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Abstract

Avoiding aversive or punishing outcomes is integral to the survival and function of an organ-

ism, and yet this specific dimension of learning has received comparatively little attention in

comparison to its rewarding counterpart. There are a number of mechanistic theories and path-

ways implicated in each dimension, but as of yet there is limited consensus on a holistic model

of punishment processing. They key contributions of this thesis are three-fold. First, I offer a

novel insight into the role of a motivational salience signal in modulating different behaviours in

rewarding and punishing contexts and make the claim that this is compatible with prominent ex-

isting mechanistic accounts of punishment learning. Second, I frame this effect with a prominent

individual-difference focus, highlighting the importance of considering subject-specific sensitiv-

ities to reward and punishment when attempting to model this dichotomy. Third, I use the in-

sights from the first two contributions to show the viability of using this paradigm as a potential

means to improve task performance through a closed-loop brain-computer interface (BCI).

These contributions are made primarily from data from a reversal learning task conducted

across rewarding and punishing blocks, with EEG and pupillometry as the primary measures of

interest. In Chapter 2, I replicate a two-component paradigm from Philiastides et al., (2010) and

Fouragnan et al. (2015) with the extension of a punishment condition. I show broad similarities

in the EEG signatures, with some notable insights from pupillometry as to promising temporal

signals to focus on for further investigation. In Chapter 3, I use these insights to test a moti-

vational salience hypothesis, targeting specifically the earlier component in this two-component

hypothesis. I show that individual differences in the sensitivity of this component to context can

reliably track task performance. In Chapter 4, I delve further into these individual differences,
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focusing more specifically on reinforcement learning parameters and psychometric personal-

ity measures to better characterise performance effects from Chapter 3. In Chapter 5, I apply

all of these findings in a tentative pseudo-BCI analysis, where I retroactively estimate perfor-

mance and predict whether dynamic context switching might have led to improved behavioural

outcomes.

Together, these findings offer new insights into the spatiotemporal characterisation of reward-

punishment differences and propose some tentative yet exciting future directions for the appli-

cation of this in the performance optimisation domain.
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Chapter 1

General introduction

1.1 Human Decision Making

For over a century, great effort has been made to understand how and why people make value-

based decisions. This endeavour was historically explored in the context of classical economics,

which has long attempted to model this facet of behaviour for a range of purposes, such as pre-

dicting market behaviour or designing economic policy (Caplin & Glimcher, 2013). Expected

utility theory, based on initial ideas by Daniel Bernoulli in the mid-1700s (Modesti, 2024) and

formalised in the mid-1900s (von Neumann et al., 2004), remained a highly influential model of

economic decisions right up to the late 20th century (Caplin & Glimcher, 2013). But with the

growth of the fields of psychology and neuroscience, new insights into the intricacies of human

behaviour began to reveal ever increasing complexity.

1.1.1 Behavioural Economics

The most famous and groundbreaking deviation from neoclassical economics came in the 1970s

with the advent of a field known as behavioural economics. A landmark paper from Kahne-

man and Tversky (1979) demonstrated that people show robust asymmetry in choice dynamics

1
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when faced with a prospect of monetary gain versus monetary loss. Specifically, participants

consistently tend to sacrifice some amount of expected value in return for a more sure reward,

and conversely tend to risk additional potential loss for a greater chance of not losing anything

at all. This concept was dubbed Prospect Theory, due to its application to economic decisions

(or "prospects), and is commonly characterised by the prospect theory curve Figure 1.1B, which

demonstrates the asymmetry in contrast to the classic expected utility theory function Figure

1.1A.

Figure 1.1: A) Expected utility theory value function. Perceived value of gains in wealth diminish as total
wealth increases. B) Prospect theory value function. The value function displays a steeper weighting
function for losses relative to gains, illustrating the concept of loss aversion.

This stark asymmetry was demonstrated many times by the original authors and others, quan-

tified in a plethora of neat examples such as that displayed in Figure 1.2. Here we can see the

fourfold pattern of risk attitudes, which demonstrates a clear preference for certainty in the gain

domain and a clear preference for risk in the loss domain (Tversky & Kahneman, 1992). The

work of Kahneman and Tversky demonstrated the complex and often irrational tendencies of

humans in their choice behaviour, coinciding with increasing investigations into the complex

dynamics of learning and decision-making in a value-based setting.
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Figure 1.2: Fourfold Pattern of Risk Attitudes (adapted from Tversky and Kahneman (1992)). Estima-
tions of monetary values attributed to high- and low-probability prospects in the gain and loss domains.
Here, c(X, p) shows the median certain monetary value that was treated by participants as equivalent to
the uncertain prospect. Low-probability gains (top left) and high-probability losses (bottom right) depict
a monetary value greater than the true Expected Value of the prospect, signifying risk-seeking attitudes.
Low-probability losses (top right) and high-probability gains (bottom left) depict a monetary value lower
than the true Expected Value, signifying risk-aversion.

1.1.2 Prediction error and learning

Computational models of decision-making attempt to capture internal value judgements about

actions and environmental stimuli that are updated as an agent receives information from their

surroundings. One of the earliest formulations of this domain originated in an associative learn-

ing context with the notion of the computational prediction error (Bush & Mosteller, 1951),

which preceded the influential dopaminergic reward prediction error (Houk et al., 1994; Mon-

tague et al., 1996; Schultz et al., 1997; Schultz, 1998). Initially conceptualised in the Pavlovian

sense (learning stimuli-outcome rather than action-outcome contingencies), this was proposed

to reflect the difference between an expected reward V (for value) and received reward r follow-

ing a stimulus s. For instance, if at timepoint t a rat were to perceive a neutral stimulus st (e.g.

a light) with a V of 0, and subsequently obtain a reward r, this would be seen as a ‘better than

expected’ outcome and thus induce a reward prediction error δ .

δt = rt −Vt(i) (1.1)

The prediction error is then proposed to update the stimulus value for the next point in time

Vt+1 such that it more accurately reflects the true stimulus outcome contingencies and reduces
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future prediction errors. The updating process is purportedly weighted by a free parameter

known as the learning rate α , which can vary between zero and one. A higher learning rate will

place more weight on new information about stimulus outcomes, and thus lead to more rapid

updating of stimulus value following prediction errors.

Vt+1(i) =Vt(i)+α ·δt (1.2)

This formulation is often described as the Rescorla-Wagner model, referring to the famous

computational paper by Rescorla and Wagner (1972). However, it is worth noting that this paper

proposed an extension of the Bush and Mosteller model that incorporates multiple simultaneous

stimuli by summing stimulus values and calculating a net prediction error. Though an important

extension that accounted for key classical conditioning effects such as blocking, the core model

of Bush and Mosteller (1951) as presented in equations 1.1 and 1.2 is often misattributed to

Rescorla and Wagner (Glimcher, 2011).

1.1.3 Action selection

The above model is widely employed as a simple learning rule to model both associative and

instrumental learning, but in a decision-making context there must be some decision policy

that enables the agent to select actions based on stimulus values. In decision-making under

incomplete information it is rare that a ‘greedy’ policy of always choosing the highest value

option is the most successful over the long term, and so the decision-maker should employ a

trade-off between exploring different options to gain information and exploiting known high-

value options (Gittins, 1979; Gittins & Jones, 1974). This balance is prevalent in many facets

of life, such as the ubiquitous example in the decision-making literature of choosing a familiar

restaurant/café/meal versus trying a something new. More formally, this can be observed in

nature through fundamental evolutionary activities such as foraging (Krebs et al., 1978), hunting

(Sims et al., 2008), or navigating volatile environments (Thatcher et al., 2019).
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Given that optimal exploration is generally intractable (J. D. Cohen et al., 2007) there are

many different heuristic models that have been proposed to more realistically reflect neural

computation capabilities, generally falling under the categories of directed or random explo-

ration (Wilson et al., 2014, 2021). Where directed exploration attempts to optimise the target of

non-exploitative decisions (Averbeck, 2015; Gittins, 1979), random exploration offers a com-

putational cheap policy that stochastically samples options in an unbiased manner (Daw et al.,

2006; Thompson, 1933). There is competing evidence as to whether directed exploration mod-

els match human choice better than stochastic exploration (M. J. Frank et al., 2009; Meyer &

Shi, 1995) or not (Daw et al., 2006; Payzan-LeNestour & Bossaerts, 2011), however for simple

choice tasks the stochastic Softmax decision rule is often deployed:

pi(t) =
eγ·Vi(t)

∑
n
j=1 eγ·V j(t)

(1.3)

Here, the probability p of an actor choosing option i on trial t is modelled as a sigmoid

function of the value of the option Vi, the slope of which is determined by the inverse temperature

parameter γ . In practice, a slope with the maximum value of 1 would reflect an entirely greedy

policy where the higher value option is chosen every time, and a minimum value of 0 would

indicate total randomness of choice.

1.2 Reinforcement learning in the brain

The computational modelling of behavioural learning has been highly influential, and has led

to widely adopted frameworks of value-based learning and decision-making (e.g. Rangel et al.

(2008). As such, many influential accounts of the neural mechanisms underpinning the learning

process in animals and humans echo strongly some of the central features described in 1.1.2. The

most prominent early work into this area has been developed in the reward learning paradigm,

where neural responses to the prediction, presence, and omission of appetitive stimuli is tracked

in key pathways using electrophysiology and brain imaging.
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1.2.1 Reward prediction error

Perhaps the most influential neural theory in reinforcement learning is the dopaminergic reward

prediction error (RPE) hypothesis (Schultz et al., 1997). In this landmark paper, single-unit

recording of DA neurons in the ventral tegmental area of rhesus macaque monkeys initially

displayed increased phasic firing to the rewarding stimulus of a drop of fruit juice. When this

reward was preceded by a predictive cue, however, the magnitude of phasic firing to the reward

itself was diminished, with the neurons instead responding to the cue. Importantly, when the

learned cue was then followed by an unexpected reward omission, firing rates dipped below

baseline at the moment of expected reward (Schultz et al., 1997). Quantifying these signals

lead to the influential insight that these neurons are encoding an RPE rather than the value of a

stimulus – that is, the degree to which a stimulus signals a deviation from expected reward. It

was subsequently shown that this effect could be parametrically modulated by the strength of the

reward contingency of the predictive cue (Fiorillo et al., 2003), making a compelling case that

net phasic firing in dopaminergic VTA neurons relative to baseline following a stimulus reflects

a computational RPE signal.

The dopaminergic RPE hypothesis has been extensively supported and developed since the

original finding of Schultz and colleagues. Numerous electrophysiological studies have repli-

cated this RPE signal in the mammalian VTA (e.g. Bayer and Glimcher (2005), Bayer et al.

(2007), and Roesch et al. (2007). In humans, functional magnetic resonance imaging (fMRI)

studies have repeatedly shown activity in the ventral striatum (vSTR) – an area that receives

DA projections from VTA (Ikemoto, 2007) – that seems to reflect a similar reward prediction

sensitivity (e.g. Bartra et al. (2013), Clithero and Rangel (2014), Delgado et al. (2000), Mc-

Clure et al. (2003), O’Doherty (2004), O’Doherty et al. (2002, 2003), O’Doherty et al. (2004),

Pagnoni et al. (2002), and Tobler et al. (2007, 2008). These projections continue into the pre-

frontal cortex, with the ventromedial prefrontal cortex (vmPFC; Bartra et al., 2013; Blair et al.,

2006; Clithero and Rangel, 2014; Daw et al., 2006; Gläscher et al., 2009; Hampton et al., 2006)

and orbitofrontal cortex (OFC; Balleine et al., 2011; Elliott et al., 2008; Gourley et al., 2016) in

particular being shown to track reward expectation and value. These signals have been shown to
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relate to behavioural performance on learning tasks (Pessiglione et al., 2006; Schönberg et al.,

2007).

1.2.2 Striatocortical basis of explore-exploit trade-offs

An influential early framing of the implementation of explore-exploit in the brain is an opponent

mechanism featuring typical dopaminergic reward pathways inhibited by top-down signals from

control areas of the prefrontal cortex (PFC). This was first demonstrated using fMRI in a dy-

namic multi-armed bandit task with reward contingencies of each arm fluctuating throughout the

task to necessitate exploration (Daw et al., 2006). The study found that typical reward-related

cortical regions ventromedial and orbitofrontal PFC were sensitive to exploitative choice like-

lihood and reward magnitude respectively (Daw et al., 2006), in line with existing evidence of

dopaminergic striatocortical pathways attributed to reward-seeking ‘exploit’ behaviour (Delgado

et al., 2000; McClure et al., 2003; O’Doherty, 2004; O’Doherty et al., 2001, 2003; O’Doherty

et al., 2004). Critically, explorative decisions were related specifically to the bilateral frontopo-

lar cortex (Daw et al., 2006), consistent with the notion that dorsal and anterior areas of the

PFC are responsible for cognitive control and promoting higher-level goals (Miller & Cohen,

2001). Further work implicated the bilateral frontopolar cortex in the tracking of environmental

uncertainty, offering a more specific way in which this cortical regions may facilitate exploration

(Badre et al., 2012; Cavanagh et al., 2012). These findings suggested a top-down cortical signal

that promotes exploration by suppressing exploitative signals in dopaminergic reward circuits,

challenging prior computational accounts of an uncertainty bonus that is incorporated more di-

rectly into the expected reward calculation (Gittins, 1979; Gittins & Jones, 1974; Kakade &

Dayan, 2002).

A more recent alternative framing proposes that rather than a top-down disruptive signal from

the PFC, exploration is instead a function of value-computations that are optimised for long-

term gain maximisation and loss minimisation (Averbeck, 2015; Wilson et al., 2021). In this

formulation, control-related frontocortical areas work in tandem with rather than in opposition to
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reward networks to combine expectations of immediate and future rewards in order to determine

optimal moments to explore rather than exploit (Costa & Averbeck, 2020; Costa et al., 2019;

Tang et al., 2022). For example, dorsolateral PFC neurons were recently found to encode both

immediate and future value in rhesus macaque monkeys (Tang et al., 2022), and a side-by-side

analysis of fMRI in humans using a similar 3-armed bandit task also demonstrated a cooperative

rather than opponent relationship between key PFC and motivational regions when tackling the

explore-exploit challenge (Hogeveen et al., 2022).

1.2.3 Noradrenaline and adaptive gain

Regardless of whether the cortical systems in question work cooperatively or in opposition, it

is clear that both control-related dorsal and anterior cortical regions, as well as value-related

ventral striatocortical regions, are strongly implicated in regulating exploration. However, there

does not appear to be a great deal of overlap between the areas in question and the salience-

network regions associated with the early feedback-processing component highlighted in Chap-

ter 3. As such, there are not particularly strong grounds with which to form a prediction about

a relationship between exploration rates and our early salience-related EEG signal. However, in

addition to striatocortical influences, the LC-driven noradrenergic pathway has been linked to

explore-exploit function through a mechanism known as adaptive gain (Aston-Jones & Cohen,

2005).

This theory proposes that a double dissociation exists between tonic and phasic noradrenergic

activity (Aston-Jones & Cohen, 2005; J. D. Cohen et al., 2007): a tonic (baseline) mode pro-

motes greater general arousal and a higher degree of attentional switching; a phasic (stimulus-

driven) mode promotes selective attention and more focused task performance. In essence, high

tonic activity is associated with greater exploration, and high phasic activity (at stimulus onset)

with greater exploitation. This is proposed to be implemented through an increase in the rela-

tive activity of neural units (individual or population firing rates) with an excitatory influence,

and a corresponding decrease in the activity of units with an inhibitory influence (Figure 1.3).
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Crucially, this theory is often framed in the context of optimal arousal for task performance,

as described by the classic Yerkes-Dodson inverted-U model (Figure 1.3B). Overarousal leads

to excessive attentional and strategic switching, whereas under arousal prevents the noticing of

environmental changes and required behavioural adaptations.

Figure 1.3: (adapted from Aston-Jones and Cohen (2005)) A) Depiction of the adaptive gain activation
function. The y-axis depicts the net activity of a unit, and the x-axis depicts the degree of excitatory or
inhibitory influence of a unit. Here, a unit can refer to either a single neuron or mean firing of a population
of neurons). An increase in gain increases the relative activity of excitatory influences and decreases the
relative activity of inhibitory influences. B) Depiction of the classic Yerkes-Dodson inverted-U model
of optimal arousal for task performance. In the context of adaptive gain, excessive tonic LC activity
indicates high baseline arousal and a tendency to switch too frequently between different stimuli and
choices. Diminished tonic LC activity will conversely prevent identification of necessary attentional
targets or strategy alterations for optimal performance.

The adaptive gain model is supported by pupillometry studies in perceptual decision making

tasks that have found that ambient levels of noradrenergic arousal is related to subjective decision

uncertainty (Brunyé & Gardony, 2017; Kawaguchi et al., 2018; Urai et al., 2017). Similarly, this

same type of tonic arousal has been linked to the decision-maker’s internal confidence in their

model of the decision-making environment (de Gee et al., 2020; Nassar et al., 2012), as well

as perceived volatility during value-based choice (Binetti et al., 2017; Kloosterman et al., 2015;

Nassar et al., 2012). Even more directly, multiple studies have shown greater tendency to exhibit

exploratory behaviour and override existing choice biases during periods of high tonic arousal

(de Gee et al., 2020; Gilzenrat et al., 2010; Hayes & Petrov, 2016; Jepma & Nieuwenhuis, 2011;

Krishnamurthy et al., 2017; Urai et al., 2017).
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1.3 Punishment

Reward learning has been extensively studied over the past three decades, and several of the core

hypotheses have enjoyed a degree of relative consensus in the field. Less certain, however, is the

nature of learning from punishment. We all have the experience that an aversive stimulus as a

motivator ‘feels’ subjectively different to a rewarding one, and perhaps even that our behavioural

responses may differ as a result. But is this intuition reflective of some meaningful difference in

neural mechanisms?

1.3.1 In the midbrain

Given the strong links between midbrain nuclei – particularly the VTA and substantia nigra –

a natural hypothesis would be that aversive events are encoded by dips in firing in the same

way that reward omission is (Mirenowicz & Schultz, 1996; Ungless et al., 2004). However,

many studies failed to find a universal effect, with evidence of a mixture of positive and negative

effects on firing rates in midbrain DA neurons (Coizet et al., 2006; Guarraci & Kapp, 1999;

Joshua et al., 2008; Mantz et al., 1989; Schultz & Romo, 1987). These findings challenge the

idea of a single continuous spectrum of midbrain DA firing for encoding the full range of reward

and punishment prediction errors. Combined with the insight that there are computational issues

with effectively coding a punishment prediction error through negative firing, simply due to the

fact that there is limited range between baseline firing rates and the floor of zero (Bayer &

Glimcher, 2005), it seems likely that some other mechanism must be involved in computing

aversive information.

An influential finding in relation to this question showed evidence of two distinct subpopula-

tions of dopaminergic neurons in the VTA and substantia nigra: one group does indeed respond

positively to reward-predictive cues and negatively to aversive airpuff-predictive cues; however,

the other, larger group responds positively to both cues (Matsumoto & Hikosaka, 2009). Neu-

rons sensitive to only reward tended to be located in the ventromedial substantia nigra, whereas
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those sensitive to both reward and punishment were largely located in the dorsolateral substantia

nigra. Relatedly, Brischoux et al. (2009) found that neurons in the dorsal VTA were inhibited

by foot shocks, whereas those located in the ventral VTA were excited by foot shocks. A sub-

set of GABAergic VTA neurons sensitive to both delayed reward receipt and aversive stimuli

has also been shown to inhibit reward-sensitive dopaminergic neurons (J. Y. Cohen et al., 2012).

Taken together, it seems clear that dopaminergic midbrain neurons cannot be viewed as homoge-

nous RPE signallers, and that more intricate dynamics are at play when punishing stimuli are

involved.

1.3.2 In the subcortex

As discussed in 1.2.1, the vSTR has been extensively implicated in reward learning, largely due

to its received projections from the midbrain. The heterogenous reactivity to reward and pun-

ishment found in midbrain DA neurons raises the question of whether and to what extent vSTR

plays the same role in punishment learning. Early fMRI evidence indicated a differential striatal

response following rewards versus punishments (Delgado et al., 2000), and subsequent studies

have supported this with evidence that vSTR is uniquely activated in rewarding contexts under

incomplete information (Palminteri et al., 2015). Activation to both reward and punishment has

been found in the blood oxygen level dependent (BOLD) response for the whole striatum (Del-

gado et al., 2008, 2011), as opposed to specifically vSTR, and degeneration in the dorsal striatum

(dSTR) has been shown to selectively impair punishment (but not reward) learning (Palminteri

et al., 2012). This could indicate that whilst vSTR seems rather reward-specific, there could be

dynamics dSTR that are more responsive to punishments.

Looking beyond the striatum, the amygdala has been extensively implicated in aversive learn-

ing. BOLD responses in this region have been repeatedly shown to have distinct reactivity to

punishment (De Martino et al., 2006; Delgado et al., 2011; Metereau & Dreher, 2013; Yacubian

et al., 2006), which reflects findings from primate single-cell recordings (Klavir et al., 2013).

More causally, physical damage to the amygdala have been shown to specifically impair key as-
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pects of punishment learning (Bechara et al., 1995; De Martino et al., 2010). It is worth noting,

however, that whilst the amygdala seems integral to aversive learning, it does not appear to be

responsible for a PPE signal (Delgado et al., 2008), and in some cases seems to be sensitive only

to primary reinforcers (Delgado et al., 2011).

1.3.3 In the cortex

Looking finally at cortical regions, it seems that there are again distinctions in punishment learn-

ing. As discussed in 1.2.1, the vmPFC and OFC are strongly implicated in processing reward

and value. In contrast, an entirely separate set of cortical regions seem to be sensitive to punish-

ing outcomes. Most notably, BOLD activity in the anterior insula (aINS) has been specifically

implicated in a PPE-like function (Combrisson et al., 2023; Gueguen et al., 2021; Kim et al.,

2006; Seymour et al., 2004; Skvortsova et al., 2014), and damage in this region due to tumor

has also selectively impaired punishment learning (Palminteri et al., 2012). Furthermore, in op-

position to the apparent function of vSTR discussed above, Palminteri et al. (2015) found that

the aINS was uniquely active in punishment contexts, mirroring the vSTR in reward contexts.

Another region that seems critical in punishment processing is the anterior cingulate cortext

(ACC). Studies have found that subregions of the ACC have differential reactivity to rewards

and punishments (Fujiwara et al., 2009; Monosov, 2017), and single-unit recording in primates

has shown a detailed picture of the development of unsigned and signed PPE signals developing

through communication between the amygdala and ACC (Klavir et al., 2013). Furthermore, the

ACC has been implicated in the calculation of effort (Skvortsova et al., 2014), which is typically

considered to be aversive.

