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Abstract

The COVID-19 pandemic has been the greatest challenge to global public

health in the 21st century. The novel virus demanded scientific progress

in several fields of research, from medical innovations to the development

of political strategies that aimed to contain the spreading of the virus

and protect the most vulnerable, often assisted by statistical analyses.

The work presented in this thesis is a timely analysis of important public

health aspects of COVID-19 in the UK, detecting overall trends and pat-

terns in mortality risk after the three national lockdowns in England and

identifying differences in COVID-19 vaccine attrition rates for the second

and third doses by age group, sex, and council area in Scotland. The pre-

sented statistical analyses fit spatio-temporal areal data using generalised

linear mixed effects models in a Bayesian hierarchical framework, where

the correlated spatial random effects are assigned prior distributions from

the class of conditional autoregressive (CAR) models. These models typ-

ically induce spatial smoothness in the inferred disease risk or prevalence

surface, where strength in the estimation is borrowed from neighbouring

observations, according to some neighbourhood structure. The spatial

smoothness assumption is often accredited to Waldo R. Tobler, who said,

“Everything is related to everything else, but near things are more related

than distant things”. However, the presented COVID-19 analyses suggest

that the spatial smoothness assumption might not always hold for all ar-

eas. Hence, this thesis proposes a novel relative density-based outlier score

(RDOS) for identifying potential singleton spatial outliers that violate the

spatial smoothness assumption and a novel modified spatial smoothing

model to remove the potential outliers’ impact on the estimated disease

prevalence surface. The following summarises the key findings from this



thesis. The study on the impact of national lockdowns on COVID-19 mor-

tality risk in England shows that the risks increased drastically before the

implementation of lockdowns 1 and 3 and decreased to pre-lockdown lev-

els after ten and six weeks, respectively. Further, the study identifies

areas with a higher peak risk during these lockdowns, detecting an ur-

ban/rural divide for lockdown 1 and an association between higher risk

and the early spreading of the Alpha variant during lockdown 3. The

study on COVID-19 vaccine attrition rates in Scotland identifies a strong

association between age and attrition rates, where the odds in favour of

attrition decrease smoothly with increasing age. The odds in favour of

attrition tend to be overall higher for males than females and higher in

the second transition (from doses 2 to 3) than the first (from doses 1

to 2). Lastly, a simulation study shows that the novel singleton spatial

outlier detection method for areal data produces much better detection

results than the commonly used local Moran’s I statistic. Similarly, the

modified smoothing model is shown to produce overall better prevalence

estimates than a conventional smoothing model when the number of out-

liers is large or at least some outliers have a large magnitude, even when

the identified outlier sets are sub-optimal. The proposed methods are

combined in a two-stage modelling approach and applied in a motivating

study on asthma prevalence at the lower super output area (LSOA) level

in England, where potential singleton spatial outliers are identified, and

the estimated risk surface obtained from the modified smoothing model

is compared to that of a conventional smoothing model. The comparison

shows that the prevalence estimates of the identified outliers and their

neighbouring inliers differ noticeably between the two models, highlight-

ing the importance of considering such potential singleton spatial outliers

in the analysis of areal unit data.
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Chapter 1

Introduction

According to the UK’s National Health Service (NHS, 2024), the key functions of

public health are health protection (e.g., infectious disease control and action for

clean air), improving people’s health (e.g., reducing health inequalities, for example

by helping people quit smoking), and ensuring that the health services are effective,

efficient, and equally accessible. The importance of public health is reflected in the

17 goals of the United Nations 2030 Agenda for Sustainable Development (United

Nations - Department of Economic and Social Affairs, 2015), which was set out in

2015 and includes the goals of promoting well-being for all at all ages (Goal 3) and

reducing inequality within and among countries (Goal 10). Many of the specified

targets are phrased in terms of population statistics that are to be reached by 2030.

Statistical analyses can be used to check the progress in reaching these specific targets

and, more generally, to evaluate the key functionalities of public health and identify

possibilities for improvement.

Historically, some of the most substantial public health improvements in the UK

were achieved during the Victorian period from 1837 to 1901 (for a brief overview,

see the timeline provided by the National Portrait Gallery, 2024). One of the earliest

public health milestones during that period was the First Public Health Act of 1848,

which initiated local boards of health to (among other things) appoint medical offi-

cers and build sewers. The Victorian period featured some of the earliest statistical

analyses of public health data. The most renowned example is from 1854, when John
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1. Introduction

Snow identified a hotspot of cholera cases in London and discovered that a water

pump was a likely source of the spread of cholera (e.g., see Rothman, 2012). The

geographical analysis that led to the discovery is considered the earliest application in

epidemiology, which can be defined as “the study of the determinants of the incidence

and prevalence of disease” (Alderson, 1983). While the umbrella of epidemiological

research is wide, some of its other key aims include estimating the number of individ-

uals with a disease (possibly for different groups of people) and identifying patterns

and trends in how these numbers change over space and time.

Florence Nightingale, one of the main pioneers of public health during the Vic-

torian period and a member of the sanitary movement (e.g., see Susser and Stein,

2009), produced a key statistical analysis of temporal trends in public health data,

which she utilised to call for political action to initiate further sanitary improve-

ments. Nightingale analysed mortality data from military field hospitals during the

Crimean War between 1854 and 1856, where she was given the role of Superintendent

of Female Nursing (Small, 2017). It was William Farr, the Superintendent of the Sta-

tistical Department of the Registrar-General’s Office, who mentored Nightingale and

brought to her attention the association between the sanitary improvements (relating

to the cleanliness of the crowded barracks, e.g., by enabling ventilation and building

a system to flush water through the sewers that ran under the building) carried out in

Spring 1955 and the reduction in mortalities that followed. Figure 1.1 shows Nightin-

gale’s ‘coxcomb’ or ‘rose diagram’, which visualises the before mentioned reduction

in preventable deaths from disease. Nightingale’s and Farr’s successful collaboration

largely contributed to the Second Public Health Act of 1875 (Small, 2017), whose

main contributions included the clearing of slums and the refitting of sanitisation of

existing dwellings, which ultimately led to a considerable increase in the population’s

average life expectancy and substantially improved public health, overall.

Modern spatio-temporal areal data models enable complex statistical analyses of

spatially aggregated public health data of possibly large scope, and Bayesian disease

mapping, in particular, has become an important subject in spatio-temporal epidemi-

ological research with substantial methodological and computational advances over

the last 40 years (e.g., see MacNab, 2022). Disease mapping studies aim, among

2
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Figure 1.1: Diagram of the Causes of Mortality in the Army in the East by Florence Nightingale - https://www.da
vidrumsey.com/luna/servlet/s/h6xid2, Public Domain, https://commons.wikimedia.org/w/index.php?curid=147
4443.

other things, to identify overall spatial patterns and temporal trends in disease risk,

hotspots or clusters of high risk, factors associated with risk, and health inequalities.

Many Bayesian disease mapping models belong to the class of conditional autore-

gressive (CAR) models, which tend to produce spatially smooth estimates of disease

risk (or prevalence) and allow the identification of overall spatial patterns in the in-

ferred risk (or prevalence) surface. Besag et al. (1991) proposed the earliest models

from this class: the intrinsic conditional autoregressive (ICAR) model and convolu-

tion model (more commonly referred to as the BYM model, which is an acronym of

the authors’ names). The authors proposed the ICAR and BYM models specifically

for modelling non-infectious diseases, and their work was motivated by cancer stud-

ies. Generally, much of the earlier disease mapping work was motivated by creating

cancer risk maps (e.g., see MacNab, 2022). In contrast, in recent years, conditional

autoregressive models have become highly relevant in analysing infectious diseases

(e.g., see Tessema et al., 2023).

The work that led to the studies presented in this thesis commenced in October

2020, shortly after the first wave of the COVID-19 pandemic, which became the

second leading cause of death worldwide in 2021 (World Health Organization, 2024).

At the peak of the COVID-19 pandemic in the UK, the critical care facilities were

saturated and could not admit any more patients (Venkatesan, 2024). Hence, the
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pandemic challenged all key functions of public health: the spread of disease was

no longer under control, critical medical operations had to be delayed or cancelled,

and health services were not accessible to all. Given the pandemic’s eminence in

public health, the work presented in Chapters 3 and 4 provides a topical analysis of

some of the most crucial public health aspects at the time of writing and is outlined

below. Chapter 2 precedes these COVID-19 studies, reviewing relevant literature and

methodology used in this thesis’s three main chapters.

The work presented in Chapter 3 titled, “National lockdowns in England: The

same restrictions for all, but do the impacts on COVID-19 mortality risks vary geo-

graphically?” presents a geographical analysis (at the local authority district level)

of COVID-19 mortality risk after the three national lockdowns in England. The

study’s main aim is to investigate the spatio-temporal trends in COVID-19 mor-

tality risk to identify geographical differences in the impact of lockdown, answering

four main questions: 1. How long after the implementation of lockdown did mor-

tality risks reduce at a national level, and did this vary by lockdown?; 2. How did

the temporal trends in mortality risks differ by region in England?; 3. Which local

authorities were exposed to the highest average risks in the weeks after lockdown?;

and 4. Which local authorities shared similar temporal trends in mortality risks?

The study duration is from 1st February 2020 to 14th May 2021, when no effec-

tive medical treatment for COVID-19 was available at a large scale. During that

time, governments had to resort to non-pharmaceutical interventions, “measures to

reduce transmission that did not depend on drugs, vaccines or other specific medi-

cal countermeasures” (Department of Health & Social Care, 2023), to slow down the

spreading of the virus. These measures included social distancing, wearing face cover-

ings, isolating infected individuals, and travel restrictions such as national lockdowns.

The presented study appears to have been the first comprehensive investigation of

spatio-temporal trends in COVID-19 mortality risks following the implementation

of national lockdowns in England. Furthermore, in the review of studies on non-

pharmaceutical interventions in the UK by Duval et al. (2024), the work presented in

Chapter 3 was listed as one of only three ecological studies on measures to reduce the

number of contacts evaluated for COVID-19 mortality (e.g., see the online resource

4
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https://research.ukhsa.gov.uk/evidence-gap-map-npi-and-covid-19).

On 2nd December 2020, the first doses of COVID-19 vaccines were administered

in the UK. By the summer of 2021, the COVID-19 vaccines had become available

at a large scale and on 18th July 2021, everyone aged 18 years and older became

eligible to receive a first dose of the vaccine (NHS, 2021). Following this progression

of the pandemic, Chapter 4 presents another topical analysis of public health efforts.

The study is titled, “COVID-19 vaccine fatigue in Scotland: How do the trends in

attrition rates for the second and third doses differ by age, sex, and council area?” and

provides an epidemiological analysis of the vaccination uptake by sex and age group

across Scotland’s council areas. The study’s aim is to answer three main questions:

1. Are there any trends in attrition rates by age group, and does this vary by sex?;

2. Are there any spatial patterns in attrition rates by council area, and does this vary

by sex?; and 3. How do these trends and patterns compare across the two transitions

(from doses 1 to 2 and 2 to 3)? The presented study appears to have been the first to

examine simultaneously the proportions of people who received the first dose of the

vaccine but not a second dose and those who received the first and second doses but

not the third (also known as booster). It proposes the term vaccine fatigue to refer

to the delay in acceptance or refusal of subsequent doses to distinguish the findings

from those of the more commonly studied vaccine hesitancy, which refers to a “delay

in acceptance or refusal of vaccination despite availability of vaccination services”

(MacDonald, 2015), i.e., the delay or refusal of any vaccine at all.

Public health data are often spatially autocorrelated, following Tobler’s First Law

of Geography, that “Everything is related to everything else, but near things are more

related than distant things” (Tobler, 1970). If an exploratory analysis supports the

spatial smoothness assumption, one can fit a spatial smoothing model (e.g., a CAR

model) to the data to account for the spatial autocorrelation. However, even when the

data appear autocorrelated overall, the spatial smoothness assumption might not hold

for a few areas deviating from the typical local behaviour. As a result, the unusual

health outcomes in these areas are smoothed over, and they are likely to impact the

inference of the otherwise smooth prevalence surface. In Chapter 4, the COVID-19

vaccine attrition rate for males in the council area Argyle and Bute is unusually
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high in the transition from doses 1 to 2, and it appears that the spatial smoothness

assumption does not hold for this observation. The discovery of the unusual attrition

rate motivated the investigation of tools that can help identify such individual unusual

areas in larger public health data (e.g., with thousands of areal units) and how one

might account for such areas in a modified spatial smoothing model. These are the

key motivating questions for the work presented in Chapter 5 titled, “When Tobler’s

First Law of Geography doesn’t hold: Identifying spatially outlying observations to

remove their impact on estimated disease prevalence surfaces”.

The thesis concludes with Chapter 6, with a summary of the key findings of

the studies presented in Chapters 3 to 5, and closes with a discussion of recognised

limitations and proposes ideas for future work.

6



Chapter 2

Methodology and literature review

This chapter provides a review of the statistical methods and literature that will be

applied and referred to throughout this thesis; further details are provided in the

later chapters. The work presented in this thesis is motivated by applications in

epidemiology, and Section 2.1 introduces the relevant disease mapping notation and

methodology. The models presented in this thesis belong to the greater family of

generalised linear models, which are reviewed in Section 2.2. The statistical inference

is carried out in a Bayesian framework, and the key concepts of Bayesian statistics

are reviewed in Section 2.3. The models are chosen based on the measures of model

complexity and fit presented in Section 2.4. Types of spatio-temporal data and tools

for analysing these data are presented in Section 2.5. Selected spatial and spatio-

temporal models that can be applied to areal data are reviewed in Sections 2.6 and

2.7, respectively. Lastly, Section 2.8 reviews selected methods in cluster analysis.

2.1 Disease mapping

Public health analysts and epidemiologists seek to identify possible disease causes

and assess the relationship between a disease and other factors that might impact

its incidence (the number of new cases within a certain period) or prevalence (the

proportion of people in a population having a disease), e.g., see Noordzij et al. (2010).

Following the definition by Lawson et al. (1999), disease mapping refers to producing

accurate maps of disease incidence to infer the true underlying disease distribution.

7
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Some alternative names refer to the same subject, such as spatial epidemiology, en-

vironmental epidemiology, and small-area health studies (Lawson, 2018). Statistical

methods are commonly applied to estimate the disease burden, investigate the spa-

tial variation in disease risk and identify patterns in the inferred risk surface. This

section reviews some general notation and methodology, but the existing literature

on disease mapping is extensive; for a more thorough introduction, see, for example,

the books by Waller and Carlin (2010) or Lawson (2018), or the recent review paper

by MacNab (2022).

Generally, disease data are observed and aggregated for confidentiality and ac-

curacy. For high-prevalence diseases, areas can be small enough to represent near-

homogeneous communities, while for rare diseases, larger areas might be needed to

capture the disease burden accurately. For example, https://statistics.gov.s

cot/atlas/resource?uri=http://statistics.gov.scot/id/statistical-g

eography/S92000003 shows some of the commonly used geographies in Scotland,

such as Data Zones (6,976 areas), Intermediate Zones (1,279 areas), Council Areas

(32 areas), and Health Boards (14 areas). Public health data are typically provided

for such existing geographic boundaries, and the geographical scale might limit the

availability of additional covariates or the conclusions that can be drawn from the

statistical analysis. For small-area health studies, the relationship between disease

prevalence and possible risk factors can be analysed but is subject to the availability

of small-scale exposure data. Furthermore, as for any aggregated data, there is a

possibility of ecological bias due to the within-area variability in exposures and con-

founders (Wakefield, 2008). Ecological bias is an even greater concern for large-scale

analyses, as the within-area variability is anticipated to be greater for larger areas and

could result in unreliable estimates of the relationships between disease prevalence

and other factors.

Introducing some general concepts commonly applied in disease mapping, consider

a public health analysis over a geographical region partitioned into K areas labelled

(1, . . . , K) for which disease incidence counts (Y1, . . . , YK) are observed. Analysing

the raw counts does not allow for a fair comparison of the disease burden in the

areas, as they do not consider the underlying population sizes or demographics (e.g.,
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a larger number of disease counts might be expected in a larger population; similarly,

if an older age is associated with a higher disease incidence, larger disease rates should

appear more unusual in areas with younger populations). Hence, a more sophisticated

statistic, the standardised morbidity ratio (SMR), is commonly computed as a proxy

measure of an area’s relative risk that accounts for the area’s population size and

some available demographics. Note that the SMR also denotes the standardised

mortality ratio, computed from death counts rather than disease incidence counts,

with otherwise analogous notation.

The SMR in area j, for j = 1, . . . , K, is computed as

θ̂j =
Yj
ej
, (2.1)

where Yj and ej denote the area’s observed and expected disease counts, respectively.

For example, an SMR of θ̂j = 1.2 implies that the observed count Yj is 20% greater

than the expected count ej. The expected counts are computed via indirect stan-

dardisation. Generally, for d strata (e.g., demographic groups), the expected count

in area j is computed as

ej =
d∑
i=1

Nij × ri, (2.2)

where Nij is the population size of stratum i in area j and ri is the stratum-specific

disease rate from a reference population. For example, the stratum-specific rates

could be obtained at a national level, and the expected counts might be computed for

the set of K areas in the country. Note that the areas’ stratum-specific population

sizes and the stratum-specific disease rates from the reference population must be

known to compute the expected counts. These restrictions imply that the expected

counts are often computed using only a few commonly reported demographics, such as

age, sex, or ethnicity. As seen in Equation (2.2), the expected count ej is computed

assuming that the stratum-specific disease rates in area j are the same as in the

reference population.

The SMR in Equation (2.1) is subject to substantial random variability whenever

the expected count ej is small, which can be the case when the area’s population size is

9
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small or consists largely of demographic groups with rare disease rates in the reference

population. Statistical models are fitted to reduce some of this random variability in

the SMR values. The observed counts Y1, . . . , YK are commonly modelled using the

Poisson distribution, such that for j = 1, . . . , K,

Yj ∼ Poisson(θjej). (2.3)

Here, the parameter vector θ = (θ1, . . . , θK) denotes the true relative risks and is

the target for inference. The interpretation of the latent (hidden or unobservable)

relative risk θj is similar to that of the SMR, only that the relative risk measures

how much the latent mean E[Yj] differs from the expected count ej. For the assumed

Poisson likelihood in Equation (2.3), the SMR’s expectation is E[θ̂j] = E[Yj/ej] =

θj; i.e., the observed SMR is an unbiased estimator of the true relative risk. It

should be noted that the population sizes Nj in areas j = 1, . . . , K are finite and

thus, one could argue that the binomial model would be more appropriate to fit the

data, i.e., as Yj ∼ Binomial(Nj, αj), where αj denotes the latent disease incidence

rate or prevalence in area j. However, for rare diseases, the observed counts tend

to be much smaller than the population sizes, which legitimises using the Poisson

distribution (e.g., see Waller and Carlin, 2010) for which the estimated relative risks

have the intuitive interpretation provided above. When the binomial distribution is

applied, the population demographics can still be considered when estimating the

disease incidence rate or prevalence by fitting demographic-specific count data (e.g.,

see Chapter 4) or including the demography variables as covariates in the model.

The relative risk and disease prevalence are commonly modelled using a gener-

alised linear model (see Section 2.2) in a Bayesian hierarchical framework (see Sec-

tion 2.3). However, a generalised linear model might not fully explain the variability

in the observed counts, which might be further explained by covariates that cannot

be easily obtained and are hence not included in the model. A common assumption

is that any covariate would be more similar for areas closer to each other, following

Tobler’s First Law of Geography (recall Chapter 1). If the spatial smoothness as-

sumption holds for covariates that have not been included in the model but explain

10
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some of the variability in the observed counts, the model can be improved by includ-

ing spatially correlated random effects. Section 2.5 reviews methods for preliminary

analysis of areal data, and Section 2.6 reviews a selection of spatial regression models

for ecological analyses of areal data.

2.2 Generalised linear models

A generalised linear model (GLM) fits a linear regression to a variable’s transformed

mean. The method was originally proposed by Nelder and Wedderburn (1972), and

the following review is based on the later work by McCullagh and Nelder (1989) and

Wood (2017).

Let Y = (Y1, . . . , YK) denote a vector of random variables that are assumed to

have generated the observed data. The general structure of a GLM is

Yj ∼ f(yj|µj), (2.4)

g(µj) = xjβ,

where µ = (µ1, . . . , µK) is a vector of the expected values of the random variables

Y for the observed covariate values, i.e., µj = E[Yj|xj = (xj1, . . . , xjp)], g is a

smooth monotonic ‘link function’, β = (β1, . . . , βp) is a vector of p unknown regression

coefficients that are the target for inference, and X is a matrix of dimension K × p

such that the j-th row contains the observed covariate values xj corresponding to the

observation Yj. The variables Yj are assumed to be conditionally independent (given

the observed covariate values) and to follow some exponential family distribution f(·).

That is, the probability density or probability mass function of the random variable

Yj can be written as

fθ(yj) = exp{[yjθ − b(θ)]/a(φ) + c(yj, φ)}, (2.5)

where a, b and c are arbitrary functions, φ is a scale parameter, and θ is known as

the canonical parameter of the distribution. The generalised linear model in Equa-

tion (2.4) takes on the form of a multiple linear regression model (e.g., see Mont-

11
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gomery et al., 2012) when the variables Yj are conditionally independent (given the

observed covariate values) and identically Gaussian distributed, for j = 1, . . . , K, and

the link function g(·) is the identity function. In that case, Yj ∼ N(µj = xjβ, σ
2)

for j = 1, . . . , K. Examples of distributions from the exponential family other than

Gaussian include the Poisson, binomial, gamma, and beta distributions. Note that

the generalised linear model in Equation (2.4) can easily be extended to a generalised

linear mixed model by adding random effects. This thesis features generalised linear

mixed models for the Poisson distribution in Chapter 3 and the binomial distribution

in Chapters 4 and 5. The parameters in these models are estimated in a Bayesian

framework, and the following section reviews the fundamental concepts of Bayesian

statistics.

2.3 Bayesian statistics

Section 2.1 showed an example where the observed counts (Y1, . . . , YK) are modelled

using the Poisson distribution with means (θ1e1, . . . , θKeK). The model parameters

are the relative risks (θ1, . . . , θK), and the goal is to estimate these unknown pa-

rameter values. In frequentist statistics, these parameters are assumed to be fixed

but unknown, and a common estimate is chosen to maximise the likelihood (hence

called the maximum likelihood estimator, for short MLE). In Bayesian statistics, the

parameters in the model are treated as random variables that are assigned prior

distributions, which reflect what is known about the parameters before seeing the

data. Considering the prior knowledge and assuming a data likelihood model allows

deriving the posterior distribution of the parameters under consideration of the ob-

served data. A brief introduction to these methods is presented below. For further

information, see, for example, Gelman et al. (2013).

Let θ = (θ1, . . . , θp) denote a parameter vector. Assume y = (y1, . . . , yK) are K

observations with probability density or probability mass function f(y|θ). Assigning

a prior density f(θ) to the parameter vector allows computing the posterior density

of θ given the observed data y, which can be derived using Bayes’ Theorem (Bayes,
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1763) as

f(θ|y) =
f(y|θ)f(θ)

f(y)
, (2.6)

where f(y|θ) is the joint data likelihood and f(y) is a normalising constant. The joint

data likelihood is interpreted as a function of the parameter θ for fixed observations

y and is commonly denoted using the alternative notation f(y|θ) = L(θ|y). The

normalising constant f(y) is free of θ; hence, it is not needed for inference on the

parameter vector, and so the unnormalised posterior density of θ given the data y

can instead be written proportional to the product of the joint data likelihood and

the prior density of the parameter vector, as

f(θ|y) ∝ f(y|θ)f(θ).

The posterior density of θ (up to proportionality) can be used to identify ranges of

values that are most likely and lead to a probabilistic interpretation. For example,

when the range of values (a, b) contains c% of the posterior density of a parameter

θ for some 0 ≤ c ≤ 100, then there is a c% chance that the true parameter value is

contained in the range (a, b). Posterior intervals can be computed either directly from

the derived posterior distribution (when available in closed form), as credible intervals

from simulated random draws from the posterior distribution (see Section 2.3.2), or

estimated using approximate methods (see Section 2.3.3). Similarly, point estimates

such as the posterior mean, median, or mode can be used for interpretation and

communication.

2.3.1 Prior distributions

The prior distribution assigned to each model parameter should reflect the researcher’s

knowledge before seeing the data. When no prior information is available, this is com-

monly reflected in a non-informative or weakly informative prior distribution. For

example, if the parameter θ denotes a probability, the parameter can be assigned a

non-informative uniform prior distribution θ ∼ Unif(0, 1). Here, the prior density

13
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f(θ) = 1 is the same for all 0 < θ < 1, which means that all values are equally likely

before seeing the data (hence the term non-informative). When θ is a real-valued

parameter, one can assign a weakly informative prior distribution such as a Gaussian

prior, e.g., θ ∼ N(µ = 0, σ2 = 10, 000). Here, the values closer to the mean µ = 0

have a slightly higher density than the values further away from the mean; however,

the density is fairly flat due to the distribution’s large variance (hence the term weakly

informative). These example prior densities are proper, meaning they integrate to

one. Sometimes, one might choose an improper prior distribution, for example, when

the prior density is proportional to a constant over an infinite range of values. It

should be noted that improper priors can lead to a proper posterior density, meaning

they can be valid for inference.

A commonly used class of prior distributions are conjugate priors. A prior dis-

tribution is conjugate for a data likelihood if the prior and posterior densities are

from the same distribution. A natural conjugate prior has the same functional form

as the data likelihood. Many commonly used distributions are members of the expo-

nential family of distributions (i.e., their probability mass or density function can be

expressed in the form of Equation 2.5), and for all members of the exponential family

such a natural prior distribution exists (Gelman et al., 2013). For example, the beta

prior is conjugate for the binomial distribution, the gamma prior is conjugate for

the Poisson distribution, and the inverse-gamma prior is conjugate for the Gaussian

distribution with known mean and unknown variance.

The previous examples treated the parameters as random variables, and the prior

distributions of these parameters were parameter-free. For example, the weakly-

informative Gaussian distribution had a mean of µ = 0 and a variance of σ2 = 10, 000.

Instead of fixing these parameter values, one can assign a prior distribution to the

parameters of the prior distribution. The prior distribution’s parameters are called

hyperparameters, and the resulting model is referred to as a hierarchical model.

More information on these types of models can be found in Gelman et al. (2013),

and Banerjee et al. (2014) review these models specifically for spatial data. In this

thesis, hierarchical models are implemented for spatial and spatio-temporal data, and

some selected spatial and spatio-temporal models are reviewed in Sections 2.6 and

14
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2.7, respectively. In Chapters 4 and 5, penalised complexity priors are used and this

class of prior distributions is reviewed next.

2.3.1.1 Penalised complexity priors

Simpson et al. (2017) propose a framework for building priors for a large number of

Bayesian models and call these priors penalised complexity (PC) priors. The authors

introduce these priors for additive models in which the model components have flexi-

bility parameters that control the assumed structure of the latent effects. In addition

to the general method presented in this section, the authors propose a new parame-

terisation of the classical BYM model (see Section 2.6.1) for disease mapping, which

Riebler et al. (2016) call the BYM2 model. The BYM2 model is reviewed in Sec-

tion 2.6.4 and applied in Chapters 4 and 5, where additional information is provided

relating to the presented studies.

Generally, PC priors penalise departures from simplified base models and are de-

fined using probability statements about the prior distribution’s flexibility parameter.

The base model is the simplest version of a flexible density with flexibility parameter

ζ. For example, consider an independent random effects vector φ = (φ1, . . . , φK)

with a Gaussian joint prior distribution; specifically, φ|ζ ∼ N(µ = 0, ζI), where I

is the identity matrix of dimension K ×K. Here, the flexibility parameter ζ is the

variance parameter of the Gaussian distribution, and the base model is obtained for

ζ = 0, which reflects the prior belief that the random effects are all equal to zero.

The construction of PC priors is based on four principles. Firstly, a PC prior

penalises deviations from the base model, so the simpler model is preferred unless

the observed data suggest otherwise (referred to as Occam’s razor). Secondly, the PC

prior measures the model complexity using the Kullback-Leibler divergence (KLD,

Kullback and Leibler, 1951), which is computed as

KLD(f(φ|ζ)||f(φ|ζ = 0)) =

∫
f(φ|ζ) log

(
f(φ|ζ)

f(φ|ζ = 0)

)
dφ. (2.7)

The KLD in Equation (2.7) is the expectation of the log difference between the flex-

ible density with parameter ζ and the base model with ζ = 0. The larger the KLD,
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the more information is lost when replacing the flexible model with the base model.

The KLD is asymmetric, and Simpson et al. (2017) suggest using the unidirectional

distance measure of complexity d(ζ) =
√

2KLD(f(φ|ζ)||f(φ|ζ = 0)) of the flexible

model with parameter ζ compared to the base-model with ζ = 0. Thirdly, the devia-

tion from the simpler model is penalised using a constant decay rate (also referred to

as constant-rate penalisation). Specifically, for some constant decay rate 0 < r < 1,

the prior density fd(·) applied to the distance scale satisfies the memoryless property

fd(d+ δ)

fd(d)
= rδ, for δ ≥ 0. (2.8)

Thus, the decay rate does not depend on the value of d; i.e., increasing the dis-

tance d by an extra δ results in the same decay rδ, regardless of the value d. More-

over, Equation (2.8) implies that the prior mode is at d = 0 (the base-model), as

fd(δ)/fd(0) = rδ < 1, which implies that fd(δ) < fd(0) for any δ > 0. Simpson et al.

(2017) assign an exponential prior density to the distance scale, which satisfies the

memoryless property; specifically, fd(d) = λ exp(−λd) so that Equation (2.8) results

in

fd(d+ δ)

fd(d)
=
λ exp(−λ(d+ δ))

λ exp(−λd)
= exp(−λδ),

so that r = exp(−λ) for λ > 0. Simpson et al. (2017) state that the prior density on

the original space is

f(ζ) = λ exp(−λd(ζ))

∣∣∣∣ ∂∂ζ d(ζ)

∣∣∣∣,
which follows from the change of variables formula when d(ζ) is a monotonous func-

tion of ζ > 0 and d−1 exists such that ζ = d−1(d(ζ)) and d−1 has a continuous

derivative on the range of values that d(ζ) can take on (Casella and Berger, 2002).

The fourth and final principle is that the user should have an idea of a sensible size

for the parameter of interest. The authors propose selecting λ by controlling the prior
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mass in the tails via the probability statement

P (Q(ζ) > U) = α,

where Q(ζ) is an interpretable transformation of the flexibility parameter, U is a

user-defined upper bound for a tail event and α is the probability of Q(ζ) exceeding

the threshold U . Thereby, the probability statement determines how informative the

PC prior is.

Further information on the PC prior can be found in Simpson et al. (2017),

and Chapters 4 and 5 present the PC priors specific to the BYM2 models (see Sec-

tion 2.6.4) implemented in these studies.

2.3.2 Inference using Markov chain Monte Carlo (MCMC)

simulations

For simple examples, one can derive the posterior density from the data likelihood

and the prior density, as seen in Equation (2.6) to draw inferences on the parameter

of interest. However, in practice, deriving the posterior density is often intractable or

even impossible. As a resolution, one can use Markov chain Monte Carlo (MCMC)

methods to draw simulated values from the posterior density, subject to the algo-

rithm’s convergence. The first MCMC methods were developed in the early 1950s

but only became the predominant method for Bayesian inference in the 1980s-1990s,

when computing power increased drastically, and many new methods were proposed.

For a history of MCMC methods, see, for example, Robert and Casella (2011). The

review of selected MCMC methods presented here is based on the work of Gelman

et al. (2013).

Let θ = (θ1, . . . , θp) denote the parameter vector of interest, possibly divided into

d subvectors such that θ = (θ1, . . . ,θd), where θi denotes the i-th subvector, for

i = 1, . . . , d. The goal is to sample from the joint posterior density f(θ|y), where

y = (y1, . . . , yK) denotes the observed data. The MCMC algorithm is initialised

with some starting values θ0, which can be specified manually or drawn from the

prior distribution. The values are updated iteratively, and in iteration t (for t =
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1, 2, . . . ), the parameter values θt are simulated under consideration of the values

from the previous iteration (t − 1) but are conditionally independent of the other

previous values in the chain θ1,θ2, . . . ,θ(t−2); note that the partial dependence on

the latest value and conditional independence from the earlier values in the chain is

known as the Markov property (hence the name Markov chain). The chain consists

of simulated draws from the parameter space, and the distribution of the sampled

values is expected to become closer to the true but unknown posterior density f(θ|y);

i.e., the posterior density is the stationary distribution of the Markov process.

The starting values θ0 could be far from the high-density region of the true pos-

terior density. As a result, it could take a considerable number of iterations before

the chain approaches its stationary distribution. Hence, one should use a burn-in

(also known as warm-up) period from which the simulated values are discarded as

they are suspected not to reflect the true posterior density. Furthermore, since the

new parameter values are generated conditionally on the parameter values from the

previous draw, the simulated parameter values in the chain will not be independent.

Hence, one can thin the chain by considering only every k-th sampled parameter vec-

tor for some k ∈ N>0, which reduces the dependence between the simulated values in

the chain. The resulting sample of parameter values can then be used for inference

on the parameter of interest, e.g., to compute point estimates such as the posterior

mean or median or probabilistic properties such as credible intervals or exceedance

probabilities.

For some parameters, it is possible to derive the full conditional distribution

(given the other parameter values) in closed form. In that case, one can use the Gibbs

sampler reviewed in Section 2.3.2.1 to sample the parameter values directly from their

full conditional posterior densities. When the full conditional distribution cannot be

derived in closed form but up to proportionality, one can use the Metropolis-Hastings

algorithm reviewed in Section 2.3.2.2 to sample from the posterior densities. For

either method, one should carry out convergence checks on the simulated values

to rule out any obvious patterns that might indicate the Markov process has not

converged, implying that the simulated draws do not accurately represent the target

posterior densities. Section 2.3.2.3 reviews the convergence checks considered in this
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thesis.

2.3.2.1 Gibbs sampler

Geman and Geman (1984) propose the Gibbs sampler, which performs alternating

conditional sampling when the full conditional distributions can be derived in closed

form. The algorithm starts with initial parameter values θ0. In the t-th iteration,

the parameter subvectors are successively sampled from their full conditional distri-

butions, given all the other subvectors, in the following d steps:

1. draw θt1 from f(θ1|θ(t−1)
2 ,θ

(t−1)
3 , . . . ,θ

(t−1)
d ,y),

2. draw θt2 from f(θ2|θt1,θ
(t−1)
3 , . . . ,θ

(t−1)
d ,y),

. . .

d. draw θtd from f(θd|θt1,θt2, . . . ,θtd−1,y).

The above steps are completed for a specified number of iterations, and the simulated

parameter values are used for inference. Convergence checks (see Section 2.3.2.3)

should be carried out on the sampled parameter values to check that enough iterations

have passed for the chain to have moved from the (possibly bad) initial values to

exploring the parameter space.

2.3.2.2 Metropolis-Hastings algorithm

Hastings (1970) proposes the Metropolis-Hastings algorithm, which forms a general-

isation of the method proposed by Metropolis et al. (1953). The algorithm allows

simulating from a parameter’s posterior density when its full conditional distribution

cannot be derived in closed form. For the Metropolis-Hastings algorithm, a jumping

distribution Jt is used to sample proposal values for the parameter vector. The algo-

rithm again starts with initial parameter values θ0. In iteration t, the following steps

are completed for each of the d subvectors, here presented for the i-th subvector θi:

(a) Generate a proposal parameter subvector θ∗i from the jumping distribution

Jt

(
θ∗i | θ

(t−1)
i

)
, which considers the previous parameter subvector values θ

(t−1)
i .
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(b) Compute the ratio

r =

f(θ∗i |y)

/
Jt

(
θ∗i | θ

(t−1)
i

)
f
(
θ

(t−1)
i | y

)/
Jt

(
θ

(t−1)
i | θ∗i

) . (2.9)

(c) Set

θti =


θ∗i , with probability min(r, 1),

θ
(t−1)
i , otherwise.

Here, the target distribution f(θi|y) must only be known up to proportionality, as

any normalising constants cancel out since the target distribution is contained in

both the numerator and denominator of the ratio r in Equation (2.9). When the

jumping distribution Jt is symmetric so that Jt

(
θ∗i | θ

(t−1)
i

)
= Jt

(
θ

(t−1)
i | θ∗i

)
, the

Metropolis-Hastings algorithm simplifies to the Metropolis algorithm, where the ratio

in Equation (2.9) simplifies to r = f(θ∗i |y)

/
f
(
θ

(t−1)
i | y

)
.

Depending on the specification of the jumping distribution, the obtained proposals

could tend to be too far away from the previous values (when the jumps are too big,

meaning that many of them could be rejected) or too close to the previous values

(when the jumps are too small, meaning that the parameter space is not explored

efficiently). In either of these two cases, the obtained simulated values might not

accurately represent the parameter space. Hence, the jumping distribution can be

tuned to produce jumps that effectively explore the parameter space. The study

presented in Chapter 3 uses the R package CARBayesST (Lee et al., 2018), where

the jumping distributions are automatically tuned to have acceptance rates between

40-50% for scalar parameter updates and between 20-40% for vector parameters.

2.3.2.3 Convergence checks

When using MCMC methods to infer properties of the parameter’s posterior density

from the sampled values, the quality of the inference will depend on how well the

simulated values represent the parameter space. Thus, the inference relies on the
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MCMC algorithm converging to the stationary distribution (the parameter’s poste-

rior density, which is the target for inference) before saving the simulated draws for

inference. Hence, one should check that there are no obvious indications that the

algorithm did not converge or does not explore the parameter space effectively.

One way to check possible convergence violations is by analysing the trace plots,

i.e., plotting the sampled parameter values in the order of their position in the Markov

chain. The trace plots should show random patterns across the range of parameter

values and no clear trend. For example, the plot might show a clear trend for an early

proportion of the iterations (e.g., increasing before changing into a random pattern

over a consistent range of values), which suggests that the burn-in period was too

short and that at least some samples were saved before the Markov chain converged

to its stationary distribution.

Geweke (1992) proposes a convergence diagnostic that can be used (additionally

to the visual checks) to assess possible violations of convergence. For i = 1, . . . , p,

let θ
(t)
i denote the simulated value of the i-th parameter in iteration t of the MCMC

algorithm. Let s denote the total number of simulated values (post-burn-in and after

thinning) for each parameter. Geweke’s convergence diagnostic analyses the first

and last part of the saved simulations from the Markov chain of each parameter in

θ = (θ1, . . . , θp) and tests if the means of the posterior densities that these samples

estimate can be assumed equal. The key idea is that if both samples were drawn from

the stationary distribution (i.e., if the chain converged before saving any simulated

draws), the means of the posterior densities from which these two samples are drawn

should be equal. Geweke’s convergence diagnostic computes the sample means from

the two sections at the start and end of the chain and divides this difference by its

estimated standard error. Hence, under the null hypothesis that the chain converged

before saving any simulated values, Geweke’s diagnostic asymptotically follows a

standard normal distribution.

Let sA denote the number of simulations considered from the start of the saved

simulated values, and let sB denote the number of simulations considered from the

end of that chain. For the i-th parameter θi, let θAi = (θ
(1)
i , . . . , θ

(sA)
i ) denote the first

sA simulated values, and let s∗ = s− sB + 1 so that θBi = (θ
(s∗)
i , . . . , θ

(s)
i ) denotes the
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last sB simulated values. Geweke’s convergence diagnostic for the simulated values

of the parameter θi is computed as

Ci =
θ̄Ai − θ̄Bi

e.s.e.
(
θ̄Ai − θ̄Bi

) , (2.10)

where θ̄Ai = 1
sA

∑sA
t=1 θ

(t)
i and θ̄Bi = 1

sB

∑s
t=s∗ θ

(t)
i denote the sample means and the

denominator is the estimated standard error (e.s.e.) of their difference. Under the null

hypothesis that the samples θAi and θBi are drawn from the stationary distribution,

Geweke’s diagnostic Ci is asymptotically normal distributed. Geweke (1992) uses

consistent spectral density estimates for θ̄Ai and θ̄Bi to estimate the standard error.

The study presented in Chapter 3 uses the R package CARBayesST (Lee et al., 2018)

for model fitting, where the Geweke diagnostic is computed using the geweke.diag()

function from the coda package (Plummer et al., 2005). Here, the spectral densities

at zero are estimated by fitting autoregressive models (e.g., see Takalo et al., 2005) to

the two sequences θAi and θBi , and the code can be viewed in the package’s publicly

available GitHub repository at https://github.com/cran/coda.

Under the null hypothesis that the MCMC chain has converged, Geweke’s diag-

nostic from Equation (2.10) asymptotically follows a standard normal distribution.

Hence, for a significance level of 0.05, one should reject the null hypothesis if Geweke’s

convergence diagnostic takes on a value outside the 95% highest density interval of

the standard normal distributions, i.e., if the statistic takes on any value below -1.96

or above 1.96. As a rule of thumb, a Geweke diagnostic between -2 and 2 does not

indicate violations of convergence. It should be noted that Geweke’s diagnostic can

only be used to test for violations of the convergence (the null hypothesis is that the

chain has converged), but the test cannot be used to conclude that the chain has

converged. Hence, one should also assess convergence by looking at the trace plot of

the saved simulated draws from the chain. Additional checks can be considered and

for further discussion, see, for example, Section 11.4 of Gelman et al. (2013).
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2.3.3 Inference using approximate methods

Markov chain Monte Carlo (MCMC) methods (see Section 2.3.2) allow accurate es-

timation of the posterior densities if the Markov chains have run sufficiently long

so that the simulated draws are from the stationary distributions of interest. How-

ever, especially for more complex models and increasingly large datasets, the MCMC

methods can be slow or even intractable. As a resolution, one can use approximate

methods for Bayesian inference. A popular method with convenient implementa-

tion is provided by the R-INLA package, which is named after its initial foundational

method proposed by Rue et al. (2009), using integrated nested Laplace approxima-

tion (INLA) for latent Gaussian models (i.e., models that assign Gaussian priors to

the unobservable components).

The R-INLA package was developed with a focus on models that contain random

effect vectors modelled by a joint prior distribution that has the Markov property:

a random effect’s full conditional prior density only depends directly on its neigh-

bouring random effects; e.g., a temporal random effect’s full conditional prior density

might only depend directly on the effect from the preceding time point and a spa-

tial random effect’s full conditional prior density might only depend directly on the

spatially neighbouring effects, according to some neighbourhood structure. A proba-

bility measure whose conditional distributions define such a neighbourhood structure

is referred to as a Markov random field (Cressie, 1993); when the probability measure

is Gaussian, it is referred to as a Gaussian Markov random field (GMRF, Rue and

Held, 2005). Spatial and spatio-temporal models for areal data commonly contain

random effects that are modelled using conditional autoregressive (CAR) priors (e.g.,

see the models presented in Sections 2.6 and 2.7), and these CAR models are condi-

tional specifications of GMRFs. Hence, the R-INLA package can be used for inference

in disease mapping applications that use CAR models, and the package is used for

inference in the studies presented in Chapters 4 and 5.

It should be noted that, despite the package’s name, the default method for in-

ference in the R-INLA package is no longer integrated nested Laplace approximation.

The original method was replaced by the modern formulation proposed by van Niek-
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erk et al. (2023), which uses a variational Bayes correction to improve the lower-level

Gaussian approximation. The modified version became the new default in R-INLA

on 22nd November, 2022 (as documented under NEWS in R-INLA). Since the work

in Chapters 4 and 5 was carried out after that date, the results presented in these

chapters were obtained using the modern formulation presented in Section 2.3.3.1.

2.3.3.1 Gaussian approximations with variational Bayes correction

This section presents an approximate method for Bayesian inference that van Niekerk

et al. (2023) propose and is (at the time of writing) the default method in the R-INLA

package.

Let Y = (Y1, . . . , YK) denote the random variables that are assumed to have

generated the observations y = (y1, . . . , yK) with density function π(y|X,θ), where

X denotes a latent field and θ = (θ1, . . . , θp) a vector of hyperparameters. The linear

predictors η = g(E[Y ]) are fitted as a latent Gaussian model

η = β01 +Xβ +
L∑
l=1

f l(ul),

where β0 denotes an intercept term, 1 a vector of ones of length K, X and U denote

covariate matrices where the j-th rows correspond to the j-th observation yj, and

{f l : l = 1, . . . , L} are unknown functions of the covariate matrix U . The target of

inference is the latent field X = (β0,β,f), which forms a vector of length m. The

prior distribution of the latent field is X|θ ∼ N(0,Q−1
π (θ)), where Q−1

π denotes a co-

variance matrix. Note that the hyperparameter vector can be written as θ = (θ1,θ2),

where θ1 denotes the parameters of the likelihood and θ2 the hyperparameters of the

latent field. The following method approximates the marginal posteriors π(θj|y) and

π(Xj|y).

One can express the generalised linear model as η = AX, where A denotes

a sparse design matrix so that the joint posterior density of the latent field and

hyperparameters can be written as

π(X,θ|y) ∝ π(θ)π(X|θ)
K∏
j=1

π(yj|(AX)j,θ).
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The joint posterior density of the hyperparameter values is estimated using the

Laplace approximation

π̃(θ|y) =
π(X,θ|y)

πG(X|θ,y)

∣∣∣∣
X=µ(θ)

,

where πG(X|θ,y) denotes a Gaussian approximation of the full conditional posterior

density π(X|θ,y), and µ(θ) denotes its mode. The joint Gaussian approximation

at the mode is obtained from a second-order expansion (see van Niekerk et al., 2023

for details). The approximation is of the form X|θ,y ∼ N
(
µ(θ),Q−1

X (θ)
)
, where

Q−1
X (θ) = Q(θ) + ATDA with D denoting a diagonal matrix that depends on θ.

The marginal full posterior distributions can be estimated from the joint Gaussian

approximation as

Xj|θ,y ∼ N
(

(µ(θ))j,
(
Q−1

X (θ)
)
jj

)
.

Finally, the marginal posterior density of Xj is estimated by integrating out θ using

n integration points θ(k) with area weights δk, so that

π̃(Xj|y) ≈
n∑
k=1

πG(Xj|θ(k),y)π̃(θ(k)|y)δk.

Similarly, the marginal posterior density of θj can be estimated by integrating out

θ−j = (θ1, . . . , θj−1, θj+1, . . . , θp) from the estimated joint posterior density π̃(θ|y).

Note that the estimated marginal posterior densities of the linear predictors, π̃(ηj|y)

(for j = 1, . . . , K), are calculated after the estimates π̃(Xj|y) and π̃(θj|y) are ob-

tained. For details on how these are computed, see van Niekerk et al. (2023).

The posterior means of the linear predictors and the latent field can be improved

using a variational Bayes correction, as proposed by van Niekerk and Rue (2024).

The variational function is of the form

Eq(X|y)[− log(l(X|y))] + KLD[q(X|y)||π(X)],

where q(·) is a member of the variational class, π(·) is the prior density, l(·) is the
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likelihood function, and KLD denotes the Kullback-Leibler divergence (e.g., see Equa-

tion 2.7). The approximation X|θ,y ∼ N
(
µ(θ),Q−1

X (θ)
)

uses the mean µ(θ), which

is calculated in the Gaussian approximation at the mode of π(X|y,θ). Using a vari-

ational Bayes correction, the improved mean takes the form

µ∗(θ) = µ(θ) +Mλ,

where M is a matrix that propagates the correction made to p nodes to the rest of

the latent field (see van Niekerk and Rue, 2024 for details), and λ denotes the explicit

corrections. The explicit corrections are solved for iteratively as

argmin
λ

(
E

X|y,θ∼N(µ(θ)+Mλ,Q−1
X

(θ))[− log(l(X|y))] +
1

2
(µ(θ) +Mλ)TQ(θ)(µ(θ) +Mλ)

)
,

where log(l(X|y)) =
∑K

j=1 log(π(yj|(AX)j)), and the expected log-likelihood is ap-

proximated using a second-order Taylor series expansion around λ = 0 (see van

Niekerk et al., 2023 for details). Lastly, the marginal posterior densities of the linear

predictors are approximated under consideration of the improved mean as

ηj|θ,y ∼ N(µj(θ), σ2
j (θ)),

µj(θ) = (Aµ∗(θ))j,

π̃(ηj|y) ≈
n∑
k=1

πG(ηj|θ(k),y)π̃(θ(k)|y)δk.

2.4 Model comparison

If models were compared by how well they fit the observed data, one could end up

using an over-parameterised model that fits the data too closely, meaning that it

is not a good model for unseen data or predictions of future observations. Instead,

the model’s predictive accuracy can be used to compare candidate models or decide

which variables to include in a model. Information criteria are measures of predictive

accuracy, and this thesis considers the deviance information criterion (DIC) presented

in Section 2.4.2 and the Watanabe-Akaike information criterion (WAIC, also referred
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to as widely applicable information criterion) presented in Section 2.4.3. First, the

simpler Akaike information criterion (AIC) is introduced in Section 2.4.1. Note that

for each information criterion, a smaller value indicates a better predictive accuracy.

The review presented here is based on the work of Gelman et al. (2013).

In the following subsections, let y = (y1, . . . , yK) denote a vector of K observations

and θ = (θ1, . . . , θp) a vector of p model parameters.

2.4.1 AIC

The Akaike information criterion (AIC, Akaike, 1974) is computed as

AIC = −2 log(p(y|θ̂MLE)) + 2p,

where log(p(y|θ)) is the log-likelihood (also referred to as log predictive density),

θ̂MLE is the maximum likelihood estimate of θ, and p is the number of parameters

estimated in the model. The smaller the AIC, the better the model’s predictive

accuracy. Adding the term 2p is a correction for how much the fitting of p parameters

will increase predictive accuracy and is based on the asymptotic normal distribution.

Hence, the AIC should only be used for linear models with flat (i.e., non-informative)

priors, while more advanced information criteria are needed for hierarchical models

or when informative priors are used.

2.4.2 DIC

The deviance information criterion (DIC, Spiegelhalter et al., 2002) is an alterna-

tive to the AIC that uses a data-based bias correction to penalise the number of

parameters included in the model and replaces the MLE θ̂MLE from the AIC with the

posterior mean θ̂Bayes = E[θ|y]. The criterion is defined as

DIC = −2 log(p(y|θ̂Bayes)) + 2pDIC,
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where the effective number of parameters (functioning as a bias correction) is com-

puted from simulated values θs for s = 1, . . . , S as

pDIC = 2

(
log(p(y|θ̂Bayes))−

1

S

S∑
s=1

log(p(y|θs))

)
.

2.4.3 WAIC

The Watanabe-Akaike criterion (WAIC, Watanabe, 2010) is another information cri-

terion that uses data-based bias correction. Gelman et al. (2013) define the criterion

as

WAIC = −2
K∑
j=1

log(p(yj|θ̂)) + 2pWAIC

and recommend letting pWAIC =
∑K

j=1 Var(log(p(yj|θ))). In practice, the log point-

wise predictive density is computed as
∑K

j=1 log(p(yj|θ̂)) ≈
∑K

j=1 log( 1
S

∑S
s=1 p(yj|θs))

and the effective number of parameters is computed as

pWAIC ≈
K∑
j=1

VarSs=1(log(p(yj|θs))),

where VarSs=1(a(s)) = 1
S−1

∑S
s=1(a(s) − ā)2, for ā = 1

S

∑S
s=1 a(s) and where θs are

simulated values. The provided definition of the WAIC criterion is used by the R-INLA

package (see Section 2.3.3), which is used for inference in the studies in Chapters 4

and 5, where different models are compared using the WAIC.

