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Abstract

The migration of Atlantic salmon (Salmo salar) is a complex ecological process of great

importance to conservation and ecosystem management. Despite a rapid decline in the

Atlantic salmon population, little is known about the fine-scale behaviour of juvenile

migration to the sea, which occurs in an environment under strong anthropogenic pressure

and results in high mortality.

Juvenile salmon migration involves large quantities of small animals travelling under-

water through a complex riverine landscape. It is difficult to study, but recent advances

in tracking technology and mathematical methods now allow the behaviour and ecology

of downstream migrating salmon to be explored in depth.

This thesis reviews recent advances in the study of Atlantic salmon, and develops

further the mathematical and computational methods of movement ecology. These help

in forming hypotheses about how the fish behave, leading to laboratory experiments that

focus on their responses to flow conditions, social influences during obstacle navigation,

and the behavioural differences between wild and hatchery-reared individuals.

Impounded waters pose a challenge for migrating smolts due to the lack of strong flow

to provide directional cues. In laboratory experiments, I established the baseline flow

values that prompt a behavioural response in salmon smolts, necessary for the design of

river structures. In another experiment, I showed evidence of collective decision-making in

navigating obstacles during movement in an experimental flume. This finding emphasises

the density-dependent factors in migration success and necessitates further study of the

collective behaviour of this species that have thus far been mostly under-explored. I also

show clear differences in behaviour of hatchery animals compared to wild ones, provid-

ing guidance on the usability of hatchery smolts in further studies and design of river

infrastructure.

Modern machine learning methods allow improved analysis of data in many contexts.

Improvements to visual tracking of fish based on deep-learning models are presented,

allowing for detailed analysis of movement in laboratory and field experiments where



video cameras are becoming ever more prevalent. In this thesis, I present a new visual

tracking method that is tailored to correctly predict the movement of animals and tested

on simulated data inspired by common movement models.

The Bayesian modelling framework of Approximate Bayesian Computation is lever-

aged to analyse movement patterns from acoustic telemetry data. This simulation-based

method combines the hypotheses about the fine-scale movement with computational meth-

ods that allow efficient parallelisation on GPU-accelerated hardware.

This thesis provides insights into the migratory behaviour of Atlantic salmon smolts,

with significant implications for conservation efforts, ecological engineering applications,

and the design of effective river infrastructure. The findings emphasise the necessity

of considering social behaviours and the differences between wild and hatchery fish in

both modelling and practical implementations to aid in the preservation of this important

species.

3



Acknowledgements

I would like to sincerely thank my supervisors Colin Torney, Colin Adams and Shaun

Killen for making this exciting project possible and guiding me along the way.

Nicol McCallum, Matt Newton, Krzysztof Stanik and Witold Kundegorski deserve

great thanks for the technical work put into building and running the behavioural exper-

iments. I’m grateful for scientific and literary help provided by Hannele Honkanen, Peter

Koene, Jenn Gaskell, Adrian Bowman, Chas Nelson and Grégoire Payen de La Garanderie.
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Chapter 1

Introduction

1.1 Ecology and biology of salmon

Migration is observed in all major branches of the animal kingdom and describes different

forms of long-term movement between habitats (Dingle and Drake, 2007). Atlantic salmon

Salmo salar is one of the species that undergo extraordinary physiological and behavioural

transformations to shift between completely different habitats (McCormick et al., 1998).

Its remarkable migration from freshwater to the sea and back again offers an interesting

and instructive life history. Studying its adaptations to environmental changes and its

ecological role can provide profound insights into our understanding of ecosystems (Aas

et al., 2011).

Salmonids (Salmonidae) are a captivating family of cold-water, ray-finned fish that

are intricately linked to their habitats and have significant interactions with humans. As

these environments undergo changes due to human activities, the vulnerability and value

of this fish family increase (Thorstad et al., 2021).

There are seven species of fish commonly named salmon - one in the Atlantic - Salmo

salar, the lead character of this thesis, and six Pacific cousins, Chinook (Oncorhynchus

tshawytscha), Chum (Oncorhynchus keta), Coho (Oncorhynchus kisutch), Masu (On-

corhynchus masou), Pink (Oncorhynchus gorbuscha) and Sockeye (Oncorhynchus nerka).

Even though there are important differences (Hansen and Quinn, 1998) in general, the ba-

sic behaviour and life history of species of salmon are similar. Other members of the family

that share many similarities are known as trout (both in the Salmo and Oncorhynchus

genera) and charr (genus Salvelinus) (Klemetsen et al., 2003).



Chapter 1: Introduction

1.1.1 Atlantic salmon (Salmo salar)

Atlantic salmon is primarily an anadromous fish that hatches in the fast-flowing streams

of cold Northern European and North American rivers, where it remains for one or more

years (McCormick et al., 1998). Before reaching sexual maturity, it undergoes significant

behavioural and physiological transformations to migrate to the North Atlantic feeding

grounds, where it stays for years before migrating back to spawn in its natal streams

(Rikardsen et al., 2021).

Figure 1.1: Charismatic Atlantic salmon smolts from River River Gryffe in a flume after
the experiments described in Chapter 4.

It hatches in oligotrophic water of fast-flowing riffles and spends the first months as

fry establishing a feeding territory in the river near its siblings before developing into parr

a fresh-water form. Depending on feed availability and other factors, after a number of

years, usually two or three in Scottish populations (Malcolm et al., 2019), the parr begins

changing to a sea-ready form, smolt, in a process called smolting. This process usually

starts in Autumn and completes at the end of migration in late spring and is believed to be

regulated by changes in the daylight cycle (photoperiod), increases in water temperature,

and water discharge. In appearance, smolts are more silvery, and physiological changes

allow them to live in salty water. They are more social than parr and favour strong

flowing water, which will then lead them all the way to the seas where they will live
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as adult fish. Salmon grows considerably at sea, from over 10 cm as a juvenile fish to

over half a metre. Scottish salmon initiates migration back to its natal streams usually

after a year, but for other populations, that can be up to eight years (Klemetsen et al.,

2003). The mortality rate during both downstream and upstream migration, known as

the run, is highly variable (reported between 3% and 64% during downstream riverine

migration (Thorstad et al., 2012b)). Additionally, the timing of the run may influence

fish survival afterwards (McCormick et al., 1998).The fish which make it back to their

natal site breed, lay eggs, and often die there, providing nutrients for new life to carry

on. Sometimes, studying other salmonid species offers clearer insights into life histories

due to shared habitats (Klemetsen et al., 2003). Research on salmon frequently includes

other ecosystem species, partly because common methodologies and mechanisms apply to

multiple species (Adams et al., 2022b; Honkanen et al., 2017; Enders et al., 2007). The rest

of this section introduces trout, charr, and Pacific salmon—the closest cousins of Atlantic

salmon.

1.1.2 Brown trout (Salmo trutta)

Brown trout is the most common sympatric species with Atlantic salmon. Their habitat as

juveniles is often the same, and they are found migrating in the rivers also at the same time

(Milner et al., 2003). In general, Brown trout is a fish that has been introduced worldwide

by humans. The review by Klemetsen et al. (2003) informs us that, like salmon, it is

polymorphic and exhibits varied life histories. It spawns in freshwater but can reside and

thrive in salt and brackish waters (estuaries). It has both non-anadromous and migrant

populations, some travelling as far as the North Sea (Euzenat et al., 1999). It is adept

at colonising a wide variety of water systems due to its variability in size, growth rate,

feeding strategies, and habitat choice. It normally lives in rivers and lakes, but in the

case of environmental shifts, it can move to brackish estuarine waters or even spawn there

(for example, in the Baltic) (Limburg et al., 2001). It exhibits ontogenetic habitat shifts,

often within one geographical area, depending on its size and developmental rates. Its

appearance (phenotype) varies widely between habitats (Koene et al., 2020). It requires

the right (but broad) temperature range and good water quality, living in environments

ranging from small streams to large rivers, lakes, and coastal waters. It spawns on stones

and gravel in running water like salmon. The size of a mature fish ranges from 20g in

populations staying in small streams to kilograms in piscivorous and migrant populations

(Klemetsen et al., 2003).
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1.1.3 Arctic charr (Salvelinus alpinus)

Ecology and phenotype variation in Arctic charr are unique. It lives in the northernmost

parts of the globe (a circumpolar species distribution), with the most northern habitat

of both anadromous and freshwater species (Klemetsen et al., 2003). It is found in cold,

glaciated lakes, where it is often the only fish species. It is now absent from southern

glacial lakes, possibly due to temperature, eutrophication (increased nutrients and reduced

oxygen availability), and potential competition with other fish species. There are many

anadromous and some riverine populations, though charr generally lives in oligotrophic

and ultraoligotrophic lakes (Wilson et al., 2004). It can be found in deep lakes (recorded

up to 220m in Loch Ness, Scotland).

Extraordinarily, adult charr can weigh between 3 grams and 12 kg, with variously

sized populations found in sympatry (Klemetsen et al., 2003). Its colouring shows wide

variation, partly depending on the environment but most likely genetic for assortative

mating. It demonstrates pronounced ontogenetic habitat shifts at higher densities and

loss of differentiation when the density decreases. It often spawns in lakes but migrates

between different lakes in the same river system (Maitland, 1995).

It is an important species for studying phenotypic plasticity and speciation due to

its presence in recently glaciated lakes. These relatively new habitats, created around

10,000 years ago by receding glaciers, provide a variety of unexploited niches, promoting

rapid diversification. It exhibits many morphs in different colours, morphologies, and life

histories, adapting different feeding strategies and colonising different niches within the

same geographical area. It is believed that this diversity results from both ontogenetic

polymorphism and genetic variations (Adams, 1999).

1.1.4 Pacific salmon, genera Oncorhynchus

Even though Pacific salmon are not as closely related to Atlantic salmon as brown trout or

charr they share the name “salmon” due to many similarities in their behaviour. Research

shows that the basic biology of these species is the same, allowing some conclusions to be

drawn between different populations (Hansen and Quinn, 1998). Their life histories are

very similar, with the key difference being that all Pacific salmon species are semelparous,

dying after spawning, whereas Atlantic salmon can spawn multiple times and even migrate

back to the sea. Most Oncorhynchus species are classified as least concern in terms of

conservation status (Rand, 2010), with large upstream runs of adult fish well studied

in large North American rivers (Schindler et al., 2003). They are also also subject to
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commercial and sport fishing, activities that are already limited for Atlantic salmon, a

near-threatened species receiving increasing protection (see Section 1.1.6).

1.1.5 Ecology of salmon

Atlantic salmon exhibit a wide range of life histories, from non-anadromous freshwater

populations (mostly associated with large lakes, but also a few rivers) to anadromous

populations where fish spend up to 5 years at sea (Hansen and Quinn, 1998). Freshwater-

only populations occur in areas separated from the seas due to physical barriers but also

in sympatry with anadromous populations. In freshwater, females can mature at a length

as small as 10 cm. Mature non-anadromous salmon in large lakes have been observed at

lengths of over 50 cm, similar to anadromous populations, mainly due to the availability

of food (Klemetsen et al., 2003).

Freshwater parr prefer fluvial to lacustrine habitats, overlapping with those of trout

(Armstrong et al., 2003) but in different seasons migrate locally in the rivers depending

on the availability of food, competition, and predators (McCormick et al., 1998). In case

of displacement (e.g., due to a flood), they can even rear in lakes.

Juvenile salmon are diurnal for most of the year, switching to nocturnal during the

winter. Even though parr are somewhat adapted to feeding in low-level illumination, their

feeding efficiency decreases with darkness (Fraser and Metcalfe, 1997). It seems that the

change in periods of activity relates to their reduced feeding needs during the winter, a

desire to avoid the dangers of ice formation and increased risk of predation during the day.

Complex habitats are sometimes assumed to be preferable, however, observations of

Atlantic salmon parr (Kemp et al., 2005a) in experimental flumes with and without com-

plex boulder cover help to understand the trade-offs of various habitats for the life of the

fish. A more complex environment might not necessarily increase population density (or,

equivalently, decrease territory size). The effect can be complex due to increased flow

complexity and decreased foraging opportunities from drifting food, along with increased

susceptibility to predation in shallower holding stations.

Parr exhibits a hierarchical structure with a highly polarised food acquisition strat-

egy, meaning that, when possible, some fish will monopolise the best access to resources

Adams et al. (1998). After developing into smolts, they migrate to the sea mostly in late

spring/early summer between the first and the eighth year, but some populations migrate

in the autumn. Section 1.1.5.1 focuses on that crucial period.

Salmon can spend as little as a few months at sea, keeping to a small area (for instance,

in the Baltic Sea) or travel far into feeding grounds in the North Atlantic, usually spending
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up to 5 years there (Bacon et al., 2009).

When mature fish have grown at sea sufficiently for a reasonable chance of successful

spawning, they will attempt to return to the stream where they hatched. Many studies

have confirmed that salmon retain a memory of the chemical composition of water they

encounter when smolting in a process called olfactory imprinting (Klemetsen et al., 2003).

Recent evidence by Haraldstad et al. (2022) highlights that what occurs is a sequential

imprinting of this olfactory information, starting from an early age, and is crucial at the

stage of entering the marine environment to enable the correct decision when choosing

channels during the upstream run.

They can return for spawning in a synchronised “run” with other fish at the end of

autumn, but in the north of Scotland, salmon can enter upstream of the river at any time

of the year, up to a year before spawning (Bacon et al., 2009).

The spawning habitat of Atlantic salmon ranges from 0.35 to 0.80 m/s in water flow

and 17-76 cm in depth. Although average ranges for temperature, oxygen, etc., are well-

documented, understanding variations within and between populations remains challeng-

ing (Armstrong et al., 2003). Once female fish arrive at the shallow streams up the river,

they create redds, small gravel mounds in which they bury the eggs to a depth of 15-25 cm.

During that process, the eggs are fertilised by competing males. Some males develop a

hook-like structure in their lower jaw, called a “kype”, during their return from the sea,

which helps them establish dominance (Perry et al., 2019). In general, the number of eggs

increases with body size, ranging from tens in some freshwater populations to over 17,000.

Atlantic salmon are known to spawn consecutively up to five times (e.g., in Newfoundland

rivers) and biennially (Klemetsen et al., 2003). Additionally, there are variations with

some salmon dying after spawning (semelparous, as with all Pacific salmon), but others

migrate back to the sea and are called kelts (iteroparous).

Even within anadromous populations, an alternative pathway to migration is sexual

maturation in freshwater. Adults that mature in freshwater are typically much smaller,

which facilitates the mixing of breeding cohorts and provides a hedge against migration

problems. Although the majority of parr that sexually mature do not migrate, Lothian

et al. (2024a) indicates that there is not necessarily a developmental conflict between these

two strategies, allowing parr that matures sexually in autumn to smolt in the subsequent

spring and undergo migration.

The diversity of life histories is most likely what guarantees these fishes’ survival

(Adams et al., 2022a). Additionally, they have complex population makeup and hier-

archies, as one population can exhibit a variety of life histories. Even in anadromous
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populations, there are cases of maturing males and (rarely) females (Klemetsen et al.,

2003). As fish can spend different amounts of time at sea, one population can have

different-aged fish at spawning, as well as different ages (usually 1-3) at parr migration.

There are mechanisms such as faster-growing parr releasing at a smaller age to adjust to

potential growth and feeding opportunities.

1.1.5.1 Downstream migration

There are complex environmental and physiological cues that trigger migratory behaviour

in salmon parr to motivate them to migrate out of fresh water and not merely move

between nearby water bodies (McCormick et al., 1998). For fish to be ready to respond

to the changing environment in the springtime, they need sufficient energy reserves. Some

can sexually mature in freshwater and compete to reproduce without migrating. The main

migration period is in the spring, while less commonly, some populations migrate in the

autumn. The migration is marked by the process of smolting that occurs in response

to rising temperatures and changes in photoperiod. Most importantly, the migration to

the sea requires adaptation to much higher salinity levels, and in order to allow for the

quickest and the most successful sea entry, fish undergo physiological changes even before

they begin moving (Gorbman et al., 1982). When temperature rises and photoperiod

extends, smolts commence their movement with increased water discharge and presence

of other migrants (Thorstad et al., 2012b).

Salmon exhibit a diel migration pattern, preferring to travel at night to better avoid

predation and spend daylight hours in safer parts of the rivers. Lothian et al. (2018) shows

that if they travel during the day, their speed might increase as an alternative survival

strategy.

Salmon exhibit various swimming patterns throughout migration. Detailed modelling

of Chinook salmon smolts movement by Holleman et al. (2022), in conjunction with a flow

profile of a river fragment, allowed for the study of their movements at a fine scale, showing

both positive and negative rheotaxis (swimming facing the flow and with the flow), lateral

movements, and passive transport.

In situ study juvenile Chinook salmon downstream migration of Vowles et al. (2014)

shows fish avoiding high-velocity gradients (accelerating from a natural 0.1 m/s to 1 m/s

magnitude) that exceed their swimming capabilities, especially in light conditions. Kemp

and Williams (2008) observed wild Chinook salmon smolts (Oncorhynchus tshawytscha)

passing through a fish byway through one of two culverts equipped with cameras and

artificial lighting. This study confirmed some hypotheses about the orientation of fish
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during migration (with a preference for swimming tail-first (positive rheotaxis) at night)

and showed a preference for a less turbulent channel. Overall, smolts travel faster under

light than in darkness and possibly prefer a less complex environment.

Migration through standing waters presents another challenge for smolts. Honkanen

et al. (2018) showed that in the waters of Loch Lomond, Scotland, smolts spent extended

periods actively swimming but not following the most direct route. Some fish took more

than ten times longer to traverse the lake than if they took the direct route. Further

analysis of this data in Lilly et al. (2022) shows that smolts indeed explored the loch

randomly until reaching a zone near the outflow that provided enough flow cues to find

the correct migration direction.

During downstream migration, smolts navigate many obstacles, some man-made. Haro

et al. (1998) examined how smolts navigate weirs during their downstream journey under

laboratory conditions. Most of the fish maintained positive rheotaxis in the upstream

reservoir, but as holding positions became nonviable, they turned with the flow and gen-

erally crossed in groups rather than alone, adjusting their orientation to other fish. In

those weirs, with a flow of 2.25 m/s, they would sometimes engage in burst swimming out

of the current rather than being transported down at an uncomfortably high speed.

Studies analysed in Thorstad et al. (2012b) reveal significant variation in smolt mortal-

ity rates during river migration, with 3% mortality reported in the River Conwy in Wales

(Moore et al., 1995) and 64% in the River Eira in Norway (Thorstad et al., 2012a). The

median reported mortality per kilometre of river is 2.3% km−1, with a range of 0.3% to

7.0% km−1. This is lower than the median mortality in river mouths and estuaries, which

is 6% km−1 (range 0.6%–36% km−1), potentially influenced by migration delays caused by

challenges in the river phase (McCormick et al., 1998).

There is evidence from a study of juvenile Pacific salmon—Chinook salmon Oncorhynchus

tshawytscha, coho O. kisutch, and sockeye O. nerka—that the timing of marine entry is

influenced by the lunar cycle and resulting tidal patterns (DeVries et al., 2004). In this

study, an artificial barrier with floodgate passages allowed for the precise registration of

the passage of both wild and hatchery fish via PIT tags (method described later in Sec-

tion 1.1.7.4). The fish attempted to navigate the obstacle primarily during the moon’s

apogee (farthest point) or quarter moon—phases where tidal fluctuation and amplitude

are the lowest. The influence of the moon phase is mediated not just by changes in the

photoperiod at night but also by more nuanced physiological changes in the environment.

Other variables, such as tides, illumination, temperature, or salinity, did not affect entry

time over the three years of the study, highlighting the subtle and hidden way how the
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environment affects salmon behaviour.

The path post-smolts take in seawater remains somewhat enigmatic. Our understand-

ing of their spatial distribution typically derives from catch data. A large study conducted

on the west coast of Scotland in the North Sea by Rodger et al. (2024) examined the path-

way to the North Atlantic of smolts from 25 rivers in England, Scotland, and Ireland,

showing considerable variation within and between populations.

1.1.5.2 Collective behaviour

Some insight into the social aspects of salmon life can be gleaned from traditional ob-

servations and catch data. Berdahl et al. (2017) demonstrates how upstream migration

is influenced by social interactions. This study uses 20 years of data on Pacific salmon’s

entry into spawning pools (the last stage of migration). Assuming only environmental

and internal factors influence the decision to enter, the timing should follow a Poisson

distribution. However, an alternative social model assuming that fish follow one another

explains the observed data much better. The same reasoning provides evidence of salmon

schooling at sea, based on catch data from a methodical netting study (Berdahl et al.,

2017). It remains challenging to establish whether social coordination occurs when fish

decide to migrate back or if another factor causes increased clustering of salmon in the

seas.

An observational study by Vowles et al. (2014) of juvenile Chinook salmon in the

Columbia River in the USA found that when presented with an obstacle in a form of a

channel constriction with an increased flow, they are more likely to school in light when

navigating difficulty, while in darkness, they pass individually.

Data from the Moray Firth Tracking Project (Newton et al., 2021) shows that fish

released as part of a larger group (as well as earlier migrants) have the highest probability

of successfully reaching the sea.

Hatchery smolts allow for experimentation that is impossible with wild individuals

and might provide a crucial proxy to understand more complex behaviours. Olsén et al.

(2004) investigated the schooling behaviour of juvenile hatchery smolts to understand what

drives group composition, finding that genetic factors take precedence over familiarity, with

sibling groups more likely to travel together than fish from the same rearing group. This

sibling effect was apparent during the predominant night-time migration.

An analysis of multiple datasets on salmon’s upstream success and run size by Berdahl

et al. (2014) also shows that as the size of the migrating group of fish decreases, the straying

rate increases. This indicates that salmon migrate more often up a stream different than
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the one they were born in if the size of the population they come from decreases. It

presents an interesting evolutionary mechanism that can increase population resilience to

changing environments.

1.1.5.3 Importance of salmon

Atlantic salmon is an iconic species and thus benefits from widespread social interest. It

has been an integral part of many cultures in the north of Europe and America (Ween

and Colombi, 2013).

People associate salmon rivers with high water quality and healthy ecosystems (Kochal-

ski et al., 2022). Extractive ecosystem services (relating to fishing and sustenance) are

highly valued in places with existing salmon populations, such as Norway, meaning that

people in environments that directly benefit from salmon rivers place a higher value on

their preservation. Interactions with salmon through recreational fishing, watching river

migration, as well as indirectly through education and river restoration projects, are sig-

nificant predictors of interest in salmon preservation. In general, Kochalski et al. (2022)

shows that there is a strong desire to preserve these resources for future generations, not

just for their immediate extractive benefits.

Recreational fishing for salmon is a popular sport, though more recently conservation

status puts it under increasing restrictions (Morton et al., 2016). Atlantic salmon has

been a source of food for humans for centuries and still persist as an important element

of Indigenous cultures (Hiedanpää et al., 2020) and has been an important part of the

industrialisation of food supply (Ween and Colombi, 2013).

Salmon farming is a significant and growing industry worldwide (Torrissen et al., 2011).

It has expanded exponentially in the last four decades, especially in Norway, Scotland,

Chile, and Canada, starting in the 1970s. In the north of Europe, the lineages most

common in farming is Norwegian salmon, bred for over 12 generations to increase the

body size (López et al., 2019).

Despite issues with pollution and antibiotic use, it compares favourably with terrestrial

animal meat production. Torrissen et al. (2011) argues that if the issues of sustainable feed

for salmon are resolved, for instance, by harvesting seaweed instead of using either unsus-

tainable wild-caught fish or agricultural products that do not provide necessary omega-3

long-chain polyunsaturated fatty acids, salmon will become a sustainable source of protein

for humans.

Sea cages where farmed salmon mature in the coastal marine environment can contain

up to 200,000 fish. If only because of their scale, the fish farms are a significant problem to
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coastal environments that host them. They are a massive source of pollution from excre-

ment and protective antibiotics. Fish concentration provides grounds for the development

of pathogens and parasites. Føre et al. (2018) reports that over the last decade, infestation

with sea lice (Lepeophtheirus salmonis) has become one of the main welfare and health

issues in farmed salmon, particularly in Norway and Scotland. For the farms themselves,

it represents a significant economic cost due to lost production and delousing operations.

To their ecosystem, salmon provides an important role as both a prey in the freshwater

for both avian and aquatic species, as well as a predator in the marine environments.

The most unique role, though, relates to the transfer of nutrients from rich oceans to

oligotrophic natal areas.

Salmon provide a service of nutrient transport to freshwater streams through their

excretory products, gametes, and, ultimately, carcasses. In many ontogenetic habitats of

the rivers at high altitudes, these are key for maintaining ecological processes and ecosys-

tem functions (Samways and Cunjak, 2015). The key nutrients provided by spawning

salmon are nitrogen and phosphorus. From gametes and excretion alone, salmon provide

enough nutrients to allow for significant growth of biofilm, resulting in increased produc-

tivity of microinvertebrate populations necessary to support the rearing of hatched salmon

(Samways and Cunjak, 2015). The nutrients’ effect on terrestrial growth and abundance

might even affect the songbird communities in line with the biomass of adult salmon

returning to the natal streams (Wagner and Reynolds, 2019).

For the reasons of its complex life history and social importance Atlantic Salmon has

been an important species for scientific study.

The gut microbiome of different forms of Atlantic salmon provides an excellent sys-

tem to study how microbiomes change with the environment (Llewellyn et al., 2016). In

Llewellyn et al. (2016), authors found that the stability of the Operational Taxonomic

Unit (OTU) declines with age, evident in returning salmon that exhibit more variable

richness and diversity in their microbiomes. Understanding the migration, together with

the physiology of salmon, opens the opportunities to study unique ecological interactions.

The conservation of Atlantic salmon remains important for different communities, the

coordination of the effort and communication of scientific knowledge are in the spotlight

(Brattland and Mustonen, 2018; Hiedanpää et al., 2020; Flye et al., 2021).

1.1.6 Threats to salmon population

The population of Atlantic salmon has been recently re-assessed by the International Union

for Conservation of Nature and Natural Resources (IUCN) for the Red List of Threatened
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Species (Darwall and IUCN, 2022). Atlantic salmon is believed to be facing a decline

and has been classified as a “near threatened” across all populations of the Atlantic. Its

conservation is a complex problem requiring a broad and informed approach (Lennox et al.,

2021).

As an animal with a long and complex life history that involves many different habitats

and cover thousands of miles, salmon are especially vulnerable to rapid changes in the

environment. The selection pressures on migrants might not directly promote the best

long-term strategy, for instance fresh water residency, as the migratory instinct is too

deeply ingrained. It is worrisome that Atlantic salmon might be caught in an “evolutionary

trap”, as evidenced by the sharply decreasing number of returns (Adams et al., 2022a).

Populations of salmon fluctuate over time, which can have complex reasons due to the

species’ diverse and complex life history. A long-term data of Atlantic salmon population

since 1952 in the catchment of River Foyle in Ireland is analysed by Honkanen et al. (2019)

to investigate the strength of density-dependent and independent factors in salmon popu-

lation dynamics. Density-dependent mechanisms can relate to competition for resources,

such that as population size declines, the individuals experience better abundance and

growth, increasing their survival—something indeed observed in salmonids. This study

explains 32% of the variation in population changes over time, suggesting most of the

changes are explained by density-independent mechanisms. These can have more or less

pronounced effects at different life stages, but their severity does not decrease with the

population size.

I undertake my work in Scotland, where Adams et al. (2022b) reports on the long-

term data that comes from catch records in Loch Lomond. The evident fluctuations in

population size are more likely to correspond with wider environmental features affecting

the stock rather than the periodicity of the generation periods. The body mass of the

anadromous trout and salmon declined throughout the second half of the 20th century,

while the non-anadromous brown trout population increased markedly. Observed changes

to the upstream migration pattern also suggest an increase in salmon that spend more

than one year at sea, meaning they need more time to grow.

Diversity is considered a cornerstone of resilience ecology. For Pacific salmon, it has

been shown that the diversity of life histories increase the growth rate of populations

across longer periods of time (over 5 years), providing a buffer against fluctuations and

likely enhancing resilience, even though, in the short run, higher diversity resulted in

decreased productivity (Greene et al., 2010).

In terms of conservation, density-dependent factors are most important in freshwater
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and density-independent in the oceans. It is believed that the factors responsible for the

decline of Atlantic salmon are in the marine environment, but some closings of commercial

fisheries and conservation zones have so far not resulted in consistent gains in the pro-

ductivity of salmon stocks. That is consistent with other marine stocks. In the past, the

temperature conditions have improved but without recovery in stocks (Klemetsen et al.,

2003).

It is important to note that most of the threats to the species result from human

activities affecting populations at different life cycle stages, requiring better understanding

and active mitigation (Thorstad et al., 2021). The following sections will focus on the

specific threats.

1.1.6.1 Effect of changing temperatures

During spawning and incubation, higher water temperatures can negatively affect stock

size and survival. Later on, low water conditions reduce habitat availability for recently

hatched salmon and juvenile parr. During seaward migration, higher water discharge

increases the chances for successful sea entry of smolts (Thorstad et al., 2012b).

Climate change and resulting ocean warming have been suggested as key drivers of

population decline in many species. Soto et al. (2018) analyzed data from salmon from

1980 to 2010 travelling from St. John River on Canada’s east coast to compare survival

rates at sea of subpopulations that feed on different grounds. They argue that varied

warming in the feeding grounds cannot be the principal cause of the more synchronous

decline of the population. Analysing salmon growth using historical data from fish scales

across Norwegian rivers, Vollset et al. (2022) provides evidence supporting a hypothesis of

a step change in the environment of the North East Atlantic. The fish are not growing as

much in the sea as they used to, and as a result, the percentage of fish staying longer at

sea has changed. The shift in growth rates coincides with the steep increase in the average

surface temperature of the Norwegian Sea, a decrease in the proportion of Arctic water,

and a decrease in zooplankton abundance. Data from studies of other marine species also

show a reduction in size.

1.1.6.2 Habitat degaradation and farming

Salmon require good water quality, flow conditions, and the environment providing shelter

and foraging opportunities. Habitat restoration is part of conservation efforts but often

fails to address the sources of ongoing degradation and environmental issues. The water

must be well-oxygenated, free of major pollutants, and free from both chemical pollution
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from agriculture and silt (Armstrong et al., 2003). Agricultural pollution from farmlands

is now a major source of degradation of water quality (Hendry et al., 2003). Additional

sources of pollution include salmon and trout farms, often located in the same river systems

as the wild stock. The substantial quantities of feed and excrement alter the biological

composition of the ecosystems through which the migrating fish pass, making them more

susceptible to developing diseases or parasites.

Another significant problem, especially for wild salmon populations that are often in the

same areas as the fish farms, is the escapes of the farmed salmon that provide competition

in the river system for the wild populations. An additional problem is the maladaptations

in the subsequent generations due to interbreeding between wild and farmed salmon (Fraser

et al., 2010). The genetic integrity of many wild populations has now been clearly reduced

in areas where salmon farming is present (Gilbey et al., 2021a; Pritchard, 2023).

There are some positive developments regarding this issue of the farm escapes. Recent

work by Benhäım et al. (2020) shows that triploid fish (i.e. genetically modified for

sterility) can have comparable productivity (growth) to the normal diploids, when reared

at low temperatures, providing a safer alternative for commercial production.

Rodger et al. (2024) studied the direction of travel of smolts from 25 rivers in England,

Scotland, and Ireland, showing that in their migration, they avoid areas that seem to

be the optimal route but are developed with salmon farms, providing evidence of the

additional cost to the late-stage migration. There are, however, some benefits from the

development of commercial salmon rearing. In some regions, the extinct population of

wild salmon is reintroduced with hatchery-reared fish. On the River Testebo in Sweden,

Serrano et al. (2009) observed that despite designed fish passes, smolts are still guided

towards hydropower turbines, with an overall very low migration success (21% and 7%

in each year of study). The authors suggest that despite many stocking programs across

the Baltic Sea, they are hindered by still inadequate corrections to the river environment

(Serrano et al., 2009).

Hatchery smolts often differ from wild smolts, typically having a larger size and higher

energetic states (amount of body lipids and protein). Comparing the threat response of

juvenile wild Atlantic salmon with farmed fish Johnsson et al. (2001) showed an effect

of domestication that was both environmental as well as genetic, with captive animals’

response blunted compared to the wild. The condition factor—a ratio of their length

to mass—serves as a good proxy for the energetic state in laboratory experiments with

both wild and hatchery smolts, showing further migration distance for lower energetic state

fish, despite a slower migration speed (Persson et al., 2018). As with wild smolts, hatchery
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salmon migration success correlates with high water discharge or rapidly increasing at the

start of migration—suggesting that both the overall year and the timing of migration

are crucial. Laboratory experimentation confirms that a lower energetic state predicts

migration success, as it reflects a lack of food and resources in the feeding habitat of the

parr (Persson et al., 2019).

In Denmark, a telemetry study shows that well-prepared hatchery-reared salmon can

actually have a higher survival rate throughout downstream migration than their wild

counterparts. The larger fish in both groups experienced lower mortality during the down-

stream migration, which explained part of the difference, and further studies are needed,

as the wild salmon sample size was relatively small (Flávio et al., 2019).

1.1.6.3 Barriers

Increasing pollution, fish farming, and man-made obstacles are either directly causing

mortality or delaying migration and causing it indirectly. As Atlantic salmon undergo not

one but two riverine migrations, physical barriers present a particular challenge.

The well-being of humans requires some level of exploitation of the natural environ-

ment. Rivers historically always provided a source of energy and water and were tamed to

provide safe shelter in the settlements. However, even thoughtful improvements in river

management - whether for flood defences, agricultural use or conservation result in the

creation of reservoirs with some obstacles to the free flow of water on which anadromous

fishes depend.

Fragmentation of rivers is a major problem for migratory fish species. In Europe,

there are 0.74 barriers per kilometre, many of which are barriers under two meters in

height that are missing from existing records (Belletti et al., 2020). Most work on ob-

stacles to migration focuses on large dams, which in Great Britain constitute only 0.4%

of barriers. However, even smaller obstacles represent an added cost to migration and

increased mortality risk. In the European Union, a law “Water Framework Directive”

requires free passage for migratory fish travelling between areas of the river essential for

their life history (Gauld et al., 2013), highlighting an increased focus on conservation.

The fragmentation of rivers with dams and weirs has an obvious effect on the upstream

migration of fish. Large fish swimming up the rivers are relatively easy to study in capture

and tag studies, compared to juvenile fish, for which, until recently, most telemetry tags

were unsafe due to their size. Gauld et al. (2013) looked at the impact of those very com-

mon low-head weirs on brown trout (Salmo trutta), which are particularly troublesome for

smolts during common periods of low water levels, for instance, during summer migration
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times.

The conflicting needs of environmentally conscious societies include the proliferation of

hydropower plants. Not all water needs to be fed through the turbines of the power plant,

and in principle, it is possible to provide a suitable passage for fish migrating both up and

down the river. In practice, however, this is a challenging ecological engineering problem

that depends not only on the species of fish for which a fish pass is designed but also

on the characteristics of the water reservoirs and the hydroelectric machinery. Brackley

et al. (2018) compares the damage to Atlantic salmon smolts resulting from direct swim

through an Archimedean screw turbine with the passive passage of euthanized fish—to

establish a method of estimating the safety of a turbine without resorting to post-factum

telemetry data (that suggests up to 10% mortality on the turbines). Such a turbine has

a slow revolution of under 30 rpm, which allows actively swimming fish to avoid most of

the scale loss (used as a proxy for mortality here), while passive euthanized fish are much

more damaged. This highlights the difficulty in designing safe passages for fish.

Particularly challenging are obstacles that not only act as physical barriers but also

make it difficult for fish to find the correct passage due to the turbidity of water and

hydraulic noise. Such situations are typical of hydroelectric plants with a fish bypass.

In study by Kerr and Kemp (2018) migrating brown trout Salmo trutta undergo an ex-

periment that shows that higher turbidity of water may mask the velocity gradient. Fish

orientation gives clues about whether it finds the accelerating flow and orients downstream

or is likely to reject the channel if the flow is too strong or turbulent.

Study of the behaviour of migrating smolts at different facilities in Finland (Karppinen

et al., 2021) shows that every hydroelectric facility encountered by smolts presents a unique

problem requiring an individual approach. The characteristics of the reservoir above the

dam, its physical structure, and hydroacoustic properties all affect smolt behaviour and

subsequent mortality or migration delay. Stoilova (2024) reviews various methods to pre-

vent fish from making incorrect (and potentially lethal) entries at man-made structures.

Many different approaches are currently in use, including acoustic, light, electric, mechan-

ical, olfactory, and hydrodynamic barriers, all of which are characterized by trade-offs,

with suitability depending on the understanding of the target species and its response to

the environment.

Newton et al. (2018) assesses the impact of an obstacle on Atlantic salmon upstream

migration based on radio tag data. Adult fish are caught and released downstream of the

dam with a fish pass. A telemetry receiver array allows for detection in distinguished areas

below and above the obstacle but does not quantify actual movement. The authors find

28



Chapter 1: Introduction

that the main predictors of successful passage are time spent searching for the pass, fish

length, and fat content. This highlights the energetic cost required for successful obstacle

navigation during migration.

Another challenge for smolts entering the sea is high-energy coastal waters, either due

to strong tides or the presence of turbines from tidal energy projects. It is observed that

smolts do not stay to feed in coastal waters, instead moving to the deeper seas with active

swimming using appropriate currents (Mcilvenny et al., 2021).

Godfrey et al. (2015) examines Scottish salmon swimming in the Atlantic and finds

different patterns of diving with the potential for interactions with marine renewable

energy developments on the north coast of Scotland, especially among repeat spawners

that migrate multiple times. As those developments become more widespread, they are

likely to further reduce migration survival.

1.1.6.4 Predation

Investigations reveal that smolts are most vulnerable to predation during the early phase

of migration, though there seems to be a large variation between different populations and

different years. Avian and piscivorous predation is the main cause of mortality in many

rivers (Chavarie et al., 2022; Thorstad et al., 2011).

Mortality in the lake itself can be low, but the confluences of the river, where predatory

fish such as pike (Esox lucius) aggregate, pose the largest threats. Smolts time their

entry to and from the river to be after dusk as a possible predator-avoidance behaviour

(Kennedy et al., 2018). It is also suggested that synchronous migration is an antipredatory

behaviour that increases survival through overwhelming the predators with large numbers

of smolts, leading to a linear increase in survival with the number of migrants when density-

dependent and independent factors are accounted for (Finstad and Jonsson, 2001).