1.3.4 In dopamine levels

A final source of insight into the reward-punishment dichotomy comes from research into indi-

viduals with disorders of dopamine. There are several well-studied clinical conditions that relate
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strongly to the overactivity – e.g. Parkinson’s Disease (PD) and schizophrenia – or underactiv-

ity – e.g. Tourette Syndrome (TS) – of DA pathways, which provide a useful paradigm to test

the effects of both deficiencies and pharmacological treatments. For example, unmedicated PD

patients often experience a symptom known as ‘apathy’, which is related to deficits in frontos-

triatal DA (Martínez-Horta et al., 2014; Pagonabarraga et al., 2015). Numerous studies have

found that the reward learning of patients with this symptom is improved through DA agonist

treatment, coinciding with a worsening of learning through punishment (Bódi et al., 2009; Frank

et al., 2004; Kéri et al., 2010) – a finding that has also been found through baseline DA mea-

surements in non-clincial populations (Cools et al., 2009). Additionally, reduced BOLD activity

has been found in areas that showed specificity to punishment learning following the applica-

tion of a DA agonist (Argyelan et al., 2018), and apathetic patients tend to display diminished

vmPFC activity accompanied by reduced reward-sensitivity vs non-apathetic patients (Gilmour

et al., 2024). The perceived cost of decision conflict – a variable that has been proposed to be

inherently aversive (Cavanagh et al., 2014) – has also been shown to decrease in response to this

type of medication (Cavanagh et al., 2017).

On the other end of the spectrum, PD patients who receive pharmacological intervention can

be susceptible to impulsivity driven by enhanced DA levels. This can lead to behaviours such

as compulsive shopping, addictive sexual behaviour, and pathological gambling (Voon et al.,

2007), as well as greater dependency on dopaminergic drugs (Evans et al., 2005, 2006) and

alcohol (Evans et al., 2005). Patients with this side-effect have been shown marked deficits in

punishment-related learning such as non-rewarded inhibition of behaviour (Leplow et al., 2017),

and an underestimation of punishing contingencies of stimuli (Piray et al., 2014). Similarly, TS

is associated with excessive baseline DA levels, and a similar (albeit mirrored) dissociation to

PD can be observed where the application of DA antagonists shows improved punishment learn-

ing but impaired reward learning, and vice-versa for untreated groups (Palminteri et al., 2009;

Pessiglione et al., 2008). It should be noted, however, that this disparity in reward versus pun-

ishment learning is not found universally in TS (Schüller et al., 2020), nor in PD (Eisenegger et

al., 2014; Jocham et al., 2011; Pessiglione et al., 2006; Rutledge et al., 2009). As such, although

the balance of evidence indicates that DA plays somewhat of a reward-specific role overall, there
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are likely nuances to this mechanism with regards to its role in punishment learning.

1.4 Scope

It seems clear that there exist a number of likely distinctions in the mechanisms underpinning

reward and punishment learning, which seem to propagate up to both the subcortical and cortical

levels. This presents an opportunity to use the high temporal acuity of electroencephalography

(EEG) to further investigate this dichotomy in learning. In this vein, the present thesis has three

main goals:

1. Investigate broad similarities and differences in the spatiotemporal characteristics of neu-

ral responses to reward and punishment.

2. Disentangle dynamics between these signals and behaviour at the subject-specific level.

3. Probe the potential of using insights from 1. and 2. to improve behavioural performance

In Chapter 2, I replicate the work of Fouragnan et al. (2015) on the spatiotemporal charac-

terisation of post-feedback learning signals in a reversal learning task, with two key differences:

I use pupillometry in conjunction with EEG instead of simultaneous EEG-fMRI; and I include

a punishment manipulation to the reversal learning task. I show broad similarities in the EEG

response to positive and negative feedback across reward and punishment contexts but identify

clear context effects on the post-feedback phasic pupil signal. A particular dynamic between the

pupil response and early EEG signals on punishment trials motivates the focus in the following

chapter.

In Chapter 3, I make a case for a motivational salience signal captured in a weighted EEG

signal designed to maximally discriminate between reward and punishment. I show that this

signal is strongly predictive of individual differences in performance asymmetries across re-

warding and punishing contexts, and I conservatively propose a role for the noradranergic locus
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coeruleus in this effect.

In Chapter 4, I further examine the specific behavioural dynamics of the effects in Chap-

ter 3 using a computational reinforcement learning model. I show that changes in exploration

rates explain differences in performance across contexts but find no clear links between this be-

havioural parameter and either EEG or pupil measures. I also explore the links between these

measures and psychometric scores relating to a motivational theory of personality, known as

Reinforcement Sensitivity Theory.

In Chapter 5, I lay out a framework for applying the insights of chapters 1-4 in the context

of brain-computer interaction for performance optimisation. I train a multinomial classifier to

predict context and correctness of choice and test the plausibility of using this model to anticipate

whether an individual would perform better in a reward or punishment context at a given moment

in time.

I conclude by outlining some of the key questions raised throughout, including the multi-

faceted nature of salience and the need for attention on the individual level, and I explore the

range of potential applications of the findings.



Chapter 2

Comparisons across reward and

punishment in the two-component

response to feedback

The first investigations of this thesis extrapolate certain findings in the reward learning domain

to offer comparisons in the punishment domain. Specifically, I build on EEG and simultaneous

EEG-fMRI work that has established a dual-component dynamic in neural responses to reward

and reward-omission (Fouragnan et al., 2015, 2017, 2018; Philiastides et al., 2010). The main

goals of this chapter are to probe the similarities and differences in these dual-component dy-

namics in rewarding decision-making contexts with the same signals in punishing contexts. In

doing so, I establish the appetitive-aversive dichotomy as a medium for mapping individual

differences in choice behaviour. More specifically, I identify particular aspects of the feedback

response in the data that show potential differences across the two contexts, to determine promis-

ing avenues on which to focus subsequent investigations. Looking more broadly at the scope of

the thesis, I look to lay the foundations for a viable means to optimise decision-making within

neurofeedback paradigms. In addition to these longer-term goals, there are also more direct

ideas relating to the nature of reward and punishment learning that I aim to test. Regarding the

findings of prior studies, I replicate in the reward domain the spatiotemporal profiles of the early

16
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and late EEG components as shown in previous work (Fouragnan et al., 2015, 2017; Philiastides

et al., 2010), as well as the link between these components with the valence (but not magnitude)

of model-derived prediction errors. Extending this, I show the extent to which these findings are

consistent in the punishment domain and discuss this in relation to current understanding of the

appetitive-aversive dichotomy in learning.

I also introduce an additional modality to the analysis – pupillometry – to provide insight

into the role of noradrenergic pathways in the two-component paradigm. I compare phasic

pupil responses across reward and punishment, and across positive and negative outcomes, and

demonstrate relationships with EEG components and ‘surprise’ (defined here as model-derived

unsigned prediction error). I use the findings to further motivate the target of investigation

in Chapter 3 and beyond, as well as to understand the nature of any effects revealed in the

punishment condition.

2.1 Background

The ability to integrate outcomes from actions into a coherent model of environmental contin-

gencies is a vital part of the success of an organism. Much work has been done on the charac-

terisation of the reward learning process, mapping the various mechanisms and neural pathways

involved in feedback processing and value updating. Recent insights into the temporal dynamics

of feedback processing have been explored with EEG (Philiastides et al., 2010) and simultane-

ous EEG-fMRI (Carvalheiro & Philiastides, 2023; Fouragnan et al., 2015, 2017, 2018). A key

insight from these studies shows two key spatiotemporal components that distinguish responses

to positive and negative feedback. However, thus far this dynamic has almost exclusively been

explored in the reward domain, and it is not clear whether distinctions exist when learning in

aversive contexts.
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2.1.1 The two-component feedback response

A multitude of evidence has demonstrated the role of dopaminergic projections from the

midbrain through the vSTR (Delgado et al., 2000; McClure et al., 2003; O’Doherty, 2004;

O’Doherty et al., 2002, 2003; O’Doherty et al., 2004; Tobler et al., 2007, 2008), vmPFC (Blair

et al., 2006; Daw et al., 2006; Gläscher et al., 2009; Hampton et al., 2006) and OFC (Balleine

et al., 2011; Elliott et al., 2008; Gourley et al., 2016) in the processing of reward. More re-

cently, insights from the combination of temporally precise EEG and spatially precise fMRI

have shown that these regions are differentially activated in response to reward versus reward

omission at around 300-320ms post feedback (Fouragnan et al., 2015, 2017). This timing is in

line with prior work using only EEG that found a spatiotemporally similar post-feedback signal

(Philiastides et al., 2010). This component was found to reflect an RPE valence effect rather

than a magnitude effect, meaning that it tended to encode binary ‘good versus bad’ information

about choice outcomes rather than more fine-grained information about the degree to which

expectations were violated (Fouragnan et al., 2017, 2018). This signal was broadly consistent

with dopaminergic reward pathways in both structure and function, and was shown to predict

the degree of value updating in response to RPE (Fouragnan et al., 2017).

Notably, this methodology has also revealed an earlier component to feedback processing,

emerging at the 220-230ms mark (Philiastides et al., 2010), that is associated with an initial

salience and arousal response involving the ACC and aINS (Fouragnan et al., 2015). This

signal was found to be primarily driven by negative outcomes, and was shown downregulate

reward responses in the late component, indicating an interactive mechanism between the two

distributed signals (Fouragnan et al., 2015). Also of interest is a surprise-specific signal that

contained information about the unsigned RPE value. This third signal was temporally simi-

lar to the late valence-sensitive signal at 320ms, and associated more with areas involved in

alertness and exploration such as the midcingulate cortex, thalamus and dorsolateral prefrontal

cortex (Fouragnan et al., 2017, 2018) (Fouragnan et al., 2017, 2018).
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2.1.2 Influences of noradrenaline and the locus coeruleus

More recently, a similarly designed experiment using high-resolution 7T EEG-fMRI found

unique activation in the locus coeruleus (LC) associated with the early component (Carvalheiro

& Philiastides, 2023). The LC is an influential brainstem nucleus that has been implicated in

a wide range of processes via noradranergic projections throughout the cortex and subcortex,

broadly regulating attention, arousal, and wakefulness (Sara & Bouret, 2012). In relation to

the role of the two components in question, the LC has been repeatedly implicated in surprise

relating to decision outcomes (de Gee et al., 2021; Filipowicz et al., 2020; Lavin et al., 2014;

Preuschoff et al., 2011), and also in subsequent projections to the ACC. This is a region impli-

cated in error detection (Carter et al., 1998), and is an important part of the early component

network (Fouragnan et al., 2015), suggesting that this pathway could be involved in the early

salience component of learning.

Interestingly, Carvalheiro and Philiastides (2023) did not find activation in the LC in asso-

ciation with the early component in a punishment learning condition, suggesting a potential

differential role of this nucleus across learning contexts. Direct evidence for this notion is not

abundant, but there is some indication that the LC is particularly sensitive to aversive losses

(Pulcu & Browning, 2017), and there is some evidence that pupil dilation is greater following

punishment than following reward (Breton-Provencher et al., 2022). It is generally accepted

that noradrenergic activity from LC is the primary driver of pupil dilation from both a theoreti-

cal (Larsen & Waters, 2018; Mathôt, 2018) and experimental perspectives (de Gee et al., 2017;

Joshi et al., 2016; Reimer et al., 2016). As such, pupil dilation is regularly used as a proxy

for LC arousal (de Gee et al., 2014; Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011) and

provides a convenient and informative measure to gain insight into this system.
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2.1.3 Aims and hypotheses

Thus far, the two-component response has almost exclusively been examined in a reward con-

text, and never alongside pupillometry. However, many of the key regions implicated in the

two components are differentially associated with reward and punishment. The vmPFC, OFC,

and vSTR are all heavily implicated in dopaminergic reward pathways, and concurrently with

the late component of the post-feedback response (Fouragnan et al., 2015, 2017). On the other

hand, areas associated with the early component have been shown to play roles in punishment

learning, including the ACC (Fujiwara et al., 2009; Klavir et al., 2013; Monosov, 2017) and

aINS (Combrisson et al., 2023; Gueguen et al., 2021; Kim et al., 2006; Palminteri et al., 2012;

Seymour et al., 2004; Skvortsova et al., 2014).

I therefore aim to explore the spatiotemporal dynamics of the two-component feedback re-

sponse using EEG and pupillometry in a reversal learning task, based on the methodology of

(Fouragnan et al., 2015). Critically, I add a punishment manipulation, whereby half of the

decision-making blocks have the possibility of obtaining reward or nothing, and the other half

punishment or nothing. In line with previous findings, I expect to be able to discriminate between

positive and negative valence outcomes from EEG signals in both the reward and punishment

contexts, and to find distinct spatiotemporal profiles in line with the early and late components.

Based on links between pupil and surprise, and evidence that pupil dilation is higher in response

to punishment, I predict that the highest phasic pupil dilation will occur in response to punishing

losses, and the lowest will be in response to rewarding wins. I also expect pupil signals across

contexts to predict trial-by-trial surprise, as quantified by the absolute prediction error from a

computational model. Finally, based on the relationships between arousal/error related areas

such as the ACC and noradrenergic activity, I predict that the early EEG salience component

will be uniquely related to the pupil response rather than the late component.
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2.2 Materials and methods

2.2.1 Participants

Data was collected from 33 participants, (18 female, 15 male) with ages ranging from 18-41

(mean = 23.30 years, SD = 5.29). We excluded 6 participants from pupil analyses due to exces-

sive missing data in the pupil recording, defined as >47% of samples missing for reward blocks

and >51% for punishment blocks (based on one standard deviation from the mean). We also

excluded one participant from EEG analyses due to excessive movement artifacts in the EEG

signal. For combined EEG and pupil analyses this left 26 remaining participants with usable

data for both EEG and pupillometry (14 female, 12 male, mean age = 23.15 years, SD age

= 5.87). All participants were recruited through the University of Glasgow Subject Pool, were

right-handed and had uncorrected vision. The study was approved by the College of Science and

Engineering Ethics Committee at the University of Glasgow and informed consent was obtained

from all participants.

2.2.2 Task and Procedure

The study used a simple probabilistic reversal learning paradigm, based largely on the design

used in Fouragnan et al. (2015) with the addition of a reward-punishment manipulation (Figure

2.1). The main task consisted of 6 blocks of 80 trials, alternating between rewarding and pun-

ishing contexts. We decided to always start with a rewarding block rather than counterbalancing

the order, as we wanted to maximise the feeling of earning money and then subsequently losing

it to increase the subjective difference between the contexts. Each trial began with a jittered

2-3s fixation period before the decision phase, after which participants had to choose between

two symbols with mirrored probabilities (70% and 30%) of a positive or negative outcome, and

the same pair of symbols was used in every trial throughout the whole task. Outcomes for the

symbols on a given trial were independent of each other, meaning that on a given trial it is possi-

ble for both symbols to yield the same outcome. If the participant did not respond within 1.25s
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of the decision phase, they were informed that they would lose £0.50 and the message ‘Please

Respond Faster’ was displayed. The decision phase was followed by a jittered delay period last-

ing between 1.5-2s, before a 0.75 display of the outcome symbol. Participants indicated their

choice via left or right button press on a specialised response box (Cedrus RB-740 Response

Pad, Cedrus, USA). We provided positive and negative outcomes by displaying different arrows

in the centre of the screen. Specifically, in reward blocks, we used upward and neutral arrows

to respectively provide positive and negative feedback, and in punishment blocks we used neu-

tral and downwards arrows to respectively provide positive and negative feedback. To minimise

pupil fluctuations due to visual properties, all arrows and fixation symbols were normalised for

perceptual load and luminance using consistent pixel count and geometric structures, and tran-

sitions between fixation, decision and outcome screens were kept as subtle as possible. If a

participant did not respond in time, a brief ‘too slow’ message appeared on the screen before the

next trial, which participants were informed would carry a penalty of -£0.50 to disincentivise

missed trials.

Participants aimed to ascertain once the symbol with the 70% probability of success, par-

ticipants could select it repeatedly to maximise their monetary payout. However, the outcome

contingencies of the symbols would switch approximately every 20 trials (+/-2), such that the

‘good’ option would become the ‘bad’ option and vice versa. The participants were told these

switches would occur ‘every so often’ throughout each block, but both the outcome contingen-

cies and reversal frequencies were not known to the participant. Therefore, following unex-

pected outcomes, participants had to infer whether this was due to inherent stochasticity in the

design or a change in the underlying contingencies. This task design was chosen to provide a

simple reinforcement learning paradigm with clear truth labels for correct choice and a steady

degree of volatility to allow for a variety of decision-making strategies, as well as to provide

consistency for comparison with similar studies such as Fouragnan et al. (2015).

Participants were paid a baseline of £10 for participation and could additionally earn between

£5-20 based on task performance. This was implemented by adding £0.25 to the total reward

for each ‘win’ outcome and subtracting £0.25 for each ‘lose’ outcome, while no-win and no-
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loss outcomes yielded £0. The total amount won or lost was displayed after each block to keep

the participant engaged with the consequences of the outcome symbols, and the experimenter

reminded participants whether the upcoming block was rewarding or punishing. The average

total reward was approximately £20 for a 2.5-hour session (including baseline).

Figure 2.1: Depiction of probabilistic reversal learning task. A) Stages of a single trial. Participants
choose one of two symbols with a button press for a maximum of 1.25s. If no choice was provided in this
time, the message ‘Please respond faster’ was displayed. After a short delay, the outcome is presented in
the centre of the screen. B) Outcome symbols and contingencies. Participants always choose between the
same two symbols throughout the entire task. For a given trial, one of these symbols has a 70% chance
of a positive outcome, while the other has a 30% chance. In the appetitive condition, a positive outcome
is the ‘win’ symbol and a negative outcome is the ‘no-win’ symbol; in the aversive condition, a positive
outcome is the ‘no-loss’ symbol and a negative outcome is the ‘loss’ symbol. These contingencies switch
approximately every 20 trials during an 80-trial block.

Before attending, all participants completed a shorter online practice version of the task,

which was implemented using Pavlovia, an online version of PsychoPy (Peirce et al., 2019). A

minimum of 60% accuracy over 96 trials was required for participation.

2.2.3 EEG data collection and analysis

We sampled data at 1000Hz from a 64-channel EEG cap (BrainCap, BrainProducts, Germany)

and accompanying amplifiers (BrainAmp, BrainProducts, Germany), using the Brain Vision

Recorder software (BVR, Version 1.2.1 BrainProducts, Germany). The Ag/AgCl electrodes

were positioned according to the international 10-20 system and all electrodes referenced to the
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left mastoid, with a ground electrode positioned on the left mandible. All electrode impedances

were kept below 20 kΩ using conductive gel. The amplifiers had a built-in hardware bandpass

filter of 0.0016Hz-1000Hz. We applied a band-pass filtered to the data using a 0.5 Hz Butter-

worth high-pass filter to remove slow direct current drifts and a 40Hz Butterworth low-pass filter

to remove higher frequencies of no interest. To remove eye-blink and -movement artifacts, par-

ticipants performed an eye calibration task before the main experiment during which they were

instructed to blink continuously for several seconds, and then track a cross moving horizontally

and vertically whilst keeping their head still. We recorded the timing of these events and used

principal component analysis (L. Parra et al., 2003) to identify linear components associated

with eye-blinks and -movements, which we subsequently projected out of the broadband EEG

data collected during the main task.

For each participant individually, we employed a multivariate discrimination analysis on the

EEG signal, whereby an optimal set of electrode weights was estimated using a logistic re-

gression model to maximally discriminate between positive and negative outcome trials sep-

arately for the reward and punishment contexts. This analysis was designed to replicate the

two-component findings of Philiastides et al. (2010) and Fouragnan et al. (2017), with the ex-

tension of adding a punishment condition for comparison. In one analysis ‘Win’ trials were

discriminated against ‘No-Win’ trials, and in the other analysis ‘No-Loss’ trials were discrim-

inated against ‘Loss’ trials, employing a method based on L. C. Parra et al. (2005) and Sajda

et al. (2007). Though positive outcomes had higher trial counts, the numerical discrepancy for

positive versus negative trials was <15% for all participants and <10% for the vast majority, with

the largest difference being 258 positive outcomes versus 222 negative outcomes. We applied

a sliding 60ms window in 10ms increments from 100ms pre-feedback to 800ms post-feedback,

and within each window data were used to train a logistic regression model, where positive

outcomes (i.e. wins and no-losses) were arbitrarily mapped to positive values and negative out-

comes (i.e. losses and no-wins) to negative values relative to the discriminating hyperplane.

Each electrode represented one predictor variable in the model, resulting in 64 weightings w

that optimally predicted context depending on the analysis. When applied to the EEG signal X,

the resulting weighted amplitudes could be summed across electrodes to produce a single scalar
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component amplitude Y, representing linear distance from the discriminating hyperplane:

Y (t) = wT ·X(t) (2.1)

To visualise the spatial representation of the resulting discriminating components, we calcu-

lated a forward model which captures the relative contribution of each sensor to the discrimina-

tion (note all topographies shown in the paper depict this forward model):

a =
X ·Y

Y T ·Y
(2.2)

Discriminator performance was quantified using the area under a receiver operating charac-

teristic curve (AUROC) using a leave-one-out cross-validation approach. To assess the signif-

icance of these AUROC values across time, we used a permutation approach whereby a null

AUROC distribution was derived from 1000 permutations of the same classifier with randomly

shuffled labels for reward and punishment, and a significance threshold was set at the 99th per-

centile (p < .01). We identified early AUROC peaks for each participant separately, representing

the point of individual maximum AUROC value between 170-270ms, which corresponds to the

early salience-related signal outlined in the dual-component theory of feedback processing, en-

compassing +/-50ms from previous findings (Fouragnan et al., 2015; Philiastides et al., 2010).

The 170ms also coincided with the beginning of the temporal window that exceeded the 99th

percentile in the permutation test (see section 2.3.2). To avoid our early salience peaks being

selected on the upward slope of a subsequent value-related peak (as found in (Fouragnan et al.,

2015)), we only considered for peak selection time-points where the AUROC value was greater

than that of the two preceding and two following time-points – in other words, a local maximum.

Similarly, late AUROC peaks were selected using the same procedure over the subsequent 270-

420ms window. This window was extended slightly longer than the early window due to the

long duration of high discriminability found, in order to make sure that all peaks were true

peaks rather than values on an upward slope. These subject-specific peaks were then used to
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extract the corresponding Y values for use in subsequent analyses.

2.2.4 Pupillometry data collection and analysis

Pupil diameter and gaze x/y coordinates were recorded at 40hz using a screen-based eye-tracker

(Tobii Pro X3-120, Tobii, Sweden). All stimuli were made with equivalent pixel counts to ensure

equiluminance and were designed to minimise shape change between screens to minimise light-

related pupil fluctuations.