2.5 Spatio-temporal data

Waldo R. Tobler’s First Law of Geography states that “Everything is related to ev-

erything else, but near things are more related than distant things” (Tobler, 1970),

where near things refers to spatial proximity. For example, environmental risk fac-

tors (e.g., air pollution) might change smoothly across the map, or lifestyle choices

in communities living close by and interacting with each other might be more similar

than in communities that live further apart. The same assumption can be applied to
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the temporal domain. For example, disease risks might change gradually as the un-

derlying population remains mostly the same in consecutive periods. Such similarities

can be identified in observed data as spatial or temporal autocorrelation.

The correlation between two variables can be measured using Pearson’s correlation

coefficient (Pearson, 1896). For two observation vectors x = (x1, . . . , xK) and y =

(y1, . . . , yK), the correlation coefficient is computed as

r =

∑K
j=1(xj − x̄)(yj − ȳ)√∑K

j=1(xj − x̄)2
∑K

j=1(yj − ȳ)2

,

where x̄ = 1
K

∑K
j=1 xj and ȳ = 1

K

∑K
j=1 yj denote the sample means. Thus, the

correlation coefficient is computed as the sample covariance between the two vari-

ables, divided by the product of their sample standard deviations. Sections 2.5.1

and 2.5.2 review methods to test for significant spatial and temporal autocorrelation,

respectively. Rather than computing correlations between variables, these measures

indicate how similar observations from the same variable are over space or time.

Note that different types of spatial data exist. Spatial statistics methodology com-

monly refers to geostatistical data, lattice data, or point patterns (e.g., see Cressie,

1993). This thesis focuses on areal data, where the geographical structure can be

described using irregular lattices. Thus, the methods reviewed for investigating spa-

tial autocorrelation in Section 2.5.1 and the selection of spatial and spatio-temporal

models reviewed in Sections 2.6 and 2.7 apply to irregular lattice data and areal data,

specifically.

2.5.1 Spatial autocorrelation

Section 2.5.1.1 reviews Moran’s I statistic and a formal hypothesis test for overall

spatial autocorrelation. Section 2.5.1.2 reviews local Moran’s I statistic, which can

be used for identifying differences in local spatial autocorrelation.

2.5.1.1 Moran’s I

Consider spatial data with K areal units, for which the values y = (y1, . . . , yK) are

observed. Let W denote a neighbourhood matrix where wij = 1 if areas i and j
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are neighbours and wij = 0, otherwise. For example, neighbourhoods can be defined

using a border-sharing rule so that wij = 1 if areas i and j share a border, or using a

k-nearest neighbour rule so that wij = 1 if area j is among the k nearest neighbours of

area i, where proximity is measured geographically and commonly uses the Euclidean

distance between the areas’ centroids. By construction, wjj = 0 for all j. The global

Moran’s I statistic (Moran, 1950) is computed as

I =
K
∑K

i=1

∑K
j=1wij(yi − ȳ)(yj − ȳ)

(
∑K

i=1

∑K
j=1wij)

∑K
j=1(yj − ȳ)2

,

where ȳ = 1
K

∑K
j=1 yj is the mean of the observed values. Moran’s I statistic takes on

values from -1 to 1, and positive values indicate positive spatial autocorrelation in y

(which means that neighbouring areas tend to be more similar).

One can compute Moran’s I statistic and run a permutation test to evaluate if the

data are significantly positively spatially autocorrelation. Specifically, one permutes

the original data y to obtain new data ỹ and computes Moran’s I statistic for the

permuted observations. Computing Moran’s I statistic for a large number of such

permuted datasets, one can compute the proportion of these Moran’s I statistics that

are larger than the Moran’s I statistic of the original data (hence, providing a prob-

ability of observing a stronger autocorrelation than in the original data, by chance).

If the proportion is smaller than some significance level (e.g., α = 0.05), then one

can conclude that the original data y are significantly positively spatially autocorre-

lated. In that case, a spatial smoothing model might produce better estimates of the

underlying risk surface than a non-spatial model that estimates the random effects

independently.

Generally, one could include covariates in a generalised linear model (see Sec-

tion 2.2) to measure the strength of the association between these explanatory vari-

ables and the response. When the covariates explain the spatial autocorrelation in the

observed data, a non-spatial model that contains these explanatory variables might

fit the data well. However, when the covariates cannot explain some of the spa-

tial variations in the observed data, the standard errors of the coefficient estimates

of ordinary least squares models will likely be too small (e.g., see Ripley, 1988 or
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Cressie, 1993). In that case, a spatial model can account for the spatial correlation

and increase the variance of the coefficient estimates. Section 2.6 reviews a selection

of some commonly used models for areal data.

2.5.1.2 Local Moran’s I

Local Moran’s I statistic (Anselin, 1995) is computed for area j as

Ij =
K(yj − ȳ)∑K
i=1(yi − ȳ)2

K∑
i=1

wij(yi − ȳ), (2.11)

so the global Moran’s I statistic is proportional to the sum of the local Moran’s I

statistics and can be computed as I = 1∑K
i=1

∑K
j=1 wij

∑K
j=1 Ij. The local Moran’s I

statistic Ij takes on a negative value when (yj− ȳ) and
∑K

i=1wij(yi− ȳ) have different

signs; i.e. when yj is either a high value surrounded by neighbouring values that tend

to be low or a low value surrounded by neighbouring values that tend to be high,

where high and low are in comparison to the overall average ȳ. Anselin (1995) claims

that for the local Moran’s I statistic, “a positive value indicates spatial clustering of

similar values (either high or low)”. It should be noted that not only spatial clusters of

similar values can result in a positive local Moran’s I value. For example, if an area’s

observation is much larger than the overall mean and the areas in its neighbourhood

tend to be slightly larger than the overall mean, the local Moran’s I value will be

positive, despite the values’ dissimilarity (only that they tend to be on the same side

of the overall mean). Individual areas that deviate from the typical local behaviour

are the focus of Chapter 5, where local Moran’s I statistic is considered a competitor

to a novel singleton spatial outlier detection method for identifying such unusual

areas.

2.5.2 Temporal autocorrelation

Temporal autocorrelation measures how similar observations of a single variable are

over time. The following notation is taken from Chatfield (2003).

For observations y = (y1, . . . , yN) from N discrete time points, the temporal

autocorrelation between observations from successive time points is computed as the
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coefficient

r1 =

∑N−1
t=1 (yt − ȳ)(yt+1 − ȳ)∑N

t=1(yt − ȳ)2
.

Instead of considering the correlation between observations at successive time points,

one could consider the correlation observed at a greater lag. Generally, the temporal

autocorrelation coefficient at lag l for some l ∈ N>0 is computed as

rl =

∑N−l
t=1 (yt − ȳ)(yt+l − ȳ)∑N

t=1(yt − ȳ)2
. (2.12)

One can test for temporal autocorrelation by making distributional assumptions un-

der the null hypothesis that the data are temporally independent. However, the

data might only be autocorrelated at specific lags. Rather than performing separate

hypothesis tests for temporal autocorrelation at different lags, one could consider a

simultaneous hypothesis test of temporal autocorrelation over a range of lags from

one up to m for some m ∈ N>0. One available method is the Ljung-Box test, which

is presented next.

2.5.2.1 Ljung-Box test

The Ljung-Box test is a hypothesis test of temporal autocorrelation for lags l from

one up to m for some m ∈ N>0. Ljung and Box (1978) proposed the method for

identifying a lack-of-fit in time series models, where the test statistic is computed

from the temporal autocorrelation coefficients of the residuals from the fitted model.

If the time series model fits the data adequately (under the null-hypothesis), the

residuals should appear as white noise, resulting in an asymptotic distribution of the

test statistic. Instead of evaluating the fit of a time series model, the exploratory

data analysis of Chapter 3 computes the Ljung-Box statistic from the temporal auto-

correlation coefficients of the observed outcomes to check if the data are temporally

autocorrelated to warrant using a temporal model. The following review is based on

Harvey (1993), who describes applying the Ljung-Box test to the raw data.

Consider the sample autocorrelation coefficients rl from Equation (2.12). When

the observations are independent, the sample autocorrelation coefficients are asymp-
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totically normal with mean zero and variance 1/N . Thus, one can perform a hy-

pothesis test where the null hypothesis is that the autocorrelation coefficients are

independent (note that this assumption is stronger than a lack of temporal auto-

correlation). Based on the asymptotic property under the null hypothesis, one can

compute the Ljung-Box statistic

Q̃m(r) = N(N + 2)
m∑
l=1

r2
l

N − l
,

which is a weighted sum of the temporal sample autocorrelation coefficients up to

lag m. Under the null-hypothesis of temporal independence, Q̃m(r) approximately

follows a Chi-square distribution with m degrees of freedom, χ2
m. Thus, if the statistic

Q̃m(r) exceeds the quantile of the distribution χ2
m specified by the test’s significance

level, one can reject the hypothesis of temporal independence and conclude that there

is significant evidence of temporal autocorrelation, which warrants using a temporal

model.

2.6 Spatial models for areal data

This section presents a selection of spatial models that account for the spatial au-

tocorrelation (see Section 2.5) in the observed data. Specifically, these models are

designed for areal data and are commonly used in disease mapping applications (see

Section 2.1). The presented models belong to the class of generalised linear mixed

models (see Section 2.2) and are formulated in a Bayesian hierarchical framework

(see Section 2.3). For a more extensive review of spatial models commonly used in

disease mapping applications, see, for example, Lee (2011) or MacNab (2022).

Spatial models require the specification of the geographical structure to account

for the data’s spatial autocorrelation. For areal data, the spatial models typically use

neighbourhood matrices to capture partial autocorrelation between areas defined as
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neighbours. In the general case, the neighbourhood matrix W has cells

wij =


1, if areas i and j are neighbours,

0, otherwise.

(2.13)

Here, the neighbourhood matrix assigns equal weights to neighbouring areas. For

example, one could define the matrix so that wij = 1 if areas i and j share a border,

or if one area is among the k-nearest neighbours of the other, for some integer k > 0.

Generally, rather than using a binary neighbourhood matrix, one could assign weights

to indicate distances between areas or similarities in covariates observed in these areas.

Limitations of the different measures are discussed, for example, by Gleditsch and

Ward (2001). In this thesis, only binary neighbourhood matrices are applied to avoid

making the models overly complex.

For the following models, assume data Y = (Y1, . . . , YK) are observed in areas

(1, . . . , K), where each observation Yj is assumed to have been generated by some

data likelihood with mean µj. The mean is estimated using a generalised linear mixed

model, which extends the generalised linear model from Equation (2.4) by including

additive random effects. The following sections present each model’s random effects

specifications.

2.6.1 BYM and the intrinsic CAR model

Besag et al. (1991) propose a model that contains additive spatial effects. The model

is commonly referred to as the BYM (Besag-York-Mollie) model and is of the form

g(µj) = β0 + xjβ + φj + ψj, for j = 1, . . . , K,

where β0 denotes the overall mean, xj = (xj1, . . . , xjp) is a vector of covariates ob-

served for area j with corresponding regression coefficients β = (β1, . . . , βp), φj is a

structured spatial random effect, and ψj is an unstructured spatial random effect for

area j. The unstructured effects ψ = (ψ1, . . . , ψK) are assumed to be independent

and identically normal distributed; i.e. ψj ∼ N(0, σ2) for all j, where σ2 is a variance
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parameter. Thus, their joint distribution is ψ ∼ N(0, σ2I), where I is an identity

matrix of dimension K ×K.

The prior distribution of the structured spatial random effects φ is constructed

around a binary adjacency matrix W as defined in Equation (2.13). The structured

random effects are assumed to be independent of the unstructured random effects.

Their joint distribution is φ ∼ N(0, τ 2Q(W )−), where the precision matrix is defined

asQ(W ) = diag(W1)−W with 1 denoting a vector of ones of length K andQ(W )−

denoting the generalised inverse (Penrose, 1955). The term diag(W1) denotes a

diagonal matrix where the j-th diagonal element is the number of neighbouring areas

of area j. The full conditional prior density of φj can then be shown to take on the

form

f(φj|φ−j, τ 2) ∝ exp

{
− 1

2τ 2

∑
i∼j

(φj − φi)2

}
,

where φ−j = (φ1, . . . , φj−1, φj+1, . . . , φK) is a vector that contains all spatial random

effects except for φj, and i ∼ j indicates that areas i and j are neighbours (i.e., i ∼ j

if and only if wij = wji = 1). The full conditional density can be rewritten as

φj|φ−j, τ 2 ∼ N

(∑K
i=1 wijφi∑K
i=1wij

,
τ 2∑K
i=1wij

)
,

and this distribution is known as intrinsic conditional autoregressive (ICAR) prior

distribution. The full conditional mean of the spatial random effect φj is the average

of the random effects from the neighbouring areas of area j. All random effects

share a common variance parameter τ 2, and the variance term in the full conditional

density is smaller for areas with a larger number of neighbouring areas, reflecting

the assumption of strong spatial autocorrelation in estimating the random effects. It

should be noted that the distribution is only well defined if for each j, wij = 1 for

at least one i 6= j; i.e., each area must have at least one neighbour. As a closing

remark on the BYM model, note that only the sum of the random effects φj and ψj is

identifiable. For further discussion on how this property might impact the statistical

inference, see, for example, Eberly and Carlin (2000).
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2.6.2 Leroux CAR model

Leroux et al. (2000) propose a generalisation of the ICAR prior distribution that

allows for weaker spatial autocorrelation. The generalised linear mixed model takes

the form

g(µj) = β0 + xjβ + φj, for j = 1, . . . , K,

φ ∼ N
(
0, τ 2Q(ρ,W )−1

)
,

with precision matrix Q(ρ,W ) = ρ(diag(W1)−W ) + (1− ρ)I, where I denotes a

K × K identity matrix and 1 is a vector of ones of length K. The full conditional

distribution of the spatial random effect φj for area j, given the spatial random effects

of all other areas, can then be expressed as

φj|φ−j ∼ N

(
ρ
∑K

i=1 wijφi

ρ
∑K

i=1wij + 1− ρ
,

τ 2

ρ
∑K

i=1wij + 1− ρ

)
,

where φ−j = (φ1, . . . , φj−1, φj+1, . . . , φK) is the vector of spatial random effects of

all areas except for area j, ρ controls the degree of spatial autocorrelation, and τ 2

is a variance parameter. Recall that in the ICAR prior (see Section 2.6.1), the full

conditional mean of φj is the average of the random effects in the neighbouring areas

of area j. The full conditional mean of φj under the Leroux CAR prior is a weighted

average of the random effects in the neighbouring areas of area j, where the weight

is determined by the correlation parameter ρ. For ρ = 0, the conditional mean

is zero, and for ρ = 1, the model is identical to the ICAR prior distribution and

implies strong spatial autocorrelation. For 0 < ρ < 1, the full conditional variance

term again becomes smaller as the number of neighbouring areas increases. The

Leroux CAR prior distribution is well defined as long as each row i = 1, . . . , K in the

neighbourhood matrix W has at least one cell wij = 1 (i.e., each area must have at

least one neighbouring area).

2.6.3 Dean model

Dean et al. (2001) propose an alternative formulation that allows for weaker spatial
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autocorrelation. Here, the generalised linear mixed model takes the form

g(µj) = β0 + xjβ + uj, for j = 1, . . . , K,

u ∼ N(0,Du),

with covariance matrix Du = σ2
u(λQ

− + (1 − λ)Iu). The matrix Q is the same as

for the ICAR model (see Section 2.6.1), Q− again denotes its generalised inverse,

and Iu denotes an identity matrix of size K ×K. The parameter λ determines how

much of the overall variability in the random effects u is captured as a spatial or

unstructured variation. For λ = 1, the variability in u is completely explained by the

spatial structure and for λ = 0, the random effects u are independent and identically

distributed. Hence, the model is similar to the Leroux CAR model (see Section 2.6.2)

in allowing for weaker spatial autocorrelation. However, rather than formulating the

precision matrix as a combination of a spatial and an unstructured precision matrix,

the Dean model decomposes the covariance matrix as a combination of a spatial and

an unstructured covariance matrix.

2.6.4 BYM2 model

Simpson et al. (2017) propose a modified version of the Dean model (see Section 2.6.3)

where the spatial random effects are scaled. Specifically, Simpson et al. (2017) propose

the model

g(µj) = β0 + xjβ +
1√
τ

(
√

1− φvj +
√
φu∗j), for j = 1, . . . , K,

where 0 ≤ φ ≤ 1 is a mixing parameter, u∗ are scaled spatial random effects, and v

are unstructured random effects. Letting b = 1√
τ
(
√

1− φv +
√
φu∗), the covariance

matrix of the effects b is of the form 1
τ
((1− φ)I + φQ−∗ ), where Q∗ denotes a scaled

version of the precision matrix Q of the ICAR model (see Section 2.6.1) and Q−∗

denotes its generalised inverse.

Scaling the structured random effects allows for interpretability of the hyperprior

distribution of the precision parameter τ and for transferability between applications
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(Riebler et al., 2016) so that similar hyperpriors can be used for comparable appli-

cations with differing structure matrices. Following the methodology proposed by

Sørbye and Rue (2014), the correlated random effects are standardised using the gen-

eralised variance σ2
GV (u), which is computed as the geometric mean of the marginal

variances, i.e.

σ2
GV (u) = exp

(
1

K

K∑
j=1

log

(
1

τu
[Q−]jj

))
,

where Q denotes the precision matrix. The precision matrix is scaled to Q∗ such

that σ2
GV (u∗) = 1 for τu = 1.

2.7 Spatio-temporal models for areal data

Spatio-temporal models can be applied to capture spatial and temporal trends in

data. They can be formulated in either a separable or inseparable form. If one part

of the model accounts for spatial trends while another part accounts for temporal

trends, then the model is called separable. The model is called inseparable if the

spatial and temporal trends are captured simultaneously. Here, assume that the

aim is to estimate a disease risk (or prevalence) θjt for areas j = 1, ..., K in periods

t = 1, ..., N , and this section reviews a selection of spatio-temporal models that can

be used for inference.

2.7.1 Bernardinelli model

Bernardinelli et al. (1995) propose a model of the form

g(θjt) = β0 + xjβ + φj + (β1 + δj)t,

where φj denotes a spatial random effect for area j, β1 is a mean linear time trend

over all areas, and δj denotes an interaction effect between time and area. The index

t represents equally distant periods t = 1, ..., N with the units depending on the

context of the problem. If the time periods were not equally distant, then t could

be replaced by ti, where i = 1, ..., N indicates the respective time period so that the
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distances in time {ti− ti−1} do not need to be the same for i = 2, ..., N . Note that to

comply with identifiability, the effects must satisfy the restrictions
∑K

j=1 φj = 0 and∑K
j=1 δj = 0.

Furthermore, it should be noted that the Bernardinelli model restricts both the

main and area-specific time trends to be linear, an assumption that should be checked

carefully via exploratory analysis of the data before applying this model.

2.7.2 Knorr-Held model

Knorr-Held (2000) extends the BYM model (see Section 2.6.1) by including two

vectors of temporal effects α and γ, and a vector of spatio-temporal interaction

effects δ. The model takes on the form

g(θjt) = β0 + xjβ + φj + ψj + αt + γt + δjt,

where φj and ψj are structured and unstructured spatial random effects for area j, and

αt and γt are structured and unstructured temporal random effects for time period

t, respectively. There are different options for the structure of the spatio-temporal

random effects in δ that will be discussed after the introduction of the random effect

vectors φ, ψ, α, and γ.

Each of the spatial or temporal random effect vectors follows a normal distribution

with mean zero and precision matrix λS, where λ is an unknown scalar and S is

a known structure matrix. That is, α ∼ N
(
0, (λαSα)−1), γ ∼ N

(
0, (λγSγ)

−1),
φ ∼ N

(
0, (λφSφ)−1), and ψ ∼ N

(
0, (λψSψ)−1).

The prior distribution of the structured spatial effects φ is an ICAR model (Sec-

tion 2.6.1). That is, φ ∼ N
(
0, (λφSφ)−1), where Sφ = diag(W1) −W and W

denotes the neighbourhood matrix defined in Equation (2.13). The spatial random

effects ψ are assumed independent and unstructured, so that ψ ∼ N
(
0, (λψSψ)−1),

where Sψ = I is an identity matrix of dimension K ×K.

The joint prior distribution of the structured temporal random effects α is a
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first-order random walk in time, such that

f(α|λα) ∝ exp

{
−λα

2

N∑
t=2

(αt − αt−1)2

}
,

i.e. α ∼ N
(
0, (λαSα)−1), with

Sα =



1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2 −1

−1 1



. (2.14)

The full conditional distribution for αt can be shown to be αt|α−t, λα ∼ N(µα, σ
2
α),

where α−t = (α1, . . . , αt−1, αt+1, . . . , αN) is the vector of temporal effects for all time

points except for t. The full conditional mean of each structured temporal random

effect is determined by its neighbouring temporal effect(s), and the variance term of

the full conditional distribution for those points that fall between two time periods

is half of that of the random effects from the first (t = 1) and last (t = N) periods.

The temporal random effects γ are assumed independent and unstructured, so that

γ ∼ N
(
0, (λγSγ)

−1), where Sγ = I is an identity matrix of dimension N ×N .

The structure matrix of the spatio-temporal random effect vector δ is computed

by taking the Kronecker product of the structure matrices from one of the spatial

effects vectors and one of the temporal effects vectors. Generally, for two matrices

AK×L and BM×N , taking the Kronecker product (denoted ⊗) results in a KM ×LN

block matrix

A⊗B =


a11B . . . a1LB

...
...

...

aK1B . . . aKLB

,

where ajt denotes the entry in the j-th row and t-th column of matrix A.
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With two options for each spatial and temporal random effect vector (one struc-

tured and the other unstructured), there are four possible combinations to incorporate

spatio-temporal effects in the model. Depending on the effects chosen, the spatio-

temporal effects can be either a priori independent, have a structure in time but not

in space, have a structure in space but not in time, or have a structure in both space

and time that considers first and second order neighbours (i.e., spatial neighbours,

temporal neighbours, spatial neighbours of temporal neighbours, or temporal neigh-

bours of spatial neighbours). Any of the spatio-temporal random effects in a given

period can be written as vectors δ1, . . . , δN , where δt = (δ1t, . . . , δKt) is the vector of

random effects for period t. These random effects have a normal joint prior distribu-

tion δ ∼ N(0, (λδSδ)
−1), where Sδ = Stime ⊗ Sspace is of dimension NK ×NK. Here,

Stime is either Sα or Sγ, and Sspace is either Sφ or Sψ. For example, spatio-temporal

random effects that have a structure in both time and space can be obtained by

letting Sδ = Sα ⊗ Sφ.

As a limitation of the method, note that the Knorr-Held model is over-parameterised.

For example, the structured and unstructured spatial random effects and the spatio-

temporal random effects all account for the spatial trends in the data. Hence, it is

unclear how much of the spatial trends should be picked up by each of these random

effects. The same issue arises for the temporal trends in the data.

2.7.3 Ugarte model

Ugarte et al. (2012) provide a spatio-temporal model with CAR priors applied to

the spatial, temporal, and spatio-temporal random effects. They model the risk (or

prevalence) θjt as

g(θjt) = β0 + xjβ + φj + γt + δjt,

where φj denotes the spatial random effect of area j, γt denotes a temporal random ef-

fect at time point t, and δjt denotes a spatio-temporal interaction effect for area j and

time point t. The joint prior distributions for each of the vectors φ = (φ1, . . . , φK),

γ = (γ1, . . . , γN), and δ = (δ11, . . . , δK1, δ12, . . . , δK2, . . . , δ1N , . . . , δKN) are then de-
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fined as

φ ∼ N(0, σ2
sDs); Ds = (λsQs + (1− λs)Is)−,

γ ∼ N(0, σ2
tDt); Dt = Q−t ,

δ ∼ N(0, σ2
stDst); Dst = Q−t ⊗Q−s ,

where Qs = diag(W1)−W with a neighbourhood matrix W (see Equation 2.13), Is

denotes an identity matrix of size K ×K, and Qt = diag(M1)−M , where mij = 1

if i and j are consecutive periods and 0, otherwise. Thus, Ds is the structure matrix

of a Leroux CAR prior with λs as spatial autocorrelation parameter, and Dt is the

structure matrix of an ICAR prior for temporal effects, which can be understood

as a first-order random walk in time. That is, Dt is of the same form as Sα in

Equation (2.14). The structure matrix Dst for the spatio-temporal interaction effects

is obtained by taking the Kronecker product between the structure matrices Q−
t and

Q−s of the temporal and spatial random effects.

Thus, the Ugarte model is similar to the Knorr-Held model in that it uses a

spatio-temporal structure matrix that is created by taking the Kronecker product of

the structure matrices of the spatial and temporal random effect vectors. A key dif-

ference between the models is that, unlike the Knorr-Held model, the Ugarte model

does not contain any additional unstructured spatial or temporal random effects.

However, the Ugarte model could be considered as over-parameterised as it is un-

clear to what extent the spatial random effects or the spatio-temporal random effects

should account for the spatial trends in the data. The same holds for the tempo-

ral trends in the data. It should be noted that the Ugarte model contains only a

single spatial random effects vector that allows for weaker autocorrelation (replacing

the linear combination of a strongly positively spatially autocorrelated and indepen-

dent random effects vector), while the single temporal random effects vector enforces

strong temporal autocorrelation.

2.7.4 Rushworth model

Rushworth et al. (2014) propose a spatio-temporal model with non-separable spatio-
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temporal random effects. Here, the risk (or prevalence) θjt is modelled as

g(θjt) = β0 + xjβ + φjt,

where φjt denotes a spatio-temporal random effect. The joint prior distribution of

the spatio-temporal random effects vector φ = (φ1, . . . ,φN) is decomposed as

f(φ1, . . . ,φN) ∼ f(φ1)
N∏
t=2

f(φt|φt−1),

where φt = (φ1t, . . . , φKt) denotes the vector of random effects for time period t.

The joint prior distribution of f(φ1) is a Leroux CAR model (see Section 2.6.2)

that induces a spatial structure in the random effects from the first period. Thus, the

full conditional distribution for the spatio-temporal random effect of area j at period

1 is given by

φj1|φ−j1 ∼ N

(
ρ
∑K

k=1wjkφk1

ρ
∑K

k=1 wjk + 1− ρ
,

τ 2

ρ
∑K

k=1 wjk + 1− ρ

)
,

where W is a neighbourhood matrix (see Equation 2.13) and ρ is a spatial correlation

parameter.

The conditional prior distributions f(φt|φt−1), for t = 2, . . . , N capture the tem-

poral autocorrelation in the random effects, and are given by

φt|φt−1 ∼ N(αφt−1, τ
2Q(ρ,W )−1), for t = 2, . . . , N,

where the precision matrix Q(ρ,W ) is again that of the Leroux CAR prior (Sec-

tion 2.6.2). The temporal autocorrelation is induced via the mean αφt−1, where α is

a temporal autocorrelation parameter; i.e. α = 0 indicates temporal independence,

while α = 1 indicates strong temporal autocorrelation and turns this conditional

part of the decomposition into a first-order random walk. The spatial autocorrela-

tion is induced via the precision matrix determined by the neighbourhood structure

captured in W .

Note that this is a first order temporal autoregressive process (AR(1)). While
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Rushworth et al. (2014) only provide this model, the implementation of the model

in the function ST.CARar() in the CARBayesST package (Lee et al., 2018) also allows

for a second order temporal autoregressive process (AR(2)). Chapter 3 shows an

application that uses the AR(2) version of the model, and provides the additional

methodology.

As a closing remark, the joint distribution of the random effects can be compared

more easily to the Ugarte model (see Section 2.7.3) when expressed in the following

form:

f(φ1, . . . ,φN) = f(φ1)
N∏
t=2

f(φt|φt−1)

∝ exp

{
−1

2

(
φT1Q(ρ,W )φ1 +

N∑
t=2

(φTt − αφTt−1)Q(ρ,W )(φt − αφt−1)

)
/τ 2

}
.

A key difference between the Rushworth model and the Ugarte model is how they

account for the temporal structure: the Rushworth model uses an autoregressive prior

of order one (AR(1)), and the Ugarte model uses a random walk prior of order one.

Thus, the Rushworth model allows for weaker temporal autocorrelation, while the

Ugarte model imposes strong temporal autocorrelation. Furthermore, the Rushworth

model contains only one random effect per area and period. In contrast, the Ugarte

model contains a spatial, temporal, and spatio-temporal random effect per area and

period.

2.8 Cluster analysis

Clustering methods aim to split a collection of objects into subsets (i.e., groups or

classes), which are referred to as “clusters”. The objective is to group the objects

so that objects in the same cluster have more similar attributes and objects that are

not in the same cluster have more dissimilar attributes from one another. Thus, a

cluster analysis requires some (dis-)similarity measure between the objects’ attribute

values. The standard clustering approaches can be divided into hierarchical and

non-hierarchical clustering methods (e.g., see Giordani et al., 2020). Hierarchical

methods produce a series of partitions that can be presented in a hierarchy tree where
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clusters are merged or split as one moves along the tree’s branches. Non-hierarchical

methods, also known as partitioning methods, find the best partition (according to

some loss function) for splitting the n objects into exactly k clusters. Thus, for non-

hierarchical methods, one has to specify the number of clusters k before applying the

method, and the clustering method will produce only one clustering with k clusters

(as opposed to the hierarchy tree produced by the hierarchical methods). Selected

non-hierarchical and hierarchical clustering methods are presented in Sections 2.8.1

and 2.8.2, respectively.

The work presented in this thesis applies the non-hierarchical clustering methods

k-means and k-medoids, the latter of which is also known as partitioning around

medoids. Section 2.8.1.1 reviews the k-means algorithm and Section 2.8.1.2 reviews

the partitioning around medoids algorithm. Since one has to specify the number of

clusters before applying these non-hierarchical clustering algorithms, one usually ap-

plies the methods for different numbers of clusters and decides which of the resulting

clusterings appears to be the best partition of the set of objects. Some procedures

for doing so are reviewed in Section 2.8.1.3. Section 2.8.1.4 reviews the Rand in-

dex, which can be used to measure the similarity between two clusterings. Lastly,

Section 2.8.2 reviews single linkage agglomerative clustering, which is a hierarchical

clustering method used in Chapter 3 to check for potential outliers before applying

the k-means algorithm.

2.8.1 Non-hierarchical clustering (partitioning)

This section reviews selected non-hierarchical clustering methods and is based on

the work of Hastie et al. (2009), which can be consulted for more information. Let

xj = (xj1, . . . , xjp) denote the observed values of p attributes (i.e., variables) for

objects j = 1, . . . , n. Let dl(xil, xjl) denote the dissimilarity between the l-th attribute

observed for objects i and j. For example, a commonly used dissimilarity measure for

quantitative attributes is the squared distance dl(xil, xjl) = (xil − xjl)2. For the non-

hierarchical clustering methods used in this thesis, the overall dissimilarity between
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the observed attributes of objects i and j can be written as

d(xi,xj) = g

(
p∑
l=1

dl(xil, xjl)

)
, (2.15)

where g is some function applied to the sum of the dissimilarity measures over the

observed attributes. Two overall dissimilarity measures are considered in this the-

sis: the first is the Euclidean distance, for which the distance measures are squared

distances and the function g is the square root; the second measure is the squared Eu-

clidean distance, for which the function g is the identity function. For the Euclidean

and squared Euclidean distances, the attribute-specific squared differences in the sum

of Equation (2.15) are assigned weights of one (i.e., each squared difference has the

same weight). However, note that it is generally possible to assign different weights

to the dissimilarity measures dl(·, ·) (see Hastie et al., 2009 for further details).

In the clustering methods considered in this thesis, every cluster contains at least

one object, and every object belongs to exactly one cluster. Assume the goal is to

split the objects into k clusters, for some k ∈ N>0. Let C(j) denote an encoder such

that C(j) = c denotes that object j is assigned to cluster c. The goal is to find cluster

assignments that minimise some loss function. Generally, define the within-cluster

point scatter W (C) and between-cluster point scatter B(C) as

W (C) =
1

2

k∑
c=1

∑
C(j)=c

∑
C(i)=c

d(xj,xi),

B(C) =
1

2

k∑
c=1

∑
C(j)=c

∑
C(i)6=c

d(xj,xi),

such that the total point scatter T (which is independent of the cluster assignments)

can be computed as

T =
1

2

n∑
j=1

n∑
i=1

d(xj,xi)

= W (C) +B(C).

Partitioning methods aim to minimise the within-cluster point scatter, which, rewrit-
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ten asW (C) = T−B(C), is the same as maximising the between-cluster point scatter.

Note that these goals reflect the intuitive objective of assigning similar objects to the

same cluster and more dissimilar objects to different clusters.

2.8.1.1 k-means

The k-means algorithm is applied to objects with quantitative attributes to find k

clusters to minimise the within-cluster point scatter when the squared Euclidean

distance is used as the overall dissimilarity measure between objects. The standard

algorithm to estimate this was proposed by Stuart Lloyd in 1957, and the method

was published in Lloyd (1982). The kmeans function in R uses the algorithm provided

by Hartigan and Wong (1979), which is based on some preliminaries from Hartigan

(1975).

The k-means algorithm computes the squared Euclidean distance between at-

tribute values xj = (xj1, . . . , xjp) observed for objects j = 1, . . . , n, as

d(xj,xi) =

p∑
l=1

(xjl − xil)2 = ||xj − xi||2.

The within-cluster point scatter is computed as the within-cluster sum of squares

W (C) =
1

2

k∑
c=1

∑
C(j)=c

∑
C(i)=c

||xj − xi||2

=
k∑
c=1

Nc

∑
C(j)=c

||xj − x̄c||2,

where x̄c = (x̄c1, . . . , x̄cp) is the mean vector associated with the c-th cluster, and

Nc =
∑n

j=1 1(C(j) = c) is the number of objects assigned to cluster c, where 1 denotes

an indicator function such that 1(C(j) = c) = 1 if C(j) = c and 1(C(j) = c) = 0,

otherwise. Thus, the entries of the mean vector for each cluster are computed as

x̄cl = 1
Nc

∑
j∈c xjl, for c = 1, . . . , k and l = 1, . . . , p.

The k-means algorithm aims to minimise the within-cluster sum of squares; i.e.,

the goal is to find the clustering C∗ such that C∗ = min
C
W (C). For cluster centres
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(m1, . . . ,mk), the algorithm solves the optimisation problem

C(j) = argmin
1≤c≤k

||xj −mc||2. (2.16)

The k-means algorithm is initialised with k randomly chosen objects
(
m

(0)
1 , . . . ,m

(0)
k

)
to form the cluster centres in the optimisation problem from Equation (2.16), which

is solved to obtain the initial clustering C(0). In the t-th iteration, for t = 1, 2, . . . ,

the algorithm is carried out in the following steps:

1. For the current cluster assignment C(t−1) consisting of k clusters, compute the

cluster means x̄
(t−1)
c and make them the cluster centres, i.e., let m

(t−1)
c = x̄

(t−1)
c

for c = 1, . . . , k.

2. For the current cluster means
{
m

(t−1)
1 , . . . ,m

(t−1)
k

}
, find the new clustering

C(t) that solves the optimisation problem in Equation (2.16) by assigning each

object to its closest cluster mean.

3. Increase t by one and start over with step 1 until the assignments no longer

change.

With each iteration, the within-cluster sum of squares is reduced (e.g., see Hastie

et al., 2009). However, this only guarantees that a local optimum is found; it does

not guarantee that a global optimum will be found. Hence, it is common practice to

run the algorithm multiple times with different randomly chosen initial clusterings

and choose the result with the smallest within-cluster sum of squares to increase the

chance of finding a global minimum.

Lastly, note that using the squared values in the optimisation problem in Equa-

tion (2.16) implies that large distances have a stronger influence and the method lacks

robustness against outliers (Hastie et al., 2009). Hence, when one suspects outliers

to be present, a more robust method should be used. One option is the k-medoids

algorithm, which is presented next.

2.8.1.2 k-medoids (partitioning around medoids)

Kaufman and Rousseeuw (1987) propose the partitioning around medoids (PAM)
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algorithm (also known as the k-medoids algorithm) and accredit the initial idea to

Vinod (1969). The goal is to form k clusters around representative objects, called

medoids, for which the average dissimilarity to other objects in the cluster is minimal.

For a set of medoids (m1, . . . ,mk), the clusters are formed by solving the optimisation

problem

C(j) = argmin
1≤c≤k

d(xj,mc). (2.17)

Note that the k-medoids optimisation problem from Equation (2.17) is more gen-

eral than that of the k-means algorithm, as the k-medoids algorithm can consider

any overall dissimilarity, while the k-means algorithm uses the squared Euclidean

distance.

The k-medoids algorithm is initialised with k randomly chosen objects
(
m

(0)
1 , . . . ,m

(0)
k

)
to form the initial cluster centres. The within-cluster point scatter is minimised by as-

signing each object to its closest cluster centre; i.e., the clustering C(0) is obtained by

solving the optimisation problem from Equation (2.17) for the initial cluster centres.

In the t-th iteration, for t = 1, 2, . . . , the algorithm is carried out in the following

steps:

1. For the current clustering C(t−1) consisting of k clusters, find the object in each

cluster whose overall distance to the other objects in that cluster is minimal

(i.e., the object for which the average distance or equivalently, the sum of the

distances, to the other objects in the cluster is minimal). Thus, the represen-

tative object of cluster c is found as

j∗c = argmin
j:C(t−1)(j)=c

∑
C(t−1)(i)=c

d(xj,xi),

where d(·, ·) is an arbitrary distance function. Set m
(t)
c = xj∗c as the new cluster

centre, for c = 1, . . . , k.

2. For the current cluster centres
(
m

(t)
1 , . . . ,m

(t)
k

)
, find the new clustering C(t)

that solves the optimisation problem from Equation (2.17).
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3. Increase t by one and start over with step 1 until the assignments no longer

change.

The PAM algorithm is implemented in R and available in the package cluster

(Maechler et al., 2023) in the function pam(), where the distance function from steps

1 and 2 of the k-medoids algorithm can be specified as the Euclidean or Manhattan

distances. In Chapter 5 the k-medoids algorithm is applied to univariate data, for

which the Euclidean and Manhattan distances are equivalent.

2.8.1.3 Choosing the number of clusters

Note that non-hierarchical clustering methods such as the k-means or k-medoids

algorithms require the specification of the desired number of clusters k. However,

typically, the number of clusters that should be created for the specific problem is

not obvious a priori. Hence, Rousseeuw (1987) proposes a method to find the best

partition amongst the resulting clusterings obtained for different values of k. The

idea is to create silhouettes for each object j when the data are split into k clusters.

Silhouettes are statistics that compare the distances between an object j and the

other objects in the same cluster with the distances between object j and the objects

in the nearest neighbouring cluster.

Assume that the clustering method results in a clustering C. Let d̄(j, c) denote

the average dissimilarity between object j and the objects in cluster c; i.e., d̄(j, c) =

1
Nc

∑
{i:C(i)=c} d(xj,xi). Now, let a(j) denote the average distance or dissimilarity

between object j and all other objects in its cluster C(j); i.e., a(j) = d̄(j, C(j)). Let

B(j) denote the nearest neighbouring cluster of object j, i.e., the cluster for which

the average distance to object j is b(j) = min
c6=C(j)

d̄(j, c). The silhouette of object j is

then computed as

s(j) =
b(j)− a(j)

max{a(j), b(j)}
,

which allows for the evaluation of the assignment of object j to cluster C(j). Note

that s(j) = 0 for a(j) = b(j). If the average distance between object j and all objects

in cluster C(j) is similar to that between object j and all objects in cluster B(j),
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its silhouette s(j) will be close to zero. On the other hand, if the average distance

between object j and the objects in cluster B(j) is much larger than the average

distance between object j and the other objects in cluster C(j), then the silhouette

s(j) will be close to one. Similarly, negative values of s(j) indicate that object j

is, on average, closer to the objects in cluster B(j) than to objects in cluster C(j),

suggesting that object j might have been falsely assigned to cluster C(j).

Lastly, the average silhouette width for all k clusters can be computed as

s̄k =
1

n

n∑
j=1

s(j).

Using this method, one can argue that the optimal number of clusters k is the one

that results in the largest average silhouette width s̄k.

Another option for checking the optimal number of clusters (which is less formal,

but commonly applied in combination with k-means) is the elbow method, which

is attributed to Thorndike (1953) and based on a plot of the within-cluster sum of

squares values for clustering assignments with different numbers of clusters k. Note

that the within-cluster sum of squares generally decreases as the number of clusters

k increases (e.g., see Hastie et al., 2009). When clustering is meaningful, splitting

the dataset into two clusters should lead to a substantial reduction of the within-

cluster sum of squares. Similarly, having a few meaningful clusters might lead to

further substantial reductions. However, once a sufficiently large number of clusters

has been selected, one would anticipate the reductions in the within-cluster sum of

squares to be small. The change from a substantial decrease to a smaller decrease as

one increases the number of clusters looks like an elbow in the within-cluster sum of

squares plot. Hence, the plot can be used to pick the optimal number of clusters by

identifying the location of the elbow.

As an example for using the average silhouette widths and the elbow method, con-

sider the famous iris dataset collected by Anderson (1936). The dataset contains 50

measurements obtained for each of three species of the iris flower: Setosa, Versicolor,

and Virginica. Figure 2.1 shows exploratory plots for the variable petal width. The

plot on the left shows a histogram over all observations, which one could consider if it
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were unknown that the observations are from three different species. The plot on the

right shows the distribution of the observed petal widths by species and reveals that

the species Setosa tends to have the smallest petal widths, followed by Versicolor,

and Virginica tends to have the largest petal widths. However, it should be noted

that the differences in petal width between the species Versicolor and Virginica tend

to be smaller than between Setosa and Versicolor, with a range of petal widths being

observed for both Versicolor and Virginica.

Figure 2.1: Iris dataset: A histogram of the petal width over all observations (left) and boxplots showing the
distribution of the observed petal widths by species (right).

Figure 2.2 shows the results from k-means clustering applied to the variable petal

width for different numbers of clusters k, pretending that the different species were

unknown. The plot on the left shows that the within-cluster sum of squares reduces

substantially when moving from one to two clusters and from two to three clusters.

Increasing the number of clusters further leads to a much smaller decrease in the

within-cluster sum of squares values, which is visible as an “elbow” in the plot at

k = 3. The plot on the right shows that the average silhouette width is largest

for k = 3, although it is only marginally larger than for k = 2. When splitting the

observations in the iris dataset into two clusters according to the variable petal width,

the 50 observations of the species Setosa are in one cluster, and the 100 observations

from the species Versicolor and Virginica are in the other cluster. Splitting the dataset

into three clusters according to the variable petal width, the 50 observations of the

species Setosa again form one cluster, 48 observations of the species Versicolor and

four observations of the species Virginica form a second cluster, and the third cluster is

formed of the remaining 46 observations of the species Virginica and two observations

of the species Versicolor. Hence, in this case, the clustering is meaningful and the

small difference in the average silhouette widths for k = 2 and k = 3 is explained by
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the observed petal widths of the species Versicolor and Virginica being more similar

to one another (see Figure 2.1).

Figure 2.2: Iris dataset: Within-cluster sum of squares (left) and average silhouette width (right) for the clusterings
obtained by applying the k-means algorithm to the observations of the variable petal width.

The average silhouette widths should be used as a less subjective method for

selecting the number of clusters. However, the average silhouette width can only be

computed when the data are split into at least two clusters. Hence, the method cannot

be used to check whether the data should be split into clusters at all. Instead, the

within-cluster sum of squares plots can be used to check if the within-cluster sum of

squares reduces substantially when splitting the data into two clusters, compared to

when all objects are assigned to one cluster (e.g., see Figure 2.2). Another example

plot for this scenario can be found in Figure 3.7 of Chapter 3, where the average

silhouette widths are largest for two clusters and the within-cluster sum of squares

plots show that the within-cluster sum of squares reduce substantially when moving

from one to two clusters.

2.8.1.4 Rand index

Rand (1971) proposes an index to compare how similar two clusterings are, and the

index is commonly referred to as Rand index. Assume the objective is to split n ob-

jects into clusters. Consider two clusterings C = {c1, . . . , ck} and C ′ = {c′1, . . . , c′k′},

where k and k′ denote the respective number of clusters. The Rand index is computed

as

r(C,C ′) =

(
n∑
i<j

γij

)/(
n

2

)
,
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where γij = 1 if for objects i and j, either

� C(i) = C(j) and C ′(i) = C ′(j) (the objects are assigned to the same cluster in

both clusterings), or

� C(i) 6= C(j) and C ′(i) 6= C ′(j) (the objects are assigned to different clusters in

both clusterings),

and γij = 0, otherwise.

The Rand index reflects the comment of Rand (1971) that “clusters are defined

just as much by those points which they do not contain as by those points which

they do contain”, as the similarity measure γij not only takes on a value of one when

the two objects i and j are in the same cluster for both clusterings C and C ′, but

also when the two objects are in different clusters for both clusterings. The similarity

measure γij is computed for a total of
(
n
2

)
pairs (i, j) with i < j, and the Rand index

is the proportion of pairs for which γij = 1. Two clusterings C and C ′ are identical

if γij = 1 for all pairs (i, j), in which case
∑n

i=1 γij =
(
n
2

)
so that the Rand index

takes on a value of one, i.e., r(C,C ′) = 1. The only possible scenario for r(C,C ′) = 0

is where one clustering assigns all objects to one cluster, while the other consists of

n clusters each containing only one object. For other non-identical clusterings, the

Rand index will be between zero and one and is closer to one the more similar the

two clusterings are.

2.8.2 Single linkage agglomerative clustering

Hierarchical clustering methods do not lead to a single assignment of objects to

clusters, but instead provide a hierarchy of clusters that can be explored visually.

There are two types of hierarchical clustering: agglomerative and divisive clustering

(e.g., see Giordani et al., 2020). These are recursive methods, where objects are

partitioned into clusters in a hierarchical fashion where the former follows a bottom-

up approach (starting with single-object clusters that are merged) and the latter

a top-down approach (starting with all objects in one cluster that is divided into

sub-clusters).
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Agglomerative clustering algorithms start with n singleton clusters, i.e., with one

cluster for each object. In each of (n − 1) steps, the two clusters with the smallest

dissimilarity (according to some dissimilarity function) are merged. In the (n− 1)-th

step, the two remaining clusters are merged so that all observations are in one cluster.

The clusterings in this hierarchy can be presented in a binary tree, where the nodes

present the clusters at each level. The root node (at the top of the tree) represents

the entire dataset (i.e., all objects are in one cluster), and the n terminal nodes (at

the bottom of the tree) are the singleton clusters from the start of the agglomerative

method. Each non-terminal node has two daughter nodes, as the nodes higher up in

the tree are formed by merging two clusters from the level below. The tree can be

plotted so that the height of each node is proportional to the dissimilarity between

its two daughter nodes, where the terminal nodes are plotted at zero height. The

resulting tree plot is called a dendrogram and can be used to decide which hierarchy

level should be used to obtain the final clustering. For further details, see, for example,

Hastie et al. (2009).

This thesis uses single linkage agglomerative clustering. Again, consider n objects

for which p variables are observed, so that xj = (xj1, . . . , xjp) denotes the attributes

observed for the j-th object, for j = 1, . . . , n. Single linkage (SL) agglomerative clus-

tering computes the distance between two clusters as the smallest distance between

any two objects from each cluster; i.e., the dissimilarity between two clusters c1 and

c2 is computed as

dSL(c1, c2) = min
i∈c1,j∈c2

d(xi,xj), (2.18)

where d(·, ·) is some dissimilarity measure and the clusters are merged following the

agglomerative approach outlined above.

A benefit of single linkage agglomerative clustering is that it can be used to identify

potential singleton outliers (Everitt et al., 2011). Since the singleton outliers will be

far from their nearest neighbours, they can be identified as the terminal nodes with

the greatest heights. Chapter 3 applies single linkage clustering to check for potential

outliers before applying k-means clustering.
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Chapter 3

National lockdowns in England:

The same restrictions for all, but

do the impacts on COVID-19

mortality risks vary

geographically?

3.1 Introduction

The COVID-19 pandemic is the deadliest respiratory disease pandemic since the

“Spanish” influenza in 1918, and it is one of at least three detected coronaviruses

that have spread since the year 2000 (Morens et al., 2020). The disease is zoonotic

(transmittable between humans and animals), and it is believed to have originated

from the Hunan seafood market (Shereen et al., 2020) in Wuhan, China. A previous

outbreak of Severe Acute Respiratory Syndrome (SARS) coronavirus in 2002 also had

its first recorded cases in China, in the Guangdong Province (Monagin et al., 2018)

which, just as Wuhan, falls into a region that Jones et al. (2008) have identified as

a high relative risk area for human emerging infectious diseases caused by zoonotic

pathogens from wildlife. Taylor et al. (2001) have shown that a majority of infectious
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organisms fall into the zoonotic category, and Karesh et al. (2005) and Swift et al.

(2007) have indicated a link between wildlife markets and emerging infectious dis-

eases, calling for regulations on the trade of wildlife. Yet, without such regulations or

an effective early response strategy in place, the newly formed coronavirus was able

to grow from local chains of infection to a worldwide pandemic, as declared by the

World Health Organisation (WHO) on 11th March 2020 (Director-General, 2020).

As of 24th March 2022, there have been over 6.1 million recorded deaths worldwide

that were linked to COVID-19, from over 475 million recorded cases of COVID-19

infections (https://coronavirus.jhu.edu/map.html). While deaths and severe

disease progressions represent the most immediate and dire consequences of the spread

of the virus, the pandemic has also had a strong environmental and socio-economic

impact (Bashir et al., 2020). Furthermore, while it is still too early to fully predict

the lasting impact of the pandemic, current research suggests possibilities of long-

term effects on physical health (Sudre et al., 2021), as well as mental health (Usher

et al., 2020). It is also likely that the economic decline and possible lack of social

contacts during the pandemic will cause additional hardship on the mental well-being

of individuals.

Some key scientific challenges related to the virus have been to model and predict

the spread of infections (e.g., Dong et al., 2020, Lee et al., 2022), to identify the factors

that are associated with a higher risk of displaying severe symptoms (e.g., Rashedi

et al., 2020, Williamson et al., 2020, Wolff et al., 2021), and to identify impacts

on healthcare (e.g., Remuzzi and Remuzzi, 2020). These findings were particularly

impactful during the early stages of the pandemic, as they provided governments

with the scientific knowledge necessary for developing strategies to contain the virus

to assist the stressed healthcare sector by reducing the number of patients with severe

disease progression. Some of the earliest strategies included increased opportunities

to maintain good hygiene through hand sanitisation in public spaces, enforcing social

distancing rules and face masks in enclosed settings. Additionally, those who tested

positive for an infection or had recently been in close contact with someone who tested

positive were asked to isolate, and people travelling from regions with higher infection

rates were sometimes asked to obey quarantine rules upon arrival. Having been
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identified as particularly vulnerable to displaying severe symptoms, older adults and

those with pre-existing medical conditions received additional protection by regular

testing of the care home and medical staff. The more vulnerable groups were also

given priority in getting their vaccinations once available.