The more time fish spent in estuaries and river mouths more it was predated on by

harbour seals (Phoca vitulina, cetaceans such as bottlenose dolphins (Tursiops truncatus),

birds such as cormorants (Phalacrocorax carbo), and fishes such as Atlantic cod (Gadus

morhua - as evidenced by the aggregation of many predators during the time of smolts’

entry to the sea (Green et al., 2022; Lilly et al., 2024).

1.1.7 Studying Atlantic salmon
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1.1.7.1 Direct Observation

Aquatic environments naturally present a bigger challenge for the observation of the be-

haviour of animals than terrestrial ones. It is possible to observe the upstream run of

salmon - especially the bright red sockeye salmon (Oncorhynchus nerka)- but this is a rare

exception when the fish is both large and navigates obstacles by often jumping above the

water line. Most of the time, studying the habitat and behaviour of salmonids in the wild

depends on the ability to observe them in challenging conditions. With the development

of underwater cameras it is becoming possible to survey some small areas, but the unfor-

giving lack of light in aquatic environments makes it often unfeasible. There are reasons

to attempt that, as even in the case of fish tagged with a positional system (see following

sections) and fully mapped habitat, limiting observation to only a few tagged fish might

not be representative of their true behaviour.

Specifically, observations in winter with lower light pose a challenge and seasonal bias

to direct observation methods such as snorkelling (due to low temperature and possible

ice cover). In streams and in the laboratory setting, Erkinaro et al. (2018) examined

visual methods for estimating the fish location and quantity compared to precise but

time-consuming methods of electrofishing and radio telemetry (described in the following

section). The authors report a very low effectiveness of observation both during the day

and at night with infrared light. This illustrates the practical difficulties in performing

more fine-scaled studies with multiple individuals.

1.1.7.2 Catching

In rivers, data from recreational fishing offers the longest timescales of high-quality popu-

lation data on fish. Adams et al. (2022b) examined 116 years of catch records, providing

confirmation of a long-term decline in the Atlantic salmon stock in Scotland. Such data is

all the more valuable if it comes with some measure of catch effort—in this case, the num-

ber of angling club members in a given catchment. The earliest attempts to learn about

the life history of individuals were based on tagging the fish with coded wires attached to

its fins, so on the subsequent catch, the location change and condition of the fish could

be measured. Scientific trawler surveys catch coded wire-tagged post-smolts to provide

information on where at sea salmon from different river systems feed (Lilly et al., 2024).
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1.1.7.3 Electrofishing

Today, the most common method for assessing stream-dwelling populations of fish like

salmon is electrofishing. This involves surveying representative areas methodically with

electrodes that induce fish movement towards the operator—either on a boat or wading

through shallow water—and immobilises the fish, allowing for their temporary removal

from the water for assessment and measurement. In closed environments, multiple passes

of the area with the removal of fish from the water (population depletion) allow for a good

estimate of species richness and abundance. More recently, this process has been replaced

by a less labour-intensive process where a catch-per-unit-effort (CPUE) can be estimated

for a reliable estimate of the population without the necessity of population depletion.

(Honkanen et al., 2017).

To improve survey data, it is beneficial to understand historical trends and estimate

electrofishing efforts through cross-checking abundance between studies and sites. Atlantic

salmon electrofishing data from across Scotland has been analyzed to provide a benchmark

density of stocks (Malcolm et al., 2019). Modelling the capture probability and density

with covariates referring to the location, habitat, and method of sampling allows for a

better understanding of the data and expected results across Scotland.

1.1.7.4 Radio tags

PIT (Passive Integrated Transponders) tags are electronic presence tags suited for narrow

passages and close proximity detections. The tags that are implanted under the scales

of a fish are miniature transmitters that send an electronic code to a receiver as they

cross its induction loop - i.e. using the energy provided by the receiver. They are very

popular in laboratory experiments due to their small size (under 12 by 3 mm) and the

possibility to identify individuals, allowing, for instance, a study of group composition in

laboratory conditions (Olsén et al., 2004). They are additionally limited by the frequency

of the pulses of the receiver, which is usually 1Hz. In order to allow greater distance and

frequency of reporting, the tags need to contain their own battery, making them active

tags.

In freshwater, active radio tags have been in use for a long time to study upstream

migration, initially starting with larger fish due to the size of the batteries and the size

(almost 10cm long) of the tags with a large antenna. Due to the limited range, it often

required active tracking (McCleave et al., 1978).

PIT tags and radio telemetry bring substantial improvements where previously only
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direct observation would be possible, such as studying the habitat and the behaviour of

salmon parr during the winter (Enders et al., 2007). PIT tags require wading in the water

to allow a close detection distance from the antenna, whereas radio tags provide a larger

detection distance.

Radio tags with motion-sensing capabilities allow the monitoring of adult Atlantic

salmon in freshwater spawning grounds as validated with direct video recordings (Karp-

pinen and Erkinaro, 2009). Serrano et al. (2009) used a mix of both acoustic and radio

telemetry to track the downstream migration. Radio tags have an advantage in position

location but lose signal in deeper water and in increased salinity, where researchers rely

on acoustic receivers.

1.1.7.5 Acoustic telemetry

Recent advances in miniaturisation allow for small radio or acoustic transmitters (tags) to

be placed on or under fish scales. Radio tags are unsuitable for operation in seawater due to

the attenuation of electromagnetic waves in this medium. Hence, salmon migration, which

spans both fresh and seawater environments, is commonly surveyed with acoustic tags.

Acoustic telemetry works by transmitting encoded acoustic signals that can be picked up

by an anchored receiver tens of meters away, allowing presence data to be reported every

few seconds from passing fish for many months.

The burden of the tag can be a problem, so there are broad rules to follow to avoid

introducing a disadvantage to tagged fish. Different tag sizes were also compared, finding

that within a reasonable range of 1.9% to 7.39% of body mass, the precise difference in

the tag burden did not matter (Lothian et al., 2024b).

Presented in Lothian et al. (2018) is an example of a telemetry study to understand

survival in downstream river migration of Atlantic salmon. By connecting telemetry data

with other environmental factors (water discharge, time of day, moon phase), we can

understand the factors affecting survival rates, migration timing, and the direction of

entry to the sea. This sort of data has limitations for collective behaviour study because

very few individuals are released at the same time (limited potential of shoaling), and it

is often many days before they reach the first receivers, by which time the fish travelling

together might already disperse.

Compared to river migration, the sea phase of it is even less understood. Multiple

research teams tagged more than 1900 smolts to understand the migration pathways of

Atlantic salmon smolts from tributaries of the Irish Sea. Sets of marine arrays—allowing

detection of presence over wide gaps between Scotland and Ireland, as well as a SeaMonitor
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remotely controlled vessel, allow gathering data from far in the sea (Green et al., 2022;

Lilly et al., 2024). The relatively short time period spent in the Irish Sea suggests that

post-smolts choose to get out as fast as they can, swimming actively and not just relying

on water flows. Similarly, large telemetry exercise data from the east coast of Scotland,

Moray Firth Tracking Project (Newton et al., 2021) shows that fish followed a common

migration pathway, swimming actively and using water currents but showing directionality

instead of passively following the flow.

Precise placement and calibration of multiple receivers are crucial. One study, Guzzo

et al. (2018), shows how we can achieve accuracy comparable with a GPS and temporal

resolution close to 1Hz while tracking fish on a small, calm lake covered with a receiver

array. However, placing such an array close to an obstacle on a river is more challenging due

to the more likely drift of receivers and noise from falling water or mechanical equipment

interfering with the acoustic signal from fish tags.

One such trial with Atlantic salmon has been reported by Leander et al. (2020), where

two types of acoustic arrays (pulse-position-modulation and phase shift) accuracy was

tested near a hydropower facility in Sweden. Such systems are limited by encryption of

receiver data on telemetry devices, forcing the use of manufacturer proprietary positioning

algorithms and study design adhering to arbitrary requirements.

Better positioning is possible with radio telemetry, and sometimes both types of tags

are used (Serrano et al., 2009). Recently, it has become possible to combine fine-scale

telemetry with a hydroacoustic profile of the river to study swimming and migration

patterns in situ (Holleman et al., 2022).

Long-term pop-up satellite archival tags allow for long-term tracking of fish at sea.

High-resolution light-based geolocation archival tags are novel and allow studying both

vertical and horizontal migration, showing (though on a small sample of six fish) high

diversity in paths, habitats, and strategies (Strøm et al., 2018).

Passive and active telemetry has been used by Chavarie et al. (2022) to provide more

precise locations of mortality of salmon and discern residency and travelling patterns.

It is easier to study farmed salmon in sea cages due to their size and accessible lo-

cation. Increasingly, there is a growing concern regarding farmed salmon welfare, which

is addressed with more precise real-time monitoring (Føre et al., 2018). The acoustic

tags used on commercial farms can track the location in 3D but again require additional

processing from device manufacturers, which often brings additional challenges and limi-

tations (Stockwell et al., 2021).
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1.1.7.6 Sonars

DIDSON (manufactured by Sound Metrics Corp., Seattle, USA) is the most popular

multi-beam sonar, also known as acoustic cameras, which offers fine spatial and temporal

resolution, allowing for a bird’s-eye view and video-like presentation of objects up to 20

meters underwater. With a framerate over 5 fps and angular resolution of 0.3 degrees, it

facilitates observation of fine-scale behaviour.

The automation of video processing and the imaging sonar are utilized by Handegard

and Williams (2008), who use DIDSON to track fish following a vessel at sea and employ

simple computer vision techniques to automatically extract movement data. They argue

that for schools with moderate density, DIDSON is sufficient for behavioural studies, al-

though the smallest group of fish tested were, on average, 24 cm long, which is considerably

larger than salmon smolts.

Tušer et al. (2014) studied the precision and potential biases in length measurement

of fish observed in laboratory conditions, reporting reasonable detection and sizing for

fish down to 20 cm, and highly dependent on the fish’s orientation relative to the sonar

beam—a factor that is difficult to control outside the laboratory.

The acoustic camera is deployed in the work of Doehring et al. (2011), where it records

the movement of juvenile anadromous whitebait during migration at floodgates. In the

study, fish measuring approximately 60 mm, are observed in turbid water to analyse the

choice and timing of the passage through an obstacle in quantities not possible without

direct underwater observation with a sonar. This suggests a promising avenue in future

research on salmon, though the cost of the equipment remains an obstacle.

1.1.7.7 Direct Experimentation

An alternative route to understanding behaviour in the wild is to recreate scenarios in

a constrained laboratory setup. Combining real-life scenarios with laboratory control, as

leveraged by Kemp et al. (2005b), the authors study the reactions of different species and

year groups of Pacific salmon to their choice of channel in a natural river divided by an

obstacle. They observed evidence of active swimming and various strategies when entering

either a constricted or an unconstrained channel of the flume. The two channels, differing

in water velocity and turbulence (a choice chamber), facilitate the study of responses to

hydraulic stimuli. Downstream migrating smolts are recorded on a video camera during

both day and night with infrared illumination. Contrary to previous observational stud-

ies, the authors noted that fish travelled both head-first and tail-first at times, actively
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swimming. They preferred the choice of a less turbulent water channel and sometimes

actively swam upstream out of a channel with low water velocity.

Direct measurement of fish movement in an artificial stream and its modelling in

a Lagrangian context is presented by Tan et al. (2018). A flume filled with vertical

slots/obstacles had a precise flow profile measured so that the repeated filmed passage

of a test fish (silver carp) allowed for a description of its movement with a model driven

by response to hydraulic stimuli within some sensory range of the fish. This study, while

not involving any collective behaviour, showcases what is possible with well-controlled

laboratory settings and modern tracking techniques.

1.2 Quantitative movement ecology

We approach salmon migration in the context of potential collective movement. To choose

an appropriate framework for different types of observations, we need to understand the

connection between different types of ecological modelling.

1.2.1 Ecological research

Ecology is built on in situ observations and testing of the hypothesis about organisms and

their interactions. Unlike biology, where a study can be focused on identifying single phe-

nomena through controlled laboratory experimentation, ecologists look for longer spatial

and temporal patterns. Some of those patterns will be described as theoretical models

long before measurement at the required scale is possible. As data becomes available,

those two approaches, observational and theoretical, are reconciled through statistical and

mathematical modelling methods (Codling and Dumbrell, 2012).

Advancements in the capability of sensors have increased data availability, allowing

more complex phenomena to be studied but requiring more complex data analysis tools.

Increasingly, understanding of nature can only be expressed in the form of rigorous stochas-

tic models (Schmolke et al., 2010).

A basic ecological model that focuses on a specific species takes into account some

measure of the organism’s environment, e.g. availability of feed, predation, and habitat

quality. Additionally, it can include the structure of the population, intra- and inter-

population competition, and seasonality. The simplest models can be stationary and

deterministic, while the more advanced ones incorporate temporal and spatial randomness

at various scales (Codling and Dumbrell, 2012).
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Beyond modelling single or multiple species interactions, other approaches focus on

the spread of diseases (Hampson et al., 2009; Faust et al., 2017) or predicting the changes

and disturbances in the ecosystems (King et al., 2015; Mouquet et al., 2015).

Inferring the behaviour of individuals in a population, or the behaviour of the entire

population based on individual variation, poses complex questions that bridge behavioural

biology and ecology. The common starting point for statistical modelling is a mean-field

approach where variability is averaged, and the structure and hierarchy underlying it

are ignored. This approach can be necessary for the model to have an understandable

mechanism and be computationally feasible but matches poorly to the natural environment

that is usually heterogeneous (Grünbaum, 2012).

Unlike laboratory experiments, where the established protocol can be followed and

sampling and measurements adjusted for the phenomena studied, field observations have

unavoidable biases that go beyond the measurement uncertainty. Field sampling protocols

are established in the context of specific environment and modelling type (Dengler and

Oldeland, 2010). Equipment constraints dictate what can be measured and where, usually

within a small part of a wide habitat. The access to the the natural environment is limited

geographically, and together with unavoidable temporal constraints can result in a strong

convenience sampling bias (Honkanen et al., 2017; Grünbaum, 2012). Missing data points

and high measurement error combined with variability and unexpected interference makes

the modelling of uncertainty in field studies even more important than in laboratory work

(Nakagawa and Freckleton, 2011).

Many ecological questions are posed in a spatial context, and for animals, movement

is a key aspect of behaviour. Movement ecology underlies the understanding of habitat

use and choice, and this research grows with the development of data acquisition over last

decades (Kays et al., 2015).

Previously in Section 1.1.7 I discussed many ways in which historically, salmon have

been studied, which also illustrates the breadth and limitations of approaches in spatial

and movement ecology of other species and ecosystems (Jacoby and Piper, 2023). Later in

Section 1.3.1, I discuss the advances in data gathering, such as the development of imaging

techniques, improved telemetry, genetics data and other modern methods over the last two

decades drove the step change in quantity and quality of observations (Nathan et al., 2022).

With better data, we expect models to not only test binary hypotheses about species in

their ecological context but also understand complex phenomena and how they change

(Mouquet et al., 2015; Nakagawa and Freckleton, 2011). Modelling at different scales

allows understanding of individual and social aspects of behaviour. The following section
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presents the fundamentals of modelling of animal movement, that plays a crucial role in

wider ecological modelling.

1.2.2 Mathematical modelling of animal movement

Movement is the most obvious and easily quantifiable animal behaviour. Much of the

missing knowledge of population dynamics can be filled in by understanding behaviour

in the context of animal movement Morales et al. (2010). Behaviours such as feeding or

breeding are usually implied by movement across the environment. Movement is also a

key aspect of studying migratory species such as salmon.

The first stochastic description of natural movement, the Brownian motion, has been

proposed in 1827 by botanist Robert Brown, who observed particles of pollen submerged in

fluid. This basic continuous-time random process was later formalised by Einstein (1905)

and can be seen as a description of movement where change in position dx(t) is a draw

from a Gaussian distribution:

dx(t) = dΨ(t) ∼ N (0, dt), (1.1)

which is a Lagrangian formulation of movement - with the point of reference being the

single individual. Alternatively, the same can be seen in an Eulerean context as an equation

of diffusion that describes the probability of the appearance of an animal in space averaged

over stochastic realisations of the process 1.1, its probability distribution function:

f(x, t) =
1√
2πt

exp

(
−x

2

2t

)
(1.2)

As a mathematical process, this is known as the Wiener process, and underlines most

of the stochastic processes. The generalisation of it comes in the form of Lévy process

(Zaburdaev et al., 2015), that generalise Ψ(t) to be a draw from any stable distribution.

Discretised, Equation 1.1 describes increment of a position ∆x at the nth time step ∆t:

∆xn ∼ N (0,∆t) (1.3)

known as random walk (Pearson, 1905)

Despite increasing understanding of biological, social and psychological mechanisms in

animal behaviour, those fundamentals remain key approaches in the modelling of move-

ment. Brownian motion, the Lagrangian formulation, captures the microscopic dynamics
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of movement, while Eulerean captures the macroscopic state of diffusion. The time scale

of observations and computational limitations inform the choice of discrete random-walk-

based models. The following sections present examples of different modelling approaches

and how additional terms help characterise what is observed in the movement of animals.

1.2.2.1 Lagrangian modelling

The Lagrangian approach in ecological modelling can describe the movement of a single

animal through stochastic differential equations (SDEs) that express the movement as a

combination of deterministic forces and random fluctuations, also known as the Langevin

equation (Zaburdaev et al., 2015). It allows combining the inherent randomness of move-

ment introduced with Brownian motion (or the Wiener process) 1.1 with the most basic

mechanisms of some directionality. In principle, those are individual-based models (IBMs)

as they focus on a single individual. Different formulations vary with the coordinate sys-

tem, for the purpose of presentation, we will use the simplest two-dimensional definition

following Preisler et al. (2004). We define an incremental step about an animal location

r(t) = (x(t), y(t)), at time t in a Cartesian plane as:

dr(t) = µ(r(t), t)dt+ D(r(t), t) · dΨ(t), (1.4)

and in a matrix form as[
dx(t)

dy(t)

]
=

[
µx(r(t), t)

µy(r(t), t)

]
dt+ D(r(t), t) ·

[
dΨx(t)

dΨy(t)

]
, (1.5)

where

• vector µ(r(t), t) =

[
µx(r(t), t)

µy(r(t), t)

]
defines the drift component, which is the deter-

ministic part of the movement describing the animal attraction and avoidance at

different times and locations.

• The matrix D(r(t), t) is the diffusion matrix that provides the magnitude of ran-

dom movement in each direction, mediating the effect of the environment and allow-

ing for correlation between directionality of movement.

• Ψ(t) =

[
dΨx(t)

dΨy(t)

]
represents the increments of random Gaussian process for each

dimension.
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This generic formulation allows for many complex parametrisations, where parameters

of movement change according to complex functions of time and location. In practice,

however, the models need to be interpretable to match a hypothesis and able to fit the

data to confirm or deny it. The most common cases are the following variations of random

walk (Hooten et al., 2017):

• For uncorrelated/simple random walk this model is the equivalent to 1.1 with

the drift µ being zero and the diffusion terms independent between dimensions:[
dx(t)

dy(t)

]
=

[
Dx 0

0 Dy

][
dΨx(t)

dΨy(t)

]
(1.6)

In this case, there is no implied directional preference and movement in one direction

does not influence movements in another. Even though it is too simplistic to describe

most animal behaviour, it still is a useful null hypothesis to more complex (or non-

Gaussian) models (Sakiyama and Gunji, 2013).

• Correlated random walk (CRW) contains no drift component (µ = 0), and

the diffusion term is usually temporarily correlated. The spatial correlation of the

diffusion term is an unlikely case, and usually, CRW is modelled in polar coordi-

nates where the step is defined in terms of its length s(t) and the direction α(t),

r(t) = (s(t), α(t)). In those coordinates, if α(t) = dΨα(t), the direction will be auto-

correlated, resulting in a realistic modelling of the directionality of animal movement.

It has been popularised with study of insects, explaining butterflies’ flight (Kareiva

and Shigesada, 1983). Where only sparse data is available, such as in fish telemetry,

Lilly et al. (2022) uses CRW to understand the movement of migrating salmon in

standing water. Data can also be modelled as a mixture or CRWs to distinguish

different modes of behaviour in long-term telemetry data, such as by (Morales et al.,

2004) in herds of elk.

• Biased random walk model includes a non-zero drift µ, indicating a preferred

direction, while the diffusion remains uncorrelated:[
dx(t)

dy(t)

]
=

[
µcx

µcy

]
dt+

[
Dx 0

0 Dy

][
dΨx(t)

dΨy(t)

]
(1.7)

where µ =

[
µcx

µcy

]
is the drift coefficients along both axes, representing the directional
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bias. This model is suitable for simulating animal movements that are influenced by

external factors like wind or current direction or by internal states such as homing

instincts or resource attraction. For example Langrock et al. (2012) extend approach

of (Morales et al., 2004) to elk models with the introduction of a bias term in some

models. Avgar et al. (2013) uses a biased random walk to incorporate memory of

predation and foraging into a theoretical spatial model.

• Finally, the Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930)

is characterised by a mean-reverting drift component, models the animal returning

to a specific central location (xc, yc) over time. The equation is given by:[
dx(t)

dy(t)

]
= −

[
αx(x(t)− xc)
αy(y(t)− yc)

]
dt+

[
Dx 0

0 Dy

][
dΨx(t)

dΨy(t)

]
(1.8)

where αx, αy are the reversion coefficients, and x0, y0 are coordinates of the central

point. This model effectively captures the behaviour of animals in a variety of

scenarios thanks to this mean-reversing bias term. It is the most popular description

of animal movement, from capturing the trajectory of swimming whales and the

circular gliding of kestrels (Gurarie et al., 2017), shoals of fish swimming (Gautrais

et al., 2012) to mammals like fisher and boar (Blackwell et al., 2016). The OU

process forms the basis of my investigation in Chapters 3 and 4.

The above models can be extended with the use of other stable distributions in place

of Gaussian as Ψ (Zaburdaev et al., 2015). Using a heavy-tail Cauchy distribution allows

to model movement as Lévy flights with sporadically larger displacement dr(t), matching

well some animals movement (Smouse et al., 2010; Avgar et al., 2013).

1.2.2.2 Eulerian Approach

By contrast to Lagrangian models, which describe movement explicitly as individual-based

models (IBMs), Eulerian models are “place based”. They are better suited to tackle the

questions of space use on population or group level, where sampling frequency and scale

do not allow IBM to be used directly (Smouse et al., 2010). They describe patterns of

appearances as a probabilistic approximation of animal appearance in a given point in

space using diffusion equations. An example of such an equation is the classical diffusion

equation:
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
(1.9)
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where p(x, t) is the probability density function representing the probability of finding the

animal at point x at time t, and D is the diffusion coefficient reflecting the rate at which

the probability of presence spreads out over the area. This is the generalisation of the

probability density function of Brownian motion equation (Equation 1.2). Strøm et al.

(2018) model long-term movement of Atlantic salmon in the ocean with Equation 1.9 pro-

viding an estimated residency distributions. Ovaskainen et al. (2008) studied movement of

butterflies using capture re-capture methods, where on average, each animal was observed

less than twice, suggesting the Eulerian approach due to the scarcity of individual data.

Lagrangian and Eulerian can be used interchangeably with random and direct compo-

nents of an IBM equivalent to a diffusion and advection processes. To better understand

the interaction of animals with the environment, more than one approach can be used at

the same time to recognise the individual nature of the animal and the aggregate force of

the environment on it. To model fish movement in a flow field, Gao et al. (2016) combine

the Lagrangian approach for the movement of the single fish with an Eulerian approach to

model the spatial field of vector flow. In a laboratory setting that provides strong support

for rules of navigation based on lateral-line sensing of the currents. On a larger scale,

Goodwin et al. (2006) use such a mixed approach to optimise fish passes near the hydro-

electric facility, where vector fields of water flow are affecting the movement of individual

fish.

1.2.2.3 State-space models

Movement parameters derived from fitting a movement model to observations are only as

useful as an interpretation that can be attached to them. In most of cases, we are using

different parameter sets to describe discrete modes of animal behaviour, for instance:

resting, exploration or foraging that are often time and space-dependent.

The simplest way to incorporate state change in the system is to assume that only the

previous state affects the probability of the transition to the next. This is known as a

Markov property and simplifies inference and model fitting thanks to this assumption.

In fact, the simple random walk (Equation 1.6), or Brownian motion is a Markov

process where the previous location is the only factor that influences the next location,

making the future independent of any other past states. Sakiyama and Gunji (2013) use

a higher-order Markov process to introduce a memory to a Levy walk (a random walk

with a power-law or heavy-tail distribution) showing better food searching behaviour on

simulated data than a simple Gaussian random walk. A Higher nth−order Markov process

is an extension, where future state depends only on n previous states.
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(a) Hidden Markov model (b) State-space model

Figure 1.2: Schematics of Hidden Markov Model(a) and a more generic State-Space Model
(b). In a Hidden Markov Model (a), some latent discrete states of the system S1, S2, ..., Sn
are changing with independent probabilities depending only on the previous step. Those
states are observed with error as observations O. In general, as shown in the panel (b),
process S can influence another process R (for instance observational process) at uneven
intervals, either of which can assume continuous values.

When using the Markov process to model the changing of parameters of the underlying

movement model (which in most cases is correlated as in CRW and OU processes), we

often assume that the states of animals are a) discrete and b) latent. The modelling

tool to express those assumptions is called a Hidden Markov Model (HMM), where each

observation is a noisy observation of a behavioural state. In the Figure 1.2a I present a

schematic of an HMM.

Franke et al. (2004) modelled behaviour of the movement of caribou, directly using

measurement of distance and turning angle between observations to predict one of three

states (bedding, feeding and relocating). Towner et al. (2016) used HMMs to analyse

different types of swimming of white sharks with telemetry data. Using the model to

accurately distinguish behavioural states allows the authors to see inter-sex differences and

individual variability. The multi-year elk data from Morales et al. (2004) was modelled

successfully with HMMs describing state-switching between types of random walks by

Langrock et al. (2012) and different behavioural states (Patterson et al., 2017).

State-space models can be seen as a generalisation of HMMs or their continuous-time

equivalent. They are a general framework where the modelling is described in a space

defined by a number of states whose values change in time. Unlike HMMs, where the state

value is discrete, the underlying states in the SSM take continuous values, representing the
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“process” layer or a movement process. In animal movement modelling, it is also typical

to add another “observational” layer (McClintock et al., 2020). Figure 1.2b presents the

schematic of a complex SSM with two layers of processes with hidden states that are

irregularly sampled. Dense and precise sampling of animal movement in the field is rarely

possible and measurement errors are rarely truly independent. Unlike HMMs, where every

observation of a hidden state has independent measurement noise, in SSMs, the observation

is its own process with noise and bias, which, even though Markovian, presents another

level of difficulty in fitting data to this much more realistic model.

In a previously mentioned study of butterfly dispersal (Ovaskainen et al., 2008), the

sampling process has been modelled as an SSM, allowing the authors to adjust for unknown

biases unavoidable in the fieldwork. Fish telemetry data, with high levels of uncertainty

dependent on environmental factors show promise of increased accuracy in theoretical

studies using SSMs (Campbell et al., 2024).

1.2.3 Collective behaviour

A potential key aspect of juvenile salmon migration is collective movement. Little is known

about it as it is difficult to observe at the spatio-temporal scales of field research and to

reproduce in a laboratory setting. In this thesis, I tackle both of those approaches. A

review of collective movement is provided here to place this work in a wider context.

A stochastic movement model proposed by Vicsek et al. (1995) describe emergence

of collective motion by showing a phase shift from random movement to clear alignment

within the entire group. It models the alignment of velocity vectors of particles within

some distance from each other with a noise term and constant speed. Another popular

model based on schooling fish (Aoki, 1982) was created to describe a set of behaviours of

attraction, alignment, and avoidance in the form of discrete-time simulation of otherwise

random movement (Couzin et al., 2005).

1.2.3.1 Mechanisms of collective behaviour

Movement models described so far assume animals react only to sensory input from the

environment. The study of social animals adds to it a response to the presence and

behaviour of other agents within a sensory range.

Berdahl et al. (2017) review different mechanisms observed in migratory species both

in nature and laboratory experimentation. The authors identify five primary mechanisms

of collective behaviour:
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• Leadership is an important factor in animal groups with stable social roles (for

instance, elephants, horses and primates). In this case, the group relies on the

superior knowledge of some individuals within a hierarchy emergent from social

dynamics (Ozogány and Vicsek, 2015). Specifically, Couzin et al. (2005) show that, in

theory, there is no requirement for any other physical difference between individuals

to explain the spontaneous emergence of leadership in group movement. Leadership

roles can be dynamic and based on specific information that an individual has, for

instance, an individual sensing the predator first will initiate avoidance of the whole

group of animals.

• The many wrongs mechanism is a well-described phenomenon where with increas-

ing number of agents with partial knowledge, a better approximation can be found

via pooling. It is hypothesized that it helps schooling fish in navigation. Assuming

that each individual has a directional accuracy given by circular normal distribution

Larkin and Walton (1969) show that the variance of the group’s mean accuracy will

decline as 1/
√
N where N is a number of individuals in the shoal.

• Emergent sensing occurs when a response to environmental gradients is balanced

by a tendency to follow the rest of the group (Berdahl et al., 2013). In the case of fish

trying to follow stronger flow, individuals sensing current will initiate the movement

and, after gaining enough followers, will bring ones too far away from stimuli to find

the optimal direction themselves.

• Social learning allows for less experienced individuals to gain knowledge without

direct experience by following others. This way, information can be passed across

generations, for instance, about migration or other routes, as in the case of homing

pigeons (Pettit et al., 2013).

• Collective learning means that individuals can learn from the previously men-

tioned many wrong mechanisms. If the group makes a particular decision multiple

times, following cues leading to it can become a new taught behaviour for individ-

uals. This way, even the more informed individuals can improve on the collective

“wisdom” creating in practice a transferable culture (Sasaki and Biro, 2017).

1.2.3.2 Modelling collective behaviour

In order to quantify collective movement, we must define appropriate metrics. Many

were suggested: group size, alignment, speed, turning speed, speed correlation between
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individuals, directional correlation, and distance to the nearest neighbour. Based on their

study of social fish, Sumpter et al. (2018) uses factor analysis to argue that all of those

can be explained by individual characteristics of sociability and activity. These two are

easier to explain using known biological mechanisms and responses.

Hydromechanical explanations were provided for the schooling of fish based on their

shape and observed behaviour with theoretical models (Weihs, 1973). Once precise mea-

surements of fish movement became possible, these models were confirmed through labo-

ratory experiments.

Even when observations are possible, models allow for additional analysis of details

that might not emerge from the empirical data model. Croft et al. (2015) writes on how

simulated bird flocks avoid wind farm-like obstacles based on different assumptions on

social rules and leadership. Their asynchronous model allows for better expression of the

social interaction rules. The authors explicitly define a trade-off between social interactions

and environmental awareness and explore the comparison between leaded and leaderless

groups. The simulation shows situations in which strong social rules cause a worse obstacle

avoidance abilities than those of a single bird, challenging an assumption that migratory

birds collide with wind turbines due to sensory limitations alone.

1.2.3.3 Empirical studies of collective behaviour

The study of the behaviour of multiple animals simultaneously requires not only increase in

the number of tracked animals, but also the accuracy of the method to capture differences

within animals whose position is spatio-temporarily correlated (Hughey et al., 2018).

By tagging enough birds in a flock of migrating white storks with high-accuracy GPS

tags, Nagy et al. (2018) were able to show the patterns of collective sensing in birds

exploiting thermal updrafts, though not identifying a simple mechanism that would explain

them.

Cooper et al. (2018) show in a laboratory study of Sticklebacks (Gasterosteus aculeatus)

that shoaling is a trade-off between an animal’s optimal environmental conditions and the

benefits of group behaviour. Temperature preference is one of those factors that can

be forgone in order to move as a shoal. It is also known that standard and maximum

metabolic rate influences sociability in fish (Killen et al., 2011).

Kelley and Ouellette (2013) leverage laboratory tools for 3D imaging of fluid dynamics

to analyse the collective motion of swarms of midges (Chironomus riparius). As expected,

they behave differently than schooling fish or flocking birds with lower levels of alignment,

but their movements show some signs of local correlation.
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1.2.3.4 Quantifying social and environmental factors

Often, it is difficult to disentangle the influence of social interactions on movement from

environmental factors. Calabrese et al. (2018) define movement correlation indices to

quantify the strength of social factors. The authors assume that the correlation of drift

µ (as in Equation 1.4) between individuals is caused by environmental factors, whereas

the correlation of diffusion D by social interactions. They define and test metrics of those

correlations based on simulated and empirical data.

Modelling can be done directly on empirical data as shown by Strandburg-Peshkin

et al. (2017) in a study of a baboon troop’s movement. The study compares how different

predictive models explain observed behaviour using detailed 3D environment data and

basic social features, such as visual contact with a high-density of conspecifics. They

found that the main predictor of movement was following previous locations of other

troop members - a non-direct social interaction. The location of the sleeping site was the

second most important factor, showing the importance of home range in studying some

species.

Similarly, Torney et al. (2018a) analyses drone footage of migrating caribou extracting

movement tracks and comparing different explanatory models fitted to extracted tracks.

They show that alignment and attraction forces exponentially weighted with the distance

between individuals provide the best explanation of movement within a herd. Due to the

high resolution of the footage, they are also able to classify animals according to their life

stages, finding differences in response to social cues. Calves are characterised by strong

attraction but not directional alignment, which is dominant in adult individuals.

del Mar Delgado et al. (2018) provides a review of empirical evidence for heterogeneity

in animal social behaviour. They further reinforce this theory by IBM simulations show-

ing a variety of patterns known in collective movement, appearing more realistic when

individuals exhibit some heterogenity.

Group formation brings trade-offs between safety and coordinated movement but also

limits access to resources. A study, Fryxell and Berdahl (2018) discusses such balance for

gazelles in the context of personal fitness functions.

A mechanism to balance trade-offs between safety and coordinated movement is shown

in many studies with fish. In a study by Berdahl et al. (2013), different sized groups of

light-averse fish show the increased capability of avoiding light patches as their group’s

size increases in an example of collective sensing of environmental gradients. The authors

compare the influence of the local light intensity gradient to social cues from other shoal

members, finding greater responsiveness to social cues increases with the size of the group.
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There is an increase in schooling among fish from high-predation environments (Ioannou

et al., 2017) in what can be seen as an adaptation based on life history and the environment.

Schooling has drawbacks as it limits food available to each fish and, in some species, might

increase chances of capture (Thambithurai et al., 2018). Fish like salmon only school

during particular phases of their life, possibly to optimise their energy expenditure while

travelling. In general McLean et al. (2018) defines schooling in terms of energy expenditure

required in different positions in the group when swimming and dependent on how recently

each fish was able to feed. In the case of salmon, the effects of position in the shoal can

only depend on the energy acquired before the migration season since smolts do not feed

during their migration (McCormick et al., 1998).

1.3 Modern mathematical methods in biology and

ecology research

The typical ecological modelling described in the previous section can benefit from impor-

tant improvements in other areas of technology and science. In my work, I leverage modern

data collection methods that, in turn, require the use of machine learning and simulation-

based modelling due to their quantity and dimensionality. The following sections provide

an introduction to these techniques.

1.3.1 Changing Data Landscape

Technological advancements over the last few decades have revolutionised how data is

collected and analysed in ecological research. As the field relies on well-tested protocols

and reproducible approaches, it takes time for many advancements from the fields of

engineering and computer science to be adopted.

Dramatic improvements in the versatility of consumer electronics have reduced the

cost of field research. Components that were once expensive and used only in industry are

now produced on a mass scale at a low cost, often with simple software interfaces. These

include microprocessors, batteries, transmission equipment (across various wavelengths,

including satellite receivers), and different sensors such as accelerometers, temperature

sensors, pressure meters, and cameras.

Inexpensive radio and acoustic transmitters allow for triangulation and reporting of

the position and state of multiple animals at many points of interest. Much finer spatial

and temporal data scales come without additional cost. These developments have fostered
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collaborations on large-scale tracking projects, such as mapping the migration patterns of

nearly two thousand salmon smolts from the British Isles (Rodger et al., 2024). Acoustic

fish telemetry illustrates that areas where the application of consumer electronics is limited,

are disadvantaged due to a lack of incentives to improve research tools. Precise location

tracking is not possible on many telemetry systems because manufacturers limit access to

the data collected with their devices (Guzzo et al., 2018).

The miniaturisation of electronics and batteries has reduced telemetry tags to a fraction

of their previous size, alleviating concerns about tag burden and enabling the study of ani-

mals that were previously unfeasible to tag, such as salmon smolts (Lothian et al., 2024b).

Efficient batteries allow a single tag to transmit data for months, and improvements in

wearable technology set the scene for future devices that may function indefinitely. Pre-

cise GPS receivers and loggers, together with pressure sensors and accelerometers provide

information on the location of animals with far greater accuracy than triangulation alone

(Nathan et al., 2022). Biologgers that save temperature, pressure and acceleration data

provide clues about an animal’s immediate environment and its state. Images from satel-

lites and aerial surveys allow for the analysis of animals’ environments in increasing detail,

unearthing information that isn’t possible through observation at smaller scales (Williams

et al., 2020).

Direct observation has changed with the advent of digital photography, moving from

occasional observations of a single animal to constant observation at a low cost. In a

laboratory setting, it allows for detailed tracking from multiple high-resolution cameras,

providing detail even in darkness with infrared illumination (Lin et al., 2018). The ubiquity

of high-quality imaging has effectively reversed the problem of having too few observations

to having too many from which to select meaningful ones. This has led to a shift in focus

towards the selection of valuable information in video tracking, described in detail in

Chapter 3, where we tackle this issue in the context of observing fish movement.

Places previously inaccessible to researchers or that would cause a disturbance to

the observed species can now be surveyed with remotely controlled vehicles. A camera-

equipped underwater vehicle allows for undisturbed observation of fish, especially as image

quality in low-light and infrared conditions has improved. Milligan et al. (2016) surveyed

the density of abyssal fishes at depths of almost 5 km, providing updated density estimates

compared to simpler, biased techniques based on catch data and challenging assumptions

about their aggregation.

Drones can record videos of groups of animals from a distance, revealing movement

patterns that cannot be distinguished from on-the-ground information. A study of Exmoor
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ponies by Kavwele et al. (2024) automated the control of a video-recording drone, with

the current GPS position provided by a collar on an individual, allowing the study of the

collective aspect of its movement.

As the processing power of data-gathering devices increases, edge computing allows

data to be pre-processed on the device, limiting the amount of raw data that must be

sent across the network. This can ensure that only quality information—such as a change

in behavioural state from a biologging device or an observation from a camera—triggers

more resource-intensive data transmission. Developments in previously distant fields, such

as sensor fusion and surveillance (Thomas et al., 2016), are becoming directly applicable

to the study of animals in the wild.

