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Abstract 

The existing risk assessment coverage for Autonomous Vehicle (AV) deployment is 

insufficient for AV operations. The existing risk assessment is based on static 

processes, such as Hazard Analysis and Risk Assessment (HARA), which are 

performed during AV development. The hazard identification is based on prior 

lessons learned and know-how. The current risk assessment primarily focuses on 

vehicular malfunctions and does not assess AV's safety actions when hazards are 

detected during real-time operations. The static risk assessment is unable to 

measure AV control actions when a hazardous event is detected during AV 

operations. These planned control actions can also pose risks during AV operations 

without real-world testing. 

This thesis proposes a real-time risk assessment for AV operations, comprising a 

Real-time Risk Assessment Framework (ReRAF) within the AV and a Real-time Risk 

Assessment for Cooperative mode (ReRAC) within the infrastructure. The real-

time risk assessment operates in a continuous and recursive loop for safety 

improvement.  

In ReRAF, a novel Dynamic Acquired Risk Assessment (DARA) algorithm is designed, 

developed and verified to provide a Predicted Risk Number (𝑃𝑅𝑁) for the AV to 

assess the risk of its ability to mitigate hazards through its control actions. The 

𝑃𝑅𝑁 is derived using the scenarios' risk tag figures and the AV control tag figures. 

The risk tag figures are achieved by object detection, scene segmentation and 

probabilistic modelling, while control tag figures are derived from the AV’s 

parametric controls. The resulting 𝑃𝑅𝑁 is a quantitative outcome of ReRAF in an 

objective end-to-end approach, without any human intervention within the AV. 

The DARA algorithm was tested in real-world AV operations with unregulated 

traffic scenarios that consist of vehicles and pedestrians. The accumulative 𝑃𝑅𝑁 

results over time can be used to identify potential hotspots and improve AV’s path 

planning. The DARA algorithm demonstrated the ability to use a single 𝑃𝑅𝑁 to 

represent the real-time risk assessment of an AV by measuring the risk mitigation 

of the AV control parameters based on the detected risk from its camera.    
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For ReRAC, a novel Spatial-Temporal Risk Estimation Ensemble Technique 

(STREET) algorithm is designed, developed and verified to provide remote 

advanced risk warnings to the AV. STREET compute the environment’s risk tag 

figure and provides hazard identifications and warnings from the infrastructure 

viewpoint to the AV. Risk tag figures are obtained by first performing a risk zoning 

of the environment, followed by probabilistic modelling to convert the scene into 

a risk matrix. Object detection is then used to map the detected object onto the 

risk matrix to provide risk tag figures for the scene. ReRAC can also derive the 

time to collide, while hazard identifications and warnings are obtained by 

detecting pedestrians and/or vehicles in proximity within an intersection or road 

section of the scene. STREET provides an objective end-to-end approach without 

human intervention and was tested in unregulated traffic scenarios that provide 

advanced AV warnings using cooperative mode. STREET results demonstrated the 

ability to perform real-time conversion from qualitative image to quantitative risk 

tag figures from the infrastructure’s environment scene and time to collision to 

act as AV’s preemptive warning purposes. In addition, the STREET algorithm also 

illustrated the ability to detect hazard identifications and warnings with roads and 

intersections, such as vehicle-to-vehicle and vehicle-to-pedestrian hazards, as 

well as pedestrian warnings and vehicle warnings for intersections. These hazard 

identifications and warnings are potential risks when the AV arrives at the 

infrastructure location. They can also detect potential accidents and road 

congestions if the detection persists.  

The combination of ReRAC and ReRAF provides complete coverage of safety 

enhancements for AV operations in real time, within and beyond the AV. With 

ReRAC operating as remote advanced warnings, the AV's resultant actions can be 

safer as it moves towards the ReRAC location. In parallel, the ReRAF continuously 

monitors and assesses the AV's real-time risk assessment and acts as a trigger if 

further improvements for safer actions are required for subsequent routes. 
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Definitions/Abbreviations 

Below is the list of definitions and abbreviations used in this thesis. Variables 

presented as formulas are shown in italics throughout the thesis and are not 

included in this section. 

Abbreviations Definition 

AED Aggressive Exponential Distribution 

AI Artificial Intelligence 

AOI Area of Interest 

ASIL Automotive Safety Integrity Level 

AV Autonomous Vehicle 

AV-TTC Autonomous Vehicle Time To Collision 

CED Conservative Exponential Distribution 

C-I2X Cellular-Infrastructure-to-Everything 

CNN Convolution Neural Network 

COCO Common Object in Context 

CT Control Tag 

C-V2X Cellular-vehicle-to-Everything 

DARA Dynamic Acquired Risk Assessment 

DFMEA Design Failure Mode Effect Analysis 

DPM Deep Predictive Model 

DSRC Dedicated Short Range Communication 

FOV Field Of View 

HARA Hazard Analysis And Risk Assessment 

I2V Infrastructure to Vehicle 

I2X Infrastructure-to-Everything 

ICNet Image Cascade Network 
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IoU Intersection over Union 

LID Linear Interval Distribution 

mAP Mean Average Prevision 

mIoU Mean Intersection over Union 

MPC Model Predictive Control 

PCA Principal Component Analysis 

PSPNet Pyramid Scene Parsing Network 

RAM Risk Assessment Module 

ReRAC Real-time Risk Assessment for Cooperative 

ReRAF Real-time Risk Assessment Framework 

ResNet8 Residual Networks 8 

RSU Road Side Unit 

RSU-TTC Road Side Unit Time To Collide 

RT Risk Tag 

SOTIF Safety Of The Intended Functionality 

SSD Single-Shot Detector 

STREET Spatial-Temporal Risk Estimation Ensemble Technique 

UML Unified Modelling Language 

V2V Vehicle-to-Vehicle 

V2X Vehicle-to-everything 

VANET Vehicular Ad-Hoc Network 

YOLO You Only Look Once 
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Chapter 1 

1 Introduction 

The emergence of Autonomous Vehicles (AV) has garnered substantial attention in 

recent years [1, 2]. Technological progress in processing power, sensors, and 

artificial intelligence has made the development and deployment of AVs feasible 

across many global regions [3]. AVs are classified into three distinct levels, as 

outlined in the SAEJ3016 standard [4]. SAE level 3, known as self-drive under 

limited conditions, is to be integrated into upcoming luxury vehicle models from 

leading OEMs, such as Drive Pilot [5]. Conversely, SAE level 4 is primarily designed 

for public transportation, including Robo-taxis [6] and AV buses [7], with ongoing 

test trials for AV deployment [8, 9]. However, SAE level 5, which requires the AV 

to operate safely under all conditions, is the most challenging, with most OEMs 

and AV developers hesitant to commit to achieving this level of autonomy. As 

depicted in Table 1.1, levels 4 and 5 are considered more demanding than level 

3, as the autonomous driving system is accountable for safety instead of the 

driver. The recent accidents [10, 11] in AV deployments have further underscored 

the pressing need for enhanced safety measures, particularly for SAE levels 4 and 

5. These safety measures must be able to quantify environmental risk and measure 

if existing safety actions are sufficiently deployed, and the outcome can assist 

regulatory organisations in measuring AV safety assessments. As a result, there is 

an escalating demand for safety enhancement for SAE levels 4 and 5, particularly 

in establishing matrices to gauge system safety [12]. This necessitates the need 

for an accurate, quantifiable approach, which is crucial for the widespread 
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adaptation of AV. These quantifiable methods for AV controls or safety measures 

should be tested in real-world settings to identify potential safety enhancements 

over time independently and objectively. These real-world settings refer to 

unregulated traffic scenarios with a higher occurrence of near misses and 

collisions between AV and pedestrians and/or vehicles. The unregulated traffic 

scenarios include corners, T-junctions, and straight roads. The quantifiable 

method makes AV operations progressively safer, thereby averting near misses and 

accidents and ensuring smoother rides by reducing abrupt braking, wide steering, 

and sudden acceleration. 

Table 1.1 SAE Levels, fallback responsibility and risk assessment 

SAE Levels Features 
Dynamic driving task 

Fallback 
Responsibility 

Dynamic 
Driving task 

3 
Self-drive under limited 

conditions 

Driver 
Fallback-ready user 

(driver becomes fallback) 

4 
Autonomous driving 

systems 
Autonomous driving systems 

5 
Self-drive under all 

conditions 
Autonomous driving 

systems 
Autonomous driving systems 

 

The current standards for AV risk assessment [13-16] predominantly concentrate 

on system malfunctions and identifying potential risks during development. These 

standards rely on past experiences and knowledge to simulate specific scenarios 

and mitigate risks during development. However, encompassing all aspects of 

environmental risk, given the actions of AVs in intricate developmental scenarios, 

presents a significant challenge. Hence, there is an imperative need to enhance 

the existing risk assessment methodologies for the current deployment of AVs to 

encompass more than just accident prevention for real-world deployment [17].  

1.1 Safety Standards of AV risk assessment 

Before explaining the motivation of this research, it is important to understand 

the existing safety standards for AV risk assessment. The existing automotive 

functional safety standard ISO 26262 [14] contains parts 1 to 11 that address all 
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vehicles' functional safety, including both driven and autonomous ones. Part 3 of 

the standard focuses explicitly on the risk assessment from the initial concept to 

the product development phase for AVs. Within Part 3, there is a requirement for 

item definitions of identified hazards, followed by the Hazard Analysis and Risk 

Assessment (HARA) [18], where safety actions are determined to mitigate the 

hazards during development. In existing risk assessment, item definitions of 

hazards are primarily intended to identify potential failures due to past design 

flaws, errors, and lessons learned that resulted in malfunctions. This approach 

lacks focus on environmental hazard identification, and the defined safety actions 

for malfunctions tested during development may differ from real-world AV 

operational needs. This discrepancy between risk assessment during development 

and real-world AV operations, if left unaddressed, will increase operational risk 

and potential hazards for real-world AV deployment. This is exceptionally critical 

for SAE levels 4 and 5 of AV automation, where the dynamic driving task fallback 

is passed onto the autonomous driving system other than the driver [19]. It is thus 

crucial to address the gap between risk assessment performed during development 

and real-world operation for safer AV operations. 

1.2 Motivation  

Existing risk assessments have several gaps, such as a lack of environmental hazard 

considerations, safety measurement of inherent safety actions, and a quantifiable 

method for measuring risk or safety during AV operations beyond development. 

Since they are performed during development, they are referred to as static risk 

assessments in this research.  

The motivation of this research is to resolve these gaps by proposing a real-time 

risk assessment that measures the AV's inherent control or safety actions when 

environmental hazards are detected while using a quantifiable methodology to 

provide numerical ratings and outcomes in real time. Therefore, this real-time 

risk assessment is essential to evaluate the AV's control or safety actions during 

AV operations in addition to existing static risk assessment. Furthermore, to 

address the limitation of detection hazards beyond the AV's detection range limit, 

establishing an infrastructure for real-time operations beyond the AV can 
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significantly enhance real-time risk assessment by providing advanced remote risk 

warnings.  

Figure 1.1 illustrates the necessity for risk assessment coverage from development 

to deployment. It illustrates the AV risk assessment gaps transitioning from 

development to real-time operations. During AV development, the existing static 

risk assessment converts potential malfunctions into Severity, Control, and 

Occurrence figures based on expert knowledge and lessons learned, which are 

subjectively driven. The outcome of this static risk assessment leads to rule-based 

safety actions for real-time AV operations.  

 

Figure 1.1 Risk assessment coverage from development to deployment 

During AV real-time operations, the conceived safety actions derived during 

development may deviate from the safety actions needed in real-world settings 

due to differences in environmental settings. Thus, the differences will lead to 

the effectiveness of the safety actions in managing the detected hazards, which 

are not measured using existing risk assessment. Moreover, existing risk 

assessments do not quantitatively measure the real-time effectiveness of safety 

actions based on environmental risk, making it impossible to identify hotspots for 

improvement. This leads to the motivation of creating an independent module to 

perform real-time risk assessment within the AV to evaluate safety actions 
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(Control) and when environmental hazards (Severity) are detected. By doing so, 

the AV developer will be able to identify in real time if existing safety actions are 

sufficient based on the environmental risk and if further enhancement of safety 

actions is required. The methodology consists of processes that manage image 

information and the control or safety actions and turn them into quantitative risk 

numbers for future safety action improvements.  

The other challenge of AV operations is the inability to identify hazards or risks 

beyond the sensors’ detection range, which results in sudden safety actions to 

prevent a collision but creates a higher risk for other motorists and passengers. 

These real-world scenarios can involve occluding corners or unregulated traffic, 

where sudden pedestrians or vehicles can reside, and the AV has no advanced 

information. Thus, real-time infrastructure operations can be used to improve 

safer AV operations by providing remote advanced risk warnings through 

infrastructure-to-vehicle (I2V) or vehicle-to-vehicle (V2V) communication. Also 

known as cooperative mode, these operations can prepare the AV for advanced 

safety actions before reaching the infrastructure’s location where risk is detected. 

In summary, several gaps (listed below) exist in static risk assessment coverage 

for AV operations, which motivate this research on real-time risk assessment. 

1) Existing static risk assessment does not measure AV’s control or safety 

actions when detecting a hazardous event during AV operations. Existing 

methods only capture risk based on past lessons learnt, know-how, and 

experience in formulating safety actions during development. These 

planned safety actions can also incur risks during AV operations (e.g. sudden 

braking as a form of safety action).  

2) Existing static risk assessments cannot fully capture environmental risk 

within the AV or remotely using infrastructure during operations. As such, 

scenarios that contain potential accidents with near misses will not be 

recorded. This granular information is essential for AV to improve its safety 

operations continuously. 
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3) Existing static risk assessment requires another iteration of the 

development cycle for safety improvement. Hence, AV safety is 

compromised if the safety actions are improper and will have to continue 

using it till the next development release. 

1.3 Thesis statement 

The thesis statement for this research is known as the real-time recursive risk 

assessment for AV. Therefore, the research in this thesis consists of the following:  

1) Research, propose, and develop a novel recursive real-time risk assessment 

framework used within the AV to provide quantitative risk based on 

dynamic and real-time environmental hazards and their corresponding AV 

controls.  

2) Research, propose and develop a novel real-time risk assessment 

cooperative mode at the infrastructure to provide advanced risk and 

hazardous event warnings for the AV. 

3) Evaluate and verify the proposed framework and cooperative mode using 

real-world scenarios. The methodologies of the proposed framework and 

cooperative mode are tested with real-world unregulated traffic conditions 

to assess risk, hazards, and near-missed accidents, which are more common 

in these scenarios. 

1.4 Contribution 

In the course of this research, four main contributions were made towards 

improving the safety of AV operations for real-time risk assessments with 

quantitative measures.   

• A novel real-time risk assessment framework was researched for the AV to 

provide a risk measurement of how the AV’s control action responds to a 

detected hazardous event. The concept was published in [17]. The 
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framework fulfils the requirements of a risk assessment methodology and 

resolves the identified gap from existing risk assessment, which will be 

explained in chapter 3.  

• A novel algorithm was developed that automatically detects risks and 

hazards from the AV's environment and controllability into a quantitative 

outcome. This framework and its algorithm are developed, evaluated and 

verified using specific real-world unregulated scenarios and AV operational 

routes [20], which will be explained in chapter 5. This is unique as existing 

risk assessment methodologies are only tested during development and not 

in real time. The framework and the algorithm provide an objective end-

to-end AV risk assessment in real time at granular levels. The outcomes are 

used in [21] and [22]. 

• An infrastructure-based real-time risk assessment cooperative mode was 

researched to provide the AV with advanced remote risk and hazard 

warnings, which will be explained in chapter 3. The concept and algorithm 

were published in [23].  

• A novel algorithm for the cooperative mode automatically converts 

environmental risks and hazards from the infrastructure into risk tagging 

and hazardous detection outcomes. The algorithm was developed, 

evaluated and verified using real-world unregulated scenarios, which will 

be explained in chapter 4. The cooperative mode algorithm provides a 

lightweight, objective end-to-end risk tagging and real-time hazardous 

event detection at granular levels. The outcomes are used in [22]. 

1.5 Thesis structure & scope 

In this thesis, chapter 1 introduces the purpose of the research, the motivation, 

the thesis statements, and the contribution of this thesis. Chapter 2 consists of a 

literature review exploring the current state of the art in risk assessment 

methodologies and techniques. Building on the identified gaps in the literature, 

chapter 3 proposes a new real-time risk assessment framework for AVs and a 
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cooperative infrastructure-based remote risk warning system for AVs. Chapter 3 

also outlines the proposed methodologies for the algorithm and describes their 

test scenarios. Chapter 4 delves into the theoretical formulation, development, 

and real-world verification of the real-time risk assessment in cooperative mode. 

The cooperative mode provides advanced risk and hazardous event detection 

remotely to the AV. Chapter 4 also shows risk tagging and hazardous event 

detection test results. Chapter 5 explains the theoretical formulation, evaluation, 

and verification of the real-time risk assessment framework, through real-world 

scenarios and operational routes. The framework used within the AV provides a 

risk assessment of how the AV mitigates its movement through the detected risk. 

Finally, Chapter 6 concludes the thesis and outlines potential future work. 
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Chapter 2 

2 Critical review of existing AV risk assessment 

This chapter reviews the existing risk assessments for AV and begins by explaining 

the different types of risk assessment, followed by the evolution of risk assessment 

for AV over the past decades. Existing works are critiqued based on their 

categorisation, methodologies, and areas of focus, emphasising their strengths 

and identifying areas that require further attention. Subsequently, gaps in existing 

risk assessment are identified as requirements to develop new methodologies that 

enhance and improve AV risk assessment for operations. 

2.1 Category, methodologies and areas of focus for AV 
risk assessment 

AV risk assessments can be categorised into static or real-time approaches as 

shown in Figure 2.1. Static risk assessments are performed during AV 

development, while real-time risk assessments are performed during the AV 

operation. Static risk assessment is a subjective approach that defines the Severity 

of hazards, the probability of events, and the controllability of events through 

human decisions and classifications. On the other hand, real-time risk assessment 

objectively measures the actions to control the AV in real time when hazards are 

identified. Real-time risk assessments should be performed in an end-to-end 

manner without human intervention. In general, risk assessments for AV are 

formulated through different methodologies such as process-based, model-based, 

probabilistic-based, probabilistic and model-based, AI-based and Cooperative 

modes.  
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Figure 2.1 AV risk assessment category, methodologies and areas of focus 

The process-based methodology involves refining and improving existing processes 

from the established standards. The model-based methodology aims to quantify 

hazardous events by converting them into numerical representations. The 

probabilistic-based methodology systematically evaluates potential hazardous 

events and provides quantitative measures based on their associated probabilities. 

The probabilistic and model-based methodology combines the modelling of AV 

systems with associated probabilities for potentially hazardous events. AI-based 

methodology employs artificial intelligence, such as artificial neural networks or 

deep learning, to provide numerical representations of hazardous events. 

Cooperative modes involve different methodologies that transfer risk-related 

information between I2V or V2V.  

Within these methodologies, existing research focuses on either vehicle and/or 

environmental levels. Vehicle-level risk assessment considers the malfunctions 

within the vehicle, whereas environmental-level risk assessment considers the 

detection of hazardous events from the AV’s surroundings. The existing standard 

for AV risk assessment is classified as a static risk assessment, which uses a 

process-based methodology focusing on vehicle malfunctions.  
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2.2 Evolution of AV risk assessment 

 

Figure 2.2 Timeline of risk assessment for AV 

Figure 2.2 depicts the evolution of AV risk assessment over the years. In 2011, the 

ISO 26262 standard and the HARA [1] methodology were introduced as a risk 

assessment and hazard identification standard for AV during development. All AV 

companies followed this standard to perform their risk assessment during 

development. As AV technologies advance, a taxonomy for AV automation, 

SAEJ3016, was published in 2014 [24]. This taxonomy sparked discussions [25] 

about the inadequacy of the existing ISO 26262 and HARA coverage for AV when it 

is operating in real-world conditions, especially at automation levels 4 and 5. At 

these levels of automation, the AV system serves as the default fallback instead 

of the driver when hazards are identified. One proposed approach is to enhance 

the HARA process with Safety Of The Intended Functionality (SOTIF) 

considerations, which was later released as an ISO/PAS 21448 standard in 2019 

[26]. These added considerations require the HARA process to define “unknown 

unsafe” and “known unsafe” conditions as potential hazards and their 

corresponding defined control actions to reduce their impact. Even with the 

addition of SOTIF to HARA, these risk assessments with control actions are only 

conducted and tested during development. However, the environment in which 

the AV is tested during development may differ in a real-world setting, and the 

planned control actions might not respond as intended. Instead, these control 

actions might sometimes have adverse effects and could turn into a risk.  
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The current challenge lies in the difficulty of understanding and measuring how 

predefined control actions behave in real-world situations, operating in real time 

deployment. Since it is impossible to account for all possible scenarios during 

development, new methods, such as safety supervisors [27] are being proposed to 

safeguard against unpredicted behaviours and incorporate parametric constraints 

that reflect the malfunction events. Additionally, employing real-time monitoring 

as a separate module is proposed in the works of [28]. These led to the interest in 

real-time monitoring of AV for risk and safety purposes.  

2.3 Static risk assessment  

Static risk assessment defines the risk assessment performed during the AV's 

development, where the requirements for risk assessment are defined based on 

past lessons learnt and know-how. These requirements include the determination 

of the severity of hazards, the probability of occurrence and the controllability of 

the event, which are achieved by subjective humanistic conversions of contextual 

events into rule-based ratings. This section provides a comparative review of the 

existing static risk assessment methodology, highlighting the strengths, 

limitations, and areas that require further attention.  

2.3.1 Process-based risk assessment 

This section shows a list of static risk assessments, as shown in Table 2.1 that use 

process-based methodology. The ISO 26262 with HARA is listed in the table as a 

reference focusing on vehicle-level malfunctions, while other existing works [29-

32] focus on both vehicle-level malfunctions and environmental-level hazards. The 

unique approaches for each existing work are indicated in Table 2.1. 

 

 

 



13 
2.3 Static risk assessment 
 
 
 

 

Table 2.1 Static risk assessment using process-based methodology 

Research papers 

Static risk assessment (process-based) 

Vehicle  
Vehicle & 

Environment 
Unique 

approaches 

HARA (reference) [33] Yes No No 

[29] Yes Yes 
Iterative 

refinement 

[30] Yes Yes 
Iterative 

refinement 

[31] Yes Yes Skilled graph 

[32] Yes Yes 
Situational 

consideration 

 

HARA is defined within part 3.6 of ISO 26262 [18], and it involves the identification 

of all relevant operational situations and operating modes, known as item 

definitions, during the vehicle development phase [33]. Hazards are identified 

based on past lessons learnt and expert know-how. The exposure of these hazards 

to the AV and its controllability are also assessed. These ratings then determine 

the Automotive Safety Integrity Level (ASIL) classification outcome, as shown in 

Table 2.2. For example, during development, if the AV developer defines the 

HARA’s item as "a wrong status of the driving mode occurs, fatal accidents can 

happen during a parked mode," the severity is rated as S3. The probability of 

occurrence, known as exposure, is rated at E2, and the safe controllability of the 

autonomous driving system that responds to this event can be rated as C1. Based 

on these ratings, the resulting ASIL is determined as “QM”, as shown in Table 2.2. 

“QM” indicates that no further safety action is required (indicated as QM in the 

green box). However, this process is highly subjective, and a different AV 

developer may determine that further control actions are necessary (indicated as 

ASIL A in the red box) based on a different controllability rating, C2. This 

identification method is subjective and is based on the humanistic rating of 

Severity, Exposure and Controllability. The risk assessment is therefore performed 

based on the presumption of the risk severity during development, which may not 

reflect the real-world situation in actual deployment.  
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Table 2.2 HARA ASIL classification table (QM indicates that no further action is required) 

 

 

In [29], an additional iterative process was added within HARA to identify the 

dimensions of each hazardous event and refine the functional relationship 

between the HARA and item definition process within ISO 26262. The strength of 

this proposed method is that it advocates a broader scope for hazard analysis and 

considers the entire vehicle’s function and environment, thus avoiding overly 

narrow specifications. The iterative approach is supported by using root cause 

“trees” to identify hazards' potential causes using generic situations. However, 

this refinement is constrained by the defined generic situations using a subjective 

and contextual approach, which will differ in a real-world setting. This proposal 

aims to improve the HARA process but does not improve the risk assessment 

coverage for AV operations. 

In [30], a secondary iterative loop is introduced to extend the work of [29]. The 

approach uses item refinement to address malfunctions, hazards, hazardous 

scenarios, safety goals, ASIL, and safety refinement towards the overall safety 

concept. Similar to [29], [30] further broadens the scope of hazard analysis 

through an additional iterative process. However, the outcomes are similar to 

[29], which provide a subject and contextual approach with an extensive 

description of the hazardous scenario, its consequences and its rationale. This 

approach is suitable for static risk assessment but with insufficient risk assessment 

coverage for AV operations. 
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[31] address the identification of hazardous events using the item definition within 

ISO26262 and the HARA process. The method proposed by [31] combines a skill 

graph as a functional model and an overall scene definition to identify potential 

hazardous events. A skill graph illustrates how different components or skills 

relate to each other while representing the system’s capabilities, interactions and 

dependencies. Figure 2.3 shows an example of an AV skill graph with its identified 

components and skills related to AV operations. [31] provides a guided approach 

compared to [29] and [30] as it links specific skills related to the hazard in an 

overall scene. The main weakness of [31] is that its primary focus is identifying 

hazardous events rather than refining the overall risk assessment process. 

 

 

Figure 2.3 Skill graph of an AV categorised into different components or skills 

[32] reviews the definitions of scenes, situations and scenarios for AV design and 

testing that contribute to risk assessment considerations. A scene is defined as a 

snapshot of the environment, including scenery, dynamic elements, all actors and 

observers’ self-representations and the relationship among those entities. A 

situation is the entire circumstances to be considered for the selection of 

appropriate behaviour patterns at a particular time. A scenario describes the 

temporal development between several scenes in sequence. The outcomes of this 
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work assist in the taxonomy in terms of scene, situation and scenarios but do not 

contribute directly to the technical determination of risk assessment. 

Summary of existing process-based risk assessment 

[29] and [30] illustrate using an iterative refinement process in HARA to provide 

more detailed dimensioning and hazardous event descriptions. This provides a 

more concise safety goal as the mitigation actions for the AV. Other than using 

iterative loops within HARA, [31] used a skill graph as a functional model and an 

overall scene definition to represent the relationship of the potential hazardous 

event. It provides a complete description of the scene in terms of the hazardous 

relationship instead of using iterative loops. [32] provided alignments in the 

definition of scene, situation and scenarios, which will assist in the risk assessment 

approach to identify hazardous events. The work of [29] and [30] combined with 

[31] could enhance the overall quality of risk assessment during development by 

expanding the scope for hazard analysis and identifying hazardous events. This is 

accomplished by incorporating more iterations with deeper consideration of 

hazardous events and the process of pinpointing their causes. These methods for 

identifying risk and its control actions are based on subjective human intervention 

to translate potential malfunctions and hazards, past lessons learned, and know-

how into a process-based static risk assessment. Existing process-based 

methodology relies upon human intervention for static risk assessments. However, 

this process-based methodology aims to pinpoint clearer safety controls based on 

a library of past lessons learnt and know-how, which are subjective and might not 

reflect the situations in real-world AV operations. 

2.3.2 Model-based risk assessment 

This section explains three existing static risk assessments using model-based 

methodology, as shown in Table 2.3. The model-based methodology aims to 

quantify vehicle malfunctions and environmentally hazardous events by 

converting them into numerical representations. 
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Table 2.3 Static risk assessment using model-based methodology 

Research papers 

Static risk assessment (Model-based) 

Vehicle  
Vehicle & 

Environment 
Unique approaches 

[34] Yes 
Partial on 

environmental roads 
Numerical Cost 

Function 

[35] Yes Yes UML 

[36] Yes Vehicles on road 
Discrete Normalized 

Drive Area 

 

[34] focuses on assessing lane-keeping vehicle risk assessment using a symbolic 

numerical approach to optimise the trajectory of AV towards the road's path. 

Therefore, the approach indicates a higher risk if the vehicle is not within the 

lane. The risk value is determined using a numerical cost function model that 

mimics the vehicle's movement along an arbitrary track using low-order 

polynomials. This method's key purpose is to provide a quantitative numerical cost 

function to represent the error in achieving lane-keeping and collision avoidance. 

This error figure allows an objective conversion of risk into Severity instead of 

subjective human intervention. However, it is important to note that the scope of 

this method is limited to vehicle lane-keeping within environmental roads only. 

The simulation results did not address unclear lane markings, which would have 

led to the inability to detect lanes accurately.  

[35] presents a framework for systematically documenting and analysing 

hazardous events and their associated risk causes. This framework leads to a clear 

Fault Tree Analysis [37]. The Unified Modelling Language (UML) model, as 

described in [35], utilises fault-type guide-words and a structured set of scenarios 

to identify relevant risk causes. This is conducted in the context of Hazard Analysis 

and Risk Assessment (HARA) during the requirements engineering process. The 

approach further uses object constraint language validation checks to eliminate 

irrelevant risk causes and map the HARA table to the UML model. The work of [35] 

is similar to the outcomes of the process-based approach except for table-based 

mapping with contextual inputs, which is further strengthened with the use of a 



18 
2.3 Static risk assessment 
 
 
 

 

UML model in [35] to trigger mapping for faster and improved software 

development. This modelling method can be extended to model-based scenarios 

[38] and model-based safety analysis [39] to further enhance the understanding 

of hazardous events and their corresponding safety responses. The UML model 

aims to improve the risk assessment process with a guided approach. However, 

this approach is limited to known lessons learnt and know-how, where the risk of 

undefined scenarios is not included within the UML model. Thus, it is not suitable 

for real-world AV operations. 

In [36], a model is developed to determine the drivable area by projecting the 

vehicular path and considering surrounding vehicles. This model assesses drivable 

areas and measures time to collision as a method of risk assessment. The findings 

of [36] aim to provide a quantitative outcome based on the drivable model and 

time to collision through simulations. These results are intended for use in static 

risk assessment during the development of autonomous vehicles, as mentioned in 

[36]. However, [36] does not take into account of pedestrians and other road 

users, and the model is only demonstrated with simulation. This approach heavily 

relies on a potential risk field, which will be further explained in the section on 

real-time risk assessment. 

Summary of model-based risk assessment 

The model-based static risk assessment approaches listed in Table 2.3 have 

different focus areas. In [34], a cost function is used for lane-keeping and collision 

avoidance, while [35] uses the UML approach to identify the root cause of hazards. 

Additionally, [36] provides a risk indicator for the drivable areas in the vehicles, 

focusing on areas of highways and regulated traffic intersections. [34] and [36] 

quantify certain aspects of hazardous events into numerical representations or 

based on rule-based tables to convert them into numerical ratings. [34] and [36] 

are demonstrated by simulation, which lacks real-world considerations, and [35] 

introduces a model that relies on a process-driven approach, which is only suitable 

during development. Thus, all three works demonstrate static risk assessment and 

neither work is sufficient to be considered for a real-time risk assessment 

approach.  
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2.3.3 Probabilistic-based risk assessment 

The probabilistic-based methodology for risk assessment systematically evaluates 

potential hazardous events and provides quantitative measures based on their 

associated probabilities. Probabilistic-based approaches are divided into two main 

approaches: Bayesian or Frequentist [40]. These two approaches can also be used 

as probabilistic methods to perform AV system risk assessments. Probabilistic 

methods generically provide quantitative measures and are suitable for static and 

real-time risk assessment. Table 2.4 shows [41] and [42] which use probabilistic 

risk assessment to detect occlusion within a scene. Occlusion determines the 

possibility of collision due to objects that are blocked in a normal field of view. A 

higher probability of occlusions indicates a greater risk of collision. 

Table 2.4 Static risk assessment using probabilistic-based methodology 

Research papers 

Static risk assessment (Probabilistic-based) 

Vehicle  
Vehicle & 

Environment 
Unique approaches 

[41] Yes 
Partial for occlusion 

aware 
Cartesian 

[42] Yes 
Partial for occlusion 

aware 
Probability of 

emerging vehicle 

 

[41] identifies object occlusions by considering sensor limitations on unseen areas. 

For example, a radar might only detect object A if object B is occluded by object 

A. Therefore, a potential high collision risk can occur when the undetected object 

B moves towards the radar. This work covers both observed and unobserved 

regions at urban intersections and can be used for route planning or control to 

prevent collisions. However, a clear road layout is required to quantify the risk in 

advance and the limits within the drivable area. 

[42] uses a probabilistic collision risk assessment to estimate the risk of a potential 

collision with a vehicle in an occluded area. This is achieved by identifying the 

most probable chance of an occluded vehicle entering a mathematically defined 

occluded region and then estimating the probabilistic collision risk based on the 
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speed probability of the emerging vehicle entering the boundary of interest into 

the sight of the AV. This technique was demonstrated with alleyways, merged 

lanes and blockage by bulky vehicles and used an assumption that vehicles follow 

predefined roadways and remain within the lanes. However, in real-world 

situations, vehicles might not always follow predefined roadways. Moreover, 

pedestrian occlusion, which is not considered, can also occur within these stated 

scenarios. 

Summary of probabilistic-based risk assessment 

Both methods, [41] and [42], require a precise intersection map with accurate 

road information. They match the current environment to the map data and use 

a probabilistic approach to identify occlusions. This approach assesses risk at a 

broader traffic level rather than from a single AV perspective. These methods are 

designed to enhance static risk assessment using real-world map data. However, 

within the reported work, only simulations are demonstrated without usage in 

real-world AV operations or scenarios. Additionally, they have not been compared 

to real-time occlusion filter techniques, such as the widely used Kalman filter [43]  

that is commonly implemented in existing AVs. It is important to note that these 

methods focus specifically on occlusion, which can be a factor for risk assessment 

considerations. However, they do not address the purpose of risk assessment, 

making them unsuitable for real-time risk assessment purposes. 

2.3.4 Probabilistic and model-based risk assessment 

Probabilistic and model-based methodologies for risk assessment present the 

advantage of having deterministic outcomes with a mixture of quantitative and 

qualitative results. The deterministic nature is extracted from the model-based 

methodology. Table 2.5 shows the use of probabilistic and model-based 

approaches [44-46]. All three approaches are unique and apply to both vehicles 

and the environment. 
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Table 2.5 Static risk assessment using probabilistic and model-based methodology 

Research papers 

Static risk assessment (probabilistic and model-based) 

Vehicle  
Vehicle & 

Environment 
Unique approaches 

[44] Yes Yes 
Modelling of ADS & Probability of 

occurrence of the hazardous event 

[45] Yes Yes 
Probability of damage  

with UML model 

[46] Yes Yes 
Equivalent forced-based theory on 

the traffic safety field concept 

 

[44] proposes modelling of the autonomous driving system into functional blocks 

and, through the functional blocks, to identify and quantify hazardous scenarios. 

The approach attempts to use pre-defined hazardous scenarios to verify and 

validate AV without relying on mileage-based testing. The paper proposes 

theoretical modelling of the autonomous driving system into functional blocks 

and, through the functional blocks, to identify and quantify hazardous scenarios. 

The approach consists of a probability spread of the potential Severity rating 

(related to the classified hazardous scenario) and a probability segmentation of 

the occurrence (based on the hazardous event within scenarios). The final step 

correlates to the concept of ASIL methodology, where there will be a maximum 

probability for each rating. This approach proposed improvement to the HARA 

process by introducing environmental modelling and probability assignment of 

conditions. Therefore, [44] focuses on pre-defined hazardous situations 

categorised under static risk assessment since the autonomous driving system 

modelling aspect requires human intervention to update and refine hazardous 

situations. Moreover, it is not possible to consider all pre-defined hazardous 

situations beforehand. 

[45] uses the probability of damage to assess the context of risk assessment and 

uses a model-based UML class diagram to visualise the hierarchical scenario 

description language for all the descriptive possibilities of scenarios being 

research. The probability of damage is dependent on the probability of collision. 

The collision probability is based on the selected scenario while considering the 
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specified behaviour of the AV. The highlight of this approach resides in the 

detailed involvement of adaptive risk analysis, which considers dynamic scenarios 

in terms of the probability of collision. However, any changes to AV systems, such 

as the UML modelling in [45], will require human intervention. Thus, this work is 

classified under static risk assessment. 

[46] proposed a model that uses equivalent force based on concepts from the 

traffic safety field [47]. It assesses traffic risk by analysing the kinetic energy of 

colliding objects and approximating the risk level based on the actual situation. 

The kinetic energy is then translated into an equivalent force that describes the 

traffic risk. The approach also focuses on tracking multiple uncertainties in radar 

clusters or vision target object occlusion using the dempster-shafer theory 

probabilistic/evidence theory-based detection level, achieved by multi-object 

perception. [46] uses kinetic energy to differentiate between objects without a 

clear identification of the object or consideration of where the object resides 

(road, pavement, etc.). This may cause unwanted risk, and the proposed method 

was mainly demonstrated for straight roads.  

Summary of probabilistic and model-based risk assessment  

[44], [45] and [46] provided quantitative measures involving vehicles and 

environmental considerations with probability theory involved. All three papers 

focus on the domain of vehicles and the environment throughout the development 

lifecycle. [45] and [46] emphasise the significance of identifying collision risks as 

a potential indicator and assessing severity, hazardous events, and their frequency 

of occurrence. Both [44] and [45] relied on some lessons learnt and domain 

expertise to pre-defined hazardous scenarios or UML modelling, which limits their 

real-time applicability. These research also lack realistic examples to illustrate 

their concepts. [46] is limited by its focus on straight roads, which restricts its use 

in real-world deployment in real time. Thus, all three approaches only partly fulfil 

the gap for real-time risk assessments.  
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2.4 Real-time Risk Assessment  

Real-time risk assessment involves evaluating the AV's control actions when a 

hazard is identified during its operations. This control action can be a part of a 

vehicle’s function or movement, and the hazard could stem from vehicle 

malfunction or environmental events. The detection of these actions and hazards 

occurs in real time, using either quantitative or qualitative methods. If the control 

actions or hazardous detection are presented with qualitative outcomes instead 

of quantitative measures, it indicates that these control actions cannot be 

effectively employed in real time. Consequently, this approach is not a 

comprehensive solution and requires further improvements in future development 

phases. This section examines existing research relevant to real-time risk 

assessment, highlighting the strengths, limitations, and areas needing more 

attention.  

2.4.1 Process-based real-time risk assessment 

This section explains three real-time risk assessments using process-based 

methodology, as shown in Table 2.6. All three approaches have their own unique 

approaches and apply to both vehicles and the environment. 

Table 2.6 Real-time risk assessment coverage using process-based methodology 

Research papers 

Real-time risk assessment (process-based) 

Vehicle 
Vehicle and  
Environment 

Unique 
approaches 

[48] Yes Yes 
Dynamic risk 
assessment 

[49] Yes Yes Real-time ASIL 

[50] Yes Yes 
Quantitative Risk 

Norm 

 
 
In [48], a dynamic risk assessment is achieved by implementing a concept of safety 

barriers based on the real-time AV’s task planning process. A safety barrier is an 

obstacle, obstruction, or hindrance that may prevent an action or event from 

occurring. The task planning process selects possible scenarios, assesses each 
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scenario's risk, and chooses the optimal scenario with low risk. The advantage of 

this method is that it provides alternative path planning when a scenario is 

deemed risky. However, the existing safety barrier concept in a process flow-

based configuration may miss out on situations during AV operations. Additionally, 

the approach in [48] has a heavy contextual approach that is difficult for real-

time dynamic use due to the process-based approach. Moreover, the paper did not 

provide illustrative examples to demonstrate the effectiveness of this concept. 

[49] demonstrates another process-based approach using real-time ASIL 

determination as part of the dynamic tactical decision-making framework. The 

vehicle and oncoming object velocity are mapped into a Severity rating within the 

real-time ASIL process. The process will then determine its ASIL rating. 

Thereafter, the decision and control of the real-time ASIL will provide a control 

action. The control action process was explained in a descriptive context without 

simulation or test results to illustrate the process further. One drawback of this 

work is the lack of explanation of how control and exposure are determined in 

real time. Thus, the approach recommended a framework slightly modifying the 

existing ASIL approach using real-time AV elements but only at a framework level. 

[50] proposed tailoring of the HARA process for AV with an approach known as 

quantitative risk norm. The quantitative risk norm measures the frequency of an 

incident with a consequence class, such as fatalities or severe injuries. The 

respective quantitative risk norm is then used to map corresponding safety goals. 

The quantitative risk norm uses an incident classification process to assist in the 

determination of the quantitative risk norm. The drawback of this approach is that 

it requires recording of past incidents for quantitative risk norm to support real-

time safety goals accurately. 

Summary of process-based risk assessment  

[48], [49] and [50] emphasise the importance of measuring real-time performance 

and mainly provide a descriptive process framework. For example, [48] used a 

safety barrier process, [49] proposed a real-time ASIL and [50] suggested tailoring 

HARA with quantitative risk norm process considering the frequency of past 
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incidents and their consequences. In these works, some attempts suggest partial 

conversion of qualitative to quantitative data, but they are insufficient to support 

a real-time end-to-end approach. These works, [48], [49] and [50] also did not 

substantiate the framework with simulation or realistic use cases.  

2.4.2 Model-based real-time risk assessment 

This section explains two existing works of real-time risk assessments using model-

based methodology, as shown in Table 2.7. Both approaches focus mainly on 

vehicle-to-vehicle interactions. 

Table 2.7 Real-time risk assessment coverage using model-based methodology 

Research papers 

Real-time risk assessment (Model-based) 

Vehicle 
Vehicle and  
Environment 

Unique 
approaches 

[51] Yes 
Partial, for vehicle-to-

vehicle 
Risk repulsion 

[52] Yes 
Partial, for multi-

vehicle and weaving 
area 

Risk potential 
field theory 

 

In [51], a quantitative risk figure for collision prevention (in the case of a vehicle-

to-vehicle) is proposed. The concept is based on vehicle risk evaluated using field 

theory [53]. The paper introduces a unique term, risk repulsion, which is inversely 

proportional to time to collision. The risk repulsion figures increase exponentially 

when the difference in speed increases and the distance between the rear and 

front vehicle becomes smaller. In this approach, the real-time crash prediction is 

modelled using risk repulsion.  

[52] further extended the concept from [51] from vehicle-to-vehicle into multi-

vehicle weaving in and out of roads with lane information. The baseline approach 

of [52] builds on the field theory introduced in [53], similar to [51], but increases 

the complexity by considering multiple interfaces among multiple vehicles, as 

opposed to one-to-one communication in [51]. 
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Summary of model-based risk assessment  

Both [51] and [52] have limitations for real-time risk assessment because they only 

detect vehicle risk and not pedestrians. Moreover, both works focus mainly on 

highway lane convergence. In addition, implementing field theory would require 

all vehicles to share their vehicular information with the ego vehicle or backend. 

