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Abstract

Strain hardening cementitious composites or engineered cementitious composites

exhibit significantly larger strains at maximum tensile stress than ordinary fibre

reinforced concrete. The performance of strain hardening cementitious composites

relies on the fibre/matrix properties at the micro-scale. A micro-mechanics based

constitutive model for fibre reinforced strain hardening cementitious composites

for finite element simulations of structural components is required.

Steel reinforced strain hardening cementitious composites potentially could be used

as a composite material of structural component to improve ductility and load

capacity. However, the failure process of steel reinforced strain hardening cemen-

titious composite is not well understood because of the complex interaction of two

scales of reinforcement involving crack patterns with spacings at multiple scales.

In this research, it is aimed to establish the link of micro-mechanics to struc-

tural component by incorporating a micro-mechanics based fibre bridging stress

crack opening law into a macroscopic damage-plasticity approach, which is called

CDPM2F. The model is implemented in the open-source finite element program

OOFEM. The model produces mesh-insensitive results and its response agrees well

with experimental results for failure in tension, shear and compression reported in

the literature.

The response of specimens made of cementitious composites with a single reinforce-

ment bar embedded in its centre is also investigated. The modelling reproduces

well the experimental results which shows that the use of strain hardening matrix

can lead to reduced overall ductility. By means of post-processing of the results,

it is shown that this reduction of ductility is strongly dependent on the interplay
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between the ultimate matrix stress and ultimate steel stress.

3



Acknowledgements

First of all, I would like to express my full appreciation to Dr. Peter Grassl. This

thesis can not be achieved without his patiently guidance, support and encourage-

ment. Not only his profound knowledge affects me, but also his unending passion

for science. His dedications to ensuring integrity, honesty, and transparency in

all aspects of scientific problems served as shining examples for me to follow. His

patience in answering my countless questions, no matter how basic or complex, has

been invaluable. He has always been willing to take the time to explain concepts

in multiple ways, ensuring that I fully comprehend them. I am deeply grateful for

the opportunity being academic supervised by such a distinguished scholar and

mentor. I believe what I learned from Dr. Peter Grassl will continue to guide me

throughout my entire professional journey.

I also would like to express my appreciation to Antoine Marlot for his contribution

to the work, and also Dr Ismail Aldellaa, Xiaowei Liu, Gumma Abdaliziz Hasan

Abdelrhim and Ifiok Edem Epok, for their patience in answering my questions and

discussing problems relating this thesis with me.

At last, I want to give my appreciation to my parents and Weiwei for their end-

less supporting and encouragement. Their wishes are motivation for me to move

forward.

4



Notation

Latin symbols

a Parameter for enforcing zero jump of the bridging stress at δ̃ = δ̃∗

df The diameter of fibers

E Young’s modulus of strain hardening cementitious composite

Em Young’s modulus of cementitious matrix

Ef Young’s modulus of fibers

f The snubbing coefficient

ft The tensile strength of the matrix

fc The compressive strength of the matrix

g The snubbing factor

Hp The hardening modulus of the plasticity part of CDPM2

he The length of element

L The embedment length

Lf The length of fibers

N The number of fibers within one element
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s̄ The average crack spacing at the stage of strain hardening

sm The saturated crack spacing

Vf The volume fraction of fibers

Vm The volume fraction of matrix

Vf,min The minimum fibre volume fraction related to fibers distribution

variation

z The distance form the centre of the fibre to the crack surface

Greek symbols

α The fiber dispersion index

αmin The lower limit of α

β The slip hardening parameter

γr0 A ratio links the crack opening to the displacement at peak

γcu A ratio links δ̄cu to δcu, related to fibers distribution variation.

δ Crack opening/Crack opening of weakest crack of the composite

δ̄cu Average crack opening of when weakest crack reaches δcu

δ0 The crack opening at the onset of slip

δf The crack open threshold which controls the softening slope

δuncu Crack opening of unloading cracks
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δ̃ The normalized crack opening(normalized by
Lf

2
)

δ̃∗ The normalised crack opening at the end of the debonding stage

δ̃cu The normalised crack opening at onset of softening

εp Irreversible inelastic strain part

εcr Inelastic strain part; Refering strain due to multiple cracks

εcu The cracking strain at the peak of the bridging stress

ξ A parameter controls the slope of sigmoid relation

σ̄t The positive parts of the effective stress σ̄

σ The nominal stress

σ̄ The effective stress

σ̄t The positive parts of the effective stress σ̄

σ̄c The negative parts of the effective stress σ̄

σf Fibre stress in direct tension

σm Matrix stress in direct tension

σ0 The reference stress at the end of debonding

σ̃debonding
f Fibre stresses due to debonding

σ̃pullout
f Fibre stresses due to pullout

σ̃f The normalized fibre stress(normalized by σ0)

σ̃cu The normalised fibre stress at onset of softening
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τ0 The bond strength at the onset of slip

ϕ The fibre inclination angle

ωt Tensile damage variables

ωc Compressive damage variables
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Chapter 1

Introduction

1.1 Background

Concrete has been used as a structural material since 1800s. The performance

of concrete has been improved to satisfy increasing demands for infrastructure.

For example, taller and taller buildings lead the compressive strength required to

increase from 30-40 MPa in 1940s to over 100 MPa nowadays. This is achieved with

finer cement and superplastiziser. However, high strength alone is not adequate for

high quality of infrastructures. Greenness of concrete production and durability

of concrete are other important areas.

In recent decades, different high performance concrete recipes were developed for

satisfying the increasing demands. The use of self-compacting and self-consolidating

concrete reduces expenditure for repairs and increases the durability of structures.

The use of recycled concrete as aggregates and ecological cement are helpful to the

sustainability and greenness of concrete production.
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Engineered Cementitious Composite (ECC) or Strain Hardening Cementitious

Composite (SHCC) typically means a type of high performance fibre reinforced

concrete with high strain capacity. Here, ECC is one type of SHCC. Compared

with normal concrete, the advantages of this type material are outstanding. For

normal concrete, the load capacity of structural concrete members is governed by

interaction of steel reinforcement and concrete. On the one hand, the desired me-

chanical performance of the composite is only achieved when concrete cracks and

a slip between concrete and reinforcement takes place. One the other hand, cracks

due to the low tensile strength of concrete is the main disadvantage of structural

concrete. Cracks create pathways for aggressive substances and reduce durability

of structural concrete. Furthermore, under severe cyclic loading (e.g. due to earth-

quakes), large number of cracks could cause spalling of concrete cover of structural

members (columns and shear walls), which could lead to buckling of axial steel

reinforcement and loss of anchorage. In extreme situations, this can cause collapse

of the entire structure. ECC’s strain capacity could reach over 3 %. Higher duc-

tility could reduce the spalling of this material when under cyclic loading. Fibres

bridging ECC’s cracks always result in small cracks, which reduce the pathways for

aggressive substances and protect the steel reinforcement. Durability of structural

members can be improve with the use of ECC.

However, some type of discontinuous fibres alter the crack spacing significantly

which could lead to increased localised strains, which might negatively influence

the ductility of continuously reinforced concrete. There are no design codes for

structural fibre reinforced concrete, which considers the effect of fibres on the fail-

ure process. Not enough research has been carried out to investigate the interplay

of continuous (traditional steel bars) and discontinuous (short fibres) reinforcement

in concrete and its affect on the load bearing capacity and ductility of reinforced

concrete.
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Adding different discontinuous fibres to cementitious matrix can strongly affect

ECC’s mechanical behaviour. The bond interaction between fibre concrete and

continuous steel reinforcement which can, if not designed correctly, have a negative

effect on the capacity and ductility of steel reinforced ECC.

1.2 Aim and Objectives

The aim of this research is to model the failure process of ECC and to understand

how normal reinforcement interacts with ECC.

Objectives of this research are to

• develop a 1D macroscopic model for ECC in tension based on micro-mechanics

of the interaction of fibre and matrix.

• develop a 3D constitutive model suitable for FE computation for ECC.

• understand the interaction of steel reinforcement and ECC and its effect on

ductility.

1.3 Contribution to the field

It is expected that this research contributes more to the understanding of SHCC

and steel reinforced SHCC. Phenomenological models usually neglect the forming

process of multiple cracks. A valid stress-strain relation based on micro-scale

fibre properties is required. CDPM2F is a 3D FE constitutive model for SHCC,

which is able to help us understand structural behaviour of SHCC. It also helps to
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understand better the dominant factors which affect ductility and load capacity of

steel reinforced ECC. This research provides guidance for R-ECC design.

1.4 Outline

This research is based on a plastic-damage approach to the modelling of the struc-

tural response of ECC and its interaction between ECC and steel reinforcement.

This thesis is divided into six chapters, and the contents of each chapter are pre-

sented below:

Chapter 1, which is the present chapter, provides an introduction to the research,

which shows the background of the research. It indicates that it is required to

develop a valid micro-mechanical based model and that research on the interaction

between steel and ECC should be carried out. Main aims and objectives of the

study and the methodology in order to achieve the study’s goals are summarised.

Furthermore, the work’s overall contribution to knowledge in the field is stated.

In Chapter 2, literature of relevant research is reviewed to explore key parameters

that affect the overall structural response of strain hardening cementitious com-

posites. Experimental studies of ECC structural behaviour (tension, compression,

shearing) are presented. Theoretical and experimental research of fibres bridging

at the micro scale are also reviewed.

In Chapter 3, a theoretical model of CDPM2F is described. It contains a refor-

mulated fibre stress-cracking opening law and different relation of linking cracking

strain and crack opening, which I used for both strain hardening and strain soft-

ening stages. Calibration of model based on fibre distribution variation is also

discussed in this chapter.
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Chapter 4 shows the single element response for different material parameters.

Comparisons between experimental studies and modelling results for direct tension,

compression and shearing are presented.

Validation of CDPM2F in modelling structural component for steel reinforced

ECC under tension is shown in Chapter 5. Modelling results of steel reinforced

concrete, steel reinforced ECC and steel reinforced low strength ECC are compared

with experimental studies to reveal the different failure mechanism.

Chapter 6 gives conclusions, limitations, and recommendations for future work.
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Chapter 2

Literature review

2.1 Mechanical behaviour of ECC

The mechanical behaviour of ECC is outstanding. ECC exhibits high ductility as

its strain can reach over 3 %. Potentially, ECC could be an ideal constructional

material because of its high ductility. In this section, the constituents of ECC,

tensile, compressive and shear behaviour of ECC is presented via literature.

2.1.1 Constituents of ECC

ECC consists of a cementitious matrix mixed with short and thin fibres. Fibres are

usually randomly distributed within ECC. This section shows what typical fibre

materials and matrix materials are used in making ECC.
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2.1.1.1 Fibre material and geometry

Various types of fibres are used in making ECC. Typical fibres of making ECC are

Polyvinyl Alcohol (PVA) fibres, because of their good dispersibility, high tensile

strength and good bond slip property. Tensile strength of PVA-ECC can reach

up the range of 3 to 8 MPa and the tensile strain capacity can reach up to 5 %.

The chemical bond between virgin fibres and matrix is considerably strong, due

to hydrophilic property of PVA fibre (Yu et al., 2018). Other types of fibres such

as Polyethylene (PE) fibres, Polypropylene (PP) fibres, steel fibres (SF) and glass

fibres (GF) are also used in ECC. Stiffness of steel fibres and glass fibres are high

compared with other fibres. They are usually used in hybrid with PE or PVA fibres.

PE fibres with high strength and high Young’s modulus have been recently used

in producing high strength ECC. This is because for low chemical fibres/matrix

bond strength and high slip hardening capacity, PE fibres with high strength may

not be fractured during debonding stage. The ultimate tensile strength is also

relatively high because of high slip hardening capacity. This leads to a high tensile

strength of ECC, which can reach over 10 MPa (Ding et al., 2022).

Many researchers found that the slip hardening effect is also governed by the

geometry of fibres. Long and thin fibres are required. However, if the length of

fibres is too long, fibres might fracture before fibre pullout from the matrix occurs

because of the high debonding force required. If the length of fibres is too short,

there is not enough slip hardening capacity to generate high bridging capacity.

For typical PVA-ECC, The length of PVA fibres used is 12 mm. The diameter of

fibres is 39 µm (Li et al., 2023).
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2.1.1.2 Matrix material

The matrix of ECC is cementitious with fine aggregate. Many admixtures are

added to improve the performance of the matrix. For example, fly ash (class F)

can improve the toughness and ductility of the matrix (Liu et al., 2018; Wang et al.,

2020; Halvaei et al., 2013). Silica flume and metakolin can improve mechanical and

durability properties (Liu et al., 2018; Madhavi et al., 2016). Ground granulated

blast furnace slag can decrease permeability and increase durability and long-

term strength. Superplastiser can improve ductility and tensile strength. Besides

mineral admixtures, fine aggregates are used in making ECC. Another research

shows crushed dolomitic limestone sands with a maximum size of 1.19 mm are used

in making ECC. However, drying shrinkage is observed (Mustafa et al., 2009).

2.1.2 Tensile behaviour of ECC

ECC exhibits tensile hardening properties, which are due to the slip hardening

effect when fibres are pulled out. Consequently, the fibre and matrix bond relation

is very important. Other material parameters such as fibre length, fibre diameters,

volume fraction of fibres, matrix strength, flaw size and distribution are also able

to affect tensile behaviour of ECC. In this section, these factors are discussed based

on literature.

2.1.2.1 Fibre/matrix bond

Bond slip property is the key factor of strain hardening behaviour. Slip harden-

ing usually means that for one fibre being pulled out of the matrix, the pullout
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force increases with slip. Fibres and matrix mentioned in sections 2.1.1.1 and sec-

tion 2.1.1.2 usually exhibit slip hardening. On the other hand, steel fibres embed-

ded in a cementitious matrix usually exhibit a slip softening response.

