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Abstract

Accurate and timely surveillance of infectious diseases is critical for effective public health

responses. Up-to-date quantitative indicators for the prevalence of diseases in a popula-

tion, e.g. case or death counts, can provide early warning of outbreaks, empowering public

health bodies to develop targeted interventions, allocate limited resources, and commu-

nicate risks to influence public behaviour. However, data collection for such indicators

often suffers from delays, for example due to administrative protocols, testing processes,

or resource limitations. These delays mean that available information on outbreaks lags

behind reality; delays also vary randomly and systematically in space and time, making it

difficult to confidently detect disease outbreaks and provide timely, effective interventions.

From a statistical perspective, correcting delayed reporting is a compositional count data

prediction problem. Compositional data, take the form of parts of some whole, in this case

a set of non-negative counts reported after each delay that sum to a total count, such as

the number of disease cases. In a nowcasting setting, the total count is not yet observed

and we aim to predict it given the observed parts of the total for delays that have already

elapsed. Applying appropriate statistical methodology for count data with this structure

can yield models that learn about the properties of the delay distribution, to provide

nowcasting predictions. At the same time, this means that methodological advancements

in the field of correcting delayed reporting can potentially lead to innovation in the general

field of modelling compositional counts, relevant to a wide range of research fields beyond

disease epidemics.
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Research carried out prior to this project developed a general multivariate Bayesian hier-

archical framework, based on the Generalized-Dirichlet-Multinomial (GDM) family of

distributions, that can flexibly account for the different sources of variability in count

data suffering from delayed reporting. The framework was developed into a model for a

time series of an individual disease in one geographic region. The model demonstrated

theoretical and practical potential for the GDM method to provide more accurate and

precise predictions, compared to alternative methods.

The work presented here is underpinned by two broad aims: to make the GDM approach

more practical for real-time public health applications and to develop novel extensions

to the methodology to account for more complex data challenges and features. For the

first aim, we developed improvements in computational efficiency and in streamlining

applications to real data. Then, we demonstrated the efficacy of the improved GDM model

as a solution for nowcasting COVID-19 hospital deaths in different regions of England.

Through an unprecedented rolling prediction experiment, we assessed the performance of

the GDM against a cohort of competing methods representing the current state-of-the-art,

finding that predictions from the GDM were the most accurate and most precise.

For the second aim, our work was informed by a collaboration with experts at Brazil’s

leading public health institute, the Oswaldo Cruz Foundation (Fiocruz). This offered

unique insights into the specific data challenges affecting Brazil’s current operational dis-

ease warning systems, while also supporting our understanding of more general issues in

correcting delayed reporting. One component of this work was motivated by the chal-

lenge of nowcasting COVID-positive severe acute respiratory illness (SARI) cases, as an

indicator of COVID outbreaks in Brazil. Here, we developed a joint modelling framework

for nowcasting total SARI and COVID-positive SARI cases. The framework addressed

the novel challenge of correcting delayed reporting of disease counts where information

on the length of the reporting delay was not recorded. Applied to data spanning the

whole of the Brazil, our approach allowed for predictions of COVID-positive cases, which
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suffer from this data challenge, through leveraging the more timely and complete data

for the total SARI cases. A rolling prediction experiment demonstrated improvements

in predictive performance from incorporating links between overall SARI incidence and

COVID-positive rates, as well as from accounting for patient age distributions.

The last major piece of work of the thesis explored potential effects of the level of a

disease in the population on the severity of reporting delays. We investigated this issue

in data for different diseases, offering new insights into potential capacity limitations or

elasticity within the respective reporting processes. We propose a framework that flexibly

models the effect of the prevalence of the disease on the delay distribution. Through a

simulation study aiming to imitate real data, we demonstrated the framework’s ability to

disentangle the various sources of variability in the data, including the prevalence-delay

interaction, and improve overall prediction accuracy. Since the existing statistical and

biostatistical literature on correcting delayed reporting does not assume an explicit effect

of disease prevalence on reporting delays, this work could represent the first step for a

new paradigm of nowcasting frameworks.

Overall, the work in this thesis provides substantial methodological advancements in cor-

recting reporting delays for disease surveillance, taking the initial proof-of-concept of the

GDM framework and greatly enhancing its practicality and versatility. All aspects of

the work were driven by and demonstrated using real-world data challenges, employing

realistic prediction experiments to develop a robust evidence base for the potential of

advanced methods based on the GDM framework to enhance public health responses and

policy decisions.

v



Contents

Abstract iii

Acknowledgements xxii

Declaration xxiii

Abbreviations xxiv

1 Introduction 1

1.1 Delayed Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Observed total counts . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Delay distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Summary of the sources of variability . . . . . . . . . . . . . . . . . 15

1.2 Modelling challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Review of Bayesian Nowcasting Models 21

2.1 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 NIMBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 INLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Bayesian Nowcasting Models . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Jointly modelling the total and partial counts . . . . . . . . . . . . 40

2.2.2 Conditionally independent models of the partial counts . . . . . . . 43

2.2.3 Comparison of joint and conditional independence models . . . . . 48

2.3 Generalized-Dirichlet Multinomial Model . . . . . . . . . . . . . . . . . . . 50

2.3.1 Conditional series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



2.3.2 Existing GDM link functions . . . . . . . . . . . . . . . . . . . . . 55

2.3.3 Forecasting with the GDM model . . . . . . . . . . . . . . . . . . . 56

2.4 Machine learning nowcasting approaches . . . . . . . . . . . . . . . . . . . 58

2.5 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1 Spatial variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.2 Incorporating covariates . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 Under-reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.4 Operational ability . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Computational Efficiency of the GDM 71

3.1 Approximating the GDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Approximation framework . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.2 Existing frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.3 Simulation experiment . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Improving MCMC Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.1 Parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Direct Optimisation of the Joint Posterior . . . . . . . . . . . . . . . . . . 93

3.3.1 Optimisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.2 Surrogate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Nowcasting COVID-19 Fatalities 122

4.1 Correcting Delayed Reporting of COVID-19 Using the GDM Method . . . 124

4.2 Exploring Model Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.1 Auto-regressive effect . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.2 Tensor product smooth interactions . . . . . . . . . . . . . . . . . . 129

4.2.3 Improvements to application and implementation . . . . . . . . . . 130

4.2.4 Moving windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3 Simulation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vii



4.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Nested Disease Structures 144

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.1 Delayed reporting as a compositional time series problem . . . . . . 150

5.2.2 The Generalized-Dirichlet Multinomial method . . . . . . . . . . . 151

5.3 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.1 Model for nested structures . . . . . . . . . . . . . . . . . . . . . . 156

5.3.2 Delayed reporting of available COVID-19 case counts . . . . . . . . 157

5.3.3 Extending the GDM framework . . . . . . . . . . . . . . . . . . . . 158

5.3.4 Informative population demographics . . . . . . . . . . . . . . . . . 159

5.4 Severe Acute Respiratory Illness in Brazil . . . . . . . . . . . . . . . . . . 160

5.4.1 Implementation and Prior Distributions . . . . . . . . . . . . . . . 164

5.4.2 Age effects and the impact of COVID-19 . . . . . . . . . . . . . . . 169

5.4.3 Results from the rolling prediction experiment . . . . . . . . . . . . 171

5.4.4 Capturing COVID-19 censoring . . . . . . . . . . . . . . . . . . . . 178

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 The effect of case load on delay 184

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.1 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.2 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3.2 Parameter inference experiment . . . . . . . . . . . . . . . . . . . . 205

6.3.3 Prediction performance experiment . . . . . . . . . . . . . . . . . . 210

6.4 Brazilian case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.4.1 Investigating case load effects . . . . . . . . . . . . . . . . . . . . . 217

6.4.2 Rolling prediction experiment . . . . . . . . . . . . . . . . . . . . . 224

viii



6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7 Conclusion 231

7.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.2 Potential future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Appendices 246

A Definition of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.1 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.2 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.3 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.4 Inverse-Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . 249

A.5 Negative-Binomial Distribution . . . . . . . . . . . . . . . . . . . . 249

A.6 Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 250

A.7 Generalized-Dirichlet Distribution . . . . . . . . . . . . . . . . . . . 250

A.8 Beta-Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . 251

A.9 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . . . . 252

B Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.1 Marginal distribution of a Poisson-Gamma mixture model is a Negative-

Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2 Marginal distribution of a Poisson-Multinomial mixture model is a

Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 255

B.3 Marginal distribution of a Negative-Binomial-Multinomial mixture

model is a Negative-Binomial distribution . . . . . . . . . . . . . . 258

B.4 Derivation of the Generalized-Dirichlet Multinomial (GDM) . . . . 260

B.5 Derivation of the Generalized-Dirichlet Multinomial (GDM) as a

Beta-Binomial Series . . . . . . . . . . . . . . . . . . . . . . . . . . 263

C Directed acyclic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

C.1 The Generalised-Dirichlet Multinomial (GDM) model . . . . . . . . 266

C.2 The nested GDM model . . . . . . . . . . . . . . . . . . . . . . . . 267

C.3 The caseload effect GDM model . . . . . . . . . . . . . . . . . . . . 268

ix



List of Tables

3.1 Table of the total run time and diagnostic measures for different versions of

the GDM model fitted to COVID-19 hospital deaths in England. The columns

from left to right denote; the model version, the total run time in minutes, the

number of MCMC iterations, the number of MCMC burn in, the estimated

mean ESS for all parameters, the estimated mean ESS for just the λ paramet-

ers and the estimated mean ESS for all unobserved y parameters. All GDM

models were fitted using MCMC with 4 chains and a thinning of 10. The top

half of the table (rows 1-5) show model diagnostics for all models where the

MCMC iterations have been set to 200 000 and the burn-in has been set to

100 000, as used in Stoner and Economou (2019). The lower half of the table

(rows 6-10) differ in iteration and burn-in length for each model version as they

have been set to try and achieve comparable mean ESS and PSRF diagnostics.