However, this approach has drawbacks when there is a mixed fleet of vehicles 

with and without connectivity, leading to missed risk when unconnected vehicles 

come close to the ego vehicle. Specifically for [52], a macro view of the traffic 

situation is needed. Ensuring all vehicles have connectivity to the ego vehicle is 

challenging, which may be the reason why results are simulated or calculated but 

lack real-world testing. In summary, both approaches only partially address the 

gaps identified for real-time risk assessment. 

2.4.3 Probabilistic-based real-time risk assessment 

This section explains two real-time risk assessments using probabilistic-based 

methodology, as shown in Table 2.8. This research focuses on using vehicle motion 

and time to collision to determine probabilistic collision risk. 

Table 2.8 Real-time risk assessment coverage using probabilistic-based methodology 

Research papers 

Real-time risk assessment (probabilistic-based) 

Vehicle 
Vehicle and  
Environment 

Unique approaches 

[54] Yes Yes 
Collision risk vehicle and risk 

network 

[55] Yes Yes 
Conditional Monte Carlo 

Dense Occupancy Tracker 

 

In [54], a risk assessment that integrates network-level collision prediction with 

interaction-aware motion models under a bayesian framework was proposed. The 

approach uses dynamic bayesian networks, a form of probabilistic graphical 

model. With this, [54] focuses on the risk of collision at the vehicle and network 

levels. Network level refers to the safety context of the road segment on which 
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the AV is travelling, taking into account safe traffic and collision-prone conditions 

over time. The approach for the network-level collision was supported by basic AI 

classifiers such as k-Nearest Neighbour or Gaussian processes. Two of the unique 

approaches of this proposal are the collision risk network-level and collision risk 

vehicle level. Since a dynamic bayesian network is considered a form of spatial-

temporal approach, there is a forward improvement of the current information, 

which is dependent on the past. Therefore, some basic aspects of learning from 

the past are applied to this approach.  

In [55], the probability of collision risk between the vehicle and the environmental 

object was used. This was achieved by dividing the scene into cells, and the 

collision risk occurs when grids overlap in the future prediction of the vehicle 

movement and the identified object. These cells represent the environment like 

a grid-based system which is known as a conditional monte carlo dense occupancy 

tracker [56], which can estimate the probability of collision for each cell in the 

grid. The mentioned approach in this context also explains the use of time-based 

propagation, which fits well for real-time usage. 

Summary of probabilistic-based risk assessment  

[54] and [55], methods were tested using simulated data and environments. [54] 

suggested that using a dynamic bayesian network could resolve the challenge of 

consolidating extensive data from sensors during real-time risk assessment and 

present the risk of collision with vehicles at the macro level. Moreover, this 

approach focuses on the risk of collision rather than the control actions of the AV 

with its surroundings. Thus, for the AV to perform specific improvements from the 

results of this approach might be challenging. Without specific mention of 

pedestrians, this approach focuses mainly on highways. On the other hand, [55] 

utilised a conditional Monte Carlo dense occupancy tracker method that 

represents the environment as a grid. However, these grids lack further details 

such as environmental classification (e.g., roads and pavements) to assist in risk 

assessment. The method focused only on detecting moving objects with the 

conditional Monte Carlo dense occupancy tracker grid. Both approaches also 

highlighted the importance of real-time risk assessment and suggested that using 
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vehicular-to-vehicle data sharing would be overly intensive for data integration in 

real time. However, both methods have drawbacks, such as not considering 

pedestrians and missed risk when unconnected vehicles come close to the ego 

vehicle. Thus, the presented probabilistic-based approaches are insufficient to 

address the gap identified for real-time risk assessment. 

2.4.4 Probabilistic and model-based 

This section identified one example [57] that illustrates the use of probabilistic 

and model-based real-time risk assessment. [57] considers both vehicle and 

environment and has its own unique approaches of using Bayesian hierarchical 

spatial random parameter extreme value model. 

[57] introduced a safety assessment based on the bayesian hierarchical spatial 

random parameter model based on extreme value theory [58]. This approach 

estimates two real-time safety metrics: the risk of crash and return level, using 

the time to collision as a conflict indicator. For instance, if the time to collision 

is zero as the conflict indicator, the risk of crash is almost certain. Return level is 

measured in terms of safety levels as opposed to risk of crash. Therefore, the risk 

of a crash is used to measure unsafe conditions, while the return level is used to 

gauge safe conditions. To determine the risk of crash, the approach utilises the 

generalised extreme value distribution of the bayesian hierarchical spatial random 

parameter. This method requires historical data, which is obtained from 

trajectory data collected from a fleet of AVs that have traversed a particular 

scenario multiple times.  

[57] employs Bayesian probability techniques and time-to-collision model-based 

methodologies for real-time safety assessment at a macro level, considering a non-

AV perspective. It is designed for the macro traffic level rather than the vehicular 

level. This approach demonstrates the effectiveness of combining a probabilistic 

approach with modelling to enhance risk indicators based on past data.  However, 

some limitations of the approach include its lack of focus on pedestrians and its 

difficulty in implementation from the viewpoint of AVs, as local sensors may have 

limitations in providing a broader macroscopic view. As a result, this approach 



29 
2.4 Real-time Risk Assessment 
 
 
 

 

may be better suited for real-time risk assessment from a city or macroscopic 

perspective instead of an AV-focused viewpoint. 

2.4.5 AI, Neural Network-based real-time risk assessment 

This section provides an overview of how neural networks are used in AV for risk 

assessment. Neural networks can be used statically or in real time as part of the 

AV system or as an end-to-end approach [59]. The use of neural networks in risk 

assessment depends on the methodology used and whether the inference time is 

suitable for real-time operations.  

Supervised learning is typically preferred when it comes to using machine learning 

for safety-critical systems. It serves as the foundational technique for object 

recognition and lane-keeping [60]. Unsupervised learning is utilized to identify 

patterns and trends with unlabeled data or as a redundancy system [61] to 

enhance the basic AV system. In recent years, reinforcement learning algorithms 

have been employed to support path-planning goals with rewards [62].  

From another perspective on general AI, an alternative method of classification 

was described in [63] and [64], where AI is further categorised into physics-based 

[43, 56], manoeuvre-based [65] and interaction-aware-based models [54, 57, 66]. 

With the growing trend of utilising cameras in AV, computer vision-based neural 

networks have also become fundamental within an AV system for risk assessment. 

This falls into the particular area of manoeuvre-based approaches with the 

detection of motion patterns. Therefore, before reviewing real-time risk 

assessment using AI, a background introduction will be explained first on how 

neural networks for computer vision are used for AV.  
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Different types of neural networks for computer vision used within AV 

Table 2.9 neural network for computer vision used within AV 

Research papers Unique approaches 

[67] Object detection  

[68, 69] Semantic segmentation 

[70, 71] Panoptic segmentation 

[72] Instance segmentation 

 

Table 2.9 shows different types of neural networks for computer vision used within 

the AV [67-72]. 

Object detection [67] and instance segmentation [72] are used for countable 

objects, while semantic segmentation [68, 69] aims to identify uncountable 

objects such as pavements, roads, and offroad regions to identify the scene. On 

the other hand, Panoptic segmentation [70, 71], identifies both landscapes and 

object identification. However, increased inferencing time for each image results 

in low frames per second and renders them unsuitable for real-time [73] purposes. 

Similarly, for instance segmentation, more inferencing time is needed as it 

performs object detection first and thereafter, semantic segmentation of the 

identified object. 

Object detection is a widely used technique in AV [67] in recent years. It began 

with traditional detectors such as histogram of oriented gradients [74], which 

posed challenges in adjusting the bounding box for different dynamic scenes and 

rotation by creating blocks within images. Deformable part models [75] recognise 

objects using a combination of graphical models with root filters, part filters, and 

spatial modes. While these traditional detectors achieve a high level of accuracy, 

they have a detection time of less than one frame per second, making them 

unsuitable for real-time processing [76]. Real-time risk assessment requires a 

detection rate of at least 10 frames per second to match the data acquisition of 

an input camera and allows sufficient time for the AV to react. 
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With the introduction of deep learning, techniques such as convolution neural 

network based two-stage Detectors like region-based convolutional neural 

networks [77] use regional proposals to achieve a higher accuracy but with more 

inferencing time (up to a few seconds per image). Faster region-based 

convolutional neural networks [78] reduce the inferencing time and can achieve 

up to 5 frames per second with a mean Average Precision (mAP) of 42.7% and 

Intersection Over Union (IOU) of 0.5 using Common Objects in Context (COCO) 

dataset. However, two-Stage detectors have difficulty achieving real-time for 

typical edge systems deployed in AV. Therefore, the coarse-to-fine processing for 

the two-stage detector results in missing events between frames from an input 

camera. One-Stage Detectors like Single-Shot Detector (SSD) [79] and variants of 

You Only Look Once (YOLO) are considered suitable in object detection to balance 

frames per second and accuracy. SSD [79] achieved a mAP of 46.5% with IoU of 0.5 

with 59 frames per second using COCO dataset to obtain improvements to the 

multireference and multiresolution technique for small objects. This was 

considered acceptable for the frame per second, but the mAP is relatively low for 

real-time usage.  

The evolution of YOLOv5 from YOLOv3 (comparable to SSD) surpassed the 

performance of SSD with VOC07 dataset a mAP = 63.4% (on the large model), with 

IoU of 0.5 and 45 frames per second. In recent years, YOLO variants such as 

YOLOv6, YOLOv7 and YOLOv8 have been released, focusing on the accuracies with 

IoU ranging from 0.5 to 0.95. In Figure 2.4, it is shown that YOLOv6, YOLOv7 and 

YOLOv8 have mAP improvements as compared to YOLOv5. However, this is at the 

expense of higher latency. Therefore, models (like tiny (n), small (s), medium (m), 

large (L) and extra-large (x)) should not be compared among different versions of 

YOLO without looking at the parameters defined (in millions), as illustrated in 

Figure 2.4 (the machine used in the graph is based on A100 TensorRT). In real-

world applications, machines like A100 TensorRT will not be easily available nor 

installed in an AV. Thus, there is a trade-off between latency and accuracy. 

Latency also plays an important role in the product cost and overall system 

performance. 
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Figure 2.4 Comparison of YOLOv5, v6, v7 and v8 performance 

In terms of semantic segmentation, matured methods include Fully Convolution 

Network [80], DeepLab [81], and Pyramid Scene Parsing Network (PSPNet) [82]. 

With comparisons in [82], PSPNet achieved the highest mean IoU across classes 

with 82.6% followed by DeepLab score of 71.6% and Fully Convolution Network 

with 62.2%. PSPNet inferencing time is better than that of the Fully Convolution 

Network and DeepLab, as shown in [83]. However, as research progressed, the 

performance of semantic segmentation improved over recent years with new 

models such as Image Cascade Network (ICNet) [83], Semantic segmentation 

Network [84] and Efficient Neural Network [85]. Among the three new models, 

ICNet has the highest mean IOU with 69.5%, but it is lower than PSPNet (82.6%). 

ICNet in [83] illustrated a performance of 21 frames per second using a Titan X 

GPU, whereas in another research, PSPNet in [86] recorded 11 frames per second 

using a Nvidia GeForce GTX 1070 Ti (which is closer to Jetson than V100). ICNet 

had a lower mean IoU, which was traded for higher frames per second than 

PSPNet.    

Panoptic segmentation in [73] illustrates that even single-stage panoptic 

segmentation requires up to 100 ms of inference time, with most models requiring 

as high as 200-300 ms. A two-stage panoptic segmentation minimally requires 160  

ms inferencing time. In the case of instance segmentation [72], performance 

requires similar inferencing time compared to panoptic segmentation. 

This section reviewed the suitability of different neural network computer vision 

techniques for real-time risk assessment. It is concluded that panoptic 
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segmentation and instance segmentation are unsuitable for real-time risk 

assessment, while object detection has the highest capability, followed by 

semantic segmentation.  

Table 2.10 Real-time risk assessment coverage using neural network-based methodology 

Research papers 

Real-time risk assessment (neural network-based) 

Vehicle  
Vehicle & 

Environment 
Unique approaches 

[87] Yes Yes Risk metric 

[88] Yes For vehicle 
Deep Predictive Model  
(Bayesian ConvLSTM) 

[89] Yes Yes Uncertainty measurement 

[90] Yes Yes 
Failure detection of Semantic 

Segmentation 

[91] Yes Weather 
Using YOLO to detect Sandy 

Weather environments 

 

Table 2.10 shows a list of different neural network-based real-time risk 

assessments.  

In [87], Convolution Neural Network (CNN) captures the AV's front image and 

divides it into three sections: normal, caution and warning. The author intends to 

reduce the operational process needs of CNN to provide an end-to-end paradigm 

to provide risk directly from the camera input. The image is then fed to a risk 

metric calculator tool [92] to obtain a risk figure. The risk metric calculator 

divides the scene into grid boxes and measures the number of unoccupied boxes. 

The higher the number of unoccupied boxes, the risk is lower as it measures 

between the autonomous vehicle and its surroundings. [87] demonstrated the use 

of deep learning neural networks as a form of risk assessment through unoccupied 

grid boxes that represent risk. 

In [88], Bayesian convolution long short-term memory is used as a form of deep 

predictive model (DPM) as an elevated approach from CNN [87]. The approach is 

similar in getting the risk related to the time of collision using vision-based deep 
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learning techniques. This predictive approach incorporates temporal information 

during decision-making, multi-modal information (i.e. camera and vehicle 

command) about the environment, and information about the uncertainty of DPM 

inherent in the prediction. The main objective is to improve vehicle safety by 

predicting future vehicle collisions in time to activate driver warning systems to 

recognize and anticipate dynamic catastrophic events beyond the immediate time 

horizon.  

[89] used residual networks 8 (ResNet8) [93] to pre-process the Lidar images to 

detect small vehicles that occupy small grid cells, followed by Faster Region-based 

convolutional neural network pipeline to generate the bird's eye view 3D region 

proposals, followed by the use of deep neural network as the intermediate layers 

to extract uncertainties. Furthermore, entropy and mutual information 

techniques are used to classify uncertainty into epistemic or aleatoric. As 

compared to the generic approach, where neural networks are used to train and 

detect an object, uncertainties are typically not considered. The interesting result 

demonstrates that epistemic uncertainty is related to vehicle detection accuracy 

while the vehicle distance and occlusion influence aleatoric. This research 

outcome demonstrated an improvement of 1% to 5% in terms of detection.  

[90] designed a deep neural network to predict the mean Intersection Over Union 

(mIoU) of the segmentation map without ground truth and introduce a new loss 

function for training imbalance data. The objective is to predict the mIoU and also 

detect the failure cases using the predicted mIoU. The approach uses the Efficient 

Spatial Pyramid of Dilated Convolutions for Semantic Segmentation network [94] 

to extract the features from the images. The failure cases are then detected by 

the fully convolution network for mIoU prediction. [90] is a good approach if the 

AV system depends highly on semantic segmentation but has an impact to the 

inferencing time and results in loss of image frames. This is verified by a minimum 

run time of at least 0.5 seconds for a frame, which is needed for a fully convolution 

layer to provide good failure detection.  

[91] uses object detection such as YOLO with augmentation to identify sandy 

environments in addition to foggy, snowy and rainy environments. This study 
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perform tests with  different YOLO models in an empirical approach with different 

activation functions and added augmentation with detection in adverse weather 

dataset. 

Summary of AI, Neural network-based risk assessment  

With all the AI, Neural network-based real-time risk assessments, [87] illustrated 

using CARLA simulation with real-time intentions. However, no latency figures 

were given and with low accuracy based on the CNN model. [88] looked into a 

method for near-collision prediction using camera and AV information to trigger a 

collision avoidance system. This particular approach mainly focused on assessing 

risks at the vehicle level. It did not consider creating a risk assessment framework 

for pedestrians or accounting for the surrounding landscape. [89] presented a 

method for measuring uncertainty in deep learning models, aiming to improve the 

detection accuracy of 3D lidar using a high-quality training dataset in the Resnet 

architecture. However, this method was not designed to compute risk. 

Additionally, there was a focus on improving the accuracy of mIOU prediction [90] 

and using object detection, such as YOLO with augmentation, to identify sandy 

environments for AV in real time [91]. However, neither of these methods 

demonstrated the ability to perform risk assessment coverage by mapping results 

to a risk assessment framework like HARA, making it challenging to quantify risk. 

In summary, existing AI, Neural network-based risk assessment in Table 2.10 

showed that either 1) models not suitable for real-time performance with 

insufficient frames per second or 2) insufficient coverage for the AV vehicle and 

environmental detection that are not mapped to risk assessment outcomes. Thus, 

an end-to-end approach from the input to a determined risk assessment in real 

time is needed to fulfil real-time risk assessment coverage. 

2.4.6 Cooperative mode 

Cooperative mode is evolved from existing VANET that originated in the early 

2000s. Initially, VANET was a mobile ad-hoc network connecting vehicles using the 

IEEE 802.11p standard. With the advent of Dedicated Short Range Communication 
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(DSRC)/V2V, it transitioned to a new name Vehicle-to-everything (V2X) [95]. As 

cellular 5G has become more prevalent in recent years, V2X has evolved into using 

5G infrastructure and is now known as Cellular-Vehicle-to-Everything (C-V2X or 5G 

sidelink) [96]. The advancement of 5G has led to reduced access times and 

increased bandwidth, heightening VANET's focus on safety-critical concerns such 

as risk factors. Initially, VANET was primarily for entertainment features, vehicle 

internet connectivity, and telematics functions. 

Consequently, due to the limitations of AV sensors, AVs face challenges in 

anticipating obstacles beyond the sensors’ limit. Therefore, infrastructure-based 

systems like Infrastructure-to-Everything (I2X) or Cellular-Infrastructure-to-

Everything (C-I2X) can assist AVs in planning, particularly at high levels of 

automation, where the efficiency and safety of AV systems heavily depend on 

timely information and low latency. The need for dynamic driving task fallback 

for SAE Levels 4 and 5 further emphasizes this demand. 

The general concept of cooperative mode for AVs encompasses various 

communication modalities such as V2V, V2I, I2V, and I2X, while the 

communication itself can be either DSRC or Cellular. 

Existing cooperative methodology used for AV real-time risk assessment  

Table 2.11 shows the list of cooperative mode methodologies to support real-time 

risk assessments for AV.  

[97] illustrates a model-based methodology, while [98-100] uses a probabilistic 

and model-based methodology, and [101] and [102] use neural network and AI-

fuzzy logic, respectively. [98, 100, 101] and [102] are suitable for V2X, where [97] 

and [99] focus on V2V only.  
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Table 2.11 Real-time risk assessment coverage cooperative mode methodology 

Research papers 

Real-time risk assessment (cooperative mode) 

Vehicle  
Vehicle & 

Environment 
Methodology &  

Unique approaches 

[97] Yes V2V 
Model-based 

Model Predicitve Control 

[98] No V2X 
Probabilistic and model-based 

Contextual risk-based approach 

[99] Yes V2V 
Probabilistic and model-based 

Human-Centric active safety (co-
driver), 

[100] No V2X 
Probabilistic and model-based 

Global collision risk 

[101] No V2X 
Neural Network 

PCA-BP 

[102] No V2X 
AI-based 

Fuzzy risk-based approach 

 

[97] used Model Predictive Control (MPC), which involves the optimization of a 

performance index concerning future control sequences and the use of predicted 

output signals based on a process model [103]. In this architecture, all the 

information from V2V is fused with sensors and radars, providing location and 

motion estimation. These results are passed to the rule-based multi-traffic 

prediction block. This block uses MPCs to make predictions for both latitudinal 

and longitudinal aspects. The outcome can be computed as a collision risk 

assessment, resulting in a probability figure.  

[98] proposed a unique use of a contextual risk-based decision approach. The 

approach consists of a simple probability distribution known as risk values of all 

the detected parameters collected from V2V, such as lane information, road 

conditions, traffic congestions, weather, speed and time. Thereafter, the risk of 

a particular vehicle is determined by the likelihood and impact based on the 

information collected. The strength of this approach provided some aspects of 

model conversion of environment information into potential risk factors. However, 

this approach did not explain the formulation of the tables with indexes and 

whether they were determined in real time or only during development. This could 

limit real-time risk assessment determination during AV operations. 
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[99] used human modelling and probability to mimic the human-centric active 

safety control that focuses on the “intervention moment” based on prior research 

findings from [104]. This “intervention moment” occurs when an intervention 

point is crossed, representing the probability of vehicle collision. This 

“intervention moment” is the best trade-off between maximum collision risk and 

predicted human reaction time and acts as a baseline of safety in the AV that 

mimics human intervention in terms of 1) active safety and 2) reaction time of 

safety actions. 

[100] translated every vehicle into its risk estimation based on two distinct 

components: collision probability and severity of the collision. For example, Lidar 

sensor data shows a risk of detected obstacles or collision with the front vehicle 

that applies sudden braking; both can be analysed using the methodology 

mentioned above. When multiple sensors are used, a further global collision risk 

can also be determined at the AV level. The global collision risk figure takes the 

maximum risk figure among each of these measured sensor sources. At the macro 

level, if all the AV share their perceived risk values, the identified scenario for 

the entire driving context can create an average risk estimator known as 

augmented collision risk – which is the average of all individual local vehicles to 

establish this risk figure. This average risk value is similar to the approach used in 

[105]. The latter demonstrates that using V2V relays and passing information 

sharing risk values from one vehicle to another allows the eventual host vehicle 

to have additional warning time by notifying of risk while moving towards a 

hazardous event. However, the approach did not include environmental 

considerations affecting AV safety other than the information received from other 

connected vehicles. The approach focuses mainly on safety improvements of using 

V2V but not on determining the risk assessment of AV operations. 

[101] demonstrated the use of neural networks in cooperative mode risk 

assessment methodology using VANET, stating the specific use of Principal 

Component Analysis (PCA) to decorrelate the features in the infrastructure traffic 

data set and recombine them into a set of linearly independent features. 

Thereafter, a back-propagation neural network is used to train the predictive 
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model. In order to predict the driving risk of a vehicle using the data collected via 

VANET, their results are compared with the typical support vector machine 

approach [106]. The comparison showed a 3% to 8% improvement across the 

different testing records. The inclusion of PCA also contributes 1% to 2% to the 

improvement mentioned. However, the approach in [101] is at a macro level on 

driving risk instead of AV-centric. Thus, the AV control actions are not measured 

for risk and therefore, it is challenging to recommend safer AV operational 

improvements. 

[102] demonstrates using an AI fuzzy risk-based decision method for cooperative 

risk assessment methodology. The proposed concept uses vehicle context 

parameters such as lane, weather, time, traffic, road and speed, and driver’s 

attributes such as age and experience to determine risk. This risk is based on 

different weights used for the vehicle context and driver attributes multiplied by 

the impact. The extension includes further classifying the traffic and speed into 

low, medium, and high risk, improving mapping function formation, and 

determination of the weights of vehicle contextual parameters, threats, and 

drivers' attributes.  

In summary, the works presented in Table 2.11 had theoretical, simulated or 

emulated scenarios tested, which might not represent real-world AV deployment. 

[97] and [99] was simulated using Matlab, Simulink and Carsim. [100] used SiVIC-

RTMaps and VEINS with emulated scenarios, while [102] used VEINS with the 

recommendation of a framework, and [98] was presented as a theoretical 

framework. Both [98] and [102] lack a demonstration of how contextual 

information can be converted from images into text or numbers to fit into the 

framework for usability. Thus lacking an end-to-end approach. [101] analyses past 

accident data to gain accident risk prediction but depended too heavily on 

cumulative past accident data without considering near-miss or risky scenarios. 

All works in Table 2.11 were AV-centric except [101], which used a data analytical 

approach. [97] and [99] demonstrated V2V focus using the location and proximity 

between the host and the remote AV without considering pedestrians or scenarios 

with traffic lights and intersections. [100] explained the use of V2X to pass 
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information from one vehicle to another to improve safety, but without 

considering the increased latency that it will incur in real-world scenarios. All 

scenarios focus heavily on AV to AV (V2X) or AV to infrastructure (V2X). There is a 

missing gap in the infrastructure to provide AVs with advanced risk identification 

or even I2I sharing of risk information before sending it to the vehicle. A lack of 

end-to-end solution explaining a specific method was also evident. 

2.5 Identified gaps in existing works and selection of 
topics for research approaches 

This section presents a synopsis of the gaps between current methodologies and 

the need for real-time risk assessment. Each of the reviewed methodologies is 

compared against the need to enhance the safety of AV operations further. The 

existing risk assessment has limitations, as stated in the motivation of this 

research, which are: 1) inability to perform risk assessment of the AV’s control 

actions based on the detected hazards during AV operations in a real-world 

environment, 2) inability to provide granular environmental risk information that 

can represent even near misses, 3) inability to improve subsequent AV safety 

actions based on current operations without a new development cycle.  

• Static process-based methodology: These approaches primarily rely on 

subjective humanistic qualitative decisions based on past lessons learned 

and know-how. As such, the outcome assists in determining a set of pre-

defined safety actions for the AV based on past lessons learnt and know-

how in a subjective approach that defines the hazards. Thus, this 

methodology confirmed the limitations of the existing approach. 

• Static model-based methodology: These approaches aim to quantify 

hazardous events through numerical representations. Some works also 

incorporate rule-based tables, which convert contextual inputs into 

numerical ratings. This shows progress towards objective risk assessment, 

but the methodology is still unable to fulfil the identified limitations. 
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• Static probabilistic-based methodology: Existing works demonstrate their 

utility in occlusion detection, which could be added as a component to be 

considered an improvement for risk assessment at the AV level. However, 

they lack the representation of a complete risk assessment process. 

• Static probabilistic and model-based methodology: This methodology 

provides a quantitative approach using vehicle-to-vehicle environmental 

information. However, it is still confined to assessing collision risks between 

vehicles, where time-to-collision figures between vehicles do not entirely 

cover the risk. Moreover, these approaches do not account for pedestrians, 

unregulated traffic scenarios, and risk measurement during AV operations. 

• Real-time process-based methodology: In these works, rule-based tables 

are demonstrated to perform partial conversion of qualitative to 

quantitative outcomes. However, end-to-end approaches with explained 

frameworks, concrete algorithms, or any form of test results with 

deployment are lacking that could demonstrate the use of these approaches 

for AV operations. 

• Real-time model-based methodology: This methodology focuses on vehicle-

to-vehicle aspects without considering pedestrian risk. Calculations and 

simulations were conducted without illustrating an end-to-end approach 

required for real-world AV operations use. 

• Real-time probabilistic-based methodology: Existing works require scene 

and vehicle information to be used in their methodology without 

considering pedestrian risk. In some works, the importance of 

environmental detection was included, but no specific classes of 

environmental identification were achieved. Only simulated data was used 

for these works, without real-time testing. The outcome of these 

approaches was unable to measure the AV's control actions and assist the 

AV in subsequent safety action improvements.  
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• Real-time probabilistic and model-based methodology: These works focus 

on safety assessment at a macro level from a non-AV point of view. It is 

suitable for AV fleet management, traffic accidents, and safety predictions 

but is unsuitable for risk assessment from an AV point of view. 

• Real-time AI, neural network-based methodology: It is recognised that in 

terms of computer vision for real-time detection, object detection, and 

segmentation are suitable for use. Due to performance and inference time 

issues, the existing models may not be suitable for real-time 

implementation. Within these proposed approaches, specific domains of 

perception are explained as a component for safer AV, but they lack an 

end-to-end approach that can accurately represent the real-time risk 

assessment for AV operations. 

• Real-time cooperative mode methodology: These works prioritise vehicle 

aspects without adequately addressing environmental factors such as 

unregulated scenarios and pedestrians. The focus remains largely on V2V 

without considering the impact of accumulated latency. There is a lack of 

work on infrastructure to support risk identification from a non-AV 

perspective and supply remote risk warnings to the AV prior to reaching the 

infrastructure location. 

The above summary provides an overall critical review of existing work in AV risk 

assessment. From the review, the progression from process-based to other 

methodologies illustrates the importance of moving its approach from subjective 

to objective based risk assessment. This requires the conversion from qualitative 

to quantitative risk assessment outcomes. Existing works provided mostly partial 

work of risk assessment considerations, often lacking a framework for risk 

assessment. Those with a clear framework focus on the process's improvements 

and lack real-world technical illustrations and examples of deployment. On the 

other hand, those with a clear methodology presented simulated results, without 

any real-time trials, pilot or deployment. Thus, an overall real-time risk 

assessment framework is needed, encompassing an objective end-to-end approach 
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that covers key aspects of vehicles and pedestrians risk within unregulated traffic 

in real time. In addition, an infrastructure-based remote risk warning should be 

available to identify hazardous events before the AV arrives. This assists the AV in 

identifying risk without the implication of complex real-time processing and 

bandwidth requirements that will affect AV operations. 

2.6 Summary 

The existing static risk assessment is deemed insufficient to perform a risk 

assessment for AV operations. Thus, there is a need for real-time risk assessment. 

This is because the control/safety actions from risk assessment accomplished 

during the development phase are insufficient to identify and resolve all situations 

considered during the development phase. Some control/safety actions might 

even bring adverse effects to passengers within the AV. Thus, a real-time risk 

assessment is needed to monitor the control actions of the AV with the identified 

risk or hazardous event. With this identified gap, existing works are reviewed 

based on static and real-time risk assessment to determine if these works could 

provide coverage for the identified gap based on different methodologies. Through 

this review, existing works have yet to propose a real-time framework for risk 

assessment, mapping sufficient vehicle and environmental situations, and 

illustrating the methodology with an end-to-end approach. Existing works for 

cooperative mode were also reviewed for remote support of hazardous detections. 

The review showed that there is a lack of risk assessment for AV to be supported 

by infrastructure, while a significant focus remains on V2V. The cooperative 

mode's existing approach presents a challenge regarding data integration and 

latency for sharing information between AVs. Therefore, the proposed solution to 

mitigate the identified gaps in existing systems and works should consider seven 

key aspects. 1) The solution should consist of an end-to-end methodology. 2) The 

approach should be objective without any humanistic involvement. 3) The solution 

should provide granular levels of risk assessment that would measure the risk 

performance of the AV. 4) The approach must be capable in real time processing 

that matches the input information of a camera. 5) The outcome should be 

lightweight instead of creating large amounts of data that require computationally 

intensive AV processing. 6) The solution should focus on areas of unregulated 
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traffic with high risk. 7) The solution should support V2V or I2V operations. These 

aspects are considered as requirements towards the proposed framework and its 

cooperative mode, which are discussed in chapter 3. 
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Chapter 3 

3 Real-time risk assessment framework and 
cooperative mode  

In chapter 2, the gaps between static risk assessment and real-time risk 

assessment for AV operations are identified. The existing approach, which 

revolves around static risk assessment focusing on component-level failures or 

malfunctions as hazards during development, falls short of ensuring safer AV 

operations. Consequently, to mitigate the gaps, this thesis proposes a Real-time 

Risk Assessment Framework (ReRAF) within the AV and an infrastructure-based 

Real-time Risk Assessment Cooperative mode (ReRAC) as an additional system to 

bolster the safety of existing AV systems and provide advanced risk identification 

and timely warnings remotely in real time. ReRAF is intended for use within the 

AV to measure how well the AV mitigates its detected environmental risk, while 

ReRAC assists the AV by identifying risk and hazardous events beyond its sensory 

limits in the vehicle to enhance safe AV operations. ReRAF and ReRAC are 

developed using key requirements for risk assessment, adapted from ISO26262 and 

HARA, while simultaneously addressing the identified gaps. Furthermore, ReRAF 

and ReRAC focus on unregulated traffic scenarios that have not been research in 

previous studies. These scenarios pose greater risks to AVs and road users, thus 

requiring further assistance. The recursive data obtained from ReRAF are used to 

dynamically adjust the AV’s safety goals and enhance path planning in real time.  
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3.1 Adaptation of key requirements  

The key requirements for risk assessment reference from ISO 26262 and HARA 

include the following: 

• Severity: represents the extent of harm that may be caused to the driver, 

AV system, and other occupants when a hazard occurs. 

• Controllability: represents the extent to which the driver or AV system can 

control the vehicle in a hazardous scenario. 

• Occurrence: represents the possibility of a system failing or being in a 

hazardous scenario. 

The current risk assessment process is static, as it is conducted during the 

development phase by completing a risk assessment document filled with 

descriptive content. Static risk assessment defines a fixed severity/risk with a 

control action based on a particular scenario decided by a specific developer, and 

the risk associated with it does not change. Moreover, the severity of a hazard 

and the controllability of the system are determined based on the knowledge of 

the developers, which can vary between individuals and organisations. For 

example, the severity of detecting a pedestrian on the pavement can have 

different interpretations of risk from different developers. As a result, the static 

risk assessment is considered subjective and qualitative. 

On the other hand, real-time risk assessments measure dynamic severity/risk with 

control actions in real time. The severity of the environment is assessed by 

assigning a risk value in accordance with the dynamic situation, as well as the AV's 

corresponding control and safety actions. Thus, a framework and cooperative 

approach is proposed to enhance the static risk assessment to achieve a real-time 

risk assessment. This enhancement is achieved by incorporating quantitative 

measurements instead of a qualitative approach. Different safety action 

improvements are planned through quantitative measures compared to 

fundamental collision avoidance. These different safety actions assist the AV in 

being safer for passengers and road users surrounding the AV. For example, the 
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severity of detecting a pedestrian on the pavement is strictly based on a uniform 

quantitative risk measurement of objects detected within different landscapes 

(pavement or roads). Through these measures, the AV can deploy different safety 

actions to avoid sudden braking or steering according to the real-time exposed 

risk. This approach objectively evaluates severity, control, and occurrence, 

regardless of the developers involved or the organisation, allowing for a 

standardised measurement in real-time and real-world contexts. Therefore, the 

key components for real-time risk assessment are adapted as follows: 

• Severity: a quantitative figure representing the risk of the detected hazard 

resulting in a potential collision with the AV. 

• Control: a quantitative figure representing the autonomous driving system 

response to the detected hazard. 

• Occurrence: a quantitative figure representing the average of past risk 

assessment outcomes at the AV level or the probability of occurrence for 

remote warnings at specific locations and time durations. 

In addition to the adapted key requirements from ISO 26262 and HARA, seven 

requirements are summarised from the identified gaps in section 2.5, forming the 

added requirements for the novel creation of ReRAF and ReRAC. These are listed 

below. 

1. The solution should be an end-to-end methodology. 

2. The approach should provide an objective outcome instead of a subjective 

translation of severity and/or control through human intervention. 

3. The solution should provide a more granular level of risk assessment in 

place of a simple rule-based table to illustrate different risk levels. 

4. The proposed approach must be capable of real-time processing in terms of 

frame per second. 

5. The outcome should be lightweight, thus reducing complexity in data 

integration. 
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6. Testing should take place in areas of unregulated traffic where high-risk 

indications can help to avoid accidents 

7. The solution should support V2V or I2V operations. 

3.2 Overview of Real-time Risk Assessment Framework 
(ReRAF) and Real-time Risk Assessment Cooperative 
mode (ReRAC) 

The objective of ReRAF is to provide a real-time risk assessment of the AV’s control 

actions based on the detected environmental hazards within the AV, which 

existing static risk assessments do not measure in real time. ReRAC, on the other 

hand, provides the AV with remote real-time risk and hazard warnings based on 

the nearest infrastructure setup. This section provides an overview of the two 

approaches, their design concepts, and their respective methodology. 

Figure 3.1 shows an overview of ReRAF and ReRAC. ReRAF resides within a Risk 

Assessment Module (RAM), an independent system that assesses the AV's risk while 

operating in real time. RAM contains a database that stores the risk assessment 

outcomes with the given timestamp in the spatial and temporal domains. Existing 

camera systems within the AV provide the environmental scene to the ReRAF. 

These environmental scenes are converted into a risk figure known as Severity. 

Severity is defined as a risk figure representing a potential collision between the 

AV and the detected object residing on roads or pavement. With environmental 

risk, the AV’s response to these severities is known as Control. Control is 

determined by parametric inputs, which include steering, speed, brake, and 

throttle. ReRAF then determines the real-time risk assessment based on Severity 

and Control. These risk assessment outcomes are stored in the AV database. 

Occurrence is determined from the accumulated risk assessment results in the 

database, and potential hotspots at different locations over different iterations of 

AV operations are identified. The 5G connectivity is for receiving remote risk and 

hazard warnings from ReRAC and data synchronisation with the backend database. 

Lastly, the localisation provides temporal and spatial information as timestamps. 
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Figure 3.1 Overview of ReRAF and ReRAC 

ReRAC resides within a Road Side Unit (RSU) and provides the severity of the 

hazardous event detected from the environmental scene through an RSU camera 

mounted at an elevated height for more extensive environmental coverage. The 

Occurrence is represented by past ReRAC data from the accumulated information 

in the RSU’s database. Since ReRAC is infrastructure-based with fixed geolocation, 

ReRAC only considers Severity and Occurrence. The ReRAC outcomes are sent to 

the backend database via 5G. The AVs receive the remote risk and hazard warnings 

via the backend database (I2V) through its 5G modem based on their proximity to 

the RSU using the AV’s current location and path routing as a reference. With 

multiple RSUs installed and ReRAC deployed, the outcomes of each RSU are 

consolidated at the backend. The AV only pulls the data from the RSU nearest to 

the location of the AV. 

3.3 Real-time Risk Assessment Framework (ReRAF) 

This section explains the design concept of ReRAF, its methodologies and 

algorithm, tested scenarios, and datatype illustration. The design concept is 

formulated based on the requirements identified in section 3.1. Various 

methodologies are employed to meet these requirements, culminating in the 

development of ReRAF's algorithm. These methodologies are then tested in 
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selected unregulated traffic scenarios, and examples of ReRAF data and their 

datatypes are illustrated. 

3.3.1 AV ReRAF design concept 

This section explains the design concept of ReRAF. Specifically, it describes the 

conversion of adapted Severity and Control into quantitative outcomes. These 

outcomes are Risk Tag (RT) figures, Control Tag (CT) figures, Predicted Risk 

Number (𝑃𝑅𝑁), AV’s Time To Collision (AV-TTC), and Occurrence used for real-

time risk assessment.  

 

Figure 3.2 Overview of ReRAF 

 

Figure 3.2 shows the overview of ReRAF. ReRAF obtains its location and 

timestamps from existing information within the AV. These timestamps and 

locations serve as references for ReRAF to capture input images from the camera 

and vehicle controls from the AV. Vehicle controls include braking, throttle, speed 

for longitudinal movements, and steering for lateral movements. The camera 

images are analysed to detect hazardous events, which are then converted into a 

real-time RT figure. The RT figure indicates the severity of the hazardous event 

detected, and it varies according to the distance to the AV, the classes and the 
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location of objects. The braking, throttle, speed, and steering information form a 

normalised CT figure. The RT and CT figures are used to determine the 𝑃𝑅𝑁 and 

AV-TTC. The 𝑃𝑅𝑁 represents how effectively the AV responds to the detected 

hazardous object from the camera. The range of detection will be limited by the 

elevation of the camera within the AV. The AV-TTC provides a reference for object 

collision with the AV. The 𝑃𝑅𝑁 is then sent to AV control and path planning for 

safer operations and is archived in both RAM's database and via a 5G modem to 

the backend database. By using recursive AV operations, the 𝑃𝑅𝑁 and Occurrence 

optimise future operations for a safer path without requiring additional 

development cycles. For example, the optimisation could involve actions such as 

reducing the operating speed of the AV if a high 𝑃𝑅𝑁 and Occurrence is 

consistently observed in certain geographic regions or increasing the operating 

speed if no 𝑃𝑅𝑁 and Occurrence are observed.  

3.3.2 ReRAF methodologies and its algorithm 

With the stated design concept for ReRAF, different methodologies are identified 

to achieve the seven requirements in addition to Severity, Control, and 

Occurrence, as highlighted in section 3.1. This section explains the detailed 

methodologies used to create the ReRAF’s algorithm, providing the respective 

outcomes.  

Figure 3.3 shows how the inputs are linked to ReRAF's methodologies and 

algorithm, which provides outcomes to other modules within the AV and backend 

databases. ReRAF's methodologies and algorithm generate RT figures and AV-TTC 

from object detection, scene segmentation, and probabilistic modelling. At the 

same time, the CT figure is derived from normalised parametric control inputs. 

The RT, CT figure and AV-TTC are timestamped with localisation information from 

the AV. The RT and CT figures determine the 𝑃𝑅𝑁, while Occurrence is calculated 

from recursive 𝑃𝑅𝑁 data over time. The selected methodologies objectively 

generate detailed, recursive outcomes in real time. Converting image and 

parametric data into a quantitative number makes the data lightweight and 

efficient for transfer to the backend database over 5G connectivity.  
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Figure 3.3 ReRAF’s methodologies and algorithm that links to the corresponding outcomes 

 

Risk Tag (RT) figure 

The RT figure represents the severity of potential collisions between the AV and 

the objects detected on roads or pavement. This RT figure is obtained by capturing 

the environmental risk observed by the AV camera at specific landscapes. This 

process happens in real time and provides a quantitative figure representing the 

risk of encountering pedestrians and vehicles on roads or pavements, which are 

essential for the AV to identify to prevent collisions. This quantitative figure must 

be granular, considering factors such as types of objects, landscape, and the 

distance to the AV. Therefore, it is identified that achieving this outcome requires 

three different methodologies to create the ReRAF’s algorithm: 1) object 

detection, 2) scene segmentation, and 3) risk probabilistic modelling.  

1) Object Detection is used to identify pedestrians and vehicles from the 

scene in real time with outcomes that relate to the frame per second. Based 

on the literature review for object detection, One-stage detector provides 

results suitable for real-time inferencing. Thus, in this research, YOLOv5 

small model is selected, configured with approximately 7.2 million 

parameters with a mAP of 38% based on IoU of 0.5-0.95. As the research 

progresses, YOLOv8 is also available, and using it with similar parameters 



53 
3.3 Real-time Risk Assessment Framework (ReRAF) 
 
 
 

 

achieves an estimated 3-5% improvement for mAP. The popularity of 

YOLOv5 became widespread for many applications [107-110] and forms the 

basis of many recent research journals in the area of transport. Examples 

include vehicle and pedestrian detection with precision values between 

83.2% to 97.3% and recall values from 72.8% to 95.3%. The dependencies of 

these results are highly dependent to the amount of datasets being trained 

and tested. The outcomes of YOLO variants provide the object's 

classification and localisation in the scene with bounding boxes. More 

details on the use of YOLOv5 application performance for ReRAF will be 

discussed in chapter 5.  