Missing pupil data due to blinks was addressed by linearly interpolating samples within +/-

100ms of blink events. We then applied a bandpass filter of 0.01-4Hz, z-scored the resulting

data, and epoched each trial to -500ms/+2000ms around feedback, baseline corrected by aver-

aging across the 500ms pre-feedback period for each subject and subtracting the result from all

values. Outlier trials for each subject were identified as >3 standard deviations from the mean

(averaged across trials and samples over the epoched window), or <1.5% of mean variance (vari-

ance calculated across time and averaged across trials). The latter was specifically to deal with

occasional flat lines in pupil response due to errors at data collection. All outlier trials were then

removed before any further analysis, averaging at 9.58 trials removed per participant.

To determine a difference in pupil response between contexts, we used a non-parametric ap-

proach based on the single-sensor time-series analysis outline by Maris and Oostenveld (2007).

An independent t-test between reward and punishment contexts was conducted for each time-

point across subjects, and with the non-parametric test statistic being the sum of t-values for

the largest cluster of consecutive significant results (p < .05), which gave the window 0-1100ms

post feedback. We then compared the resulting test statistic (d f = 26, Σt = 180.01) to the 99th

percentile of 10000 permutations of test statistics from randomly allocated groups (d f = 26, Σt

= 6.30) to determine statistical significance (Figure 2.5A).
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2.2.5 EEG-informed pupil GLM analysis

To investigate the link between the pupil response and the EEG-derived discrimination compo-

nents, a Generalised Linear Model (GLM) was used to estimate the full z-scored pupil time se-

ries using parametrically modulated boxcar regressors convolved with a pupil response function

(de Gee et al., 2014; Denison et al., 2020). The boxcar regressors were initialised by creating a

vector of zeros of the same length as the pupil time series for each predictor variable, indexing

500ms before the onset time for each corresponding regressor event within the time series, and

modulating the amplitude at these indexes based on the regressor used (Figure 2.2, left).

Once the boxcar regressors were created, they were convolved with a pupil response function

(PuRF) that was individualised for each subject such that it reflected their mean event-locked

response parameters (Figure 2.2, centre), with the full range being 500ms pre-event to 3000ms

post-event. The equation for producing the subject-specific pupil response functions (PuRFs)

was obtained originally from Hoeks and Levelt (1993), where t and w are the length and width

of the response function, and tmax is the point of peak amplitude:

h(t) = twe−wt/tmax (2.3)

This was slightly modified such that a two-element vector input for w and tmax would produce

a double gamma function to capture the subsequent dip in pupil diameter, with an additional

parameter dip determining the relative amplitude of the dip to the peak.

To obtain an optimal PuRF for each participant, a grid-search approach was taken to test a

series of values for w, tmax, and dip within the double gamma function and determine which set

produced the lowest mean-squared error. Each resulting function was then visually inspected

against the actual mean pupil response for prima facie goodness-of-fit, and manual adjustments

were made if required.
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Figure 2.2: Regressor structure for EEG-informed Pupil GLM. Left): Pupil-matched time-series of un-
convolved predictor variables. X-axis indicates the first 100 seconds of the time-series from the begin-
ning of the task. Y-axis indicates the names of the predictor variables (Top four show feedback-locked
indexes modulated by early and late EEG component amplitudes for reward and punishment; bottom two
show unmodulated indexes for the time of stimulus onset and feedback onset). Centre): Example from
one participant of the double gamma function of the pupil response function (dotted line) fitted to the
feedback-locked phasic pupil response averaged over all trials (grey line). Right): Predictor variables
convolved with the pupil response function.

The four main regressor events of interest were the trial-by-trial early and late discrimination

peaks from the separate reward and punishment models. For each of these EEG discrimination

regressors, the regressor amplitude at the onset indexes were set to the corresponding discrim-

ination amplitude (Y). Additionally, there were two control regressors included that reflected

the unmodulated phasic pupil response to stimulus onset and feedback onset. For the control

regressors, amplitudes were simply set to one at the onset index. Finally, a regressor was added

containing the indices for every trial removed for invalid pupil data. A depiction of the final

post-convolution regressors for the first 100 seconds of the task can be seen in the right-hand

panel of Figure 2.2, albeit without the outlier regressor on display. Note that as the top two rows

were specific to punishment trials, and the first block was a reward block, the amplitudes for

these predictors remain zero.

2.2.6 Computational Modelling

We trained a model-free reinforcement learning algorithm on trial-by-trial choices for each sub-

ject. This functions by estimating for trial t prediction error δt from the difference in expected
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value Vt and received reward rt of choice i:

δt = rt −Vt(i) (2.4)

This principle is then used to update expected value by weighting this prediction error with

a learning rate parameter α . This parameter lies between 0 and 1, with a greater learning rate

implying a faster updating of value expectations based on recent evidence:

Vt+1(i) =Vt(i)+α ·δt (2.5)

To account for fluctuations in perceived environmental volatility, the learning rate parameter

was also dynamically updated via the slope of the smoothed prediction error m as outlined in

(Krugel et al., 2009):

α(t) = α(t −1)+ f (m(t)) · (1−α(t −1)), ifm > 0 (2.6)

α(t) = α(t −1)+ f (m(t)) ·α(t −1), ifm < 0 (2.7)

Here, f (m(t)) is a double sigmoid function that transforms such that 0 < m < 1, which then

scales the trial-wise dynamic learning rate. This function recruits an additional free parameter,

which reduces the degree to which alpha is modulated as it increases.

Finally, choice probability for a given choice was derived according to a softmax decision

rule, which adds an additional parameter for inverse temperature B (temperature being the degree

of stochasticity in decisions, represented by the slope of the sigmoid):

pi(t) =
eB·vi(t)

∑
n
j=1 eB·v j(t)

(2.8)
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2.3 Results

2.3.1 Choice behaviour is similar across reward and punishment at the

group level

Subjects displayed a high level of accuracy across both conditions of the task, choosing the

high-value symbol on average 70% of the time in the reward condition and 69% of the time

in the punishment condition. At the group level, paired t-tests revealed no clear behavioural

differences in accuracy (df = 32, t = 1.20, p = .24) or reaction time (df = 32, t = -0.77, p = .45)

between the rewarding and punishing contexts (Figure 2.3A).
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Figure 2.3: Overview of behavioural and model results. A) Comparison of choice accuracy (upper panel
- percentage chosen for high-value symbol) and reaction time (lower panel – time from symbol presen-
tation to choice in milliseconds) across reward and punishment conditions. Blue (right side of each plot)
scatters show individual subject data points for reward context, while red (left side of each plot) show
equivalent data for punishment context. B) Percentage of high-probability symbol chosen for each trial
across a block, averaged across blocks and participants separately for reward (blue) and punishment (red)
contexts. Shaded areas indicate trials where a reversal can occur. and pupil data from positive outcomes,
and right depicts the same for negative outcomes. C) Reinforcement learning model performance for re-
ward (blue) and punishment (red) trials. X-axis represents model-derived choice probabilities for a given
symbol binned into deciles for each subject and averaged across subjects. Y-axis represents proportion of
corresponding trials in each bin where that symbol was chosen, averaged across subjects.

Participants on average displayed the typical learning patterns we expect in a reversal learning

task, with choice accuracy drastically falling following a reversal before climbing back up as

the new contingencies are realised (Figure 2.3B). Observed subject choices closely matched

reinforcement learning model predictions for both reward and punishment trials (Figure 2.3C; p

< .001).
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2.3.2 Broad spatiotemporal similarities across contexts in EEG discrimi-

nation

The primary analysis to be replicated from the prior dual-component literature (Fouragnan et

al., 2015; Philiastides et al., 2010) is the multivariate classification of positive versus negative

outcomes in a binary choice task. Specifically, for each subject and each context separately,

I estimated trial-by-trial discrimination amplitudes along the feedback-locked EEG time se-

ries and quantified the discrimination performance across this period using an ROC analysis.

Separability between positive and negative trials was significantly above the 0.58 significance

threshold between 170-730ms in the reward context and 170-790ms in the punishment context

when averaged across participants, indicating that in both cases there was a high degree of linear

separability in post-feedback neural activity depending on the valence of the outcome (Figure

2.4B).
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Figure 2.4: EEG discrimination analysis results. A) Distributions of subject-specific AUROC peak selec-
tions for early (top) and late (bottom) components. Red indicates punishment blocks and blue indicates
reward blocks. Dotted lines show mean latency of peak AUROC averaged across subjects. Topographies
(insets) show forward model of the discrimination component magnitudes. Green maps to positive Y val-
ues indicative of positive outcomes; purple mapped to negative values indicative of negative outcomes. B)
AUROC (area under receiver operating characteristic curve) values for two separate classification models.
Y-axis depicts mean feedback-locked area under AUROC for logistic regression averaged across subjects.
X-axis depicts time from feedback onset in milliseconds. Shaded error bar represents standard error of
the mean across subjects. Grey shaded area reflects window for peak selection, and dotted vertical lines
depict average peak onset for punishment (loss vs no-loss, red) and negative (win vs no-win, blue) out-
comes. Horizontal dashed line depicts p=0.01 permuted significance threshold averaged across subjects
and across the two classification models. C) Trial-by-trial Y values from each of the punishment (top,
red) and reward (bottom, blue) classifiers separated by early (left) and late (right) peaks. Y values are
sorted into 10 bins based on prediction error for the corresponding trial (-1 to +1). Error bars reflect 95%
confidence intervals. Significance start reflects the bins matching the significant analysis in D. D) Model
coefficients across participants for punishment (top, red) and negative (bottom, blue) for multiple regres-
sions predicting trial-wise prediction error from the early (E) and late (L) Y amplitudes. Regressions were
run separately for positive and negative prediction error trials. Error bars show 95% confidence intervals.
Coefficients were significantly different from zero for the late EEG component in negative-outcome trials
for both punishment (top) and reward (bottom) contexts (p<.05).
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AUROC performance to identify local peaks within early and late temporal windows in-

formed by prior studies (Fouragnan et al., 2015, 2017; Philiastides et al., 2010). Each subject

had a peak identified in each window, and the temporal onset of these were averaged across

subjects (Figure 2.4A, density plots). Averaging the peak across subjects for the early time win-

dow revealed a mean early component peak at 226ms for the punishment context and 228ms for

the reward context (Figure 2.4A, upper topographies). The same procedure yielded 344ms and

342ms peaks in the late window for reward and punishment contexts respectively (Figure 2.4A,

lower topographies). The emergent scalp topographies in the early period were highly similar

both temporally to those found in previous studies (Fouragnan et al., 2015; Philiastides et al.,

2010), occurring within 10ms for both reward and punishment. Additionally, both contexts

showed a fronto-central topographical pattern driven by positive outcomes (mapped to green

colour in Figure 2.4A) that is also notably similar to the same prior studies. For the early peak,

there are no obvious differences between the reward and punishment contexts in the EEG dis-

crimination.

The timing of the late component is also highly similar across contexts, though occurring

slightly later than the previous studies which report peaks in the 300-310 ms range (Fouragnan

et al., 2015, 2017; Philiastides et al., 2010). When compared to these prior studies in the reward

domain, the EEG discrimination in the reward context displayed an almost identical spatial

shift from a positive fronto-central cluster in the early component to a negative one (mapped

to green colour in Figure 2.4A). The spatial shift was particularly analogous to (Philiastides et

al., 2010), which notably did not suffer from the higher impedance of the simultaneous EEG-

fMRI caps used in the other studies (Fouragnan et al., 2015, 2017), and thus had a clearer

topographical profile. The punishment context, however, deviated from this spatial pattern in

the late component, in that this sign-flip from early-to-late in the frontocentral region was not

present. Though this may be indicative of some possible difference in the relative weighting of

neural response to positive and negative feedback across contexts, it is important to note that

the abstract nature of the weighted signal in the discrimination output prevent any more specific

interpretations. As such, the main takeaways from the raw output of the discrimination analysis

should be the temporal similarities of the components with previous work and between contexts,
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as well as general spatial similarities that drive the discrimination – particularly the prevalence

of fronto-central electrodes around FCz.

2.3.3 EEG discrimination amplitudes track valence but not surprise

The trial-wise peak Y amplitudes displayed similar broad valence effects as those observed in

Fouragnan et al. (2017): negative PEs mapped onto negative Ys, positive PEs mapped onto

positive Ys, but there were no clear parametric trends of PE size tracking to Y values beyond

this. Figure 2.4C shows early and late peak Y amplitudes binned into 10 groups based on the

model-derived PE size for the corresponding trial, separated by context (upper = punishment,

lower = reward) and timing (left = early, right = late). Bins reflected 10 intervals of width 0.2,

ranging from [-1 -.8] to [.8 1], such that the leftmost 5 bars all represented negative outcome

trials with surprise decreasing from left to right, and the rightmost 5 bars represented positive

outcome trials with surprise increasing from left to right.

To more formally investigate the hypothesis that components from the multivariate discrimi-

nation analysis do not carry information about the level of surprise associated with an outcome,

I ran four multiple linear regressions for each subject predicting trial-wise PEs derived from

the computational behavioural model from the early and late discrimination amplitudes from

the multivariate EEG analysis, separately for reward and punishment (figure 2.4D). In essence,

this analysis roughly corresponded to the slope of the first five bars and last five bars in each of

the four subplots in Figure 2.4C; if a true trend exists between signed prediction error and Y,

subject-specific linear model estimates should systematically skew positive or negative.

To test whether the resulting beta coefficients from the linear models differed significantly

from zero, a one-sample t-test was applied to the early and late predictors in each of the four

categories. Contrary to other findings in the literature, significant effects were found for negative

outcomes in the punishment late signal (t(31) = 2.55, p = .016) and the reward late signal (t(31)

= 2.29, p = .029). No other comparisons for positive outcomes or for the early signals showed

any effects (p > .38).
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2.3.4 Post-feedback pupil transients are modulated by context and out-

come

In the post-feedback phasic pupil response – baseline corrected and averaged across subjects

- a parametric modulation can be observed whereby amplitude is higher for negative outcomes

than positive outcomes, and for the punishment context versus the reward context (Figure 2.5A).

To more formally compare the latter effect of greater pupil dilation in the punishment context, a

non-parametric time series analysis was employed to establish a window of significant difference

between the two aggregated signals (see 2.2.4). This produced a window between 0-1100ms

post-feedback that showed significant context-driven differences (Figure 2.5A).

2.3.5 Phasic pupil dilation predicts surprise

Leveraging the window established from the non-parametric analysis, a scalar phasic pupil am-

plitude was calculated for each trial by averaging across this window. This variable was pre-

dicted by trial-by-trial surprise in a linear regression model for each subject separately, and for

reward and punishment separately (Figure 2.5B). The absolute prediction error derived from the

behavioural model was used to reflect surprise. As hypothesised, a one-sample t-test revealed

that beta values from the subject-specific linear regressions were significantly higher than zero

for both the reward (t(25) = 3.53, p < .01) and punishment contexts (t(25) = 2.39, p = .026).

This indicated that in both cases, higher phasic pupil dilation – linked to noradrenergic arousal

– predicted a greater level of subjective surprise.
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Figure 2.5: Pupillometry results. A) Post-feedback pupil response averaged across trials and partici-
pants, separated by positive (solid line) and negative (dotted line) outcomes. Red indicates punishment
condition and blue indicates reward condition. X-axis represents time from feedback onset in millisec-
onds and Y represents z-scored pupil diameter. Shaded area indicates window of significant difference
between pupil response in reward vs punishment conditions averaged across all trials, obtained from
non-parametric cluster test. B) Subject-specific beta coefficients from two linear regressions predict-
ing trial-by-trial phasic pupil dilation from absolute prediction error values, run separately on punishment
(left, red) and reward (right, blue) trials. Coefficients were significantly different from zero in punishment
(p<.05) and reward (p<.01) contexts. C) Subject-specific beta coefficients from two multiple linear re-
gressions predicting trial-by-trial phasic pupil dilation from two predictors corresponding to trial-by-trial
discrimination amplitudes (Y) at the moment of the early and late peaks, run separately on punishment
(left two bars, red) and reward (right two bars, blue) trials. Coefficients were significantly different from
zero for early punishment predictor (p<.05). D) Subject-specific beta coefficients for the first four predic-
tors (excluding nuisance regressors) from the pupil-informed GLM analysis. Coefficients were derived
from the same Y values as C, and were significantly different from zero for early punishment predictor
(p<.05).
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2.3.6 Phasic pupil dilation predicts early punishment EEG discrimination

amplitudes

As in 2.3.3, I used early and late EEG discrimination components as the two predictors in a

multiple linear regression separately for rewards and punishments and for each participant, this

time predicting phasic pupil response (Figure 2.5C). Again, one-sample t-tests were used to test

for significant deviations from zero in the regression coefficients across subjects. In line with

expectations, the early component in the punishment context was a significant predictor (t(25)

= -2.10, p = .047), but the late component was not (t(25) = 0.39, p = .703), in line with the

hypothesis that the early component reflects a salience response. The negative direction of pre-

diction was also in line with expectations, given that negative Y values were mapped to negative

values, whereas the associated higher pupil amplitude increased in the positive direction. Inter-

estingly, in the reward context, neither the late component (t(25) = -1.68, p = .105) nor the early

component (t(25) = -0.06, p = .951) significantly predicted phasic pupil amplitude, suggesting

that noradrenergic activity may have a unique relationship with the salience- and arousal-related

early component for aversive contexts.

2.3.7 Full pupil time series is predicted by convolved EEG discrimination

amplitudes for the early punishment signal only

To further explore the link between pupil diameter and Y amplitudes, I implemented a GLM

analysis to predict the full pupil time series based on the methodology of de Gee et al. (2014).

The four main regressor events of interest were the trial-by-trial early and late discrimination

peaks from the separate reward and punishment models. For each of these EEG discrimination

regressors, the regressor amplitude at the onset indexes were set to the corresponding discrimi-

nation amplitude (Y) in a vector matching the pupil time series, which was then convolved to the

subject-specific PuRF. The unmodulated phasic pupil responses at the time of stimulus and feed-

back onset were also included as control regressors (Figure 2.5D), such that the EEG-derived
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predictions should reflect a relationship with the pupil response over and above the standard

impulse response to visual stimuli. An additional control regressor reflecting feedback onset on

trials with problematic pupil data (see 2.2.4) was also included to account for anomalous pupil

responses.

Of the four regressors of interest, only the PuRF modulated by early Ys in punishment blocks

showed a significant difference from zero, as revealed by a vector contrast analysis run on the

subject-specific beta coefficients (t(25) = -2.72, p = .010), similar to that seen in the analysis run

on the phasic pupil response (Figure 2.5C). However, the late reward coefficients failed to show

any significant deviation from zero (t(25) = -0.44, p = .665). As with the phasic pupil analysis,

no significant effects emerged for the late punishment coefficients (t(25) = -0.34, p = .737), or

the early reward coefficients (t(25) = 0.81, p = .425). Additionally, the vector contrast showed

a significant difference between the reward and punishment contexts as a whole (t(25) = -2.42,

p = .022). This difference which seems to be driven exclusively by the significant difference

between the early punishment signal and the early reward signal (t(25) = -2.34, p = .026), given

that no difference emerged between the late signals across context (t(25) = X, p = X). Taken

with the findings from 2.3.5, this seems to implicate the early arousal-related EEG peak as the

most promising candidate signal with which to explore reward versus punishment asymmetries

when combined with pupillometry.

2.4 Discussion

Using a multivariate analysis to discriminate positive and negative valence outcomes from trial-

by-trial EEG data in a reversal learning task, I replicated the two spatiotemporal components

that serve distinct functions in feedback processing in rewarding environments (Fouragnan et

al., 2015, 2017; Philiastides et al., 2010). I showed that, as in (Fouragnan et al., 2017), the

trial-wise amplitudes from this analysis reflect the sign of prediction error from an outcome, but

not the magnitude, suggesting that these signals capture specific valence rather than surprise.

Conducting the same analyses on data obtained in a punishing context, I demonstrated that the
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characteristics of these signals are largely similar when learning occurs in an aversive environ-

ment. Specifically, the timing of discrimination peaks across contexts was consistent within

a couple of milliseconds, and the spatial topographies were almost identical in all cases with

the exception of the lack of fronto-central sign flip in the late punishment component. Taken

alongside the identical group-level accuracy and response time data between the two contexts, it

can be reasonably inferred that the two-component dynamics established in previous literature

are likely present in simple learning tasks independent of the aversiveness or appetitiveness of

reinforcers.

Despite these similarities, I also show evidence that certain more pronounced differences

across context exist in the pupil data. Clear disparities emerge in the average phasic pupil re-

sponse in the 1100ms window following feedback onset, with trials in the punishment context

eliciting stronger pupil transients, indicative of a pronounce noradrenergic arousal response. In

relation to the EEG discrimination components, there was a notable early-late distinction in the

ability of trial-by-trial Y scores to predict phasic pupil dilation, with more pronounced loss-

related Ys at the early peak showing significance in the punishment context in comparison to

the late peak in the reward context. Extrapolating this comparison to the full pupil time series,

a GLM with Ys convolved to a pupil response function as predictors found that only the early

punishment component retained significance and appeared to be driving context differences in

the pupil-EEG relationship. These results seem to have implications for where differences may

lie in the cortical and LC signals between reward and punishment learning, if they indeed exist.

2.4.1 Insights into the early component from the Feedback Related Nega-

tivity

To help contextualise the spatially integrated EEG signals from the multivariate discrimination

output, we can look to widely studied event-related-potentials (ERPs) that show spatiotemporal

and theoretical similarity with our early component. Prior work with a similar two-component

EEG analysis as the present study has shown a notable link between the early salience com-
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ponent and the feedback-related negativity (FRN) ERP (Philiastides et al., 2010). This tracks

with subsequent EEG-fMRI analyses that found the ACC to be strongly implicated in the same

early component (Fouragnan et al., 2015) – a region sensitive to error detection (Carter et al.,

1998) in which the FRN is typically source localised (Walsh & Anderson, 2012). The typical

temporal range appearing in FRN research is 200-300ms (M. X. Cohen et al., 2011; Holroyd

& Coles, 2002; van de Vijver et al., 2011), with many studies finding peak FRN responses in

the early portion of this range within 5-10ms of our discrimination peaks (Hauser et al., 2014;

Philiastides et al., 2010; Talmi et al., 2013), and the primary electrode used in FRN analyses

(FCz) lies directly in the centre of our frontal topographical clusters (Figure 2.4A).