The field of machine learning illustrates the dramatic improvements in the scale of

data analysis and modelling that is made possible by increases in computing power. In

particular, the development of Graphical Processing Units (GPUs) to perform operations

on vectors of data (originally to display 3D images) has enabled breakthroughs in the

development of algorithms, which are described in the following section 1.3.2. Recent

analysis by Sevilla et al. (2022) shows that since the 2010s, even the impressive “Moore’s

Law”, predicting the doubling of computing power every 20 months has been surpassed

by the increasing capabilities of computer models. The increase in available data due to

citizen science projects such as iNaturalist (Van Horn et al., 2017), Flora Incognita (Mäder

et al., 2021) or Zooniverse (Simpson et al., 2014) highlights the growing importance of

understanding and effectively using modern data analysis techniques to engage efficiently

in ecological research.

1.3.2 Machine learning

Machine learning (ML) is a field of engineering focused on designing predictive models.

Unlike statistics, which emphasizes inference and quantifying uncertainty, the primary

goal in machine learning is to predict central values and generalise models from training

to testing data across various real-life scenarios. This makes those techniques ill-suited to

directly replace statistical modelling approaches described previously in Section 1.2, but

invaluable in pre-processing experimental data to extract measurement signal through

automated analysis (Valletta et al., 2017).

Unsupervised machine learning methods (1.3.2.3) extract patterns aiding an inter-

pretation of structure in the data. With the provision of annotated experimental data,

supervised learning methods (Section 1.3.2.1), can automate the laborious manual process

of extracting data from text, audio, images, video, and more.
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I will first describe the most important supervised learning methods in Section 1.3.2.1,

and more recent advances in deep learning followed by unsupervised approaches in Sec-

tion 1.3.2.3. Machine learning found great success in computer vision, which I leverage

in Chapter 3, where an in-depth review of modern methods of analysing visual data is

presented.

1.3.2.1 Supervised learning

In supervised learning, data is typically represented in the form of a feature vector x, with

an associated label and a target vector y. The popular problem of recognising an animal

from a camera trap image, known as image recognition, is also a common benchmark task

in the machine learning field. The knowledge to learn by the model is a correct choice of

one of k discrete labels y ∈ {1, ..., k} (e.g. species) describing the content of each single

image. The input feature vector x is derived from a given n by m image corresponding to

a Rn×m feature space.

The basic formulation of a machine learning problem is where the relationship between

a feature vector, or an observation, x and associated target y is given by a function h(x).

Our goal is to find the function fθ(x) which will approximate h(x) sufficiently for practical

needs with a well-chosen hyper-parameter vector θ. The simplest model used in practice

is linear regression

fθ(x) = θx, (1.10)

and logistic regression, using sigmoid function, for classification problems

fθ(x) =
1

1 + e−θTx
, (1.11)

which can always be normalised to assume y ∈ (0, 1) (as a multi-class problem can be

split into sub-problems). Those simple functions can be fitted to available data examples

with their annotations (xi,yi). The simple loss function based on squared error can be

used

J(θ,x) =
∑
i

(fθ(xi)− yi)
2, (1.12)

and best parameters θ∗ such that

θ∗ = arg min J(θ), (1.13)

can be found using a gradient descent algorithm.
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For any problem with features x ∈ Rn, classification with logistic regression provides a

separation with an n− 1 dimensional plane. High-dimensional data such as images allows

for a perfect match of approximation fθ(xi) with a target hypothesis h(xi) on known

training examples i. However, that does not guarantee that fθ(x) ≈ h(x) in general, and

it does not happen in practice (Hornik, 1991). Many methods have been popular to create

a model fθ that will be able to fit well to the training data but still generalise to unseen

examples.

Random Forest (Scornet, 2016), Support Vector Machines (Vapnik, 1997) or Artificial

Neural Networks (ANN) (Szeliski, 2022) are popular classification methods, that, in dif-

ferent ways, allow for the creation of a non-linear separation of data vector in ways that

maximise the information gain from the classification. Random Forest is a natural exten-

sion of a Decision Tree method, a simple classification where data is repeatedly separated

into binary classes based on a linear separation of the feature vector. In Random Forest,

a large amount of shallow (uninformative) Decision Trees are pooled together to create a

voting-like mechanism that can represent large amounts of information. Support Vector

Machines transform the data into a space defined by a measure of distance between all

the training data points. This increases the dimensions, allowing for a linear classification

that maximises the overall separation of different classes.

ANNs are a widely used method because of recent advances in deep learning, which

allowed extraordinary results to be achieved with multi-layered formulations of ANNs.

These models benefit from large datasets and efficient linear algebra libraries, which enable

parallelisation via Graphical Processing Unit architectures. Our Deep Predictor method

described in Chapter 3 uses a Deep Neural Network.

Neural networks can be understood in the light of Universal Approximation Theory

(Hornik, 1991) that provides a mathematical basis for approximating any continuous func-

tion h(x). The Theorem states that for any continuous function h(x) and an ε > 0, there

exists an arbitrary width N > 0, with weights vi, wi,, biases bi and bounded and non-

constant function ρ such that

f(x) =
∑
i≤N

viρ(wTi x+ bi), (1.14)

satisfies

sup
x
|h(x)− f(x)| < ε. (1.15)

This formulation defines the theoretical potential of a one-layered neural network to be
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used to model any complex function. The name “neural network” is owed to the inspiration

taken from a biological neuron cell, which can be mathematically simplified as an activation

function such as sigmoid. The input signal is weighted with w and offset with bias b to

produce an output signal v if a certain threshold is reached.

For practical applications, however, it is often advantageous to employ multiple layers

of such neurons. This is described by stacking L layers where each layer’s output serves

as the subsequent layer’s input:

f(x) = f1 ◦ f2 ◦ ... ◦ fL. (1.16)

Such a multi-layered network gains the ability to model inputs with non-linear separation

in the input space. A multi-layered network, often called “deep”, enhances the network’s

ability to model more complex patterns and perform non-linear separations in the input

space. Recently, Kidger and Lyons (2020) proved that all activation functions ρ usable in

machine learning are able to approximate h(x) in a deep neural network - one having a

bounded width of layers and an arbitrary number of them.

A neural network f(x) as defined in Equation 1.14 contains a large parameter vector

θ consisting of weights, biases, and activation values for each neuron in the network. In a

typical multi-layered neural network, as defined in 1.16 those parameters are large matrices

with values that are specific to each application. This is contrasted with hyperparameters

such as a number of layers L or type of function ρ that are set for a given architecture

and do not change in training.

Some cost function J appropriate for the task can be formulated, and its minimum

found using a Stochastic Gradient Descent (SGD) (Zhang, 2004). SGD is a variation of a

gradient descent algorithm for such high parameter spaces where each update is performed

on a randomly chosen sub-dimension of the J domain. Each parameter update step finds

a gradient direction for the last layer of the network, where target yi is compared with the

current function output fθ(xi). To update the parameters in all layers, we need to know the

corresponding gradient of J for each neuron. The backpropagation algorithm (Goodfellow

et al., 2016) efficiently computes the gradient of J with respect to each parameter using

the chain rule.

Using SGD and backpropagation, neural networks are able to achieve excellent fit for

models in many domains. However, for a state-of-the-art performance on the benchmark

task of image classification, more structural changes were required.

Traditional machine learning does not operate on raw pixel values to classify images.
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For most tasks, the dimensionality would be too high to fit a model to the data. In images,

information is derived from context and patterns rather than from individual pixel intensity

values. This presents a challenge to the methods that cannot adapt to different, co-existing

scales and transformations of objects. A variety of characteristic low-level features, such

as corners and edges, are described mathematically, and the machine learning models are

fitted to lower-dimensional and higher-level representations of an image. Hand-crafting of

those features became an important part of image recognition work, mostly by reproducing

human intuition regarding visual perception.

Thus far, we described neural networks containing fully connected layers. The ability

to approximate any function is impeded by rigid positional connections and lack of com-

ponents modelling correlation between different elements of the feature vector. It was dis-

covered that specifically for images, we can use a convolution with arbitrary parametrised

filters to allow for a low-level feature extraction. The convolution function works on image

I passed in its original dimensions so that relationships between pixel values are preserved.

The convolution on image I, with a convolution kernel K is defined as

(I ∗K)(x) =
∑
τ∈I

I(τ)K(x− τ), (1.17)

and it provides a feature heatmap of similarity of different parts of the image with K,

in a Convolutional Neural Network (CNN) there are multiple convolutional layers which

act as a fully trainable filter bank. This visual data encoding is crucial from a practical

perspective. Using a single fully connected layer with the input and output of a typical

video camera (1080 by 720 pixels) would result in over 1 trillion parameters taking over

1TB of storage. Such a network would be almost impossible to train if only due to memory

constraints. Apart from making it possible to approximate relationship h(x) much better,

CNNs provide a higher-level representation of common visual patterns and shapes. This

property has led to the rise of transfer learning where weights of convolutional layers are

trained on huge datasets that can then be directly copied to a network used in for a small

target problem (Akcay et al., 2016). Then, just the neural networks’ fully connected layers

performing classification are fine-tuned to the specific tasks.

1.3.2.2 Applications of Machine learning in Ecology

Supervised machine learning allows the automation of data analysis from still images,

audio field recordings and videos of animal behaviour (Valletta et al., 2017). Increasingly

large datasets of ecological data are being analysed, and early examples of deep learning
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applications have demonstrated their suitability for ecological research (Christin et al.,

2019).

Wijeyakulasuriya et al. (2020) compared the use of ML algorithms of Random Forest

with deep learning and analytical methods for predictive movement models of animals

at different scales of gull migration and ant movements. Interestingly, the traditional

ML method of Random Forest provided the best results, showing the limitations of deep

learning methods when training data is limited. The authors also highlighted the lack of

interpretability of those methods compared to analytical movement description that, even

though having less predictive power, provides a better functional insight.

ML methods are particularly well suited to tasks involving visual data. Torney et al.

(2019) leveraged Convolutional Neural Networks (CNNs) for a population survey of wilde-

beest from aerial imagery. CNNs are used to detect whales from both aerial and satellite

imagery (Guirado et al., 2019) sea turtles from UAVs (Gray et al., 2019) or birds from

camera traps (Ferreira et al., 2020).

As audio signals can be analysed in the form of a spectrogram, audio analysis has

benefited from advancement in CNNs, resulting in their application for the detection of

birds from birdsongs (Lasseck, 2018) and bat species from their echolocation calls (Aodha

et al., 2018).

Chabot et al. (2018) compared ML methods for visual counting of large volumes of

birds in breeding colonies across different conditions and environments. The authors high-

light the reduction of time required to provide the same quality of counts by 90%. ML

approaches have been similarly successful in counting African mammals from satellite

images (Yang et al., 2014; Xue et al., 2017),

As recordings of animals in the laboratory and in the field become the the standard

method of the survey, so analysis of these videos becomes important. Panadeiro et al.

(2021) describes a common video processing framework used in tracking animals in bi-

ological and ecological studies. Various machine learning and analytical methods are

combined in popular software packages, where the user provides the supervision of the

learning process through initial parameter tuning to specific task, and corrections to the

output data thought the process.

Banerjee et al. (2021) developed a tool that classifies behavioural responses of fish

recorded on video to ambient odour using different machine learning methods. The authors

used experts to annotate the data and showed that all ML methods trained on that data

exceeded the accuracy of prediction coming from manual annotations from non-experts.

In Chapter 3, I provide a further review of ML computer vision methods for object
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detection and tracking.

Other sensory data can also benefit from processing with ML algorithms. Movement

and location data can be modelled to infer animal behaviour. Analysis of accelerometer

data from animal tags with ML provides an alternative to asses behavioural state reliably

and supplement movement data analysis (Wang, 2019)

Software application Weka (Hall et al., 2009) provides access to ML algorithms for use

in ecological data, for instance, analysing large-scale biodiversity data (Willcock et al.,

2018) and other problems requiring a large amount of data.

1.3.2.3 Unsupervised learning

Often in ecology, we first encounter and analyse patterns before we can clearly define the

mechanisms that gave rise to them. In the same way unsupervised learning is a name

given to advanced statistical methods that aim to distinguish and quantify patterns in

data without any explicit labelling or information provided ahead. Those methods are

often a form of data pre-processing with aims such as: to select or transform exploratory

variables (feature selection), to cluster data based on some commonalities, or to reduce

dimensionality of data without detriment to the information in it.

Principal Component Analysis (PCA) reduces the number of dimension, or variables, in

data by removing ones that are correlated. It finds such transformation of the coordinate

vectors that they are ordered by the amount of variance of data explained by each. It

is a common pre-processing step to reduce the the dimensionality of data for further

classification with supervised learning methods (Xu and Cheng, 2017; Wijeyakulasuriya

et al., 2020), or in order to observe any clustering that might not be apparent without

disentangling correlated variables, such as in the analysis of movement patterns (Kays

et al., 2023) or collective behaviour (Sumpter et al., 2018).

A more advanced method of dimensionality reduction, t-distributed stochastic neigh-

bour embedding (t-SNE) is specifically designed for visualisation of multi-dimensional data

to aid with visual understanding. This method was used by Valletta et al. (2017) to anal-

yse the appearance of Wildebeest in an overhead video or by Derkarabetian et al. (2019)

to illustrate genetic structure of species.

Before the development of deep learning methods, ANNs (Chon et al., 1996) and ge-

netic algorithms (Recknagel, 2001) were used to detect patterns in species density data by

creating Self-Organising Maps (Kohonen Networks) that clustered different communities

together in clusters that were then explained with ecological connectivity and interde-

pendence. The previously mentioned study of the behavioural response of fish uses an
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ANN to reduce the dimensionality of data before classification by supervised ML methods

(Banerjee et al., 2021).

Many algorithms for clustering exist for detections of commonalities in data (Szeliski,

2022). Franke et al. (2004) clusters observed movement observations to create discrete

states for further modelling. Zhang et al. (2015) use a k-means clustering with a be-

havioural change point analysis of penguins’ movement to find and analyse discrete types

of behaviour (resting, commuting/active searching, area-restricted foraging). Gupte et al.

(2022) use a custom clustering algorithm to detect and distinguish behavioural states of

birds from long-term large telemetry datasets.

Clustering of visual data into background and foreground is a leading method in pre-

processing of experimental imaging data in ecology. Gaussian Mixture Models (GMM)

are used directly to perform background subtraction from images used in many modern

methods (Panadeiro et al., 2021) by creating a probability model of pixels belonging to

one of the predefined distributions. Psorakis et al. (2012) uses Gaussian mixture models

to cluster behavioural data to create a network of social interactions.

Clustering approaches are particularly useful in analysing genetic data due to their

very high dimensionality. Derkarabetian et al. (2019) shows clustering of high-dimensional

genetic information provides delimitation of species of arachnids.

Most recently, the distinction between supervised and unsupervised learning diminishes

as leaps in Generativ Artificial Intelligence (Goodfellow et al., 2016) blurs the boundaries

between assumed perfect knowledge of training examples and information available just

from the data context.

The extraordinary success of Large Language Models (LLMs) in retrieving information

promises a revolution in many knowledge-based industries. LLMs are based on attention-

based neural networks, notably transformer architecture (Vaswani et al., 2017). There

are already successful applications of those techniques in areas that are based on pat-

tern matching, such as protein understanding (Elnaggar et al., 2020) and protein folding

(Jumper et al., 2021). However, their use in ecology remains rare due to the novelty of

the approach. LLMs have been tested for the extraction of ecological data from litera-

ture and databases, achieving a 50-fold increase in speed while maintaining mostly high

accuracy (Gougherty and Clipp, 2024). Despite their successes, in any application where

scientific and statistical validity of data is required, LLMs fall short without additional

manual review of the output. Indeed, the current focus of research in this area relates to

improvements to reinforcement learning techniques to improve the quality of the output

(Ziegler et al. (2020)).
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1.4 Applications in the context of salmon migration

The aim of this thesis is to investigate the behaviour of Atlantic salmon movement during

their downstream migration. It is an important question from a conservation viewpoint

that affects how we should study and protect this important species and its ecosystem. It

is also an interesting problem informing methods of studying other species and systems

where direct observation is challenging.

Better flow sensors and investment allow for detailed mapping of the hydrological en-

vironment in potentially crucial places on the migratory route (Xu et al., 2017; Babin

et al., 2020; Sridharan et al., 2023). The study of Olivetti et al. (2021) modelled smolts

migration on a 500m confluence section of San Joaquin River in California. Firstly, the

authors constructed a 3D computational fluid dynamic model of the reservoir using de-

tailed flow data from a two-dimensional near-surface measurement of water flow, and river

bathymetry data (depth and shape of the riverbed) from a multi-beam sonar survey. Sec-

ondly, a calibrated receiver array allowed for co-location of juvenile Chinook salmon with

a sub-meter accuracy and 2-second time sampling that provided the empirical data for

the calibration of a movement model of the fish within the river. With the detail flow

measurements, the authors were able to calculate the precise force of drag and locomotion

at every point of the studied segment. In order to model and validate a fish’s response to

its environment, the authors trained a deep learning model, a Long Short-Term Memory

Neural Network to predict the next position of fish based on the flow, location, and the

previous movement. Despite the impressive resources and detailed tracking in this study,

collective behaviour was not reported on, highlighting the trade-off between the quality

and quantity of data in field studies, where even with such accuracy of a method, the

sample size is still limited by the laborious tagging process (424 individuals).

Holleman et al. (2022) analysed the swimming patterns from that fine-scale data,

classifying movement with positive and negative flow orientation, lateral swimming, and

drifting. The authors estimated the average swimming speed as lower than previously

established in laboratory studies and were able to analyse and compare the movement at

different depths of the water column. This flow and movement modelling has been used in

another study by Sridharan et al. (2023), to develop a coarser, larger-scale model, ePTM

(enhanced Particle Tracking), which allowed authors to study the migration of juvenile

salmon in the context of more general river discharge and environmental conditions across

the whole river system. This parallelisable agent-based model was used to describe and

predict migration routes and the success of smolts in the complex river system informing
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how best to design riverine structures and time the discharge of water from reservoirs.

An ordinary particle tracking model was used by Newton et al. (2021) to compare

the direction of movement of post-smolts with the known currents in the Moray Firth,

an inlet on the East Coast of Scotland. This large-scale study followed the migration

of almost 800 Atlantic salmon smolts. Together with another study on the West coast

of Scotland, England, and Ireland that followed over 1900 smolts (Rodger et al., 2024),

those form a part of a new collaborative approach to telemetry studies. The enhanced

collaboration between research organisations brings benefits from the miniaturisation of

telemetry tags and cost-sharing and allows the study of much larger quantities of fish than

possible otherwise.

As the efforts to consolidate data and knowledge relating to the Atlantic salmon grows,

for instance, with the creation of a data hub (Diack et al., 2022), or digitisation of historical

records (Adams et al., 2022b), large scale statistical modelling provides new insights. The

Scottish population of juvenile salmon is now reliably mapped thanks to spatial modelling

of sparse and imperfect survey data (Malcolm et al., 2019). Analysis of historical samples

of salmon over almost 30 years was used to detect environmental shifts that affect the

entire salmon population and wider marine ecosystem (Vollset et al., 2022).

The novel approaches to telemetry modelling incorporate movement models to test

hypotheses about the smolts’ movement in standing waters. Both Hanssen et al. (2022)

in lake Evangervatnet in Norway and Lilly et al. (2022) in the study of movement in Loch

Lomond, Scotland, use correlated random walks to model smolt movement in standing

water. At every fixed length step, fish in a lake modifies the previous heading according

to a zero-centred Gaussian distribution. This approach allows testing of the hypothesis of

random exploration of the lake, where a lack of water flow gradient is not able to direct

fish to the correct outflow.

Exploring more sophisticated statistical models with and without social interactions

quantify the collective effect in salmon migration - even if its precise mechanism remains

elusive. Berdahl et al. (2017) modelled sparse catch data of a return migration of Pacific

salmon migration using two models: with and without a social component to it. The

fish’s probability of moving between subsequent upstream river branches was mediated

by another fish’s successful transition in the first model and was fully independent in

the other. Inclusion of a social component provided a significantly better explanation of

the catch data and the 20-year span of observations allowed averaging of any possible

confounding variables such as maturation of fish, seasonal changes, etc. Using State-

Space modelling, Kururvilla et al. (2024) conducted a a conceptually similar experiment
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on downstream migrating smolts by modelling the number of smolts caught in a trap with

possible social effects while taking into account all known factors influencing the timing of

migration. The authors best-fitting model confirm the hypothesis of social cues influence

on migration timing in juvenile Pacific salmon.

1.4.1 Outline of this thesis

This thesis casts a wide net around the problem of downstream migration of juvenile

salmon, specifically trying to understand the mechanism of potential social effects. This

analysis benefits from the application of modern methods at different scales, and I leverage

video recording and GPU-parallelised data processing in the laboratory, simulations and

the field. In laboratory experiments I consider both wild and hatchery salmon: first

to measure their response to changing flow conditions, and following that, to observe

their collective movement in an artificial stream. In simulation-based work, I develop

improvements to a computer vision method of automatically tracking animals on video.

Lastly, I develop a movement model to fit telemetry data from smolts migration.

In the first study, presented in Chapter 2, I focus on individual migrants’ responses to

water velocity, widely considered the most important environmental cue in their migra-

tion. I establish the baseline sensitivity of wild and hatchery smolts to the changing flow

direction in an artificial river.

This experiment is supported by computer engineering, with time-synchronised cam-

eras and image processing automation, enabling the measuring of the signal in a study

otherwise requiring excessive manual work.

In Chapter 3, I develop a method of precise tracking of animals in video recording,

that works robustly in cases of indistinguishable animals in crowded scenarios. This is

a GPU-enabled deep learning method that is inspired by the types of data collected in

my laboratory experiments and analysis in quantities not possible without high levels of

automation.

In Chapter 4, I leverage the laboratory setup developed during previous experimenta-

tion and a computer vision method of automatic extraction of movement tracks to study

the behaviour of Atlantic salmon migrating in groups in the artificial stream. I observe

the overnight movement of wild and hatchery smolts in the presence of an obstacle and

measure the collective effect on decision-making.

In the last study presented in Chapter 5, I develop a simulation-based framework

for statistical analysis of field data from a study of juvenile migration. I build a GPU-

accelerated movement model with an observational process to match the field-telemetry
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data. The simulation accounts for presumed auto-correlation and directionality of the

downstream migration, as well as for the potential collective component observed in the

laboratory experimentation. I test the statistical properties of this method on two sim-

ulated scenarios, showing the validity of the approach and direct application to river

telemetry data.

In the last chapter 6, I summarise the findings of my research and the implications for

the future direction of research on juvenile salmon movement.
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Chapter 2

Defining the water flow cues for

navigation in migrating Atlantic

salmon smolts

Note

The content of this chapter has been submitted to the Journal of Fish Biology under

the same title and authored by Mikolaj E. Kundegorski, Hannele M. Honkanen, Alas-

tair Stephen, Colin J. Torney, Shaun Killen, and Colin E. Adams. The manuscript was

written jointly by Mikolaj Kundegorski and Hannele Honkanen based on the experiments

and analysis performed solely by Mikolaj Kundegorski. All authors participated in the

experimental design, conceptualisation, and revision of the manuscript.

2.1 Abstract

Successful navigation during migration is critical to fitness. In Atlantic salmon, for exam-

ple, there is evidence that during migration from natal streams to the sea, passage through

waters with poorly defined or mixed water velocity patterns may constrain directional nav-

igation, causing individuals to become trapped or delayed in lakes or other bodies with

slowly flowing water. In this study, we determined the minimum water velocities needed

to elicit a change in the direction of holding in both wild origin and domesticated salmon

smolts. Smolts required a directional flow in excess of 8.9 cm/s to show effective direc-

tional orientation toward the current. Domesticated smolts showed a similar qualitative

response as wild fish but showed slightly lower minimum velocity to initiate a response.

These results suggest that, in areas where the downstream migrating Atlantic salmon
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smolts pass through low directional water flow, it may be possible to manipulate direc-

tional flows above this minimum threshold at least temporarily as a management tool to

increase migration success. This is likely to be particularly true where smolts are passing

through dams, reservoirs, or other impounded waters.

2.2 Introduction

Long distance migration is a common strategy found across a wide range of animal taxa,

that often involves movement between breeding and feeding grounds (Dingle and Drake,

2007). Long distance migration is associated with a high level of risks, including predation

by novel predators, exposure to disease and parasites and the chance that the migrant will

not successfully reach the intended migration destination (Dingle, 2014). Overcoming this

last risk is particularly challenging, especially for individuals undertaking the migration

with no prior experience of the route (Adams et al., 2022a). Therefore, it is clear that

successful migration is dependent upon high quality navigation ability.

Animal navigation, especially in the case of long distance migration, is hugely com-

plicated and still not fully understood (Alerstam, 2006; Mouritsen, 2018; Putman et al.,

2014). What we do know suggests that migration is only infrequently a passive process,

for example where the animal relies on wind or water current to move. One of the few

examples of passive migration appears to be the migration by the larvae (leptocephali)

of the European eel (Anguilla anguilla) (Van Ginneken and Maes, 2005). However even

in marine environments, where there is scope for passive movement using currents and

there is a specific end goal location, variation in current patterns means that purely pas-

sive migration strategy is directionally unreliable (Putman et al., 2014). Active migration

requires cues to identify the right time to start moving, an awareness of the surrounding

environment, knowledge of when to stop moving and the ability to identify and interpret

the correct directional cues for navigation (Åkesson et al., 2014). Some of the known

mechanisms that animals use to orientate and navigate during migration include celes-

tial, geomagnetic, visual and olfactory cues (Bolshakov et al., 2007; Cochran et al., 2004;

Wikelski et al., 2015). The importance of these cues is well understood, while the required

intensity of the cues needed for successful navigation is largely unknown.

Migratory Salmonidae fish use several types of cues for navigation including water

flow, olfaction and geomagnetic maps (Madsen et al., 2019; Putman et al., 2014). During

the early stages of marine migration, Atlantic salmon Salmo salar seemingly use surface

currents for direction finding (Dadswell et al., 2010; Gilbey et al., 2021b; Mork et al.,
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2012). Work on Chinook salmon, Oncorhynchus tshawytscha, and Sockeye salmon, On-

corhynchus nerka, has shown that these fish also use a combination of magnetic intensity

and inclination angle to navigate at sea and olfactory cues during their return journey

(Drenner et al., 2018; Dittman et al., 1996; Madsen et al., 2019; Putman et al., 2014).

Rheotaxis, orientation to flow, is one of the main ways in which fishes respond to their

environment. It is a flexible behaviour and used for many purposes, from maintaining po-

sition in flowing water, to searching for food (Coombs et al., 2020). For juvenile Atlantic

salmon, in common with many other salmonids, rheotaxis has a significant role in their

feeding strategy during their first few years of life when it facilitates their drift-feeding

behaviour (Arnold et al., 1991; Holleman et al., 2022; Klemetsen et al., 2003). During the

early stages of smolting in Atlantic salmon, this station holding behaviour alters and fish

begin to lose positive rheotaxis to move downstream with the current. Initiation of the

downstream migration by smolts is frequently associated with increased water flow, once

a minimum temperature has been reached and day length increases (Hvidsten et al., 1995;

Connor et al., 2003).

Evidence of the importance of water flow as a key navigational cue comes from investi-

gations of Atlantic salmon smolt migration through standing waters (lakes and reservoirs).

Multiple studies have shown that smolts experience very high migration failure rates and

long passage times of successful migrants during lake migration compared with their pas-

sage in river channels (Aarestrup et al., 1999; Schwinn et al., 2017; Lilly et al., 2022).

It has been suggested that this stems from the inability of smolts to find the outflow of

lakes. This is evidenced by random and directionless swimming patterns undertaken by

both smolts that migrate successfully and those that do not, in these habitats (Schwinn

et al., 2017, 2018; Lilly et al., 2022; Honkanen et al., 2018, 2021; Hanssen et al., 2022).

One possible explanation for the apparently random pathway patterns is that high quality

directional information, that the smolts require as a cue for navigation, are missing, or at

least highly reduced, in lakes (Schwinn et al., 2017). Further evidence of the likely fitness

cost of lakes comes from Hutchings et al. (2019) who found that of the 72 non-anadromous

salmon populations worldwide, 82% are found in catchments with lakes, suggesting that

these habitats discourage migration.

Despite the well-known importance of water flow as a directional cue during the riverine

component of smolt migration, there is a paucity of information on the ability of salmonids

to detect current and in particular the sensitivity of current detection that allows them to

orientate. It has been suggested that juvenile salmonids can sense flow change that is as

low as 0.4-1.0 cm/s (Gregory and Fields, 1962; Enders et al., 2012) but there is very little
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information on the minimum water velocity that can be sensed by salmonids and which

will initiate a response. In one of the very few studies on this topic Veselov et al. (1998)

tested the minimum water velocity which “elicited movement of eyes, fins, or curving of

the body, and resulted in the fish orienting into the current” in Atlantic salmon. They

tested alevin, fry, parr and smolt life stages by quickly accelerating the water velocity

from 0 to 160-200 cm/s in a small chamber. They found that the minimum velocity that

elicited such a response was ∼ 4.3 cm/s for alevins (fish length 2.3-2.6 cm) but that this

decreased to around 2 cm/s for fry and parr (fish length 4-8 cm) and then increased to

∼ 5.5 cm/s for smolts (fish length 10-12 cm). While detailed, this study did not address

a common scenario where fish have to acclimatise in, and respond to, a heterogenous flow

environment.

Sensitivity and response to flow cues could be linked to their previous environment, so

individuals that experience a range of naturally fluctuating flows may have a higher sensi-

tivity threshold compared with farmed Atlantic salmon that grow in controlled hatchery

conditions with very weak flows. Farmed Atlantic salmon have been subjected to domes-

tication selection for between 10 and 20 generations and are therefore genetically distinct

from the wild populations (López et al., 2019). Many studies have shown differences be-

tween wild and farmed salmon in a range of characters such as growth rates, physiology,

behaviour and gene transcription (Glover et al., 2017; Einum and Fleming, 1997; Fleming

et al., 2002; Roberge et al., 2008).

Here we tested the minimum water flow rate that elicits a change in the direction of

holding against the current in Atlantic salmon smolts in the seaward migration phase of

their life cycle in a controlled environment experimental trial. A secondary aim was to

test if Atlantic salmon of farm origin have retained the ability to use water flow as cue for

orientation and at the same level of sensitivity as their wild origin counterparts. Specifi-

cally, this study aimed to answer three questions:1) What is the behavioural response of

salmon smolts to changing water velocity?; 2) What is the minimum threshold value of

water velocity that elicits a change in behaviour?; 3) Do wild and farmed smolts respond

differently to changing water velocity?

2.3 Methods

Behavioural trials were conducted at the Scottish Centre for Ecology and the Natural

Environment (SCENE), University of Glasgow. The behavioural arena was part of an

oval flume tank, 11 m long and 0.6 m wide. Water depth was ca. 20 cm and a directional
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flow was created in the channel by water being drawn from a sump in the flume outside

the experimental arena and pumped through directional nozzles back into the channel

at the opposite end of the flume. Water in the flume tank was drawn from the nearby

Loch Lomond and was maintained at ambient temperature (range 6− 16.1° water surface

temperature determined using the dataset from Chin et al. (2017)) during the study.

Behavioural trials took place in a straight section of the flume (1.6 m long and 0.96 m2),

partitioned by screens through which water could easily flow. Trials were filmed from

above using two, time-synchronised Raspberry Pi computers each connected to a Full HD

near-IR (day/night) camera with 15 frames per second recording frequency.

At the beginning of each trial, a single Atlantic salmon smolt was placed in the test

area with a stable current (approximately 20 cm/s in the middle of channel) with flow

in either a clockwise or counterclockwise direction for 20 minutes, to allow the fish to

acclimatise to tank conditions and to orient to the flow. Typically, smolts would orientate

head-first into the water flow during this period. At the end of the acclimation period,

the water flow direction was reversed for the remaining 5 minutes of the trial. To achieve

this, the direction of flow from the pumps creating the directional flow in the test arena

was reversed at a single point in time. The effect in the arena was that water speed slowly

decreased and then reversed direction, slowly increasing in the experimental area to a

velocity that was close to the original velocity but in a direction ca 180 ° from the original

current direction. Due to the size of the flume and the volume of water it contained and

despite that flow velocity delivered by the pump was at a maximum from the moment

of flow reversal, it took up to approximately three minutes following directional change

for the flow velocity to return to its original velocity (but in the opposite direction) at

the location where the fish was holding. For each test fish the lowest water velocity that

initiated a behavioural flow re-orientation response in the test fish was determined (Vmin).

This was defined as the water velocity at which the smolt changed orientation (by turning

180 degree) to face into the new current direction. To measure this, the precise time at

which the smolt reorientated (the reaction time) and the exact location within the trial

arena where this occurred (determined from scaled coordinates taken from video footage)

was recorded. Following the trial with a fish, a velocimeter (Hontzsch Flowtherm NT) was

placed at the position at which the smolt in that trial was located. The change in water

direction was then replicated without a fish present. Vmin was measured as the mean water

velocity measured over a 10 second period (5 seconds before and 5 after the time of the

time of the initiation of the re-orientation by the test fish). The average response time

was 1.5 minutes, and for most of the measured points flow stabilised in the new (opposite)
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direction after about three minutes. In addition to this, the velocity of the stable current

before and after flow direction change was also measured at the position where the fish was

holding. All velocity measurements were made at approximately 2 cm from the bottom

of the flume tank to correspond with the depth at which fish would be experiencing flow

when holding at the bottom of the tank. Across all fish, in all trials, the mean velocity

to which test fish were exposed during the acclimation period and following flow reversal

was 12.6 cm/s (SD=5.3).

Three groups of Atlantic salmon smolts were used in the trials conducted in three

separate periods; two fish groups were of fish farm origin and the third comprised wild

caught fish. In the first set of trials (August 2019), farmed fish originating from an indoor

aquaculture facility (supplied by MOWI’s, Lochailort Hatchery) were tested. These fish

(N=52 randomly selected individuals, from a larger group with mean weight of 120g

(SD=22) and FL 20.7 cm (SD=1.3)) were transported to SCENE as parr and allowed to

develop to the smolt stage (which as assessed using the criteria of Gorbman et al. (1982))

before trials were conducted (water temperature during these trials was 13.6−16.1°). The

second set of farmed fish trials were conducted in March 2021 (water temperature during

these trials was 6.0− 6.7°), using fish originating from a freshwater lake cage farm system

(supplied by MOWI: Loch Arkaig). These fish (N=58, mean weight of 44 g (SD=14),

fork length 16 cm (SD =1.5)) had already reached the smolt stage or were very close to

smolting on collection. Trials on farmed fish commenced once they began smolting and

were acclimatised to a spring-like photoperiod (16:8), mimicking their natural migration

period. We also verified the initiation of migration by observing a consistent downstream

movement for fish from those groups before our trials. Initially, both farmed fish groups

were raised under constant light to rapidly increase their growth, a practice diverging

significantly from their wild counterparts in terms of seasonal and temperature conditions.

The third set of trials were conducted in May 2021 on wild salmon smolts collected

from the River Gryffe, Scotland (55º 51.9´ N; 004º 31.1´ W). Smolts were captured in a

rotary screw trap during the smolt run (N=31 individuals mean weight of 24 g (SD=6)

and mean fork length of 13 cm (SD = 1)). These fish were transported to SCENE in

oxygenated bags (transport time ∼ 1 hour) after which they were placed in holding tanks

in which they were held for at least 2 hours before trials.The daily temperature during

those trials ranged 7.7− 8.1°.
To account for any potential bias in directionality the initial flow direction was alter-

nated from clockwise to counter-clockwise. The flow conditions experienced by fish during

holding in the experimental area varied between experiments. This resulted from changes
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in water turbidity (determined by the conditions in the water source) and for technical

reasons the pump creating the flow was changed between experiments (though with the

same nominal output), however in all experiments flow conditions cases provided a dis-

cernible flow resulted in fish showing positive rheotaxis when holding position. A flow

profile of the flume section where experiments were conducted showed a high coefficient of

variation of 0.42 (mean=18.25, SD=7.66). All of the wild fish experienced the same flow

conditions except for the initial flow direction. The flow value experienced at the point

where fish were holding prior to current switching varied (mean=12.9 cm/s SD=5.2, range

2.0 cm/s to 22.4 cm/s) and tested as an explanatory variable.

During the trials, four behaviours were categorised within five minutes of the flow

direction change (see Table 2.1). For two of these “Swim off” and “Constant Movement”

are behaviours that are uninformative in respect of the main aim of this study, which

was to determine a response to flow direction and velocity. This is because both of these

behaviours could be responses to other environmental or internal cues. Thus for example

the behaviour “Swim off” could be a response related to investigation of a possible food

item in the water column. The two behavioural categories that were informative in relation

to flow cues and were thus analysed more fully were :”Change of direction” and “No

reaction”. In cases where the fish was in movement throughout the experiment or initiated

movement before any other response to flow direction we classify as “Other behaviours”

(comprising “Swim off” and “Constant movment” and were not analysed statistically, but

provided for better insight into the ranges of behaviours observed.

We analysed the data using R (Team, 2021) using generalised linear models. Seven

trials were excluded where experimental measurement error occurred. A behavioural re-

action to flow change in the trial was modelled as a binomial model with “Change of

direction” or “No reaction” as the two outcomes. Fish type (indoor farmed, outdoor

farmed and wild) and general flow conditions (direction and high/low flow strength) were

considered as variables together with their interaction. “Constant Movement” and “Swim

off” behavioural categories were excluded from this analysis.

The flow velocity (Vmin) which resulted in a behavioural response was modelled for

individuals which successfully changed the direction of holding as a gamma distribution

with a logarithmic link function. To compare nested models we primarily used ANOVA

with Likelihood Ratio Test. The Bayesian Information Criteria (BIC) and Akaike Infor-

mation Criteria (AIC) were used to quantify the quality of a model fit with likelihood

while penalising model complexity to compensate for overfitting. We report both values

to compare the quality of fit for all models. For post-hoc analysis we used Tukey’s range
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Response
to Flow

Number of
Samples

Name Description

Yes 62 Change of
direction

A change in fish orientation
indicated by an approximately
180º switch in their holding
position to a positive rheotaxis
in new flow conditions.

Other
be-
haviours

24 Swim off The fish initiates movement
away from the position where
it was holding, without
directional change.

24 Constant
Movement

The fish kept moving
throughout the trial showing
no clear response that could be
related to the directional
current change.