Researchers in Naaman and Shah (1976) have experimentally studied the pull out

load and slip displacement relation of steel fibre/concrete matrix. The experimen-

tal set up is shown in Figure 2.1.

Figure 2.1: Typical single-steel fibre concentric pull-out test specimen.

A slip softening response is observed. In Maage (1978), it was found that the

pullout force of single fibres is unaffected by the number of fibres. Naaman et al.

(1989) found that additives can affect the bond strength of steel fibre/cementitious

matrix. Latex can increase the steel fibre/cementitious matrix bond strength.

Steel fibres with hook end can increase the pullout load during the pullout phase.

However, steel fibres with hook ends still does not have slip hardening properties.

The pullout force-slip displacement relation of steel fibres is shown in Figure 2.2.
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Figure 2.2: Comparison of pullout force-slip distance relation for single steel fibre
and PVA fibre (Redon et al., 2001; Naaman et al., 1989).

Researchers in Marshall and Cox (1987) have found that PE fibres mixed with

brittle cement based matrix have a pseudo strain hardening behaviour. Lin and

Li (1997) proposed that the pseudo strain hardening behaviour of ECC is caused

by the slip hardening property of spectra PE fibres/matrix bond. Redon et al.

(2001) experimentally studied the pull out behaviour of a single PVA fibre from

the cementitious matrix. The setup of experiment is shown in Figure 2.3.
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Figure 2.3: Scheme of the single PVA fibre pull-out test setup.

They found the reason of slip hardening property is that PVA fibres are peeled off

by the cementitious matrix in the pull out phase. At the end of fibre embedment,

fibres due to abrasion damage induce ’jam’ effect. Pullout force increases due to

this effect. The pullout force-slip displacement curve of steel fibres and PVA fibres

is shown Figure 2.2. It shows slip hardening property of PVA fibre/cementitious

matrix bond. Compared with steel fibres, PVA fibres have the potential to effec-

tively increase ductility and tensile strength of the composite.
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2.1.2.2 Geometry of fibre

Increasing bond stress of fibre/matrix interface causes strain hardening as men-

tioned in section 2.1.2.1. Geometry of fibres could affect the quantity of bond area

between matrix and fibres, which also consequently influence the strain hardening

capacity. Yu et al. (2018) shows that geometry of fibres affects peak stress and

strain capacity of ECC. This effect is shown in Figure 2.4.
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Figure 2.4: Influence of fibre reinforced index on a) peak stress b) strain capacity
(Yu et al., 2018).

Vf is the volume fraction of fibres, Lf is the length of fibres and df is the diameter

of fibres. It shows that both tensile stress capacity and tensile strain capacity have

positive correlation with fibre reinforced index (VfLf

df
). It indicates long and thin

fibres are preferred to acquire higher ductility and higher tensile strength of ECC.

Similar experiments carried out by Li et al. (2019) confirm this trend. Decreasing

water/binder ratio enhances frictional strength of fibre/matrix bond.
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2.1.2.3 Fibre dispersion

Fibre dispersion is another factor that affects tensile strain capacity and ultimate

tensile strength of ECC material. Unlike material parameters mentioned before,

fibre dispersion is usually related to the manufacturing process.

Li and Li (2013a) have experimentally studied the influence of fibres dispersion on

strain capacity. A factor α is used to describe fibre dispersion. Definition of α is

shown in equations 2.1 and 2.2:

Φ(x) =

√∑n
i=1(xi − x̄)2

n
/x̄ (2.1)

α = exp [−Φ(x)] (2.2)

Here, Φ(x) is coefficient of variation, xi is the number of fibres in unit area. The

variable x̄ is the average number of fibres in unit area. Furthermore, n is the

number of unit areas at a cross sectional cut of an ECC specimen. The experi-

mental result of correlation between fibre dispersion and tensile capacity is shown

in Figure 2.5. When α is approaching 1, the coefficient of variation is approaching

0. This limit implies that fibres can be considered uniformly distributed. Fig-

ure 2.5 shows that with α approaching 1, the strain capacity is also approaching

its maximum.
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Figure 2.5: Correlation between fibre dispersion and tensile capacity (Li and Li,
2013a).

Zhou et al. (2012a) suggested holding back some amount of water to increase the

plastic viscosity to the desired level when fibre was added. After fibres have been

uniformly distributed, the rest of the water added. The mix sequence can enhance

the uniformity of fibres distribution. The result of correlation between tensile

capacity and fibre dispersion coefficient is shown in Figure 2.6. Same correlation

between fibre dispersion and tensile capacity is observed.
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Figure 2.6: Correlation between fibre dispersion and tensile capacity (Zhou et al.,
2012a).

2.1.2.4 Matrix flaw sizes distribution

Strain capacity and strength of ECC is also influenced by flaws added in cemen-

titious matrix. It is shown that if artificial flaws are added, high strain capacity

can be easily reached (Li and Wang, 2006).

Flaws in the ECC matrix can help with multiple crack process by decreasing tip

toughness when a new crack forms. Strength of matrix is also related to flaw

size at a crack plane as shown in Figure 2.7. It shows that cracking strength is

decreasing with flaw size increasing. Critical value Cmc is the value of the flaw

size when cracking strength of matrix is equal to fibre bridging strength. If flaw

size at the new crack plane is larger than Cmc, a new crack could form as the fibre

bridging stress is able to surpass the tensile strength of the matrix. When the flaw
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size at a new crack plane is smaller then Cmc, a new crack may not be formed as

the tensile strength of the matrix cannot be reached (Wang, 2005).

Figure 2.7: Matrix cracking strength and flaw size relation (Wang, 2005).

Therefore, strain capacity is also related to flaw sizes distribution. If enough large

flaws exist in the matrix, new cracks can easily form until the saturated crack

number is reached. In this way, a ECC specimen could reach its maximum tensile

capacity. One way of achieving this is mixing artificial particles into the matrix.

Normally, low strength particles with certain sizes are used in matrix as artificial

particles. Evidence shows 7 % volume fraction artificial flaws with particle size of

3.5 µm to 0.2 mm mixed in matrix can increase the strain capacity from 0.4 % to

2.5 % (Li and Wang, 2006).
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2.1.3 Compressive behaviour of ECC

Concrete is a type of constructional material with high compressive strength but

low tensile strength. ECC material has a similar compressive property as concrete.

Figure 2.8 shows compressive stress-strain curves of ECC with different compres-

sive strength. The normal ECC compressive strength for structural applications

ranges from 30 MPa to 70 MPa. For ultra high strength ECC, the compressive

strength could reach over 150 MPa (Ding et al., 2022).
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Figure 2.8: Compressive stress-strain curves of ECC with different compressive
strength (J.Jia et al., 2015).

Typical compressive stress-strain curves is shown in Figure 2.8. N1 to N5 in Fig-

ure 2.8 represent compressive stress-strain curves of different compressive strength.

Fibre bridging at vertical cracks lead to more ductile response compared to normal

concrete. Like most cementitious materials, compressive strength of ECC is age

dependent (shown in Figure 2.9). Type I cement is used in the experiment. Before
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the age of 14 days, compressive strength increases rapidly. The age dependence of

compressive strength of ECC is directly related to the rate of hydration of ECC’s

cementitious ingredients (Wang and Li, 2011).

Figure 2.9: Age dependence of ECC’s compressive strength (Wang and Li, 2011).

2.1.4 Shearing behaviour of ECC

Due to the ductile tensile response of ECC, the shear behaviour of ECC shows

better performance than normal FRC material. Figure 2.10 gives the shear stress

and strain curves for PE-ECC and FRC tested with Ohno shear beam.
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Figure 2.10: Shear performance of different cement based material tested with
Ohno Shear Beam (Li et al., 2003).

For PE-ECC, both shear stress capacity and strain capacity reached is higher than

FRC, which shows a more ductile response. Multiple cracks are observed at the

middle part of the PE-ECC specimen (Li et al., 2003).

2.1.5 Structural tests of Reinforced ECC

Compared with normal concrete, ECC has higher tensile strength and better duc-

tility. However, how the reinforcement interacts with ECC is the key point, which

determines if ECC is a better construction material than concrete for steel rein-

fored structures. In the present description of the thesis, I use the abbreviation

R for steel reinforcement, ECC for the ECC matrix materials and C for concrete

matrix material. As an example, the abbreviation R-C stands for concrete matrix

reinforced with steel. This notation will later also be used for the presentation of
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the structural analyses. R-ECC (Reinforced Engineered Cementitous Composites)

usually means ECC reinforced with normal steel reinforcement bars. R-ECC can

potentially be applied for different structural members such as beams, columns

and slabs.

Experimental comparison of load-strain curves of R-ECC and R-C tensile response

is shown in Figure 2.11. It shows loading capacity of R-ECC is higher than R-C

for tensile behaviour. However the strain capacity of R-ECC is lower than R-C

(Moreno et al., 2014). Similar response was also observed by Liu et al. (2023) and

Kang et al. (2017).

Figure 2.11: Tensile test for R/ECC and R/C (Moreno et al., 2014).

Moreno et al. (2014); Kang et al. (2017); Liu et al. (2023) investigated cracks

distribution for R-ECC when reinforcement bar reaches fracture. Only one domi-

nant crack is observed at onset of fracture of steel reinforcement in Moreno et al.

(2014); Kang et al. (2017), but multiple dominant cracks were observed in Liu
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et al. (2023). For the experiments in Moreno et al. (2014); Kang et al. (2017), the

load capacity of R-ECC is higher than for R-C specimens.

2.2 1D theoretical models for ECC

The mechanical behaviour of ECC was discussed by means of different experimen-

tal studies within the literature in section 2.1. In this part, models for bridging

capacity related to crack opening and multiple crack criteria based on micro-

mechanical behaviour of ECC are introduced. Furthermore, the overall tensile

stress-strain law obtained with numerical and phenomenological approaches in the

literature are discussed.

2.2.1 Multiple cracks criteria

Naaman (1995) claimed that if the maximum post-cracking stress σ0 is bigger

than the cracking strength of matrix σfc, the material exhibits multiple cracking

behaviour. Tetsushi and Li (2006) proposed energy criteria for flat crack propaga-

tion. It gives

σ0δ0 −
∫ δss

0

σ(δ)dδ = J ′
b ≥ Jtip (2.3)

It suggest that the maximum complementary energy J ′
b must exceed the matrix

toughness Jtip for flat crack propagation to prevail over that of the Griffith crack

propagation mode, after a crack initiates from a flaw site. Both criteria provide

design guidelines for fibre and matrix. Experimental data indicates that if σ0/σfc ≥

1.3 and J ′
b/Jtip ≥ 2.7, robust strain hardening of the ECC can be obtained (Kanda

and Li, 2006b).
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2.2.2 Fibre stress and crack opening relation

As mentioned before, the condition that the fibre stress at the crack surface sur-

passes the cracking strength and that the maximum complimentary energy exceeds

the matrix toughness are two criteria for multiple cracks to be generated and strain

hardening of ECC to be obtained.

Fibre stress capacity is the key factor for ECC tensile behaviour. In last decades,

many researchers dedicated effort on developing fibre stress predictable model

based on material properties of matrix, fibres and fibres/matrix interfaces. In this

section, fibre stress-crack opening relation developed for predicting fibre stress,

which is commonly used, is introduced.

Naaman et al. (1991) developed an analytical model for predicting shear stress of

bond based on matrix/fibres interface properties, which link fibre bridging stress

to material properties. LI (1992) derived a crack bridging model based on constant

bond stress. This model is capable to predict fibre bridging stress-crack opening

relation for both steel fibres and synthetic fibres reinforced cementitious composites

within one model. Lin and Li (1997) implemented a linear slip hardening model for

the increasing bond stress to fibre bridging model, which make it capable to predict

tensile hardening response of ECC. Chemical bond is also further considered by

Lin et al. (1999). Yang et al. (2008) modified the fibre bridging model for two way

pullout. One way pullout refer fibres being pulled out at only one side of the crack

surface, whereas two way is for both sides. The comparison of fibre stress-crack

opening curves for two models in Lin et al. (1999) and Yang et al. (2008) is shown

in Figure 2.12.
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Figure 2.12: Theoretical bridging stress versus crack opening relation of PVA-ECC
calculated by various models (Yang et al., 2008).

Huang et al. (2015) reformulated the fibre bridging law for hydrophilic fibres, which

gives similar prediction as those obtained with the model proposed in Yang et al.

(2008).

2.2.3 Tensile stress and strain law for ECC

ECC has pseudo strain-hardening properties as described in the former sections.

Two typical stress and strain laws are commonly used within literature. Firstly,

phenomenological stress and strain laws which can generally describe strain hard-

ening properties but usually neglect the multiple crack forming process. Another

is the numerical approaches based on micro-mechanical behaviour of each crack

forming and unloading.
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2.2.3.1 Phenomenological tensile stress and strain law

Phenomenological models are simplified models for the ECC tensile response.

Strain hardening and softening responses are usually considered linear, which ne-

glects the process of generating multiple cracks. The general stress and strain law

is shown in Figure 2.13.

Figure 2.13: Approximation of a uniaxial tensile stress and strain relation of an
ECC material (Kabele, 2000).

Many researchers have used stress and strain laws of varying complexity to anal-

yse the structural response of components made of ECC. Kabele (2000) proposed

an analytical model for ECC’s structural behaviour, which includes a simplified

tensile stress and strain law and shear bridging resistance based on a representa-

tive volume element. This model is able to predict the shear behaviour of ECC.