2) Scene segmentation is used to identify landscape scenes, for example, like 

roads, pavements, or other elements. Semantic segmentation [69] is the 

most suitable for uncountable landscapes, and to process the outcomes in 

real time, they are given in frames per second. Based on the literature 

review in section 2.4.5, PSPNet is identified as having the best mean IoU. 

PSPNet is used in conjunction with YOLOv5 to provide an overall balance 

model with speed in object detection and a high pixel accuracy for 

landscape scene detection. For example, YOLOv5 provides frames per 

second ranging between 25-30, while PSPNet provides landscape detection 

at 10 frames per second using an Nvidia AGX Jetson. In this process, the 

PSPNet identifies roads and pavements, and a novel step was taken to add 

rows to the results of the PSPNet, which enabled the mapping of a scene 

into a matrix. Further examples are illustrated in chapter 5. 

3) Probabilistic modelling provides a novel way to quantitatively represent 

the likelihood of collision between the detected object and the AV while 

considering the landscape scene. This probabilistic model is based on the 

probability of collision, where the detected object in the front row 

represents a definite collision as it is nearest to the AV. As the object moves 

further away from the AV, the probability of collision reduces. The size of 

the matrix from scene segmentation is used and populated with the 

probabilistic model. Besides considering the probability of collision with the 
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AV in terms of distance, the risk levels between road and pavement are 

also differentiated by assigning different weights for road and pavement. 

Therefore, when the corresponding object is detected, RT figures are 

obtained from a matrix determined within a process known as Risk Tagging 

and Mapping.  

 

Figure 3.4 Example of probabilistic modelling for risk tagging and mapping 

Figure 3.4 shows an example of how an RT figure is determined based on 

probabilistic modelling. This includes considering the probability of 

collision between the detected vehicle and the AV and the road's weight 

classification.   

The outcome is an RT figure of a scene that considers the landscape 

classification, the type of object detected, and their AV collision 

probability. The RT figure of a scene is represented as equation 3.1. 

𝑅𝑇𝑆𝑈𝑀 = ∑𝑅𝑇𝑀𝑟𝑧  𝑟𝑧  𝑅𝐷𝑝𝑚

𝑟𝑧

 (3.1) 

where, 

𝑅𝑇𝑆𝑈𝑀 : Sum of all RT figures within the scene 

𝑅𝑇𝑀𝑟𝑧 : Scene segmentation into matrix 

𝑅𝐷𝑝𝑚 : Risk detection probabilistic modelling 

𝑟𝑧 : 2D weight classification for road and pavements 
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Control Tag (CT) figure 

The CT figure represents the measurement of the AV’s parametric control or 

safety actions. This CT figure is determined using AV parametric controls such as 

speed, throttle, steering, and braking. These parametric controls are chosen 

based on studies in [111] that identify changes in hazard perception based on 

driver behaviour. They are used as a reference for AV that represents the AV's 

longitudinal and latitudinal movements. The parametric controls are obtained 

from the drive-by-wire system, and information is connected to the ReRAF using 

a ROS system. The raw inputs are converted from analogue to digital value, 

followed by a normalisation process. Each parametric input is attached with an 

individual weight if further emphasis is required. The normalised inputs with their 

weights are used to determine a single CT figure, similar to the tagging process in 

[112] for real-world scenarios used to assess the performance of AV operations. 

The combined single CT figure represents the AV’s controllability during risky and 

hazardous events. The CT figure is represented as equation 3.2. 

𝐶𝑡𝑟𝑙 =
1

3
(𝐵𝑛𝑊𝐵 + 𝑇ℎ𝑛𝑊𝑇ℎ + 𝑆𝑡𝑛𝑊𝑆𝑡 + 𝑆𝑝𝑛𝑊𝑆𝑝) 

(3.2) 

 

where, 

𝐶𝑡𝑟𝑙 : CT figure 

𝐵𝑛 : Normalised brake values 

𝑊𝐵 : Weight of brake values ranging from 1 to 10 (default set at 10) 

𝑇ℎ𝑛 : Normalised throttle values 

𝑊𝑇ℎ : Weight of throttle values ranging from 1 to 10 (default set at 10) 

𝑆𝑡𝑛 : Normalised steering values 

𝑊𝑆𝑡  : Weight of steering values ranging from 1 to 10 (default set at 10) 

𝑆𝑝𝑛 : Normalised speed values 

𝑊𝑆𝑝 : Weight of speed values ranging from 1 to 10 (default set at 10) 
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Predicted Risk Number (𝑷𝑹𝑵) 

𝑃𝑅𝑁 is derived using RT and CT figures, which resemble the risk priority number 

used in FMEA [113]. Each scene captured by the image represents a descriptive 

scenario with a dataset of quantitative figures. RT figures are obtained from 

different object classes, i.e. vehicles and pedestrians. Each object class will have 

its own normalised RT figures, and a combined RT figure is obtained by averaging 

the normalised RT figures across classes. The combined RT figure is used with the 

CT figure to determine 𝑃𝑅𝑁. 𝑃𝑅𝑁 can be used as a reference to trigger for safer 

operations, for example, to reduce sudden steering, braking or throttle. However, 

the intent is not to replace existing active ADAS to prevent accidents. After several 

rounds of operation within the designated route, the accumulative 𝑃𝑅𝑁 values, 

RT figure, and CT figure provide further comparative analysis between each route 

using Descriptive Statistics [114] to highlight risky scenarios and indicate the 

overall safety level of each route.  

The outcome of 𝑃𝑅𝑁 is a quantitative figure that represents how the AV mitigates 

and detects hazardous objects in terms of AV movements. 𝑃𝑅𝑁 is obtained in real 

time with data that corresponds to frames per second and in a lightweight format. 

Occurrence 

Occurrence in ReRAF is represented in both macro and micro approaches. The 

macro approach consists of averaging the PRN within a region. Each region has its 

own latitudinal and longitudinal grid limits. The PRNs with geolocation that fall 

within the same region are averaged. The geolocation of the AV is represented as 

latitudinal and longitudinal coordinates obtained via positioning systems such as 

the global navigation satellite system. These “regions” provide a PRN visualisation 

for the overall route. The micro approach considers the average 𝑃𝑅𝑁 over “X” 

number of trips along the same route to identify hotspots. These visualisations 

using 𝑃𝑅𝑁 highlight the Occurrence of high risk areas. Therefore, these 

visualisations assist the AV for future path planning based on the average 𝑃𝑅𝑁 and 

identified hotspots of a particular area and time. 
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3.3.3 Scenarios for ReRAF 

Existing work for risk assessment test scenarios are categorised mainly in lane 

keeping or collision prevention [34, 51, 54, 98], lane overtaking [97], highways 

[115-117], and regulated junctions with traffic lights [118]. One of the identified 

gaps is to focus on unregulated traffic in urban areas with no traffic lights to 

govern the right of way. ReRAF is tested on scenarios representing unregulated 

urban traffic with unknown hazards or near-misses.  

Table 3.1 ReRAF scenarios to be tested 

Scenarios Area of focus 

Straight paths with or 
without zebra crossings 

 

Pedestrians 

The AV is approaching crossing pedestrians on the 
road with or without zebra crossing. 

 

T-junctions without 
traffic lights 

 

 

Vehicle 

AV makes a right turn out of the pocket at the T-
junction, where another vehicle is driving straight. 
The T-junction may have a yellow box. 

Pedestrian 

AV makes a right turn from the main road of a T-
junction into a minor road where a pedestrian is 
crossing. The T-junction may have a yellow box. 

Cornering 

 

 

Vehicle 

AV either stops or overtakes a stationary vehicle 
observed after the bend. 

Pedestrian 

AV stops after the bend when it sees a pedestrian 
crossing. The pedestrian crosses the road either 
with or without a zebra crossing. 
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Table 3.1 provides a descriptive explanation of the scenarios. ReRAF focuses on 

performing an objective quantitative real-time risk assessment from the AV’s 

perspective in those scenarios by measuring the parametric controls from the 

detected hazards. 

3.3.4 ReRAF database and datatype information  

The data generated from ReRAF outcomes are archived in RAM’s database as well 

as the backend database. Table 3.2 illustrates ReRAF’s outcome collected over 

different timestamps within a route. Besides the timestamp in UTC, this data 

consists of geolocations, RT figures, CT figures, Speed, Throttle, Brake, Steering, 

and 𝑃𝑅𝑁. This data is archived in real time with frames per second. Since the data 

are all in numerical figures instead of images or video, the requirement of being 

lightweight is fulfilled. 

Table 3.2 Sample of database information from ReRAF 

Timestamped 1660208498743 1660208506174 1660209408931 16602097218903 

Latitude / 
Longitude 

1.3327739848895932 
103.77396689657913 

13326502615048932 
103.77415563192062 

13317647997644944 
103.77347463552277 

1332502014753533 
103.77642532359344 

Speed 20.96 5.55 15.2 12.44 

Throttle 0.12 0.79 0.68 0 

Brake 0 0 0 0.95 

Steering 0.05 0.95 0.05 0.21 

Pedestrians 0 1 4 0 

Pedestrians 
RT figure 

0 9 22 0 

Vehicles detect 1 12 0 0 

Vehicles 
RT figure 

2 2 0 0 

CT figure 2.292 6.261 3.69 4.89 

𝑃𝑅𝑁 2.292 46.959 10.149 0 
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Table 3.3 shows the parameters and datatypes within the datasets. A sequence ID 

generator is used as the primary ID for the backend database. Each parameter 

provides a description of the scene using quantitative figures without any human 

interpretation. This information can also be formed as meta-data embedded into 

the scene for future reference. For example, detected pedestrians and vehicles 

are defined as integers, while RT and CT figures are non-negative float numbers. 

Table 3.3 Parameters and its datatype for ReRAF 

Parameters Datatypes  Parameters Datatypes 

Timestamps UTC format  Pedestrians Integer 

Latitude / 
Longitude 

Double (degrees)  
Pedestrians  
RT figure 

Float (non-negative, 
max to 100) 

Speed Float type (km/h)  Vehicles detect Integer 

Throttle 
Normalised Float 
(non-negative) 

 
Vehicles 

RT figures 
Float (non-negative, 

max to 100) 

Brake 
Normalised Float 
(non-negative) 

 CT figures 
Float (non-negative, 

max to 10) 

Steering 
Normalised Float 
(non-negative) 

 𝑃𝑅𝑁 
Float (non-negative, 

max to 100) 

 

3.4 Real-time risk assessment with cooperative mode 
(ReRAC) 

This section provides an overview of the design concept of ReRAC, along with its 

methodologies, algorithms, tested scenarios, and database ensemble. ReRAC 

functions as a remote warning system for AVs by retrieving data from the backend 

database in real time. The backend database consolidates the ReRAC data from 

all the RSUs. The AV only retrieves ReRAC data from the nearest RSU in its path 

of travel. Since ReRAC is part of an infrastructure with a fixed location, only 

Severity and Occurrence are relevant in addressing the identified gaps for real-

time risk assessment. Developing ReRAC's algorithm required various 

methodologies, which were then tested in unregulated traffic scenarios. This 

section also includes examples of ReRAC's data ensemble. 
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3.4.1 AV ReRAC design concept 

The ReRAF design concept converts camera images into real-time figures 

representing severity. Additionally, ReRAC provides RSU Time To Collide (RSU-

TTC), Occurrence, and hazard identifications and warnings, which address the 

requirements for real-time risk assessment. 

 

Figure 3.5 ReRAC design concept 

Figure 3.5 shows that ReRAC operates within the RSU with camera(s), local 

database, fixed geolocation with timestamps, and a 5G modem to connect to the 

backend server. The fixed geolocation with timestamps provides the essential 

reference for the data created from ReRAC. The camera input scenes are 

converted into RT figures that represent Severity. The process of deriving RT 

figures for ReRAC is slightly different from that of ReRAF since the scene is static 

within the infrastructure. Besides RT figures, ReRAC also provides outcomes such 

as RSU-TTC and hazard identifications and warnings. RSU-TTC is the time a 

collision may occur between the detected object and a reference location “X” in 

the camera’s scene. The overall time to collision between the AV and the detected 

object requires adding the calculated time for the AV to arrive at the reference 
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location “X” and the RSU-TTC. Hazard identification and warnings are advanced 

alerts for the AVs, especially in situations where pedestrians or vehicles may be 

obscured, or where there are traffic jams or accidents before the AV arrives to 

the RSU’s location. These alerts are triggered when pedestrians or vehicles reside 

at the intersection or when there are vehicle-to-vehicle, or vehicle-to-pedestrian 

proximity within the road section or intersection of a T-junction. These ReRAC 

outcomes are sent to the backend database via 5G connectivity, while the AV 

retrieves this information when they are in proximity to the infrastructure 

location.  

3.4.2 ReRAC methodologies and its algorithm 

This section explains how the ReRAC methodologies and algorithm provide the 

required outcomes based on the input camera in the RSU. The ReRAC outcomes 

consist of RT figure, RSU-TTC, hazard identifications and warnings, and 

occurrence. 

 

Figure 3.6 ReRAC’s methodologies and algorithm that links to the corresponding outcomes 

Figure 3.6 illustrates how ReRAC methodologies and algorithm utilise camera input 

to produce the desired results. The methodologies and algorithm consist of risk 

zoning, object detection, and probabilistic modelling presented in a time series  
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format. The outcomes of these methodologies and algorithm include hazard 

identifications and warnings, RSU-TTC, RT figure, and occurrence. These 

outcomes are continuously processed in real time. Similar to ReRAF, the data in 

ReRAC is quantitative rather than qualitative, making it efficient and easily 

transferable over 5G connectivity when operating in cooperative mode.  

Risk Tag (RT) figure with RSU field of view  

The RT figure represents the severity of potential collision between the reference 

location “X” and the object detected on roads or pavement. This RT figure used 

in ReRAC is achieved through qualitative to quantitative conversion of images to 

risk figures. The aim is to identify pedestrians/vehicles in the image captured by 

the RSU camera within a selected field of view and thereafter provide a numerical 

risk presentation using probabilistic modelling. Since the objective is to provide a 

risk representation of the environmental view using the RSU, the camera is 

mounted at a height of 3 to 5 m above ground level. At this height, the efficiency 

of object detection is higher, thus minimising occlusion. The object detection used 

for risk tagging is similar to ReRAF where YOLOv5 is used. Compared to RT figure 

for AV in ReRAF, the scene is considered static in ReRAC with a fixed field of view 

and location. The methodologies used to achieve RT figures for ReRAC include 1) 

risk zoning, 2) probabilistic modelling and 3) object detection (similar to ReRAF).   

1) Risk zoning is an important initial step in the ReRAC methodology. It helps 

to define areas of interest within the scene, such as roads, pavements, and 

off-road areas. In other fields, risk zoning is used to identify potential 

hazards, such as landslides [119], typhoons [120], and snow disasters [121], 

by quantifying hazardous areas and assigning a probability to different 

regions. In this context, risk zoning involves labelling different risk ratings 

in specific areas within the camera's field of view. This process converts 

contextual landscape road, pavement or offroad into a quantitative figure 

known as weights. During the initial setup, the field of view is divided into 

rows and columns to create a risk zoning matrix. Therefore, this matrix is 

used to map the localisation of detected pedestrians and vehicles through 

probabilistic modelling. The risk zoning process is explained in chapter 4 
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with illustrated examples. It is worth noting that risk zoning methods differ 

from risk field theory [51], which focuses on vehicle-to-vehicle collision 

using the force repulsion concept, whereas risk zoning uses a probability-

model approach. 

2) Probabilistic modelling is designed specifically for ReRAC to provide the 

reference location “X” with a varying probability of collision based on the 

detected object in the scene. Three different probabilistic models have 

been developed to represent different coverages within the area of 

interest, which will be further explained in chapter 4.  

3) Object detection in ReRAC uses the YOLOv5 model to detect pedestrians 

and vehicles, where the outcome provides the localisation of the detected 

pedestrians and vehicles in the scene. This process is similar to the object 

detection used for ReRAF. 

The eventual RT figure is obtained by mapping the detected pedestrians or 

vehicles to the different zonal areas of the risk zoning matrix, including 

probabilistic modelling. The RT figure is represented as equation 3.3. 

𝑅𝑇𝑓𝑖𝑛𝑎𝑙 = ∑𝑂𝐷𝑟𝑧  ∘ 𝑟𝑧  ∘  𝑅𝐷𝑝𝑚

𝑟𝑧

 (3.3) 

 
where, 

𝑅𝑇𝑓𝑖𝑛𝑎𝑙: Sum of RT figures within a scene  

𝑂𝐷𝑟𝑧: Object detection matrix 

𝑟𝑧: 2D risk zoning matrix 

𝑅𝐷𝑝𝑚: Risk detection probability modelling 

 

Hazard identifications and warnings 

Hazard identifications and warnings aim to provide remote event warnings to the 

AV at unregulated T-junctions, especially in situations where the scene is 

obstructed or obscured from the AV's path of travel. These hazard identifications 
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and warnings allow the AV to make better and more informed decisions for their 

intended path planning before they arrive at the RSU location.  

Table 3.4 presents various hazard classifications, including four hazard 

identifications and two warnings. Hazard warning detection is specifically 

designed for intersections, providing advanced notice to the AV if certain objects 

are present in the intersection. Based on this warning, the AV can make decisions 

to either slow down before reaching the intersection if the warning persists or 

maintain its current speed if no warning is received. Hazard identifications 

operate by detecting the proximity of vehicle-to-vehicle or vehicle-to-pedestrian 

at the road section and intersection. This advanced information assists the AV in 

upcoming path planning to handle potential congestion or accidents. The path 

planning may involve slowing down as it approaches the identified hazard or 

preparing an alternative route, especially if the hazard continues for a period of 

time. 

Table 3.4 Hazard Detection Classification 

Hazard 
Classification 

Modality 
Description 

Hazardous 
warning 

Pedestrians 

 

Vehicles 

 

Provide a boolean 
detection when a 
pedestrian or 
vehicle is 
detected in the 
intersection zone. 

Hazard 
identifications 

Vehicle-to-vehicle 

 

(a) On road 

Vehicle-to-vehicle 

 

(b) Within the 
intersection 

Provide a boolean 
detection when 
two or more 
vehicles are 
detected within 
the same road or 
intersection zone. 

Vehicle to 
pedestrian Vehicle to 

pedestrian 

Provide a boolean 
detection when a 
pedestrian and 
vehicle are 
detected within 
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(a) On road 

 

(b) Within the 
intersection 

the same road or 
intersection zone. 

 

The outcomes of hazard identifications and warnings are presented in boolean 

statuses, aiding the AV in minimizing sensor integration and processing time for 

advanced planning in response to detected hazardous events. 

RSU Time To Collide (RSU-TTC) 

RSU-TTC is a countdown in sub-seconds that reflects the time to collide from the 

detected pedestrian/vehicle to the reference location “X” within the risk zone. 

The AV uses this countdown to determine its overall time to collision from the AV 

to the detected objects from the RSU. 

 

Figure 3.7 Time to collision parameters 

Figure 3.7 illustrates an example of a pedestrian who is detected after a bend. 

ReRAC provides an estimated RSU-TTC based on the detected pedestrian, 

assuming the AV is at the reference location "X". This information is sent to the 

AV. By adding the Time-to-arrive determined by the AV, the overall collision time 

from the AV to the detected pedestrian is determined. The Time-to-arrive is 

determined based on the distance between the current AV location and the 
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reference location “X” over the AV’s operating speed. Since the AV operates in 

real time, the overall time to collision will be continuously updated with AV and 

pedestrian movements. 

RSU-TTC is determined based on the distance between each row via pixel mapping 

[122]. Thus, the distance between the detection object (x,y) to the position 

marked “X” is determined accordingly with the calibrated data on a pixel per 

distance. The RSU-TTC from the reference location “X” to the detection object 

can be calculated using the road section's speed limit as a reference.  

The outcome of RSU-TTC assists the AV in obtaining an advance time to collision 

countdown if an object is detected within the area of interest of the RSU. This 

assists the AV in making informed safety decisions, knowing if there is a risk of 

collision in situations with occluded scenes.  

Occurrence 

Occurrence in ReRAC is represented by observing the number of objects detected 

within each zonal area of the risk matrix. The distribution of object detection 

within the risk matrix will identify hotspots where the most pedestrians or vehicles 

appear. This information can be provided to the AV for future path planning.   

In summary, ReRAC’s methodologies consist of risk zoning, probabilistic modelling, 

and object detection, forming ReRAC’s algorithm to provide the required 

outcomes. The details are further explained in chapter 4.  

3.4.3 Scenarios for ReRAC 

ReRAC is tested on specific unregulated traffic scenarios to address gaps in 

existing risk assessments, which are considered the most risky for pedestrian 

crossings. These scenarios cover occlusions before cornering, T-junctions and 

double T-junctions with pedestrian crossings. Additionally, specific scenarios have 

been selected to test hazard identifications and warnings for its intended design. 

Table 3.5 illustrates the different scenarios identified from unregulated traffic for 
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testing RT figures. Each scenario illustrates a single RSU with ReRAC installed at 

that location. Each RSU can have a single or multiple camera to detect different 

risk zoning scenarios. 

Table 3.5 ReRAC scenarios to be tested for RT figures 

Scenarios Area of focus 

Cornering/bends 

 

© 2022 IEEE 

The AV is moving towards a bend, and with 

its sensor limitations and occlusion from 

the building, it cannot detect pedestrians 

crossing through paths 1 or 2. ReRAC with 

the RSU provides remote advanced risk 

information to the AV, representing the 

scenario. 

T-junctions without traffic lights 

 

© 2022 IEEE 

The AV can either travel straight or turn 

right. As the AV turns right, there is a 

potential collision with the pedestrian 

crossing at path 1. If the AV travels 

straight, the AV will have to react to the 

dashing pedestrian at path 2. ReRAC with 

the RSU provides remote advanced risk 

information to the AV 

Double T-junctions without traffic 
lights 

 

© 2022 IEEE 

There are three possible paths for the AV, 

with two of them similar to the T-junctions, 

while the third path refers to the AV turning 

left into the pedestrian crossing path 2. 

ReRAC with the RSU provides remote 

advanced risk information to the AV 

 

Table 3.6 shows the scenarios tested for ReRAC’s hazard identifications and 

warnings. Each scenario illustrates a single RSU with ReRAC installed at that 
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location. Each RSU can have a single or multiple camera to detect different risk 

zones within different scenarios. 

Table 3.6 ReRAC hazard identifications and warnings to be tested 

Scenarios  
(Note that yellow box  

demarcation is optional) 
Area of focus 

Hazard warning (Pedestrian) 

 

Hazard warning occurs when a pedestrian is 

crossing within a T-junction's intersection. 

Hazard warning (vehicle) 

 

Hazard warning occurs when a vehicle drives 

within the T-junction's intersection. 

Hazard identifications 
(vehicle-to-vehicle) 

 
(a) On road 

 
(b) Within an intersection 

 

In (a), hazard identification happens on the 

road when two or more vehicles are close to 

one another. 

 

In (b), hazard identification happens within 

the intersection when two or more vehicles 

are detected within the intersection defined 

at the beginning of the setup. 

Hazard identifications 
(vehicle to pedestrian) 

 
(a) On road 

 
(b) Within intersection 

In (a), a hazard identification happens on the 

road when a nearby pedestrian is detected 

close to a vehicle. 

 

In (b), a hazard identification happens within 

the intersection when a nearby pedestrian is 

detected close to a vehicle within the 

intersection defined at the beginning of the 

setup. 
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3.4.4 ReRAC database and datatype information 

The ReRAC data is archived in the RSUs and backend databases via 5G 

connectivity. Table 3.7 illustrates ReRAC data and its datatype from the RSU’s 

database. The dataset includes the RT figures, pedestrian detection, vehicle 

detection, RSU-TTC, and Hazard identifications and warnings. The backend 

database has a relational model-based schema based on a cluster of RSU within a 

region of geolocations. 

Table 3.7 shows an example of the information stored and its datatype in ReRAC’s 

RSU. Each parameter provides a quantitative figure that represents a descriptive 

context of the scene without any human interpretation. Table 3.7 provides 

pedestrian and vehicle RT figures and RS-TTC for both directions (d1, d2). The 

reference location “X” are different for different directions of travel. Examples 

with detailed explanations will be given in chapter 4. 

Table 3.7 Sample of database information from ReRAC 

Data description Data Datatype 

Timestamped 1701665595.311925 UTC format 

Area of Interest (AOI)  1 Char 

Pedestrian detection  
 

5 Integer 

Pedestrian  RT figure [d1,d2] 
 

[19.2, 17.4] (float, non-
negative up to 100) 

float, non-negative, max 
up to 100 

Pedestrian RSU-TTC [d1,d2] 
 

[1.35, 1.35] Float 

Vehicle detection  
 

3 Integer 

Vehicle RT figure [d1,d2] 
 

[18.0, 15.0] 
float, non-negative, max 

up to 100 

Vehicle RSU-TTC [d1,d2] 
 

[ 0.9, 1.35] float 

Hazard identifications and 
warnings 

True/False Boolean 

 



70 
3.5 Summary 
 
 
 

 

3.5 Summary 

This chapter explains how ReRAF and ReRAC are developed from requirements 

into methodologies with the intent to address the identified gaps between static 

and real-time risk assessment for safer AV operations. The key requirements for 

static risk assessment are adapted for real-time risk assessment. Furthermore, the 

identified gaps between static and real-time risk assessment are turned into 

additional requirements for creating ReRAF and ReRAC. To meet these 

requirements, various methodologies are identified for developing algorithms to 

produce the ReRAF and ReRAC outcomes. The purpose of each methodology is 

detailed, providing explicit reasoning for their implementation. ReRAF is designed 

for use within AV and provides 𝑃𝑅𝑁 and AV-TTC figures to measure the risk of AV’s 

control actions towards the detected hazardous events through its camera and 

parametric controls. ReRAC operates within the RSU and sends RT figures with 

RSU-TTC and hazard identifications and warnings to the AV via a backend server, 

thus avoiding risks, potential accidents, and road congestion. Together, the 

outcomes from ReRAF and ReRAC are used to achieve better path planning and to 

improve AV safety controls. Additionally, this chapter includes descriptive 

reasoning of different unregulated traffic scenarios used to test ReRAF and ReRAC. 

Examples of ReRAC and ReRAF data with defined parameters and their datatypes 

are also illustrated in this chapter. 
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Chapter 4 

4 Real-time risk assessment with cooperative 
mode 

In chapter 3, ReRAC is proposed as an infrastructure-based approach to improve 

the coverage of static risk assessment. This is achieved by providing remote 

advanced warnings to the AV from the RSU. Additionally, chapter 3 identifies the 

requirements and methodologies to develop ReRAC’s algorithm. This chapter 

further details these methodologies, forming the novel ReRAC algorithm, Spatial-

Temporal Risk Evaluation Ensemble Technique (STREET). STREET provides various 

outcomes in real time consist of risk tag (RT) figures, time to collision between 

reference location “X” and detected object (RSU-TTC), object Occurrences and 

hazard identifications and warnings. This chapter also introduces and explains 

three unique probabilistic models that aid in remote risk detection for different 

coverages within the area of interest. Unregulated traffic scenarios such as 

cornering is used to test STREET’s RT figures with different probabilistic models, 

while a T-junction is employed to test for hazard identifications and warnings. 

These results demonstrate STREET's capability to fulfil the intended functionality 

of ReRAC. 
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4.1 Spatial-Temporal Risk Evaluation Ensemble 
Technique (STREET) algorithm 

This section explains the theoretical formulation of STREET methodology and 

illustrates the process. By using these methodologies, STREET converts the input 

images from the RSU’s camera into RT figures, Occurrences, RSU-TTC and hazard 

identifications and warnings. The methodologies used include risk zoning, 

probabilistic modelling, and object detection techniques, specifically YOLOv5. 

The primary outcome of STREET, known as the RT figure, is a quantitative figure 

representing the risk of collision between the detected object and the reference 

location “X” within the Area Of Interest (AOI). Additionally, RSU-TTC is provided 

to the AV to determine its overall time to collision based on the RSU’s reference 

location “X”. Other information includes Occurrence that represents the 

probability of pedestrian detection over historical data in the AOI. Lastly, risky 

events are identified using hazard identifications and warnings for remote event 

warnings.  

 

Figure 4.1 Block diagram of STREET algorithm within the RSU 

Figure 4.1 shows that the STREET algorithm begins by preparing risk zoning. Risk 

zoning is an initial setup that annotates the AOI in the scene from RSU’s camera, 

categorising roads, pavements and offroads with rows that convert the scene into 

a matrix. Different weights are then assigned to the roads, pavement and offroads 
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since they have different risk of collision. As a result, a 2D risk zoning matrix is 

formed. The size of the 2D risk zoning matrix is further used by probabilistic 

modelling. Three unique probabilistic models are developed, Linear Internal 

Distribution (LID), Aggressive Exponential Distribution (AED), and Conservative 

Exponential Distribution (CED). LID, CED and AED utilise different probability of 

collision distributions across the zonal areas, resulting in different AOI coverage. 

The probability of collision is defined between the zonal area and the reference 

location “X”. The size of the 2D risk zoning matrix is used in the object detection 

process to map the detected object's location into the zonal areas of the matrix, 

thus forming an object detection matrix. The RT figure (𝑅𝑇𝑓𝑖𝑛𝑎𝑙), RSU-TTC 

(𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒) and hazard identifications and warnings are determined by the 

outcomes of risk zoning, selected probabilistic model, and object detection. The 

probability of occurrence, 𝑃(𝑂𝑐𝑐), is determined based on the cumulative object 

detection matrix over time when determining the RT figure. The following 

subsections provide detailed derivations and illustrations of each process 

outcome. 

4.1.1 Risk zoning of the environment 

This section explains the process of risk zoning. Risk zoning is a rule-based matrix 

mapping methodology based on the contextual scene. This process is required only 

for the initial setup, which manually identifies zonal areas for roads, pavements 

and offroads and converts them into a 2D risk zoning matrix. Risk zoning 

demarcates the real-time camera image into different zonal areas in a 7-step 

process as follows: 

 

Step 1:  Select road section(s) with the high 

volume of pedestrians and vehicles using 

the field of view of the RSU camera.  

Step 2:  Define the selected AOI based on the 

field of view. 
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Step 3:  From the direction of travel, indicate 

the reference location “X” using the 

corresponding geolocation.  

Step 4:  Measure or determine the total distance 

(𝐷𝑡𝑜𝑡𝑎𝑙) of the AOI section either from 

physical measurements or indications 

from the source of the available map. 

 

Step 5:  Determine the number of rows (rowsint) within the AOI based on equation 

4.1. 𝑟𝑜𝑤𝑠𝑖𝑛𝑡 is derived from the division of 𝐷𝑡𝑜𝑡𝑎𝑙 by 𝑡𝑟𝑒𝑠𝑝 which 

represents the expected driver response in [123], 𝑉𝑚𝑎𝑥 represents the 

maximum speed limit of the road and 𝑉𝑓 represents the safety speed 

ratio. The number of rows is inversely proportional to the expected 

driving responses (𝑡𝑟𝑒𝑠𝑝) and speed limit (𝑉𝑚𝑎𝑥). 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡 =
𝐷𝑡𝑜𝑡𝑎𝑙

(𝑡𝑟𝑒𝑠𝑝 ∙ 𝑉𝑚𝑎𝑥 ∙ 𝑉𝑓)
 

(4.1) 

where, 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡: maximum number of rows determined 

𝐷𝑡𝑜𝑡𝑎𝑙: total distance of the AOI section 

𝑡𝑟𝑒𝑠𝑝: time of driver response as a reference 

𝑉𝑚𝑎𝑥: defined speed limit on the selected AOI. 

𝑉𝑓: Safety speed ratio (e.g if the AV driving speed is 70 km/h, and the 

speed limit is 80 km/h, then Vf = 70/80) 

Step 6:  The roads, pavements and offroad are 

manually demarcated from the AOI into 

columns. The columns together with the 

rows defined in step 5, split the AOI into 

zonal areas. These zonal areas are 

assigned red for roads, yellow for 

pavements and green for offroad. 
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Step 7:  The 2D risk zonal matrix (𝑟𝑧) is then obtained by mapping the AOI into 

risk zonal areas with weights in equation 4.2. Table 4.1 illustrates the 

assignment of weights with colour categorisation for each zonal area 

referencing methods used for road safety in [124]. The weights represent 

a look-up table of risk levels correlating to offroad, pavements, and 

small or main road configurations. Roads represent the highest risk, 

followed by pavements and offroads. Equation 4.2 converts the scene 

into a 2D risk zonal matrix with weights that quantify the risk of the 

landscape. 

𝑟𝑧 =

[
 
 
 
 
𝐺𝑙𝑟𝑜𝑤 𝑌𝑙𝑟𝑜𝑤 𝑅𝑟𝑜𝑤 𝑌𝑟𝑟𝑜𝑤 𝐺𝑟𝑟𝑜𝑤

. . . . .

. . . . .
𝐺𝑙2 𝑌𝑙2 𝑅2 𝑌𝑟2 𝐺𝑟2

𝐺𝑙1 𝑌𝑙1 𝑅1 𝑌𝑟1 𝐺𝑟1 ]
 
 
 
 

 

(4.2) 

 

where, 

rz: 2D risk zonal matrix 

𝐺𝑙𝑟𝑜𝑤: green left zonal area with row numbers 

𝑌𝑙𝑟𝑜𝑤: yellow left zonal area with row numbers 

𝑅𝑟𝑜𝑤: red zonal area with row numbers 

𝐺𝑟𝑟𝑜𝑤: green right zonal area with row numbers 

𝑌𝑟𝑟𝑜𝑤: yellow right zonal area with row numbers 

 

With 𝐷𝑡𝑜𝑡𝑎𝑙  of the AOI and rows determined in steps 4 and 5, the distance 

for each row 𝐷𝑥 is illustrated in equation 4.3. 

𝐷𝑥 =
𝐷𝑡𝑜𝑡𝑎𝑙

𝑟𝑜𝑤𝑠𝑖𝑛𝑡
 

(4.3) 

where, 

𝐷𝑡𝑜𝑡𝑎𝑙: total distance of the AOI section 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡: maximum number of rows determined  

𝐷𝑥: distance of row 𝑥 
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Correspondingly, the time taken for the vehicle to travel in each row is 

defined as 𝑡𝑥 in equation 4.4 using a linear approach. 

𝑡𝑥 =
𝐷𝑥

𝑉𝑚𝑎𝑥
 

(4.4) 

where, 

𝐷𝑥: distance of row 𝑥 

𝑉𝑚𝑎𝑥: speed limit on the selected AOI. 

𝑡𝑥: time taken for the AV to travel each row 

 

Table 4.1 Weight for different risk zonal areas 

Zonal areas category Weights Scene definition 

Red 10 Dual lane main road conditions 

Red 9 Dual lane small road conditions 

Yellow 8 Dedicated Pavement, shared path or parking lots 

Yellow 7 Single lane pedestrian Pavement 

Green 6 Accessible pathways away from pavement  

Green 5 Thin accessible pathways away from the pavement 

Green 4 Green grass patch away from the pavement 

Green 3 Tall green grass patch away from the pavement 

Green 2 Barricaded pathways 

Green 1 Non-accessible paths with short walls 

Green 0 Non-accessible paths 

 

The size of the determined 2D risk zonal matrix 𝑟𝑧 have rows and columns that 

match the AOI of the camera’s scene. This size of the 2D risk zonal matrix will be 

used in other parts of the STREET algorithm. 

4.1.2 Risk detection matrix with probabilistic models 

The risk detection matrix is created based on the size of the 2D risk zoning matrix. 

The risk detection matrix is decided by a probabilistic model that calculates the 

probability of a collision between an object in the 2D risk zoning matrix and the 

reference location “X”. Three probabilistic models LID, CED, and AED are designed 
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to represent different coverages of the AOI. The AV operator first selects the most 

suitable probabilistic model based on their intended coverage of the AOI and 

verifies this with the probability of object occurrence (in section 4.1.5) within the 

AOI. Upon verification, the AV operator will request modification of the 

probabilistic model at the RSU if changes are required. This cycle repeats itself 

after a period of time, since the probability of object occurrence might change 

over time. Thus, the selection of the probabilistic model is a recursive process. 

However, if the AV operators prefer to have a consistent probabilistic model with 

the intention of performing real-time analytics, LID will be the default model. This 

section explains the formulation and different characteristics of the LID, CED and 

AED probabilistic models and assigns the risk detection matrix values.  

Each of the probabilistic models has its own risk detection matrix, populated with 

different collision probabilities based on each model's characteristics. LID is 

modelled using a piecewise linear collision probability across the entire AOI. CED 

is modelled using high collision probability in the front and middle rows of the 

AOI, while AED is modelled using high collision probability on the front few rows 

of the AOI.  

 
(a) LID 

 
(b) CED 
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(c) AED 

Figure 4.2 LID, CED and AED coverages 

Figure 4.2 shows an example of different collision probability coverages within the 

AOI. With (a) showing LID that covers the whole AOI, (b) showing that CED focuses 

on the front and middle rows, and (c) AED focusing on the front rows. Besides 

coverage, each zonal area’s collision probability differs for different models. 

Figure 4.3 illustrates the definition of zonal and inter-zonal probability 

distributions used in the risk detection algorithms. The zonal probability 

distribution refers to the collision probability distribution across different rows. 

The inter-zonal probability distribution refers to the column-wise probability 

distribution. The collision probability between the detected object at the first 

row and the reference location “X” is defined as 𝑃(𝐶|𝑋) = 1.0 where a definite 

collision will take place. The collision probability decreases as the detected object 

moves further away. All collision probability ranges from 0 to 1.0.  

  

Figure 4.3 Illustration of zonal and inter-zonal probability distribution 

In this section, the collision probability (zonal probability distribution) for each 

model is formulated only for the road region, while a linear inter-zonal probability 

distribution of collision probability is assumed across the road, pavement and 

offroad regions. 
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Linear Interval Distribution (LID) model  

The LID model intends to identify object movement and pedestrians occluded by 

vehicle, it is best used when there is a long stretch of road. The LID model uses a 

piecewise linear approach to formulate collision probability across the entire AOI.  

The approach starts with determining the likelihood of a collision between an 

object and an AV, represented as  𝑃(𝐶|𝑋) at R1 with equation 4.5.  

𝑅1 = 𝑃(𝐶|𝑋) (4.5) 

 

Thereafter, the collision probability for each row (𝑅𝑟𝑜𝑤), shown in equation 4.6, 

is determined using the relationship between probability interval (Z) and the row 

number Equation 4.6 provides a piecewise linear decrease of collision probability 

as the object moves further away from the reference location “X”. This piecewise 

linear function forms the zonal probability distribution of the LID model.  

𝑅𝑟𝑜𝑤 = 𝑅1 − (𝑟𝑜𝑤 − 1)𝑍 , 𝑟𝑜𝑤 ≥ 1 (4.6) 

 

where, 

𝑅𝑟𝑜𝑤: collision probability at row number 

𝑅1: collision probability at road region “X” 

𝑟𝑜𝑤: row number within the AOI 

𝑍  probability interval  

 

The probability interval 𝑍 , defined as the difference in collision probability 

between each row, is represented by the equation 4.7. The probability interval is 

formulated using the difference in collision probability between the first and last 

row divided by the total number of rows. This interval explains how the collision 

probability decreased in intervals for each row. 𝑅𝑛𝑎
 is defined as the probability 

of collision for the furthest row within the AOI. This value is set between 0 and 

(𝑅1/𝑟𝑜𝑤𝑠𝑖𝑛𝑡) to achieve a uniform probability interval (as shown in equation 4.7) 
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between rows, while 𝑅1 is set to 1.0 (refer to equation 4.5). A higher value of 𝑅𝑛𝑎
 

results in a smaller probability interval between rows. It is essential to ensure that 

the total distance within the AOI accurately represents the actual distance 

between the reference location “X” and the end of the last row. For instance, if 

the AOI 𝐷𝑡𝑜𝑡𝑎𝑙 is 50 meters and detected through a camera mounted at a 6 meters 

height with a road speed limit of 20 km/h, the calculated 𝑟𝑜𝑤𝑠𝑖𝑛𝑡 is 10  (equation 

4.1). Therefore, the 𝑅𝑛𝑎
 is established to range from 0 to 0.1. This limitation 

assumes that the last row of the AOI road represents the furthest point in the AOI 

of the scene where an object can be detected.  

 

𝑍 = 
𝑅1 − 𝑅𝑛𝑎

𝑟𝑜𝑤𝑠𝑖𝑛𝑡 − 1
 

(4.7) 

  

where, 

𝑍 : probability interval 

𝑅1: collision probability at road region “X” 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡: maximum number of rows determined  

𝑅𝑛𝑎
: user assigned collision probability for the last row 

 

Equation 4.6 applies throughout the entire rows of the risk detection matrix in 

terms of zonal probability distribution. As for inter-zonal probability distribution, 

a linear reduction of 𝑍 , shown in equation 4.7 is applied across columns. This 

linear reduction of 𝑍  applies from road to pavement and pavement to offroad 

regions. Thus, LID is a piecewise linear risk detection that forms the LID risk 

detection matrix.  

Conservative Exponential Distribution (CED) model  

The CED model is meant to detect objects in the front to middle rows of the AOI. 

The model aims to provide a high collision probability within its coverage of the 

AOI and to trigger early risk warnings for AV operation. CED’s consistently high 

collision probability from front to middle rows is designed to prompt the AV for 

safety actions early, such as slowing down the operating speed and eventually 
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avoiding collisions. This helps the AV take a more cautious approach (thus the 

name conservative) to prevent collisions as long as the detected object resides 

between the front and middle rows of the AOI. The risk becomes insignificant if 

the object is located at the last few rows of the AOI.  

The collision probability for the CED model uses a “maximum probability minus 

decaying exponential” model to achieve the purpose. The collision probability for 

each row is illustrated in equation 4.8.  

𝑅𝑟𝑜𝑤 = 𝑅1 − 𝑒(𝑟𝑜𝑤−𝑟𝑜𝑤𝑖𝑛𝑡), (𝑟𝑜𝑤 ≥  2)  (4.8) 

 

where, 

𝑅𝑟𝑜𝑤: collision probability at row number 

𝑅1: collision probability at road region “X” 

𝑟𝑜𝑤: row number 

𝑟𝑜𝑤𝑖𝑛𝑡: maximum number of rows determined 

Equation 4.8 is applied throughout the risk detection matrix in terms of zonal 

probability distribution. As for inter-zonal probability distribution, a similar 

approach to LID is applied across columns.  

Aggressive Exponential Distribution (AED) model  

AED intends to provide an instantaneous high collision probability when objects 

are detected at the front rows of the AOI, close to the reference location “X”. 

