dedicated tooling
led to the use of a variety of inconsistent notations.

8.7. Conclusion 227

Secondly, ‘Can non-expert modellers use responsibility modelling to produce models that
represent their view of a system?’. Participants were able to construct models that described
the majority of the behaviour they wished to model, providing a close but not complete
representation of their view of the system. Participants that could not represent their complete
view of the system expressed distinct requests for extra features, including inheritance, explicit
choices, enhanced accountability and labelled relations. Interestingly, a majority of requested
features are already contained within the full version of formalised responsibility modelling.

Several important issues have also been identified that could be further investigated by more
specific studies. Participants suggested that they spent a significant proportion of their time
understanding the problem domain, rather than constructing their model. This implies that
improving the usability of modelling techniques will lead to diminishing returns, as the
time taken to understand the domain is not affected. The effect of the level of detail of
a technique on understandability is also important to understand; some participants had
difficulty understanding the basic concepts introduced to them, but others were limited by
the omission of more advanced concepts that had been removed for simplicity. Finally, the
general understandability of models produced by the non-expert modellers was not assessed;
they were able to construct models that represented their view of the system and that we could
understand, but their models might be difficult for less experienced viewers to comprehend.

228

Chapter 9

Conclusion

9.1 Introduction

This thesis has presented a series of improvements to responsibility modelling, a socio-
technical modelling and analysis technique. Chapters 2 and 3 presented a survey of existing
socio-technical modelling and analysis techniques, and developed an iterative methodology
for constructing and validating socio-technical models. Chapters 4 and 5 provide a formalised
definition of responsibility modelling based on the semantics of EMOF incorporating new
concepts, as well as defining automated and semi-automated analysis techniques enabled by
the increased formality. Chapters 6 and 7 describe two case studies using formalised responsi-
bility modelling, comparing it to older versions of the technique and to the understanding of
domain experts. Finally, Chapter 8 described an explorative study of modellers’ experience of
using responsibility modelling, identifying the strengths and weaknesses of the technique.

This chapter concludes the thesis by presenting the main research contributions, addressing
the original research questions and presenting suggestions for future work. Section 9.2
addresses each of the research questions initially presented in Chapter 1, using the evidence
presented throughout the proceeding chapters. Section 9.3 then summarises the main research
contributions of the thesis. Section 9.4 discusses potential threats to validity of this research,
examining each research question in turn. Section 9.5 provides a comprehensive examination
of outstanding issues and future work in responsibility modelling and in socio-technical
modelling generally. Finally, Section 9.6 concludes the thesis by providing an overall summary
of the research.

9.2. Research Questions 229

9.2 Research Questions

The first research question ‘Can responsibility modelling be formalised in a consistent man-
ner?’ is addressed in Chapter 4. Responsibility modelling is formalised from first principles,
starting with definitions of entity and relation types. Entity definitions are used to construct
clear definitions of entity-to-entity relations, which are modified from previous work to pro-
vide clearer semantics. These definitions are formalised in an EMOF (Essential Meta-Object
Facility) [135] meta-model, which provides a standard system for defining the behaviour
of domain-specific languages. This formal definition provides a consistent semantics for
relationship between responsibilities and the definition of entity types.

In particular, super- and sub-responsibilities are restructured as required responsibilities,
which generalises the relation to incorporate any direct dependencies between responsibilities
while removing the need for composition, which is common but not universal in such relations.
The relationship between actors and responsibilities is clarified by separating this into ‘holds’
and ‘required actor’ relationships, which differentiates between the operational requirement
for an actor (required actor) and the accountability and control elements of being responsible
for it (holds).

This restructuring continues with delegation and dependency, which are standardised by
moving away from explicit statements of delegation. Delegation is no longer a direct act
indicating the transfer of a responsibility; instead these actor-to-actor links are generated
dynamically by calculating dependency, where an actor requires the success of other actors
in order to successfully discharge all its own responsibilities. This broadens the applica-
tion of dependency to wider multi-organisations domains (like Systems-of-Systems) where
conventional delegation relationships cannot apply.

Previously it was difficult to use responsibility modelling to specify responsibilities that
had complex forms of discharge, such as responsibilities that relied on a subset of possible
resources or that could be discharged by different actors. This is addressed and formalised by
the introduction of satisfaction criteria - a constraint logic that can be used to specify complex
discharge requirements using standard logical operators. This logic allows the expression of
either/or pre-requisites, enables multiple possible discharge options and can be used to specify
primary and fall-back responsibilities. A default satisfaction criteria is defined to simplify
modelling and analysis.

As with previous work, formal transformations are defined to allow common refinements of
model elements without unintentionally changing the wider model. Additionally, formalised
responsibility modelling introduces the ability to explicitly model uncertainty (in the domain
or the modeller’s understanding of it), allowing for the direct representation of unclear
elements rather than forcing models to specify unjustifiable levels of precision.

9.2. Research Questions 230

This results in a formalised notation of responsibility modelling that is able to represent all
forms of system behaviour that could be represented in previous versions, in addition to
introducing support for useful new modelling features. The use of clearly defined seman-
tics maintains consistency across modelling and analysis, and provides the first version of
responsibility modelling to have complete and comprehensive semantics.

However, reducing responsibility modelling to a succinct core of entities and relations means
that some potential areas of interest are not supported by this form of the notation. Outline
notation extensions for these areas (such as contradictions in models) are described in future
work.

The second research question ‘Can automatic analysis techniques and tooling be developed for
formalised responsibility modelling?’ is primarily addressed by the development of tooling in
Chapter 5, and the application of this tooling via case studies in Chapters 6 & 7. The formal
definitions and elimination of ambiguity ensure consistency in responsibility models, which
allows automation of analysis techniques that could previously only be performed manually.
Additionally, clearer semantics enables more structured methodologies for non-automated
analysis.

Firstly, simple local checks can be performed automatically. Resources without production
responsibilities and responsibilities without assigned actors can be quickly identified, which
can indicate potential system failures or gaps in the accuracy of the model. Actor overload
analysis allows for easy detection of actors holding large numbers of responsibilities, which
could lead to load-induced errors or discharge delays as multiple tasks must be addressed
simultaneously.

Wider model analysis can also be automated. Criticality detection traverses the entire model to
identify the consequences of individual failures on other responsibilities, and is used to locate
the most critical entities - the entities whose failure would lead to the highest numbers of
failed-to-discharge responsibilities. Such entities are clear candidates for deploying redundant
systems or introducing fall-back systems. Similarly, the interconnected nature of socio-
technical systems can lead to actors becoming dependent on other actors, which is detected by
reliance analysis. This analyses the responsibilities held by actors that require other entities
to be successfully discharged, and generates the set of actors that must active in order to
discharge the original actor’s responsibilities. This identifies clear vulnerabilities where an
actor relies on others that it cannot influence control over. The use of satisfaction criteria
allows the specification and validation of complex interdependencies between entities, which
can be combined with selective disablement to investigate failure effects.

These techniques are supported by the development of a responsibility modelling toolkit as an
extension for the Eclipse platform. This toolkit enables the graphical creation, editing and
analysis of responsibility models using the techniques previously described. Models can be

9.2. Research Questions 231

represented graphically or textually, as well as a platform-independent XML representation.
Analysis results are clearly presented using a mix of graphical highlights and textual descrip-
tions. Entities can be selectively enabled and disabled to examine the wider effects of failures,
and models can be divided into sections to allow visualisation and analysis of subsections.

The third research question ‘Can formalised responsibility modelling be applied consistently
and without specialist knowledge?’ is addressed in both the Hunterston and TCAS case
studies, but is most specifically addressed in Chapter 8, which describes a user study into
modellers’ usage of responsibility modelling.

The two case studies demonstrate the use of responsibility modelling when the modeller is
an expert in the technique, but does not have specialist knowledge of the domain. We had
little prior knowledge of nuclear safety, emergency planning or aviation safety prior to con-
ducting these case studies. In each case responsibility modelling was used to produce useful
and broadly accurate representations and analyses using consistent notation and concepts
(augmented partially by lightweight extensions); in this sense responsibility modelling was
applied consistently and without specialist (domain) knowledge.

However, this research question has more than one aspect. As well as considering whether
responsibility modelling can be applied consistently across domains and without specialist
domain knowledge it is also important to examine whether responsibility modelling can be
applied effectively by different modellers who lack specialist knowledge of the technique.
This is addressed by the user study in Chapter 8.

In this study participants were introduced to the technique of responsibility modelling, and
used it to model a meeting scheduler system. These participants had made no prior use of
responsibility modelling, although they had all applied some form of systems modelling in
the past. Participants were interviewed as to their experiences with responsibility modelling,
and the features of their modelling were analysed.

This user study discovered that non-expert users were able to understand the core concepts of
responsibility modelling with enough confidence to apply them, although certain elements
(such as actor-responsibility relations) proved difficult for a minority of participants. Con-
versely, some participants felt that the simplified form of responsibility introduced to them
lacked important features.

Users felt they were able to construct models that represented the majority of the system that
there were modelling; some types of behaviour (most notably decisions) could not be easily
represented. There were few contradictions between participants’ own verbal descriptions of
the system and their models, providing some confidence that their models accurately represent
their intended system. There was significant variation in models between participants, but this
was primarily attributed to different system designs and different levels of abstraction rather
than inconsistency in applying responsibility modelling. Overall, users were able to apply

9.2. Research Questions 232

responsibility modelling without requiring specialist knowledge, although some inconsistency
did remain.

The fourth research question ‘Does formalised responsibility modelling provide easier or
more detailed analysis than previous responsibility modelling approaches?’ is addressed by
Chapter 6, which demonstrates the repeat of a case study previously performed using earlier
responsibility modelling techniques by the InDeED consortium [86].

Firstly, it was demonstrated that formalised responsibility modelling was able to accurately
capture a situation of identical complexity, and that the formal definitions of entities and
relations did not hinder the expressiveness of the notation. Differences in structure between
the new model and the InDeED model represented different approaches to modelling (such as
choosing to focus on different parts of the system) rather than differences in the two versions
of the technique.

The extra investigative power of responsibility modelling was apparent during the model
analysis, where formal and semi-formal analysis techniques detected a number of potential
vulnerabilities that were not apparent from inspection of InDeED’s model. These included
detection of potentially missing agencies, as well as responsibilities not assigned to any actor.
This was made possible by the precise definition of relations in formalised responsibility mod-
elling, enabling the definition of standard analytical techniques. These analysis implications
were supported by several complementary sources, including observations from table-top
planning exercises and revisions to the emergency plan made in later years.

Throughout that chapter, as well as in Chapter 7 the ease of use is aided by the deployment of
effective tool support. This provides a straightforward interface for model creation and editing,
but the most significant contribution is the automation of analysis, allowing complex analytical
techniques to be applied without any specialist knowledge. These analytical techniques are
described in Chapter 5, which outlines the full range of analysis and evaluation techniques
that can be applied to formalised responsibility models.

The fifth research question ‘Does the application of formalised responsibility modelling
produce models and results that are comparable to domain-specific approaches or expert
analysis?’ is primarily addressed by Chapter 7, which applies responsibility modelling to a
well-studied aviation system - the TCAS mid-air collision warning system.

The modelling process used in this case study is iterative, with each stage of modelling and
analysis validated against an external source, which is then used to develop the next stage of
modelling. This process helps to ensure that the resulting responsibility model corresponds to
existing studies, by both using them as a both a validation source and a data source.

In Chapter 7 the responsibility model is validated initially against accident reports before
being validated in detail via interviews with domain experts. The results of responsibility
modelling broadly correspond to those identified in accident reports and those raised by

9.3. Research Contributions 233

domain experts - many issues are identified by both responsibility modelling and accident
analysis or expert analysis; others are identified by only one, but it is difficult to ascertain
whether such issues are valid or not. However, discussions with domain experts raised no
issues that were ‘obviously wrong’, providing a degree of confidence in the process. There
is a lack of similar comprehensive studies of TCAS to provide a basis for comparison, as
most studies focus exclusively on TCAS technical details. The results of these studies do not
contradict those obtained by responsibility modelling, but identify additional issues that are
not within the scope of this case study.