COD/∆0 in Figure 2.13 refers to the strain induced with localised crack opening.

Zhang et al. (2016) used a tensile phenomenological stress and strain law to evalu-

ate shear failure behaviour of ECC. Ding et al. (2023) used a simplified stress and
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strain law to model the seismic performance of ECC shell-RC columns. Bian et al.

(2023) modelled the flexural performance of novel ECC-RC composite sandwich

panels based on simplified stress and strain law. D.Liu et al. (2023) modelled

the flexural behaviour of reinforced concrete (RC) beams strengthened with ECC

with simplified stress and strain law considered. For the analysis of structural com-

ponents made of ECC, simplified stress and strain laws are used frequently due

to their ease to implement them into FE codes. However, the multiple cracking

process and micro mechanical behaviour of fibres are usually neglected.

2.2.3.2 Numerical approaches

A multi-scale model of tensile response of ECC was proposed by Kabele (Kabele,

2007). Bridging stress prediction of matrix and fibres at the micro-scale were

used to predict unloading and reloading of multiple cracks forming at the meso-

scale. In recent research, cracks are idealised as springs to describe unloading and

reloading phenomenon in Pan et al. (2023). A simplified fibre stress and crack

opening relation is used and the debonding relation is considered to be linear for

easy implementation. Variation of fibres is controlled with random volume fraction

within governing range. The advantage of these methods lies in their ability to

simulate the entire process of multiple crack formations.

2.3 3D computational models for ECC

In this section, computational mechanical approaches of modelling ECC in lit-

erature are introduced, which are continuum modelling approaches and discrete

modelling approaches.
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2.3.1 Continuum modelling approaches

The finite element method is usually used which is considered to be a continuum

approaches of modelling ECC. FE models of ECC are already widely applied to

simulate structural behaviour of R/ECC and ECC. Simplified tensile stress and

strain laws in tension are usually implemented in FE codes to simulate 3D struc-

tural response. Examples of 3D applications are presented in Zheng and Zhang

(2021), in which the bending behaviour of steel-ECC composite slab is consid-

ered. Kabir et al. (2022) modelled ECC encased steel composites beams. Yan

et al. (2023) simulated concrete-filled steel tubes strengthened with CFRP grid-

reinforced ECC. Kabir et al. (2022) simulated the CFST columns strengthened by

CFRP grid-reinforced ECC under eccentric compression.

Figure 2.14: Bilinear constitutive model (Zhan et al., 2024).

Simplified tensile stress and strain laws have the benefit of easy implementation.

Generally, they describe strain hardening behaviour of ECC well. However, the
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explicit influence of micro-mechanical behaviour of fibres/matrix interface is usu-

ally neglected. Therefore, the input parameters of these models are usually not

directly related to fibre properties.

2.3.2 Discrete modelling approaches

Rigid-body-spring models (RBSM) are often utilised in the modelling of the SHCC

tensile response. Here, the matrix is modelled with rigid bodies. The bridging of

fibres is modelled with springs. Usually every element has 6 degrees of freedom.

At each boundary plane of element, 6 springs are placed. One spring is in normal

direction to the boundary plane, two springs are in tangential direction to the

boundary plane, and three springs are in the rotational directions. Mechanical

properties of matrix (tensile strength, Young’s modulus and fracture energy) are

adopted at normal and tangential springs. Fibres are placed at boundary between

rigid bodies. The springs are considered to have zero length. Slip-stress relation of

fibre pulling out are adopted at these springs to calculate the fibre stress. For the

randomly placed fibres, snubbing effects are also adapted for different orientations

of fibres (Kunieda et al., 2010a,b; Ogura et al., 2013; Kang and J.E.Bolander,

2016).

Dispersion is controlled by varying the number of fibers at each boundary between

rigid bodies. A sine function is adopted for describing the variance of number

of fibres along the specimen length (Kang and J.E.Bolander, 2016). The weak

section, which cracks first, usually corresponds to boundaries of rigid bodies with

small number of fibres. The influence of fibre dispersion on RBSM is shown in

Figure 2.15. P here represents the total pull out force, Pc represents the pull out

force when the matrix reach cracking. Variable ϕ here refers the variation of fibers
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distribution.

Figure 2.15: Influences of fibre dispersion on tensile behaviour of SHCC modelled
by RBSM (Kang and J.E.Bolander, 2016).

2.3.3 Overview of CDPM2

CDPM2F is an extension of CDPM2, which is a 3D damage-plasticity approach

of modelling the failure of concrete (Grassl et al., 2013). The way how CDPM2

was extended to obtain CDPM2F s introduced in 3.3.2. CDPM2 is a 3D damage-

plasticity approach of modelling the failure of concrete (Grassl et al., 2013). An

overview of CDPM2 is introduced in this section. The damage plasticity constitu-

tive model is based on the following stress–strain relationship:

σ = (1− ωt) σ̄t + (1− ωc) σ̄c (2.4)
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Here, ωt and ωc are the tensile and compressive damage variables, respectively.

Furthermore, σ̄t and σ̄c are the positive and negative parts of the effective stress

σ̄, respectively. The two parts of the effective stress are determined from the

principal components of the effective stress σ̄ = De (ε− εp). Here, De is the

elastic stiffness, ε is the strain and εp is the plastic strain. The plasticity model

is based on the effective stress, which is independent of damage. The model is

described by the yield function, the flow rule, the evolution law for the hardening

variable and the loading–unloading conditions. The form of the yield function is

fp(σ̄, κp) = F (σ̄, qh1, qh2) (2.5)

The yield function

fp(σ̄V , ρ̄, θ̄;κp) = {[1−qh1(κp)](
ρ̄√
6fc

+
σ̄V

fc
)2+

√
3

2

ρ̄

fc
}2+q2h1(κp)(

m0ρ̄√
6fc

+
mg(σ̄V , κp)

fc
)

(2.6)

where qh1(κp) and qh2(κp) are dimensionless functions controlling the evolution of

the size and shape of the yield surface. The flow rule is

ε̇p = λ̇
∂gp
∂σ̄

(σ̄, κp) (2.7)

where ε̇p is the rate of the plastic strain, λ̇ is the rate of the plastic multiplier and

gp is the plastic potential. The rate of the hardening variable κp is related to the

rate of the plastic strain by an evolution law. The loading–unloading conditions

are

fp ≤ 0, λ̇ ≥ 0, λ̇fp = 0 (2.8)

The damage part of the model is described by the damage loading functions, load-

ing unloading conditions and the evolution laws for damage variables for tension
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and compression. For tensile damage, the main equations are

fdt = ε̃t(σ̄)− κdt (2.9)

fdt ≤ 0, κ̇dt ≥ 0, κ̇dtfdt = 0 (2.10)

ωt = gdt(κdt, κdt1, κdt2) (2.11)

For CDPM2F, ωt(κdt, κdt1, κdt2) is modified based on the derivation in 3.3.2. For

compression, main equations are

fdc = αcε̃c(σ̄)− κdc (2.12)

fdc ≤ 0, κ̇dc ≥ 0, κ̇dcfdc = 0 (2.13)

ωc = gdc(κdc, κdc, κdc2) (2.14)

Here, fdt and fdc are the loading functions, ε̃c(σ̄) and ε̃t(σ̄) equivalent strains and

κdt, κdt1, κdt2, κdc, κdc and κdc2 are damage history variables. Furthermore, αc is

a variable that distinguishes between tensile and compressive loading.
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Chapter 3

A damage plastic approach of

modeling ECC

In the previous chapter, factors affecting tensile behaviour of strain hardening

cementitious composites were described via a literature review. Some parameters

are at the micro level and other parameters are related to manufacturing. In this

chapter, the new constitutive model CDPM2F is presented, which is an extension

of CDPM2 (Grassl et al., 2013).

3.1 Fibre stress versus crack opening

In this section, the model for the fibre stress versus crack opening σf (δ) is derived.

The model is an adjustment of the approach presented in Lin and Li (1997) to

make it suitable for the iterative solution process used in this study. First, the

original approach in Lin and Li (1997) is summarised and then our modification
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is introduced.

3.1.1 Original model by Lin and Li (1997)

I present here in compact form the equations reported in Lin and Li (1997), which

are then used in the continuum based damage-plasticity approach CDPM2F.

In Lin and Li (1997), the pullout force P of a single fibre crossing a single crack is

given as a function of the displacement δ at the end of the fibre, which is loaded

as

P (δ) =



πd2f τ0 (1 + η)

ω

√(
1 +

cδ

Lf

)2

− 1 if 0 ≤ δ ≤ δ0

πd2f τ0 (1 + η)

ω

[
sinh

(
ω
L

df

)
− sinh

(
ω (δ − δ0)

df

)]
+ πτ0β (1 + η) (δ − δ0) (L− (δ − δ0))

if δ0 ≤ δ ≤ L

0 if L ≤ δ

(3.1)

where L = Lf/2 − z/ cos(ϕ) is the embedment length. For the one-sided pull-out

process considered here, the displacement of the loaded-end of the fibre is the same

as the crack opening. Here, z is the distance from the centre of the fibre to the

crack surface and ϕ is the fibre orientation. Furthermore, τ0 is the bond strength

at the onset of slip, β is the hardening parameter, df is the diameter of the fibre

and c = βLf/(2df). At the displacement threshold

δ0 =
Lf

c

(
cosh

(
ωL

df

)
− 1

)
(3.2)

the debonding process is completed.
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In (3.1),

η =
VfEf

VmEm

(3.3)

and

ω =
√
4 (1 + η) βτ0/Ef (3.4)

where Ef and Em are Young’s moduli and Vf and Vm = 1−Vf are volume fractions

of fibre and concrete matrix, respectively. For my modified model described in

section 3.1.2, a spatial variation of the fibre distribution is considered, which is

explained in the calibration part of section 3.2. In Lin and Li (1997), it is assumed

that one-sided pullout occurs. Therefore, the pullout displacement is equal to the

crack opening. The pullout force versus crack opening is shown in Figure 3.1a for

z = 0 and ϕ = 0, where the displacement (crack opening) is normalised by dividing

it with Lf/2 and the force is normalised by dividing it with the force at δ0. The

expression in (3.1) was derived in Lin and Li (1997) based on the assumption that

the fibre is rigid. Therefore, for plotting Figure 3.1a, the stiffness ratio Ef/Em

was set to 200 so that the force approaches zero at a displacement of Lf/2. As
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Figure 3.1: Original fibre model according to Lin and Li (1997): a) normalised
pullout force versus normalised crack opening. b) average fibre stress versus crack
opening computed from (3.6) and numerical integration of (3.5).
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seen in Figure 3.1a, the response is strongly influenced by the parameter β, which

controls the hardening response at the fibre scale (Lin and Li, 1997). The greater

β is, the greater is the crack opening at which the maximum bridging stress is

reached. This parameter enters the expression of c, which will play an important

part in the development of our model in section 3.2.

The bridging stress σf acting on a crack surface as function of the crack opening δ

was proposed in Lin and Li (1997) as

σf =
4Vf

πd2f

∫ π/2

ϕ=0

∫ (Lf/2) cosϕ

z=0

P (δ) g (ϕ) p (ϕ) p(z)dzdϕ (3.5)

Here, Lf is the fibre length and P (δ) is the pullout force of one fibre across one

crack. Furthermore, p (ϕ) = sinϕ is the probability density function of inclination

angle ϕ, g (ϕ) = exp (fϕ) which includes the snubbing factor f , and p(z) = 2/Lf

is the probability density function of the shortest distance from the centre of fibre

to the crack plane.

Integrating (3.5) numerically is computationally demanding, if it has to be carried

out many times within finite element simulations. Lin and Li (1997) derived an

approximate closed-form solution of (3.5) as

σ̃f =
σf

σ0

=



2

k

[
1− 1

k
cosh−1

(
1 + λ

δ̃

δ̃∗

)]√√√√(1 + λ
δ̃

δ̃∗

)2

− 1 +
2λδ̃

k2δ̃∗
if 0 ≤ δ̃ ≤ δ̃∗(

1 + cδ̃
)(

1− δ̃
)2

if δ̃∗ ≤ δ̃ ≤ 1

0 if 1 ≤ δ̃

(3.6)

where δ̃ = 2δ/Lf is the normalised crack opening and k = ωLf/ (2df). Furthermore,
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the reference stress at the end of debonding without hardening is

σ0 =
1

2
gτ0Vf(1 + η)Lf/df (3.7)

The normalised crack opening at the end of the debonding stage is

δ̃∗ =
2λ

c
(3.8)

where

λ = cosh (k)− 1 (3.9)

Furthermore,

g =
2

4 + f 2
(1 + exp (πf/2)) (3.10)

A comparison of the numerical integration of (3.5) and the approximate solution in

(3.6) is shown in Figure 3.1b. It can be seen that (3.6) is overall in good agreement

with the numerical integration. However, there is a jump in the curve predicted

by (3.6), which can produce numerical difficulties if (3.6) is used as part of an

iterative approach within a constitutive model for finite element analysis. This

problem is addressed in the next section.

3.1.2 Reformulate fibre stress-crack opening law

The approximate solution of the fibre bridging stress in (3.6) exhibits a jump at

δ̃ = δ̃∗ as shown in Figure 3.2a and b, which results in numerical problems when

the bridging stress in (3.6) is used within the damage-plasticity model in (3.43)

to determine the damage variable iteratively. The jump is present because of

simplifications in the integration of (3.5) for the pullout part of the fibres. For
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Figure 3.2: Fibre stress versus crack opening for approximate relation with jump
at δ̃ = δ̃∗ and proposed modification without jump: a) full curve, b) zoom to area
around δ̃ = δ̃∗.