This was determined by changing reducing the burn-in in increments and en-

suring convergence has still occurred through visually inspecting trace plots

and ensuring the PSRF values didn’t worsen. Then, iterations were reduced

in increments until the ESS columns in the lower half were approximately the

same magnitude as the upper half. . . . . . . . . . . . . . . . . . . . . . . . . 107

x



3.2 Table of total run time and diagnostic measures for different versions of the

GDM model fitted to SARI cases in Paraná, Brazil. The columns from left to

right denote; the model version, the total run time in hours, the number of

MCMC iterations, the number of MCMC burn in, the estimated mean ESS

for all parameters, the estimated mean ESS for just the λ parameters and the

estimated mean ESS for all unobserved y parameters, the proportion of the

PSRF less than 1.05 for λ and less than 1.2 for the unobserved y parameters.

All GDM models were fitted using MCMC with 4 chains and a thinning of

1000. The top half of the table (rows 1-5) show model diagnostics for all models

where the MCMC iterations have been set to 2 000 000 and the burn-in has

been set to 1 000 000. The lower half of the table (rows 6-10) differ in iteration

and burn-in length for each model version as they have been set to try and

achieve comparable diagnostics. This was determined by changing reducing

the burn-in in increments and ensuring convergence has still occurred through

visually inspecting trace plots and ensuring the PSRF values didn’t worsen.

Then, iterations were reduced in increments until the ESS columns in the

lower half were approximately the same magnitude as the upper half or close
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Disease surveillance is the continued monitoring of epidemic trends through the systematic

collection and analysis of relevant data. Enabling public health action to then be taken

to try and control or prevent the spread of the infectious disease. As well as aiding the

implementation of new public health interventions, surveillance can also allow the eval-

uation of previous policies. Moreover, examining trends of infection within a population

could help determine possible risk factors.

Many examples of disease surveillance have been carried out historically, especially in

high-income countries. For example, diseases such as smallpox, influenza and cholera had

surveillance systems in place in the 19th century (Simonsen et al. (2016)). Monitoring of

demographic and geographic variability is now common practice for a large number of in-

fectious diseases. In the case of highly transmissible infections, timely outbreak detection

can be critical in reducing the social and economic impact of the disease. A more recent

example of this is the COVID-19 global pandemic. Not only was close surveillance vital

for decision making, such as non-pharmaceutical interventions, it was also needed to com-

municate health risks to the public, as discussed in Kline et al. (2022). This included the

identification and notification of high risk individuals and regions. Mathematical model-

ling was also a key tool for public health organisations. Panovska-Griffiths (2020) discusses

how the mathematical models, that were used to predict COVID-19 epidemic curves in

the UK, aided policy making in the early stages of the outbreak.

Surveillance that is representative of the current regional risk level relies on thorough data

collection, which has improved significantly over the last century. The introduction of the

International Classification of Disease (ICD) standardised the reporting of diseases glob-

ally to allow data to be comparable across hospitals, regions and countries, as well as over

time. A version of the ICD was first introduced in 1893 and revisions to it were entrusted

to The World Health Organisation (WHO) when it was founded in 1948 (World Health

Organization (2020a)). The ICD/WHO also prioritises the easy storage and retrieval of

information to allow for timely analysis and decision-making, this has been made more

achievable with the advances in computer power and electronic reporting. However, there
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is still room for improvements within current disease surveillance systems. One gap is the

ability to monitor disease at local level to allow for a more detailed overview of disease

patterns and more targeted public health policies. A second gap is the timeliness of disease

surveillance which is often hindered by the presence of reporting delays (Simonsen et al.

(2016)), which is the topic this thesis addresses.

The overall aim of this body of work is to provide statistical frameworks for carrying

out effective and efficient predictions within an operational infectious disease surveillance

context. The motivation behind the more specific directions of this work comes from two

places. First, a desire to improve the general operational ability of disease surveillance

systems. Second, through collaboration with the Oswaldo Cruz Foundation (Fiocruz) in

Brazil, the need for novel approaches to real-world problems driven by data challenges

that render existing approaches unsuitable for use. Addressing both motivations yields

modelling frameworks that not only showcase theoretical improvement in correcting for

delayed reporting but also lays a foundation for real-world impact of the work through

applications.

In this chapter we first introduce the problem of reporting delays in disease counts and the

benefits of correcting for them within an operational surveillance context (Section 1.1).

This includes framing delayed reporting as two processes that combine to generate the

available data; first the underlying processes that drives the observable disease outcomes

(Section 1.1.1), and second the process that creates delays in the reporting of these out-

comes (Section 1.1.2). Next, in Section 1.2 we discuss the main challenges of designing

statistical frameworks for data subject to delayed reporting and explain why a modu-

lar Bayesian approach that models these processes as hierarchical layers is a compelling

solution. Finally, in Section 1.3 we briefly outline the contents of each chapter in this

thesis.
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1.1 Delayed Reporting

Delayed reporting is where information about disease cases, hospitalisations or fatalities

are not immediately available to public health decision makers due to lags in the reporting

process. Kline et al. (2022) outline that the chains of reporting that can create these delays

include: the time it takes for individuals to be subject to and notice symptoms, receiving

confirmatory test results, administrative processing of the information, and finally the time

it takes to evaluate data that has eventually been reported. Despite recent improvements

in disease surveillance and data collection, for the COVID-19 pandemic which was first

identified in December 2019 (World Health Organization (2020b)), significant delays were

common in reporting health outcomes such as cases, hospitalisations and fatalities. A

substantial body of work studies these delays in various countries, including Günther et

al. (2020), Stoner, Halliday and Economou (2022) (Chapter 4), Kline et al. (2022), and

Seaman et al. (2022).

Through conducting an online survey Gutierrez, Rubli and Tavares (2022) identifies that

presenting individuals, daily COVID-19 deaths in Mexico by date reported, compared to

date occurred, can reduce perception of the relative risk which is then reflected in public

behaviours. Hence, if public health bodies, who often format and publicise disease data,

are not accounting for reporting delays it could result in misinformation within a popula-

tion. This could then lead to higher non-compliance with lockdown recommendations, put

in place to help reduce transmission. Therefore, it is generally best practice within disease

monitoring systems to present predictions of current disease levels alongside counts repor-

ted so far to communicate the uncertainty in our understanding of the current epidemic

(Gutierrez, Rubli and Tavares (2022)).

As an illustrative example, Figure 1.1 shows the total weekly severe acute respiratory

illness (SARI) hospitalisations reported across the whole of Brazil (points).
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Figure 1.1: Total observed SARI hospitalisations for the whole of Brazil which will even-
tually be reported (points) against the date of hospitalisation. The lines depict the cu-
mulative counts reported which occurred that date (x-axis) and were reported after the
weeks of delay indicated by the line colour.

However, these totals suffer from reporting delays and will not be known in full until a

later date. Instead the coloured lines indicate the cumulative counts that were reported

at each delay after the date of occurrence (x-axis), where a delay of 0 indicates the counts

that were reported the same week they occurred, a delay of 1 indicates the counts reported

1 week after they occurred and so on. For the most recent week, starting 4th of December

2022, we do not know the eventual total counts (represented by the points) that will be

reported for the current week or previous weeks, the only information known is given by

the coloured lines. Hence, for the most recent week we only have one set of partial counts

that have been reported, for the previous week we have the partial counts that occurred

last week and were reported last week plus the partial counts that were reported this

week. Therefore, as we go back in time the number of delays that we know the number

of cumulative counts reported for increases by one each week.
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Figure 1.2: Total observed SARI hospitalisations for the whole of Brazil (points) which
will eventually be reported. Dashed line gives the hospitalisations reported-so-far up to
the week starting December 4th 2022. The solid line gives the posterior median predictions
of the total counts from a Generalised-Dirichlet Multinomial model fitted to the available
data. The shaded region gives the corresponding 95% prediction intervals.

Correcting for these delays in reporting up to the present time is known as “nowcasting”,

which allows decisions to be based on a more complete and less biased view of the current

state of the outbreak. In the example of Figure 1.1, the task would be to generate accurate

predictions of the total number of SARI hospitalisations that occurred each week (given

by the points) using just the available data (coloured lines). Breaking down the number

of counts reported so far by delay gives us more information than considering just the

total counts reported-so-far over all delays, which is represented by the dashed line in

Figure 1.2. This figure demonstrates the information nowcasting provides from capturing

trends in the counts reported-so-far. The posterior predictive medians (solid line) and 95%

prediction interval (shaded region) gives an accurate estimate of the unknown eventual

total counts (points) and the uncertainty in the predictions. This allows public health

organisations to appropriately prepare for the likely risks associated with different levels

of disease outcomes within a population. Where possible, forecasting future counts can

also give these decision makers a key outlook of upcoming circumstances allowing for

preventative as well as reactive measures to be put in place.
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Examples of currently operational nowcasting surveillance systems include infoDengue

(https://info.dengue.mat.br) and infoGripe (http://info.gripe.fiocruz.br). These were de-

veloped through a collaboration between the Oswaldo Cruz Foundation (Fiocruz) and the

University of Exeter (University of Exeter (2021)). In 2017, infoDengue was updated us-

ing methods developed by Bastos et al. (2019) to predict current levels of mosquito borne

disease (arbovirus) cases in six Brazilian states, to facilitate early warnings and manage

risks. Due to infoDengue reliably and accurately predicting the spread of arbovirus cases,

allowing for more confident monitoring by public health bodies and the general public,

the Brazilian Ministry of Health requested an equivalent surveillance system for severe

acute respiratory illness (SARI). This system, infoGripe, was officially launched in 2018.