Given the evidence obtained from applying formalised responsibility modelling in case
studies, responsibility modelling can produce models and results that are comparable to other
techniques, but this is not guaranteed. It has been demonstrated that careful modelling and
analysis can produce comparable results in specific fields, but it is possible that changes in
modelling methodology could invalidate this, or that responsibility modelling may simply not
be suited to particular problem domains.

9.3 Research Contributions

This thesis makes a number of contributions to the improvement of responsibility modelling,
as well as to the wider field of socio-technical modelling and analysis. These include:

A methodology for iterative modelling and evaluation of case studies

Many socio-technical case studies struggle to demonstrate effective validation of their models,
which potentially undermines confidence in the results and implications from these studies.
These case studies are often the main method for demonstrating and validating socio-technical
modelling techniques, so ineffective validation of case studies also undermines the usefulness
of modelling techniques. Case studies often only demonstrate a technique or act as a tutorial
as to their use, with limited attempts to check the accuracy or utility of the models (e.g.
[99, 189, 204])

Chapter 3 presented a new iterative modelling and evaluation methodology that draws on
action research and design science to provide an effective process for iteratively developing
models while evaluating them against different data sources.

Formal definitions of core responsibility modelling concepts

Previous definitions of responsibility modelling varied substantially from paper to paper,
with different sets of relations and entities, often holding different meanings. Chapter 4
demonstrated a consistent set of basic entities and relations that retains the full expressiveness
of existing approaches, while simplifying the range required. Definitions were provided for
each of these and the use of basic concepts to construct more complex models was discussed.

9.3. Research Contributions 234

This formalisation greatly increases the ease of developing tool support for responsibility
modelling, and enables the straightforward development of variations and extensions to the
core concepts.

Extensions to existing responsibility modelling notation

The definition of core primitives allowed the extension of the notation with additional features
and functionality. A satisfaction logic was defined that allows for the specification of complex
relations between entities, incorporating common socio-technical concepts such as fallback
modes and redundancy. Support was also added for explicitly modelling uncertainty and
indicating where lack of information may limit analysis. Formally defined transformations
are provided for common model changes such as the delegation of responsibilities.

Tool support for construction and analysis of responsibility models

Introducing formally defined semantics to responsibility modelling allows for substantial
automated analysis, but this requires proper tool support. A software toolkit was developed
that supports graphical creation and editing of responsibility models, and provides auto-
mated analysis on these models. The effectiveness of these automated techniques was then
demonstrated through case studies.

A comparative case study of formalised and unformalised responsibility modelling

A direct comparison of formalised responsibility modelling and a previous non-formalised
version was made in Chapter 6 by re-examining a case study of the Hunterston Nuclear
Power Stations Off-Site Emergency Plan which had previously been studied by the InDeED
consortium. Analysis using formalised responsibility modelling identifies the same core
issues as the previous study, but additionally detects several potential vulnerabilities that were
not previously detected.

Application and evaluation of responsibility modelling in the aviation domain

A case study was performed of responsibility modelling in aviation by modelling, analysing
and evaluating the TCAS aircraft collision warning system using responsibility modelling and
evaluating these results with domain experts. This provides two main contributions; firstly,
demonstrating the use of responsibility modelling in a new domain; secondly, evaluating
the correctness, understandability and relevance of responsibility modelling to experts in a
particular domain.

Qualitative evaluation of responsibility usage by non-expert users

We conducted a user study asking participants to construct a responsibility model of a simple
socio-technical system, and analyse the resulting models and evaluate participants’ use and
understanding of responsibility modelling. This study identifies responsibility modelling
concepts found difficult by users and examines common characteristics in the application of re-

9.4. Threats to Validity 235

sponsibility modelling. Additionally, users’ recommendations for extensions to responsibility
modelling are presented and analysed.

This is (to the best of our knowledge) the first evaluation of responsibility modelling performed
by non-expert users.

9.4 Threats to Validity

This thesis has addressed the stated research questions and made a number of valuable research
contributions, but it is important to address potential threats to validity that are present in the
research. Certain characteristics of the research are common to socio-technical studies (such
as reliance on case studies), while others are specific to particular aspects of this thesis.

The semantics of responsibility modelling described in Chapter 4 are defined using an EMOF
meta-model which provides formal typing and a reference implementation for modelling,
making the consistency of the notation formally provable. Others elements of the notation are
described in a structured format but without using an underpinning formalism, potentially
allowing usage or implementations to deviate from the intended semantics. This could be
addressed by providing a formal definition for these features based on an existing language
such as OCL [191], although this could require considerable effort to relate the abstract
responsibility concepts into operationalisable statements.

The RESME toolkit described in Chapter 5 can be easily installed and tested, and similarly
the use of automatic and semi-automatic analysis methods can be demonstrated. However, it
is more difficult to prove the efficacy of these techniques in real-world applications. The case
studies in Chapters 6 and 7 demonstrate and validate the use of the techniques in two specific
examples, but these may not necessarily generalise. Demonstrating the broad efficacy of a
technique is a common difficulty in socio-technical studies, and it is common to continuously
apply a new technique to different domains over a long period (such as the application of i*
to different case studies over a decade [68, 112, 202, 204]).

Given its small scale, the study in Chapter 8 is vulnerable if overgeneralised. This study uses
a small sample of university students, which places strong limits on generalisability. The
relevance of such samples to the general population is much argued [45], but is generally
considered acceptable for exploratory studies [164]. Small samples of university students
have been used for similar requirements engineering studies such as [122] and [180]. The
choice of case study may also affect the validity of the experiment, but our case study has
been used previously by van Lamsweerde et al. [189].

The use of semi-structured interviews introduces the potential for inconsistent coverage of
issues in different interviews; the use of prompts provides some protection against this, but

9.4. Threats to Validity 236

cannot cover all possible issues. This is mainly unavoidable in an explorative study such as
this one. The main topics of interest cannot necessarily be predicted in advance, and there is a
lack of similar studies to base questions on. Given the small sample size and wide range of
topics in this study we did not use a formal interview coding system to structure and classify
the results, instead using a narrative approach for each participant and a synthesis of important
overall results. More structure and rigour could be provided by a follow-up study using more
specific questions and a larger sample size.

In the study of the Hunterston Nuclear Power Stations Off-Site Emergency Plan in Chapter 6
specific steps were taken to ensure the validity of the conclusions drawn. The responsibility
model was constructed solely by reference to the Emergency Plan and without any specialist
knowledge of the nuclear industry in order to remove any biasing caused by outside knowledge.
Materials from the InDeED project were used to compare our model of the system with that of
InDeED and to act as verification of its correctness, but these materials were not read or used
until after our own model had been produced. While the comparison between the two models
was not carried out by an independent researcher, the process of comparison and verification
against observations was performed using only open data and is easily reproducible.

Chapter 7 demonstrates the application of responsibility to aviation safety, and provides
evidence that the analysis results of responsibility modelling can be comparable to other
techniques applied in this domain. However, the strength of this claim should not be overesti-
mated. In the TCAS case study responsibility modelling demonstrates a correspondence to
other techniques, but this is only one application in a specific domain. The Hunterston case
study in Chapter 6 also provides some evidence that formalised responsibility modelling is
comparable to other techniques, as some issues identified by responsibility modelling were
corrected during routine revisions of the emergency plan. However, examining this type of
comparison was the not the main purpose of that case study, and so extensive conclusions
should be not be drawn.

The validation of analysis results by domain experts provides strong evidence that results of
responsibility modelling are valid, while a comparison with other techniques indicates that
responsibility modelling is at least as effective in identifying potential vulnerabilities. As with
other comparisons and evaluations in this thesis this was not carried out independently, but full
transcripts for the interviews have been deposited [160]. Given the unusual structure (based
around interaction and observation of a model) and content (lengthy, in-depth discussion with
only a few participants) of these interviews they were not formally coded, and presented using
a narrative approach.

This thesis relies throughout on the use of case studies either for demonstration and validation;
three of the five research questions are addressed primarily or partially by using case studies.
This approach potentially opens threats of validity if cases studies are not representative or do

9.5. Future Work 237

not cover important aspects of socio-technical systems. The use of different case studies only
provides partial protection if the method as a whole is lacking. However, reliance on case
studies is common to almost all analyses adopting a socio-technical approach, and can be
seen in requirements engineering [107, 203, 189], safety analysis [109], and organisational
modelling [99, 148]. These case studies cover a range of domains, but the applicability of
some case studies to the technique they are used to model is unclear, such as the use of
the simplified mine-pump case study for a requirements engineering technique [107]. The
iterative research strategy described in Chapter 3 aims to minimise some of these effects,
such as allowing information sources to be used for both validation and further modelling,
mimicking the use of triangulation in design science [134]. Additionally, all of our case
studies have been at least partially studied by other researchers in the past, and two of the three
use only source materials used in these previous studies, potentially reducing the subjectivity
of our choice of case studies and increasing their reproducibility.

9.5 Future Work

The formalisations of responsibility modelling addressed many of the shortcomings and
inconsistencies in the technique, but many areas of future work remain and are discussed in
this section. Generally, potential changes to responsibility modelling face a difficult balance
between specifying additional detail enabling improved analysis while maintaining an abstract,
easily understandable and usable modelling notation.

Several potential extensions to responsibility modelling are outlined, providing additional
model detail in certain areas, but possibly at the risk of increased complexity and modelling
effort. Contradictions are rarely explicitly handled in socio-technical models, but contra-
dictory requirements can be a major source of implementation problems. Responsibility
modelling could allow the explicit expression of contradictory elements, but detection of such
contradictions can be difficult and time-consuming. A detailed system of constraint language
quantifiers is suggested, which would allow the consequences of successful but non-optimal
responsibility discharge to specified and propagated throughout the model. The relative lack
of use of the constraint language within this thesis’s case studies is also discussed. Addition-
ally, a more elaborate treatment of timing is discussed, which would allow the timeliness of
responsibilities to be expressed in orders of magnitude.

Options for increased abstraction are also discussed. The concept of realisations from previous
work by Lock et al. [116] is extended, which would allow abstract entities to be assumed
by other entities. This potentially allows for useful mappings between high- and low-level
models (such as between requirements and implementations), but many elements of the
semantics are unclear. More generally, the option of using improved tool support to allow

9.5. Future Work 238

multi-level responsibility models is examined, which could enable the use of submodels to
provide specific details, as well as other improvements to the existing toolkit. Similarly,
improved integration with other techniques could allow the use of more formal methods for
the specification of particularly complex responsibilities.

Experience gained by performing case studies also showed that some aspects of responsibility
modelling were not especially effective and are in need of change. Overload analysis proved
to be of little utility when analysing technical actors, such in the TCAS case study. Technical
systems have quite distinct functionality and performance when compared to individuals or
organisations, which overload analysis does not take into account. Finding a suitably abstract
system that also produces useful analysis results appears difficult, but several possibilities are
investigated, including a complete reworking of the concept of overload analysis.

9.5.1 Contradictions

Previous studies of responsibility modelling have not considered the possibility that models
may not be internally consistent. Models may abstract over or only partially represent the
domain, but the elements of the domain that are represented are considered to be consistent
(This is in contrast to accuracy, where it is acknowledged that a model is unlikely to fully
match real-world operations). As a result, we assume that there are no complex links between
entities other than those explicitly modelled with relations. In particular, we assume that
successfully discharging responsibilities is always the correct intent of the system, and that
discharging one responsibility does not negatively affect another.