No 24 No reaction The fish did not seem to
respond behaviourally with
either a change in orientation
direction or by moving
position.

Table 2.1: Classification of behaviour of the fish within 5 minutes from initiation of change
of water flow direction. Because only one of these behaviours, Change of direction,
could be clearly attributed to the flow direction change, we treat behaviour “Constant
Movement” and “Swim Off” as neither responding to nor not-responding to flow (“Other
behaviours”).

tests. We included fish type (smolt origin), the magnitude of stable flow at the fish loca-

tion prior to change in orientation direction and their interaction as explanatory variables.

Ethical statement

These experiments were conducted under UK Home Office licence (PPL 70/8794) and the

care and use of experimental animals complied with the animal welfare laws, guidelines

and policies prevailing at the time of the study.

2.4 Results

Changing directional water flow caused “Change of direction” or “No reaction” in 86

fish (64% of all fish successfully tested), while for 48 fish (36%) reaction was “Other be-
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haviours”. In these cases fish were either in movement during the flow reversal (“Constant

Movement”) or did not change orientation when initiating a movement (“Swim off”) (see

Table 2.1). None of the fish exhibited negative rheotaxis before flow reversal. Change

of direction was the most common response to flow direction change across all three fish

groups, displayed by 72% of the fish which behaviour was classified (62 individuals) from

across all experiments (Figure 2.1). The proportion of trials where the response was

“Other behaviours” was lowest in wild smolts while it was similar in both types of farmed

fish (Figure 2.2). A binomial model with directional change/no reaction as the response

variable, with and without fish group as an explanatory factor, showed that there was no

significant effect of fish group (ANOVA: Chi-square = 3.98, df = 2, p=0.137, models fit:

BIC=111 AIC=104 with fish type variable and BIC =106, AIC=104 without).

Using a Gamma-distributed GLM model we estimate the mean minimum threshold

flow (Vmin) for directional change across all three fish groups was 8.9 cm/s (95% CI:

7.7,10.4) (Figure 2). The mean Vmin for the two groups of farmed fish were 8.5 (95%

CI: 6.7,10.9) cm/s for the cage farm origin smolts and 7.3 (95% CI: 5.8,9.2) cm/s for the

tank, farm origin fish. The mean Vmin for the wild fish was slightly higher at 12.0 (95% CI:

9.2,15.6) cm/s. The full model including flow rate experienced by fish during the the initial

holding period and its interactions with fish group (AIC=401, BIC=416) showed no effect

of fish group on the minimum flow velocity required to initiate a re-orientation towards the

new current direction. However, an ANOVA analysis with Likelihood Ratio Test implied

that fish group is a significant covariate (Chi-square = 2.231, df = 2, p=0.031) while flow

velocity at the point of holding and its interaction with fish type are not (Chi-square =

0.096, df = 1, p=0.59 and Chi-square = 0.451, df = 2, p =0.51, respectively).

The simpler model with fish type as the only dependent variable shows a better balance

between the fit and the number of explanatory variables (AIC=396, BIC=405) and a post-

hoc statistical analysis with Tukey’s range test show that the only statistical difference

in flow rate required to change direction is between was between the wild fish group

and the indoor farmed fish (ratio = 0.61, p=0.031). As some variables such as water

temperature, time of the year, light and type of pumps used are highly correlated with

the group of fish and thus cannot be modelled directly, we cannot rule out that fish

type is only a proxy for some other variable. To examine more closely the effect of

fish type (the origin of the experimental animals) whilst minimising the effect of these

potentially confounding variables, we analysed a subset of 15 fish drawn from the group

originating from a cage farmed and all 15 wild smolts that responded to flow change

and were closest in their conditions (identical pump outputs, exposed to temperatures
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within a range of 2.1 degree, no light). In this subset we found that neither previous flow

conditions (Chi-square = 0.432, df = 1, p=0.23) nor type of fish (farmed or wild) (Chi-

square = 0.202, df = 1, p=0.41) had a significant effect on the model. According to the

Bayesian Information Criterion, the intercept-only model (AIC=396, BIC=400) provides

the best balance between fit and complexity, highlighting a lack of strong evidence for

differences among the groups studied.

Figure 2.1: The number of trials in which fish from different origins (indoor farmed,
outdoor farmed and wild) responded to the reversal of flow in the experimental area by
switching direction. A clear response to flow was the most common outcome in all groups.

Figure 2.2: Histogram and KDE (Kernel Density Estimate) plot displaying the minimum
flow velocities (Vmincm/s) that prompted a change in directional orientation across three
fish groups. The vertical ticks along the x-axis represent individual observations contribut-
ing to the histogram formation. Each panel corresponds to one of the fish origin groups:
indoor farmed, outdoor farmed, and wild.
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2.5 Discussion

Here we show that the velocity required to initiate a directional change in the swimming

of Atlantic salmon smolts is relatively low, with a mean Vmin of 8.9 cm/s (∼ 0.6 body

length/s). Wild fish and the two groups of farmed Atlantic salmon smolts behaved simi-

larly, although the wild fish had a slightly higher mean Vmin value than the farmed fish,

, especially those from indoor facilities, were marginally more sensitive to the velocity

change. The wild fish group showed the least pronounced peak in the Vmin, that elicited

a behavioural re-orientation response and there is considerable variation around the mean

response for all groups (Figure 2.2). Despite this and despite the detectable (but small)

differences in mean Vmin between groups the range of responses was broadly similar rang-

ing up to around 20 cm/s. It is self-evident that the fish in this study must be able to

detect a change in direction current at a velocity lower than that at which they respond

to that current. It is very possible that there is between-individual variation in the time

between directional current change and a behavioural re-orientation and that this, may

in part be responsible for the variation in Vmin. Despite this however the difference be-

tween the determined mean Vmin and the upper end of the range of Vmin detected by a

behavioural re-orientation response is only two fold difference.

It is frequently reported that migration is associated with the highest mortality rates

during an animal’s life cycle (Cresswell et al., 2011; Guillemain et al., 2010; Owen and

Black, 1991; Sillett and Holmes, 2002; Strandberg et al., 2009). This is also true for

salmonids; the downstream migration of Atlantic salmon smolts is associated with variable

but relatively low survival, with mortality rates of between 0.3 and 7.0 % km−1 reported

during downriver migration and 0.6 to 36 % km−1 during the early phases of marine

migration (Thorstad et al., 2012b). Especially high mortality is observed in the river-

lake confluence, likely due to predation, highlighting the necessity for reducing time spent

finding the route out of the man-made reservoirs (Kennedy et al., 2018). During this

initial and risky part of the Atlantic salmon migration, the evidence suggests that the

most important cue for movement and migration is water flow (Otero et al., 2014; Scruton

et al., 2003). Therefore, the fish’s ability to detect this cue and also to react to it correctly is

vitally important for successful migration. In rivers with clear and reliable water flow cues,

the migration is consistently unidirectional (Thorstad et al., 2012b). However, water flow

related directional cues become unreliable and poorly defined when downstream passage is

through habitats that do not have strong, unidirectional currents such as lakes, reservoirs,

and riverine areas near barriers (Honkanen et al., 2021). Multiple studies have shown
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that the lower water discharge especially near barriers contribute to delays and failure

of migration (Gauld et al., 2013; Serrano et al., 2009). In this study, Atlantic salmon

smolts were clearly responding to changes in current velocities, although there was inter-

individual variation (range: 0-24 cm/s). The wild fish in this study were from a population

that does not have any standing waters or in-stream barriers on their migration route. It

would be an interesting comparison to study populations from rivers that do and do not

have a lake in them.

There is only one similar study that has investigated the flow sensitivity of juvenile

Atlantic salmon in an experimental setting. Veselov et al. (1998) reported Vmin values

of ∼ 5.5 cm/s for Atlantic salmon smolts. Their results show a broadly similar but a

slightly lower threshold for detection than we found in the study presented here. This

could however be due to a difference in the behavioural cue that was used to determine a

flow change response in the experimental fish. In the Vesolov study it is slightly unclear

whether they measured the directional flow as the first signs of a behavioural response

occurred or when the orientation change actually took place. They also found that the

minimal velocity threshold for a response (Vmin) values were lower for fry and parr than

for alevin and smolts, suggesting that Vmin is not simply related to fish size and may

be connected with development of the sensory organs and behavioural characteristics at

different life stages in this species. They also found seasonal variation in the responses;

with Vmin much higher at colder temperatures (Veselov et al., 1998).

Another interesting finding from our study is that the wild and farmed fish (from

indoor and outdoor farm facilities) responded to changing current in a similar way with

some evidence of a slightly lower minimum velocity threshold amongst farm origin smolts.

Thus, despite four or more decades of selection under domestication, farmed fish smolts

have not lost the flow response that is found in wild fish. This is somewhat surprising

as several studies have highlighted differences in behaviour and physiology between wild

and farmed Atlantic salmon (Fleming et al., 1996; Jutila et al., 2003; Houde et al., 2010).

When testing a sensory response to flow, it might be reasonable to postulate that that

farmed fish might have higher Vmin, threshold, considering that they have been reared in an

environment with mostly uniform flows and arguably no fitness benefits (i.e. higher food

intake, dominance) for higher flow sensitivity. Alternatively, if farmed fish are exposed to

low water velocities (which might well be the case in fish from outdoor lake cages), they

may be more sensitive to changes than wild fish that experience considerable variation in

flow conditions in their natal rivers.

There is clear management interest in the minimum water velocity cues that are re-
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quired for fish navigation and hence successful migration. Many migratory fish use rheo-

taxis as one of their main navigational cues during their early migration and therefore

water velocities of sufficient magnitude and directional stability are required for successful

migration. However, it is likely that man-made reservoirs have an added layer of com-

plexity associated with migration with altered hydrology near the dam and the challenge

of identifying any natural or man-made fish at or near the dam (Havn et al., 2018; Babin

et al., 2020). This can lead directly to mortality or it may result in an additional cost

incurred through a delay in migration, such as mortality via predation or smolts missing

the physiologically suitable time period for entering the ocean (McCormick et al., 1998).

However, where water velocities can be manipulated in standing waters, for example where

there are hydropower facilities with scope for at least partially influencing the hydrologi-

cal conditions within a reservoir then it may be possible to create conditions in reservoirs

that facilitate successful smolt migration. This approach was demonstrated by Xu et al.

(2017) who modelled flow velocities across a large reservoir in China. Using 20 cm/s as

the minimum flow requirement required for migratory fish to detect, and follow, a ve-

locity cue, they found that while most of the route through the reservoir (68%) met the

minimal detection limit, there were two sections that fell below this threshold and thus

constituted an invisible migration obstacle for fish. This sort of hydrological modelling

in conjunction with the water velocity detection thresholds identified in our study, (that

confirmed 20 cm/s flow as a minimum flow rate cue to which migrating salmon smolts

will respond) has considerable potential for practical management. For example such a

detection threshold may aid in predicting where and when migrating salmon smolts may

be making navigation decisions based upon water flow and thus has the potential for

manipulation in managed hydropower schemes.
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Chapter 3

Predicting complex movement of

multiple animals in simulated video

recordings

Note

The content of this chapter has been written solely by Mikolaj Kundegorski on the experi-

ments and analysis performed jointly by Mikolaj Kundegorski and Colin J. Torney. Shaun

Killen, and Colin E. Adams participated in the revision of the chapter

3.1 Introduction

This chapter describes a novel method of visually tracking multiple animals in overhead

video recordings. This is a deep-learning-based method inspired by work on movement

analysis of juvenile salmon in an artificial stream and ungulate herds. I test this method

on simulated data of complex animal movement to understand if the prediction of the next

position of an animal can be robustly inferred for a wide variety of animal movements.

3.1.1 Motivation

In recent years, collective behaviour studies have benefited from drone recordings of herds

of ungulates (wildebeest, blackbuck, horses) (Rathore et al., 2023; Torney et al., 2018b).

With improvements in technology, large quantities of video data are now available to

extract position information, allowing the study of leadership, behavioural states, habits,

and habitat preferences. These animals spend time foraging with minimal movements,
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then rapidly accelerate in response to threats. They exhibit patterns related to social

hierarchies and environmental gradients when migrating towards resources and navigating

obstacles such as river crossings.

While telemetry data can explicitly provide precise location information, it lacks the

detail found in video recordings. Videos can reveal an animal’s behaviour, body condition,

and external influences such as weather and interactions with other animals. However,

to quantify those, a video recording requires the interpretation of rich visual information

that is laborious and often cannot be automated with analytical methods. With sufficient

equipment and recording conditions, we can achieve a sampling frequency and image qual-

ity that allow for relatively easy extraction of tracking data from the image. Laboratory

experiments are often designed so that animals stand against a uniform background and

are recorded with high-quality cameras (Lin et al., 2018). However, not every hardware

solution can be easily deployed in the field where we want to observe animals in their

natural habitat. Study sites can often be difficult to access and pose a high risk of dam-

age or loss of equipment. Areas with changing weather, low natural light, or complete

darkness requiring infra-red illumination limits the quality that can be achieved even with

expensive cameras. Drone recordings often use reasonably high-quality cameras, but need

to be conducted from a sufficient height not to disturb the observed herds. Most animals

naturally camouflage in their natural habitats.

The next chapter (Chapter 4) of my thesis describes laboratory experiments on juvenile

salmon moving in a circular flume. Fish were studied moving at night for extended periods

of time, constraining the choice of camera to near-IR, the size of files that can be stored

until filming completes, and network connectivity. Figure c) shows an example frame from

that recording.

Our observations of salmon smolts in an artificial flume show different modes of move-

ment. Individual fish can hold their location, swim passively oriented against the flow, or

swim actively with the flow. The fish travel in various group sizes, and as they navigate the

flow, their orientation and style of swimming can change. When swimming actively, they

mostly perform aerobic movements that can be sustained for extended periods. However,

periodically, they will perform an anaerobic burst, rapidly moving in a different direction.

Figure 3.1 illustrates the common problems in visual tracking in animal research.

• Occlusion Overhead footage significantly improves spatial separation of animals

in the image space, yet occlusions are still unavoidable. A group of ungulates can

almost entirely disappear under trees, or small animals may get partially occluded

in thickets. In observations of fish in a tank, the additional difficulty arises from
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(a) Occlusion (b) Movement

(c) Illumination (d) Appearance

Figure 3.1: Challenges in animal tracking. Figures (a) and (b) show juvenile salmon
moving in an illuminated tank, illustrating issues of occlusion and decreased image quality
due to motion blur. Image (c) shows a much more challenging scenario from night-time
recording with an infrared camera, where the low intensity of light limits the amount
of detail registered by the camera. The last panel, (d), shows a scene with a complex
background and animals that, even though not overlapping, are difficult to differentiate.

the fact that actual movement occurs in a 3D space and fish can partially or fully

overlap. In Figure 3.1 a), a reflection of a lamp occludes the position of the fish

almost entirely.
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• Fast movement Rapid movement presents a dual challenge: it naturally means

that the area to consider for matching the object is much larger, making the solution

to the matching problem more complex. Simultaneously, with limited light, rapid

movement can cause blurring and loss of visual information. Figure 3.1 b) shows

an image of multiple salmon smolts travelling in a shoal. Figure 3.2 illustrates

different modes of movement present in a low-light recording. The bottom row shows

anaerobic movement, where a previously stationary fish performs a dynamic burst,

initially bending into a “C” shape and moving quickly in an arbitrary direction. This

type of movement is highly unpredictable and is useful for predator avoidance and

navigating strong currents.

• Illumination Some field recordings occur in areas with high sun exposure, creating

a large contrast between shaded and sunlit areas. Ultimately, the camera frame rate

and exposure are limiting factors on the amount of light entering the sensor, and

a setting that provides a good amount of visual detail in shaded areas might cause

oversaturation in sunny areas. Additionally, as lighting conditions change rapidly

or an animal enters a differently illuminated area, its appearance changes suddenly.

Infrared cameras are particularly sensitive to this, as the amount of direct sunlight

on the object contributes to most of its signal. Figure 3.1 c) shows the problem of

blurred images of animals compounded by strong shadows, presenting an additional

challenge.

• Appearance and shape deformity In the human world, the appearance of many

objects—such as people in pedestrian detection or cars on the road—is different

between instances and changes relatively little between frames. In contrast, in biol-

ogy, conspecifics can be almost indistinguishable from recording distance, and their

shape can change rapidly with movement. Additionally, animals might not conform

nicely to a bounding-box approach where their shape fills one rectangle. Figure 3.1

d) shows a pack of horses from field recordings that display a variety of shapes while

next to each other, making it challenging to draw clear distinctions between each of

the individuals.

Modern computer vision techniques address all of those challenges and are often tested

using popular benchmarks to demonstrate how well they perform in real applications. The

Multiple Object Tracking Benchmark (Dendorfer et al., 2020), aimed at tracking pedes-

trians, is the most popular and shows vast improvements in difficult, crowded scenarios

that were beyond the capabilities of simpler models. However, there is always the issue of
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implementing and adjusting complex models to different scenarios. The benchmarks have

limited focus and cannot guarantee the robustness of methods in unusual scenarios.

Unlike video surveillance data used for pedestrian detection or road images used for

the development of autonomous driving algorithms, labelled videos from ecological and

biological studies are, by comparison, in short supply. Most of it comes from experiments

and is unlikely to be shared widely. Each specific domain also has unique challenges and

characteristics that are not shared by others. The heterogeneity of the natural environment

presents a unique challenge that varies widely between ecosystems and observed species,

as highlighted in Figure 3.1.

The field of machine learning is prediction-focused, often performing well on practical

tasks but without quantification of uncertainty (Ghahramani, 2015). In this work, we

attempt a more methodical approach to better understand the value of using a modern

deep-learning technique and its potential limitations. Particularly important is the issue

of indirect learning, where the data provided for both training and evaluation of the model

might lack characteristics of the real-life scenario. In our case, we investigate whether a

method trained on a single animal track, which can be easily extracted and annotated, will

allow generalization to multi-animal tracking—a challenging problem for data acquisition

while also crucial for collective movement studies.

Recent advances in machine learning show that even without ground truth data, a

lot can be learnt from the context and synthetic, also called simulated, data generation.

Simulated data mimics the characteristics and structure of real-world data, in general

allowing to test models under more controlled conditions. Adversarial networks - where

one ML system generates synthetic data, and another is optimised to detect it - can lead

to performance that vastly supersedes learning on labelled examples. The famous case

of AlphaZero (Silver et al., 2017) shows that the parallel training of two neural networks

playing a complex board game against each other achieved better results than the analysis

of vast quantities of existing transcripts of games played by and between human opponents.

Additionally, simulation data allows for disentangling some aspects of algorithm func-

tion that would not be possible with real-world data. A common issue with limited

datasets is overfitting, where, in the process of optimizing learning on a specific sample,

the algorithm loses the ability to generalize to the entire population. The use of synthetic

data allows us to at least partially circumvent this problem.

Machine learning techniques are contingent upon the quality and quantity of the an-

notated training data. Transfer learning allows the re-use of models trained on tasks

where more data is already available and applying it to similar domains, leveraging the
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Figure 3.2: Comparison of two modes of fish movement from experiments described in
Chapter 4. Each row shows subsequent frames from a low-resolution camera recording at
10 frames per second, capturing a total of 0.5 seconds of movement. The first row shows a
fish swimming aerobically in a slow current. The bottom row shows anaerobic movement,
where a previously stationary fish performs a dynamic burst, initially bending into a “C”
shape and moving quickly in an arbitrary direction.

similarity of visual cues, for instance, between synthetic data and laboratory recording.

Extraction of general image features from extensive image corpora significantly reduces

the volume of subject-specific data required for annotation when adapting an object de-

tector to a new task. However, a comprehensive framework for tracking has not yet been

established, making data annotation particularly challenging due to ambiguities in the nec-

essary level of detail for effective training. Questions arise such as whether it is possible to

derive high-sample tracking from low-sample annotations, if multiple object tracking can

be learned from single object annotations, and whether transfer learning can be applied

across different objects exhibiting similar movement patterns.

This chapter introduces a novel approach, Deep Predictor, for location prediction in

animal movement tracking. While traditional methods such as Kalman filtering are widely

used and effective in many cases, they often struggle to generalise to complex movement,
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which can often be the focus of animal studies. We evaluate the performance of Deep

Predictor in comparison to Kalman filter-based techniques on synthetic data crafted to

test the robustness and validity of our approach.

3.1.2 Contribution

In this work, we modify a step in an existing approach already adopted in ecology (Rathore

et al., 2023; Torney et al., 2018b), exploring how the position prediction of animals can

be improved. Specifically, we:

• Develop a new method, Deep Predictor, to accurately predict the bounding box of

tracked animals. This method is suited to ecological applications where there is little

prior tracked data for each species, as it is capable of learning both about object

appearance and movement model.

• Benchmark the method against Kalman filter predictions on simulated data of com-

plex movement, showing improved performance in all but the most trivial scenarios.

In this way, we address a potential pitfall of deep learning methods applied to low-

data problems that may seem to perform better on a difficult task when they are

actually solving an easier one—for instance, correctly identifying individuals by ap-

pearance while failing to model their movement patterns.

• Test the robustness of the method. We demonstrate that when trained on single-

object tracking, its performance does not degrade with larger animal groups. Addi-

tionally, we confirm that identical objects are tracked as effectively as distinguished

ones, making the application to closely similar animals possible.

Our method builds on modern tracking techniques (Section 3.1.3.5) but replaces only

one component (movement prediction) to assess the benefits and limitations of more com-

plex tracking methods that are rarely used in ecological settings (further details in Section

3.1.3.6).

Further benefits could be achieved by implementing the latest version of the YOLO

family object detector, YOLOx (Ge et al., 2021), which has been used in successful trackers

(Zhang et al., 2022, 2023), and by enhancing track linking with methods like BYTE (Zhang

et al., 2022). However, this lies beyond the scope of this work.

The following section summarises traditional approaches and recent developments in

visual tracking.
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3.1.3 Background: Visual tracking of animals

3.1.3.1 Overview

To quantify the movement of animals in a video feed, they first need to be localised as

candidates for objects of interest and then classified to confirm they are the specific animal

type or individual. These detections within each frame of a video need to be matched

between frames to generate spatio-temporal tracks, allowing further analysis of the field

or experimental data. Image recognition, described in Section 3.1.3.3, extended with

algorithms to look for object candidates in the image using some method of localisation

3.1.3.2, is called object detection.

Observing recognised individuals over time is a problem of object tracking (Section

3.1.3.6). Observation of a moving animal requires the following actions to be performed

across consecutive frames:

1. Localisation of candidate objects in the 1st frame

2. Classification of objects of interest in the 1st frame

3. Prediction of the position of objects of interest in the 2nd frame

4. Localisation of candidate objects in the 2nd frame

5. Classification of objects of interest in the 2nd frame

6. Linking of objects of interest between the 1st and the 2nd frames

In this work, we focus on the prediction step (step 3) to understand if our method

can effectively learn a wide range of movement scenarios in providing the next position

of objects of interest. The following sections, Section 3.1.3.2, 3.1.3.3, and 3.1.3.4 describe

the key analytical methods used to achieve the above tasks. Recently, with computational

advances, each part of the process is integrated into the same learning framework in a deep-

learning technique. Following Section 3.1.3.5 presents advances in modern deep learning

approaches to the problem with the theoretical underpinning of this approach in Section

1.3.2.1.

3.1.3.2 Localisation

Detecting potential objects of interest in an image frame involves separating any foreground

objects from the background. This task can be trivial in laboratory settings where the

81



Chapter 3: Predicting complex movement of multiple animals in simulated video recordings

background is uniform-coloured, and objects are visually distinct. In many scenarios

however, objects can appear on different scales, be static or moving, and be partially

occluded. The success of classifying each object into the correct class heavily depends on

the algorithm knowing where to look. There are a number of methods used to localise

objects:

• Create a sliding window at multiple spatial scales and scan the image, performing

image recognition on all extracted parts of the image. This approach is highly

computationally demanding and requires a high-precision model to accommodate

multiple possible configurations of background and clutter in the image, as originally

proposed in Fast R-CNN (Simonyan and Zisserman, 2015).

• Thresholding the pixel intensity values. Assuming a smooth or reasonably uni-

form background, adaptive thresholding can provide candidate areas for detection

by finding blobs (connected lines) distinguished by locally high gradients or inten-

sity of pixel values. This approach can work well in very specific cases and has been

widely used in semi-automated analysis of laboratory experiments, for instance, us-

ing the method of Sridhar et al. (2019).

• In a video feed, it is much easier to detect moving objects using background sub-

traction Bouwmans et al. (2008), a technique which models the subsequent values

of pixels in the video as a Mixture of Gaussians. Recognising pixels that fall outside

of the predicted distribution provides a foreground mask, whereas connected areas

provide candidates for objects of interest. This method works reliably for stationary

cameras, where the background remains static and often fails on more dynamic back-

grounds, such as water surfaces. This is also a popular method in the automation of

laboratory experiments where the background colour is easy to model in this way,

and the camera position remains fixed (Mönck et al., 2018).

• Adding a separate regressive neural network, a Region Proposal Network, which

performs the task of finding suitable candidates for detection. A number of successful

methods use this design, such as FasterRCNN (Ren et al., 2015), which is, however,

still computationally demanding.

• Single-shot detection leverages deep learning to incorporate the problem of finding

object bounding boxes as a regression problem within an object recognition network.

This method usually provides the least computational burden while sustaining high
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accuracy. In our research, we use the You Only Look Once (YOLO) (Redmon and

Farhadi, 2018) network to perform object detection.

3.1.3.3 Image recognition

Classifying the cropped image into one of the predefined classes is termed image classifi-

cation or image recognition.

In the context of tracking a specific animal within a frame, the class to which the

animal belongs is, for instance, a species or a visually distinguished experimental group.

Depending on the the technique chosen and scenario, only the class of interest is modelled

against any background clutter or different possible types of objects are explicitly modelled,

providing the probability score for each class for every detected candidate object. For

example, in recognising images of wildebeest in the savannah, it may also be advantageous

to recognise images of zebras and trees, as this can facilitate the creation of a more robust

and interpretable model.

Unlike the localisation of objects in the image, classification has always been a mod-

elling problem and has never relied on a strictly analytical approach. Image recognition

was traditionally based on a two-step process. The first step, feature extraction, produced

a numerical representation of the image, orders of magnitude lower dimension compared

to raw pixel values, to be passed to a machine learning algorithm for classification.

For the recognition of rigid objects of generally known shape, dense features can be

used, such as Histogram of Oriented Gradients Dalal and Triggs (2005). Images of objects

like pedestrians, vehicles, or faces are divided into a fixed-size grid. Each of the grid

cells has a pixel intensity gradient calculated in multiple directions, hence producing a

numerical vector for each cell.

This approach obviously does not work with objects that vary in their appearance, like

buildings, people in general, or animals. This problem is addressed using a Bag-Of-Visual-

Words approach based on bag-of-words used in text comprehension—where not the precise

position but the frequency of appearance features identifies a subject (Kundegorski et al.,

2016). In such cases, the image is scanned for sparse landmark points and distinguished

corners, which are then described mathematically in terms of their blurred gradients at

different orientations and scales. The most famous of these techniques is the Scale Invariant

Feature Transform (SIFT) Lowe (1999). Then, a histogram of the appearance of different

features is created using a clustering algorithm, which forms a feature vector.

Such a feature-based approach is still popular in ecology (Rey et al., 2017; Chabot

et al., 2018; Banerjee et al., 2021) where it improves on manual classification approaches.
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The limitations of these human-designed features are only apparent when an alternative

approach is considered, where the classification and feature extraction can be optimised

within one framework.

Once the image information is encoded and represented in lower dimensions, some

statistical modelling techniques are used to classify the output. Various machine learning

algorithms are used for image recognition, such as Random Forest (Scornet, 2016), Support

Vector Machines (Vapnik, 1997), and neural networks (Szeliski, 2022). Random Forest is

an ensemble classifier that pools the classification decision of a vast number of decision

trees trained on small subsets of given features. Decision trees are binary tree classifiers,

classifying data by assigning feature value thresholds to minimise entropy. Support Vector

Machines perform a binary classification in a multidimensional space defined by an inner

product of all data points. This “kernel trick” allows for easy model training once the

feature space is transformed because the model to fit is still very basic.

Figure 3.3: The schematic of a Convolutional Neural Network (CNN). We use convolution
to reduce the dimension of the image by measuring the similarity with a custom kernel
across the image space. In this schematic, the orange boxes indicate an area of an image
that is multiplied by a convolution kernel, resulting in the scalar value in the next tensor.
Once the image is reduced to its final feature map, a fully connected layer is used to
classify an image to one of the predefined classes

Artificial Neural Networks can be described as an ensemble of interconnected binary

classifiers (neurons). They have the potential to estimate a variety of non-linear models.

However, the high amount of tuneable parameters meant that in the past, their opti-

misation using Stochastic Gradient Descent often resulted in overfitting to the training

scenario data, where the network was fitting data closely but only for the provided train-
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ing data or alternatively failing to model even training data well when constraints on

the network complexity were introduced. This problem was difficult to overcome because

of the lack of sufficiently broad training data and processing power to utilise it (Geman

et al., 1992). It resulted in a period of slowdown in ANN research, commonly known as

AI winter, that lasted until improvements in hardware allowed the development of new

methods and training of deeper networks. In a seminal paper, Krizhevsky et al. (2012)

leveraged the computational power of Graphical Processing Units for matrix operations

and reformulated the optimisation problem by modifying the activation function of neu-

rons, introducing a new type of connection between neurons: a convolutional layer. This

work reported better results in image recognition than any previous technique, and since

then, Convolutional Neural Networks have led in the most computer vision tasks on large

benchmarks such as ImageNet (Krizhevsky et al., 2012) or PascalVOC (Everingham et al.,

2015). Convolution is a localised measure of similarity. Given two functions, one repre-

senting the image I, and another, the convolution kernel k defined by trainable network

parameters, convolution is formally defined as

(I ∗ k)(x) =

∫ ∞
−∞

I(τ)k(x− τ)dτ, (3.1)

and can be thought of as a localiser of kernel-like objects in the image I. The introduction

of these layers in the network (illustrated in figure 3.3) meant that raw image data could be

used as a feature vector input to a neural network classifier, and previously hand-crafted

features could be learned directly from raw images. However, this requires vast datasets.

With advances in data collection, they have become available in every discipline, including

biology (Van Horn et al., 2017). Another approach allowing the use of neural networks in

different domains is transfer learning, where network parameters of convolutional layers

trained on a big dataset such as ImageNet(Krizhevsky et al., 2012), PascalVOC (Ev-

eringham et al., 2015) or COCO (Lin et al., 2015) provide a generic feature-like image

representation which can be transferred to a domain-specific problem. Then, the top clas-

sification layers of the network can be retrained on the domain data providing performance

better than other techniques. Such solutions are used in recognition of animals in trap

cameras (Schneider et al., 2018), underwater recordings of fish (Lopez-Marcano et al.,

2021) or overhead imagery (Torney et al., 2018b; Rathore et al., 2023).

More technical details on the Neural Network algorithm was provided in Section 1.3.2.1

of this thesis introduction.

The most successful image classification neural network architectures, such as AlexNet
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(Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2015), and GoogleNet (Szegedy

et al., 2015), have since been used in a variety of computer vision applications. YOLO

(Redmon et al., 2016) and Faster R-CNN (Ren et al., 2015) have then been the key

extensions of these, enabling the object localisation task to be included in the same learning

process, further reducing the need for separate algorithms at different stages of object

tracking.

In this work, we are using a custom implementation of the leading deep-learning ob-

ject detector YOLO, version 3 (Redmon and Farhadi, 2018), which is a popular method

for fast object detection, used in real-time applications, and has been revised since the

original method was proposed in Redmon et al. (2016). The YOLO architecture is still

being developed with gradual improvements, currently at version 9 (Wang et al., 2024).

However, newer versions lack community support and adoption within wider deep-learning

frameworks that are afforded to the most popular version 3.

This approach unifies object classification and convolutional neural networks with a

region proposal network that provides bounding boxes with candidates, originally intro-

duced in Faster-RCNN (Ren et al., 2015) to simplify training and reduce inference time,

compared to previous approaches where these two tasks were separate. The generation of

the bounding boxes is based on the assumption that there is a finite number of objects,

and the image plane is divided into a grid of anchor boxes which contain 9 prior shapes

of bounding boxes that each of them is tasked to predict within an image.

Figure 3.4a shows the architecture of the network with three scales of features provided

from a series of convolutions that have been pre-trained to detect general image features.

The authors suggest dividing an input image into a S × S grid in which each cell is

responsible for providing B = 9 detections, each with a vector of probabilities belonging

to different C classes. Figure 3.4b illustrates that concept that allows a variety of valid

detections in one area of the image while keeping the total number of candidates limited.

Number B corresponds to predefined anchors for bounding boxes and priors for the most

commonly occurring object shapes. Each of those S × S ×B × C detections is a vector

y = [tx, ty, wx, wy, P (Object), P (k|Object)]T , (3.2)

where tx and ty are coordinates of the centre of a bounding box relative to the centre of

a grid cell, and wx and wy are corrections to the prior bounding box coordinates (either

linear or logarithmic). P (k|Object) is a probability that the object in the bounding box

is of class k, given that this grid cell predicted an object.

86



Chapter 3: Predicting complex movement of multiple animals in simulated video recordings

(a) (b)

Figure 3.4: The overview of YOLO version 3 detection logic. The panel on the left
shows the simplified architecture of the YOLO detector, version 3. The down-scaling
of subsequent feature maps with convolution operation and extraction of those maps at
different scales to allow for regression of the detector on correct bounding boxes, no matter
the relative object size. The panel on the right, shows an 8× 8 grid that is used to define
anchor points, which can contain multiple bounding boxes with a centre inside that grid
cell. In the last stage of classification, the problem is reduced to a correct prediction of
object classes and their bounding boxes within a finite number of anchor points, hence
making the problem easier to learn.

3.1.3.4 Track Linking

Most tasks relating to the processing of videos have real-time processing requirements.

Predicting the position of tracks and matching the same object among multiple candi-

dates across frames can be a complex problem without a valid solution—for instance,

when the object becomes occluded. As improvements in hardware have simplified the

problem—by providing higher image resolution and smaller absolute movement in high-

frame-rate recordings—conceptually simple and fast algorithms have dominated the field.

In Section 3.2.2, I describe the principles of linear Kalman filtering, which provides the

best candidate location for each tracked object (Kalman, 1960). The main drawback of

this fast method is that it assumes a linear model of motion. The Extended Kalman Filter

(EKF) (Welch and Bishop, 2006) allows for the approximation of non-linear dynamics by

using first-order derivatives at the location of the mean. This is further improved by

the Unscented Kalman Filter (UKF) (Wan and Van Der Merwe, 2000), which uses a

transformation allowing the propagation of non-linear functions at deterministic points.

These methods work with prior knowledge of the functions describing the system dy-

namics, which are not always known when describing movement in the video; hence, the
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popularity of the linear Kalman filter operating at high frame rates to approximate linear

movement.

Alternatives include estimation of movement locally by shifts in pixel intensity pat-

terns (Horn and Schunck, 1981), or using sequential Monte Carlo, also known as particle

filtering (Del Moral, 1997). However, these methods generally increase the complexity of

calculation while not offering an advantage in real-time applications.

Given the predicted positions of objects from the previous frame and new detections

(tracking-by-detection), the most popular method for track association is by using the

Hungarian matching algorithm (Kuhn, 1955), with the distance between predicted and

detected candidates as a matching cost. This algorithm optimises the total cost iteratively

and guarantees convergence on the optimal solution. It operates in polynomial time,

allowing for use in real-time applications.

3.1.3.5 Modern Tracking

More recently, attempts have been made to incorporate information on the appearance

of each object or even the entire movement information into the deep learning framework

to eliminate the need for separate algorithms for track prediction. Appearance tracking

is particularly relevant to animal movement. Unlike most of the rigid objects in our

surroundings, animals have particular shape changes corresponding to the dynamics of

their movement. For instance, fish conform to a C shape when they begin anaerobic

swimming. Other animals would have significant change of shape, especially before rapid

acceleration. Observed from overhead, most of the animals would need to visibly orientate

themselves in the direction of movement before rapid speed increase. These are additional

cues which would be helpful to fix problems that are of particular difficulty for Kalman

filters which predict animal position based only on movement parameters.

As with object recognition, neural networks provide a unified modelling framework

for object detection and tracking. Object detection networks like YOLO redefine the

learning task by dividing input images into cells, each providing predictions of objects

centred within it and the sizes of their bounding boxes. Figure 3.4 b) presents the con-

cept of bounding box predictions from a single image cell as employed in the YOLO

detector. The loss which is used to fit the model implicitly contains the localisation of

multiple classes of objects. Such detection networks achieved considerable success in track-

ing benchmarks, combined with the Hungarian matching algorithm and Kalman filtering,

with the most popular implementation being a SORT tracker by Bewley et al. (2016). Due

to the simplicity of this approach, SORT has become a standard in a variety of real-world
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applications.

Motion dynamics has long been suggested as the key to solving the problem of occlu-

sions and similarities in targets. Defining longer tracks with temporal information has been

successful on challenging datasets of tracking multiple near-identical objects by Dicle et al.

(2013). They re-frame the problem as a generalised linear assignment of multiple tracks

instead of simple 2-frame-based linear assignment to incorporate the long-term movement

dynamic.

The considerable challenge still remains for tracking in crowded situations where multi-

ple objects of the same class will occur very close to each other. To address that situation,

DeepSORT algorithm (Wojke et al., 2017) uses the top layer of convolutional features

of detected objects to create a similarity metric between their appearances to be used

alongside distance metric for matching with the Hungarian algorithm. This metric is pre-

trained on pedestrian re-identification dataset, which makes the whole method dependent

on the training of not just the object detector, but also the re-identification dataset. That,

however, still requires a separate algorithm for predicting the likely positions of the objects

like a Kalman filter.

A very fast (although single object) tracker GoTURN (Held et al., 2016) employs a

convolutional network taking two consecutive frames as input and defines a regression

task (as opposed to classification) to localise the object in both frames at once. Such

a tracker allows for precise tracking even when the object is partially occluded and is

also conceptually simple. This approach shows the possibility for CNNs to learn visual

movement information.