These systems have played a key role in mitigating the widespread public health risks and

challenges associated with both SARI and arboviruses across Brazil, including improve-

ments to population health and well being, e.g. as measured by potential reductions in

loss of life, and more efficient use of public health resources. For example, state health

authorities in Paraná changed their policy so that laboratory testing is restricted to severe

dengue cases when the state is in a period of sustained transmission, as identified using

corrected data from infoDengue. The Brazilian ministry of health reported that monit-

oring of the entire Brazilian population through infoGripe has enabled the introduction

of preventative and control policies for influenza on a national level, the development

of a targeted emergency SARI vaccine program, and the ability for local authorities to

prepare/allocate resources based on potential demand. Meanwhile, it has been estimated

that between 300K – 2million US dollars worth of resources were saved through the use of

infoGripe by the public health system between 2019 – 2020 (University of Exeter (2021)).

However, the design of such systems is made complex by the need to understand the

structure of available data as a convolution of two main processes: a first process that

results in the overall level of disease in the population, that produces a potentially ob-

servable “total count” (e.g. cases, deaths) for a given time period and geographic area;

and a second process that characterises flaws in the reporting of this total, including un-
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avoidable delays. In other words, available data in the form of the partial counts reported

at each delay, like those in Figure 1.1, are a product of the distribution of the total counts

(e.g. number of hospitalisations per week) and the delay distribution (i.e. the breakdown

of those counts over different delay intervals). In the following subsections we provide a

closer insight into each of these data generating processes, using examples to illustrate

the different sources of variability present in these two distributions.

1.1.1 Observed total counts

First, we introduce some notation that will be consistent throughout this thesis when

referring to the observed total counts. These are the eventual counts which will be repor-

ted for a regular time period t and spatial region s, referred to as the total counts and

denoted by yt,s. Hence, we also define ys as the vector of the total counts for region s

for all time steps. For example, in Figure 1.1, t represents the week and yt (given by the

points) is the total hospitalisations that will eventually be observed that week, for the

whole of Brazil. But, the time-steps could be any scale such as days, weeks or months.

Additionally, the counts could represent any type of measurable disease outcome such

as positive tests or fatalities. In this subsection we discuss the different potential drivers

behind the distribution of the observed total counts.

Severe acute respiratory illness (SARI) is an umbrella term used to for an individual who

has been hospitalised with a cough and fever that has onset within 10 days prior to hosip-

italisation. The virus strain responsible for the respiratory disease can be determined by

laboratory tests, potential viruses include COVID-19, Severe acute respiratory syndrome

(SARS) and influenza, among others.
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Figure 1.3 plots the COVID-19-positive SARI hospitalisations as well as the remaining

SARI hospitalisations that may have positive tests for other viruses or no results and we

refer to as the non-COVID-19 SARI hospitalisations.
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Figure 1.3: Data points represent the observed total counts for COVID-19-positive and
non-COVID-19 SARI hospitalisations in each Brazilian federative units. To highlight the
trend over time, smooth thin plate regression splines were generated, with a the maximum
number of basis functions set to 20, for each count using a generalized additive model
(GAM) with a Poisson distribution and log link function for each region. Note the y-axis
scale is independent for each panel.
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Figure 1.3 demonstrates a systematic trend in both types of hospitalisations over time.

The most notable temporal trend is the peaks and troughs in hospitalisations that repres-

ent outbreaks of the different viruses. Difference in these two trends over region and time

is a result of the systematic variability being driven by the exposure and transmission

of the respective viruses over region and time, which will be influenced by the degree

of contagiousness and natural immunity/vaccination coverage of each virus. Similarities

between the two trends could be a result of seasonal effects such as weather and human

behaviour or public health policies. However, in this example similarity in trends may

also be influenced by the potential presence of undiagnosed COVID-19 cases in the non-

COVID-19 SARI hospitalisations. It is worth noting the top right-hand panel shows that

the region Amapa has a potential outlier in the number of non-COVID-19 SARI hospit-

alisations, where 400 cases were reported in a single week, whilst other weeks during that

time period have tend to have a magnitude of under 200 for this federative unit. However,

from looking across all the Brazilian federative units it is clear that there is a peak in

SARI hospitalisations not associated with COVID-19 around this date, hence it is unclear

whether this data point is an accurate representation of the increase in cases or whether

hospitalisations may be over-reported due to administrative errors.

In Chapter 5 (Halliday, Stoner and Leonardo (2025)) we investigate modelling this data

set to jointly model hospitalisations that can be classified as SARI and the nested pro-

portion of these that can be classified as COVID-19 in order to gain insights and improve

predictions of both. These temporal trends also show a clear systematic regional variabil-

ity with some regions having consistently lower numbers of hospitalisations for outbreaks

that appear across all regions. Spatial variability may occur due to difference in population

size and structure, education availability and health care resources.

In general, as a disease spreads systematic variability occurs, interpreted as the differences

in the prevalence of a disease that we can attribute to measurable effects, such as time

and space in Figure 1.3. These are controlled by factors that drive infections. The random

weekly deviations from the the overarching trends seen in Figure 1.3 represent the random
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variability in the data. These unsystematic shifts are driven by the same processes that

influence the systematic trend in the data but operating on a smaller scale, such as day-

to-day and regional difference, which is difficult to measure and therefore perceived to be

random. Examples of random events that can trigger transmission includes; large social

gatherings, population movement, availability of local healthcare, spatial variations in the

date of disease introduction, individual vaccination status and genetic mutations of the

virus.

To summarise, the distribution of the total counts exhibit both systematic and random

variability that needs to be accounted for in potential modelling frameworks. In a disease

context the total counts monitor outcomes such as cases or fatalities, and are repres-

entative of the epidemic curve which is driven by the occurrence and transmission of a

disease.

It is worth emphasizing, for disease surveillance we are actually considering the observed

total counts, which are the counts that have not only occurred but have also been repor-

ted. Hence, Bastos et al. (2019) note that this observed count will also exhibit variability

dependent on factors such as access to health care and reporting protocols and is poten-

tially an under-representation on the true total counts. This may systematically vary over

time and space due to government health expenditure and resources availability. Also,

randomly on an individual level due to the presence of symptoms, willingness to seek

medical care and adoption of reporting. Despite this, it is still worth considering observed

total counts as indicator of the prevalence of a disease in a population to gain useful

insights about outbreaks.
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1.1.2 Delay distribution

For delayed reporting we will consistently use the following notation to describe the struc-

ture of the data. The total counts that will eventually be reported at time t and spatial

regions s, yt,s, can be split into delay specific partial counts zt,d,s, which are the counts that

occur at time t but aren’t reported until delay d. We can then sum the partial counts over

delay to obtain the total count yt,s = ∑Dmax
d=0 zt,d,s. Dmax is defined such that the total count

yt,s is fully reported Dmax time-steps after t. Since yt,s is then known, all zt,d,s will also

be known by time t +Dmax, where the possible delays are d = 1, ...,Dmax. In this section

we discuss the processes that determine the distribution of the reporting of these partial

counts. We also define zd,s as the vector of all time steps for the partial counts for delay

d and region s.

Figure 1.4 shows, for severe acute respiratory illness (SARI) hospitalisations in Brazil, the

proportion/percentage of cases reported at delay d (0 to 4 weeks as indicated by colour)

against the date of hospitalisation t for each federative unit s. The “absolute proportions”,

denoted by pt,d,s, are the counts reported at each delay d divided by the observed total

counts pt,d,s =
zt,d,s
yt,s

. They are called “absolute proportions” as the difference between any

two values will give the absolute difference as the proportions are not relative to another

value. Alongside the raw data (points), smooth splines have been fitted to the data (lines)

and plotted to help identify trends. The reporting process is systematically different over

time and delay for each federative unit. This is expected as the reporting procedure and

associated resources are likely to vary by region, potentially with different systems and

protocols in place. Similarly, the distribution of counts reported at each delay varies over

time and space, but in general for Figure 1.4 higher absolute proportions are reported

in earlier delays. This reflects a higher proportion of the eventual SARI hospitalisations

often being reported in the first two weeks after occurring across all regional reporting

systems. The overall trend in the absolute proportions reported over time for most regions

is increasing for delay d = 0. Suggesting that, since a higher proportion of the total counts
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Figure 1.4: Data points represent the absolute proportions (pt,d,s =
zt,d,s
yt,s

) of all SARI
hospitalisations in each Brazilian federative units. To highlight the trend over time, smooth
thin plate regression splines were generated using a generalized additive model (GAM)
with a Gaussian distribution and log link function, specified as yt ∼ s(t,k = 20) for each
region and delay independently.
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are reported within the first delay, delays are shorter on average over time. However, there

is likely to be systematic trends in this phenomenon due to the regional differences over

time in the potential causes of this improvement. This may include updating protocols,

allocating resources, staff training and reductions in case load burdens.

The delay distribution explains the proportion of the total counts that will be reported

at each delay. As we have seen in Figure 1.4, there is likely to be systematic variations

due to changes in reporting process which will impact the proportion of counts reported

over delay, time and space. Also, in Stoner, Halliday and Economou (2022) (Chapter 4)

we observed the announced COVID-19 hospital deaths in England fluctuate in a weekly

cycle due to a phenomena known as the “weekend effect”, where announced deaths dip on

Saturday and Sundays followed by a spike on Mondays. This occurs due to less reporting

taking place over weekends as less administrative staff are working and this back-log then

being dealt with on the subsequent Mondays. Hence, many factors will contribute to the

resulting systematic trends in the delay distribution rendering them complex and hard

to predict. Not only will reporting delays depend on the relative efficiency of the local

reporting procedures in place, they may also depend on the incidence of the disease.

Bastos et al. (2019) note that high incidence could lead to awareness and the prioritising

of reducing delays in order to obtain more complete data. Alternatively, having to process

a large number of cases could strain the health care system and lead to an increase in

case backlogs. We explore and attempt to model this relationship between case load and

reporting delay in Chapter 6.