0 ≤ δ̃ ≤ δ̃∗, the bridging stress in (3.5) is composed of

σ̃f = σ̃debonding
f + σ̃pullout

f (3.11)

Here σ̃debonding
f and σ̃pullout

f are fibre stresses due to debonding and pullout, re-

spectively, which are present before all fibres are debonded. The pullout part is

represented in (3.6) by the term

σ̃pullout
f = 2λδ̃/(k2δ̃∗) (3.12)

Furthermore, σ̃debonding = 0 at δ̃ = δ̃∗ since δ̃∗ is the crack opening at which all

fibres are fully debonded. Therefore, I propose to resolve this jump by adding a

linear function to the pullout part so that the new pullout part of the bridging

stress for δ̃ ≤ δ̃∗ as

σ̃pullout
f = 2λδ̃/(k2δ̃∗) + aδ̃/δ̃∗ (3.13)
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Here, the parameter a is determined by enforcing zero jump of the bridging stress

expressions for δ̃ ≤ δ̃∗ and δ̃ ≥ δ̃∗ at δ̃ = δ̃∗, which results in

2λ/k2 + a =
(
1 + cδ̃∗

)(
1− δ̃∗

)2
(3.14)

Solving (3.14) for a gives

a =
(
1 + cδ̃∗

)(
1− δ̃∗

)2
− 2λ/k2 (3.15)

so that the new expression for the pullout part of the bridging stress is

σ̃pullout = 2λδ̃/(k2δ̃∗) +

[(
1 + cδ̃∗

)(
1− δ̃∗

)2
− 2λ/k2

]
δ̃/δ̃∗ (3.16)

This is a function of fibre and matrix parameters only. Consequently, the bridging

stress formulation that I use for this work is

σ̃f =
σf

σ0

=



2

k

[
1− 1

k
cosh−1

(
1 + λ

δ̃

δ̃∗

)]√√√√(1 + λ
δ̃

δ̃∗

)2

− 1+

2λδ̃

k2δ̃∗
+

[(
1 + cδ̃∗

)(
1− δ̃∗

)2
− 2λ/k2

]
δ̃/δ̃∗

if 0 ≤ δ̃ ≤ δ̃∗

(
1 + cδ̃

)(
1− δ̃

)2
if δ̃∗ ≤ δ̃ ≤ 1

0 if 1 ≤ δ̃

(3.17)

which provides a reasonable agreement with the solution obtained from the nu-

merical integration.
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3.2 Linking between cracking strain and crack

opening

The aim of the present work is to incorporate a micro-mechanics based fibre model

into a macroscopic constitutive model, which is based on stress strain relations and

in which the inelastic processes are represented by a cracking strain as a function

of a damage variable. Therefore, it is required a link of the crack opening δ to the

cracking strain εcr used in (3.43).

As mentioned before, ECC materials subjected to tension exhibit distributed crack-

ing, because of the slip hardening pullout response of individual fibres. For dis-

placements greater than the displacement at which the bridging stress reaches its

maximum, softening occurs which is accompanied by the formation of a single

localised crack. For converting crack opening to cracking strain, we are required

to know the crack opening at which the softening process starts. With this infor-

mation, I use then the crack band approach for the localised part of the cracking

response, i.e. I scale the cracking strain with respect to the element length to ob-

tain mesh independent results (Bažant and Oh, 1983). I assume that the matrix

is very brittle in comparison to the fibre response. This means that at the onset

of softening the stress in the concrete is already zero. Thus, the condition for

softening is given by the fibre response only.

Independently of c, the debonding phase exhibits always hardening so that the

earliest that softening can occur is when δ̃ = δ̃∗. Therefore, we can focus our

attention on the part of the fibre stress function in which δ̃ ≥ δ̃∗. For softening to

occur, the condition dσ̃f/dδ̃ = 0 has to be met. Differentiating σ̃f in (3.17) with
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respect to δ̃ for δ̃ ≥ δ̃∗ and setting it to zero results in

dσ̃f

dδ̃
=
(
δ̃ − 1

)(
3cδ̃ − c+ 2

)
= 0 (3.18)

Let us first study the case that softening occurs at the end of debonding. Setting

δ̃ = δ̃∗ into (3.18) and using the expression for δ̃∗ in (3.8), we obtain a condition

for the onset of softening at δ̃ = δ̃∗, which is c = 6λ+ 2. Therefore, for c ≤ 6λ+ 2

softening occurs at the end of debonding, i.e. δ̃cu = δ̃∗ = 2λ/c. On the other hand,

for c > 6λ+2, softening will occur when the condition dσ̄f/dδ̃ = 0 is met for δ̃ > δ̃∗.

The present study is limited to fibre arrangements which exhibit strain hardening

beyond δ̃ > δ̃∗ , i.e. c > 6λ + 2. For this case, the displacement at the onset of

softening δ̃ = δ̃cu is obtained by solving (3.18), which gives δ̃cu = (c− 2) / (3c).

The other solution to (3.18) is that δ̃ = 1, which is the case of complete pullout

and is not of interest here.

Therefore, the critical displacement at which softening occurs is

δ̃cu =

2λ/c if c ≤ 6λ+ 2

(c− 2) / (3c) if c > 6λ+ 2

(3.19)

The corresponding critical stress σ̃cu is obtained by setting (3.19) into (3.17) which

results after mathematical manipulations in

σ̃cu =


(1 + 2λ) (2λ/c− 1)2 if c ≤ 6λ+ 2

4 (c+ 1)3

27c2
if c > 6λ+ 2

(3.20)

The information about δ̃cu and σ̃cu can now be used to develop a link between the

cracking strain εcr and the crack opening δ.
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Three different links between cracking strain and the crack opening are proposed,

which are called Constant, Linear and Sigmoid. These links are compared with

experimental results reported in (Paul and Zijl, 2013). At the end, the Sigmoid

relation is adapted in CDPM2F due to its ease of use and good agreement with

experimental results.

3.2.1 Constant relation

The assumption of constant relation is that saturated crack spacing is reached

directly at the onset of crack formation, i.e.

s̄(εcr) = sm (3.21)

s̄ is the average crack spacing which is related to cracking strain. The number

of cracks does not change during the hardening process. In this case, s̄ is also

constant within hardening stage. With the calibration of fibre dispersion described

in section 3.3.3, the relation between crack opening and cracking strain is

δ(εcr) =
εcrsm
γcu

if 0 < εcr ≤ εcu (3.22)

The validation of constant relation compared to experiment research (Paul and Zijl,

2013) is shown in Figure 3.3 and Figure 3.4. This model shows poor correlation

to experimental data, which indicates that a δ-εcr relation based on the formation

of multiple cracks is required.

59



3.2.2 Linear Relation

Based on the observation of experimental research by Paul and Zijl (2013) shown

in Figure 3.3, a linear relation between number of cracks per unit length and

strain is investigated. Number of cracks within unit length is considered equal to

1
he

at onset of crack forming, and equal to 1
Sm

once the maximum stress capacity

is reached. Two equations can be written for a single element:
N(εcr=0)

he
= 1

he

N(εcr=
γcuδcu
Sm

)

he
= 1

Sm

(3.23)

Where he is the element length. The linear relation is based on experimental study

shown in Figure 3.3. The number of cracks per unit length versus cracking strain

relation can be derived as:

N(εcr)

he

=
(he − Sm)εcr + γcuδcu

γcuδcuhe

(3.24)

Next, we know for one element that we can link crack opening to cracking strain

as

N(εcr)δ(εcr) = heεcr (3.25)

Therefore, the formula linking cracking strain and crack opening based on the

linear relation is

δ(εcr) =
εcrhe

( (he−Sm)εcr
γcuδcu

+ 1)γcu
if 0 < εcr ≤ εcu (3.26)

The predictions of the number of cracks per unit length and the average crack

width obtained by the linear model agrees well with the experimental research in
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Figure 3.3 and Figure 3.4. The average crack width-cracking strain evolution agrees

with the experimental phenomenon. However, the average crack width increases

rapidly with the strain increasing at begining, which leads to a high stiffness. It

is unrealistic if the stiffness induced by fibre bridging is higher than the stiffness

of the matrix.

3.2.3 Sigmoid Relation

In the third approach, which is adopted in this study, it is proposed for hardening

to link the crack opening to the cracking strain for εcr < εcu as

δ(εcr) = δcu

1− exp

(
−εcr

ξ

)
1− exp

(
−εcu

ξ

) (3.27)

where εcu = γcuδcu/sm is the cracking strain at the peak of the bridging stress and

sm is the saturated crack spacing. Here, ξ is a parameter, which controls the slope

of the relationship between the maximum displacement and the cracking strain at

maximum bridging stress. Furthermore, γcu is a parameter, which originates from

the variation of fibres and relates the average crack opening δ̄cu to the maximum

crack opening δcu at maximum bridging stress as δ̄cu = γcuδcu. For εcr = εcu,

(3.27) results in δ(εcr) = δcu. The link between γcu and the variation of fibres is

explained in Section 3.3.3. Sigmoid relation gives a better agreement compared

with other two relations, which is shown in figure 3.3 and figure 3.4. Therefore,

Sigmoid relation is adapted in CDPM2F.
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Figure 3.3: Comparison with experiments for number of cracks per unit length and
cracking strain models. (a) coarse sand cement-based strain hardening composite;
(b) fine sand cement-based strain hardening composite.
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Figure 3.4: Comparison with experiments for crack width and cracking strain. (a)
coarse sand cement-based strain hardening composite; (b) fine sand cement-based
strain hardening composite.

3.2.4 Strain softening stage

For the derivation of the link between cracking strain and crack opening during

softening, I distinguish again between two crack openings. The first one is the

average crack opening δun of the closing cracks due to unloading and the second
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one is the crack opening δ of the widening crack in which the displacements are

localised. The bridging stress of the two types of cracks must be the same to

satisfy equilibrium. Therefore, the closing crack opening is determined as

δun =
δuncu
σcu

σf =
δuncu
σcu

σ0

(
1 +

βδ

df

)
(1− 2δ/Lf)

2 (3.28)

where σf is the bridging stress determined from the crack opening δ of the crack in

which the displacements localise according to (3.17). The cracking strain is then

the sum of the crack openings divided by the element length he, which results in

εcr = (δ + (he/sm − 1) δun) /he (3.29)

Setting δun in (3.28) into (3.29) results in

εcr =
1

he

(
δ + (he/sm − 1)

δuncu
σcu

σ0

(
1 +

βδ

df

)
(1− 2δ/Lf)

2

)
(3.30)

From this function, δ is determined iteratively. To avoid local snapback, i.e. snap-

back at the constitutive level, εcr must increase with increasing δ, which provides

an upper limit for the element size he, shown in Figure 3.5. This upper limit is

determined by setting the second derivative of (3.30) with respect to δ equal to

zero and solve forthe critical displacement at which the slope of the softening curve

is the steepest. This displacement is then set into the first derivative of (3.30) with

respect to δ, which has to be greater than zero. This provides then an inequality

for he, which needs to be satisifed to avoid local snapback. The first derivative of

(3.30) with respect to δ is

dεcr
dδ

=
1

he

{
1 +

9c (c− 2) (2δ/Lf − 1) (γcuhe/sm − 1) [c (2δ/Lf − 1) + 2 (2cδ/Lf + 1)]

4 (c+ 1)3

}
(3.31)
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Figure 3.5: Schematic of tensile stress versus strain of single element for different
mesh size.

and the second derivative is

d2εcr
dδ2

=
9c (γcuhe − sm) (c− 2) (Lf − 2Lfc+ 6cδ)

L2
f hesm (c+ 1)3

(3.32)

These derivatives are rather complicated, but the critical displacement at the steep-

est softening and the limit on the element length are of compact form. By setting

(3.32) equal to zero and solving for δ, the critical displacement at which the soft-

ening is the steepest is determined as δ = δcrit = Lf(2c−1)/(6c). Inserting δ = δcrit

into (3.31), setting (3.31) equal to zero and solving it for the element length he

gives

he = hcrit
e = (7c− 2)sm/(γcu(3c− 6)) (3.33)

Since this derivation is for he > sm/γcu, the expression in (3.30) is valid for elements

in the range sm/γcu < he < (7c− 2)sm/(γcu(3c− 6)).
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Let us now consider the case that he < sm/γcu. This case arises if a fine mesh

is used in the numerical analysis. This means that there is no displacement in

the element which will unload and the displacement at peak in the element is less

than the crack opening. A reduction factor γ0, which links the crack opening to

the displacement at peak, is determined as

γr0 =
γcu
sm

he (3.34)

Thus, the reduction factor results in γr0 = γhe/sm at peak. Since for the crack band

model, the displacements are localised in one row/band of elements, the reduction

factor needs to increase so that at the end γr = 1 and the cracking strain is defined

at zero fibre stress as εcr = Lf/2/he. I choose here a linear transition of the

reduction factor so that γr = γr0 + (1 − γr0)(δ − δcu)/(Lf/2 − δcu). The cracking

strain results in

εcr =
γrδ

he

=
γr0δ

he

+
(1− γr0)(δ

2 − δcuδ)

he (Lf/2− δcu)
(3.35)

For δ = δcu, we obtain εcr = γr0δcu/he. For δ = Lf/2, we have εcr = Lf/(2he).