Though initially proposed to reflect a direct RPE signal (Bellebaum et al., 2010; Chase et al.,

2011; Holroyd & Coles, 2002), a growing body of research has challenged this view of the FRN

with evidence that it better reflects a ‘good versus bad’ outcome valence signal that is distinct

from value or surprise (Fouragnan et al., 2018; Hajcak et al., 2006; Philiastides et al., 2010;

Sato et al., 2005; Toyomaki & Murohashi, 2005; Yeung & Sanfey, 2004). The distinction from

surprise is also consistent with our findings that unsigned prediction errors do not significantly

explain variance in our weighted EEG signal for the early component. There is also a body

evidence linking FRN responses and external measures of punishment sensitivity (Balconi &

Crivelli, 2010; De Pascalis et al., 2010; Massar et al., 2012; Santesso et al., 2011; Unger et al.,

2012), which again implicates the early component as a potential area to target reward versus

punishment comparisons in more depth. I do not suggest that my spatially weighted EEG sig-

nal is completely analogous to the FRN, which are typically reported from individual sensors

of interest. However, I believe there is enough conceptual and spatiotemporal overlap to con-

sider this a useful known signal that can motivate further investigations based on motivational

environment.
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2.4.2 Insights from pupillometry

The addition of pupil data to the dual-component paradigm yielded some interesting insights

into the role of the LC in feedback-processing. Firstly, there were clear effects in the ampli-

tude of post-feedback transients across positive and negative outcomes, as well as reward and

punishment blocks. These dynamics are prima facie in line with expectations for two reasons.

Firstly, negative outcomes are rarer and more surprising than positive outcomes, and increased

phasic pupil response has been repeatedly implicated in surprise (de Gee et al., 2021; Filipow-

icz et al., 2020; Lavin et al., 2014; Preuschoff et al., 2011) as well as disadvantageous choice

more generally (Kozunova et al., 2022). Additionally, an LC-linked increase in dynamic value

updating has been shown using pupillometry for specifically loss-outcomes (Pulcu & Browning,

2017). Secondly, pupil-associated LC arousal has been shown to be greater following punish-

ment than following reward (Breton-Provencher et al., 2022). The asymmetric findings shown

in the pupil response in the present results, which seem to be echoed in the literature, are encour-

aging indications that further examination of the pupil signal could reveal reward-punishment

dynamics.

In light of this, the unique link found between the early discrimination component in the

punishment condition and both the post-feedback transients and full time-series of the pupil

response again presents a compelling case to focus on this signal for further comparisons in

appetitive and aversive feedback responses. Though these dynamics certainly will have some

interplay with the late component, as shown by the down-regulation mechanism in (Fouragnan

et al., 2015), this is likely to be difficult to find without more insight from measures such as

simultaneous EEG-fMRI. As such, further investigations into the reward-punishment dynamic

target the early EEG signal specifically in conjunction with pupillometry.



Chapter 3

Early salience signals predict

interindividual asymmetry in decision

accuracy across rewarding and punishing

contexts

In Chapter 2, I demonstrated the presence of a two-component EEG response in a punishing

context comparable to that found both in this work and others (Fouragnan et al., 2015, 2017;

Philiastides et al., 2010). There were notable distinctions, however, in the LC-driven phasic

pupil response across reward and punishment, as well as across positive and negative outcomes.

Furthermore, I showed links between pupil arousal and specific elements of the weighted EEG

signal, with the early punishment signal in particular appearing to explain the majority of asym-

metry in the pupil-EEG relationship across contexts. Additionally, there are several attractive

theoretical links between the LC and the areas implicated in this early signal in EEG-fMRI

work, which are discussed more thoroughly in this chapter. This makes the early EEG compo-

nent a compelling lens through which to further investigate the reward-punishment dichotomy

in learning.

43
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To pursue this, I adapted the methodology of Chapter 2 to discriminate directly between

the rewarding and punishing contexts within outcomes of equivalent valence. The goal was to

identify a motivational salience signal temporally aligned with the early component, and to see

whether this could reliably predict accuracy asymmetry across contexts. I also investigated the

effects of phasic pupil arousal on this signal to gain insight into the role of the locus coeruleus.

3.1 Background

The classical account of instrumental learning dictates that actions leading to favourable out-

comes will be reinforced, whilst actions leading to unfavourable outcomes will be diminished

(Skinner, 1938; Thorndike, 1911). This basic principle of reinforcing behaviour has typically

been understood through the reward prediction error (RPE) hypothesis, whereby the difference

between expected and received outcomes is computed by phasic firing of midbrain dopamine

(DA) neurons (Bayer & Glimcher, 2005; Glimcher, 2011; Schultz et al., 1997). The dopaminer-

gic RPE in this framework acts as a ‘teaching signal’ that updates an internal value representation

for a given stimulus following an associated outcome (Hollerman & Schultz, 1998), enabling the

actor to better select for rewarding behaviours.

3.1.1 Salience within the dual-component framework

In a more recent perspective on the classical RPE hypothesis, it has been proposed that an early

unselective salience signal precedes the later RPE and value-updating response independent of

feedback valence or value (Schultz, 2016). The concept of salience is broadly defined as the

degree of bottom-up attention attracted by a stimulus (Bordalo et al., 2012, 2022), which can

incorporate a variety of factors such as sensory intensity, novelty, surprise, and relevance to

motivational goals. With respect to the temporal dynamics of the dopaminergic RPE signal,

there is evidence that adjusting different aspects of salience causes changes in the early response

to stimulus presentation regardless of reward contingencies. For instance, the early activation of
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dopaminergic neurons has been shown to be diminished by reduced visual intensity (Tobler et al.,

2003) and reduced novelty through repeated exposure (Schultz, 1998). Similarly, dopaminergic

neurons show substantial activation to non-rewarding stimuli only in the context of a reward-rich

environment (Kobayashi & Schultz, 2014), implying that the degree of potential goal-relevance

(motivational salience) also contributes to the salience response.

In human neuroimaging, a similar two-component (i.e. early/late) response has been ob-

served with electroencephalography (EEG) during reinforcement learning (Philiastides et al.,

2010). Subsequent EEG work with simultaneous functional magnetic resonance imagining

(fMRI) showed that the early component of feedback processing was related to regions including

the anterior insula (aINS) and anterior cingulate cortex (ACC) (Fouragnan et al., 2015), which

are key areas within the so-called salience network (Seeley, 2019). The late component, on the

other hand, involved areas traditionally implicated in reward and value processing, such as the

vSTR (Bartra et al., 2013; Clithero & Rangel, 2014; O’Doherty et al., 2004; Pagnoni et al.,

2002) and vmPFC (Bartra et al., 2013; Clithero & Rangel, 2014; Gläscher et al., 2009). Further-

more, it was found that this later value signal was downregulated by the early salience signal

(Fouragnan et al., 2015), indicating a modulatory effect of outcome salience on value processing

and raising clear parallels to the midbrain dynamics outlined by Schultz (2016).

A key aspect of learning that the two-component hypothesis may help to illuminate is the

nature of learning in rewarding versus punishing contexts. This is due to the idea that individuals

can have differing responses to these environmental conditions depending on their sensitivity

to the goal of gaining reward versus the goal of avoiding punishment (McNaughton & Corr,

2008), which would alter the motivational salience of feedback in each of these contexts and

perhaps explain individual asymmetries in learning. Evidence from human neuroimaging has

shown that certain regions such as the locus coeruleus (LC), aINS and vSTR show particularly

distinct activation patterns in rewarding versus punishing contexts (Carvalheiro & Philiastides,

2023; Palminteri et al., 2015), indicating the potential for highly variable individual dynamics

in response to different types of reinforcer.
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3.1.2 Motivational salience is compatible with prominent theories of pun-

ishment learning

A prominent mechanistic account of punishment learning is that the RPE mechanism incorpo-

rates aversive feedback as a negative signal via the suppression of dopaminergic firing, similar

to the unexpected omission of reward (Mirenowicz & Schultz, 1996; Ungless et al., 2004). If

this account is accurate, a modulatory salience component could plausibly act via the habenula,

which has been directly implicated in the processing of motivational salience (Bromberg-Martin

et al., 2010a, 2010b; Danna et al., 2013; Fakhoury & Domínguez López, 2014; Hikosaka, 2010),

and seems influential for encoding aversive events and driving avoidance behaviour (Hennigan et

al., 2015; Lawson et al., 2014; Lecca et al., 2017; Mondoloni et al., 2022). Importantly, the habe-

nula has an inhibitory projection to dopaminergic activity in the ventral tegmental area (VTA)

and substantia nigra (Christoph et al., 1986; Hikosaka, 2010; Matsumoto & Hikosaka, 2007),

suggesting compatibility between the early salience hypothesis and this shared-mechanism ac-

count of punishment learning.

However, some prominent findings have shown that distinct subpopulations of DA neurons in

the midbrain show phasic excitation to aversive stimuli rather than inhibition (Brischoux et al.,

2009; J. Y. Cohen et al., 2012; Matsumoto & Hikosaka, 2009). Additionally, certain studies

have found no effects of pharmacological DA agents on punishment learning, despite significant

concurrent effects on reward learning (Eisenegger et al., 2014; Jocham et al., 2011; Pessiglione

et al., 2006; Rutledge et al., 2009), which could suggest that punishment learning depends on

a specific punishment prediction error (PPE) signal from separate non-DA system (Palminteri

& Pessiglione, 2017). If this is the case, an early salience signal as presented by Fouragnan

et al. (2015) is also compatible with many of the regions shown to exhibit distinct activation

to aversive feedback during learning, including aINS (Combrisson et al., 2023; Gueguen et al.,

2021; Kim et al., 2006; Palminteri et al., 2015; Seymour et al., 2004; Skvortsova et al., 2014),

ACC (Fujiwara et al., 2009; Klavir et al., 2013; Monosov, 2017), and amygdala (De Martino

et al., 2006; Delgado et al., 2011; Klavir et al., 2013; Metereau & Dreher, 2013; Yacubian et

al., 2006). Crucially, though it is not yet clear exactly how the reward-punishment dichotomy
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is processed in the brain, the most prominent accounts that have been proposed thus far seem

to be mechanistically compatible with an early salience signal that modulates subsequent value

processing, making this a plausible avenue for investigation. As such, possible salience effects

can be examined from an agnostic position as to the core mechanism of reward and punishment

encoding.

3.1.3 Aims and hypotheses

In this work, I aimed to investigate the extent to which I can differentiate interindividual learn-

ing propensities across the two contexts from neural and physiological measures. Specifically, I

exploited an early salience electrophysiological (EEG) component, appearing at around 220ms

post-feedback (Philiastides et al., 2010), that has previously been shown to emerge following

reward omissions, with a subsequent downstream influence on a separate value processing stage

(Fouragnan et al., 2015, 2017, 2018). This relationship is consistent with dual-component dy-

namics observed in midbrain DA neurons, where an early salience response to feedback modu-

lates a later value-related signal (Schultz, 2016). This could point to a general salience mecha-

nism, compatible with any of the main theories of reward and punishment encoding, that forms

a crucial initial stage of reinforcement learning in the brain and explains a degree of individual

variability in behavioural responses.

Adapting the paradigm of Fouragnan et al. (2015) to include distinct rewarding and punishing

contexts in a reversal learning task, I first aimed to identify EEG post-feedback responses that

are linearly separable across the two contexts independently for both positive and negative out-

comes, leveraging the high temporal resolution to isolate the early salience-related component.

This approach allows us to have a direct valence comparison without any confounding effects

of outcome sign, such that the unique distinguishing factor in each comparison is whether the

outcomes are relevant to a reward- or punishment-related outcome. Subsequently, I investigated

whether these representations are consistent with the early salience signals reported in previous

studies and test the extent to which they explain interindividual asymmetries in behaviour across
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contexts Since there is evidence that the LC has both distinct contextual dynamics across reward

and punishment as well as functional connectivity to key salience areas (Carvalheiro & Phil-

iastides, 2023), and this nucleus is known to drive phasic pupil dilation (Larsen & Waters, 2018;

Mathôt, 2018), I also used phasic pupil dilation as an indirect proxy measure to test how differ-

ences in LC-driven noradrenergic activations relate to EEG-derived salience representations and

whether they further explain subject-specific behavioural changes across contexts.

3.2 Materials and methods

Refer to Chapter 2 for detailed description of the task, participants, EEG and pupil methodology,

and computational model.

3.2.1 Subject-specific context sensitivity

My main aim was to test whether differences in neural or pupil signals between contexts can pre-

dict corresponding behavioural asymmetries across participants. Going forward, these compar-

isons will be referred to with the ∆ prefix, which in all cases indicates the punishment condition

subtracted from the reward condition for a given measure. The primary behavioural measure of

context sensitivity is ∆accuracy, which is simply the proportion of correct choices attained in the

punishment context subtracted from the proportion of correct choices attained in the reward con-

text. As such, as positive value for ∆accuracy indicates greater average accuracy in the reward

context. A correct choice refers to trials where the symbol with higher probability of reward or

punishment-omission was chosen.

Given that the EEG-derived Y measurement reflects the distance from the discriminating hy-

perplane towards either the rewarding or punishing context, ∆Y is designed to show the average

asymmetry in neural signals across contexts. For positive and negative outcomes separately,

∆Y for an individual participant is calculated by subtracting the absolute mean Y magnitude
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for punishment condition trials from the absolute mean Y magnitude for reward condition trials

(Figure 3.1A). For example, a ∆Y value greater than 0 for positive outcomes would indicate that

on average, for an individual participant, the neural signal induced by reward more pronounced

and distinct than the neural signal induced by punishment omission.

Figure 3.1: A)Depiction of ∆Y measure for a hypothetical participant. Histograms show trial-by-trial
distribution of weighted EEG (Y) values from the multivariate discrimination (as defined in Equation 2.1)
across reward (blue, upper) and punishment (red, lower) trials. For the positive outcome model, reward
trials reflect wins and punishment trials reflect non-losses. For the negative outcome model, reward trials
reflect no-wins and punishment trials reflect losses. Solid bars show mean Y value averaged across trials.
Dotted red bar shows conversion of mean punishment Y to absolute value for subtraction from the mean
reward Y. B) Depiction of ∆pupil measure for an example participant. Blue and red lines show mean z-
scored pupil response post-feedback for reward and punishment trials respectively. Single ∆pupil measure
is computed by averaging over the shaded area – which highlights the window of significance from the
non-parametric clustering test – for each condition and subtracting the punishment value from the reward
value. This procedure is carried out separately for positive and negative outcome trials.

I leveraged the non-parametric window of significance (0-1100ms as outlined in the previous

chapter) to calculate a ∆pupil score, where mean pupil amplitude across the window in the pun-

ishment context was subtracted from the reward context for each participant. I chose to average

across the window rather than select a single value at the peak as the non-parametric analysis

demonstrated that many of the between-context differences are not accounted for by differences

at the peak alone. As with the ∆Y above, ∆pupil was computed separately for positive and

negative outcome trials to avoid possible confounding effects of outcome (e.g. signals asso-

ciated with error detection) on the pupil diameter. A positive value for ∆pupil would indicate

that a participant exhibited greater phasic dilation in response to outcomes in the reward context



CHAPTER 3. PERFORMANCE ASYMMETRY ACROSS CONTEXT 50

compared to the punishment context. Taking the difference score here isolates context-driven

dilation effects by subtracting out common outcome-related arousal responses.

Together, these ∆ scores allow us to quantify the extent to which context-dependent differ-

ences in EEG and pupil signals track context-dependent asymmetries in task performance. I

therefore leveraged these scores to test the second hypotheses using simple linear regression,

specifically that across reward and punishment contexts, differences in LC-driven pupil dilation

and in discriminating EEG signals will predict subsequent asymmetries in behavioural accuracy.

3.2.2 Mediation analysis

The final hypothesis proposes that task performance is influenced by a salience signal visible

in EEG data, which is in turn downstream of LC activation that drives pupil dilation. Because

of the sequential nature of this hypothesis, a mediation analysis was used to determine whether

the neural processes behind the ∆Y value facilitate a relationship between LC-driven ∆pupil and

subsequent ∆accuracy. The goal of the mediation analysis is to identify whether the relationship

between a predictor variable (∆pupil) and an outcome variable (∆accuracy) can be explained by

a mediator variable (∆Y).

Typically for a mediation effect to be considered plausible here there are three preconditions:

1) the predictor variable (∆pupil) should significantly predict the outcome variable (∆accuracy)

in a simple linear regression; 2) the predictor variable (∆pupil) should significantly predict the

mediator variable (∆Y) in a simple linear regression; and 3) the mediator variable (∆Y) should

significantly predict the outcome variable (∆accuracy) (Baron & Kenny, 1986; Shrout & Bolger,

2002). In some cases, condition 1) can be considered non-essential, such as where the effects

in 2) and 3) have opposite directions (MacKinnon, 2000). The mediation effect itself reflects

the difference in predictive strength (the beta coefficient) of ∆pupil on ∆accuracy in the simple

regression model versus in the multiple regression model that includes ∆Y (VanderWeele, 2016).

For positive and negative outcomes separately, I used the M3 toolbox for Matlab (Wager et al.,

2008) to establish the preconditions and significance of the mediation effect using a 10,000
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sample bootstrap test on the resulting statistic (Wager et al., 2008).

3.3 Results

3.3.1 Distinct EEG and pupil responses to reward and punishment cap-

ture more than surprise

Pupil diameter post-feedback followed a typical impulse response profile for all contexts and

outcomes, however these factors parametrically affected deviation from pre-feedback baseline.

Negative outcomes elicited a greater dilation than positive outcomes, as did punishing contexts

compared to rewarding contexts (Figure 3.2A). The non-parametric cluster test (Maris & Oost-

enveld, 2007) revealed significant differences for each of these comparisons across the 0-1100ms

window. This is depicted by the shaded area in Figure 3.2A, which contains the negative ∆pupil

signal (reward – punishment) separately for positive and negative outcomes. Taken alongside the

EEG findings, this supports the first hypothesis that salience-related signals will be significantly

different across reward and punishment contexts.

To investigate whether any group differences emerged at the neural level, two single-trial

multivariate discriminant analyses were used on EEG data locked to the time of decision feed-

back to separate the reward and punishment contexts; one trained on trials where the outcome

was positive, the other negative. Separability between reward and punishment context was sig-

nificantly greater than .5 between 170-530ms for positive-outcome trials and 170-500ms for

negative-outcome trials, determined by AUROC values that exceeded the significance threshold

of 0.58 from a 1000-sample permutation test (p < .05) (Figure 3.2C). A window of interest was

set at 170-270ms to isolate the early salience component from a later value updating component,

based on timings from previous studies (Fouragnan et al., 2015; Philiastides et al., 2010). At

the individual level, a subject-specific discrimination peak was taken as the highest out of all

AUROC values greater than the preceding and following two AUROC values within the speci-
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fied window of interest. Averaged across participants, this yielded a component peak at 221ms

for positive outcomes, and 230ms for negative outcomes (Figure 3.2B). The scalp topographies

averaged across subjects at these moments reflected a similar fronto-central cluster to that ob-

served in previous early components (Fouragnan et al., 2015, 2017; Philiastides et al., 2010),

and were highly comparable across the two discrimination analyses trained separately on posi-

tive and negative outcomes (Fig. 3.2B; insets).

To test whether the context-driven EEG discrimination component was reflective of surprise

(as the outcome-driven component was in Chapter 2), I used a linear regression to predict

the trial-wise discrimination component amplitudes (Ys) from unsigned prediction error de-

rived from the computational reinforcement learning model (Figure 3.2D). A one-sample t-test

showed that for both positive (t(31) = -0.743, p = .462) and negative outcomes (t(31) = -0.603,

p = .551), subject-specific model coefficients were not statistically significant from zero, indi-

cating that the EEG component amplitude contains information other than pure surprise at an

outcome.
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Figure 3.2: A) Difference score (reward – punishment) of the post-feedback pupil signal averaged across
participants separately for positive outcomes (win – no-loss, green) and negative outcomes (no-win –
loss, purple). Shaded area indicates window of significant difference between pupil response in reward
vs punishment conditions averaged across all trials, obtained from non-parametric cluster test. B) Distri-
butions of subject-specific AUROC peak selections for early (top) and late (bottom) components. Green
indicates positive outcome trials and purple indicates negative outcome trials. Dotted lines show mean
latency of peak AUROC averaged across subjects. Scalp topographies show average forward model from
subject-specific early peaks – conditioned were arbitrarily mapped as negative (red) for punishment and
positive (blue) for reward. C) AUROC (area under receiver operating characteristic curve) values and
scalp topographies for two separate classification models. Y-axis depicts mean feedback-locked area un-
der AUROC for logistic regression averaged across subjects. X-axis depicts time from feedback onset in
milliseconds. Shaded error bar represents standard error of the mean across subjects. Grey shaded area
reflects window for peak selection, and dotted vertical lines depict average peak onset for positive (win
vs no-loss, green) and negative (no-win vs loss, purple) outcomes. Horizontal dashed line depicts p=0.01
permuted significance threshold averaged across subjects and across the two classification models. D)
Beta coefficients for individual participants from a linear model predicting trial-by-trial Y amplitudes
from unsigned prediction error from the reinforcement learning model. Purple dots (left) show coeffi-
cients from negative outcome trials only, and green dots (right) show coefficients from positive outcome
trials only. Black outline indicates the beta coefficient value for that subject was significant.
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3.3.2 Accuracy changes across contexts are tracked by EEG and pupil

metrics

Despite similarities in behaviour across reward and punishment contexts at the group level,

there was significant inter-individual variability in accuracy (Figure 2.3A), and clear differences

in neural and physiological signals emerged. To address the second hypothesis and understand

whether individual dynamics in accuracy were predicted by changes in EEG and pupil signals

across contexts, I used simple linear regression to predict the individual ∆accuracy values across

participants using the other ∆ measures outlined in the methods section.
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Figure 3.3: A & B) ∆accuracy linearly predicted by ∆Y across subjects. Shaded error bars indicate
95% confidence intervals for the estimate. ∆-accuracy is the same measure calculated across all trials for
all plots, whereas ∆Y is separated by classification model trained on positive-outcome (left, green) and
negative-outcome (right, purple) trials. Positive value on X axis indicates that EEG data for reward con-
dition is on average further from the discriminating hyperplane than EEG data for punishment condition
in a given participant, and vice versa. Positive value on the Y axis indicates higher proportion of cor-
rect choices in reward condition versus punishment condition for a given participant. C & D) Equivalent
plots with ∆pupil (reward – punishment) depicted on the X axis rather than EEG components. Again,
∆accuracy is identical across both plots, whereas ∆-pupil is separated by outcome type. .