Additionally, random variability induces fluctuations within this systematic variability of

the delay distribution due to unknown processes. This can be visualised as the difference

between the smooth splines (lines) and raw data (points) in Figure 1.4 driven by day-to-

day difference in the local reporting processes. Any number of random events could trigger

these variations at any point in the reporting process. For example, changes in staffing,
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resource allocations and priorities within the public healthcare system, which will all vary

frequently over time and region. In order for this random variability to be accounted for

by the model the covariance structure of the partial counts, which explains their joint

variability, will need to be well captured.

1.1.3 Summary of the sources of variability

Summarising the discussion of the total count process and delayed reporting process in

Sections 1.1.1 and 1.1.2, we follow Stoner and Economou (2019) in characterising available

data suffering from delayed reporting as having four main sources of variability:

(1) Systematic variability in the total count y (e.g. exponential growth/decay, seasonal

patterns, regional variation).

(2) Random variability in y (e.g. day-to-day variation in the total count).

(3) Systematic variability in the reporting delay (e.g. weekly cycles, improvements in

reporting efficiency over time, between-region differences).

(4) Random variability in the reporting delay (e.g. day-to-day variation in the reporting

process).

In the next section, we will make theoretical arguments for why capturing these sources of

variability in both processes appropriately is essential for reliable nowcasts and forecasts.



CHAPTER 1. INTRODUCTION 16

1.2 Modelling challenges

The combination of the heterogeneous sources of variability discussed in the previous

section makes it difficult to draw empirical conclusions about the current level of disease

and its trajectory from available data. This gives an idea of the data that decision makers

have to work with, failing to correct the reporting delays to give the true epidemic curves

can lead to biased understandings of disease prevalence. Therefore, the ultimate goal is

to nowcast the unknown total counts using just the available data and, where possible,

forecast into the future as well.

Given the history of disease counts broken up by reporting delay, statistical models can

be developed to nowcast the as-of-yet unknown cases by capturing the complex trends in

the available data. Predictions of infectious disease outcomes can then be used to help

set public health policies. Moreover, insights into the reporting delay distribution gained

through these models can help tackle the root issue of reporting delays by highlighting

and targeting improvements within the reporting system.

First, we define y(obs) as a vector of the totals counts for all time steps where these total

counts have been observed. Similarly, y(unobs) represents the vector of total counts for time

steps where the eventually reported totals are not yet fully observed. If we consider the

total counts to be made up of two vectors, y = (y(obs),y(unobs)), then we can summarise

the goal of nowcasting as a prediction problem for the unobserved counts y(unobs). In a

Bayesian framework, we can conceptualise y(unobs) as random quantities and quantify our

uncertainty in them through posterior inference. If we consider p(y) to be the probability

distribution for the total counts and p(z|y) is the probability distribution for the delayed

reporting process, then by Bayes theorem we obtain

p(y|z) ∝ p(z|y)p(y). (1.1)
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This suggests that to achieve an accurate predictive distribution for p(y|z), we need an

appropriate p(zt |y) as well as explicitly capturing the systematic and structured vari-

ability of the total counts through p(y), as informed by previous observed total counts.

Alternative modelling approaches can predict the total counts without explicitly modelling

the total counts in this way. But, if we wish to utilise all available data for predictions

of the unknown total counts, comprising of the observed partial counts z(obs) and ob-

served total counts y(obs), then a Bayesian modelling approach is a natural fit. Although,

if p(z|y) and p(y) aren’t chosen appropriately to capture the observed data, then this

could lead to predictions that are uncertain or inaccurate.

Constructing an appropriate model for these probabilities can be challenging due to the

heterogeneous systematic and random variability in the data generating process of both

the observed total counts and the distribution of the delayed reporting, that we have sum-

marised in Section 1.1.3. Hence, models implemented for disease surveillance applications

need to have the flexibility to be able to both capture and separate these four sources

of variability in the data. This could include temporal trends, spatial trends, seasonality,

interaction effects, auto-correlation as well as incorporating informative covariates to help

aid model predictions. An additional consideration when endeavouring to jointly model

the total and partial counts together, is to account for the compositional structure of the

data. The partial counts are compositional elements that sum to a whole, given by the

total counts. This sum constraint means that zt,d are all both bounded between 0 and yt

and not independent of each other across d. Therefore, complex hierarchical frameworks

and sophisticated techniques are required to model this data structure.
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Furthermore, the nature of delayed reporting means dealing with missing data, which is an

additional modelling challenge. Not only is there uncertainty in the reporting delays that

hinders the understanding of when the eventual totals will fully be reported across regions,

there is also incomplete information to predict these eventual totals. The combination of

these various obstacles makes designing frameworks for nowcasting infectious disease a

non-trivial task. On top of this, for real-time applications the practicality of models also

has to be thoroughly considered including timeliness, robustness and usability.

Bayesian methods are well suited to nowcasting applications as they can enable a thought-

ful and rigorous treatment of p(yt) and p(zt | yt), and they are naturally able to handle

the aforementioned missing data structures. Stoner (2019) studied the challenge of now-

casting and correcting delayed reporting in the broader context of accounting for flawed

observation mechanisms in modelling. Stoner (2019) framed such problems in terms of a

“modular framework”, beginning with a process represented by “Y” generating the quant-

ity we are interested in, y. In the following equation, → denotes the generation process of

“Y” given a set of model parameters and/or random effects, Θ:

Y (Θ)→ y. (1.2)

Next, “Z” represents a flawed observation process for y, generating the quantity z. This

process, depending on model parameters Π, translates the original quantity y into z:

Y (θ)→ y → Z(Π)→ z. (1.3)

Implementing these processes as modular layers in a Bayesian hierarchical framework,

both model parameters (e.g. Θ, Π) and data (y, z) are treated as random quantities we

can learn about through posterior inference. This enables prediction of unobserved y given

observed data for z ( Stoner (2019)).
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In the context of the challenge addressed in this thesis, “Y” can represent the process

generating the total observable count time series of a disease, yt , and “Z” can repres-

ent the delayed reporting mechanism(s) that generate partial counts zt . This framework

provides a natural solution to the systemic missing data challenge arising from delayed

reporting, where we can predict unobserved total counts yt (y(unobs)) based on observed

partial counts zt . The flexibility of the framework derives from the way in which mod-

ules can be adapted, added or removed with ease, for instance to account for more than

one flawed observation mechanism (e.g. under-reporting, misdiagnosis). Moreover, Stoner

(2019) argues that the separation of parameters and models associated with each mod-

ule/quantity simplifies their interpretation and design, since the role of each hierarchical

layer in generating available data is conceptually clear. Notably, this can aid us in design-

ing models for Y and Z that appropriately capture the different sources of variability in

our data (Section 1.1.3). Information from experts or other sources pertaining to the ori-

ginal data generating process Y and/or any flawed observation mechanisms can also be

included through informative prior distributions for related parts of Θ or Π.

In support of transparent disease surveillance systems that allow decision-makers to con-

sider and prepare for all likely incidence levels of a disease, the modular Bayesian hierarch-

ical approach allows for rigorous quantification of uncertainty in model parameters and

predicted counts through their posterior (predictive) distributions (Gelman et al. (2013)).

Meanwhile, we can test model assumptions thorough through posterior predictive check-

ing (Gelman et al. (2013, Chapter 6)).

For these strengths – which we can summarise as flexibility, interpretability, and uncer-

tainty quantification – we choose to follow this framework as a guide for the methods we

develop and present in this thesis, and for critically evaluating work that came before.

However, to achieve reliable predictions of yt based on p(yt | zt), we must still ensure that

p(yt) and p(zt | yt) are appropriate, which is equivalent to ensuring Y and Z can appropri-

ately capture the main sources of variability associated with the disease counts and the

delayed reporting, respectively.
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1.3 Summary of thesis

This thesis aims to enhance the practicality and versatility of frameworks for correcting

delayed disease reporting. It focuses on developing novel extensions to address complex

data challenges and improving computational efficiency. Hence, providing substantial

methodological advancements for aiding public health surveillance. The content of the

thesis is arranged as follows:

Chapter 2: Reviews current literature on correcting delayed reporting; highlights the

strengths and weaknesses of the Generalised-Dirichlet Multinomial (GDM) model,

including its predictive power and computational demands; discusses extensions to

nowcasting models found in the literature.

Chapter 3: Explores ways to improve the computational efficiency of the GDM model,

such as using marginal models, efficient sampling methods, and direct optimization

of the joint posterior; compares the impact of these improvements using case studies.

Chapter 4: Describes contributions to a publication, Stoner, Halliday and Economou

(2022), on using the GDM model for correcting COVID-19 death reporting delays in

England; examines the necessity of accounting for auto-correlation and the benefits

of a moving window approach; presents a simulation experiment to evaluate the

GDM’s performance.

Chapter 5: Develops a framework for modeling nested disease data, using a novel link

function with the GDM framework; applies this framework to SARI hospitalizations

in Brazil, demonstrating improved prediction performance by linking overall SARI

incidence with COVID-positive test rates and age distribution effects. The public-

ation, Halliday, Stoner and Leonardo (2025), relating to the work covered in this

chapter is, as of writing, under peer review.

Chapter 6: Investigates the potential of a case load effect on reporting delays and de-

velops a general framework to model this effect; presents simulation and real-world

data experiments that evaluate the suitability of the proposed framework.
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In this chapter we provide background details on Bayesian modelling methods, infer-

ential algorithms, and software: Section 2.1.1 gives details on Markov Chain Monte

Carlo (MCMC) methods for general Bayesian inference; Section 2.1.2 describes use of

the NIMBLE software for implementing flexible Bayesian hierarchical models; and Sec-

tion 2.1.3 describes the Integrated Nested Laplace Approximation (INLA) approach for

efficient implementation of latent Gaussian methods. These details provide a foundation

for understanding the Bayesian approaches to nowcasting reviewed and developed in this

thesis.