Most governments implemented restrictions to constrain the spread of the virus,

especially when rising numbers of severely affected individuals who needed intensive

care started to overwhelm the national healthcare sectors. A common intervention

was to implement regional or national lockdowns. While the exact restrictions during

lockdown differ by country, in general, a lockdown is “a temporary condition imposed

by governmental authorities (as during the outbreak of an epidemic disease) in which

people are required to stay in their homes and refrain from or limit activities outside

the home involving public contact” (Merriam-Webster Online Dictionary, 2022).

In England, the region of this study, three national lockdowns occurred between

the start of 2020 and October 2021. The lockdowns ranged from 26th March to 12th

May 2020 (48 days), from 5th November to 2nd December 2020 (29 days), and from

5th January to 28th March 2021 (83 days). Lockdowns are implemented to break the

chains of infection, but they come with a large social and economic burden for society.

The global economy experienced a collapse during the pandemic, which might have

been partly linked to governmental restrictions and voluntary consumer decisions

(Goolsbee and Syverson, 2021). The financial crisis posed yet another possible threat

to the mental well-being of many individuals, adding to the burden of limited social

contacts and fear of infection. While the imposed lockdowns did not appear to have

“uniformly detrimental effects on mental health” (Prati and Mancini, 2021), some

studies report an increase in depressive symptoms and worsened mental well-being

amongst adolescents (Thorisdottir et al., 2021), who experienced a particularly strong

impact of the pandemic, as schools were closed for extended periods.

The overriding goal of this study is to investigate spatio-temporal trends in

COVID-19 mortality risks following the implementation of three national lockdowns

in England to identify geographical differences in the impact of lockdown. Before

introducing the methodology used to conduct the analysis, other studies that have

previously investigated temporal trends in COVID-19 death counts or mortality risks
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following lockdowns are reviewed.

Palladino et al. (2020) and Palladino et al. (2021) fit interrupted time series (ITS)

models to the number of deaths between late February and early May of 2020 in Italy

and between late January and mid-August of 2020 in Italy, France, Spain, and the

UK, respectively. The studies showed a decreasing trend in the number of deaths

upon implementing a national lockdown. However, they did not give any insights

into spatial patterns within the countries, nor did the latter study allow a comparison

between the countries, as the response variable was raw counts of deaths rather than

standardised mortality rates. Conyon et al. (2020) used a Difference-in-Differences

model from econometrics to show that the number of deaths per million was signif-

icantly lower in Denmark and Norway, where a “hard lockdown” policy was put in

place, compared to Sweden, where no such “hard lockdown” was implemented. Gerli

et al. (2020) estimated the raw numbers of deaths in 29 European countries by fitting

a model that consisted of a cubic polynomial and parametric growth curve, using

the observed mortality distribution within the first 17 days of the outbreak and the

date of the implementation of national lockdown as predictor variables. Their find-

ings suggested a correlation between earlier lockdowns and lower numbers of deaths.

However, it should be pointed out that lockdown measures differed by country, as

the lowest level of “lockdown” denoted a travel ban only, which makes an equal

comparison of the lockdowns in different countries a questionable procedure.

Coccia (2021) compared data for countries with a shorter period of first lock-

down (Austria, Portugal, Sweden) to countries with a longer period of first lockdown

(France, Italy, Spain). The study claimed that “a longer period of national lockdown

to constrain the diffusion of COVID-19 does not seem to be associated with a sig-

nificant reduction of infected cases on population and of fatality rates in society”.

However, there are some key issues inherent in the analysis. Firstly, the fatality rate

(in %) of COVID-19 was measured as deaths divided by the total number of infected

individuals in each country, which reduces the fatality rates for countries with higher

testing capacities, as more people with less severe symptoms could be tested, therefore

generating more positive test results on patients with less severe disease progression.

Secondly, the statistical tests in the study are questionable, as a t-test was performed
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to compare the mean fatality rates from April to August 2020 between the countries

without considering the initial fatality rates (before the lockdown). Recall that Spain

and Italy were the European countries most severely affected during the early months

of the pandemic, which will likely impact these results.

Other studies have analysed the effect of lockdowns at regional levels. Silva et al.

(2020) have fit an ITS model to data from four state capitals in Brazil, each of

which had implemented regional lockdowns over some period in April to June 2020,

while most parts of the country did not implement strict regulations during that time

frame. Specifically, their study is based on ordinary least squares ITS models, with

log-transformed daily numbers of deaths as the response variable. While an observed

change in the slope of their fitted model suggests a decreasing trend in the daily

number of deaths upon implementing the lockdown, the results do not provide any

insight into the underlying spatial patterns of deaths. Further, these trends could not

be compared for the different cities, as raw counts were used as the response variable

rather than standardised rates of deaths.

dos Santos Siqueira et al. (2020) used the Joinpoint Regression Program to es-

timate daily mortality rates (per 100,000 people) in the autonomous communities

of Spain between 14 March and 25 April 2020, which constitutes the time frame of

Spain’s first national lockdown in the pandemic. The methodology is similar to that

of ITS, the only difference being that Joinpoint Regression identifies the time points

based on changes in the data. In contrast, in an ITS model, the researcher specifies

the time points of interest. On average, the observed points of change suggested that

the mortality rates started to decrease 18.33 days after the lockdown was introduced,

and estimates for different autonomous communities are compared in the paper. The

authors state that the models were fitted with autonomous communities set as strata,

suggesting independent estimates for the different communities. Considering the un-

derlying nature of COVID-19 as an infectious disease, spatial autocorrelation amongst

the autonomous communities would appear a more appropriate assumption since in-

fection rates would likely be more similar for neighbouring autonomous communities

than for autonomous communities that are further apart.

Note that the studies by Silva et al. (2020), Palladino et al. (2020), dos San-
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tos Siqueira et al. (2020), and Coccia (2021) additionally consider the number of

cases of infection as a response variable, the results of which are ignored in this

review as their reliability could be questionable, due to limited testing capacities,

especially during the first months of the pandemic. That is why this English study

focuses on death counts.

Davies et al. (2020) fit Susceptible-Exposed-Infected-Removed (SEIR) models to

COVID-19 data from the UK. They inspect the potential impact of combinations of

different control measures (school closures, physical distancing, shielding of people

aged 70 years and older, self-isolation of symptomatic cases) on the number of deaths

due to COVID-19. They construct an age-specific matrix that captures UK social

mixing patterns amongst age groups to simulate the susceptible, exposed, infected,

and removed status for individuals in the population. Their simulations suggest that

an unmitigated COVID-19 pandemic would result in 350,000 deaths in the UK up

to December 31st, 2021, while lockdowns implemented after 1,000 intensive care unit

beds were filled nationally could reduce this number to 50,000 deaths. It should be

noted that the prediction intervals for the number of deaths are fairly wide. Yet,

the results allow to compare different scenarios for combinations of control measures,

suggesting that lockdowns would be most effective in reducing the number of deaths.

Davies et al. (2021) fit the same model to compare a baseline scenario of no tiered re-

strictions or lockdown interventions to implementing tiers and to lockdowns similar to

the ones that had been introduced in Northern Ireland (non-essential retail remained

open, household bubbles of up to ten people from two households) and Wales (non-

essential retail was closed, no mixing between households). Their findings indicate

differences in the number of deaths by region in England. Further, they suggest that

the types of lockdown introduced in Northern Ireland and Wales would be more effec-

tive in reducing the cumulative number of deaths than the tier system implemented

in England. Sartorius et al. (2021) fit an SEIR model, which considers population

mobility data from England. They quantify the impact of key socio-demographic risk

factors on COVID-19-related mortality risk, showing that mortality risk was elevated

for areas with higher proportions of the population aged 70 years and older and for

areas with higher proportions of older adults living in deprivation. Overall, their
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findings suggest differences in mortality risk at a small area scale in England, which

should be investigated further.

This study aims to explore the temporal trends in COVID-19 mortality risks

after the introduction of the national lockdowns, using weekly counts of mortalities

on a medium area scale of local authority districts (LADs) in England. A common

exploratory measure of disease risk is the standardised mortality ratio (SMR, recall

Section 2.1), computed as the observed counts of deaths divided by the expected

counts. These expected counts adjust for LADs having different population sizes and

demographics, such as age and sex. Further details are provided in Section 3.3. While

SMRs can provide a first impression of mortality risk, they should be viewed critically

as they are prone to substantial variability. For this study’s data, this variability is

explained by the relatively low weekly observed and expected counts of COVID-19

deaths at a local authority level. In general, spatio-temporal models can reduce some

of the random variability in the data, as they capture spatio-temporal trends and

autocorrelation and borrow strength in risk estimates between neighbouring data

points. In the context of epidemiology, spatial autocorrelation might be induced by

unmeasured confounding (some variable that is not included as a predictor in the

model explains part of the variability in the data), neighbourhood effects (similar

rates of disease in areas of proximity), or grouping effects (when people of similar

demographics live close to each other). Similarly, temporal autocorrelation could

be caused by the fact that largely the same population are at risk in consecutive

periods. For infectious diseases, spatial and temporal autocorrelation is even more

apparent as the disease is passed on between people interacting in space and time. The

specific model applied in this study is a Poisson log-linear model developed to estimate

the long-term effects of air pollution on respiratory hospital admissions in Greater

London (Rushworth et al., 2014). Section 2.7.4 provides a general description of the

model, and its application to the English COVID-19 mortality data will be discussed

in Section 3.3. The model captures the spatio-temporal trends and correlations in

the data, resulting in smoothed and, therefore, more reliable estimates of relative

mortality risk for each spatial and temporal unit while accounting for the underlying

age and sex demographics. From these estimated mortality risks, scaled risks can be
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computed for each area, comparing the estimated risks during and after the lockdown

to those from the last week preceding the lockdown. Hence, the scaled risk can be

used to fairly compare how the impact of lockdown varies for different areas across

England.

To my knowledge, this study is the first comprehensive investigation of spatio-

temporal trends in COVID-19 mortality risks following the implementation of lock-

downs in England, and it is the first to consider all three national lockdowns that

have occurred thus far. The main questions that will be answered are the following:

1. How long after the implementation of lockdown did mortality risks reduce at a

national level, and did this vary by lockdown?

2. How did the temporal trends in mortality risks differ by region in England?

3. Which local authorities were exposed to the highest average risks in the weeks

after lockdown?

4. Which local authorities shared similar temporal trends in mortality risks?

The remainder of this chapter is organised as follows. Section 3.2 introduces the

COVID-19 mortality data used in this study. Section 3.3 describes the methodology

that is applied. Section 3.4 displays the results of the study, and Section 3.5 provides

a discussion of the results, particularly how they could be used to aid the govern-

ment in future decision-making when considering implementing a national or regional

lockdown.

3.2 Motivating Study

The time frame of this study is from 1st February 2020 (the week of the first registered

death due to COVID-19 in England) to 14th May 2021 (seven weeks after the third

lockdown was lifted), and the study region is mainland England which is partitioned

into local authority districts (LADs). The average population size for a single LAD

is 179,945, with sizes ranging from 9,721 to 1,141,816 people. Since the LADs are not

large, the geographical risk analysis also considers the nine regions of England that
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LADs nest exactly within. The regions are East of England, East Midlands, London,

North East, North West, South East, South West, West Midlands, and Yorkshire and

The Humber. Figure 3.1 presents a map of the nine regions of England, which also

shows the outlines of the LADs.

Figure 3.1: The nine regions of England on a map with outlines of the LADs.

The data contain the number of deaths due to COVID-19 for each of a total of

312 LADs and 67 weeks. The number of deaths in LAD j and week t is denoted

Yjt. During the observed time frame, there were three national lockdowns in England

over the following ranges:

� Lockdown 1: 26/03/2020 - 12/05/2020 (48 days),

� Lockdown 2: 05/11/2020 - 02/12/2020 (28 days),

� Lockdown 3: 05/01/2021 - 28/03/2021 (83 days).

It should be noted that the days of the week when lockdowns were implemented

do not align with the first day of the week in the mortality data, where each week

is defined to range from Saturday to Friday. Therefore, I consider each week in the

death data with at least four days of lockdown as a week during the lockdown, while
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any week with three or fewer lockdown days falls outside of lockdown. This mismatch

causes a slight shift in lockdowns for the data used in this study, as the lockdowns

get assigned to 28/03/2020 - 15/05/2020, 07/11/2020 - 04/12/2020, and 02/01/2021

- 26/03/2021.

Deaths in England are registered on the General Register Office’s Registration

Online system (https://www.gov.uk/general-register-office). The Office of

National Statistics (ONS, 2021b) has provided the occurrences and registrations of

deaths as weekly accumulated counts for the local authority districts in England and

the weeks described above. While deaths from all causes are captured, this study

only uses the numbers of deaths for which COVID-19 was mentioned on the death

certificate. Figure 3.2 shows a plot of the raw counts of COVID-19 deaths across the

whole of England for each week in the time frame of this study, and the weeks of

national lockdown are highlighted in beige. The waves of the pandemic are reflected

in the accumulated counts of deaths, with peaks in April 2020, November 2020, and

January 2021.

Figure 3.2: Counts of deaths across England. The weeks of national lockdown are highlighted in beige.

It should be noted that the data include only the deaths of those registered in

England, and a person’s death is counted towards the LAD in which they were reg-

istered, disregarding the actual place where the person died should these locations

differ. Deaths with missing residences are not included. For this reason, the total

number of deaths differs slightly from published figures. Further, this study uses
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the dates of death occurrences rather than registrations of death, and differences be-

tween the dates of occurrences and registrations arise whenever there is a delay in

the registration of deaths.

COVID-19 mortality risk differs by age and sex. For example, many more deaths

occur amongst the older population than in younger age groups, and males tend to

be at higher risk than females (Biswas et al., 2021). Hence, when comparing the

COVID-19 mortality risk of different areas, the underlying age and sex demographics

should be considered. In this study, standardised mortality ratios (SMRs, recall

Section 2.1) are computed as initial risk estimates. First, the expected number of

COVID-19 deaths is computed by applying indirect standardisation using age-sex-

specific population data for mid-2020 (ONS, 2021c). Note that 2019 population data

were used for seven LADs due to a lack of data for 2020. The expected numbers of

deaths are computed from national age-sex-specific mortality rates for COVID-19,

which were taken from https://coronavirus.data.gov.uk/details/deaths?are

aType=nation&areaName=England on 30th August 2021. Let nji denote the number

of people in LAD j from age-sex group i (e.g. females 0-4, females 5-9, etc.) from a

total of I such groups, and ωi denote the English national rate of COVID-19 mortality

per 100,000 people for the i-th group. The expected weekly number of deaths ẽj is

then computed as

ẽj =
1

N

∑I
i=1 njiωi

100, 000
, (3.1)

where N is the total number of weeks in the study, and ẽj does not change over time as

time-varying data on population sizes or national mortality rates at a weekly scale are

not available. Furthermore, this study’s main objective is to investigate the temporal

trends in mortality risks and hence, the expected counts are deliberately computed

from the mortality rates over the entire study period so that the deviations in the

weekly mortalities from the national levels over the entire period can be identified.

However, the expected counts may not be on the same scale as the observed counts Yjt

(for example, national age-sex-specific mortality rates might not have been computed

over the same period as the observed deaths in the data), and so the expected counts
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are rescaled by

ej = ẽj

∑
j,t Yjt∑
j,t ẽjt

. (3.2)

The rescaling ensures that
∑

j,t ej =
∑

j,t Yjt, so that the observed and expected

counts in total over all areas and weeks are the same. The standardised mortality

ratio (SMR) is an exploratory measure of disease risk computed as

SMRjt =
Yjt
ej
, (3.3)

for LAD j = 1, 2, ..., K(= 312) and week t = 1, 2, ..., N(= 67). For example, SMRjt =

1.2 suggests that area j has a 20% elevated risk in week t, compared to the national

average risk over the study duration. Figure 3.3 presents the SMR by week and LAD

with weeks of lockdown highlighted in beige, where the weekly average SMR over all

LADs is shown by the black line. The dashed red line represents an SMR of one.

Figure 3.3: SMR by week for all LADs in England. The solid line shows the weekly average SMR over all LADs
and the weeks of national lockdown are highlighted in beige.

The SMR values show two distinct waves, with peaks in April 2020 and January

2021. Note that this trend in time is similar to the pattern for the death counts

observed in Figure 3.2. Overall, the SMR values appear to decline sometime after

the introduction of lockdowns 1 and 3, and the national average SMR is below one

(represented by the red dashed line) during many weeks in the summer and early
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autumn of 2020 and late spring of 2021. The average SMR value across England does

not appear to decrease much for the second lockdown, likely due to the lockdown

being lifted after only four weeks.

Figure 3.4 displays the spatial pattern in the average SMRs for the LADs of

England over the time frame of this study. The map suggests higher average SMRs

for urban areas such as London, Birmingham, Manchester, and Liverpool. In contrast,

the average SMRs appear lower for more rural areas such as England’s South West,

North West, and parts of the East of England. The average SMRs appear to change

relatively smoothly across the map, suggesting spatial autocorrelation is likely in

these data.

Figure 3.4: Average SMR over the entire study period, by LAD.
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To verify the assumption of positive spatial autocorrelation a Moran’s I test (Sec-

tion 2.5.1.1) is performed for each week t in the study. The Moran’s I test statistic

for week t is computed as

It =
K
∑K

j=1

∑K
i=1wji(SMRjt − SMRt)(SMRit − SMRt)

(
∑K

j=1

∑K
i=1wji)

∑K
j=1(SMRjt − SMRt)2

, (3.4)

where SMRt = 1
K

∑K
j=1 SMRjt is the average SMR over all LADs in week t, and wji

indicates whether or not LADs j and i share a border, i.e. wji = 1 if LADs j and i

share a border, and wji = 0, otherwise. Note that the values {wji} form the entries of

a binary adjacency neighbourhood matrixW (recall Section 2.1), and the same neigh-

bourhood structure is used by the statistical model described in Section 3.3. Moran’s

I test statistic cannot be computed for the weeks starting 08/02 and 15/02/2020, as

no COVID-19 deaths had occurred during those weeks, causing the SMRs to be 0 for

all LADs. For the other 65 weeks in the data, the Moran’s I statistics take on values

between -0.021 and 0.661, with a mean value of 0.257. Using Monte Carlo simulation,

a permutation test is performed based on 10,000 random permutations of the data to

test if the spatial autocorrelations in each week are significant. In each of the 10,000

iterations, the SMR values for the week in question are randomly assigned to the

LADs, and Moran’s I statistic is computed for each permuted set. This distribution

generated under independence is then compared to the original statistic computed

for the observed data from that week to yield a p-value against independence (recall

Section 2.5.1.1).

A Bonferroni correction (Haynes, 2013, also see Shaffer, 1995) is applied to retain

a significance level of 0.05 in the presence of multiple tests so that the significance

threshold is 0.05/65 ≈ 0.00077. This results in rejecting the null hypothesis of no

spatial autocorrelation for 48 of the 65 weeks (73.95%). Hence, it can be concluded

that spatial autocorrelation is present in most of the weeks in the data, so a model that

can account for spatial autocorrelation should be fitted. For additional explanations

of the methods applied and instructions on performing the analysis, see Lee (2020)

for a tutorial on spatio-temporal disease risk modelling in R.

Temporal autocorrelation in the SMR values is formally checked by computing
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temporal autocorrelation coefficients for each LAD over the weeks in the study. Fol-

lowing the definition from Section 2.5.2, a temporal sample autocorrelation coefficient

at lag l for LAD j in the data can be computed as

r̂jl =
N−l∑
t=1

(SMRjt − SMRj)(SMRj(t+l) − SMRj)∑N
t=1(SMRjt − SMRj)2

, (3.5)

where SMRj = 1
N

∑N
t=1 SMRjt is the average SMR over all time periods in LAD j.

Note that in this study, N = 67 denotes the number of weeks. To evaluate temporal

autocorrelation for different lags simultaneously, a Ljung-Box test is applied. Follow-

ing the definition in Section 2.5.2.1, for each area j, the statistic Q̃(r̂j) is computed

as a weighted sum of the temporal sample correlations r̂jl (from Equation 3.5) up to

a lag m, as

Q̃(r̂j) = n(n+ 2)
m∑
l=1

(n− l)−1r̂2
jl, (3.6)

which approximately follows a χ2
m distribution under the assumption of temporal

independence. The approximate distribution of the test statistic under the null hy-

pothesis allows testing for temporal autocorrelation up to lag m for each LAD in

the study. Since the test for temporal autocorrelation is conducted in 312 LADs

simultaneously, a Bonferroni correction is applied, providing a significance threshold

of 0.05/312 ≈ 0.00016. Thus, the null hypothesis of no temporal autocorrelation for

each LAD is rejected if the Ljung-Box test has a p-value less than 0.00016. When

tested for a lag up to m = 10, this is true for 310 of the 312 LADs (99.36%), leading

to the conclusion that temporal autocorrelation is present in the data.

Having identified spatial and temporal autocorrelation in the COVID-19 mortality

data, a spatio-temporal model should be fitted to obtain more accurate estimates of

mortality risks that account for the trends and correlations. The specific model used

in this study will be introduced next.
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3.3 Methodology

Let j = 1, ..., K(= 312) denote the areas (LADs in England) in the study, and let

t = 1, ..., N(= 67) denote the time periods (weeks between 1st February 2020 and

14th May 2021). The observed number of deaths in area j and week t is denoted Yjt,

and the expected number of deaths is denoted ejt = ej and does not vary by week.

3.3.1 Data Likelihood

Since the observed number of deaths are counts of rare events, the natural choice is

to fit a Poisson log-linear model to the data. Specifically, the model is fitted in a

Bayesian setting, where the data likelihood is of the form

Yjt ∼ Poisson(ejθjt), (3.7)

log(θjt) = β0 + φjt. (3.8)

Here, the goal is to estimate the relative mortality risk θjt for area j at time t, which

is on the same scale as the SMR and the estimated risk can be interpreted as a

spatio-temporally smoothed version of the noisy SMR. The natural log of the relative

risk θjt is modelled by an intercept term β0, and a spatio-temporal trend modelled

by random effects {φjt}. In the hierarchical model the mean β0 is assigned a prior

distribution, which will be discussed further in Section 3.3.3. First, the structure of

the spatio-temporal random effects is explored.

3.3.2 Spatio-temporal random effects

Section 2.7 introduced several spatio-temporal models for areal data. A common

approach of these models is to use a CAR prior to capture the data’s spatial struc-

ture. Since many of the other models have been pointed out to be potentially over-

parameterised, this study implements the spatio-temporal random effects model that

was proposed by Rushworth et al. (2014) (recall Section 2.7.4). The joint distribution
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of the random effects (φ1, . . . ,φN) is decomposed as either

AR(1) : f(φ1, . . . ,φN) = f(φ1)
N∏
t=2

f(φt|φt−1), (3.9)

or AR(2) : f(φ1, . . . ,φN) = f(φ1)f(φ2)
N∏
t=3

f(φt|φt−1,φt−2), (3.10)

where φt = (φ1t, ..., φKt) denotes the vector of random effects for week t. Note,

Rushworth et al. (2014) only consider the AR(1) model but here both the AR(1)

and AR(2) models are presented. A spatial prior distribution is assigned to the

random effects from the first week (AR(1)) or first and second week (AR(2)), while

the conditional distributions of the random effects from the later weeks are assigned

spatio-temporal prior distributions as they are assumed to depend on the random

effects from previous weeks.

A common method to capture spatial proximity in area-level spatial random ef-

fects is through a neighbourhood matrix W . In this study, W is a binary adjacency

matrix, with the entry in the j-th row and i-th column defined as

wji =


1, if LADs j and i share a border,

0, otherwise.

(3.11)

The matrix has a null-diagonal, i.e. wjj = 0 for j = 1, ..., K. Note that other types

of neighbourhood matrices could be considered. For example, a particular number

of nearest LADs could be considered in the neighbourhood structure, so that LADs

could be defined as neighbours even when they do not share a border. Alternatively,

distances between centre points of areas could be reflected by weights, representing

similarities based on the measured proximities. However, the resulting estimates

often end up being reasonably similar for the different neighbourhood matrices, so

this study continues with the binary adjacency matrix defined above rather than

introducing a more sophisticated neighbourhood structure.

The joint prior distribution of the random effects during week 1 is defined as

φ1 = (φ11, ..., φK1) ∼ N(0, τ 2Q(ρ,W )−1), where the precision matrix Q(ρ,W ) is de-

fined as Q(ρ,W ) = ρ(diag(W1)−W ) + (1− ρ)I with I denoting a K×K identity
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matrix and 1 denoting a K × 1 vector of ones. The full conditional distribution of

the spatial random effect φj1 for area j in week 1, given the spatial random effects of

all other areas in that week can then be expressed in closed form:

φj1|φ−j1 ∼ N

(
ρ
∑K

i=1 wjiφi1

ρ
∑K

i=1wji + 1− ρ
,

τ 2

ρ
∑K

i=1wji + 1− ρ

)
, (3.12)

where φ−j1 is a vector of spatial effects from week 1 for all areas except for area j.

Here, ρ controls the spatial autocorrelation, and τ 2 is a variance parameter. Note

that in the case of the AR(2) model, the full conditional distribution of φj2|φ−j2 has

the same structure, only that the mean depends on the neighbouring spatial effects

in week 2, rather than week 1. The prior distribution whose full conditional form is

specified in Equation (3.12) is a Leroux CAR prior (recall Section 2.6.2). For ρ = 1, it

reduces to that of an intrinsic CAR prior (Section 2.6.1), where the mean of the spatial

effect in area j during week 1 is completely determined by the spatial effects φi1 from

the same week, for all areas i that share a border with area j. Further, the variance

term in the full conditional distribution decreases as the number of neighbouring

areas increases. While ρ = 1 suggests strong spatial autocorrelation, ρ = 0 implies

spatial independence, as the conditional distribution reduces to φj1|φ−j1 ∼ N(0, τ 2)

for all areas j. The more general form of the full conditional distribution presented

in Equation (3.12) allows for greater flexibility than either of the special cases ρ = 0

or ρ = 1, as the data are used to estimate the strength of spatial autocorrelation

controlled by the correlation parameter ρ.

While the full conditional distributions for the spatial prior distributions of the

random effects from the first week (AR(1)) or the first and second week (AR(2))

look the same for either version of the model, the full conditional distributions for

the spatio-temporal random effects of the later weeks are slightly different. They are

defined as:

AR(1) : φt|φt−1 ∼ N
(
αφt−1, τ

2Q(W , ρ)−1
)
, t = 2, ..., N, (3.13)

or AR(2) : φt|φt−1,φt−2 ∼ N
(
α1φt−1 + α2φt−2, τ

2Q(W , ρ)−1
)
, t = 3, ..., N,

(3.14)
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where α in the AR(1) model controls the level of temporal autocorrelation, such

that α = 0 indicates temporal independence, while α = 1 indicates strong temporal

autocorrelation and makes the distribution a first order random walk. For the AR(2)

model α1 and α2 are again temporal dependence parameters that determine the

relationship between spatio-temporal random effects that are temporal neighbours of

order 1 and 2, respectively. Note that as a special case, a second order random walk

can be obtained for α1 = 2 and α2 = −1.

3.3.3 Hierarchical specifications

The prior distribution of the mean of the log-transformed mortality risk θkt from

Equation (3.8) is

β0 ∼ N(µ0 = 0, σ2
0 = 10, 000), (3.15)

which is a weakly informative prior distribution, reflecting that no prior knowledge

is available for the underlying mortality risk of COVID-19 in England in the given

time frame. The hyperpriors for the parameters (ρ, τ 2, α) or (ρ, τ 2, α1, α2) from the

spatio-temporal random effects models are given by:

AR(1) : ρ, α ∼ Uniform(0, 1), (3.16)

τ 2 ∼ Inverse-Gamma(a = 1, b = 0.01).

AR(2) : ρ ∼ Uniform(0, 1), (3.17)

f(α1, α2) ∝ 1,

τ 2 ∼ Inverse-Gamma(a = 1, b = 0.01).

Thus for both AR(1) or AR(2) models, the spatial and temporal dependence

parameters ρ and α or (α1, α2) are assigned flat (non-informative) priors, and the

variance parameter τ 2 from the spatial random effects is assigned a conjugate inverse-

gamma prior with hyperparameters a = 1 and b = 0.01. These are the default values

in the function ST.CARar from the package CARBayesST (Lee et al., 2021), which is

used to fit the Bayesian hierarchical model in R, via MCMC simulation.

74



3. National lockdowns in England

3.4 Results

The model proposed by Rushworth et al. (2014) outlined in Section 3.3 is fitted to the

COVID-19 mortality data for both the AR(1) and AR(2) versions. Estimated risks

are obtained from the posterior mean of the fitted values divided by the expected

counts. For each version, the MCMC algorithm produces 2,200,000 simulations for

each parameter in the model, the first 200,000 of which are discarded as burn-in

period. The simulations are thinned by saving only every 1,000-th simulation to

reduce the autocorrelation in the Markov chains. Ultimately, this provides 2,000

simulated values for each parameter.

Geweke diagnostics (recall Section 2.3.2.3) between (-2,2) suggest no evidence of

lack of convergence in the algorithm for either version. For example, for the AR(2)

model the Geweke diagnostics take on the values 1.4 for β0, -0.8 for τ 2, -0.5 for ρ,

0.0 for α1, and -0.2 for α2. Trace plots are examined for both models, and they do not

show strong evidence against convergence. The trace plots for the AR(2) model are

presented in Section A.1 of the appendix. The Deviance Information Criterion (DIC,

recall Section 2.4) is used to compare the two models. The AR(1) model’s DIC value

is 69,067, and the AR(2) model’s DIC value is 68,772. Hence, the model with second-

order temporal autocorrelation fits the data slightly better and is used to estimate

the relative risk for each LAD and week. Posterior predictive checks are carried out

to confirm that the AR(2) model fits the data appropriately, and these can be found

in Section A.2 of the appendix. Additionally, an analysis of the sensitivity of the

results to the prior choice for the variance parameter is provided in Section A.3.

The remainder of this section answers the central questions of interest as follows.

� Section 3.4.1:

1. How long after the implementation of lockdown did mortality risks reduce

at a national level, and did this vary by lockdown?

� Section 3.4.2:

2. How did the temporal trends in mortality risks differ by region in England

in the weeks following the implementation of lockdown?
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3. Which local authorities were exposed to the highest average risks in those

weeks?

� Section 3.4.3:

4. Which local authorities shared similar temporal trends in mortality risks?

3.4.1 How long after the implementation of lockdown did

mortality risks reduce at a national level, and did this

vary by lockdown?

The first question is the most important from an epidemiological perspective in this

study because it quantifies how long lockdowns have to be in place before mortality

risks reduce. It can be answered by comparing the panels in Figure 3.5, which show

boxplots of the distributions of the posterior mean estimated mortality risks across

all LADs in the weeks preceding, during, and after each of the three lockdowns (left),

and plots with 95% credible intervals around the median average estimated risk across

England (right). Panels (a), (b), and (c) show these results for the first, second, and

third lockdown, respectively, and all the risks presented are relative to the average

risk across England for the entire study period. In each panel, week -1 is the week

preceding the lockdown, week 0 is the onset week of lockdown, week 1 is the first

week after the onset of lockdown, and so on. The weeks coloured in beige comprise

the lockdowns. The y-axes measuring estimated risk and average estimated risk are

on the same scale for the three panels to allow comparison across the lockdowns. The

blue dashed line shows the median estimated risk across England from the last week

before lockdown, and the red dashed line represents a risk of 1. Note that week 7 in

panel (b) is the same as week -1 in panel (c).

The weeks after each lockdown are included to see if the lockdowns had a lasting

impact on mortality risk. In an attempt to analyse risk over similar periods, the

panels for the first and third lockdowns were each set to contain thirteen weeks

from the start of the lockdown. However, the panel for the second lockdown ranges

over fewer weeks, as week 7 is already the last week before the third lockdown was

introduced. The y-axis measuring estimated risk is on the same scale for the three
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Figure 3.5: Left: Boxplots of the posterior mean estimated risks across LADs, by week after lockdown. Right:
Median line with 95% credible intervals for the average estimated risk across LADs, by week after lockdown. The
weeks of national lockdown are highlighted in beige. The red dashed lines represent a risk of 1. The blue dashed lines
show the median estimated risk across England from the last week before lockdown.

panels, allowing comparison across the lockdowns. The red dashed lines represent a

risk of 1 in all three panels. Hence, any risks above these lines are elevated compared

to the average risk over all LADs and weeks of the study. Finally, the blue dashed

lines show the median estimated risks across England for the week preceding each

lockdown, making it easier to identify how long it took for the estimated risk to

reduce to pre-lockdown levels. The plots on the right were included to visualise the

variability in the accumulated risks by week across the entire country. Since the 95%

credible intervals are very narrow, there does not appear to be much variation in the

averages of the simulated estimated risks across all LADs.

The first striking feature apparent from Figure 3.5 is that the second lockdown (in

panel (b)) exhibits a very different trend in risk over time compared with the first and

third lockdowns. The second lockdown shows a constant or slightly increasing trend
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in risk throughout, while the overall risk in the first and third lockdowns shows an

increasing trend in the first three weeks of lockdown, followed by a decreasing trend.

The second lockdown was much shorter, lasting only four weeks, compared to seven

weeks of lockdown 1 and twelve weeks of lockdown 3. The short duration of lockdown

2 may be part of the reason for its different temporal trends in risk, as it was not in

place long enough to have a sizeable effect in reducing risk. Additionally, the lack

of an increasing trend in the first few weeks after the introduction of lockdown 2

may suggest that the pandemic was not yet approaching a severe new wave in terms

of mortality. A possible reason for the lack of an increasing trend could be that

England had implemented a three-tier system of mobility restrictions that started on

14th October before lockdown 2, with varying degrees of restrictions for the LADs

in the three tiers, which Davies et al. (2021) suggested has had a sizeable effect in

reducing the number of COVID-19 deaths.

The second key feature from Figure 3.5 is that for lockdowns 1 and 3, the mortality

risk increased in the first three weeks after the introduction of the lockdown before

it started to reduce from the fourth week onward. The reason for this is the lag

between a COVID-19 infection and mortality, which the ONS estimate is between

21 and 25 days on average (ONS, 2021a), which corresponds to between 3 and 3.5

weeks. Thus the high number of infections in the last few weeks before the lockdown

would transfer to the high mortality risks observed three weeks into lockdown. The

sharp increase in mortality risks in the first weeks of lockdowns 1 and 3 suggests that

they might have been implemented too late, as it could have been beneficial to stop

the increase earlier.

The final important finding from Figure 3.5 is the time it took for the risks to

reduce to baseline levels. Taking this baseline level as a risk of 1, it took eight weeks

after the introduction of both lockdowns 1 and 3 for the median risk across England

to reduce to that level. In the previous week 6, the risks were still largely above

this level, with 73.4% (lockdown 1) and 85.3% (lockdown 3) of LADs having risks

above 1. However, this is a slightly unfair comparison because the median risks across

England were 0.56 and 2.05 in the week preceding lockdowns 1 and 3, respectively.

The blue dashed lines in the figure show the median risks in the week preceding each
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lockdown, which can be considered an alternative baseline level. Therefore, the figure

reveals that it took ten (lockdown 1) and six (lockdown 3) weeks after introducing the

lockdowns for the median risks across England to reduce back to these pre-lockdown

levels. This large difference is because the median risk before the introduction of

lockdown 1 was much lower than that of lockdown 3. Note that the median risk

across England rose to around 3.5 (lockdown 1) and 4.1 (lockdown 3) in week 3 after

each lockdown. Hence, reducing to a risk of 2.05 (the risk before lockdown 3) from

4.1 was much easier than reducing to 0.56 (the risk before lockdown 1) from 3.5.

Note that lockdown 1 was lifted in its seventh week, while lockdown 3 was lifted in

its twelfth week. Nonetheless, their temporal trends in risks were strikingly similar.

However, England was nearing the summer when lockdown 1 was lifted. In contrast,

lockdown 3 only lasted until the end of March, which should be considered as the

number of deaths tends to be lower in the warmer months. There might be other

reasons for the longer duration of lockdown 3, and Section 3.5 provides a further

discussion on this topic.

As a conclusion for the first main question, lockdowns may reduce mortality risk

after approximately four to five weeks. However, restrictions may need to be kept in

place for additional time to reduce risk far enough to avoid an immediate increase

after the restrictions are lifted, as was observed for the second lockdown.

3.4.2 How did the temporal trends in mortality risks differ

by region in England, and which LADs were at the

highest risk?

The previous section explored the national mortality risk distribution trends in the

weeks preceding, during, and after the three national lockdowns in England. This

section looks at spatial patterns by analysing geographical differences in the temporal

risk trends at a regional level, and identifies the local authority districts (LADs, the

areal units in the data) with the highest average mortality risks in the weeks after

lockdown. Recall that there are 312 LADs which are exactly nested within the nine

English regions (East of England, East Midlands, London, North East, North West,
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South East, South West, West Midlands, and Yorkshire and The Humber), as shown

in Figure 3.1.

The analysis at the larger region scale uses weekly population-based weighted

average estimated risks and scaled estimated risks. The weekly weighted average

risks θ̂rt for region r and week t are computed as

θ̂rt =
1

Pr

∑
j∈r

Pj × θ̂jt, (3.18)

where θ̂jt denotes the risk from area j and week t, and j ∈ r indicates that LAD j

falls into region r, while Pj and Pr denote the population sizes of LAD j and region r,

respectively. Weighted averages are taken with regard to population size as the risk

in a more populous LAD will have a more substantial impact on the region’s risk than

the risk in a less populous LAD. Since the LADs are not large, the accumulations at

a regional level can be used to see if there are any larger geographical temporal risk

trends.

The weekly estimated risk in each LAD is divided by its estimated risk from the

week before the respective lockdown was implemented to obtain scaled estimated

risks. That is, the scaled estimated risk ŝjl is computed as

ŝjl =
θ̂jl

θ̂j(−1)

, l = −1, 0, 1, 2, . . . , (3.19)

where θ̂jl denotes the estimated risk from LAD j and week l after the introduction of

lockdown. So, as before, l = −1 denotes the week before the introduction of lockdown,

l = 0 denotes the week during which the lockdown was introduced, l = 1 denotes the

first week after the introduction of lockdown, and so forth. From the scaled estimated

risk, weighted averages ŝrl for region r and week l after the introduction of lockdown

are computed as

ŝrl =
1

Pr

∑
j∈r

Pj × ŝjl, (3.20)

with notation analogous to that of Equation (3.18). Thus, the scaled estimated

risk should be interpreted as the risk from a specific week during or after lockdown
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relative to the risk in the week preceding lockdown. For example, if the scaled risk

of a particular week is 2.5, then this suggests that risk was 2.5 times as large in that

week, relative to the week preceding lockdown.

Figure 3.6: Average estimated risk (left) and average scaled estimated risk (right) in weeks following the imple-
mentation of national lockdown, by region. The weeks of national lockdown are highlighted in beige. The red dashed
lines represent a risk of 1. The blue dashed lines represent a scaled risk of 1.

Figure 3.6 shows line plots for the population-based weighted averages of esti-

mated risk (left) and scaled estimated risk (right) by week and region. As before, the

red dashed lines in the plots on the left represent a risk of 1. The blue dashed lines in

the plots on the right represent a scaled risk of 1. The number of weeks that elapse

before the line from each region moves across the red and blue lines provides measures

for lockdown effectiveness to stop and reverse the trend of increasing mortality risk

at a regional level. Note that week 7 in panel (b) is again the same as week 0 in panel

(c).

First, note that the plots confirm the observation from the previous section that

the temporal trends in risks in lockdown 2 were very different from those in lockdowns
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1 and 3. Recall that lockdown 2 featured relatively constant risk over time at a

national level. At a regional level, some differences are apparent. While the mortality

risks stayed relatively constant for all regions when the lockdown was in place, the

risks increased rapidly in London, South East, and East of England after the lockdown

was lifted. This feature is particularly prominent on the scaled estimated risk plot.

Since the initial risks were very low in these regions, the increased estimated risks in

the later weeks are amplified when displayed as scaled risks, clearly separating the

temporal trends in risks in the southeast from the remaining regions of England. Note

that the Alpha variant of COVID-19 was detected in the Kent area (South East) in

September 2020, and this variant was estimated to be 1.5 times more transmissible

than earlier variants of COVID-19 (Page and McNamara, 2021). Furthermore, the

mortality risk for those infected with the Alpha variant was estimated to be 1.6 times

higher than those with earlier variants. Hence, it is likely that the Alpha variant

of COVID-19 drove the distinct mortality risk trends in southeast England after

lockdown 2. Since the main interest of this study is on reductions in mortality risk

following the implementation of lockdown, the remainder of this study will focus on

lockdowns 1 and 3, as for lockdown 2 no reduction in mortality risk was observed at

a national or regional level.

First, consider the trends in the regional average estimated risks (shown on the

plots on the left in Figure 3.6). Recall that for lockdowns 1 and 3, the temporal risk

trends were fairly similar at a national level, as the risks increased in the first three

weeks of both lockdowns before they started to decrease. This general trend can be

observed at a regional level as well. The most striking feature is that the average

estimated risk was highest in London during the first three weeks of both lockdowns,

with an especially high peak in the second week of lockdown 1. The risk started

to decrease in all regions sometime during the third or fourth week of lockdown 1,

while it decreased only in the fourth or fifth week of lockdown 3. The risk in London

reduced quickly after implementing each lockdown, which is especially noticeable in

the plot for lockdown 1. London was the second region to reach an estimated risk

of 1 (red line) in the seventh week of lockdown 1. According to Batty et al. (2021),

the proportion of essential workers in the UK is approximately 23.6%, while that of
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London is only 16%. Hence, the smaller proportion of essential workers could explain

why mortality risks reduced so quickly in London after the first weeks of lockdowns 1

and 3, while they reduced more slowly for some of the other regions. A possible

reason for this hypothesis is that while a lockdown is in place, essential workers have

much higher mobility and face-to-face interactions than non-essential workers who are

ordered to stay at home and only go out for physical exercise or essential shopping.

Generally, it seems plausible that reduced mobility has a greater impact in urban

areas, compared to rural areas where the number of face-to-face interactions might

be lower by default.

For lockdowns 1 and 3, the South West was the first region to reach an estimated

risk of 1 in the fifth and sixth week of lockdown, respectively. All regions reached an

estimated risk of 1 in the seventh or eighth week after the introduction of lockdown 3.

In contrast, for lockdown 1 some regions only reached that level in the tenth week

after the introduction of lockdown. Thus, although risks started to reduce later in

lockdown 3, they appear to have reduced more quickly than in lockdown 1. Part

of the reason could be that lockdown 3 was lifted later than lockdown 1, which was

lifted before most of the LADs reached a risk of 1.

The plots on the right, showing the scaled estimated risks, provide additional

insights into risk trends. Note that the risk in London did not increase as drastically

during lockdown 1, considering the high level where it started. Further, the risk in

London was quickest to return to its initial level within five weeks of lockdown 1.

Relative to their lower initial risk levels, the risk increased most drastically in York-

shire and The Humber, North East, and North West. In these regions, the estimated

risks also took the longest time to return to their initial levels. While this might

suggest a less effective lockdown in these regions, note that this trend did not repeat

in lockdown 3. Here, the only region that stands out is the South West, which started

at a much lower risk level than the other regions, followed by a rapid increase in risk

during the first three weeks of the lockdown. However, the plot should not stir up too

much concern; it may have taken the South West the longest to return to its initial

(particularly low) level of risk, yet it was the first region for which the estimated risk

fell below 1 (left plot). The scaled risk plot emphasises that the temporal trends in
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risks were very similar at a regional level during the third lockdown for the remaining

eight regions.

In conclusion to the second main question, regional differences in the temporal risk

trends have varied for the three lockdowns. In the first lockdown, it took longer for

risks to reduce in the northern regions of England (North East, North West, Yorkshire

and The Humber) compared to the rest of the country. In the second lockdown, the

southern regions (London, South East, South West, and East of England) started at

much lower risk levels than the other regions. London, South East, and East of Eng-

land had the steepest risk increase after the lockdown was lifted. In the weeks during

and after the second lockdown, there was no substantial reduction in mortality risks

for any region, so the second lockdown will not be analysed further in the remainder

of this study. There had been no substantial differences in temporal risk trends at a

regional level in the third lockdown. Overall, although some regional differences in

risk trends are apparent during the lockdowns, there was no clear hierarchy for the

regions of England in temporal risk trends across the three lockdowns.

The third main question asks for the LADs with the highest averages in mortality

risk in the weeks following the introduction of the lockdown. Table 3.1 presents the

five LADs with the highest average risks for the first and third lockdowns. For both

lockdowns, the average risks and standard deviations are computed over the fourteen

weeks displayed in Figure 3.6. The high average risks suggest that these LADs were

particularly vulnerable, and the standard deviations are provided to check if any

of these LADs had extreme changes in mortality risk, which could be caused by a

particularly high peak in risk followed by a rapid decrease.

Before discussing the information provided in Table 3.1, note that COVID-19

mortality risks had previously been linked to deprivation, such that more deprived

areas tend to be exposed to greater risks (Tinson, 2021). The government website

(Ministry of Housing, 2019a) provides a 2019 ranking of the index of multiple depriva-

tions (IMD) for lower layer super output areas (LSOAs), which combines deprivation

scores from several domains (Ministry of Housing, 2019c provides an infographic for

the IMD). They also provide population-based weighted averages of LSOA ranks for

each LAD (Ministry of Housing, 2019b), from which a deprivation ranking for the
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LADs in the COVID-19 mortality data is created. Now, Table 3.1 can be viewed un-

der consideration of this deprivation ranking and the regional trends discussed earlier

in this section.

Lockdown LAD (IMD rank) Average risk SD Region
1 Lambeth (42) 3.46 3.77 London

Hackney (7) 3.49 4.33 London
Haringey (37) 3.49 4.27 London
Newham (12) 3.83 4.70 London
Brent (49) 4.10 4.80 London

3 Castle Point (181) 4.05 3.70 East of England
Tower Hamlets (27) 4.11 3.94 London
Slough (73) 4.12 3.21 South East
Barking and Dagenham (5) 4.29 4.07 London
Newham (12) 4.65 4.29 London

Table 3.1: Five LADs with highest average risk across time for lockdowns 1 and 3.

Table 3.1 shows the five LADs with highest average risk across time for lockdowns

1 and 3, and the national IMD rank for the 312 LADs in this study is provided for

each LAD (in parentheses). Here, a low rank implies high deprivation (i.e., the LAD

with IMD rank 1 is the most deprived LAD). The table shows that the five LADs with

the highest average risks during lockdown 1 are all in London. Recall that according

to Figure 3.6, London was the region with the highest peak risk, which could explain

a high average risk for at least some of its LADs. The peak in the region as a whole

was followed by a rapid decrease in risk, which also seems to be the case for the five

LADs since the standard deviations are larger for the LADs with higher values of

average risk. The five LADs with the highest average risk during lockdown 3 are

in London, South East, and East of England. Again, these regions had the highest

peaks in estimated risk during that lockdown, as shown in Figure 3.6. Amongst the

five LADs in the table for lockdown 3, the standard deviations are again larger for

the LADs with higher average values, except for Slough, which has the third highest

average risk but the lowest standard deviation of the five LADs. Taking a closer look

at the data confirms that the lower standard deviation is due to the risks having

decreased much slower in Slough than in the other LADs in the table.

According to the previously described deprivation ranking, out of the 312 LADs

in mainland England, the five LADs with the highest average risk in lockdown 1

(Lambeth, Hackney, Haringey, Newham, and Brent) are amongst the 50 LADs with
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the highest deprivation. Further, they are amongst the 11 most deprived districts of

the 33 LADs in London. For lockdown 3, the LADs with the highest average risk

that are in London are Barking and Dagenham, Newham, and Tower Hamlets, which

place first, third, and fourth in the ranking of highest deprivation amongst LADs in

London. Slough has the sixth highest deprivation amongst the 63 LADs in South

East, and Castle Point has the 21-st highest deprivation amongst the 45 LADs in

East of England. While the deprivation in Castle Point does not seem exceptionally

high compared to the other local authorities in East of England, the other four LADs

have some of the highest deprivation in their respective regions.

Thus, the observations from answering the third main question lead to a hypothe-

sis that at least two driving factors cause differences in risk trends at a local authority

level. The first is the underlying regional trend, as the five LADs with the highest

average risk in each of the lockdowns all belong to the regions that have experienced

the highest levels of risk. Secondly, most LADs with the highest average risk belong

to the most deprived local authorities in their respective regions. Hence, the LADs

at the highest risk appear to be deprived districts within regions at higher risk.

3.4.3 Which local authorities shared similar temporal

trends in mortality risks?

The fourth and final main question requires checking if there are groups of LADs

with similar temporal risk trends, considering the first and third lockdowns separately.

Non-hierarchical clustering methods can be used to identify these groups. Specifically,

k-means clustering (recall Section 2.8.1.1) is applied for each lockdown such that the

LADs are assigned to between one and ten clusters according to (dis)similarities in

temporal trends in risks. Note that it is common to standardise the observations

from each variable before applying k-means clustering. However, here, the goal is to

distinguish LADs both by peak risk and time period of when the peak risk occurred, so

the estimated risks are not standardised for each week so that the k-means algorithm

can pick up these differences. Furthermore, it is desirable to assign clusterings based

on the same number of weeks for lockdowns 1 and 3 to compare temporal trends in
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risks for the two lockdowns. Recall that lockdown 3 was only lifted in the twelfth

week after the introduction of lockdown, while lockdown 1 was already lifted in the

seventh week. Hence, at least the first twelve weeks after the introduction of lockdown

should be considered to include all weeks of lockdown 3, while not too many more

weeks should be included since lockdown 1 had already been lifted in the seventh

week. With that in mind, clusterings are assigned over fourteen weeks ranging from

the week before each lockdown to the thirteenth week after the introduction of the

lockdown. The within-cluster sum of squares and average silhouette width plots

(recall Section 2.8.1.3) are used to verify that clustering is appropriate for the data

at hand and to identify the optimal number of clusters, respectively. The average

temporal trends in risks for the resulting clusters are then presented in Figure 3.8, and

the cluster assignments for the LADs are displayed on maps in Figure 3.9, allowing a

discussion of geographical differences for temporal trends in risks from the first and

third lockdowns.

Note that possibly outlying LADs regarding the temporal trends in risks are

identified using the single linkage method from hierarchical clustering (recall Sec-

tion 2.8.2). The k-means algorithm is performed on reduced datasets without these

potential outliers to check the sensitivity of the k-means algorithm for the studied

mortality data. The resulting clusterings are very similar for the full and reduced

datasets, suggesting that the clustering obtained for the full dataset is not affected

by extreme cases. Thus, the results for the full dataset are presented below.

Figure 3.7 shows the plots for average silhouette width and the within-cluster sum

of squares (recall Section 2.8.1.3) for clusterings obtained from the k-means algorithm

applied to the estimated risks in the before mentioned weeks from the first and third

lockdowns, for k = 1, 2, . . . , 10. There is a substantial drop in the within-cluster

sum of squares when moving from one cluster to two clusters, which suggests that

clustering is meaningful. For both lockdowns, the average silhouette width is greatest

for two clusters. Hence, the LADs are assigned to two clusters for the first and third

lockdowns.