However, this is not true in many socio-technical systems [165]. Responsibilities (in partic-
ular) can be contradictory, where it is either not possible or not desirable for two or more
responsibilities to both be discharged. This can arise where different sources have different
representations of the domain (for example, differences between two documents, or a differ-
ence of opinion between two stakeholders), or where the fundamental definition of the system
is itself flawed. For example, consider an example from the TCAS case study - one chapter
of the ICAO manual indicates that pilots should immediately inform the air traffic controller
when they respond to an alert; another chapter of the same manual indicates that they should
inform the air traffic controller only after completing their response to the alert. These two
responsibilities cannot correctly co-exist, and the inconsistency reveals a potentially severe
vulnerability in the system.

Ideally, any modelling and analysis technique should be able to detect these inconsistencies,
and highlight them for further investigation. However, to do so with a general-purpose mod-
elling technique is extremely difficult. Responsibilities are defined only by their relations with
other entities, and their free-text name / description. This does not provide enough contextual

9.5. Future Work 239

information for an automatic analysis to detect inconsistencies without also maintaining a
detailed operational model of the domain, which would defy the logic of using a general-
purpose technique. Instead, these types of inconsistencies may well be detected by analysts
inspecting the model, or identified as the model is being constructed from source materials.

Extensions to the existing notation may be able to more effectively detect such inconsistencies,
drawing on broader theoretical techniques. For example, potentially conflicting obligations
could be analysed using a deontic logic [57], where responsibilities are converted into formal
rules of action. A theorem prover can then be used to determine if the formalised representation
is consistent, or used to detect other potential vulnerabilities. However, this relies on the
analyst making a correct choice of which parts of the model to convert to logic, as representing
the whole responsibility model in deontic logic could be time-consuming and unnecessary.

Alternatively, mutually exclusive responsibilities (probably the most common type of inconsis-
tency) could be explicitly modelled with an additional relationship, indicating that they should
not both be discharged. However, the deeper semantic meaning of such a relationship is
unclear, and would require modifications to existing analytical techniques such as dependency
analysis. In either case, such modifications would allow modellers to explicitly indicate
inconsistencies that have already been detected, rather than aiding them in finding undetected
inconsistencies.

9.5.2 Enhanced Qualifiers

Previous versions of responsibility modelling have made use of a HAZOPS-like technique
using guidewords for analysing relations and entities (e.g. Lock et al. [115], Lock and Som-
merville [114], Sommerville et al. [168]). These guidewords are used to assess potential
system vulnerabilities by considering possible failures or degraded operation of model el-
ements - for example, analysing the implications of the late completion of a responsibility.
Guidewords provided one of the main systematic approaches to analysis in early responsibility
modelling, although the results of HAZOP-type analysis can be highly subjective, especially
when applying them outside of the original domain of industrial processes.

To a large extent this type of analysis has been supplanted in formalised responsibility
modelling with more advanced techniques. The effects of entity failures on the wider system
can be more accurately determined by satisfaction analysis, and changes to the temporal
model have simplified the effects of early and late completion. HAZOPs analysis can augment
these more formal techniques by analysing areas that they do not cover - in particular, they can
provide helpful non-formal analysis for qualitative properties, such as the quality of resources
being produced.

However, the manual nature of this technique makes it impractical for considering the indirect

9.5. Future Work 240

effects caused by impaired performance in one part of the model - it is time consuming to
consider each knock-on effect, and at each step the analyst must consider whether the earlier
impairment leads to further impaired performance in the next entity considered. Despite this,
the use of qualitative rather than quantitative descriptions of performance and availability
fits better with the abstraction of responsibility modelling, and avoids the need to specify
implementation choices in detail.

A potential solution to this problem is to introduce qualifying descriptors for entities (akin to
guidewords, such as poor quality for resources and late discharge for responsibilities) into the
constraint language, which would allow the effects of impaired performance to be explicitly
defined in the definitions of entities. Guideword analysis could then be formalised by allowing
the analyst to set the status of the relevant entities, and then automatically calculate the
propagated effects of that impairment.

For example, these constraint language definitions show that poor quality steel causes the
Produce Hull responsibility to be discharged in an inferior way, which then causes the resulting
ship to be structurally weak:

Produce Hull:: Shipbuilder Active & Steel Exists [Poor Quality Steel -> Inferior Produce

Hull]

Ship:: ProduceHull Discharged [Inferior Produce Hull -> Ship Structurally Weak]

The square brackets indicate that qualifiers are attached to that particular definition; the
presence of the left-hand side qualifier in a related entity causes the right-hand side qualifier
to apply to the current entity. A particular degraded state may only occur if a particular
combination of qualifiers occurs; for example, a responsibility might only be impaired if both
resources that it requires are late:

Authorise Expenses:: Receipt Exists & PermissionNote Exists [Late Receipt & Late Permis-

sionNote -> Late Authorise Expenses]

However, this notation is not able to effective capture all reasonable scenarios. For example,
a message could be transmitted by either email or post, or by both. Receiving the message
would only be late if only one of the resources was available, and that resource was late.
In this case the effects of the qualifiers are dependent on the particular state of the other
constraints, and we lack an intuitive notation for expressing that dependency.

Subject to that limitation, qualifiers could be used to perform a tool-assisted analysis of the
implications of impaired operation. If deemed necessary the modeller would augment an
existing model with details about the propagation effects specified in constraint language.
Once defined, the analyst could the state of specific entities that they wish to examine, and
the knock-on effects on all other entities in the model could be calculated automatically from
the constraint definitions. This approach requires additional modelling effort (to define the

9.5. Future Work 241

constraints), but once performed it becomes possible to consider the effects of multiple sets
of impairments in greatly reduced time.

9.5.3 Realisations

The transfer of obligations within responsibility modelling is well supported, normally by
means of delegation of responsibilities. However, one important concept that is missing is
the idea of realisation - the concept that an abstract entity defined within a model can be
implemented by a more concrete entity within the same model. For example, a model might
define the actor role of ‘Police’, and this actor could be realised by an actor representing a
particular police force. In relation to actors this type of relationship was mentioned briefly
in Lock et al. [116] as the ‘Acts As’ relationship, but unfortunately no definition or example
usage was provided. The principle is not restricted to actors, and could also be applied to
resources and responsibilities.

The exact semantics of such a relation are not entirely clear. The intent is to show that one
entity (partially or completely) acts like and contains the functionality of another, more abstract
entity. This is straightforward if we are only interested in the structure of a responsibility
model, but unclear if we also wish to perform analysis. For example, does realising a resource
mean that determining whether that resource is produced requires checking responsibilities
that produce the original resource, or responsibilities that produce the abstract resource? More
generally, does the realising entity replace the original, supplement it or not directly affect it
at all? If two or more concrete entities realise an abstract one, which one should be considered
for analysis?

This overlaps significantly with role analysis and actor instantiation, as introduced in Sections
4.9 and 5.6. Role analysis is effectively a simpler, less formal version of realisation that is
applied only to actors. Actor instantiation extends this by providing a structured representation
for mapping between actors at different abstraction levels; however, this mapping is effectively
one-directional, as adding an instance actor has no effect on the original actor. This avoids the
problem of unclear semantics, as role analysis is informal and manually performed and actor
instantiation only visualises, rather than analyses. However, substantially greater automation
and analytical power could be achieved by a formal relation that connects all types of entities,
if a solution to the inconsistent semantics can be found.

In particular, this concept offers great potential when applied to requirements specification
and system design. It is often difficult to make a structured argument that a proposed system
design provides a full implementation of the requirements, as the languages and notations used
are likely to vary significantly between the statement of the requirements and the description
of the proposed system. If both the requirements and proposed system design are specified

9.5. Future Work 242

using responsibility modelling, realisation relationships can be used to map between the
design and the requirements - if all requirements are mapped then it is possible to prove that
the design does meet the requirements, subject to the level of detail in the model.

9.5.4 Enhanced Temporal Behaviour

Responsibility modelling has previously used an informal approach to timing, where the time
taken to discharge a responsibility has not been the subject of modelling or formal analysis.
Chapter 4 introduced the concept of ‘epoch time’, which provides a clearer definition of this
abstract form of timing.

This provides a useful abstraction over time, which is often left imprecisely specified in socio-
technical modelling. In some contexts modellers may wish to specify timing in increased
detail, without resorting to the use of a fully timed logic. In these cases, an approach based
on the concept of Timebands [24] can be used, which provides a formalisation for explicitly
modelling different levels of time. Timebands represent orders of magnitude in time. It is not
necessary to define exact durations for events, but modellers can specify whether discharging
a responsibility takes a matter of seconds or if it takes several hours.

If a responsibility model is annotated with timebands for responsibilities it becomes possible
to determine if responsibilities will fail due to relying on other responsibilities that cannot be
discharged in time. The model is analysed in order of increasing timebands: first responsibili-
ties discharged in the shortest timeband, then the second-shortest and so on. If a responsibility
at a lower timeband depends (without any alternatives) on a responsibility, actor or resource
that is only available at a higher timeband then a system vulnerability can be detected. Within
a timeband the traditional concept of ‘eventual discharge’ remains; the set of elements at each
timeband can essentially be treated as a separate but interacting system, and the whole system
as a composite system-of-systems.

9.5.5 Application of Enhanced Notation

The extension of responsibility modelling to allow the specification of complex behaviour
using a constraint language enables the modelling of certain types of system behaviour that
were not supported by previous versions of responsibility modelling. However, relatively little
use was actually made of these concepts in the case studies presented in this thesis.

The lack of explicit uncertainty can be partially attributed to the domains chosen for the case
studies - both were well defined systems that were modelled using formal documents as the
primary information source. In these cases it is to be expected that uncertainty should be
minimal, as clear uncertainties would already have been detected and corrected. As a result,

9.5. Future Work 243

explicit uncertainty was only applied when there was clearly complex behaviour that could
not be clearly defined (such as the pilots’ duty to ensure safe flight). If models are constructed
from less formal sources (such as observations of an existing system) then more behaviour
will be apparently unexplained, and hence more explicit uncertainty is likely to be modelled.
However, the choice of when to specific uncertainty is still subject to some subjectivity by
the modeller. In effect, applying explicit uncertainty indicates that the modeller believes that
there is sufficient uncertainty in a responsibility or relationship to affect the discharge of the
relevant entity; this is partially subjective, as different modellers may have different implicit
thresholds for what counts as ‘sufficient’.

This explanation is less convincing for the low usage of other constraint language features,
such as OR relations and priorities. In some parts of these systems the source documents
indicate very clear assignments of one actor only to a responsibility, but this is not universal.
There are clear examples in the chosen domains where these concepts could be applied - for
example, we could state that flying an aircraft should primarily be discharged by the Pilot
Flying, but that the Pilot Not Flying should step in if the Pilot Flying cannot discharge that
responsibility. Similarly, we could state that either the Pilot Flying or the Pilot Not Flying
could respond to ATC messages. Nonetheless, this approach was not adopted in practice.
This can be partially attributed to the strict separation described in the ICAO manuals - each
participant has their own distinct roles, with little flexibility. However, the lack of use can
also be attributed to a choice of modelling style.

Different styles of modelling can be used to represent the same underlying elements, which
leads to variability in models. A scenario where two actors can independently perform the
same task could be modelled as one responsibility, with the independent nature modelled as
an OR relationship. Alternatively, it could be modelled with two separate responsibilities,
each held by a different actor and requiring no use of the constraint language. These are
functionally equivalent in most ways (consider a responsibility that produces a resource,
for example) and both are valid responsibility models. Each approach has strengths and
weaknesses - the use of multiple entities is generally simpler and easier to understand for
small sets, but quickly becomes intractable as relations get more complex; the constraint
language is more effective for large sets of entities such as a voting circuit. The tradeoffs
between these different styles of modelling (and the overall effectiveness of the constraint
language) are a prime candidate for future work.