Following the overall shift into a unified learning framework in wider machine learn-

ing, Tracking-by-detection (TBD) is currently the main approach where all stages of the

algorithm combine into one. The main focus of those methods is a high-quality object

detection network, that provides the appearance and motion information that is matched

between frames with a Re-Identification model. Those two parts of the network are gen-

erally trained with domain-specific data (Feng et al., 2019)

In one approach, Siamese networks (Bertinetto et al., 2016) track objects passed to a

network tasked with predicting their position in the next frame, given previous and current

frames processed by the same convolutional pipeline. The convolutional networks share

the weights and are, hence, identical in their basic feature-detection pipeline. Expanding

on that approach, Leal-Taixe et al. (2016) enriches the association layer input with optical

flow information. A novel “Detect to Track” algorithm (Feichtenhofer et al., 2017) uses

the whole convolutional layer for appearance-informed matching. It creates an additional
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correlation of top convolutional layers that inform feature-based motion in the frame and

allows the matching of objects detected across two frames. It provides superior results in

recent tracking benchmarks and massively simplifies the whole process, however, it still

requires vast amounts of training data.

Some of the approaches use on-the-fly training of re-identification CNNs, such as Chu

et al. (2019), improving the re-identification but also adding complexity both in terms of

architecture and computation.

When high frame rates are available, we can rely directly on the quality of the detector

itself as the absolute motion in the image spaces is limited. Bochinski et al. (2017) shows

that without any feature-level information, high-speed tracking can be achieved using a

simple approach where the problem is presented as a mere passive filter on the detector’s

outputs on subsequent frames.

Even the simple approach of Tracktor (Bergmann et al., 2019) achieves high accuracy

results despite using no tracking data for training. The authors use an object detection

network trained on still images, applying bounding box location regression to track the ob-

ject’s position from one frame to the next. This approach achieves good accuracy without

increasing the complexity of training and no requirement for labelled tracking data. This

method inspires our approach of trying to minimise the amount of additional complexity

in tracking when a conceptually simple approach might provide sufficient accuracy.

Recent advances, such as FeatureSORT (Hashempoor et al., 2024), currently repre-

sent the best performing published tracker in the MOT20 challenge. Specifically, authors

achieve enhanced results primarily due to improvements at every stage of the detection

and re-identification algorithms, focusing on enhancing the features extracted for matching

and re-identification, a highly domain-specific aspect.

Further enhancements are realised by simply increasing the number of available frames,

although this incurs additional computational demands. Son et al. (2017) employ a

quadruplet Siamese network to optimise both detections and the matching of objects

across four consecutive video frames.

Wang et al. (2020) proposes combining extraction of appearance features used for

matching with the detection step, increasing tracking speed while maintaining state-of-

the-art accuracy.

Whereas Convolutional Neural Networks (CNNs) are useful for learning visual features,

Graph Neural Networks (GNNs) are designed to model associations between objects. The

architecture of the neural network layers maintains the integrity of the geometric structure

of the graph, providing interpretability for tasks such as tracking. Papakis et al. (2021)
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integrate both convolutional and graph networks into a single model, where tracking is

optimised as a graph problem with an emphasis on the underlying feature appearances of

objects.

Another graph-based method, the Unified Tracking Model You et al. (2023), suggests

a tighter integration of detection, embedding, and identity association between trackers.

Using Faster R-CNN, the authors detect objects, embed their features, and describe iden-

tity association as a graph-matching problem that is also resolved within the learning

framework. This includes memory aggregation, where embedding information and match-

ing are used in a feedback loop to inform future detections and track matching. The

authors are able to apply parts of this system using different components. IN GNNs, the

track associations can be analysed at different scales simultaneously, balancing short-term

matching of closest object detections with the long-term quality of the track. In Cetintas

et al. (2023), authors use GNNs to not only find the optimal linking of objects between

subsequent frames but also to create higher-level graphs describing longer-term tracking

that can then provide larger contextual information. Using such different hierarchies of

graphs allows for great flexibility in the temporal scales of tracking.

The ability to work on an undefined number of previous frames has previously been

achieved using recurrent neural networks, which allow for a moving-window-like approach

to providing input, thus enabling the encoding of temporal information during training.

Some success was achieved by incorporating the output of the detection layer into a re-

current framework, for example, by Stewart et al. (2016). However, since then, recurrent

neural networks have mostly been superseded by approaches based on the attention model

(Vaswani et al., 2017). Attention mechanisms in transformers enable the model to dynam-

ically focus on different parts of the input sequence, significantly improving the handling

of long-range dependencies compared to RNNs.

Applications of the transformer architecture to the object tracking task are beginning

to emerge. Traditional detection methods use Non-Maximum Suppression (NMS) or simi-

lar algorithm to trim away multiple bounding boxes for one detection, which can suppress

correct detections, especially in crowded situations. Contrary to that, transformers excel

at providing a dense, non-overlapping representation of the candidates. This is because

transformers, leveraging attention mechanisms, can manage multiple object representa-

tions without needing to suppress overlapping detections (Xu et al., 2022; Zhang et al.,

2023).

Further improvements in deep learning methods can be achieved by replacing bounding

boxes with pixel-level object masks. Previously too computationally expensive, these
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approaches now enable the tracking of objects with changing shapes and appearances in

crowded situations, leveraging transformer architectures (Ravi et al., 2024).

The MOT challenge benchmark (Dendorfer et al., 2020) provided over many years the

momentum for the advancement of tracking algorithms. However, issues of domain adap-

tation and generalisation remain as the more complex methods emerge and understanding

of the underlying mechanisms and model robustness remains limited.

3.1.3.6 Tracking in biology and ecology research

One of the limitations of computer vision methods is that they require a specialist back-

ground and programming skills to retrain and adapt models to specific scenarios. Often,

such trivial issues as the lack of a graphical interface can deter users. A recent review

Panadeiro et al. (2021) compares 28 animal movement tracking software packages focused

on the laboratory application. The focus of most of the tools is to allow a good procedural

analysis of data with high accuracy provided by manual validation of results and tuning

of the tracking process. Most of the methods use some form of background thresholding

or subtraction, relying on the quality of the experimental setup. Only two of the reviewed

approaches (idTracker (Pérez-Escudero et al., 2014) and Fish CNNTracker Xu and Cheng

(2017)) use convolutional neural networks, but only as a specific part of the individual

identification step for inter-frame matching. It is highlighted that the lack of large datasets

makes the use of deep-learning methods unrealistic.

Dell et al. (2014) reviews the problems of tracking in ecology, highlighting the lack of

approaches that work beyond laboratory conditions due to the breadth of data-gathering

approaches, environments and types of movement. Adaptive thresholding and background

subtraction are still the standard methods used in Tracktor (Sridhar et al., 2019), idTracker

(Pérez-Escudero et al., 2014), ToxTrac (Rodriguez et al., 2018), FIMtrack (Risse et al.,

2017), and BioTracker (Mönck et al., 2018), TRex (Walter and Couzin, 2021).

Lopez-Marcano et al. (2021) apply a modern deep learning approach to the tracking

of fish in underwater imagery, with 8700 tracks of fish annotated for training and testing

purposes, achieving a high accuracy.

3.2 Methods

Our tracking framework can be divided into three steps:

1. Detection of potential objects in the frame, achieved by a deep learning YOLO
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detector.

2. Prediction of positions of objects observed previously, based on movement prediction

using either our new method Deep Predictor or a Kalman filter.

3. Matching of objects between frames, done by a Hungarian matching algorithm Kuhn

(1955).

We test the performance of the Deep Predictor against two formulations of the Kalman

filter, addressing only the second step of our tracking framework. Often, tracking methods

are tested in their entirety, but we choose to focus on the output of the second step

to specifically test the value of our contribution. The failure of position prediction is

often mitigated by the quality of the candidate matches. In cases where there are only

a few possible detections (low false positive rate), the closest candidates will be reliably

matched by the Hungarian algorithm even if the predicted position does not perfectly

overlap with the candidate. As the number of candidate objects increases, the accuracy

of prediction becomes more important. Testing the actual predictions overlap with the

correct detections from the following frame allows us to compare the quality of this step

quantifying the robustness of our approach compared to alternatives.

The next section describes the implementation details of the first step. Following that,

we describe our previously used Kalman filters in Section 3.2.2 and provide a description

of our method in Section 3.2.3. An introduction to testing scenarios based on complex

animal movement is presented in the last section, Section 3.2.4.

3.2.1 Detection of animals

The YOLO network is trained on a dataset of 8 million images from the Common Objects

in Context (COCO) dataset (Lin et al., 2015). The network already contains appropriate

weights and biases describing the common appearance features of visual objects.

The loss function is used as a measure of the fit of the model to the training data at

each iteration and informs the backpropagation of the weights. It is then a function of the

parameters of the model, given the training dataset.

In the case of YOLO, the loss function accounts for the localisation and recognition of

objects in the training images and consists of distinct parts:

• Accuracy of object centre with loss Lcentre is defined as a sum of square differences

between all objects’ true coordinates (x, y) and predicted (x̂, ŷ) coordinates:
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Lcentre =
S2∑
i=0

B∑
j=0

1
obj
ij λcoord

(
(xi − x̂i)2 + (yi − ŷi)2

)
, (3.3)

where S2 represents the total number of grid cells in the detection layer, B denotes

the number of bounding boxes per grid cell and λcoord is the weight for this part

of the loss function. An indicator function 1
obj
ij is a mask that equals 1 if the j

bounding box in the i grid cell contains a detected object.

• Accuracy of bounding box shape is similarly defined by loss Lbox, with the

values fed through a logarithm to normalise the loss across different sizes of objects,

Lbox = λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

(
(lnwi − ln ŵi)

2 + (lnhi − ln ĥi)
2
)
. (3.4)

That defines the Coordinate Loss responsible for correct localisation of objects in

the frame:

Lcoord = Lcentre + Lbox. (3.5)

• Accuracy of prediction is expressed by confidence Loss (Lconf) that penalises the

error in the confidence predictions Ĉ for each bounding box, distinguishing between

those that are supposed to contain objects (1obj
ij ) and those that are not (1no obj

ij )

with a weight λno obj:

Lconf =
S2∑
i=0

B∑
j=0

[
1

obj
ij (Ci − Ĉi)2 + λno obj1

no obj
ij (Ci − Ĉi)2

]
. (3.6)

• Classification Loss Lclass: This component measures the squared error between

the predicted probabilities p̂i(c) and the true probabilities pi(c) for each class c, only

in grid cells i where an object is present, with a weight λclass:

Lclass =
S2∑
i=0

1
obj
i

∑
c∈classes

λclass(pi(c)− p̂i(c))2. (3.7)

This differs from confidence loss in that each YOLO cell can only predict one object

class.
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Combining all the components, the total loss for the YOLO detection model is:

L = Lcoord + Lconf + Lclass. (3.8)

We validate the performance of the detector on an unseen set of images coming from

the simulation described later in section 3.2.4. For training, we generated 1000 images

from the simulation with a single and 20 objects. We train the top layers of the object

detector pre-trained on the COCO dataset (Lin et al., 2015) for 50 epochs with a learning

rate of 5× 10−4 and batch size of 16. We then fine-tune the whole network for another 50

epochs with a smaller learning rate of 10−4 with batch size of 4. We use optimiser Adam

with β1 = 0.9, β2 = 0.999, ε = 10−8 and specify early stopping criteria of ∆min = 0.01 and

patience of 5.

The detector achieves a high performance on the unseen 500 testing images, with a

mean average precision (mAP) of 84.8% with an mAP threshold of 0.5, which is a good

result and comparable with 79% used in a detector on recordings of fish in Chapter 4.

mAP quantifies the balance between false positives and false negatives by measuring the

area under the Precision-Recall curve across all detections.

3.2.2 Predicting object position with the Kalman Filter

Most of the visual tracking software in use relies on Kalman filters to aid matching of

detections between frames. The Kalman filter is a basic linear predictor of state change.

It can be extended to account for non-linearity but it is widely used in its basic formulation,

being simple and tractable Welch and Bishop (2006). It is a two-stage algorithm where

the state of a system is represented as a Gaussian distribution and each step updates

the distribution parameters in accordance with the assumed transition matrix F (in our

case, a movement equation) and known uncertainties. The prediction step of the Kalman

filter performs a convolution of the previous state probability with the one calculated

based on the state transition. This a priori distribution is used in Bayes’ rule with new

measurements to provide a posterior, which takes into account both imperfect observation

and prediction. Given a state transition matrix F , which defines the assumed equation of

motion, the prediction step gives a prior information of the state a in the nth time step:

ân = Fan−1, (3.9)
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The uncertainty of this state estimate P̂n is updated by the prediction state:

P̂n = FPnF
T +Q, (3.10)

where Q is a matrix describing noise in the system. After the prediction step, we take a

measurement z and calculate the measurement noise as:

ζn = zn −Hb̂n, (3.11)

where the H matrix defines which components of the state vector a are latent and which

are observed. Kalman gain is then defined as

K = P̂nH
T [HP̂nH

T +R]−1, (3.12)

where R is a measurement noise covariance.

The posterior value of the system state and uncertainty are therefore:

an = an−1 +Kζn, Pn = [I −KH]P̂n (3.13)

3.2.2.1 Application of Kalman filter to image plane movement tracking

In behavioural research, we are interested in the position of an animal in the real three-

dimensional world. Positions of animals moving on the ground, observed from a UAV,

can be calculated with geometric transformations if the camera angle and movement are

known from onboard sensors. Visual tracking is performed solely in the image space, and

the position of each animal can be characterised by its bounding box.

bn = [cx, xy, w, h], (3.14)

where (cx, cy) are coordinates of the centre of the bounding box, w its width, and h its

height. In this case the bounding box bn is the observed state of the animal in the frame n

of the recording. The transition matrix F can describe any linear transition between states.

This allows us to create Kalman filters with constant speed, and constant acceleration of

both position and the bounding box coordinates. In the next section, I describe F matrices

of two popular Kalman filters for object tracking, which we benchmark against our deep

learning method.
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3.2.2.2 Formulation of Kalman-based methods

We compare our novel method to two formulations of the Kalman filter. The most common

one, used in SORT tracker Bewley et al. (2016), has a state vector which tracks the position

c of the middle of a bounding box, its scale s, and an aspect ratio r:

bSORT = [cx, cy, s, r, ċx, ċy, ṡ]
T . (3.15)

Another formulation comes from the work of Torney et al. (2018b) on visual tracking

of Wildebeest on Serengeti and is formulated and tuned specifically for drone footage

of animal movement where scale and ratio are less likely to change, but acceleration of

movement is common:

bAccel = [cx, cy, s, r, ċx, ċy, c̈x, c̈y]
T . (3.16)

3.2.3 Deep Predictor

The high-level information about the visual scene is contained in the last convolutional

layer of an object detector. The image input from three consecutive frames are processed

through layers of YOLO detector extracting and encoding features at increasing scales.

Outputs of the last convolutional layers — for each of the three scales provided by the

detector — is the most dense feature representation that is normally fed into a single fully

connected layer in order to classify objects in the scene. We provide those top feature

layers for three consecutive frames A,B and C as an input to the Deep Predictor together

with a focal detection from the second frame B.

Figure 3.5 shows the architecture of the simple neural network that learns the appear-

ance and movement of the animals in a features space of the YOLO detector output.

We are first applying a convolutional layer of two-spatial and one temporal dimension

(3D), of 512 3× 3× 3 filters that is responsible for describing motion patterns across the

three consecutive frames of the input.

xfeats(k, i, j) = η +
1∑

m=−1

1∑
n=−1

1∑
p=−1

xin(k +m, i+ n, j + p) ·G(m,n, p), (3.17)

where G is the convolution kernel, which is a matrix of weights, first initialised at random

and learned during the training process and η is a bias term.

Following that, we feed the signal through two layers, also used by YOLO that are

a popular choice for helping with the numerical stability of the training. As data is fed
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through the training algorithm in batches, the Batch Normalisation layer helps to stabilise

the learning process by normalising the outputs of the convolutional layer to have a mean

close to 0 and standard deviation of 1, making it resilient to differences between different

batches of training data, and reduces training time. The Batch Normalisation (Goodfellow

et al., 2016) is mathematically

xnormfeat = γ

(
xfeat − µ√
σ2 + ε

)
+ β (3.18)

where µ and σ2 are the mean and variance of the input of the batch and γ and β are

network hyperparameters. ε = 0.001 is a small constant added for numerical stability.

Finally, we apply the activation function needed to frame the output as a classification

problem. We use the Leaky Rectifier Linear Unit (Leaky ReLU) function (Goodfellow

et al., 2016):

φ(x) =

x, if x > 0

0.1x, otherwise
(3.19)

that has a small negative value where the given node is inactive, allowing for a gradient

flow between layers.

Then, finally, we are applying another convolutional network with 4 1 × 1 × 1 filters

that is essentially providing 4 values for every spatial location of the convolutional map

that are interpreted as offsets, width and height of a predicted bounding box, as related

to the original image coordinates.
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Figure 3.5: Deep Predictor takes as inputs the prediction from the frame at t− 1 and the
feature map of all three subsequent frames, including the current frame at t. Its output is
the location of a bounding box of the object detected and localised in t− 1 in the current
frame.

Following Bergmann et al. (2019), we are not introducing any additional logic to the

prediction step, simply fitting data as a problem of predicting location in frame C of each

target object from frame B, given a feature map for frames A,B and C.

The loss function which we are optimising relies on the position of a bounding box

in the final frame only and not on probabilities of detection. It is defined as a sum of

square differences between all objects’ true coordinates (x, y) and predicted coordinates

(x̂, ŷ) and the sum of logarithm differences between boxes’ width w and height h

Lfunction = λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
+λcoord

S2∑
i=0

B∑
j=0

1obj
ij

[
(lnwi − ln ŵi)

2 + (lnhi − ln ĥi)
2
]
,

(3.20)

where S2 represents the total number of grid cells in the detection layer, and B denotes

the number of bounding boxes per grid cell. An indicator function 1
obj
ij is a mask that

equals 1 if the j-th bounding box in the i-th grid cell contains a detected object.

The possible centre (cx, cy) of the predicted bounding box in frame C is limited to the

same grid cell as in frame B. This limits the ability of the detector to track objects at

high speed compared to their perceived size. This limitation is discussed further in the
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conclusions of this chapter.

3.2.4 Simulated movement data

Our goal is to understand the limitations of Kalman-based object prediction, and compare

them with a method based on deep learning which we call Deep Predictor.

In order to evaluate the methods on a variety of well-defined scenarios, we will use the

same stochastic process that is most popular in the description of animal movement, an

Ornstein-Uhlenbeck (OU) velocity process (as described in section 1.2.2). It is an autocor-

related process and mean-reverting in its usual formulation. It illustrates a range of animal

behaviours and often serves as a null hypothesis when studying a behavioural response

(Gurarie et al., 2017). It can be parameterised into a trivial form of constant velocity or

constant acceleration motion that underlines small-scale assumptions of a Kalman filter.

Velocity in time v(t) is defined by the following stochastic differential equation:

dv(t) = θ(µ− v(t)) dt+ σ dW (t), (3.21)

where θ > 0 and σ > 0, are model parameters, µ is a mean value and W (t) denotes a

Wiener process of independent increments drawn from a normal distribution. Equation

3.21 can be discretised using the Euler–Maruyama method:

vn = vn−1 + θ(µ− vn−1)∆t+ σ∆Wn−1, (3.22)

where n is a time step index and ∆Wn ∼ N (0,∆t).

Figure 3.6: An illustration showing the most basic geometrical shape, imitating the over-
head appearance of an animal. This rigid object of interest is elongated to indicate the
direction of movement.

We are using a trivial model of the appearance of an animal in order to control what

100



Chapter 3: Predicting complex movement of multiple animals in simulated video recordings

information is available to the deep learning methods at inference time. Overhead obser-

vation of animals can be approximated by a 2D movement with appropriate geometrical

transformation of an image plane to the ground. Our example object is an ellipse-shaped

animal with a feature (an eye) indicating direction-facing. It is presented in Figure 3.6

as the orientation of the animal is often the best indication of the direction of movement.

Instead of modelling velocity vector [vx, vy] as two independent OU processes, we model

angular velocity ω and speed s:[
ωn

sn

]
=

[
θω 0

0 θs

]([
µω

µs

]
−

[
ωn−1

sn−1

])
∆t+

[
σω
√

∆t

σs
√

∆t

]
∆Wn−1 (3.23)

resulting in the following equations describing the state of an animal at each data point n

in terms of its orientation α, and position on a 2D plane [zx,n, zy,n]:

αn = αn−1 + ωn∆t, (3.24)[
zx,n

zy,n

]
=

[
zx,n−1

zy,n−1

]
+ |sn|

[
cosαn

sinαn

]
∆t. (3.25)

This formulation allows us to create simulated data of progressively more complex

motion patterns resembling natural animal movement. We assume that the animals only

move forward in the direction they are pointing; hence, |sn| is always positive.

3.2.4.1 Training

Difficult movement scenarios with crowded images are difficult to annotate even by hand,

hence for the training of the Deep Predictor, we are only using single object track data

with different OU sets of simple movement parameters to better match a realistic training

scenario.

Table 3.1 presents the parameters of the OU movement of a single object. We are

using 500 frames (of 20-frame long movements) with different coloured animals. Move-

ment models A and B are limited to straight-line movement only, with constant and

slowly changing speed. Processes C, D, and E are more realistic movement models with

increasing dynamics.

Figure 3.7 shows the values of velocity and angular velocity, together with histograms

of the processes C and E used for training of the Deep Predictor.

The training based on the same setup to the object detector training for 150 epochs

with a learning rate of 10−4, batch size of 8, and Adam optimiser with β1 = 0.9, β2 =
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id scenario description µs σs θs σω θω
A continuous speed movement in a straight line 15 0 0 0 0
B straight line OU speed process 7 15 0.1 0 0
C slow acceleration OU 10 0.3 0 0.05 0.5
D OU process 8 10 0.1 0.1 0.3
E OU process 15 3 1.8 0.1 0.5

Table 3.1: Five scenarios are used for training of the Deep Predictor. A and B are
simple movements that should be easily predicted by constant a velocity filter, scenario C
corresponds most closely to a constant acceleration movement, and finally, D and E are
OU processes with rapid changes in speed and direction.

Figure 3.7: Characteristics of complex movement patterns described with an OU move-
ment used in training of Deep Predictor. The first row shows scenario C as parameterised
in Table 3.1 of a slow movement with gradual acceleration and frequent but small changes
in heading. In contrast, scenario E is characterised by rapid change in speed as σS is ten
times higher than in movement C.

0.999, ε = 10−8 and specify early stopping criteria of ∆min = 0.01 and patience of 5.

3.2.4.2 Summary of test scenarios

To test the performance of the method, we devised three scenarios of increasing complexity

by the choice of different parameters µ, σ and θ in Equation 3.23 and different number of

individuals. First, we investigate how the linking methods perform on trivial scenarios A

and B that are the same as the ones provided for the training of Deep Predictor. The
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third, most important scenario Z is an OU movement with a variety of parameters sam-

pled randomly. Unlike scenarios used for Deep Predictor Training, where three different

parameter sets were repeated multiple times in scenario Z, we are drawing a new set of

parameters from the uniform distribution as presented in Table 3.2 for every vignette.

Each vignette is 25 frames long, and for each number of objects in the scene 1, 3, 10 or

20, we generate 40 vignettes for scenarios A and B and 400 for scenario Z.

Figure 3.8 shows the examples of the velocity values and histograms for the selected

parameters to provide some intuition on the complexity of the movement in each scenario.

id scenario description µs σs θs σω θω
A continuous speed move-

ment in a straight line
15 0 0 0 0

B straight line OU speed pro-
cess

7 15 0.1 0 0

Z OU process U(0, 20) U(0, 20) U(0, 0.5) U(0, 1) U(0, 0.5)

Table 3.2: Summary of scenarios used to evaluate the Deep Predictor’s performance on
movement prediction tasks. Scenarios A and B represent simpler, more predictable move-
ments that serve as a basis for training. Scenario Z introduces complexity with parameters
drawn from uniform distributions, illustrating diverse Ornstein-Uhlenbeck (OU) processes
in movements across 25-frame vignettes. The values are expressed in pixels and frames of
the image sized 640× 640 px.

The training of Deep Predictor is performed on a single object (see Section 3.2.4.1),

but to test the usability of this method, we are repeating each scenario with a different

number of objects to track in every frame. Figure 3.8 show the examples of the ground-

truth movement of different sizes of groups and different scenarios A, B and Z.

3.2.4.3 Comparison methods

We are interested in the following questions:

• Is track linking using the Deep Predictor approach suitable to replace custom Kalman-

based filters?

• is the method performance dependent on a number of tracked objects?

• Is the information about the appearance of the object an important component of

linking? Or is the positional and geometrical information sufficient? (i.e. is the

linker learning the appearance or something about the movement)
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(a) Scenario A, 3 objects (b) Scenario B, 20 objects (c) Scenario Z, 10 objects

Figure 3.8: Illustration of ground-truth movement tracking in scenarios A, B, and Z with
varying group sizes. Figure (a) shows scenario A with a group of 3 objects moving in a
constant linear motion - the simplest multi-object example in our benchmark. In panel
(b) 20 objects are moving in a straight line with a stochastically varying speed of scenario
B. Panel c) shows an example of a complex movement, changing direction and velocity
according to an OU process, with 10 objects tracked simultaneously.

As mentioned previously, the object prediction mechanism is one part of a multi-step

process. To quantify our contribution independently from the overall tracker performance,

we measure the predicted position of a track, given two previous frames.

As a quantitative measure, we are calculating the Intersection over Union (IoU) of the

predicted position of an object bounding box with the actual position from simulated data.

The IoU is usually the metric used in the cost matrix passed to the linking algorithm. We

are then averaging the IoU over all the tracks in the frame. The frame score for N objects

i in the frame is then given as:

Sf =
∑
i=0

N
Area(bi ∩ gi)
Area(bi ∪ gi)

, (3.26)

where bi is the bounding box predicted from a linker, and gi is the simulated ground truth.

This score is then averaged across all the frames in a given scenario.

3.3 Results

Our experimentation shows that the algorithm of track position prediction with neural

networks (Deep Predictor) can successfully learn a Kalman filter equivalent representation

of movement. It performs considerably better than Kalman filters for more complex

scenarios of an OU movement. Table 3.3 presents a quantitative evaluation of the track
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predictions averaged over all number of tracked objects for each scenario. In the complex

motion scenario Z, our method achieved an average IoU of 0.62, which was very similar

in both of the easy modes of movement A and B (0.64 and 0.62 respectively). This

matches our expectation that the deep-learning network is approximating all possible

movements between frames equally. The Kalman filter in SORT formulation performed

best on the trivial case of constant velocity movement A with an average IoU of 0.87, which

was expected, and the custom Kalman Accel formulation achieved only 0.62. Figure 3.9

illustrates the performance of the trackers on the simplest scenario A, showing a tendency

of the Accel method to predict slightly ahead of the actual object and the best bounding

box predictions from SORT.

Scenario Kalman
(Accel)

Kalman
(SORT)

Deep Predic-
tor

constant velocity
straight line (A)

0.62 0.87 0.64

complex velocity
straight line (B)

0.49 0.57 0.62

complex speed angu-
lar velocity model (Z)

0.44 0.48 0.62

Table 3.3: Average Intersection of Union of all tracks, averaged across all frames for
each method on different scenarios (Table 3.2). Each scenario includes between 550 and
800 different frames of movement. The standard formulation of the SORT Kalman filter
gives the most accurate prediction of the next position in a simple scenario A. As the
complexity of movement increases, the Kalman filter performance deteriorates, while the
Deep Predictor provides robust predictions regardless of complexity.

Complex movement in a straight line, scenarioB, showed a steep decline in the ability of

Kalman filters to track, thus their performance dropping below that of the Deep Predictor

to 0.49 for Accel and 0.57 for SORT. In the Figure 3.12 we see an example of this scenario,

with rapidly accelerating objects presenting the greatest difficulty to the Kalman-based

approaches.

As expected, the array of complex OU movements in scenario Z led to further deterio-

ration of the benchmark Kalman methods, with SORT at 0.48 and Accel at 0.43. Figure

3.11 illustrates how the Kalman filter fails to compensate for a concurrent change of shape

and location of a bounding box of a turning animal. The appearance of the animal pro-

vides an obvious indication of the movement direction. However, this is not in any way

captured by the Kalman filtering, which needs a number of terations to adjust the shape
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of the bounding box.

In Table 3.4, we present a breakdown of results by scenario and number of objects

tracked, and Figure 3.10 shows box plots of the distribution of IoU averaged between all

tested frames. For all methods and scenarios, we observe decreasing performance as the

number of tracked objects increases, but also a decrease in the variability of the results.

This results from the more objects’ IoU results being averaged in each single frame. In the

complex scenario Z, Deep’s performance decreases from 0.66 to 0.56, but it is still higher

than single-object tracking with Kalman filters (Accel at 0.46 and SORT at 0.51).

The performance of Kalman Filters is independent of the appearance of the objects they

track. We confirm that the same is true for the Deep Predictor, observing in Figure 3.14,

that performance does not deteriorate in cases where the only difference in appearance can

be attributed to their directional orientation. The appearance information can be used

in the next matching step of tracking; however, for the location prediction, we expect the

method to focus on movement-related cues.

Figure 3.13 shows the most challenging scenario with 20 objects and complex move-

ment. In this scenario, Kalman methods achieve an average IoU of 0.41 for Accel and 0.45

for SORT, far behind the 0.57 of our method. Rapid turning of the object changes its

bounding box proportion rapidly, as in real-life scenarios, where animal appearance can

change faster than its location, challenging Kalman-based filters.

(a) Ground truth
tracks

(b) Kalman
(Accel)

(c) Kalman
(SORT)

(d) Deep
Predictor

Figure 3.9: Display of the linker testing of a simple constant-velocity movement in a
straight line (scenario A) with ground truth shown in panel (a). We present an object
in the final frame without its bounding box prediction (for clarity). Panel (b) shows
predictions from Kalman (Accel) method, showing the predicted position slightly ahead of
the actual position of the animal and achieving an average IoU accuracy of 0.65. Predicted
boxes from (c) Kalman (SORT) with the highest accuracy of 0.87 and (d) Deep Predictor
(with 0.87 on this scenario) are both closely tracking the animal position as expected for
this simplest case.
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Figure 3.10: Average intersection of the union IoU of different methods with different
number of objects and scenarios. The first panel shows the simple, continuous movement
in the straight line, scenario A, where SORT variant performs best. On the more complex
movement in the straight line, already the Deep Predictor performs better, and vastly
outperforms Kalman-based approaches on complex OU movements in scenario Z. Our
method’s performance degrades slightly with more objects in the frame, but it seems to
be even across different type of movement.

3.4 Discussion

The results clearly show the advantage of using deep learning to predict the next position

of an object instead of using Kalman filters, with an almost 50% improvement over the

better-performing popular formulation of SORT (from 0.62 to 0.48).

In ecology, vast annotated datasets are not as readily available as in commercial ar-

eas such as surveillance or automotive sectors. For this reason, the use of deep-learning

methods is limited by the risk of overfitting to specific domain data, as fewer examples for

cross-validation and methodical testing exist. In cases where labelled examples differ from

those encountered in the study there is a risk of introducing strong bias in observations

and incorrect conclusions from extracted data.

I approached this problem by testing on simulated data to verify the robustness of the

key element of the tracker, its predictor. Simulated data do not guarantee performance in

real-life scenarios. However, any one set of real-life scenarios equally does not guarantee

adaptation to another domain. By showing that our approach can learn complex move-
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(a) Ground truth tracks (b) Kalman (Accel)

(c) Kalman (SORT) (d) Deep Predictor

Figure 3.11: Display of the linker testing on the most realistic scenario of OU movement in
directional speed and angular velocity (scenario Z) with 3 objects in the frame. The first
panel (a) shows the ground truth track locations. Each panel shows a predicted location
of the object by the tested methods. In panels (b) and (c), we observed Kalman-based
methods failing to adjust the shape and location of the object that is rapidly changing
direction, while the Deep Predictor in panel (d) is able to match the object with a bounding
box despite the complexity of movement.

ment and crucially that 1) its performance does not deteriorate with a number of tracked

objects and (2) That it will perform similarly on different complexities of movement, we

can confidently move to domain-specific testing on real data. By simulating an array

of complex OU movements that are a common description of animal movement, I have

shown that the Deep Predictor can recognise movement with parameters it has seen in

training data as well as generalise to those it has not. In real-world scenarios, most of the

movement observed and labelled would likely come from similar experiments and be very

limited. Equally important, I showed that increasing the number of animals tracked did
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Scenario no.
objects

Kalman
(Accel)

Kalman
(SORT)

Deep Pre-
dictor

A 1 0.65 0.87 0.71
A 3 0.65 0.87 0.68
A 10 0.61 0.85 0.62
A 20 0.57 0.83 0.56

B 1 0.51 0.59 0.66
B 3 0.5 0.57 0.66
B 10 0.48 0.56 0.6
B 20 0.45 0.53 0.56

Z 1 0.46 0.51 0.66
Z 3 0.45 0.5 0.65
Z 10 0.43 0.47 0.61
Z 20 0.41 0.45 0.57

Table 3.4: Average Intersection of Union of each method on different scenarios, with a
breakdown by number of objects tracked. In the simplest scenario of continuous straight-
line movement A, the SORT formulation of the Kalman filter consistently provides the
best results. In scenarios B (straight-line changing velocity) and Z (variety of complex OU
processes), Deep Predictor provides consistently best results with less than 10% reduction
in the prediction quality in tracking 20 objects (0.57) than when tracking only one (0.66).

not have much detriment, showing a decrease of 12% in average IoU from single animal

tracking to a challenging scenario of 20 animals. The tracker has only been trained on

single object tracks, making it especially practical, as manual labelling of multiple-track

data is challenging.

As the next step, the tracker with the Deep Predictor module will be tested on ex-

isting benchmarks from the MOT20 Dendorfer et al. (2020) challenge to understand its

performance versus the state-of-the-art trackers. The tradeoff between the quality of pre-

dictions on a benchmark needs to be weighed against the ease of application to the research

problems and the robustness of this approach.

Testing complex deep-learning trackers on simulated data presented here would almost

certainly result in their superior performance, but it would be impossible to distinguish

the effect of superior object detection algorithms, prediction, or matching stages.

The work of Bergmann et al. (2019) suggests that many improvements in best-performing

methods are marginal and do not always generalise to other problems. For the purpose

of this project, we did not label enough movement data of animals to be able to train a

complex tracker, let alone comprehensively validate it. However, knowing that the Deep
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(a) Ground truth tracks (b) Kalman (Accel)

(c) Kalman (SORT) (d) Deep Predictor

Figure 3.12: Display of the predictions of results on scenario B, a movement in a straight
line with a variable speed and 10 object tracking presented in panel (a). Average perfor-
mance on all frames for this scenario is 0.48 for Kalman (Accel) presented in panel (b),
0.56 for Kalman (SORT) in panel (c) and the highest result of 0.6 for Deep Predictor
presented in panel (d). Empty boxes are artefacts of the track display process and do not
affect the prediction score.

Predictor can generalise tracking from single object tracks, we will now re-train it on real

data, using the simulated model as a starting point in transfer learning. This is to sup-

plement the model of the movement trained on simulated data and not create one solely

relating to the limited real-life datasets.

Apart from Lopez-Marcano et al. (2021), trackers used in animal tracking do not use

deep learning detectors such as YOLO. For that reason, most of the practical difference
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(a) Ground truth tracks (b) Kalman (Accel)

(c) Kalman (SORT) (d) Deep Predictor

Figure 3.13: Display of the linker testing on the most complex scenario Z with 20 identical
objects in the frame with the ground truth of the simulation in panel (a). Crowded scenes
with minimal differences in appearance are a common problem in the visual tracking of
social animals. Empty boxes are artefacts of the track display process and do not affect
the prediction score. In this scenario, Kalman methods achieve an average IoU of 0.41 for
Accel and 0.45 for SORT, far behind the 0.57 of Deep Predictor.

in performance between Deep Predictor and traditional animal tracking approaches would

be explainable by the quality of detections, which in our case require a data-labelling

exercise. In the case of Lopez-Marcano et al. (2021), 8700 tracks of fish were labelled,

which is much more labour-intensive than annotations of still images for object detector

training (as performed for Chapter 4). Without a methodical approach presented in

this chapter, it is impossible to establish which part of the deep learning framework is
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Figure 3.14: Results of Deep predictor in complex scenario Z with different number of
objects and identical (orange) and distinct (blue) appearance of objects. For multiple
objects performance slightly degrades for all methods, but as with Kalman filter methods
that do not include appearance information, the Deep Predictor do not see degraded
performance when objects are identical, suggesting that the orientation of the object is
the sufficient information used in tracking. In the case of a single object, the appearance
is irrelevant so we do not repeat this result.

responsible for superior results on a single dataset and if such an approach would scale to

another application.

On this simulated data, detection quality was very high at 84% mAP on an unseen

dataset. These detections are matched to predicted locations of existing tracks in every

frame, and those with the highest IoU are assumed to come from the same object. We

observed that even on the simplest continuous motion scenario, a constant-velocity Kalman

filter (SORT) achieved a maximum of 87% on tracking of a single object. This is caused by

cases where the object enters or leaves the frame but is still detected and has a deformed

bounding box. These cases are very typical in real-world scenarios with many occlusions

and deformations.

A formulation of the Kalman filter successfully used in tracking animals from a drone

performed worse than SORT. We observed that the detections were consistently ahead of

the true location of the animals, indicating a bias towards detecting accelerating animals.

This makes sense because slowly moving ones are already easier to detect and, in reality,
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more common. This example shows that statistical intuition about ecological observation

is often more important than the quantitative result of a single method. The OU process

used for testing in this chapter only modified speed, limiting scenarios to ones that can

be modelled by linear velocity Kalman filter. Changes in acceleration that Kalman Accel

can better model were not included in this benchmark, explaining the worse performance

of that approach.

In multi-animal tracking, part of the reason for the degraded performance of Kalman

filters might be related to the quality of underlying tracks. Kalman filters need at least

three data points to form a model of movement but will perform better with more. The

quality of earlier tracks (matched with Hungarian matching) might be the reason why it

did not match single-track performance in the trivial scenario. The Deep Predictor only

requires two previous frames and one prior detection to function, making it more robust

and applicable in more tracking scenarios.

The Deep Predictor performs equally well in cases where simulated animals have iden-

tical colours. This confirms that the predictor provides good predictions based on the

movement and directional orientation of the animal and not by matching a unique ap-

pearance.

This promising method has the potential to track animals in a variety of situations,

exceeding Kalman-based approaches. It opens a new direction for further development

of animal tracking software for challenging collective behaviour studies, where complex

movement patterns can be incorporated explicitly into the training process without the

need for excessive data labelling. This will open possibilities for studies of leadership

and group decision-making that require long-term tracking of focal individuals in a group.