The main body of this chapter is then a critical review of existing approaches to nowcast-

ing and correcting delayed reporting in the context of disease surveillance. In Section 1.2,

we made arguments in favour of using the Bayesian approach for nowcasting, in terms of

flexibility, interpretability, and quantification of uncertainty. As such, our review mainly

focuses on Bayesian nowcasting methods. We illustrate how these can be broadly separ-

ated into two groups of approaches; joint models of the total counts and the reporting

delay mechanism as two layers in a hierarchical framework (Section 2.2.1), and direct

models for the partial delayed counts that rely on a conditional independence assumption

(Section 2.2.2). For some approaches in the latter group, we give brief insights into poten-

tial frequentist equivalents – we also discuss the relatively new area of disease nowcasting

using machine learning approaches in Section 2.4. We use a critical comparison of these

groups to motivate the Generalized-Dirichlet Multinomial (GDM) method for correcting

delayed reporting, which we describe in detail in Section 2.3.

Section 2.5 discusses extensions that have been to made to existing Bayesian frameworks.

We showcase these to highlight the need to adapt methods for different applied data

challenges arising in the real world. Finally, in Section 2.6 we summarise the criteria that

will guide us in constructing nowcasting models that are computationally efficient and as

precise as possible for prediction.
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2.1 Bayesian methods

In the Bayesian approach, inference is based on the posterior distribution, which represents

the probability distribution of the unknown quantities (θ ) conditional on the data (x).

The posterior is linked to prior beliefs and the data through Bayes’ Theorem:

P(θ |x) = P(x|θ)P(θ)∫
P(x|θ)P(θ)dθ

. (2.1)

In Equation (2.1), the numerator is the product of the likelihood P(x|θ)P(θ) and the

prior distribution P(θ). The likelihood is the probability of generating data x given the

parameters θ , and the prior represents the credibility of the parameter values without

having yet seen the data. The denominator, known as the normalising constant or the

“evidence” P(x), derives from a multi-dimensional integral over all possible values of the

parameters.

Gelman and Hill (2006, Chapter 2) outline that in classical modelling, data x is often

treated as independent, with predictor X assumed to be the same for all observations.

However, if the data x contains N groups or levels, a more suitable approach is to model

group-specific predictors Xn for n = 1, ...,N. This approach leads to a multilevel model

where parameters can vary across groups, allowing the model to capture both within-

group and between-group variation. Hierarchical models usually describe multilevel mod-

els where groups in x have a nested structure. These models involve layers of dependencies

and multiple parameters that vary at different levels. By modeling the dependence struc-

ture within the data, hierarchical models achieve greater flexibility in capturing group-

specific trends while avoiding over-fitting.
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Prior distributions allow existing knowledge or assumptions to be incorporated into a

Bayesian model, which can help inform the posterior distribution. This approach is often

referred to as subjective Bayesian modelling. However, this can introduce subjective bias

into the model, especially when strongly informative priors, that reflect strong beliefs

about parameter values, dominate the posterior. On the other hand, weakly informat-

ive priors offer some structure (e.g. Normal distributions with large variances), with the

expectation that a sufficiently large data size will reduce the influence of the prior and

mitigate any bias it may introduce. Alternatively, non-informative priors aim to minimize

the influence on the posterior, allowing the data to drive inference as much as possible. In

Empirical Bayesian modelling, the priors are estimated directly from the data, adapting

to the data-driven context. Meanwhile, in Objective Bayesian modelling, non-informative

priors are constructed when prior information is unavailable, focusing on minimizing sub-

jectivity and reflecting the lack of prior knowledge (Gelman et al. (2013)).

In a Bayesian hierarchical model, over-fitting can be controlled through prior distributions

that pool information across groups. This partial pooling allows the model to estimate

an overall mean while shrinking group-specific estimates towards it, this is particularly

beneficial for modelling small or noisy groups. In contrast, non-hierarchical models that

ignore group structure may require many parameters to fit existing data well, leading to

over-fitting and rendering the model unsuitable for predicting new data (Gelman et al.

(2013)). Hierarchical models, on the other hand, utilize parameters that reflect the data

structure. Also, joint probability models are required, since one parameter value depends

markedly on another, resulting in large, complex, multi-dimensional integration to cal-

culate the posterior distributions. Hence, fitting hierarchical models typically requires a

method that can approximate the posterior distribution.

The posterior distribution can be calculated using numerical methods if the range of

possible parameter values is finite and can be divided into a sufficiently dense grid of

values. Alternatively, if the distribution for the prior distribution is conjugate to the

likelihood, meaning that their product has the same form as the prior distribution, then
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the posterior can be solved analytically. However, it is often the case that the integral to

calculate the evidence is analytically intractable. As a result, posterior inference is usually

achieved through advanced computational methods, which either simulate samples from

the posterior distribution or approximate the distribution (Kruschke (2015)). Specific

methods for Bayesian inference and prediction are introduced in the next two subsections

prior to reviewing literature about their implementation.

2.1.1 MCMC

Markov chain Monte Carlo (MCMC) is a general approach to fit Bayesian models no

matter the form of the posterior. This is achieved by approximating the target posterior

distribution using a two step process of drawing samples from an approximate distribution

and then evaluating those samples to improve the approximation. The sampling method

sets the posterior as the target distribution of a ergodic Markov chain θ0,θ1, ...,θt . New

positions of the Markov chain are generated using a sampling algorithm that doesn’t

require the normalising constant, as defined in Section 2.1. Once these chains have con-

verged, samples from their stationary distribution can be used to represent the posterior.

As discussed in Gelman and Rubin (1996), the curse of dimensionality for multivariate

regression describes how when scaling up the number of predictors in a model, the relative

number of basis functions required to model the data may simultaneously increase, which

is computationally expensive to fit. Moreover, it encompasses the challenge of observa-

tions being more sparse across the domain of the predictors as the number of predictors

increase. Hence, for multivariate modelling, larger amounts of data are needed to estimate

the regression. Therefore, MCMC algorithms can be slow for complex problems, such as

models with a large number of parameters or large data sets, as it can take a long time

for the multiple chains to converge.
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There are many different versions of the sampling algorithm, but most stem from the

Metropolis-Hastings and Gibbs algorithm. Firstly, Metropolis-Hastings involves a proposal

distribution Jt(θ
∗|θt) that at iteration t+1 suggests new positions θ∗ for the Markov chain,

given the current position at iteration t is θt . The new position is then either accepted

such that θt+1 = θ∗, or rejected so that θt+1 = θt , with a probability α calculated by

α = min
(

1,
p(θ∗|x)

Jt(θ∗|θt)

Jt(θ
t |θ∗)

p(θt |x)

)
, (2.2)

where p(.|x) is the posterior distribution function. Since the posterior distribution is in

both the numerator and the denominator the normalising constant will cancel out. Hence,

we only need to be able to calculate the posterior up to a proportional constant, given by

the product of the likelihood and the prior by Bayes rule (Equation 2.1). This process is

then repeated for each iteration (Gelman et al. (2013)).

Gibbs sampling is an alternative sampling algorithm and is also beneficial for multidi-

mensional sampling. It involves dividing the parameters θ into d parts θ = (θ1,θ2, ...,θd).

These are sampled in the Gibbs algorithm such that each θ j is conditional on the values of

all other sub-vectors, denoted θ− j = θ1, ...,θ j−1,θ j+1, ...,θd = (θ1:( j−1),θ( j+1):d), at their

current value. At each iteration t, each sub-vector θt
j is sampled from the conditional

distribution p
(
θt

j|θt
1:( j−1),θ

t−1
( j+1):(d),x

)
.

MCMC sampling being an iterative sampling method presents a few practical considera-

tions. Firstly, the starting points of the MCMC chains have to be decided by setting initial

values for each of the model parameters and any unobserved data. Random initial values,

that still satisfy the priors and distributions of the respective parameters and data, are

usually generated in order to help diagnose multi-modality (Brooks and Gelman (1998)),

which we discuss in depth later in this subsection. Secondly, within sampling correlation

is where one iteration of the MCMC chain is correlated to the previous iteration, which

can reduce the efficiency of the simulation. This occurs due to MCMC chains using the
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previous iteration as a starting point for the next. The resulting inefficiency can slow

convergence and increase the number of iterations needed to ensure samples are repres-

entative of the target distribution. To quantify this, we can measure the “effective sample

size” of MCMC chains.

The ESS of a given parameter in an MCMC model can be estimated using

ÊSS =
n

1+2∑∞
k=1 ρ̂k

, (2.3)

where n is the number of total samples taken, and ρ̂k is an estimate of autocorrelation

at lag k. Therefore, n would be the ESS for uncorrelated samples. The estimated spectral

density at frequency zero is used to calculate ÊSS using the R function effectiveSize.

The effective sample size (ESS) is an indicator of how efficient MCMC sampling is by

measuring the number of independent samples generated from the target distribution.

MCMC chains that are well mixed, which means they don’t have high auto-correlation,

should have a higher ESS. The length of the Markov chain needed to approximate the

posterior distribution to a reasonable degree of accuracy will therefore be shorter the

higher the ESS (Harrington, Wishingrad and Thomson (2021)). Hence, improving the

mixing of MCMC chains can reduce the time it takes to fit the model by reducing the

number of iterations the chains need to be run for. Vats, Flegal and Jones (2019) advocate

a lower bound for the estimated ESS to reach before terminating the MCMC sampling.