9.5.6 Tool Support

The ability of tool support to provide different visualisations and abstractions of responsibility
models aids ease of modelling and understandability, but the RESME toolkit’s support for this
is limited by certain technical restrictions of the underlying frameworks. Section diagrams

9.5. Future Work 244

were introduced to allow models to be easily broken down into separate sections, but are
restricted as entities can only be part of at most one section. This is a limitation of the EMF
framework used to store models - EMF uses a child/parent structure, and it is impractical
to assign multiple parents to the same entity. This restriction causes problems when the
boundaries of sections are not clear, or where there is significant interaction between different
areas of a model - both of which are very common in socio-technical modelling. It makes
modelling exchanges of resources difficult, and prevents overlapping views in the same model.
This is purely an implementation problem that can be addressed by changes to the internal
representations.

Alternatively, a broader solution would be to allow responsibility models of different parts of
a system to be modelled completely independently, and for the different parts to be linked
only when necessary, such as for system-wide analysis. In particular, this approach offers
potentially good support for systems-of-systems problems, where each part is itself a full
and distinct system. The challenge of this approach is correctly linking the separate models
when required, which requires identifying entities that appear in different models. Composing
models across different levels of abstraction is a difficult problem, and has been identified as
such in different techniques such as modular safety cases [98]. This could be partly automated
(such as matching entities that have the same name) but any practical implementation of
this approach requires a user interface and underlying mapping system for defining these
equivalences.

Similarly, there are very clear advantages to allowing responsibility models to contain different
levels of abstraction and for these levels to be explicitly linked. This offers additional
expressive power in modelling by making it clear that some parts of the model are more
abstract than others, and would allow for the expression of realisation relationships, assuming
that the a consistent semantics can be developed. In particular, this can be used to map between
designs and implementations, or between rules and guidelines and operational procedures.
Automatic analysis techniques can be also be updated to produce more accurate results by
taking into account different levels of detail - for example, criticality analysis could apply
higher weights to responsibilities that are realised as multiple, low-level tasks. Implementation
of this form of abstraction in the current toolkit is in principle straightforward, but faces
serious practical obstacles. There is a difficulty in assigning entities to a discrete abstraction
level (somewhat similar to the problem with sections) as EMF lacks effective constructs for
hierarchical layers; this is not a problem when expressing that one entity is an abstraction of
another, but makes it extremely difficult to identify all entities at the same level of abstraction,
which makes updating the automatic analysis infeasible.

Support for a more elaborate model of abstraction would also enable implementation of
superior role analysis through realisations. Concrete real-world individuals, organisations and
devices could then be mapped directly to responsibility model actors, which enables overload

9.5. Future Work 245

detection to be expanded from actors to their corresponding real-world realisation; this allows
the detection of actors that are only overloaded due to fulfilling multiple roles. Additionally,
such a mapping would provide much clearer indication of potential conflicts of interest where
one agent takes multiple, linked actor roles.

Another area where the toolkit is currently lacking is the ability to clearly visually represent
the more advanced features of the constraint language. For example, the toolkit currently has
no ability to display the order of priorities, or to graphically show how relations are grouped
into prioritised options. These visualisations are not difficult to conceptualise (for example,
groupings could be indicated by coloured highlighting when an entity is selected) but face
implementation difficulties due to the restrictions of the Sirius framework.

Finally, the user studies conducted in Chapter 8 identified that some participants had difficul-
ties installing and using the toolkit. Wider application of responsibility modelling and the
RESME toolkit would be enhanced by simplifying the installation process, improving the
understandability of the tool’s documentation and increasing the robustness of the toolkit with
regards to different system configuration and Eclipse versions.

9.5.7 Integration with other techniques

The range of applicability of responsibility modelling is one of its greatest strengths; responsi-
bility models can incorporate both specific details and broad social duties. However, there
are clearly times when responsibility modelling is not the most appropriate technique for
analysing a problem; more robust analysis of low-level details may be obtained by formal
logics and calculi, while it may be more natural to represent organisational details using busi-
ness process or organisational models. In particular, the lack of common low-level modelling
features such as timed logic and resource states limits the ability of responsibility modelling
to fully capture the complex details of many processes.

This could be addressed by developing guidelines and methodologies for combining responsi-
bility models with other techniques as part of a structured modelling and analysis process.
For example, responsibilities that occur at the same time and may interfere with each other’s
completion could be separately modelled using a process calculi such as CSP (Communicating
Sequential Processes) [78] or Timebands [13]. The results of responsibility modelling analysis
could then be used to set the initial variables in the CSP script, and the results of analysing the
CSP model (using a model checker) used to determine whether or not the responsibilities were
successfully discharged. Similar mapping and combination projects have been developed for
other techniques, such as mapping between BMPN and KAOS models [101]. Responsibility
modelling integration with low-level techniques offers more advantages (expressive power,
model checking etc.) than integration with higher level techniques, due to the differences in
abstraction.

9.5. Future Work 246

9.5.8 Overload Analysis

In Chapter 5 overload is defined as occurring when an actor is required for more than a certain
number or load of responsibilities, where this threshold is arbitrarily set. This provides a
simple mechanism to identify the actors that are under the greatest theoretical load, and are
therefore likely to be at risk of impaired performance due to overload. This approach is
similar to that taken by Sommerville [166], and has the advantage of relative intuitiveness.
However, this does not take account of the capabilities or capacities of each actor, so every
actor is assumed to have the same ability to handle multiple responsibilities. This can limit the
usefulness of overload analysis, by generating warnings that are inconsistent in their severity -
a large organisation required for five responsibilities could generate a warning, while a single
individual required for four of those five responsibilities would not trigger a warning, even
though they are proportionally much more likely to be overloaded.

Additionally, this definition of overload does not produce reliable warnings for technical actors.
Mechanical, electronic and computer systems do not experience overload in the same way
that humans do - they are normally designed to provide specific functionality and to operate at
a certain performance level. Therefore they do not run the risk of reduced performance due to
the number of responsibilities they must discharge, as long their responsibilities remain within
their specification. However, in contrast to human actors their ability to handle tasks that they
were not designed for is much reduced, and so it possible for such an actor to fail to discharge
even a small amount of responsibilities if it lacks the capabilities required. Additionally, a
technical actor holding multiple disparate responsibilities is likely to be a particularly complex
system, which may make it more error-prone in design or implementation.

Attempting to address these deficiencies in overload analysis is difficult. The differing
capabilities between actors could be addressed by assigning each actor a ‘load-bearing’
score, indicating the amount of responsibility load it can cope with. This would allow the
different capabilities of more and less resourceful actors to be distinguished, but requires
additional modelling effort and further increases the problem of accurately estimating the
load of responsibilities and the ability of actors to cope - adding more layers of detail reduces
the abstraction of responsibility modelling, and requires precise information that may not be
available. Additionally, this approach does nothing to address the issues around technical
actors, where load is based on specific capacities and functions rather than on a general level
of effort.

Modelling the individual capabilities of each actor and the requirements of each responsibility
is the most comprehensive solution to this problem, but requires an impractical amount
of modelling effort and violates the responsibility modelling principle of abstraction. The
potentially unique nature of capabilities means that a comprehensive capability model would
require considering the relationship between each actor and each responsibility individually -

9.5. Future Work 247

which would completely eliminate the efficiency advantages provided by automated analysis.

Alternatively, load analysis could be redesigned to focus not on the absolute values of load
(the number or significance of responsibilities held by an actor) but on the relative distribution
of responsibilities between actors. Under such an analysis large differences in load between
actors would be highlighted, such one actor being required for just one responsibility when
another is needed for half a dozen. This would not highlight whether individual actors are
overloaded or not, but would instead highlight whether or not responsibilities within the
system are distributed equally. A system that places many responsibilities upon a small subset
of actors while the others have relatively little load indicates that effort within the system is
not being distributed in a balanced way, and that there might potentially be spare capacity
that could be used to share the load more evenly. An absence of distribution warnings would
indicate that the system is relatively uniform in the distribution of responsibilities; problems
of overload might still occur, but not because the load was distributed unevenly. This approach
would allow the consideration of the system-wide distribution of load, but would not replace
conventional overload analysis’s checks on individual responsibilities.

9.5.9 User Studies

The user study in Chapter 8 identified several unexpected results that are worthy of investiga-
tion through further user studies. Additionally, the results of this explorative study suggest
some areas of improvement to responsibility modelling in general.

The study suggested that users spent a substantial proportion of their time (for several partici-
pants, the majority) understanding the problem domain as expressed via the system definition
document, rather than in the process of understanding or applying responsibility modelling.
This result is counterintuitive; the participants had no prior knowledge of responsibility mod-
elling, but had all applied at least basic modelling techniques before. This may be attributable
to the structure of the study (participants were guided through the responsibility modelling
tutorial, but unaided with the systems definition), but it is still surprising that some participants
took more time to understand the domain than to construct their model. To the best of our
knowledge this finding has not been reported in the literature of socio-technical modelling.
If this distribution of effort is typical then there are important implications for systems mod-
elling; for example, should less research effort be focused on the use of modelling notations,
and more on the techniques, mechanisms and strategies used by modellers to understand
scenarios? However, it should be noted that this study used only self-reported effort to draw
this conclusion, and a specific study measuring participants’ distribution of effort could obtain
much stronger results.

The study also suggested that finding the correct balance between complexity and under-
standability in a technique, or the explanation of a technique, is difficult. Some participants

9.5. Future Work 248

requested advanced features of formalised responsibility modelling that they had not been
shown, while others had difficulty understanding and applying the limited set of concepts
that they had been shown. In particular, there was no obvious correlation between previous
experience and the desire for advanced features, which makes choosing an appropriate level
of detail for presenting responsibility modelling difficult. Some participants suggested that
an introduction focusing on concepts unique to responsibility modelling would be more
effective. A focused study exploring modellers’ understanding of responsibility modelling
and identifying the most important features could improve responsibility modelling’s uptake
and usability.

Additionally, one important part of the responsibility modelling ecosystem remains uninvesti-
gated. This thesis has formalised the notation, provided automatic analysis techniques and
assessed the understandability of expert-produced models by domain experts. This user study
found that non-expert modellers could produce responsibility models broadly matching their
view of the system, but it is not clear if these models can be understood by domain experts
or by model users in general. This could be investigated by a further user study, potentially
using an experimental structure where models are swapped between participants.

9.5.10 Industry Uptake

A common problem with socio-technical modelling techniques is that they are developed
within academia and rarely applied outside of it. This is true of ‘classic’ requirements
engineering techniques such as i* and KAOS, and also applies to responsibility modelling;
there are no known applications of responsibility modelling outside of university projects.
This lack of integration between academia and industry is not unique to the socio-technical
field, but several distinct issues occur.

Much research on methods is focused on the development of new techniques and extensions
to existing methods; research on the effective application of existing techniques is less
common, and the application of methods in real-world settings less so. This often occurs
for understandable reasons (such as commercial confidentiality limiting how much activity
with industry can be published), but leads to academic and industrial practice operating
almost completely in parallel, without interaction. Additionally, socio-technical modelling is
more dependent than many other techniques on effective tool support, but most tool support
developed in academia act as prototypes rather than as finished, refined products. This is again
perfectly understandable in context (the incentives to develop high-quality, production-ready
software are very limited), but acts as another barrier to external uptake.

Ultimately, increased industrial uptake of a technique such as responsibility modelling is
dependent on multiple factors, some of which are outside of the control of its proponents.

9.6. Conclusion 249

However, a number of steps can be taken that aim to increase the wider uptake of responsibility
modelling. Improvements to the existing tooling to reduce barriers to entry (or potentially
the production of an entirely new toolkit, such as web interface) would enable interested
users to examine and test the technique much more easily. The case study in Chapter 7 was
conducted in partnership with a industrial consultancy, although their primary role was to
provide feedback on the utility of the models and modelling technique, rather than to directly
apply responsibility modelling themselves. However, further small-scale engagement with
industrial partners may provide an entry point to introducing responsibility modelling to wider
industrial audience.