The individual and collective reactions to threats and sudden changes in the environment

can be studied in depth with arbitrary quantities of animals that can be tracked and the

number of repetitions that are limited only by available data recording - not by the effort

required to correct it.
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Chapter 4

Collective decision making in

laboratory experiment of smolt

downstream migration

Note

The content of this chapter has been written solely by Mikolaj Kundegorski on the exper-

iments and analysis performed solely by the author. Colin J. Torney, Shaun Killen, and

Colin E. Adams participated in the experimental design, conceptualisation, and revision of

the chapter, Adrian Bowman provided support in statistical modelling.

4.1 Introduction

Salmon migration is the critical phase of the life of Atlantic salmon. It is a dramatic shift

in habitat and physiology associated with very high mortality (Thorstad et al., 2021).

Migration success varies widely between populations in different river systems and within

one population across individuals and different seasons. Successful navigation reduces the

time juvenile salmon are subject to increased pressure and adverse environmental effects,

as well as anthropogenic effects that might occur during longer journeys. Understanding

factors influencing navigation is necessary for the conservation of species and ecosystems

depending on the health of salmon populations.

Collective decision-making is an important aspect of decision-making in many animals.

There are clear advantages to collective movement, especially in fish (Killen et al., 2011),

and effect of improved obstacle and predator avoidance, as well as group sensing, has been

widely observed in other species.
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Some salmon species are known to travel in groups during the upstream migration

(Berdahl et al., 2014) and social cues influencing the start of downstream migration has

also been reported McCormick et al. (1998). Some observations suggest that juvenile

salmon travels in shoals, but telemetry data is too sparse to confirm or deny, and direct

observations with acoustic sonars are still very sporadic and we are not aware of observa-

tions of Atlantic salmon.

In this experiment, I test whether group size and previous group living has an effect on

decision making during downstream migration of juvenile salmon. To answer this question,

I designed an experiment where groups of fish in a circular tank with directional flow are

presented with a choice of two channels. One channel is open and has a stronger flow,

while the other is partially blocked by a small obstacle, reducing the flow and introducing

an impediment to migration. We observe travelling fish on the approach to the confluence

and quantify their choice in the context of proximity to other migrants ahead of them.

Our study answers the following questions

1. Are smolts exhibiting migratory behaviour in the artificial stream?

2. Is the presence of an obstacle and qualitative flow differential at the entry to the

choice chamber affecting fish behaviour?

3. Are fish behaving differently as part of the group than when travelling alone? We

define this problem more narrowly by checking if fish is influenced by the proximity

of other migrants ahead of it in the choice chamber.

4. Are wild smolts better at navigating the obstacle than farmed animals?

5. Is there a difference in group effect on the choice of a channel between fish reared in

groups on a farm or previously territorial wild fish?

In the introduction of my thesis in Section 1.1.5.1, I described downstream migration,

which is a critical part of the life of Atlantic salmon. After spending a number of years

as parr in the fast-moving streams, salmon undergo a physiological transformation into

smolts, the form that prepares them for entry into the marine environment and begin

migration to the sea.

Some indirect evidence of shoaling exists from downstream movement telemetry studies

in a partially controlled environment. Fernandes et al. (2015), investigated the timing

and incidence of shoaling of wild salmon smolts in the south of England, showing that

shoaling of the migrants is likely an adaptive response to the change in the environmental
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conditions, not dependent on the kin-based structures observed in group behaviour of

salmon parr. This study used PIT-tagged hatchery smolts of wild origin and assumed

that smolts are shoaling if their detection time falls within 12 seconds from one another.

However, an older study by Olsén et al. (2004) shows some aggregation (apparently as

under one minute registration time) among different groups of smolts’ one-time passage

through a 400m length artificial stream. The authors observed some kin-structure, which

was later contradicted by Fernandes et al. (2015), showing difficulty in drawing robust

conclusions relating to group behaviour on data with low spatial or temporal resolution.

It is impractical in field studies to achieve sample sizes needed to model collective be-

haviour reliably. In the next chapter (Chapter 5) of my thesis, I review more closely the

obstacles faced in studying collective behaviour in the wild. Most ambitious modelling

studies of salmon downstream migration, such as work of Sridharan et al. (2023) on Pa-

cific salmon smolts, focus on mapping precise hydrological conditions to understand the

movement of individual fish without accounting for group movement.

Our approach is informed by similar observations of salmon and choice experiments on

other fish aimed at understanding their response to flow and social movement.

Pacific salmon smolts were observed making a choice-chamber decision during their

natural migration in rivers. In one study, individual passages of smolts were recorded

with overhead infra-red cameras in various designs of culverts Kemp and Williams (2008),

observing fish migration during both day and night. Hydraulic stimuli and lighting were

found to affect the fish’s swimming speed and orientation to flow. In another study, a

flume was embedded within a culvert on a migratory path of different species of Pacific

salmon, allowing the study of fish behaviour when presented with a choice of two channels

differing in width and flow Kemp et al. (2005b). Fish travelled both head first and tail first,

most of the time actively swimming (faster than stream velocity), showing a preference for

the less turbulent water channel and sometimes actively swimming upstream out of a less

preferred channel. A more recent study by Vowles et al. (2014) observed juvenile salmon

behaviour in darkness and light in response to two channels with different flow conditions,

showing differences in the behaviour of fish depending on presence of a visual signal.

Our study follows those experiments by explicitly investigating group effect in direct

observation of fish choices.

Tan et al. (2018) presents direct measurements and modelling of a single fish (silver

carp) movement in an artificial stream. A flume filled with vertical slots/obstacles had a

precise flow profile measured so that repeated filmed passage of a test fish (silver carp)

allowed a to model its movement. Entire visual and hydraulic cues for fish movement can
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be controlled and measured, allowing a good mechanistic explanation of fish behaviour.

This study does not involve any collective behaviour but provides a benchmark on what

is possible with well-controlled laboratory setting and modern tracking techniques.

Schooling in fish is important to minimise the energy expenditure on swimming (Killen

et al., 2011; Zhang and Lauder, 2023). For juvenile salmon that do not feed during their

migration McCormick et al. (1998), the effect of shoaling would be instead related to

improved migration success due to better navigation and a decrease in individual predation

(Finstad and Jonsson, 2001; Kennedy et al., 2018).

A study of Miller et al. (2013) addresses the trade-off between group decision-making

and individual preferences. Groups of golden shiners were trained to prefer specific chan-

nels of a three-way choice chamber in an artificial stream. The study reports that while

fish in front of the shoal put equal importance on their preferences and direction chosen

by other members of the group, those in the back of the shoal preferred staying within

a group regardless of which choice the chamber shoal navigated towards. Swimming fish

are more influenced by group members ahead of them, and that should also be true for

my study subjects. When searching for potentially small effect sizes, we can focus on the

effect of fish ahead of the studied individual.

Our study aims to bridge the gap between what is possible with constrained laboratory

experiments and field studies. Laboratory setup offers good control of flow and detailed

tracking but can only allow a limited quantity of fish shoals and poorly mimics the spatial

extent of the riverine environment. However, observations in the wild are limited to a

sparse number of individuals that can be tagged, and group formation might be impossible

to observe.

4.1.1 Preceding work

Individual flow response In the first study presented in chapter 2, we assessed the min-

imum water velocities required to elicit a change in directional holding in both wild-origin

and domesticated salmon smolts. Smolts needed a directional flow exceeding 8.9 cm/s to

demonstrate effective directional orientation towards the current. Domesticated smolts

exhibited a similar qualitative response to their wild counterparts but required slightly

lower velocities to initiate a response.

Preliminary study of unobstructed movement In our preliminary experiment within

the flume, we determined the smolts exhibit migratory behaviour when exposed to a stable

flow (approximately 20 cm/s) for extended periods. We conducted six recordings of three

117



Chapter 4: Collective decision making in laboratory experiment of smolt downstream migration

differently sized groups of fish (n ∈ {1, 5, 10}) throughout the night and day between the

19th of March and the 1st of May 2019. In every instance, the fish travelled downstream,

forming groups and displaying migratory behaviour during extended periods, both at night

and during the day. In larger groups, fish travelled head-first and at increased speeds. Ad-

ditionally, we have tested the feasibility of different designs of choice chambers, observing

obstacles which fish can and cannot navigate.

Given our ability to reliably observe migratory behaviour in smolts within our experi-

mental setup and equipped with precise tools for movement data analysis, we proceeded

with the experimental design detailed in the following section.

4.2 Experimental Setup

4.2.1 Salmon smolts

In this experiment, we used two batches of fish, one from a population of smolts migrating

in a Scottish river, which we name “wild” and one of commercially farmed smolts of

Norwegian ancestry from a freshwater hatchery which we call “farmed”. Table 4.1 presents

the detailed characteristics of each studied batch. In the experiments, we used groups of

10 fish that were previously held in the same holding tank. The wild salmon smolts were

collected from the River Gryffe, Scotland (55º 51.9´ N; 004º 31.1´ W), captured in a

rotary screw trap during the smolt run (N = 31, mean weight of 24(6)g, and mean fork

length of 13(1) cm). These fish were transported to the Scottish Centre for Ecology and

Natural Environment (SCENE) - where experiments were conducted - in oxygenated bags

(transport time approximately 1 hour) and held in holding tanks for at least 2 hours before

trials. In total, we used three groups of 10 wild smolts in the experiment.

The hatchery fish were provided by MOWI from freshwater pens at Loch Arkaig in the

late parr stage in March 2021. We followed industry procedure to induce smolting with

constant light and used standard criteria from Gorbman et al. (1982) to assess smolting

progress. Hatchery smolts had an average weight of 44(14)g and a fork length of 16(2)

cm, and we used 5 unique groups of 10 fish held in the same holding tank prior to the

experiments.

4.2.2 Artificial stream

Our experiments aim to understand the downstream migration of juvenile Atlantic salmon

(Salmo salar) better, some of which occurs in narrow, fast-moving burns. As our exper-
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farmed wild
loch-farmed smolts wild smolts

source MOWI: Loch Arkaig
River Gryffe (55º

51.9´ N; 004º 31.1´
W)

date experiments March 2021 May 2021
mean weight [g] 44 (14) 24 (6)

mean fork Length
[cm]

16 (2) 13 (1)

Table 4.1: Fish populations used in the experiment. Farmed fish come from a freshwater
facility on Loch Arkaig, while wild smolts come from River Gryffe in Scotland. We report
the mean weight and fork length of each population with standard deviation in parenthesis.

(a) The flume photograph. (b) Dimensions of the flume

Figure 4.1: Above image (a) shows the flume used in experiments in Scottish Centre
for Ecology and the Natural Environment in Rowardennan. For the duration of the ex-
periments, all of the observation panels have been covered to limit the influence of the
external environment. The laboratory itself is a room without any windows, allowing for
full control of lighting conditions. The schematic of the flume in the drawing (b) shows
all the relevant dimensions. The flume has the shape of a stadium with a = 3.2 m and
r = 1.2 m. At the midpoint, it corresponds to 11.2 m length. The location where flow
measurements were taken is marked by a blue section and the location of pump inlets and
outlet in brown.

imental arena, we utilised an artificial stream (see Figure 4.1), configured as a stadium

with a = 3.2 m and r = 1.2 m with a total channel length of 11.2 m and a width of 60 cm.

For a fish travelling in the flume at an average observed speed, it takes approximately

40 seconds to complete the full circuit. The external mounting of the pumps facilitates

unimpeded movement around the flume and is at the opposite end of the experimental

area where fish are filmed and presented with the challenge.
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During daytime hours, recording in the flume showed that the light at the water’s

surface was 193(78) lx, while nighttime recording was conducted in complete darkness

under infra-red illumination (detailed later in section 4.2.5). This corresponds to the light

intensity equivalent to heavy overcast or conditions at sunrise or sunset, which is sufficient

for smolts to use visual cues in a shallow tank where there is no loss of light due to depth

(Fraser and Metcalfe, 1997). It is the same order of magnitude as light conditions (95 lx)

used in comparison of juvenile Pacific smolts reaction to flow by Vowles et al. (2014).

In the preliminary experiments, we observed no difference in smolt behaviour between

either clockwise or counter-clockwise direction of flow. Due to the limited availability of

fish for repeating experiments, we opted for only one flow direction in this study (counter-

clockwise).

The flume was filled with water up to about 21cm and driven at a medium speed

approximately 20 cm
s

, corresponding to a weak flow in a natural stream. We measured

the flow profile of the flume ahead of the experiments on a one-meter straight section

of the flume shown in Figure 4.1. We measured 20 points on a 5 × 4 grid with a 15cm

distance across and 20cm along the flume, repeated at depths of 7 and 14 cm. We found

the flow considerably uneven with the coefficient of variation CV = σ
µ

= 0.42 with the

mean flow of µ = 18.25. Because of changes to pump output over an extended period,

we relied on camera recordings of the water surface to measure flow speed during the

experiments. Based on the precise measurements of the speed of air bubbles moving with

the flow, we were able to measure average flow across different experimental scenarios. To

verify the method, we compared the value of flow measured with a flow meter (20.4 ±
9.81 cm/s) with camera-based measurement (18.1 ± 8.78 cm/s), finding no significant

difference between them. Table 4.2 shows the values of the flow measured in different

variants of the experiment.

4.2.3 Choice chamber

Figure 4.2a shows a conceptual drawing of this experiment and an overhead photograph

of the constructed choice chamber. We constructed the choice chamber at the opposite

end of the flume from the pump inlets, at the end of the straight stretch of the tank,

to minimise the impact of turbulence of the curved section on the fish as they enter the

chamber. We alternate the flow at the entry to the choice chamber by placing a navigable

obstacle at the other end of it. The choice chamber is 80cm long and divides the flume

equally into two 31cm wide corridors. We create the “obstructed” side of the chamber

by positioning a sandbag at the chamber’s downstream end, building a weir that allows
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(a) (b)

Figure 4.2: Drawing on the left presents the conceptualisation of the experimental problem.
The fish travel in proximity to other conspecifics is forced to choose between channels when
one of them might be impeded. Figure (b) depicts the layout of the flume, including the
entire choice chamber with a highlighted entry and obstacle slowing down flow (in red)
and the area ahead of it, all captured by Raspberry Pi cameras. Camera β was placed to
capture fish behaviour 50 cm before the flume entrance, providing data for analysis in this
chapter.

fish to swim over it but creates a discernible flow gradient at the chamber’s entrance. In

description of experimental trails in table 4.2 we provide a breakdown of flow differences

between each side of the choice chamber in each experimental trial.

The choice of material for the chamber proved important for both rigidity and colour.

The plastic had to be strong enough to withstand turbulent water yet flexible enough for

setup without permanent fixtures to the flume. We discovered that a dark floor made fish

more likely to linger over it for perceived safety. Dark-coloured obstacles, such as stones,

often provided good cover for holding fish. Therefore, the choice chamber was constructed

from light-coloured plastic, and the obstacle was white, as in Figure 4.2b, to minimise

substrate difference.

We observed the fish holding inside the choice chamber occasionally, no more frequently

than in other parts of the flume. More often, fish would hold over the water outflow grid

at the flume’s other end, a part of the design that was not modifiable.

4.2.4 Camera setup

We used ceiling-mounted cameras to observe the movement of fish on the straight section

of the tank approaching the choice chamber and throughout the chamber, including part

of the bent section beyond the chamber as presented in still frames in Figure 4.2b. In order

to allow remote-controlled recording over many hours, we used Raspberry Pi NoIR second
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generation camera module connected to Raspberry Pi computers set up on the local wired

network. Unlike alternative USB cameras, this camera module uses a direct hardware

interface with h264 encoding, allowing compression of video stream during recording, al-

lowing high-resolution 1920 x 1080 images at 10 frame per second to be saved reliably over

long time periods with a manageable file size. The resulting recordings were stored within

20GB of free space of a High-Speed SD memory card during the recording session, limit-

ing what can be done with less optimised approaches. The direct programming interface

allowed accurate reading of the time for each recorded frame (down to the millisecond),

otherwise not possible with most commercial cameras. The camera uses an 8 MP Sony

IMX219 CMOS sensor and a manual focus lens (aperture f/2) without an IR filter, allow-

ing recording in the near-infrared. The lens was focused manually and provided a sharp

image for the entire depth of the tank. The recording frame rate was reduced to 10fps

from the maximum of 30 to allow a longer exposure in the most challenging IR-recording

conditions.

Footage from camera β at the entry to the choice chamber channels were used to

quantify fish choices by automated video analysis described in the next section.

Schematic of the flume in Figure 4.1b, illustrates the placement of all three near-

infra red cameras α, β and γ used to supervise the experiment. Camera α had the largest

coverage of the tank due to placement on a higher ceiling. It covered the 170cm of a straight

flume section ahead of the chamber and a part of the bent section before, providing good

footage for qualitative analysis of movement (presented later in the Figures 4.7a and 4.7b).

Camera β covers 118cm of area ahead of the chamber and 38cm inside it. Figure 4.4 shows

still images from camera β used to quantify the decision-making of fish. Camera γ shows

the entire chamber area (80cm) and the turning of the flume that follows. We used this

footage to validate our assumptions about fish’s ability to cross the obstructed channel

and other behaviours. An example of image in Figure 4.7d comes from camera γ.

The outflow grid, where fish were most often observed holding, is located at the oppo-

site end of the flume and is not covered by any cameras. The quantitative analysis is solely

based on recordings from the camera β as it covers the entry to the choice chamber. The

fish was observed from late afternoon to early morning and for at least 14 hours, includ-

ing 8 hrs in the night, when visible-spectrum lights were extinguished. In the darkness,

recordings were facilitated by a limited set of infra-red lamps placed in a way to maximise

the illumination of the most important parts of the choice chamber entry visible in Figures

4.7c 4.7d. In a low-light condition, most of the illumination reaches the camera from di-

rectly reflected light - as opposed to dispersed light - making water reflections particularly
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acute. Using advanced computer vision methods allowed us to overcome the difficulties of

uneven illumination.

4.2.5 Video processing

After acquiring extensive recordings of migrating salmon smolts, I utilised the existing

deep learning tracker, uavTracker (https://github.com/ctorney/uavTracker Torney

et al. (2018b)), to track fish movement. This tracker, an adaptation of SORT Bewley

et al. (2016) with a YOLO detector Redmon et al. (2016), demonstrated promising results

in drone footage of ungulates. The tracking framework is described in detail in Chapter

3, where it is a baseline for the investigation of our novel approaches (*not* used in this

chapter). In order to use our novel Deep Predictor, a large dataset of training data is

required which is only resulting from this Chapter’s work, and can be used in subsequent

work. I implemented several technical modifications to simplify the training process,

annotated video frames, and fine-tuned the detection network to recognize juvenile salmon.

I trained the object detector on over 3 thousand annotated frames from the study, and on

an unseen test set it achieved a reasonable accuracy of 79% mAP at 0.5 IoU. I adapted

the detector to the challenging footage from this experiment, specifically, focusing on the

night-time detections that were particularly challenging due to low luminosity, reflections

and uneven illumination in near-infrared conditions. For comparison, a day-time only the

detector provided an accuracy of 92% mAP - highlighting the challenge of this dataset.

Those accurate detections of fish within the camera’s image plane was used to extract

temporal movement information from each fish in each camera’s recording, with technical

adaptations to the uavTracker. Images in Figures 4.7c and 4.7d illustrate a high-quality

detections from our system even in areas of low-contrast. Based on a qualitative assessment

the tracker performs very well, in many cases detecting fish in dark areas before they are

visible on the video to a researcher.

Based on real-life measurements of the flume and timestamps for each frame, we con-

verted these tracks to real-life coordinates on a two-dimensional flume plane, disregarding

the variations in the fish’s depth positions.

The fish are tracked at the recording frame rate (10 to 20 fps) within the image plane

using a bounding box. The position of this bounding box is modelled with a Kalman filter,

incorporating the scale and ratio of the rectangle (s and r), its position (cx, cy), speed,

and acceleration:

x = [cx, cy, s, r, ċx, ċy, c̈x, c̈y]. (4.1)
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For subsequent analysis, the centre of each rectangle is assumed to represent the fish’s

position. The speed of movement is calculated at every time step to facilitate frame-wise

comparisons. However, this approach is sensitive to location changes caused by the rapidly

changing geometry of the bounding box, even for slow-moving fish. To mitigate this, we

further filter the position using a constant velocity Kalman filter.

Any observations with an unrealistic movement speed exceeding five (5) body lengths

(approximately 80 cm/s) are discarded as they commonly represent artefacts from fish

accelerating rapidly and exiting the image frame.

Figure 4.4a shows examples of track traces with data points of the centre of each

fish-filtered position.

Smolts prefer dark substrate for their holding position. The choice chamber has been

designed to broadly match the brightness of the flume to avoid a fish-holding position

inside it. The water outflow grid near the pump inlets provided a preferred location for fish

resting (where modifications were not possible), but we nonetheless observed stationary

fish in different parts of the flume.

In this study, our focus is on the behaviour of fish during movement, necessitating the

exclusion of any non-moving tracks under the assumption that only the movement of other

migratory fish will influence the behaviour of fellow migrants.

To exclude stationary fish, we are excluding movements under 5 cm/s, which corre-

sponds to roughly 25% of the flow speed during the experiment. Including stationary

tracks in the the analysis would introduce a bias from fish not being part of the migrating

group.

4.2.6 Extraction of data for quantitative results

Quantifying fish’s choice The flume is divided into two chambers so that fish swim-

ming downstream are forced to choose one of the channels before facing an obstacle.

Throughout the experiment, we observe only sporadic upstream movement. Figure 4.3

shows a histogram of swimming directions of all tracks visible at the entry to the choice

chamber, showing an overwhelming majority of them are moving with the flow (vector

90 deg). We are excluding those tracks with an average velocity vector against the flow

from the analysis.

We can only track single fish as long as it is within a field of vision of one camera, and

we cannot re-identify the fish as it approaches the choice chamber again. Hence, every

event of tracked fish entering a choice chamber is a pseudo-replicate where we cannot tell

if it is a repeated entry of the same fish. We are confident that most of the fish migrate
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Figure 4.3: Histogram of swimming direction of all moving tracks in the choice chamber
experiment. No significant peak exists for −90 deg - upstream direction. This confirms
the validity of the experiment for studying migratory behaviour. For the analysis itself,
we are only accounting for tracks with direction downstream to exclude any exploratory
behaviour.

as we have observed the entire cohort travelling in front of the camera at the same time

for most of the trials.

To quantify fish decisions, we define criteria for each track based on the the direction

of travel and the sequence of defined areas visited.

We define an area of the entire tank width of 30 cm before the channels split as decision

area. To allow for inaccuracies of projecting fish position to two dimensions, we are adding

a 10% padding to the decision area, and similarly, we define the left and right channels

of the choice chamber. Figure 4.4a shows the defined areas and examples of data points

from some of the tracked fish

A track is considered to have successfully navigated the choice chamber, a successful

crossing, if it is first registered in the decision zone and exits the frame through one of

the channels, thus preventing the double counting of low-quality tracks. An exit through

a given channel is recorded if we observe the fish in its area in the last second before the

track disappears. This makes it a binary choice of either successfully crossing through the

right channel or the left.

This means that we do not discard a data point if a fish enters one channel and later

exits it to ultimately choose another. As long as the mean direction of movement of the

track is downstream, we permit fish to hesitate or reconsider their decision, counting only

the final choice.

Measuring group effect The most likely social effect to be observed between any two

fish would be when one is following another. We will quantify this effect of one fish

influencing the behaviour of another by swimming ahead of it during the crucial moment
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(a) Daytime image of a fish approaching
choice chamber. The fish is in the decision
zone (a 30cm section ahead of the choice
chamber with added padding) from which
it either exits the image frame through a
right or left channel of the chamber. The
coloured lines overlapping the image show
examples of five different track traces to il-
lustrate a variety of tracked movement that
is reduced to one behavioural decision.

(b) Nighttime recording of a fish entering
the choice chamber and another fish already
past the decision point. We count the num-
ber of fish that are present in the chamber
channels ahead as influences for the fish in
the decision zone.

Figure 4.4: Images from camera β of the approach and entry to the choice chamber
illustrating our analysis of a collective aspect of decision-making.

of choosing a channel.

In order to quantify the influence of other fish for each successful crossing, we define

the following:

• Entry time te - when a fish track is first registered in the decision zone.

• Decision time td - when, for the last time, fish enters the chosen chamber.

• End time tx - when the fish exits the scene through one of the chambers.

• Decision period λd ∈ (te, td) after the fish entered the decision zone and before it

started successful crossing.

We define the number of social influences on the fish’s successful crossing as

ninfl = nright channel(λd)− nleft channel(λd), (4.2)

where number of nchannel(λd) is a number of fish making their own successful crossing

during the period λd.

126



Chapter 4: Collective decision making in laboratory experiment of smolt downstream migration

Additionally, we define a stricter criterion, the number of close influences on the fish’s

successful crossing as

ncinfl = nright channel(td)− nleft channel(td), (4.3)

where number of nchannel(td) is a number of fish making their own successful crossing at

the precise moment of the fish’s decision td.

Figure 4.4 illustrates examples of fish close to a decision time with another influencing

its choice towards the right channel. The number of ninfl is negative when there are more

fish ahead in the left-hand side channel.

4.2.7 Trials

As detailed in Table 4.2, we utilized two different batches of fish for this experiment: one

farmed (“farmed”) and one wild (“wild”). The fish were left in the flume for extended

periods (over 14 hours) throughout the night, during which they were recorded with IR

ceiling-mounted cameras.

Every recorded group of fish was unique and naive to the flume. We excluded the first

20 minutes of each recording to allow for acclimatisation, based on our previous work on

the flow response of individual fish, which showed that most smolts settle down within

approximately 5 minutes.

We conducted a total of eight overnight trials with unique cohorts of ten fish each.

Table 4.2 presents a summary of the flow for each trial, indicating significant variability

in flow across trials of the same scenario (e.g., D and E), despite maintaining identical

configurations.

4.3 Modelling framework

4.3.1 Model Formulation

We aim to understand the factors influencing the decision to choose a channel. We identify

three qualitatively different scenarios: the left-hand side channel open with the right ob-

structed (Left Open), the right-hand channel open with the left obstructed (Right Open),

and both channels open (BothOpen). In all scenarios, we model the probability of fish

choosing the right channel P (Y = right channel), which may vary based on the experi-

mental scenario, the number of fish followed, and the fish’s origin. Drawing in Figure 4.2a
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trial fish type scenario
(open
channel)

left cm/s right cm/s difference cm/s (side)

A Farm both 21 18 3 (left)
B Wild both 22 20 2 (left)
C Wild left 21 14 7 (left)
D Farm left 26 18 8 (left)
E Farm left 27 9 18 (left)
F Wild right 11 25 14 (right)
G Farm right 10 18 8 (right)
H Farm right 6 26 20 (right)

Table 4.2: Values of flow for different experiments with farmed and wild fish, measured
using movement under camera observation. Each entry is uniquely named and indicates
whether the left, right, or both channels were open. Notably, the left channel exhibited
relatively quicker flow, despite being on the inner side, highlighting the issue of high vari-
ability and turbulence within the flume. We are not using actual values of flow in our
model but are treating each scenario as a categorical variable for a mixed-effect model.
We compared the value of flow in an unhindered movement experiment measured with a
flow meter (20.4± 9.81 cm/s) to camera-based measurements (18.1± 8.78 cm/s), finding
no significant difference. The flow differential between different obstructed channel sce-
narios C, D and G fall below the threshold established in the Chapter 2 for stationary
flow response. We validate the final results by repeating analysis with those samples in
Section 4.4.3.1.

illustrates the basic concept of the experiment of choice in the presence of other migrants.

We model the probability of choosing the right-hand channel P (Y = right channel) as

a logistic regression:

P (Y = right channel) =
1

1 + e−z
, (4.4)

where z is the vector of k independent variablesX1, · · · , Xk and their coefficients β1, · · · , βk,
plus an intercept β0:

z = β0 + β1X1 + · · ·+ βkXk. (4.5)

An intuitive approach to this modelling is to rearrange the equation and expressing the

logarithm of the odds ratio as vector z:

ln

(
P (Y = right channel)

1− P (Y = right channel)

)
= β0 + β1X1 + · · ·+ βkXk. (4.6)
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Alternatively, we formulate some of the variables as factorial variables, for instance,

X1 in the previous equation can be seen as having three independent categorical values

A,B and C, resulting in formulation

ln

(
P (Y = right channel)

1− P (Y = right channel)

)
= β0 + β1AX1A + β1BX1B + β1CX1C + · · ·+ βkXk (4.7)

where each level of variable X1 is modelled independently.

4.3.2 Covariates

The covariates considered to explain channel choice are presented in Table 4.3. The vari-

ation of the experiment τexp depends on which channel of the chamber is non-constricted.

We encode it with one-unit symmetrical values so that the neutral scenario, when both

channels are open, is coded as 0, and the coefficient of this covariate would be ignored.

The origin of fish τfish is also encoded as a unit value, with farmed fish acting as the

baseline. This is a natural choice, given the larger data set for farmed fish.

We consider two variables that capture potential social behaviour: ninfl and ncinfl.

Because they are related (the latter being a subset of the former), we test all models with

either variable and select whichever provides a better explanation of the data (Figure 4.5).

This formulation of social influence allows us to study the effect at only two discrete

thresholds, as described in Section 4.2.6, enhancing the robustness of the interpretation

and simplifying the analysis of fish tracks. Negative values of ninfl indicate that the fish is

being influenced towards the left channel and positive values towards the right-hand side.

A fish is not socially influenced when ninfl = 0, aligning the interpretation of this variable

with τexp.

4.3.2.1 Consideration of random effects

We expect some variability between different trials that cannot be attributed to fixed

effects. Random effect from idrun can be incorporated into logistic regression model by

extending vector zrandom effect = z+uidrun , where uidrun ∼ N (0, σ2
idrun

). Using such mixed-

effect modelling provides a better fit to data, however, makes interpretation of the model

somehow difficult because the combination of other variables (fish type and scenario in

table 4.2 are unique for all but two out of eight trails idrun. For that reason, we are not

considering any random effects in our modelling.
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Variable Description Type
τexp Variation of experiment LeftOpen | BothOpen | RightOpen

encoded: -1 | 0 | 1
(or as factorial)

τfish Smolt origin farmed | wild, encoded 0 | 1
(or as factorial)

ninfl Number of fish influencing
decision towards the right-
hand side channel

quantitative, integer

ncinfl Number of fish influencing
decision towards the right-
hand side channel at the
moment td

quantitative, integer

Table 4.3: Description of covariates used for statistical modelling.

4.3.3 Model selection

The likelihood L represents the probability of the observed data given specific model

parameters. Once a model is fitted with parameters θ = {β0, β1, · · · , βk}, we can calculate

L to assess the closeness of fit to a set of N observations {yi}:

L(θ; y) =
N∏
i=1

f(yi; θ). (4.8)

For computational convenience, we use the natural logarithm of the likelihood, Log-

Likelihood LL:

LL = ln(L). (4.9)

As LL is negative, higher values of LL indicate a better fit to the data. However, LL

does not account for the model’s complexity, which can lead to overfitting and a loss of

explanatory power. The goodness of fit can be adjusted using the Akaike Information

Criterion (AIC), which includes the number of model parameters k:

AIC = 2k − 2 ln(L) = 2k − 2LL, (4.10)

and further, the penalty can be scaled by the dataset size N with the Bayesian Information

Criterion (BIC):

BIC = ln(N)k − 2LL. (4.11)
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Lower AIC and BIC scores indicate a better fit to the data while adjusting for model

complexity (number of parameters).

We are evaluating all viable logistic regression models with combinations of covariates

and their interactions with two variants of influence variable and use of factorial variables.

Figure 4.5 shows that using ncinfl provides generally better fit of the non-factorial models

than ninfl, however for some models it results in worse performance (prominent outliers).

Instead, using factorial formulation for the variables τexp provides no significant change to

models fit with either choice of influence variable, while providing easier interpretability.

Because τfish is a two-level factorial, coding of this variable is identical for factorial and

non-factorial method. As reported in table 4.6, using close influence increases number

of non-influenced fish only slightly, while providing a more reliable definition of social

interaction - since the observed distance between fish has to be smaller.

We find general agreement between different modelling approaches and for the final

analysis we are choosing factorial variables and numerical ncinfl.

Table 4.4 presents the results of fitting of different complexity models with a subset of

all available covariates using factorial formulation and ncinfl. When including categorical

ranked covariates, there is a compelling argument for adhering to the principle of marginal-

ity. The inclusion of interactions of any variables without the baseline of each variable

itself could result in misleading coefficients, capturing the relative effects of subgroups

with an arbitrary baseline as an explanation of the dependent variable.

Table 4.4 presents all fitted models sorted by log-likelihood, with values of all scores

divided by 1000 and rounded for clarity. The model fit improves consistently with the

inclusion of additional interactions, with the most complex model X (containing 3-way

interaction) performing best on every measure (though not considerably). Figure 4.5

visualises the BIC scores, highlighting that excluding ncinfl significantly reduces the model’s

explanatory power, increasing the BIC score from under 20 for models that include ninfl

to over 21 for those that do not.

4.4 Results

4.4.1 Observations

We observed fish traveling both as individuals and as part of groups in all study trials,

exhibiting both active and passive swimming behaviours. Figure 4.7d depicts a fish trav-

elling head-first—an active traversal through the obstacle in the “obstructed” channel of
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Figure 4.5: Percentage change in Bayesian Information Criterion (BIC) score for different
models using ncinfl instead ninfl as the influence variable and using factorial formulation
for τexp. The box plot shows the median value for all models in the group with the quantile
ranges.

Figure 4.6: Bayesian Information Criterion (BIC) score for different models, scaled by
1000 for readability as blue bars shows all models including ncinfl with close high score,
with the most complex model x giving the lowest BIC score of 19.61. The red line shows
the values of Log Likelihood that agree with the more complex BIC measurement and
allow to compare with the null (intercept only) model.

the choice chamber. The fish is tracked in the infrared recording with a bounding box.

As is often the case, the fast-moving fish appears blurred due to unfavourable lighting
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Model name coefficients LL BIC AIC

logit 3 x ncinfl, τexp, τfish, τfish ×
ncinfl, τexp × τfish, τexp ×
ncinfl, τexp × τfish × ncinfl

-9.74 19.61 19.51

logit 3 p ncinfl, τexp, τfish, τfish ×
ncinfl, τexp×τfish, τexp×ncinfl

-9.78 19.65 19.58

logit 3 s ncinfl, τexp, τfish, τexp×τfish,
τexp × ncinfl

-9.78 19.65 19.57

logit 3 n ncinfl, τexp, τfish, τfish ×
ncinfl, τexp × τfish

-9.78 19.64 19.58

logit 3 l ncinfl, τexp, τfish, τexp×τfish -9.78 19.63 19.58
logit 3 o ncinfl, τexp, τfish, τexp×ncinfl -9.81 19.68 19.63
logit 3 j ncinfl, τexp, τfish, τfish×ncinfl -9.81 19.68 19.63
logit 3 g ncinfl, τexp, τfish -9.81 19.67 19.63
logit 2 d ncinfl, τexp -9.84 19.72 19.68
logit 3 i τexp, τfish, τexp × τfish -10.58 21.21 21.16
logit 2 f τexp, τfish -10.61 21.26 21.23
logit 1 b τexp -10.66 21.36 21.34
logit 2 e ncinfl, τfish -11.50 23.04 23.01
logit 1 a ncinfl -11.57 23.16 23.15
logit 1 c τfish -12.93 25.89 25.87
logit null -12.98 - -

Table 4.4: Comparison of fit of Generalised Linear Models. We are using logistic regression
to model how likely the fish is to choose the right-hand side channel. Both comparison
using AIC and BIC, and overall The log-likelihood score shows that complex models with
interactions are providing a better explanation. Overall the best fit is achieved by model
X . “Logit null” represents the basic logit model with intercept only , serving as a baseline
for comparison.

conditions affecting camera exposure time. In the infrared image shown in Figure 4.7c,

fish are observed moving as a group with the flow direction but passively, using flow to

drift tail-first and correct their direction and position in the group with gentle movements.

A variety of movement patterns were observed both during the day and night, yet no clear

temporal regularity was discerned.

Presented in Figures 4.7a and 4.7b, we notice group formation where actively swimming

fish pass over a slower-moving, passively swimming, or holding group. As fish are not

observed in most of the flume area, it is impossible to determine how frequently group

composition changes or even if the same group of fish is seen twice in front of the camera.

However, our further analysis does not rely on such assumptions.
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(a) Farmed fish in group A are holding
or slowly passively migrating downstream
while approaching group B, which is swim-
ming actively. View from day-time obser-
vation by camera α.

(b) Continuation of group formation from
(a), fish A3 joins group B, turning and be-
ginning swimming actively.

(c) A group of five wild smolts tracked by
our tracker is swimming passively and ap-
proaching an entry to the choice chamber.
View from camera β used for quantitative
analysis in this study in infrared-only illu-
mination.

(d) A single farmed fish, with a bounding
box from the computer vision tracker is seen
on camera γ swimming actively through the
obstacle in the right-hand side channel of
the choice chamber.

Figure 4.7: Illustration of different observations of group movement in the experiment
with a choice chamber.

4.4.2 Frequency analysis of channel choices

For each trial, we identify the number of times and the proportion of individuals choosing

either the left or right channel. Table 4.5 presents choices made by each tracked fish when

traversing the choice chambers for each variant of the experiment and type of fish (“wild”

and “farmed”). When both channels are open (unhindered movement), the right channel

is preferred even though the flow differential can not explain that choice. This channel

is on the outside of the flume with counter-clockwise flow, so the preference might be

dictated by how one-directional the flume is.
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Figure 4.8: Number of choices of each channel for (a) wild and (b) farm fish in different
variations of the experiment. The preference towards the right channel is apparent as well
as the better ability of wild smolts to find faster moving flow, when farmed fish seem to
rely more on the bias towards one side of the channel.

Variant Channel Wild Farm All
count perc count perc count perc

BothOpen left 533 36.70 279 16.60 812 25.90
BothOpen right 920 63.30 1404 83.40 2324 74.10
LeftOpen left 195 60.40 5412 51.30 5607 51.50
LeftOpen right 128 39.60 5143 48.70 5271 48.50
RightOpen left 56 4.40 286 5.50 342 5.30
RightOpen right 1215 95.60 4879 94.50 6094 94.70

Right and Left correct - 88.50 - 65.50 - 67.60

Table 4.5: Choices made by each tracked fish when traversing the choice chambers for each
variant of the experiment and type of fish (“wild” and “farmed”). The count provides the
number of unique crossings, while the percentage value is calculated in relation to all the
crossings in this scenario. When both channels are open (unhindered movement), the
right channel is preferred. When presented with an obstructed channel, wild fish were
much more likely to choose the better channel (88.5% to 65.5%). Overall we observed
farmed fish crossings more often (total of 17403 observations to 3047 of wild fish), despite
corresponding to less than twice the amount of trials.