When objects move beyond the front rows but within the AOI, the collision 

probability will reduce drastically. AED is considered an aggressive approach that 

provides a prompt trigger to the AV for safety actions since the high collision 

probability only appears as a short surge as an object moves across the front rows.  

The formulation of AED uses a decaying exponential model to mimic the high initial 

collision probability followed by fast decay of values as the object moves away 

from the first few rows of the AOI, as shown in equation 4.9.  
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𝑅𝑟𝑜𝑤 = 𝑒
(
−(𝑟𝑜𝑤−1)

𝑟𝑜𝑤𝑖𝑛𝑡
)
, 𝑟𝑜𝑤 ≥ 1  

(4.9) 

 

where, 

𝑅𝑟𝑜𝑤: collision probability at row number 

𝑟𝑜𝑤: row number 

𝑟𝑜𝑤𝑖𝑛𝑡: maximum number of rows determined 

: rate of decay 

This approach allows a faster decay in the collision probability compared to LID 

and CED. AED has a high collision probability in the first few rows, followed by 

almost zero collision probability. The AED model's decay rate is determined by  

in equation 4.9. The rate of decay ranges from 1 to 20. The higher the rate of 

decay, the lower the collision probability starts from the second row onwards. The 

AV operators can adjust this rate of decay with a typical setting of 6, which 

indicates that the sensitivity focuses on the first three rows for collision 

probability. 

Equation 4.9 applies to all rows of the risk detection matrix in terms of zonal 

probability distribution. As for inter-zonal probability distribution, a linear drop 

of Z is applied across columns, similar to LID and CED. Thus, AED is an aggressive 

risk detection model that forms the AED risk detection matrix.  

Inter-zonal Probability Distribution  

With the concepts of LID, CED, and AED explained, the inter-zonal probability 

distribution follows a linear decrease of 𝑍  across zonal areas. This linear 

decrease in collision probability is applied across inter-zonal areas, as shown in 

equations 4.10 to 4.13. The amount of linear decrease is defined as the probability 

interval, 𝑍 , together with a unity amplifier, 𝛼, which can be used to control the 

step size. 𝛼 controls the percentage of Z  as a linear decrease across inter-zonal 

areas (i.e. 1 for 100% and 0.5 for 50%) 
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𝑌𝐿𝑛 = 𝑅𝑛 − 𝛼𝑍  (4.10) 

  

𝑌𝑅𝑛 = 𝑅𝑛 − 𝛼𝑍  (4.11) 

  

𝐺𝐿𝑛 = 𝑌𝐿𝑛 − 𝛼𝑍  (4.12) 

  

𝐺𝑅𝑛 = 𝑌𝐿𝑛 − 𝛼𝑍  (4.13) 

 

where, 

𝑍 : probability interval 

𝛼: unity amplifier to control the step size 

𝑅𝑛: red zonal areas with row n 

𝑌𝐿𝑛: yellow left zonal areas with row n 

𝑌𝑅𝑛: yellow right zonal areas with row n 

𝐺𝐿𝑛: green left zonal areas with row n 

𝐺𝐿𝑛: green left zonal areas with row n 

 

In summary, probabilistic models (LID, CED, and AED) can be selected initially 

based on the intentions of the AV operator for the required risk detection 

mechanism, as shown in Table 4.2, and thereafter obtained the verification using 

the probability of object occurrence within the AOI, in a recursive process. The 

risk detection matrix 𝑅𝐷𝑟𝑧, contains the collision probability of the selected 

probabilistic model. As a result, the probabilistic model directly impacts the 

values of RT figures, which will be further explained in later sections. 
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Table 4.2 Comparison of model and utility 

Model Risk detection mechanism Event Priority 

LID 

Focus on the entire AOI. Provides piecewise 
linear collision probability that vary with 
distance to the reference location “X”. Use 
primarily for events identified through 
analytics in real time or post-processing. 

Object movements and 
vehicle occlusion of 
pedestrians. 

CED 

Focus on the front and middle rows of the 
AOI. Provides high collision probability even 
if the objects are in the middle row, which 
triggers early risk warnings for AV operation.  

Object movements and 
vehicle occlusion of 
pedestrians. 

AED 

Focus on the front few rows of the AOI. 
Provides high collision probability when 
objects are detected. Since coverage of AOI 
is small, any reported high collision 
probability requires immediate safety 
actions if the AV is within proximity. 

Object movements. Not 
suitable for occlusion 
detection. 

 

4.1.3 Object detection process 

Once the risk zoning and probabilistic model for the risk detection matrix is 

completed, object detection is done to identify the object within the AOI. The 

object detection process aims to 1) identify vehicles or pedestrians and 2) map 

them into an object detection matrix, as shown in Figure 4.4. The object detection 

matrix is the same size as the 2D risk zoning matrix. Whenever vehicle(s) or 

pedestrian(s) are detected, an integer value is assigned to each zonal area within 

the object detection matrix. 

  

Figure 4.4 Object detection process 
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Object identification 

Object identification utilises YOLOv5, as described in chapter 3, to obtain 

bounding boxes of the detected objects. Since there are different YOLO versions, 

for completeness, the mean average precision (mAP) of YOLOv5 [125] was 

compared to that of YOLOv6 [126], YOLOv7 [127] and YOLOv8 [128]. Table 4.3 

presents the comparison results, showing that YOLOv5 performs better than 

YOLOv6-N, with an expected 3% to 5% difference between YOLOv5 and YOLOv8 or 

YOLOv7-Tiny. This aligns with the results reported in [128].  

Table 4.3 Comparison of YOLO variants on mAP 

Model 
No. of 

parameters 
(million) 

mAP 

(mIOU 0.5) 

mAP 

(mIOU 0.5 to 0.95) 

YOLOv5-S 7.2 0.739 0.576 

YOLOv6-N 4.7 0.726 0.568 

YOLOv7-Tiny 6.2 0.812 0.622 

YOLOv8-S 11.2 0.748 0.606 

 

In addition to comparing mAP results, the Precision, Recall, and F1 scores were 

compared using their confusion matrix, shown in Table 4.4. The performance of 

YOLOv5 closely matches that of YOLOv7-Tiny. In another study, YOLOv5 showed a 

better mAP than YOLOv6, YOLOv7, and YOLOv8 [129]. Therefore, object detection 

continued with YOLOv5s, considering that newer versions can achieve a slightly 

higher performance of 3% to 5%. These results were tested using 158,696 images 

for training and 6,510 images for testing. 

Table 4.4 Comparison of YOLO variants on Precision, Recall and F1 score 

Model Precision Recall F1 score 

YOLOv5-S 0.84 0.65 0.74 

YOLOv6-N 0.59 0.66 0.62 

YOLOv7-Tiny 0.87 0.66 0.75 

YOLOv8-S 0.84 0.62 0.72 
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Mapping of object into object detection matrix 

The number of detected objects is mapped into each zonal area in real time. The 

detected object must first be converted from a bounding box into a reference 

location (x, y). The bottom centre of the bounding box is selected since it is the 

closest to the object's landing point, as shown in Figure 4.5. 

 

Figure 4.5 Reference location for detecting object bounding box 

Thereafter, the location (x, y) of the object is tested with a "point in polygon" 

[130] for that zonal area. For example, the detected person on the right (x2, y2) 

in Figure 4.5 is tested if that pixel falls within the second yellow zonal area from 

the bottom. If the test is positive, which is true in this case, the zonal area will 

have the integer 1. This approach allows multiple objects to be detected 

simultaneously within the same scene, even if they belong to different zonal 

areas. Therefore, the object detection matrix can be separated into different 

classes (i.e. separate object detection matrix for vehicles and pedestrians) 

The outcomes of the object detection process provide an object detection matrix, 

𝑂𝐷𝑟𝑧, which indicates the number of detected objects within each zonal area in 

real time. The size of the object detection matrix is the same as the risk detection 

matrix and 2D risk zoning matrix. 

4.1.4 Risk Tag (RT) Matrix and Risk Tag (RT) figure 

This process determines the RT matrix and its corresponding RT figure. The RT 

matrix represents the conversion of image information into numerical information 

(i.e. hazardous detection of objects over a scene into a numerical RT matrix and 
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figure). The RT matrix is computed based on the 2D risk zoning matrix (rz), the 

risk detection matrix (𝑅𝐷𝑟𝑧) used, and the object detection matrix (𝑂𝐷𝑟𝑧). An 

example is illustrated in Figure 4.6. 

𝑟𝑧 =

[
 
 
 
 
6 8 10 8 6
. . . . .
. . . . .
6 8 10 8 6
6 8 10 8 6]

 
 
 
 

 

2D risk zoning matrix 

𝑅𝐷𝑟𝑧 =

[
 
 
 
 
0.0 0.0 0.1 0.0 0.0
. . . . .
. . . . .

0.7 0.8 0.9 0.8 0.7
0.8 0.9 1.0 0.9 0.8]

 
 
 
 

 

LID model 

𝑂𝐷𝑟𝑧 =

[
 
 
 
 
0 0 0 0 0
. . . . .
. . . . .
0 0 0 0 0
0 0 1 0 0]

 
 
 
 

 

1 person was detected 

at R1. 

Figure 4.6 An example of a 2D risk zoning matrix, risk detection matrix and object detection matrix 

The process starts with determining the overall object detection matrix (𝑂𝑂𝐷𝑟𝑧) 

by performing the Hadamard product of the 2D risk zoning matrix and object 

detection matrix shown in equation 4.14.  

𝑂𝑂𝐷𝑟𝑧 = ( ∘  𝑂𝐷)𝑟𝑧 (4.14) 

 

where, 

𝑂𝑂𝐷𝑟𝑧: overall object detection matrix 

𝑂𝐷𝑟𝑧: object detection matrix 

𝑟𝑧: 2D risk zoning matrix 

 

Similarly, the RT matrix is derived by performing another element-wise 

multiplication of the risk detection matrix (𝑅𝐷𝑟𝑧) and overall object detection 

matrix (𝑂𝑂𝐷𝑟𝑧). Lastly, the RT figure is obtained by summing all the elements 

within the risk tag matrix using equation 4.15.  

  

𝑅𝑇𝑓𝑖𝑛𝑎𝑙 = ∑(𝑅𝐷 ∘  𝑂𝑂𝐷)𝑟𝑧

𝑟𝑧

 (4.15) 

 
where, 

𝑅𝑇𝑓𝑖𝑛𝑎𝑙: RT figure  
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𝑅𝐷𝑟𝑧: risk detection matrix 

𝑂𝑂𝐷𝑟𝑧: overall object detection matrix 

 

𝑅𝑇𝑓𝑖𝑛𝑎𝑙 ranges from 0 to 100, depending on the number of objects detected in the 

AOI. The algorithm imposes a maximum limit of 100 since any RT figure higher 

than 100 requires the same immediate attention. With more objects on the road, 

the 𝑅𝑇𝑓𝑖𝑛𝑎𝑙 will be higher than those on the pavement or offroad. 𝑅𝑇𝑓𝑖𝑛𝑎𝑙 provides 

the summation of all objects’ risks within each scene. Normalisation of 𝑅𝑇𝑓𝑖𝑛𝑎𝑙 is 

achieved by dividing it by the number of detected objects. Normalised 𝑅𝑇𝑓𝑖𝑛𝑎𝑙 

ranges from 0 to 10 and provides the average risk of an object within each scene. 

Further explanation is illustrated using implementation results in section 4.2. 

4.1.5 Occurrence  

The Occurrence of a hazardous event is obtained as the probability of the detected 

object based on past accumulated 𝑂𝐷𝑟𝑧. These Occurrence figures are visualised 

using a heatmap over time. The heatmap refers to the accumulated object 

occurrence in each zonal area over time of 𝑂𝐷𝑟𝑧. Frame intervals (𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 

represent the number of samples for the heatmap. Therefore, the equation for 

the heatmap is represented as equation 4.16. 

𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧 = ∑ 𝑂𝐷𝑟𝑧𝑁

𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑁=1

 

(4.16) 

  

where, 

𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧: total occurrence of detected objects (maximum number of samples) 

𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: maximum number of samples 

𝑂𝐷𝑟𝑧𝑁: object detection matrix of sample N 

 

Using pedestrians as an example, the pedestrian occurrence data and the total 

number of pedestrians detected, the probability of pedestrian 𝑃(𝑂𝑐𝑐) occurring 

in each zonal area can be calculated using equation 4.17.  
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𝑃(𝑂𝑐𝑐)𝑟𝑧 =
𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧

∑ ∑ 𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧
𝑧𝑜𝑛𝑒
𝑧=1

𝑟𝑜𝑤𝑠
𝑟=1

⁄  (4.17) 

 

where, 

𝑃(𝑂𝑐𝑐)𝑟𝑧: probability of occurrence 

𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧: total occurrence of detected objects (maximum number of samples) 

 

Since LID, CED, and AED focus on the different AOI coverage, the heatmap can be 

used to verify the probabilistic models. This is achieved by separating the AOI’s 

collision probability into the front 𝑃(𝐹𝑟) equation 4.18, middle P(Mid) equation 

4.19 and rear 𝑃(𝑅𝑒) equation 4.20 collision probability. The accumulated 𝑃(𝐹𝑟), 

𝑃(𝑀𝑖𝑑), and 𝑃(𝑅𝑒) provide the probability of occurrence at the front, middle, or 

rear rows. These 𝑃(𝐹𝑟), 𝑃(𝑀𝑖𝑑), and 𝑃(𝑅𝑒) assist in verifying the LID, CED, and 

AED probabilistic models used in the risk detection matrix. For example, if 𝑃(𝐹𝑟) 

is high and AED is used, the RT figure should have more instances of high RT figures 

than LID.  

𝑃(𝐹𝑟) = ∑ ∑ 𝑃(𝑂𝑐𝑐)𝑟𝑧

𝑧𝑜𝑛𝑒

𝑧=1

𝑓𝑟𝑜𝑛𝑡

𝑟=1

, 

(4.18) 

  

where, 

𝑃(𝐹𝑟): probability for occurrence for front rows 

𝑓𝑟𝑜𝑛𝑡: number of rows considered for front AOI 

𝑧𝑜𝑛𝑒: number of columns in the AOI 

𝑃(𝑂𝑐𝑐)𝑟𝑧: probability of occurrence 

 

𝑃(𝑀𝑖𝑑) = ∑ ∑ 𝑃(𝑂𝑐𝑐)𝑟𝑧

𝑧𝑜𝑛𝑒

𝑧=1

𝑚𝑖𝑑𝑑𝑙𝑒

𝑟=1

 

(4.19) 
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where, 

𝑃(𝑀𝑖𝑑): probability for occurrence for middle rows 

𝑚𝑖𝑑𝑑𝑙𝑒: number of rows considered for middle AOI 

𝑧𝑜𝑛𝑒: number of columns in the AOI 

𝑃(𝑂𝑐𝑐)𝑟𝑧: probability of occurrence 

 

𝑃(𝑅𝑒) = ∑ ∑ 𝑃(𝑂𝑐𝑐)𝑟𝑧

𝑧𝑜𝑛𝑒

𝑧=1

𝑟𝑒𝑎𝑟

𝑟=1

 
(4.20) 

 

where, 

𝑃(𝑅𝑒): probability for occurrence for rear rows 

𝑟𝑒𝑎𝑟: number of rows considered for rear AOI 

𝑧𝑜𝑛𝑒: number of columns in the AOI 

𝑃(𝑂𝑐𝑐)𝑟𝑧: probability of occurrence 

 

4.1.6 Road Side Unit Time To Collide (RSU-TTC) 

The STREET algorithm provides RSU-TTC from the infrastructure to the AV via 

cooperative mode. RSU-TTC reflects the estimation of the time taken for the 

detected object to collide with the reference location “X” from the RSU’s 

perspective. RSU-TTC is assigned as 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  and determined in three steps. 

Step 1. Obtain a normalised object detection matrix known as ODbinary 

(converting an integer into binary within the matrix, e.g. integer > 1 

will be assigned as 1). 

Step 2. Obtain the 𝑡𝑖𝑚𝑒𝑟𝑧 matrix by using 𝑡𝑟𝑒𝑠𝑝 (reference from risk zoning 

equation 4.1 and multiply by each row number. RSU-TTC applies only 

to red zonal areas (roads). 

Step 3. Calculate TTCrz by performing a Hadamard product between ODbinary 

and 𝑡𝑖𝑚𝑒𝑟𝑧 matrix shown in equation 4.21 and then determine the 
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lowest non-zero value where 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 ∈ 𝑇𝑇𝐶𝑟𝑧 𝑎𝑛𝑑 ≠ 0 in equation 

4.22.  

𝑇𝑇𝐶𝑟𝑧 = (𝑂𝐷𝑏𝑖𝑛𝑎𝑟𝑦  ∘  𝑡𝑖𝑚𝑒𝑟𝑧)  (4.21) 

  

𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑖𝑛(𝑇𝑇𝐶𝑟𝑧) (4.22) 

  

Time to collision from the AV perspective 

With the RSU-TTC sent to the AV, the AV obtains the overall time to collision 

(𝑇𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙) between the detected object and the AV's current location using 

equation 4.23. 

𝑇𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑡𝑅𝑇 + 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 (4.23) 

 

where, 

𝑇𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙: overall time to collision between the AV and the detected object 

𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒: road side unit time to collide (RSU-TTC) 

𝑡𝑅𝑇: time from the current AV location to the reference location “X” 

 

The variable  𝑡𝑅𝑇 is the time taken from the current AV location to the reference 

location “X” which is determined from equation 4.24. 𝐷(𝐴𝑉−𝑅𝑇) is the distance from 

the current AV position to the reference location “X”, while VAV is the speed of 

the AV. 

 

𝑡𝑅𝑇 =
𝐷(𝐴𝑉−𝑅𝑇)

𝑉𝐴𝑉
 

(4.24) 

 

where, 

𝑡𝑅𝑇: time from current AV location to reference location “X” 

𝐷(𝐴𝑉−𝑅𝑇): distance between the current AV location to the reference location “X” 

𝑉𝐴𝑉: speed of AV 
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Other than 𝑇𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙, the overall distance to collision (𝐷𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙) can be obtained 

by multiplying 𝑇𝑇𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 by the speed of the AV. This allows for another form of 

representation by distance instead of time between the current AV location and 

the detected object.  

4.1.7 Hazard identifications and warning 

STREET’s outcome provides the conversion of image information to quantitative 

RT figures, RSU-TTC, and the probability of object occurrence with data over 

time. Additionally, STREET also provides hazard identifications and warnings 

specifically for areas of unregulated traffic (as illustrated in chapter 3). Hazard 

identifications and warnings are boolean detections of events in areas of road 

sections and intersections of T-junctions.  

Table 4.5 STREET hazard detection features 

Category Hazard Identifications Hazard warnings 

Risk Zone 
(red zone for  

road sections) 
Yes No 

Intersection Risk zone 
(black zone for 
intersections) 

Yes Yes 

Datatypes 
• Vehicle-to-vehicle 

• Vehicle-to-
Pedestrian 

• Vehicle Warning 

• Pedestrian 
Warning 

 

Table 4.5 shows two STREET hazard detection features. The first is hazard 

identifications for any vehicle-to-vehicle and/or vehicle-to-pedestrian in the road 

sections and intersections. The second is hazard warnings for vehicles and/or 

pedestrians only at intersections. Detecting these hazards in real time provides an 

instantaneous identification of scenarios in addition to quantitative RT figures, 

and they are sent to the AV for necessary safety actions via cooperative mode. 

The operations of hazard detection include an additional demarcation of the 

intersection during risk zoning, such as the black zone. Since there is no 

quantitative collision probability, the risk detection algorithm is omitted. The 



93 
4.2 STREET Risk tagging process and results 
 
 
 

 

object detection matrix is used to detect the object's classification and map the 

object's location (x,y) to the red or black zone using the "point in polygon" test. 

Table 4.6 tabulates the conditions for hazard detection. For a “True” vehicle 

warning within a black zone, a vehicle is detected within the T-junction 

intersection. For “True” pedestrian warning within a black zone, a pedestrian is 

detected within the T-junction intersection. Vehicle-to-vehicle hazard 

identification can happen in red or black zones. Vehicle-to-vehicle hazard 

identification is “True” when two vehicles are detected within the defined zonal 

areas for road or T-junction intersection. Similarly, vehicle-to-pedestrian hazard 

identification is “True” when one vehicle and a pedestrian are detected within 

the defined zonal areas for road or T-junction intersection. 

Table 4.6 Hazard identifications and warnings conditions 

Zone(s) 

Hazard 
identifications & and 

warnings 

Mechanism 
(Detected pedestrian = Pd) 

(Detected vehicle = Vd) 

Black zone (B0) Vehicle warning   “True” if Vd  B0 else “False” 

Black zone (B0) Pedestrian warning  “True” if Pd  B0 else “False” 

Red zone (Ri) 
Black zone (B0) 

Vehicle-to-vehicle 
hazard identification  

 

 “True” if [(Vd1  B0)  (Vd2  B0)] or 

[(Vd1   Ri)  (Vd2   Ri)] 
else “False” 

Red zone (Ri) 
Black zone (B0) 

Vehicle-to-pedestrian 
hazard identification  

 

 “True” if [(Vd  B0)  (Pd  B0)] or 

[(Vd  Ri)  (Pd  Ri)] 
else “False” 

 

4.2 STREET Risk tagging process and results  

This section illustrates the process and results of the STREET algorithm tested in 

real-world unregulated traffic scenarios. A cornering scenario, shown in Figure 

4.7, was tested for RT figures, RSU-TTC, and Occurrence as outcomes for real-

world events. This cornering scenario was also used to compare the performance 

of different RT figures derived from different probabilistic models.  
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(a) Field Of View (FOV) of the cornering scenario (b) Cornering landscape 

Figure 4.7 STREET testing scenario for cornering 

Figure 4.7 (a) shows the FOV of the RSU’s camera in the cornering scenario. The 

RSU’s camera was mounted at a height of 5.5 m for a detection range of up to 50 

m. Figure 4.7 (b) shows the cornering landscape where the AV, before the corner 

turn, is unable to detect pedestrians, resulting in the need for sudden and harsh 

braking immediately after the turn. The pedestrians tend to move in different 

directions from point A to B and vice versa. In this scenario, the STREET algorithm 

provides remote advance warnings to the AV with RT figures, RSU-TTC, and 

Occurrences. RT figures provide a quantitative risk to the AV before the turn, and 

RSU-TTC assists the AV by determining a time-to-collision towards the detected 

object. The occurrence was used as post-analytics to verify the effectiveness of 

the RT figures and identify the locations of hotspots within the AOI.  

4.2.1 Risk zoning matrix 

STREET algorithm started by determining the risk zoning matrix of the corner 

scenario through the risk zoning steps defined in section 4.1.1.  
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Step 1:  In the cornering scenario, the area 

with the most traffic happens when 

pedestrians crossed from location A 

to B and vice versa.  

 

© 2022 IEEE 

Step 2:  The FOV from the RSU’s camera 

identifies the AOI with the highest 

traffic occurrence from step 1. The 

AOI was marked as the hazardous 

area where pedestrians crossed the 

road immediately after the 

cornering of the road. 
 

© 2022 IEEE 

Step 3:  From the selected AOI, indicate the 

reference location “X” in both 

directions. The reference location 

“X” indicates the AV’s direction of 

travel towards the identified 

hazardous area. The reference 

location “X” marked in blue  

indicates the opposite direction.  

 

© 2022 IEEE 

Step 4:  The 𝐷𝑡𝑜𝑡𝑎𝑙 was measured at 50 m 

from the identified AOI. 

 

Step 5:  Based on equation 4.1, the number of rows for the AOI was determined 

with the following variables and values defined. 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡 =
𝐷𝑡𝑜𝑡𝑎𝑙

(𝑡𝑟𝑒𝑠𝑝 ∙ 𝑉𝑚𝑎𝑥 ∙ 𝑉𝑓)
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where, 

𝐷𝑡𝑜𝑡𝑎𝑙 = 50 m 

𝑡𝑟𝑒𝑠𝑝 = 0.85 s 

𝑉𝑚𝑎𝑥= 20 (5.55) km/hr (m/s) 

𝑉𝑓 = 1.0 

 

As such, 𝑟𝑜𝑤𝑠𝑖𝑛𝑡 was determined as 10.  

  

Step 6:  Based on the 𝑟𝑜𝑤𝑠𝑖𝑛𝑡 = 10, the 

offroad, pavement and roads were 

demarcated manually into zonal 

areas.   

Step 7:  The zonal areas were converted 

into 2D risk zoning matrix, 𝑟𝑧 

(equation 4.2), and assigned with 

weights defined in Table 4.1. For 

example, a weight of 6 was assigned 

for accessible pathways away from 

pavement, also known as offroad. 

While a weight of 8 was assigned for 

dedicated pavements, shared paths 

or parking lots. The distance for 

each row (𝐷𝑥) is 5 m (equation 4.3), 

and the time to travel for each row 

by the AV (𝑡𝑥) is 0.9s (equation 4.4)  

© 2022 IEEE 

𝑟𝑧 =

[
 
 
 
 
 
 
 
 
 
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8
6 8 10 8]

 
 
 
 
 
 
 
 
 

 

 
© 2022 IEEE 
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4.2.2 Risk detection matrix with probabilistic model 

The risk detection matrix determines the collision probability for all the zonal 

areas within the AOI using the size of 2D risk zoning matrix as a reference. This 

section shows the three different risk detection matrices based on LID, CED, and 

AED, respectively. The outcomes were based on the AOI of the cornering scenario 

as an illustrative example. 

Linear Interval Distribution (LID) 

The LID risk detection matrix was determined using equations 4.5, 4.6 and 4.7. 

The process of deriving each zonal area within the LID risk detection matrix was 

accomplished using Table 4.7.  

Based on the 2D risk zoning, the matrix size was 4 columns by 10 rows. Table 4.7 

shows that the collision probability of the road section was determined first. From 

equation 4.5, 𝑅1 was determined as 1.0 since the first row is the closest to the 

reference location “X” and assumes a potential collision with the highest 

probability. This was followed by finding the collision probability 𝑍  with the 

previously obtained input variables and the last row, 𝑅𝑛𝑎
 is assigned a collision 

probability of 0.1. Thereafter, all the zonal area’s collision probability for the 

road region (from R2 to R10) were determined. 

Table 4.7 LID risk detection matrix derivation 

Equation Input variables Find Outcome 

4.5 NA 𝑅1 1.0 

4.7 

𝑅1 = 1.0 

𝑅𝑛𝑎
=0.1 

rowsint=10  

𝑍  0.1 

4.6 
𝑍  = 0.1 

𝑟𝑜𝑤 = 1 to 10 

𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5  

𝑅6, 𝑅7, 𝑅8, 𝑅9, 𝑅10  

1.0, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2, 0.1 
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With the collision probability defined for all the road regions, the pavement 

(yellow) and offroad (green) collision probability were determined using the linear 

inter-zonal probability distribution, defined in equations 4.10 to 4.13. Table 4.8 

shows an example of how the left pavement, left offroad and right pavement 

collision probability were determined.  

Table 4.8 Inter-zonal probability distribution for LID risk detection matrix 

Equation 
Input 

variables 
Find Outcome 

4.10 
𝛼=1.0 

𝑍  = 0.1 

𝑌𝑙1, 𝑌𝑙2, 𝑌𝑙3. 𝑌𝑙4. 𝑌𝑙5, 

𝑌𝑙6, 𝑌𝑙7, 𝑌𝑙8. 𝑌𝑙9. 𝑌𝑙10, 

0.9, 0.8, 0.7, 0.6, 0.5, 

0.4, 0.3, 0.2, 0.1, 0.0 

4.11 
𝛼=1.0 

𝑍  = 0.1 

𝑌𝑟1, 𝑌𝑟2, 𝑌𝑟3. 𝑌𝑟4. 𝑌𝑟5, 

𝑌𝑟6, 𝑌𝑟7, 𝑌𝑟8. 𝑌𝑟9. 𝑌𝑟10, 

0.9, 0.8, 0.7, 0.6, 0.5, 

0.4, 0.3, 0.2, 0.1, 0.0 

4.12 
𝛼=1.0 

𝑍  = 0.1 

𝐺𝑙1, 𝐺𝑙2, 𝐺𝑙3, 𝐺𝑙4, 𝐺𝑙5,  

𝐺𝑙6, 𝐺𝑙7, 𝐺𝑙8, 𝐺𝑙9, 𝐺𝑙10, 

0.8, 0.7, 0.6, 0.5, 0.4, 

0.3, 0.2, 0.1, 0.0, 0.0 

 

With all the zonal area’s collision probability determined for LID risk detection, 

the outcome is illustrated as 𝑅𝐷𝐿𝐼𝐷. 

𝑅𝐷𝐿𝐼𝐷 = 

[
 
 
 
 
 
 
 
 
 
𝐺𝑙10 𝑌𝑙10 𝑅10 𝑌𝑟10

𝐺𝑙9 𝑌𝑙9 𝑅9 𝑌𝑟9

𝐺𝑙8 𝑌𝑙8 𝑅8 𝑌𝑟8

𝐺𝑙7 𝑌𝑙7 𝑅7 𝑌𝑟7

𝐺𝑙6 𝑌𝑙6 𝑅6 𝑌𝑟6

𝐺𝑙5 𝑌𝑙5 𝑅5 𝑌𝑟5

𝐺𝑙4 𝑌𝑙4 𝑅4 𝑌𝑟4

𝐺𝑙3 𝑌𝑙3 𝑅3 𝑌𝑟3

𝐺𝑙2 𝑌𝑙2 𝑅2 𝑌𝑟2

𝐺𝑙1 𝑌𝑙1 𝑅1 𝑌𝑟1 ]
 
 
 
 
 
 
 
 
 

 

 

𝑅𝐷𝐿𝐼𝐷 = 

[
 
 
 
 
 
 
 
 
 

0 0 0.1 0
0 0.1 0.2 0.1

0.1 0.2 0.3 0.2
0.2 0.3 0.4 0.3
0.3 0.4 0.5 0.4
0.4 0.5 0.6 0.5
0.5 0.6 0.7 0.6
0.6 0.7 0.8 0.7
0.7 0.8 0.9 0.8
0.8 0.9 1.0 0.9]

 
 
 
 
 
 
 
 
 

 

 

Conservative Exponential Distribution (CED) 

The CED risk detection matrix is determined using equation 4.8. This equation was 

used for calculating the 2nd row of the road region (R2) onwards, where R1 is set 
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at 1.0. Similar to LID, the road regions were first determined and the process is 

shown in Table 4.9. 

Table 4.9 CED risk detection matrix derivation 

Equation Input variables Find Outcome 

4.5 NA 𝑅1 1.0 

4.8 

𝑅1 = 1.0 

𝑟𝑜𝑤 = 2 to 10 

𝑟𝑜𝑤𝑠𝑖𝑛𝑡=10 

𝑅2, 𝑅3, 𝑅4, 

𝑅5, 𝑅6, 𝑅7, 

𝑅8, 𝑅9, 𝑅10 

1.00, 1.00, 1.00, 

0.99, 0.98, 0.95, 

0.86, 0.63, 0.00 

 

Similarly, inter-zonal probability distribution was applied for CED, as defined in 

equations 4.10 to 4.13. The resulting CED risk detection matrix is shown as 𝑅𝐷𝐶𝐸𝐷. 

The figures were rounded off to 2 decimal places.  

𝑅𝐷𝐶𝐸𝐷 = 

[
 
 
 
 
 
 
 
 
 
𝐺𝑙10 𝑌𝑙10 𝑅10 𝑌𝑟10

𝐺𝑙9 𝑌𝑙9 𝑅9 𝑌𝑟9

𝐺𝑙8 𝑌𝑙8 𝑅8 𝑌𝑟8

𝐺𝑙7 𝑌𝑙7 𝑅7 𝑌𝑟7

𝐺𝑙6 𝑌𝑙6 𝑅6 𝑌𝑟6

𝐺𝑙5 𝑌𝑙5 𝑅5 𝑌𝑟5

𝐺𝑙4 𝑌𝑙4 𝑅4 𝑌𝑟4

𝐺𝑙3 𝑌𝑙3 𝑅3 𝑌𝑟3

𝐺𝑙2 𝑌𝑙2 𝑅2 𝑌𝑟2

𝐺𝑙1 𝑌𝑙1 𝑅1 𝑌𝑟1 ]
 
 
 
 
 
 
 
 
 

 

 

𝑅𝐷𝐶𝐸𝐷 = 

[
 
 
 
 
 
 
 
 
 

0 0 0.0 0
0.43 0.53 0.63 0.53
0.66 0.76 0.86 0.76
0.75 0.85 0.95 0.85
0.78 0.88 0.98 0.88
0.79 0.89 0.99 0.89
0.80 0.9 1.00 0.90
0.80 0.9 1.00 0.90
0.80 0.9 1.00 0.90
0.80 0.9 1.00 0.90]

 
 
 
 
 
 
 
 
 

 

 

 

Aggressive Exponential Distribution 

Lastly, the AED risk detection matrix was determined using equation 4.9, which 

determined R1 and all rows of the road regions. The road regions were determined 

first, and the outcome is shown in Table 4.10. 

Table 4.10 AED risk detection matrix derivation 

Equation Input variables Find Outcome 

4.9 
 = 6 

𝑟𝑜𝑤 = 1 to 10 
𝑟𝑜𝑤𝑠𝑖𝑛𝑡=10 

𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5  
𝑅6, 𝑅7, 𝑅8, 𝑅9, 𝑅10 

1.00, 0.55, 0.30, 0.17, 0.09, 

0.05, 0.03, 0.02, 0.01, 0.00 
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Thereafter, inter-zonal probability distribution is similarly applied for AED. The 

resulting AED risk detection matrix is shown as 𝑅𝐷𝐴𝐸𝐷. The figures were rounded 

off to 2 decimal places.  

𝑅𝐷𝐴𝐸𝐷 = 

[
 
 
 
 
 
 
 
 
 
𝐺𝑙10 𝑌𝑙10 𝑅10 𝑌𝑟10

𝐺𝑙9 𝑌𝑙9 𝑅9 𝑌𝑟9

𝐺𝑙8 𝑌𝑙8 𝑅8 𝑌𝑟8

𝐺𝑙7 𝑌𝑙7 𝑅7 𝑌𝑟7

𝐺𝑙6 𝑌𝑙6 𝑅6 𝑌𝑟6

𝐺𝑙5 𝑌𝑙5 𝑅5 𝑌𝑟5

𝐺𝑙4 𝑌𝑙4 𝑅4 𝑌𝑟4

𝐺𝑙3 𝑌𝑙3 𝑅3 𝑌𝑟3

𝐺𝑙2 𝑌𝑙2 𝑅2 𝑌𝑟2

𝐺𝑙1 𝑌𝑙1 𝑅1 𝑌𝑟1 ]
 
 
 
 
 
 
 
 
 

 

 

𝑅𝐷𝐴𝐸𝐷 = 

[
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0.01 0
0 0 0.02 0
0 0 0.03 0
0 0 0.05 0
0 0 0.09 0
0 0.07 0.17 0.07

0.10 0.20 0.30 0.20
0.35 0.45 0.55 0.45
0.80 0.90 1.00 0.90]

 
 
 
 
 
 
 
 
 

 

 
 

4.2.3 Object detection matrix 

The object detection matrix was created by obtaining the results of the object 

detection process and mapping them into the zonal regions within the object 

detection matrix. Since this research focuses on risk assessment rather than AI 

performance and optimisation, any object detection algorithm with bounding box 

results can be integrated into the STREET algorithm. The model used for STREET 

algorithm is YOLOv5s, and future work can incorporate newer and improved 

models as they become available. This section explains the summary of testing 

YOLOv3 and YOLOv5 with the pre-train weight, followed by the outcome of a 

trained and tested custom model for YOLOv5s and, eventually, the results of 

YOLOv5s + Mapping performance. The comparison of YOLOv5s with its later 

variants was already reported in section 4.1.3. 

The research started experimenting with the use of YOLOv3 [131] with COCO 

datasets with pre-trained model for STREET. In recent years, YOLOv5s [125] 

(section 4.1.3) have been proven to be more effective in performance than 

YOLOv3. Table 4.11 shows results of YOLOv5 pre-train weights out-performing 

YOLOv3 by more than 40%. 
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Table 4.11 Comparison of YOLOv3 vs YOLOv5s 

Model 
Sample 

size 
True 

Positive 
True 

Negative 
False 

Positive 
False 

Negative Accuracy 

YOLOv3 25.60k 17.33% 4.10% 0.97% 77.33% 21.43% 

YOLOv5s 74.056k 
43.63% 

(32,307) 

23.83% 

(17,645) 

16.93% 

(12,541) 

15.61% 

(11,563) 
67.46% 

 

Table 4.11 shows the results of testing YOLOv3 vs YOLOv5 using pre-trained weight 

based on the stated sample size using a confusion matrix. With the accuracy 

67.46% for the YOLOv5s pre-train model, further training and testing of additional 

datasets are required to obtain an improved custom model. Therefore, as shown 

in section 4.1.3, 158,696 images were trained and 6,510 images were tested using 

YOLOv5s. With the custom model, the mAP 0.5 is 0.739 and mAP 0.5 to 0.95 is 

0.576. The confusion matrix of the custom model achieved 84% for Precision, 62% 

for Recall and 72% for F1 score. The results for the custom trained model were 

comparable to existing research shown in [108, 109, 127]. Thus the custom 

YOLOvs5 model is sufficient as a baseline for STREET.  

The next step was to map the YOLOv5s outcome to the object detection matrix, 

which was the same size as the 2D risk zoning matrix. This mapping was performed 

using the “Point in polygon” test (x,y) at the bottom centre of the bounding box 

to the zonal areas. The object detection matrix will indicate each zonal area for 

the corresponding objects that have been detected. If no object is detected, the 

zonal area will be assigned a value of “0”.  

Figure 4.8 (a) shows two pedestrians detected at 𝑅8 and one pedestrian at 𝐺𝐿3 of 

the AOI, the detected pedestrians were mapped into 𝑂𝐷1 matrix shown in Figure 

4.8 (b).  
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(a) Persons detected in scene 

𝑂𝐷1 = 

[
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 𝑅8 = 2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝐺𝐿3 = 1 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 
 
 

 

(b) Mapped to object 
detection matrix 

Figure 4.8 Example one: three persons detected and mapped to object detection matrix 

In another example, Figure 4.9 (a) shows two pedestrians detected at 𝑅8 and one 

pedestrian detected at 𝑅3 of the AOI, the detected pedestrians are mapped into 

𝑂𝐷2 matrix shown in Figure 4.9 (b). The YOLOv5s performs object detection every 

40 ms per image frame. This YOLOv5 + Mapping summarised the function of the 

object detection matrix. 

 

(a) Persons detected scene 

𝑂𝐷2 = 

[
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 𝑅8 = 2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 𝑅3 = 1 0
0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 
 
 

 

(b) Mapped to object 
detection matrix 

Figure 4.9 Example two: three persons detected and mapped to object detection matrix 

With the YOLOv5s + Mapping, additional testing was performed to evaluate the 

Precision, Recall and F1 score. To achieve this, two specific rules were added for 

this testing, illustrated in Figure 4.10 and Figure 4.11.  
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Figure 4.10 Rule 1: YOLOv5 + Mapping 

Rule 1: Filtering of objects which are not within the AOI, with examples shown in  

Figure 4.10. Object detection uses bounding box with Intersection over 

Union (IoU) greater or equal than 50% with respect to the ground truth as 

positive prediction. Thus, if ground truth (GT) and predicted object (Pred) 

falls within the zonal region (red box), they are considered “True 

Positive”. This includes cases where the Pred_A has an IoU of less than 

50% against the GT_A. In another case, If GT_B and Pred_B are outside 

the zonal region, they are filtered. However, in another example, if GT_C 

is within the zonal region and Pred_C has an IoU greater than 50% but not 

within the zonal region, it is still considered as “True Positive”. 

 

Figure 4.11 Rule 2: YOLOv5 + Mapping 

Rule 2: Definition for True Positive. Figure 4.11 is used to explain rule 2. For 

example, if GT_A and Pred_A occurs within the same zonal region but 

with an IoU of less than 50% between them, their status is changed to 

“True Positive”. On the contrary, if the GT_B falls within the zonal region 

on the left of Figure 4.11 and the Pred_B has an IoU of more than 50% 
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between them but it resides at a different zonal region, GT_B and Pred_B 

is converted to “False detection”.  

With the two defined rules, testing was done with YOLOv5s + Mapping, with a 

result of 85% for Precision, 87% for Recall, and 86% for F1 score. These results 

show that the YOLOv5s + Mapping improved the Recall from 65% to 87%, thus 

improving the overall F1 score. This improvement gives a benchmark result for all 

metrics to be above 80% for STREET usage. The variation in the performance of 

STREET comes from the object detection matrix, since the rest of the 

methodologies within STREET algorithm are mainly deterministic and probabilistic 

based. 

4.2.4 Risk Tag (RT) figure and results  

This section provides an overview of the RT figures from the tested corner scenario 

by converting one hour of real-time images from contextual information into a 

quantitative risk figure. Different RT figures resulting from different probabilistic 

models, LID, CED, and AED, were evaluated and compared, using LID as a baseline 

comparison. This section also explains the use of normalised RT figures. In this 

test, 97,446 scenes (an hour of camera images) were converted in real time to RT 

figures. For example, for LID, high RT figures suggest that pedestrians were 

detected at the first row, while low RT figures suggest that pedestrians were 

detected at the last row of the AOI towards the reference location “X”. When 

there are no pedestrians, RT figure will be zero. As a reference for this corner 

scenario, the distance between each row within the AOI is 5 m. With 10 rows, the 

total distance is approximately 50 m. The RT figure provides a quantitative risk 

representation of pedestrian(s) detected within the scenario's AOI. The details of 

events within the cornering scenarios are further analysed in section 4.2.7. 

STREET performance represented by RT figures 

The primary outcome of the STREET algorithm is the RT figures. RT figures (𝑅𝑇𝑓𝑖𝑛𝑎𝑙) 

are obtained using risk zoning matrix (𝑟𝑧), risk detection matrix (𝑅𝐷𝑟𝑧), and 

object detection matrix (𝑂𝐷𝑟𝑧), from equations 4.14 and 4.15. STREET is a 



105 
4.2 STREET Risk tagging process and results 
 
 
 

 

probabilistic model with AI deep learning and object detection. The main source 

of variability in STREET’s RT figure comes from the object detection matrix 

(𝑂𝐷𝑟𝑧), with a Precision of 85%, Recall of 87% and F1 score of 86%, as stated in 

section 4.2.3. The risk zoning matrix is deterministic, and the risk detection 

matrix is a probabilistic model with distributed outcomes. Therefore, the 

performance of RT figures closely follows the performance of the object detection 

matrix. 