For the last week before each lockdown and the thirteen weeks after the intro-

duction of lockdown, weekly weighted averages of estimated risk are computed by
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Figure 3.7: Average silhouette width (left) and within-cluster sum of squares (right) for the clusterings of the
estimated risk by lockdown, obtained for different numbers of clusters.

cluster. That is, the weighted average estimated risk θ̂ct for cluster c and week t is

computed as

θ̂ct =
1

Pc

∑
j∈c

Pj × θ̂jt, (3.21)

where Pc and Pj are the population sizes for cluster c and LAD j respectively, and

j ∈ c denotes that LAD j is in cluster c. The risks are accumulated by cluster to

obtain summary statistics, since it is not practical to look at the risks of all 312 LADs

simultaneously. The averages are weighted by population size since the risks from the

LADs with larger populations contribute stronger to the risk of the entire population

in that cluster than the risks from LADs with smaller populations.

Figure 3.8 presents plots that show the median average estimated risks with 95%

credible intervals by cluster and week, over the 2,000 simulations obtained from the

fitted model. The red dashed line indicates an estimated risk of 1. The 95% credible

intervals are barely visible, suggesting that there is very little variation in the simu-

lated average risks by cluster. The trends in risk look relatively similar for cluster 1

from each lockdown. The same holds for cluster 2. In the first three to four weeks

of each lockdown, the LADs in cluster 1 were at a substantially higher average risk
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Figure 3.8: Median average estimated risks with 95% credible intervals in the weeks following the implementation
of national lockdown, by cluster. The weeks of national lockdown are highlighted in beige.

than those in cluster 2. The peak average estimated risk for cluster 1 of lockdown 3

was not as high (approximately 6.59) as the peak average estimated risk for cluster 1

of lockdown 1 (approximately 8.34). However, note that cluster 1 of lockdown 1 con-

sists of only 65 LADs, while cluster 1 of lockdown 3 consists of 126 LADs. The peak

average estimated risk for cluster 2 was similar for the two lockdowns (approximately

3.31 for lockdown 1 and 3.07 for lockdown 3). Lastly, the average estimated risk from

the two clusters became relatively similar towards the last weeks for both lockdowns,

from the sixth week of lockdown 1 and the tenth week of lockdown 3 onward.

Lockdown 3
Lockdown 1 Cluster 1 Cluster 2

Cluster 1 45 20
Cluster 2 81 166

Rand index: 0.5607

Table 3.2: Contingency table for the cluster memberships of LADs in the first and third lockdowns.

Table 3.2 shows a contingency table that provides additional insights into the

cluster assignments for the first and third lockdowns. It indicates that 45 of the 65

LADs in cluster 1 of the first lockdown were also in cluster 1 of the third lockdown,

while 81 LADs switched from cluster 2 of lockdown 1 to cluster 1 of lockdown 3. Thus,

most of the LADs at higher risk in lockdown 1 were also at higher risk in lockdown 3,
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while many additional LADs from cluster 2 in lockdown 1 were assigned to cluster 1

of lockdown 3. The Rand index (recall Section 2.8.1.4) of 0.5607 between lockdowns 1

and 3 suggests that the two clusterings are not very similar. However, the difference

between the two clusterings appears to be mostly driven by the much larger number

of LADs in cluster 1 of lockdown 3 (126) than in cluster 1 of lockdown 1 (65).

(a) First lockdown (b) Third lockdown

Figure 3.9: Maps showing clusters that were formed based on the temporal trends in the weekly estimated risks,
by lockdown.

The ultimate goal for this part of the study is to see any geographical patterns

for LADs with similar temporal risk trends. Therefore, Figure 3.9 shows maps for

lockdowns 1 and 3 that display the cluster memberships of the LADs in the two

lockdowns.

In lockdown 1, most of the separation into the two clusters appears to be ex-

plained by an urban/rural divide. The peak estimated risk was higher in LADs close

to London (9.3 million people), Manchester (2.73 million people), Birmingham (2.6

million people), Liverpool (902,000 people), and Sunderland (341,000 people), while

lower in most rural areas (the approximate population sizes in 2020 were obtained

from Statista, 2020). In lockdown 3, some urban/rural divide is still noticeable, as
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some LADs in the higher risk cluster are close to London, Birmingham, Liverpool,

and Leicester (552,000 people) and to smaller urban areas such as Hull or Worcester.

However, the most prominent feature is that most LADs at higher risk levels are in

the southeast of England in London (82% of LADs in cluster 1), East of England

(71% of LADs in cluster 1), and South East (62% of LADs in cluster 1) which might

be explained by the more accelerated spreading of the Alpha variant of COVID-19

which originated in Kent in the southeast. Additionally, Grint et al. (2021) suggest

that 11% of Alpha variant cases of COVID-19 from their study population of 185,234

people who tested positive between 16th November 2020 and 11th January 2021 were

observed in the North West, which could explain the higher risks in the adjacent

LADs of Eden, Allerdale, and Carlisle (the three large adjacent areas in cluster 1 in

the North West).

Figure 3.10: Boxplots for the IMD ranks of LADs in the two clusters of lockdowns 1 and 3.

Figure 3.10 shows the distribution of IMD rankings in each cluster for lockdowns

1 and 3 (where a lower rank implies higher deprivation, e.g., the area ranking first has

the highest deprivation). Cluster 1 of lockdown 1 has a median IMD rank of 89, while

that of cluster 2 is 176. In comparison to the median ranks from lockdown 1, the

median IMD rank in cluster 1 of lockdown 3 is substantially higher at 130, while that

of cluster 2 is the same at 176. Hence, there might be an association between higher

deprivation and increased risks during lockdown 1. Given the urban/rural divide

observed for lockdown 1, this suggests that more deprived areas within urbanisation
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have been at greatest risk in lockdown 1. In contrast, in lockdown 3, most of the

divide into the two clusters seems to be explained by the spreading of the Alpha

variant.

3.5 Discussion

The motivation for this study was to explore the temporal trends in COVID-19

mortality risks after national lockdowns, with the main quantity of interest being how

long it took for them to effectively reduce mortality risks below the levels from before

the lockdowns were introduced. The study was based in England. The temporal

trends in mortality risks following the three national lockdowns were investigated

using weekly mortality counts on a medium area scale of local authority districts

(LADs). A Poisson log-linear model was fitted to these count data in a Bayesian

setting using MCMC methods, where the spatio-temporal trends in mortality risks

were modelled with a spatially correlated second-order autoregressive process. The

analysis highlighted some key findings, which are summarised below.

At a national level (see Section 3.4.1), for lockdowns 1 and 3, it took around three

weeks after the introduction of lockdown for mortality risks to stop increasing and ten

weeks (lockdown 1) and six weeks (lockdown 3) respectively for the risks to reduce to

pre-lockdown levels, which could have been due the differences in pre-lockdown risks,

with median risks of 0.56 and 2.05 for lockdowns 1 and 3, respectively. In contrast,

lockdown 2 did not lead to a meaningful reduction in mortality risk, likely because

it was introduced earlier than the other lockdowns (risks did not increase in the first

weeks of lockdown 2) or because it was in place for only four weeks. For lockdowns

1 and 3, mortality risks only stopped increasing after three weeks of lockdown, likely

because there is a 21 to 25-day lag between disease onset and mortality (ONS, 2021a).

The meta-analysis by Khalili et al. (2020) agrees, confirming this study’s findings with

an estimated 21.61 days between infection and death. While Al-Zoughool et al. (2022)

have only studied the relationship between the duration and timing of lockdown with

hospital cases and infection rates rather than mortality risk, their results confirm that

a lockdown of fewer than 30 days may not lead to substantial reductions, which may
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explain the results for lockdown 2. Furthermore, Mellone et al. (2021) also suggested

a longer lockdown of about 50 days as most beneficial in reducing the number of

infections and deaths in Israel and Germany.

The clustering analysis of temporal trends at a local authority level (see Sec-

tion 3.4.3) in lockdown 1 revealed an urban/rural risk divide, with urban areas tending

to have a higher peak risk. Hamidi et al. (2020) partially corroborate these findings

by showing higher risks for larger metropolitan areas in the USA but lower risks for

more densely populated counties. Hence, the urban/rural divide might be driven by

multiple factors such as population density, hospital occupancy rates, and mobility

within and between districts. Additionally, the geographical analysis suggested that

more deprived areas tend to be at higher risk. Several studies have shown an associa-

tion between higher deprivation and increased mortality risks, including Williamson

et al. (2020) and Sartorius et al. (2021).

For lockdown 3, the cluster analysis indicated higher peak risks in southeast Eng-

land, confirmed by the regional averages presented in Figure 3.6. The heavy concen-

tration of elevated risks in the southeast suggests a link between the Alpha variant

detected in the Kent area (South East) in September 2020 and higher levels of risk.

Grint et al. (2021) adds weight to this hypothesis by finding both an increased spread-

ing of the Alpha variant in the southeast and higher mortality risks associated with

the Alpha variant when compared to earlier versions of COVID-19.

Lastly, the comparison of temporal risk trends for the three lockdowns at a na-

tional level (see Section 3.4.1) showed that the median estimated risk from the week

before the introduction of lockdown 3 was much higher than that of lockdowns 1 and

2. The higher median risk could be due to a delayed implementation of lockdown 3

after the Christmas holidays, followed by more hospital patients in the first weeks of

2021 than during the peak of April 2020 (Prime Minister’s Office, 2021b). Although

mortality risks were at a similar level in weeks 7 through 12 after the implementation

of the lockdown, the first lockdown was lifted in its seventh week, while lockdown 3

was only lifted in its twelfth week. Lockdown 3 was kept in place because the num-

ber of patients in hospitals was high (Prime Minister’s Office, 2021a) despite the low

mortality risks, which suggests that the relationship between mortality risks and the
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number of patients in hospitals had changed from lockdown 1 to lockdown 3. Indeed,

Gray et al. (2021) showed that the proportion of mortalities amongst hospitalised

COVID-19 patients had decreased substantially from the first wave (lockdown 1) to

the second wave (lockdowns 2 and 3). Hence, studying the impact of lockdowns on

hospital admissions could be a valuable extension to this study to see if lockdowns

can help relieve the stressed healthcare sector in the peak times of the pandemic.

When communicating these results, it is important to state that this study is

exploratory. The study could not assess a ‘causal effect’ of lockdown on mortality

risk as the counterfactual event of what would have happened without the lockdown

could not be observed. Hence, the study comments on trends alone. Although only

lockdowns 1 and 3 lasted long enough to show a reduction in mortality risks, the

temporal trends at a national level were quite similar for these lockdowns, which

suggests that lockdowns might have a real effect in reducing mortality risks. Since

no explanatory variables were included in the model, high risks might be explained

by unmeasured risk factors such as the number of care homes or levels of deprivation

in each LAD. Hence, possible future work would be to examine the effects of these

other covariate factors. However, if explanatory variables were to be included in the

model, a great variety of them should be considered to reduce the chances of failing

to account for confounding variables that could lead to incorrect estimates for the

variables included in the model.

The study could be extended by considering local lockdowns or the tiered restric-

tions implemented in October and December of 2020 to study additional nuances of

how restrictions could affect mortality risks. Alternatively, data from different coun-

tries could be considered. However, for the study of local lockdowns or lockdowns

from multiple countries, the data would have to capture differences in lockdown mea-

sures. Also, when considering data from multiple countries, not only differences in

institutional arrangements but also national cultural orientation should be considered

(Yan et al., 2020), as the citizen’s obedience to restrictions could impact the effec-

tiveness of the lockdown. However, even when obedience is considered, the results

might not be clear since people who obey the restrictions are not always guaranteed

not to get infected with COVID-19. Similarly, those who disregard the restrictions
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are not guaranteed to get infected.

Based on this discussion, an exciting prospect for future studies could be to link

mortality risks to the number of hospitalisations or infections when studying the im-

pact of lockdown. However, the number of infections should be considered carefully as

many infections will not have been reported. Additionally, information on vaccination

status and the particular variant of COVID-19 that led to death could be considered

in the analysis of temporal trends in mortality risks following the introduction of the

lockdown, depending on data availability.

National lockdowns were implemented as a non-pharmaceutical intervention to

reduce the spreading of the virus. In the summer of 2021, COVID-19 vaccines became

available at large scale in the UK. Hence, as a natural continuation of studying public

health aspects of the COVID-19 pandemic in the UK, Chapter 4 presents an analysis

of a COVID-19 vaccine-related topic. Specifically, the study analyses COVID-19

vaccine fatigue in Scotland, identifying trends in attrition rates for the second and

third doses and identifying differences by age, sex, and council area.
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Chapter 4

COVID-19 vaccine fatigue in

Scotland: How do the trends in

attrition rates for the second and

third doses differ by age, sex, and

council area?

4.1 Introduction

The introduction of Chapter 3 discussed the COVID-19 pandemic and its devastating

impact on physical health, resulting in more than 6 million deaths worldwide (Johns

Hopkins University & Medicine, 2022). In the first year of the pandemic, no effective

medical treatment was available for the novel coronavirus disease, forcing governments

to implement non-pharmaceutical interventions, such as lockdowns (see Chapter 3),

to limit its spread. Pharmaceutical companies developed COVID-19 vaccines at an

unprecedented speed, allowing for the start of large-scale vaccination programmes

by the end of 2020 to slow down the spread of the virus, reduce the severity of

disease progression in those vaccinated who become infected, and ultimately reach

herd immunity. The vaccine developed by Pfizer/BioNTech was the first to be granted
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emergency use by UK regulators on 2nd December 2020, making the UK the first

country to approve a COVID-19 vaccine that was tested in a large clinical trial

(Ledford et al., 2020). By June 2022, 150 million doses of COVID-19 vaccine had

been administered in the UK (UK Health Security Agency, 2023a), and more than

11.4 billion doses had been administered worldwide (Johns Hopkins University &

Medicine, 2022).

As of 27th May 2022, there are 160 vaccines in clinical development, with 11 vac-

cines in phase IV (WHO, 2022), meaning that they have been approved and licensed

(CDC, 2014). COVID-19 vaccines are either genetic (i.e., DNA- or RNA-based),

or use live-attenuated viruses, inactivated viruses, protein subunits, or replication-

deficient vectors as platforms (Nagy and Alhatlani, 2021). In the time frame of

this study, Scotland (the study area) had authorised only the vaccines developed by

Pfizer/BioNTech, Oxford/AstraZeneca, and Moderna for use (PHS, 2022). These

vaccines started to roll out on 8th December 2020, 4th January 2021, and 7th

April 2021, respectively (The Scottish Parliament, 2022). The vaccines developed by

Pfizer/BioNTech and Moderna are RNA-based, while that of Oxford/AstraZeneca

uses a non-replicating viral vector as a platform (Ndwandwe and Wiysonge, 2021).

All three vaccines have completed phases I-III of their clinical trials. The respec-

tive developers have published their phase III efficacy results, and continued phase

IV studies after the vaccines had been approved and licensed (WHO, 2022). Phase

III of the respective clinical trials resulted in an estimated efficacy of 95% for the

Pfizer/BioNTech vaccine, 94% for the Moderna vaccine, and 62-90% for the Ox-

ford/AstraZeneca vaccine after the administration of two doses (Costanzo et al.,

2022).

While Phase III of the clinical trials promised high efficacy of the vaccines against

COVID-19, vaccine efficacy and the duration of protection might vary for the different

virus variants. Bernal et al. (2021) compared the effectiveness of the Pfizer/BioNTech

and Oxford/AstraZeneca vaccines against the Alpha and Delta variants of the COVID-

19 virus. For both vaccines, the estimated vaccine effectiveness was greater than 60%

for both variants, with the Pfizer/BioNTech vaccine having overall higher effective-

ness than the Oxford/AstraZeneca vaccine. Furthermore, their results suggested that
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both vaccines were much more effective after administering a second dose than re-

ceiving only the first dose. Regarding the waning of vaccine effectiveness, Andrews

et al. (2022b) suggested that the protection against COVID-19-related hospitalisa-

tion and death remained high 20 weeks after administering two doses of either the

Pfizer/BioNTech or Oxford/AstraZeneca vaccine. Still, third doses (commonly re-

ferred to as booster vaccines) were shown to provide increased protection not only

against symptomatic COVID-19 infection, but also against hospitalisation and death

(Andrews et al., 2022a). Thus, receiving additional doses of the vaccine appears to

be beneficial in the fight against the virus.

According to the UK government website (https://coronavirus.data.gov

.uk/details/vaccinations), by 17th May 2022, 4.51 million people in Scotland

had received the first dose of vaccine, and 4.20 million people were fully vaccinated,

meaning that they had received a first and second dose. Thus, roughly 300,000

people received the first but not the second dose. Furthermore, only 3.53 million

people received the third dose (booster). Note that three months after receiving the

second dose of the COVID-19 vaccine, everyone over 16 becomes eligible for such a

booster vaccine (NHS, 2022). Hence, with 4.01 million people in Scotland receiving

the first and second doses before the end of 2021, almost 500,000 people of those

eligible to take up the booster vaccine by 17th May 2022 did not do so.

The substantial number of people who opted not to receive either their second or

third doses of the vaccine suggests they have experienced something similar to vac-

cine hesitancy, which MacDonald (2015) defines as a “delay in acceptance or refusal

of vaccination despite availability of vaccination services”. The author acknowledges

that vaccine hesitancy is complex and case-specific, yet claims three factors influ-

ence vaccine hesitancy generally: confidence, complacency, and convenience. For

COVID-19 specifically, vaccine confidence could be affected by the vaccines’ rapid

development, unforeseen future side effects, and concerns about vaccines being pro-

moted for pharmaceutical gains, which Kumari et al. (2021) have identified as factors

likely related to COVID-19 vaccine hesitancy. Kourlaba et al. (2021) suggested that

the source of information impacted vaccine hesitancy, saying that those “informed

by mass media and official national and state websites were more likely to be willing
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to get vaccinated over those informed by social media, internet, or other sources”.

Mewhirter et al. (2022) identified a lack of trust and knowledge about the COVID-19

vaccines as one of the key factors associated with vaccine hesitancy. Additionally,

they claimed that seeing a COVID-19 infection as a significant risk to one’s health

or the health of people in one’s social network might be linked to higher vaccine

acceptance, which explains how complacency could play a role in COVID-19 vaccine

hesitancy. Lastly, the findings by Mayer et al. (2022) suggest that convenience could

affect vaccine hesitancy, as they found that having to take time off work or travel to

get the vaccine was associated with higher vaccine hesitancy.

Several studies suggested associations between vaccine hesitancy and demographic

variables. For example, people of older age (Mewhirter et al., 2022), higher socioeco-

nomic status (Kumari et al., 2021), and higher levels of education (Liu and Li, 2021)

appeared less hesitant to get vaccinated. Lee and Huang (2022) found that areas

with higher population densities appeared to have higher vaccination rates, which is

supported by Khubchandani et al. (2021) who claimed that rural populations were

more hesitant. Lastly, the review by Troiano and Nardi (2021) showed that several

studies indicated women tended to show greater vaccine hesitancy than men.

In this study, only the population who received at least a first dose of vaccine

is considered, and hence their delay in acceptance or refusal of subsequent doses is

referred to as vaccine fatigue, as a distinction from vaccine hesitancy which refers to

the acceptance or refusal of any doses. A discussion on similarities and differences

between the previously mentioned associations of demographic variables with vaccine

hesitancy and the associations between vaccine fatigue and the variables sex, transi-

tion between doses, age, and area examined in this study are presented in Section 4.5.

It appears that vaccine fatigue has so far only been considered in the study of

booster vaccine uptake. For example, Rzymski et al. (2021) and Sønderskov et al.

(2021) suggested that older people had a higher willingness to receive a booster

vaccine in Poland and Denmark, respectively. While Rzymski et al. (2021) found

that females in Poland were associated with higher willingness than males to receive

the booster vaccine, Gaffney et al. (2022) showed that in the USA, females had

lower odds of booster receipt than males. Rzymski et al. (2021) and Dziedzic et al.
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(2022) identified a reduced willingness to receive the booster vaccine in the Polish

population previously infected with the virus, and Geers et al. (2022) found that in

the USA, “booster intentions were not associated with the number of side effects, side

effect intensity, or the occurrence of an intense side effect from a primary COVID-

19 vaccine”. Paul and Fancourt (2022) suggested that in the UK, having a lower

educational qualification, lower socio-economic status, and age below 45 years were

associated with greater uncertainty and unwillingness to receive the booster vaccine,

while their study suggested no such association with sex.

The novelty of this study is that in the examination of vaccine fatigue, it distin-

guishes between the proportions of people who received the first dose of the vaccine

but not a second dose, and those who received the first and second doses but not

the third (booster). Throughout this chapter, the proportions of people leaving the

vaccination programme are referred to as attrition rates, and mathematical notation

is provided in Section 4.2.3. The study analyses the impact of the demographic vari-

ables age and sex on the attrition rates within Scotland while accounting for spatial

variation across council areas and allowing trends to differ in the two transitions

(from doses 1 to 2 and 2 to 3). The following are the main questions of interest:

1. Are there any trends in attrition rates by age group, and does this vary by sex?

2. Are there any spatial patterns in attrition rates by council area, and does this

vary by sex?

3. How do these trends and patterns compare across the two transitions (from

doses 1 to 2 and 2 to 3)?

The motivating questions are of particular interest to health authorities, as the de-

tected trends and patterns in attrition rates can help vaccination campaigns target

those demographic groups that are most likely to drop out of the vaccination pro-

gramme. The targeted campaigns could improve the effort to make a larger propor-

tion of the population continue receiving doses of the COVID-19 vaccine to reduce

the spreading of the virus to protect the most vulnerable and ultimately reach herd

immunity. Moreover, estimating the trends in attrition rates allows to identify sub-
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groups that do not follow the overall trends which might help investigate the possible

reasons for why in some subgroups the uptake was lower than expected.

The remainder of this chapter is organised as follows. Section 4.2 defines attrition

rates and presents the data from the vaccination programme in Scotland. Section 4.3

describes the methodology that is applied, while Section 4.4 presents the results of

the study. Section 4.5 provides a discussion of the study results, limitations, and

possible future work.

4.2 Motivating study

4.2.1 Study region

The region of this study is Scotland, UK, which is partitioned into 32 council areas.

According to mid-2020 population estimates, the population sizes of these council

areas range from 22,400 people on the Orkney Islands to more than 635,000 people in

Glasgow City, and the sizes of the geographical areas range from 60 square kilometres

in Dundee City to 25,653 square kilometres in the Highlands (ONS, 2021c).

4.2.2 Vaccination data

Public Health Scotland (PHS) provides data on the daily numbers of vaccinations for

each dose (1st, 2nd, 3rd) of vaccine administered by sex (female, male), age group

(18 to 29, 30 to 39, 40 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 79,

80+), and council area (32 local authorities), which are publicly available at https:

//www.opendata.nhs.scot/dataset/covid-19-vaccination-in-scotland.

These data are available from 8th December 2020, when the Scottish vaccination

programme began, and the data used in this study end on 19th April 2022. For

this study only the cumulative counts of vaccine uptake in adults at 19th April

2022 are used, since vaccines became gradually available based on age, vulnerability,

or exposure to the virus (Department of Health & Social Care, 2021b), making the

analysis of temporal trends in vaccine uptake impractical. Specifically, the data relate

to the number of people who received a first, first and second, or first, second, and
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third (booster) dose by the cutoff date. By 19th April 2022, 4,013,535 (∼90%) people

of age 18 and over had received the first dose, 3,879,067 (∼87%) had received the

first and second doses, and 3,397,185 (∼77%) had received the first, second, and third

doses of the vaccine (the proportions are based on a mid-2020 population estimate of

4,439,078 people aged 18 and over in Scotland, NRS, 2021). Note that the data do

not specify the type of vaccine administered. However, at the time of this study, only

the vaccines developed by Pfizer/BioNTech, Oxford/AstraZeneca, and Moderna had

been offered in Scotland (PHS, 2022).

In this study, the population under consideration consists of only those individuals

in Scotland who had received at least a first dose of vaccine. The youngest age group

in this study, 18 to 29 years old, was the last age group who were able to book booster

appointments, starting 15th December 2021 (Scottish Government, 2021b). Thus, by

19th April 2022, everyone in Scotland aged 18 years and older should have had enough

time to receive all three doses if desired. Hence, it is likely that most people who

did not continue to receive their second or third doses of vaccine experienced vaccine

fatigue (delay or refusal to accept another dose of the vaccine), rather than being

unable to take up the vaccination due to health restrictions or limitations in the

number of vaccines being offered.

4.2.3 Attrition Rates

Let Ysgkd denote the cumulative number of people of sex s (s = female,male) in age

group g (g = 1, 2, . . . , G(= 10)) from council area k (k = 1, 2, . . . , K(= 32)) who have

received a dth (d = 1, 2, 3) dose of the COVID-19 vaccine by 19th April 2022. This

study focuses on attrition rates, which refer to the proportion of people who leave the

vaccination programme after receiving a preceding dose. The doses of the COVID-

19 vaccine form a sequence with states ‘dose 1’, ‘dose 2’, and ‘dose 3’. Adopting a

commonly used notation from sequence analysis (Liao et al., 2022), this study uses

the term transition to denote a change of state (from doses 1 to 2 or 2 to 3) in this

sequence. The attrition rate in the transition from dose (d − 1) to dose d of sex s,
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age group g, and council area k is denoted by A
(d−1)d
sgk and computed as

A
(d−1)d
sgk = 1− Ysgkd

Ysgk(d−1)

, for d = 2, 3. (4.1)

Note that the exploratory analysis that follows will present the attrition rates as

percentages to give a more intuitive interpretation, thus multiplying Equation (4.1)

by 100. The focus of this study is on the attrition rates between doses 1 and 2

(A12
sgk), and between doses 2 and 3 (A23

sdk), to see if there are any trends over the

different age groups or patterns across the council areas, and if this varies by sex or

across the two transitions. Note that the observed attrition rates are likely to be noisy

estimates of the true underlying attrition rates, since the observed vaccination counts

Ysgk(d−1) and Ysgkd may be subject to data processing errors or random variation.

Possible associations between the so observed attrition rates and the other variables

age group, sex, transition between doses, and council area are explored descriptively in

Section 4.2.4. The models presented in Section 4.3 estimate the shape and magnitude

of these associations to obtain smoothed estimates of the expected attrition rates.

4.2.4 Associations between attrition rates and other

variables

The goal of this study is to obtain smooth estimates of the expected attrition rates

that reflect the associations between the observed attrition rates and the variables

age group, sex, transition between doses, and council area. This section provides a

descriptive exploratory analysis to identify these associations. Note that other vari-

ables could be used to obtain smoothed estimates, however the PHS data presented

in Section 4.2.2 only provides the vaccination counts by age group, sex, dose, and

council area, and therefore only these variables are considered at this stage of the

analysis.

4.2.4.1 How do the attrition rates vary by age?

Figure 4.1 presents transition-specific boxplots that show the observed attrition rates

over the 32 council areas for each combination of age group and sex. The plots
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show that attrition rates tend to decrease with increasing age and are generally much

higher in the transition from doses 2 to 3 than in the transition from doses 1 to 2.

In both transitions, the sub-group with the highest observed attrition rates is that of

males aged 18 to 29 years, with median attrition rates of 8.84% (from doses 1 to 2)

and 32.75% (from doses 2 to 3).

Attrition rates tend to be higher for males than females in age groups 54 years and

younger, and this trend reverses for age groups 75 years and older, where males tend

to have lower attrition rates than females. This is not easy to see in Figure 4.1, which

uses the same scale for all age groups; Section B.1 of the appendix provides additional

plots that show the reversing trend more clearly. Furthermore, the differences in

attrition rates between the two sexes tend to be larger for younger age groups, and

they become more similar with increasing age, which suggests a possible interaction

effect between age group and sex on the attrition rates. For age groups 59 years and

younger, the variation within (i.e., over council areas) and between age groups is much

larger in the transition from doses 2 to 3 than in the transition from doses 1 to 2,

suggesting a possible interaction effect between age group and transition. Similarly,

the differences between sexes tend to be much larger for age groups 54 years and

younger in the transition from doses 2 to 3 than in the transition from doses 1 to 2,

suggesting a possible interaction between sex and transition in the age group effects.

Figure 4.1: Boxplots of the attrition rates (in %) for the different age groups, by sex and transition.
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4.2.4.2 How do the attrition rates vary by council area?

Next, consider the differences in attrition rates by council area and sex for the tran-

sitions from doses 1 to 2 and 2 to 3. Averaging over age group, the number of people

of sex s in council area k who received up to the d-th dose of vaccine is computed by

Yskd =
∑10

g=1 Ysgkd, yielding an attrition rate from dose (d− 1) to dose d of

A
(d−1)d
sk = 1− Yskd

Ysk(d−1)

, for d = 2, 3. (4.2)

COVID-19 vaccine fatigue in Scotland 3

Fig. 1. Attrition rates (in %) for the different age groups, by sex and transition (from doses 1 to 2 and 2 to 3).

A
(d−1)d
sgk

and computed as

A
(d−1)d
sgk

= 1 − Ysgkd

Ysgk(d−1)
, for d = 2, 3. (1)

Note that the exploratory analysis that follows will present the
attrition rates as percentages to give a more intuitive interpretation,
thus multiplying (1) by 100. The focus of this study is on the
attrition rates between doses 1 and 2 (A12

sgk), and between doses
2 and 3 (A23

sdk), to see if there are any trends over the age groups
or patterns in the council areas, and if these vary by sex or across
the two transitions. Note that the observed attrition rates are likely
to be noisy estimates of the true underlying attrition rates since the
observed vaccination counts Ysgk(d−1) and Ysgkd may be subject
to data processing errors or random variation.

Exploratory analysis
Figure 1 presents transition-specific boxplots that show the observed
attrition rates for each combination of age group and sex. The plots
show that the attrition rates tend to decrease with increasing age
and are generally much higher in the transition from doses 2 to 3
than in the transition from doses 1 to 2. In both transitions, the
sub-group with the highest observed attrition rates is that of males
aged 18 to 29 years, with median attrition rates of 8.84% (from doses
1 to 2) and 32.75% (from doses 2 to 3).

Aditionally, attrition rates tend to be higher for males than
females in age groups 54 years and younger, and this trend reverses
for age groups 75 years and older, where males tend to have lower
attrition rates than females. This is not easy to see in Figure 1, which
uses the same scale for all age groups; please see Section S1 of the
supplementary material for additional plots that show the reversing
trend more clearly. Furthermore, the differences in attrition rates
between the two sexes tend to be larger for younger age groups,
and they become more similar with increasing age, which suggests
a possible interaction between age group and sex on the attrition
rates.

Averaging over age group, the number of people of sex s in council
area k who received up to the dth dose of vaccine is computed by
Yskd =

∑10
g=1 Ysgkd, yielding an attrition rate from dose (d− 1) to

dose d of A(d−1)d
sk

= 1 −
(
Yskd

/
Ysk(d−1)

)
, for d = 2, 3. Figure 2

presents the spatial patterns in the attrition rates (in %) across
council areas for each combination of sex and transition (from doses

1 to 2 and 2 to 3). Note, the colour scales in Figure 2 are the same for
females and males in each transition, as the ranges of attrition rates
are relatively similar for the two sexes. However, since the ranges of
attrition rates are quite different in the two transitions, the colour
scale for the transition from doses 1 to 2 differs from that of the
transition from doses 2 to 3.

(A) Female, doses 1 to 2. (B) Female, doses 2 to 3.

(C) Male, doses 1 to 2. (D) Male, doses 2 to 3.

Fig. 2. Attrition rates (in %) by council area, sex, and transition. (A)
Female, transition from doses 1 to 2. (B) Female, transition from doses
2 to 3. (C) Male, transition from doses 1 to 2. (D) Male, transition from
doses 2 to 3. Note that the Orkney Islands and Shetland Islands are
downscaled and presented in a box rather than at their true location in
the North of Scotland to make the maps more compact.

In each transition, the highest attrition rates were observed for
males in Glasgow City, at 5.87% (from doses 1 to 2) and 19.28%
(from doses 2 to 3) respectively. These attrition rates imply that in

Figure 4.2: Maps showing the attrition rates (in %) by council area, sex, and transition.

Figure 4.2 presents the spatial patterns in the attrition rates (in %) across council

areas for each combination of sex and transition (from doses 1 to 2 and 2 to 3). Note
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that the Orkney Islands and Shetland Islands are downscaled and presented in a box

rather than at their true location in the North of Scotland to make the maps more

compact. The full map of Scotland is included in Section B.2 of the appendix, for

reference. The attrition rates range from 1.25% to 4.90% for females and from 1.46%

to 5.87% for males in the transition from doses 1 to 2. In the transition from doses 2

to 3, the attrition rates range from 5.20% to 16.00% for females and from 7.72% to

19.28% for males. Note that the colour scales in Figure 4.2 are the same for females

and males in each transition, as the ranges of attrition rates are relatively similar for

the two sexes. However, since the ranges of attrition rates are quite different in the

two transitions, the colour scale for the transition from doses 1 to 2 differs from that

of the transition from doses 2 to 3. Thus, while the colour distributions allow for a

direct comparison of the attrition rates for the two sexes in each transition, they can

only be used for a relative comparison between transitions.

In each transition, the highest attrition rates were observed for males in Glasgow

City, at 5.87% (from doses 1 to 2) and 19.28% (from doses 2 to 3), respectively. These

attrition rates imply that in Glasgow City, roughly one in 20 males who received the

first dose did not receive the second dose, and approximately one in five males who

received the second dose did not receive the third. The pattern of shading on the

maps look relatively similar for each sex when moving from the first transition to the

second, suggesting that there could be consistent spatial patterns in the attrition rates

across the two transitions. However, for males, there are a few council areas whose

attrition rates changed drastically from the first transition to the second, compared to

the changes in most other council areas. For example, males in Argyll and Bute had

one of the highest attrition rates (5.69%) in the transition from doses 1 to 2 but one

of the lower attrition rates (10.65%) in the transition from doses 2 to 3, suggesting

that relative to the other council areas, more people left the vaccination programme

after their first dose but fewer left after their second. Such extreme differences in a

few council areas suggest that there might be an interaction effect between council

area and transition on attrition rates. While attrition rates tend to be higher for

males than females, the spatial distributions of attrition rates look relatively similar

for the two sexes (except for Argyll and Bute in the first transition). Hence, there
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may not be much of an interaction between the variables council area and sex on

attrition rates.

A Moran’s I test (recall Section 2.5.1.1) can be used as a formal check of whether

there is any spatial autocorrelation in the attrition rates. Here, Moran’s I test statistic

for sex s and the transition from dose (d− 1) to dose d is computed as

Isd =
K
∑K

k=1

∑K
j=1wkj

(
A

(d−1)d
sk − Ā(d−1)d

s

)(
A

(d−1)d
sj − Ā(d−1)d

s

)
(∑K

k=1

∑K
j=1 wkj

)∑K
k=1

(
A

(d−1)d
sk − Ā(d−1)d

s

)2 , (4.3)

where Ā
(d−1)d
s = 1

K

∑K
k=1A

(d−1)d
sk is the average observed attrition rate over all council

areas, for sex s and the transition from doses (d− 1) to d, and wkj indicates whether

or not council areas k and j share a border; i.e., wkj = 1 if council areas k and j share

a border, and wkj = 0, otherwise. The Moran’s I statistic can only be computed for

data where each area has at least one weight different from zero; i.e., for each area

k, there is at least one area j 6= k such that wkj > 0. Since only council areas

in mainland Scotland share borders with other council areas, the Orkney Islands,

Shetland Islands, and the Western Isles Na h-Eileanan Siar (the Outer Hebrides)

are linked to their nearest council areas before computing the test statistic. This

artificially links the Shetland Islands and the Orkney Islands, the Orkney Islands

and the Highlands, and the Western Isles Na h-Eileanan Siar and the Highlands.

The computed test statistics are -0.0576 (female, from doses 1 to 2), -0.0176 (male,

from doses 1 to 2), 0.0888 (female, from doses 2 to 3), and 0.0361 (male, from doses

2 to 3).

To test if the spatial autocorrelations in each combination of sex and transition

are statistically significant, a permutation test is performed based on 10,000 random

permutations of the data, using Monte Carlo simulation. That is, in each of the 10,000

iterations the observed attrition rates are randomly assigned to the council areas, and

Moran’s I statistic is computed for each permuted set. This distribution generated

under independence is then compared to the original statistic that was computed for

the observed data to yield a p-value against independence. For each combination

of sex and transition, the permutation test is evaluated using a significance level of

α = 0.05. The p-values for the test statistics are 0.5746 (female, from doses 1 to 2),
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0.4250 (male, from doses 1 to 2), 0.1426 (female, from doses 2 to 3), and 0.2653 (male,

from doses 2 to 3). Since all of these p-values are much larger than 0.05, none of the

permutation tests suggests there is statistically significant spatial autocorrelation in

the observed attrition rates.

However, this lack of significance is possibly due to the very small number of

council areas (only 32), meaning that significant effects are harder to find. Hence,

there remains a possibility that there might be some spatial structure in the data, and

it is desirable to consider a flexible model for this study that estimates the strength

of the spatial correlation from the data.

4.3 Methodology

The model used in this study is designed to identify the trends and patterns in

attrition rates by age group and council area, and to examine how these differ by

sex and transition (from doses 1 to 2 and 2 to 3). In describing the proposed model,

Section 4.3.1 describes the data likelihood and Section 4.3.2 presents the structure

of the random effects. Section 4.3.3 discusses prior specifications and Section 4.3.4

presents simplified versions of the random effects structures that are considered to

prevent the model from overfitting.

4.3.1 Data Likelihood

The goal is to estimate the attrition rates from doses 1 to 2 and doses 2 to 3, so for

each sex s, age group g, and council area k, I simultaneously model the number of

people who received dose 2 and dose 3, {Ysgk2, Ysgk3}, given the number of people

who received the first dose of the COVID-19 vaccine {Ysgk1}. I propose the following

joint data likelihood model.

f({Ysgk2, Ysgk3} | {Ysgk1}) =
∏
s

∏
g

∏
k

f(Ysgk2, Ysgk3 | Ysgk1)

=
∏
s

∏
g

∏
k

f(Ysgk3 | Ysgk2)× f(Ysgk2 | Ysgk1), (4.4)
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where the second equality follows from the conditional probability formula and the

assumption that the number of people who receive a third dose of the vaccine only

depends on the number of people who received a second dose but not on the number

of people who received a first dose. The model assumes independence between the

two transitions for age, sex, and council area, conditional on the parameter values

of the function f(·). The dependencies in the parameter values are accounted for by

autocorrelated random effects as presented below.

Assume that a randomly selected individual from sex s, age group g, and council

area k has a probability of 1 − α
(d−1)d
sgk to receive dose d of the vaccine, given they

have received dose (d− 1). Furthermore, the number of people who receive dose d of

the vaccine has to be less than or equal to the number of people who have received

dose (d − 1). That is, Ysgkd ≤ Ysgk(d−1) (d = 2, 3) for each sex s, age group g, and

council area k. Hence, given the number of people who have received dose (d − 1)

of vaccine and the probability 1 − α(d−1)d
sgk that these individuals receive dose d, the

number of people who receive dose d can be modelled using a binomial distribution.

Motivated by the three leading questions, Section 4.2.4 identified possible rela-

tionships between the attrition rates and age group, sex, council area, and transition

between doses, as well as possible interaction effects between age group and sex, age

group and transition, council area and sex, and council area and transition on at-

trition rates. Hence, in the most general model considered, the logit transformation

of 1 − α
(d−1)d
sgk is modelled via a linear model that contains effects for the before-

mentioned variables and interaction terms. Therefore, the most general form of the

model I propose is given by

Ysgkd | Ysgk(d−1) ∼ Binomial
(
Ysgk(d−1), 1− α(d−1)d

sgk

)
, (4.5)

log

(
1− α(d−1)d

sgk

α
(d−1)d
sgk

)
= β0 + γs + ψd + δ(sd)

g + φ
(sd)
k ,

where Ysgk(d−1) denotes the number of binomial trials, i.e. the number of people who

received dose (d−1) and are therefore eligible to receive dose d. Here, α
(d−1)d
sgk denotes

the probability that a randomly selected individual of sex s and age group g in council
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area k quits the vaccination programme after dose (d − 1), and it is easy to show

that E
[
A

(d−1)d
sgk | Ysgk(d−1)

]
= α

(d−1)d
sgk (the derivation is provided in Section B.3 of the

appendix). Thus, the observed attrition rate A
(d−1)d
sgk is an unbiased estimator of the

true underlying attrition rate α
(d−1)d
sgk , which is modelled via a generalised linear model

by taking the logit transformation of 1− α(d−1)d
sgk . The parameters in the generalised

linear model of Equation (4.5) are an intercept term β0 for females in the transition

from doses 1 to 2, a fixed sex effect γs of being male as opposed to being female

(i.e., γs = 0 for s = female), a fixed transition effect ψd of being in the transition

from doses 2 to 3 as opposed to the transition from doses 1 to 2 (i.e., ψd = 0 for

d = 2), a random age group effect δ
(sd)
g that is allowed to vary by sex and transition,

and a random council area effect φ
(sd)
k that is allowed to vary by sex and transition.

These parameters are included to answer the three motivating questions. That is,

the estimated effects will suggest whether the attrition rates differ by age group or

council area, if there are differences in these trends and patterns for the two sexes,

and if any of these dynamics differ for the two transitions.

The odds in favour of attrition to non-attrition can be obtained from Equa-

tion (4.5) as

α
(d−1)d
sgk

/(
1− α(d−1)d

sgk

)
= exp

(
−
(
β0 + γs + ψd + δ(sd)

g + φ
(sd)
k

))
= exp(−β0)× exp(−γs)× exp(−ψd)

× exp
(
−δ(sd)

g

)
× exp

(
−φ(sd)

k

)
.

(4.6)

For each combination of sex and transition, sum-to-zero constraints are placed on

the random age group (δ
(sd)
g ) and council area (φ

(sd)
k ) effects to prevent them from

confounding with the intercept term β0 and the fixed effects γs and ψd. Thereby,

for a fixed transition from doses (d − 1) to d, the odds ratio of attrition if one is

male as opposed to female, averaged over all age groups and council areas, reduces to

exp(−γs) (see Section B.4 in the appendix for details). Hence, for a fixed transition

from doses (d − 1) to d, the term exp(−γs) can be interpreted as the average odds

ratio of attrition if one is male compared to female. Similarly, for a fixed sex s, the

term exp(−ψd) can be interpreted as the average odds ratio of attrition if one is in
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the transition from doses 2 to 3 compared to the transition from doses 1 to 2.

The random effects are included to capture the differences in the odds in favour

of attrition by age group and council area, allowing for the fact that neighbouring

‘groups’ may be correlated. For a fixed council area k, sex s, and transition from

doses (d−1) to d, the odds ratio of attrition for age group g compared to the sex- and

transition-specific average odds across all age groups is exp
(
−δ(sd)

g

)
, and in the most

general model this factor is allowed to differ for the two sexes and transitions. For

example, an odds ratio of exp
(
−δ(sd)

g

)
= 1.2 suggests that for sex s and the transition

from doses (d − 1) to d, the odds in favour of attrition in age group g are 1.2 times

higher than the average odds across all age groups. Similarly, for a fixed age group

g, sex s, and transition from dose (d− 1) to d, the odds ratio of attrition for council

area k compared to the sex- and transition-specific Scottish average is exp
(
−φ(sd)

k

)
.

Section B.4 in the appendix provides mathematical derivations of the interpretations

of the fixed and random effects in the model. To clarify, since the model estimates

all fixed and random effects simultaneously, the resulting odds ratios are affected by

the terms included in the model. From here on in, I consider it implicit that the odds

ratios are, in that respect, conditional on all variables in the model.

4.3.2 Structure of the random age group and council area

effects

The exploratory analysis in Section 4.2.4 showed that the observed attrition rates{
A

(d−1)d
sgk

}
decrease smoothly as age increases (see Figure 4.1) and that there is a

possibility that they might change somewhat smoothly across the council areas (see

Figure 4.2). However, the permutation tests suggest that the spatial autocorrela-

tion in the attrition rates is not statistically significant for any of the combina-

tions of sex and transition. Hence, BYM2 models (recall Section 2.6.1) are pro-

posed for estimating the correlated sex- and transition-specific random age group ef-

fects δ(sd) =
(
δ

(sd)
1 , . . . , δ

(sd)
G

)
and council area effects φ(sd) =

(
φ

(sd)
1 , . . . , φ

(sd)
K

)
. These

models allow for flexible estimation, as they can take on either of two base models,

correlated or independent, but also allow for a mixture of the two (Simpson et al.,
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2017). The BYM2 model of the random age group effects can be written as

δ(sd) =
1
√
τδ

(√
1− ρδv(sd)

δ +
√
ρδu

∗(sd)
δ

)
,

v
(sd)
δ ∼ N(0, I),

u
∗(sd)
δ ∼ N

(
0,Q∗(W )−

)
,

and the BYM2 model of the random council area effects is similarly expressed as

φ(sd) =
1
√
τφ

(√
1− ρφv(sd)

φ +
√
ρφu

∗(sd)
φ

)
,

v
(sd)
φ ∼ N(0, I),

u
∗(sd)
φ ∼ N

(
0,Q∗(M)−

)
,

where u
∗(sd)
δ and u

∗(sd)
φ are vectors of scaled correlated random effects (according to

the age group and spatial structures defined by the matrices W and M ), and v
(sd)
δ

and v
(sd)
φ are vectors of independent random effects of lengths G and K, respectively.

The precision parameters τδ and τφ control the overall variation in the random effects,

and the mixing parameters ρδ and ρφ control how much of the variation is accounted

for by the correlated and independent components, respectively. When the mixing

parameters are close to zero, the independent components account for most of the

variation in the corresponding random effects δ and φ. As the values of the mixing

parameters increase, more variation is accounted for by the correlated components,

and parameter values close to one imply strong age group or spatial dependence.

Mixtures between these base models (independence vs strong autocorrelation) are

achieved when the mixing parameters are not zero or one.

Note that the random effects v
(sd)
δ and u

∗(sd)
δ that make up the age group ef-

fects δ(sd) are estimated for each combination of sex and transition. However, the

hyperparameters τδ and ρδ are estimated over all observations from the two sexes

and transitions. Since there are only 10 age groups in the data, assuming the hyper-

parameters to be the same for each combination of sex and transition allows for a

larger number of observations in the estimation of the hyperparameter values. The

same logic applies to the estimation of the hyperparameters τφ and ρφ of the random
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council area effects φ(sd), since there are only 32 council areas in the data.

The correlated random council area effects uφ are assigned an ICAR prior dis-

tribution with a binary adjacency matrix M (recall Equation 2.13) based on the

border sharing rule. Note that each areal unit must have at least one adjacent

area in this model. In order to include the Orkney Islands, the Shetland Islands,

and the Western Isles Na h-Eileanan Siar in the model fitting process, they are

treated as adjacent to their respective nearest council areas, artificially linking the

Shetland Islands and the Orkney Islands, the Orkney Islands and the Highlands,

and the Western Isles Na h-Eileanan Siar and the Highlands. A sum-to-zero con-

straint (1uTφ = 0, where 1 is a vector of ones) is placed on these random effects

to prevent confounding with the intercept term β0. For the ICAR prior distri-

bution of uφ, the marginal variance of
(
uφk | uφ(−k)

)
is proportional to 1∑K

j=1mjk
,

where uφ(−k) denotes all random council area effects except for that of area k (i.e.,

uφ(−k) = (uφ1, . . . , uφ(k−1), uφ(k+1), . . . , uφK)), and mjk = 1 if council areas j and k

share a border and mjk = 0, otherwise. Note that the full conditional marginal

variances are inversely proportional to the number of neighbouring areas. Hence,

the marginal variances depend on the neighbourhood structure used in the specific

application.

The structured random age group effects uδ are assigned a random walk prior

distribution of order 1, reflecting the observation from Figure 4.1 that attrition rates

tend to decrease relatively smoothly with increasing age. The random walk of order

1 can be viewed as an ICAR prior distribution with neighbourhood matrix W that

indicates whether or not two age groups are adjacent, i.e. wij = 1 if |i − j| = 1

and wij = 0, otherwise. A sum-to-zero constraint is also applied to the random

effects uδ, again to prevent confounding with the intercept term β0. For the random

walk of order 1, the marginal variances of
(
uδg | uδ(−g)

)
depend on the number of

adjacent age groups. Specifically, the full conditional marginal variances of the age

groups with two adjacent age groups are half of that of the random effects for age

groups 18-29 and 80+ with only one adjacent age group. Thus, the full conditional

marginal variances of the age group effects depend on the age group specifications in

the considered application.
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The structure of the correlated random effects via W and M must be defined

by the researcher, and an assessment of the sensitivity of the results to this choice is

provided in Section B.8 of the appendix. As an additional point of clarification, the

CAR priors used in the model imply that neighbouring data points (e.g., adjacent age

groups) are partially autocorrelated whilst non-neighbouring data points are treated

as conditionally (but not marginally) independent given the remaining data values.

Thus, these CAR priors allow for correlation between non-neighbouring data points.

Scaling the structured random effects allows for interpretability of the hyperprior

distributions of the precision parameters τφ and τδ, and for transferability between

applications (Riebler et al., 2016), so that similar hyperpriors can be used for com-

parable applications with differing structure matrices. Following the methodology

proposed by Sørbye and Rue (2014), the correlated random effects are standardised

using the generalised variance σ2
GV (u), which is computed as the geometric mean of

the marginal variances, i.e.

σ2
GV (u) = exp

(
1

n

n∑
i=1

log

(
1

τu
[Q−]ii

))
, (4.7)

for u = uδ,uφ with corresponding precision matrices Q = Q(W ),Q(M ) of dimen-

sions n× n = G×G,K ×K. The precision matrix of the random age group effects

is computed as Q(W ) = diag(W1) −W and that of the random council area ef-

fects is computed as Q(M ) = diag(M1) −M , where 1 denotes vectors of ones of

the appropriate lengths G and K, respectively. The precision matrices are scaled

to Q∗(W ) and Q∗(M) such that σ2
GV (u∗) = 1 for τu = 1, for u∗ = u∗δ ,u

∗
φ. That

is, the precision matrices are scaled such that for τu = 1, the geometric means of

the marginal variances of u∗δ and u∗φ are equal to one, meaning that the deviations

of the random effects from the overall averages are independent of their underlying

structures.

The unstructured random effects vδ and vφ are independent and identically dis-

tributed, following multivariate normal prior distributions with mean zero and co-

variance matrices IG×G and IK×K , respectively. Since the geometric means of the

marginal variances of the unstructured effects are one, they are already standardised.
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4.3.3 Prior specifications

Prior distributions need to be specified for the intercept β0 and for the fixed effects

γs and ψd. Further hyperpriors need to be specified for the parameters τφ, τδ, ρφ, and

ρδ. The intercept β0 and the fixed effects γs and ψd are assigned weakly informative

normal prior distributions with mean zero and a variance of 1,000. Thus, the prior

distributions of the intercept and fixed effects impose only weak constraints and let

the data speak for themselves. These prior specifications seem reasonable since for

the attrition rates in Scotland, no information is available for the intercept or fixed

effects that would justify using informative prior distributions.

The parameters τφ, τδ, ρφ, and ρδ are assigned penalised complexity (PC) hy-

perprior distributions (recall Section 2.3.1.1). The precisions τδ and τφ are assigned

type-2 Gumbel prior distributions of the form

π(τ) =
θ

2
τ−3/2exp(−θτ−1/2), (4.8)

for τ ∈ {τδ, τφ}. Thus, the prior distribution for the precision has infinite mean and

variance, reflecting the simplifying prior assumptions that there are no age group or

council area effects on the attrition rates. That is, since the correlated random effects

u∗ and independent random effects v have means of zero, increasing the precision τ

to a very large value causes the joint effect of these random effects to be close to zero.