From this equation, the crack opening is determined as

δ =
Lfγr0 − 2δcu −

√
L2
f γ

2
r0 − 4δcu (Lfγr0 − δcu) + 8(1− γr0)εcrhe (Lf − 2δcu)

4(γr0 − 1)
(3.36)

With this δ, the fibre stress can be calculated using (3.17). With the softening

law derived, all parts of the bridging stress cracking strain law are complete. The

fibre stress is now defined as a function of the cracking strain by using (3.27) and

(3.30).
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3.3 Concrete damage plasticity model CDPM2F

for ECC

3.3.1 Bridging stress cracking strain law

To summarise, I developed a link of the crack opening δ to the cracking strain εcr

for the fibre part which is split into a hardening and softening part. For hardening,

we have (3.27). For softening, we need to consider multiple cases. For sm/γcu < he,

I determine the crack opening iteratively from (3.30). For sm/γcu > he, the explicit

expression in (3.36) is used. The softening part of the model provided by (3.30)

and (3.36) is only valid for he < (7c− 2)sm/(γcu(3c− 6)). Furthermore, the entire

derivation is for strain hardening fibre arrangements with c > 2 + 6λ. δ̃hard(εcr)

is from 3.27 based on Sigmoid relation proposed and δ̃soft(εcr) is from 3.36. Then

the briging stress cracking strain law is:

σf(εcr) =



2σ0

k

[
1− 1

k
cosh−1

(
1 + λ

δ̃hard(εcr)

δ̃∗

)]√√√√(1 + λ
δ̃hard(εcr)

δ̃∗

)2

− 1+

2λδ̃hard(εcr)

k2δ̃∗
+

[(
1 + cδ̃∗

)(
1− δ̃∗

)2
− 2λ/k2

]
δ̃hard(εcr)/δ̃

∗

if 0 < εcr ≤ ε∗cr

σ0

(
1 + cδ̃hard(εcr)

)(
1− δ̃hard(εcr)

)2
if ε∗cr < εcr ≤ εcu

σ0

(
1 + cδ̃soft(εcr)

)(
1− δ̃soft(εcr)

)2
if εcu < εcr ≤ εult

0 if εcr ≥ εult

(3.37)

where in equation 3.37:

εult =
Lf

2he

(3.38)
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Figure 3.6: Schematic of fibre stress versus cracking strain relation

ε∗cr satisfies the condition:

δ̃∗ = δ̃hard(ε
∗
cr) (3.39)

The general fibre stress versus cracking strain curve for different stage is shown in

Figure 3.6.

3.3.2 Extension of CDPM2

The present section describes CDPM2F, which is an extension of the concrete

damage-plasticity model CDPM2 to ECC proposed in this study. The original

CDPM2 is a 3D concrete damage-plasticity model presented in Grassl et al. (2013),

which has been shown to produce good results for a wide range of concrete fracture

tests (Bažant et al., 2022; Bažant and Nguyen, 2023). These tests include tensile,

shear and compressive fracture processes of unconfined and confined concrete.

Here, CDPM2 is extended to CDPM2F by combining it with a fibre bridging
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Figure 3.7: Stress-strain law incorporate with damage plastic approach

cracking strain law mentioned previously.

CDPM2 is based on the concept of combining scalar damage with tensorial plas-

ticity. The nominal stress σ is

σ = (1− ωt) σ̄t + (1− ωc) σ̄c (3.40)

Here, ωt and ωc are the tensile and compressive damage variables, respectively.

Furthermore, σ̄t and σ̄c are the positive and negative parts of the effective stress

σ̄, respectively. The two parts of the effective stress are determined from the

principal components of the effective stress σ̄ = De (ε− εp). Here, De is the

elastic stiffness, ε is the strain and εp is the plastic strain. For a description of

the equations of CDPM2, it is referred to Grassl et al. (2013), which contains all

required details. Here I focus on the extension of CDPM2 to ECC, for which I

only adjust the tensile damage part of the model which is derived based on a 1D

tensile response of the material of the form,

σ = (1− ωt)σ̄ = (1− ωt)E (ε− εp) = E (ε− εcr) (3.41)
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because in 1D tension σ̄t = σ̄ = E (ε− εp). In (3.41), the inelastic strain compo-

nent εcr is defined as

εcr = εp + ωt (ε− εp) (3.42)

where εp is the irreversible and ωt (ε− εp) is the reversible inelastic strain part.

The damage variable ωt is in the range from 0 (undamaged) to 1 (fully damaged).

The composition of the two parts of the inelastic strain are controlled by the

hardening parameter Hp of the plasticity part of CDPM2 (Grassl et al., 2013),

which determines the effective stress of the undamaged material. The damage

variable ωt is then used to reduce the effective stress to obtain the nominal stress.

For Hp = 0, the majority of the cracking strain is composed of the irreversible part,

because the plasticity part does not exhibit any hardening and damage is only

used to reduce the stress from the level of the tensile strength during the softening

response. For Hp → 1, the plastic strain approaches zero and the cracking strain

is mainly reversible.

For ECC, the 1D stress-strain law in (3.41) is the sum of stresses transmitted in

the matrix and by the fibres as

σ = E (ε− εcr) = σm(δ) + σf(δ) (3.43)

where σm is the matrix and σf is the fibre stress in direct tension and δ is the crack

opening. How the stress-strain relation is incorporated in CDPM2 is shown in

Figure 3.7. For the fibre stress, I propose a new model described in Section 3.1.2.

For the concrete stress, I use an exponential stress crack opening curve of the form

σm (δ) = ft exp

(
− δ

δf

)
(3.44)

Here, ft is the tensile strength of the matrix and δf is the crack open threshold
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which controls the softening slope. Since the damage-plasticity model is a function

of the cracking strain εcr and the matrix and fibre models are functions of the crack

opening δ, a link between crack opening and cracking strain is required which has

been introduced in Section 3.2. With this link, both cracking strain in (3.42)

and crack opening are functions of the damage variable ωt, which is determined

iteratively from (3.43).

3.3.3 Calibration with fibre dispersion

The calibration of CDPM2F, which is an extension of CDPM2 to strain hardening

materials is split into two parts. First, the calibration of CDPM2 is addressed.

Then, the calibration of the fibre model is discussed.

The input parameters for the matrix are those of the CDPM2 model. Many of the

input parameters of CDPM2 have default values, which are used in this study and

are described in Grassl et al. (2013). I assume in this study that these parameters

apply also to the matrix of ECC. Five parameters of CDPM2 do not have default

values and are required to be determined. These parameters are the Young’s

modulus Em, the tensile strength ft, the compressive strength fc and the crack

opening threshold in tension δf , which for the present exponential law in (3.44) is

calculated from the fracture energy GF as δf = GF/ft. Furthermore, Poisson’s ratio

ν of the matrix is required. In addition to these five parameters, there is the strain

threshold εf which controls the softening response in compression. Furthermore,

the hardening modulus was set for all analyses to Hp = 0.05 to ensure that for the

majority of the stress-strain response the effective stress is greater than the fibre

stress.

For the fibre model, nine input parameters are required for the fibre stress-strain
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relation. Some of these parameters can be directly obtained from the specifications

of the fibre manufactures and the design of the material. These parameters are

Young’s modulus of fibres Ef , length of fibre Lf , diameter of fibre df . The next

group of input parameters are related to the fibre stress versus crack opening

law. These parameters are the volume fraction Vf , shear strength of interface

τ0, hardening parameter β, the snubbing factor f . Furthermore, there are the

parameters ξ and γcu, which control the relation of crack opening and cracking

strain. Here, Vf and γcu are two parameters which depend on the spatial variation

of the distribution of fibres and are calculated indirectly using the uniform volume

fraction Vf0 and the fibre distribution coefficient α, which represents the degree of

variation of the spatial fibre distribution (Li and Li, 2013b). The parameter α in

(Li and Li, 2013b) is determined by the number of fibres crossing the cross-section

at weakest crack and the average number of fibres of all cracks. I link the fibre

dispersion coefficient to the variation of volume fraction of the weakest crack to

average volume fraction. This is because in (Lin and Li, 1997) equation 7, Vf is

used to represent area ratio of bridging fibres, which is also dependent on number

of fibres crossing crack surface for certain diameter of fibres. I assume that we can

link the fibre volume fraction Vf at a cracked section to the dispersion as

α = exp
Vf − Vf0

Vf0

(3.45)

so that

Vf = (1 + lnα)Vf0 (3.46)

There is a lower limit for α so that strain hardening is guaranteed. The condition

for strain hardening is

σcu = σ0σ̄cu ≥ ft (3.47)
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Using the expression for σ̄cu in (3.20) and σ0 in (3.7) we obtain

1

2
gτ0Vf (1 + η)

Lf

df

4 (c+ 1)3

27c2
≥ ft (3.48)

For the minimum volume Vf = Vf,min, a bridging stress equal to ft is required. This

results in the equation

1

2
gτ0Vf,min (1 + η)

Lf

df

4 (c+ 1)3

27c2
= ft (3.49)

Here, η is a function of Vf,min according to (3.3). Also, the factor Lf/df is linked

to c. Using these two expressions, we obtain

(Ef − Em)V
2
f,min + (Em + EmZ)Vf,min − EmZ = 0 (3.50)

where

Z =
27ftβ

4gτ0

c

(c+ 1)3
(3.51)

Now, from (3.50), we obtain

Vf,min =
− (Em + EmZ) +

√
(Em + EmZ)

2 + 4 (Ef − Em)EmZ

2 (Ef − Em)
(3.52)

I set now Vf,min into the expression for α in (3.45) which gives

αmin = exp
Vf,min − Vf0

Vf0

(3.53)

Here, αmin is the lower limit of α, so that the region with a critically low fibre

distribution still exhibits strain hardening.
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Parameter γcu depends also on α. I assume that γcu is a linear function of α as

γcu =
(1− α) ε0sm
δcu (1− αmin)

+
α− αmin

1− αmin

(3.54)

which is motivated by experimental results in Li and Li (2013b); Zhou et al.

(2012b). Let us explore (3.54). For α = αmin, we have γcu = ε0sm/δcu. Thus,

εcu = γcuδcu/sm = ε0. For the other limit, let us consider the case of a fibre

reinforced specimen at ultimate stress σcu for which all cracks exhibit the same

crack opening and are equally spaced, which corresponds to α = 1, i.e. fibres are

uniformly distributed within the volume. For this idealised assumption, γcu = 1

and, therefore, εcu = δcu/sm. This concludes the calibration of the model.

CDPM2F is implemented in the open source finite element program OOFEM

(Patzák, 2012). The implementation of the procedure for the computation of the

effective stress and the compressive damage variable is the same as in CDPM2.

For determining the tensile damage variable, three steps are carried out. First, the

cracking strain is converted into crack opening. Then, the fibre and matrix stresses

are computed as function of the crack opening. Finally, the damage variable is

determined iteratively from the balance of nominal stress and sum of fibre and

concrete stress.
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Chapter 4

Material response of CDPM2F

In this chapter, the constitutive model is used to investigate plain ECC response

subjected to tension, shear and compression.

4.1 Determination of material parameters

In this section, the way how material parameters are determined is presented.

Parameters are related to fibre, matrix and fibre/matrix properties. For fibres,

the parameters are Young’s modulus of fibres Ef , volume fraction of fibres Vf0,

length of fibres Lf , diameter of fibres df and snubbing factor f . For the matrix,

the parameters are the Young’s modulus of matrix Em, tensile strength of matrix

ft, compressive strength of matrix fc, Poisson’s ratio ν, rack opening threshold δf .

For the fibre/matrix interface, the parameters are the slip hardening coefficient

β and the interface bond strength τ0. Parameters mentioned above should be

determined either from experiments or manufacturer. Another parameter is ξ,
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which controls the slope of sigmoid relation. The default value for this parameter

is ξ = 10, which is used for fitting experimental results. The parameter α, has a

lower limit αmin, which is calculated automatically based on material properties.

Normally α is around 0.9 for good mixed ECC, but around 0.7 for poor mixed

ECC. The parameter sm needs to be set by users. It represents the saturated

crack spacing, which is affecting the manufacturing process. By using artificial

flaws in the matrix. Fine saturated crack spacing can be reached. For good mixed

ECC, 0.02 m crack spacing is normally used.

4.2 Tensile response for different material pa-

rameters

In this section, the tensile response of composite is related to matrix properties,

fibre properties and interface properties. As mentioned in section 2.1.2.2, both ten-

sile strength capacity and tensile strain capacity of ECC have positive correlation

with fibre reinforced index (Vf0Lf

df
).

A test of a single linear tetrahedral element subject to tensile loading for different

material/interface properties is carried out. The setup of single tetrahedral element

test is shown in Figure 4.1. Node 1 is fully fixed; Node 2 fixed at Y and Z direction;

Node 4 is fixed at X and Y direction; Node 3 is fixed at Z direction and the nodal

force is applied at Y direction. Controlled variables to investigate are volume

fraction of fibres Vf0, length of fibres Lf , diameter of fibres df , and slip hardening

coefficient β. The default input of the controlled parameters are Vf0 = 0.02,

Lf = 12 mm, df = 0.04 mm, β = 0.02. The model input parameters for the matrix

are Young’s modulus Em = 20 GPa, Poisson’s ratio ν = 0.2, tensile strength
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Figure 4.1: Setup of single tetrahedral element tensile test
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ft = 2.0 MPa, compressive strength fc = 20. MPa and crack opening threshold

δf = 0.02 mm. The fibre properties are Young’s modulus Ef = 22 GPa, f = 0.8,

τ0 = 0.8 MPa, sm = 20 mm, α = 0.8, length Lf = 11/12 mm, fibre diameter

df = 0.014 mm, β = 0.015,Vf0 = 0.015.