For a large number of parameters, such as the GDM model, this lower bound converges

to

ÊSS ≥ 2πe
ε2 . (2.4)

The user is left to determine the relative precision ε , which is defined as the relative

contribution of Monte Carlo error to the variability in the target distribution. For example,

Vats, Flegal and Jones (2019) set ε = 0.05, meaning that the Monte Carlo error accounts

for 5% of the variability in the target distribution.
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Another important step of any MCMC implementation is setting the number of iterations

and burn in. The initial iterations from a sampling algorithm will be dependent on the

parameter starting values. To diminish the influence of both the chosen initial values and

the stage of the MCMC chain prior to convergence, this initial period of iterations are

discarded. The number of iterations which you discard is known as the “burn in” of the

chain, it is best practice to set this conservatively large such that any influence from initial

values and pre-convergence is unlikely. Two or more MCMC chains are often run in parallel

with random initial values for each. Multiple chains allow for convergence to be assessed

by ensuring that within chain variation is approximately equivalent to the between chain

variation, which indicates all chains are approximating the target distribution. This can be

measured using the the Potential Scale Reduction Factor (PSFR) equation from Gelman

and Rubin (1992),

R̂ =

√
V̂ar(θ)

W
. (2.5)

For Equation 2.5, if we have m chains with n iterations and θi, j represents the jth sample

from the ith chain then W = 1
m ∑m

i=1

(
1

n−1 ∑n
j=1(θi j − θ̄i)

2
)

calculates the within-chain vari-

ance and B = n
m−1 ∑m

i=1(θ̄i − θ̄)2 calculates the between-chain variance. We can then es-

timate the marginal posterior variance by V̂ar(θ) = n−1
n W + 1

nB.

Moreover, starting multiple chains from multiple random points in the parameter space

helps identify multi-modality in distributions, which would results in multiple chains con-

verging to different maxima. Viewing trace plots of the multiple chains can help determine

if each of the chains have converged to the same posterior mode. This is indicated by each

chain exhibiting random samples with no trends across iterations, centred at the same

posterior value. However, if multiple chains converge to the same maxima this is not

sufficient evidence to discount multi-modality (Gelman et al. (2013, chapter 11)).



CHAPTER 2. REVIEW OF BAYESIAN NOWCASTING MODELS 29

2.1.2 NIMBLE

There are various R packages (R Development Core Team (2011)) available to fit Bayesian

models in R. Two popular choices are rstan by Carpenter et al. (2017) and rjags by Plum-

mer (2003). Here, we introduce an R package NIMBLE (Numerical Inference for statist-

ical Models using Bayesian and Likelihood Estimation) that we will utilise throughout

this thesis, when developing any novel Bayesian models using MCMC. Developed by de

Valpine et al. (2017), NIMBLE is a tool to facilitate the construction and implementa-

tion of complex hierarchical models. However, it is mainly suitable for models that can

be defined as directed acyclic graphs (DAG) (some exceptions apply, i.e. ICAR models).

Directed acyclic graphs are made up of nodes, representing the model variables (including

data, parameters and latent variables), and directed edges that represent the marginal or

conditional dependencies between nodes. Directed graphs are acyclic if following the dir-

ected edges between nodes never creates a closed loop (Thulasiraman and Swamy (1992,

Chapter 1)). Fortunately, directed acyclic graphs encompasses a large variety of Bayesian

models. The NIMBLE package can be summarised as comprising of three main compon-

ents:

• An extension of the BUGS language for model definitions, which are then program-

mable objects in R.

• A catalogue of algorithms for models written in BUGS and a system for defining

and executing customised functions.

• A compiler that generates more efficient C++ code for user-defined models and

functions, which the user can easily interface with in R.



CHAPTER 2. REVIEW OF BAYESIAN NOWCASTING MODELS 30

The aim of NIMBLE is to enable developments in MCMC algorithms and maximum like-

lihood methods to be accessible through the NIMBLE package, to close the gap between

methodological advancements and available software that can be readily applied. Further-

more, it combines a thorough catalogue of sampling algorithms with flexibility in defining

model structures and distributions. Hence, enabling a wider class of model specification

and customisation of the methods used to fit them (de Valpine et al. (2021)).

The capacity to fit such a wide range models, and the ability to create custom functions,

within NIMBLE makes it invaluable for our goals, no competing packages also allow for

both modelling latent discrete parameters and creating custom distribution functions.

In Section 2.1.2.1, we overview the available MCMC samplers in NIMBLE, including

specialised samplers that we benefit from in later work. Section 2.1.2.2, then outlines how

we design smooth spline modelling effects within the NIMBLE environment using the

mgcv package.

2.1.2.1 MCMC samplers

Statistical frameworks, such as those we develop in later chapters, utilise NIMBLE to auto-

matically build and run MCMC sampling algorithms for Bayesian models. A stochastic

node is a component of a probabilistic graphical model that represents a random vari-

able with an associated probability distribution. These nodes are central to the Bayesian

framework, as they capture the uncertainty inherent in the model parameters or observed

data. Samplers are automatically assigned using a list of nine criteria for the stochastic

node; each criterion relates to one of the default MCMC samplers in an order of preference.

This ensures that nodes with specific properties (e.g. continuous, discrete, conjugate) or

distributions are assigned appropriate samplers. For example, nodes that have a conjug-

ate relationship between their prior distribution and the distribution of their stochastic

dependents are assigned a conjugate Gibbs sampler. Similarly, nodes with Multinomial

or Dirichlet distributions would be given Multinomial random walk or Dirichlet random
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walk samplers respectively (the full list of criteria is given in de Valpine et al. (2021,

Chapter 7)). However, there are twenty samplers in the NIMBLE library that a user

can choose from, in place of the default samplers, where desired. Most sampler options

are versions of the random walk (RW) sampler which is an adaptive Metropolis-Hastings

algorithm, discussed in Section 2.1.1, where the proposal distribution is Gaussian. For

this thesis, the MCMC samplers used are the default NIMBLE samplers unless explicitly

stated otherwise, see de Valpine et al. (2021, Chapter 7)) for full details of the default

NIMBLE samplers.

Discrete valued scalar nodes are automatically assigned a slice sampler. Similarly, continu-

ous valued scalar nodes can be manually assigned a slice sampler. The general concept

of slice sampling can be outlined in the following steps which have been visualised in

Figure 2.1:

1. Start with an initial x value x0, and calculate f (x0) where the function f (x) defines

the target density. This step is usually achieved using Gibbs sampling as the density

function may not be analytically attainable.

2. Take a “vertical” sample from the uniform distribution defined by the distance from

zero to the curve of the density function y = Uniform(0, f (x0)).

3. A horizontal window is then constructed such that it includes the slice S= x′ : f (x′)> y.

There are different approaches to this step but the “stepping out” approach adop-

ted by Neal (2003) is the algorithm available in NIMBLE. This approach involves

widening the horizontal window until both ends are outside the horizontal area that

satisfies that y is less than the density function before sampling a new horizontal x

value.

4. A slice or “horizontal” sample is then taken conditional on this vertical y value. This

is sampled by proposing points within the horizontal window.

5. If the proposed point x′ does not satisfy f (x′) > y (lies outside the slice) then the

proposed sample is discarded, and the window is updated to exclude this value.

6. If the proposed point x′ satisfies f (x′)> y (lies within the slice) then it is accepted

as x1, and is the current position for the next iteration.
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Figure 2.1: Visual representation of the first iteration of a slice sampling algorithm where
the target distribution is assumed to be a Gaussian distribution with mean zero and
standard deviation 1. The initial position of the algorithm is x0 = 0. Steps correspond to
the description of slice sampling given above.
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The motivation for slice sampling methods is that they require less tuning than alternative

MCMC methods. Tuning MCMC methods involves defining parameter values required by

the algorithms. For example, the initial width of the horizontal slice window for slice

sampling. Neal (2003) argues that that slice sampling is robust even when this parameter

is set to a factor of 100 away from its optimal value.

Two additional specialised version of this slice sampling algorithm are also available in

NIMBLE; elliptical slice sampling (ess) and automated factor slice sampling (afss). Ellipt-

ical slice sampling is an extension of slice sampling by Murray, Adams and MacKay (2010)

that requires no tuning parameters and aims to improve sampling efficiency for Multivari-

ate Gaussian distributions. On the other hand, automated factor (AF) slice sampling was

developed by Tibbits et al. (2014) to cope with high dimensional and correlated target dis-

tributions by sampling from a transformed space. This addresses the issue of individually

sampling multiple strongly related quantities, for example using Gibbs samplers, indu-

cing high auto-correlation within those samples and thus inefficient sampling. The AF

slice approach does not require prior knowledge of the correlation structure and sampling

parameters are tuned automatically.

2.1.2.2 Smooth effects

When defining Bayesian models in NIMBLE or other software a wide range of modelling

effects can be utilised. This is beneficial when constructing modelling frameworks as the

most intuitive effects for the application can be selected. In particular, we utilise smooth

model effects throughout this thesis to capture complex trends in data using NIMBLE.

Here we outline the benefits of smooth modelling effects and how to implement them in

NIMBLE.
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Modelling effects are parameters that can describe and capture the trends present in the

response variable of interest, and represent the underlying statistical assumptions. This

includes, but is not limited to; linear effects, covariate effects, random effects, random

walks, Gaussian processes, spatial effects and smooth effects. Smooth effects describe the

statistical assumption that a trend is not fixed over a given explanatory variable. Hence,

they allow for more flexible relationships to be captured and are particularly beneficial for

modelling over time and space. Capturing trends with smooth modelling effects provides

intuitive inference about potentially complex relationships and can allow for predictions

of new data points.

In general smooth functions can be formatted in the following way:

f (x) =
k

∑
j=1

β jb j(x). (2.6)

Where b j(x) is a predetermined form of basis function (e.g. B-splines, thin plate splines)

and β j are the corresponding unknown model coefficients for k knots. For a frequentist

approach, the smoothness of the function is penalised using a penalty parameter in the loss

function. This smoothness parameter is then estimated by a method which minimises the

penalised likelihood such as cross-validation or restricted maximum likelihood (REML).