Simpson et al. (2017) suggest using these improper Gumbel prior distributions instead

of commonly used Gamma priors with finite expectations, as Frühwirth-Schnatter

and Wagner (2010) and Frühwirth-Schnatter and Wagner (2011) show that the latter

generally cause the models to overfit the data. Choosing the value of the parameter θ

can be aided by considering the probability statement P (1/
√
τ > U) = α, resulting in

θ = −log(α)/U (Riebler et al., 2016), where U and α can be chosen by the researcher.

The default values in INLA are U = 1 and α = 0.01, which are used in this study,

since the corresponding probability statement reflects the prior assumption that there

are no substantial age group or council area effects, with a probability of 99% that

the standard deviations take on values smaller than one, causing the effects to be

close to their zero means unless the data suggest otherwise. A sensitivity analysis
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is carried out to check that the results are consistent for varying prior assumptions,

and is provided in Section B.7 of the appendix.

The mixing parameters ρδ and ρφ are assigned another PC prior distribution,

where the base model is obtained for ρ = 0, i.e. the model where the indepen-

dent component explains all variability of the random effects. The Kullback-Leibler

divergence (KLD, e.g., recall Equation 2.7) for ρ between the base model and cor-

responding flexible BYM2 model is used to compute the distance scale d(ρ) (recall

Section 2.3.1.1 for details), which is assigned an exponential prior distribution with

parameter λ. In contrast to the precision parameter τ , the PC prior for ρ is not

available in closed form, but can be computed in R-INLA for the specific neighbour-

hood matrix, and more details are provided in Riebler et al. (2016). The probability

statement P (ρ < U) = α can be used to determine a reasonable value of λ, where

the values of U and α can be chosen by the researcher. The default values in R-INLA

are U = 0.5 and α = 0.5, which are used in this study, since it is unknown whether

or not to expect the random effects to be correlated before viewing the data. Other

settings are explored in the sensitivity analysis in Section B.7 of the appendix.

4.3.4 Model simplifications

In the most general model, the random effects
{
δ

(sd)
g

}
and

{
φ

(sd)
k

}
are allowed to

differ by sex and transition. However, if the differences by sex or transition are not

very pronounced, making the random effects sex- and transition-specific might overfit

the data. Potential overfitting can be checked by fitting models where the random

age group effects
{
δ

(sd)
g

}
are simplified, taking on the forms

{
δ

(s)
g

}
which differ by

sex but not by transition,
{
δ

(d)
g

}
which differ by transition but not by sex, or {δg}

which are the same for the different combinations of sex and transition in each age

group. Similar simplifications can be considered for the random council area effects

(written as
{
φ

(s)
k

}
,
{
φ

(d)
k

}
, and {φk}, respectively). The types of random effects that

should be used is decided based on a comparison of model performance evaluated

using WAIC (recall Section 2.4.3) and DIC (recall Section 2.4.2) values.
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4.3.5 Inference and software

The models are fitted using the R-INLA package (recall Section 2.3.3). Further details

on how to model areal data in R-INLA can be found in Moraga (2019) or Gómez-Rubio

(2020). The BYM2 models that are applied in this study were proposed by Simpson

et al. (2017) and further discussed by Riebler et al. (2016), and the scaling of the

structured random effects was proposed by Sørbye and Rue (2014). Section B.6 in

the appendix presents a proof of principle simulation to confirm that the proposed

method produces reliable parameter estimates for the type of data considered in this

study.

4.4 Results

Here, the most general model and the simplifications described in Section 4.3 are

fitted to the data presented in Section 4.2. Table 4.1 shows the WAIC and DIC

values for the full model from Equation (4.5) and several simplifications to assess

which complexities of the full model are supported by the data. The upper block

shows models that include only main effects age group (age), sex, council area (area),

and transition (trn), starting with a single main effect in the top section, two main

effects in the second section, three main effects in the third section, and all four

main effects in the fourth section. The effects included in each section are chosen

via a forward selection method based on the WAIC and DIC values. That is, the

best-fitting model with lowest WAIC and DIC values from each section is used in the

one below, where an additional main effect is added to the model. Of the models

in the top section, the one containing only random age group effects has the lowest

WAIC and DIC values which suggest that it is the best-fitting model with only one

main effect. Therefore, the models in the second section with two main effects all

contain random age group effects and one additional main effect. Here, the model

with random age group effects and a fixed transition effect has the lowest WAIC and

DIC values. Thus, the models in the third section contain random age group effects,

a fixed transition effect, and one additional main effect. Adding the random council

area effects results in a slightly lower WAIC value and substantially lower DIC value
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than adding a fixed sex effect. The model in the fourth section contains all four main

effects and of the models with only main effects, it has the lowest WAIC and DIC

values, suggesting that all main effects should be included.

Table 4.1: WAIC and DIC values for the full model and a number of simplifications.

Model:

logit
(

1− α(d−1)d
sgk

)
= β0+ WAIC DIC

sex 87,182 523,164
trn 85,604 534,575
age 66,703 313,027
area 135,530 750,824

age + sex 68,856 303,727
age + trn 31,350 49,387
age + area 97,589 301,079

age + trn + sex 27,901 39,126
age + trn + area 27,895 33,653

age + trn + area + sex 20,812 23,146

sex + trn + age(sex) + area 19,915 21,630
sex + trn + age(trn) + area 19,987 21,859
sex + trn + age + area(sex) 21,993 22,970
sex + trn + age + area(trn) 19,927 20,933
sex + trn + age(sex) + area(trn) 18,938 19,410
sex + trn + age(trn) + area(trn) 18,878 19,646

Model 1:
sex + trn + age(sex,trn) + area(trn) 17,931 17,917

Model 2:
sex + trn + age(sex,trn) + area(sex,trn) 18,407 17,389

The lower block shows models that include the four main effects and additional

interactions, where for example age(sex) denotes sex-specific age group effects. In

the first four models, only one set of random effects can differ by sex or transition.

Allowing the age group effects to differ by sex or transition and allowing the council

area effects to differ by transition reduces the WAIC and DIC values, suggesting a

better model fit than for the model with all main effects but no interactions. In

contrast, allowing the council area effects to differ by sex results in a higher WAIC

value than for the model with all main effects but no interactions.

The last four models allow the two sets of random effects to differ by sex, transi-

tion, or both, and allowing the age group effects to differ by sex and transition results

in the lowest WAIC and DIC values. The model with sex- and transition-specific age

group effects and transition-specific council area effects, labelled Model 1, has the
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lowest WAIC value (17,930.90) of all models considered. The most general model,

labelled Model 2, where both the age group effects and council area effects are sex-

and transition-specific has the lowest DIC value (17,389.36). Therefore, there are two

best-fitting models according to the WAIC and DIC values, which merely differ in

whether the council area effects are sex- and transition-specific or transition-specific

only. Most results are presented below only for Model 1, as the corresponding results

from the slightly more complex Model 2 are very similar. Model 1 appears to fit the

data appropriately, as suggested by the plot of the observed attrition rates against

the fitted in Section B.5 in the appendix.

For a fixed transition, the average odds ratio of attrition if one is male compared

to female (exp(−γs)) has a posterior mean of 1.099, with a 95% credible interval of

(1.079, 1.120). Thus, for a fixed transition and averaged over all age groups and

council areas, the odds in favour of attrition are approximately 1.1 times higher

for males than females. Similarly, the posterior mean of the average odds ratio of

attrition if one is in the transition from dose 2 to 3 compared to the transition from

dose 1 to 2 (exp(−ψd)) is estimated as 4.071, with a 95% credible interval of (3.710,

4.473). Thus, for a fixed sex and over all age groups and council areas, the odds in

favour of attrition are, on average, approximately 4.1 times higher in the transition

from doses 2 to 3 than from doses 1 to 2.

Comparing the WAIC and DIC values as a measure of model fit and analysing

the estimated effects from the best-fitting models allows for answering the motivating

questions of this study. Section 4.4.1 addresses the first question: Are there any trends

in attrition rates by age group, and does this vary by sex? Section 4.4.2 looks at the

second question: Are there any spatial patterns in attrition rates by council area, and

does this vary by sex? The third question is specific to the age group and council area

effects, and therefore Sections 4.4.1 and 4.4.2 also provide the respective answers to

this question: How do these trends and patterns compare across the two transitions?
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4.4.1 Are there any trends in attrition rates by age group,

and does this vary by sex or transition?

The first striking observation from Table 4.1 is that of the models containing only

a single main effect, the one with random age group effects has much lower WAIC

and DIC values than the other models. Therefore, of the main effects considered, age

has the strongest link with attrition rates, which confirms the impression from the

exploratory analysis in Section 4.2.4.

The estimated posterior mean of the mixing parameter ρδ for Model 1 is 1.0, with

a 95% credible interval of (0.998,1.000). Hence, there is a strong positive autocor-

relation in the age group effects, such that the effects of age groups that are closer

to each other are more similar. The trends in the age group effects are shown in

Figure 4.3, which presents posterior densities of the sex- and transition-specific odds

ratios of attrition for each age group g, compared to the average odds over all age

groups, i.e.
{

exp
(
−δ(sd)

g

)}
. The dashed line represents an odds ratio of one. The

corresponding posterior means and 95% credible intervals are presented in Table 4.2.

The figure and table show that the odds ratio of attrition decreases with increasing

age (i.e., older age groups are more likely to receive further vaccine doses), which can

be observed for both sexes and transitions.

Another striking observation is that overall, the age group effects differ for the

two sexes. Table 4.1 shows that Model 1 with sex- and transition-specific age group

effects has a substantially lower WAIC value than the model with the same terms

but only transition-specific age group effects (WAIC values of 17,930.90 compared to

18,878.01). The most noticeable differences between the two sexes can be observed

in Figure 4.3 for age groups 59 years and younger, where most of the densities of

the sex-specific odds ratios barely overlap (if at all) in each of the transitions. In

these age groups the odds ratios are larger for males than females. However, this

trend reverses for age groups 70 years and older, where the odds ratios are larger for

females than males. This trend aligns with the observations from Section 4.2.4.1 and

the additional plots in Section B.1 of the appendix, which show that the observed

attrition rates are higher for females than males in age groups 70 years and older.
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Figure 4.3: Posterior densities of the sex- and transition-specific odds ratios of attrition for each age group, compared
to the average odds over all age groups.

Furthermore, the variation in the odds in favour of attrition is larger for males than

females, with the posterior estimates being overall further away from the sex-specific

average odds over all age groups (the dashed line). Therefore, the age group effects

appear to differ by sex and should hence be estimated for the two sexes separately.

The next motivating question is whether or not the age group effects differ for

the transitions from doses 1 to 2 and doses 2 to 3. Table 4.1 suggests that this

is the case, as Model 1 with sex- and transition-specific age group effects has a

substantially lower WAIC value than the model with only sex-specific age group
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Table 4.2: Posterior mean estimates and 95% credible intervals of the sex- and transition-specific odds ratios of
attrition by age group, compared to the average odds across all age groups.

Age group
Doses 1 to 2 Doses 2 to 3

Female Male Female Male
80+ 0.49 (0.46,0.52) 0.30 (0.28,0.33) 0.26 (0.25,0.27) 0.18 (0.17,0.19)

75-79 0.35 (0.32,0.38) 0.29 (0.27,0.31) 0.29 (0.27,0.30) 0.20 (0.19,0.21)
70-74 0.39 (0.36,0.41) 0.34 (0.32,0.36) 0.32 (0.31,0.34) 0.26 (0.25,0.27)
65-69 0.48 (0.46,0.51) 0.47 (0.44,0.50) 0.49 (0.47,0.50) 0.45 (0.44,0.47)
60-64 0.71 (0.68,0.75) 0.66 (0.63,0.69) 0.74 (0.72,0.76) 0.74 (0.72,0.76)
55-59 0.88 (0.84,0.91) 0.99 (0.95,1.03) 1.10 (1.08,1.13) 1.20 (1.17,1.23)
50-54 1.19 (1.15,1.23) 1.49 (1.44,1.54) 1.47 (1.44,1.50) 1.79 (1.75,1.82)
40-49 2.02 (1.97,2.08) 2.58 (2.52,2.65) 2.56 (2.52,2.61) 3.24 (3.18,3.30)
30-39 3.66 (3.58,3.75) 4.40 (4.30,4.50) 4.73 (4.65,4.81) 5.75 (5.66,5.85)
18-29 5.64 (5.52,5.76) 6.57 (6.43,6.71) 5.83 (5.73,5.92) 7.90 (7.76,8.03)

effects (with a WAIC value of 17,930.90 compared to 18,937.93). In Figure 4.3, the

overall trends in the sex-specific odds ratios across age groups seem relatively similar

in the two transitions. However, it should be noted that for each sex, for age groups

59 years and younger the odds ratios are consistently higher in the second transition

than in the first. In contrast, for each sex, for age groups 70 years and older, the

odds ratios are consistently smaller in the second transition than in the first. The

numerical summaries in Table 4.2 confirm these observations. Hence, for both sexes,

the variation in the odds of attrition between age groups is larger in the second

transition than in the first. These findings confirm the previously supposed presence

of an interaction between age group and transition in the attrition rates and that age

group effects should be estimated for the two transitions separately.

4.4.2 Are there any spatial patterns in attrition rates by

council area, and does this vary by sex or transition?

Here, the main question is if there are any spatial patterns (at a council area level) in

the attrition rates. Table 4.1 shows that including the random council area effects in

the model reduces the WAIC value substantially, but only after including the random

age group and fixed transition effects. Thus, while the attrition rates seem to differ

by council area, the impact of the spatial effects on the attrition rates appears to

be more subtle than that of the age group and transition effects. In contrast to the

age group effects, based on the WAIC and DIC values, it is unclear whether the
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council area effects should be estimated separately for the two sexes. Model 1, with

transition- but not sex-specific council area effects, has the lowest WAIC value of all

models considered. However, the lowest DIC value is obtained for Model 2, which

has sex- and transition-specific council area effects. Since there is not a clear best

model, this section presents the results for both Model 1 and Model 2. For Model 1,

the estimated posterior mean of ρφ is 0.414 with a 95% credible interval of (0.232,

0.700). For Model 2, the estimated posterior mean of ρφ is 0.337 with a 95% credible

interval of (0.144, 0.579). Since the estimates of the mixing parameter are not close

to zero for either model, a moderate amount of the variability in the council area

effects is accounted for by the correlated component.

Figure 4.4: Posterior densities of the transition-specific odds ratios of attrition for each council area, compared to
the Scottish average over both sexes.

Figure 4.4 shows posterior densities of the odds ratios of attrition
{

exp(−φ(d)
k )
}

for council area k, compared to the corresponding transition-specific Scottish average
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odds over all council areas, obtained from Model 1. The dashed line represents an

odds ratio of one, i.e. when the transition-specific odds of attrition in a council area

equal the Scottish average over both sexes. Table B.5 in the appendix provides the

corresponding posterior means and 95% credible intervals. Over the two transitions,

Glasgow City, West Dunbartonshire, and Dundee City are the council areas with the

highest odds of attrition in Scotland. The council areas with the lowest odds are the

Shetland Islands, the Orkney Islands, East Dunbartonshire, and East Renfrewshire.

There appear to be substantial differences in the odds of attrition by council area,

which confirms the previous suggestion that the model should contain spatial random

effects. Moreover, for some of the council areas, the transition-specific densities of

the odds ratios overlap barely (if at all), implying that the odds in these council areas

changed differently compared to other council areas in Scotland from one transition to

the next. The most prominent differences can be observed for Aberdeenshire, Argyll

and Bute, the City of Edinburgh, Dumfries and Galloway, East Dunbartonshire,

Falkirk, Fife, Glasgow City, Midlothian, the Orkney Islands, the Shetland Islands,

West Dunbartonshire, and West Lothian. For example, in the City of Edinburgh, the

odds in favour of attrition are higher than the Scottish average in the first transition

(from doses 1 to 2), but smaller in the second transition (from doses 2 to 3). The

odds in favour of attrition in Glasgow City are higher than the Scottish average in

both transitions, but the odds ratio is smaller in the second transition than in the

first. That is, compared to the transition-specific average odds over all council areas,

the higher odds in Glasgow City appear to be less extreme in the second transition

than in the first. These differences in the odds ratios of attrition between the two

transitions confirm the previously supposed presence of an interaction effect between

the variables council area and transition on the attrition rates and that the council

area effects should be estimated for the two transitions separately. Lastly, it should

be noted that the posterior densities of the odds ratios of attrition tend to be wider

in the transition from doses 1 to 2 than in the transition from doses 2 to 3. The

greater uncertainty in the odds ratios could be due to the odds in favour of attrition

generally being much smaller in the first transition.

Figure 4.5 shows posterior densities of the sex- and transition-specific odds ratios

124



4. COVID-19 vaccine fatigue in Scotland

Figure 4.5: Posterior densities of the sex- and transition-specific odds ratios of attrition for each council area,
compared to the Scottish average.

of attrition
{

exp(−φ(sd)
k )

}
for council area k, compared to the Scottish average, ob-

tained from Model 2. The corresponding posterior means and 95% credible intervals

are presented in Table B.6 in the appendix. For each council area, taking the averages

of the estimated posterior means of the sex- and transition-specific odds ratios over

both sexes results in very similar estimates to the corresponding transition-specific

posterior mean estimates obtained from Model 1, with a mean absolute difference

of 0.004. The five largest absolute differences are observed for Argyll and Bute in

the transition from doses 1 to 2 (0.058), the Shetland Islands in the transition from

doses 1 to 2 (0.017), Moray in the transition from doses 1 to 2 (0.012), Argyll and

Bute in the transition from doses 2 to 3 (0.009), and Glasgow City in the transition

from doses 1 to 2 (0.007). Overall, the mean absolute differences between the av-

erage estimated posterior means of the sex- and transition-specific odds ratios over

both sexes from Model 2 and the transition-specific odds ratios from Model 1 are
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greater for the transition from doses 1 to 2 (0.006) than the transition from doses

2 to 3 (0.002). Much of this difference is explained by the large difference between

the sex-specific odds ratios of Argyll and Bute in the transition from doses 1 to 2.

However, computing the median absolute differences (which won’t be affected by the

unusual observation of Argyll and Bute) between the average estimated posterior

means of the sex- and transition-specific odds ratios over both sexes from Model 2

and the transition-specific odds ratios from Model 1 shows that there are generally

larger differences between the random council area effect estimates from Models 1

and 2 for the transition from doses 1 to 2 (0.003) than the transition from doses 2 to

3 (0.001).

Overall, the differences in the odds ratios between the two sexes in Figure 4.5

appear to be less pronounced than the differences between transitions in Figure 4.4.

Nonetheless, for some council areas in Figure 4.5, there are noticeable differences in

the odds ratios of attrition between the two sexes. For example, in Glasgow City and

Dundee City, the odds ratios of attrition tend to be greater for females than males

in both transitions. Thus, the higher odds in Glasgow City and Dundee City appear

more extreme for females than males, compared to the corresponding sex-specific

average odds in Scotland. Furthermore, while the odds ratios are greater than one

for both sexes in both transitions, they appear less extreme in the second transition

than in the first for both sexes.

In the City of Edinburgh, in the first transition, for both sexes the odds in favour

of attrition are higher than the transition- and sex-specific Scottish average odds,

with females having a larger odds ratio than males; i.e., in the first transition, the

higher odds of attrition for females deviate more from the sex-specific national average

than those of males. In contrast, in the second transition, for both sexes in the City

of Edinburgh the odds in favour of attrition are lower than the sex-specific Scottish

average odds, where the odds ratio is likely to be smaller for females than males;

i.e., the lower odds of attrition for females appear to deviate again more from the

sex-specific national average than those of males. These findings reflect a possible

interaction between sex and transition in the council area effects on attrition. Another

example for such an interaction is Moray, where the posterior density for the female
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odds ratio is mostly below one in the first transition and likely above one in the second,

while the male odds ratio is mostly above one in the first transition and likely below

one in the second. The most extreme case is that of Argyll and Bute in the transition

from doses 1 to 2, where for each of the two sexes the odds in favour of attrition

are higher than the corresponding transition- and sex-specific Scottish average odds,

but the odds ratios are much larger for males than females, with posterior mean

estimates of 1.93 and 1.14, respectively. In the second transition, the odds in favour

of attrition for males in Argyll and Bute are 0.89 and hence, the odds are smaller

than the transition- and sex-specific Scottish average odds, while those of females

are 1.05 and hence higher than their corresponding national average. The extremely

large odds ratio for males in Argyll and Bute in the first transition might explain

why the odds ratio is below one in the second transition; i.e., with an unusually large

proportion of males refusing the second dose, the relatively small proportion that

did accept the second dose might have been generally more inclined to continue the

vaccination programme.

4.5 Discussion

While vaccine hesitancy (the delay in acceptance or refusal of vaccination despite

the availability of vaccination services) for COVID-19 has previously been studied

extensively, the acceptance of later doses appears to have been considered only for

the booster vaccine, and it seems that vaccine fatigue (the delay in acceptance or re-

fusal of subsequent vaccine doses) is otherwise unexplored. Hence, the motivation for

this study was to analyse possible trends and patterns in the attrition rates between

subsequent doses of the COVID-19 vaccine, aiming to identify differences in attrition

rates by sex, age, area, and transition between doses. The study was based in Scot-

land, and the cumulative number of first, second, and third doses of the COVID-19

vaccine up to 19th April 2022 was recorded at a council area level by sex and age

group. A binomial logistic model was fitted to these attrition rate data in a Bayesian

setting using the R-INLA package. The sex- and transition-specific random council

area and age group effects were modelled with flexible BYM2 models that allow for
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structural autocorrelation, and possible interactions were considered between age and

sex, age and transition, area and sex, and area and transition.

The main finding is that the fitted models show a strong association between

age and attrition rates, where the odds in favour of attrition decrease smoothly with

increasing age (i.e., older age groups are more likely to continue receiving vaccine

doses). This association between older age and lower attrition rates is consistent with

previous findings of older people being less hesitant to receive a first dose (Soares et al.,

2021, Mewhirter et al., 2022) and having a higher willingness to receive a booster

vaccine (Rzymski et al., 2021, Sønderskov et al., 2021). Since older individuals were

prioritised and their higher risk of severe disease progression was emphasised prior to

the initial vaccine rollout in Scotland (Scottish Government, 2021a), it seems plausible

that the more severe potential consequences of not having the vaccine results in lower

attrition rates for the older age groups.

In this study, the age group effects are allowed to differ by sex and transition. The

resulting estimates suggest that the age group effects differ for the two sexes, with

the overall variation in the odds of attrition between age groups being greater for

males than females. Compared to the sex-specific average odds over all age groups,

the odds ratios of attrition are higher for males than females in age groups 59 years

and younger. This trend reverses for age groups 70 and older, where the odds ratios

are below one for both sexes but higher for females than males. Thus, the decreasing

effect of older age on the odds of attrition appears to be smaller for females than

males, relative to the corresponding sex-specific average odds over all age groups.

This finding aligns with the observed attrition rates tending to be higher for females

than males in age groups 70 years and older (see Figure 4.1). The age group trends

are similar for the two transitions, although the variation in the odds of attrition

between age groups tends to be overall greater in the second transition than in the

first. Comparing these findings with other studies is impossible as this study appears

to be the first to consider such interactions between age and sex and between age

and transition. The identified interactions between age, sex, and transition suggest

that other studies on COVID-19 vaccine uptake should also consider the age group

effects to be sex- and transition-specific, if applicable.
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Additionally, the best fitting models in this study allow estimation of the overall

differences in attrition rates between the two sexes. These findings show that for a

fixed transition, averaged over all age groups and council areas in Scotland, males tend

to have approximately 1.1 times higher odds of attrition than females. For vaccine

hesitancy, the differences by sex have not been consistent across studies, with some

showing that the acceptance of a first dose is lower for females than males (Troiano

and Nardi, 2021), and others indicating that males have a lower acceptance (Lazarus

et al., 2021). The same applies to the booster vaccine willingness, where some studies

found that females are associated with higher willingness than males to receive the

booster dose (Rzymski et al., 2021), while others showed a lower willingness in females

(Gaffney et al., 2022). Therefore, the finding of overall greater vaccine fatigue in males

in Scotland might not necessarily be replicated in other countries.

For a fixed sex, the average odds of attrition over all age groups and council

areas in Scotland are 4.1 times higher in the transition from doses 2 to 3 than from

doses 1 to 2, which suggests increased vaccine fatigue over time. Note that the

two primary doses of the COVID-19 vaccine were recommended from the start of

the vaccine rollout in December of 2020 in Scotland (Scottish Government, 2020a),

while the Joint Committee on Vaccination and Immunisation (JCVI) first advised a

potential booster vaccine on 30th June 2021 (Department of Health & Social Care,

2021a). Thus, individuals might have been more likely to refuse the booster vaccine as

the additional third doses were advised later. Furthermore, in Scotland, regulations

came into force on 1st October 2021 (Swinney, 2021), requiring a person to be fully

vaccinated (having received the first and second doses), unless exempt, to attend

most events. This mandate might have motivated individuals to receive the first and

second doses of the vaccine. The mandate did not apply to the third dose, which

might have contributed to the larger attrition rates in the transition from doses 2 to

3. However, vaccine uptake was already high when the mandate came into force on

1st October 2021, with 4.06 million adults in Scotland (91.44% of the approximate

total adult population of 4.44 million people) having received the first dose and 3.74

million (84.23%) having received the first and second doses of the COVID-19 vaccine

(UK Health Security Agency, 2023b). A slight increase in the daily administered first
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doses of vaccine was observed around the advent of the regulations, whereas the daily

number of second doses was at a constant level around that time. Hence, it seems

unlikely that the government mandate is a leading cause for the much higher odds

of attrition for the second transition (from doses 2 to 3) compared to the first (from

doses 1 to 2). Another possible explanation for the increased odds of attrition in the

second transition is that some individuals might have been infected with COVID-19

after they received the second dose and no longer believed they had a need to receive

a booster vaccine. Rzymski et al. (2021) and Dziedzic et al. (2022) add weight to this

hypothesis, having identified a reduced willingness to receive the booster vaccine in

the Polish population previously infected with the virus. It should be noted that the

NHS advised to wait four weeks from the date of a positive test or first symptoms to

get the vaccine (Scottish Government, 2022), which might have lead to those infected

at the time of vaccine invitation to not book an appointment after the four weeks

had passed.

The final main finding is that over the two transitions and both sexes, Glasgow

City, West Dunbartonshire, and Dundee City are the council areas with the highest

odds of attrition in Scotland. The council areas with the lowest odds are the Shetland

Islands, Orkney Islands, East Dunbartonshire, and East Renfrewshire. It should be

noted that Glasgow City, West Dunbartonshire, and Dundee City are amongst the

five most deprived council areas in Scotland, while the Shetland Islands, Orkney

Islands, East Dunbartonshire, and East Renfrewshire are amongst the ten least de-

prived council areas (Scottish Government, 2020b). Hence, it seems possible that

deprivation, which was previously identified to be associated with greater vaccine

hesitancy (Kumari et al., 2021, Lee and Huang, 2022) and greater unwillingness to

receive the booster vaccine (Paul and Fancourt, 2022) is generally a driving factor

for the higher odds in favour of attrition between doses.

Some data limitations are apparent in this study. While the deceased and those

who no longer live in Scotland are not included in the vaccination data, it is possible

that some people moved home to a different council area, changed age groups, or be-

came ineligible between subsequent doses of the vaccine, which will have affected the

results to a small extent. While this study analysed sex, transition, age group, and

130



4. COVID-19 vaccine fatigue in Scotland

council area effects on attrition rates, many other variables previously linked to vac-

cine uptake were not considered because the data were aggregated to a relatively high

council area level, meaning that covariate effects could be impacted by ecological bias

(Wakefield and Salway, 2001). Furthermore, there are only 32 council areas, so there

is a risk that any regression relationship will be badly estimated. To examine these

concerns, I refitted the final model with the additional covariates income deprivation

and population density and provide the results in Section B.10 of the appendix. The

resulting fitted attrition rates are almost identical to the ones of Model 2 (from Ta-

ble 4.1), so the results are not sensitive to the omission of these additional covariates.

Another variable that could impact attrition rates is the type of vaccine received in

an earlier dose, as Dziedzic et al. (2022) suggested that those who had previously

been vaccinated with Pfizer/BioNTech or Moderna had higher booster uptake than

those vaccinated with AstraZeneca. However, the type of vaccine administered was

not specified in the data and hence it could not be considered in this study.

The BYM2 model assigned to the council area effects in this study allows for

spatial autocorrelation in the attrition rates across council areas. However, assigning

a binary adjacency neighbourhood structure to the BYM2 model forces the correlated

effects to smooth the attrition rates strictly across council areas that share a border,

which might not be appropriate in all cases. For example, Glasgow City and East

Dunbartonshire share a border but their attrition rates differ greatly, with Glasgow

City having an average observed attrition rate of 11.47% across the two transitions,

which is the highest in Scotland, compared to 5.27% in East Dunbartonshire, which

is the lowest in the Scottish mainland. Thus, rather than assuming smoothness in

the attrition across all neighbouring council areas, the model could be improved by

locally smoothing the attrition rates (e.g., see Lee and Mitchell, 2013). While the risk

surface of this study is limited to 32 council areas, having 40 observations for each

council area might be sufficient to identify localised spatial structures in the data.

The model’s random age group and council area effects are allowed to differ by

sex and transition. However, they are assumed to have the same variance and mixing

parameters to allow for more observations in estimating them. Since the variation

in the modelled attrition rates was greater for males than females and greater in
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the second transition than the first, I considered allowing sex- and transition-specific

hyperparameters. However, this resulted in a worse model fit, with WAIC and DIC

values exceeding those of the original Model 2 by more than 2,000 each, likely because

there are such few data (10 age groups and 32 council areas for each combination

of sex and transition). Allowing the hyperparameters to differ for these sub-groups

might be a viable option in studies with a larger number of observations.

A profitable avenue for future work, if the data were available, is to examine at-

trition rates for different types of vaccines that require multiple doses (e.g., two doses

are recommended for MMR vaccines, two doses for varicella (chickenpox) vaccine,

and annual doses for influenza vaccine). Another possibility is to extend the study to

a multi-country comparison to see if the trends and patterns in the attrition rates in

the COVID-19 vaccination programme in Scotland are also found in other countries

or to see how they differ. Lastly, if the study was conducted on smaller areal units,

analysing the relationship between attrition rates and other covariates such as income

deprivation rate, population density, and education levels would provide interesting

additional insights.

The presented study featured the unusual observation of a very high attrition rate

for males in Argyle and Bute in the transition from doses 1 to 2 (see Figure 4.2).

When the data are overall strongly positively spatially autocorrelated, such unusual

observations can be difficult to identify from the smoothed estimates of a spatial

smoothing model and they might affect the inference on the smooth risk or preva-

lence surface. Hence, motivated by the unusual observation identified in this study,

Chapter 5 provides a study of how such unusual observations might be identified in

big data (with thousands of areal units) and how a smoothing model could be modi-

fied to remove the unusual observations’ impact on the estimated disease prevalence

surface.
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Chapter 5

When Tobler’s First Law of

Geography doesn’t hold:

Identifying spatially outlying

observations to remove their

impact on estimated disease

prevalence surfaces

5.1 Introduction

Publicly available disease incidence (or prevalence) data are most often spatially

aggregated into small areas, with population sizes sufficiently large to protect confi-

dentiality but small enough to represent near-homogeneous communities. However,

most diseases are relatively rare when viewed at a small area population level, and

hence, these data are subject to substantial random variation. Rather than work-

ing directly with the noisy observed data, disease mapping models infer the latent

risk (or prevalence) surface, which is commonly assumed to change smoothly across

neighbouring areas, and aim to capture the overall pattern in disease risk (e.g., see
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MacNab, 2022 for an extensive review). As a result, regions with unusual risks can be

identified from these maps, such as high-risk regions that may require public health

intervention. However, unusual risks in individual areas are usually smoothed over

in the modelling process and hence can be difficult to identify (e.g., see Richardson

et al., 2004).

The assumption of spatial smoothness is motivated by Tobler’s First Law of Geog-

raphy, that “Everything is related to everything else, but near things are more related

than distant things” (Tobler, 1970). In epidemiology, underlying features that could

result in a spatially smooth risk surface include latent risk factors (e.g., air pollution)

that change smoothly in space, grouping effects due to neighbourhoods forming based

on population similarities (e.g., ethnicity, income), and the behaviour of people living

close and interacting with each other becoming more similar over time. Some disease

mapping models strictly enforce spatial smoothness in the inferred risks, while oth-

ers estimate the degree of spatial autocorrelation via a spatial smoothing parameter.

When the spatial smoothing parameter is estimated as a single value, it implicitly

assumes that the strength of spatial autocorrelation in disease risk is similar across

the entire study region, resulting in a globally smooth risk surface.

However, structural deviations from the global smoothness assumption for dis-

ease risk often exist, and can be due to physical boundaries, such as hills, rivers,

and highways that prevent communities from mixing, as well as social frontiers (e.g.,

see Dean et al., 2019) where social/ethnic characteristics differ substantially between

neighbouring communities. When the global spatial smoothness assumption is not

appropriate, adaptive smoothing models can be applied (e.g., see Lu and Carlin,

2005, Lee and Mitchell, 2013, Rushworth et al., 2017, Gao and Bradley, 2019, Corpas-

Burgos and Martinez-Beneito, 2020) to allow for local discontinuities in the estimated

risk surface between neighbouring areas. Although the adaptive smoothing models

provide better disease risk estimates than global smoothing models, their estimated

risk surfaces will still be locally smooth and may be adversely affected by individual

areas with unusual risks that break with the otherwise locally smooth risk patterns.

Therefore, individual areas with unusual outcomes should be identified before fitting

a smoothing model so that one can check the impact of these observations on the
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statistical inference. With that motivation in mind, this study proposes a spatial out-

lier detection method for areal data to identify individual areas that violate the local

smoothness assumption, followed by a modified smoothing model that accounts for

these potential outliers. To distinguish these individual outlying areas from hotpots

or contiguous clusters where the observations in more than one area appear unusual,

the remainder of this chapter will refer to the individual outliers as singleton outliers.

An outlying observation, or outlier, has historically been defined as an observa-

tion that “appears to deviate markedly from other members of the sample in which

it occurs” (Grubbs, 1969). To distinguish the considered outliers from the rest of

the data, in this study, those observations that are not singleton outliers are referred

to as inliers. In experimental studies, two possible causes could lead to outlying

observations. One is that these observations result from the random variability in

the data-generating process, where, by chance, some outcomes are extreme. Alterna-

tively, outliers could result from data collection or processing errors. In applications

that use observational data, many other possible causes for outliers exist. For ex-

ample, in public health analyses, environmental factors or the presence of related

individuals with a rare genetic disease could explain unusually high disease risks in

some small areas.

Chandola et al. (2009) distinguish between three types of outliers: global outliers

(type I), contextual outliers (type II), and collective outliers (type III). Here, the focus

is on small-area disease mapping applications, so Figure 5.1 presents examples of these

three types of outliers in standardised incidence ratio (SIR) data for an example set of

small areas (the data used to create these maps are randomly generated and presented

at the English lower super output area level around Sheffield, UK). Global outliers are

individual observations inconsistent with the rest of the dataset and, therefore, fall

under the previously mentioned definition by Grubbs (1969). For the SIR example,

a global outlier is a single areal unit with an SIR that differs markedly from the

rest of the data, such as the one highlighted with a thicker border in Figure 5.1a. A

contextual outlier is an individual observation that is an outlier within its local spatial

context. That is, a contextual outlier is considered part of the inlying data when

viewing the dataset as a whole but does not conform to the typical local behaviour.
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For example, the highlighted area in Figure 5.1b is a contextual outlier with a higher

SIR surrounded by areas with lower SIRs. Collective outliers are a subset of data

instances whose collective occurrence is unusual. In the framework of this study,

collective outliers are clusters of spatially contiguous areas (any area in the cluster

shares a border with at least one other area in the cluster). The highlighted cluster

in Figure 5.1c forms a set of collective outliers as its SIR values are higher than those

in the areas surrounding the cluster.

(a) Global outlier (type 1) (b) Contextual outlier (type 2)

(c) Collective outlier (type 3)

Figure 5.1: Example maps showing the three types of spatial outliers.

Several general methods for identifying spatial clusters (collective outliers) have

been proposed (e.g., see Murray et al., 2014, Campello et al., 2020), while applications

in epidemiology can be found, for example, in Huang et al. (2008) or Li et al. (2019).
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In contrast, relatively few studies developed spatial outlier detection techniques for

global or contextual outliers (i.e., singleton outliers). Some studies have proposed

methods for point-referenced or geostatistical data (e.g., Shekhar, 2003, Adam et al.,

2004, Birant and Kut, 2006, Sedaghat et al., 2013, Duggimpudi et al., 2019), while

Cheng and Li (2006) analyse images over a regular grid. The current study focuses on

identifying potential singleton outliers (global or contextual) on a map of irregularly

shaped areal units. In this context, Anselin (1995) proposes local indicators of spatial

association (LISA) for hotspot and outlier detection, using a local version of Moran’s I

statistic (Moran, 1950). For a review of Moran’s I statistic and Anselin’s local Moran’s

I statistic, revisit Section 2.5.1. A negative local Moran’s I statistic points to an area

with a value different from its neighbouring values, i.e., an area that appears to be a

contextual or global outlier. The local Moran’s I statistic is an established method in

spatial statistics textbooks (e.g., see Moraga, 2023) for identifying possible outliers

and, hence, identifying singleton outliers using local Moran’s I statistic is used as a

comparison to this study’s novel methodology.

As a general principle, local spatial outlier detection methods define neighbour-

hoods based on the data’s spatial attributes and identify outliers whose non-spatial at-

tributes deviate considerably from their neighbouring values. Schubert et al. (2014b)

provide a general review of local outlier detection, including methods that have been

proposed for areal data, such as the works of Lu et al. (2003), Kou et al. (2006),

and Chawla and Sun (2006), who examine their methods on US county-level data.

Chen et al. (2008) propose an improved version of the median algorithm by Lu et al.

(2003), but similar to the previous studies, they only evaluate their method using

illustrative examples. In contrast, Singh and Lalitha (2018) propose an improved

version of the mean and median algorithms by Lu et al. (2003) and demonstrate the

improved performance using simulated datasets. However, the resulting receiver op-

erator characteristic (ROC) curves and area under the curves (AUCs) indicate that

the method does not perform substantially better than a random classifier. Schu-

bert et al. (2014a) propose a localised method that uses kernel densities for outlier

detection and they apply their method to spatial and spatio-temporal geostatistical

data. Tang and He (2017) propose an alternative kernel density-based outlier score,
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which they evaluate on synthetic two-dimensional point data and multidimensional

non-spatial data. For the latter, they show that their method outperforms that of

Schubert et al. (2014a). Neither study investigates their method’s sensitivity to the

choice of bandwidth parameter value, which has a large impact on the kernel densities

and should be analysed further.

The study presented here proposes a novel two-step disease mapping approach

that accounts for possible singleton spatial outliers. Potential singleton spatial out-

liers are identified in the first step, and the proposed method extends the non-

parametric approach of Tang and He (2017) to spatial locations with non-spatial

attributes. The method is evaluated in simulation study and compared to a singleton

spatial outlier detection using local Moran’s I, which is commonly used to identify

possible outliers in areal data. For the second step of the method, a modified disease

mapping model is proposed that accounts for the potential singleton spatial outliers

identified in the first step. The efficacy of the proposed model is again evaluated in

simulation study and compared to a conventional smoothing model that smoothes

over all areas.

The development of the method is motivated by a novel study of asthma preva-

lence at the lower super output area (LSOA) level in England. In this study, potential

singleton spatial outliers are identified for the year 2017 (the most recent year in the

data), allowing public health experts to identify the drivers of these outlying obser-

vations. The observed number of asthma cases are fitted with a binomial generalised

linear model using the proposed modified smoothing model that accounts for the

potential outliers, and the resulting estimates are compared to those of a commonly

used smoothing model that does not consider potential outliers. The study’s aim is

to answer the following three main questions:

1. Which areas appear to be potential singleton outliers?

2. Do the identified outliers appear to be contextual or global?

3. How do the potential outliers affect the modelling?

The remainder of this chapter is organised as follows. Section 5.2 presents the

asthma prevalence data that motivate this study. Section 5.3 presents the novel
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methodology: a relative density-based singleton outlier detection technique for small

area data and a modified smoothing model that accounts for potential singleton spa-

tial outliers to remove their impact on the estimated disease prevalence surfaces. The

method’s efficacy is assessed in simulation study in Section 5.4, and Section 5.5 ap-

plies the method to the motivating study presented in Section 5.2. Lastly, Section 5.6

provides the conclusions from this study and discusses limitations and avenues for

future work.

5.2 Motivating study: Asthma prevalence at a

small-area level in England

This study applies the proposed singleton spatial outlier detection method and mod-

ified smoothing model to small-area asthma prevalence data to identify individual

areas whose asthma prevalence appears to differ from the typical local behaviour so

that these areas can be identified and their underlying prevalence be estimated inde-

pendently from the rest of the data to ensure that these unusual observations do not

corrupt the estimation of the otherwise smooth prevalence surface. A singleton spa-

tial outlier could have an asthma prevalence that differs from the rest of the dataset

as a whole (i.e., be a global outlier), have a higher asthma prevalence and be located

in a region that tends to have a lower prevalence, or have a lower asthma prevalence

and be located in a region that tends to have a higher prevalence (i.e., be a contextual

outlier). The individual outlying areas are of interest to public health experts since

areas with an unusually high asthma prevalence could benefit from public health in-

terventions, and areas with an unusually low prevalence could be analysed to identify

factors that might be associated with a lower asthma prevalence.

5.2.1 Study data

The Place-based Longitudinal Data Resource (https://pldr.org/dataset/e6nzv

/quality-and-outcomes-framework-indicators-asthma-prevalence-qof40

3) provides publicly available annual asthma-prevalence data for all ages over the
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years 2005 to 2017 at the lower super output area (LSOA) level in England, which

partitions the country into 32,844 areas. For each LSOA and year, the observed

asthma prevalence is measured as the estimated number of patients diagnosed with

asthma divided by the total number of registered patients. These values are computed

as weighted averages from general practitioner (GP) data, where any patient with

an asthma diagnosis who has been prescribed asthma-related drugs in the preceding

12 months counts towards the asthma prevalence, although GP practices reporting

asthma prevalence beyond 30% are excluded from the calculation. For this study,

these values are rounded to the nearest integer, and only the most recent data from

2017 are analysed. For that year, the observed prevalences range from zero to 0.143.

5.2.2 Exploratory analysis

Let y = (y1, . . . , yK) denote the observed number of patients with a diagnosis of

asthma for 2017 in the LSOAs (1, . . . , K), where K = 32, 844. Similarly, let N =

(N1, . . . , NK) denote the number of registered patients in all areas. The observed

asthma prevalence in LSOA j is then computed as pj = yj/Nj, for j = 1, . . . , K

and is a raw estimate of the true but unknown asthma prevalence. Figure 5.2 shows

a histogram of the observed prevalence. The distribution is left-skewed, and the

prevalence has a mean of 0.060, a median of 0.061, and a standard deviation of 0.010.

Figure 5.2: A histogram of the observed asthma prevalence in 2017.

As discussed in Section 4.1, public health data tend to change smoothly across the

map, meaning that areas near each other tend to have similar health characteristics.
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Moran’s I statistic (recall Section 2.5.1.1) can be used to measure the spatial auto-

correlation in the observed prevalences p = (p1, . . . , pK), and a permutation test can

be used to formally test for overall spatial autocorrelation in the data (e.g., see Lee,

2020). Here, the neighbourhoods are defined as the six-nearest neighbours measured

by the Euclidean distance between the areas’ centroids, and the neighbourhoods are

made symmetric so that areas i and j are neighbours if area i is among the six nearest

neighbours of area j, or vice versa. Using the six nearest is neighbours is motivated

by each area in the study region sharing a border with an average of 5.87 areas. For

these neighbourhoods, the Moran’s I statistic for p is 0.89 and a permutation test

with 10,000 permutations results in a p-value smaller than 0.0001. Therefore, the

observed prevalences p are significantly positively spatially autocorrelated, meaning

that neighbouring values tend to be more similar. Hence, the data are suitable for

the proposed outlier detection method to identify whether there are individual areas

with asthma prevalences that do not follow their typical local behaviour.

5.3 Method: Identifying spatially outlying

observations to remove their impact on

estimated disease prevalence surfaces

This section presents the two-step modelling approach proposed in this study. Sec-

tion 5.3.1 presents the proposed method for identifying potential singleton (global or

contextual) spatial outliers, and Section 5.3.2 presents a modified smoothing model

to remove their impact on estimated disease prevalence surfaces.

5.3.1 Identifying spatial outliers

This section presents the proposed method for identifying potential singleton spatial

outliers using a relative density-based outlier score (RDOS). The RDOS statistic is

defined in Section 5.3.1.1, Section 5.3.1.2 provides a method for specifying the band-

width parameter that is used for computing the scores, and Section 5.3.1.3 discusses

how to choose the number of observations to be identified as outliers.
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5.3.1.1 Relative density-based outlier score (RDOS)

For the framework of this study, assume the values (y1, . . . , yK) are observed in K

areas labelled (1, . . . , K). Let Mj = {i : area i is a neighbour of area j} denote the

neighbourhood set of area j of size |Mj|. For example, one could apply the previously

described k-nearest neighbour rule to define the neighbourhoods, or a border-sharing

rule where two areas are defined to be neighbours if they share a border. The local

kernel density of observation yj is computed as

f̃j(yj) =
1

|Mj|+ 1

∑
i∈(Mj∪{j})

Gh(yi − yj), (5.1)

where Gh is a kernel function and h is the smoothing bandwidth. In this study, Gh

is defined to be a Gaussian kernel, computed as

Gh(yi − yj) =
1

(2π)1/2h
exp

(
−1

2

(yi − yj)2

h2

)
, (5.2)

where h is a global smoothing bandwidth used in all neighbourhoods. The Gaussian

kernel function Gh(yi− yj) returns the density of a Gaussian distribution with mean

yj and variance h2 evaluated at the value yi. The density curve is symmetric and

unimodal, with the mode located at the mean value yj. Hence, the kernel function

takes on a larger value when yi is closer to yj, and the bandwidth h controls how

quickly the density decreases as one moves away from yj. For a larger bandwidth h,

the densities evaluated at two values yi and yl = yi + δ for some small δ will be more

similar to each other; i.e., the variability in the densities reduces as one increases the

bandwidth h.

The relative density-based outlier score (RDOS) compares each observation’s local

kernel density to the average density of its neighbouring observations and is computed

as

RDOS(yj) =

 1

|Mj|
∑
i∈Mj

f̃i(yi)

/(f̃j(yj)), (5.3)

where f̃j(yj) denotes the local kernel density from Equation (5.1), for j = 1, . . . , K.
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The proposed outlier score from Equation (5.3) differs from that of Tang and He

(2017) in the definition of the neighbourhood sets. Tang and He (2017) define the

neighbourhood sets based on distances in the observed values, which can be either

spatial point locations or non-spatial attributes. In this study, the neighbourhoods are

formed based on the areas’ spatial locations, and the kernel density of each observation

is computed using the attributes observed in the neighbouring areas, which makes

the RDOS from Equation (5.3) applicable to spatial data with non-spatial attributes.

Suppose RDOS(yj) takes a value of one. In that case, the local kernel density

of observation yj is the same as the average local kernel density of its neighbouring

observations {yi : i ∈ Mj}. Similarly, when RDOS(yj) is smaller than one, the local

kernel density of observation yj is larger than the average local kernel density of its

neighbouring observations. In these cases, the observation yj appears to follow the

typical local behaviour. In contrast, when RDOS(yj) is greater than one, the local

kernel density of the observation yj is smaller than the average local kernel density

of its neighbouring observations. In that case, the observation yj is overall more

dissimilar from its neighbouring observations {yi : i ∈ Mj} than these observations

are from their neighbouring observations, on average. Thus, the larger the value of

RDOS(yj), the more likely it is that area j is a singleton outlier.

When the RDOS values are ranked, the highest-ranked objects are most likely to

be singleton spatial outliers. Note that the RDOS values do not indicate whether an

area is a contextual or a global outlier. However, while global outliers appear unusual

when viewing the whole dataset, contextual outliers appear unusual only relative to

their neighbouring observations. Hence, the attribute values of the identified outliers

can be compared to the whole dataset to check which ones appear global.

5.3.1.2 Bandwidth parameter specification

In this study, the bandwidth parameter is computed as a function of the local vari-

ability in the data. In this regard, the approach is similar to that of Schubert et al.

(2014a). However, Schubert et al. (2014a) propose using neighbourhood-specific local

kernel bandwidths. For the notation used here, the local bandwidth would be the

average difference between an area’s observation and its neighbouring observations
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or a somewhat arbitrary upper bound ε to make the method more robust to out-

liers. To eliminate the need to specify an upper bound, here, a global bandwidth

is computed as a scalar multiple of the median of the local measures of variability.

Furthermore, the median absolute difference is used instead of the average absolute

difference to measure local variability, reducing the impact of outliers. Specifically,

the global bandwidth in this study is computed as

hc = c×median
j=1,...,K

(
median
i∈Mj

(|yi − yj|)
)
, for c > 0. (5.4)

As previously described, the variability in the local kernel densities decreases as one

increases the bandwidth h. As a results the variability in the RDOS values is also

smaller for larger bandwidths. Therefore, increasing the bandwidth reduces the risk

that an area has an unusually large RDOS value by chance and for larger bandwidths

h and h̃ = h+δ for some small δ, the RDOS rankings should be mostly the same; only

the differences between the RDOS values are expected to decrease as one increases the

bandwidth further. Hence, an initial bandwidth is computed as in Equation (5.4) for

c = 1 and is increased incrementally until the rankings under subsequent bandwidths

are mostly the same. If the rankings are the same between c = 1 and the next larger

value, one could consider reducing the value of c below one. The smallest bandwidth

for which the rankings stabilise is used in the final analysis, resulting in the largest

differences between the RDOS values out of the bandwidths for which the rankings

are stable. The rankings under different bandwidths are compared using Kendall’s

rank coefficient.

Specifically, for the current value c, the RDOS values are computed and ranked in

decreasing order. Let r = (1, . . . , K) denote the ranks. The scalar c is increased to

c̃, and the RDOS values are again computed and ranked in decreasing order. Let r̃

denote the new ranking for c̃, as a potential permutation of the previously computed

ranks r. Kendall’s rank coefficient is then computed as

τ =
2

K(K − 1)

∑
i<j

sgn(ri − rj)sgn(r̃i − r̃j), (5.5)

where the function sgn(·) returns the sign of its input. The rank coefficient takes on
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values between -1 and 1, where τ = 1 denotes that the two rankings are the same

and τ = −1 denotes that the rankings are in reverse order of each other.