9.6 Conclusion

This thesis has presented a comprehensive body of research on the formalisation, extension,
validation and application of responsibility modelling. The formalisation of responsibility
modelling enabled the extension of the notation and the introduction of automated analy-
sis, and the effectiveness of such techniques was demonstrated in real-world case studies.
Additionally, both the understanding of responsibility modelling by domain experts and the
application of responsibility modelling by non-expert modellers was examined.

This thesis shows that responsibility modelling can offer a useful compromise between com-
plex or domain-specific low-level techniques and abstract, unprovable high level modelling
notations. Formalised responsibility modelling aims to increase the usefulness of responsi-
bility modelling by increasing the power of the technique without reducing its ease-of-use;
formalisation and automatic analysis provide consistency and greatly improved analytical
power without any substantial changes to the core concepts of the technique. This increases
the range of scenarios where responsibility modelling can be effectively applied, without re-
ducing the understandability and intuitiveness that distinguish it from other systems modelling
techniques.

However, systems modelling still requires a careful consideration of the trade-off between
abstraction and detail. Understandability, flexibility and breadth of application all encourage
the use of abstract models and modelling techniques, but automation, accuracy and analytical
power are more easily obtained by using more complex techniques and constructing more
detailed models. The balance between these two approaches is dependent on the system to be
modelled, the intended outcomes of the modelling and the skills and attitudes of the modeller.
By demonstrating both the analytical power and the flexibility of responsibility modelling we
hope to encourage the development and use of such techniques.

BIBLIOGRAPHY 250

Bibliography

[1] Nicholas Abercrombie, Stephen Hill, and Bryan S Turner. Dictionary of Sociology.
Penguin, third edition, 1994.

[2] Marilyn Jager Adams, Yvette J Tenney, and Richard W Pew. Situation Awareness and
the Cognitive Management of Complex Systems. Human Factors, 37(1):85–104, 1995.

[3] Rachel F Adler and Raquel Benbunan-Fich. Juggling on a high wire: Multitasking
effects on performance. International Journal of Human Computer Studies, 70(2):
156–168, 2012. ISSN 10715819. doi: 10.1016/j.ijhcs.2011.10.003.

[4] Ruth Sara Aguilar-Savén. Business process modelling: Review and framework. Inter-

national Journal of Production Economics, 90(2):129–149, jul 2004. ISSN 09255273.
doi: 10.1016/S0925-5273(03)00102-6.

[5] Mack Alford. SREM at the age of eight; the distributed computing design system.
Computer, 1985.

[6] A Antoniou and C Korakas. A trust-centered approach for building e-voting systems. In
EGOV’07 Proceedings of the 6th international conference on Electronic Government,
pages 366–377. Springer-Verlag, 2007.

[7] Ayrshire Civil Contingencies Team. Off-Site Contingency Plan (REDACTED VER-
SION). Technical report, Prepared for the West of Scotland Regional Resilience
Partnership, 2015.

[8] RJ Badham, CW Clegg, and T Wall. Socio-technical Theory. In Waldemar Kar-
wowski, editor, International Encyclopedia of Ergonomics and Human Factors. Taylor
& Francis, 2001.

[9] Richard L Baskerville. Investigating information systems with action research. Com-

munications of AIS, 2(3), 1999. ISSN 1529-3181.

[10] Richard L Baskerville and A Trevor Wood-Harper. A Critical Perspective on Action
Research as a Method for Information Systems Research. Journal of Information

Technology, 11, 1996.

Bibliography 251

[11] Gordon Baxter and Ian Sommerville. Socio-technical systems: From design methods
to systems engineering. Interacting with Computers, 23(1):4–17, Jan 2011. ISSN
09535438. doi: 10.1016/j.intcom.2010.07.003.

[12] Gordon Baxter and Ian Sommerville. Evaluating emergency preparedness: Using re-
sponsibility models to identify vulnerabilities. In Hostile Intent and Counter-Terrorism:

Human Factors Theory and Application. CRC Press, 2015.

[13] Gordon Baxter, Alan Burns, and Kenneth Tan. Evaluating timebands as a tool for
structuring the design of socio-technical systems. In Philip D. Bust, editor, Contempo-

rary Ergonomics 2007: Proceedings of the International Conference on Contemporary

Ergonomics, 2007.

[14] Kent Beck and Martin Fowler. Bad Smells in Code. In Refactoring: Improving the

design of existing code. Addison Wesley, 1999.

[15] TE Bell and TA Thayer. Software requirements: Are they really a problem? In
Proceedings of the 2nd international conference on Software engineering, 1976.

[16] Peter Bishop and Robin Bloomfield. A methodology for safety case development. In
Proceedings of the Sixth Safety-critical Systems Symposium, volume 2002, pages 1–10,
1998. ISBN 3540761896.

[17] Peter Bishop and Robin Bloomfield. A Methodology for Safety Case Development.
Safety and Reliability, 20(1), 2000.

[18] AJC Blyth, J Chudge, John Dobson, and Ros Strens. ORDIT: a new methodology
to assist in the process of eliciting and modelling organizational requirements. In
Proceedings of the Conference on Organizational Computing Systems, COOCS 1993,
pages 216–227, 1993.

[19] Jonathan Bowen and Michael Hinchey. Ten Commandments of Formal Methods ...Ten
Years Later. Computer, 39(1):40–48, Jan 2006. ISSN 0018-9162. doi: 10.1109/MC.
2006.35.

[20] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopou-
los. Tropos: An Agent-Oriented Software Development Methodology. Autonomous

Agents and Multi-Agent Systems, 8(3):203–236, May 2004. ISSN 1387-2532. doi:
10.1023/B:AGNT.0000018806.20944.ef.

[21] Lionel Briand, Victor Basili, Yong-Mi Kim, and Donald R Squier. A change analysis
process to characterize software maintenance projects. In Proceedings of the Inter-

national Conference on Software Maintenance ICSM-94, pages 38–49, 1994. ISBN
0-8186-6330-8. doi: 10.1109/ICSM.1994.336791.

Bibliography 252

[22] Lionel Briand, Walcelio Melo, Carolyn Seaman, and Victor Basili. Characterizing
a Large-Scale Software and Assessing Organization. In Proceedings of the 17th

International Conference on Software Engineering, pages 133–143, 1995. doi: 10.
1145/225014.225027.

[23] British Standards Institution. Reliability of systems equipment and components : Guide

to failure modes, effects and criticality analysis. 1991. ISBN 0580196607.

[24] Alan Burns and Gordon Baxter. Time bands in systems structure. In Denis Besnard,
Cristina Gacek, and Cliff Jones, editors, Structure for Dependability: Computer-Based

Systems from an Interdisciplinary Perspective. Springer-Verlag, 2006.

[25] M Burrows, M Abadi, and RM Needham. A Logic of Authentication. Proceedings of

the Royal Society of London A, 426:233–271, 1989. ISSN 1364-5021. doi: 10.1098/
rspa.1983.0054.

[26] Peter Checkland and Jim Scholes. Soft Systems Methodology in Action. Wiley, 1999.
ISBN 0471986054.

[27] D Chen, B Vallespir, and G Doumeingts. GRAI integrated methodology and its
mapping onto generic enterprise reference architecture and methodology. Computers in

Industry, 33:387–394, 1997. ISSN 01663615. doi: 10.1016/S0166-3615(97)00043-2.

[28] Peter Pin-Shan Chen. The Entity-Relationship Model - Toward a Unified View of
Data. ACM Transactions on Database Systems, 1(1):9–36, 1976. doi: 10.1145/320434.
320440.

[29] Laurence Cholvy, Frederic Cuppens, and Claire Saurel. Towards a logical formalization
of responsibility. In Proceedings of the 6th International Conference on Artificial

Intelligence and Law, pages 233–242, 1997.

[30] Jane Cleland-Huang. Don’t fire the architect! Where were the requirements? IEEE

Software, 31(2):27–29, 2014. ISSN 07407459. doi: 10.1109/MS.2014.34.

[31] Matthew Collinson and David Pym. Algebra and logic for resource-based systems
modelling. Mathematical Structures in Computer Science, 19:959–1027, 2009. ISSN
0960-1295. doi: 10.1017/s0960129509990077.

[32] Matthew Collinson, Brian Monahan, and David Pym. Semantics for structured systems
modelling and simulation. In Proceedings of the 3rd International ICST Conference on

Simulation Tools and Techniques, pages 34–43. ICST, 2010. ISBN 978-963-9799-87-5.
doi: 10.4108/ICST.SIMUTOOLS2010.8631.

Bibliography 253

[33] George E Cooper, Maurice D White, and John K Lauber. Resource management on
the flight deck. In Proceedings of a NASA/Industry Workshop, pages 31–58, 1980.

[34] Rita J Costello and Liu Dar-Biau. Metrics for Requirements Engineering. Journal of

Systems and Software, 29(1):39–63, 1995.

[35] Kevin Crowston and Thomas W Malone. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, 26(1):87–119, 1994.

[36] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1):3–50, 1993.

[37] Robert Darimont, Emmanuelle Delor, Philippe Massonet, and Axel van Lamsweerde.
GRAIL/KAOS: An Environment for Goal-Driven Requirements Engineering. In
Proceedings of the 19th International Conference on Software Engineering, pages
612–613, 1997.

[38] Robert Darimont, Emmanuelle Delor, Jean-Luc Roussel, and André Rifaut. Require-
ments Engineering with GRAIL / KAOS : Tell the Requirements, All the Requirements,
and Nothing Else but the Requirements. In Proceedings of the IEEE Joint International

Conference on Requirements Engineering, page 299, 2002.

[39] Guy Dewsbury and John Dobson. Responsibility and Dependable Systems. Springer-
Verlag, 2007. ISBN 978-1-84628-625-4. doi: 10.1007/978-1-84628-626-1.

[40] John Dobson. Responsibility Modelling: Basic Concepts. In Responsibility and

Dependable Systems. Springer, 2007.

[41] John Dobson and David Martin. Enterprise Modeling based on Responsibility. In Trust

in Technology: A Socio-Technical Perspective, pages 39–67. Springer, 2006.

[42] John Dobson and Mike Martin. Models for Understanding Responsibilities. In
Responsibility and Dependable Systems, pages 115–129. Springer, 2007.

[43] John Dobson and Ian Sommerville. Roles Are Responsibility Relationships Really.
2005.

[44] Ed Downs, Peter Clare, and Ian Coe. Structured Systems Analysis and Design Method.
Prentice Hall, 1988. ISBN 0-13-854324-0.

[45] James Druckman and Cindy Kam. Students as experimental participants: A defense
of the "narrow data base". Handbook of Experimental Political Science, pages 41–57,
2011. ISSN 1556-5068. doi: 10.2139/ssrn.1498843.

Bibliography 254

[46] Helga Drummond. Riding a tiger: some lessons of Taurus. Management Decision, 36
(3):141–146, 1998. ISSN 0025-1747. doi: 10.1108/00251749810208922.

[47] Leticia Duboc, Emmanuel Letier, David S Rosenblum, and Tony Wicks. A Case
Study in Eliciting Scalability Requirements. In 16th IEEE International Requirements

Engineering Conference, pages 247–252. IEEE, Sep 2008. ISBN 978-0-7695-3309-4.
doi: 10.1109/RE.2008.22.

[48] Jordi Dunjo, Vasilis Fthenakis, Juan A Vilchez, and Josep Arnaldos. Hazard and
operability (HAZOP) analysis. A literature review. Journal of Hazardous Materials,
173(1-3):19–32, 2010. ISSN 03043894. doi: 10.1016/j.jhazmat.2009.08.076.

[49] Eclipse Foundation. Eclipse Sirius, 2015. URL https://eclipse.org/

sirius/. [Accessed on: 2016-05-29].