I found that ∆accuracy was strongly positively predicted by ∆Y for positive outcomes (Figure

3.3A; R2 = .556, F(1,24) = 30.039, p < .001) and negatively predicted for negative outcomes

(Figure 3.3B; R2 = .497, F(1,24) = 23.671, p < .001). In each case, a discrimination com-

ponent driven primarily by the polarised outcome (rewarding win or punishing loss) tends to

bias accuracy in favour of the same context (e.g. more pronounced response to reward over

punishment-omission predicts higher accuracy in reward condition over punishment condition

and vice versa). I also found that as ∆pupil increases, ∆accuracy significantly decreases for
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positive-outcome trials (Figure 3.3C; R2 = .156, F(1,24) = 0.437, p = .046), but not for negative-

outcome trials (Figure 3.3D; R2 = .001, F(1,24) = 0.028, p = .868). For positive outcomes,

this suggests that relatively greater phasic arousal in response to wins reduces relative accuracy

in the reward condition compared to the punishment condition, and vice versa. These findings

show that, in line with the second aim it is possible to predict behavioural changes across context

from EEG and pupil signals. It should be noted that the significant pupil result does not survive

a Bonferroni correction for multiple comparisons, which lowers the alpha to .0125, demanding

a level of caution for interpretation. All other results are unaffected.

3.3.3 EEG discrimination component mediates pupil effects on accuracy

for positive outcomes only

The final hypothesis proposed that the salience-related EEG component would be related to

pupil dilation, and that this relationship might offer further explanatory power in relation to

behavioural changes across context. Given that pupil dilation is used here as a proxy for early LC

arousal signals in the brainstem, and the projections that exist from LC to the regions associated

with the early salience component in the EEG (Joshi & Gold, 2022), I believe that the EEG

component may reflect a downstream cortical salience representation of which is influenced by

LC activation and subsequently drives behaviour. As such, given that both signals influence

behaviour for positive outcomes, I believe that the EEG signals may be mediating an effect of

LC arousal on behaviour. To reiterate the precondition checks, 1) the predictor variable (∆pupil)

should significantly predict the outcome variable (∆accuracy) in a simple linear regression; 2)

the predictor variable (∆pupil) should significantly predict the mediator variable (∆Y) in a simple

linear regression; and 3) the mediator variable (∆Y) should significantly predict the outcome

variable (∆accuracy) (Baron & Kenny, 1986; Shrout & Bolger, 2002).

As with ∆accuracy, ∆pupil was found to significantly predict ∆Y for positive-outcome trials

(Figure 3.4A; R2 = .367, F(1,24) = 13.584, p = .001), but not for negative-outcome trials (Figure

3.4B; R2 = .056, F(1,24) = 1.414, p = .246), so the mediation analysis was only conducted for
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Figure 3.4: A & B) ∆Y predicted by ∆pupil across subjects. As in Figure 3.3, A shows a significant
prediction of ∆Y from ∆pupil for positive-outcome trials, whereas B) shows no significant relationship
between the two for negative-outcome trials. C) Mediation analysis (for positive outcomes only) showing
the effect of ∆pupil on Accuracy with ∆Y as a mediating variable. P-values indicate as follows: Left –
linear prediction of ∆Y by ∆pupil; Right – linear prediction of Accuracy by ∆Y; Bottom – direct effect
of pupil change on accuracy change when ∆Y is included as a predictor in a multivariate regression
(c′; direct effect). Middle – permutation test of comparison of model coefficient for ∆pupil predicting
Accuracy when ∆Y is included as a predictor (c′; direct effect) versus not (c; total effect). D) Depiction
of the two coefficient lines c and c′ from the mediation analysis. The black line indicates the slope of the
effect of ∆pupil on accuracy in a simple linear regression, as depicted fully in Figure 3.3C (β = 0.201, p =
.046). The red line indicates the slope of the same effect in a model where ∆Y is included as an additional
predictor (β = 0.018, p = .796).
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positive outcomes. The final bootstrapped comparison between the coefficient of ∆pupil for

predicting ∆accuracy with (c) and without (c’) ∆Y included as a predictor was highly significant

(p<.001, Figures 3.4C & 3.4D), indicating that changes in pupil-related arousal signals following

positive outcomes may influence accuracy changes via distinct cortical activity across reward

and punishment contexts.

3.4 Discussion

In this chapter I aimed to determine whether feedback in a punishing context elicits a distinct

salience-related signal when compared to a rewarding context. I showed through multivariate

discrimination analysis that EEG signals in response to punishment are highly separable from re-

ward omission, and likewise for punishment avoidance and reward. By isolating an EEG signal

that temporally coincides with a typical salience component of feedback processing (Fouragnan

et al., 2015; Philiastides et al., 2010), I find distinct associations between mean discrimina-

tion amplitude and broad performance asymmetries across context. The phasic pupil responses

to feedback were significantly amplified in the punishing context compared to the rewarding

context, the magnitude of which also predicted performance differences, with a significant me-

diation effect of the EEG signal on this relationship. These findings suggest firstly that an initial

salience response to feedback – possibly originating in the noradrenergic system in the brain-

stem - is modulated by an aversive context, and secondly that the degree to which this occurs

has a significant direct effect on overall decision accuracy.

3.4.1 Motivational salience in relation to reward and punishment

Central to the hypothesis that individual differences in reinforcement sensitivity drive perfor-

mance differences across contexts containing rewarding versus punishing reinforcers, I propose

that the corresponding motivational asymmetry produces systematic differences in the moti-

vational salience response to feedback. It been shown that the mere possibility of receiving
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a rewarding outcome in a given environment can provoke a motivational salience response in

dopaminergic regions to completely neutral stimuli (Kobayashi & Schultz, 2014). Accordingly,

altered motivational responses in the presence of potential rewards or punishments may lead to

behavioural changes, such as a shift in exploration tendency (D. Blanchard et al., 2001; J. Blan-

chard et al., 1998) or startle response (Aluja et al., 2015). Such behavioural shifts may affect

task performance, bringing the agent closer to or further from optimal action, consistent with the

strong link found between context differences in the EEG signal and overall choice accuracy.

Consistent with the proposed role of a motivational salience response in differentiating re-

ward and punishment learning, the early component is strongly linked with the aINS and amyg-

dala in both rewarding (Carvalheiro & Philiastides, 2023; Fouragnan et al., 2015, 2017) and

punishing contexts (Carvalheiro & Philiastides, 2023). Though active in both contexts, these

two regions have been implicated repeatedly in a specific capacity within punishment learning.

Activity in the aINS has been directly related to a computational PPE-like function (Kim et al.,

2006; Seymour et al., 2004; Skvortsova et al., 2014), while damage to the amygdala is known

to inhibit salience processing of arousing stimuli (e.g. Anderson and Phelps, 2001) as well as

punishment learning (Bechara et al., 1995; De Martino et al., 2010). The specific role in pun-

ishment learning combined with the presence in the early component of reward learning suggest

that these regions could house motivational salience signals that are asymmetrically sensitive to

appetitive and aversive reinforcers.

It is also worth returning to links between the FRN and the early feedback component es-

tablished in 2.4.2. Although the early signal in Chapter 2 is inherently different to that shown

in the current chapter due to the spatial weights being derived from a different discrimination

dimension, there are doubtless commonalities due to the highly coherent spatial and temporal

profiles. The FRN is purported to be generated primarily in the ACC (Walsh & Anderson, 2012),

a region also central to the cortical salience network and shown to be related to early discrimi-

nation components (Fouragnan et al., 2015). Importantly, the FRN has also been characterised

explicitly as a motivational salience signal common across rewarding and aversive stimuli (Ma-

son et al., 2016; Talmi et al., 2013), a view consistent with findings that an active rather than
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passive learning enhances FRN magnitudes, implying that motivational relevance is a key el-

ement of the signal (Itagaki & Katayama, 2008; Marco-Pallarés et al., 2010; Martin & Potts,

2011; Yeung et al., 2005). This is further evidence that motivational salience is a likely driver of

early component amplitudes that are sensitive to the distinction between appetitive and aversive

outcomes from actions.

3.4.2 Insights from pupillometry into theories of punishment

I showed that differences in pupil dilation in response to rewards versus punishment-omissions

seem to strongly predict the corresponding differences in weighted EEG signal (Figure 3.4A),

and moderately track accuracy asymmetries (Figure 3.3C). Given that noradrenergic LC activa-

tion is known to drive phasic pupil dilation (Larsen & Waters, 2018; Mathôt, 2018), I interpret

these signals conservatively as an indirect proxy for activity in this nucleus. The LC has no-

radrenergic projections to both the amygdala (Buffalari & Grace, 2007; McCall et al., 2017)

and the ACC (Carvalheiro & Philiastides, 2023; Chandler & Waterhouse, 2012; Hamner et al.,

1999; Joshi & Gold, 2022; Koga et al., 2020), and these projections are implicated in alertness

and attention (Sara, 2009; Sara & Bouret, 2012), which I use as the basis for a possible early

arousal signal propagating from the LC to influence salience processing from outcomes. Though

it has been shown that cortical signals which occur after the early EEG component, such as the

P3 ERP, can exhibit a relationship with the phasic pupil response, these signals are generally

believed to be co-generated alongside pupil dilation by noradrenergic LC signals (Chang et al.,

2024; Menicucci et al., 2024; Nieuwenhuis, 2011; Nieuwenhuis et al., 2005). This also ac-

counts for cases where the P3 and pupil dilations were found to be uncorrelated (de Gee et al.,

2021; Kamp & Donchin, 2015; LoTemplio et al., 2021), and I believe that these findings are in

line with the proposed mediation pathway from LC to cortex to behaviour that I propose in the

results.

It important to note that the pupil effects from the data were not present for negative out-

comes – the reward-omission versus punishment comparisons. Since negative outcomes were
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less frequent (therefore more surprising) and provoked a much larger pupil response on average

(Figure 3.2A), I speculate that this is due to a ceiling effect of pupil diameter, whereby more

subtle changes across context are less detectable as the pupil nears maximum dilation. Recent

work has shown that LC activity differs significantly between positive and negative outcomes

in a rewarding context but not in a punishing context (Carvalheiro & Philiastides, 2023), which

seems consistent with the idea that LC activity is higher across the board in a punishing context

and perhaps therefore less differentiable, as indicated by the broadly higher dilation I observe.

However, this hypothesis has not been directly tested and remains conservative.

In addition to areas in the cortical salience network, the LC also projects to the habenula

(Purvis et al., 2018; Root et al., 2015), which has been directly implicated in the processing of

motivational salience (Bromberg-Martin et al., 2010a, 2010b; Danna et al., 2013; Fakhoury &

Domínguez López, 2014; Hikosaka, 2010) as well as aversive stimuli (Hennigan et al., 2015;

Lawson et al., 2014; Lecca et al., 2017; Mondoloni et al., 2022). This is relevant to one of the

main hypotheses of outcome encoding in punishment learning - that punishment is encoded with

firing dips in midbrain dopaminergic neurons (Matsumoto & Hikosaka, 2009) - as it provides a

possible route from early outcome-driven arousal signals in the LC to the encoding of reward and

punishment in the VTA and substantia nigra via inhibitory signals from the habenula (Christoph

et al., 1986; Hikosaka, 2010; Matsumoto & Hikosaka, 2007). This provides further support for

the plausibility of the proposed mediation pathway, although I reiterate that this would require

further research to test.



Chapter 4

Individual dynamics across reward and

punishment in behavioural patterns and

personality

In thesis thus far, I have focused primarily on broad comparisons of neural and pupil dynamics

across rewarding and punishing contexts (Chapter 1), and I have established a general rela-

tionship between these signals and contextual asymmetry in task performance in value-based

decision-making (Chapter 2). I now aim to explore the nature of the behavioural differences at a

more descriptive level, diving deeper into specific behavioural and psychometric measures that

underpin choice accuracy.

The investigation in Chapter 4 has two main avenues. First, I employ computational be-

havioural modelling to examine the extent to which behavioural accuracy asymmetries are ex-

plained by corresponding differences in specific reinforcement learning parameters. I then ex-

amine whether questionnaire scores on a relevant reinforcement-based theory of personality can

predict behavioural or physiological measures.

62



CHAPTER 4. INDIVIDUAL DYNAMICS ACROSS REWARD AND PUNISHMENT 63

4.1 Background

Defining broad principles of economic and value-based decision-making is an endeavour pop-

ularised with the advent of behavioural economics in the late 1970s. The landmark paper from

Kahneman and Tversky (1979) demonstrated that people show robust asymmetry in choice dy-

namics when faced with a prospect of monetary gain versus monetary loss. Specifically, partic-

ipants consistently tend to be more risk-averse in rewarding versus punishing contexts (Figure

4.1 A), and tend to overweight low probabilities and underweight high probabilities (Figure 4.1

B). A plethora of behavioural biases and heuristics have since been evidenced, such as the ten-

dency for stimulus values to be biased by the range of possible outcomes within the context they

were learned (Bavard & Palminteri, 2023; Bavard et al., 2018, 2021).

Figure 4.1: Depiction of key prospect theory principles. A) Prospect theory value function. The value
function displays a steeper weighting function for losses relative to gains, illustrating the concept of loss
aversion. B) Prospect theory weighting function. The probability weighting functions shows how people
tend to over-weigh low probabilities and under-weigh med-high probabilities. The asymmetry in the
inverse S curve also demonstrates a tendency for complementary probabilities to sum to less than one.

However, despite the presence of general principles that seem to generally apply to human

decision-making, there are clear individual differences in choice behaviour across research and

everyday life. To take just one example, the presence of acute stress has been shown to increase

(Galván & McGlennen, 2012; Starcke et al., 2008), decrease (Clark et al., 2012), or have no

effect on risk-taking in economic decisions (Sokol-Hessner et al., 2016). The stress-risk interac-
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tion has therefore been deemed multi-faceted and sensitive to a range of individual differences

(Porcelli & Delgado, 2017; Starcke & Brand, 2012, 2016), including gender (Daughters et al.,

2013; Lighthall et al., 2009; Preston et al., 2007; van den Bos et al., 2009, 2014) and personality

metrics (Carvalheiro et al., 2022; Lauriola & Weller, 2018; Lauriola et al., 2014). This highlights

the importance of probing individual differences that may well contain important dynamics that

are masked at the group level.

4.1.1 Individual differences through the lens of reinforcement learning

Perhaps the most notable way in which researchers have attempted to address variability across

actors in learning tasks is through computational models of decision making. One particularly

well-documented feature of such models is the need to solve the problem of the explore-exploit

trade-off. Given some amount of volatility in an environment, the actor must occasionally sam-

ple perceived lower-value options to test whether underlying action values have changed enough

to affect the optimal behavioural strategy. Though many models solve this problem through tar-

geted sampling of non-exploitative options (e.g. Averbeck, 2015; Gittins, 1979, random explo-

ration is often favoured due to its computational efficiency (Daw et al., 2006; Thompson, 1933).

As such, the stochastic softmax decision rule provides an effective and simple solution in un-

complicated tasks, particularly when the set of possible actions is small or binary (see Equation

1.3). The key parameter in this sigmoid-shaped function is the central slope, known as the in-

verse temperature, which dictates how much an actor’s decision-making is dictated by perceived

value, and how much is due to stochastic exploration. This parameter can range from zero to

one, where one represents a greedy policy where the higher value option is chosen every time,

and zero represents completely random choice.

Within the reinforcement learning framework employed in the present work, there are two

main free parameters that characterise an individual’s decision-making behaviour: a learning

rate parameter α from the Bush and Mosteller value updating policy which reflects speed of

value updating; and an inverse temperature (or ‘slope’) parameter ϒ from the Softmax decision
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rule which reflects the degree of exploitation versus exploration in choice selection. Though the

particular computational implementation of the explore-exploit trade-off is highly varied in the

literature (Wilson et al., 2021), this aspect of learning has received extensive attention from a

behavioural and neurobiological perspective – more so than the learning rate - and as such will

be the focus of the reinforcement learning aspect of the current chapter.

4.1.2 Explore-exploit in the brain

There have been multiple accounts of how the brain solves the exploration problem over the

past two decades. Early accounts proposed an opponent mechanism in the cortex, with a key

role for the bilateral frontopolar cortex in inhibiting reward-seeking tendencies in dopaminergic

striatocortical pathways (Badre et al., 2012; Cavanagh et al., 2012; Daw et al., 2006). An alter-

native view later emerged suggesting that rather than an opponent mechanism, frontal areas of

the cortex worked cooperatively with reward pathways to motivate exploration by incorporating

future potential rewards into value calculations to bias behaviour away from suboptimal greedy

policies (Averbeck, 2015; Costa & Averbeck, 2020; Costa et al., 2019; Tang et al., 2022; Wilson

et al., 2021). Indeed, modern evidence seems to trend more towards a cooperative rather than

opponent coupling (Hogeveen et al., 2022; Tang et al., 2022), though it is not a settled question.

In either case, some interaction between frontal control areas and ventral value-related areas

seems to be well-supported.

Another perspective on the neural systems involved in exploration focuses on the noradrener-

gic LC pathway, specifically in relation to its role in regulating arousal. The adaptive gain model

(Aston-Jones & Cohen, 2005) outlines a Yerkes-Dodson like relationship between baseline LC

activity and adaptive task engagement, whereby excessively high or low tonic firing disrupts

phasic activity needed for optimal performance. Specifically, over-arousal is proposed to lead

to high attentional switching, whereas under-arousal prevents necessary acknowledgement of

changing environmental features. A range of evidence has since supported this model, such as

findings linking higher tonic LC arousal to increased switching behaviour and exploration (de
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Gee et al., 2020; Gilzenrat et al., 2010; Hayes & Petrov, 2016; Jepma & Nieuwenhuis, 2011;

Krishnamurthy et al., 2017; Urai et al., 2017).

Though this kind of tonic arousal is believed to work in opposition to a phasic mode of activa-

tion in the noradrenergic system (Aston-Jones & Cohen, 2005), there is an important distinction

to make between phasic responses to task-relevant stimuli and surprise-driven responses to en-

vironmental feedback post-decision. This is evident in findings that have shown an increase

in post-feedback phasic dilation following exploratory decisions that were preceded by advan-

tageous outcomes (Kozunova et al., 2022). These post-feedback arousal responses have also

been linked to computational surprise signals following decision outcomes (de Gee et al., 2021;

Filipowicz et al., 2020; Lavin et al., 2014; Preuschoff et al., 2011), and in turn are purported

to drive plasticity in performance-related areas such as the ACC – implicated in process such

as error detection (Carter et al., 1998) – which in turn communicates back to LC to promote

exploration of alternative strategies through the tonic mode (Aston-Jones & Cohen, 2005).

Given this link between the LC and an important salience-network region in the ACC (see

also Carvalheiro and Philiastides, 2023; Chandler and Waterhouse, 2012; Hamner et al., 1999;

Joshi and Gold, 2022; Koga et al., 2020), as well as other regions implicated in the early arousal

such as the amygdala (Buffalari & Grace, 2007; McCall et al., 2017), it is plausible that subject-

specific pupil and EEG dynamics shown in Chapter 3 bear some relationship to behavioural

explore-exploit tendencies, which may underpin some of the accuracy effects observed. Fur-

thermore, as shown in Figure 3.3, these dynamics can have direct explanatory links with regards

to task performance if differences in arousal are present.

4.1.3 Altered reinforcement learning in clinical populations

There have been important developments in our understanding of the pathways and mechanisms

involved in implementing key reinforcement learning parameters such as reward prediction er-

ror, surprise, and exploration. However, mapping the variation in these components across the

spectrum of human individual difference – as well as subsequent effects on behaviour and life
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outcomes – remains a difficult challenge. One approach that has seen progress in this goal is

the study of known neurological disorders with mechanistic links to reinforcement learning pro-

cesses, with a prominent example of this being Parkinson’s disease (PD). PD typically induces

neuronal loss in dopaminergic centres, and as such is often treated with DA-enhancing drugs

(Samii et al., 2004), which can sometimes produce a side effect known as impulsive compul-

sive behaviours (ICB). Such behaviours can encompass compulsive shopping, addictive sexual

behaviour, and pathological gambling (Voon et al., 2007), as well as increased dependency on

dopaminergic drugs (Evans et al., 2005; Evans et al., 2006) and other substances such as alcohol

(Evans et al., 2005). More broadly, ICB presentation has been associated with behavioural met-

rics of novelty seeking and enhanced exploration tendencies (Djamshidian et al., 2011), which

has been partially attributed to uncertainty in establishing contingencies between actions and

rewards (Averbeck et al., 2013).

In untreated PD, the associated dopaminergic impairment can often lead to a symptom known

as motivational apathy, attributed to deficits in frontostriatal DA (Martínez-Horta et al., 2014;

Pagonabarraga et al., 2015). A key finding within motivational research in PD has been that ap-

athetic patients show improved reward learning when medicated with DA agonists at the detri-

ment of punishment learning, and vice versa when unmedicated (Bódi et al., 2009; M. J. Frank

et al., 2004; Kéri et al., 2010). Similarly, apathetic PD patients showed greatly reduced reward-

sensitivity and task performance, accompanied by diminished firing in the ventromedial PFC,

when compared with non-apathetic patients (Gilmour et al., 2024). Furthermore, mirrored re-

sults can be seen in patients with Tourette syndrome, a condition where dopaminergic activity

is excessively high and treated with DA antagonists (Leckman, 2002). In such cases, the ex-

act opposite reward-punishment dissociation can be observed where the treatment group shows

improved punishment learning but impaired reward learning and vice-versa (Palminteri et al.,

2009; Pessiglione et al., 2008).

The reward-punishment dichotomy observed in these cases has been linked to two separate

dopaminergic mechanisms within motivational pathways in the basal ganglia characterised as

‘go’ and ‘no-go’ pathways (M. Frank, 2006). These pathways are proposed to be implemented
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by two different types of dopamine receptor. D1 receptors send inhibitory projections to the in-

ternal global pallidus, which disinhibits the thalamus and promotes motor readiness and reward-

seeking ‘go’ behaviour. Conversely, D2 receptors send inhibitory projections to the external

global pallidus, which disinhibits the internal area and has the opposite effect on motor func-

tion. Critically, dopaminergic activity driven by the basal ganglia are proposed to regulate the

balance between these two types of receptor, with increases in dopamine promoting excitation

in D1 receptors and dips in dopamine favouring activity in D2 receptors (M. Frank, 2006)). In

the context of individual differences, this offers a straightforward mechanism by which atypical

learning occurs in cases like PD and Tourette syndrome, where altered DA function could drive

impulsivity if increased or provoke apathy if decreased. However, when applied to motivation-

based accounts of personality, this mechanistic perspective offers insight into learning differ-

ences across the full range of human phenotype rather than just the outer limits.