In this study, the value c is increased by increments of 0.1 until the rank coefficient

between two subsequent rankings is greater than 0.99. The threshold of 0.99 is chosen

somewhat arbitrarily, but one should generally choose a large threshold so that the

rankings remain mostly the same (according to Kendall’s rank coefficient) for the

incrementally increasing bandwidths, making it appear less likely that an area has

a large RDOS value by chance. As an additional note, in the extensive number of

simulations that follow, the threshold of 0.99 is always passed by increasing the value

c. Once the threshold is passed, the bandwidth is not increased further to avoid

unnecessarily reducing the differences in the RDOS values, making it more difficult

to split them into an inlier and an outlier set, as discussed next.

5.3.1.3 Choosing the number of observations to be identified as spatial

outliers

Several methods can be used to choose the number of observations to be identified as

spatial outliers from the ranked RDOS values, such as (1) using the top-n approach,

where the observations with the n largest RDOS values are identified as outliers; (2)

plotting the ranked RDOS values in decreasing order and identifying where they begin

to level off (which looks like an elbow in the plot) to choose a point around which

to split the observations into inliers and outliers; (3) using a clustering algorithm to

split the RDOS values into an inlier and an outlier cluster. As a point of clarification,

it should be noted that in this study, the inlier set contains any observation that is

not identified as a singleton outlier. Hence, collective outliers are expected to be

identified as part of the inlying data.

(1) The top-n approach is commonly used in the data mining literature (e.g., see

Ramaswamy et al., 2000, Zhang et al., 2009, Aggarwal, 2017), where the re-

searcher picks a fixed number of observations n or a proportion of the data to

be identified as outliers. The method allows answering questions of the type

“What are the ten most unusual observations in the data?”. However, valuable

information from the outlier scores is ignored when picking an arbitrary num-
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ber of observations to be identified as outliers. Hence, other methods should

be considered when identifying outliers from the RDOS values.

(2) A large RDOS value indicates that an area’s observation is more dissimilar to its

neighbouring observations than the neighbours are to their neighbouring obser-

vations. Hence, singleton outliers should have a noticeably larger RDOS value

than the inlying data. Based on this concept, one can plot the RDOS values in

decreasing order, with the RDOS value on the y-axis and its rank on the x-axis

and identify where the values begin to level off. Visually, one can identify an

elbow in the plotted values, similar to the elbow method used for within-sum-

of-square plots in k-means clustering, which is attributed to Thorndike (1953)

and explained in Section 2.8.1.3. One can pick a point near the elbow, possibly

with a visual gap in the RDOS values, to split the observations into inliers and

outliers around that point. Manually identifying the outlier and inlier sets is

a subjective method, forcing the researcher to decide where to split the values

into the two sets and possibly investigate the observations identified as outliers

further to confirm that they appear to deviate from the typical local behaviour.

A strength of the method is that it gives greater flexibility to the user and how

they weigh the risks of making false positive and false negative assignments.

For example, one researcher might prefer a smaller outlier set to reduce the risk

of incorrectly identifying inliers as outliers. In comparison, another researcher

might prefer a larger outlier set to reduce the risk of failing to detect some of

the true outliers. The application in Section 5.5 gives a demonstration of this

method.

(3) The simulation study in Section 5.4 evaluates the outlier detection method on

many simulated datasets. While the manual assignment of observations to an

inlier and an outlier set is the best motivated using the elbow method, it is

not feasible to manually split the data into the two sets in each of these very

large number of trials (e.g., there are 100 datasets for each of four simulation

scenarios). Hence, the clustering method partitioning around medoids (PAM,

recall Section 2.8.1.2) is used with two clusters to split the RDOS values into an
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outlier and an inlier cluster to check if reasonable cutoffs in the RDOS values

can be identified in this way.

5.3.2 A smoothing model that accounts for potential

singleton outliers

In this study, a spatial smoothing model is proposed that accounts for the identified

potential singleton spatial outliers. Section 5.3.2.1 describes the data likelihood and

overall structure of the model, Section 5.3.2.2 describes the structure of the random

effects, and Section 5.3.2.3 describes the prior specifications.

5.3.2.1 Data likelihood

Let Y = (Y1, . . . , YK) denote observations from areas (1, . . . , K). Assume the spatial

outlier detection method from Section 5.3.1 is applied to these observations (or some

function thereof), and no areas are identified as outliers. Let Ano denote the set

containing the no identified outliers, and Ac
no (the complement of Ano) denote the set

containing the (K − no) identified inliers. Thus, j ∈ Ano if area j is identified as an

outlier, and j ∈ Ac
no , otherwise. Furthermore, let 1o(j) denote an indicator function

so that 1o(j) = 1 if j ∈ Ano (an outlier) and 1o(j) = 0 if j ∈ Ac
no (an inlier). The

proposed smoothing model takes the form

Yj ∼ f(µj),

g(µj) = β0 + xTj β + (1− 1o(j))φjc + 1o(j)ψjo , (5.6)

ψ ∼ N

(
0,

1

κ
I

)
∈ Rno ,

φ =
1√
τ

(√
1− ρv +

√
ρu∗
)
∈ RK−no ,

v ∼ N(0, I),

u∗ ∼ N(0,Q∗(W ∗)−),

where each observation Yj is modelled using a likelihood function f(µj) with mean µj.

The model extends the existing BYM2 model (see Section 2.6.4) by the inclusion of

separate random effects for the inlying and outlying observations. Since the outlying
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observations appear to violate the spatial smoothness assumption, they are estimated

independently from the inlying observations so that they do not contaminate the

smooth risk (or prevalence) surface that is the target of inference for the inlying

observations.

In disease mapping, the most common options are the Poisson and binomial like-

lihoods such that Yj ∼ Poisson(µj = ejθj), where ej denotes an expected count

computed via indirect standardisation and the relative risk θj is estimated using a

log-linear model (i.e., of the form log(θj) = . . . ), or Yj ∼ Binomial(Nj, αj) with mean

µj = Njαj, where Nj denotes the population size and the disease prevalence αj is

estimated using a logit-linear model (i.e., of the form log(αj/(1−αj)) = . . . ). For the

general case with likelihood f(µj) from Equation (5.6), the transformed mean g(µj)

is fitted as a linear model with intercept term β0, covariates xj = (xj1, . . . , xjp) with

regression coefficients β = (β1, . . . , βp), and an added random effect that depends on

whether area j was identified as a potential outlier.

For j ∈ Ac
no (inlier), the random effect associated with area j is φjc , and the

random effects vector of the K −no areas identified as inliers is denoted φ = {φj|j ∈

Ac
no}. Similarly, for j ∈ Ano (outlier), the random effect associated with area j is

ψjo , and the random effects vector of the no areas identified as outliers is denoted

ψ = {ψj|j ∈ Ano}. Typically, disease risk and disease prevalence are assumed to

change smoothly across the map (following Tobler’s First Law of Geography). When

no observations are identified as potential spatial outliers, Model (5.6) simplifies to

a conventional spatial smoothing model that assigns a spatially correlated random

effects vector φ to the whole study region. When some areas are identified as outliers,

their random effects ψ can be estimated independently from the correlated random

effects φ, and the specific random effect structures applied in this study are described

next.

5.3.2.2 Structure of the random effects

The modified smoothing model proposed in this study assigns independent random

effects ψ to the observations that were identified as singleton outliers, and spatially

correlated random effects φ to the observations that were identified as inliers. The
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outlying random effects ψ are assigned a zero-mean multivariate Gaussian prior dis-

tribution with precision matrix κI, where κ is a precision parameter and I denotes

the identity matrix of size no×no (i.e., ψ is a vector of independent random effects).

The inlier random effects φ are assigned a BYM2 prior distribution (Simpson et al.,

2017, recall Section 2.6.4). Specifically, φ = 1√
τ

(√
1− ρv +

√
ρu∗
)
, where τ is a pre-

cision parameter, v is a vector of independent random effects with a standard normal

prior distribution, u∗ is a vector of scaled correlated random effects with a joint in-

trinsic conditional autoregressive (ICAR, recall Section 2.6.1) prior distribution that

enforces strong spatial autocorrelation, and ρ is a mixing parameter that controls

the degree of spatial autocorrelation. For ρ = 1, the random effects φ are estimated

using only the ICAR prior distribution and for ρ = 0, they are estimated using only

the independent Gaussian prior. For 0 < ρ < 1, the BYM2 prior distribution is a

mixture of the two.

The spatial structure of the ICAR prior distribution of the scaled random effects

u∗ is defined by the neighbourhood matrix W ∗ of size (K − no) × (K − no), where

w∗ij = 1 if inlying areas i and j are neighbours and w∗ij = 0, otherwise. Generally, one

could use a border-sharing rule so that two inlying areas are neighbours if they share

a border. However, since the potential outliers are not included in the neighbourhood

structure, there could be isolated inlying areas that share no border with other inlying

areas. Hence, a k-nearest neighbour rule is applied so that w∗ij = 1 if for inlying areas

i and j, area j is among the k-nearest inlying areas of area i or area i is among the

k-nearest inlying areas of area j, measured by the Euclidean distance between the

areas’ centroids. For the motivating study from Section 5.2, each area shares a border

with an average number of 5.87 areas. Hence, in this study, the value is specified

as k = 6 to approximately equal that number. The precision matrix Q∗(W ∗) is

scaled so that the generalised variance σ2
GV (u∗) = exp

(
1
K

∑K
j=1 log

(
[Q∗(W ∗)−]jj

))
equals one. Scaling the precision matrix allows for interpretability of the hyperprior

distribution of τ and for transferability between applications (Riebler et al., 2016).

As mentioned in Section 5.3.2.1, the modified smoothing model from Equation (5.6)

smoothes over the observations that were identified as inliers but estimates the iden-

tified potential outliers independently. Since a BYM2 model is applied to smooth
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over the identified inliers, the remainder of this chapter will refer to the modified

smoothing model from Equation (5.6) as BYM2-O model, where the extension “-O”

indicates that the modified model accounts for the potential outliers.

5.3.2.3 Prior specifications

The intercept β0 is assigned a weakly informative normal prior distribution with

mean zero and a variance of 1,000. Thus, the prior distribution imposes only a weak

constraint and lets the data speak for themselves.

The random effects ψ of the observations identified as outliers are assigned a mul-

tivariate Gaussian prior distribution with mean zero, independent precision matrix

and precision parameter κ. The log-precision is assigned a gamma hyperprior, so that

log(κ) = ν and

π(ν) =
ba

Γ(a)
ν(a−1) exp(−bν), (5.7)

where a > 0 is a shape parameter and b > 0 is the inverse-scale parameter. This

study uses the R-INLA package for inference and here, the default settings a = 1 and

b = 0.00005 are used.

The spatially correlated random effects φ of the observations identified as in-

liers are assigned a BYM2 prior distribution with precision parameter τ and mixing

parameter ρ. The parameters τ and ρ are assigned penalised complexity (PC) hy-

perprior distributions (recall Section 2.3.1.1). The precision parameter τ is assigned

a type-2 Gumbel prior distribution of the form

π(τ) =
θ

2
τ−3/2exp(−θτ−1/2). (5.8)

Choosing the value of the parameter θ can be aided by considering the probability

statement P (1/
√
τ > U) = α, resulting in θ = −log(α)/U (Riebler et al., 2016),

where U and α can be chosen by the researcher. The default values in the R-INLA

package are U = 1 and α = 0.01, which are used in this study, since the corresponding

probability statement reflects the prior assumption that there are no substantial

spatial random effects, with a probability of 99% that the standard deviation takes
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on a value smaller than one, so that the simplifying prior assumption is that the

effects are close to their zero mean.

The mixing parameter ρ is assigned another PC prior distribution, where the base

model is obtained for ρ = 0, i.e. the model where the independent component explains

all variability of the random effects. The Kullback-Leibler divergence (KLD, e.g.,

recall Equation 2.7) for ρ between the base model and corresponding flexible BYM2

model is used to compute the distance scale d(ρ), which is assigned an exponential

prior distribution with parameter λ. In contrast to the precision parameter τ , the

PC prior for ρ is not available in closed form, but can be computed in R-INLA for the

specific neighbourhood matrix, and more details are provided in Riebler et al. (2016).

The probability statement P (ρ < U) = α can be used to determine a reasonable value

of λ, where the values of U and α can be chosen by the researcher. The default values

in R-INLA are U = 0.5 and α = 0.5, which are used in this study, since it is unknown

whether or not to expect the random effects to be correlated before viewing the data.

5.4 Simulation study

Three simulation studies are conducted to answer the key questions about the pro-

posed singleton outlier detection method and modified smoothing model: Are the

outlier scores largest for true singleton outliers?; Is it possible to effectively identify

a cutoff to split the outlier scores into inliers and outliers?; Does the modified model

provide better estimates than a conventional smoothing model?

The geography used as the study region of these simulation studies is the local

authority district (LAD) Liverpool, which is partitioned into n = 298 lower super out-

put areas (LSOAs) and forms a subset of the study region of the asthma prevalence

data presented in Section 5.2. Only a subset of the data is used for the simulation

studies for computational reasons since the whole of England is too large to evaluate

the methods on many generated datasets for different settings. The study investi-

gates the proposed methods for discrete health outcomes, such as disease incidences

or mortality counts. Section 5.4.1 presents the data generation framework and Sec-

tion 5.4.2 reviews the outlier detection measures used for performance evaluation.

151



5. When Tobler’s First Law of Geography doesn’t hold

Section 5.4.3 presents the first simulation study, investigating if the outlier scores

of the true singleton outliers rank in the top of the RDOS ranking and comparing

the method’s effectiveness to using local Moran’s I for singleton outlier detection.

Section 5.4.4 presents the second simulation study, investigating if it is possible to

effectively identify a cutoff to split the RDOS values into inliers and outliers, where

the number of observations to be identified as outliers is chosen using partitioning

around medoids (PAM). Lastly, Section 5.4.5 compares the novel modified smoothing

model that does not smooth over the identified outliers to a conventional smoothing

model that smoothes over all areas.

5.4.1 Data generation

The data are generated for areas j = 1, . . . , K from the model

Yj ∼ Binomial(Nj, αj),

log

(
αj

1− αj

)
= β0 + φj + 1o(j)γj(φ)× v, (5.9)

γj(φ) = sgn

φj − 1

|M̃j|

∑
i∈M̃j

φi

,
φ ∼ N(0, τ 2Q(ρ,W )−1).

The observation Yj is generated from a binomial likelihood, where the number

of trials is the population size Nj of area j and αj denotes the disease prevalence

in that area, i.e., the true proportion of people in that area who have the disease.

The observed prevalences p = (p1, . . . , pK) are then computed as pj = Yj/Nj, for

j = 1, . . . , K. The population sizes are taken to be the numbers of registered patients

from the asthma prevalence data presented in Section 5.2. The logit-transformed true

prevalences are generated from a linear model with intercept β0, spatial random effects

φ = (φ1, . . . , φK), and a term γj(φ) × v that is added if area j is an outlier (i.e., if

1o(j) = 1). The intercept term is set to the logit-transformed median of the observed

prevalences from the asthma prevalence data in Section 5.2, as β0 = −2.73.

The vector φ consists of spatially correlated random effects generated from a

Leroux CAR model (recall Section 2.6.2) with variance parameter τ 2 and precision
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matrix Q(ρ,W ) = ρ(diag(W1)−W ) + (1−ρ)I, where ρ is a correlation parameter,

I is a K × K identity matrix, 1 is a vector of ones of length K, and W denotes

a symmetric neighbourhood matrix with wij = 1 if areas i and j are neighbours

and wij = 0, otherwise. Here, W is a ten-nearest neighbour matrix based on the

Euclidean distance between the areas’ centroids, where additional neighbours are

added so that wij = 1 if area j is among the ten-nearest neighbours of area i or area i

is among the ten-nearest neighbours of area j and wij = 0, otherwise. The correlation

parameter ρ determines the degree of spatial autocorrelation, and the random effects

are generated for ρ = 0.999 to ensure they are spatially smooth. The variance

parameter τ 2 determines the variability in the correlated random effects φ and is

set to τ 2 = 0.1. The generated random effects are shifted so they sum to zero. The

logit-transformed prevalence αj equals the sum of the intercept term β0 and spatial

random effect φj if area j is an inlying area. For outlying areas, a shift parameter

v is added so that the logit-transformed prevalence deviates more strongly from its

neighbouring values than the usual deviation due to the variability in the random

effects. The shift parameter’s sign γj(φ) depends on the random effect values in area

j and its neighbouring areas in the set M̃j = {i : area i shares a border with area j}.

The function sgn(·) returns the sign of its input: if φj is larger than the average of

the random effects in the neighbourhood M̃j, then γj(φ) = 1 and if φj is smaller

than the average of the random effects in the neighbourhood M̃j, then γj(φ) = −1.

Therefore, each outlying logit-transformed prevalence is shifted by a magnitude v in

the direction away from its neighbouring values, ensuring that it doesn’t follow the

typical local behaviour. Here, two scenarios are considered for the outlier magnitude

v: small outliers with v = 0.3 and large outliers with v = 0.7. Furthermore, two

scenarios are considered for the number of outliers in the data: m = 3 (∼ 1% of the

data) and m = 15 (∼ 5%).

Figure 5.3 shows example simulations for the data generated under Model (5.9)

when no or m = 15 outliers are induced. Figure 5.3a shows a simulated prevalence

vector α when no outliers are present. Example prevalence vectors when 15 small

or large outliers are induced are presented in Figures 5.3c and 5.3e, respectively,

where the induced outliers are highlighted with a thicker border. Example maps
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(a) α, no outliers

(b) p, no outliers

(c) α, small outliers

(d) p, small outliers

(e) α, large outliers

(f) p, large outliers

Figure 5.3: Example maps showing simulated true prevalences α and observed prevalences p when no or 15 outliers
are induced.

of the observed prevalences p are presented in Figure 5.3b where no outliers are

induced (corresponding to α from Figure 5.3a), Figure 5.3d where 15 small outliers

are induced (corresponding to Figure 5.3c), and Figure 5.3f where 15 large outliers

are induced (corresponding to Figure 5.3e). For the larger outlier magnitude v = 0.7,

the induced outliers can easily be identified from the observed prevalences p. In

contrast, for the smaller outlier magnitude v = 0.3, the observed prevalences of some

of the induced outliers appear less unusual than those of some inlying observations,

making it more difficult to distinguish between the outliers and some of the extreme

inlying observations. Setting v = 0.7 allows evaluating the outlier detection method

and modified smoothing model when clear singleton outliers are present, and v = 0.3

provides a more realistic scenario where the unusual true prevalence αj for an outlying

area j might not always be reflected in the corresponding observed prevalence pj (e.g.,

see Figures 5.3c and 5.3d). The simulation studies in Sections 5.4.3, 5.4.4, and 5.4.5
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are evaluated on 100 datasets that are generated under each of the four pairwise

combinations of the number of outliers (m = 3 or m = 15) and the outlier magnitude

(small or large outliers).

As a final note, when computing the RDOS values for these datasets, an initial

bandwidth value is computed as a function of the data’s local variability and increased

by a multiplicative scalar c until the rankings of the RDOS values stabilise (recall

Section 5.3.1.2). Table 5.1 shows the mean value and 95% uncertainty interval (in

parentheses) of the scalar c over the 100 datasets for each of the four simulation

settings. For the simulations with 15 small, three large, and three small outliers, the

scalar c tends to take on a value between 2 and 3, with mean values of 2.20, 2.28,

and 2.08 over the 100 datasets, respectively. For the scenario with 15 large outliers,

the scalar c tends to take on slightly larger values, with a mean of 3.17 and a 95%

uncertainty interval of (2.50,3.70).

Table 5.1: The mean and 95% uncertainty interval (in parentheses) of the scalar c over the 100 datasets for each of
the four simulation settings.

15 large outliers 15 small outliers 3 large outliers 3 small outliers

c 3.17
(2.50,3.70)

2.20
(2.00,2.50)

2.28
(1.90,2.80)

2.08
(1.80,2.30)

5.4.2 Outlier detection performance measures

This study evaluates the performance of the outlier detection method by computing

its precision, sensitivity, and specificity (e.g., see Boehmke and Greenwell, 2019). Let

Gm denote the set of the m outliers that are induced as described in Section 5.4.1,

and let Ano denote the set of the no observations that are identified as outliers. The

precision, sensitivity, and specificity are computed as

pprec =
|Gm ∩Ano |

no
, psens =

|Gm ∩Ano |
m

, pspec =
|Gcm ∩Ac

no |
K −m

.

The set of genuine outliers Gm and its size m are unknown in real datasets. Hence,

these measures can only be used in the simulation study in Section 5.4 but not for

the motivating application in Section 5.5.

The precision is the proportion pprec of the no identified outliers that are genuine

outliers, where |Gm ∩ Ano| is the number of genuine outliers that are contained in the
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set of observations that are identified as outliers. If the precision was used as the sole

evaluation criterion, a small number of observations no could be identified as outliers

to ensure that pprec is large; i.e., if only the most unusual observations are identified as

outliers, there is a higher chance that many of them will be genuine outliers. However,

by choosing an no that is too small, a substantial number of genuine outliers might

not be identified.

The sensitivity is the proportion psens of genuine outliers that are contained in the

set of observations that are identified as outliers (i.e., the true positive rate). The

sensitivity can be increased by selecting a larger number of observations no to be

identified as outliers, increasing the chance that a greater proportion of the genuine

outliers are included. However, one can maximise the sensitivity by setting no = K,

i.e., identifying all observations as outliers results in psens = 1. Therefore, the goal

is to choose no so that pprec and psens are both large, with the optimal solution

pprec = psens = 1 obtained when Gm = Ano , i.e., when exactly the set of genuine

outliers is identified as outliers.

As a third and final measure, this study also considers the specificity pspec, which is

the proportion of inliers that are not identified as outliers (i.e., the true negative rate).

Here, Gcm (the complement of Gm) denotes the set of the K −m inlying observations

and Ac
no denotes the set of the K−no observations that are not identified as outliers.

The specificity pspec is smallest when only inliers are identified as outliers so that the

set |Gcm ∩ Ac
no| contains K − no −m observations. Thus, the specificity is bounded

below by (K − no−m)/(K −m) = 1− no/(K −m), which will be close to one when

(K−m) >> no. Generally, outliers are expected to make up only a small proportion

of the data, so for application with very large K, the specificity will take on a large

value as long as no is small.

In Section 5.4.3, receiver operator characteristic (ROC) curves are computed for

different simulation settings to compare the RDOS-based outlier detection method

to using local Moran’s I statistic when applying the ‘top-n’ approach (where the

observations with the n largest outlier scores are identified as outliers). The ROC

curve plots the method’s true positive rate (TPR, or sensitivity) against the false

positive rate (FPR) as no (and hence, n in the top-n approach) is increased from 1
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to K. The FPR is the complement of the specificity and computed as

FPR =
|Gcm ∩Ano |
K −m

. (5.10)

Thus, the false positive rate is the proportion of inliers incorrectly included in the set

of observations identified as outliers. The ROC curve starts at FPR = TPR = 0 when

no observations are identified as outliers (no = 0) and finishes at FPR = TPR = 1

when all observations are identified as outliers (no = K). The performance of different

methods is compared by computing the area under the ROC curve (AUC), which takes

on a maximum value of one when all genuine outliers are identified before incorrectly

identifying any inlying observations as outliers, and a value of 0.5 corresponds to the

expected result of a random classifier.

5.4.3 Simulation Study 1: Comparing the performance of

RDOS and local Moran’s I

The local Moran’s I statistic Ij (recall Section 2.5.1.2) takes on a negative value when

yj is either a high value surrounded by neighbouring values that tend to be low or a

low value surrounded by neighbouring values that tend to be high, where high and low

are in comparison to the overall mean ȳ. Hence, areas with negative local Moran’s

I values do not appear to follow the typical local behaviour and are suspected to

be contextual or global outliers. Anselin (1995) claims that for the local Moran’s I

statistic, “a positive value indicates spatial clustering of similar values (either high

or low)”. However, it should be noted that singleton outliers could also result in a

larger positive value, for example when an area has an unusually high value and is

surrounded by neighbouring values that are on average slightly larger than the overall

mean. Thus, when comparing the proposed method to using local Moran’s I value

for singleton spatial outlier detection, two options are considered: potential outliers

are added to the outlier set either in order of increasing local Moran’s I or decreasing

absolute local Moran’s I value.

This section compares the singleton spatial outlier detection performance when

using the RDOS values to the existing method of using local Moran’s I statistic (or
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the alternative considering its absolute value) for areal data generated as described in

Section 5.4.1. The neighbourhoods used for computing either measure are constructed

using a k-nearest neighbour rule (according to the Euclidean distance between the

areas’ centroids) where additional areas are added to the neighbourhood sets so that

area i is in the neighbourhood Mj if it is among the k-nearest neighbours of area j,

or if area j is among the k-nearest neighbours of area i. The neighbourhoods should

be small enough to be local but sufficiently large to accurately reflect the typical

local behaviour. In this study, the number of nearest neighbours for constructing

the neighbourhood sets is set to k = 10. Local Moran’s I statistic is computed as in

Equation (2.11), and the RDOS scores are computed as in Equation (5.4), with the

bandwidth parameter value chosen as described in Section 5.3.1.2.

Figure 5.4 shows ROC curves computed for the three considered methods. The

first method uses the RDOS values, where the observations are added to the outlier

set by decreasing value. In the second method, observations are added to the outlier

set by increasing local Moran’s I value, and the third method ranks the observations

by decreasing absolute local Moran’s I value. The solid lines in the plots show the

ROC curve corresponding to the median AUC (here, taken to be the 50th smallest

AUC) and the dashed lines show the ROC curves corresponding to the 3rd smallest

and 3rd largest AUC values and provide an approximate 95% uncertainty interval for

the ROC curve under each scenario.

Most importantly, the plots show that using the RDOS values (top row) for sin-

gleton outlier detection delivers exceptional results, with median AUC values close

to one even for the smaller outlier magnitude. For the larger outlier magnitude and

either number of induced outliers (3 or 15), the ROC curves corresponding to the

median AUCs appear perfect and the 95% uncertainty intervals of (1.00,1.00) con-

firm that for the RDOS values, the genuine outliers tend to be identified before any

inlying observations. For the smaller outlier magnitude, some genuine outliers are

not identified until after a considerable number of inliers have been incorrectly iden-

tified as outliers, resulting in AUC values of 0.95 (0.86,0.99) when m = 15 outliers

are induced and 0.97 (0.69,1.00) when m = 3 outliers are induced. For example, for

m = 15, the ROC curve corresponding to the median AUC reaches a true positive
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(a) 15 large outliers (b) 15 small outliers (c) 3 large outliers (d) 3 small outliers

Figure 5.4: Median AUC and 95% uncertainty interval ROC curves showing the false positive rate (FPR) and true
positive rate (TPR) when using the RDOS values or local Moran’s I for outlier detection for data simulated under
four simulation settings.

rate of one when the false positive rate is 0.2226, i.e., after 63 inliers have been incor-

rectly identified as outliers. Here, only three of the 15 induced outliers are identified

before the first inlier is incorrectly identified as an outlier, and by the time eight of

the induced outlier are identified, eight inliers have also been identified incorrectly.

Thus, for the smaller outlier magnitude, choosing the set of observations to be iden-

tified as outliers from the ranked RDOS values comes as a trade-off between the false

positive and false negative rate, which is further explored in Section 5.4.4. Given

that the outlier magnitude v = 0.3 was intentionally chosen small so that some of

the induced outliers do not appear unusual in the observed data (recall Figure 5.3d),

the detection performance using the RDOS values is quite remarkable.

Another striking feature is that the singleton outliers are not generally associated

with small local Moran’s I values (middle row). As a result, adding the observations to

the outlier set by increasing local Moran’s I value is not a good method for singleton

outlier detection, with only a fraction of the genuine outliers identified effectively.

For m = 15 induced outliers, even when the outlier magnitude is large, the AUC
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has a median value of only 0.55 with a 95% uncertainty interval of (0.35,0.73). As

seen in the plot, many of the induced outliers are associated with some of the larger

local Moran’s I values and are among the last to be identified as outliers. The

alternative ranking of the local Moran’s I values by decreasing absolute value (bottom

row) generally produces better detection results. For example, when m = 15 large

outliers are induced, the AUC has a median of 0.80 with a 95% uncertainty interval of

(0.70,0.88). Despite the overall improved detection performance, in the more realistic

setting with a smaller outlier magnitude, the lower bound of the 95% uncertainty

interval of the AUC is only 0.50 when m = 15 outliers are induced. For m = 3,

the lower bound is even smaller, at 0.31. Thus, although the alternative ranking

by decreasing absolute value produces overall better results than the conventional

ranking by increasing value, the local Moran’s I statistic is not generally a reliable

measure to identify singleton outliers in areal data and using the proposed RDOS

values appears to be a much more effective method.

5.4.4 Simulation Study 2: Using PAM to choose the outlier

set from the RDOS values

This section evaluates the effectiveness of using the partitioning around medoids

(PAM, recall Section 2.8.1.2) algorithm for splitting the RDOS values into inlier and

outlier sets. The method is evaluated on the same 400 datasets as in Section 5.4.3,

with 100 datasets for each of the four pairwise combinations of the number of outliers

(m = 3 or m = 15) and the outlier magnitude (small or large outliers). Since it is

not feasible to manually split the data into the two sets for all 400 datasets, the PAM

algorithm with two clusters is used as an automated method. Table 5.2 presents the

mean values and 95% uncertainty intervals (in parentheses) for the number of obser-

vations no that are identified as outliers and for the performance measures precision,

sensitivity, and specificity over the 100 simulated datasets under each simulation

setting.

The method is evaluated for different subsets of the RDOS values to be considered

by the PAM algorithm. One option is to apply the PAM algorithm to all RDOS
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Table 5.2: Simulation results for the outlier detection performance using partitioning around medoids (PAM) to
split the RDOS values into an outlier and an inlier set.

15 large outliers 15 small outliers 3 large outliers 3 small outliers

10% largest
RDOS values

no 6.29 (2,10) 5.52 (1,12) 2.51 (1,7) 5.41 (1,13)
pprec 1.00 (1.00,1.00) 0.83 (0.38,1.00) 0.94 (0.43,1.00) 0.42 (0.00,1.00)
psens 0.42 (0.13,0.67) 0.29 (0.07,0.57) 0.69 (0.33,1.00) 0.49 (0.00,1.00)
pspec 1.00 (1.00,1.00) 1.00 (0.99,1.00) 1.00 (0.99,1.00) 0.99 (0.96,1.00)

20% largest
RDOS values

no 6.74 (2,12) 9.61 (1,22) 2.80 (1,14) 10.49 (1,24)
pprec 1.00 (1.00,1.00) 0.73 (0.39,1.00) 0.93 (0.22,1.00) 0.31 (0.00,1.00)
psens 0.45 (0.17,0.80) 0.42 (0.07,0.70) 0.71 (0.33,1.00) 0.60 (0.00,1.00)
pspec 1.00 (1.00,1.00) 0.99 (0.95,1.00) 1.00 (0.96,1.00) 0.97 (0.93,1.00)

All
RDOS values

no 7.17 (3,15) 46.60 (6,88) 26.08 (1,89) 63.93 (26,94)
pprec 1.00 (0.97,1.00) 0.34 (0.16,0.87) 0.63 (0.03,1.00) 0.05 (0.03,0.10)
psens 0.48 (0.23,0.97) 0.81 (0.36,1.00) 0.85 (0.33,1.00) 0.94 (0.49,1.00)
pspec 1.00 (1.00,1.00) 0.88 (0.74,1.00) 0.92 (0.71,1.00) 0.79 (0.69,0.92)

values (in the bottom section of the table). However, one would generally expect the

proportion of outliers in the dataset to be small (or zero) and hence, one could apply

the PAM algorithm to a subset of the data to avoid the added difficulty in trying to

detect small clusters (i.e., small sets of singleton outliers). Here, either m = 3 (∼ 1%

of the data) or m = 15 (∼5%) observations are induced outliers and hence, possible

subsets should be larger than m = 15 to ensure these subsets contain at least some

inliers. Hence, to investigate the variability in the detection results when using the

PAM algorithm, the 30 (∼ 10%, in the top section of the table) and 60 (∼20%, in

the middle section) largest RDOS values are considered as subsets to apply the PAM

algorithm. It should be noted that smaller subsets could be considered, especially

in applications where the proportion of genuine outliers is anticipated to be smaller

than 5%.

The most important finding from Table 5.2 is that partitioning around medoids

is not generally an effective method for splitting the RDOS values into an inlier and

an outlier set. When 15 large outliers are induced in the dataset, fewer than half of

them tend to be included in the outlier set, regardless of the initial number of RDOS

values considered by the PAM algorithm (e.g., the average numbers are 6.29, 6.74,

and 7.17 when applying PAM to the 10% largest, 20% largest, and all RDOS values,

respectively). While only true outliers tend to be included in the outlier set (the

lower bounds of the uncertainty intervals of the precision are 1.00, 1.00, and 0.97),

the ROC curve from Section 5.4.3 suggests that most true outliers should rank highest
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and hence, the sensitivity would be increased without sacrificing the high precision if

some additional observations were identified as outliers. Hence, the detection results

seem overly conservative when 15 large outliers are present.

For the scenario with 15 small outliers, the choice of the number of RDOS values to

be considered by the PAM algorithm has a bigger influence on the results. Here, the

average number of observations in the outlier set are 5.52 for the 10% largest RDOS

values, 9.61 for the 20% largest RDOS values, and 46.60 when all RDOS values are

considered. Thus, the outlier sets tend to be too large when all RDOS values are

considered by the PAM algorithm. When only the 10% or 20% largest RDOS values

are considered by the PAM algorithm, the outlier sets are smaller but tend to contain

fewer than half of the induced outliers (the average sensitivity is 0.29 for 10% and

0.42 for 20%). However, in this scenario, increasing the size of the outlier sets might

not lead to better splits, since some inliers tend to be already included erroneously

(e.g., the average precision is 0.83 for 10% and 0.73 for 20%). These findings align

with the results from Section 5.4.3, where the ROC curves for the simulations with

15 small outliers suggested that only half of the induced outliers tend to be identified

before incorrectly identifying just as many (or more) inliers.

When only three outliers are induced in the dataset, the outlier sets tend to be

much too large for either outlier size (large or small) when all RDOS values are

considered by the PAM algorithm (e.g., on average, 26.08 and 63.93 observations

are included, respectively). The size of the outlier sets tends to be much reduced

when applying the PAM algorithm to only the 10% or 20% largest RDOS values.

For example, for the larger outliers, the average number of observations no included

in the outlier set are 2.51 for the 10% largest RDOS values and 2.80 for the 20%

largest RDOS values, and most observations included tend to be true outliers (e.g.,

the average precision is 0.94 and 0.93, respectively). For the smaller outliers, the

outlier sets tend to be larger, with average sizes of 5.41 and 10.49 for the 10% and

20% largest RDOS values, respectively, and the precision tends to be substantially

lower (e.g., the average precisions are 0.42 and 0.31).

Generally, for the two scenarios with the smaller outliers and when only a subset of

RDOS values are considered by the PAM algorithm, the sizes of the resulting outlier
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sets tend to be fairly similar regardless of the true number of outliers induced. For

example, when the 10% largest RDOS values are considered by them PAM algorithm,

the outlier sets have an average size of 5.52 (1,12) when 15 small outliers are induced

and 5.41 (1,13) when only three small outliers are induced. Thus, the PAM algorithm

does not appear to be a reliable method for splitting the RDOS values into an inlier

and an outlier set, especially when the outlier magnitude is small.

Since the PAM algorithm is not generally an effective method for splitting the

RDOS values into the two sets, for real applications, it is advised to plot the RDOS

values in decreasing order to choose a cutoff manually (revisit Section 5.3.1.3 for

further explanations) and investigate the observations near the cutoff between the so

obtained outlier and inlier sets further to check if the outliers appear indeed more

unusual than the inlying observations. The manual approach will be demonstrated

in Section 5.5.

5.4.5 Simulation Study 3: Evaluating the modified

smoothing model

As a final step of the proposed method, the modified smoothing model BYM2-O from

Equation (5.6) in Section 5.3.2 is applied to the same 400 simulated datasets that

were already analysed in Sections 5.4.3 and 5.4.4, and its accuracy is compared to

that of a conventional BYM2 model. Specifically, the study considers the following

models:

� The conventional BYM2 model.

� The modified smoothing model with outlier sets obtained from the PAM algo-

rithm

– considering the 10% largest RDOS values, referred to as “BYM2-O, PAM

(10%)”.

– considering the 20% largest RDOS values, referred to as “BYM2-O, PAM

(20%)”.

– considering all RDOS values, referred to as “BYM2-O, PAM (all)”.

163



5. When Tobler’s First Law of Geography doesn’t hold

� The modified smoothing model with the outlier set equal to the set of induced

outliers, referred to as “BYM2-O, best case”.

For the models “BYM2-O, PAM (10%)”, “BYM2-O, PAM (20%)”, and “BYM2-O,

PAM (all)”, the evaluations pretend the outliers are unknown and the BYM2-O model

from Equation (5.6) accounts for the potential singleton spatial outliers identified

from the RDOS values and the PAM algorithm as presented in Section 5.4.4. The

likelihood in Model (5.6) is Yj ∼ Binomial(Nj, αj) with number of trials Nj equal

to the number of registered patients from the asthma prevalence data, and the gen-

erated (but pretended to be unknown) prevalence αj is the target for inference, for

j = 1, . . . , K, and fitted using a logit-linear model. The prevalence is inferred from

the generated disease counts using the modified model BYM2-O, and the conventional

BYM2 model is chosen for comparison. Section 5.4.4 showed that the detection re-

sults using the PAM algorithm were not optimal for most simulation settings. Hence,

additionally to the outlier sets identified in Section 5.4.4, the BYM2-O model is fitted

under a “best case” scenario referred to as “BYM2-O, best case”, where exactly the

true outliers are included in the identified outlier set to check how close the modi-

fied smoothing model under sub-optimal outlier identification can get to this optimal

scenario.

In these simulations, the true disease prevalence is known and so each model’s

efficacy can be evaluated by how well the fitted values estimate the true values. An-

other consideration is how much variability there is in the fitted values. Specifically,

the following analysis uses the root mean square error (RMSE) and median absolute

error (MAE) to report the overall differences between the true disease prevalence and

the posterior mean fitted values, and reports the coverage (the proportion of times

the true prevalence is contained in the 95% credible interval) and the mean credible

interval width as measures of variability in the fitted values. These measures are

computed over all observations for each of the four simulation settings: 15 (∼ 5%)

large outliers, 15 small outliers, 3 (∼ 1%) large outliers, and 3 small outliers. It

should be noted that the results for the BYM2-O models that use the outlier sets

obtained from the PAM algorithm applied to all observations are presented for com-

pleteness. However, Section 5.4.4 showed that the PAM algorithm tends to produce
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outlier sets that are much too large when applied to all RDOS values and hence, the

results for the fitted models tend to be much worse than for the scenarios where the

PAM algorithm is applied to only a subset of the RDOS values. Hence, the following

analysis focuses on the results obtained for the BYM2-O models that use the outlier

sets obtained from the PAM algorithm applied to the 10% or 20% largest RDOS

values.

Figure 5.5: RMSE for the five considered models under the four simulation settings.

Figure 5.5 shows boxplots summarising the RMSE for each of the five models

(the conventional BYM2 model, three BYM2-O models for outlier sets identified

with PAM, and the “best case” BYM2-O model) for the four simulation scenarios,

each evaluated over 100 simulated datasets. When the outliers are large, the RMSE

over all observations is substantially lower for the modified smoothing models than

the conventional BYM2 model. The overall reduced RMSE can be seen for both

scenarios with 15 and 3 large outliers. For the scenario with 15 large outliers, the

RMSE for the “best case” scenario BYM2-O model tends to be much lower than

for the BYM2-O models that use the outlier sets identified using the PAM algorithm

(e.g., the average RMSE is 0.0042 for the “best case” scenario, and 0.0050, 0.0047, and

0.0049 for the BYM2-O models with outlier sets identified using the PAM algorithm

applied to the 10% largest, 20% largest, and all RDOS values, respectively). Recall

from Section 5.4.4 that in this scenario, the PAM algorithm tends to identify only

just under half of the induced large outliers. Hence, in this scenario, more than half of

the induced outliers will tend to still be included in the inlier set, which explains the

substantially larger RMSE values than in the “best case” scenario. Nonetheless, even

165



5. When Tobler’s First Law of Geography doesn’t hold

for the sub-optimal outlier identification, the BYM2-O models provide overall better

point estimates than the conventional BYM2 model (which has an average RMSE of

0.0053 in the scenario with 15 large outliers), which suggests that the conventional

smoothing model can be improved by estimating potential outliers independently

from the smooth prevalence surface when some of the outliers are large.

When the outliers are small, the RMSE tends to be slightly larger for the BYM2-O

models than the conventional BYM2 model when the outlier sets are identified using

the PAM algorithm. For the scenario with 3 small outliers, even for the “best case”

scenario, the RMSE is only slightly lower than for the conventional BYM2 model. For

the scenario with 15 small outliers, the RMSE under the “best case” scenario tends

to be substantially lower than for the conventional BYM2 model, which suggests

that identifying the outliers correctly would generally lead to much better point

estimates. However, for the outlier sets obtained from the PAM algorithm, too many

observations tend to be incorrectly identified (inliers are contained in the outlier set

and outliers are not identified) and as a result, the RMSE is slightly larger than for

the conventional BYM2 model.

It should be noted that the RMSE is a non-robust summary statistic of the dif-

ferences between the true and the fitted prevalence, as its value could be inflated by

a few large errors. Thus, a few observations that are badly estimated could have

a large impact on the RMSE. Instead, one can consider the median absolute error

(MAE), which provides a more robust estimate of how similar the point estimates

are to the true values, overall. Figure 5.6 shows boxplots that summarise the MAE

values of the five models over the 100 datasets under each of the four simulation

scenarios. The figure confirms that the point estimates of the BYM2-O models tend

to be better than those of the conventional BYM2 model when the outliers are large.

Additionally, the figure reveals that the BYM2-O model tends to also provide overall

better point estimates in the scenario with 15 small outliers. Thus, while the point

estimates of the BYM2-O model might be worse for some observations (resulting in

a tendency of observing a slightly larger RMSE, as seen in Figure 5.5), they appear

to be overall closer to the true prevalence than those obtained from the conventional

BYM2 model. In contrast, when only three small outliers are present, the MAE tends
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to be slightly larger for the BYM2-O models than for the conventional BYM2 model.

This is not entirely surprising, given that the few and small outliers are unlikely to

have a strong impact on the estimation of the smooth risk surface. Thus, applying a

modified smoothing model appears warranted only if a larger number of outliers or

(at least) a few outliers with a larger outlier magnitude are present in the data.

Figure 5.6: Median absolute error (MAE) for the five considered models under the four simulation settings.

Another consideration for the evaluation of the model fitting is the variability

in the fitted prevalence. Figure 5.7 shows boxplots summarising the coverage (the

proportion of times the true prevalence is contained in the 95% credible interval)

of the five models over the 100 simulated datasets in each of the four simulation

scenarios. Here, the optimal value of 0.95 is indicated by the orange horizontal line.

Figure 5.7: Coverage for the five considered models under the four simulation settings.

The figure shows that the coverage tends to be close to 0.95 for the conventional

BYM2 model and the BYM2-O models using the outlier sets obtained from the

PAM algorithm that considers the 10% or 20% largest RDOS values. However, when
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the outlier magnitude is small, the BYM2-0 models tend to have a slightly lower

coverage (with median values between 0.92 and 0.94). The modified model under

the best case scenario tends to have a coverage of approximately 0.95. Hence, the

other smoothing models likely have a slightly lower coverage due to the incorrectly

identified observations from the inlier and outlier sets. The coverage is likely impacted

by the credible interval widths, which are presented in Figure 5.8.

Figure 5.8: Mean credible interval width for the five considered models under the four simulation settings.

Figure 5.8 shows boxplots summarising the mean credible interval width for the

five models over the 100 simulated datasets for each simulation scenario. The figure

shows that the average credible interval width tends to be substantially smaller for the

modified smoothing models than for the conventional BYM2 model. For the scenario

with 15 large outliers, the average credible interval width of the “best case” BYM2-O

model tends to be substantially smaller than for the other modified smoothing models,

again likely because when the PAM algorithm is used, only just under half of the

induced outliers tend to be identified. For the other simulation settings, the mean

credible interval width of the BYM2-O models that use the outlier sets obtained

using PAM tend to be much closer to that of the “best case” BYM2-O model and

for the scenario with three small outliers, they tend to be even below that of the

“best case” BYM2-O model. For the scenarios with 15 induced outliers (either large

or small) and 3 large outliers, the median absolute errors tend to be smaller for the

BYM2-O models (recall Figure 5.6) and the coverage tends to be close to 0.95 (recall

Figure 5.7). Hence, the smaller mean credible interval widths lead to more precise

estimates. In contrast, for the scenario with 3 small outliers, the median absolute
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errors tend to be larger for the BYM2-O models than the conventional BYM2 model

and hence, the smaller mean credible interval widths will tend to lead to more biased

estimates.

As a conclusion for the model fitting evaluation, the BYM2-O models appear to

provide better estimates than the conventional BYM2 model, but only when at least

some of the outliers are large or a larger number of outliers are present. Under those

scenarios, the modified smoothing models tend to provide overall better prevalence

estimates than the conventional BYM2 model. For the scenarios with small outliers,

the BYM2-O models might not lead to improved fitted values or even produce biased

estimates, which highlights the importance of visually exploring the identified outliers

to decide if a modified model should be applied.

5.5 Application: Asthma prevalence at a small

area level in England

Here, the proposed methodology is applied to the asthma prevalence data presented in

Section 5.2. Section 5.5.1 considers possible options for splitting the observations into

inlier and outlier sets and proposes a split for the further analysis, answering the first

motivating question, “Which areas appear to be potential outliers?”. Section 5.5.2

presents an exploratory analysis of the identified outlier set to answer the second

motivating question, “Do the identified outliers appear to be contextual or global?”.

Lastly, Section 5.5.3 presents the results from fitting the identified inlier/outlier sets

using the BYM2-O model and shows how these compare to the results obtained from

a conventional BYM2 model to answer the third motivating question, “How do the

potential outliers affect the modelling?”.

5.5.1 Which areas appear to be potential outliers?

The RDOS values are computed for the observed asthma prevalences, over neigh-

bourhoods that are created using the k-nearest neighbour rule and made symmetric

so that if area i is among the k nearest neighbours of area j, then area j is added to
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(a) The area with the largest RDOS value.

(b) The area with the 2nd largest RDOS value.

Figure 5.9: Maps showing the observed asthma prevalence for the local authority districts containing or bordering
the areas with the largest and second largest RDOS values.

the set of neighbours of area i. Here, the value k = 10 is used again, since it seems

sufficiently small to compare the areas to their nearby areas and sufficiently large to

capture the local behaviour (the value k = 10 was used in the simulation studies,

with exceptional detection results presented in Section 5.4.3). The bandwidth pa-

rameter hc is computed as hc = c × median
j=1,...,K

(
median
i∈Mj

(|pi − pj|)
)

, where one has to

specify the value of the scalar c and pj denotes the observed asthma prevalence, for
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j = 1, . . . , K. The smallest value of c for which Kendall’s rank coefficient is greater

than 0.99 (which indicates that the rankings stabilise; recall Section 5.3.1.2) is c = 3.2

and the bandwidth hc is computed for that value.

Generally, one can plot the RDOS values to split the observations into inliers and

outliers. However, this should only be done when at least some of the observations

appear to be outliers. Hence, before looking at the distribution of all RDOS val-

ues, maps of some observations with the largest RDOS values are consider to see if

these observations appear unusual. Figure 5.9 presents maps that show the observed

asthma prevalences in the areas with the two largest RDOS values (these areas are

highlighted with a thicker border). Note that the same colour scale is used for the

two maps, so one can compare the observed asthma prevalence between these maps.

Figure 5.9a shows the area with the largest RDOS value, which has a relatively low

observed asthma prevalence of 0.0409 (the median observed prevalence is 0.0611)

and is surrounded by areas with observed prevalences that are slightly larger (e.g.,

the border-sharing areas have observed asthma prevalences ranging from 0.0602 to

0.0624). The area is located in the East Midlands, and the upper boxed image in

Figure 5.9a shows the location of the LSOAs from the larger map on the map of Eng-

land, highlighted in red. More specifically, the outlying area is located in the local

authority district (LAD) Nottingham on the border to the LAD Broxtowe, and the

two LADs are shown in the lower boxed image, with Nottingham being the LAD fur-

ther East. The area with the second largest RDOS value (presented in Figures 5.9b)

also has a relatively low observed asthma prevalence of 0.0455 and is surrounded

by areas with slightly larger observed asthma prevalences (e.g., the border-sharing

areas have asthma prevalences ranging from 0.0601 to 0.0655). The outlying area

is located in the LAD Norwich (East of England), on the border to South Norfolk

and hence, Figure 5.9b shows the observed asthma prevalence for Norwich and South

Norfolk. The lower boxed image shows the two LADs, where Norwich is the LAD

further North. The areas with the two largest RDOS values highlighted in Figure 5.9

both appear to deviate from their typical local behaviour and hence, they can be

identified as potential outliers. The question remains if these outliers are contextual

or global, which is further investigated in Section 5.5.2. Since at least some potential
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outliers appear to be present in the data, the next step is to choose the number of

observations to be identified as outliers.

Figure 5.10: Density rug plot over all RDOS values with two possible inlier/outlier splits indicated by the dashed
vertical lines.

Figure 5.10 shows a rug density-plot over all 32,844 RDOS values, where each

vertical line below the x-axis represents an observed RDOS value and the estimated

density curve is shown in the plot. The plot can be used to identify larger gaps in the

RDOS values to split them into inliers and outliers, since the outliers are anticipated

to have larger RDOS values than the inliers. Two possible inlier/outlier splits are

indicated by the vertical dashed lines. One can increase the number of observations

to be included in the identified outlier set by moving the dashed vertical line from

right to left. The first split considered in Figure 5.10 is between the 37th and 38th

largest RDOS value (indicated by the right dashed vertical line), as there appears to

be a large gap and the 37 largest RDOS values look to be more sparsely distributed

than the RDOS values to the left of that split. The second possible split is between

the 116th and 117th largest RDOS values (indicated by the left dashed vertical line),

where a final larger gap is noticeable when moving along the x-axis from right to

left. Thus, the two considered outlier sets contain 37 and 116 potential outliers,

respectively.

Additionally to the rug density plot, one can consider plots of the ranked RDOS

values in decreasing value to look for an ‘elbow’ in the plot, as described in Sec-
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(a) All RDOS values (b) The 2,000 largest RDOS values

(c) The 400 largest RDOS values (d) The 20th to 200th largest RDOS values

Figure 5.11: RDOS values for the asthma prevalence data in decreasing order.

tion 5.3.1.3 and presented in Figure 5.11. Figure 5.11a shows the RDOS values of all

32,844 areas. Moving from left to right, the RDOS values begin to level off somewhere

among the 2,000 largest values. Figure 5.11b shows the 2,000 largest RDOS values,

where some of the 400 largest RDOS values appear substantially larger than the rest.

Figure 5.11c shows only the 400 largest RDOS values. Here, the same inlier/outlier

splits from Figure 5.10 are represented by the dashed vertical lines. The gaps identi-

fied in Figure 5.10 are less noticeable in Figure 5.11c since many of the points tend to

overlap, due to the large number of observations presented in the plot. Figure 5.11d

shows only the 20th to the 200th largest RDOS values, where the gaps identified in

Figure 5.10 can be seen more easily than in the other plots in Figure 5.11.