[50] Eclipse Foundation. Eclipse Modelling Framework, 2015. URL http://www.

eclipse.org/emf/. [Accessed on: 2016-05-29].

[51] Eclipse Foundation. Acceleo, 2016. URL http://www.eclipse.org/

acceleo/. [Accessed on: 2017-03-05].

[52] Elwyn Edwards. Man and Machine: Systems for Safety. In Proceedings of British

Airline Pilots Association Technical Symposium, 1972.

[53] Eurocontrol. ACAS II Bulletin, 2007.

[54] Eurocontrol. Specification for Short Term Conflict Alert, 2007.

[55] Martin S Feather. Language support for the specification and development of composite
systems. ACM Transactions on Programming Languages and Systems, 9(2):198–234,
mar 1987. ISSN 01640925. doi: 10.1145/22719.22947.

[56] Massimo Felici. Capturing emerging complex interactions: Safety analysis in air traffic
management. Reliability Engineering and System Safety, 91(12):1482–1493, 2006.
ISSN 09518320. doi: 10.1016/j.ress.2006.01.010.

[57] Stephen Fenech, Gordon J Pace, and Gerardo Schneider. Automatic conflict detec-
tion on contracts. Lecture Notes in Computer Science, 5684:200–214, 2009. ISSN
03029743. doi: 10.1007/978-3-642-03466-4_13.

[58] Juliana K Filipe, Massimo Felici, and Stuart Anderson. Timed Knowledge-based Mod-
elling and Analysis: On the Dependability of Socio-Technical Systems. In Proceedings

of the International Conference on Human Aspects of Advanced Manufacturing: Agility

& Hybrid Automation, pages 321–328, 2003.

Bibliography 255

[59] Anthony Finkelstein, Jeff Kramer, B Nuseibeh, L Finkelstein, and M Goedicke. View-
points: A framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering, 2(1):1–27,
1992.

[60] Flight Safety Foundation. Aviation Safety Network Accident Database, 2016. URL
https://aviation-safety.net/database/. [Accessed on: 2016-05-21].

[61] Bent Flyvbjerg. Five Misunderstandings About Case-Study Research. Qualitative

Inquiry, 12(2):219–245, 2006. ISSN 1077-8004. doi: 10.1177/1077800405284363.

[62] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999. ISBN 9780201485677.

[63] Robert Galliers. Choosing Appropriate Information Systems Research Approaches: A
Revised Taxonomy. In Information Systems Research: Contemporary Approaches and

Emergent Traditions. Elsevier, 1991.

[64] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

elements of reusable object-oriented software. Addison Wesley, 1994.

[65] Fred George. High-Altitude Upset Recovery. Business and Commercial Aviation, Jul
2011.

[66] Bill Gillham. Research Interviewing. Open University Press, 2005.

[67] Jaap Gordijn, Hans Akkermans, and Hans Van Vliet. Business modelling is not
process modelling. In Conceptual modeling for e-business and the web, pages 40–51.
Springer-Verlag, 2001.

[68] Jaap Gordijn, Eric Yu, and Bas Van Der Raadt. e-Service Design Using i* and e3value
Modeling. IEEE Software, 23(3), 2006.

[69] Arnaud Gotlieb. TCAS Software Verification using Constraint Programming. The

Knowledge Engineering Review, 00, 2009. ISSN 0269-8889.

[70] Richard Harper and William Newman. Designing for user acceptance using analysis
techniques based on responsibility modelling. In Conference Companion on Human

factors in computing systems - CHI ’96, pages 217–218, New York, New York, USA,
1996. ACM Press. ISBN 0897918320. doi: 10.1145/257089.257289.

[71] Matthew Hause. The SysML Modelling Language. In Proceedings of the Fifth

European Systems Engineering Conference, 2006.

[72] Stephen Hawking and Leonard Mlodinow. The Grand Design. 2010.

Bibliography 256

[73] William Heaven and Anthony Finkelstein. A UML profile to support requirements
engineering with KAOS. IEEE Proceedings - Software, 151(1):10–27, 2004. ISSN
14625970. doi: 10.1049/ip-sen:20040297.

[74] H.W. Hendrick. Sociotechnical Systems Theory: the Sociotechnical Systems Model
of Work Systems. In Waldemar Karwowski, editor, International Encyclopedia of

Ergonomics and Human Factors. Taylor & Francis, 2001.

[75] Thomas Herrmann and Kai-Uwe Loser. Vagueness in models of socio-technical
systems. Behaviour & Information Technology, 18(5):313–323, 1999. ISSN 0144-
929X. doi: 10.1080/014492999118904.

[76] Erik Herzog and Asmus Pandikow. SysML - An Assessment. Technical report, 2005.

[77] Andrew Hilton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: A
Tool for Automatic Verification of Probabilistic Systems. Tools and Algorithms for the

Construction and Analysis of Systems, LNCS 3920:441–444, 2006.

[78] C A R Hoare. Communicating Sequential Processes. Prentice Hall, 1985. ISBN
0-13-153271-5.

[79] L. Hoepffner. Analysis of the HAZOP study and comparison with similar safety analy-
sis systems. Gas Separation and Purification, 3(3):148–151, 1989. ISSN 09504214.
doi: 10.1016/0950-4214(89)80027-1.

[80] Erik Hollnagel. FRAM: the Functional Resonance Analysis Method. Ashgate, 2012.

[81] Edward Huang, Randeep Ramamurthy, and Leon McGinnis. System and simulation
modeling using SysML. In Proceedings of the 2007 Winter Simulation Conference,
pages 796–803, 2007. ISBN 1424413060.

[82] M E Iacob, H Jonkers, M M Lankhorst, and H A Proper. Archimate 1.0 Specification.
Technical report, The Open Group, 2009.

[83] ICAO. Annex 2 to the Convention on International Civil Aviation - Rules of the Air,
2005.

[84] ICAO. Airborne Collision Avoidance System (ACAS) Manual, 2006.

[85] Juhani Iivari and John Venable. Action Research and Design Science Research -
Seemingly similar but decisively dissimilar. In Proceedings of the 2009 European

Conference on Information Systems, 2009.

[86] InDeED Consortium. Responsibility Modelling of the Hunterston Nuclear Power
Stations Off-Site Emergency Plan. Technical report, 2008.

Bibliography 257

[87] InDeED Consortium. InDeeD Hunterston Models and Notes.
GitHub repository, 2008. URL https://github.com/twsswt/

indeed-hunterston-exercise-indus.

[88] Isle of Anglesey County Council. Wylfa Nuclear Power Station Off-Site Emergency
Plan, 2011.

[89] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology, 11(2):256–290, Apr 2002. ISSN 1049331X.
doi: 10.1145/505145.505149.

[90] Jonathon Jacky. The Way of Z. Cambridge University Press, 1997.

[91] Yosr Jarraya, Andrei Soeanu, Mourad Debbabi, and Fawzi Hassaine. Automatic
verification and performance analysis of time-constrained SysML activity diagrams. In
Proceedings of the 14th Annual IEEE International Conference on the Engineering of

Computer-Based Systems, 2007. ISBN 0769527728.

[92] Pertti Jarvinen. Action research is similar to design science. Quality and Quantity, 41
(1):37–54, 2007. ISSN 00335177. doi: 10.1007/s11135-005-5427-1.

[93] Chris Johnson. A Handbook of Incident and Accident Reporting. Glasgow University
Press, 2003.

[94] William Johnson. MORT: The Management Oversight and Risk Tree. Journal of Safety

Research, 7(1):4–15, 1975.

[95] Cliff Jones. Systematic software development using VDM. Prentice Hall, second
edition, 1990. ISBN 0-13-880733-7.

[96] T Jun, M A Piera, and J Nosedal. Analysis of induced traffic alert and collision
avoidance system collisions in unsegregated airspace using a colored Petri net model.
Simulation, 91(3):233–248, 2015. ISSN 00375497. doi: 10.1177/0037549715570357.

[97] Daniel Kahneman. Attention and Effort. Prentice Hall, 1973. ISBN 0130505188. doi:
10.2307/1421603.

[98] Tim Kelly and Simon Bates. The Costs, Benefits, and Risks Associated With Pattern-
Based and Modular Safety Case Development. In Proceedings of the UK MoD Equip-

ment Safety Assurance Symposium, 2005.

[99] Markus Kirchberg, Ove Sörensen, and Bernhard Thalheim. A BPMN Case Study:
Paper Review and Submission System. In GI Jahrestagung, pages 4067–4081, 2009.
ISBN 9783885792482.

Bibliography 258

[100] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter?
Structural Safety, 31(2):105–112, 2009. ISSN 01674730. doi: 10.1016/j.strusafe.2008.
06.020.

[101] George Koliadis and Aditya Ghose. Relating Business Process Models to Goal-
Oriented Requirements Models in KAOS. In Advances in Knowledge Acquisition and

Management, pages 25–39. Springer-Verlag, 2006.

[102] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Processes and

Techniques. Wiley, 1998.

[103] John Krogstie. A Semiotic Approach to Quality in Requirements Specifications. In
Organizational Semiotics. Springer, 2002. doi: 10.1007/978-0-387-35611-2_14.

[104] Philipe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
third edition, 2004.

[105] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer, 1(1):134–152, 1997.

[106] Emmanuel Letier and William Heaven. Requirements modelling by synthesis of
deontic input-output automata. In 2013 35th International Conference on Software

Engineering (ICSE), pages 592–601, may 2013. ISBN 978-1-4673-3076-3. doi:
10.1109/ICSE.2013.6606605.

[107] Emmanuel Letier, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Deriving event-
based transition systems from goal-oriented requirements models. In Automated

Software Engineering, volume 15, pages 175–206, may 2008. doi: 10.1007/
s10515-008-0027-7.

[108] Nancy Leveson. A New Approach to Hazard Analysis for Complex Systems. In
Proceedings of the International Conference of the System Safety Society, 2003.

[109] Nancy Leveson. A systems-theoretic approach to safety in software-intensive systems.
IEEE Transactions on Dependable and Secure Computing, 1(1):66–86, Jan 2004. ISSN
1545-5971. doi: 10.1109/TDSC.2004.1.

[110] Nancy Leveson, Jon Damon Reese, and Mats P E Heimdahl. SpecTRM: A CAD System
for Digital Automation. In Proceedings of the Digital Avionics Systems Conference,
1998.

[111] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety.
MIT Press, 2011. ISBN 9780262016629. doi: 10.1017/CBO9781107415324.004.

Bibliography 259

[112] Lin Liu, Eric Yu, and John Mylopoulos. Security and privacy requirements analysis
within a social setting. In Proceedings of the 11th IEEE International Requirements

Engineering Conference, pages 151–161, 2003.

[113] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling and analysis
of the traffic alert and collision avoidance system (TCAS). Proceedings of the IEEE,
88(7):926–947, 2000. ISSN 00189219. doi: 10.1109/5.871302.

[114] Russell Lock and Ian Sommerville. Modelling and Analysis of Socio-Technical
System of Systems. In Proceedings of the 2010 15th IEEE International Conference

on Engineering of Complex Computer Systems, pages 224–232. IEEE, 2010. ISBN
978-1-4244-6638-2. doi: 10.1109/ICECCS.2010.31.

[115] Russell Lock, Tim Storer, Ian Sommerville, and Gordon Baxter. Responsibility mod-
elling for risk analysis. In Reliability, risk and safety : theory and applications :

Proceedings of the European Safety and Reliability Conference, 2010.

[116] Russell Lock, Ian Sommerville, and Tim Storer. Responsibility Modelling. In LSC-

ITS Socio-Technical Systems Engineering Handbook, pages 66–73. University of St.
Andrews, 2011.

[117] Jonas Lundberg, Carl Rollenhagen, and Erik Hollnagel. What-You-Look-For-Is-
What-You-Find: The consequences of underlying accident models in eight accident
investigation manuals. Safety Science, 47(10):1297–1311, dec 2009. ISSN 09257535.
doi: 10.1016/j.ssci.2009.01.004.