4.1.4 Reinforcement sensitivity theory as a paradigm for reward-punishment

asymmetry

Reinforcement Sensitivity Theory (RST) is a theory of personality that proposes a dual-

dimension model of individual differences based on sensitivity to appetitive and aversive stimuli

and goals (Corr, 2004; Gray, 1981; McNaughton & Corr, 2008). This theory proposes that

at the fundamental level, human behaviour is largely built upon innate sensitivity to different

kinds of reinforcers, which manifest in distinct approach and avoidance behavioural systems

(McNaughton & Corr, 2008). The approach system (Behavioural Activation System; BAS)

largely overlaps with reward- and motivation-related dopaminergic pathways including VTA

and the vSTR (Depue & Collins, 1999), whereas the avoidance (Behavioural Inhibition Sys-

tem; BIS) system involves the amygdala and ACC amongst other arousal-related regions (Corr,

2004). This advance-retreat dichotomy echoes the highly replicated finding that rewards are

more associated with a ‘go’ response of behavioural invigoration (McNaughton & Gray, 2000),

and punishments are conversely associated with a ‘no-go’ response of behavioural suppression.
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Later, the theory was revised to incorporate an additional Fight, Flight or Freeze (FFFS)

mechanism following evidence that a double-dissociation existed between cautious approach

and fear response (Corr, 2004; McNaughton & Corr, 2008; McNaughton & Gray, 2000), as

demonstrated with panicolytic and anxiolytic drugs in mice (D. Blanchard et al., 2001, 2003;

J. Blanchard et al., 1998). This further helped to isolate the motivational components of the

theory, with clear parallels visible between the RST BIS/BAS and the D1/D2 dopaminergic

pathways. More explicit links can be seen in a variety of studies that have examined RST

personality metrics through the lens of a Go-NoGo task paradigm, with consistent relationships

found between the BIS/BAS dimensions and external measures such as N2 ERP response to

positive or negative reinforcement (Hewig et al., 2005; Leue et al., 2012) or motivational conflict

(Leue et al., 2009). Given links between the BIS and areas involved in our early salience-related

EEG signal from Chapter 3, and the particular relevance to reward and punishment sensitivity,

exploring psychometric RST data may offer insight into the characteristics of participants who

show strong asymmetries in performance accuracy across rewarding and punishing contexts.

4.1.5 Aims and hypotheses

The aim of the current chapter is primarily to explore the specific behavioural dynamics that

underpin the accuracy asymmetry effects displayed in Chapter 3. The explore-exploit literature –

particularly in relation to adaptive gain and the optimal arousal model – presents the most likely

candidate for explaining the link between our EEG and pupil difference scores and accuracy

asymmetry across reward and punishment. Specifically, given the highly simple nature and

relatively low volatility of the task environment, I hypothesise that maladaptive decision making

will be linked to excessive tonic arousal leading to overly high exploration and stochasticity in

choice selection, as reflected in the computational inverse temperature parameter. Furthermore,

I predict that cross-context differences in EEG across wins and losses would be correlated with

inverse temperature in the same direction as they were with accuracy in Chapter 3 (Figure 3.3 A

& 3.3 B; positively for positive outcomes and negatively for negative outcomes). Also following

the findings of Chapter 3 (Figure 3.3 C & 3.3 D), I predict that context differences in the surprise-
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related post-feedback pupil dilation will correlate negatively with inverse temperature following

positive outcomes but will not reveal any relationship following negative outcomes.

Regarding tonic pupillometry measures, I predict that pre-stimulus baseline pupil dilation

will be significantly higher on trials containing an ‘exploratory decision’ than on trials con-

taining an ‘exploitative decision’, as defined by whether the symbol with the highest model-

estimated value was chosen or not. I also predict that differences in this tonic pupil arousal

measure across rewarding and punishing blocks will correlate with corresponding differences in

the inverse temperature parameter.

Finally, for the psychometric RST measures, the analysis approach is a largely exploratory

examination of the relationships between subscale scores and measures from EEG, pupillome-

try, and computational reinforcement learning. Though I refrain from making any strong pre-

dictions, there are certain clear theoretical links between, for example, BAS scores and more

frequent exploitation or BIS scores and higher pupil dilation following negative outcomes that

may be more likely than others to show a relationship. Any findings here will be addressed

conservatively in the discussion.

4.2 Methods

Refer to Chapter 2 for detailed description of the task, participants, EEG and pupil methodology,

and computational model. Refer to Chapter 3 for more detailed description of difference (delta)

metrics.

4.2.1 Tonic pupil dilation and delta scores

In addition to the phasic pupil response (described in Chapter 2) and corresponding ∆pupil dif-

ference score (described in Chapter 3), I calculated pre-stimulus baseline arousal on each trial

as a measure of trial-by-trial tonic arousal. This was simply taken as the mean amplitude across
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the 500ms preceding stimulus onset on each trial, comprised of 20 samples at the 40Hz fre-

quency. This procedure was based approximately on several other studies that have specifically

investigated the effects of tonic pupil arousal (e.g. Gilzenrat et al., 2010).

For tonic pupil differences scores (in line with the phasic ∆pupil difference scores used in

Chapter 3), I employed the same procedure by simply calculating the average tonic pupil dilation

score for each participant across reward and punishment trials separately, then subtracting the

reward score from the punishment score to produce a single ∆tonic score. Similarly, a difference

score for exploration rates was calculated as the inverse temperature (or slope) parameter from

the punishment-trial trained computational model subtracted from the equivalent parameter from

the reward-trial trained model, producing a single ∆slope score for each participant.

4.2.2 RST-PQ

The Reinforcement Sensitivity Theory Personality Questionnaire (RST-PQ) was developed in

2016 as a means to more comprehensively capture the three main subsystems (BIS, BAS &

FFFS) of the revised RST (Corr & Cooper, 2016). Specifically, it addresses several issues that

appeared in previous questionnaires, such as the inclusion of just a single BAS subscale which

seemed to fail to capture certain important delineations such as reward sensitivity versus impul-

sivity (Dawe et al., 2004; Quilty & Oakman, 2004; Smillie & Jackson, 2006; Smillie, Jackson,

& Dalgleish, 2006; Smillie, Pickering, & Jackson, 2006).

The scale itself consists of 65 items scored on a scale of 1 to 4, with items phrased as a

series of statements accompanied by the question “How accurately does each statement describe

you?”. The available responses are “Not at all”, “Slightly”, “Moderately”, and “Highly”. Items

are grouped into the BIS, BAS and FFFS subscales, with BIS containing 23 items (e.g. “I am

often preoccupied with unpleasant thoughts”), BAS containing 32 items (e.g. “I regularly try

new activities just to see if I enjoy them”), and FFFS containing 10 items (e.g. “There are some

things I simply cannot go near”). Scores for each subscale were determined by simply summing

across all items pertaining to the subscale in question.
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Additionally, the BAS items are broken down into 4 further subscales, as extracted from ex-

ploratory factor analysis (Corr & Cooper, 2016) guided by the theoretical subdivisions proposed

by Carver and White (1994). These groupings are Reward Interest (7 items), Goal-Drive Per-

sistence (7 items), Reward Reactivity (10 items), and Impulsivity (8 items). However, for the

analysis in the current chapter, we will only be using a single overarching BAS score rather than

examining BAS subscales individually.

4.3 Results

4.3.1 Accuracy asymmetry is predicted by exploration rate but not learn-

ing rate

To explore the nature of the context effects on choice accuracy, we compared differences across

context in the free parameters of a reinforcement learning model with accuracy asymmetry. The

learning rate reflects the weight applied to new information, and the slope (inverse temperature)

reflects the degree of stochasticity or exploration in choice behaviour. As with accuracy and

reaction time (Figure 2.3A), paired t-tests revealed no significant group-level differences across

context for either slope (df = 32, t = 0.13, p = .90) or learning rate (df = 32, t = 0.34, p =

.73), although a high degree of inter-individual variability was present regarding which context

produced a higher value (Figure 4.2 A & B).

As with our other measures, we computed a delta value for each by subtracting the

value estimated from a model trained on punishment blocks from that of a model trained

on reward blocks. Using a robust correlation (bendcorr: https://github.com/CPernet/Robust-

Correlations/blob/v2/bendcorr.m), we found that ∆slope was significantly correlated with

∆accuracy (r(31) = .464, p = .006), but ∆lrate was not (r(31) = -.268, p = .131). This re-

sult suggests that reduction in accuracy going from one context to another tended to be driven

by an increase in exploration and lower stability in symbol selection, in line with my hypothesis.
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Figure 4.2: Comparisons of reinforcement learning parameters across context. A) & B) Cross-context
comparisons of A) model-derived slope of the SoftMax sigmoid (i.e. inverse temperature and B) learning
rate for individual subjects. C) & D) ∆accuracy linearly predicted by C) ∆slope and D) ∆lrate across
subjects. Shaded error bars indicate 95% confidence intervals for the estimate. Positive value on either
axis indicates that parameter was greater in the reward context than the punishment context.
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4.3.2 Pupil and EEG signals are not significantly correlated with explo-

ration rate

Following the significant relationship between slope and accuracy, I explored further this pa-

rameter in relation to the EEG and pupil delta measures. I examined the relationship of ∆slope

with ∆pupil and ∆Y for positive and negative outcomes separately, following a similar analysis

strategy as in Chapter 3 except using robust correlation instead of a linear model.

Figure 4.3: Comparisons between ∆slope and physiological measures. A & B) ∆Y correlated with ∆slope
across subjects. Shaded error bars indicate 95% confidence intervals for the estimate. ∆Y is separated by
classification model trained on positive-outcome (left, green) and negative-outcome (right, orange) trials.
∆slope is identical across both plots. Positive value on X axis indicates that EEG data for reward condition
is on average further from the discriminating hyperplane than EEG data for punishment condition in a
given participant. Positive value on the Y axis indicates lower choice stochasticity in reward condition
versus punishment condition for a given participant. C & D) Equivalent plots with ∆pupil depicted on the
X axis rather than ∆Y. Positive value on the X axis indicates greater average post-feedback phasic pupil
response for reward trials versus punishment trials.

Though trend-level relationships were visible, there were no significant correlations between
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∆slope and ∆Y for positive (r(31) = -.262, p = .147) or negative (r(31) = -.288, p = .110) out-

comes (Figure 4.3 A & B). This was also the case for ∆pupil for both positive (r(31) = -.227, p

= .265) or negative (r(31) = -.339, p = .091) outcomes (Figure 4.3 C & D). This suggests that

whilst it is not implausible that the context sensitivity signals from the EEG and pupil analyses

have some effect on choice stochasticity and rate of value updating, this is not enough to explain

the strong accuracy asymmetry effects that we see in Chapter 3.

4.3.3 Tonic pupil arousal tracks trial-wise exploration but not context dif-

ferences

In addition to the surprise-related post-feedback pupil signals analysed in 4.3.3, adaptive gain

theory also makes specific predictions about tonic levels of noradrenergic arousal and explo-

ration. I first tested whether pre-decision baseline levels of pupil dilation (as a proxy for tonic

arousal) were higher on trials where an exploratory choice was made rather than an exploitative

one. Here, exploratory decisions were defined as decisions where the model-derived symbol

value for the chosen symbol was lower than the unchosen symbol, whereas exploitative deci-

sions chose the symbol with the higher model-derived value. A paired-ttest calculated within

participants revealed a highly significant difference between these two types of choice (df = 32,

t = 4.16, p < .001), as shown in Figure 4.4 A.

To test whether broad differences in tonic pupil arousal averaged across reward and punish-

ment trials varied with differences in exploration rates, a robust correlation was used. Unlike

with the phasic pupil responses in Figure 4.4B, this was conducted across all trials within each

context rather than separating by positive and negative outcomes, as in this case there is no

confound of outcome type since the pupil data comes from the pre-decision phase. Contrary to

expectations, the robust correlation revealed no relationship between these two measures (r(31)

= -.009, p = .965).
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Figure 4.4: Tonic pupil dilation in relation to exploration tendencies. A) Average subject-specific pre-
decision pupil diameter (in z scores) preceding decisions where the participant selected a perceived lower-
value option (explore, left) verses decisions where the participant selected a perceived higher-value option
(exploit, right). Triple asterisks indicate a p-value of <.001 in a paired samples t-test. B) Difference in
average tonic pupil dilation on reward trials minus punishment trials (∆tonic) correlated with ∆slope
across subjects. Shaded error bars indicate 95% confidence intervals for the estimate. ∆tonic grouped
across both positive and negative outcomes. Positive value on X axis indicates that pre-choice baseline
pupil diameter was on average higher in the reward context versus punishment context.

4.3.4 RST metrics are mostly uncorrelated with physiological and be-

havioural measures

In a series of exploratory investigations, I computed a robust correlation between participant

scores on the BIS and BAS subscales of the RST-PQ with the main physiological and be-

havioural delta measures that yielded results from Chapter 3 and the current chapter. On the

behavioural side, the only significant correlation that emerged was between BAS scores and

exploration rates (r(31) = -.35, p = .044), as depicted in Figure 4.5 (BAS x ∆slope). This is in

the direction that would be theoretically predicted, as individuals with higher reward sensitiv-

ity would be expected to make relatively more exploitative decisions in the reward condition

compared to the punishment condition.

For post-feedback ∆Y and ∆pupil measures, all correlations were non-significant with the

exception of BAS scores and ∆pupil following negative outcomes (Figure 4.5). This is also a

relationship that is theoretically in line with RST, as higher reward sensitivity should predict

relatively greater arousal in response to a reward omission versus punishment. It is important to
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Figure 4.5: Correlations between behavioural ∆Y scores and RST dimensions. Columns indicate X-axis
scores for BIS (left) and BAS (right) subscales of the RST-PQ. Rows depict Y-axis scores from ∆accuracy
and ∆slope measures (as described in Figure 4.2).

note, however, that for both significant correlations the p value is not far below .05, and as such

does not survive any Bonferroni multiple comparison correction.
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Figure 4.6: Linear regressions predicting physiological ∆ scores from RST dimensions. Columns indicate
X-axis scores for BIS (left) and BAS (right) subscales of the RST-PQ. Rows depict Y-axis scores from
post-feedback ∆Y and ∆pupil measures (as described in Figure 4.3) for positive (green, lower half) and
negative (orange, upper half) outcomes separately.

4.4 Discussion

Following the broad accuracy asymmetry findings of Chapter 3, this chapter aimed to probe

deeper into the behavioural, physiological, and psychometric measures that may illuminate

the factors that underpin performance changes. Using a computational reinforcement learn-

ing model, I captured the degree of exploration in the participants choices (inverse temperature,

i.e. slope of the sigmoid in a Softmax learning rule), and the readiness with which they updated

their beliefs about the symbol values (learning rate) with a methodology based on Fouragnan

et al. (2017). The model was trained on trial-by-trial choices for each subject separately for
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reward and punishment contexts, producing separate estimates for the two free parameters for

each context, with the goal of capturing systematic differences in strategy or outcome processing

across the conditions. Both models fit the behavioural data with a high degree of accuracy, as

depicted in Figure 2.3 in Chapter 2.

Of the two free parameters, only the inverse temperature was significantly predictive of per-

formance asymmetry. The positive correlation shown in Figure 4.2C suggests that greater ex-

ploration rates (shallower slope i.e. lower inverse temperature) correspond to lower accuracy,

suggesting that a more stable and exploitative decision-making strategy is beneficial in this task.

In relation to the context comparisons of Chapter 3, this can be interpreted speculatively to

mean that an internal response to feedback that increases exploration and choice stochasticity in

a given context, possibly driven by a modulated arousal response, is detrimental to performance.

However, conclusive evidence of links between exploration asymmetry and EEG or pupil mea-

sures was not forthcoming, with only directional but non-significant trends emerging, suggesting

that the full picture of the link between internal responses to feedback and task performance is

not yet clear.

Baseline pupil dilation, characterised by the pre-stimulus average pupil diameter and indica-

tive of the tonic mode of noradrenergic activation, was significantly higher on trials containing an

exploratory decision than on trials containing an exploitative decision. This suggests that tonic

LC activity does drive increased attentional switching and thus greater exploration. However,

these effects were unable to account for aggregate differences in exploration across context.

4.4.1 The missing link between neural response and task performance

As with unsigned prediction errors (or surprise) in Chapter 3, there were no significant relation-

ships across subjects between the weighted EEG signal and the inverse temperature (slope) and

learning rate parameters from the reinforcement learning model (Figures 4.3 A-D). This is some-

what surprising, as ∆slope – which can be conceptualised as the rate of stochasticity in choice

behaviour – was highly predictive of accuracy asymmetries (Figure 4.2C), as was the EEG com-
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ponent itself (Figure 3.3 A & 3.3 B). Additionally, the exploration-implicated tonic mode of LC

activation is purported to be driven by perceived long-term task utility (Aston-Jones & Cohen,

2005; Jepma & Nieuwenhuis, 2011; Nieuwenhuis, 2011), which would suggest that an aversive

learning environment such as the punishment blocks in the present task would invoke greater

exploration due to an inherently negative task utility. One possible explanation for this could

be that the binary reversal learning task is simple enough that certain participants are able to

focus on a simple choice strategy regardless of subjective responses to decision outcomes. This

could also explain the group-level similarities in choice accuracy, and why only when examin-

ing individual differences did notable context effects emerge. This is speculative, however, and

would have to be tested by employing a similar paradigm in a more dynamic or intuition-based

task, for example by utilising multi-armed choice tasks and/or drifting symbol values rather than

reversing, as implemented by Jepma and Nieuwenhuis (2011)).

The findings seem to suggest that although increases in EEG amplitude from one context to

another weakly track corresponding increases in choice randomness and exploration at a non-

significant trend level, there seem to be other processes contained in the weighted EEG signal

that reduce accuracy in a non-systematic manner. It is important to note that the direction of

these context effects are heterogenous across subjects, in the sense that some subjects experi-

ence accuracy reduction in the punishment context, while others see an enhancement (Figure 2.3

A). This could imply a myriad of possible interactions between a context-related motivational

salience response and downstream behavioural effects such as a helpful enhancement of mem-

ory and focus (e.g. Sutherland and Mather, 2015, 2018), or an unhelpful dysregulated arousal

response to non-salient or neutral motivational stimuli that could be exacerbated, for example,

in cases of anxiety or schizophrenia (Neumann et al., 2021).

Accordingly, the link between neural differences during reward versus punishment process-

ing and subsequent behaviour may have important applications in clinical settings. For instance,

disorders characterised by elevated DA in fronto-striatal regions typically predict deficits in

punishment learning and behavioural inhibition, including schizophrenia (Moustafa et al., 2015)

and Tourette’s syndrome (Palminteri et al., 2012). Conversely, patients with Parkinson’s disease
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and Major Depressive Disorder can experience severe motivational apathy, largely attributed to

a deficit in fronto-striatal DA (Pagonabarraga et al., 2015) and blunted RPE responses in the

striatum and amygdala (Queirazza et al., 2019), respectively. These individuals also show sig-

nificantly reduced distinction in neural response to outcome valence (e.g. gains versus losses),

characterised by changes in FRN amplitudes (Martínez-Horta et al., 2014). Here, I have iden-

tified a similar neural signature predicting inter-individual behavioural performance across out-

come types – in the absence of group-level trends – which could be used as a proxy for a more

targeted diagnostic stratification and a more individualised treatment planning.

4.4.2 A possible role for LC-driven cortical and pupillary signals

Alternatively, it is also possible that cortical dynamics relating to exploration may be present

later in the post-feedback response than the early EEG signal targeted here. Certain known

cortical signals, particularly the P3, have been long believed to be linked to LC activity following

Nieuwenhuis et al. (2005). Furthermore, the timing of this signal – canonically reported as

between 300-400ms (Nieuwenhuis et al., 2005; Sutton et al., 1965) – is notably compatible

with the timing of the late discrimination components identified in Chapter 2. With a couple

of exceptions (Chang et al., 2024; Menicucci et al., 2024), a strictly direct link between the P3

and pupil dilation has generally opposed in recent years (de Gee et al., 2021; Hong et al., 2014;

Kamp & Donchin, 2015; LoTemplio et al., 2021; Murphy et al., 2011). The prevailing account

is therefore that pupil dilations and the P3 are co-generated from LC-driven activity rather than

a causal role of the P3 (Menicucci et al., 2024; Nieuwenhuis et al., 2005).

This is not to discount the case made for the link between LC activity, pupil dilation and the

early component that has been made in the preceding chapters; the 150-200ms taken for LC

activity to project to cortical structures (Laeng et al., 2012) largely coincides with the initial

emergence of the early component, and the exclusively relationships with the early rather than

late signals found in chapter 2 should not be overlooked. It is also true that the early compo-

nent has been shown to downregulate the late component (Fouragnan et al., 2015), and so it is
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not impossible that effects relating to exploration could be found through formulating hypothe-

ses around longer EEG latencies. Indeed, this would not be incompatible with the hypotheses

targeted in Chapters 3 and 4 of this thesis relating to the early signal.

In line with many prior findings in the literature (de Gee et al., 2020; Gilzenrat et al., 2010;

Hayes & Petrov, 2016; Jepma & Nieuwenhuis, 2011; Krishnamurthy et al., 2017; Urai et al.,

2017), the results showed that tonic baseline pupil dilation was significantly higher preceding de-

cisions where the participant made an exploratory choice (Figure 4.4A). Specifically, this result

echoes directly a key finding from Jepma and Nieuwenhuis (2011) that shows a highly similar

disparity in the pupil signal when averaged across a comparable pre-stimulus window. How-

ever, Jepma and Nieuwenhuis (2011) also found that individual differences in baseline diameter

predicted an individual’s tendency to explore, whereas in the results of this chapter differences

in average tonic firing across trials in reward and punishment blocks was unable to account

for corresponding differences in broad exploration rates (Figure 4.4B). The lack of effect here

is somewhat surprising given the strong effect on the trial-wise analysis and the findings of

the studies mentioned above. It also fails to match the finding that pre-task tonic pupil dila-

tion predicts risk-taking behaviour specifically for aversive losses, and not for reward-omissions

(Yechiam & Telpaz, 2011). Again, it is possible that the simplicity of the task employed here

restricts the possible exploration dynamics that could occur, and it would be valuable to test this

further in a more complex decision-making environment.

4.4.3 Possibilities and challenges of RST

Finally, it is necessary to evaluate the fairly underwhelming findings of the RST analysis pre-

sented in section 4.3.5 with a critical eye. Of the battery of correlations performed, two passed

the uncorrected .05 significance threshold: a negative relationship between ∆slope and BAS

scores; and a negative relationship between ∆pupil and BAS scores following negative out-

comes. To interpret these at face value, the first finding is indeed compatible with the prediction

that RST would compel: a higher degree of reward seeking should of course result in lower
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exploration. The second finding is slightly less intuitive and can be summarised as: individuals

with higher reward seeking propensities have higher phasic pupil responses to losses than to no-

wins. In the loss domain, it seems more likely that BIS scores would be relevant to an arousal

response to negative outcomes given the links to areas such as the amygdala and ACC (Corr,

2004). Regardless, although these results may be useful in generating hypotheses for further

investigation, neither passes even one level of Bonferroni correction, and so should be treated

with a high degree of scepticism.