Figure 4.2 a to c shows the composite response for different Lf and Vf0, which

shows the correct response as described in section 2.1.2.2. Each of Lf , Vf0 and df is

able to affect both tensile strength capacity and tensile strain capacity. Figure 4.3

shows peak stress and strain capacity for different Vf0Lf

df
for Figure 4.2 a to c, which

agree with the response as described in section 2.1.2.2.Long and thin fibres are

preferred for manufacturing ECC with strong strain hardening property. Figure

4.2 d) shows composite tensile response for different slip hardening coefficient. The

interface slip hardening property is another factor which can generate strong strain

hardening.
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Figure 4.2: Material response for different material properties: a) length of fibres
(Lf): 11 mm, 12 mm and 13 mm; b) volume fraction of fibres (Vf0): 0.015, 0.02,
0.025; c) diameter of fibres (df): 0.035 mm, 0.04 mm, 0.045 mm. d) slip hardening
coefficient (β): 0.015, 0.02, 0.025
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Figure 4.3: a) Strain capacity and b) peak stress predicted by model for different
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df
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4.3 Tension

The next example is a tensile test of an ECC specimen reported in Kanda and

Li (2006a). This is the first example which is compared with experiments. The

geometry with loading setup and the medium finite element mesh with an element

size of 2 cm is shown in Figure 4.4a and b, respectively. The out-of-plane thick-

ness is 12.7 mm. The three-dimensional finite element mesh consists of tetrahedral

elements and was generated with the mesh generator T3D (Rypl, 1998). A pre-

scribed displacement is applied at the right surface of specimen. Displacement in

the horizontal direction is restrained at left side surface of specimen.

(a)
20550 50

76.2

u

F

[mm]

(b)

Figure 4.4: a) Tensile test setup used in the model based on the experiments
reported in Kanda and Li (2006a); b) Medium three-dimensional tetrahedral finite
element mesh with element size 2 cm. The out-of-plane thickness is 12.7 mm.

From the experiments in Kanda and Li (2006a), two sets were modelled which

differ mainly in fibre properties. For set 1 with short and thin fibres, the model

input parameters for the matrix are Young’s modulus Em = 15.9 GPa, Poisson’s

79



ratio ν = 0.2, tensile strength ft = 1.12 MPa, compressive strength fc = 15.5 MPa

and crack opening threshold δf = 0.01 mm. Here, Em and fc were chosen from

Kanda and Li (2006a). Tensile strength ft was chosen to be smaller than in the

experiments to avoid initial softening in the constitutive response. The stress is

composed of fibre stress and matrix stress. The matrix stress reaches its maximum

at a much smaller strain than the fibre stress. Therefore, it could be that after the

matrix stress reaches its maximum the decrease of the matrix stress (softening) is

greater than the increase of the fibre stress (hardening). This would then lead to a

decrease of the overall stress even if the final fibre bridging stress is greater than the

sum of fibre and matrix stress when the matrix stress reaches its maximum. The

parameters ν and δf were given typical values for mortar. The fibre properties are

Young’s modulus Ef = 60 GPa, length Lf = 6 mm, fibre diameter df = 0.014 mm,

f = 0.5, β = 0.015, τ0 = 1.8 MPa, sm = 12 mm, ξ = 10, α = 0.53 and Vf0 = 0.015.

The last two parameters result in γcu = 0.2 and Vf = 0.0055. These fibre properties

result in c = βLf/ (2df) = 3.2. Here, Ef , Lf , df and Vf0 are chosen from Kanda and

Li (2006a). The other parameters were given reasonable values for ECC so that

the response agreed with the experimental results.

For set 2 with long and thick fibres, the model input parameters for the matrix

are Young’s modulus Em = 15.9 GPa, Poisson’s ratio ν = 0.2, tensile strength

ft = 1.12 MPa, compressive strength fc = 15.5 MPa and crack opening threshold

δf = 0.01 mm. Again, Em, ft and fc were chosen from Kanda and Li (2006a). The

parameters ν and δf were given typical values for mortar. The fibre properties are

Young’s modulus Ef = 60 GPa, length Lf = 12 mm, fibre diameter df = 0.04 mm,

f = 0.5, β = 0.015, τ0 = 1 MPa, sm = 4 mm, ξ = 10, α = 0.59 and Vf0 = 0.02.

The last two parameters result in γcu = 0.23 and Vf = 0.00094. This gives c =

βLf/ (2df) = 2.3. Again, Ef , Lf , df and Vf0 are chosen from Kanda and Li (2006a).

The other parameters were given reasonable values for ECC so that the response
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agreed with the experimental results. The end areas of the specimen shown in dark

grey in Figure 4.4 are modelled as aluminium with Young’s modulus of 70 GPa

and Poisson’s ratio of ν = 0.2. The comparison of FE model and experiments

is shown in Figure 4.5 in the form of stress versus strain for the mesh with an

element size of 2 cm. Here, stress is the force divided by the cross-sectional area

and strain is the end displacement of the specimen divided by the length.

CDPM2F produces for the tensile response of ECC with the two fibre properties

results which are in good agreement with the experiments. As expected from the

expression of σ̃cu in (3.20), the set with greater c produces the greater bridging

stress.
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Figure 4.5: Comparison of set 1 and 2 of finite element model with element size
0.02m with experimental results reported in Kanda and Li (2006a).

Next, it is checked that the model does not exhibit pathological mesh-dependence.

Coarse, medium and fine meshes with element sizes of 4, 2 and 1 cm, respectively,

are used for the ECC with short fibres. The input is the same as for the comparison

with the experiments. The results are shown in the form of tensile stress versus
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strain in Figure 4.6.
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Figure 4.6: Convergence of set 2 model

The first part of the response up to the onset of softening is mesh independent.

For the softening part a difference in the curves is present. However, for all three

curves softening starts at the same strain and also reach zero stress at the same

strain. The pre- and post-peak responses can be further understood by studying

the strain profiles for the three meshes. For the hardening part, the strain contours

are shown in Figure 4.7 at an average strain of 0.004 in Figure 4.6.

The strains are more or less uniform in the concrete specimen and independent

of the mesh size. Slightly higher strains are visible close to the ends of the ECC

specimen next to the aluminium plates due to the higher stiffness of the plates

which constraints the ECC material in the lateral direction. The ECC material is

strain hardening at this stage of the analysis.

In Figure 4.8, the maximum principal strain contours are shown at an average

strain of 0.012 in Figure 4.6. At this softening stage of the analyses, strain is
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(a)

(b)

(c)

Figure 4.7: Contour plot of the maximum component of the principal strain at an
average strain of 0.004 for mesh sizes a) 4 cm, b) 2 cm and c) 1 cm. The upper
threshold for the maximum strain was chosen as 0.006.
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(a)

(b)

(c)

Figure 4.8: Contour plot of the maximum component of the principal strain at an
average strain of 0.012 for mesh sizes a) 4 cm, b) 2 cm and c) 1 cm. The upper
threshold for the maximum strain was chosen as 0.15.
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localised in mesh dependent zones as assumed for the crack band approach. The

difference between the curves for the meshes in the softening regime is explained

by the link between crack opening and cracking strain defined in (3.36). With

the input chosen for the present comparison to the experiments in Kanda and

Li (2006a), we have he < sm/γcu. Therefore, the reduction factor determined in

(3.34) is used in the simulations, which varies linearly during softening.

In the tensile analyses, the hardening modulus was set to Hp = 0.05. This value

was chosen because it allows for a good representation of the debonding stage of

the tensile test as shown in Figure 4.9. Larger values of Hp result in less plasticity,

which can be problematic in analyses in which compression plays a role.
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Figure 4.9: Stress strain response for set 1 with Hp values ranging from 0.01 to
0.2.
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4.4 Shear

The second example is an ECC panel subjected to shear as reported in Li et al.

(1994). The geometry and loading setup is shown in Figure 4.10a. The specimen

(a)

(b)

Figure 4.10: a) Geometry and setup of ECC panel subjected to shear based on
(Li et al., 1994) and b) three-dimensional tetrahedral finite element mesh with
element size of 2 cm.

consists of two regions modelled to be linear elastic (shown as dark grey) and

a middle region modelled as ECC material. The out-of-plane thickness of the

specimen is 50 mm. Boundary conditions are applied at edge of out-of-plane

thickness. A coarse, medium and fine mesh with element sizes of he = 4, 2 and 1 cm

were used. The three-dimensional tetrahedral meshes were generated with T3D
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(Rypl, 1998). The mesh with an element size he = 2 cm is shown in Figure 4.10b.

Many of the material parameters were chosen using the information provided in

Li et al. (1994). Some of the model parameters were calibrated to obtain a good

agreement with the experimental results. For the ECC specimen, model input

parameters for the matrix are Young’s modulus Em = 20 GPa, Poisson’s ratio

ν = 0.2, tensile strength ft = 1.4 MPa, compressive strength fc = 53 MPa and

crack opening threshold δf = 0.015 mm. Furthermore, εf = 0.000085, which is

close to the default value of 0.0001. Here, Em and fc were chosen from Li et al.

(1994). The tensile strength was reduced (experimental value is 2.2 MPa) to avoid

initial softening in the initial part of the stress-strain curve. The parameters ν and

δf were given typical values for mortar. The fibre properties are Young’s modulus

Ef = 48 GPa, length Lf = 12.7 mm, fibre diameter df = 0.04 mm, f = 0.8,

β = 0.03, τ0 = 0.63 MPa, sm = 18 mm, ξ = 10., α = 0.9 and Vf0 = 0.02. The last

two parameters result in γcu = 0.808 and Vf = 0.0179. The parameters result in

c = βLf/ (2df) = 5.01. Here, Ef , Lf , df and Vf0 are chosen from Li et al. (1994). The

other parameters were given reasonable values for ECC so that the constitutive

response agreed with the experimental results of ECC in tension, which are part

of the same experimental study (Li et al., 1994). For the linear elastic regions,

the Young’s modulus is Em = 90 GPa and Poisson’s ratio is ν = 0.2. This higher

Young’s modulus is chosen to represent the larger out of plane thickness in the

outer region. For the flexural reinforcement, Young’s modulus Es = 210 MPa

and a yield strength frt = 448 MPa were chosen. The diameter of reinforcement

bar is 20 mm. The embedment length of the reinforcement in the ECC material

is 60 mm. With these input parameters, the tensile stress-strain response is in

reasonable agreement with the experimental results in Li et al. (1994) as shown in

Figure 4.11.
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Figure 4.11: Model strain-stress curve under tension compared with experimental
results reported in Li et al. (1994)

The main purpose of the shear test is to generate a constant shear force between

loading points, so that the specimen is mainly subjected to shear. In the experi-

ments in Li et al. (1994), the average shear strain is calculated by the measured

displacements at two sets of four points in specimen as shown in Figure 4.10. With

these two sets A and B, the horizontal strain ε1, vertical strain ε2 and diagonal

strain ε3 are calculated as described in Li et al. (1994). From these three strain

components, the engineering shear strain is calculated as

γaverage = 2ε3 − ε1 − ε2 (4.1)

Here, the same approach is used for post-processing the FE results.

The comparison of shear stress and shear strain relation between model and exper-

iment is shown in Figure 4.12. The model can generally predict the trend of the

shear stress and shear strain curve in the experiments. The shear strain at peak
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shear stress is almost same as in the experiment. However, the predicted peak

shear stress is different, which might be due to the underlying CDPM2 model

response and not due to the fibre extension. The first component of principal

strainfor the three mesh sizes at a shear strain of 0.025 is shown in Figure 4.13.

The strain is not localised at peak stress in the FE model. In Figure 4.13, the

dark areas of the contour plot represents distributed cracks because even at high

values of principal strain the material is still in the hardening stage. For the small

element size of he = 1 cm, a nonuniform strain distribution can be seen, which

implies that distributed cracks form more likely at the top and bottom parts of

the specimen at the peak value of shear stress. To illustrate the failure process,

the evolution of the principal strain for the fine mesh is shown in Figure 4.14. The

value of the first principal strain at the middle part of the specimen increases with

further displacement as shown in Figures 4.14. The crack propagation process of

the experiment is not described by Li et al. (1994). Still, this type of crack distri-

bution is predicted for a similar short shear beam test for other models described

in Kabele (2000) and Kanda et al. (1998).
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Figure 4.12: Model shear strain-shear stress curve of different mesh size compared
with experiment. The experimental results are from Li et al. (1994)

(a) (b) (c)

Figure 4.13: Contour plot of maximum component of principal strain at an average
shear strain of 0.025: a) mesh size 4 cm, b) mesh size 2 m, c) mesh size 1 cm.
Here, the colour black corresponds to a threshold of 0.02.
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(a) (b) (c)

Figure 4.14: Contour plot of maximum component of principal strain at an average
shear strain of : a) 0.05, b) 0.06, c) 0.07. Here, the colour black corresponds to a
strain threshold of 0.06.

4.5 Compression

The last example is a compression test of an ECC cylinder tested in Zhou et al.

(2014). The geometry and loading setup is shown in Figure 4.15a. The ECC

specimen is loaded at the top and bottom by means of aluminium plates.
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Figure 4.15: a) Compression test geometry and loading setup based on experiments
reported in Zhou et al. (2014) and b) FE mesh with element size 2 cm.

The three-dimensional finite element mesh shown in Figure 4.15 consists of tetra-

hedral constant strain elements which were generated with the mesh generator

T3D (Rypl, 1998). Meshes of loading plates and specimen are conform. There-

fore, there is no slip between specimen and loading plates. Three element mesh

sizes were used with element size he = 4, 2 and 1 cm to investigate the effect of

mesh size on the results. This test differs from the tension and shear test, because

the compressive response of CDPM2F is not affected by the bridging law that we

introduced in the previous sections, so that for pure compression the response of

CDPM2F is equal to the response of CDPM2. Therefore, we state here only the

input parameters of the matrix. For the ECC cylinder, the input parameters are

chosen as matrix Young’s modulus Em = 30 GPa, Poisson’s ratio ν = 0.2, ma-

trix tensile strength fc = 2.2 MPa, matrix compressive strength fc = 39.28 MPa
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and matrix softening strain threshold for compression as εf = 0.00001. For the

aluminium plates at the top and bottom of the specimen an elastic constitutive

model is used with Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.2.