LID RT figures 

LID was used as a baseline for comparing three different probabilistic models. In 

Figure 4.12 (a), LID RT figures for the cornering scenario are illustrated, with a 

total of 97,446 RT figures from an hour of real-time images. The RT figure ranges 

from 0 to a maximum of 39.2, with peaks at different instances and a mean of 

3.35. Figure 4.12 (b) shows the LID RT figures with a graph displaying the 

distribution of RT figures grouped in increments of 5, including the quantity of 

zero RT figures. The 97,446 scenes within 3,880 seconds of LID RT figures in Figure 

4.12 (b) demonstrate that the RT figures appear at different intervals of the RT 

figure distribution, which is expected when the LID model is used. Further details 

about the behaviour of LID will be provided in real-world events in section 4.2.7. 

Figure 4.12 (c) shows that among the LID RT figures, 39,446 (40.48%) have no risk 

detection, and 58,000 (59.52%) are non-zero RT figures. 
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(a) LID RT figure for 97k samples for an hour’s data 

 
(b) LID RT figure distribution (intervals of 5) 

Mean (µ) = 3.35 

Max = 39.2 

Non-zero = 58,000 

Zero = 39,446 

(C) LID RT figure 
summary 

Figure 4.12 LID RT figures illustrations and result 

CED RT figures 

The CED RT figures for the cornering scenario are presented in Figure 4.13 using 

the same image data. In Figure 4.13 (a), the CED RT figures range from 0 to a 

maximum of 60.27, representing a 16% increase compared to LID. The mean CED 

RT figure is almost double that of LID, with a mean value of 7.15 compared to 

LID’s 3.35. This difference was due to the CED’s different RT figure probability 

distribution, which focuses on the front and middle rows, as opposed to LID, which 

focuses on the entire AOI. Figure 4.13 (b) demonstrates that the CED RT figure 

distribution had fewer counts in the RT figure intervals from “>0 to 5” compared 

to LID, and these scenes were converted to higher RT figure intervals. This 

indicates that objects are mostly detected in the middle of the AOI as CED assigned 

a higher RT figure compared to LID, which is further proven in section 4.2.5. 

Section 4.2.7 will provide further insights into CED behaviour in real-world events. 

Despite their differences, CED and LID exhibit similar trends in Figure 4.13 (a) and 

Figure 4.12 (a). CED and LID also show similar non-zero RT figures (40,089 vs 

39,446) and zero RT figures (57,357 vs 58,000). In summary, CED RT figures have 
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a higher mean, higher RT figure and a lower count of RT figures in the range of 

“>0 to 5” compared to LID. CED assigns a higher RT figure when objects are 

detected away from the reference location “X”. 

 
(a) CED RT figure for 97k samples for an hour’s data 

 
(b) CED RT figure distribution (intervals of 5) 

Mean (µ) = 7.15 

Max = 60.27 

Non-zero = 57,357 

Zero = 40,089 

(C) CED RT figure 
summary 

Figure 4.13 CED RT figures illustration and result 

AED RT figures 

Figure 4.14 illustrates the AED RT figures tested in the same scenario. Figure 4.14 

(a) shows that AED RT figures vary from 0 to a maximum of 20.08 (48.7% decrease 

compared to LID). The occurrence of AED RT figures were drastically reduced 

compared to LID and CED, with a mean of 0.65, the lowest among the three RT 

figures. The majority of the AED RT figures occur between “>0 to <5”, with 22,862 

scenes vs 35,605 scenes from LID. The low mean was the result of high zero RT 

figures at 70,203 (72.0%) as compared to LID, which is only 39,446 (40.48%). The 

low mean, lower AED RT figures and lower occurrence of AED RT figures compared 

to LID, reflected the AED's intended design. The AED’s AOI coverage had only a 

high collision probability in the first row, while the 2nd and 3rd rows of the AOI 

had reduced AED’s collision probability to only 50% or less, which was explained 



108 
4.2 STREET Risk tagging process and results 
 
 
 

 

in section 4.2.2. This is further verified by Figure 4.14 (b), where the AED RT figure 

distribution is only limited to a small number of RT figure intervals as compared 

to LID and CED. 

 

 
(a) AED RT figure for 97k samples for an hour’s data 

 
(b) AED RT figure distribution (intervals of 5) 

Mean (µ) = 0.65 

Max = 20.08 

Non-zero = 27,243 

Zero = 70,203 

(C) AED RT figure 
summary 

Figure 4.14 AED RT figures illustration and result 
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Limitations of RT figures 

The proposed RT figures have two limitations: 

1) The LID, CED, and AED RT figures have different maximum values for the 

same image data, making it challenging to compare and analyse between 

different scenarios. 

2) In some scenarios, RT figures might not necessarily represent a high risk. 

For example, a large group of pedestrians within the last row of the AOI 

can result in high RT figures. This happens because RT figure sums all the 

detected pedestrians within the AOI as risk (equation 4.15).  

To address the limitations mentioned above, normalised RT figures are calculated 

by averaging the RT figures across the detected pedestrians in the scene. This 

allows us to assess the risk per scene within the AOI. A normalised RT figure 

provides an average RT for the scene on a scale of 0 to 10, making it easy to rate 

and compare the LID, CED, and AED RT figures. However, the use of normalised 

RT figures also has its own limitation. For instance, if there are more pedestrians 

at the rear of the AOI than in the front, the normalised RT figures may 

underestimate the risk of pedestrians in front of the AOI. Therefore, the optimal 

approach is to provide the AV with both RT figures and normalised RT figures since 

RT figures summarise the overall pedestrian risk within the AOI, while normalised 

RT figures provide an aggregated risk per scene within the AOI. 

Normalised LID, CED and AED RT figures (Norm RT Figures) 

This section shows all the normalised figures of LID, CED and AED RT figures with 

illustrations and results. Normalised LID RT figures are compared with normalised 

CED and AED RT figures. The comparisons focus on the non-zero RT figures instead 

of zero RT figures. 

Figure 4.15 (a) shows the normalised LID RT figures, ranging from 0 to 10, with a 

mean of 1.86. In Figure 4.15 (b), it is shown that the normalised LID RT figures 
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depict a normal distribution with a mean (zero RT figures are not considered) of 

3.12 and a standard deviation of 1.69 in Figure 4.15 (c). The normalised LID RT 

figures will be used as a baseline comparison for CED and AED. 

 
(a) Normalised LID RT figure for 97k samples for an hour’s data 

 
(b) Normalised LID RT figure distribution (intervals of 5) 

Mean (µ) = 1.859 

mean (µnz)= 3.12 

standard Deviation 

(nz) = 1.69 

(C) Normalised LID RT 
figure summary 

Figure 4.15 Normalised LID RT figures illustration and result 

Figure 4.16 (a) displays normalised CED RT figures, with a mean of 4.16, which is 

more than twice the LID. Figure 4.16 (b) also presents RT figures distribution, with 

normalised CED RT figures shifted to a higher mean of 7.07 and a standard 

deviation of 1.38, as shown in Figure 4.16 (c). These results confirmed that CED 

assigns higher RT figures for the same scenes by comparing CED RT and LID RT 

figures distribution. Therefore, it is evident that CED provides a relatively high RT 

figure whenever a pedestrian is detected. 
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(a) Norm CED RT figure for 97k samples for an hour’s data 

 
(b) Norm CED RT figure distribution (intervals of 5) 

Mean (µ) = 4.16 

mean (µnz)= 7.07 

Max = 10.0 

Standard Deviation 

() = 1.38 

 (C) Norm CED RT 
figure summary 

Figure 4.16 Normalised CED RT figures illustration and result 

Figure 4.17 (a) shows the normalised AED RT figures with a mean of 0.34. These 

results show that majority of the pedestrians are detected in the 2nd or 3rd row 

of the AOI, while the occurrence of pedestrians in the front row is minimal. This 

was verified by Figure 4.17 (b), which indicates that AED RT figures occur mainly 

at the RT figure interval of “>0 to <1” with 21.22% and even smaller percentages 

for the rest of the RT figure intervals. The occurrence of pedestrians in the front 

row was verified by the low count of normalised AED RT figure = 10, with 0.752% 

of 97,446 giving 733 occurrences. This occurrence was verified with AED RT 

figures, with 733 occurrences of 1 pedestrian residing in the front row road region. 

This normalised RT figure for AED confirmed the intended design and performance 

of AED. 
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(a) Norm AED RT figure for 97k samples for an hour’s data 

 
(b) Norm AED RT figure distribution (intervals of 5) 

Mean (µ) = 0.34  

mean (µnz)= 1.21 

Max = 10.0 

Standard Deviation 

() = 2.11 

 (C) Norm CED RT 
figure summary 

Figure 4.17 Normalised AED RT figures illustration and result 

4.2.5 Occurrence data and results visualisation 

The occurrence of pedestrians within the AOI, is represented as 𝑂𝐷𝑟𝑧 were further 

transformed into Occurrence visualisation as Heatmaprz and 𝑃(𝑂𝑐𝑐)𝑟𝑧 using 

equations 4.16 and 4.17, respectively. A total of 99,442 samples were used as data 

for the Heatmaprz and 𝑃(𝑂𝑐𝑐)𝑟𝑧 illustrated in Figure 4.18 to visualise the 

pedestrian Occurrence heatmap and the probability of occurrence for each risk 

zonal area of the AOI. The 𝑃(𝐹𝑟), 𝑃(𝑀𝑖𝑑) and 𝑃(𝑅𝑒), derived from equations 4.18 

to 4.20, were used to verify the RT figures from section 4.2.4. In this application, 

the front refers to rows 1-3, the middle refers to rows 4-7, and the rear refers to 

rows 8-10, where 𝑟𝑜𝑤𝑠𝑖𝑛𝑡 is 10. 
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𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑟𝑧                                            𝑃(𝑂𝑐𝑐)𝑟𝑧 

 

Figure 4.18 Heatmap of overall pedestrian occurrence 

Figure 4.18 shows the pedestrian occurrences and the probability of occurrence 

within the AOI. The results show that the highest number of pedestrians resides 

in the middle row at 𝑌𝑙7, (yellow left pavement, row 7 and highlighted in brown) 

and its surrounding risk zonal areas. The results show that pedestrians do not walk 

only in a straight line across the designated zebra crossing at row 5/6. Instead, 

they travel in different directions, congregating around 𝑌𝑙7. Moreover, this 

scenario is also concerned with potential pedestrians crossing at the front AOI 

where the AV does not have visibility before turning into the corner. Therefore, 

in this scenario, the path planning for AV should start slowing down even before 

coming close to the zebra crossing. To visualise the pedestrians travelling across 

the AOI and to verify the suitable probabilistic model, equations 4.18 to 4.20 were 

used to find 𝑃(𝐹𝑟), 𝑃(𝑀𝑖𝑑) and 𝑃(𝑅𝑒) of the AOI. 
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Figure 4.19 Probability of pedestrian occurrence in front, middle and rear rows of the AOI 

Figure 4.19 shows that P(Mid) has the most pedestrian occurrences, followed by 

P(Re) and P(Fr), which relate to the observations in section 4.2.4. The highest 

P(Mid) in Figure 4.19 reflects why CED model has the highest RT figures and the 

most risk tag instances compared to LID and AED. Similarly, P(Fr), having the 

lowest occurrence in Figure 4.19, reflects the infrequent risk tag instances in the 

AED model. The probability of pedestrian occurrence is recursively calculated 

using real-time pedestrian occurrence over a period of time. The results are used 

to verify the RT figures based on the probabilistic model selected by the AV for its 

operation. In this illustrated case, 99,442 pedestrian occurrences detected over 

an hour were used to determine the probability of pedestrian occurrence to verify 

the RT figures in section 4.2.4. These results verify that either LID or CED would 

be the best probabilistic models for RT figures in this cornering scenario. 

4.2.6 Road Side Unit Time to collide matrix and results 

RSU-TTC defines the time to collide (in seconds) between the detected 

pedestrians and the reference location “X” in the AOI. The overall time to the 

collision of the current AV to the detection of pedestrians is determined by 

summing the RSU-TTC and time to arrive, as shown in equation 4.23. In STREET, 

RSU-TTC is sent to the AV via ReRAC. In this section, the results of RSU-TTC was 

represented as 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 . The 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  was determined at intervals of 40 ms per 

frame using equations 4.21 and 4.22. Equation 4.22 further identifies the time to 

collision between the nearest detected object and the reference location “X” in 

the AOI, and assigns that to 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 . An illustration of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  for the first 

10,000 scenes are seen in Figure 4.20. This data illustrates the importance of 

proximity of pedestrians towards the reference location “X” in the AOI in addition 

to the RT figures. 
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(a) LID RT figure and normalised LID RT figure 

 

(b) RSU-TTC represented as 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  

Figure 4.20 Relationship between 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 , and normalised LID RT and LID RT figure 

Figure 4.20 shows the first 10,000 scenes (400 seconds) of LID RT figures and 

normalised LID RT figures compared with 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 . In Figure 4.20 (a), LID RT 

figures show the summarised risk value of the scene, while normalised LID RT 

figures show the average risk per scene. On the other hand, the RSU-TTC 

represented by 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  in Figure 4.20 (b) shows the time to collision between 

the nearest detected object and the reference location “X” in the AOI. From 

Figure 4.20 (b), the trend of TTC values is inversely proportional to LID RT figures 

and normalised LID RT figures. This means that when the LID RT figures were high, 

the pedestrians were closer to the reference location “X” in the AOI, resulting in 

low TTC values. Conversely, when LID RT figures were low, it means that the 

pedestrians were farther away from the reference location “X”, resulting in higher 

𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 . The only exception to this relationship was when the LID RT figure is 

zero, in which case the TTC values was also zero. Further examples of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  

are demonstrated in the next section using events within the corner scenario. 
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4.2.7 Real-world events with RT figures and RSU-TTC 

This section identifies real-world events by observing the variation of the RT 

figures and RSU-TTC over time. The objective is to verify the RT figures and RSU-

TTC (represented as 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 ) using four different events. Each event is tested 

with three tasks. The first task was to compare LID RT figures with the ground 

truth to verify the LID’s RT figures. The second task was to compare the 

performance of LID, CED, and AED RT figures for the same event. The last task 

was to verify the 𝑐 and compare LID RT figures with normalised LID RT figures. 

Similar to section 4.2.5, the pedestrian class was selected for object detection. 

Pedestrians detected outside the AOI were not considered for these events 

analysis. These real-time events analysis shows how RT figures and RSU-TTC vary 

according to the risk of pedestrian(s) moving within the AOI as part of the corner 

scenario. The variations of RT figures were illustrated from a temporal point of 

view with supporting images for each event. Images for each event were 

annotated to obtain the LID RT ground truth, assuming that the LID operates 

perfectly for comparative analysis with LID RT figures. 

Event 1: Pedestrians’ movement from both sides at the middle rows (layer) 

In event 1, pedestrians’ crossing occurs from both sides of the road, as shown in 

Figure 4.21 (a) to (d) at various time points in sequence. The objective is to 

observe if LID RT figures respond in accordance with the LID RT ground truth. 

Thereafter, the performance of LID, CED and AED RT figures were compared. 

Lastly, the figures of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 were verified for the event, and LID RT figures were 

compared with normalised LID RT figures. Figure 4.21 shows the image sequence 

of the event with 1) risk zoning of the environment, 2) pedestrian detection for 

both inside and outside the AOI, 3) the LID RT figures as reference and 4) the video 

time stamp. The real-time LID RT figures and video time stamp are shown at the 

top right of Figure 4.21. The same details are provided for the remaining events.  
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(a) Before crossing 

 

(b) During crossing 

 

(c) Highly occluded pedestrian 

 

(c) Finished crossing 

Figure 4.21 Images of pedestrians crossing from both sides for event 1 
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Event 1, task 1: Comparative analysis between LID RT figures and LID RT ground 

truth 

 

Figure 4.22 LID RT figures vs LID RT ground truth for event 1 

Figure 4.22 illustrates the varying LID RT figures compared against the LID RT 

ground truth. LID RT figures were used instead of normalised LID RT figures since 

LID RT figures reflect the overall risk of pedestrians within the scene instead of 

having the average risk of pedestrians. The LID RT ground truth was obtained from 

manually annotated pedestrians in the scene. The differences between LID RT 

figures and LID RT ground truth in Figure 4.22 were mainly caused by the highly 

occluded pedestrian with another pedestrian (i.e., the image in Figure 4.21 (c)). 

This missed LID RT figures of an additional pedestrian resulted in the differences. 

Additionally, “spikes” in Figure 4.22 are observed when pedestrians walk behind 

another pedestrian, and they are either occluded or detected during the process. 

Overall, the LID RT figure's trend characteristics closely follow the LID RT ground 

truth. 
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Event 1, task 2: Comparative analysis between LID, CED and AED RT figures 

 

Figure 4.23 Comparison of LID, CED and AED RT figures for event 1 

Figure 4.23, illustrates the comparison of LID, CED and AED for event 1. Since the 

pedestrians occur mainly in the middle rows, AED was not able to detect the 

details within event 1 since the focus is only on the front rows of the AOI, 

illustrating an almost flat RT figure. On the other hand, CED RT figures are twice 

as much as LID RT figures and present similar trend characteristics. CED RT figures 

also amplify the occlusions, shown as “amplified spikes” in Figure 4.23.  This 

correlates with the findings in section 4.2.4. Therefore, LID and CED are suitable 

models for event 1. CED provides amplified RT figures when compared to LID. AED 

has insufficient coverage of the AOI to obtain further information. If CED RT 

figures are used as remote warnings for the AV, the high RT figures will trigger 

early safety actions. On the other hand, if AED is used, the AV would missed 

detecting this event. Lastly, if LID RT figures are used, the variation of the RT 

figures will be similar to CED but with a lower figure, safety actions will be 

triggered later (when the RT figure is high) as compared to CED. 
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Event 1, task 3: Verify 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  and compare LID RT figures to normalised LID RT 

figures. 

 

Figure 4.24 Verify 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 and compare LID and normalise LID RT figures for event 1 

 

Figure 4.24 compares the LID RT figures to the normalised LID RT figures 

(secondary axis, range from 0 to 7) and verifies the intent of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 (secondary 

axis, range from 0 to 7). The normalised LID RT figures show fewer fluctuations 

than LID RT figures. This is because normalised RT figures are averaged across the 

detected pedestrians as compared to LID RT figures, which sums up all the risk of 

pedestrians crossing at both ends of the AOI. Normalised RT figures show high 

values when most pedestrians are in the road region and drop when most 

pedestrians leave. Thus, the normalised LID RT figure can provide an average risk 

per scene, while the LID RT figures reflect pedestrians’ movement from pavement 

to road regions in the middle of the  AOI. Separately, the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 remains 

between 4.5-5.4 seconds since the crossing mainly occurs in the middle rows. The 

flat 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 also indicate that event 1 consists mainly of lateral movement (x-

axis), and not much longitudinal movement (y-axis) is detected, which reflect 

event 1 correctly. 
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Event 2: Pedestrian diagonal movement from middle to front of the AOI 

Event 2 represents a situation where the pedestrian crosses diagonally from the 

AOI's middle right to the front left zonal regions. Figure 4.25 illustrates the 

pedestrian moving in sequence (a) to (c) from the AOI's rear and middle row to 

the AOI's front row. The detected pedestrian at the rear remains stationary. 

 

(a) Before diagonal crossing 

 

(b) During diagonal crossing 

 

(c) End of diagonal crossing 

Figure 4.25 Images of pedestrian diagonal crossing for event 2 
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Event 2, task 1: Comparative analysis between LID RT figures with ground truth 

 

Figure 4.26 LID RT figures vs LID RT ground truth for event 2 

 

Figure 4.26 shows that LID RT figures were similar to the LID RT ground truth, 

except that one particular pedestrian’s detection toggles around the boundary of 

a zonal area. This phenomenon causes some fluctuations in the LID RT figure. In 

addition, a single occurrence of “False Negative” pedestrian detection causes a 

sudden dip to RT figure of 1.6 at 97,880 ms. The “toggling” of pedestrian detection 

at the boundary of the zonal area is therefore known as a “Boundary condition” 

for the STREET algorithm. This is known to happen, especially if pedestrians reside 

close to each zonal region's boundary. Besides the “Boundary condition” and the 

single-frame false-negative, the LID RT figures perform close to the ground truth. 
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Event 2, task 2: Comparative analysis between LID, CED and AED RT figures 

 

Figure 4.27 Comparison of LID, CED and AED RT figures for event 2 

Figure 4.27 compare the performance of CED and AED with LID RT figures. Within 

the figure, both LID and AED show a gradual increase of RT figures that signify the 

movement of pedestrians from the middle to the front row. The increase in LID 

RT figures occurs in a piecewise linear form in tandem with the pedestrian 

movements. As for the comparison of LID, CED and AED, it is evident that CED was 

not able to detect the sequence of pedestrian movement since CED have minor 

differences in collision probability between the front and middle rows. AED is 

more effective as compared to CED, and its sensitivity increases when the 

pedestrian moves to the front rows, thus explaining the elevated AED RT figures 

towards the end. Therefore, LID RT figures provide the most effective detection 

of pedestrians moving from middle to front rows for event 2. 
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Event 2, task 3: Verify 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  and compare LID RT figures to normalised LID RT 

figures. 

 

Figure 4.28 Comparing LID RT figure, normalised LID RT figure and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 for event 2 

Figure 4.28 compares the LID RT figures to normalised LID RT figures (secondary 

axis) and verifies the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 (secondary axis). The LID RT figures were similar to 

the normalised LID RT figures because two pedestrians were detected in the 

scenes with only one of them moving from the middle to the front of the AOI. As 

such, the moving trend between the sum of all risks within a scene (RT figure) and 

the average risk per scene (normalised RT figure) would be the same. Figure 4.28 

also illustrates the expected performance of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒, having an inverse figure 

compared to the LID RT figures. 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 shows a higher value when the pedestrian 

is in the middle row and the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 decreased when the pedestrian moved to 

the front rows. 
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Event 3: Pedestrians’ movement from rear to front 

STREET’s RT figures and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 were also verified using event 3, which consists 

of pedestrians’ movement from rear to front rows. In this event, the same three 

tasks were performed and Figure 4.29 illustrates the pedestrians’ movement 

during this event. Five pedestrians were detected, and three of them moved to 

the front of the AOI, while the other two stayed in the rear and middle rows of 

the AOI.  

 

(a) Pedestrians at rear rows 

 

(b) Pedestrians after crossing middle rows 

 

(c) Pedestrians exit AOI 

Figure 4.29 Images of pedestrians’ movement from rear to front for event 3 
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Event 3, task 1: Comparative analysis between LID RT figures with ground truth 

Figure 4.30 LID RT figures, ground truth and normalised RT figure for event 3 

 

Figure 4.30 shows the LID RT figures, LID RT ground truth and the normalised RT 

figure (on the secondary Y-axis). The LID RT figures track closely to the LID RT 

ground truth. The LID RT figures had minor spikes caused by pedestrians being 

occluded and "Boundary conditions" such as pedestrians walking near the boundary 

between zonal areas. Towards the end of this event, the normalised RT figures 

showed a "divergence" from the LID RT figure when a pedestrian walked out of the 

AOI’s front rows, reducing the LID RT figure. Since two pedestrians were still in 

the front row of the AOI, the normalised RT figures did not show a significant drop. 

Even though there is a slight drop in LID RT figures, both LID RT figures and 

normalised RT figures are sufficiently high to indicate remote warnings for the AV. 

Thus representing the remaining pedestrian risk at the front of the AOI. This 

example illustrated the differences between RT figures and normalised RT figures 

in a real-world context. 
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Event 3, task 2: Comparative analysis between LID, CED and AED RT figures 

 

Figure 4.31 Comparison of LID, CED and AED RT figures for event 3 

Figure 4.31 shows that LID, CED, and AED are compared in event 3, where 

pedestrians move from the rear to the front of the AOI. Since AED covers only the 

front few rows of the AOI, AED RT figures were close to zero until the pedestrian 

moved closer to the front rows of the AOI. A linear piecewise increase can be 

observed in the LID RT figures as the pedestrian moves from the rear to the front 

of the AOI. An exponential increase can be observed in CED RT figures with 

elevated values. This event verifies the performance intended for the three 

algorithms. 
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Event 3, task 3: Verify 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  and compare LID RT figures to normalised LID RT 

figures. 

 

Figure 4.32 Comparing LID RT figure, normalised LID RT figure and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 for event 3 

Figure 4.32 shows the linear step-wise decrease of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 inversely proportional 

to the rising LID RT figures. This verified the performance of 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 as it 

represents the time to collide as the pedestrians move closer to the front rows. 

Scenes (A), (B) and (C) are illustrated examples for 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 in Table 4.12. The 

difference in performance between LID RT figures and normalised LID RT figures 

was already commented on in Event 3 task 1. 

Table 4.12 Illustrated scenes (A), (B) and (C) for 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  

Scene (A): 10360 ms 
𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  = 6.3 s  

Scene (B): 19240 ms 
𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  = 4.5 s 

Scene (C): 40080 ms 
𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  = 1.8 s 
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Event 4: A moving vehicle that occludes pedestrian 

Event 4 depicts an occlusion event, as shown in Figure 4.33. The pedestrian on 

the yellow right second row (𝑌𝑟2) is occluded by the moving truck. When the 

occlusion disappears, the pedestrian has reached (𝑌𝑟3). The detection of 

pedestrian occlusion can be observed with the changes to the RT figures. 

 

(a) Before occlusion 

 

(b) Occlusion takes place 

 

(c) After occlusion event 

 

Figure 4.33 Images of pedestrian occluded by moving vehicle for event 4 
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Event 4, task 1: Comparative analysis between LID RT figures with ground truth 

 

Figure 4.34 LID RT figures vs LID RT ground truth for event 4 

Figure 4.34 illustrates the RT figures when a pedestrian is occluded by a moving 

truck. A sudden drop and increase in LID RT figures over 56 frames occurred in 

this event, which is equal to 2.24 seconds. The LID RT figure drops instantly from 

8.4 to 2.0 and returns to 7.6 (after 56 frames) instead of 8.4, due to the 

pedestrian's movement from the 2nd to the 3rd row after the occlusion. Event 4 

can be detected in real time or post-analytics. However, it is important to note 

that similar results can also occur when the pedestrian moves away and returns 

to the front AOI. The key difference lies in the number of frames in which the RT 

figure stays low. More examples and tests are needed to establish the boundaries 

for detecting occlusion, which may be very specific to a certain location and field 

of view (FOV). These boundaries have not been extensively research but holds 

potential for future work. The LID RT figures are generally close to the LID ground 

truth, except for a spike caused by a false positive detection error due to object 

detection. The LID RT ground truth reflects the actual scene based on the camera 

input. 
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Event 4, task 2: Comparative analysis between LID, CED and AED RT figures 

 

Figure 4.35 Comparison of LID, CED and AED RT figures for event 4 

Figure 4.35 compares the performance of LID, AED, or CED mode for occlusion 

detection. At 128640 ms, LID dropped from 8.4 to 2, while CED dropped from 13.52 

to 6.32 and AED dropped from 3.67 to 0.08. At 130880 ms. LID increased from 2 

to 7.6, while CED increased from 6.32 to 13.51 and AED increased from 0.08 to 

1.69. In terms of absolute decrease, CED dropped the most RT figures, followed 

by LID. The highest CED RT figure also represents the intended design based on 

the CED probabilistic model. LID and AED have similar RT figures at the start of 

the duration because the pedestrian resided in the first row. The gap between LID 

and AED RT figures increases due to the pedestrian moving to the second row. In 

this occlusion event, LID and CED perform better for pedestrian moving from the 

back to the front of the AOI as compared to AED. AED is not suitable for event 

detection because of the small coverage of the AOI at the front.  
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Event 4, task 3: Verify 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 and compare LID RT figures to normalised LID RT 

figures. 

 

Figure 4.36 Comparing LID RT figure, LID RT ground truth and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 for event 4 

Figure 4.36 shows that the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 increases sharply once the pedestrian is 

occluded. Normally, once the pedestrian is occluded, the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 should be zero. 

However, a pedestrian residing at the eight row of the road region is detected, 

thus the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 reflects the time to collision between the detected pedestrian 

and the reference location “X” in the AOI. Therefore, the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 performs as 

intended with an inversely proportional relationship with the LID RT figure. 

4.2.8 Comparison of LID, CED, AED and Time to collision findings 

The characteristics of STREET’s three RT figures using the LID, CED, and AED 

probabilistic model were verified using different events within the corner scenario 

with the RT ground truth. Time to collide (𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒) were also verified using these 

events. Table 4.13 summarises the performance of LID, CED and AED with 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒  

for the different events. 
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Table 4.13 Summary of LID, CED or AED with 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 at corner scenario for different events 

Scenario Events Description 
RT figures with probabilistic models 

and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 

Corner 
bend 

Event 1: Pedestrians’ 
movement from left to 
right and vice versa 

LID and CED are more effective than 
AED. If 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 is flat, the pedestrian 
crossing is at a similar row. 

Event 2: Pedestrians’ 
diagonal movement 
from  middle to front 

LID and AED are more effective than 
CED, 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 can be used to verify 
the same findings with the opposite 
trend 

Event 3: Pedestrians’ 
movement from rear to 
front LID and CED are more effective than 

AED, 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 can be used to verify 
the same findings with the opposite 
trend Event 4: Pedestrian 

occluded by moving 
truck 

 

Additionally, evaluating the scenario based on RT figures and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 provides 

another perspective, as shown in Table 4.14. For example, if the RT figures are 

high while having a low 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒, it represents a high-risk scenario. If the RT figure 

is high and the 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 is high, it infers that pedestrians are present at the AOI's 

middle-rear rows (except AED). If the RT figures are low with a high 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒, this 

represents a low-risk scenario (except AED). If RT figures are low with a low 

𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒, this situation does not exist for STREET algorithm. Lastly, for all models, 

no risk is detected if the RT figures and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 are both zero. High RT figures 

refer to 7-10 normalised RT figures, while low RT figures refer to 1-3 normalised 

RT figures. High 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 refers to a range of values obtained for the first 3 rows 

(i.e 0.63s to 9.0 s), while 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 refers to a range of values obtained for the last 

3 rows (i.e 0.90s to 2.70s). 
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Table 4.14 Summary of models with 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 to identify high or low risk scenario 

Different models Low 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 High 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 

LID 

High RT figures High Risk scenario 
Pedestrians in the middle to 
rear rows 

Low RT figures Not applicable Low-Risk scenario 

CED 

High RT figures High Risk scenario 
Pedestrians in the middle to 
rear rows 

Low RT figures Not applicable Low-Risk scenario 

AED 

High RT figures High Risk scenario 
Not applicable,  

AED has no high 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 
Low RT figures Not applicable 

All 
models 

Zero RT figures Zero 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 means no risk detected. 

 

The STREET algorithm has demonstrated its effectiveness through testing with 

real-world events. However, some limitations have been identified during this 

process.  

These limitations arise from object detection in a camera system for perception. 

For instance, issues include occluded pedestrians and varying sizes of object 

detection boxes that toggle at the edges of the risk zonal areas. Consequently, 

these limitations lead to some inaccuracies in the RT figures. Object detection 

performance is measured at 85% for precision, 87% for recall, and 86% for the F1 

score. Relative to the industry adoption threshold of 90%, these results suggest 

that the inaccuracies have a small impact on the overall STREET performance. It 

is also important to note that STREET and ReRAC are for remote cooperation 

functions that assist AVs in risk assessment. If the RSU, STREET, or ReRAC camera 

fail to function, the AV can still measure risk from the AV perspective through 

ReRAF, while the AV’s basic safety functions prevent accidents using its existing 

sensors and internal algorithm. However, this may result in a higher-risk situation, 

potentially endangering passengers and surrounding vehicles due to sudden 
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braking or abrupt steering manoeuvres, especially in scenarios like cornering 

without advanced remote warnings. 

4.2.9 Hazard identifications and warnings results 

The ReRAC STREET’s hazard identifications and warnings were tested in a real-

world T-junction (described in chapter 3), as shown in Figure 4.37. The corner 

scenario was not used since the hazard identifications and warnings require a T-

junction intersection. Figure 4.37 (a) shows the FOV of the RSU’s camera and 

Figure 4.37 (b) shows the T-junction, which includes the road regions (red zone) 

and intersection (black zone) for STREET algorithm to provide hazardous 

identification and warning events. The different hazard identifications and 

warnings provide remote detection of potential accidents and/or congestions so 

that the AV can prepare alternative paths or exercise caution before reaching the 

RSU’s location. The RSU’s camera was mounted at a height of 3.0 m for a detection 

range of up to 35 m for this specific scene. 

 
 

  
(a) Field Of View (FOV) of the T-junction (b) T-junction landscape 

Figure 4.37 Hazard identifications and warnings tested at T-junction 

Hazard identifications and warning zoning 

Figure 4.38 shows the risk zoning of a T-junction intersection with red zones for 

roads, yellow zones for pavement and added an additional step to demarcate the 

black zone for the intersection. 
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Figure 4.38 Real-world T-junction with zoning 

The different hazard identifications and warnings are illustrated with real-world 

examples using the selected T-junction as an example. As explained in section 

4.1.7, using Table 4.5 and Table 4.6, the conditions were implemented in real 

time to provide boolean hazardous events detection. A total of six scenes (Scene 

A to G) were identified from this scenario to illustrate the different hazard 

identifications and warning results. Vehicle and pedestrian warnings were 

classified as hazard warnings within a T-junction intersection. VVH are vehicle-to-

vehicle hazards, and VPH are vehicle-to-pedestrian hazards, which were 

considered for both road and T-junction intersections. In this scenario, STREET 

also provides pedestrians and vehicle RT figures and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒. 

SCENE A 

  

Figure 4.39 Scene A, vehicle warning “True” 

Figure 4.39 illustrates scene A, which consists of a vehicle warning. Vehicle 

warnings occurred when a vehicle is detected within the intersection (black zone). 
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This trigger was used to notify the presence of a turning vehicle within the 

intersection. 

Scene B 

  

Figure 4.40 Scene B, pedestrian warning “True” 

Figure 4.40 illustrates scene B, which consists of a pedestrian warning. The 

pedestrian warning occurred when a pedestrian was detected within the 

intersection (black zone). This trigger was used to notify the presence of a 

pedestrian walking within the intersection and as a warning for AV for any advance 

plan either in turning or driving straight across that intersection. 

Scene C 

  

Figure 4.41 Scene C, vehicle warning “True” and vehicle-to-vehicle hazard “True”  

Figure 4.41 illustrates scene C, which consists of a vehicle warning and a vehicle-

to-vehicle hazard detection within the intersection (black zone). This trigger was 

to notify the presence of two or more vehicles detected at the intersection and 

that the intersection was crowded with vehicles. 
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Scene D 

  

Figure 4.42 Scene D, vehicle warning “True” and vehicle-to-vehicle hazard “True”  

Figure 4.42 illustrates scene D, which consists of a vehicle warning and a vehicle-

to-vehicle hazard detection within the road (red zone). This trigger was to notify 

the presence of a vehicle in the intersection and a vehicle-to-vehicle in the AOI. 

If the warning and hazard are triggered for a long duration, it represents roads 

are congested. The RT figure was used to verify the vehicle-to-vehicle in the AOI 

further. In this case, the high vehicle RT figure of 27 (normalised RT figure would 

be 9), with low vehicle 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 meant that the vehicle-to-vehicle crowding 

happens near the RSU (high risk scenario). RT figure and 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒 have two values. 

The first number uses the nearest reference location “X” to the RSU, while the 

other uses the furthest reference location “X”. This is to cater for vehicles moving 

in different directions.  

Scene E 

  

Figure 4.43 Scene E, pedestrian & vehicle warning “True”, & vehicle-to-pedestrian hazard “True”  

Figure 4.43 illustrates scene E, which consists of a pedestrian and vehicle warning 

and a vehicle-to-pedestrian hazard warning at the intersection (black zone). This 
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trigger was to notify the presence of vehicle(s) and pedestrian(s) within the 

intersection. All three warnings indicate that vehicles and pedestrians were within 

the intersection. Prolong duration of the detected event represents congestion or 

accidents.  

Scene F 

  

Figure 4.44 Scene F, vehicle-to-pedestrian hazard “True” at AOI 

Figure 4.44 illustrates scene F, which consists of a vehicle-to-pedestrian hazard 

within the red zone. This trigger is to notify the presence of vehicle proximity 

with pedestrian detection within the red zone. The RT figure further verifies if 

the hazard is close to the RSU. In this case, the vehicle and pedestrian RT figure 

is 8.5, which implies that it is close to the RSU with a low pedestrian 𝑇𝑇𝐶𝑣𝑎𝑙𝑢𝑒. For 

comparative purposes, if the same vehicle and pedestrian are detected in the last 

row, the RT figure will be 2.5.  

Any prolonged duration of detected warning or hazards represents congestion or 

accidents in the AOI or intersection. Situations with long durations of vehicle-to-

pedestrian hazards represent an occurrence of accidents or roadworks at that AOI 

or intersection. This information from the RSU allows the AV to seek alternative 

path planning to avoid these situations. 

4.3 Summary 

This chapter provides a comprehensive overview of the developed novel STREET 

algorithm within ReRAC. ReRAC is deployed in an RSU to deliver remote warnings 

as an infrastructure to AV for measuring environmental risk, time to collision with 
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the detected object, and hazard identifications and warnings. The STREET 

algorithm uses risk zoning, probabilistic modelling, and object detection 

methodologies. The theoretical formulation of STREET is thoroughly explained, 

accompanied by illustrations for each of the methodologies employed. The risk 

zoning process was outlined with detailed steps for creating a risk zoning matrix 

for the chosen FOV. Additionally, three probabilistic models (LID, CED, and AED) 

were developed to represent different coverages and collision probabilities for 

the AOI. Object detection methodologies were trained and evaluated using a 

custom YOLOv5s model, achieving a Precision of 84%, Recall of 65%, and F1 score 

of 74%. The object detection results were then integrated into a unique mapping 

process, resulting in an improved performance of 85% for Precision, 87% for Recall, 

and 86% for F1 score. This mapping process notably boosted the Recall 

performance by over 20%. The outcomes generated by STREET include RT figures, 

RSU-TTC, probability of pedestrian occurrence, and hazard identifications and 

warnings. Notably, STREET operates as an end-to-end process, providing real-time 

quantitative information directly from the RSU's camera imagery without human 

interpretation. In addition, this chapter evaluates the STREET algorithm in a real-

world setting, specifically in a corner scenario with unregulated traffic. The 

algorithm processes data at a granular level, providing information at 25 frames 

per second with a frequency of 40 ms. RT figures and RSU-TTC outcomes were 

being tested and validated across 97,446 scenes. Additionally, the normalisation 

of RT figures was developed to quantify the risk per scene, allowing for a 

comparison of total pedestrian risk (RT figure) across scenes. The RT figures for 

LID, CED, and AED were compared, and the accuracy of LID RT figures was verified 

against ground truth. The RT figures performed as designed, with limitations in 

occlusion and varying object detection box sizes, which have been discussed in 

this chapter. Pedestrian occurrences and heatmaps were utilised to validate the 

RT figure outcomes based on pedestrian locations. The performance of different 

RT figures with LID, CED, and AED probabilistic models was observed and 

summarised. Furthermore, hazard identifications and warnings are verified using 

scenes of an unregulated traffic scenario of a T-junction to provide remote event 

warnings to the AV for route planning and optimisation. The development of 

STREET’s algorithm for ReRAC, together with the outcomes verified in real-world 
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settings, accomplished the previously identified requirements to increase the 

coverage of risk assessment for AV operations through I2V approaches. 
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Chapter 5 

5 Real-time risk assessment framework for AV 

This chapter presents ReRAF’s algorithm, Dynamic Acquired Risk Assessment 

(DARA). Unlike ReRAC’s algorithm, STREET, developed in chapter 4, which 

achieves real-time risk assessment through a cooperative mode within an RSU, 

DARA operates within the AV. It provides a safety figure known as the 𝑃𝑅𝑁, which 

evaluates the AV’s control actions in the presence of detected risk. Additionally, 

DARA provides the AV Time To Collision (AV-TTC) with the detected object as well 

as 𝑃𝑅𝑁 Occurrences, which are presented as heatmaps to identify hotspots based 

on past 𝑃𝑅𝑁 occurrences. These outcomes from DARA allow the AV to improve its 

safety actions for subsequent operations within the same paths as recursive 

improvements and risk assessment evaluation. DARA is a novel end-to-end 

algorithm that does not require human intervention and provides granular 

quantitative safety figures. The DARA algorithm is processed in real time, ensuring 

timely and relevant results relative to the camera input frames per second. This 

chapter presents the theoretical formulation and evaluates DARA through 

unregulated traffic conditions. DARA is also verified with three iterative loops of 

AV operations in a real-world environment, highlighting 𝑃𝑅𝑁’s characteristics and 

intended functionality. DARA intends to increase the AV overall risk assessment 

coverage and the controls' safety and path planning through 𝑃𝑅𝑁, AV-TTC, and 

Occurrence figures.  
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5.1 Dynamic Acquired Risk Assessment (DARA) 
algorithm 

This section describes DARA's theoretical formulation. As introduced in Chapter 3, 

DARA’s concept was defined using the identified methodologies to fulfil the 

requirements that address the gap for real-time risk assessment. These 

methodologies comprise object detection, scene segmentation, probabilistic 

modelling, and parametric controls. The outcomes of this methodology include RT 

figures, CT figures, 𝑃𝑅𝑁, AV-TTC, and Occurrence, which are used to increase the 

risk assessment coverage for AV operations. 

 

Figure 5.1: Block diagram of DARA  

Figure 5.1 shows the block diagram of DARA. Image risk tagging and mapping 

consists of object detection, scene segmentation, and probabilistic modelling that 

convert the AV’s real-time environmental images into RT figures and AV-TTC. RT 

figures indicate the severity of environmental hazards. This is achieved by 

converting images of the detected pedestrians or vehicles on the road or 

pavements into a single quantitative figure. AV-TTC is an indicator that helps 

determine the time to collision between the AV and the detected object. The AV's 

steering, brake, throttle, and speed determine the CT figures. CT figures 

represent the AV’s control actions in response to the detected risk. 𝑃𝑅𝑁 is derived 

from RT and CT figures, reflects a high value when there is high environmental 

risk along with harsh braking or wide steering angle, and reflects a low value when 

the AV control actions are sufficient to manage the exposed risk. The RT, CT, and 
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𝑃𝑅𝑁 and AV-TTC figures are stored in the AV map database. The storage of past 

data aids in determining Occurrence figures related to the 𝑃𝑅𝑁 over time.  