The inclusion of the RST in the data collection was an exploratory decision driven by the

intriguing theoretical links between its subscales and the neural pathways implicated in rein-

forcement learning and by extensions the early and late signals in the two-component model.

Specifically, the association between the BAS and reward-related regions such as VTA and vSTR

(Depue & Collins, 1999), and the BIS with the amygdala and ACC (Corr, 2004). However, in

relating an abstract psychometric measure directly to neural or physiological measures, effect

sizes are unlikely to be very large. As such, to achieve appropriate power to reasonably investi-

gate specific relationships, a more targeted a-priori plan is warranted. To provide some context

for this type of experiment using RST and EEG, the standard range of sample sizes on display in

published research is typically at least 40-50 (De Pascalis et al., 2010, 2017a, 2017b, 2019), and

can be well over 100 (De Pascalis et al., 2018). Indeed, significant effects have been found with

sample sizes in this range for BIS scores in relation to FRN amplitudes following monetary loss

and gain (De Pascalis et al., 2010). Therefore, to adequately explore this aspect of the EEG and

pupil signals in relation to RST components, more targeted hypotheses are required to reduce

multiple comparison issues, and greater sample sizes should be used to facilitate this.



Chapter 5

Predicting context-dependent performance

for neurofeedback paradigms

Chapters 2-4 of the thesis have targeted differences in learning across rewarding and punishing

contexts to reveal key similarities and differences in neural signatures, pupil dynamics, and

behavioural markers. In doing so, I have identified a key salience-related signal that seems

to differentiate reward and punishment learning in a way that predicts behavioural dynamics,

and provided evidence for the potential role of the noradrenergic system in contributing to this

signal by means of pupillometry. Importantly, the degree to which task performance depended

on rewarding or punishing environment was highly variable across individuals, and specific

individual asymmetries were reliably predicted by EEG signals and, to a lesser extent, pupil

dilation.

The final experimental chapter will explore the potential application of these findings in the

context of a closed-loop brain-computer interface (BCI) system. I present a general framework

to conceptualise the challenge of improving task performance through modelling individual re-

sponses to different environmental factors. I then provide a pseudo-example of this approach in

practice using data collected in a non-interactive task to demonstrate how the techniques could

be applied and tested in a closed-loop BCI setting. The results of this will then be discussed in

84
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the context of similar BCI endeavours, with attention paid to methodological room for improve-

ment.

5.1 Background

The goal of using personalised data from an individual to improve performance outcomes has

been tackled from a range of perspectives using a range of measures and techniques. In neuro-

science, extensive research has shown that direct data from the brain can aid everything from

relaxation to golf putting to the regeneration of motor function in paralysis. On the other end

of the spectrum, computer science has produced many interesting methodological insights with

regards to pattern recognition in large sets of behavioural data for the purpose of building indi-

vidualised action profiles, identifying strengths and weaknesses, and in some cases developing

personalised experiences in the form of targeted tutorials and guidance. The relative advantages

of each of these approaches offers an enticing prospect for an integrative approach to BCI.

5.1.1 Neurofeedback and BCI for performance enhancement

Neurofeedback – also known as biofeedback – is the practice of using direct insight from neural

measurements to improve behavioural performance. Early attempts demonstrated that people

have the ability to regulate their alpha brain activity when provided with live feedback about

their EEG spectral power profiles (Kamiya, 1968, 1969). Since its advent, a number of well-

established paradigms have been developed and employed in a variety of use cases. EEG-based

frequency-power neurofeedback is the most commonly employed method, where real-time in-

formation about brain activity delivered through audio or visual cues is used to modulate fre-

quency and amplitude of brain activity (Da Silva & De Souza, 2021; Marzbani et al., 2016). This

is normally achieved following a training protocol where a participant will become familiarised

with how the feedback responds to their own metacognitive efforts, known as neurofeedback

training (NFT), which is then utilised in a task environment once a baseline level of control has
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been acquired (J. H. Gruzelier et al., 2014).

A popular method in this domain has encouraged augmented activity the Sensory Motor

Rhythm (SMR) band of activity in the range of 12-15Hz, sometimes also known as the beta pro-

tocol, whilst suppressing other frequency ranges. This approach is based on the idea that the beta

band of brainwaves over sensorimeter regions on the scalp are related to focus and attention, and

as such has often been used for improving outcomes in attention-deficit hyperactivity disorders

(Egner & Gruzelier, 2004; Heinrich et al., 2007; Lubar et al., 1995), as well as more general

attentional performance (e.g. Egner and Gruzelier (2001) and Mikicin (2015, 2021)). Indeed, a

systematic review found the SMR to be by far the most prevalent paradigm for attention-related

objectives (Da Silva & De Souza, 2021).

A different approach has focused on maximising the relative ratio of theta to alpha (A/T)

amplitudes for the purpose of inducing relaxation and promoting creativity, typically imple-

mented in an eyes-closed setting with relaxing sounds used as indicators of desired brainwaves

(J. Gruzelier, 2009). The A/T paradigm has been used to enhance outcomes in creative domains

as musical or dance performance (Egner & Gruzelier, 2003; J. Gruzelier, 2009; J. H. Gruzelier,

2014; Raymond et al., 2005). Though this is by no means an exhaustive account of the vast ar-

ray of different EEG-neurofeedback approaches, these popular protocols have been repeatedly

shown to have efficacy in a wide range of settings such as sports performance (Arns et al., 2008;

Cheng et al., 2015; Gong et al., 2021; Ring et al., 2015; Rostami et al., 2012; Xiang et al., 2018),

memory (Escolano et al., 2011; Lecomte & Juhel, 2011), and epilepsy (Sterman & Friar, 1972;

Sterman et al., 1974).

A branch of research related to NFT, known as brain-computer interface (BCI), takes a

slightly different approach to augmenting human functioning. Whereas NFT presents a direct

representation of some target signal in the brain for autoregulation, BCI bypasses this metacog-

nitive component by directly effecting some event external to the individual based on neural

signals. Traditionally, this paradigm has focused on getting around the need for physical action

in motor-impaired individuals (Nicolas-Alonso & Gomez-Gil, 2012; Wolpaw, 2013), such as

those with forms of paralysis, by controlling an external device such as a robotic limb (Robin-
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son et al., 2021) or computer mouse (Citi et al., 2008; McFarland et al., 2008). However, the

BCI paradigm can also refer more broadly to methods of optimising behaviour in non-clinical

populations without neurofeedback, such as the integration of neural signals from groups of peo-

ple to aid decision-making in collaborative BCI tasks (Poli et al., 2014; Valeriani et al., 2015;

Wang & Jung, 2011; Yuan et al., 2013). The BCI framework therefore presents a fairly broad

paradigm through which to view EEG-informed attempts to manipulate task performance.

5.1.2 Predictive models for performance optimisation

Human behaviour in decision making tasks has understandably been a focus within psychology

and neuroscience, but there have also been notable efforts from the field of computer science

to predict individual actions. In non-cooperative games such as Poker, opponent modelling has

been a key focus when building game-playing AI, as it is possible to improve performance with

exploitative strategy based on opponent play (Berger, 2007; Billings et al., 1998; Davidson et

al., 2000; Xu & Chen, 2021)). Early examples first used neural networks to identify which

features of play were most relevant to prediction, which were then implemented in a simple

table-based system for estimating median hand strength (Davidson et al., 2000). Modern ap-

proaches are more sophisticated, first classifying an opponent on the axes of loose-tight and

passive-aggressive, then employing population-based evolution to develop a range of effective

counter-strategies that can be flexibly employed to match opponent behaviour in an exploitation

phase (Xu & Chen, 2021).

A variation of this research focuses on player modelling to identify weaknesses for the pur-

pose of aiding improvement. A variation of the Chess engine Maia was used to predict the most

likely move for players of a certain skill level (McIlroy-Young et al., 2020), which has promis-

ing implications for targeting coaching to common weaknesses throughout Chess progression.

This was subsequently enhanced to offer even more specificity, modelling individual players to

achieve a player identification accuracy of 98% (McIlroy-Young et al., 2022). In addition, the

authors were able to develop unique ‘blunder profiles’ that characterised the kinds of mistakes
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that a player was susceptible to make – a highly useful tool for delivering personalised feedback

and practice (McIlroy-Young et al., 2021).

5.1.3 A hybrid approach

Both the neurofeedback and machine learning angles have shown unique successes and very

different types of insight into behavioural optimisation. In the specific context of human perfor-

mance, the neurofeedback literature has a great deal more depth and overall practical success.

Nonetheless, there are certainly elements from the computer science literature that could offer

some interesting and novel adaptations.

Figure 5.1: Theoretical representation of functional relationship between manipulation, physiological
process, and task performance. A) Arousal theoretically increases as a sigmoid function of manipulation
(e.g. stressor) strength, and in turn B) task performance theoretically is maximised at the peak of the
Yerkes-Dodson inverted U.

Figure 5.1 demonstrates a typical unidimensional optimisation case based on neurofeedback

studies such as Faller et al. (2019), who achieved significant performance gain on a flight sim-

ulation task using a heartbeat sound to manage arousal levels alongside real-time EEG. Using

this arousal scenario as a hypothetical example for a given participant, performance exists as a

function of arousal (Yerkes & Dodson, 1908), and arousal exists as a function of ‘peripheral’

stress manipulation. Therefore, to optimise performance, a stress manipulation is required such

that:
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M = argmax f (g(m)) (5.1)

Where M is the optimal task manipulation, g(m) is arousal as a function of task manipulation

and f (g(m)) is task performance as a function of arousal. Though simple, this framing offers

some flexibility to help conceptualise how this can be extrapolated to borrow from the strengths

of other approaches to tackling this challenge.

Figure 5.2: Flow chart of task features influencing action via neural response. A task or environment
is comprised of core and peripheral features (left) that elicit a neural response (centre) in a given state.
This neural response is then responsible for action selection (right). Whilst core features are exclusively
desirable when building an optimal agent, peripheral features are also relevant to human behaviour.

The neurofeedback approach has shown that in many cases, this goal can be achieved by

simply providing some meta-insight into an individual’s position on the right-hand function. On

the other hand, the behavioural data-driven approach is limited in an important respect: it cannot

account for the intermediate physiological activity that bridges psychological state and subse-

quent action. In other words, it skips the ‘signal’ step highlighted in Figure 5.2. This means that,

whilst the general relationship between task and action may be modelled, there is no way to ac-

count for moment-to-moment changes in internal signals that ultimately are the causal drive of

an eventual action. Certain recent endeavours have made some steps towards unifying these dif-

ferent ideas, for example Faller et al. (2019) used a statistical classification approach to identify

instances of maladaptive oscillations associated with over- or under-correction when navigating

a course, which then manipulated the heartbeat sound. In this way, the feedback was not based

on the typical power-frequency read-outs and had some degree of machine learning involved in
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the performance optimisation. However, this still operated in the arousal optimisation paradigm

typical of approaches like SMR NFT, and there is an opportunity to widen the scope further.

One possible framework to combine the two approaches is outlined in Figure 5.2. If we

were to develop an artificial intelligence agent to perform a task, it would optimise exclusively

for the features of a task that are directly relevant to performing it well, such as environmental

uncertainty or desired outcomes. Such features can be thought of as core features, which are

necessary to navigate a task successfully. Humans, on the other hand, must perform a huge range

of functions, and must also be vigilant of external threats to safety. Take a video game example,

such as Multiplayer Online Battle Arena (MOBA), where you are engaged in a long-term battle

in a highly dynamic and uncertain environment. There may be factors such as the stress of

gathering resources in a risky area, or aversive loss of being ambushed and killed, that are

actually irrelevant to an optimal game-playing strategy. And yet such factors will still influence

decisions due to presumed evolutionary advantages, such as the high cost of being ambushed

while gathering resources in real life. Features of a task that relate to these factors, but not to

optimal gameplay, can be thought of as peripheral features. Thus, human physiological and

neural signals are functions of both core and peripheral features of a task state, and action is a

function of these signals.

There seems to be an opportunity here, therefore, to bridge the gap between these two ap-

proaches to apply BCI to a decision-making paradigm using insights about environmental ef-

fects on brain and behaviour rather than standard neurofeedback. If we extrapolate Figure 5.2

and Equation 5.1 such that M becomes a set of peripheral features optimised over a multidi-

mensional parameter space, the set of optimisation effects is greatly expanded and allows for

manipulations such as rewarding versus punishing feedback to be explored.

5.1.4 Aims and hypotheses

The aim of the current chapter is to demonstrate a proof-of-concept for a real-time closed-loop

analysis strategy to optimise decision-making performance. Specifically, I train a multimodal
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classifier to estimate whether a rewarding or punishing environment would be most conducive to

an optimal action. In cases where novel methods with BCI or neurofeedback are developed for

task performance (e.g. Faller et al., 2019), it often preceded by theoretical groundwork to show

that the manipulation-signal-action relationship is robust enough for a closed-loop experiment

to work (Saproo et al., 2016).

As such, this chapter will apply the classifier retroactively to existing data to test whether

it has the capability to successfully discriminate context and correctness based on EEG and

pupillometry data, and whether this can plausibly be applied in a way that improves decision

accuracy. There are therefore several criteria that I aim to meet: 1) a level of multinomial

classification accuracy satisfactorily above chance level; 2) a level of subject-specific model-

predicted choice accuracy that is not significantly different to their actual choice accuracy; 3) a

hypothetical context-switching rule that produces estimated counterfactual choice accuracy that

is significantly higher than both predicted accuracy with the true context and actual accuracy.

Goals 2) and 3) represent an attempt at what could be thought of as “pseudo-BCI”, whereby I

attempt to make some inference about the counterfactual performance of the participants in the

context that they did not actually experience.

5.2 Materials and methods

Refer to Chapter 2 for detailed description of the task, participants, EEG and pupil data col-

lection and processing, and computational model. For consistency across all variations of the

classification model, data was only trained on the subset of 24 participants for whom both EEG

and pupil data was usable (see Chapter 1 for details). Furthermore, for each participants, trials

with excessively noisy pupil data were removed for all variations of the model (see Chapter 1

for details). The average number of remaining trials across these 24 participants was X.
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5.2.1 Multinomial classification architecture

In order to combine the multimodality of the EEG, pupil and response time (RT) data into a sin-

gle classifier, a two-layer multinomial logistic regression was employed based on the methodol-

ogy of (Shih et al., 2016). In this architecture, the first layer is trained on analysis windows from

stimulus-, choice-, and feedback-locked data in the EEG and pupil time series to classify the

four-way combination of context (reward/punishment) and choice (correct/incorrect) on a given

trial (Figure 5.3). This produces a matrix of coefficients for each class and input dimension (e.g.

EEG channels), which is then used to produce a weighted signal (or classification ‘score’) for

each class on each trial. These scores are then collated into a single matrix (alongside the lower

dimensional RT) to be used as the input to the second layer, which again estimates a matrix of

coefficients from which probabilities are calculated using the SoftMax function (Figure 5.3).

Figure 5.3: Diagram of the 2-step multinomial regression architecture (adapted from Shih et al. (2016).
A two-layer architecture reduces the dimensionality of each input modality to a single weighted score for
each time window on each trial. Left) Layer 1 contains the raw inputs for the choice- and feedback-locked
EEG and pupil data, with input dimensions on the x-axis, time-windows on the y-axis, and trials on the
z-axis. Centre) Layer 2 contains the unidimensional weighted outputs from Layer 1, plus raw response
times in seconds. Right) shows the final 4-way classification output, with estimated class probabilities
for each combination of context and choice accuracy.
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5.2.2 EEG and pupil input data

For the first layer of classification, the data from EEG and pupillometry was applied in a series of

temporal windows locked to relevant events in the course of the task. In each case, the input from

the temporal window was a matrix where each row was an observation and each column was

an input dimension. In both cases, the total number of observations N consisted of a multitude

of samples for each trial extracted from a particular time window, such that N was equal to the

product of the number of trials Nt and the size of the window in samples Ns. Accordingly,

the accompanying vector of truth labels denoting which class a given trial belonged to was

augmented, such that each trial label was replicated to match the number of samples, elongating

the truth vector to length N.

The EEG input data was split into two broad groups: feedback-locked data and stimulus-

locked data. The feedback-locked data was split into 9 non-overlapping windows of 75ms,

ranging from 100ms pre-feedback to 575ms post-feedback (Figure 5.4). For this data, inputs

were from trial i were used to predict context and accuracy on the subsequent trial i+1, meaning

that there was no prediction for the very first trial of each block. The stimulus-locked data was

in practice a combination of stimulus-locked and choice-locked windows, in order to establish

some consistency relative to stimulus and choice onset given the variability in reaction time. The

stimulus-locked data was split into 6 non-overlapping windows of 75ms, ranging from 100ms

pre-feedback to 300ms post-feedback, and the choice-locked data was split into 9 windows

ranging from 300ms pre-choice to 300ms post-choice (Figure 5.4).

Figure 5.4: Event-locked timings of EEG feedback and choice data for predicting trial i+1. Feedback
windows range from 100ms before to 575ms after feedback. For consistency in timing around impactful
events, choice-locked data was comprised of -100ms pre-stimulus to 300ms post-stimulus and -300ms
pre-choice to 300ms post-choice.
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The pupil data was similarly segmented around stimulus and feedback, with some key dif-

ferences. For stimulus-locked data, there was a single pre-stimulus window trained on the pupil

data (normalised across the full pupil time series) from 500ms pre-stimulus to stimulus onset.

There were then 8 overlapping windows of 500ms in length, with a new window onset ev-

ery 250ms from stimulus onset to 1500ms post-stimulus. The post-stimulus data was baseline

corrected using the 500ms of pre-stimulus data, such that it reflected the phasic deviation in re-

sponse to the stimulus rather than the regular normalised diameter. The same approach was taken

for feedback-locked pupil data, with one 500ms pre-feedback window and 11 baseline-corrected

post-feedback windows of 500ms occurring every 250ms from feedback onset to 2500ms post-

feedback. As with the EEG data, the feedback-locked windows were used to predict the class

for the subsequent trial, whereas stimulus-locked windows were used to predict the class for the

current trial.

5.2.3 Multinomial Logistic Regression Model

At both layers of the classification model, coefficients were estimated using the glmnet algo-

rithm for multinomial logistic regression (Friedman et al., 2010; Tay et al., 2023). To estimate

the optimal weighting across N observations for each of K classes with p input dimensions, the

algorithm minimises the following loss function for multinomial outcomes using cyclical co-

ordinate descent, which optimises over each parameter individually whilst holding the others

constant, cycling through them until convergence:
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Here glmnet optimises the β coefficients, where β0k is the intercept term for class k, while

βk is the p-length vector of coefficients for each predictor variable for class k. The term yik is a

binary indicator that is set to 1 if the observation i belongs to class k and 0 if not, while xTi is

the transposed feature vector for observation i.
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5.2.4 L2 regularisation

The glmnet algorithm employs an elastic net approach to regularisation during model fitting,

whereby predictors are regularised using a combination of L1 (lasso) and L2 (ridge) regularisa-

tion that is balanced using a mixing parameter α . Ridge regularisation tends to shrink coeffi-

cients with high collinearity towards each other, whilst lasso favours one coefficient in particular

and discards the others (Friedman et al., 2010). The elastic net penalty is given by:

λ
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(5.3)

Here, the Frobenius norm ∥β∥2
F for coefficient matrix β reflects the L2 penalty, whilst the L1

penalty is given by ∥β∥1, with α controlling the relative mix of the two. The overall regularisa-

tion strength is set by λ , which sits between 0 and 1 (with 0 indicating no penalty applied).

There are different costs and benefits for selecting an α closer to 0 for L2 regularisation or

1 for L1 regularisation, and often it can be useful to compare different balances to find the best

solution for the data. However, for consistency with the approach of Shih et al. (2016), and to

save on the considerable training time required to optimise the first layer repeatedly, an α of 0

was selected in all cases to render the elastic net equivalent to standard L2 regularisation. When

applied to the loss function, this equated to:
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The ideal value for λ was selected using a k-fold cross validation approach each time the

glmfit function was called, whereby the fitting procedure was run k+1 times; the first time was

used to obtain a sequence of lambda values to cycle through on each fold, and the remaining

times computed the fit on the omitted fold by training on the rest of the data. A value of 10 was
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selected for k as the recommended default for the algorithm. The error is accumulated across

folds, and the mean and standard deviation are calculated from this value. The value of λ that

gives the minimum mean cross validated error is selected.

It should be noted that a λ of 0 (i.e. no regularisation) was used for one-dimensional predic-

tors, including pupil data at layer one and the response-time-only model at layer two.

5.2.5 Cross validation

To address the issue of overfitting in the training procedure, 5-fold cross validation was used for

every window at layer one and every input combination at layer two. The folds were created

using a stratified approach to account for imbalances in the frequencies of class labels, and in

every case the classification scores were produced for each fold by taking the dot product of the

in-fold test data and the model coefficients optimised on the out-of-fold training data. As such,

all scores and resultant probabilities were produced from unseen data, minimising any risk of

overfitting.

5.2.6 Class weighting and scaling

Due to the fact that participants typically show choice accuracy in the region of 60-70%, there

is an inherent imbalance in the number of trials within the two ‘correct’ classes versus the two

‘incorrect’ classes. As such, when trained with equal weighting, the model has a tendency

to greatly inflate probabilities for the more frequent classes. To combat this, a simple inverse

frequency weighting strategy was used, which assigned a weight to each class proportional to

the number of times it occurred in the truth labels, such that less frequent classes were weighted

higher and the combined weights summed to 1. By inputting the corresponding weights w

for each trial i into the glmnet function, the impact of each class on the loss function (before

regularisation) is modified, such that it now pays more attention to underrepresented classes:
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To check whether the weighting worked as intended, the proportion of predicted correct

choices was compared to the true proportion of correct choices. A pure inverse weighting tended

to overcorrect the predictions in this regard, and so a scaling factor was applied to reduce the

impact of the reweighting. A simple grid-search approach found that a scaling factor of just .99

was enough to bring the predicted choice accuracy up to realistic levels, which was implemented

by multiplying all inverse frequency weights by .99 and re-normalising such that they summed

to 1. This weighting solution was applied to all levels of the model to obtain the final results.

5.2.7 Projected task performance

In order to simulate the range of choice accuracy we might expect to see if manipulating the

task context based on the classifier probabilities, I calculated a series of projected proportions

of correct choice based on different sequences of reward and punishment context. The five

variations of this shown in Figure 5.5B were as follows:

1. ‘Optimal’ shows the proportion of predicted correct choice if the participant was auto-

matically placed in the context with the highest relative probability of correct choice over

incorrect choice.