The stress-displacement curves of the finite element model with different element

sizes are compared with the experimental results from in Figure 4.16.
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Figure 4.16: Stress-displacement curves for different mesh sizes of the structural
model compared to experimental result. The experimental results are reported
in Zhou et al. (2014).

Stress-displacement curves of models with different mesh sizes are agree well with

experimental results. An almost mesh-independent response is observed. Contour

plots of the vertical strain εzz for the three meshes are shown in Figure 4.17 for

a vertical displacement of 0.6 mm (see Figure 4.16) for the three meshes. The

model predicts distributed strains which are greatest in the middle of the specimen,

because the edges are restrained by the loading platen.
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(a) (b) (c)

Figure 4.17: Influence of mesh size on zz component of strain tensor contour plot
of compression tests at displacement 0.6 mm: a)mesh size 0.04 m, b)mesh size
0.02 m, c) mesh size 0.01 m.
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Chapter 5

Structural component response

modeled by CDPM2F

The numerical investigations carried out in this work are based on the experi-

mental results reported in Moreno et al. (2014). Two of the matrix materials

used in the experimental study are considered, which are concrete (C) and Engi-

neered Cementitious Composite (ECC), which is a type of SHCC. In addition, a

low strength version of the ECC model, called ECCLow, is used to illustrate the

cracking process further. The material ECCLow is intended to reveal certain fea-

tures which were demonstrated in Moreno et al. (2014) by a hybrid fibre reinforced

model, which cannot be modelled by the constitutive model directly described in

section 3.3.2. The finite element mesh is generated with the mesh generator T3D

(Rypl, 1998). The finite element analyses are carried out with the open source

finite element program OOFEM (Patzák, 2012).
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5.1 Setup and input

R-C, R-ECC and R-ECCLow tensile tests are modelled to provide insight into

the reinforcement matrix interaction. The numerical results are compared to the

experimental data reported in Moreno et al. (2014); Moreno-Luna (2014), if ap-

plicable. Concrete is modelled with CDPM2 (Grassl et al., 2013). The ECC and

ECCLow matrix materials are modelled with CDPM2F, which is described in sec-

tion 3.3.2. For zero fibre volume, CDPM2F and CDPM2 are the same. The setup

and geometry of the analysis is shown in Figure 5.1a. Concrete and ECC materials

are modelled with 3D tetrahedral elements as shown in Figure 5.1b. The steel rein-

forcement bar is modelled with frame elements with fibre cross-sections. For each

fibre of the cross-section a 1D elasto-plastic model with multi-linear hardening and

softening is used. All these models are readily available in OOFEM (Patzák, 2012).

Boundary conditions are applied at the ends of reinforcement. Pre-described dis-

placement is applied. In trial analyses, I observed that it is important to use frame

instead of truss elements, so that once the matrix cracks, the reinforcement bar

can still resist bending. With truss elements, large lateral displacements of the re-

inforcement bar were present so that cracking of the matrix occurred only on side

of the specimen. This excessive lateral displacement was avoided by using frame

elements. In the experiments, the ends of the specimens were reinforced with steel

cages so that cracking at the end of the specimens is prevented. In the analyses,

effect of these cages is approximated by increasing the strength of the end parts of

the reinforcement bars as shown in Figure 5.1a. I do not consider explicitly bond

between steel and matrix. Instead, a merged approach is used in which the nodes

of the reinforcement and matrix have the same degrees of freedom. For this, I

initially generate the meshes of matrix and reinforcement bar seperately, i.e. the

vertices of the lines representing the reinforcement bar are not at the same position
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as the vertices of the tetrahedra for the matrix. I then place in the tetrahedral

elements of the matrix hanging nodes at the location of the reinforcement vertices.

These hanging nodes are then used as the nodes of the reinforcement elements. In

Grassl et al. (2018) it was shown that this approach produces acceptable results

for good bond conditions as long as the matrix is modelled in 3D. Damage in

the matrix adjacent in the reinforcement bar will produce relative displacements

between steel bar and matrix so that crack formation in reinforced concrete can

be reproduced so that the overall load-displacement curve is not strongly affected

by the mesh size (Grassl et al., 2018). It was shown that there is a slight mesh

dependence in the crack patterns obtained. I discuss the topic of bond-slip in more

detail in section 5.3. The results of the analyses are later shown in the form of

load versus average strain of the reinforcement, which is calculated as the relative

displacement between points B and A divided by the length of these two points

(Figure 5.1a).

(a)

stronger steel  steel stronger steel

(b)

Figure 5.1: a) Geometry and setup of R-ECC specimen subjected to tension based
on experiments in Moreno et al. (2014) and b) three-dimensional tetrahedral finite
element mesh with an element size of 2 cm.

The total length of the specimen is 1041 mm. The edge length of the square cross-

section is 127 mm. The diameter of reinforcement bar which is placed centrically in
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the specimens is 16 mm. For concrete, the model input parameters for the matrix

are Young’s modulus Em = 30 GPa, Poisson’s ratio ν = 0.2, tensile strength

ft = 1.4 MPa, compressive strength fc = 44 MPa and crack opening threshold

δf = 0.185 mm for an exponential softening curve. The other parameters are given

default values as introduced in Grassl et al. (2013). From these parameters, ft and

fc are directly chosen from Moreno et al. (2014). The other parameters were given

reasonable values for mortar.

For ECC, Young’s modulus of the matrix is E = 20 GPa, the tensile strength of

matrix is ft = 2.9 MPa, the compressive strength of matrix is fc = 54 MPa and

δf = 0.01 mm for the exponential softening curve. Here, ft and fc are chosen from

the experiments in Moreno et al. (2014). The hardening modulus of the plasticity

model is chosen as Hp = 0.05, which is a slightly larger than the default value of

the hardening parameter for concrete recommended in Grassl et al. (2013), so that

the debonding part of the fibre bridging stress response is reproduced correctly.

The effect of Hp on the ECC response was discussed in Zhou et al. (2024). The

fibre properties obtained from the experiments are lf = 12.7 mm, df = 40 µm,

Vf = 0.02 and Ef = 43 GPa. The other fibre model input parameters are f = 0.9,

β = 0.02, τ0 = 0.5 MPa, sm = 100 mm, ξ = 0.3, α = 0.9 and Vf0 = 0.02. Here,

Ef , Lf , df and Vf0 are chosen from Moreno et al. (2014). The other parameters

were chosen so that the response agreed with the experimental results of ECC

in tension shown Figure 5.2 in the form of stress versus average strain computed

from the displacement of a specimen of 200 mm gauge length. The stress-strain

curves agree well mainly because I adjusted the free parameters of CDPM2F to

achieve this fit. For for the low strength ECC material ECCLow, ft = 2.9 MPa,

fc = 54 MPa, Vf0 = 0.011 and α = 0.92. All other parameters are the same as for

the ECC material.
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Figure 5.2: Material input: a) stress versus strain for R, ECC, ECCLow, and b)
stress versus strain for the steel reinforcement bar. For ECC and steel, the results
are compared with experimental results reported in Moreno et al. (2014).

For the reinforcement, the inelastic steel response is important for reproducing the

experimental results of the composites. The hardening and softening response of

the bare steel curve reported in Moreno et al. (2014) was used in the 1D elasto-

plastic. The key parameters of this response are Young’s modulus Es = 210 MPa,

yield strength fys = 448 MPa and strain εsy = 0.00213, strain at onset of hardening

εsh = 0.015, ultimate strength fus = 591 MPa and strain εsu = 0.15 as reported

in Moreno et al. (2014). The response of the model compared to the experimental

results available in Moreno et al. (2014) is shown in Figure 5.2b.

5.2 Analysis and results

The results of the analyses of R-C and R-ECC tests modelled with CDPM2F and

CDPM2 are shown in this section. I use three main ways of presenting the results.

Firstly, I compare the load versus average strain curves with the corresponding ex-

perimental results. In addition, to provide insight why these results are obtained,
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I present the axial stress and strain distribution of the reinforcement and contour

plots of the maximum principal strain component of the matrix. I choose the

maximum principal strain as the variable for the contour plots, because this vari-

able represents well localised strain profiles obtained in the model which represent

cracks.

5.2.1 R-C modelled with CDPM2

For reinforced concrete, called here R-C, the load-strain curve is compared in

Figure 5.3a with experimental results reported in Moreno et al. (2014).
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Figure 5.3: R-C test: Load versus average strain from model compared to experi-
ments in Moreno et al. (2014). Marked points in load-average strain curve.

Overall, the load-strain curve in Figure 5.3a is in good agreement with the exper-

iments. The response is ductile and very similar to the bare steel response. The

strain capacity in the model is 0.107, which agrees well to the experimental strain

capacity of 0.102. This value is less than the strain capacity of the reinforcement

of εsu = 0.015, because of concrete carrying stresses between cracks. By studying
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the initial part of the load-strain curve in Figure 5.3b, it can be seen that there

is very little additional bridging stress provided by the concrete matrix, which is

probably due to the brittle nature of concrete shown in Figure 5.2a. Both mecha-

nisms, namely stresses carried between cracks and stresses carried across a crack,

contribute usually to the tension stiffening effect observed in reinforced compos-

ites. For reinforced concrete, the the effect of stress carried across cracks is small.

Therefore, tension stiffening for R-C is mainly due to stresses carried in the matrix

between cracks.

The points marked in Figure 5.3a are stages in the loading process which are used

to visualise the results further. Firstly, the axial steel strain and stress versus the z-

coordinate along the reinforcement bar is shown in Figure 5.4a and b, respectively,

for the stages marked in Figure 5.3a.
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Figure 5.4: R-C: Normalised axial steel a) strain versus z-coordinate and b) stress
versus z-coordinate. The strain and stress are normalised by the yield strain and
stress, respectively.

It can be seen that with increasing average strain, the strain and stress distribution

in Figure 5.4 becomes nonuniform. Since the overall axial force in the specimen
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is in equilibrium, the stress and strain in the steel must be greater in a region

in which the matrix cracks than in a region in which the matrix is not cracked.

Consequently, the peaks of the steel strain and stress in Figure 5.4 represent cracks

in the concrete matrix. In total, there are seven cracks visible at the end of the

analysis. The evolution of cracks in the matrix is visualised in the form of contour

plots of the maximum principal strain shown in Figures 5.5 to 5.7. For the first two

stages with average strains of 0.001 and 0.002, the average response is shown in

Figure 5.5a and b, respectively. For these average strain levels, the yield strength

of the reinforcement bar is not reached. At a strain of 0.001, two cracks form

at both ends of the specimen adjacent to the strengthened regions as shown in

Figure 5.5a. Just before the onset of yielding at an average strain of 0.002, all

seven cracks visible in the final configuration are formed as it can be seen in

Figure 5.5b. The openings of these cracks are still small at this stage of average

strain. Still, cracking occurs at this average strain, because for a concrete tensile

strength ft = 1.4 MPa and Young’s modulus E = 30 GPa, the strain capacity

in tension is ft/E = 0.000047, which is considerably smaller than the steel yield

strain of εy = 0.016.

(a)

(b)

Figure 5.5: R-C test: Contour plot of maximum principle concrete strain at an
average steel strain at a) 0.001 and b) 0.002. The upper threshold for the maximum
strain was chosen as 0.004 and is shown in black.
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For an average strain from 0.002 to 0.03 as marked in Figure 5.3, unloading and

reloading of the force for monotonically increasing average strain can be observed.

This occurs after the yield strength of the reinforcement bar has been reached. In

Figures 5.6 and 5.7 contour plots of the maximum component of principal strain

for an average strain of 0.01, 0.019, 0.02 and 0.027 are shown.

(a)

(b)

Figure 5.6: R-C test: Contour plot of the maximum principle concrete strain at an
average steel strain of a) 0.01 and b) 0.019. The upper threshold for the maximum
concrete strain was chosen as 0.015 and is shown in black.

(a)

(b)

Figure 5.7: R-C test: Contour plot of maximum principle concrete strain at an
average steel strain of the steel bar of a) 0.021 and b) 0.027. The upper threshold
for the maximum concrete strain was chosen as 0.015 and is shown in black.

A larger threshold of 0.021 is selected for these contour plots to identify cracks with

wider crack openings. It can be observed in Figure 5.4a and 5.4b that the non-

uniformity of both strain and stress distributions are decreasing with increasing
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crack-openings. As shown in Figure 5.4b, at an average strain of 0.03, the difference

in axial steel stress in cracked and uncracked regions is much lower than at the onset

of cracking at an average strain of 0.002. For the range of average strain of 0.030

to 0.105, the load-strain curve of R-C almost overlaps with the curve of the bare

steel bar. The shape of curves of the steel stress along the reinforcement bar barely

change in this range. The value of stress and strain almost uniformly increased

along the reinforcement bar at this stage until most area of reinforcement bar

reaches the ultimate stress of steel. Overall, from these results, the typical process

of the formation of multiple cracks in reinforced concrete can be seen. Already

before yielding, all cracks are initiated. For strains greater than the strain at the

onset of yielding, the total load of the R-C composite is only slightly above the

load of the bare reinforcement bar, which is due to the interplay of hardening

reinforcement and the tension stiffening effect of the composites. The difference

between the total load and the load of the bare steel reinforcement decreases as

the cracks are opening. At the ultimate strain of the rebar, these two load levels

are almost the same.