5.1.1 Image Risk Tagging and Mapping 

This section details the risk tagging and mapping process within DARA, as 

illustrated in Figure 5.2. The input image first goes through object detection and 

scene segmentation. Object detection identifies the category of the detected 

object and locates it within the image. Scene segmentation divides the image into 

road, pavement, and off-road regions and adds rows based on predefined 

distances. These rows and columns form a matrix outcome. The object detection 

and scene segmentation outcomes are combined as a dependency for 𝑃𝑅𝑁 

calculation within the risk tagging and mapping process. Simultaneously, object 

detection and scene segmentation results are also used to determine the AV-TTC. 

The following sub-processes provide more detailed information about each 

module. 

 

Figure 5.2: Block diagram of Image risk tagging and mapping 

Object detection 

As outlined in chapter 3, YOLOv5s is selected as the reference model for object 

detection. The detection outcome gives (x, y, w, h), where x and y are the centre 

coordinates of the predicted box while w and h are the width and height of the 

box, respectively. Typically, both values (x, y) are normalised with the resolution 

of the image.  
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Scene segmentation 

Real-time scene segmentation is used to distinguish between roads and 

pavements, as the risk of collision between the AV and a pedestrian/vehicle on 

the road should be higher than that of the pavement. Thus, roads and pavements 

are classified separately, and weights are assigned to roads and pavements, 

respectively, to differentiate the collision risks. PSPNet [82] was chosen for scene 

segmentation because it balances accuracy and frame rate well.  

 
(a) Camera scene from AV 

 

(b) Convert scene into a matrix 

[
 
 
 
 
 
 
 
 
𝑃𝑅8, 𝑃𝐶1 𝑃𝑅8, 𝑃𝐶2 𝑃𝑅8, 𝑃𝐶3

𝑃𝑅7, 𝑃𝐶1 𝑃𝑅7, 𝑃𝐶2 𝑃𝑅7, 𝑃𝐶3

𝑃𝑅6, 𝑃𝐶1 𝑃𝑅6, 𝑃𝐶2 𝑃𝑅6, 𝑃𝐶3

𝑃𝑅5, 𝑃𝐶1 𝑃𝑅5, 𝑃𝐶2 𝑃𝑅5, 𝑃𝐶3

𝑃𝑅4, 𝑃𝐶1 𝑃𝑅4, 𝑃𝐶2 𝑃𝑅4, 𝑃𝐶3

𝑃𝑅3, 𝑃𝐶1 𝑃𝑅3, 𝑃𝐶2 𝑃𝑅3, 𝑃𝐶3

𝑃𝑅2, 𝑃𝐶1 𝑃𝑅2, 𝑃𝐶2 𝑃𝑅2, 𝑃𝐶3

𝑃𝑅1, 𝑃𝐶1 𝑃𝑅1, 𝑃𝐶2 𝑃𝑅1, 𝑃𝐶3]
 
 
 
 
 
 
 
 

 

 

(c) Eventual matrix 

Figure 5.3: Scene segmentation of a scene into matrix 

Figure 5.3 illustrates how a scene is converted into left and right pavement and 

road using PSPNet. Rows are added to the scene segmentation in accordance to a 

pre-defined distance. The pre-defined distance uses a calibrated distance per 

pixel relationship [132] that identifies the number of rows to the Image Centre 
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Reference (ICR). The number of pixels for each subsequent row is reduced as the 

distance moves away from ICR. The lines in Figure 5.3 (a) and (b) indicate the 

rows 𝑃𝑅1, 𝑃𝑅2 …𝑃𝑅𝑁 and columns 𝑃𝐶1, 𝑃𝐶2 …𝑃𝐶𝑁 of the Risk Tagging Matrix (RTM) as 

shown in Figure 5.3 (c). The RTM of a scene can be represented as Sn in equation 

5.1 with the suffix rz for a specific risk zone. 

𝑆𝑛 = 𝑅𝑇𝑀𝑟𝑧,𝑛 (5.1) 

 

where, 

𝑆𝑛: RTM of a scene 

𝑅𝑇𝑀𝑟𝑧,𝑛: RTM with risk zone (rows & columns) of an image at nth frame. 

 

𝑅𝑇𝑀𝑟𝑧,𝑛 =

[
 
 
 
 
 
 
 
 
𝑌𝑙8,𝑛 𝑅8,𝑛 𝑌𝑟8,𝑛

𝑌𝑙7,𝑛 𝑅7,𝑛 𝑌𝑟7,𝑛

𝑌𝑙6,𝑛 𝑅6,𝑛 𝑌𝑟6,𝑛

𝑌𝑙5,𝑛 𝑅5,𝑛 𝑌𝑟5,𝑛

𝑌𝑙4,𝑛 𝑅4,𝑛 𝑌𝑟4,𝑛

𝑌𝑙3,𝑛 𝑅3,𝑛 𝑌𝑟3,𝑛

𝑌𝑙2,𝑛 𝑅2,𝑛 𝑌𝑟2.𝑛

𝑌𝑙1,𝑛 𝑅1,𝑛 𝑌𝑟1,𝑛]
 
 
 
 
 
 
 
 

 

(5.2) 

 

where, 

𝑅𝑇𝑀𝑟𝑧,𝑛: RTM with rows R, columns C and specific frame of image nth 

𝑅1,𝑛. . 𝑅8,𝑛: Road at rows 1 to 8 at the specific frame of image nth 

𝑌𝑙1,𝑛. . 𝑌𝑙8,𝑛: Left pavement at rows 1 to 8 at the specific frame of image nth 

𝑌𝑟1,𝑛. . 𝑌𝑟8,𝑛: Right pavement at rows 1 to 8 at the specific frame of image nth 

 

Equation 5.2 represents the RTM with the defined rows and columns at that 

particular scene. Variables are assigned for each zonal area in equation 5.2. For 

example, 𝑌𝑙 represents the zoning of the scene into pavements on the left, 𝑌𝑟 

represents pavements on the right, and R represents the road. RTM is used as the 

baseline matrix for risk tagging and mapping. 
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Performance of combined object detection and scene segmentation 

The combination of object detection and scene segmentation (YOLOv5s + PSPNet) 

enables real-time dynamic detection of objects and division of the scene into 

different road and pavement regions. The results are then used in the risk tagging 

and mapping process. The combined use of both YOLOv5s with PSPNet are seen in 

works of [133] and [134]. In this research, the methodology of [134] is used as it 

further enhances YOLOv5s + PSPNet which improves the inference speed of 

semantic segmentation up to 15 frames per second. This is achieved by adding a 

receptive field block layer [135] between YOLOv5s and PSPNet processing and 

adding channel attention [136] after the PSPNet. The receptive field block layer 

for PSPNet strengthens the deep features learnt with a similar approach to [135]. 

The channel attention is used after the PSPNet. In [134], only the performance of 

PSPNet is given with mIOU of 0.73. Thus, a further test was done to verify [134]. 

A testing data of 444 images from Cityscapes was used to test the pre-trained 

weights of [134] for YOLOv5s and PSPNet. The test of YOLOv5s resulted in 86% for 

Precision, 42% for Recall and 57% for F1 score, while the PSPNet had results with 

pixel accuracy of 0.9437 and mIOU of 0.767. These results showed that it aligned 

with the mIOU figure reported in [134]. With the object detection mapped into 

the scene segmentation, a similar YOLOv5s + Mapping test (section 4.2.3) was 

conducted, which improved Recall from 42% to 57% and F1 score from 57% to 66%, 

but reduced Precision from 86% to 76%. Since the research focused on the real-

time risk assessment framework rather than AI optimisation, it proceeded with 

YOLOv5s + PSPNet pre-trained weight [134] were used (YOLOv5s can be further 

adapted with better-performing models in the future).  

Risk Tagging and Mapping 

This process converts the detected objects, maps them into pavement and roads, 

and then determines the risk values of the scene represented as RT figures. It 

utilizes object detection and scene segmentation results by converting the 

detected object boundary box and mapping them into different regions within the 

scene's RTM. Once mapped in the different regions, the actual and normalised RT 

figures for pedestrians and vehicles are determined for 𝑃𝑅𝑁 process. 
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Figure 5.4 Block diagram within Risk Tagging and Mapping in DARA 

Figure 5.4 shows the risk tagging and mapping process from the outcome of object 

detection and scene segmentation. The outcome of object detection provides (x, 

y, w, h), where x and y are the centre point, with w the width and h the height of 

the detected object in the image. The variables 𝐷𝑥 and 𝐷𝑦 are defined using 

equation 5.3 to represent the bottom centre of the detected object by YOLOv5s. 

Thereafter, the 𝐷𝑥 and 𝐷𝑦 are mapped into the zonal areas of the dynamic scene, 

RTM. This mapping uses (𝐷𝑥, 𝐷𝑦) to test for "point in polygon" [130], and if the 

test is true, then the objects are accounted for that zonal area within the RTM. 

This process emulates the same procedure of having an object detection (ODrz) 

matrix as discussed in chapter 4. 

𝐷𝑥 = 𝑥 𝑎𝑛𝑑 𝐷𝑦 = 𝑦 −
ℎ

2
  

(5.3) 

  

where, 

𝐷𝑥  : Pixel number of the image width, at the bottom centre of the detected object  

𝐷𝑦  : Pixel number of the image height, at the bottom centre of the detected object  

𝑦 : Pixel number of the image height, at the centre of the detected object 

𝑥 : Pixel number of the image width, at the centre of the detected object 

ℎ : Pixel height of the detected object 
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Each RTM has different zonal areas. For example, an 8 rows x 3 columns RTM has 

24 zonal areas, as shown in Figure 5.3. Since the detected object can be 

pedestrians or vehicles, the RTM is split into pedestrians and/or vehicles RTM. The 

total Pedestrian Risk Tag (𝑃𝑅𝑇) figures and Vehicle Risk Tag (𝑉𝑅𝑇) figures are 

represented in equations 5.4 and 5.5, respectively. Equations 5.4 for 𝑃𝑅𝑇𝑠𝑢𝑚 and 

5.5 for 𝑉𝑅𝑇𝑠𝑢𝑚 are determined first by performing elementwise multiplication 

between 2D risk zonal matrix (𝑟𝑧) and risk detection model of Linear Interval 

Distribution (𝑅𝐷𝐿𝐼𝐷), and then the results are elementwise multiplied with RTM. 

2D risk zonal matrix (𝑟𝑧) is similar in STREET, where the matrix size of the RTM 

is used and assigned with weights (Table 4.1) that differentiate between the risks 

on roads and pavements. Linear Interval Distribution (𝑅𝐷𝐿𝐼𝐷) is the risk detection 

matrix that uses piecewise linear collision probability between the detected 

object and the AV.  RTM represents detected objects mapped into the zonal areas 

of scene segmentation. The 𝑃𝑅𝑇𝑠𝑢𝑚 and 𝑉𝑅𝑇𝑠𝑢𝑚 sum all the risks of the detected 

objects based on the road and/or pavement and the probability of collision with 

the AV. 

𝑃𝑅𝑇𝑆𝑈𝑀 = ∑𝑅𝑇𝑀(𝑝)𝑟𝑧  𝑟𝑧  𝑅𝐷𝐿𝐼𝐷

𝑟𝑧

 (5.4) 

 

where, 

𝑃𝑅𝑇𝑆𝑈𝑀 : Total Pedestrian RT figure  

𝑅𝑇𝑀(𝑝)𝑟𝑧 : Pedestrian RTM 

𝑅𝐷𝐿𝐼𝐷 : Risk detection matrix based on LID model 

𝑟𝑧 : 2D risk zonal matrix with weights assigned for road and pavements 

 

𝑉𝑅𝑇𝑆𝑈𝑀 = ∑𝑅𝑇𝑀(𝑣)𝑟𝑧 𝑟𝑧  𝑅𝐷𝐿𝐼𝐷

𝑟𝑧

 (5.5) 
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where, 

𝑉𝑅𝑇𝑆𝑈𝑀 : Total Vehicle RT figure for the vehicle RTM  

𝑅𝑇𝑀(𝑣)𝑟𝑧 : Vehicle RTM 

𝑅𝐷𝐿𝐼𝐷 : Risk detection matrix based on LID model 

𝑟𝑧 : 2D risk zonal matrix with weights assigned for the road and pavements 

 

The 𝑃𝑅𝑇𝑆𝑈𝑀 and 𝑉𝑅𝑇𝑆𝑈𝑀 for a scene are also normalised to provide 𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇 

using equations 5.6 and 5.7, respectively. These normalised RT figures provide the 

average risk per detected object and can serve as safety ratings on a scale from 0 

to 10, making comparing risk levels for different scenarios easier. 

𝑛𝑃𝑅𝑇 =
𝑃𝑅𝑇𝑆𝑈𝑀

𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

(5.6) 

  

where, 

𝑛𝑃𝑅𝑇 : Normalised Pedestrian RT figure 

𝑃𝑅𝑇𝑆𝑈𝑀 : Total Pedestrian RT figure of the scene 

𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 : Total detected pedestrians 

𝑛𝑉𝑅𝑇 =
𝑉𝑅𝑇𝑆𝑈𝑀

𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

(5.7) 

  

where, 

𝑛𝑉𝑅𝑇 : Normalised Vehicle RT figure 

𝑉𝑅𝑇𝑆𝑈𝑀 : Total Vehicle RT figure 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 : Total detected vehicles 
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AV Time To Collision (AV-TTC) 

This process calculates the time to collision between the AV and the closest 

detected object. The purpose is to provide a reference for the AV. The result of 

this process is referred to as AV-TTC. With the rows defined within scene 

segmentation, the pre-determined distance for each scene and the speed of the 

moving AV are used to determine the time to collision. The AV-TTC is based on 

the defined ICR shown in Figure 5.3, and the row closest to the ICR will have the 

shortest time to collision.  

5.1.2 Control Tagging of the AV  

With the environmental hazards converted to RT figures, the corresponding AV 

reaction to the environmental hazards needs to be measured. This measurement 

indicates how well the AV manages the detected risk through movement. The AV's 

lateral and longitudinal movements are influenced by steering (𝑆𝑡), braking (𝐵), 

throttle (𝑇ℎ), and speed (𝑆𝑝). Harsh braking, wide steering, rapid throttle, and 

high speed indicate inadequate risk management. Therefore, a single CT figure is 

calculated to determine the extent of control actions applied by the AV in 

response to hazards. This section illustrates the conversion of AV's lateral and 

longitudinal parametric movements into a single CT figure, as shown in Figure 5.5.  

 

Figure 5.5: Control Tagging of the AV 

 

Normalising the input figure to a range between 0 and 1.0 is necessary for 

consistency in obtaining values from different parameters. The minimum value is 
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subtracted from the actual reading during normalisation to remove the offset. 

This normalisation process is used for brake and throttle using equations 5.8 and 

5.9, respectively. Brake and throttle only have positive values since they are non-

directional.  

 

𝐵𝑛 =
𝐵 − 𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
 

(5.8) 

  

where, 

𝐵𝑛 : Normalised brake values of the sensor 

𝐵 : Actual brake values of the sensor 

𝐵𝑚𝑖𝑛 : Minimum brake values of the sensor 

𝐵𝑚𝑎𝑥 : Maximum brake values of the sensor 

 

𝑇ℎ𝑛 =
𝑇ℎ − 𝑇ℎ𝑚𝑖𝑛

𝑇ℎ𝑚𝑎𝑥
 

(5.9) 

 

where, 

𝑇ℎ𝑛 : Normalised throttle values of the sensor 

𝑇ℎ : Actual throttle values of the sensor 

𝑇ℎ𝑚𝑖𝑛 : Minimum throttle values of the sensor 

𝑇ℎ𝑚𝑎𝑥 : Maximum throttle values of the sensor 

 

Steering provides directional intentions, with inputs in negative and positive 

values to reflect the directional status. Therefore, the normalised steering shown 

in equation 5.10 illustrates the use of absolute value to capture the degree of 

turning and not directional information. Lastly, speed is normalised with the speed 
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limit of that section of the road shown in equation 5.11. There are no offsets for 

steering and speed, as their zero readings are calibrated as their minimum values. 

𝑆𝑡𝑛 =
|𝑆𝑡 − 0|

|𝑆𝑡𝑚𝑎𝑥|
 

(5.10) 

  

where, 

𝑆𝑡𝑛 : Normalised steering values 

𝑆𝑡 : Actual steering values 

𝑆𝑡𝑚𝑎𝑥 : Maximum steering values 

 

𝑆𝑝𝑛 =
𝑆𝑝

𝑆𝑝𝑙𝑖𝑚𝑖𝑡
 

(5.11) 

  

where, 

𝑆𝑝𝑛 : Normalised speed values 

𝑆𝑝 : Actual speed values 

𝑆𝑝𝑙𝑖𝑚𝑖𝑡 : Speed limit 

The CT figure of the AV, previously known as 𝐶𝑡𝑟𝑙 in equation 3.2, is illustrated 

for easy reference as equation 5.12. 𝐶𝑡𝑟𝑙 summates all four vehicle parameters 

with individual weights of WB., WTh, WSt, and WSp. These weights are used to adjust 

the individual strength of their components in situations where different emphases 

are needed for control tagging. For example, if the emphasis on speed needs to 

be reduced, WSp can be assigned to 8 (80%) instead of 10 (100%) without changing 

the actual conversion of the speed.  

𝐶𝑡𝑟𝑙 =
1

3
(𝐵𝑛𝑊𝐵 + 𝑇ℎ𝑛𝑊𝑇ℎ + 𝑆𝑡𝑛𝑊𝑆𝑡 + 𝑆𝑝𝑛𝑊𝑆𝑝) 

(5.12) 
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where, 

𝐵𝑛 : Normalised brake values 

𝑊𝐵 : Weight of brake values ranging from 1 to 10 (default set at 10) 

𝑇ℎ𝑛 : Normalised throttle values 

𝑊𝑇ℎ : Weight of throttle values ranging from 1 to 10 (default set at 10) 

𝑆𝑡𝑛 : Normalised steering values 

𝑊𝑆𝑡  : Weight of steering values ranging from 1 to 10 (default set at 10) 

𝑆𝑝𝑛 : Normalised speed values 

𝑊𝑆𝑝 : Weight of speed values ranging from 1 to 10 (default set at 10) 

Through these calculations, 𝐶𝑡𝑟𝑙 represents an average rating of the normalised 

weights and parameters obtained from the AV. Since brake and throttle do not 

occur simultaneously (i.e. when the brake is present, the throttle would be zero 

and vice versa), the averaging is accomplished with three of the four input 

parameters in equation 5.12. With this definition of 𝐶𝑡𝑟𝑙, high values of 𝐶𝑡𝑟𝑙, 

represent that extreme levels of AV operations are in place (i.e harsh braking, 

wide steering, rapid throttle and high speed), while low values of 𝐶𝑡𝑟𝑙 represent 

no extreme levels of controls have taken place. The intention is to map the 𝐶𝑡𝑟𝑙 

with the 𝑃𝑅𝑇/𝑉𝑅𝑇 for 𝑃𝑅𝑁.  

5.1.3 Predicted Risk Number (𝑷𝑹𝑵) 

𝑃𝑅𝑁 assesses the risk of the AV in real time based on the exposed risk and 

controllability. The 𝑃𝑅𝑁 results represent how the AV manages risk at a specific 

geolocation, time, and scene. The following section determines the overall risk 

assessment figure, 𝑃𝑅𝑁, using the converted AV’s environment hazards into 

PRT/VRT and AV’s movement due to the exposed hazards into 𝐶𝑡𝑟𝑙. 𝑃𝑅𝑁 process 

is the last step of the DARA algorithm. The formulation of 𝑃𝑅𝑁 shown in equation 

5.13.  

𝑃𝑅𝑁 = 𝐶𝑡𝑟𝑙 ∗ 𝐶_𝑅𝑇  (5.13) 
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where, 

𝐶_𝑅𝑇 =
𝑛𝑃𝑅𝑇 + 𝑛𝑉𝑅𝑇

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 

 

where, 

𝑃𝑅𝑁 : Predicted Risk Number 

𝐶𝑡𝑟𝑙 : Control Tag figure 

𝐶_𝑅𝑇 : Combined RT figure 

𝑛𝑃𝑅𝑇: Normalised Pedestrians RT figure 

𝑛𝑉𝑅𝑇 : Normalised Vehicles RT figure 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 : The number of types of detected objects 

 

The 𝐶𝑡𝑟𝑙 in equation 5.13 represents the CT figure, while 𝐶_𝑅𝑇 is the combined 

RT figure of the normalised 𝑃𝑅𝑇 and 𝑉𝑅𝑇. This is necessary because, in real-world 

scenarios, the exposed risk consists of different scenes with pedestrians and (or) 

vehicles. Since 𝐶𝑡𝑟𝑙 and 𝐶_𝑅𝑇 range from 0 to 10, the resulting 𝑃𝑅𝑁 varies 

between 0 to 100. Table 5.1 shows some simulated scenes where 𝑃𝑅𝑁 is derived 

with environmental risk and parametric controls of the AV. Five categorised scenes 

are illustrated: extreme risk, high risk, normal risk, low risk, and almost no risk. 

Thus, from these scenes, a guideline is set, similar to the approach of setting the 

Risk Priority Number in FMEA [15], such that high 𝑃𝑅𝑁 ratings start from the 

threshold of 20, while low 𝑃𝑅𝑁 ratings are assigned if they are below 10, and 

middle 𝑃𝑅𝑁 ratings range between 10 to 20. This guideline is shown in Table 5.2. 

Another method of determining the threshold of 𝑃𝑅𝑁 ratings can be achieved by 

using statistical methods (50th and 95th percentile) of the past 𝑃𝑅𝑁 data, as 

illustrated in section 5.2.5. More 𝑃𝑅𝑁 evaluations and verifications through DARA 

will be shown in sections 5.2.4 and 5.3. 
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Table 5.1 Simulated scenes of 𝑃𝑅𝑁  

Scenes 
𝐶𝑡𝑟𝑙  

(all weights = 10) 
𝐶_𝑅𝑇  

(detection classes = 2) 
𝑃𝑅𝑁 & 
(rating) 

Extreme 
risk 

AV drive at a speed limit of 40 km/h. 
Throttle floored while performing a U-
turn. 

𝑆𝑝𝑛 = 1.0, 𝑇ℎ𝑛 = 1.0, 𝑆𝑡𝑛 = 1.0, 𝐵𝑛 = 

0.0, 𝐶𝑡𝑟𝑙 = 10.0 

One Pedestrian and one 
vehicle are detected right in 
front of the AV. 
𝑛𝑃𝑅𝑇 = 10.0, 𝑛𝑉𝑅𝑇 =10.0,  
𝐶_𝑅𝑇 = 10.0 

100  
(high) 

High 
risk (1) 

AV driving close to the speed limit at 
30 km/h. Throttle at 70% with slight 
steering to avoid the upcoming 
pedestrian 

𝑆𝑝𝑛 = 0.75, 𝑇ℎ𝑛= 0.70, 𝑆𝑡𝑛 = 0.30, 𝐵𝑛 

= 0.0, 𝐶𝑡𝑟𝑙 = 5.83 

One Pedestrian is detected 
at the 2rd row of the RTM 
𝑛𝑃𝑅𝑇 = 8.0, 𝑛𝑉𝑅𝑇 =0.0, 𝐶_𝑅𝑇 
= 4.0 

23.32 
(high) 

High 
risk (2) 

AV driving perform a sudden braking to 
avoid collision with a vehicle (near miss 
accident) 20 km/h. Brake at 100% with 
no steering 

𝑆𝑝𝑛 = 0.50, 𝑇ℎ𝑛= 0.0,𝑆𝑡𝑛 = 0.0, 𝐵𝑛 = 

1.0, 𝐶𝑡𝑟𝑙 = 5.0 

One Vehicle is detected at 
the 2rd row of the RTM 
𝑛𝑃𝑅𝑇 = 0.0, 𝑛𝑉𝑅𝑇 = 8.0, 
𝐶_𝑅𝑇 = 4.0 

20.00  
(high) 

Normal 
risk (1) 

AV stop with a vehicle in front at 
traffic light 

𝑆𝑝𝑛 = 0.0, 𝑇ℎ𝑛 = 0.0, 𝐵𝑛 = 1.0, 𝑆𝑡𝑛 = 

0.0, 𝐶𝑡𝑟𝑙 = 3.33 

One Vehicle is detected at 
the second row of the RTM. 
𝑛𝑃𝑅𝑇 = 0.0, 𝑛𝑉𝑅𝑇 = 9.0, 
𝐶_𝑅𝑇 = 4.5 

14.985 
(mid) 

Normal 
risk (2) 

AV drive at speed of 20 km/h, limit at 
40 km/h. Driving straight with throttle 
at 50% 

𝑆𝑝𝑛 = 0.5, 𝑇ℎ𝑛 = 0.5, 𝐵𝑛 = 0.0, 𝑆𝑡𝑛 = 

0.0, 𝐶𝑡𝑟𝑙 = 3.33 

One Pedestrian and one 
vehicle are detected at the 
middle of the RTM. 
𝑛𝑃𝑅𝑇 = 5.0, 𝑛𝑉𝑅𝑇 =5.0, 𝐶_𝑅𝑇 
= 5.0 

16.65 
(mid) 

Low risk  AV drive at speed of 20 km/h, limit at 
40 km/h. Driving straight with throttle 
at 50% 

𝑆𝑝𝑛 = 0.5, 𝑇ℎ𝑛 = 0.5, 𝐵𝑛 = 0.0, 𝑆𝑡𝑛 = 

0.0, 𝐶𝑡𝑟𝑙 = 3.33 

One Pedestrian/one vehicle 
is detected at the middle of 
the RTM. 
𝑛𝑃𝑅𝑇 = 5.0/0.0, 𝑛𝑉𝑅𝑇 = 
0.0/5.0, 𝐶_𝑅𝑇 = 2.5 same for 
either 

8.325 
(low) 

Almost 
no risk 

AV idle 

𝑆𝑝𝑛 = 0.0, 𝑇ℎ𝑛 = 0.0, 𝐵𝑛 = 1.0, 𝑆𝑡𝑛 = 

0.0, 𝐶𝑡𝑟𝑙 = 3.33 

One Pedestrian is detected 
at the last row of the RTM 
𝑛𝑃𝑅𝑇 = 1.0, 𝑛𝑉𝑅𝑇 = 0.0, 
𝐶_𝑅𝑇 = 0.5 

1.665 
(low) 

 

Table 5.2 𝑃𝑅𝑁 rating guideline 

𝑷𝑹𝑵 rating Threshold 𝑷𝑹𝑵 range 

High 20 >20 to 100 

Middle 10 to 20 10 to 20 

Low 10 0 to <10 
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𝑃𝑅𝑁s are all time-stamped and obtained in sub-seconds to match each camera 

image frame and vehicle parameter controls. To achieve this, DARA operates as 

an end-to-end real-time process to provide 𝑃𝑅𝑁. The outcome of 𝑃𝑅𝑁 is 

determined objectively without human involvement based on the methodologies 

described in previous sections. The 𝑃𝑅𝑁 can be used as input related to AV path 

planning for subsequent or future iterations to improve AV’s safety actions. For 

example, AV can use the 𝑃𝑅𝑁 to recommend a reduction or increase in speed. 

5.1.4 Occurrence and visualisation with regional 𝑷𝑹𝑵 

The accumulation of averaged 𝑃𝑅𝑁 over regional geolocation limits indicates 

potential hotspots for high-risk AV operational scenarios. This accumulation of 

average 𝑃𝑅𝑁 figures is known as occurrence. Occurrences combine the historical 

𝑃𝑅𝑁 data for each area. Without regional 𝑃𝑅𝑁, the 𝑃𝑅𝑁 calculated for each frame 

per second and location would appear to be overly complicated through the 

visualisation of 𝑃𝑅𝑁 on the map. This regional 𝑃𝑅𝑁 provides a quick and objective 

overview of regions that need more attention to reduce risk. It also aids in AV path 

planning based on past 𝑃𝑅𝑁s. Therefore, the regional 𝑃𝑅𝑁 reflects quantitative 

risk at a specific region and time. This regional 𝑃𝑅𝑁 is illustrated using a flowchart 

as shown in Figure 5.6. 

Figure 5.6 starts with setting the geolocations' grid limits and middle points for 

different regions. Thereafter, each 𝑃𝑅𝑁 is verified if they are within the 

geolocation limits of the region. If the latter is true, the geolocation of the 𝑃𝑅𝑁 

will be rounded off to the middle point of the region. Otherwise, the 𝑃𝑅𝑁 will be 

used for the subsequent region with similar checks. Once the geolocation of all 

𝑃𝑅𝑁 Occurrences is adjusted, the average 𝑃𝑅𝑁 is determined. The visualisation 

is accomplished using these average 𝑃𝑅𝑁s illustrated as colour maps superimposed 

on the AV operational route. 
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Figure 5.6 Flowchart for the Occurrence of 𝑃𝑅𝑁 visualisation 

5.2 DARA evaluation process and results 

This section expands on the theoretical framework presented in section 5.1 and 

details the DARA process using three real-world scenarios of  AV operations. These 

scenarios occurred during three iterative loops of AV operations at the test site 

located at the Ngee Ann Polytechnical campus, as indicated in Figure 5.7. The 

three scenarios consist of 1) Straight paths with or without zebra crossings, 2) T-

junctions without traffic lights, and 3) cornering. The test site was chosen because 

it presents unregulated traffic within a confined area where pedestrians' and 

vehicles' movements are similar to public roads. This allows the algorithm to be 

evaluated and verified in a real-world context with minimum disruption to traffic. 

This section covers the evaluation process, which involves demonstrating the three 

scenarios through the DARA process, including image risk tagging and mapping, 

control tagging of the AV, and determining the 𝑃𝑅𝑁 and post-analytics with 



159 
5.2 DARA evaluation process and results 
 
 
 

 

Occurrence with regional 𝑃𝑅𝑁. In section 5.3, DARA will be verified using the 

entire three iterative loops of AV operations. 

Figure 5.7 shows the test route for the AV services, which consists of six stops (A 

to F). The AV makes a complete loop, passing through all six stops before finally 

returning to its starting position. Each route contains scenarios 1, 2, and 3, and is 

repeated three times. The operations took place on a weekday between 3 and 5 

pm on a sunny day with fair weather conditions. This section focuses on the 

evaluation of DARA using the three scenarios.  

 

Figure 5.7 Location map of AV test site 

The DARA algorithm works by processing data at the edge system using a camera 

installed on the front screen of the AV at 30 frames per second. The camera had 

a resolution of 1280 x 720 for the process of tagging and mapping image risks. 

Through three iterative testing loops, 121,696 instances of scenes were captured 

using this setup for tagging and mapping risks. The speed, steering, brake, and 

throttle information were obtained from existing modules within the AV. The 

information captured was referenced based on timestamps and geolocations with 

the outcomes and parameters produced by DARA. 



160 
5.2 DARA evaluation process and results 
 
 
 

 

5.2.1 Scenarios for the AV test 

This section illustrates the three scenarios used for DARA evaluation. It includes a 

brief description of each scenario and DARA's performance. The results for 

different scenes at the same location were compared. For example, a scene where 

the DARA detects a vehicle can be compared to a scene with no vehicles at a T-

junction.  

Scenario 1: Straight paths without zebra crossing  

Straight path with or 
without zebra crossing 

 
 

Figure 5.8 Scenario 1: Straight path without zebra crossing 

In this scenario, DARA was evaluated on a straight road with a slight left bend. 

The scenario involves an AV detecting pedestrians on the pavement, as shown in 

Figure 5.8. DARA aims to measure the AV's risk assessment in handling the 

potential risk of pedestrians dashing in front of the AV's path. The RT figure 

increases as the AV moves towards the pedestrian detection area. When a 

pedestrian is detected, the AV should slow down. The DARA algorithm assesses the 

AV’s response upon detecting pedestrians on the pavement while anticipating 

potential dashing into the AV’s path. 

Scenario 2: T-junction without traffic lights for AV 

In this scenario, the AV attempts to turn right at the unregulated T-junction when 

an oncoming vehicle is moving straight, as shown in Figure 5.9. The oncoming 

vehicle is occluded by trees and is detected after it exits. The DARA algorithm 
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assesses the AV’s response upon detecting the oncoming vehicle detected at the 

T-junction.  

T-junctions without 
traffic lights 

 

 

Figure 5.9 Scenario 2: T-junction without traffic lights for AV 

Scenario 3: Cornering, detection of pedestrians after AV turns 

In this scenario, a pedestrian is detected right after the AV turns a left corner, as 

shown in Figure 5.10. DARA is used to evaluate the response of the AV controls 

based on the detected immediate crossing pedestrian after the AV turns.  

Pedestrian detected 
after AV turns a corner 

 

 

Figure 5.10 Scenario 3: Cornering, detection of pedestrians after AV turns 

5.2.2 Image risk tagging and mapping 

This section illustrates the image risk tagging and mapping process for DARA using 

the three selected scenarios. The camera was attached to the front of the AV. 

The image risk tagging and mapping process provides the RT figures of the scene, 

resulting from the scene segmentation and object detection.  
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Figure 5.11 illustrates an example of scene segmentation from the AV’s POV. The 

red areas were classified as roads, and the pink areas as pavements. The pre-

calibrated distance-to-pixel technique defines the rows (5 m per row) of each RTM 

as defined in equation 5.2. As illustrated in Figure 5.4, the object detection and 

the scene segmentation outcomes were further processed by the risk tagging and 

mapping process to map the detected object onto the RTM based on classes. The 

RTM with the detected pedestrians and vehicles were divided into 𝑅𝑇𝑀(𝑝)𝑟𝑧 and 

𝑅𝑇𝑀(𝑣)𝑟𝑧 defined in equations 5.4 and 5.5, respectively. The top left image of 

Figure 5.11 illustrates examples of “nan” within the region of the matrix that 

represents invalid detection of a region by the scene segmentation. In this case, 

the regions after the eighth row and the right pavement of rows 1 and 2 within 

RTM were not detected.  

 

Figure 5.11 Scene segmentation process 

Scenario 1: Straight paths without zebra crossing 

In scenario 1, two scenes at the exact location, at different iterations, were used 

for comparative analysis. Scene one had no objects detected, while scene two 

consisted of detected pedestrians.  

Figure 5.12 shows scenario 1, scene one, which indicates that no pedestrians were 

present in the scene. The scene segmentation for this scene resulted in 7 rows, 

each measuring 5 m, thus a total of 35 m. The detection system identified roads 

and pavements, forming the columns and rows of the RTM. No objects were 
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detected within 𝑅𝑇𝑀(𝑝)𝑟𝑧 and 𝑅𝑇𝑀(𝑣)𝑟𝑧, resulting in a 0 value for 𝑃𝑅𝑇𝑠𝑢𝑚 and 

𝑉𝑅𝑇𝑠𝑢𝑚.  

 

Figure 5.12 Scenario 1, scene one without pedestrians 

Figure 5.13 shows scenario 1, scene two, with pedestrians detected on the left 

pavement, with a value of 5 in row 7 at the leftmost column of 𝑅𝑇𝑀(𝑝)𝑟𝑧. No 

vehicles were detected, so 𝑅𝑇𝑀(𝑣)𝑟𝑧 had a zero value in the matrix. In the risk 

tagging and mapping process, the 𝑃𝑅𝑇𝑠𝑢𝑚 was determined using equation 5.4 and 

shown in Table 5.3. To determine 𝑃𝑅𝑇𝑠𝑢𝑚, 𝑅𝑇𝑀(𝑝)𝑟𝑧, 𝑟𝑧, and 𝑅𝐷𝐿𝐼𝐷,  must be 

known. With 𝑅𝑇𝑀(𝑝)𝑟𝑧 determined and shown in Figure 5.13, 𝑟𝑧 was defined with 

a risk weight of 8 for pavement and 10 for roads. 𝑅𝐷𝐿𝐼𝐷 was defined with the 

piecewise linear distribution similar to ReRAC. The 𝑃𝑅𝑇𝑠𝑢𝑚 was determined to be 

12 for this scene. The 𝑛𝑃𝑅𝑇 of 2.4 was based on equation 5.8 which represents 

the aggregated pedestrian risk per scene. Both 𝑃𝑅𝑇𝑠𝑢𝑚 and 𝑛𝑃𝑅𝑇 provides an RT 

figure of the pedestrian presence in this scenario as the AV travels forward.  
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Figure 5.13 Scenario 1, scene two, with pedestrians detected on pavement 

 

Table 5.3 The determination of 𝑃𝑅𝑇𝑠𝑢𝑚 based on scenario 1 

𝑃𝑅𝑇𝑠𝑢𝑚=12 𝑅𝑇𝑀(𝑝)𝑟𝑧 𝑟𝑧  𝑅𝐷𝐿𝐼𝐷 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
12.0 0.0 0.0
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛
5.0 0.0 0.0
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 

0 0.1 0
0.1 0.2 0.1
0.2 0.3 0.2
0.3 0.4 0.3
0.4 0.5 0.4
0.5 0.6 0.5
0.6 0.7 0.6
0.7 0.8 0.7
0.8 0.9 0.8
0.9 1.0 0.9]

 
 
 
 
 
 
 
 
 

 

 

In comparing scenes one and two, the object detection determined 5 pedestrians 

instead of 4 due to occlusion error in scene 2. There were also three instances of 

“nan” differences between scene one and two. For example, in scene one, the 

row 2, right column was “nan”, but in scene two, it is “0.0”.  The differences in  

“nan” are highlighted in yellow within 𝑅𝑇𝑀(𝑝)𝑟𝑧 shown in Table 5.3. As a result, 

the accuracy for object detection over different iterations is 75%, and for scene 

segmentation, it is 90% (27 out of 30 is common). The 𝑃𝑅𝑇𝑠𝑢𝑚 of 12 and 𝑛𝑃𝑅𝑇 of 

2.4 for scene two indicates that although the overall sum of the pedestrian risk is 

high but the aggregated pedestrian risk per scene is only 2.4, thus the risk is still 

manageable as the pedestrians are 35 m away and within the pavement area. 
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Scenario 2: T-junction without traffic lights for vehicles  

Similarly, in scenario 2, a T-junction without traffic lights was evaluated for DARA. 

Two scenes of the same location were used for comparative analysis. No objects 

were detected in scene one, while only one vehicle was detected in scene two. 

Figure 5.12 shows scenario 2, scene one, which indicates that there were no 

vehicles present. Since the pavements have metal fences that block pedestrians 

from crossing, detecting pavements is invalid in most regions within the RTM. The 

scene segmentation for this scene resulted mainly in the detection of the road, 

with some areas of the pavement detected. Therefore, all 10 rows are defined 

within the RTM (50 m). No objects were detected within 𝑅𝑇𝑀(𝑝)𝑟𝑧 and 𝑅𝑇𝑀(𝑣)𝑟𝑧, 

resulting in a 0 value for 𝑃𝑅𝑇𝑠𝑢𝑚 and 𝑉𝑅𝑇𝑠𝑢𝑚.  

 

Figure 5.14 Scenario 1, scene two without vehicle 

Figure 5.15 shows scenario 2, scene two, where an occluded vehicle appeared and 

travelled straight as the AV intended to make a right turn. Since the image had 

only one vehicle in Figure 5.15, 𝑅𝑇𝑀(𝑣)𝑟𝑧 reflects the vehicle at row 9 of the road 

region at 40 m. 𝑅𝑇𝑀(𝑝)𝑟𝑧  reflects no pedestrian detected with zero values. In 

this scenario, the 𝑃𝑅𝑇𝑠𝑢𝑚 is 0 and the 𝑉𝑅𝑇𝑠𝑢𝑚 was determined (Table 5.4) with 

𝑅𝑇𝑀(𝑣)𝑟𝑧 in Figure 5.15, 𝑟𝑧, and 𝑅𝐷𝐿𝐼𝐷 using the same values as scenario 1. As 

such, the 𝑉𝑅𝑇𝑠𝑢𝑚 has a value of 3.0. Since there is only one vehicle detected, 

𝑛𝑉𝑅𝑇 is also 3.0.  
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Figure 5.15 Scenario 2, scene two with vehicle detected 

 

Table 5.4 The determination of 𝑉𝑅𝑇𝑠𝑢𝑚 based on scenario 2 

𝑉𝑅𝑇𝑠𝑢𝑚=3.0 𝑅𝑇𝑀(𝑣)𝑟𝑧 𝑟𝑧  𝑅𝐷𝐿𝐼𝐷 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 1.0 0.0
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 0.0
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 

0 0.1 0
0.1 0.2 0.1
0.2 0.3 0.2
0.3 0.4 0.3
0.4 0.5 0.4
0.5 0.6 0.5
0.6 0.7 0.6
0.7 0.8 0.7
0.8 0.9 0.8
0.9 1.0 0.9]

 
 
 
 
 
 
 
 
 

 

 

By comparing scenes one and two for scenario 2, no error for object detection was 

observed. However, there were three instances of “nan” differences between 

scene one and two. The differences in “nan” are highlighted in 𝑅𝑇𝑀(𝑣)𝑟𝑧 shown 

in Table 5.4. The accuracy for object detection is 100%, while for scene 

segmentation is 90% (27 out of 30). 𝑉𝑅𝑇𝑠𝑢𝑚 and 𝑛𝑉𝑅𝑇 illustrate the AV’s RT figure 

at the T-junction before the AV intends to make a right turn. Given that the 

vehicle is 40 m away from the AV, the RT figure of 3.0 is logical. 
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Scenario 3: Cornering, detection of pedestrians after AV turns 

Scenario 3 focuses on detecting occluded pedestrians after a turn and measures 

the AV's response. Similarly, two scenes of the same location are used for 

comparative analysis. Scene one had no detected object, while in scene two, one 

pedestrian and one vehicle were detected. 

Figure 5.16 shows scenario 3, scene one, where no objects were detected in the 

scene. All 10 rows of the road were defined within the RTM (50 m). No objects 

were detected within 𝑅𝑇𝑀(𝑝)𝑟𝑧 and 𝑅𝑇𝑀(𝑣)𝑟𝑧, resulting with a 0 value for 𝑃𝑅𝑇𝑠𝑢𝑚 

and 𝑉𝑅𝑇𝑠𝑢𝑚.  

 

Figure 5.16 Scenario 3, scene one without object detected. 

Figure 5.17 shows scenario 3, scene two, where a pedestrian in close proximity 

and a vehicle at some distance away were detected immediately after turning a 

left corner. The scenario focuses on detecting occluded pedestrians after a turn 

and measures the response of the AV. These detections are reflected in the 

𝑅𝑇𝑀(𝑝)𝑟𝑧 and 𝑅𝑇𝑀(𝑣)𝑟𝑧. The pedestrian detected is at the 1st row of the road 

region, while a vehicle is detected at the 9th row of the road region, which is a 

distance away from the AV. The 𝑅𝑇𝑀(𝑝)𝑟𝑧 and 𝑅𝑇𝑀(𝑣)𝑟𝑧 contains objects that are 

detected based on the scene in Figure 5.17. The 𝑃𝑅𝑇𝑠𝑢𝑚 and 𝑉𝑅𝑇𝑠𝑢𝑚 are 

determined with illustration shown in Table 5.5 and Table 5.6, respectively. The 

𝑃𝑅𝑇𝑠𝑢𝑚 gives an overall figure of 10.0. The 𝑛𝑃𝑅𝑇 is also 10.0 since there is only 
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one pedestrian. The 𝑉𝑅𝑇𝑠𝑢𝑚 gives an overall figure of 2.0, and since there is only 

one vehicle, 𝑛𝑉𝑅𝑇 had the same value of 2.0.  