2. ‘Enhanced’ shows the proportion of predicted correct choice if the context was regularly

adjusted based on a switching rule designed for a BCI setting. Here, this would cause a

context switch if the relative probability of correct choice over the previous 5 trials was

higher for opposite context than for the current context. For example, if the participant

was in the reward context, and the relative chance of correct choice from the model was on

average higher for the punishment context over the prior 5 trials, then the context would
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switch.

3. ‘Predicted’ shows the proportion of predicted correct choice based on the context that the

participant actually experienced for each trial.

4. ‘Actual’ shows the true behavioural performance achieved by the participant, expressed in

proportion of correct decisions.

5. ‘Floor’ is similar to ‘Optimal’, except it automatically places the participant in the context

with the lowest relative probability of correct choice over incorrect choice.

In each case (with the exception of ‘Actual’), I simply summed the number of times the model

had a higher probability of correct choice for the context provided (e.g. P(correct, reward) >

P(incorrect, reward)), dividing by the number of trials.

5.3 Results

5.3.1 EEG data provides the best classification accuracy

To discover the optimal combination of input data for classification, 9 different versions of the

2nd layer of the model were trained, similar to Shih et al. (2016). The classification accuracy

is defined as the proportion of trials where the model correctly predicts the class label based on

the highest estimated probability from layer 2 (Figure 5.5A, white bars). The top performing

model was that trained on only EEG data, combining the epochs relating to the choice period

and feedback period, yielding an average correct classification rate of 41.31%. The lowest

performing model contained only RT data, classifying correctly just 32.03% of the time.

There are two notable jumps in performance due to the addition of predictors. The inclusion

of EEG broadly increases classification accuracy, and more specifically including EEG from the

time of feedback presentation is particularly valuable for classification. To formally test these
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insights, I ran two vector contrast analyses on the subject-specific classification accuracy values.

Firstly, to compare the added benefit of including EEG data, I ran a contrast of RT, Pupil, and

Pupil+RT against EEG+RT, EEG+Pupil and EEG+Pupil+RT, weighting the first three as -1, the

second three as +1, and the remaining three as 0. The result was highly significant (t(25) = -6.83,

p < .001), indicating that the addition of EEG greatly improves model performances. Secondly,

to compare the choice-related EEG model to the feedback-related EEG model, I ran a simple

binary contrast setting EEGchoice to -1 and EEGstim to 1, and all others to 0. This was again

significant (t(25) = -8.91, p < .01), demonstrating that EEG signals at the time of feedback seem

to carry the most useful information for this classification problem.
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Figure 5.5: Multinomial classifier performance metrics. A) Proportion of correct classification for nine
different input combinations. White bars indicate overall performance averaged across subjects i.e. pro-
portion of correctly identified class. Dots indicate overall performance for each subject. Blue bars (left)
indicate proportion of correctly identified context, defined as the context of the class with the highest
estimated probability aligning with the true context. Red bars (right) indicate proportion of correctly
identified choice accuracy, defined the same as context but for the correct/incorrect estimation. B) Model-
estimated behavioural accuracy from the winning EEG model for each variation outlined in 5.2.7. Bars
indicate mean predicted accuracy averaged across subjects; dots indicate individual subject estimates. C)
Difference between predicted and actual performance accuracy (relating to yellow outlined bars in B). D)
Histogram showing the distribution of estimated number of total switches across all trials based on the
hypothetical switch rule outlined in 5.2.7 (relating to blue outlined bar in B). Dotted line indicates the
mean across subjects.
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Given the two-by-two classification, I also calculated the performance of predicting the cor-

rect context (regardless of outcome) and the correct outcome (regardless of context). In each

case this was based on the context or outcome of the class with the highest assigned probability

(Figure 5.5A, coloured bars; left-hand blue bars depict context prediction; right-hand red bars

depict choice accuracy prediction). It is worth noting that there are negligible differences in these

values when calculating by combining the probabilities of the two subclasses (e.g. p(correct,

punishment) + p(correct, reward)). Generally, all models classified choice accuracy well, with

the lowest performance coming from the EEG model with 61.09% and the highest coming from

the choice-only EEG model with 63.94%. As such, the overall accuracy was largely dictated by

the ability of the model to discriminate between the reward and punishment contexts, with the

lowest performance here coming from the RT model at a below-chance 49.86% and the highest

performance coming from the full EEG model at 63.94%.

5.3.2 Projected task performance indicates BCI potential

Using the winning EEGall model, I then created a series of projections for model-predicted

task performance under a variety of conditions. The goal was to simulate a variety of different

series of reward/punishment contexts and project how well a participant would perform based

on whether the model estimates a higher probability for a correct or incorrect choice within the

context provided. As shown in the 3rd and 4th bars of Figure 5.5B, the model estimates for

choice accuracy for the true context were similar at 67.70% to that actually achieved by the

participant at 69.49% (although statistically different; t(25) = -3.43, p < .01). Comparisons with

the other models on this metric can be seen in Figure 5.5C, showing that the best performing

models tended to more closely reflect real behavioural patterns. Furthermore, as we would

expect, the theoretical optimal context (as described in 5.2.6) on each trial produces a much

better estimated performance than any other variation at 87.5%, and similarly the theoretical

worst context produces significantly worse estimated performance at 44.34% (Figure 5.5B, 1st

and 5th bars respectively).
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Finally, the proposed BCI switching rule (outline in 5.2.6) shows reasonable heuristic value

in the rate at which it would hypothetically trigger switches, averaging at approximately 20 total

switches throughout the task at a rate of 1 every 24 trials. However, compared to the other

metrics, the estimated 70.00% task accuracy gives a very small, non-significant improvement of

performance over predicted accuracy given the true context (t(24) = -0.74, p = .463), it gives a

significantly lower performance than actual accuracy (t(24) = -2.61, p = .016). This indicates

that the results from this model are unable to provide evidence in the direction that a targeted

switching rule based on live neural data would improve behavioural performance on a value-

based decision-making task (Figure 5.5B, 2nd-4th bars).

5.4 Discussion

Despite the challenge of decoding four classes rather than just two, the multimodal classifier

demonstrated a reasonable degree of accuracy across a number of different input combina-

tions, with the best performing configurations exceeding 40% on average across subjects (Figure

5.5A). Furthermore, when breaking down by the binary subdivisions of context (reward versus

punishment trials) and choice accuracy (correct versus incorrect trials), classifier performance

exceeded 63% for the best combinations (Figure 5.5B). Though this is lower than that achieved

by Shih et al. (2016), the metrics are generally encouraging given that a) the task was not de-

signed with this type of analysis in mind, and b) the four-way classification presented a notably

more challenging case to solve statistically. Furthermore, the ability of the model to produce in-

tuitive predictions for task performance and potential enhancements with BCI helps to motivate

further research in this vein. However, it should be noted that the model was unable to provide

direct support for the efficacy of a targeted switching rule from this data.
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5.4.1 Implications of predictive qualities of EEG, RT and pupil

Though many of our input combinations yielded good results, the predictive performance of

certain variables warrants some review. Firstly, the feedback-locked EEG response period was

by far the most valuable signal in the four-way classification, showing particular success in the

reward-punishment aspect relative to other measures such as pupil and RT. This is both expected

and encouraging in light of the links to task accuracy seen in Chapter 3, and further validates the

idea that post-feedback dynamics contain meaningful and useful information about disparities

in reward and punishment processing.

As the predictor with the lowest dimensionality and least rich information, RT was not nec-

essarily expected to be a strong predictor in its own right. However, the fact that its addition

did not offer much improvement in combination with other models, and that it was not present

in the winning model, was somewhat surprising. RT featured in the best performing models on

the visual task in Shih et al. (2016), in line with the idea that greater RT is a reflection of higher

uncertainty (McDougle & Collins, 2021; Richer & Beatty, 1987) and lower confidence (Zylber-

berg et al., 2016), variables that are directly related to choice accuracy. Similarly, pupil dilation

has been robustly linked to surprise (de Gee et al., 2021; Filipowicz et al., 2020; Preuschoff et

al., 2011)and uncertainty (Brunyé & Gardony, 2017; Kawaguchi et al., 2018; Nassar et al., 2012;

Urai et al., 2017). However, despite the fact that both of these predictors had poor overall classi-

fication accuracy absent any EEG signals, they did provide some of the highest performance for

the correct-incorrect dimension, which is in line with the above parallels to parameters relevant

to choice accuracy. In this light, it is possible that the pupil and RT signals are relevant for this

aspect of choice behaviour but less so for reward-punishment distinctions – at least relative to

EEG.
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5.4.2 Evaluation of the multinomial classifier

It is also possible that the contributions from RT and pupillometry were limited by the method-

ology used in the classification approach. The choice of multinomial classifier was motivated

by two main factors: firstly, it bore a degree of similarity to the linear methods employed in

the preceding chapters; secondly, it had been directly implemented in prior work to predict task

accuracy in a research group with multiple successful BCI endeavours (Shih et al., 2016). This

combination offered an appealing starting point for the proof-of-concept aim of this chapter as a

means to evaluate whether the prediction required for a BCI paradigm would be at all plausible.

Though the results presented here do provide support for plausibility, there are a number of ways

in which the classification methodology could be potentially developed and improved for more

effective neurofeedback.

Firstly, the use of a linear classifier places certain assumptions on the data that might not

necessarily hold. In a four-way classification, it is entirely possible that the optimal hyperplanes

for separating classes within multidimensional data are curved rather than linear – something the

multinomial logistic regression employed in my model would be unable to account for. The most

simple way to test this would be to replicate the process using identical architecture with a non-

linear model in the place of the multinomial regression, such as a neural network or non-linear

support vector machine. This would offer the opportunity to compare model performance in the

most direct way possible, offering insight as to whether the relationships between pupillometry,

response time, EEG signals and task context and performance are in fact nonlinear.

Taking this idea further, there are a multitude of more sophisticated techniques available

from machine learning literature that can leverage a variety of features of multimodal data to

maximally extract useful information. For instance, there are modern deep learning architec-

tures that allow for effective processing of high-dimensional multimodal data from neural and

physiological measures for use cases such as sleep-stage classification (Chambon et al., 2018),

the identification of epileptic seizures (Samiee et al., 2015), or emotion categorisation (Zhang

et al., 2018). In the latter case, a deep multimodal neurophysiological transformer has recently
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demonstrated comparable or superior performance to the best available competitors on fewer

samples for the classification of affective valence and arousal (Koorathota et al., 2022). Briefly,

this model takes advantage of the ability of the transformer architecture to map long-term tem-

poral and contextual dependencies with the groundbreaking self-attention mechanism (Vaswani

et al., 2017). While on the cutting edge end of neurophysiological classification, this exam-

ple demonstrates the increasingly sophisticated techniques for extracting maximal value from

available data.

5.4.3 Limitations of pseudo-BCI

In addition to improvements available in the classification approach, there are also notable

methodological limitations of the retrospective analysis used that significantly restrict the

strength of conclusion that can be drawn. The primary goal of the analysis was to demonstrate

a reasonable level of predictive capability; however a secondary “pseudo-BCI” goal was to

make a case that the output probabilities plausibly map onto counterfactual performance of

participants in the non-experienced context on each trial, such that some rough inferences can

be made about the viability of the experimental design for a live BCI implementation. This

yielded mixed results: whilst the hypothetical switch rates seemed to fall in a reasonable range,

and the predicted accuracy was slightly better in the switch-rule condition than the true context

condition, it was still significantly lower than the actual behavioural accuracy of the participants.

It is worth noting that this seemed to reflect a trend of predicted accuracy generally underesti-

mating in the winning model, and I believe the results are reasonable enough so as not to rule

out further pursuit in a closed-loop BCI experiment.

For a more affirmative case to be made, however, there are issues of causal understanding

that are not adequately mapped out in the present example. In fields such as the healthcare (Bica

et al., 2020) and marketing (Bottou et al., 2013), counterfactual prediction has received a great

deal of focus due to the value of understanding how outcomes might have been affected given

different conditions for risk identification and strategy development. In order to make effective
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inferences about counterfactual outcomes, though, robust causal understandings of the relation-

ships between variables is required (Hartford et al., 2017; Prosperi et al., 2020). To borrow an

example from Hartford and colleagues (2017), imagine an airline company trying to determine

how much to raise prices based on demand from customers. Without a causal understanding of

the effects of variables such as seasonal interest in different locations, school holidays, current

events etc., a purely data-driven approach could easily come to incorrect conclusions about op-

timal pricing. Returning to the case of the pseudo-BCI in the current chapter, the results should

accordingly be taken with a high degree of caution, and require either a greater degree of un-

derstanding about the causal relationships between the neural and pupil signals with respect to

reward, punishment, and task performance, or alternatively a true BCI test where counterfactual

inference is not needed.



Chapter 6

General Discussion

Exploring motivational sensitivity to reward and punishment is a fascinating endeavour, as it is

something that each of us has a personally emotive connection to. Every one of us has expe-

rienced the strong internal motivation associated with some especially rewarding goal, whether

that be pursuing a love interest or winning a sports competition. Equally, we all have been faced

with the strong avoidance drive associated with scary or stressful situations, such as defending a

PhD thesis. Furthermore, there is a rich variety of individual experience in relation to these two

types of reinforcer that provide us with great diversity of interaction and specialisation. From

a performance perspective, this presents both a great challenge in managing the environment to

get the best out of someone, but also an opportunity to let people shine in the roles that suit them

the best. Consider the dynamic, unpredictable flare of the attacking winger in comparison to the

steady, no-nonsense centre-back on a football pitch. Each will have their unique sensitivities to

risk and reward, and in both cases this is necessary to carry out their role effectively.

This thesis examined in detail the individual differences in respective sensitivity to reward

and punishment, using insights from EEG and pupillometry. It explored the relationship be-

tween these signals and individual differences in behavioural propensities and personality fea-

tures. And finally, it touched on the possibility of leveraging information about this gathered

from neural signals to optimally cater a decision-making environment to suit the needs of the
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individual. The main insights gleaned from this work will hopefully set the scene for a number

of logical next steps.

6.1 Further insights into punishment learning

One obvious area that calls for more targeted investigation is the late component of the putative

two-component EEG response. Due to compelling evidence highlighted in Chapter 1 that linked

the early component to the punishment-sensitive pupil response, and the hypotheses that were

subsequently generated, the analyses in Chapters 3 and 4 were targeted on this aspect of the

post-feedback signal. However, as demonstrated in Fouragnan et al. (2015), the two signals

are mechanistically coupled, meaning that we should not rule out the possibility that further

investigation into punishment effects in the late signal would be fruitful. The amygdala was

one of the areas found to be associated with this late signal in EEG-fMRI work (Fouragnan et

al., 2015, 2017), which has been purported to play an important role in punishment learning

(Bechara et al., 1995; De Martino et al., 2006, 2010; Delgado et al., 2008, 2011; Metereau &

Dreher, 2013; Yacubian et al., 2006). Further research targeting specific hypothesis in relation

to this signal may therefore be valuable.

An additional limitation of the reversal learning paradigm employed in this thesis is the con-

stant level of volatility in the environment. Volatility refers to the degree to which underlying

outcome contingencies change over time, while stochasticity is the degree of uncertainty in the

outcome contingencies. For example, in the task used here, an increase in volatility would trans-

late to an increase in the frequency of reversals, whereas an increase in stochasticity would mean

a set of outcome contingencies closer to 50/50. These two environmental parameters have in-

dependent consequences for behavioural strategy, and have been shown to likely be estimated

in parallel by actors during learning (Piray & Daw, 2021). Furthermore, estimation of task

uncertainty (Brunyé & Gardony, 2017; Kawaguchi et al., 2018; Urai et al., 2017) and volatility

(Binetti et al., 2017; Kloosterman et al., 2015; Nassar et al., 2012) have both been shown to have

significant interplay with pupil dynamics in reinforcement learning. By only examining a single
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volatility and stochasticity level, there were perhaps meaningful effects in relation to this that

were missed. Future research would benefit from using a range of decision-making tasks that

allow for these sorts of dynamics to reveal new comparisons in reward- and punishment-related

signals.

Finally, although some effort was made to investigate individual differences in relation to

reinforcement sensitivity, there could more subtle interactive effects that are difficult to pick

up on without more targeted investigation. For example, there is a large body of evidence that

suggests that acute stress is an influential factor in regulating important decision-making vari-

ables such as risk taking (Porcelli & Delgado, 2017; Starcke & Brand, 2016) and cortico-striatal

dopamine release (Nagano-Saito et al., 2013; Vaessen et al., 2015; van Ruitenbeek et al., 2021).

Furthermore, stress responses in a learning context are almost certainly heavily influenced by

personality factors, for example in the degree to which risk taking is altered (Lauriola & Weller,

2018; Lauriola et al., 2014). There are two approaches that could be taken to help elucidate

factors such as these. Firstly, simple measures associated with stress responses could be added,

such as the galvanic skin response or heart rate, without causing much additional cost or diffi-

culty to data collection. This could allow for additional analyses into the interactions between

stress response, reward and punishment, and personality factors. Secondly, specific task designs

could be employed to artificially induce stress responses for a more causal analysis, such as the

cold pressor test.

6.2 Closing the loop

The four-way classification model presented in Chapter 5 offers a promising and novel approach

to the behaviour optimisation challenge, integrating perspectives from neuroscience and com-

puter science to reframe traditional neurofeedback and BCI approaches. The model output was

able to classify the four-way combination of reward, punishment, correct and incorrect trials

with moderately good accuracy, performing best when trained on choice- and feedback-locked

EEG signals without RT and pupil data included. Importantly, model-predicted choice behaviour
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and accuracy was reasonably close to that displayed behaviourally by participants, meaning that

the approach was not ruled out as implausible for application in a live BCI setting. However,

the blocked nature of the reversal-learning task from which the data was obtained was not a very

realistic representation of the dynamic context-switching that would occur in a true BCI varia-

tion. To address this, an intermediate step using the same methodology in a more dynamic task

would be a useful improvement on the existing blocked structure of Chapter 5. Two changes to

the paradigm that offer this whilst maintaining a good degree of conceptual consistency with the

reversal learning task could be: a) the implementation of dynamic contingency drift via markov

random walk as opposed to the binary reversals; b) the expansion from a two-armed to multi-

armed bandit. These adaptations have been used successfully to investigate relevant effects such

as the relationship between pupil dilation and exploration (Jepma & Nieuwenhuis, 2011), and

would certainly bring things closer to the eventual BCI goal. Thirdly, I believe the BCI approach

would have the most interesting application in a truly ecologically valid task, to see whether the

principles explored in reversal tasks or multi-armed bandits generalise to realistic use-cases.

There are certain preconditions that present a challenge for finding a suitable testing ground:

a) a known optimal decision strategy to use as ground truth when training the model b)

symmetric play for reward and punishment scenarios c) an increased degree of realism and

complexity d) parallels to the original initial risky choice paradigm

An option that meets all of these criteria is the popular casino card game known as BlackJack

or 21, a binary choice task which has the benefit of being solved (Baldwin et al., 1956) and so has

a readily available ground truth for correct decision. There have already been several attempts

to use machine learning to emulate realistic BlackJack playing strategies (Kakvi, 2009; Kendall

& Smith, 2003; Schiller & Gobet, 2012; Srinivasaiah et al., 2024), one electrophysiological

study that examines ERPs in response to feedback during play (Hewig et al., 2007), and one

investigation into trait impulsivity in relation to behavioural patterns in the game (Webster &

Crysel, 2012). Thus far, however, there have been no attempts to combine these approaches for

either modelling or performance optimisation. As such, this presents an appealing medium to

advance the ecological validity of the proposed framework.
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6.3 Beyond reward and punishment

In Chapter 5, I laid out a framework for integrating physiological signals to model how the rela-

tionships between certain task-irrelevant environmental parameters affect an individual’s success

on a target outcome. The framework represents this as an optimisation problem. This is an at-

tempt to open the door to a range of machine learning approaches that could add unique value

to traditional neurofeedback and BCI methodologies prevalent in neuroscience.

Though models used in computer science literature are not based on known mechanisms in

the brain, this does not necessarily mean that the prediction-focused approach is not compatible

with desires for interpretation. Neuroscience is far from fully understanding decision making on

a mechanistic level, and whilst we may have valuable insights into specific elements such as the

role of the reward prediction error (Schultz, 2016), most everyday tasks are complex enough to

exceed the explanatory power of theory. There are cases where simple generalisability-focused

machine learning algorithms such as SARSA outperform models that are specifically designed

to emulate human processes (Schiller & Gobet, 2012).

As an applied example, a recent paper leveraged machine learning to narrow down successful

features of popular neuroscientific models of human choice under risk (Peterson et al., 2021).

Using a hierarchical neural network with different groups of model assumptions at each level

(e.g. models that incorporate alternative option value versus models that do not), they identified

which kinds of decisions yielded the most improvement when different parameters were added.

For instance, dominated gambles (i.e. where all outcomes of one prospect are better than the

other) yielded the highest improvement in prediction when adding context-related parameters,

suggesting that people may use different decision strategies for different types of gamble. From

here, they built a new ‘mixture of theories’ model that incorporated principles from a range of

other models and showed that this outperformed the predictive capacity of all other traditional

models. In short, applying deep learning to the existing ‘plausible parameter space’ yielded

new insights into the underlying processes in human risky choice. This type of approach could

potentially be applied to the case of narrowing down and identifying environmental variables
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– such as rewarding or punishing feedback – that possess a meaningful relationship to task

performance. This could then open the door for a multivariate expansion of the BCI paradigm

introduced in Chapter 5 that incorporates more than one parameter to manipulate; for instance,

it could be possible to model the interaction between state arousal and reinforcement sensitivity

to add an additional dimension to the optimisation process.

6.4 Conclusions

Punishment is an integral yet sometimes overlooked aspect of reinforcement learning, and there

are still many mysteries that remain unexplored. In this thesis, I have provided evidence that

an early salience response post-feedback may play a key role in modulating the individual re-

sponse dynamics to appetitive and aversive feedback. I have made a case that this mechanism is

compatible with existing accounts of reward and punishment learning, and I have demonstrated

a meaningful link between this signal and measures of behavioural performance on a reinforce-

ment learning task. I believe that this perspective on reward and punishment dynamics provides

a novel and interesting addition to the current understanding of the topic.

I have also presented a framework through which these insights could potentially be lever-

aged to improve task performance in a targeted manner. Though in the very early stages of

implementation, I believe I have laid the very early foundations for what could prove to be

a valuable lens through which to apply existing BCI and neurofeedback techniques. It is my

hope that this work can be built upon to realise new and exciting applications of reinforcement

learning theory in settings that are meaningful to life in the real world.
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