[118] Neil Maiden and Alistair G Sutcliffe. Requirements engineering by example: an
empirical study. In Proceedings of the IEEE International Symposium on Requirements

Engineering, 1993. ISBN 0-8186-3120-1. doi: 10.1109/ISRE.1993.324828.

[119] Neil Maiden, Sara Jones, Cornelius Ncube, and James Lockerbie. Using i * in Require-
ments Projects : Some Experiences and Lessons. In Social Modeling for Requirements

Engineering, pages 155–185. MIT Press, 2011.

[120] Mark Maier. Architecting principles for systems-of-systems. Systems Engineering, 1
(4), 1999.

[121] David Martin and Ian Sommerville. Patterns of Cooperative Interaction: Linking
Ethnomethodology and Design. ACM Transactions on Computer-Human Interaction,
11(1):59–89, 2004. ISSN 10730516 (ISSN). doi: 10.1145/972648.972651.

[122] Raimundas Matulevičius and Patrick Heymans. Comparing Goal Modelling Languages:
An Experiment. Requirements Engineering: Foundation for Software Quality, pages
18–32, 2007. ISSN 03029743. doi: 10.1007/978-3-540-73031-6_2.

Bibliography 260

[123] Jean McNiff and Jack Whitehead. All you need to know about Action Research. Sage,
2011. ISBN 9780857025838.

[124] JJC Meyer and RJ Wieringa. Applications of deontic logic in computer science:
A concise overview. In Deontic Logic in Computer Science: Normative System

Specification, pages 1–28. Wiley-Blackwell, 1993.

[125] JJC Meyer, RJ Wieringa, and FPM Dignum. The role of deontic logic in the specifica-
tion of information systems. In Logics for databases and information systems, pages
17–44. John Wiley & Sons, 1998.

[126] Henry Mintzberg. Structure in 5’S: a Synthesis of the Research on Organization Design.
Management Science, 26(3):322–341, 1980. doi: 10.1287/mnsc.26.3.322.

[127] Daniel Moody, Guttorm Sindre, Terje Brasethvik, and Arne Solvberg. Evaluating the
quality of information models: empirical testing of a conceptual model quality frame-
work. In Proceedings of the 25th International Conference on Software Engineering,
pages 295–305, 2003. ISBN 076951877X. doi: 10.1109/ICSE.2003.1201209.

[128] Michael Muehlen and Danny T Ho. Service Process Innovation: A Case Study of
BPMN in Practice. In Proceedings of the 41st Hawaii International Conference on

System Sciences, 2008. ISBN 0-7695-3075-8. doi: 10.1109/HICSS.2008.388.

[129] Enid Mumford. The story of socio-technical design: Reflections on its successes,
failures and potential. Information Systems Journal, 16(4):317–342, 2006. ISSN
13501917. doi: 10.1111/j.1365-2575.2006.00221.x.

[130] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541–580, 1989. ISSN 15582256. doi: 10.1109/5.24143.

[131] Hiroyuki Nakagawa, Kenji Taguchi, and Shinichi Honiden. Formal Specification
Generator for KAOS. In Proceedings of the twenty-second IEEE/ACM interna-

tional conference on Automated Software Engineering, pages 531–532, 2007. ISBN
9781595938824.

[132] Thomas H Naylor, J M Finger, James L McKenney, William E Schank, and Charles C
Holt. Verification of Computer Simulation Models. Management Science, 14(2), 1967.

[133] North Ayrshire Council. Hunterston Nuclear Power Stations Off-Site Emergency Plan,
2006.

[134] Briony J Oates. Researching Information Systems and Computing. Sage, 2006. ISBN
9781412902243.

Bibliography 261

[135] Object Management Group. MOF Core Specification, 2013.

[136] Samir Okasha. Philiosophy of Science: A Very Short Introduction. Oxford University
Press, 2016.

[137] Chun Ouyang, Marlon Dumas, Arthur HM Ter Hofstede, and Wil MP Van Der Aalst.
From BPMN process models to BPEL Web services. In Proceedings of ICWS 2006:

2006 IEEE International Conference on Web Services, pages 285–292, 2006. ISBN
0769526691. doi: 10.1109/ICWS.2006.67.

[138] Vineet Padmanabhan, Guido Governatori, Shazia Sadiq, Robert Colomb, and Antonino
Rotolo. Process modelling: the deontic way. In Proceedings of the 3rd Asia-Pacific

Conference on Conceptual Modelling, 2006.

[139] Terence Parr. ANTLR, 2015.

[140] Oscar Pastor, Hugo Estrada, and Alicia Martinez. Strengths and Weaknesses of the i*
Framework. In Social Modeling for Requirements Engineering. MIT Press, 2011.

[141] Ken Peffers, Tuure Tuunanen, Charles E Gengler, Matti Rossi, Wendy Hui, Ville
Virtanen, and Johanna Bragge. The Design Science Research Process: A Model for
Producing and Presenting Information Systems Research. In Proceedings of Design

Research in Information Systems and Technology (DESRIST’06), pages 83–106, 2006.

[142] A Platt and S Warwick. Review of soft systems methodology. Industrial Man-

agement & Data Systems, 95(4):19–21, 1995. ISSN 0263-5577. doi: 10.1108/
02635579510086698.

[143] Karl Popper. The Logic of Scientific Discovery. Hutchinson, 1959. ISBN 0415278449.
doi: 10.1016/S0016-0032(59)90407-7.

[144] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and

Z. Prentice Hall, 1996.

[145] Amy Pritchett. Aviation Automation : General Perspectives and and Alerts. Re-

views of Human Factors and Ergonomics, pages 82–113, 2009. doi: 10.1518/
155723409X448026.

[146] Amy Pritchett, Elizabeth Fleming, William Cleveland, Vlad Popescu, Dhruv Thakkar,
and Jonathon Zoetrum. Pilot’s Information Use During TCAS Events, and Relation-
ship to Compliance to TCAS Resolution Advisories. In Proceedings of the Human

Factors and Ergonomics Society 56th Annual Meeting, pages 26–30, 2012. ISBN
9780945289418. doi: 10.1177/1071181312561026.

Bibliography 262

[147] Charles C Ragin. "Casing" and the process of social inquiry. In What is a case?

Exploring the foundations of social inquiry., pages 217–227. Cambridge University
Press, 1992. ISBN 0521421888.

[148] Devina Ramduny-Ellis and Alan Dix. Modelling in Practice. In Responsibility and

Dependable Systems. Springer, 2007.

[149] Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. How good is BPMN
really? Insights from Theory and Practice. In Proceedings of the 14th European

Conference on Information Systems, pages 1046–1072, 2006. ISBN 0798855444.

[150] Respect-IT SA. Objectiver Technical Datasheet, 2012.

[151] GC Roman. A taxonomy of current issues in requirements engineering. Computer, 18
(4):14–23, 1985.

[152] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual. Addison-Wesley, second edition, 2004.

[153] Paul M Salmon, Guy H Walker, and Neville A Stanton. Pilot error versus sociotech-
nical systems failure: a distributed situation awareness analysis of Air France 447.
Theoretical Issues in Ergonomics Science, 17(1):64–79, 2016.

[154] Robert G Sargent. Verification and Validation of Simulation Models. In S. Chick,
P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors, Proceedings of the 2003 Winter

Simulation Conference, 2003. ISBN 0-7803-8131-9. doi: 10.1109/WSC.2003.1261400.

[155] Ken Schwaber and Mike Beedle. Agile Software Development with SCRUM. Prentice
Hall, 2001.

[156] Ben Shneiderman. Science 2.0. Science, 319(5868):1349–1350, 2008. ISSN 0036-
8075. doi: 10.1126/science.1153539.

[157] Robbie Simpson. Responsibility Modelling Editor. GitHub repository, 2015. URL
https://github.com/twsswt/resme.

[158] Robbie Simpson. Hunterston Responsibility Models. GitHub repository, 2015. URL
https://github.com/twsswt/resme-hunterston-case-study.

[159] Robbie Simpson. TCAS Responsibility Models. GitHub repository, 2016. URL
https://github.com/twsswt/resme-tcas-case-study.

[160] Robbie Simpson. Domain Expert Evaluations of a TCAS Responsibility Model, 2016.
URL http://researchdata.gla.ac.uk/372/.

Bibliography 263

[161] Robbie Simpson. Responsibility Modelling User Study Materials. GitHub repository,
2016. URL https://github.com/robmods/resme-user-study.

[162] Robbie Simpson and Tim Storer. Formalising Responsibility Modelling for Automatic
Analysis. Lecture Notes in Business Information Processing, 231:125–140, 2015. doi:
10.1007/978-3-319-24626-010.

[163] Robbie Simpson and Tim Storer. Responsibility Model Editor update
site, 2016. URL http://www.dcs.gla.ac.uk/{~}tws/software/

resme-update-site/.

[164] Dag I K Sjoberg, Jo E Hannay, Ove Hansen, Vigdis By Kampenes, Amela Kara-
hasanovic, Nils Kristian Liborg, and Anette C Rekdal. A survey of controlled experi-
ments in software engineering. IEEE Transactions on Software Engineering, 31(9):
733–753, 2005. ISSN 00985589. doi: 10.1109/TSE.2005.97.

[165] Gideon Sjoberg. Contradictory Functional Requirements and Social Systems. Journal

of Conflict Resolution, 4(2):198–208, 1960.

[166] Ian Sommerville. Models for Responsibility Assignment. In Responsibility and

Dependable Systems. Springer, 2007.

[167] Ian Sommerville. Causal responsibility models. In Responsibility and Dependable

Systems. Springer, 2007.

[168] Ian Sommerville, Tim Storer, and Russell Lock. Responsibility Modelling for Contin-
gency Planning. 2007.

[169] Ian Sommerville, Russell Lock, Tim Storer, and John Dobson. Deriving information
requirements from responsibility models. In Proceedings of the 19th International

Conference on Advanced Information Systems Engineering, pages 515–529, 2009.

[170] Ian Sommerville, Tim Storer, and Russell Lock. Responsibility modelling for civil
emergency planning. Risk Management, 11(3-4):179–207, Jul 2009. ISSN 1460-3799.
doi: 10.1057/rm.2009.11.

[171] JM Spivey. The Z Notation. Prentice Hall, 1989.

[172] Tim Storer. Observations of Exercise Indus. 2007.

[173] Tim Storer. Observations of Excerise Kilchattan. 2008.

[174] Tim Storer. Hunterston responsibility model. 2008.

Bibliography 264

[175] Tim Storer and Russell Lock. An integrated model of responsibility for the analysis of
the dependability of socio-technical systems. 2007.

[176] Tim Storer and Russell Lock. Modelling Responsibility. 2009.

[177] Tim Storer, Karen Renaud, and William Bradley Glisson. Patterns of Information Se-
curity Postures for Socio-Technical Systems and Systems-of-Systems. In Proceedings

of the First International Workshop on Cyberpatterns, pages 30–34, 2012.

[178] Ros Strens and John Dobson. How responsibility modelling leads to security require-
ments. In Proceedings of the 16th National Computer Security Conference, pages
143–149, 1993.

[179] Ros Strens and John Dobson. Responsibility modelling as a technique for organisational
requirements definition. Intelligent Systems Engineering, 3(1):20–26, 1994. ISSN
09639640. doi: 10.1049/ise.1994.0003.

[180] Markus Strohmaier, Jennifer Horkoff, and Eric Yu. Can patterns improve i* modeling?
two exploratory studies. In Requirements Engineering: Foundation for Software

Quality, pages 153–167. Springer, 2008.

[181] Alistair G Sutcliffe. Requirements analysis for socio-technical system design. Infor-

mation Systems, 25(3):213–233, 2000. ISSN 03064379. doi: 10.1016/S0306-4379(00)
00016-8.