Aggregating all crossings of the choice chamber in figure 4.8, we see a clear bias towards

the right-hand side channel and differences in behaviour of fish depending on their origin.

Table 4.5 shows that wild fish crosses the open channel when the other is restricted 85.5%

of time while for farmed fish, it is only 65.5%. For wild fish, the number of observations is
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considerably lower when the left channel is open (N = 323) compared to the right channel

open (N = 1271) or both sides open (N = 1453). This suggests fish are less likely to

migrate when their preferred route (the right channel) is unavailable.

For farmed fish, observations are lower when the right channel is open (N = 5165),

roughly half the number observed when the left channel is open (N = 10555), and 50%

higher per trial when both sides are open (N = 1683, one trial). This suggests differences

in fish movement decisions; however, the experimental design does not permit a more

detailed analysis of this phenomenon.

τfish ninfl zero ratio ncinfl zero ratio

wild 0.50 0.58
farm 0.54 0.64
total 0.54 0.63

Table 4.6: Ratio of observed choice chamber decisions that were not influenced by any
fish, according to two definitions of influence. Overall, wild fish are less likely to approach
the chamber alone.

Fish were commonly observed travelling in groups, and the ratio of fish that were not

influenced was a little over 50%. Table 4.6 shows the ratio of fish that were making a

decision without any fish in the chamber ahead, according to two definitions of ninfl and

ncinfl. There were no stark differences in number of influences between types of fish and

this effect is analysed in detailed using the statistical modelling.

4.4.3 Model interpretation

The best-performing model is the one containing all interaction terms. In table 4.7 we

present model coefficients with their confidence intervals, p-values and z-scores. Coefficient

of the intercept β0 of the model has value 1.47 with a high z-score (21.08) indicating that

fish have a bias towards choosing the right-hand side channel in all cases. That bias is

smaller for wild fish with a comparatively small effect of type of fish τfish (β = −0.89,

Z = −9.68), where τfish = 1 for the wild fish. The odds ratio for farm fish to choose right

hand side channel is 4.34 while for wild fish it is less than half of that with 1.78.

All fish respond to the opening of the left channel with covariate τexp LO having a large

negative coefficient (β = −1.60, Z = −21.98), resulting in 5 fold decrease in probability

of fish choosing right-hand side channel. Likewise, τexp RO (β = 1.01, Z = 10.76) indicates

increased bias towards the other open channel as well.

136



Chapter 4: Collective decision making in laboratory experiment of smolt downstream migration

There is a clear effect of social influence on the fish decision with the number of

influences ninfl increasing the chances of choosing a channel with other fish with 6.98

times increase for each additional fish in it (β = 1.94, Z = 11.07). This covariate’s effect

decreases 39% for wild fish ncinfl : τfish (β = −0.94, Z = −4.91), resulting in a 2.7 fold

increase in the choice of a channel for each wild fish influencing it. This decrease of social

effect is the baseline for the neutral case of both channels open, as the further interactions

clarify the difference in the mechanism of this effect for different fish type. The effect

of influence on farm fish decreases for both cases of obstructed channel ncinfl : τexp LO

(β = −0.98, Z = −5.49) and ncinfl : τexp RO (β = −0.92, Z = −4.45), while for wild fish

it decreases in the neutral case ncinfl : τfish (β = −0.94, Z = −4.91). Meanwhile, the

highest overall effect is for interactions ncinfl : τexp LO : τfish (β = 2.52, Z = 12.46) and

ncinfl : τexp RO : τfish (β = 2.36, Z = 10.56) meaning that the wild fish responds strongly

to close influence when channels are obstructed.

Interaction plot 4.9 shows that overall wild fish are slightly better at making the correct

decisions while the social effect and response to the flow difference are more pronounced

in the cases when one of the channels is obstructed.

Variable Coefficient Odds ratio z-score P-value CI Lower CI Upper

τexp LO -1.60 0.20 -21.98 0.00 -1.74 -1.45

β0 1.47 4.34 21.08 0.00 1.33 1.60

ncinfl 1.94 6.98 11.07 0.00 1.60 2.29

τexp RO 1.01 2.76 10.76 0.00 0.83 1.20

τfish -0.89 0.41 -9.68 0.00 -1.07 -0.71

τexp RO : τfish 1.23 3.42 6.70 0.00 0.87 1.59

ncinfl : τexp LO : τfish 2.52 12.46 5.75 0.00 1.66 3.38

ncinfl : τexp RO : τfish 2.36 10.56 5.59 0.00 1.53 3.18

ncinfl : τexp LO -0.98 0.37 -5.49 0.00 -1.33 -0.63

ncinfl : τfish -0.94 0.39 -4.91 0.00 -1.31 -0.56

ncinfl : τexp RO -0.92 0.40 -4.45 0.00 -1.33 -0.52

τexp LO : τfish 0.61 1.84 3.77 0.00 0.29 0.92

Table 4.7: Logistic Regression Coefficients Ordered by Z-value. TODO
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Figure 4.9: Interaction plot showing the best performing model logit 3 x in three exper-
imental scenarios τexp for a range of influences for τfish wild (blue) and farmed (orange)
fish. The model predicts the probability of fish choosing the right-hand side channel. The
number of influences ncinfl is negative when fish influencing individual decisions is in the
left-hand side channel, and positive if influencing fish is in the right. The model shows
that wild fish are more responsive to the flow difference with collective decision-making
reinforcing correct choices.

4.4.3.1 Comparison without trails with low-from differential

We repeated modelling on the subset of trails, excluding C, D and E where measured flow

difference (Table 4.2) fell below the threshold established in the Chapter 2 (8.9 cm/s) for

stationary flow response. The best model x containing 3-way interactions cannot be fitted

due to lack of data points from excluded trail C that is for wild fish with left channel

open. Instead, we analyse the most complex factorial model o (with covariates ncinfl, τexp,

τfish, τexp × ncinfl) finding agreement with the model fitted to all trials. The model shows

a bias towards right hand-side with intercept β0 = 1.42, effect of channel closure on the

left τexp RO (β = −2.33) and right τexp LO (β = 2.05), and overall effect of close influence

ncinfl (β = 1.20). As with the model build on full dataset, the bias of wild fish is smaller

with covariate’s τfish coefficient β = −0.79, and the effect of influence decreasing for both

cases of obstructed channel ncinfl : τexp LO (β = −0.53) and ncinfl : τexp RO (β = −0.46).

4.5 Discussion

We have observed fish of both wild and farmed origin exhibiting clear downstream move-

ment indicative of migratory behaviour characteristic for their smolt phase of life.

Both origins of fish have exhibited a clear four-fold (odds ratio 4.34) bias towards the

outside channel of the flume, with important differences between them (Figure 4.8). There
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were four times fewer crossings observed for wild fish when the preferred, right-hand side

channel was obstructed. However, when wild fish were migrating the bias towards right-

hand side channel was 0.41 times smaller than for the farmed fish. This suggests that wild

fish choose to migrate less when environmental conditions are unfavourable, just as when

to start the migration they require an increased flow discharge in the river.

When wild fish do travel, they are better at finding a preferred route than farmed fish,

with success rates of 88.5% compared to 65.5% for farmed fish (Table 4.5). This effect is

confirmed in the modelling when other interactions are accounted for and illustrated with

an interaction plot in Figure 4.9 This can be explained by the difference in the life history

where farmed fish were never previously faced with complex navigation problems. This

also implies that those navigation skills are not just inherent to the species.

We observed a significant social effect on the decision-making of salmon smolts. It was

twice as strong for farmed fish in the neutral scenario when both channels were open, but

more pronounced for wild fish in cases where one of the channels was obstructed (Table 4.7.

This finding strongly suggests that unlike the earlier part of life when salmon parr are

territorial, once they start the migration, smolts do not only “tolerate” the presence of

other co-specifics but actively rely on them for their migration success.

In general, the farmed fish rely on following other fish but were less successful in finding

the correct channel. Without inherent skill in navigation, it makes sense that fish of this

origin rely on the shoal. This difference suggest that farmed fish are not a perfect proxy for

the overall behaviour of the wild salmon. On the other hand, the difference in behaviour if

well understood, can aid the study of specific phenomena. In a more challenging situation

wild fish seem to relay on shoaling more, so for instance, design of fish passes can be done

with a farmed fish model. That would be equivalent to modelling the worst-case scenario of

a least-informed shoal. It is believed that individual heterogeneity is an important aspect

of collective decision-making (Jolles et al., 2020), hence further comparison of homogeneous

farmed fish with wild smolts might provide further insights into this mechanism. Further

studies with wild fish originating in different environments could provide an insight on

inter-population differences.

This study is unique in that it attempts to study the longitudinal behaviour of migra-

tion in a laboratory setting. Due to the size and hydraulic of the artificial flume, fine grain

control of flow conditions was not possible and laminar flow was unachievable. The shape

of the tank introduced a bias into the swimming patterns with considerable preference for

the outside of the tank at the place of the experiment. We believe that those problems

were sufficiently addressed with a modelling design that accounted for the biases. In prin-
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ciple, precise measurements of flow could have been more informative, but would require

a larger sample to distinguish a reliable measure of the effect as in my work in Chapter 2.

An observational study over a longer time period could tell us more about daily mi-

gration patterns, but it would be challenging to care for animals that would have to be

supervised and cared for remotely.

The movement behaviour of fish in a group may change with the group size. Group

size influences the kinematics (distance and direction) of response to predator attack in

a study of coral reef fish, where groups of four, eight, and sixteen fish were compared

(Bacchus et al., 2024). In our study, a group of ten fish might be smaller than the shoals

occurring naturally in the wild, but our preliminary observations showed that with the

width of choice-chamber channels, fish were already crowding on the approach. It would be

interesting to quantify those social effects, but with increases in group sizes, the difficulty

of conducting the study increases.

The simple choice chamber design we have used provided a good balance between

the presence of an obstacle but didn’t introduce a complete impediment to movement.

Initially, we attempted to maximise the difference by completely blocking one side of

the chamber. However, this approach led to two issues. Firstly, the dead-end channel

became a perfect holding location for some fish, resulting in aggregations and making it

an unsuitable location to study social effects. Secondly, if a member of a migrating group

misses the entrance to the correct channel, it could not rejoin the group before it could find

the way out of the dead-end which hindered the group formation. It would be preferable

to observe how smolts behave on their first passage through the flume before they have

the opportunity to learn any of its structure. In that case, however, it would be likely

that, at first, most of the fish would pass the obstacle on their own, as that is the most

commonly observed behaviour, making cases of group movement too sparse to quantify.

The most feasible alternative would be deployment of cameras directly near the fish pass

for longitudinal observation.

Killen et al. (2017) describes the role of physiological traits in between and within group

organisation of shoaling fish. Understanding the role of leadership and social hierarchy

could be possible if individual fish could be identified on camera. With farmed fish, we

have investigated the use of visual markings with coloured beads or elastomer tagging,

neither of which could be identified reliably on camera, even in good lighting. Without

any tagging of fish, their visual similarity is too high even for the use of the most advanced

deep-learning method designed to use individual appearance for that task. The PIT tags

were not feasible for us due to a maximal sampling rate of 1Hz, way below the accuracy
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of visual tracking.

Work of Vowles et al. (2014) showed avoidance of suboptimal channel of a choice cham-

ber (with an excessively high flow) differs between day and night conditions, confirming

smolts reliance on visual cues when navigating fish passes (Haro et al., 1998). Especially

during the night, we observed smolts moving with the flow direction but passively, drifting

tail-first. A variety of movement patterns were observed both during the day and night,

yet no clear temporal regularity was discerned. Automated classification of fish orientation

detection is possible and would allow us to better understand migration time patterns and

swimming style. Unlike other fish that are schooling to minimise their energy expenditure

on swimming against their ability to feed (Killen et al., 2011; Zhang and Lauder, 2023),

Juvenile salmon do not feed during their migration McCormick et al. (1998), and if swim-

ming passively, likely not to gain the energetic advantage of being in a group. This implies

that the benefit of schooling is limited to decision-making and overwhelming predators at

synchronised passage of high-risk areas.

As shoaling helps with survival against predators, it may prove maladaptive in cases

of entrapment (Thambithurai et al., 2018). Many anthropogenic obstacles on migration

routes can be seen as forms of traps, and if smolts travel in larger groups, their effects

might be more pronounced. Indeed, Lemasson et al. (2014) shows evidence from flume

experimentation on juvenile palmetto bass, that actively swimming fish might be more

likely to be exposed to difficult flow conditions at a downstream barrier when parts of a

larger group than as individuals.

The implications of that study are important to the conservation effort, highlighting the

inadequacy of considering individual fish only in the design of river infrastructure. Previous

studies have shown limitations of using euthanised farmed smolts to study damage due to

passage through a popular screw turbine (Brackley et al., 2018). If, as expected, fish are

more likely to approach navigational obstacles as a group, the additional damage due to

crowding might be underestimated.

If the group navigation plays an important role in smolts migration, then the decrease

in stock in their rivers might have a non-linear relationship to the survival of following

generations, making it an important factor in the modelling of the population dynamics.

Finally, a more detailed analysis of movement will be possible with use of the novel

visual tracking method Deep Beast Predictor presented in Chapter 3. The data gathered

during this experimentation includes validated tracks of multiple fish in variety of circum-

stances and can bootstrap further work on visual tracking groups of fish in the laboratory

and in the wild.
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Chapter 5

Individual-based modelling of salmon

downstream migration using

Approximate Bayesian Computation

The content of this chapter has been written solely by Mikolaj Kundegorski on the exper-

iments and analysis performed by the author. Colin J. Torney and Jennfer R. Gaskell

contributed to the experimental design, conceptualisation and revision of the chapter.

5.1 Introduction

In recent years, advances in fish telemetry allowed detailed study of new marine and fresh-

water ecosystems. To understand the riverine migration of Salmon on a scale exceeding

single-point direct observation, the standard approach uses telemetry tags that report an

animal presence in proximity to sparsely deployed river receivers. However, this is limited

by low positional accuracy, high levels of noise, and biases, often on scales exceeding the

observed signal.

The number of fish tagged is also very limited compared to the overall size of the mi-

grating population. Therefore, underlying behavioural processes are impossible to quantify

by modelling observed data alone with standard methods. The focus of this thesis, collec-

tive decision-making, is one of such fine-scale behavioural responses that are difficult to

capture.

In this chapter, I present a likelihood-free method of Approximate Bayesian Computing

(ABC) that can be used to test the hypothesis of more complex movement. It is a fast

simulation-based method highly parallelisable on a Graphical Processing Unit (GPU). I
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test the validity of the method on simulated telemetry data and show the possibility of

extracting movement parameters, survival information and detector range from real river

data of downstream salmon migration. I also investigate the possibility of quantifying the

social interaction between co-specifics as an example of fine-scale behaviour that can be

quantified with such an individual-based modelling approach.

5.1.1 Telemetry

Acoustic telemetry has been credited with uncovering long-term migration patterns, space

use and habitat selection, as well as predator-prey interactions in aquatic environments

(Matley et al., 2022).

The miniaturisation of acoustic telemetry tags allows us to study the migration of

juvenile smolts without excessive increase in their mortality due to tag burden (Lothian

et al., 2024b).

Technological improvements in acoustic telemetry allow detailed tracking of position -

with sub-meter accuracy (Jacoby and Piper, 2023) - however practical challenges abound

making it still mostly a presence-absence type of data.

As the water flow increases rapidly in Spring, salmon smolts begin their migration

that lasts about one or two weeks, depending on the complexity and length of the river

system. The acoustic receivers are placed in water, weeks in advance, in places that

provide sufficient coverage but are also accessible and secure. In practice, some receivers

will be completely lost due to a cut anchor, and currents will displace others to the less

optimal parts of the river. The detection range of a receiving station can reach over a

hundred meters, but in practice can be much smaller and difficult to test due to changing

conditions.

Salmon traps are deployed in the higher parts of the rivers, where a number of fish

are caught, tagged, and released every day. Though the direct tag-induced mortality is

low, it varies widely, and the sample of migrants is effectively very low compared to the

amount of fish that travel through that area every day. Acoustic tags implanted under

fish scales are sending a digital ping ever 30-60 seconds at 69kHz, but transmission is

prone to noise interference from turbulent water, boat engines and hydroacoustic plants.

The very condition preferred by smolts, the high flow, is usually when detection quality

deteriorates. Detections additionally vary on the position of the fish in relation to the

receiver, occlusions and reflection of the acoustic signal from the river bed. Collisions

between pings from different fish are a problem exaggerated by restricted access to raw

data from the receiver stations and the seeming lack of error-correcting codes used by
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manufacturers for transmission.

Unlike terrestrial telemetry, where the precise GPS location of the animal is regularly

registered, underwater telemetry provides sparse registrations with no additional loca-

tion information. Lack of detections are likely even if a tracked animal has appeared in

proximity of a receiver.

Whoriskey et al. (2019) provides a review of modelling approaches in aquatic telemetry.

In most of the cases telemetry location data is used to link observations at different

points in the receiver array with some explanatory variables. Those variables can be

environmental, such as time of the day time during migration, flow conditions, lunar

cycle, tides or related to the individual: sex, size, age, condition etc. Such data, often

aggregated, is then modelled using Generalised Additive Models or a similar standard

approach. This approach is popular in the study of juvenile salmon migration in Scotland.

Lilly et al. (2024) analysed the probability of successful migration through the Irish Sea

dependent on smolt fork length, condition, day of the migration and distance covered by

the migrant. Newton et al. (2021) studied migration on the East coast of Scotland and

looked at the probability of smolts reaching the last array on the North Sea, depending on

the size of the released group and velocity vector calculated between receivers, compared

with a particle model of currents in that region. Another common way of modelling is

survival analysis, where probabilities of some event, such as mortality or navigating an

obstacle, are modelled in reference to time. It is used by Lothian et al. (2024b) to analyse

the effect of tags on mortality of the smolts. Alternatively, detections can be analysed as

graphs as a form of aggregation of sparse detections into a regular matrix of observations

of tagged animals and receivers (Whoriskey et al., 2019). Mark-recapture models have

the advantage of taking into consideration the overall catch of non-tagged individuals and

help refer the analysis to the population-level data. Modelling of the spatial distribution

after accounting for other environmental variables can provide insights relating to the

correlation coming from social effects (Berdahl et al., 2014), or uncover other influences

on the movement and habitat use based on the distribution of observations across space

and time.

Telemetry data can be modelled to understand collective behaviour with the help

of movement models. To better understand the behaviour of animals that produce the

telemetry observations, the movement can be seen as some variation of a Random Walk

(introduced in detail in Section 1.2.2 of this thesis). Commonly, data from terrestrial ani-

mals can be fitted to correlated random walks where precise location is available (Morales

et al., 2004; Fryxell et al., 2008). For aquatic animals, only simpler models are usually
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viable: a Brownian bridge (random walk anchored at two defined locations) has been

used to inform the utilisation distribution of Tiger Sharks by Papastamatiou et al. (2013).

Movement of salmon smolts in a standing body of water was seen as a Correlated Random

Walk in studies of Hanssen et al. (2022) and Lilly et al. (2022).

Telemetry location data can also be modelled with Hidden Markov Models (HMMs),

where every animal’s observational history is modelled as belonging to a number of hidden

behavioural states. With higher computational cost, HMMs can be fitted to telemetry data

with random effects, accounting better for individual variations, but this approach might

still lead to biases (McClintock, 2021).

Modelling of collective movement at the level of a shoal has been attempted. Schooling

of fish has been mechanistically simulated in terms of alignment, velocity correlation and

optimal distance (Aoki, 1982; Reynolds, 1987). Those purely theoretical models have

since been used to construct stochastic models explaining emergent sensing by Torney

et al. (2009) later confirmed by empirical study (Berdahl et al., 2013).

Some methods used to quantify collective behaviour components, such as Dalziel et al.

(2016), do not require assumptions on the movement model that generates the observations

but instead requires some form of measure of collective behaviour, such as alignment of

velocity vectors of individuals. However, with acoustic river telemetry data, the resolution

required for those detailed measures is not achievable.

Instead, Calabrese et al. (2018) developed rules for quantifying the correlation of move-

ment between individuals from sparse field data. The authors derive their approach from

the analysis of movement equations and the assumption that the correlation of the stochas-

tic element of the equation provides the indication of collective movement. This approach

assumes that every individual has its own parameters of movement equation, requiring

more fine-detail data than available in our absence-presence telemetry data.

Renardy et al. (2023) combines modelling of flow near a hydropower plant with a

manual radio telemetry of salmon smolts near a migration barrier. The animal movement

and behaviour can be broadly classified based on movement between predefined areas of

the water, but not in enough detail to explore underlying movement or social processes.

Berdahl et al. (2014) uncovers social interaction from recapture events of returning

Pacific Salmon. As the fish from different natal streams move up the river, it is possible

to model the time of their observations as dependent on the number of other fish moving

together. During the downstream migration, branching does not occur so readily to allow

this method to study the potential social effects of the juvenile population.
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5.1.2 Approximate Bayesian Computation

Most of the traditional models used for the analysis of telemetry data can be fitted us-

ing likelihood methods. We can model average speed, probability of survival and other

key characteristic of different river migrations with easily tractable models. In our case,

however, we are modelling some non-trivial latent states which do not have an obvious

relation to observations. Specifically, we have very sparse observations of a process that

is largely hidden.

Approximate Bayesian Computation (ABC) is a family of methods based on Bayesian

inference, which are well suited to model fitting, especially in cases where the calculation of

the likelihood function is not easy or possible. In Bayesian statistics, the Bayes theorem

describes how probability distribution changes in light of evidence. Unlike frequentist

approach to statistics, in this paradigm, we encode what is known and unknown about

the phenomena we observe in terms of probability distributions. This prior knowledge is

known as a prior distribution π(θ), and can be uninformed with e.g. uniform distribution,

or already centred on some initial guess about the central value with a normal distribution.

The Bayes theorem defines a new distribution called posterior distribution p(θ|D) that is

the prior updated in the light of observations D:

p(θ|D) =
L(D|θ)π(θ)

L(D)
, (5.1)

where L(D|θ) is the likelihood of observations D given θ and L(D) the marginal likeli-

hood of the observation D. In general, the difficulty arises in calculating the marginal

likelihood L(D) =
∫
p(D|θ)π(θ)dθ, that might involved integrating over many dimensions

of a complex function. However in simulation-based methods it can be seen as a normal-

ising constant and ignored. If the likelihood of L(D|θ) can be evaluated in some Monte

Carlo-like method, the posterior can be revised by directly sampling from the distribution

(Beaumont, 2010).

This approach is well suited to ecological studies. Solow and Smith (2009) used the

ABC framework to estimate species abundance without assuming the underlying analytical

distribution and instead used a more realistic sequential model. Ruiz-Suarez et al. (2020)

used ABC to model movement (CRW) and investigates what temporal scale is necessary to

correctly retrieve parameters of the model. Gaskell et al. (2020) used Gaussian Processes

to accelerate the estimation of the synthetic likelihood function in order to allow ABC

methods to be applied to IBMs at the scale allowing for population-level behaviour study.

The following two sections, introduce the basic of ABC algorithms that this study
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build upon.

5.1.2.1 Sample rejection ABC

The goal of the ABC algorithm is to approximate the true distribution of parameters

that produced some observations D†. A simulation modelM is a computer program that

imitates the observed phenomena that produces observations D given set of parameters θ,

we can retrieve the posterior P (θ|D) of its parameters θ using the ABC sample rejection

algorithm.

We start by defining a prior of the parameters π(θ), which can be either uniform

(ranging through a broad range of possible values) or informed, for instance, a Gaus-

sian with mean and variance taken from estimation of probabilities from telemetry data.

For instance, in our data, we can easily calculate a minimal possible value of the actual

probability of survival as we know which fish survived a journey but don’t know how

many more missed were detected. That can be then described as a right-skewed prior

distribution describing imperfect prior knowledge.

We run a simulation multiple times, every time with θτ coming from the prior π(θ).

Simulation M(θτ ) generates data Dτ . We then either accept or reject those parameters

based on the distance of generated data from actual observations (target data) given

tolerance threshold ε:

ρ(Dτ −D†) < ε. (5.2)

Defining this distance function ρ directly is difficult. Most of the time D has too many

dimensions and is too sparse to allow a meaningful comparison. Often, the resulting

process might produce data of different dimensions making direct measures impractical.

Some form of dimensionality reduction is used to create a summary statistic S(D),

which needs to retain sufficient information about the data to guarantee that as the

distance of summary statistic reduces, the simulated data is getting closer to the real

observations.

The distance metric ρ can then be as simple as an Euclidean norm. However, the

normalisation of a summary statistic is often necessary. In the simplest form of sample

rejection, the tolerance threshold ε is constant. The posterior distribution of parameters

is recovered as a set {θ∗} of parameters accepted in all iterations θτ :

p(θτ |ρ(S(Dτ )− S(D†)) < ε). (5.3)

Which can be a good approximation of a true posterior with a sufficiently small epsilon and
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a high number of repetitions. Low tolerance ε increases the computational effort required

to find the posterior, while if it is too high, most of the samples will be accepted, and the

prior will resemble the provided posterior.

5.1.2.2 Sequential Monte Carlo ABC

The sample rejection algorithm’s disadvantage is that it is inefficient, sampling from the

entire prior distribution, even when parameters from some parts of the parameter space are

more often accepted. Some methods use Markov Chain Monte Carlo (MCMC) methods to

generate the sample θ∗ but because each draw depends on the previous one being rejected

or accepted, they are difficult to parallelise.

An alternative is a Sequential Monte Carlo (SMC) method (Jennings and Madigan,

2017) also known as Population Monte Carlo (PMC) (Prangle, 2017) in different literature.

It uses a draw of k sets of parameters θi, called particles and a transition kernel to decide

on the randomisation of another. This allows for multiple calculations at the same time

for each iteration τ for a set of particles (parameters):

1. Generate θt,i ∼ π(θ) for each particle i ∈ k.

2. evaluate simulation Di ∼M(θi)

3. If ρ(S(Di)−S(D)) < ε0 accept θi as θ∗i,t else go to 1 for each particle until all accepted

4. In iteration τ , sample a new set by drawing θi,t ∼ N (θ∗i,t−1, σ
2
t−1) where σ is a

covariance matrix between particles.

5. Repeat step 4 until simulation with new sets of parameters yields accepted θ∗.

Additionally, the tolerance ε is lowered as parameters converge, and weights from a

transition kernel are used when calculating the covariance. What then remains as a key

challenge is a design of summary statistic S(D) and choice of normalisation and distance

function ρ.

5.2 Methods

5.2.1 Spey river migration data

We model data from the ‘Missing Salmon’ project, a telemetry study of five rivers dis-

charging into the Moray Firth on the east coast of Scotland. The data comes from rivers

148



Chapter 5: Individual-based modelling of salmon downstream migration using ABC

in which different hypothesis about sources of smolt mortality were tested, and hence each

telemetry setup is different. Rivers vary with their receiver coverage, number of conflu-

ences, man-made obstacles and varying degree of lochs and canal segments and number

of smolts tagged.

We begin by analysing data from the river Spey that does not have notable confluences

or loch sections and has quite evenly distributed receivers, more densely than most of other

systems. Spey data will allow us to test our methods with minimal number of variables

before expanding to a more generic form that can accommodate any system and strengthen

potential conclusions.

The fish are caught in a rotary screw trap overnight, and a sample is selected, tagged

and released into the river in batches.

Figure 5.1 shows the river Spey with 12 acoustic receiver locations and associated

detection count. We can see that the number of detections varies widely, but the locations

provide even coverage across the whole 48km journey of 140 individuals. As the fish swims

by the receiver, it keeps being registered every time its acoustic “ping”, generated on

average every 45 seconds, reaches the receiver (randomly in an interval between 30 and 60

seconds). Data corresponding to signal strength that could provide valuable information

on the distance from the fish is usually not available due to equipment manufacturers’

restrictions. The number of pings generally corresponds to the length of time spent around

each location but also to the probability of detection especially at a distance. Figure 5.2

shows the number of pings registered from each fish at the subsequent receivers. We can

see the heterogeneity of the detection profile of every detector in its environment.

Groups of tagged fish (usually pairs) are sometimes registered at the same time at

different parts of the river. Such co-occurrences might be a result of collective movement,

yet the rate of those observations of fish moving independently is not known.

We calculated the time difference between the closest detection of each pair of indi-

viduals at every detector, creating a co-registration matrix. In Figure 5.3 we present the

aggregate distribution of those time differences truncated at twenty minutes time.

5.2.2 Simulation of river migration

The ABC methods allow to model complex data that can be described by forward-feed

(simulation) models. The rest of this section will describe the structure of the model and

its GPU implementation. Following, Section 5.2.3 describes Bayesian modelling framework

used for fitting and validating this simulation, presented in a schematic in the Figure 5.4.
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Figure 5.1: The river Spey on the east coast of Scotland. Twelve receivers Ri were deployed
at distance li from the release site of fish tagged with acoustic receivers. The area of the
dot is proportional to the number of registrations received.

5.2.2.1 Simulation

We use a discrete-time, 1D continuous space individual-based model (IBM) to approximate

the smolts journey from the release site to the sea.

The model has a number of hyper-parameters that are specified according to the specific

telemetry system and parameters describing movement, mortality and observations. The

movement and observations are modelled as two processes. Parameters µ, α, β and γ,

describe movement, Psurv mortality and λ observations, a total of six parameters. The

overall model structure is outlined in Figure 5.5. For simplicity, ∆t = 1 minute and

roughly corresponds to the frequency of pings in telemetry data, which varies from 30

seconds to 1 minute. The location of fish in the river is described by a continuous variable
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Figure 5.2: Number of pings received from each smolt registered at subsequent receivers,
including 0 if a smolt was not detected. The scale is transformed with log(1 +x) function,
with original values marked on the scale. The median number of observations is below
10 for all but the last receiver, which corresponds to under 8 minutes of presence, but it
varies largely, indicating variability in movement speed. The number of observations can
also be explained by the probability of detection of fish at different distances and noisy
environments.

Figure 5.3: Distribution of difference in time of registration at all receivers for fish, which
appeared within the 20-minute window. Over-inflation of values under 2 minutes suggest
that there might be some collective effect on the movement parameters.
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Figure 5.4: The schematic of ABC Population Monte Carlo inference. The algorithm uses
a simulationM to generate data based on the parameters θ coming from a set prior π(θ).
Its goal is to estimate the true distribution of parameters underlying either the real-world,
observed data D†real, or simulated data D†simulated coming from a given parameter set θ†.

x in meters. The river length is described as lriver and is always the location of the last

receiver. Each fish i begins movement at location xi ∼ N (0, 0.3), at time tstart,i.

Figure 5.5: This schematic presents the logic of the simulation M(θ) simulating fish
movement and telemetry data observations that produce the simulation output. At every
iteration, movement is updated according to Equation 5.6 and a new location of fish is
also updated. Following a mortality event based on probability defined in Equation 5.7,
fish are registered by the receiver array with probabilities from the equation 5.8. Those
detections are aggregated in three matrices for first Ofirst, last Olast, and total number of
registrations received Ocount.

The main three components of the model are movement, mortality, and detection

equations:

1. Movement
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For each of nf fish, the velocity v(t) at time step t is modelled by a process built upon

an Ornstein-Uhlenbeck mean-reverting stochastic process (described in detail in the

introduction 1.2.2). It is defined by four parameters: mean speed µ, mean-reversion

rate ν, stochastic component σ, and the distance of social influence γ.

We first define social influence as an averaging of the previous speeds of all fish

i, j ∈ N that fall within each other’s social distance:

vγi (t) =

∑
j∈N

(1(dij≤γ) · vj(t− 1))∑
j∈N

1(dij≤γ)

, (5.4)

where t is a time step index, dij is the distance between fish i and j, and 1dij≤γ is an

indicator function that equals 1 for every fish within distance γ from fish i. For the

stochastic component, we use the Euler-Maruyama discretisation of the OU process:

vi(t) = vγi (t− 1) + ν(µ− vi(t− 1)) + σ∆W, (5.5)

where ∆W ∼ N (0, 1).

In order to allow for more easily interpretable parameters we are replacing ν with

β = 1
ν

and σ with α = σ2

2ν
which corresponds to the standard deviation of the OU

process. The full equation of movement for fish using i and expressed using the

parameter formulation s:

vi(t) =

∑
j∈N

(1(dij≤γ) · vj(t− 1))∑
j∈N

1(dij≤γ)

+
1

β
(µ− vi(t− 1)) + α

√
2

β
∆W, (5.6)

from which the distance ∆xi(t) = v(t)∆t and the distance from the release site

xi(t) = xi(t− 1) + ∆xi(t) are then updated.

2. Mortality

The mortality is assumed constant across the entire simulation, so at each time step,

we are predicting that fish survives with probability that is a power function of the

distance moved:

psurv(t) =

(
Psurv
lriver

)|∆xi(t)|
, (5.7)
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which is based on an exponential decay function based on movement distance, where

Psurv is the simulation parameter, the probability of survival of a journey of the

river length lriver. This formulation does not correspond directly to the usual way

of measuring mortality but to the mortality per unit distance of the full migration

route.

3. Detection Detection depends on parameters P k
detmax of each detector Rk and de-

cay rate λ that mediates how detections become less likely with distance. We are

calculating each possible detection for every fish anywhere in the river. Probability

of detecting smolt i located at xi(t) at detector k located at a distance lk from the

release site is at each time step:

P i,k
det,t = P i

detmaxe
−|xi(t)−lk|

λ (5.8)

Optimally, both λ and Pdetmax would be unique for each receiver, though that would

much increase the number of parameters of the model. In practice, Pdetmax is emu-

lating the second dimension of the river because our model assumes that each fish

will always swim directly by the receiver.

Parameter Symbol Distribution Range θA
Average
velocity

µ U(0, 30)
0 to 30 m

min
/

50 cm
s

15

Dispersion α U(0, 30)
∆v 0 to√
2× 30 m

min

5

Mean
reversion

β U(1, 100)
Mean reversion(

1
100
, 1
)
× (µ−

v(t))
20

Detection
decay

λ U(0, 150)
Halving of

Pdetmax at 0 to
104m

60

Probability of
survival

Psurv U(0, 1)
of the river

length
0.5

Social
influence
threshold

γ
|X| , X ∼
U(−10, 30)

0 to 30m
0 /
10

Table 5.1: Parameters, symbols, distributions, and real-world ranges of parameters used
in the simulation. We sample from the provided priors to validate the method across the
parameter space, as well as using set θA to understand the simulation at one specific point.
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5.2.2.2 Model implementation

Figure 5.6: Visualisation of simulation for 30 fish moving across the length of a RiverShort
system. β = 20 provides a slow mean reversion of 0.05 m

min
, combined with reasonably small

dispersion from parameter α = 5 gives a gentle oscillation around mean speed of µ = 15.
Detections at subsequent receivers are more dispersed, with over 2 hours difference in
registration between some fish at R2 at l2 = 6km.

The simulation has been written in Python in a vectorised form using the tensorflow

library (Abadi et al., 2015), allowing for multiple simulations to be performed in par-

allel. It has been coded as a series of tensor operations defined as a graph function, a

tensorflow-graph object. We define hyperparameters for two scenarios, an easy model

RiverShort to verify the assumptions on the simplest scenario with a short river with

three receivers, and SynthSpey, a system based on the real-world conditions of spey

telemetry exercise. Table 5.2 shows the key hyperparameters for each model. We are

using the same number of agents (smolts) in each model and the same release schedule.

Table 5.3 shows the receiver configuration of the RiverShort scenario. The graph in Figure

5.6 shows an example movement of thirty agents in the RiverShort model with a timeline

of the velocity for one of the agents.

Table 5.4 shows the configuration of receivers for the river Spey based on the telemetry

study.
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Model RiverShort SynthSpey
Number of
smolts nf

140 140

Number of
receivers nR

3 12

Simulation time
tsim [h]

11 438

Simulation time
tsim [days]

0.45 18.2

Approx.
computation
time for one

batch tsim [min]

1:30 9:00

Release: groups of 10 every 10 minutes

Table 5.2: Comparison of smolt numbers, receiver counts, and simulation times in two
models, including the common release schedule. There is a considerable difference, espe-
cially in simulation time (implied by river length).

Id Group Dist [km] P max
R0 0 1.00 0.5
R1 0 4.00 0.9
R2 0 6.00 0.9

Table 5.3: Summary of receiver parameters for RiverShort model data with ID, group,
distance, and maximum probability of detection.

5.2.3 Design of summary statistic

A summary statistic provides a lower dimensional representation of the outcome of sim-

ulation in a balanced way and is an application-specific challenge of the ABC approach.

The output of our simulation M(θ) is a list of time of detections of each of the nf = 140

fish f at each of nR receivers R with associated time t of detection. This matches the

format of data coming from acoustic telemetry projects with presence tags.

We gather the output of the simulation in three matrices nf ×nR of observations with

values of first registration Ofirst, last registration Olast, and a total number of registrations

received Ocount.

We have three receiver-specific statistics and two that are averaged across the entire

matrix. We average receiver statistics in three groups in order to make the algorithm

independent of the number of river receivers.
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Id Group Dist [km] P max
R0 0 1.00 0.93
R1 0 4.73 0.91
R2 0 10.63 0.92
R3 0 15.3 0.52
R4 1 19.9 0.98
R5 1 23.18 0.99
R6 1 25.72 0.87
R7 1 31.29 0.75
R8 2 35.4 0.98
R9 2 41.51 0.31
R10 2 45.25 0.85
R11 2 49.43 1.00

Table 5.4: Summary of receiver parameters for SynthSpey model data with ID, group,
distance, and maximum probability of detection.

5.2.3.1 Detector based statistics

To avoid zero-inflation of many statistics, we will first define the list of all fish registered

at least once at the receiver Ri as:

fobsRi : fj ∈ Oi,j
count, O

i,j
count 6= 0, (5.9)

and the halfway time between arrival and departure at each receiver for those fish:

ti,jmid =
Oi,j

last +Oi,j
first

2
∀fobsRi . (5.10)

We now define three measures that are subsequently averaged and normalised to create

the summary statistic:

• median number of observations at receiver Ri: a median number of observa-

tions of each fish at each receiver Ri, excluding fish not registered at all at the given

receiver:

Siobservations = med(f iobs). (5.11)

• number of unique fish observed at receiver Ri:

Sipresence =
∑
f iobs

1. (5.12)
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• coefficient of variability of registration time at receiver Ri adjusted by num-

ber of observations:

CVi =
std(timid)

t̄imid

√
Sipresence

, (5.13)

where t̄imid is the average value of registration time for each receiver Ri for all fish

that were registered, and std(timid) standard deviation of that registration time.