5.2.2 R-ECC modeled with CDPM2F

In the second part of the analyses, I modelled R-ECC with CDPM2F. For this ECC

matrix, experimental results are available in Moreno et al. (2014). The load-strain

curve is shown in Figure 5.8a.
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Figure 5.8: R-ECC: a) Load versus average strain from model compared to ex-
periments in Moreno et al. (2014), b) Marked points in load-average strain curve
compared with bare reinforcement response.

For R-ECC, the load-strain curve agrees well with the experimental results in

Moreno et al. (2014). The overall shape of load-strain curve is the same as in

the experiments. The matrix response has a significant effect on the load strain

response of R-ECC, due to the bridging stress provided by the fibres. The total

load capacity at the onset of steel yielding is more than 50 % greater than the

yield force of the steel. This is a significant difference to load-strain response for

R-C. The effect of the bridging stress of the matrix material on the load strain

curve has been described in Fischer and Li (2015), Liu et al. (2023) and Moreno

et al. (2014).

In Figure 5.8b, the initial range of the average load strain curve obtained from

the model is shown with points marked at which the response of composite is

further investigated by plots of the steel stress and strain along the axis of the

reinforcement bar, as well as contour plots of the maximum principal strain. The

load-strain curve can be divided into three parts, namely hardening of ECC and
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steel, softening of ECC and hardening of steel, and finally, softening of ECC and

softening of steel. The three parts of the process are studied by normalised steel

strain and stress versus z-coordinate plots in Figure 5.9a and b, respectively.
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Figure 5.9: R-ECC: Normalised axial reinforcement a) strain versus z-coordinate
and b) stress versus z-coordinate.

Furthermore, the contour plots of the maximum principal strain are shown in

Figure 5.10 and 5.11.

(a)

(b)

Figure 5.10: R-ECC: Contour plot of maximum principle ECC strain at an average
steel strain of the reinforcement bar of a) 0.002 and b) 0.0025. The upper threshold
for the maximum strain was chosen as 0.0024 and is shown in black.
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(a)

(b)

Figure 5.11: R-ECC: Contour plot of maximum principle ECC strain at an aver-
age steel strain of the reinforcement bar of a) 0.0041 and b) 0.0056. The upper
threshold for the maximum strain was chosen as 0.0053 and is shown in black.

With the steel strain and stress distributions and the maximum principal strain

contour plots, the failure process is illustrated. Initially, both the ECC matrix

and the reinforcement bar behave elastically. At an average strain of 0.0002, the

model results show that both reinforcement bar and ECC matrix are in the elastic

range. The maximum principal stress in the matrix is 2.5 MPa, which is below

the tensile strength of ECC matrix. The information about principal stresses is

retrieved from the output of the analysis, but is not shown here, because it is

difficult to present it clearly graphically, since the stress does not localised. From

the stress distribution along the reinforcement bar shown in Figure 5.9a, it is seen

that the axial stress along the reinforcement bar is smaller than the yield strength

of reinforcement.

At an average strain of εs,av = 0.002, the reinforcement bar is still just in the

elastic range, but the ECC matrix is in the cracking strain hardening stage (Fig-

ure 5.10a). The normalised axial stress along the reinforcement bar in Figure 5.9b

is slightly smaller than 1, which indicates that the reinforcement bar is still elastic

at this stage. In CDPM2F model, fine cracks in the distributed cracking stage are

described with distributed cracking strain. Therefore, individual cracks are not
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visible. This distributed cracking results in a lower slope of R-ECC load strain

curve than the initial elastic response. At this stage, the maximum principal stress

of model is 3.346 MPa, which is above the tensile strength of ECC of 2.9 MPa and

below the stress capacity of σcu = 3.354 MPa.

At the average strain of εs,av = 0.00246, the reinforcement bar reaches the yield

strength and ECC matrix is still at strain hardening stage. The principal stress

of the ECC matrix is now 3.353 MPa, which is close to the stress capacity σcu =

3.354 MPa. The maximum normalised stress in the reinforcement bar show in

Figure 5.9b is now equal to 1. This shows that the reinforcement bar has reached

the yield strength of steel. The normalised strain distribution of reinforcement

bar is non-uniformed as shown in Figure 5.9a, which is above yield strain of rein-

forcement bar and below the hardening strain of reinforcement. The stages with

average strains of εs,av = 0.0041 and 0.0056 are chosen to elucidate the material

response during strain softening of matrix. At an average strain of εs,av = 0.0041,

the axial stress in the reinforcement bar is still equal to yield strength as shown in

Figure 5.9b. The principal strain distribution of reinforcement bar shows higher

value at end of rebar, where Figure 5.11a shows localised regions of maximum

principal strain at the same position. At this strain, the maximum component of

the principal stress of matrix in this area is slightly lower than σcu. These results

indicate that, for the present configuration, the reinforcement bar does not reach

the hardening stage until softening of the matrix occurs.

At an average strain of εs,av = 0.0056 in the R-ECC model, strain localisation

becomes evident. As depicted in Figure 5.11b, regions of localised strains can be

observed, with the dark regions corresponding to high values of the maximum prin-

cipal strain. Notably, the axial strain within the reinforcement in thesis localised

area surpasses that of other reinforcement segments significantly. In particular,
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the principal strain values within the z-coordinate range of 0.8 to 0.9 exceed the

hardening strain threshold of the reinforcement. Conversely, the axial strain in

the other regions remains lower than the axial reinforcement strain observed for

εs,av = 0.0043. This is indicative of reinforcement unloading. Figure 5.9b exhibits

a similar response, where the axial stress in the reinforcement bar exceeds the yield

strength and enters the hardening phase within the same z-coordinate range of 0.8

to 0.9. Meanwhile, the stress in other parts remains below the yield strength, as

shown in Figure 5.9b.

In the range of average strains varying from 0.0056 to 0.0142, a part of the steel

reinforcement progresses into the hardening stage. This part is where ECC is soft-

ening, which results in an almost zero bridging stress. As depicted in Figure 5.9b,

the axial stress within the reinforcement in the weak zone of the matrix surpasses

the hardening stress threshold, whereas in other regions, the stress remains below

the yield strength, which constitutes the typical tension stiffening effect of steel

reinforced composites. In these regions, the highest maximum component of the

principal stress of the matrix is 3.03 MPa, which does not reach the ultimate tensile

stress σcu = 3.354 MPa, thereby preventing the formation of a second crack.

The load-strain responses of R-ECC is very different of R-C. Considering the ma-

trix response in Figure 5.2, strain hardening of ECC results in higher tensile strain

capacity and higher tensile stress capacity than of plain concrete. Here, tensile

strain capacity is defined as the strain at which the the tensile stress capacity is

reached. This strain capacity is the main reason for the difference in behaviour of

R-ECC and R-C. For both R-ECC and R-C, when the first localised crack in the

matrix is initiated, there is a slip between matrix and reinforcement bar adjacent

to the crack. This slip results in additional tensile strain of the matrix adjacent to

the crack. For concrete, this additional strain results in additional cracks, as was
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demonstrated in detail for R-C case, because the strain capacity of plain concrete

in tension, i.e. the strain at which the tensile strength is reached, is very small.

However, for ECC the strain capacity is much larger. Therefore, this additional

strain due to the slip between reinforcement and matrix does not result in addi-

tional cracking away from the first crack formed. It could be argued that if the slip

between ECC and reinforcement bar is large enough, then multiple cracks should

also appear in the R-ECC case. However, for R-ECC, the load-strain response is

not only governed by the matrix property, but also by the nonlinear response of

the reinforcement bar within the region of localised cracks. For the present setup,

the maximum stress of the reinforcement bar is reached before sufficient strains

are generated to produce ECC cracking. Once the steel has reached its ultimate

stress, the overall failure of the composite occurs.

This apparent drawback of R-ECC can be mitigated by lowering the strain capacity

of ECC, so that multiple cracks occur, or by increasing the ductility of the steel.

Here, I demonstrate the effect by simulating the response of the composite with a

matrix material with lower stress and strain capacity, which we call ECCLow. The

matrix response in tension of this material is shown in Figure 5.2. The load-strain

curve of R-ECCLow and bare steel is shown in Figure 5.12a. A detailed first part

of the response is shown in Figure 5.12b with averaged strain stages marked at

which more detailed results are shown.

In Figure 5.13, the axial stress and strain along the reinforcement bar are shown

at marked points presented in Figure 5.12.

110



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

F
 [

k
N

]

εs,av

Model R-LSECC
Model R

(a) (b)

Figure 5.12: R-ECCLow: a) Load versus average strain from model, b) Marked
points in load-average strain curve compared with bare reinforcement response
from model.
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Figure 5.13: R-ECCLow: Axial nomalised reinforcement a) strain versus z-
coordinate and b) stress versus z-coordinate.

From the axial strain distribution in Figure 5.13a, the formation of multiple cracks

is visible. Unlike for RC, the first dominant crack is formed after the yield strength

of the reinforcement bar is reached. This is because ECCLow is much more ductile

than C. At and average strain of 0.056, four dominant cracks are visible from the

contour plot of the maximum principal strain in Figure 5.14.

111



Figure 5.14: R-ECCLow: Contour plot of maximum principle ECCLow strain at
an average steel strain of the reinforcement bar of 0.0561. The upper threshold for
the maximum strain was chosen as 0.021.

The results demonstrate that both matrix and reinforcement reinforcement re-

sponse has to be carefully selected to ensure a ductile response of the composite,

so that the benefits of a ductile matrix material in the form of greater ductility

and durability is maintained for reinforced composites. In Moreno et al. (2014), a

response similar to our R-ECCLow results has been obtained experimentally with

a hybrid fibre reinforced material, which has a much lower matrix strain capacity

than the ECC material used here. Furthermore, in Liu et al. (2023) it was shown

that for a certain combination of R and ECC, average strain capacities of the steel

reinforced composite of more than 6 % can be obtained.

5.3 Investigation of bond-slip

The modelling in the previous section is based on a merged approach. This means

that the nodes of the beam elements have the same DOFs as the nodes of the

matrix elements. In a recent study, the ability of this approach to simulate the

failure process of reinforced concrete mesh-independently was studied in Grassl

et al. (2018) with the constitutive model CDPM2. It was found that there was a

mild mesh dependence on the number of cracks generated. However, this apparent

mesh dependence was much less severe than expected for an apparent perfect bond
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approach. In Grassl et al. (2018), it was shown that inelastic processes occur in

elements adjacent the reinforcement, so that a slip between reinforcement and

matrix is facilitated. In Grassl et al. (2018), the study was limited to R-C. Here,

I investigate the response between cracks for all three combinations used in the

present study. The contour plot of the maximum principal strain for a cut at the

level of the reinforcement is shown in Figure 5.15.

(a)

(b)

(c)

Figure 5.15: Contour plot for the maximum component of the principle strain
of mesh size 2 cm for a) R-C, b) R-ECC and c) R-lsECC for a cut through the
specimen at the level of reinforcement. The upper threshold (shown as black) for
the maximum strain was chosen as 0.03.

We can see that in all three cases, there are a large maximum principal strains

in the elements adjacent to the beam elements. This indicates that bond slip is

facilitated so that the typical crack patterns known from reinforced concrete can

be generated with a 3D modelling approach.
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Chapter 6

Conclusion

This section summarises the main conclusions and recommendations for future

work.

6.1 Conclusions

Based on the work presented in the previous chapters, I arrive at the following

conclusions.

• The new model CDPM2F is capable of linking fibre properties to composite

response.

• Dispersion of fibres is successfully incorporated by the parameter α, which

represents the degree of variation of the spatial fibre distribution.

• CDPM2F is able to reproduce the three-dimensional structural behaviour of

components made of ECC.
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• CDPM2F produces results for ECC subjected to tension, compression and

shear, which do not exhibit pathological mesh-dependence.

• CDPM2F is capable of revealing the interaction between the reinforcement

bar and matrix. The R-ECC model results reveal the evolution of the mate-

rial failure.

• CDPM2F is able to show different failure modes of steel combined with ECC

for different ultimate strength of the ECC matrix.

• For R-C and R-ECC, the difference in ductility is related to uniformity of

strain distribution along the steel reinforcement bar. The use of a strain

hardening matrix such as ECC leads to a reduced overall ductility. This

reduction of ductility is strongly dependent on the interplay between the

ultimate matrix stress and ultimate steel stress.

• If the combination of matrix and reinforcement is designed carefully, un-

favourable failure modes can be avoided. Therefore, it is important to have

material models for the matrix which are a function of fibre properties. In

this way, structural behaviour based on fibre properties can be determined.

Overall, this research links micro-mechanical response of fibre/matrix scale to

macroscopic response of SHCC. Overall, this method is valid for modelling struc-

tural behaviour of SHCC. Furthermore, R-ECC tensile response is also well ex-

plained by this CDPM2F model.
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6.2 Limitations and Recommendation for future

work

The model has potential to be extended and improved. At present, one way

pull-out fibre stress-crack opening law is adapted. In future, more accurate two-

way pull-out model could also be adapted to improve the model. Effect of flaws

distribution is not included in this model. As I proposed a sigmoid relation to

reflect overall cracking strain to crack opening. A parameter ξ is used to control

the slope. The relation of flaw distribution to ξ, could also be investigated in

future.

Strain rate dependence is also another area could be further investigated. ECC

tensile response for different strain rates is dependent on micro-mechanical prop-

erties of fibres/matrix. Phenomenological models cannot capture this effect. Po-

tentially, this model can reflect strain rate dependence of overall response based

on micro-mechanical properties. It could benefit the modelling of dynamic prob-

lems of ECC or R-ECC, where it has shown that ECC has a good performance in

dynamic response.
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