[182] CD Swann and ML Preston. Twenty-five years of HAZOPs. Journal of loss prevention

in the Process Industries, 8(6):349–353, 1995.

[183] Joseph C Sweeney. ARCO Chemical’s HAZOP Experience. Process Safety Progress,
12(2):83–91, 1993.

[184] Eric Trist. The Evolution of socio-technical systems. In Proceedings of the Confer-

ence on Organizational Design and Performance, volume 2, pages 1–67, 1981. doi:
0-7743-6286-3.

[185] UK Parliament. Civil Contingencies Act 2004, 2004.

[186] Peter Underwood and Patrick Waterson. A Critical Review of the STAMP , FRAM and
Accimap Systemic Accident Analysis Models. In Neville A . Stanton, editor, Advances

in Human Aspects of Road and Rail Transportation. CRC Press, 2012.

[187] Axel Van Lamsweerde. Requirements Engineering in the Year 2000: A Research Per-
spective. In Proceedings of the 22nd International Conference on Software Engineering,
pages 5–19, 2000. ISBN 1-58113-206-9. doi: 10.1145/337180.337184.

Bibliography 265

[188] Axel van Lamsweerde, Robert Darimont, and Philippe Massonet. The Meeting
Scheduler System - Preliminary Definition. Working Paper, 1993. URL http:

//www.cs.cmu.edu/{~}ModProb/CSdef1.html. [Accessed on: 2017-05-
19].

[189] Axel van Lamsweerde, Robert Darimont, and Philippe Massonet. Goal-directed
elaboration of requirements for a meeting scheduler: problems and lessons learnt. In
Proceedings of 1995 IEEE International Symposium on Requirements Engineering

(RE’95), pages 194–203. IEEE Comput. Soc. Press, 1995. ISBN 0-8186-7017-7. doi:
10.1109/ISRE.1995.512561.

[190] WE Vesely, FF Goldberg, NH Roberts, and DF Haasl. Fault tree handbook, 1981.

[191] Jos Warner and Anneke Kleppe. The Object Constraint Language: Precise Modelling

with UML. Addison-Wesley, 1998.

[192] Kun Wei, Jim Woodcock, and Alan Burns. Timed Circus: Timed CSP with the
miracle. In 2011 16th IEEE International Conference on Engineering of Complex

Computer Systems, ICECCS 2011, pages 55–64, 2011. ISBN 9780769543819. doi:
10.1109/ICECCS.2011.13.

[193] Kun Wei, Jim Woodcock, and Alan Burns. Modelling Temporal Behaviour in Complex
Systems with Timebands. In Mike Hinchey and Lorcan Coyle, editors, Conquering

Complexity, pages 277–307. Springer London, London, 2012. ISBN 978-1-4471-2296-
8. doi: 10.1007/978-1-4471-2297-5.

[194] J D Welch and V A Orlando. Active Beacon Collision Avoidance System (BCAS):
Functional Overview, 1980.

[195] Stephen A White. Introduction to BPMN. Business Process Trends, 2004.

[196] RD Williams. Managing the Development of Reliable Software. In Proceedings of the

international conference on Reliable software, 1975.

[197] Richard Winter. Action-Research and the Nature of Social Inquiry. Avebury, 1987.
ISBN 0566055325.

[198] R Wirfs-Brock and Brian Wilkerson. Object-oriented design: a responsibility-driven
approach. In Proceedings of the 1989 ACM OOPSLA conference on object-oriented

programming, pages 71–75, 1989. ISBN 0897913337.

[199] Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Andrews Wesslen. Experimentation in Software Engineering. Springer, 2013. ISBN
9788578110796. doi: 10.1017/CBO9781107415324.004.

Bibliography 266

[200] Robert K Yin. Case Study Research: Design and Methods. Sage, fourth edition, 2009.
ISBN 978-1-4129-6099-1.

[201] Eric Yu. Modelling Organizations for Information Systems Requirements Engineering.
In Proceedings of IEEE International Symposium on Requirements Engineering, pages
34–41, 1993. ISBN 0818631201. doi: 10.1109/ISRE.1993.324839.

[202] Eric Yu. Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto, 1995.

[203] Eric Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In Proceedings of ISRE ’97: 3rd IEEE International Symposium on

Requirements Engineering, pages 226–235. IEEE Comput. Soc. Press, 1997. ISBN
0-8186-7740-6. doi: 10.1109/ISRE.1997.566873.

[204] Eric Yu and Lin Liu. Modelling Trust for System Design Using the i * Strategic Actors
Framework. In Trust in Cyber-Societies, pages 175–194. Springer, 2001.

267

Appendix A

User Study Materials

The Meeting Scheduler System Definition

Scheduling Meetings:

Meetings are typically arranged in the following way. A meeting initiator asks all
potential meeting attendees for the following information based on their personal
agenda:

•a set of dates on which they cannot attend the meeting (hereafter referred as

exclusion set);

•a set of dates on which they would prefer the meeting to take place (hereafter

referred as preference set).

A meeting date is defined by a pair (calendar date, time period). The exclusion and
preference sets are contained in some time interval prescribed by the meeting initiator
(hereafter referred as date range).

The initiator also asks active participants to provide any special equipment
requirements on the meeting location (e.g., overhead-projector, workstation, network
connection, telephones, etc.); he/she may also ask important participants to state
preferences about the meeting location.

The proposed meeting date should belong to the stated date range and to none of the
exclusion sets; furthermore it should ideally belong to as many preference sets as
possible. A date conflict occurs when no such date can be found. A conflict is strong
when no date can be found within the date range and outside all exclusion sets; it is
weak when dates can be found within the date range and outside all exclusion sets,
but no date can be found at the intersection of all preference sets. Conflicts can be
resolved in several ways:

•the initiator extends the date range;

•some participants remove some dates from their exclusion set;

•some participants withdraw from the meeting;

•some participants add some new dates to their preference set.

A meeting room must be available at the selected meeting date. It should meet the
equipment requirements; furthermore it should ideally belong to one of the locations
preferred by as many important participants as possible. A new round of negotiation

may be required when no such room can be found.

The meeting initiator can be one of the participants or some representative (e.g., a
secretary).

System Requirements

The purpose of the meeting scheduler system is to support the organization of
meetings - that is, to determine, for each meeting request, a meeting date and
location so that most of the intended participants will effectively participate. The
meeting date and location should thus be as convenient as possible to all participants.
Information about the meeting should also be made available as early as possible to
all potential participants. The intended system should considerably reduce the amount
of overhead usually incurred in organizing meetings where potential attendees are
distributed over many different places. On another hand, the system should reflect as
closely as possible the way meetings are typically managed (see the domain theory
above).

The system should assist users in the following activities.

•Plan meetings under the constraints expressed by participants

•Replan a meeting dynamically to support as much flexibility as possible. On

one hand, participants should be allowed to modify their exclusion set,
preference set and/or preferred location before a meeting date/location is
proposed. On the other hand, it should be possible to take some external
constraints into account after a date and location have been proposed - e.g., due
to the need to accommodate a more important meeting. The original meeting
date or location may then need to be changed; sometimes the meeting may
even be cancelled. In all cases some bound on replanning should be set up.

•Support conflict resolution according to resolution policies stated by the

client.

•Manage all the interactions among participants required during the

organization of the meeting - to communicate requests, to get replies even from
participants not reacting promptly, to support the negotiation and conflict
resolution processes, to make participants aware of what's going on during the
planning process, to keep participants informed about schedules and their
changes, to make them confident about the reliability of the communications,
etc.

•Keep the amount of interaction among participants (e.g., number and length of

messages, amount of negotiation required) as small as possible.

The meeting scheduler system must in general handle several meeting requests in
parallel. Meeting requests can be competing by overlapping in time or space.
Concurrency must thus be managed.

The following aspects should also be taken into account.

•The system should accommodate decentralized requests; any authorized user

should be able to request a meeting independently of his whereabouts.

•Physical constraints may not be broken - e.g., a person may not be at two

different places at the same time, a meeting room may not be allocated to more
than one meeting at the same time.

•The system should provide an appropriate level of performance, for example:

•the elapsed time between the submission of a meeting request and the

determination of the corresponding meeting date/location should be as
small as possible;

•the elapsed time between the determination of a meeting date/location

and the communication of this information to all participants concerned
should be as small as possible;

•a lower bound should be fixed between the time at which the meeting

date is determined and the time at which the meeting is actually taking
place.

•Privacy rules should be enforced; a non-privileged participant should not be

aware of constraints stated by other participants.

•The system should be usable by non-experts.

•The system should be customizable to professional as well as private

meetings. These two modes of use are characterized by different restrictions on
the time periods that may be allocated (e.g., meetings during office hours,
private activities during leisure time).

•The system should be flexible enough to accommodate evolving data - e.g.,

the sets of concerned participants may be varying, the address at which a
participant can be reached may be varying, etc.

Responsibility Modelling Tutorial

Responsibility modelling is a notation and methodology for modelling complex socio-technical
systems - systems that combine human, organisational and technical elements. Responsibility

models consist of actors, responsibilities and resources (collectively, we call these entities). We use
responsibilities as the core element of these models because we believe that they are a more

intuitive way of capturing real-world activities than goal or process models.

Responsibilities are tasks, duties and obligations and can range from very abstract moral or legal
principles to specific details about a particular task or process. The aim of the system is to

successfully complete (discharge) all the responsibilities, which may require the actions of actors or
the use of resources. Both resources and actors are flexible - resources can be physical materials or

pieces of information, and actors can be organisations, individuals or technical systems like
computer programs or sensors.

A responsibility model consists of these three entity types, linked by relations. Relations are:

• Required actor/resource/responsibility: indicates that the required entity is necessary to

discharge the source responsibility

• Production: indicates that a resource is produced by the successful discharge of a

responsibility

• Holds: indicates that an actor is responsible for / accountable for a particular responsibility

(This contrasts with required actor, which just indicates the actor is needed)

It is also important to note that responsibility models are stateless, unlike many similar notations.
Responsibilities are either discharged or are not discharged, resources are produced or not produced
etc. over the entire timeframe of the system, rather than in discrete steps. This simplifies the timing

of a system - for example, we are not concerned how quickly a responsibility is discharged - it is
simply either successful (and hence ready on time) or unsuccesful.

In our graphical representation, responsibilities are represented as rectangles, actors as stickmen and
resources as ovals. Relations are indicated by directional arrows with filled arrowheads, with the
exception of the Holds relation, which is a directional arrow with a open arrowhead. There is no

specific notation for each type of relation - the type is inferred from the source and target entities.

Consider this example of ordering and eating food in a restaurant:

Here we have three responsibilities (Enjoy meal, Take order, Cook meal), four actors (Waiter,
Customer, Chef, Restaurant Manager) and two resources (Order, Food). We can see that the
customer and the waiter are both required in order to take the order, but only the waiter is

accountable for it. The chef is both required for and is accountable for cooking the meal, which
produces food as long as the order is available. The meal can be enjoyed as the order has been
taken, the meal cooked, the food is available and the customer is available - the manager is not
directly involved in any way, but is responsible for ensuring that it is successfully discharged.

There are lots of different techniques for creating responsibility models from source materials. We
often use a system of entity detection similar that used for ER diagrams - read through source
documents and identify the actors, responsibilities and resources and create them in the model,

before making a second pass of the documents to determine the relations. Organisations and roles
correspond to actors, while pieces of information correspond to resources and tasks, obligations etc.

correspond to responsibilities. Of course, many other elicitation strategies are perfectly suitable.

We have developed a toolkit for responsibility modelling called RESME, which is available on
GitHub: github.com/twsswt/resme

For each of installation, we recommend first making a clean install of the ObeoDesigner Eclipse
build: obeodesigner.com/en which contains all the necessary dependencies. If you have any

problems, do email us!