On the other hand, the Bayesian equivalent of a penalised likelihood is to introduce

smoothing constraints through improper Multivariate Gaussian priors for the unknown

β j coefficients:

β ∼ Multivariate-Normal(0,Ω−1). (2.7)

The penalty parameter τ is then introduced in the precision matrix, Ω, of these prior

distributions:

Ω= τM . (2.8)
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Where M is a known non-diagonal matrix and is scaled such that more smoothness in

the coefficients is enforced for larger τ . The Multivariate Gaussian priors are improper as

it does not integrate to a finite value over the entire parameter space of the coefficients

β . This is because the smoothing penalty matrix M, which penalises certain properties of

the smooth function e.g. a second-derivative penalty, includes constant or linear functions

that relate to the un-penalised components of the model, making the precision matrix

Ω singular. The smoothing parameter τ is then determined by the data when fitting the

model using MCMC (or other Bayesian sampling method) to estimate the posterior of the

parameter. In general, the spline, here denoted α, is again then formulated by multiplying

the spline basis function matrix X by the model coefficients β :

α=Xβ. (2.9)

Wood (2016) developed the function jagam, which was added to the mgcv R package, to

conveniently define smooth effects for a number of different basis functions. This is useful

when defining models in NIMBLE or other Bayesian modelling packages such as rjags by

allowing users to set the desired basis functions and knots. The function jagam will then

automatically generate the basis function matrix X as well as the non-diagonal matrix

M , depending on the specifications of the spline.

Two common types of splines used in this work are thin plate and cubic splines. Both

types of splines are smooth, allowing for intuitive prediction of future data points using

historical information. This is particularly useful for applications where underlying trends

are complex and not easily captured by simple linear models. Thin plate splines provide

smooth and flexible solutions, making them ideal for modelling spatial and temporal

trends in data where smooth transitions are expected across multiple dimensions. On

the other hand, cubic splines are often used for capturing one-dimensional trends (e.g.

temporal effects) and offer a balance between flexibility and computational efficiency.

The cubic spline basis functions are piecewise polynomials, ensuring smoothness across

the knots with continuous first and second derivatives.
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In a Bayesian framework, smoothness is controlled by introducing priors on the model

coefficients, which implicitly enforce smoothness through the prior distribution, such as the

Multivariate-Normal prior in Equation (2.7). Moreover, in the Bayesian context, all splines

naturally exhibit some form of shrinkage because there are two penalty parameters: one for

the linear trend and one for the non-linear trend. In models with shrinkage splines, a single

penalty parameter can shrink both the linear and non-linear components simultaneously,

which prevents overfitting, particularly in situations with limited data.

The number and placement of knots is an important aspect of spline construction. Knots

define the upper limit of flexibility of the spline, which is then penalised by penalty

parameters. The more knots that are placed in the model, the more flexible the spline can

be. However, placing too many knots can lead to overfitting, as the spline will become

overly sensitive to small variations in the data. Conversely, too few knots may result in

an overly simplistic model that cannot capture the true underlying trend.

In a Bayesian setting, knots are penalised by the precision matrix Ω, which ensures that

flexibility is controlled. This allows for a balance between flexibility and smoothness.

However, a larger number of knots comes at a computational cost due to the Multivariate

Normal formulation of the spline, so knots are often chosen to give a bare minimum of

flexibility to avoid unnecessary computational costs. In practice, we choose the number of

knots by fitting splines to historical data and assessing the ability of the model to capture

both short-term and long-term trends.

2.1.3 INLA

One method for approximating the posterior, proposed by Rue, Martino and Chopin 2009

and discussed in more depth than we cover here, is Integrated Nested Laplace Approxim-

ations (INLA).
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INLA is a fast and automatic method of model fitting which approximates the posterior

by joint Gaussian approximations. It can be implemented using the R programming (R

Development Core Team (2011)) package r-inla by Lindgren and Rue (2015). A compel-

ling benefit of INLA is its reduction of computational cost; it allows many latent Gaussian

models to be run within seconds or minutes that could otherwise take much longer using

alternative sampling methods such as Markov chain Monte Carlo (MCMC). Additionally,

it is relatively accessible and user friendly, owing to its use of a formula based syntax

widely adopted in other R packages. This makes it an attractive choice for nowcasting

frameworks.

One limitation of this method is that its only suitable for the subset of Bayesian additive

models known as latent Gaussian models. This requires the response variable y to come

from an exponential family and with Gaussian priors assigned to any unknown functions,

linear effects, unstructured effects and intercepts. Moreover, software to implement the

INLA method only supports certain families of probability distributions. There will also

be some degree of approximation error when implementing INLA for any application due

to the assumptions about the data it requires to yield results. However, Rue, Martino and

Chopin (2009) show that this can be less than the equivalent MCMC sampling error for

a number of examples.

The original INLA methodology, using nested laplace approximations, can be summarised

as the following modelling approach. For a given model, let y be the response variable,

x be a set of latent Gaussian variables and θ be the hyper-parameters. Laplace approx-

imation (first suggested by Tierney and Kadane (1986)) can approximate the conditional

distribution of θ |y by dividing the joint posterior density of the Bayesian model by a

Gaussian approximation of the marginals of the latent variables (π̃G(x|θ,y)), all evalu-

ated at the mode of the conditional density function of x for a given θ. Using INLA to

approximate the posterior marginals of the model of interest, can be roughly outlined in

three steps:
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1. Calculate a Laplace approximation to the posterior marginal of the model paramet-

ers, conditional on the model response variables π(θ |y).

2. Calculate a Laplace approximation of π(xi|y,θ) for selected values of parameters θ

to improve the Gaussian approximation.

3. Use nested numerical integration (Equations (2.10)-(2.11)) to combine the approx-

imations in the previous two steps to obtain an approximation of the posterior

π̃(xi|y).

π̃(θ j|y) =
∫

π̃(θ |y)dθ− j (2.10)

π̃(xi|y) =
∫

π̃(xi|θ ,y)π̃(θ |y)dθ (2.11)

As detailed in Van Niekerk et al. (2023), recent developments in the r-inla methodo-

logy have introduced improvements in computational efficiency, numerical stability, and

scalability for large datasets. One key enhancement is the restructuring of the latent

field to remove the inclusion of linear predictors. In the original INLA methodology, the

linear predictors were part of the latent field, leading to increased computational costs.

The updated formulation instead defines the linear predictors separately as deterministic

functions of the latent field, which reduces the size of the augmented latent model and

enhances efficiency, particularly for data-rich models.

Additionally, the updated INLA framework incorporates a Variational Bayes correction to

the posterior means of the latent field. This correction refines the Gaussian approximations

used in INLA, achieving accuracy comparable to MCMC methods while maintaining the

computational speed benefits of INLA. By applying low-rank corrections to the mean

estimates, this approach ensures that the removal of linear predictors is not detrimental

to inference quality.

The updated INLA methodology now has the following steps:
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1. Define the latent field without explicit inclusion of linear predictors, thereby redu-

cing model complexity.

2. Approximate the posterior distribution of the hyperparameters π(θ |y) using a

Laplace approximation, avoiding nested approximations where possible.

3. Use a Variational Bayes correction to refine the posterior means of the latent field,

ensuring greater accuracy in inference.

4. Compute the posterior marginals π(xi|y) through improved numerical integration,

leveraging parallelized computation where applicable.

5. If necessary, perform additional Monte Carlo sampling for predictions, especially in

large-scale spatial and spatio-temporal models.

Since this has been implemented as the default methodology in for the inla(.) function

in the r-inla package (Lindgren and Rue (2015)), this is the framework used for any

application using INLA throughout this thesis.

2.2 Bayesian Nowcasting Models

The nowcasting frameworks in this review assume that, if we are at current time Tnow,

for all discrete time points t ≤ Tnow in the past a total number of counts yt occurred and

will eventually be reported. Recall from Section 1.1 that the total counts yt can then be

split into partial counts zt,d, which are the number of cases that occurred at t and were

reported with delay d after t. Furthermore, a maximum delay Dmax is usually chosen such

that after Dmax time-steps all counts are assumed known, therefore all yt are fully reported

for t < Tnow−Dmax. We define the cumulative counts, ct,Tnow =∑Tnow−t
d=0 zt,d, as the counts that

have been reported by the current time Tnow, and occurred at time t, where Tnow−t <Dmax.

If nowcasting applications include a spatial dimension (e.g. different geographic regions),
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as opposed to focusing on a single time series, then we denote for spatial regions s the

total as yt,s and the relative partial counts as zt,d,s. In this section, readers are advised

some notation for external methods have been rewritten in equivalent notation, to aid

cohesion and comparison.

Modelling of data subject to delayed reporting was first carried out in the context of

predicting insurance claims. For these early models, nowcasting involved modelling the

delay distribution followed by modelling the estimated total counts as a second step

(Brookmeyer and Gail (1994)). Methods that modelled total incidence and the delay

distribution in one step were then developed for nowcasting AIDS cases, such as in Zeger,

See and Diggle (1989), Lawless (1994) and Brookmeyer and Gail (1994). Also, Lawless

(1994) noted that the delay distribution often changed un-systematically over time and

modelled this random temporal variability by introducing random effects in the delay

distribution. Subsequent existing approaches to Bayesian modelling of count data subject

to reporting delays can be broadly summarised into these two main groups: 1) joint models

and 2) conditionally independent models.

2.2.1 Jointly modelling the total and partial counts

Joint modelling approaches first assume that the total counts yt come from some probab-

ilistic model Y ,

yt ∼ Y (Θ). (2.12)

Then, they assume that the partial counts zt , given the total count yt , come from a another

probabilistic model Z:

zt | yt ∼ Z(Π,yt). (2.13)
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Joint models are called as such because we implement both of these layers together in a

single hierarchical framework. In these general terms, we can draw a clear equivalence with

the modular framework for flawed observation proposed by Stoner (2019) and discussed in

Chapter 1. Here, Bayesian probability provides a direct approach to predicting unobserved

yt given any observed partial counts zt,d, and the key challenge is in specifying appropriate

models Y and Z to capture the main sources of variability associated with the disease

counts and the delayed reporting appropriately (Section 1.2).