One should check manually which observations appear to be potential outliers,

which can be done by visualising the observations on a map. Figure 5.12 shows the

areas with the 37th and 38th largest RDOS values, highlighted with a thicker border.

Again, the colour scale is the same for these two maps. Figure 5.12a shows the area

with the 37th largest RDOS value, which is the area with the smallest RDOS value

in the outlier set of size 37. The area has an observed asthma prevalence of 0.0381.

Although the area is in a region with other areas that have smaller observed asthma

prevalences, its observed asthma prevalence is noticeably lower (e.g., its bordering
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(a) The area with the 37th largest RDOS value.

(b) The area with the 38th largest RDOS value.

Figure 5.12: Maps showing the observed asthma prevalence for the local authority districts containing or bordering
the areas with the 37th and 38th largest RDOS values.

areas have observed asthma prevalences between 0.0493 and 0.0625) and hence, one

could argue that it should be identified as a singleton outlier. Figure 5.12b shows

the area with the 38th largest RDOS value. For the smaller outlier set of size 37,

this area would be the inlying area with the largest RDOS value. Although the

area’s observed asthma prevalence of 0.0759 is above the median of 0.0611 and the

areas at its Northern border have lower observed asthma prevalences of 0.0563 and

0.0566, its other neighbouring areas tend to have also slightly larger observed asthma

prevalences (the other values are 0.0665, 0.0690, and 0.0697) and hence, the area’s

observed asthma prevalence does not appear to deviate substantially from the typical
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Figure 5.13: The locations of the 37 identified potential singleton outliers on a map of England. The green circles
mark local outliers with a low observed prevalence compared to the average observed prevalence of their neighbours,
and the orange circles mark local outliers with high observed prevalences.

local behaviour. Hence, one can argue that the area with the 38th largest RDOS value

should not be identified as an outlier. Note that many of the areas in the larger outlier

set of size 116 also do not look very unusual, but no additional plots are presented

here for brevity. Based on the visual analysis, the rest of this chapter will consider

only the scenario where the areas associated with the 37 largest RDOS values are

identified as outliers. Figure 5.13 shows these 37 potential singleton outliers on a map
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of England, where the coloured circles mark the areas’ centroids. The green circles

mark local outliers with a low observed prevalence (compared to the average observed

prevalence of the neighbouring areas over which the RDOS values were computed),

and the orange circles mark local outliers with high observed prevalences.

5.5.2 Do the identified outliers appear to be contextual or

global?

Figure 5.14: A scatterplot showing the RDOS values against the observed asthma prevalence with indications of
inlier and outlier sets. The green circles mark local outliers with a low observed prevalence compared to the average
observed prevalence of their neighbours, and the orange circles mark local outliers with high observed prevalences.

This section presents an exploratory analysis of the inlier/outlier sets suggested in

Section 5.5.1, i.e., where the outlier set consists of the areas with the 37 largest RDOS

values. Figure 5.14 shows a scatterplot of the RDOS values against the observed

asthma prevalences with an indication of the previously suggested inlier/outlier sets.

Here, the coloured circles again indicate low and high local outliers, compared to

the average observed prevalences of the areas in the neighbourhoods that were used

to compute the RDOS values. The plot allows checking if the identified outliers

appear to be global or contextual. The outlier set contains one observation with

an observed asthma prevalence of zero, which is the lowest possible value and much

smaller than in most areas. Although there are nine other areas with observed asthma

prevalences of zero, these nine areas form a spatial cluster which explains why they

were not identified as singleton outliers. Hence, the identified singleton outlier with

an observed asthma prevalence of zero can be considered a global outlier. On the

higher end, the identified outlier with the largest observed asthma prevalence has

176



5. When Tobler’s First Law of Geography doesn’t hold

a prevalence of 0.1197. Given that there is a substantial gap to the next smaller

observed prevalence of 0.1021 and the bulk of the observed asthma prevalences, the

area can be considered a global outlier. However, there are five areas with even

larger observed asthma prevalences that were not identified as singleton outliers,

which should be investigated further. The other 35 areas that were identified as

outliers all appear to be contextual outliers, since their observed asthma prevalences

do not appear unusual when viewing the dataset as a whole.

Figure 5.15: A map showing the five LSOAs with the highest observed asthma prevalences.

From Figure 5.14, the question arises why the areas with the five largest observed

asthma prevalences were not identified as singleton outliers. Figure 5.15 shows a map

with the five areas with the largest observed asthma prevalences, which are located

in the local authority district North Devon in the South West of England (the upper

boxed image shows the LADs containing the LSOAs presented on a larger part of the

South West of England, where the LAD North Devon is the central one of the three

Northern LADs). The map reveals that the five LSOAs with the largest observed

asthma prevalences form a spatial cluster, as shown up-close in the lower boxed

image. The identified outlier is located at the South-Western end of the cluster and

has an observed asthma prevalence that is noticeably smaller than those of the areas

in the cluster but is substantially larger than in most other areas (recall Figure 5.14),

which explains its larger RDOS value and why it was identified as a singleton outlier.

Figure 5.14 contains another area that was identified as a singleton outlier, which is

located at the Northern shore of the LAD North Devon. The area has an observed
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asthma prevalence of 0.0558, which is noticeably smaller than that of its nearby areas

(e.g., the areas sharing a border with this area have observed asthma prevalences of

0.0647, 0.0667, 0.0728, and 0.0767) and hence, one can argue that it was correctly

identified as a singleton outlier.

5.5.3 How do the potential outliers affect the modelling?

As the final step of the analysis, the modified model BYM2-O is applied to estimate

the true asthma prevalence for the entire study region, by accounting for the 37

identified outlying areas. The simulation study in Section 5.4.5 showed that when a

larger number of outliers is present, or (at least) a few outliers have a larger outlier

magnitude, the modified model can produce overall better point estimates (with a

lower median absolute error, see Figure 5.6) and narrower credible intervals (see

Figure 5.8) than the conventional BYM2 model, while retaining a coverage close to

the theoretical correct value (see Figure 5.7). However, it is important to note that

in the simulation study, the study region consisted of 298 areas and the simulation

scenarios considered outlier proportions of approximately 1% and 5%. In contrast,

in the asthma prevalence application, the study region consists of 32,844 areas and

the set of identified outliers is of size 37. Thus, the proportion of identified outliers

in the application is approximately 0.11%, which is substantially smaller than in the

considered simulation scenarios.

Table 5.3 shows summaries for the fitted BYM2 and BYM2-O models. Specifically,

the table shows the posterior mean of the precision parameter τ and mixing parameter

ρ of the spatially correlated random effects, with 95% credible intervals shown in

parantheses. For the BYM2-O model, the table also shows the posterior mean and

95% credible interval of the precision parameter κ of the independent random effects

of the identified outliers. Lastly, the table shows the DIC and WAIC values for the

two models.

Table 5.3: Model summaries for the conventional BYM2 and the modified BYM2-O models for the asthma prevalence
application.

Model τ ρ κ DIC WAIC
BYM2 83.30 (80.35,86.34) 1.00 (1.00,1.00) - 231,091.30 227,416.18

BYM2-O 86.03 (82.78,89.07) 1.00 (1.00,1.00) 6.49 (3.89,9.97) 230,729.04 226,889.15
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An important finding from Table 5.3 is that the mixing parameter ρ has a posterior

mean value of 1.00 with a 95% credible interval of (1.00,1.00) in both models, which

implies that the BYM2 models of the spatially correlated random effects simplify to

ICAR prior distributions (recall Section 2.6.1) that enforce strong spatial autocor-

relation. Furthermore, the estimates of the precision parameter τ of the spatially

correlated random effects are similar for the two models, with a posterior mean and

95% credible interval (in parantheses) of 83.30 (80.35,86.34) for the BYM2 model and

slightly larger values of 86.03 (82.78,89.07) for the BYM2-O model. The larger preci-

sion for the BYM2-O model is due to the removal of the potential singleton outliers.

Since the potential outliers do not appear to follow their typical local behaviour, they

corrupt the estimation of the smooth prevalence surface by inflating the variance (and

equivalently, reducing the precision). Since the parameter estimates of the correlated

random effects of the two models are fairly similar, the differences between the esti-

mated prevalence surfaces are anticipated to be small. Since the identified outliers are

estimated independently from the prevalence surface under the BYM2-O model, the

biggest differences are anticipated to be observed for the areas that were identified as

outliers and their neighbouring areas. It should be noted that the precision κ of the

independent random effects assigned to the identified outliers is estimated to be much

smaller than the precision τ of the correlated random effects, with a posterior mean

of 6.49 and a 95% credible interval of (3.89,9.97), so the credible intervals of the fitted

prevalence of the identified outlying observations are anticipated to be substantially

wider than for the identified inlying observations. Since the parameter κ is estimated

from a relatively small number of observations, the prevalence estimates of the iden-

tified outliers might not be particularly good, and their independent estimation is

a sacrifice for obtaining better estimates of the smooth risk surface. The provided

DIC and WAIC values in Table 5.3 suggest that the BYM2-O model fits the data

slightly better than the BYM2 model, with a DIC value of 230,729.04 compared to

231,091.30 and a WAIC value of 226,889.15 compared to 227,416.18.

The main difference between the conventional BYM2 model and the BYM2-O

model is in the estimation of the asthma prevalence for the 37 areas that were iden-

tified as singleton outliers and the areas that are neighbours of these areas under
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Figure 5.16: The posterior mean fitted asthma prevalence with 95% credible interval for the areas with the 37
largest RDOS values.

the conventional BYM2 model. Figure 5.16 shows that for the conventional BYM2

model, the mean fitted values and 95% credible intervals of the estimated preva-

lences of the 37 identified outliers tend to be closer to the median observed asthma

prevalence (represented by the horizontal dashed line). Under the BYM2-O model,

the asthma prevalence in these areas is estimated to be more extreme (i.e., they are

impacted less by the smoothing), and for 13 of the 37 areas, the 95% credible inter-

vals obtained from the BYM2-O and BYM2 models do not overlap (i.e., the models

provide different estimates for these areas). Another striking observation is that the

95% credible intervals of the asthma prevalence in the areas with the 8th, 19th, and

31st largest RDOS values are much wider under the BYM2-O model than the con-

ventional BYM2 model. The numbers of registered patients in these areas are four,

eleven, and twelve with incidence counts of zero, one, and one, respectively. Hence,

the wider credible intervals under the BYM2-O model reflect that there is greater

uncertainty in the prevalence estimates for these areas with very small populations

when the random effects are assumed to be independent of those in the neighbouring

areas, while the credible intervals under the BYM2 model are narrower since the as-

sumed strong autocorrelation reduces the variability by borrowing strength from the

neighbouring estimated random effects.

The posterior prevalence estimates also differ noticeably for the inlying areas that
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(a) The neighbouring areas of the area with the largest
RDOS value.

(b) The neighbouring areas of the area with the 13th largest
RDOS value.

Figure 5.17: The posterior mean fitted asthma prevalence with 95% credible interval for areas neighbouring outlying
areas.

have outlying areas as neighbours, according to the neighbourhood structure applied

for the BYM2 model. In this study, an area’s neighbourhood consists of its six nearest

neighbours (measured as the Euclidean distance between the areas’ centroids) and

additional neighbours are added so that if area i is in the neighbourhood of area j,

then area j is also included in the neighbourhood of area i. Figures 5.17a and 5.17b

show the posterior mean fitted asthma prevalences with 95% credible intervals for

inlying areas neighbouring the outlying areas with the largest and 13th largest RDOS

values, respectively. The area with the largest RDOS value has an unusually low

observed asthma prevalence of 0.0409 (compared to the median observed prevalence of

0.0611). The conventional BYM2 model estimates the prevalence in the neighbouring

areas by smoothing over the potential outlier, while the BYM2-O model estimates the

prevalence in the potentially outlying area independently. As a result, the posterior

mean fitted prevalences of the inlying neighbouring areas presented in Figure 5.17a

are lower under the BYM2 model than the BYM2-O model. Similarly, the area with

the 13th largest RDOS value has an unusually high observed asthma prevalence of

0.0863. As a result, the posterior mean fitted prevalences in the inlying neighbouring

areas presented in Figure 5.17b are higher under the BYM2 model than the BYM2-O

model.

Figure 5.18 shows boxplots that show the distributions of the absolute differences

between the mean fitted prevalences from the BYM2 and BYM2-O models over in-

liers not neighbouring outliers, inliers neighbouring outliers, and outliers. The largest

differences in the estimated prevalences between the BYM2 and BYM2-O models can

be observed for the identified outliers (with a median absolute difference of 0.0096),
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Figure 5.18: Boxplots showing the distributions of the absolute differences between the mean fitted prevalences from
the BYM2 and BYM2-O models over inliers not neighbouring outliers, inliers neighbouring outliers, and outliers.

which are pulled closer to their neighbouring estimates under the BYM2 model and

estimated to be more extreme under the BYM2-O model. Similarly, noticeable dif-

ferences can be observed for the prevalence estimates of the inlying areas that are

neighbours of the identified outliers (with a median absolute difference of 0.0012). In

contrast, the two models’ prevalence estimates of the inlying areas that are not neigh-

bours of the identified outliers tend to be almost identical (with a median absolute

difference less than 0.0001).

5.6 Discussion

The study presented here provides a generalisation of the relative density-based out-

lier score (RDOS) of Tang and He (2017) to be applicable to areal data with non-

spatial attributes. The proposed RDOS values are used for singleton outlier detection

for spatially smooth disease data, where the outlier detection’s effectiveness is evalu-

ated in a simulation study and shown to provide substantially better detection results

than what can be achieved using the commonly applied local Moran’s I statistic. The

second key contribution is the proposed novel modified smoothing model BYM2-O,

which estimates the disease prevalences in the areas that were identified as outliers

independently from the inferred smooth prevalence surface over the inlying areas,

which is estimated using a BYM2 model. The proposed method is a two-stage mod-

elling approach, where the potential outliers are identified from the RDOS values in
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the first stage to provide the inlier and outlier sets used by the modified smooth-

ing model in the second stage. The method’s effectiveness is again evaluated in a

simulation study, for which the modified smoothing model BYM2-O produces better

estimates than the conventional BYM2 model when the number of outliers is large

or (at least) a few outliers with larger outlier magnitudes are present in the data.

The relative density-based outlier score (RDOS) proposed in this study is com-

puted from local kernel densities. These kernel densities require the specification of

a bandwidth parameter. The studies by Schubert et al. (2014a) and Tang and He

(2017) also use kernel-based methods but ignore their methods’ sensitivity with re-

gard to the bandwidth parameter specification. The study presented here fills that

gap by proposing an algorithm for specifying the bandwidth parameter value, where

the bandwidth is increased incrementally until the ranking of the computed RDOS

values stabilises. Here, the similarity between rankings is computed using Kendall’s

rank coefficient and a threshold of 0.99 is chosen such that the smallest bandwidth is

selected for which two subsequent rankings have a Kendall’s rank coefficient greater

than 0.99. The simulation studies have shown that the RDOS values computed for

the so obtained bandwidth parameter provide excellent detection results, as shown

via inspection of the receiver operator characteristic (ROC) curves.

The simulation study showed that the RDOS values tend to be highest for the true

singleton outliers, especially when the outlier magnitude is large. However, a limita-

tion of the method is the uncertainty around choosing the number of observations to

be identified as outliers. The partitioning around medoids (PAM) algorithm does not

generally provide good splits into inlier and outlier sets, as the automated method

tends to provide conservative results (only a subset of the true outliers are identified)

when many outliers of large outlier magnitude are present and the method is highly

sensitive to the number of RDOS values considered by the algorithm when the pro-

portion of outliers or the outlier magnitude are small. Hence, one should investigate

the observations with the largest RDOS values to check which of them appear to be

potential outliers, as demonstrated in the asthma prevalence application presented

in this study. The limitation of the manual approach is that it is subjective, as it

is up to the researcher to decide which observations should be considered potential
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outliers. At the same time, the method’s subjectivity gives greater flexibility to the

user, which means that expert knowledge can be considered when investigating the

potential outliers.

For the simulation scenarios considered in this study, the proposed modified

smoothing model BYM2-O was shown to provide overall better estimates of the true

prevalence than the conventional BYM2 model when a larger number of outliers or

some outliers of large magnitude are present in the data, even when the automated

outlier detection that uses the PAM algorithm to split the RDOS values into inliers

and outliers results in sub-optimal outlier sets. However, when only few small outliers

are present in the data, the conventional BYM2 model tends to provide better esti-

mates and hence, the modified model should only be applied when the observations in

the identified outlier sets appear to differ substantially more from their neighbouring

values than the typical variability observed in most of the data.

The motivating application of asthma prevalence data at a small-area LSOA level

in England showed that individual areas that deviate from the typical local behaviour

can be identified using the singleton outlier detection method using the RDOS values.

In contrast, the method is not designed to identify collective outliers, as demonstrated

by the collective outliers that could be identified from further inspection in this

application. Hence, other methods should be consulted when the objective is to

identify collective outliers. The posterior mean fitted values of the asthma prevalence

in some of the 37 identified outlying areas differ strongly for the BYM2 and BYM2-O

models, with the BYM2 model providing estimates that tend to be closer to the

overall observed median asthma prevalence. In comparison, the posterior mean fitted

values obtained from the BYM2-O model tend to be further away from the overall

observed median asthma prevalence, since the values are estimated without assuming

that the prevalence in these areas should be similar to their neighbouring estimates.

The differences between the posterior mean prevalences of the inlying areas tend to be

marginal, but noticeably larger differences can be observed for the inlying areas that

have an identified outlier in their neighbourhood. The marginal differences between

most inlying areas are likely due to the dataset’s very large size; i.e., estimating the

parameters that determine the smooth risk surface over 32,807 instead of the complete
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32,844 areas leads to fairly similar results. Bigger impacts might be observed for

smaller datasets, such as the ones considered in the simulation studies.

Some data limitations should be identified for the motivating application; recall

that the asthma prevalence is computed from the number of patients who were pre-

scribed asthma-related drugs in the preceding 12 months, although GP practices

reporting asthma prevalence beyond 30% are excluded from the calculation. Firstly,

the asthma prevalence captures only registered patients and hence, asthma cases in

individuals that do not seek medical attention are not captured. As a result, factors

impacting the proportion of individuals that are registered and seeking medical at-

tention will likely have an influence on the observed asthma prevalence. Secondly,

it is unclear what impact the exclusion of GP practices reporting asthma prevalence

beyond 30% might have on the analysis. If these were genuine asthma cases, the

reported asthma prevalences in the corresponding areas might be too small. Lastly,

the number of registered patients are quite small in some areas, which could lead

to unusual observed asthma prevalences; e.g., recall the ten areas with zero asthma

patients - in these areas, the numbers of registered patients range from two to eight

people. However, Figure 5.14 showed that 35 of the 37 identified outliers appeared

to be contextual and that only one of the identified outliers that appeared to be a

global outlier had an observed asthma prevalence of zero, while the other nine areas

with an observed prevalence of zero form a spatial cluster and were not identified

as singleton outliers. Hence, the small numbers of registered patients in some areas

do not appear to have been the main reason behind the unusual observed asthma

prevalences in most of the identified singleton spatial outliers.

Due to the novelty of the presented methods, there is much room for future work.

While the RDOS values can be computed for any areal observations whose spatial

structure can be described by a neighbourhood matrix, this study only evaluated

the method’s efficacy for disease prevalence data generated from a binomial logit-

linear model. Here, the generated data depend only on the population sizes and the

disease prevalence surface. Another parameter that is often the target of inference in

disease mapping applications is disease risk, which is computed from the observed and

expected counts. Hence, one could reproduce the presented study for outlier detection
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in standardised morbidity or mortality rates, which depend on the expected counts

and the disease risk surface, and could be generated from a Poisson log-linear model.

Similarly, the modified smoothing model BYM2-O can be evaluated for a likelihood

other than the binomial distribution.

Another natural extension to both the RDOS values and the BYM2-O model is

to make these methods spatio-temporal. In this study, the methods were proposed

for the spatial domain, but one might be interested in how the values of the potential

outliers change over time or identify areas with unusual temporal trends. Hence, the

proposed methods could be extended to be able to identify spatio-temporal outliers

and to account for the potential outliers in the modelling of spatio-temporal data.

Lastly, since the PAM algorithm does not appear to be a reliable method for

identifying the inlier and outlier sets automatically, a possibility for future work is to

investigate or develop other automated methods for splitting the RDOS values into

the two sets. These methods should be capable of identifying smaller outlier sets

even when all observations are considered and the RDOS values of some outliers are

much larger than those of the rest of the data. Additionally, the PAM algorithm

applied in this study identifies at least one observation as an outlier. Hence, another

possibility for future work is to propose a method that can result in the conclusion

that no observations should be identified as outliers.
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Chapter 6

Discussion and future work

The work presented in this thesis contributes to the statistical literature in spatio-

temporal epidemiology and disease mapping. Chapters 3 and 4 provide timely anal-

yses of important public health aspects of the COVID-19 pandemic in the UK, and

Chapter 5 proposes novel statistical methods to identify and account for potential

singleton spatial outliers in areal data applications. This chapter summarises the

three studies’ main aims and key findings, followed by a discussion of limitations and

ideas for future work.

The study presented in Chapter 3 investigates the spatio-temporal patterns and

trends of COVID-19 mortality risk in England to identify geographical differences in

the impact of national lockdown. It answers four main questions:

1. How long after the implementation of lockdown did mortality risks reduce at a

national level, and did this vary by lockdown?

2. How did the temporal trends in mortality risks differ by region in England?

3. Which local authorities were exposed to the highest average risks in the weeks

after lockdown?

4. Which local authorities shared similar temporal trends in mortality risks?

The key findings are that the mortality risks increased drastically before the imple-

mentation of lockdowns 1 and 3; they stopped increasing three weeks into lockdown
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and reduced to pre-lockdown levels after ten and six weeks, respectively (see Fig-

ure 3.5). There was no drastic increase in mortality risk before the implementation

of lockdown 2, and the second lockdown saw no meaningful reduction in mortality

risk (possibly because it was too short, at only four weeks). It should be noted that

England had implemented a three-tier system of mobility restrictions that started on

14th October before lockdown 2, with varying degrees of restrictions for the LADs

in the three tiers, which Davies et al. (2021) suggested has had a sizeable effect in

reducing the number of COVID-19 deaths. Hence, the preceding tiered restrictions

might explain the reduced impact of lockdown 2. The analysis of temporal risk trends

at a regional level showed that although some regional differences in risk trends are

apparent, there was no clear hierarchy for the nine regions of England across the

three lockdowns (see Figure 3.6). Identifying areas with the highest average risks

in the weeks after lockdown suggested that the local authorities at the highest risk

appear to be deprived districts within regions at higher risk (see the discussion of

Table 3.1). Lastly, identifying local authorities with similar temporal trends revealed

that in lockdown 1, there appeared to be an urban/rural divide in mortality risks,

with the urban areas tending to have a higher peak risk (see Figure 3.9a). In lockdown

3, the peak risk appeared higher in southeast England (see Figure 3.9b), associated

with the early spreading of the Alpha variant in that region.

Chapter 4 presents an epidemiological analysis of the COVID-19 vaccine uptake

over the first three doses by sex and age group across Scotland’s council areas, an-

swering three main questions:

1. Are there any trends in attrition rates by age group, and does this vary by sex?

2. Are there any spatial patterns in attrition rates by council area, and does this

vary by sex?

3. How do these trends and patterns compare across the two transitions (from

doses 1 to 2 and 2 to 3)?

The first key finding is a strong association between age and attrition rates (see

Figure 4.3), where the odds in favour of attrition decrease smoothly with increasing

age (i.e., older age groups are more likely to continue receiving vaccine doses). Overall,
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males tend to have approximately 1.1 times higher odds of attrition than females.

The variation in the odds of attrition between age groups tends to be greater for

males, and the decreasing effect of older age on the odds of attrition appears smaller

for females (see Figure 4.3). Secondly, while the attrition rates for the two sexes

can differ substantially in some council areas, the council areas with the highest and

lowest attrition rates tend to have attrition rates that are consistently higher/lower

for both sexes (see Figure 4.5). Further investigation of these council areas suggests

that there might be a positive association between deprivation and attrition rates,

meaning that more deprived areas tend to have higher attrition rates and vice versa.

Regarding the differences between transitions, the study shows that the variation in

the odds of attrition between age groups tends to be overall greater in the second

transition than in the first; otherwise, the smoothly decreasing odds by increasing

age group can be seen for both transitions (see Figure 4.3). The average odds of

attrition over all age groups and council areas in Scotland are 4.1 times higher in the

transition from doses 2 to 3 than from doses 1 to 2, which suggests increased vaccine

fatigue over time. Lastly, the council areas with the highest and lowest attrition rates

tend to have attrition rates that are consistently higher/lower for both transitions

(see Figure 4.4).

A common key finding from Chapters 3 and 4 is that the spatial smoothness as-

sumption might not hold consistently across the whole study region (e.g., Chapter 3

showed an urban/rural divide in peak risk during the first lockdown, and Chapter 4

identified an unusual observation as a potential outlier), which will impact the es-

timation whenever a global smoothing model is applied. Motivated by the finding

that the observations in some areas might violate the spatial smoothness assumption,

the study in Chapter 5 proposes novel methodology for identifying singleton spatial

outliers in large datasets (e.g., with thousands of areal units) and proposes a mod-

ified spatial smoothing model BYM2-O that accounts for these identified potential

outliers. The efficiency of the proposed relative density-based outlier score (RDOS)

and the modified smoothing model are evaluated in simulation studies. Firstly, these

simulations show that the RDOS values can be used to identify singleton outliers

effectively, with much better detection results than the commonly used local Moran’s
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I statistic (see Figure 5.4). Secondly, the modified smoothing model BYM2-O pro-

duces overall better estimates than the conventional BYM2 model when the number

of outliers is large or at least some of the outliers have a large magnitude (see Fig-

ures 5.5 to 5.8), even when the identified outlier set is not exactly the same as the

set of the induced outliers in the simulated data.

The outlier detection method and modified smoothing model are applied with a

two-stage modelling approach in a motivating study of asthma prevalence at Eng-

land’s lower super output area (LSOA) level. The motivating study aims to answer

three main questions:

1. Which areas appear to be potential singleton outliers?

2. Do the identified outliers appear to be contextual or global?

3. How do the potential outliers affect the modelling?

The first key finding is that 37 areas can be identified as potential outliers, and

there are no obvious patterns regarding the locations of these areas on the map of

England (see Figure 5.13). Secondly, two of the 37 areas appear to be global outliers

(one has an observed prevalence of zero, and the other is among the areas with the

largest observed prevalences); the other 35 areas appear to be contextual outliers

(i.e., their observed prevalences deviate from their typical local behaviour but do not

appear unusual when viewing the whole dataset) - see Figure 5.14.

Lastly, to identify how the potential outliers affect the modelling, the data are fit-

ted using two hierarchical binomial logit-linear models where the spatially correlated

random effects are estimated via the modified smoothing model BYM2-O (which es-

timates the identified potential outliers independently from the smooth prevalence

surface) and the conventional BYM2 model (which estimates the smooth prevalence

surface over all areas), respectively. The prevalence estimates from these two models

are similar for the inlying areas that do not have outlying areas in their neighbour-

hoods (see Figure 5.18). In contrast, there are substantial differences in the preva-

lence estimates for the outlying areas (see Figure 5.16), and the estimates for the

inlying areas that have outlying areas in their neighbourhoods also differ noticeably

190



6. Discussion and future work

for the two models (see Figure 5.17). The differences in the prevalence estimates high-

light the importance of considering potential outliers in the analysis of areal data.

Furthermore, if at least some of the potential outliers were correctly identified, the

simulation studies suggest that the prevalence estimates obtained from the BYM2-O

model should be better than those from the BYM2 model, overall.

There are some limitations common to the three studies presented in this the-

sis. Firstly, the presented studies are all observational. Hence, while these studies

identified associations, trends, and patterns, they did not detect any ‘causal effects’

(e.g., the possible impact of lockdown on mortality risk is associative, since the coun-

terfactual event of what would have happened without the lockdown could not be

observed). Although some considerations in attempting to distinguish causal effects

from possibly non-causal associations in epidemiology were proposed and further con-

sidered (e.g., see Hill, 1965 and Rothman et al., 2008), they cannot guarantee that

the observed associations are not due to some other factors not considered in the

analysis. For example, Hill (1965) states that “none of my nine viewpoints can bring

indisputable evidence for or against the cause-and-effect hypothesis”. Since active

research continues to seek to identify causal relationships in epidemiological studies

(e.g., see Vandenbroucke et al., 2016 or Cox, 2021), it should be clarified that the

work presented in this thesis made no restrictive assumptions to attempt inferring

causality and the identified relationships are all associative.

Another point of clarification is that the presented analyses are applications of

descriptive epidemiology - they estimate disease risk and prevalence but do not aim to

measure associations between health outcomes and ecological (e.g., temperature, air

pollution, ethnicity) or socio-economic (e.g., deprivation, education level, unemploy-

ment) covariates. Still, possible associations between the estimated risk or prevalence

and other factors might be identified retrospectively (e.g., recall the identification of a

possible positive association between deprivation and higher peak risks during lock-

down 1 in the study presented in Chapter 3), or be investigated further based on

the presented results (e.g., one could identify potential risk factors by inspecting the

identified outliers in Chapter 5).

Lastly, note that all three studies analysed data aggregated at the area level.

191



6. Discussion and future work

Using aggregated data implies some limitations. For example, people moving home

between areas might result in data errors such as duplicate or missing observations

between subsequent time points (e.g., a person might have received a first dose of

the COVID-19 vaccine while registered in one area and moved home to a different

area before receiving the second dose). Also, the results depend on the borders that

determine which individuals are grouped, which is known as the modifiable areal unit

problem (Openshaw, 1983). The key idea is that, ideally, disease risk or prevalence

should be represented as a continuous surface so that each point on the map has a

specific value. In contrast, disease data are often aggregated at an area level, and

the disease risk or prevalence is estimated to be constant in each area, with jumps

in the estimates between areas. The areal units at which the data are aggregated

are typically designed for multiple uses and not necessarily optimised for aggregating

health data. For example, the local authority districts in England (the areal units in

Chapter 3) are used for local government (e.g., see Ministry of Housing, Communities

and Local Government, 2023). Since the data were only provided for the specific areal

units, it is important to note the limitations associated with the modifiable areal unit

problem, and for further discussion, see, for example, Manley (2021).

The studies presented in this thesis provide many opportunities for future work.

An obvious extension is to pose the motivating questions that were answered for

applications in Scotland and England for data from other countries. For example,

the study presented in Chapter 3 investigated which local authorities were exposed

to the highest average risks in the weeks after lockdown. A key finding was an

urban/rural divide in mortality risks in lockdown 1, with the urban areas tending

to have a higher peak risk. Bayerlein (2024) referenced the presented study and

highlighted this finding as a similarity to data from the European Union, where the

peak in excess mortality was most marked in urban areas during the first wave of

the pandemic. Similarly, the other motivating questions could be investigated for

comparison with other countries, possibly even in a meta-analysis combining the

findings from existing studies to estimate a worldwide impact of lockdowns.

The key findings presented in this thesis might also inform future public health

concerns in the UK. For example, Naylor et al. (2024) referenced the study presented
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in Chapter 4 to hypothesise that in the UK vaccination programme against the respi-

ratory syncytial virus, clinicians may encounter vaccine hesitancy, especially among

men and those from more deprived backgrounds, while older people could be more

likely to accept the offered vaccines. Though the identified associations presented in

this thesis for the COVID-19 vaccines might not be the same for other vaccines or

consistent over time, the awareness of possible associations that can be considered is

valuable for such related applications.

There are also many opportunities for future work on methodological extensions

to the studies presented in this thesis. For example, one could extend the spatio-

temporal analysis presented in Chapter 3 to a multivariate setting and simultaneously

analyse mortality risks and hospitalisation rates after national lockdowns. Similarly,

one could extend the study presented in Chapter 4 by simultaneously modelling

attrition rates for different types of vaccines with multiple doses (e.g., the MMR,

varicella (chicken pox), or influenza vaccines) to evaluate if there are differences in

the identified vaccine fatigue trends. Especially for the study presented in Chapter 5,

there are many opportunities for future work on methodological extensions. The

identification of potential singleton spatial outliers and the modified spatial smoothing

model motivate further methodological research questions, such as:

� How can temporal outlying areas be identified? (e.g., how might one identify

an area whose observed prevalence is unusual at a particular point in time?)

� How can spatio-temporal outlying areas be identified? (e.g., how might one

identify an area whose observed prevalence is unusual at a particular point in

time, compared to the observed prevalence of its neighbouring areas at that

time point?)

� How can areas with unusual temporal trends be identified? (e.g., how might

one identify an area whose change in observed prevalence over time differs

substantially from that in its neighbouring areas?)

� How could a spatio-temporal model be modified to account for such unusual

temporal trends?
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Additional Analysis for Chapter 3

This appendix provides convergence and posterior predictive checks, and additional

analyses for Chapter 3. Section A.1 provides traceplots of the simulations from the

posterior densities of the MCMC algorithm, Section A.2 provides posterior predictive

checks, and Section A.3 provides a sensitivity analysis on the prior choice of the vari-

ance parameter of the spatio-temporal random effects presented in Equation (3.13)

of Chapter 3.

A.1 Graphical convergence checks for the

MCMC algorithm

Figure A.1 presents trace plots for the AR(2) model to illustrate the convergence, and

they do not show strong evidence against convergence (the plots for the AR(1) model

look similar). While the parameter spaces for ρ, α1, α2, and τ 2 were explored quickly,

the trace plots for β0 and φ11 suggest that the algorithm was slower to explore the

parameter spaces for these parameters. However, especially for the intercept term β0

this is not an uncommon observation and hence should not cause any greater concern.

Note that there are 20,904 (312 × 67) spatio-temporal random effects in the model;

hence Figure A.1 only contains the trace plot for one of these random effects, φ11, for

brevity.
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Figure A.1: Traceplots for the simulated values of β0, ρ, α1, α2, τ2, and φ11 in the AR(2) model.

A.2 Posterior predictive checks

The MCMC algorithm produced 2,000 posterior samples for each parameter, from

which replicated samples of the observed number of deaths were generated from

the Poisson distribution that was assumed in model (3.7). That is, for each obser-

vation Ykt, replicated observations Y
rep(i)
kt ∼ Poisson(ekθ̃

(i)
kt ) were generated for i =

1, . . . , 2000.

The points in Figure A.2a show the observed Ykt against the mean of the cor-

responding replicated observations Y
rep

kt = 1
2000

∑2000
i=1 Y

rep(i)
kt , for k = 1, . . . , 312 and

t = 1, . . . , 67. The weeks coloured in beige comprise the lockdowns. The plot in-

dicates that the means of the replicated observations are relatively similar to the

observed number of deaths, which suggests that the model fits the data reasonably

well. Figure A.2b shows the difference between the observed number of deaths and
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the mean of the corresponding replicated observations, i.e. Ykt − Y
rep

kt . These dif-

ferences are plotted by week and it looks as though the differences are larger in the

weeks when the observed number of deaths were higher (as confirmed by Figure 3.3).

The larger differences during these weeks are expected, as the observed data contain

more variation. Overall, the replicated observations do not seem to be generally over-

estimating or underestimating the observed number of deaths, which further suggests

that the model appears to be appropriate.

(a) Observed number of deaths vs the mean of the
replicated observations.

(b) Difference between the observed number of deaths and the mean of the replicated
observations, by week.

Figure A.2: Posterior predictive checks: Observed vs replicated observations.

As an alternative posterior predictive check, the following p-values can be com-

puted

� p1 = P ((Y < T0.025(Y rep)) ∪ (Y > T0.975(Y rep))),

� p2 = P ((Y ≤ T0.025(Y rep)) ∪ (Y ≥ T0.975(Y rep))),

where p1 is defined with a strict inequality while p2 uses a non-strict inequality.

Here T0.025(Y rep) and T0.975(Y rep) denote the 2.5th and 97.5th quantiles of the repli-

cated observations, respectively. An overall p-value over all data points of p̃1 =

1
312×67

∑312
k=1

∑67
t=1 I((Ykt < T0.025(Y rep

kt ))∪(Ykt > T0.975(Y rep
kt ))) is estimated, where I()

is an indicator function that takes on the value of 1 if the argument inside the function

is true and 0, otherwise. Similarly, the overall p-value p̃2 = 1
312×67

∑312
k=1

∑67
t=1 I((Ykt ≤

T0.025(Y rep
kt )) ∪ (Ykt ≥ T0.975(Y rep

kt ))) is estimated. These estimated p-values take on

values of p̃1 = 0.0057 and p̃2 = 0.1152. The expected value of 0.05 falls between the

two estimates, which is another indication that the model fits the data reasonably

well.
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A.3 Sensitivity analysis on the prior choice of the

variance parameter

The log-transformed mortality risk θkt is fitted by an overall mean β0 and a spatio-

temporal random effect φkt (see Equation 3.8). In the AR(2) version of the model,

the spatio-temporal random effects are assigned a joint prior distribution defined

by the parameters τ 2, ρ, α1, and α2 (see Equation 3.10). The paramters ρ, α1,

and α2 are assigned flat prior distributions, and the mean of the log-transformed

mortality risk is assigned a weakly informative normal prior distribution, i.e. β0 ∼

N(µ0 = 0, σ2
0 = 10, 000). Thus, when estimating these parameters the model lets

the data speak for themselves. The variance parameter τ 2 is assigned an Inverse-

Gamma(a = 1, b = 0.01) prior distribution, but other specifications of the shape

parameter a and scale parameter b have been proposed previously. Thus a sensi-

tivity analysis is undertaken on this prior specification by refitting the model with

(a = 0.001, b = 0.001), (a = 1, b = 1), and (a = 1, b = 0.1). The resulting estimates

of τ 2 are presented in Table A.1 below.

Table A.1: Median and 95% credible interval for the simulated values of τ2 under Inverse-Gamma prior distributions
with different parameter values.

a b Median 95% CrI
1 0.01 0.0432 (0.0372,0.0496) (original model)

0.001 0.001 0.0433 (0.0373,0.0502)
1 0.1 0.0439 (0.0378,0.0503) (alternative models)
1 1 0.0484 (0.0420,0.0556)

The 95% credible intervals of all three alternative models contain the median pos-

terior estimated variance of the original model. Further, the correlation coefficients

between the fitted risks from the original model and those of the alternative models

all take on a value of 1.0 (to 3 decimal places). The mean absolute differences be-

tween the fitted risks of the original model and the alternative ones are computed

to assess their similarity, and these take on values of 0.004 (for a = 0.001, b = 0.001),

0.005 (for a = 1, b = 0.1), and 0.004 (for a = 1, b = 1), suggesting consistent risk es-

timation.

197



Appendix B

Additional Analysis for Chapter 4

This appendix provides additional plots, derivations, and analyses for Chapter 4.

Section B.1 provides additional plots of the observed attrition rates and Section B.2

shows the full map of Scotland, as Figure 4.2 showed a modified map for compact-

ness. Section B.3 shows a derivation of the expectation of attrition rates, given the

number of people who received a preceding dose of the vaccine. Derivations for the

interpretation of the model’s fixed and random effects are presented in Section B.4.

Section B.5 shows a plot of observed versus fitted attrition rates to confirm that the

model fits the data appropriately, and Section B.6 is a proof of principle simulation

which demonstrates that the proposed model can accurately estimate the model pa-

rameters from data similar to that of the study in Chapter 4. Section B.7 presents

a sensitivity analysis for the hyperprior specifications of the variance and mixing pa-

rameters of the random effects and Section B.8 presents a sensitivity analysis for the

choice of structure assigned to the random effects’ BYM2 priors. Section B.9 shows

tables of the posterior means and credible intervals of the odds ratios of attrition for

all age groups and council areas. Lastly, Section B.10 provides an additional analysis

that considers additional variables to examine their relationships with attrition rates.
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B.1 Additional plots for the observed attrition

rates

In Section 4.2.4.1, I state that for age groups 75 years and older, males tend to have

lower attrition rates than females, which is not immediately clear from Figure 4.1 as

it uses one scale for all age groups. So, this section provides additional plots.

Figure B.1: Attrition rates (in %) for the age groups 60-64, 65-69, 70-74, 75-79 and 80+, by sex and transition
(from doses 1 to 2 and 2 to 3).

(a) For the age groups 18-29, 30-39, 40-49, 50-54, 55-59, 60-64, 65-69, and
70-74. (b) For the age groups 75-79 and 80+ for the two transitions, by sex.

Figure B.2: Scatterplots of the attrition rates (in %).

Figure 4.1 of Chapter 4 shows that attrition rates are higher for males than

females in all age groups 59 years and younger. Figure B.1 shows the same boxplots
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as Figure 4.1, but only for the age groups 60-64, 65-69, 75-79, and 80+. The figure

shows that the attrition rates are similar for the two sexes in age groups 60-64, 65-69,

and 70-74 and that the attrition rates tend to be higher for females than for males

in the age groups 75-79 and 80+. This reversing trend becomes even clearer when

looking at the council area, age group, and transition-specific comparisons of attrition

rates between the two sexes presented in Figure B.2. The colour of the points indicate

whether an observation is from the first or the second transition. When a point falls

on the dashed equality line, the attrition rates are the same for females and males

in the corresponding age group, council area, and transition. For a point above the

dashed line, the attrition rate is higher for males and if it falls below the dashed line, it

is higher for females. Figure B.2a shows that for the age groups 74 years and younger,

in both transitions, the attrition rates tend to be higher for males than for females in

almost all council areas. Figure B.2b shows that for the age groups 75-79 and 80+,

the attrition rates tend to be higher for females than for males (as most points fall

below the dashed equality line). Hence, these plots provide a clearer demonstration

of the finding in Section 4.2.4.1 that, while males tend to have higher attrition rates

than females in the younger age groups, this trend reverses for age groups 75 years

and older, where males tend to have lower attrition rates than females.
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B.2 Full map of Scotland

Figure B.3: The map of Scotland at full scale.

Figure 4.2 in Section 4.2.4.2 shows maps of Scotland where the Shetland Islands

and Orkney Islands are downscaled and presented in a box rather than at their true

location in the North of Scotland to make the maps more compact. Figure B.3 is

included for reference, showing the map of Scotland at its full scale.
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B.3 Derivation of the expectation of attrition

rates

This section provides a derivation of the result E
[
A

(d−1)d
sgk | Ysgk(d−1)

]
= α

(d−1)d
sgk , which

is stated in Section 4.3.1.

The observed attrition rate is defined as A
(d−1)d
sgk = 1−

(
Ysgkd

/
Ysgk(d−1)

)
, for

d = 2, 3, where Ysgkd is the number of people of sex s, age group g, and council area

k who receive dose d of the vaccine. I assume that Ysgkd can be modelled with the

binomial likelihood, as

Ysgkd | Ysgk(d−1) ∼ Binomial
(
n = Ysgk(d−1), p = 1− α(d−1)d

sgk

)
. (B.1)

Hence, the expectation of the attrition rate, given the number of people who received

the preceding dose, can be computed as

E
[
A

(d−1)d
sgk | Ysgk(d−1)

]
= E

[
1− Ysgkd

Ysgk(d−1)

| Ysgk(d−1)

]

= 1−
E
[
Ysgkd | Ysgk(d−1)

]
Ysgk(d−1)

(B.1)
= 1−

Ysgk(d−1) ×
(

1− α(d−1)d
sgk

)
Ysgk(d−1)

= α
(d−1)d
sgk .
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B.4 Derivations for the interpretation of the

fixed and random effects

This section provides derivations for the interpretation of the fixed and random effects

of Model 1, but the effects of Model 2 can be interpreted similarly. The odds in favour

of attrition for Model 1, with transition-specific council area effects that are the same

for both sexes is given by

α
(d−1)d
sgk

/(
1− α(d−1)d

sgk

)
= exp(−β0)× exp(−γs)× exp(−ψd)

× exp
(
−δ(sd)

g

)
× exp

(
−φ(d)

k

)
.

The term exp(−β0) is the geometric mean (GM) of the odds in favour of attrition for

females across all age groups and council areas in the first transition (i.e., for γs = 0

and ψd = 0), which follows from

GM
(age,area)

[Odds(female,trn1)] =

(
32∏
k=1

10∏
g=1

α
(d−1)d
sgk

1− α(d−1)d
sgk

) 1
32×10

=

(
32∏
k=1

10∏
g=1

exp(−β0)× exp
(
−δ(sd)

g

)
× exp

(
−φ(d)

k

)) 1
32×10

=

exp(−β0)32×10 × exp

(
−

10∑
g=1

δ(sd)
g

)32

× exp

(
−

32∑
k=1

φ
(d)
k

)10
 1

32×10

= exp(−β0), (B.2)

where “trn” stands for transition. The last equality follows from the sex- and

transition-specific sum-to-zero constraints
∑10

g=1 δ
(sd)
g = 0 and

∑32
k=1 φ

(d)
k = 0.

Similarly, the following hold:

GM
(age,area)

[Odds(male,trn1)] = exp(−β0)× exp(−γs), (B.3)

GM
(age,area)

[Odds(female,trn2)] = exp(−β0)× exp(−ψd), (B.4)

GM
(age,area)

[Odds(male,trn2)] = exp(−β0)× exp(−γs)× exp(−ψd), (B.5)
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where each geometric mean is computed over all age groups and council areas.

The geometric mean of the ratio of two sequences of equal lengths is the same as

the ratio of the geometric means of the two sequences. That is, let x1, x2, . . . , xn and

y1, y2, . . . , yn be two sequences of equal lengths. The geometric mean of the ratio of

the two sequences can be computed as follows:

GM

[(
x1

y1

,
x2

y2

, . . . ,
xn
yn

)]
=

(
n∏
i=1

xi
yi

)1/n

=
(
∏n

i=1 xi)
1/n

(
∏n

i=1 yi)
1/n

=
GM[(x1, x2, . . . , xn)]

GM[(y1, y2, . . . , yn)]
.

The same logic applies to odds ratios. That is, the geometric mean of the odds

ratios of attrition for males compared to females, over all age groups and council

areas, can be computed (using Equations B.2-B.5) as

GM
(age,area)

[
Odds(male,trn1)

Odds(female,trn1)

]
=

GM
(age,area)

[Odds(male,trn1)]

GM
(age,area)

[Odds(female,trn1)]

=
exp(−β0)× exp(−γs)

exp(−β0)

= exp(−γs)
(

= GM
(age,area)

[
Odds(male,trn2)

Odds(female,trn2)

])
.

Thus, for both transitions, the odds ratio of attrition if one is male as opposed to

female, averaged over all age groups and council areas, reduces to exp(−γs).

Similarly, the geometric mean of the odds ratios of attrition for the second tran-

sition compared to the first, over all age groups and council areas, can be computed

as

GM
(age,area)

[
Odds(male,trn2)

Odds(male,trn1)

]
= exp(−ψd)

(
= GM

(age,area)

[
Odds(female,trn2)

Odds(female,trn1)

])
.

Thus, for both sexes, the term exp(−ψd) is the average odds ratio of attrition if

one is in the transition from doses 2 to 3 compared to the transition from doses 1
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to 2.

An interpretation of the random effects can be found using a similar strategy. For

example, for s = female, d = 2 (transition from doses 1 to 2), council area k, and age

group g1, the following holds:

Odds(female,trn1,age g1, area k)

GM
(age)

[Odds(female,trn1,area k)]
=

exp(−β0)× exp
(
−δ(sd)

g1

)
× exp

(
−φ(d)

k

)
(∏10

g=1 exp(−β0)× exp
(
−δ(sd)

g

)
× exp

(
−φ(d)

k

)) 1
10

=
exp(−β0)× exp

(
−δ(sd)

g1

)
× exp

(
−φ(d)

k

)
(

exp(−β0)10 × exp
(
−
∑10

g=1 δ
(sd)
g

)
× exp

(
−φ(d)

k

)10
) 1

10

=
exp(−β0)× exp

(
−δ(sd)

g1

)
× exp

(
−φ(d)

k

)
exp(−β0)× exp

(
−φ(d)

k

)
= exp

(
−δ(sd)

g1

)
,

where the third equality follows from the sum-to-zero constraint
∑10

g=1 δ
(sd)
g = 0.

Generally, for any sex, transition, and council area, it follows that exp
(
−δ(sd)

g1

)
is the

odds ratio of attrition for age group g1 compared to the sex- and transition-specific

average (geometric mean) odds across all age groups. Similarly, it can be shown

that exp
(
−φ(d)

k1

)
is the odds ratio of attrition for council area k1, compared to the

geometric mean of the odds over all council areas, where sex, transition, and age

group are fixed. Thus, exp
(
−φ(sd)

k1

)
is the odds ratio of attrition for council area k1

compared to the sex- and transition-specific Scottish average.

B.5 Observed vs fitted attrition rates

Figure B.4 shows the fitted attrition rates from Model 1 plotted against the observed

attrition rates, where the colour of the point denotes the age group. The dashed line

represents the line of equality. Most points fall near the dashed equality line and

no unusual patterns are visible, suggesting an appropriate model fit. The deviations

of the observed vs fitted attrition rates from the equality line are greatest for the
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age group 18 to 29 years, which reflects the overall greater variation in the observed

attrition rates in that age group, as seen in Figure 4.1.

Figure B.4: Observed vs fitted attrition rates.

B.6 Proof of principle simulation

This section provides a proof of principle simulation to check if the parameters from

Model 2 can be well estimated, as follows. Equation (4.5) assigns a log-linear model

to the odds in favour of continuation of the vaccination program, as

log

(
1− α(d−1)d

sgk

α
(d−1)d
sgk

)
= β0 + γs + ψd + δ(sd)

g + φ
(sd)
k .

Rewriting the above equation gives the modelled attrition rate as

α
(d−1)d
sgk =

exp
(
−β0 − γs − ψd − δ(sd)

g − φ(sd)
k

)
1 + exp

(
−β0 − γs − ψd − δ(sd)

g − φ(sd)
k

) .
Thus, assigning values to all β0, γs, ψd, δ

(sd)
g , and φ

(sd)
k allows the computation

of α
(d−1)d
sgk for all s, g, k, and d. The aim of this proof of principle simulation is to

confirm that the proposed method is able to correctly estimate the parameters in the

model for data similar to that observed in this study. Hence, here I use the observed

data to compute model-free estimates of β0, γs, ψd, δ
(sd)
g , and φ

(sd)
k .
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Let Odds(sex s, age g, trn (d − 1), area k)=A
(d−1)d
sgk

/(
1− A(d−1)d

sgk

)
denote the

odds in favour of attrition, computed from the observed attrition rate A
(d−1)d
sgk =

1 −
(
Ysgkd

/
Ysgk(d−1)

)
. From Section B.4, one can obtain the following estimates,

and in what follows GM denotes the geometric mean.

� β̂0 = − log

(
GM

(age,area)
[Odds(female,trn1)]

)
.

� For γs, there are two possible estimates

γ̂(1)
s = − log

 GM
(age,area)

[Odds(male,trn1)]

GM
(age,area)

[Odds(female,trn1)]


and

γ̂(2)
s = − log

 GM
(age,area)

[Odds(male,trn2)]

GM
(age,area)

[Odds(female,trn2)]

,
so I let γ̂s = (γ̂

(1)
s + γ̂

(2)
s )/2.