 

Figure 5.17 Scenario 3, scene 2 with a pedestrian and vehicle detected 

 

Table 5.5 The determination of 𝑃𝑅𝑇𝑠𝑢𝑚 based on scenario 3 

𝑃𝑅𝑇𝑠𝑢𝑚=10.0 𝑅𝑇𝑀(𝑝)𝑟𝑧 𝑟𝑧  𝑅𝐷𝐿𝐼𝐷 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 10.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 1.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 

0 0.1 0
0.1 0.2 0.1
0.2 0.3 0.2
0.3 0.4 0.3
0.4 0.5 0.4
0.5 0.6 0.5
0.6 0.7 0.6
0.7 0.8 0.7
0.8 0.9 0.8
0.9 1.0 0.9]
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Table 5.6 The determination of 𝑉𝑅𝑇𝑠𝑢𝑚 based on scenario 3 

𝑉𝑅𝑇𝑠𝑢𝑚=2.0 𝑅𝑇𝑀(𝑣)𝑟𝑧 𝑟𝑧  𝑅𝐷𝐿𝐼𝐷 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 2.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
𝑛𝑎𝑛 1.0 𝑛𝑎𝑛
𝑛𝑎𝑛 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛
0.0 0.0 𝑛𝑎𝑛]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8
8 10 8]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 

0 0.1 0
0.1 0.2 0.1
0.2 0.3 0.2
0.3 0.4 0.3
0.4 0.5 0.4
0.5 0.6 0.5
0.6 0.7 0.6
0.7 0.8 0.7
0.8 0.9 0.8
0.9 1.0 0.9]

 
 
 
 
 
 
 
 
 

 

 

By comparing scenes one and two for scenario 3, no error was observed in the 

object detection, and there were no delta “nan” between scenes one and two. 

The accuracy for object detection and scene segmentation is 100%. The high 𝑛𝑃𝑅𝑇 

reflects the high risk of a pedestrian crossing right in front of the AV in close 

proximity. The low 𝑛𝑉𝑅𝑇 indicates that the risk of potential collision between the 

AV and the detected vehicle was low since they were 45 m apart. 

5.2.3 Control Tagging of the AV  

In this section, CT figure known as 𝐶𝑡𝑟𝑙 of the AV is illustrated with the same three 

scenarios. The AV parameters brake, steering, throttle, and speed information 

have dynamic range values and require normalisation before they are converted 

into 𝐶𝑡𝑟𝑙. These acquired AV parameters based on the three scenarios were first 

normalised using equations 5.8 to 5.11. The 𝐶𝑡𝑟𝑙 was determined using equation 

5.12.  

Scenario 1: Straight paths without zebra crossing 

In scenario 1, scene one, no pedestrians or vehicles were detected. Therefore, 

the AV had a high throttle of 94%, but still at a safe speed of 16.09 km/h. With 

that, the 𝐶𝑡𝑟𝑙 was defined at 4.808, as shown in Table 5.7. 
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Table 5.7 Scenario 1, scene one, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 0 𝐵𝑛 0 

4.808 
𝑇ℎ 3760 𝑇ℎ𝑛 3760/4000 = 0.94 (94%) 

𝑆𝑡 -100 𝑆𝑡𝑛 Abs(-100/1000) =0.10 (12%) 

𝑆𝑝 16.09 km/h 𝑆𝑝𝑛 16.09/40=0.40 (40%) 

 

 

In scenario 1, scene two, the AV throttle was measured at 71% with a slight 

steering of 12% to the left due to the road’s curvature. The actual speed was 13.93 

km/h with no brakes applied. Table 5.8 shows the normalised AV parameters and 

the result of 𝐶𝑡𝑟𝑙. The 𝐶𝑡𝑟𝑙 of 3.945 showed no braking event with slight steering 

and a rapid throttle at 35% of the speed limit. 

Table 5.8 Scenario 1, scene two, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 0 𝐵𝑛 0 

3.945 
𝑇ℎ 2841 𝑇ℎ𝑛 2841/4000 = 0.71 (71%) 

𝑆𝑡 -125 𝑆𝑡𝑛 Abs(-125/1000) =0.12 (12%) 

𝑆𝑝 13.93 km/h 𝑆𝑝𝑛 13.93/40=0.35 (35%) 

 

 
 

By comparing scenes one and two in scenario 1, it was observed that the different 

𝐶𝑡𝑟𝑙 (4.808 for scene one and 3.945 for scene two) reflected the difference in the 

AV’s speed and throttle. In scene two, the AV was more cautious, reducing throttle 

and speed, resulting in a lower 𝐶𝑡𝑟𝑙. Therefore, the 𝐶𝑡𝑟𝑙 reflects the change in 

speed and throttle applied. 
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Scenario 2: T-junction without traffic lights for vehicles  

In scenario 2, scene one, no pedestrians and vehicles were detected at the T-

junction without traffic lights. However, the AV braked to stop at the T-junction 

pocket. Thus, the AV had a high braking of 95%, slowing down from 12.64 km/h. 

With that, the 𝐶𝑡𝑟𝑙 was defined at 4.406, as shown in Table 5.9. 

Table 5.9 Scenario 2, scene one, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 950 𝐵𝑛 950/1000=0.95 (95%) 

4.406 
𝑇ℎ 0 𝑇ℎ𝑛 0/4000 = 0.0 

𝑆𝑡 -60 𝑆𝑡𝑛 Abs(-60/1000) =0.06 (6%) 

𝑆𝑝 12.64 km/h 𝑆𝑝𝑛 12.64/40=0.31 (31%) 

 

 

In scenario 2, scene two, the AV braked at 95%, with zero throttle and a slight 

steering of 12%. The vehicle's speed at the time of braking was 13.77 km/h (34%). 

Table 5.10 displays the actual values of the normalised AV parameters and the 

calculation of 𝐶𝑡𝑟𝑙. The 𝐶𝑡𝑟𝑙 of 4.664 is at the middle level due to the harsh 

braking.  

Table 5.10 Scenario 2, scene two, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 950 𝐵𝑛 950/1000=0.95 (95%) 

4.664 
𝑇ℎ 0 𝑇ℎ𝑛 0/4000 = 0.0 

𝑆𝑡 -105 𝑆𝑡𝑛 Abs(-125/1000) =0.12 (12%) 

𝑆𝑝 13.77 km/h 𝑆𝑝𝑛 13.77/40=0.34 (34%) 
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In comparing scenes one and two in scenario 2, 𝐶𝑡𝑟𝑙 is comparable between the 

two figures of 4.406 and 4.664 for scenes one and two, respectively. The minor 

difference is due to the slightly higher speed for scene 2. This indicates that the 

AV operations remained consistent regardless of the detected risk.  

Scenario 3: Cornering, detection of pedestrians after AV turns 

In scenario 3, scene one, no pedestrians and vehicles were detected within the 

RTM after turning the corner. The AV was completing its turn (24% steering) with 

a partial brake of 68% with a remaining speed of 12.55 km/h. With that, the 𝐶𝑡𝑟𝑙 

was defined at 4.096, as shown in Table 5.11 . 

Table 5.11 Scenario 3, scene one, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 680 𝐵𝑛 680/1000=0.68 (68%) 

4.096 
𝑇ℎ 0 𝑇ℎ𝑛 0/4000 = 0.0 

𝑆𝑡 -240 𝑆𝑡𝑛 Abs(-240/1000) =0.24 (24%) 

𝑆𝑝 12.55 km/h 𝑆𝑝𝑛 12.55/40=0.31 (31%) 

 

 

In scenario 3, scene two, the AV braked at 84% and made a slight steering 

adjustment of 28% to the left after the turn. Due to a detected pedestrian after 

turning the corner, the AV was travelling at a speed of 5.24 km/h. As a result, 

𝐶𝑡𝑟𝑙 is 4.183, which is in the middle level because of the slight steering and harsh 

braking actions with extremely low speed. Table 5.12 summarises the actual 

values of the normalised AV parameters and the calculation of 𝐶𝑡𝑟𝑙. 
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Table 5.12 Scenario 3, scene two, AV 𝐶𝑡𝑟𝑙 

Parameters Normalised values Overall 𝐶𝑡𝑟𝑙 
(weights set at 10) 

𝐵 840 𝐵𝑛 840/1000=0.84 (84%) 

4.183 
𝑇ℎ 0 𝑇ℎ𝑛 0/4000 = 0.0 

𝑆𝑡 -280 𝑆𝑡𝑛 Abs(-280/1000) =0.28 (28%) 

𝑆𝑝 5.24 km/h 𝑆𝑝𝑛 5.24/40=0.13 (13%) 

 

 

In comparing scenes one and scene two in scenario 3, the 𝐶𝑡𝑟𝑙 are comparable 

between the two figures of 4.096 and 4.183 for scenes one and two, respectively. 

The minor difference in 𝐶𝑡𝑟𝑙 was due to a harsher brake applied, but it was also 

compensated with a lower speed in scene two. This implies that the AV has taken 

some inherent safety actions even without detecting the pedestrian, but the 

performance of the AV control must be further refined to avoid high risk at this 

location.  

5.2.4 Predicted Risk Number (𝑷𝑹𝑵) 

With the completed 𝐶𝑡𝑟𝑙, 𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇, the 𝑃𝑅𝑁 is determined using the 

equation 5.13. The derivation of 𝑃𝑅𝑁 in real time is illustrated using scenarios 1 

(Figure 5.13), 2 (Figure 5.15) and 3 (Figure 5.17). The 𝑃𝑅𝑁 results and the 

parameters required are illustrated in Table 5.13.  

Table 5.13 Parameters for 𝑃𝑅𝑁 in Scenarios 1, 2 and 3 

Parameters Scenario 1,  
Figure 5.13  

Scenario 2,  
Figure 5.15 

Scenario 3,  
Figure 5.17 

𝑛𝑃𝑅𝑇 (/10) 2.4 0.0 10.0 

𝑛𝑉𝑅𝑇(/10) 0.0 3.0 2.0 

𝐶_𝑅𝑇(/10) 1.2 1.5 6.0 

𝐶𝑡𝑟𝑙 (/10) 3.945 4.664 4.183 

𝑃𝑅𝑁 (/100) 4.734 6.996 25.099 
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The 𝐶𝑡𝑟𝑙, 𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇 are normalised to a maximum of 10 and a minimum of 

0. 𝐶_𝑅𝑇 (combined RT) is the average between 𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇, which is also 

normalised to 10. 𝑃𝑅𝑁 ranges between 0 to 100 since it is the product of 𝐶𝑡𝑟𝑙 and 

𝐶_𝑅𝑇, as in equation 5.13. Further details on the 𝑃𝑅𝑁 results are discussed for 

each scenario. 

Scenario 1: straight path without zebra crossing 

Scenario 1 in Table 5.13 has a 𝑃𝑅𝑁 value of 4.734, indicating a low-level risk 

assessment. Firstly, the 5 detected pedestrians in scenario 1 resulted in a low 

level of 𝑛𝑃𝑅𝑇 and 0 𝑛𝑉𝑅𝑇 for no vehicles detected. 𝑛𝑃𝑅𝑇 of 2.4 is logical since 

the detected pedestrians were far from the AV. Secondly, the AV 𝐶𝑡𝑟𝑙 of 3.945 

was determined based on travel speed at 35% (Table 5.8) of its maximum speed 

limit, with relatively high throttle and low steering. Comparing scenes one and 

two of scenario 1 demonstrated that the AV triggered inherent safety actions with 

lower operating speed and throttle in scene two when pedestrians were detected. 

Therefore, in scene two, the low 𝑃𝑅𝑁 of 4.734 indicates that the AV was operating 

at low risk, allowing sufficient time for the AV to react when a pedestrian dashes 

across the road region. Thus, in this case, the AV does not require any further 

improvements in safety actions, and the 𝑃𝑅𝑁 demonstrated its ability to perform 

real-time risk assessment of this scenario. 

Scenario 2: T-junction without traffic lights  

The parameters of Table 5.13 for scenario 2 illustrate a 𝑃𝑅𝑁 of 6.996. Firstly, a 

vehicle was detected with no pedestrians within the scenario. Thus, only an 𝑛𝑉𝑅𝑇 

of 3.0 exists, illustrating that the detected vehicle was far from the AV. Secondly, 

the 𝐶𝑡𝑟𝑙 of 4.664 explains that the AV travelling at 34% (Table 5.10) of its 

maximum speed limit had applied harsh braking with zero throttle. Thus, the 

overall 𝑃𝑅𝑁 of 6.996 is still considered a low-risk 𝑃𝑅𝑁. In this scenario, no critical 

improvements in safety actions are necessary with the low 𝑃𝑅𝑁. However, minor 

improvements to existing safety actions for future iterations, such as applying 

early and gradual braking, will reduce the 𝑃𝑅𝑁 even further for a safer AV 

operation. 
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Scenario 3: Cornering, detection of pedestrians after AV turns 

Scenario 3 results shown in Table 5.13 illustrate the highest 𝑃𝑅𝑁 value of 25.099 

among the three scenarios. The high 𝑃𝑅𝑁 occurred after a cornering where the 

AV applied harsh braking with zero throttle and slight steering at low speed. 

Firstly, a detected pedestrian that suddenly crosses the road in front of the AV 

creates an 𝑛𝑃𝑅𝑇 of 10, while a detected vehicle in the 9th row provides a low 

𝑛𝑉𝑅𝑇 of 2.0. The 𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇 resulted in the 𝐶_𝑅𝑇 of 6.0. Secondly, the 𝐶𝑡𝑟𝑙 

of 4.183 was determined from the harsh braking with slight steering and low 

speed. The high 𝐶_𝑅𝑇 with a middle level of 𝐶𝑡𝑟𝑙 resulted in a high 𝑃𝑅𝑁 because 

of the risk detected due to a pedestrian's sudden dashing and the AV having harsh 

braking with zero throttle at low speed. According to the guideline in section 

5.1.3, any 𝑃𝑅𝑁 above 20 is considered as high risk for the AV. The recommended 

improvement to the inherent safety action is to brake early before the corner turn 

and approach the zebra crossing with low speed and low braking for future 

iterations. AV can resume at a higher speed after the zebra crossing. 

In summary, the three scenarios illustrated 𝑃𝑅𝑁’s representation of the real-time 

risk assessment of environmental hazards with AV controllability. These results 

are demonstrated in real-world scenarios and focused on unregulated traffic 

areas. The following section shows the Occurrence and visualisation of 𝑃𝑅𝑁 using 

a regional 𝑃𝑅𝑁 method. More examples of high 𝑃𝑅𝑁 and scenarios will be 

discussed in section 5.3.  

5.2.5 Occurrence with regional 𝑷𝑹𝑵 visualisation 

The Occurrence of risk assessment is represented by the regional 𝑃𝑅𝑁, which 

reflects risk hotspots over regional areas at specific times. The regional 𝑃𝑅𝑁 is 

determined based on the flowchart in Figure 5.6 for different regions. Figure 5.18 

shows an example of the regional 𝑃𝑅𝑁 for the first loop of the test route. The 

individual 𝑃𝑅𝑁s determined along the travelled paths are converted into location 

grids with their 𝑃𝑅𝑁 averaged into regional 𝑃𝑅𝑁s.  
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Figure 5.18 Regional 𝑃𝑅𝑁 of first loop test route 

Figure 5.18 shows an example that illustrates a regional 𝑃𝑅𝑁, highlighted as a 

black box at the centre of Figure 5.18. The centre of this black box has a latitude 

of 1.3323 and a longitude of 103.7739, respectively, based on the y-axis and x-

axis. The regional 𝑃𝑅𝑁 of this black box is 16, which means that any 𝑃𝑅𝑁 within 

the latitude and longitude limits are average and presented as a regional 𝑃𝑅𝑁. 

The limits (boundary of each geolocation box) in Figure 5.18 are illustrated as 

grids for each region. This black box location reflects the scenario shown in Figure 

5.19 with a pedestrian dashing across the road at a T-junction, within 20 m of the 

AV right after the AV makes a right turn.  

T-Junctions without traffic 
lights 

 

 

Figure 5.19 Black box regional 𝑃𝑅𝑁 scene for first loop 

In the next section, DARA is verified using the iterative test route, and a detailed 

explanation of scenarios with high 𝑃𝑅𝑁 will be explained.  
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5.3 Verification of DARA with real-world test routes 

In this section, DARA is further verified with three iterative test routes. Firstly, an 

overview of the 𝑃𝑅𝑁, 𝐶_𝑅𝑇, and 𝐶𝑡𝑟𝑙 across the three iterative test routes with 

statistical comparisons is presented. These comparisons were made with 

observations on the 𝑃𝑅𝑁 characteristics to verify the performance of DARA. 

Secondly, an example of how the 𝑃𝑅𝑁 rating threshold is determined based on 

past historical data is provided. Lastly, nine scenarios (A to I) were selected to 

illustrate the different outcomes of 𝑃𝑅𝑁 (three high, three middle and three low) 

and the simulated recommended actions that would lower the risk and improve 

the safety performance of the AV, especially for high 𝑃𝑅𝑁s. 

 
(a) 𝑃𝑅𝑁 of the entire first loop of the test route 

 
(b) Scenes consist of zero 

and non-zero 𝑃𝑅𝑁 

 
(c) No. of scenes in different non-zero 𝑃𝑅𝑁 intervals 

Figure 5.20 𝑃𝑅𝑁 for the first loop 

Figure 5.20 details the 𝑃𝑅𝑁 for the first loop of the test routes. These results 

illustrate the 𝑃𝑅𝑁's characteristics and functionality. Figure 5.20 (a) shows the 

𝑃𝑅𝑁 variation over the timestamp of 25,939 samples, with a maximum 𝑃𝑅𝑁 of 

50.51 and a mean 𝑃𝑅𝑁 of 3.32. The low mean 𝑃𝑅𝑁 is mainly due to a significant 

number of zero 𝑃𝑅𝑁 values, which occur when no risks are detected at the scenes. 
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This is verified by Figure 5.20 (b), which shows 67.8% of the 𝑃𝑅𝑁 values were zero, 

indicating no identified risks, while 32.2% were non-zero, indicating the detection 

of risks for vehicles or pedestrians occurred with AV controls. Figure 5.20 (c) 

further illustrates that 57.67% of the non-zero 𝑃𝑅𝑁 falls within the intervals of >0 

to <10, indicating that the remaining 42.33% of the scenes require safety 

improvements, as their 𝑃𝑅𝑁 values were 10 or higher (based on the 𝑃𝑅𝑁 default 

guide in section 5.1.3). High 𝑃𝑅𝑁 occurs when vehicles or pedestrians are close 

to the AV and when there is a combination of harsh braking, wide steering, or 

significant speed changes.  

 
(a) Combined risk of the entire first loop of the test route 

 
(b) Scenes consist of zero 

and non-zero 𝐶_𝑅𝑇 
 

(c) No. of scenes in different non-zero 𝐶_𝑅𝑇 intervals 

Figure 5.21 𝐶_𝑅𝑇 for the first loop 

Figure 5.21 details the 𝐶_𝑅𝑇 results for the entire first loop of the test routes. 

𝐶_𝑅𝑇 represents the average risk per scene, calculated as an average between 

𝑛𝑃𝑅𝑇 and 𝑛𝑉𝑅𝑇.  Figure 5.21 (a) shows the 𝐶_𝑅𝑇 variation over the 25,939 

samples, with a maximum 𝐶_𝑅𝑇 of 10 and a mean 𝐶_𝑅𝑇 of 0.97. The low 𝐶_𝑅𝑇 

mean is mainly contributed by the significant number of zero 𝐶_𝑅𝑇 when no risks 

were detected in the scenes, as shown in Figure 5.21 (b), where 67.8% of 𝐶_𝑅𝑇 

were zero 𝐶_𝑅𝑇, and 32.2% were non-zero. These zero and non-zero 𝐶_𝑅𝑇 
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correspond to the zero and non-zero 𝑃𝑅𝑁, confirming that 𝑃𝑅𝑁 is only positive 

when environmental risk is detected (𝐶_𝑅𝑇 is non-zero). These results show the 

relationship between 𝐶_𝑅𝑇 and 𝑃𝑅𝑁. Zero 𝐶_𝑅𝑇 indicates no identified risks, while 

non-zero 𝐶_𝑅𝑇 occurrences indicate that risks for vehicle or pedestrian collisions 

are detected within the RTM. Figure 5.21 (c) further illustrates that 84.91% of the 

𝐶_𝑅𝑇 in this first loop is <5, while 15.09% > 5.  

 
(a) 𝐶𝑡𝑟𝑙 of the entire first loop of the test route 

 
(b) No. of scenes in different 𝐶𝑡𝑟𝑙 intervals 

Figure 5.22 𝐶𝑡𝑟𝑙 for the first loop 

Figure 5.22 (a) illustrates how 𝐶𝑡𝑟𝑙 changes based on the AV control movements 

during the first loop of the test route. 𝐶𝑡𝑟𝑙 will always be true because there will 

always be braking or throttle. Thus, when the AV is turned on and remains 

stationary without movement, the 𝐶𝑡𝑟𝑙 has a value of 3.68. The 𝐶𝑡𝑟𝑙 ranges from 

0 to 10, with an average of 3.54 for the first loop. Figure 5.22 (b) shows the 

distribution of 𝐶𝑡𝑟𝑙 intervals for the first loop, corroborate the mean 𝐶𝑡𝑟𝑙 value, 

where the majority of the 𝐶𝑡𝑟𝑙 is classified within the 3 to <4 interval. This also 

illustrates that the AV did not have extreme moves within the first loop of 

operations. 
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With the quantitative results of DARA using 𝑃𝑅𝑁 with 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙, comparative 

statistical analysis is conducted across different operating loops to understand the 

magnitude of exposed risk (𝐶_𝑅𝑇) and AV control movement (𝐶𝑡𝑟𝑙), which results 

in the AV real-time risk assessment outcome (𝑃𝑅𝑁) for each loop. Table 5.14 

illustrates these objectives. 

Table 5.14 Data statistics for three loops of DARA real-world testing 

Variable Statistics First loop Second loop Third loop 

𝑃𝑅𝑁 

Max 50.51 43.14 42.62 

Mean 3.22 3.58 4.36 

Zero 17,597 16,734 15,444 

Non-zero 8,342 9,205 10,495 

𝐶_𝑅𝑇 

Max 10 9.5 10 

Mean 0.97 1.04 1.36 

Zero 17,597 16,734 15,444 

Non-zero 8,342 9,205 10,495 

𝐶𝑡𝑟𝑙 
Max 7.56 6.78 7.19 

Mean 3.54 3.40 3.41 

 

Table 5.14 shows that the third loop of AV operation had the highest 𝑃𝑅𝑁, with a 

mean of 4.36, and the highest non-zero 𝑃𝑅𝑁 occurrence, 10,495, due to the 

highest environmental risk (𝐶_𝑅𝑇 mean of 1.36). This meant that the AV did not 

perform sufficient safety actions for the third loop by lowering the 𝐶𝑡𝑟𝑙 (mean of 

3.41) further in order to lower the effects of 𝐶_𝑅𝑇 for the third loop. Therefore, 

more safety improvements are needed for the third loop. The outcome of DARA 

demonstrates the ability to identify safety improvements even at macro levels by 

comparison across different iterations of AV operations.  

The overview results confirm the characteristics of 𝑃𝑅𝑁 as follows: 1) 𝑃𝑅𝑁 is zero 

when 𝐶_𝑅𝑇 is zero, and 2) 𝐶𝑡𝑟𝑙 is always non-zero since the AV is continually 

operating unless the AV supply is turned off. The DARA outcomes, including 𝑃𝑅𝑁, 

𝐶_𝑅𝑇, and 𝐶𝑡𝑟𝑙, are used for comparative statistical analysis to identify if more 
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safety actions are needed for different iterative loops of a fixed AV route. The 

next section illustrates an alternative method to determine the 𝑃𝑅𝑁 rating for a 

particular route if the default guideline in Table 5.2 is not preferred. 

5.3.1 Determination of 𝑷𝑹𝑵 ratings through statistical methods 

This section describes a method for determining 𝑃𝑅𝑁 ratings using statistical 

methods [137]. The method involves calculating the percentile rank from the 

results of three test loops. The goal is to map the 50th percentile to the threshold 

for low 𝑃𝑅𝑁 and the 95th percentile to the threshold for middle 𝑃𝑅𝑁. 𝑃𝑅𝑁 values 

beyond the 95th percentile are considered high 𝑃𝑅𝑁. To identify the thresholds, 

the zero 𝑃𝑅𝑁 values are first removed from the outcomes, as the focus is on non-

zero 𝑃𝑅𝑁s. The 𝑃𝑅𝑁 values are then sorted in ascending order (x-axis) for each 

loop, with their frequency of occurrence plotted on the y-axis. Figure 5.23, Figure 

5.24 and Figure 5.25 illustrate the ascending order of the non-zero 𝑃𝑅𝑁s, with the 

50th and 95th percentiles indicated. 

Figure 5.23, Figure 5.24 and Figure 5.25 display a similar trend in 𝑃𝑅𝑁 numbers 

across different loops. Based on this, for the iterative loop of a fixed route, the 

threshold for low 𝑃𝑅𝑁 can be set at the 50th percentile, and the threshold for 

middle 𝑃𝑅𝑁 can be set at the 95th percentile. 

 

Figure 5.23 Non-zero 𝑃𝑅𝑁 distribution for the first loop 
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Figure 5.24 Non-zero 𝑃𝑅𝑁 distribution for the second loop 

 

Figure 5.25 Non-zero 𝑃𝑅𝑁 distribution for the third loop 

Table 5.15 summarises all the values from the figures for easier interpretation, 

with the low 𝑃𝑅𝑁 threshold set at 9.02 and the middle 𝑃𝑅𝑁 threshold set at 21.59, 

after averaging the results. Any 𝑃𝑅𝑁 above 21.59 is considered high. This 

statistical determination of the 𝑃𝑅𝑁 rating threshold aligns with close proximity 

(less than 10% variation) compared to the guideline provided in Table 5.2. 

Therefore, this process can be applied to obtain a statistical method for 

determining the thresholds for low, middle, and high 𝑃𝑅𝑁 for any AV route with 

historical data. 

Table 5.15 𝑃𝑅𝑁 rating thresholds 

Statistics First loop 
Second 

loop 
Third loop Threshold Guideline 

50th percentile 8.48 9.08 9.52 9.02 10.00 

95th percentile 23.01 20.81 20.95 21.59 20.00 
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5.3.2 Scenario A, first loop with rated high 𝑷𝑹𝑵 

This section illustrates different scenarios captured to verify the outcomes of  

DARA against the ground truth and the measured AV controls in response to the 

detected risk. To achieve this, each scenario contains the traffic landscape, the 

DARA application scene, DARA outcomes, and recommended safety actions for 

subsequent and future iterations to improve 𝑃𝑅𝑁 in a recursive manner.   

Scenario A depicts the AV making a right turn from the main road into a smaller 

road where a pedestrian and vehicles were detected. This scenario was rated as 

high 𝑃𝑅𝑁, exceeding the threshold of 20 (guideline from Table 5.2). 

Table 5.16 Scenario A first loop with high 𝑃𝑅𝑁 rating 

 
T-Junctions  

 
 

(a) Scenario with T-

junction  
(b) DARA application scene 

𝑃𝑅𝑇 = 9.0, 𝑉𝑅𝑇= 13.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.8, 𝑆𝑡𝑛= 1.0, 𝑆𝑝𝑛= 0.16  

(weights set at 10) 
𝐶_𝑅𝑇 = 7.75, 𝐶𝑡𝑟𝑙 = 6.518,  

𝑷𝑹𝑵 = 50.513 
 

(c) DARA outcomes 

𝑃𝑅𝑇 =9.0, 𝑉𝑅𝑇=6.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.8, 𝑆𝑡𝑛= 1.0, 𝑆𝑝𝑛= 0.16  

(weights set at 10) 
𝐶_𝑅𝑇 = 7.50, 𝐶𝑡𝑟𝑙 = 6.518,  

𝑷𝑹𝑵 = 48.885 
 

(d) DARA ground truth 

 

Table 5.16 (a) shows a T-junction where the AV turned right, and Table 5.16 (b) 

shows a pedestrian was detected in close proximity to the AV with a moving 

vehicle some distance away. The AV made a sharp turn with strong steering and 

high throttle but at low speed. In this scenario, the 𝑃𝑅𝑁 outcome was 50.513, as 

shown in Table 5.16 (c), while the 𝑃𝑅𝑁 ground truth was 48.885, as shown in Table 
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5.16 (d). The main difference lies in 𝐶_𝑅𝑇, where the inaccuracy is in the object 

detection and scene segmentation accuracy. The accuracy of the 𝐶_𝑅𝑇 is 96.6%, 

which is related to the accuracy of YOLOv5s + mapping. The pedestrian was 

correctly detected within row 2 of the road region, but the boundaries between 

the pavement and the road were not clearly defined. The difference between the 

DARA outcomes and ground truth 𝑃𝑅𝑁 was due to the “False positive” detection 

of parked vehicles onto the row 4 of the road region. Nevertheless, both results 

for this scenario still incurred a high 𝑃𝑅𝑁 rating (> 21.59). The 𝐶𝑡𝑟𝑙 for ground 

truth and DARA were identical since no abnormality was assumed. The wide 

steering implied that a late turning occurred at a low speed but with a high 

throttle. The DARA outcomes provided these interpretations into a single 𝑃𝑅𝑁. 

The 𝑃𝑅𝑁 for this scenario was rated as high and act as a trigger for the 

recommended AV’s safety actions for subsequent loops. 

 
(a) 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 of scenario A 

 
(b) Speed, throttle, brake and steering of scenario A 

Figure 5.26 Scenario A’s 𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝐶𝑡𝑟𝑙 and parametric data 

Although ReRAF does not provide automated safety recommendations, the DARA 

outcomes can be used to identify safety actions. For example, Figure 5.26 (a) 

indicates that the highest 𝑃𝑅𝑁 occurred when the AV was closest to the 
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pedestrian, as marked by the scenario as a red line. The peak 𝑃𝑅𝑁 was a result of 

the peak 𝐶𝑡𝑟𝑙 and 𝐶_𝑅𝑇. 𝐶𝑡𝑟𝑙 increased due to the rising throttle and the sharp 

steering angle of a sudden right turn. The high 𝑃𝑅𝑁 indicated that further 

improvements could be made to the inherent safety actions for safer AV 

operations.  

Scenario A, recommended safety actions with simulated 𝑷𝑹𝑵 

Therefore, to further enhance AV safety, it is recommended to delay the right 

turn at the T-junction of the main road for a few seconds while detecting a 

pedestrian. This delay will allow pedestrians and other vehicles to move away 

from the AV, reducing the risk of potential collisions. Additionally, during the turn, 

the throttle should maintain at 0.6 instead of increasing to 0.8, based on Figure 

5.26 (b). The steering should also be maintained at 0.7 with a smaller turning 

angle instead of reaching 1.0 with a large turning angle, as shown in Figure 5.26 

(b). Implementing these recommendations will result in improved 𝑃𝑅𝑁 as 

simulated in Table 5.17. These simulated outcomes represent the improvement in 

𝑃𝑅𝑁 for the subsequent loop when a pedestrian is first detected near the T-

junction. 

Table 5.17 Simulated safety actions for DARA in scenario A 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 5.0, 𝑉𝑅𝑇= 3.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.6,  

𝑆𝑡𝑛= 0.7, 𝑆𝑝𝑛= 0.16  
(weights set at 10) 

𝐶_𝑅𝑇 = 4.0,  
𝐶𝑡𝑟𝑙 = 4.386,  

𝑷𝑹𝑵 = 17.546 

• Pedestrians moved to the 6th row of the 
RTM. 

• Vehicle moved to the 8th row of the RTM 

• Throttle stays at 0.6 

• Steering stays at 0.7 with an earlier turn 

 

Scenario A verifies that the 𝑃𝑅𝑁 outcome is close to the ground truth, with the 

main difference being in 𝐶_𝑅𝑇 due to the precision of YOLOv5's + mapping 

precision. DARA is used as a trigger for safety actions. If this scenario occurs, there 

is potential for improved safety measures in the next loop, which can reduce 𝑃𝑅𝑁s 
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to less than 20 in a recursive manner. The 𝑃𝑅𝑁 should decrease over subsequent 

AV operational loops when safety actions are in place. Therefore, DARA outcomes 

provide a real-time risk assessment for the AV to use as a tool to trigger safety 

actions. 

5.3.3 Scenario B, first loop with rated middle 𝑷𝑹𝑵 

Scenario B illustrates a corner scene within the first loop, and the 𝑃𝑅𝑁 had a 

middle rating since it ranged between 10 and 20. The objective is to use DARA 

outcomes to measure the AV’s real-time risk assessment as it navigates through 

the corner.  

Table 5.18 Scenario B, first loop with rated middle 𝑃𝑅𝑁 

Corner with vehicles 
parked 

 
 

(a) Scenario with corner  
(b) DARA application scene 

𝑃𝑅𝑇 = 0.0, 𝑉𝑅𝑇= 10.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.67, 𝑆𝑡𝑛= 0.33, 𝑆𝑝𝑛= 0.34  

(weights set at 10) 
𝐶_𝑅𝑇 = 2.25,  
𝐶𝑡𝑟𝑙 = 4.442,  

𝑷𝑹𝑵 = 11.106 
 

(c) DARA outcomes 

𝑃𝑅𝑇 =0.0, 𝑉𝑅𝑇=10.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.67, 𝑆𝑡𝑛= 0.33, 𝑆𝑝𝑛= 0.34  

(weights set at 10) 
𝐶_𝑅𝑇 = 2.25,  
𝐶𝑡𝑟𝑙 = 4.442,  

𝑷𝑹𝑵 = 11.106 
 

(d) DARA ground truth 

 

Table 5.18 (a) shows a corner scenario with the AV moving towards two parked 

vehicles. The parked vehicles could drive out, leading to sudden AV braking if it 

disrupts the AV’s path. Table 5.18 (b) shows the DARA application scene from the 

AV. Table 5.18 (c) illustrates the DARA outcomes having the same results 

compared to the ground truth with a 𝑃𝑅𝑁 of 11.106 shown in Table 5.18 (d). The 
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outcome correctly matched the ground truth as it considered the parked area as 

part of the road region. The 𝑃𝑅𝑁 correctly represented the risky scene and had a 

middle rating. 

Scenario B, recommended safety actions with simulated 𝑷𝑹𝑵 

With a middle 𝑃𝑅𝑁 rating, improvements to inherent safety actions are 

recommended for safer AV operations. For example, in this case, the speed can 

be reduced to 0.25 (10 km/h), and the throttle can be reduced to 0.6 as the AV 

navigates the corner. The recommended safety actions lead to an improved 𝑃𝑅𝑁 

with the simulated results in Table 5.19. The speed reduction and throttle will 

improve the safety of the AV when it drives near parked vehicles. 

Table 5.19 Simulated safety actions for DARA in scenario B 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 0.0, 𝑉𝑅𝑇= 10.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.6, 𝑆𝑡𝑛= 0.33, 𝑆𝑝𝑛= 0.25  

(weights set at 10) 
𝐶_𝑅𝑇 = 2.25, 𝐶𝑡𝑟𝑙 = 3.93, 𝑷𝑹𝑵 = 8.84 

• Throttle reduced to 0.6 

• Speed reduced to 0.25 (10 km/h) 

 

5.3.4 Scenario C, first loop with rated low 𝑷𝑹𝑵 

Scenario C illustrates a straight road scene within the first loop, with zero 𝑃𝑅𝑁. 

The outcome of DARA recommends improving efficiency by operating at a higher 

speed in areas of no risk (no 𝐶_𝑅𝑇 or zero 𝑃𝑅𝑁) as opposed to being overly cautious 

for risk assessment approaches.  

Table 5.20 (a) and (b) show the AV was travelling on a straight road without 

pedestrians or vehicles. Since 𝐶_𝑅𝑇 was zero, 𝑃𝑅𝑁 would also be zero, as shown 

in Table 5.20 (c) and (d). Thus, no safety actions were required for this scenario. 

In this scenario, zero 𝑃𝑅𝑁 suggests the potential to increase the AV’s speed to 

improve efficiency, especially if 𝑃𝑅𝑁 remains zero over several iterations. 
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Table 5.20 Scenario C, first loop with rated low 𝑃𝑅𝑁 

Straight road 

 
 

(a) Scenario with corner 
 

(b) DARA application scene 

𝑃𝑅𝑇 = 0.0, 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.81, 𝑆𝑡𝑛= 0.07, 𝑆𝑝𝑛= 0.37  

(weights set at 10) 
𝐶_𝑅𝑇 = 0.0, 𝐶𝑡𝑟𝑙 = 4.201, 𝑷𝑹𝑵 = 0.0 

 
(c) DARA outcomes 

𝑃𝑅𝑇 = 0.0, 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.81, 𝑆𝑡𝑛= 0.07, 𝑆𝑝𝑛= 0.37  

(weights set at 10) 
𝐶_𝑅𝑇 = 0.0, 𝐶𝑡𝑟𝑙 = 4.201, 𝑷𝑹𝑵 = 0.0 

 
(d) DARA ground truth 

 

5.3.5 Scenario D, second loop with rated high 𝑷𝑹𝑵 

Scenario D depicts a rare event in which the road was not obstructed, but trucks 

were residing on both sides of the road, one in the bay area and one in the opposite 

lane. Moreover, a pedestrian was detected on the pavement. The scenario had a 

high 𝑃𝑅𝑁 rating of more than 20. 

Table 5.21 (a) illustrates scenario with a straight road but with trucks on both 

sides of the road. The truck on the left was stationary and parked in a bay, while 

the truck on the right stopped in the opposite lane and blocked the opposing 

traffic. The DARA application scene is illustrated in Table 5.21 (b). In this scene, 

the AV would face the risk of driving through a narrow lane and must be able to 

detect oncoming traffic or pedestrians crossing from the pavement. The 𝑃𝑅𝑁 was 

determined as 29.92 in Table 5.21 (c), while the DARA ground truth 𝑃𝑅𝑁 was 

28.82, as shown in Table 5.21 (d). The difference was due to the missed mapping 

of the truck on the left into the RTM. Thus, causing a difference in 𝐶_𝑅𝑇, and the 

accuracy of 𝐶_𝑅𝑇 in this scenario was 96.1%. The existing AV operation had a 

strong throttle and speed, facing risk as it drove into this narrow path. The 𝑃𝑅𝑁 
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rating for this scenario was high, indicating that an improvement to inherent 

safety actions is required. 

Table 5.21 Scenario D, second loop with rated high 𝑃𝑅𝑁 

Straight road 

 
(a) Scenario with a 

straight road 

 
(b) DARA application scene 

𝑃𝑅𝑇 = 5.6, 𝑉𝑅𝑇= 8.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.93, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.35  

(weights set at 10) 
𝐶_𝑅𝑇 = 6.8,  
𝐶𝑡𝑟𝑙 = 4.40,  

𝑷𝑹𝑵 = 29.92 
 

(c) DARA outcomes 

𝑃𝑅𝑇 = 5.6, 𝑉𝑅𝑇= 15.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.93, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.35  

(weights set at 10) 
𝐶_𝑅𝑇 = 6.55,  
𝐶𝑡𝑟𝑙 = 4.40,  

𝑷𝑹𝑵 = 28.82 
 

(d) DARA ground truth 

 

Scenario D, recommended safety actions with simulated 𝑷𝑹𝑵 

The AV should operate at a lower speed and throttle to ensure safe operations. 

Based on the existing throttle and speed, the recommended speed for the AV can 

be 0.25 (10 km/h), and the throttle should be set to 0.5. If these safety measures 

are applied, the simulated 𝑃𝑅𝑁 is 17.884, as shown in Table 5.22. It is important 

to note that the speed and throttle should not remain constant, and further 

reduction is necessary as the AV approaches closer to the truck in case an 

emergency brake is needed for a pedestrian dashing across the road. It is also 

important to monitor if the AV can pass through the narrow road lane. 
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Table 5.22 Simulated safety actions for DARA in scenario D 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 5.6, 𝑉𝑅𝑇= 8.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.50, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.25  

(weights set at 10) 
𝐶_𝑅𝑇 = 6.8, 𝐶𝑡𝑟𝑙 = 2.63, 𝑷𝑹𝑵 = 

17.884 
 

• Throttle reduced to 0.5 

• Speed reduced to 0.25 (10 km/h) 

 

5.3.6 Scenario E, second loop with rated middle 𝑷𝑹𝑵 

Scenario E shows a risk of the AV colliding with a pedestrian in front of the road 

region. The pedestrian was walking at the side of the road and expected the AV 

to manoeuvre away from him to avoid collision. This scenario is a good example 

of using DARA to assess AV’s safety action through this exposed risk. The 𝑃𝑅𝑁 

rating of this scenario was considered middle since it exceeded 10 but was less 

than 20. 

Table 5.23 Scenario E, second loop with rated middle 𝑃𝑅𝑁 

Straight road 

 
(a) Scenario with a 

straight road  
(b) DARA application scene 

𝑃𝑅𝑇 = 6.0 , 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.89, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.58  

(weights set at 10) 
𝐶_𝑅𝑇 = 3.0, 𝐶𝑡𝑟𝑙 = 5.045,  

𝑷𝑹𝑵 = 15.135 
(c) DARA outcomes 

𝑃𝑅𝑇 = 6.0, 𝑉𝑅𝑇= 15.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.89, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.58  

(weights set at 10) 
𝐶_𝑅𝑇 = 3.0, 𝐶𝑡𝑟𝑙 = 5.045,  

𝑷𝑹𝑵 = 15.135 
(d) DARA ground truth 
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Table 5.23 (a) depicts the scenario of a pedestrian walking on a straight road 

towards the AV on the road region, as shown in Table 5.23 (b). The scenario was 

dangerous for the pedestrian, and the AV will have to trigger safety actions to 

avoid the pedestrian as it came closer. At this moment, shown in Table 5.23 (b), 

the 𝑃𝑅𝑁 outcome from DARA was 15.135, which matched the ground truth. The 

operating speed was high at 23.2 km/h with a strong throttle of 0.89. In this 

scenario, DARA correctly represented the high-risk event with AV approaching a 

potential collision with a pedestrian on the road without any safety actions yet. 