In order to allow methods to apply to river systems with different number of receivers, we

divide receiver Ri into three groups g for beginning, middle and end of the system, and

average statistic between them:

Sg =

∑
i∈g S

i

ng
for g ∈ {1, 2, 3}, (5.14)

where ng is the number of receivers in the group g. Tables 5.3 and 5.4 show the grouping

of receivers in our experiments. If the number of receivers is even the middle group is

larger by one.

5.2.3.2 General statistics

• Median pace we calculate the median pace of movement speed across all receivers:

Space = med(
lRi

med(timid)
), (5.15)

where lRi is the distance of receiver Ri from the release site.

• Average number of co-occurrences We define a co-occurrence between two fish

fa and fb at a receiver Ri as an instance of overlapping registrations:

Cooccurrencei(fa, fb) =
(

max(Oi,a
first, O

i,b
first) ≤ min(Oi,a

last, O
i,b
last)
)
. (5.16)

We then define the normalized number of co-occurrences as

Sco-oc =

∑nR
i=1

∑nf
j=1

∑nf
k=1 Cooccurrencei(fj, fk)

1
2
nf (nf − 1)nR

. (5.17)

5.2.3.3 Normalisation of the statistics

The statistics described above are then normalised based on observations of the simulations

from the prior 5.7 to closest resemble the normal distribution as in Figure 5.8. In practice,
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the skewness of some summary statistics will change depending on the hyperparameters of

the modelled system and might be non-normal in the area where parameters are sampled

from. We tested different families of popular normalisation functions and compared results

on SynthSpey, RiverShort and real telemetry data to find transformations that, on average

provide the most reasonable shapes of distributions. For each receiver group g ∈ (0, 1, 2)

we normalise receiver statistics

Sgrec = [Sgobs, log
Sgpres

1− Sgpres
, log(1 + CVg)]. (5.18)

We then normalise the general statistics with the logit function:

Sgen = [log
1
30
Space

1− ( 1
30
Space)

, log
1000Sco-oc

1− (1000Sco-oc)
] (5.19)

where the pace is additionally normalised by the maximum mean speed parameter and

Sco-oc multiplied by large number to avoid precision issue in cases when it is a very small

number.

5.2.3.4 Distance function

We use a normalised distance function to avoid any element of the summary statistic vector

dominating the metric. Following the baseline approach outlined in Prangle (2017), we are

first calculating the median absolute deviation (MAD) matrix of the summary statistics

of a random sample of 2000 parameters from a prior. MAD has an advantage over the

standard covariance matrix with regard to outliers. We use diagonal elements of the matrix

as weights for the weighted Euclidean distance between each summary statistic S(l) and

the target summary statistic S†

d(S†, S) =

[
Ns∑
i=1

{wi(s†i − si)2}

]1/2

(5.20)

where NS = 11 is the length of the summary statistic vector, and weight wi = 1
σi

is a

MAD coefficient σi of that element of the summary statistic.

For some values of parameters (for instance, very low survival rate), the statistics

cannot be calculated. In such cases, the distance to the summary statistic of target data

is set to infinity and the parameters set rejected.
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Figure 5.7: Histograms for summary statistic of simulations without normalisation for
RiverShort model. The red bars show the histogram of each value of the summary statistic
vector for parameters sampled 2000 times from the prior (as in table 5.1). The Coefficient
of Variability of arrival time (CV ) for each group is left skewed. Presence statistics Spres

vary from right to left skewed as the number of fish at each section of receivers depends
on their mortality throughout the journey. The blue histograms overlaid are the summary
statistic for 2000 repetitions of simulation from the same parameters set M(θA).

5.2.4 ABC modelling

Our model can be a good first approximation of real fish movement behaviour, expanding

on a random walk only in ways necessary to justify the persistence of downstream move-

ment. Simulations of temporal processes do not allow constructing a likelihood function

that can be analytically calculated because probabilities at each time step are conditional

on the results of all the previous ones.

In this work, we estimate the posterior distribution of the true model parameters by

using a Population Monte Carlo (PMC) ABC method (Prangle, 2017) adapted for batch

processing on a GPU. The Monte Carlo method evaluates the model at given parameter

values, so parallelisation of the model execution is the single most important improvement

to the practical application of the ABC method. In our case, we are able to run simulations

in batches of B = 2000 on a graphics card with 11GB of memory, making this modelling
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Figure 5.8: Histograms for normalised summary statistic for RiverShort model. The
red bars show the histogram of each value of the summary statistic vector for parameters
sampled 2000 times from the prior (as in table 5.1). Compared to 5.7 most of the statistics
look much closer to the normal distribution, however the first three Sobs do not have a
clear normalisation strategy and remain left skewed. The number of co-occurences Sco-oc

is fairly right-skewed despite attempted normalisation. The blue histograms overlaid are
the summary statistic for 2000 repetitions of simulation from the same parameters set
M(θA).

feasible.

Algorithm 1 describes the process of finding the representative sample from the esti-

mated posterior. With every iteration τ we are sampling new parameters from a sample

of L parameters θ∗t−1 accepted in the previous iteration using an importance density :

qτ (θ) =

π(θ) if τ = 1,∑L
i=1w

i
t−1N (θ∗it−1, κΣw,t−1) otherwise

(5.21)

where κ = 0.5 is the scaling factor, and Σw,t−1 is a weighted covariance matrix of all L

parameters θt−1, and weights wt are defined as

wiτ =
π(θti)

qτ (θti)
, (5.22)
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so that the prior knowledge is considered even at later simulation stages. This reduces the

risk of converging on non-optimal parameter values due to inadequate sampling in earlier

stages.

We are using an adaptive threshold h, always accepting the 10th percentile of sampled

parameters. This allows the method to be more independent of specific distance distribu-

tion and gradually reduce uncertainty without introducing a threshold dependent on the

application to a particular model.

Algorithm 1 describes the ABC. We repeat the main procedure 8 times, as in prelimi-

nary tests, around the 5th iteration, the average distance of accepted parameters stopped

decreasing.

Algorithm 1 ABC-PMC (with the option of adaptive hτ )

1: Hyperparametrs
2: τ = 1, κ = 0.5, h = 0.1, B = 2000
3: Main loop
4: repeat
5: Sample θ, B times from importance density qτ (θ) given in Equation 5.21 rejecting

samples if π(θ) = 0.
6: Simulate y from M(θ) and calculate summary statistic S(y).
7: Accept θi as θi∗ if d(S,D†) ≤ Quantile(d(S, S†), h).

8: Let wiτ = π(θiτ )
qτ (θ∗iτ )

.
9: Increment τ to τ + 1.

10: until τ = 8
11: End of loop

5.2.5 Validation on simulated data

Each repetition of ABC modelling produces a posterior pτ (θ
∗
τ ) that is expressed by its

sample of L parameters θ∗τ that were the accepted in that iteration.

We validate our method by analysing how well the resulting posterior estimate reflects

the true parameter vector θ†i = [µ†i , β
†
i , α

†
i , λ
†
i , P

†
surv,i, γ

†
i ] for each of repetition i of the

modelling. For each repetition, we sample the target parameter vector θi from a prior.

Some parameter values might result in a simulation where no fish arrives at some receiver

group due to very high mortality, or the detection rate is so low that no fish are registered.

In such cases, the summary statistic is not defined, resulting in an invalid simulation

M(θ†i ) and this parameter set is not used for the experimentation.

We follow Ruiz-Suarez et al. (2020) to report absolute prediction error Eabs between
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each of the true parameter values and the median value θ̂∗i from a resulting posterior

distribution over Nrep repetitions:

Eabs =

√√√√ 1

Nrep

Nrep∑
i=1

(θ̂∗i − θ
†
i )

2. (5.23)

Next we report a relative error Erel for each parameter (called Dispersion Index in

Ruiz-Suarez et al. (2020)):

Erel =
1

Nrep

Nrep∑
i=1

|θ̂i − θi|
θ†i

. (5.24)

We discard any simulation that has a parameter set within 5% to the top or bottom of the

prior parameter range to avoid biasing results by single parameters with unlikely values.

We report Eabs and Erel for each element of the parameter vector separately. For parameter

γ, which prior goes from -10 to 30, we shift values to be positive only.

Prediction quality relates not only to the distance of the mean or median of the poste-

rior to the true value of the parameter but also if the whole distribution correctly captures

the true value. We expect that the posterior probability correctly captures the likelihood

of the target value producing the simulated outcome. Cook et al. (2006) shows that the

shape of the quantiles distribution of target values of parameters θ† should be U(0, 1) if

the method reliably recovers the posterior. The quantiles are defined as

qi =
1

L

∑
l∈L

1θ†>θ∗l , (5.25)

for every replication i ∈ Nrep where θ∗l is a parameter sampled L times from the posterior

i.

To test how close the resulting quantile distribution is to uniform U(0, 1) we calculate

the p values of the χ2 statistic of their probit distribution Φ−1(q):

χ2 =

Nrep∑
1

(Φ−1(q)). (5.26)

Further, by transforming those p-values with Φ−1(p) we can produce the zquant statistic

that should provide an insight on the level of deviation from the perfect reproduction of

the target distribution.

Those two approaches will inform how well the parameters are recovered and if the
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spread of the posterior provides an accurate description of uncertainty in the model.

We repeated the ABC procedure Nrep = 100 times on different parameters from the

prior on system RiverSimple andNrep = 50 times for SynthSpey. We recognise that a social

component modifying the discretised OU movement might present a particular challenge:

hence we are comparing the “social” model as defined so far with one where γ = 0 and

all fish swim independently (“non-social”). Additionally, we selected a parameter vector

θA with reasonable values and repeated model fitting 25 times, seeing how reliable is

the recovery of the posterior at that particular point in the parameter space. Table 5.1

provided the values chosen as an example, A. Finally, we fit our model to the observations

from the telemetry study on the river Spey.

5.3 Results

5.3.1 Target parameter recovery

We tested how well can the model recover the target parameter vector θ† that has been

repeatedly sampled from the prior. In Figure 5.9, Eabs is presented for each element of the

parameter vector. The absolute error depends on the scale of each parameter value but

allows to compare modelling on RiverShort and SynthSpey with and without the social

component γ. The mean velocity of movement has a 5.5 times larger error when modelling

RiverShort (Eabs = 3.33) then SynthSpey (Eabs=0.60), with large difference also reported

when social component γ is not fixed (2.44 to 0.68). SynthSpey seems an easier model

to fit also for parameter Psurv with Eabs = 0.05 half of that for RiverSpey Eabs = 0.10.

Overall, all the parameters apart from γ were recovered more accurately on SynthSpey,

which shows that the method works as well with averaging over receiver groups than on a

short test. For both model river systems, the error is higher when retrieving parameters λ

and β in scenario with social component γ, by 20% for parameter β on RiverShort (26.81

to 20.11) to 80% for λ on SynthSpey (13.34 to 7.34). This suggests that some interaction

with the social factor reduces discriminating information in summary statistic for those

parameters.

In Figure 5.10 we present relative error Erel in the same set of scenarios. Here we observe

that parameter β was the least accurate with Erel ranging between 0.49 for non-social

model of RiverShort and 0.71 on the social model and 0.57 and 0.60 for RiverSpey. This

is higher than any other observed relative error, and highlights that our summary statistic

was the least informative regarding the magnitude of drift in the movement process. The
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Figure 5.9: Results of absolute mean square prediction error Eabs for each parameter for
two river models RiverShort and SynthSpey, for models with and without social influence
γ. For parameters µ and Psurv model SynthSpey provides better approximation of true
parameter value. Recovery of parameters in variant with social interaction are markedly
worse for parameters β and λ.

parameter γ is recovered with a large error for both SynthSpey (0.43) and RiverShort

(0.39). On RiverShort, parameters α and Psurv are recovered slightly worse with 0.33 to

0.16 (social) and 0.28 to 0.16 (non-social) for α and 0.26 to 0.11 and 0.23 to 0.12 for Psurv

accordingly. This can be explained by the fact that the length of RiverShort was only

6km, and sampling across the whole prior might result in fewer samples of mean speed

slow enough to explore the variability of registration time provided by parameter α and

registration number relevant for Psurv.
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Apart from µ for which Erel is almost identical in both social and non-social scenarios,

the error is higher when parameter γ is present, most by 78% for RiverShort parameter

λ and 45% for β. Overall we see that parameters µ, λ, Psurv and α are recovered with a

small error Erel ≤ 0.16, while for RiverShort only µ, λ are recovered well with Erel ≤ 0.19.

Figure 5.10: Results of relative error of prediction of target parameter Erel for each param-
eter for two river models RiverShort and SynthSpey, for models with and without social
influence γ. Parameters µ, λ, Psurv and α are recovered with a small error Erel ≤ 0.16, while
for RiverShort only µ, λ are recovered well with Erel ≤ 0.19. Posteriors of parameters γ
and β are not recovered well by our modelling.
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Figure 5.11: Comprehensive results of posterior estimation on the RiverShort model. The
column on the left (in brown) shows the distribution of quantiles of the target value θ†

sampled from the prior for each of Nrep = 100 repetitions of the algorithm. The right
column shows an example from one single repetition with the true value of the parameter
marked by green vertical line, the posterior distribution in blue, and predicted mean values
of other repetitions in red.

5.3.2 Quantile distribution

If the predicted posterior has correct confidence intervals, the distribution of quantiles of

the true value should be uniform. This assumption should be valid both when true value

θ† is sampled multiple times from the prior as shown as presented in Figures 5.11 and 5.12

as well as when the process is repeated for different D† coming from the same M(θ†) in
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Figure 5.12: Comprehensive results of posterior estimation on the SynthSpey model. The
column on the left (in brown) shows the distribution of quantiles of the target value θ†

sampled from the prior for each of Nrep = 50 repetitions of the algorithm. The right
column shows an example from one single repetition with the true value of the parameter
marked by green vertical line, the posterior distribution in blue, and predicted mean values
of other repetitions in red.
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Figure 5.13. Figure 5.11 shows the results for parameter recovery for RiverShort model

without social influence γ. The quantiles distribution fills the entire range 0 to 1 for all of

the parameters, Under the scrutiny of the χ2 test, quantile distributions for all parameters

but α are significantly different than uniform distribution with α in RiverShort in with

p=0.07 detailed in Table 5.5. Tables 5.5,5.6 and 5.7 provide aggregated results for all

parameters, including p−value of a χ2 test of uniformity and their zquant values as defined

following the equation 5.26. We provide them for completeness, however lack of apparent

uniformity of quantiles suggests problems with biases in prediction of the posterior and

shape of the resulting distribution that are visibly incorrect without detailed analysis of

zquant. zquant seems incidentally under its critical value 1.96 for parameter β on SynthSpey

(p = 0.06 for social and p=0.03 for non social), in Table 5.6. Also, quantiles for parameter

γ in SynthSpey in table 5.7 with pvalue = 0.64 suggest uniformity. Those are most likely

false-positive results, caused by the simulation recovering back the prior that by definition,

correctly captures the uncertainty, even if provides no additional knowledge.

The right column in Figure 5.11 shows an example posterior from one of the repetitions

of the ABC algorithm with the true value generating original observations marked with

green lines. We can see that for all parameters (apart from γ = 0), the posterior looks like

a reasonable estimation of the target value. The red vertical lines show the mean value

of the predicted posterior for all other repetitions of the algorithm, and as the true values

are sampled from a prior, those two should be uniformly distributed. We can see that

for parameter β, the mean values of predicted posteriors are clustered in the middle of

the prior range, suggesting that predicted distribution is not very informative and close

to uniform independently from the true target value.

system social µ α
Eabs Erel pvalue zscore Eabs Erel pvalue zscore

RiverShort No 3.33 0.19 0.0 3.14 3.91 0.28 0.07 1.51
RiverShort Yes 2.44 0.19 0.06 1.52 4.37 0.33 0.01 2.39
SynthSpey No 0.6 0.07 0.0 6.07 3.74 0.16 1.0 5.84
SynthSpey Yes 0.67 0.08 0.0 5.57 3.38 0.16 0.01 2.45

Table 5.5: Values of parameter approximation errors Eabs Erel and pvalue of χ2 test of
uniformity of the quantile distribution for parameters µ and α.

In Figure 5.12, we observe results for SynthSpey with the social component, similarly

seeing recovery of some parameters but also clustering of mean values of distributions

clustered around the centre for β and γ, explaining their high error.
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Figure 5.13: Repeated estimations of θ†A parameter vector on RiverShort model without the
social component. The column on the left (in brown) shows the distribution of quantiles
of the target value θ†A in predicted posterior for Nrep = 25 repetitions of the algorithm.
The right column shows an example from one single repetition with the true value of the
parameter marked by green vertical line, the posterior distribution in blue, and predicted
mean values of other repetitions in red.

Alternatively, we look at the repeated ABC modelling of the posterior around the

same parameter θ†A in Figure 5.13. The quantile distribution is clearly not uniform and is

centred around the middle, showing the overdispersion of the posterior as the true value of

the parameter is more often in the centre of the distribution than its shape suggests. The

red vertical lines on one of the predicted posteriors show the systematic bias in predicting

parameter β and the broad shape of this posterior.
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system social β λ
Eabs Erel pvalue zscore Eabs Erel pvalue zscore

RiverShort No 20.11 0.49 0.01 2.32 11.61 0.13 0.0 4.39
RiverShort Yes 26.81 0.71 0.01 2.5 16.01 0.19 1.0 2.75
SynthSpey No 17.76 0.57 0.03 1.82 7.34 0.09 0.0 3.63
SynthSpey Yes 22.9 0.6 0.06 1.55 12.97 0.16 0.0 2.71

Table 5.6: Values of parameter approximation errors Eabs Erel and pvalue of χ2 test of
uniformity of the quantile distribution for parameters β and λ.

system social Psurv γ
Eabs Erel pvalue zscore Eabs Erel pvalue zscore

RiverShort No 0.1 0.23 0.0 3.41 - - - -
RiverShort Yes 0.13 0.26 0.0 3.09 9.34 0.39 0.01 2.47
SynthSpey No 0.05 0.11 1.0 4.54 - - - -
SynthSpey Yes 0.05 0.12 0.0 3.09 9.67 0.43 0.64 0.35

Table 5.7: Values of parameter approximation errors Eabs Erel and pvalue of χ2 test of
uniformity of the quantile distribution for Psurv and γ.

5.3.3 Example of parameter recovery from real system

In Figure 5.14, we present the posteriors from ABC modelling of the data coming from a

telemetry study on river Spey. We used the modelling with parameter γ as the difference

in relative error on SynthSpey between social and non-social simulation. The narrow

posterior for parameters µ with median value 1.94 m
min

or 3.23 cm
s
, λ = 8.29m and Psurv =

86% and α = 4.57 suggest confidence in predicted value. The survival from analysis of

the tracking data was 59.1% and differs significantly from the one we report, but that is

expected, as we report intrinsic survival related to the actual movement distance. The

median travel speed report from the analysis of the data was 4.2 m
min

or 7 cm
s

. Those

differences, however, are expected given different formulations of the intrinsic parameters

compared to the observed data. The distribution of parameter β was very close to the

provided prior (as expected based on simulated experiments). Parameter γ shows a broad

distribution with a peak at a median of 14.75, which suggests possible social interaction.

From previously simulated scenarios, it is clear that the posterior quality of γ is insufficient

to draw conclusions about the social interactions. The width for the non-social parameters

posteriors, apart from β, implies strong confidence in the predicted values.
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(a) Parameter µ (b) Parameter α

(c) Parameter β (d) Parameter λ

(e) Parameter Psurv (f) Parameter γ

Figure 5.14: The posterior of parameters from simulation of the real data from the river
Spey D†spey. The narrow posterior for parameters µ with median value 1.94 m

min
, λ = 8.29m

and Psurv = 0.86 and α = 4.57 suggest confidence in predicted value.
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5.4 Conclusions

We presented a novel method of modelling juvenile salmon migration at a granular scale

from sparse telemetry data. Presented approach provides a proof-of-concept for the direct

modelling of interactions between fish, the environment and the observation process, which

otherwise can only be very crude in typical acoustic telemetry modelling.

Our method was able to recover with reasonable accuracy four model parameters:

mean speed µ, detectors range decay λ, probability of survival Psurv and dispersion α, in

two simulated scenario, and from real telemetry data on river Spey.

The comprehensive testing showed significant challenges in removing bias and providing

reliable confidence intervals. Promisingly, the method performed better on a realistic river

model SyntSpey than on a simplified scenario RiverShort, indicating that the method

scales well to larger simulations. It is important because the computation of the simulation

of the RiverShort is 6 times quicker, allowing us to realistically test more design changes

and hyperparameters.

The common problem with both individual-based modelling and simulation-based in-

ference is the computational complexity. Due to the GPU parallelisable design of our

algorithm, we have overcome this problem. The use of tensorflow-graph functional ap-

proach allowed to leverage GPU memory caching effectively and increases computation

time about 2-fold. The precise execution time varies as the matrix of N × K × B, has

to fit into GPU memory to be parallelised. For a representative river with N = 140 fish

K = 12 receivers and batch size of B = 2000 on a 11GB NVIDIA 2080Ti GPU computa-

tions take approximately 3 minutes for the simulation of a week of migration, resulting in

a simulation time of 0.1 seconds per single simulation.

The earlier version of this simulation used using the vectorised approach on a CPU

with the numerical numpy library took about 10 seconds for each simulation, 100 times

slower than the GPU accelerating solution. The library used for that preliminary study

astroABC python package Jennings and Madigan (2017) is designed for computations

on High-Performance Clusters with multiple CPUs. However, our approach offers easier

parallelisation and can also be further distributed on a GPU cluster.

In our approach we try to recover specific parameters which produced given obser-

vations. The true distribution of parameters that can produce the same observation is

unknown and makes it difficult to reliably quantify uncertainty. When repeatedly simu-

lating the posterior from the same parameter vector θA, the quantile distribution for most

parameters suggested overdispersion of the posterior (too wide confidence intervals). This
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is preferable to the underdispersion that signals an underestimation of the uncertainty.

Wider confidence intervals provide a solid foundation for reasoning based on the recovered

parameter values and can be further revised as closer estimates are needed. Overall, the

overdispersion in the case of repeated sampling of θA may be a result of a situation where

different sets of parameters can produce similar observations and might not necessarily

indicate a problem with the inference method. To provide a broader measure of how the

posterior looks like for different parameters, we calculate the quantile distribution for dif-

ferent parameters sampled from the prior. In this case, we observed a lack of uniformity,

showing the biases in the modelling that have to be better understood and accounted

for to ensure better convergence. In some cases where quantile distribution looked more

correct, we observed a problem highlighted by Prangle et al. (2014) that recovering back

prior distribution leads to the false positive result of the convergence test.

Our model presented a challenge in terms of the design of the summary statistic and

distance metrics. Resulting biases show that often convergence was influenced by non-

informative elements of the summary statistic. As the recovered distribution differs more

from the prior, the distance metric might become locally distorted. We have explored

the use of the covariance matrix instead of the median absolute deviation matrix and

Mahalanobis distance instead of weighted Euclidean distance, seeing detriment in both

cases. One suggestion from Prangle (2017) is to re-calculate the co-variance matrix with

every iteration of the algorithm, which is an approach that can improve the convergence

of our method.

We explored different scaling parameters κ for the importance sampling and percentile

acceptance threshold h. Those two parameters, when too large, lead to slower convergence

without clear improvement. If reduced, they would lead to numerical instability and unre-

alistic multi-modal posterior distribution. Investigation regarding a more subtle decrease

of distance threshold in higher iterations could lead to additional gains.

The choice of time step in the discretisation of the movement model is a balance

between how realistic the model is and the computational cost. Paun et al. (2019) explored

how the sampling in random-walk models affect the recovery of parameters in Bayesian

modelling, highlighting the mismatch resulting from a low sampling rate. In our case choice

of movement model sampling interval of 1 minute to match that of the observational

process was dictated purely by convenience and is one of the possible explanations for

biases observed in the results.

We model the imperfection of observations in the river telemetry together with the

underlying movement of the fish. Fleming et al. (2021) highlights that biases introduced
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by the registration errors can be not only severe but difficult to model without a better

understanding of the process generating them. We modelled parameter λ, a distance-

decay of the probability of detection from each receiver as the mean value across the whole

array. Applying an informed error modelling to the telemetry data itself could provide

better quality input data. Optimally both λ and Pdetmax would be unique parameters

k for each receiver and inferred from the model. However, that would make the model

unique to every telemetry study and increase the complexity of fitting. The equation of

detections can be improved by modelling the observation process with a hurdle model,

where detections can be dense at times but still have a high rate of missed fish.

In our direct observations in chapter 4 we have seen salmon smolts moving in shoals.

To prove that such behaviour occurs in the wild using sparse telemetry data hinges on

many mechanistic assumptions of our simulation model. Our definition of social influence

has been limited in order to retain the tensor structure of the model operations that are

necessary for parallel computations.

The social distance parameter γ in our modelling seems to behave similarly to the

drift component β in countering the stochastic component α. As shown by Calabrese

et al. (2018), the correct approach to quantifying collective behaviour would instead show

the correlation in the stochastic component. This presents a challenge for future work

to define the correlation of velocity so that - it ties the stochastic element of movement

without preventing individual variation from causing a breakup of travelling shoals. Unlike

animals living in herds, the modelling of migrating shoals must allow some mechanism of

periodic aggregations and dissolutions of groups. This might require an increase in the

number of parameters describing both attraction and repulsion between individuals.

One of the limitations of the current model is that it assumes the same underlying

parameters of movement throughout the migration. As mentioned earlier, the choice of

the river Spey as the testing scenario was partially motivated by a lack of lochs or other

serious obstacles that would vastly affect this assumption. In further work, we would like

to explore a more complex model where a number of environments, such as lakes, rivers,

canals and estuaries are modifying the movement parameters for the fish.

As observed in Chapter 4, salmon migrating in the flume exhibit different periods

and propensity to migrate and choose different flow conditions across long periods. We

suggest that such multiple-state behaviour can be modelled as HMM, with each of the

states having its own parameters associated with it. The observations from a camera that

has excellent spatial accuracy compared to telemetry data would allow us to move focus

from the modelling of movement to the parameters of the collective behaviour.

175



Chapter 5: Individual-based modelling of salmon downstream migration using ABC

The method requires no additional adaptation to use on other telemetry data from

other rivers in the “Missing Salmon” project. As our understanding of parameters im-

proves, the comparison of results between the systems might provide novel insights, espe-

cially about the stochastic component of movement in different rivers.
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Conclusions

Atlantic salmon is an important migratory species connected with its expansive natural

environment in complex ways. As most of its populations face decline, understanding its

collective behaviour and resulting population dynamic plays a crucial role in preserving

Atlantic salmon and its ecosystems. Downstream migration is an important part of life

history, understudied due to practical difficulties in observing the fish during that time.

In this work, I focused on this aspect with a range of approaches.

In Chapter 2, I established the baseline flow value for the Atlantic salmon smolts to

respond to in lacustrine environments, informing the design of river infrastructure and

future studies regarding their ability to find the correct outflow or avoid dangerous water

intakes of hydropower facilities.

In Chapter 4, I quantified the effect social behaviour on the navigation of an obstacle by

migrating smolts, showing an advantage to the fish shoaling even when mostly passively

migrating at night. The existence of social effects during the migration would be an

important density-dependent effect on the species’ survival and migration success, which

has not yet been widely adopted in the ecological modelling of the salmon population.

In both Chapters 2 and 4 I uncovered some important differences between wild and

hatchery smolts that need to be considered in the design of future studies, but can also be

directly helpful in ecological engineering applications and conservation efforts. Specifically,

I observed a stronger social effect on the otherwise less informed farmed fish, and a smaller

threshold required by them to initiate movement than for the wild fish.

In Chapter 3, I improved the animal tracking method, which is essential for further

studies of similar-looking animals, such as salmon smolts in groups with complex movement

patterns.

In Chapter 5, I showed the ability of a interpretable individual-based model to partially
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recover parameters from simulated and real telemetry data while achieving very high

computational efficiency, opening the possibility to a new type of modelling to be applied

to animal telemetry.

Understanding the fine-scale behaviour of smolts in the presence of obstacles and haz-

ards on their migratory route is crucial in conservation efforts and sustainable river de-

velopment. Hydroacoustic flow profile of the challenging bodies of water is increasingly

mapped and understood, but fine-scale tracking of small fish is still impossible on the scale

that can show precise levels of flow to deter or attract fish. The right amount of flow is

necessary to aid the fish in navigation over standing water, that otherwise can significantly

delay or even prevent the successful migration. Knowledge of what the fish experiences as

excessive flow, is necessary to create a hydroacoustic barrier preventing fish from entering

dangerous man-made structures, but also do not repel them from entering the fish passes.

In Chapter 2 I used smolts of three origins, in conditions that allowed the fish to find

a comfortable holding location within or outside of the main flow, providing a realistic

estimate of flow difference required for fish to change orientation. Large differences can be

observed when measuring the same phenomena in different experimental conditions, such

as smolts swimming speeds in racetracks, flumes and in the wild (Holleman et al., 2022).

A similar bias is likely to apply to detection of a minimal threshold for reaction to flow

change. This investigation saw a wider range of response values as it provided smolts with

a more realistic environment than a smaller tank with a laminar flow would. This led to

the detection of a more heterogeneous flow response, especially between fish of different

origins, but likely closer to what can be expected in the field scenario where such a study

would be impractical to conduct using traditional methods.

Directly observing juvenile salmon in the wild is possible but requires long-term video

surveillance, such as in Kemp and Williams (2008) to monitor a culvert. Despite the

improvements in imaging technology, this remains a challenge, as it requires underwater

recording in infra-red illumination of small, fast-moving animals. The work presented

in Chapter 3 sets a direction for visual tracking that relies on learning and predicting a

movement model of each tracked animal, independent of analytical assumptions about its

scale, speed or appearance.

The method does not require explicit parametrisation of the tracking model and only

requires labelling of a single animal movement, which requires significantly less effort than

labelling of multi-object data. Despite those minimal requirements, it is able to track

multiple identical objects in crowded scenes directly applicable to studies of shoaling fish.

The use of simulated data in the presented study, if confirmed by better tracking of fish
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recordings can vastly improve the robustness of ecological trackers that otherwise might

fail in the most crucial moments when animals are behaving unusually - responding to a

threat or navigating turbulent waters. Many modern visual trackers are leveraging the

rich visual detail from the high-resolution cameras that are now ubiquitous. In underwater

studies, the improvements to imaging sonars are providing valuable data on fish movement,

but with very low temporal and spatial resolution. The development of a system that

focuses on matching tracking with the movement model addresses those limitations well

by aligning the method of study with the phenomena studied.

In the design of both hydroacoustic barriers and fish passes, the velocity to which fish

respond under natural conditions is difficult to measure indirectly, where the effect of group

sizes is unknown as well as the effective group sizes when fish are navigating challenging

scenarios. The study in Chapter 4 tackled the question of social effect in decision-making

in the face of an obstacle, in laboratory conditions resembling a migration in a narrow

stream.

Using the previous version of the visual tracker, it was still possible to quantify ob-

servations of fish travelling in the relatively non-turbulent area of the flume and on the

aggregation that never exceeded 10 fish and usually was limited to groups of 5. In the

artificial river, smolts of both farmed and wild origin exhibited clear downstream migra-

tory behaviour and collective decision-making in the face of an obstacle. This study only

analysed the decisions made by single and multiple fish approaching the obstacle from a

group of 10 fish in the experimental arena over 14 hours. The night-time tracking allows

observing fish as they make decisions and within a number of repetitions of the experiment,

measure the influence of different flow conditions on their route selection.

As the route selection was mediated by social behaviour, we expect that the same will

be true to the threshold required for reaction to flow as measured in Chapter 2. This study

highlights the importance of considering group effect in the fish decision-making during

the migration, and limitations of the approach that consider migrants making independent

decisions.

A good body of evidence suggests the importance of social cues to migration timing

(Thorstad et al., 2012b; Kururvilla et al., 2024), but the social effect on the success of

migration is still difficult to quantify. Previously, it was observed that fish might shoal

as a result of the presence of an obstacle to the migration (Vowles et al., 2014). It is

also known that in a group, fish might be more reactive to flow as the groups’ ability to

sense the flow gradient increases (Torney et al., 2009; Berdahl et al., 2013). This study

confirms that when presented with the ability to shoal, fish will be able to make better
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decisions by following more informed individuals. Further work is needed to establish the

precise mechanism. We observed that hatchery fish - though less skilled at finding the

optimal migratory route - were more likely to group and were more sensitive to small flow

differential.

Hatchery smolts, used in a responsible way, can play an important role in the conser-

vation of Atlantic salmon (Lennox et al., 2021). This work shows that their utility can

be high for the purpose of testing river infrastructure design. The smolts used in this

experiment exhibited behaviour that was consistently different than wild smolts, which

might make it easier to test hypothesis that would otherwise be too difficult to measure

with limited sample and effect sizes available with wild smolts. For instance, based on the

results in Chapter 4 it can be assumed that hatchery smolts, will school more readily and

be worse at finding the unobstructed pathway. When designing a pathway for migration,

that will allow safe passage of hatchery smolts, we can have confidence that wild fish will

be able to navigate it as well. In river systems where hatchery smolts are already present,

and they can be used to bootstrap studies of wild smolts such as in Fernandes et al. (2015).

In such places, the design of a direct observation experiment outlined previously can be

validated ahead of the migration season with the release of hatchery smolts that can be

provided year-round from different facilities. A better understanding of the genetic dif-

ferences between wild salmon populations and different hatchery smolts Pritchard (2023),

provide another route to understand the difference between the innate abilities of juve-

nile salmon, and ones gained through the development of different environments Johnsson

et al. (2001).

The Approximate Bayesian Computation method of modelling Atlantic salmon migra-

tion presented in Chapter 5, promises to allow testing of the collective movement hypoth-

esis or more complex mechanism of movement within the sparse and imperfect telemetry

data. The method presented partially recovered parameters of a discrete movement model

inspired by an OU process. The main difficulty of this method is the design of summary

statistics of the data, which will be informative but also adhere as much as possible to

the normal distribution. Thanks to the the very high computational efficiency of this ap-

proach, it is possible to continue refining the simulation and its resulting statistics until the

confidence in the method is reasonable for the purpose of answering a specific behavioural

question - for instance, the presence of collective motion. Following the studies of Berdahl

et al. (2017) and Kururvilla et al. (2024), this approach poses a question in a Bayesian

context of relative evidence of different explanations of the imperfect observations. As the

data availability increases, confirmation of theoretical models of the collective decision-
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making becomes possible with the proposed approach.

6.1 Future work

The work described in this thesis leveraged modern technology and computational tech-

niques and points to future research avenues. The measurement of flow value reaction

in Chapter 2 can be naturally followed by such a study with multiple fish observed in a

tank a the same time, to understand any possible social effects in the reaction to flow.

Preliminary work done for this thesis shows that such a study would need a very high

level of automation of extraction of reaction times and locations, as with the number of

fish, manual labelling, and marking of positions will become too burdensome. To balance

the increase in uncertainty resulting from the heterogeneity of this scenario, an increase

in repetitions would be required, and possibly a study of hatchery smolts would be eas-

ier to organise. In our experimentation the smolts from freshwater pens had a reaction

closer to the wild smolts than those from an indoor facility and should be preferred as a

model in future studies. Given the increased social effect observed in the choice chamber

experiment in Chapter 4 it would also be more likely to observe such an effect in hatchery

smolts than in the wild ones if it exists.

An animal tracker with the Deep Predictor module developed in Chapter 3 would

need to be tested on the tracking data developed in qualitative testing of the visual data

extraction in Chapter 4. Confirming that the model works on the difficult task of the

infra-red observations of fast-moving fish would open the way to perform a more detailed

analysis of the collective motion already captured during the migration experiments in the

flume. The basic collective metrics of group cohesion: nearest neighbour distance, average

velocity vector, cosine similarity of the velocity vector, etc., can be used to analyse how

different-sized effective groups are moving in the experimental river, when an obstacle does

not impede their movement. With better accuracy in calculating motion, the mode of

movement can be determined - whether the fish moves passively with a flow or swims with

a positive or negative rheotaxis. Additional appearance classification can be easily added

as part of the deep learning framework to visually distinguish the orientation of the fish.

Improved tracking techniques will allow us to combine tracks across multiple cameras, in

a process known as re-identification. Longer term tracks of the same individual will allow

the creation of realistic movement models that can form a better basis for simulation-based

analysis of telemetry data as presented in Chapter 5.

The study of collective movement presented in Chapter 4 can be repeated using an
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existing fish pass or a culvert in order to study the behaviour of the wild fish during their

migration. Using the same setup of network-connected, inexpensive cameras with on-board

processing and data transmission should be possible for the entire period of migration at

a lower cost compared to a telemetry study with a sufficient number of tagged animals

for the study of collective motion. Ability to observe fish making a route choice decision

in the wild, with periodic measurements of flow, temperature and other conditions would

provide a valuable complement to the usual, sparse, telemetry data gathering.

Such a setup would be able to provide valuable snapshot information about the real

numbers of travelling fish and their possible group structure to better inform a simulation

design of movement models for the telemetry data with the ABC method. Additionally,

the same ABC method can be used to model the observed fish movement directly, linking

those two levels of observation with the same movement model mechanism at two different

scales.

Revision of the simulation with a more realistic hurdle-based observation process, col-

lective motion definition and introduction of parameters related to the environment, such

as a river or a lake, should allow for a better fit to the experimental data.

In summary, this thesis presented diverse mathematical methods that refined our abil-

ity to test hypotheses related to Atlantic salmon downstream migration. Using different

modalities of data and different spatial and temporal scales, I confirmed an important col-

lective mechanism in smolts decision-making making and created a clear direction for the

future research to quantify and incorporate the collective movement hypothesis to future

scientific studies and conservation efforts.

182



Bibliography

Aarestrup, K., Jepsen, N., Rasmussen, G., and Òkland, F. (1999). Movements of two
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Hiedanpää, J., Saijets, J., Jounela, P., Jokinen, M., and Sarkki, S. (2020). Beliefs in

Conflict: The Management of Teno Atlantic Salmon in the Sámi Homeland in Finland.
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B., Penttinen, M.-L., Safi, K., Semashko, V., Schmid, H., and Wistbacka, R. (2015).

True navigation in migrating gulls requires intact olfactory nerves. Scientific Reports ,

5(1):17061.
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