� Similarly, for ψd there are two possible estimates

ψ̂
(1)
d = − log

 GM
(age,area)

[Odds(female,trn2)]

GM
(age,area)

[Odds(female,trn1)]


and

ψ̂
(2)
d = − log

 GM
(age,area)

[Odds(male,trn2)]

GM
(age,area)

[Odds(male,trn1)]

,
so I let ψ̂d = (ψ̂

(1)
d + ψ̂

(2)
d )/2.

� For each age group g = 1, . . . , G, there is one estimate of δ
(sd)
g for each council

area. For council areas k = 1, . . . , K, I let

δ̂(sd)(k)
g = − log

Odds(sex s, trn d, age g, area k)

GM
(age)

[Odds(sex s, trn d, area k)]

,
and estimate δ

(sd)
g as the average δ̂

(sd)
g = 1

K

∑K
k=1 δ̂

(sd)(k)
g .
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� For each council area k = 1, . . . , K, there is one estimate of φ
(sd)
k for each age

group. For age groups g = 1, . . . , G, I let

φ̂
(sd)(g)
k = − log

Odds(sex s, trn d, age g, area k)

GM
(area)

[Odds(sex s, trn d, age g)]

,
and estimate φ

(sd)
k as the average φ̂k = 1

G

∑G
g=1 φ̂

(sd)(g)
k .

These computations result in the following model-free estimates of the fixed effects:

β̂0 = 4.36, γ̂s = −0.09, ψ̂d = −1.35.

The model-free estimates of the random effects can be found in Tables B.2 and B.3.

Table B.1: The true parameter values of the fixed effects with the bias and standard deviation of the estimates,
averaged over the 100 simulated datasets.

Effect Parameter True parameter value Bias Standard deviation
Intercept β0 4.36 0.0015 0.0375

Sex γs -0.09 -0.0015 0.0432
Transition ψd -1.35 -0.0014 0.0432

Table B.2: True parameter values of the age group random effects with the bias and standard deviation (SD) of the
estimates, averaged over the 100 simulated datasets.

Age group
Doses 1 to 2 Doses 2 to 3

Female Male Female Male
True Bias SD True Bias SD True Bias SD True Bias SD

80+ 0.71 0.0035 0.03 1.24 0.0027 0.04 1.38 -0.0014 0.02 1.82 0.0027 0.03
75 to 79 1.06 0.0027 0.04 1.25 0.0003 0.05 1.24 0.0006 0.03 1.65 -0.0001 0.03
70 to 74 0.92 0.0054 0.04 1.11 0.0003 0.04 1.17 0.0022 0.02 1.33 -0.0029 0.02
65 to 69 0.77 0.0004 0.03 0.75 -0.0009 0.03 0.73 0.0017 0.02 0.82 0.0003 0.02
60 to 64 0.30 -0.0010 0.03 0.39 -0.0036 0.03 0.37 -0.0004 0.02 0.36 0.0002 0.02
55 to 59 0.09 -0.0038 0.02 0.01 -0.0002 0.02 -0.06 -0.0001 0.02 -0.18 0.0003 0.02
50 to 54 -0.17 -0.0027 0.02 -0.39 0.0012 0.02 -0.34 -0.0000 0.02 -0.59 -0.0007 0.02
40 to 49 -0.69 -0.0016 0.02 -0.95 -0.0005 0.02 -0.95 -0.0014 0.01 -1.21 0.0003 0.02
30 to 39 -1.31 -0.0010 0.02 -1.52 -0.0003 0.02 -1.61 -0.0007 0.01 -1.83 0.0006 0.01
18 to 29 -1.67 -0.0014 0.02 -1.89 0.0003 0.02 -1.91 -0.0009 0.01 -2.18 -0.0000 0.01

Assume the number of people who received a first dose of the vaccine, Ysgk1, are

known for each combination of sex, age group, and council area (I use the observed

counts from the dataset). For the parameter values above, generate the number of

people who received a second dose (d = 2) as Ysgk2 ∼ Binomial
(
Ysgk1, 1− α(d−1)d

sgk

)
.

Then, from the generated values {Ysgk2}, generate the number of people who received
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a third dose (d = 3) as Ysgk3 ∼ Binomial
(
Ysgk2, 1− α(d−1)d

sgk

)
. Finally, fit Model 2 to

these simulated data. I repeat this procedure 100 times and in each trial I compute

the bias of the posterior mean estimate and the posterior standard deviation for each

parameter. Table B.1 shows the bias and the standard deviation averages over the

100 trials for the fixed effects. Table B.2 shows these results for the age group random

effects and Table B.3 shows those for the council area random effects.

Table B.3: True parameter values of the council area random effects with the bias and standard deviation (SD) of
the estimates, averaged over the 100 simulated datasets.

Council area
Doses 1 to 2 Doses 2 to 3

Female Male Female Male
True Bias SD True Bias SD True Bias SD True Bias SD

West Lothian 0.02 0.00 0.04 -0.05 -0.00 0.04 -0.24 0.00 0.04 -0.13 0.00 0.04
West Dunbartonshire -0.19 0.00 0.05 -0.19 0.01 0.05 -0.45 0.00 0.04 -0.34 0.00 0.04

Stirling 0.06 0.00 0.05 0.25 -0.01 0.05 0.24 0.00 0.04 0.17 0.00 0.04
South Lanarkshire -0.07 -0.00 0.04 -0.06 0.00 0.04 -0.03 -0.00 0.04 -0.02 0.00 0.04

South Ayrshire -0.05 0.01 0.05 -0.09 -0.00 0.04 0.26 -0.00 0.04 0.44 -0.00 0.04
Shetland Islands 0.35 -0.01 0.09 0.58 -0.04 0.08 0.82 -0.01 0.06 0.32 0.00 0.05
Scottish Borders -0.03 0.00 0.05 0.11 -0.00 0.05 0.08 -0.00 0.04 0.01 0.00 0.04

Renfrewshire -0.05 0.00 0.04 -0.04 -0.00 0.04 -0.06 0.00 0.04 -0.10 0.00 0.04
Perth and Kinross 0.23 -0.01 0.05 0.18 0.00 0.04 0.17 0.00 0.04 0.12 0.00 0.04

Orkney Islands 0.04 0.01 0.08 0.06 0.01 0.07 0.73 -0.02 0.06 0.53 -0.01 0.05
North Lanarkshire -0.16 -0.00 0.04 -0.21 0.00 0.04 -0.31 -0.00 0.04 -0.25 0.00 0.04

North Ayrshire -0.21 0.00 0.04 -0.06 0.00 0.04 -0.16 0.00 0.04 -0.26 0.00 0.04
Na h-Eileanan Siar 0.07 0.00 0.08 -0.25 0.01 0.06 -0.02 0.01 0.05 0.06 0.00 0.05

Moray 0.06 -0.00 0.05 -0.10 0.00 0.05 -0.04 0.00 0.04 0.08 -0.00 0.04
Midlothian 0.03 -0.00 0.05 0.12 0.00 0.05 0.05 0.00 0.04 0.02 0.00 0.04
Inverclyde -0.02 -0.00 0.05 -0.05 0.01 0.05 0.04 0.00 0.04 0.03 0.00 0.04
Highland 0.04 0.00 0.04 -0.07 0.00 0.04 -0.05 -0.00 0.04 -0.07 0.00 0.04

Glasgow City -0.54 0.00 0.04 -0.56 -0.00 0.04 -0.65 0.00 0.04 -0.57 0.00 0.04
Fife -0.18 0.00 0.04 -0.14 0.00 0.04 -0.10 -0.00 0.04 -0.05 0.00 0.04

Falkirk 0.16 -0.00 0.04 0.22 -0.00 0.04 -0.20 0.00 0.04 -0.23 0.00 0.04
East Renfrewshire 0.27 -0.00 0.05 0.27 -0.00 0.05 0.24 -0.00 0.04 0.48 -0.00 0.04

East Lothian 0.19 -0.00 0.05 0.12 -0.00 0.05 0.20 -0.00 0.04 0.22 -0.00 0.04
East Dunbartonshire 0.43 -0.01 0.05 0.45 -0.01 0.05 0.34 0.00 0.04 0.50 -0.00 0.04

East Ayrshire -0.02 0.00 0.05 0.07 -0.00 0.04 -0.09 -0.00 0.04 -0.13 0.00 0.04
Dundee City -0.31 0.00 0.04 -0.31 0.00 0.04 -0.52 0.00 0.04 -0.48 0.00 0.04

Dumfries and Galloway -0.20 0.00 0.04 -0.25 0.00 0.04 0.23 -0.00 0.04 0.19 0.00 0.04
Clackmannanshire -0.00 0.00 0.06 0.08 -0.01 0.05 -0.15 0.00 0.04 -0.19 0.00 0.04
City of Edinburgh -0.20 -0.00 0.04 -0.17 0.00 0.04 -0.07 0.00 0.04 -0.14 0.00 0.04
Argyll and Bute -0.16 0.01 0.05 -0.27 0.00 0.04 -0.12 -0.00 0.04 -0.08 0.00 0.04

Angus 0.25 -0.00 0.05 0.22 -0.00 0.05 0.00 -0.00 0.04 -0.03 -0.00 0.04
Aberdeenshire 0.23 -0.00 0.04 0.15 -0.00 0.04 0.07 -0.00 0.04 0.12 0.00 0.04
Aberdeen City -0.03 0.00 0.04 -0.02 0.00 0.04 -0.23 0.00 0.04 -0.22 0.00 0.04

The tables show that over the 100 simulated datasets, the bias tends to be very

close to zero for all parameter estimates, which suggests that the model is able to
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produce good estimates of the true parameter values. The posterior standard devi-

ations appear to be relatively small compared to the true values, suggesting good

estimation performance.

B.7 Sensitivity analysis for hyperprior

specifications

The hierarchical model requires specification of parameter values for the prior and

hyperprior distributions, and the choice of hyperparameters for the hyperprior distri-

butions is not straightforward. The results for the best fitting model were obtained

using R-INLA’s default hyperprior specifications for the penalised complexity (PC)

prior distributions of the precision parameters τδ and τφ, as well as the mixing pa-

rameters ρδ and ρφ. This section provides a sensitivity analysis of the choice of

parameter values for the corresponding hyperprior distributions to see if they sub-

stantially impact the posterior distributions of these parameters and, therefore, the

estimated effects overall.

The precision parameters τδ and τφ are assigned type-2 Gumbel prior distribu-

tions of the form π(τ) = θ
2
τ−3/2exp(−θτ−1/2), for τ ∈ {τδ, τφ}, which were proposed

by Simpson et al. (2017). Choosing the value of the parameter θ can be aided by con-

sidering the probability statement P (1/
√
τ > U) = α (Riebler et al., 2016), and I use

R-INLA’s default values U = 1 and α = 0.01. The mixing parameters ρδ and ρφ are

assigned another PC prior distribution, where the base model is obtained for ρ = 0.

The Kullback-Leibler divergence (KLD, Kullback and Leibler (1951)) for between the

base model and corresponding flexible BYM2 model is used to compute the distance

scale d(ρ) (recall Section 2.3.1.1), which is assigned an exponential prior distribution

with parameter λ. In contrast to the precision parameter τ , the PC prior for ρ is not

available in closed form but can be computed in R-INLA for the application-specific

structure matrix (see Riebler et al., 2016 for more details). The probability statement

P (ρ < U) = α can be used to determine a reasonable value of λ, and I use R-INLA’s

default values U = 0.5 and α = 0.5.

Table B.4 contains the means and 95% credible intervals for the posterior distri-
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Table B.4: Mean estimates and 95% credible intervals (in parantheses) for the posterior distributions of the hyper-
priors used in Model 1, for different hyperparameter specifications.

Prior name Hyperparameter settings τδ ρδ τφ ρφ
Default Uτ = 1, ατ = 0.01 3.907 1.000 19.873 0.414

Uρ = 0.5, αρ = 0.5 (2.513,5.230) (0.998,1.000) (13.783,27.210) (0.232,0.700)
Prior 1 Uτ = 1, ατ = 0.01 4.322 1.000 21.384 0.293

Uρ = 0.5, αρ = 2/3 (2.660,6.505) (0.997,1.000) (15.423,29.540) (0.092,0.549)
Prior 2 Uτ = 1, ατ = 0.05 4.225 0.991 20.490 0.324

Uρ = 0.5, αρ = 0.5 (2.571,6.401) (0.917,1.000) (13.832,28.836) (0.102,0.627)
Prior 3 Uτ = 1, ατ = 0.05 4.239 0.998 20.523 0.320

Uρ = 0.5, αρ = 2/3 (2.586,6.429) (0.993,1.000) (13.834,28.978) (0.070,0.691)

butions of τ and ρ for the age group effects δ and council area effects φ for different

prior specifications of Model 1. The first row in the table corresponds to the model

for which the resulting estimates are presented in Section 4.4. The other prior speci-

fications are considered for sensitivity analysis.

The main takeaway from the table is that changing the prior specifications does

not substantially impact the posterior distributions, as the mean estimates and 95%

credible intervals of each hyperparameter are fairly similar for the different prior spec-

ifications. The precision of the variance parameter τδ of the age group effects with

prior specification P (1/
√
τ > 1) = 0.01 (which was used in this study) tends to be

slightly lower than that of the other prior specifications. The minor differences in

posterior estimates seem negligible. These differences are even more subtle for the

variance parameter τφ. For the mixing parameter ρδ, the posterior mean estimates

and 95% credible intervals are all very close to 1, suggesting that the structured com-

ponent almost entirely explains the variation in the age group effects, and this result

is not sensitive to the hyperparameter specifications. The means of the posterior

distributions for the mixing parameter ρφ are all moderate, falling between 0.29 and

0.42, and the 95% credible intervals are fairly wide, with upper bounds as high as

0.70.

Lastly, Figures B.5 shows the posterior mean estimates of the sex- and transition-

specific odds ratios of attrition for each age group, compared to the average over all

age groups, i.e. exp(−δ(sd)
g ), for the hyperprior specifications presented in Table B.4;

similarly, Figure B.6 shows the posterior mean estimates of the transition-specific

odds ratios of attrition for each council area, compared to the Scottish average, i.e.
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Figure B.5: Posterior mean estimates of the sex- and transition-specific odds ratios of attrition for each age group,
compared to the average over all age groups for different hyperprior specifications.

Figure B.6: Posterior mean estimates of the transition-specific odds ratios of attrition for each council area, compared
to the Scottish average for different hyperprior specifications.

exp(−φ(d)
k ). The figures confirm that the choice of the prior specification has almost

no impact on the resulting modelled attrition rates, as the modelled odds ratios

of attrition obtained from the models with alternative hyperprior specifications are

almost identical to those presented in Section 4.4.

B.8 Sensitivity analysis for the random effects

specifications

The BYM2 models assigned to the age group and council area random effects require

a structure for the correlated random effects. The proposed model uses a binary

adjacency neighbourhood matrix M for the correlated council area random effects

u
∗(sd)
φ . Here, mij = 1 if areas i and j share a border and mij = 0, otherwise.

Additionally, I created artificial links (setting mij = 1) between the islands and their

nearest land areas. However, these artificially linked council areas might be less
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Figure B.7: Mean fitted attrition rates of the original Model 2 and the alternative that uses a k nearest neighbour

matrix with k = 4 for the scaled correlated council area random effects u
∗(sd)
φ .

similar to each other than the council areas that share a border. To check if the

results are sensitive to the choice of structure matrix or the artificially created links,

I fit an alternative version of Model 2 using a k-nearest neighbour (KNN) matrixM ∗.

Since the border-sharing rule results in an average of 3.94 neighbours per area, I let

k = 4 and treat two areas as neighbours if one of them is amongst the four nearest

neighbours (as measured by the Euclidean distance between the polygon’s centroids)

of the other. I symmetrise this neighbourhood structure so that if area i is amongst

the four nearest neighbours of area j, then area j is also labelled as a neighbour of

area i even if it is not amongst its four nearest neighbours. The resulting mean fitted

attrition rates are very similar to those of Model 2, as shown in Figure B.7. The

mean absolute difference between the mean fitted attrition rates from the two models

is approximately 0.000039, so the results do not appear to be sensitive to the choice

of neighbourhood matrix used in the CAR model. On the same note, the results do

not seem to be strongly affected by the artificially linked islands.

In the BYM2 prior of the age group effects, the neighbourhood structure assigned

to the scaled correlated age group random effects u
∗(sd)
δ implies that only neighbouring

age groups are partially correlated. I check the sensitivity of this assumption by fitting

an alternative model that assigns an autoregressive (AR) prior of order 2 to the age
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Figure B.8: Mean fitted attrition rates of the original Model 2 and the alternative that assigns an AR(2) prior to

the age group random effects δ
(sd)
g .

Figure B.9: Mean fitted attrition rates of the original Model 2 and the alternative that assigns a Leroux CAR prior

to the council area random effects φ
(sd)
k .

group effects δ
(sd)
g , so that the effects are partially correlated with neighbours within

two age groups distance. The resulting mean fitted attrition rates are very similar

to those of Model 2, as shown in Figure B.8, with a mean absolute difference of

approximately 0.000054. I could also consider an alternative prior for the council

area random effects, moving away from the BYM2 prior I proposed in Chapter 4.
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Since the model should flexibly estimate the strength of the spatial autocorrelation

in the data, a good alternative is the Leroux CAR (LCAR) prior (Leroux et al., 2000,

recall Section 2.6.2). Replacing the BYM2 model, I assign to the council area random

effects φ
(sd)
k an LCAR prior that uses the same neighbourhood matrixM . This results

in the mean fitted attrition rates presented in Figure B.9, which are plotted against

the corresponding values from the original Model 2. The mean absolute difference

between the fitted attrition rates from the alternative model and the original Model 2

is approximately 0.000030, so the results do not appear to be sensitive to the choice

of prior assigned to the council area random effects.

B.9 Posterior means and credible intervals of the

odds ratios, by council area

Table B.5 contains posterior mean estimates and 95% credible intervals of the odds

ratio of attrition for each council area compared to the transition-specific Scottish

averages, corresponding to Figure 4.4 in Chapter 4. The table confirms that over both

transitions, Glasgow City, West Dunbartonshire, and Dundee City are the council

areas with the highest odds of attrition in Scotland. The council areas with the

lowest odds are the Shetland Islands, Orkney Islands, East Dunbartonshire, and

East Renfrewshire. Further, the table shows that the 95% credible intervals are wholly

above one (indicated by the entries in bold) in both transitions for Dundee City, East

Ayrshire, Glasgow City, North Ayrshire, North Lanarkshire, Renfrewshire, and West

Dunbartonshire. Therefore, in these areas, in both transitions the odds in favour of

attrition are significantly larger than the transition-specific Scottish national averages.

The 95% credible intervals are wholly below one (indicated by the entries in italic) in

both transitions for East Dunbartonshire, East Lothian, East Renfrewshire, Western

Isles Na h-Eileanan Siar, Orkney Islands, Scottish Borders, Shetland Islands, and

Stirling. Therefore, in these areas, in both transitions the odds in favour of attrition

are significantly smaller than the transition-specific Scottish national averages.

Table B.6 contains posterior mean estimates and 95% credible intervals of the odds

ratio of attrition for each council area compared to the sex- and transition-specific
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Table B.5: Posterior mean estimates and 95% credible intervals of the odds ratios of attrition for each council area,
compared to the transition-specific average odds across all council areas.

Council area Doses 1 to 2 Doses 2 to 3
West Lothian 1.03 (0.96,1.10) 1.27 (1.19,1.36)

West Dunbartonshire 1.28 (1.19,1.39) 1.44 (1.35,1.55)
Stirling 0.91 (0.84,0.98) 0.84 (0.78,0.90)

South Lanarkshire 1.09 (1.01,1.16) 1.04 (0.98,1.11)
South Ayrshire 0.99 (0.92,1.07) 0.94 (0.88,1.01)

Shetland Islands 0.48 (0.41,0.55) 0.61 (0.56,0.67)
Scottish Borders 0.91 (0.84,0.99) 0.91 (0.85,0.97)

Renfrewshire 1.10 (1.03,1.18) 1.13 (1.06,1.21)
Perth and Kinross 0.93 (0.86,1.00) 0.99 (0.92,1.06)

Orkney Islands 0.69 (0.61,0.78) 0.56 (0.51,0.61)
North Lanarkshire 1.23 (1.15,1.32) 1.28 (1.20,1.36)

North Ayrshire 1.21 (1.12,1.30) 1.24 (1.16,1.33)
Na h-Eileanan Siar 0.85 (0.76,0.95) 0.88 (0.81,0.95)

Moray 1.04 (0.96,1.12) 0.99 (0.92,1.06)
Midlothian 0.95 (0.88,1.03) 1.07 (1.00,1.14)
Inverclyde 1.06 (0.98,1.15) 1.06 (0.99,1.14)
Highland 1.04 (0.97,1.12) 1.04 (0.97,1.11)

Glasgow City 1.59 (1.48,1.69) 1.40 (1.31,1.49)
Fife 1.26 (1.18,1.35) 1.06 (0.99,1.13)

Falkirk 0.89 (0.83,0.96) 1.08 (1.01,1.15)
East Renfrewshire 0.74 (0.68,0.80) 0.79 (0.73,0.84)

East Lothian 0.90 (0.83,0.97) 0.87 (0.81,0.93)
East Dunbartonshire 0.66 (0.61,0.71) 0.76 (0.71,0.81)

East Ayrshire 1.11 (1.03,1.19) 1.13 (1.06,1.21)
Dundee City 1.43 (1.33,1.53) 1.31 (1.22,1.40)

Dumfries and Galloway 1.07 (0.99,1.15) 0.91 (0.85,0.98)
Clackmannanshire 1.03 (0.95,1.13) 1.13 (1.06,1.22)
City of Edinburgh 1.13 (1.06,1.21) 0.85 (0.79,0.90)
Argyll and Bute 1.60 (1.48,1.72) 0.96 (0.90,1.03)

Angus 0.97 (0.90,1.05) 1.06 (0.99,1.14)
Aberdeenshire 0.73 (0.68,0.78) 0.96 (0.90,1.03)
Aberdeen City 1.06 (0.99,1.14) 1.12 (1.04,1.19)

Scottish averages, corresponding to Figure 4.5 in Chapter 4. The table confirms that

over both sexes and transitions, Glasgow City, West Dunbartonshire, and Dundee

City are the council areas with the highest odds of attrition in Scotland. The council

areas with the lowest odds are the Shetland Islands, Orkney Islands, East Dunbar-

tonshire, and East Renfrewshire. Further, the table shows that the 95% credible

intervals are wholly above one for each sex and transition for Dundee City, East Ayr-

shire, Glasgow City, North Ayrshire, North Lanarkshire, and West Dunbartonshire.

Therefore, in these areas, for each sex and transition the odds in favour of attrition

are significantly larger than the sex- and transition-specific Scottish national aver-
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ages. The 95% credible intervals are wholly below one for each sex and transition for

East Dunbartonshire, East Lothian, East Renfrewshire, Orkney Islands, and Shet-

land Islands. Therefore, in these areas, for each sex and transition the odds in favour

of attrition are significantly smaller than the sex- and transition-specific Scottish

national averages.

Table B.6: Posterior mean estimates and 95% credible intervals of the odds ratios of attrition for each council area,
compared to the sex- and transition-specific average odds across all council areas.

Council area
Doses 1 to 2 Doses 2 to 3

Female Male Female Male
West Lothian 1.02 (0.95,1.10) 1.03 (0.96,1.11) 1.30 (1.22,1.38) 1.25 (1.17,1.32)

West Dunbartonshire 1.24 (1.14,1.35) 1.32 (1.22,1.42) 1.49 (1.39,1.59) 1.40 (1.31,1.50)
Stirling 0.93 (0.86,1.02) 0.90 (0.82,0.97) 0.83 (0.78,0.89) 0.84 (0.79,0.90)

South Lanarkshire 1.11 (1.04,1.18) 1.07 (1.01,1.14) 1.07 (1.01,1.14) 1.02 (0.96,1.08)
South Ayrshire 1.01 (0.93,1.10) 0.98 (0.91,1.06) 0.92 (0.86,0.98) 0.97 (0.90,1.03)

Shetland Islands 0.53 (0.44,0.63) 0.46 (0.38,0.54) 0.54 (0.48,0.60) 0.67 (0.61,0.74)
Scottish Borders 0.94 (0.86,1.02) 0.90 (0.83,0.97) 0.89 (0.83,0.95) 0.92 (0.86,0.98)

Renfrewshire 1.07 (0.99,1.15) 1.14 (1.06,1.22) 1.15 (1.08,1.22) 1.11 (1.04,1.18)
Perth and Kinross 0.88 (0.81,0.95) 0.97 (0.90,1.04) 0.95 (0.89,1.01) 1.02 (0.96,1.09)

Orkney Islands 0.72 (0.61,0.84) 0.67 (0.58,0.78) 0.53 (0.48,0.59) 0.59 (0.53,0.65)
North Lanarkshire 1.25 (1.17,1.33) 1.22 (1.15,1.30) 1.33 (1.25,1.41) 1.23 (1.16,1.31)

North Ayrshire 1.30 (1.21,1.40) 1.13 (1.05,1.22) 1.24 (1.17,1.33) 1.24 (1.16,1.32)
Na h-Eileanan Siar 0.88 (0.76,1.01) 0.83 (0.73,0.95) 0.87 (0.79,0.95) 0.89 (0.82,0.97)

Moray 0.94 (0.86,1.02) 1.11 (1.03,1.21) 1.06 (0.99,1.13) 0.93 (0.87,0.99)
Midlothian 0.98 (0.90,1.07) 0.93 (0.86,1.01) 1.07 (1.00,1.14) 1.07 (1.00,1.14)
Inverclyde 1.04 (0.95,1.14) 1.08 (0.99,1.17) 1.08 (1.01,1.16) 1.05 (0.98,1.13)
Highland 1.00 (0.93,1.08) 1.07 (1.00,1.15) 1.02 (0.96,1.09) 1.05 (0.99,1.12)

Glasgow City 1.66 (1.57,1.77) 1.52 (1.43,1.62) 1.46 (1.38,1.55) 1.34 (1.26,1.42)
Fife 1.29 (1.21,1.38) 1.23 (1.16,1.32) 1.07 (1.00,1.13) 1.05 (0.99,1.12)

Falkirk 0.87 (0.81,0.94) 0.91 (0.84,0.98) 1.10 (1.03,1.17) 1.06 (1.00,1.13)
East Renfrewshire 0.76 (0.69,0.83) 0.73 (0.67,0.80) 0.82 (0.76,0.87) 0.77 (0.72,0.82)

East Lothian 0.90 (0.83,0.98) 0.90 (0.83,0.97) 0.86 (0.80,0.92) 0.88 (0.83,0.94)
East Dunbartonshire 0.66 (0.60,0.72) 0.67 (0.61,0.73) 0.77 (0.72,0.83) 0.75 (0.70,0.80)

East Ayrshire 1.12 (1.04,1.21) 1.09 (1.01,1.18) 1.12 (1.05,1.20) 1.14 (1.07,1.22)
Dundee City 1.48 (1.38,1.59) 1.38 (1.29,1.48) 1.35 (1.27,1.44) 1.26 (1.19,1.34)

Dumfries and Galloway 1.06 (0.98,1.15) 1.08 (1.00,1.16) 0.86 (0.81,0.92) 0.96 (0.90,1.02)
Clackmannanshire 1.09 (0.98,1.20) 0.99 (0.90,1.09) 1.13 (1.05,1.22) 1.14 (1.06,1.22)
City of Edinburgh 1.21 (1.14,1.29) 1.07 (1.00,1.14) 0.81 (0.77,0.86) 0.88 (0.83,0.93)
Argyll and Bute 1.15 (1.05,1.25) 1.93 (1.80,2.08) 1.05 (0.98,1.13) 0.89 (0.83,0.96)

Angus 0.92 (0.84,1.00) 1.02 (0.95,1.11) 1.05 (0.98,1.12) 1.08 (1.01,1.15)
Aberdeenshire 0.73 (0.68,0.79) 0.73 (0.68,0.78) 0.96 (0.90,1.02) 0.96 (0.91,1.02)
Aberdeen City 1.06 (0.99,1.13) 1.06 (0.99,1.14) 1.12 (1.06,1.20) 1.11 (1.04,1.18)
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B.10 The relationship between attrition rates

and other variables

In Chapter 4, I analyse how the trends in attrition rates for the second and third

doses of the COVID-19 vaccine differ by age, sex, and council area in Scotland.

I chose not to include other covariates in the model to analyse their relationships

with attrition rates, as these covariate effects could be impacted by ecological bias

(Wakefield and Salway, 2001) due to the data being aggregated to a relatively high

council area level. Further, there are only 32 council areas, so there is a risk that any

regression relationship will be badly estimated. However, for completeness and with

reference to the caveats above, here I briefly examine covariate effects. The covariates

I include are a measure of social inequality and population density. The Scottish

Government (2020c) provides indicator data used to compute the Scottish Index of

Multiple Deprivation (SIMD) at a Data Zone level. One of the main indicators for the

SIMD is income deprivation, so I include the income deprivation rate as a covariate

in the model. Since the study is at the council area level, I take population-weighted

averages of the Data Zone level data. I also include the log-transformed population

density (the number of people per square kilometre) as an additional covariate in the

model. I apply a log transformation to the population densities because there are a

few areas with very high population densities.

I refit the model with the additional covariates, and Figure B.10 shows the mean

fitted attrition rates of the new model compared to the mean fitted attrition rates of

the original Model 2. The resulting mean fitted attrition rates are almost identical,

with a mean absolute difference of approximately 0.0000842, which shows that includ-

ing the additional covariates has little impact on the results. The fitted parameter

values suggest that, as the income deprivation rate increases by one standard devia-

tion, the sex- and transition-specific average odds ratio in favour of attrition over all

age groups and council areas increases by a factor of 8, with a posterior mean of 8.18

and a 95% credible interval of (5.74,11.58). Therefore, a higher income deprivation

rate appears to be associated with a higher odds ratio in favour of attrition, mean-
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ing that on average, those with greater income deprivation are more likely to quit

the vaccination programme. The fitted parameter values suggest that increasing the

log-population density by one standard deviation has very little impact on the sex-

and transition-specific average odds ratio over all age groups and council areas, with

a posterior mean of 1.00 and a 95% credible interval of (0.9998,1.0001). However, as

previously described with only 32 council areas, it is not clear how well the model

can estimate the relationship between the attrition rates and the income deprivation

rate and population density covariates.

Figure B.10: Mean fitted attrition rates of the original Model 2 and the alternative model with the income depri-
vation rate and log transformed population density as additional covariates.
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Gómez-Rubio, V. (2020). Bayesian inference with INLA. Chapman & Hall/CRC

Press. 117

Goolsbee, A. and Syverson, C. (2021). Fear, lockdown, and diversion: Compar-

ing drivers of pandemic economic decline 2020. Journal of Public Economics,

193:104311. 58

Gray, W. K., Navaratnam, A. V., Day, J., Wendon, J., and Briggs, T. W. R. (2021).

COVID-19 hospital activity and in-hospital mortality during the first and second

waves of the pandemic in England: An observational study. Thorax. 94

Grint, D. J., Wing, K., Houlihan, C., Gibbs, H. P., Evans, S. J. W., Williamson, E.,

McDonald, H. I., Bhaskaran, K., Evans, D., Walker, A. J., Hickman, G., Nightin-

gale, E., Schultze, A., Rentsch, C. T., Bates, C., Cockburn, J., Curtis, H. J.,

Morton, C. E., Bacon, S., Davy, S., Wong, A. Y. S., Mehrkar, A., Tomlinson, L.,

Douglas, I. J., Mathur, R., MacKenna, B., Ingelsby, P., Croker, R., Parry, J., Hes-

ter, F., Harper, S., DeVito, N. J., Hulme, W., Tazare, J., Smeeth, L., Goldacre, B.,

and Eggo, R. M. (2021). Severity of severe acute respiratory system coronavirus

2 (SARS-CoV-2) Alpha variant (B.1.1.7) in England. Clinical Infectious Diseases.

91, 93

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.

Technometrics, 11:1. 135

Hamidi, S., Sabouri, S., and Ewing, R. (2020). Does density aggravate the COVID-19

pandemic? Journal of the American Planning Association, 86:495–509. 93

Hartigan, J. A. (1975). Clustering algorithms. John Wiley & Sons, Inc., USA, 99th

edition. ISBN 978-0-471-35645-5. 47

Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A K-means clustering

algorithm. Applied Statistics, 28:100. 47

227



REFERENCES

Harvey, A. C. (1993). Time Series Models. 2nd Edition. MIT Press, Cambridge. 32

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical

Learning. Springer New York, second edition. 45, 46, 48, 51, 55

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57:97. 19

Haynes, W. (2013). Bonferroni correction. Encyclopedia of Systems Biology, pages

154–154. 69

Hill, A. B. (1965). The environment and disease: Association or causation? Proceed-

ings of the Royal Society of Medicine, 58(5):295–300. 191

Huang, L., Pickle, L. W., and Das, B. (2008). Evaluating spatial methods for in-

vestigating global clustering and cluster detection of cancer cases. Statistics in

Medicine, 27:5111–5142. 136

Johns Hopkins University & Medicine (2022). COVID-19 dashboard. https://coro

navirus.jhu.edu/map.html. Accessed: 2022-06-15. 96, 97

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L.,

and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature,

451:990–993. 56

Karesh, W. B., Cook, R. A., Bennett, E. L., and Newcomb, J. (2005). Wildlife trade

and global disease emergence. Emerging Infectious Diseases, 11:1000–1002. 57

Kaufman, L. and Rousseeuw, P. J. (1987). Clustering by means of medoids. In Pro-

ceedings of the statistical data analysis based on the L1 norm conference, Neuchatel,

Switzerland, volume 31. 48

Khalili, M., Karamouzian, M., Nasiri, N., Javadi, S., Mirzazadeh, A., and Sharifi,

H. (2020). Epidemiological characteristics of COVID-19: A systematic review and

meta-analysis. Epidemiology and Infection, 148:e130. 92

228

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html


REFERENCES

Khubchandani, J., Sharma, S., Price, J. H., Wiblishauser, M. J., Sharma, M., and

Webb, F. J. (2021). COVID-19 vaccination hesitancy in the United States: A rapid

national assessment. Journal of Community Health, 46:270–277. 99

Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in

disease risk. Statistics in medicine, 19 17-18:2555–67. 39

Kou, Y., Lu, C.-T., and Chen, D. (2006). Spatial weighted outlier detection. Proceed-

ings of the 2006 SIAM International Conference on Data Mining, pages 614–618.

137

Kourlaba, G., Kourkouni, E., Maistreli, S., Tsopela, C.-G., Molocha, N.-M., Tri-

antafyllou, C., Koniordou, M., Kopsidas, I., Chorianopoulou, E., Maroudi-Manta,

S., Filippou, D., and Zaoutis, T. E. (2021). Willingness of Greek general population

to get a COVID-19 vaccine. Global Health Research and Policy, 6:3. 98

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics, 22:79–86. 15, 210

Kumari, A., Ranjan, P., Chopra, S., Kaur, D., Kaur, T., Upadhyay, A. D., Isaac,

J. A., Kasiraj, R., Prakash, B., Kumar, P., Dwivedi, S. N., and Vikram, N. K.

(2021). Knowledge, barriers and facilitators regarding COVID-19 vaccine and vac-

cination programme among the general population: A cross-sectional survey from

one thousand two hundred and forty-nine participants. Diabetes & Metabolic Syn-

drome: Clinical Research & Reviews, 15:987–992. 98, 99, 130

Lawson, A. B. (2018). Bayesian Disease Mapping. Chapman and Hall/CRC. 8
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Cadernos de Saúde Pública, 36. 60

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H. (2017). Penalis-

ing model component complexity: A principled, practical approach to constructing

priors. Statistical Science, 32. 15, 16, 17, 37, 111, 115, 117, 149, 210

Singh, A. K. and Lalitha, S. (2018). A novel spatial outlier detection technique.

Communications in Statistics - Theory and Methods, 47:247–257. 137

Small, H. (2017). A brief history of Florence Nightingale. Robinson. 2

Sønderskov, K. M., Vistisen, H. T., Dinesen, P. T., and Østergaard, S. D. (2021).

COVID-19 booster vaccine willingness. Danish medical journal, 69. 99, 128

Soares, P., Rocha, J. V., Moniz, M., Gama, A., Laires, P. A., Pedro, A. R., Dias,

S., Leite, A., and Nunes, C. (2021). Factors associated with COVID-19 vaccine

hesitancy. Vaccines, 9:300. 128

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 64:583–639. 27

Sørbye, S. H. and Rue, H. (2014). Scaling intrinsic Gaussian Markov random field

priors in spatial modelling. Spatial Statistics, 8:39–51. 38, 114, 117

Statista (2020). Largest urban agglomerations in the United Kingdom in 2020. https:

//www.statista.com/statistics/294645/population-of-selected-cities

-in-united-kingdom-uk/. Accessed: 2022-03-16. 90

Sudre, C. H., Murray, B., Varsavsky, T., Graham, M. S., Penfold, R. S., Bowyer,

R. C., Pujol, J. C., Klaser, K., Antonelli, M., Canas, L. S., Molteni, E., Modat,

M., Cardoso, M. J., May, A., Ganesh, S., Davies, R., Nguyen, L. H., Drew, D. A.,

Astley, C. M., Joshi, A. D., Merino, J., Tsereteli, N., Fall, T., Gomez, M. F.,

Duncan, E. L., Menni, C., Williams, F. M. K., Franks, P. W., Chan, A. T., Wolf,

240

https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-kingdom-uk/
https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-kingdom-uk/
https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-kingdom-uk/


REFERENCES

J., Ourselin, S., Spector, T., and Steves, C. J. (2021). Attributes and predictors of

long COVID. Nature Medicine, 27:626–631. 57

Susser, M. and Stein, Z. (2009). The British Sanitary Movement: Edwin Chadwick,

pages 50–64. Oxford University Press. 2

Swift, L., Hunter, P. R., Lees, A. C., and Bell, D. J. (2007). Wildlife trade and the

emergence of infectious diseases. EcoHealth, 4:25. 57

Swinney, J. (2021). Health protection (coronavirus) (requirements) (Scotland)

amendment (no. 2) regulations 2021. https://www.legislation.gov.uk/s

si/2021/349/pdfs/ssi 20210349 en.pdf. Accessed: 2023-02-13. 129

Takalo, R., Hytti, H., and Ihalainen, H. (2005). Tutorial on univariate autoregressive

spectral analysis. Journal of Clinical Monitoring and Computing, 19:401–410. 22

Tang, B. and He, H. (2017). A local density-based approach for outlier detection.

Neurocomputing, 241:171–180. 137, 138, 143, 182, 183

Taylor, L. H., Latham, S. M., and Woolhouse, M. E. (2001). Risk factors for human

disease emergence. Philosophical Transactions of the Royal Society of London.

Series B: Biological Sciences, 356:983–989. 56

Tessema, Z. T., Tesema, G. A., Ahern, S., and Earnest, A. (2023). A systematic

review of areal units and adjacency used in Bayesian spatial and spatio-temporal

conditional autoregressive models in health research. International Journal of En-

vironmental Research and Public Health, 20:6277. 3

The Scottish Parliament (2022). Coronavirus (COVID-19): Vaccinations in Scotland

– latest data. https://spice-spotlight.scot/2022/07/27/coronavirus-covi

d-19-vaccinations-in-scotland-latest-data/. Accessed: 2022-07-29. 97

Thorisdottir, I. E., Asgeirsdottir, B. B., Kristjansson, A. L., Valdimarsdottir, H. B.,

Tolgyes, E. M. J., Sigfusson, J., Allegrante, J. P., Sigfusdottir, I. D., and Hall-

dorsdottir, T. (2021). Depressive symptoms, mental wellbeing, and substance use

among adolescents before and during the COVID-19 pandemic in Iceland: A lon-

gitudinal, population-based study. The Lancet Psychiatry, 8:663–672. 58

241

https://www.legislation.gov.uk/ssi/2021/349/pdfs/ssi_20210349_en.pdf
https://www.legislation.gov.uk/ssi/2021/349/pdfs/ssi_20210349_en.pdf
https://spice-spotlight.scot/2022/07/27/coronavirus-covid-19-vaccinations-in-scotland-latest-data/
https://spice-spotlight.scot/2022/07/27/coronavirus-covid-19-vaccinations-in-scotland-latest-data/


REFERENCES

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18:267–276.

51, 146

Tinson, A. (2021). What geographic inequalities in COVID-19 mortality rates and

health can tell us about levelling up. https://www.health.org.uk/news-and

-comment/charts-and-infographics/what-geographic-inequalities-in

-covid-19-mortality-rates-can-tell-us-about-levelling-up. Accessed:

2022-03-10. 84

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit

region. Economic Geography, 46:234. 5, 28, 134

Troiano, G. and Nardi, A. (2021). Vaccine hesitancy in the era of COVID-19. Public

Health, 194:245–251. 99, 129

Ugarte, M., Etxeberria, J., Goicoa, T., and Ardanaz, E. (2012). Gender-

specific spatio-temporal patterns of colorectal cancer incidence in Navarre, Spain

(1990–2005). Cancer Epidemiology, 36:254–262. 41

UK Health Security Agency (2023a). Coronavirus (COVID-19) in the UK. https:

//coronavirus.data.gov.uk/details/vaccinations. Accessed: 2023-01-04. 97

UK Health Security Agency (2023b). Coronavirus (COVID-19) in the UK: Vaccina-

tions in Scotland. https://coronavirus.data.gov.uk/details/vaccinatio

ns?areaType=nation&areaName=Scotland. Accessed: 2023-02-13. 129

United Nations - Department of Economic and Social Affairs (2015). Transforming

our world: The 2030 agenda for sustainable development. https://sdgs.un.or

g/2030agenda. Accessed: 2024-11-20. 1

Usher, K., Durkin, J., and Bhullar, N. (2020). The COVID-19 pandemic and mental

health impacts. International Journal of Mental Health Nursing, 29:315–318. 57

van Niekerk, J., Krainski, E., Rustand, D., and Rue, H. (2023). A new avenue

for Bayesian inference with INLA. Computational Statistics & Data Analysis,

181:107692. 23, 24, 25, 26

242

https://www.health.org.uk/news-and-comment/charts-and-infographics/what-geographic-inequalities-in-covid-19-mortality-rates-can-tell-us-about-levelling-up
https://www.health.org.uk/news-and-comment/charts-and-infographics/what-geographic-inequalities-in-covid-19-mortality-rates-can-tell-us-about-levelling-up
https://www.health.org.uk/news-and-comment/charts-and-infographics/what-geographic-inequalities-in-covid-19-mortality-rates-can-tell-us-about-levelling-up
https://coronavirus.data.gov.uk/details/vaccinations
https://coronavirus.data.gov.uk/details/vaccinations
https://coronavirus.data.gov.uk/details/vaccinations?areaType=nation&areaName=Scotland
https://coronavirus.data.gov.uk/details/vaccinations?areaType=nation&areaName=Scotland
https://sdgs.un.org/2030agenda
https://sdgs.un.org/2030agenda


REFERENCES

van Niekerk, J. and Rue, H. (2024). Low-rank variational Bayes correction to the

Laplace method. Journal of Machine Learning Research, 25(62):1–25. 25, 26

Vandenbroucke, J. P., Broadbent, A., and Pearce, N. (2016). Causality and causal in-

ference in epidemiology: The need for a pluralistic approach. International Journal

of Epidemiology, 45:1776–1786. 191

Venkatesan, P. (2024). The UK COVID-19 inquiry and critical care. The Lancet

Respiratory Medicine, 12:e63–e64. 3

Vinod, H. D. (1969). Integer programming and the theory of grouping. Journal of

the American Statistical Association, 64:506–519. 49

Wakefield, J. (2008). Ecologic studies revisited. Annual Review of Public Health,

29:75–90. 8

Wakefield, J. and Salway, R. (2001). A statistical framework for ecological and aggre-

gate studies. Journal of the Royal Statistical Society Series A: Statistics in Society,

164:119–137. 131, 218

Waller, L. and Carlin, B. (2010). Disease Mapping, pages 217–243. Chapman &

Hall/CRC handbooks of modern statistical methods. 8, 10

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely

applicable information criterion in singular learning theory. The Journal of Ma-

chine Learning Research, 11:3571–3594. 28

WHO (2022). COVID-19 vaccine tracker and landscape. https://www.who.int/

publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

Accessed: 2022-05-27. 97

Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E.,

Curtis, H. J., Mehrkar, A., Evans, D., Inglesby, P., Cockburn, J., McDonald, H. I.,

MacKenna, B., Tomlinson, L., Douglas, I. J., Rentsch, C. T., Mathur, R., Wong,

A. Y. S., Grieve, R., Harrison, D., Forbes, H., Schultze, A., Croker, R., Parry,

J., Hester, F., Harper, S., Perera, R., Evans, S. J. W., Smeeth, L., and Goldacre,

243

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines


REFERENCES

B. (2020). Factors associated with COVID-19-related death using OpenSAFELY.

Nature, 584:430–436. 57, 93

Wolff, D., Nee, S., Hickey, N. S., and Marschollek, M. (2021). Risk factors for COVID-

19 severity and fatality: A structured literature review. Infection, 49:15–28. 57

Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.).

Chapman & Hall/CRC Texts in Statistical Science. Chapman and Hall/CRC, 2000

Corporate Blvd N.W. Boca Raton, FL 33431, USA. ISBN 978-1-3153-7027-9. 11

World Health Organization (2024). The top 10 causes of death. https://www.who.in

t/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed:

2024-11-19. 3

Yan, B., Zhang, X., Wu, L., Zhu, H., and Chen, B. (2020). Why do countries respond

differently to COVID-19? A comparative study of Sweden, China, France, and

Japan. The American Review of Public Administration, 50:762–769. 94

Zhang, K., Hutter, M., and Jin, H. (2009). A new local distance-based outlier detec-

tion approach for scattered real-world data. In Advances in Knowledge Discovery

and Data Mining, pages 813–822, Berlin, Heidelberg. Springer Berlin Heidelberg.

145

244

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

	Thesis Cover Sheet (My Version)
	2024MueggePhD
	
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Methodology and literature review
	2.1 Disease mapping
	2.2 Generalised linear models
	2.3 Bayesian statistics
	2.3.1 Prior distributions
	2.3.1.1 Penalised complexity priors

	2.3.2 Inference using Markov chain Monte Carlo (MCMC) simulations
	2.3.2.1 Gibbs sampler
	2.3.2.2 Metropolis-Hastings algorithm
	2.3.2.3 Convergence checks

	2.3.3 Inference using approximate methods
	2.3.3.1 Gaussian approximations with variational Bayes correction


	2.4 Model comparison
	2.4.1 AIC
	2.4.2 DIC
	2.4.3 WAIC

	2.5 Spatio-temporal data
	2.5.1 Spatial autocorrelation
	2.5.1.1 Moran's I
	2.5.1.2 Local Moran's I

	2.5.2 Temporal autocorrelation
	2.5.2.1 Ljung-Box test


	2.6 Spatial models for areal data
	2.6.1 BYM and the intrinsic CAR model
	2.6.2 Leroux CAR model
	2.6.3 Dean model
	2.6.4 BYM2 model

	2.7 Spatio-temporal models for areal data
	2.7.1 Bernardinelli model
	2.7.2 Knorr-Held model
	2.7.3 Ugarte model
	2.7.4 Rushworth model

	2.8 Cluster analysis
	2.8.1 Non-hierarchical clustering (partitioning)
	2.8.1.1 k-means
	2.8.1.2 k-medoids (partitioning around medoids)
	2.8.1.3 Choosing the number of clusters
	2.8.1.4 Rand index

	2.8.2 Single linkage agglomerative clustering


	3 National lockdowns in England: The same restrictions for all, but do the impacts on COVID-19 mortality risks vary geographically?
	3.1 Introduction
	3.2 Motivating Study
	3.3 Methodology
	3.3.1 Data Likelihood
	3.3.2 Spatio-temporal random effects
	3.3.3 Hierarchical specifications

	3.4 Results
	3.4.1 How long after the implementation of lockdown did mortality risks reduce at a national level, and did this vary by lockdown?
	3.4.2 How did the temporal trends in mortality risks differ by region in England, and which LADs were at the highest risk?
	3.4.3 Which local authorities shared similar temporal trends in mortality risks?

	3.5 Discussion

	4 COVID-19 vaccine fatigue in Scotland: How do the trends in attrition rates for the second and third doses differ by age, sex, and council area?
	4.1 Introduction
	4.2 Motivating study
	4.2.1 Study region
	4.2.2 Vaccination data
	4.2.3 Attrition Rates
	4.2.4 Associations between attrition rates and other variables
	4.2.4.1 How do the attrition rates vary by age?
	4.2.4.2 How do the attrition rates vary by council area?


	4.3 Methodology
	4.3.1 Data Likelihood
	4.3.2 Structure of the random age group and council area effects
	4.3.3 Prior specifications
	4.3.4 Model simplifications
	4.3.5 Inference and software

	4.4 Results
	4.4.1 Are there any trends in attrition rates by age group, and does this vary by sex or transition?
	4.4.2 Are there any spatial patterns in attrition rates by council area, and does this vary by sex or transition?

	4.5 Discussion

	5 When Tobler's First Law of Geography doesn't hold: Identifying spatially outlying observations to remove their impact on estimated disease prevalence surfaces
	5.1 Introduction
	5.2 Motivating study: Asthma prevalence at a small-area level in England
	5.2.1 Study data
	5.2.2 Exploratory analysis

	5.3 Method: Identifying spatially outlying observations to remove their impact on estimated disease prevalence surfaces
	5.3.1 Identifying spatial outliers
	5.3.1.1 Relative density-based outlier score (RDOS)
	5.3.1.2 Bandwidth parameter specification
	5.3.1.3 Choosing the number of observations to be identified as spatial outliers

	5.3.2 A smoothing model that accounts for potential singleton outliers
	5.3.2.1 Data likelihood
	5.3.2.2 Structure of the random effects
	5.3.2.3 Prior specifications


	5.4 Simulation study
	5.4.1 Data generation
	5.4.2 Outlier detection performance measures
	5.4.3 Simulation Study 1: Comparing the performance of RDOS and local Moran's I
	5.4.4 Simulation Study 2: Using PAM to choose the outlier set from the RDOS values
	5.4.5 Simulation Study 3: Evaluating the modified smoothing model

	5.5 Application: Asthma prevalence at a small area level in England
	5.5.1 Which areas appear to be potential outliers?
	5.5.2 Do the identified outliers appear to be contextual or global?
	5.5.3 How do the potential outliers affect the modelling?

	5.6 Discussion

	6 Discussion and future work
	A Additional Analysis for Chapter 3
	A.1 Graphical convergence checks for the MCMC algorithm
	A.2 Posterior predictive checks
	A.3 Sensitivity analysis on the prior choice of the variance parameter

	B Additional Analysis for Chapter 4
	B.1 Additional plots for the observed attrition rates
	B.2 Full map of Scotland
	B.3 Derivation of the expectation of attrition rates
	B.4 Derivations for the interpretation of the fixed and random effects
	B.5 Observed vs fitted attrition rates
	B.6 Proof of principle simulation
	B.7 Sensitivity analysis for hyperprior specifications
	B.8 Sensitivity analysis for the random effects specifications
	B.9 Posterior means and credible intervals of the odds ratios, by council area
	B.10 The relationship between attrition rates and other variables

	References