 

(a) 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 of scenario E 

 

(b) Speed, throttle, brake and steering of scenario E 

Figure 5.27 Scenario E’s 𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝐶𝑡𝑟𝑙 and parametric data 

 

This scenario was further evaluated with a couple more scenes to understand the 

AV's behaviour in mitigating this risk and whether the existing safety actions were 

sufficient to reduce the 𝑃𝑅𝑁. Figure 5.27 (a) demonstrated that the AV safety 

actions did reduce the 𝑃𝑅𝑁, even though the 𝐶_𝑅𝑇 was rising (i.e. the AV is moving 

closer to the pedestrian). The rising 𝐶_𝑅𝑇 demonstrates the LID behaviour for PRT. 

The drop in 𝑃𝑅𝑁 resulted in the reduction in 𝐶𝑡𝑟𝑙. Figure 5.27 (b) further explains 

that the reduction in 𝐶𝑡𝑟𝑙 was achieved by stopping the throttle completely 
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seconds later from the identified scenario. There was also a slight shift in the 

steering to avoid the pedestrian. 

The DARA outcomes for this scenario show that the inherent AV safety controls 

had reduced the detected risk from a medium 𝑃𝑅𝑁 rating to a low 𝑃𝑅𝑁 rating. 

The inherent safety actions were effective in preventing collisions and reducing 

risk.  

Scenario E, recommended safety actions with simulated 𝑷𝑹𝑵 

If further improvements are needed, it is recommended to gradually reduce the 

throttle starting when 𝑃𝑅𝑁 reaches 10 or 12.34 instead of abruptly cutting the 

throttle at 𝑃𝑅𝑁 15.14. This gradual approach will help decrease the 𝑃𝑅𝑁 and 𝐶𝑡𝑟𝑙, 

reducing the risk of collision. No changes are needed for the steering actions. If 

the recommendations are applied, the simulated 𝑃𝑅𝑁 for this scenario is shown 

in Table 5.24, where the 𝑃𝑅𝑁 has reduced from a middle to low 𝑃𝑅𝑁 rating. The 

throttle will have reduced to 0.6, and the speed will have dropped to 14 km/h 

instead of 23.2 km/h. This scenario demonstrates how DARA can be used for real-

time risk assessment of AV operations, and the outcomes can be used to determine 

future improvements to existing safety measures. 

Table 5.24 Simulated safety actions for DARA in scenario E 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 6.0 , 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.60, 𝑆𝑡𝑛= 0.04, 𝑆𝑝𝑛= 0.35  

(weights set at 10) 
𝐶_𝑅𝑇 = 3.0, 𝐶𝑡𝑟𝑙 = 3.3,  

𝑷𝑹𝑵 = 9.9 

• Reduce throttle when 𝑃𝑅𝑁 >10 

• This results in a reduction in speed 

 

5.3.7 Scenario F, second loop with rated low 𝑷𝑹𝑵 

Scenario F shows the AV stopped at a T-junction where a vehicle crossed the T-

junction in front of the AV. The AV detected the vehicle and continued to brake 

till the vehicle passed the midpoint of the T-junction. At that point, the AV started 

moving and made a right turn while keeping a distance from the detected vehicle. 



193 
5.3 Verification of DARA with real-world test routes 
 
 
 

 

The 𝑃𝑅𝑁 was rated low since it is below 9.02. This scenario demonstrated how 

DARA assesses the AV safety controls as it manages its risk when a vehicle 

travelling in front of it is detected. A detailed analysis using the DARA outcomes 

was also explained in detail for this scenario. 

Table 5.25 (a) shows the scenario where the AV waited for the detected vehicle 

to drive past the T-junction. Table 5.25 (b) illustrates the DARA application scene 

where the vehicle passed the “mid-point” of the T-junction. For this scene in 

Table 5.25 (c) and (d), the DARA outcomes were the same as the ground truth 

since the detected vehicle was correctly identified and mapped correctly in the 

RTM. Since the 𝑃𝑅𝑁 was rated low, no safety improvement actions are required 

for this scenario. Further analysis was conducted to validate the 𝐶𝑡𝑟𝑙 actions of 

the AV as the detected vehicle passes the T-junction.  

Table 5.25 Scenario F, second loop with rated low 𝑃𝑅𝑁 

T-junction 
 

 
 

(a) Scenario with T-junction  
(b) DARA application scene 

𝑃𝑅𝑇 = 0.0 , 𝑉𝑅𝑇= 7.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.31, 𝑆𝑡𝑛= 0.01, 𝑆𝑝𝑛= 0.0  

(weights set at 10) 
𝐶_𝑅𝑇 = 3.5,  
𝐶𝑡𝑟𝑙 = 1.058,  
𝑷𝑹𝑵 = 3.704 

 
(c) DARA outcomes 

𝑃𝑅𝑇 = 0.0 , 𝑉𝑅𝑇= 7.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.31, 𝑆𝑡𝑛= 0.01, 𝑆𝑝𝑛= 0.0  

(weights set at 10) 
𝐶_𝑅𝑇 = 3.5,  
𝐶𝑡𝑟𝑙 = 1.058,  
𝑷𝑹𝑵 = 3.704 

 
(d) DARA ground truth 

 

Figure 5.28 (a) shows that the 𝑃𝑅𝑁 stayed around 10 as the 𝐶𝑡𝑟𝑙 decreases (2.53) 

with 𝐶_𝑅𝑇 at 4.00. This decrease in 𝐶𝑡𝑟𝑙 was due to the high braking, zero throttle 
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and almost zero speed, as shown in Figure 5.28 (b). As the detected vehicle passed 

near the “mid-point” of the T-junction, the AV had a moment of almost zero 𝑃𝑅𝑁 

with zero speed, residual steer, zero throttles and zero brakes, as shown in Figure 

5.28 (a) and (b). As the detected vehicle passed the AV, the 𝑃𝑅𝑁 increased as the 

AV started to move and speed up while maintaining a distance from the detected 

vehicle with a low 𝑃𝑅𝑁 not exceeding 8. 

This scenario shows that DARA performs a detailed risk assessment of the AV in 

real time using 𝑃𝑅𝑁 and its outcomes. In this case, no further improvements in 

safety actions are required for subsequent similar events. The only minor 

adjustment is to have gradual braking at point A, as shown in Figure 5.28 (b), 

instead of harsh braking. 

 

(a) Scenario F, 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 

 

(b) Scenario F, Speed, throttle, brake and steering 

Figure 5.28 Scenario F’s 𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝐶𝑡𝑟𝑙 and parametric data 

5.3.8 Scenario G, third loop with rated high 𝑷𝑹𝑵 

Scenario G describes the AV travelling on a straight road while an oncoming vehicle 

appeared in the opposite lane. The oncoming vehicle could obstruct the AV's path 
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since there is no barrier between the two lanes. This scenario shows that the 𝑃𝑅𝑁 

was higher than 20, indicating a high 𝑃𝑅𝑁 rating. 

Table 5.26 (a) shows the scenario where the AV came close to the vehicle 

travelling in the opposite lane. If each vehicle travels within its lane, the risk 

would be minimal. However, as there is no barrier between the opposing lanes, 

there could be a potential risk where the vehicle could drive out of its lane, 

especially when the vehicle comes close to the AV, as shown in Table 5.26 (b). 

Thus, Table 5.26 (c) and (d) shows that the DARA algorithm indicates a 𝑃𝑅𝑁 of 

22.178 that matched the intended ground truth. The high 𝑃𝑅𝑁 was mainly caused 

by the high 𝐶𝑡𝑟𝑙.  

Table 5.26 Scenario G, third loop with rated high 𝑃𝑅𝑁 

Straight road 
 

 
 

(a) Scenario with straight 
road 

 
(b) DARA application scene 

𝑃𝑅𝑇 = 0.0 , 𝑉𝑅𝑇= 9.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.88, 𝑆𝑡𝑛= 0.07, 𝑆𝑝𝑛= 0.53  

(weights set at 10) 
𝐶_𝑅𝑇 = 4.5,  
𝐶𝑡𝑟𝑙 = 4.929,  

𝑷𝑹𝑵 = 22.178 
 

(c) DARA outcomes 

𝑃𝑅𝑇 = 0.0 , 𝑉𝑅𝑇= 9.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.88, 𝑆𝑡𝑛= 0.07, 𝑆𝑝𝑛= 0.53  

(weights set at 10) 
𝐶_𝑅𝑇 = 4.5,  
𝐶𝑡𝑟𝑙 = 4.929,  

𝑷𝑹𝑵 = 22.178 
 

(d) DARA ground truth 

 

Figure 5.29 indicates that the 𝐶_𝑅𝑇 increased as the detected vehicle approached 

the AV, while the 𝐶𝑡𝑟𝑙 remained the same. The 𝐶𝑡𝑟𝑙 was maintained at a speed of 

21.32 km/h and a high throttle of 0.88. The spikes in Figure 5.29 were caused by 

the precision of YOLOv5s, where object detection is not as accurate when the 
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objects are small and far from the AV. Object detection has higher precision as 

the object comes close to the middle of the scene. 

 

Figure 5.29 Scenario G, 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 

Scenario G, recommended safety actions with simulated 𝑷𝑹𝑵 

In this scenario, the recommendation is to cut the throttle when the 𝑃𝑅𝑁 reaches 

10. Once the vehicle passes the AV without any risk of collision, the AV can resume 

the throttle and vehicle speed. If the recommendation is applied for the 

subsequent round, the 𝑃𝑅𝑁 can be reduced to 9.0, as shown in Table 5.27, from 

a high to low 𝑃𝑅𝑁 rating. 

Table 5.27 Simulated safety actions for DARA in scenario G 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 0.0, 𝑉𝑅𝑇= 9.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.0, 𝑆𝑡𝑛= 0.07, 𝑆𝑝𝑛= 0.53  

(weights set at 10) 
𝐶_𝑅𝑇 = 4.5,  
𝐶𝑡𝑟𝑙 = 2.0,  
𝑷𝑹𝑵 = 9.0 

• Cut the throttle when 𝑃𝑅𝑁 >10 

 

5.3.9 Scenario H, third loop with rated middle 𝑷𝑹𝑵 

Scenario H illustrates the AV approaching a T-junction and stopping at the pocket 

with a pedestrian on the left while a vehicle turned from the main road into the 

AV path. The AV operated safely, as its original intention was to stop at the 

pocket, which reduced the risk at this T-junction. However, a second vehicle 

started to turn into the AV path as soon as the first vehicle passed the AV. The 
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scenario uses DARA to evaluate the AV’s risk assessment. The 𝑃𝑅𝑁 of the scenario 

was given a middle rating. 

Table 5.28 (a) depicts the AV approaching the T-junction's pocket from the minor 

road. As the AV moved towards the pocket, a pedestrian started to cross from the 

road to the pavement, while simultaneously, a vehicle turned from the main road 

into the minor road, as illustrated in Table 5.28 (b). Both the DARA outcomes and 

the ground truth aligned in this scene, as indicated in Table 5.28 (c) and (d). The 

significance of this scenario extends beyond the scene, as shown in Table 5.28 (b). 

Once the AV reached the pocket, vehicle A passed the AV in the opposite lane into 

the minor road, and seconds later, vehicle B also turned into the minor road. 

Therefore, a more comprehensive analysis using DARA outcomes can be used to 

verify if the AV is implementing appropriate safety actions for this scenario. 

Table 5.28 Scenario H, third loop with rated middle 𝑃𝑅𝑁 

T-junction 
 

 
 

(a) Scenario with T-
junction  

(b) DARA application scene 

𝑃𝑅𝑇 = 7.0 , 𝑉𝑅𝑇= 8.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.24, 𝑆𝑡𝑛= 0.03, 𝑆𝑝𝑛= 0.21  

(weights set at 10) 
𝐶_𝑅𝑇 = 7.5,  
𝐶𝑡𝑟𝑙 = 1.599,  

𝑷𝑹𝑵 = 11.991 
 

(c) DARA outcomes 

𝑃𝑅𝑇 = 7.0 , 𝑉𝑅𝑇= 8.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.24, 𝑆𝑡𝑛= 0.03, 𝑆𝑝𝑛= 0.21  

(weights set at 10) 
𝐶_𝑅𝑇 = 7.5,  
𝐶𝑡𝑟𝑙 = 1.599,  

𝑷𝑹𝑵 = 11.991 
 

(d) DARA ground truth 
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(a) Scenario H, 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 

 

(b) Scenario H, Speed, throttle, brake and steering 

Figure 5.30 Scenario H’s 𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝐶𝑡𝑟𝑙 and parametric data 

Figure 5.30 (a) shows that when vehicle A was detected, the AV deployed inherent 

safety actions by reducing the throttle. Alternatively, the reduction in throttle 

could also be due to AV slowing down as it approached the pocket of the T-

junction. However, when the pedestrian was detected, the 𝐶_𝑅𝑇 raised the 𝑃𝑅𝑁 

slightly above 10. The increase in 𝐶_𝑅𝑇 was due to a pedestrian and vehicle A 

moving closer to the AV. There was also a slight increase in 𝐶𝑡𝑟𝑙, which was 

contributed by the increase in throttle, as shown in Figure 5.30 (b). The “red box” 

depicts the focus of this scenario, where improvements to inherent safety actions 

are needed. The “red box” illustrates the scene where 𝐶𝑡𝑟𝑙 increased when the 

second vehicle (vehicle B) was detected before turning into the minor road, as 

shown in Figure 5.30 (a). This increase in 𝐶𝑡𝑟𝑙 was due to the increased throttle 

by the AV moving ahead and attempted to turn right. During this event (“red 

box”), the AV detected the second vehicle (vehicle B) and deployed sudden 

braking to reduce the speed effect of the throttle. This sudden throttle and 

braking event between vehicles A and B caused the elevated 𝑃𝑅𝑁 with 𝐶𝑡𝑟𝑙. Due 

to the low speed, the risk was not high and thus 𝑃𝑅𝑁 did not reach a high rating. 
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The outcome of DARA for this scenario demonstrated its ability to perform a real-

time risk assessment of the AV controls with the detected environmental risk. This 

is represented by 𝑃𝑅𝑁, and detailed analyses were further investigated with 𝐶_𝑅𝑇 

and 𝐶𝑡𝑟𝑙. The AV safety actions in this scenario were correctly deployed for vehicle 

A, and the pedestrian was detected, but further improvements to the inherent 

safety actions are needed when vehicle B is detected. 

Scenario H, recommended safety actions with simulated 𝑷𝑹𝑵 

Potential improvements are suggested when vehicle B is detected. A peak 𝑃𝑅𝑁 of 

16.52 was shown in Figure 5.30 (a). The peak was due to the pedestrian detected 

on the pavement at the point nearest to the AV, while vehicle B was detected 

before the turn. Table 5.29 (a) also verified that the 𝑃𝑅𝑁 was high due to the 

elevated 𝐶𝑡𝑟𝑙. Table 5.29 (b) represents the illustrated 𝑃𝑅𝑁 16.52 scene. Thus, a 

reduction in throttle when vehicle B is detected, eliminates the need for sudden 

breaking at a later time.  

Table 5.29 “Red box” scene for scenario H 

𝑃𝑅𝑇 = 7.2 , 𝑉𝑅𝑇= 7.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.56,  

𝑆𝑡𝑛= 0.01, 𝑆𝑝𝑛= 0.13  
(weights set at 10) 

𝐶_𝑅𝑇 = 7.1,  
𝐶𝑡𝑟𝑙 = 2.327,  

𝑷𝑹𝑵 = 16.521 
 

(a) DARA outcome at 
peak 𝑃𝑅𝑁 when 

vehicle B is detected  
(b) DARA application scene 

 

If the suggested safety improvements are made with the throttle reduced to 0.25, 

the speed will also slow down. Thus, the simulated 𝑃𝑅𝑁 will change from 16.521 

to 8.52, as shown in Table 5.30, lowering the corresponding 𝑃𝑅𝑁 rating from 

middle to low. 
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Table 5.30 Simulated safety actions for DARA in “red box” scenario H 

Simulated DARA outcomes Simulated safety actions 

𝑃𝑅𝑇 = 7.2 , 𝑉𝑅𝑇= 7.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.25, 𝑆𝑡𝑛= 0.01, 𝑆𝑝𝑛= 0.10  

(weights set at 10) 
𝐶_𝑅𝑇 = 7.1,  
𝐶𝑡𝑟𝑙 = 1.2,  

𝑷𝑹𝑵 = 8.52 
 

• Reduce the throttle to 0.25 

• Speed will also be reduced to 
4km/h. 

 

5.3.10 Scenario I, third loop with rated low 𝑷𝑹𝑵  

Scenario I illustrates the AV moving on a straight road with a pedestrian walking 

across the pavement region. This scenario uses DARA to evaluate a typical case 

where the AV should not be overly conservative in reducing or triggering safety 

actions as the pedestrian had already walked out of the road region. Thus, the 

𝑃𝑅𝑁 of the scenario was assigned a low rating. 

Table 5.31 Scenario H, third loop with rated low 𝑃𝑅𝑁 

T-junction 
 

 
 

(e) Scenario with T-junction 
 

(f) DARA application scene 

𝑃𝑅𝑇 = 5.0 , 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.7, 𝑆𝑡𝑛= 0.06, 𝑆𝑝𝑛= 0.12  

(weights set at 10) 
𝐶_𝑅𝑇 = 2.5,  
𝐶𝑡𝑟𝑙 = 2.922,  
𝑷𝑹𝑵 = 7.304 

 
(g) DARA outcomes 

𝑃𝑅𝑇 = 5.0 , 𝑉𝑅𝑇= 0.0 
𝐵𝑛= 0, 𝑇ℎ𝑛=0.7, 𝑆𝑡𝑛= 0.06, 𝑆𝑝𝑛= 0.12  

(weights set at 10) 
𝐶_𝑅𝑇 = 2.5,  
𝐶𝑡𝑟𝑙 = 2.922,  
𝑷𝑹𝑵 = 7.304 

 
(h) DARA ground truth 

 



201 
5.3 Verification of DARA with real-world test routes 
 
 
 

 

Table 5.31 (a) and (b) depict the AV on a straight road with pedestrians residing 

on the 5th row of the road region. Therefore, the AV was travelling at a low speed 

but with high throttle since it was 30 m away from the pedestrians. DARA 

outcomes and ground truth were matched, as shown in Table 5.31 (c) and (d). 

Further scenes are analysed using DARA to evaluate the pedestrian movement and 

if the AV took any safety actions related to this movement.  

 

(a) Scenario I, 𝑃𝑅𝑁, 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 

 

(b) Scenario I, speed, throttle, brake and steering 

Figure 5.31 Scenario I’s 𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝐶𝑡𝑟𝑙 and parametric data 

 

Figure 5.31 (a) shows that 𝐶_𝑅𝑇 remains below 6.0 as the AV travelled straight, 

thus implying that the pedestrian should be walking away from the AV and moving 

out of the RTM. Moreover, there were no inherent safety actions triggered, proven 

by the increase in 𝐶𝑡𝑟𝑙. The increase in 𝐶𝑡𝑟𝑙 was due to the increased in throttle 

shown in Figure 5.31 (b). The only minor improvement is to lower the throttle, 

shown in Figure 5.31 (b), at the tail end of this scenario to prevent the 𝑃𝑅𝑁 from 

exceeding 10 to reduce risk (i.e. if the pedestrian decides to turn around). Other 

than that, no critical safety actions are required in this scenario. 
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Similarly, the DARA outcomes for this scenario demonstrated its ability to assess 

if the AV's safety actions are overly conservative by verifying with the 𝐶_𝑅𝑇. If no 

environmental risks are detected (zero 𝐶_𝑅𝑇), the AV could improve its speed for 

higher efficiency, but it should be validated with more routes before making the 

final decision. 

5.3.11 Verification summary for all scenarios 

This section summarises the DARA outcomes for all nine scenarios A to I. Using 

these nine scenarios, the 𝑃𝑅𝑁 vs ground truth, the risk assessment outcomes and 

the proposed improvements to inherent safety actions with simulated 𝑃𝑅𝑁 are 

summarised in Table 5.32 and Table 5.33. 

Table 5.32 shows a summary of the 𝑃𝑅𝑁 vs ground truth across the nine scenarios. 

Two (scenarios A and D) out of the nine scenarios had 𝑃𝑅𝑁 differences between 

the 𝑃𝑅𝑁 actual and ground truth with an error range of 3-4%. Similar to STREET, 

the variance mainly comes from the YOLOv5s object detection and in the case of 

DARA, the variances were contributed from both YOLOv5s and PSPNet, as 

indicated in section 5.1.1. These verifications are accomplished based on the 

scenarios mentioned in chapter 3, which consist of T-junctions, straight roads and 

corners. Therefore, the results show that DARA can still manage 77.7% of the 

different scenarios with an accurate 𝑃𝑅𝑁, while the remaining only have a 3-4% 

𝑃𝑅𝑁 error, despite the challenges on the performance of YOLOv5 and PSPNet.  

Table 5.32 Summary of 𝑃𝑅𝑁 vs ground truth across the nine scenarios 

Scenario Trip Scene 𝑷𝑹𝑵 
rating 

𝑷𝑹𝑵 Ground 
truth 

Delta 

A First loop T-junction High 50.513 48.885 3.33% 

B First loop Corner Middle 11.106 11.106 0% 

C First loop Straight road Low 0 0 NA 

D Second loop Straight road High 29.92 28.82 3.82% 

E Second loop Straight road Middle 15.135 15.135 0% 

F Second loop T-junction Low 3.704 3.704 0% 

G Third loop Straight road High 22.178 22.178 0% 

H Third loop T-junction Middle 11.991 11.991 0% 

I Third loop Straight road Low 7.304 7.304 0% 
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Table 5.33 indicates the AV's existing safety actions and proposed improvements 

in safety actions based on the real-time risk assessment conducted for these 

scenarios. Four (scenarios A, B, D and G) out of the nine scenarios require 

improvements to the inherent safety actions, and one of them (scenario H) 

requires partial improvements, which represents a 50% improvement on the 

existing safety actions. Table 5.33 also shows that the improvement for each 

scenario varies from 20% to 65% of the 𝑃𝑅𝑁 to improve safety for AV operations. 

From these verifications, DARA converts these contextual events and represents 

them into a 𝑃𝑅𝑁. Thereafter, the DARA outcomes (𝑃𝑅𝑁, 𝐶_𝑅𝑇, 𝑃𝑅𝑇, 𝑉𝑅𝑇, 𝐶𝑡𝑟𝑙, 

speed, brake, steer and throttle) are used to analyse for further improvements in 

AV safety actions. Therefore, in the subsequent route, the AV should reduce their 

𝑃𝑅𝑁 if similar scenario is observed using 𝑃𝑅𝑁 as a trigger, thus demonstrating the 

recursive process in the ReRAF concept. 

Table 5.33 AV’s risk assessment outcome with improvements to inherent safety actions 

Scenario 𝑷𝑹𝑵 Is improvement to 
inherent safety 
actions needed? 

(Yes/No) 

Simulated 𝑷𝑹𝑵 with 
recommended 
improvements 

𝑷𝑹𝑵 
reduction 

A 50.513 Yes 17.546 65.26% 

B 11.106 Yes 8.84 20.40% 

C 0 No NA NA 

D 29.92 Yes 17.884 40.23% 

E 15.135 No 
Potential minor 

improvements to 9.9 
Potential of 

34.58% 

F 3.704 No NA NA 

G 22.178 Yes 9.0 59.42% 

H 
16.521 

(2nd vehicle) 
Partial 8.52 48.43% 

I 7.304 No NA NA 

 

The DARA algorithm has demonstrated its functionality by testing three iterative 

loops of AV real-world operations. The nine scenarios tested showed that the 

inaccuracies of the PRN results are mainly attributed to the object detection 

process, which is similar to STREET. The impact of this PRN inaccuracy is 

measured, with a 3-4% error compared to the PRN ground truth if it occurs. The 

error does not impact the decision to make safety improvements, which are 

evaluated based on PRN thresholds, while the safety actions are determined based 
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on the PRN over time instead of a single instance of PRN. In situations where DARA 

or ReRAF malfunctions as an independent module for risk assessment, the AV can 

still rely on ReRAC to receive remote advance warnings, while the inherent AV 

safety system can still prevent accidents.  

5.4 Summary  

This chapter provides a comprehensive theoretical formulation, evaluation and 

verification of the novel DARA algorithm within ReRAF. ReRAF is utilised in AVs to 

conduct an independent end-to-end, real-time risk assessment of the AV by 

measuring its inherent safety actions based on environmental risk. It converts 

image information into a quantitative risk measurement without human 

interpretation. The DARA algorithm employs image risk tagging and mapping in 

conjunction with control tagging of the AV, to generate a 𝑃𝑅𝑁 representing the 

AV's risk assessment. Image risk tagging and mapping utilises object detection and 

scene segmentation, using YOLOv5s and PSPNet to identify contextual risks, such 

as pedestrians and vehicles, residing at different landscape to form a quantitative 

risk figure known as 𝐶_𝑅𝑇. Control tagging of the AV converts the obtained AV 

parametric data, such as speed, brake, steer, and throttle, into a single variable 

known as 𝐶𝑡𝑟𝑙. The result of 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 were used to determine 𝑃𝑅𝑁, which 

measures the AV's ability to reduce risk through its safety actions when responding 

to detected risks. Based on the simulated 𝑃𝑅𝑁 scenes, a guideline for 𝑃𝑅𝑁 rating  

(low, middle, and high) was provided. Additionally, a visualisation technique 

known as regional 𝑃𝑅𝑁, obtained by averaging 𝑃𝑅𝑁s over a geolocation grid, helps 

to identify potential hotspots. This chapter evaluates DARA over three unregulated 

traffic scenarios, such as T-junctions, corners, and straight roads. Furthermore, 

DARA was verified with three iterative loops of AV operation, consisting of 77,817 

scenes. The results illustrate the distribution of risk intervals and statistical 

comparison at the macro level to identify the specific loop that requires safety 

action improvements. A statistical method was also illustrated to determine an 

alternate 𝑃𝑅𝑁 rating, in addition to the defined 𝑃𝑅𝑁 guideline. Lastly, nine 

scenarios within the three iterative loops of AV operation were used to test the 

DARA algorithm against its ground truth. The nine scenarios have diverse low, 
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middle, and high 𝑃𝑅𝑁 ratings at various road scenes. The results show that seven 

out of nine scenes produced identical results, while only two scenarios showed a 

3-4% error. These errors occurred due to the inaccurate object detection process. 

However, these errors do not impact the decision to make safety improvements, 

which are evaluated based on the PRN thresholds, while the safety actions are 

determined based on PRN over time. DARA uses these nine scenarios to assess AV's 

safety actions when exposed to these environmental risks. The assessment 

revealed that for 50% of the scenarios, improvements in the inherent safety action 

were recommended. When implemented, these resulted in simulated 𝑃𝑅𝑁 

improvements ranging from 20% to 65%. The real-world verification results confirm 

that the DARA algorithm can effectively perform real-time risk assessments for 

AVs, suggesting potential improvements to their safety actions for future routes. 

This ability to continuously improve safety actions through real-time risk 

assessment highlights the advantage of the recursive process within ReRAF. 
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Chapter 6 

6 Conclusion and further work 

This section concludes the thesis and discusses future research opportunities 

based on the findings. 

6.1 Conclusion 

The current static risk assessment used in the development of AV does not 

adequately cover all aspects of AV operations. These gaps in coverage include the 

need to consider real-time evaluation of the AV’s safety actions when hazardous 

risks are detected, insufficient consideration of remote hazardous risks through 

cooperative mode, and the inability to implement safety improvements for 

upcoming AV operations without waiting for the next development cycle.  

The review of existing risk assessment suggested that environmental 

considerations, objective measurement of the of hazardous events, and end-to-

end solutions are missing. Most notably, a holistic framework for real-time risk 

assessment and a cooperative mode must be included to address the identified 

gaps. 

This thesis presents a real-time risk assessment framework and a cooperative 

mode, conceptualised using the baseline of risk assessment standards and 
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additional requirements from the identified gaps between static and real-time risk 

assessment. The framework, ReRAF is used within the AV to evaluate the AV’s 

control or safety actions when hazardous risks are detected. The cooperative 

mode, ReRAC, is used within an infrastructure that assists the AV in providing 

remote risk measurements and identifying hazardous events and warnings. 

The design and development of ReRAC for RSU are explained with illustrations of 

real-time AV operations. The AV operations focused on detecting hazardous events 

at unregulated traffic and T-junctions instead of highways and regulated 

intersections in existing approaches since risk is more prevalent in unregulated 

traffic and T-junctions. Results of ReRAC demonstrated how the STREET algorithm 

worked with different probabilistic models (LID, CED, and AED), providing 

different coverage of the AOI. STREET operates in real time and converts a scene 

into RT figures, RSU-TTC, Occurrence, hazardous identification, and warnings. The 

primary focuses of STREET are the RT figures and its normalised RT figures. RT 

figures provide a summation of the environmental risk within the scene, while 

normalised RT figures provide the aggregate risk per scene. STREET was tested 

and proven effective in detecting different pedestrian events in a corner scenario 

with a total of 97,446 scenes. Furthermore, four real-world events verified the RT 

figures with the LID model with its ground truth, compared the between LID, CED, 

and AED, and verified the expected relationship between RSU-TTC, RT figure 

based on LID, and normalised RT figure based on LID. These quantitative RT figures 

offer real-time risk values of the scene within the scenario. RSU-TTC offers a time-

based countdown to determine the time to collide between the reference location 

“X” and the detected pedestrian, giving a different perspective on potential 

collision impact. The formulated hazardous identification and warnings were 

tested on a T-junction that illustrates its functionality to provide instantaneous 

event detection of vehicles and pedestrian hazards within the intersection or road 

section. Additionally, Occurrence is used to verify the selected probability model 

used for STREET. 

The ReRAC outcomes provide different methods of remote warning before the AV 

arrives at the infrastructure's exact location. These remote warnings aid in 
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dynamic path planning for the AV. The recursive accumulation of ReRAC outcomes 

over time can also assist the AV in better path planning. The outcome of STREET, 

with different probabilistic models, demonstrated how the RT figures with RSU-

TTC identify low/high risk scenarios or the presence of pedestrians in the middle 

of the AOI. The hazard identifications and warnings are also verified, and its 

functionality is demonstrated in a T-junction. Therefore, the outcome of the RT 

figure, RSU-TTC and hazard identifications and warnings are provided every 40 

ms, proving its end-to-end process at granular levels. With the conversion from 

camera images into quantitative figures without any human intervention, the 

STREET process is objective, and the outcome is lightweight with only data and 

not a series of images. These results conclude the motivation and contributions 

for ReRAC. 

The ReRAF concept design and development in an AV system were explained with 

illustrations of real-time AV operations. The ReRAF concept uses the DARA 

algorithm, which combines 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 to provide 𝑃𝑅𝑁. 𝐶_𝑅𝑇 are similar to 

those RT figures used in ReRAC to detect hazardous events within the scene, 

except in the ReRAF’s case they will dynamically change with the moving 

landscape. 𝐶𝑡𝑟𝑙 represent the longitudinal and latitudinal control of the AV and 

the deployed safety actions. 𝑃𝑅𝑁 represents the risk measurement of the AV 

control that corresponds to the detected hazardous events. A guideline for 𝑃𝑅𝑁 

rating thresholds is provided based on simulated 𝑃𝑅𝑁s. The level of 𝑃𝑅𝑁 will 

determine how safe the AV operates in the presence of hazardous events. As an 

alternative, a statistical method to determine 𝑃𝑅𝑁 rating thresholds was 

illustrated using past 𝑃𝑅𝑁 results, reflecting the proximity between the guideline 

and the statistical method. The Occurrences of 𝑃𝑅𝑁s were also used to formulate 

visualisation maps of regional 𝑃𝑅𝑁 for the identification of potential hotspots of 

high 𝑃𝑅𝑁s over iterations of AV operations. ReRAF was tested with three iterative 

loops of AV operations consisting of 77,817 scenes with the distribution of risk 

intervals and statistical comparison to identify the loop requiring safety action 

improvements. The DARA algorithm was analysed by verifying the 𝑃𝑅𝑁 outcomes 

with the ground truth using the scenes within the scenarios identified. The 

evaluation of AV’s control or safety actions were also demonstrated using DARA 
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algorithm if improvements were needed for subsequent loop within those 

identified scenarios. Additionally, safety action improvements were provided that 

illustrate the reduction of 𝑃𝑅𝑁 through simulation. These improvements in safety 

actions, if deployed for subsequent AV operational loops, will reduce the 𝑃𝑅𝑁. 

This continuous improvement of 𝑃𝑅𝑁 over loops illustrates the intention of a 

recursive process.  

The ReRAF with DARA outcomes demonstrated 𝑃𝑅𝑁 risk measurement as an end-

to-end process providing granular levels at intervals between 32-50 ms. The 𝑃𝑅𝑁 

was determined by the objective process of image conversion into 𝐶_𝑅𝑇 and AV’s 

parametric control into a single 𝐶𝑡𝑟𝑙 without any human intervention. The 𝑃𝑅𝑁 

with 𝐶_𝑅𝑇 and 𝐶𝑡𝑟𝑙 proves that the outcome is lightweight with only quantitative 

data instead of timestamp images with vehicle data. These results conclude the 

motivation and contributions of ReRAF. 

The results of ReRAC and ReRAF are partially dependent on the object detection 

process, which can introduce inaccuracies to RT figures and PRN due to occlusion 

and varying sizes of object detection boxes. These results indicate that the 

performance is relatively close to industry acceptance, and there is room for 

further improvement regarding STREET’s accuracy. As for the error in DARA 

accuracy due to the object detection process, this error does not significantly 

impact the safety actions taken to improve the safety of AV since a period of PRNs 

is considered instead of a single PRN instance. Furthermore, ReRAC and ReRAF 

complement each other when one malfunctions. In the extremes, if ReRAC and 

ReRAF malfunction, the AV with inherent safety systems can still prevent 

accidents. Without ReRAC and ReRAF deployed, sudden braking or steering events 

can occur and impact the safety of passengers and other motorists due to abrupt 

movements. 

The combination of ReRAF from the AV perspective and ReRAC from the 

infrastructure perspective complements each other to derive a “holistic” risk 

measurement of a given situation. ReRAF uses DARA to provide real-time 

evaluation of the AV control or safety actions when a hazardous event is detected. 
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Simultaneously, ReRAC uses the STREET algorithm within the RSU to send remote 

risk and event warnings to the AV before reaching the infrastructure's location. 

Both ReRAF and ReRAC are objectively processed using an end-to-end approach.  

Using the remote risk and event warnings from ReRAC, AV will be able to prevent 

accidents or potential collisions. On the other hand, ReRAF evaluation served as a 

trigger for subsequent safety action improvements. As such, the AV operations 

achieved safety improvements in current and subsequent operations. These cyclic 

improvements justify the recursive elements of ReRAF and ReRAC over time. The 

quantitative results from ReRAF and ReRAC can be used to continuously learn and 

improve the AV's path planning, eliminating the need to wait for the next 

development cycle. This research concludes the development and verification of 

ReRAC and ReRAF in real-world scenarios focusing on unregulated traffic that 

mitigates the existing gaps in static risk assessment for AV operations. Thus, it 

fulfils the motivation and contribution of this research. 

6.2 Key benefits 

This research presents a novel approach for performing risk assessment in real 

time AV operations in addition to traditional static risk assessment. The key 

benefits of having a real-time risk assessment for AV operations are stated below: 

• A remote risk measurement with hazard identifications and warnings via 

ReRAC. 

The outcomes of ReRAC provide remote quantitative risk measurement (RT 

figures) and hazard identification and warnings of the locations beyond the AV 

path. RSUs installed at certain locations provide ReRAC outcomes to the AV 

through cooperative mode. This allows AVs to be remotely informed about 

environmental risks at specific locations and potential events like congestion and 

accidents. It acts as an extended view for the AV, particularly in areas with limited 

visibility and the possibility of pedestrians or vehicles being occluded. This remote 

information enables the AV to react in advance and provide a safer and smoother 

ride before reaching the RSU location, thereby reducing operational risks. 
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• Evaluation of the AV’s inherent safety actions when risks are exposed by 

ReRAF. 

ReRAF outcomes evaluate the inherent safety actions reflected through the AV’s 

control actions when environmental risks are identified. The steering, brake, 

speed, and throttle responses are measured with the detected risk to provide a 

𝑃𝑅𝑁. 𝑃𝑅𝑁 represents how well the AV reacts to the exposed risk. Furthermore, a 

𝑃𝑅𝑁 rating is also devised to prompt AV for improvements in safety action if a 

middle or high level is determined. This research further suggests improvements 

in safety action through simulated 𝑃𝑅𝑁 to improve the measured 𝑃𝑅𝑁. These 

improvements can be applied for subsequent operations. 

• ReRAF and ReRAC improve AV operations recursively. 

With ReRAC providing remote risk measurement and hazardous identification and 

warnings, instantaneous improvements to safer AV operations can be achieved. 

On the other hand, ReRAF focuses on the subsequent operational route for safety 

action improvements. Thus, this cyclic process of improvements for existing and 

subsequent iterations of operational routes illustrates the effects of recursive 

improvements for safer AV operations. 

• ReRAF and ReRAC as a fast and efficient end-to-end solution  

ReRAF and ReRAC offer a fast and efficient end-to-end solution. The ReRAC 

STREET algorithm operates at the RSU and swiftly converts scenes from a camera 

to quantitative parameters in 30-40ms using an NVIDIA AGX edge system. This 

quick processing time enables real-time processing at the RSU, with outcomes 

transmitted to vehicles with minimal communication latency. The latency is under 

60ms in a 5G private network environment for providing a remote risk warning and 

detection of hazardous events. 

Meanwhile, the ReRAF DARA algorithm operates as an independent edge system 

within the AV and takes 60-80ms to convert scenes from a camera to quantitative 

parameters. The additional time compared to ReRAC is due to the scene 
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segmentation in dynamic landscapes. The outcomes provide 𝑃𝑅𝑁, 𝐶𝑡𝑟𝑙 and 𝐶_𝑅𝑇 

that evaluate the control or safety actions of the AV when environmental risks are 

detected. 

• ReRAF acts as a risk measurement device for AV operations that can assist 

regulatory processes. 

ReRAF can be a risk assessment tool for AV operations that provides real-time 

quantitative measures, focusing on AV operational risk and safety. It enables risk 

assessment evaluation from a regulatory perspective without companies needing 

to expose their proprietary algorithms since independent camera(s) and AV’s 

speed, steering, braking and throttle are used to perform this risk assessment. 

• ReRAF and ReRAC quantitative outcomes are used to analyse improvements for 

safety actions. 

The ReRAF and ReRAC outcomes enable the AV system to identify and document 

situations where the AV controls may not be optimal when the 𝑃𝑅𝑁s are high. In 

high 𝑃𝑅𝑁 scenarios, the AV's path planning can make minor adjustments using the 

real-time data of 𝐶𝑡𝑟𝑙, brake, speed, steer and throttle to reduce the 𝑃𝑅𝑁 for the 

next round of operations. These adjustments include and are not limited to: 1) 

increasing speed or throttle if there have consistently been zero 𝑃𝑅𝑁s in the past 

few rounds at a specific time and location, 2) pre-emptively decreasing throttle 

in regions (hot spots) with consistently high 𝑃𝑅𝑁s in previous rounds, and 3) 

utilising ReRAC (RT figure and hazardous events) for early warning in case of 

persistent events or risks suggesting an alternative route is required. 

• The lightweight data of ReRAC allows low latency transmission for V2V 

The rapid conversion of scenes to RT figures and parametric data enables low-

latency transmission (due to the small data packet) to any vehicle through 

cooperative mode. The reduction in the overall bandwidth thus offers the 

potential for the proposed approaches to be deployed on fleets of AVs. The small 
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data packet also decreases the time needed for sensor data integration and delays 

in data relay within a V2V context. 

6.3 Recommendation for future works 

It is acknowledged that the research has some limitations and potential 

improvements to the presented work in the thesis. These are discussed as follows: 

• Object detection and Scene segmentation accuracy 

The accuracy of ReRAF and ReRAC depends on object detection and semantic 

segmentation. Both approaches belong to supervised machine learning, where 

precision and recall increase with more training datasets and better quality in the 

annotation of the dataset. Industry requirements for such AI-related technology 

typically demand an F1 score of 90% and above for application products. In this 

research, ReRAC using object detection has achieved an F1 score of 86% with 150k 

dataset samples. Therefore, more datasets and improved annotation quality will 

help it meet the application requirements. As for ReRAF, the default training 

model has an F1 score of 66%. Hence, training with a larger dataset is required to 

meet the application requirements. To address existing weaknesses in object 

detection for smaller-sized objects, new models such as vision transformers need 

to be investigated, while potential improvements in scene segmentation can be 

explored with enhanced versions of ICNET or UNET. These advancements will 

improve the F1 score and pixel accuracy for ReRAF. Additionally, if existing models 

are used, further exploration of using a filter to remove sudden spikes or dips in 

the RT figure for one frame can reduce the effect of object detection 

inaccuracies. Averaging the RT figure across a time period could also nullify the 

effects of the inaccuracies. 

• Use of ReRAC RT figures for risk forecasting for AV and driven vehicles 

With ReRAC RT figures, the accumulated time series data can be extended to 

forecast risk at locations where RSUs are installed. The forecasted traffic risk can 

be used as advanced pre-emptive safety awareness. This forecasting assists the 
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AV in predicting the traffic at the RSU before they arrive. For example, the traffic 

situation at an RSU appears uncongested at 6:45 am but becomes congested at 

7:00 am. Therefore, the remote information provided by the RSU at 7:00 am to 

the AV might not be advanced enough to avoid congestion. Thus, ReRAC’s risk 

forecasting can be achieved using real-time training based on recent quantitative 

data. This means the risk forecasting will provide AV at 6:45 am stating that RSU’s 

location will be congested at 7:00 am. The forecasting will assist the fleet 

management system to avoid the RSU’s location if it knows that upcoming 

congestion will occur and allows ample time for re-routing. Some initial findings 

for short-term forecasting using risk tagging data are reported in [138]. This 

information can be made available to driven vehicles, with tests conducted and 

reported in the research project [22]. 

• ReRAF and ReRAC outcomes over a long period of AV operations 

This is the next step that can only be completed from the perspective of the AV 

developer and integration of AV’s entire safety actions. It will be interesting to 

evaluate the eventual impact of ReRAF and ReRAC over periods of AV operations. 

It is anticipated that with the recursive method, the 𝑃𝑅𝑁 for ReRAF should reduce 

over time with improved safety actions deployed. It is also possible that further 

refinement of the weights to ReRAF and ReRAC is necessary to reflect actual 

operations.  
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