One example of a joint model is the proposed approach for “Joint Bayesian Modeling of

Epidemic Curve and Delay Distribution” in Höhle and An Der Heiden (2014). This is a

hierarchical Bayesian model that first assumes Y is a Poisson model for the total counts:

yt ∼ Poisson(λt), (2.14)

log(λt) = f (t). (2.15)

The mean of the total counts λt is modelled by a selection of smooth spline effects and

polynomial effects, which vary over time, in f (t). The delay model Z is then given by the

Multinomial model:

zt |yt ∼ Multinomial(pt,yt), (2.16)

pt,d = (1−
d−1

∑
i=0

pt,i)ht,d, (2.17)

logit(ht,d) = γd +W
′
t,dη. (2.18)

The proportion reported at each delay, pt,d, is modelled by the discrete time hazard ht,d

and is able to vary across time and delay, owing to covariates that depend on time and

delay, Wt,d, and quadratic spline over delay γd. For, this quadratic spline knots are placed

equidistant over time up to time Tnow −D/2, to avoid over-extrapolation for the most

recent dates where uncertainty is larger.
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The main limitation with a model like this one is the assumption of simple and inflexible

probability distributions for Y and Z, in this case Poisson and Multinomial distributions,

which lack variance parameters to fit different real data problems well. Recall from Sec-

tion 1.2 that if Y or Z are not appropriate, then predicted total counts based on p(yt | zt)

will not be appropriate either.

Due to their hierarchical structure, a more general challenge associated with joint models

is they usually involve hand-written code for MCMC software, rather than convenient “off

the shelf” packages. In some cases we may be able to choose Y and Z such that we can

obtain an exact marginal probability model for the zt,d, p(zt,d), through summation over

yt :

p(zt,d) = ∑
yt

p(zt,d|yt)p(yt). (2.19)

In the case of the model from Höhle and An Der Heiden (2014) (Equations (2.14)–

(2.18)), the exact marginal model for zt,d is the following Poisson model, as derived in

Appendix B.2:

zt,d ∼ Poisson(µt,d), (2.20)

log(µt,d) = log(λt)+ log(pt,d). (2.21)

Similarly, Salmon et al. (2015) replace the Poisson model for the total counts with a more

flexible Negative-Binomial model, to allow for over-dispersion with dispersion parameter

θ , however they assume the probability vector p is constant over time:

yt |λt ∼ Negative-Binomial(λt ,θ), (2.22)

zt |yt ∼ Multinomial(p,yt). (2.23)
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The total counts can be summed out to give the following marginal model, as derived in

Appendix B.3:

zt,d ∼ Negative-Binomial(µt,d,θ), (2.24)

log(µt,d) = log(λt pd) = β0 +β1t + γ(t)+αd, (2.25)

γ(s(t))∼ Normal(0,s (t)2), (2.26)

βi ∼ Normal(0,σ2
βi
) i = {0,1}, (2.27)

αd ∼ Normal(0,σ2
αd
) (2.28)

where γ(t) is a seasonal factor effect, β0 is an intercept term, β1 is the linear coefficient

of time t and αd is factor variable to account for delay. Such models can be fit as non-

hierarchical models, e.g. as a Generalized Linear Model (GLM) or Generalized Additive

Model (GAM). However, obtaining and fitting an exact marginal model for the individual

partial counts zt,d does not guarantee access to an appropriate predictive model for the

totals given observed zt,d, i.e. p(yt | zt). Typically, one relies on prediction of unobserved

zt,d and summation of both observed and predicted zt,d to produce predictions of yt ,

which relies on the assumption that zt,d are conditionally independent. This assumption

is valid in the simple Poisson-Multinomial case but, generally, approaches motivated as

a joint models but then implemented as marginal models fall within a broader family of

approaches reliant on the suitability of this conditional independence assumption, which

we discuss in the next subsection.

2.2.2 Conditionally independent models of the partial counts

The second group of approaches do not implement a model for the total counts yt explicitly

and instead only assume some model Z for the partial counts z, independent of the total

counts:

zt,d ∼ Z(Θ,Π), (2.29)
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where Θ and Π represent parameters and/or random effects intended to capture disease

incidence and the delay distribution, respectively.

These approaches make an assumption that the partial counts zt,d are independent of

each other across delay d, conditional upon any covariates or temporal, spatial and delay

structures, including for prediction of the total counts. As such, we call them conditional

independence model. Such approaches can be motivated by summing the total counts out

of an initial joint model, as discussed in the previous subsection, but many do not. Ideally,

a model within this group should be designed so that the systematic variability of the

total counts can still be inferred, since the predictant of interest is yt,s.

The widely cited Bastos et al. (2019) assumes a Negative-Binomial model for spatio-

temporally indexed partial counts zt,d,s and aims to capture systematic variability as-

sociated with the disease count generating process and the delay mechanism over time

through the combination of various flexible functions of time, space, and delay in the

expected mean µt,d,s:

zt,d,s ∼ Negative-Binomial(µt,d,s,θ). (2.30)

Functions within the mean µt,d,s include cyclical seasonal effects, to capture strong sea-

sonal structures in the diseases the model is applied to. Predictions are then obtained for

the unobserved partial counts which are summed to give estimates of the total counts by

yt,s = ∑D
d=0 zt,d,s. In conjunction with the Negative-Binomial distribution given by Equa-
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tion (2.30) the following equations fully specify the model:

log(µt,d,s) = ι +αt +βd + γt,d +ηw(t)+ψs +βd,s +X
′
t,dδ , (2.31)

βd,s ∼ Normal(βd−1,s,ω2
β ), (2.32)

ψs = ψ IAR
s +ψ ind

s , (2.33)

αt ∼ Normal(αt−1,σ2
α) (2.34)

βd ∼ Normal(βd−1,σ2
β1) (2.35)

βd,s ∼ Normal(βd,s−1,σ2
β2) (2.36)

γt,d ∼ Normal(γt−1,d,σ2
γ ) (2.37)

ηw(t) ∼ Normal(2ηw−1 −ηw−2,σ2
η). (2.38)

In Equation (2.31), ι is the log of the mean overall total count, αt and βd are first order

random walk effects that aim to capture the temporal trend in the total count and the

mean proportion reported at each delay, respectively. An additional random walk term,

βd,s, is included to capture the way in which the delay structure varies across space. Then,

γt,d is a time-delay interaction which allows for temporal changes in the delay distribution

with a first order random walk over time which is independent for each delay. This is

key in capturing potential changes in the delay distribution that are dependent on time.

The cyclical seasonal effect ηw(t) is a second-order random effect that captures temporal

variability in the total counts related to the week of the year w(t). Finally,X′
t,d is a matrix

of temporal and delay related covariates. We discuss features of the model that aim to

capture spatial variation in both the disease count and the delay mechanism in detail,

in Section 2.5.1. However, due to the nature of conditional independence approaches,

the partial counts, zt,d are assumed to be independent given the model effects and any

covariates. Therefore, there is no constraint that proportions reported at each delay sum

to one. Furthermore, including the effects related to both the partial counts and the

total counts in a single log link will limit the models ability to fully capture and identify

the different sources of systematic and random variability. Hence, over-dispersion of the

partial counts could be incorrectly absorbed by the total counts.
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McGough et al. (2020) also assume a Negative-Binomial model for zt,d with dispersion

parameter θ . But, unlike Bastos et al. (2019), they attempt to better separate the sys-

tematic variability of the epidemic curve and delay distribution by decomposing the mean

of zt,d, µt,d, into a part relating to the incidence of the disease and a part capturing the

delay distribution, i.e. the mean proportion pd of yt reported at delay index d:

zt,d ∼ Negative-Binomial(µt,d,θ), (2.39)

log(µt,d) = αt + log(pd), (2.40)

αt ∼ Normal(αt−1,σ2
α), (2.41)

pd ∼ Dirichlet(β). (2.42)

The mean of the total counts is captured by the first order random walk term αt and a

Dirichlet prior is assumed for p.

Temporal variation in the delay mechanism is allowed outside of the model by only in-

cluding data within a moving window: the size of this windows controls the amount of

historic data that informs the parameters. The results in McGough et al. (2020) showed a

smaller window resulted in faster computational speeds and improved delay distribution

estimates but with a trade-off of “more volatile” estimates of weekly cases and decreasing

nowcasting accuracy in certain periods. The R package NobBS, which supplements their

paper, includes a function that allows users to fit the model using MCMC. However, it

is worth noting that while this package allows for the model to be stratified by spatial

regions or other variables (which is not discussed in McGough et al. (2020)) it does not

allow the inclusion of possible informative covariates. For this approach, the partial counts

are still assumed to be conditionally independent and there is no allowance for the delay

distribution (as quantified by p) to vary over time within the moving window. Also, this

model does not account for spatial variation or interactions between time and delay.
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Günther et al. (2020), also use a first order random walk prior for the expected mean of

total counts at day t, λt , and applied the following model for COVID-19 cases in Bavaria.

The expected mean of the totals, and the expected probability of reporting at delay d, are

multiplied to give the expected mean (µt,d) of the partial counts zt,d, which are modelled

by a Negative-Binomial distribution:

zt,d|λt , pt,d ∼ Negative-Binomial(λt,d pt,d,θ), (2.43)

log(λ0)∼ N(0,1), (2.44)

log(λt)|λt−1 ∼ Normal(log(λt−1),ϕ), (2.45)

pt,d =

(
1−

d−1

∑
i=0

pt,i

)
ht,d, (2.46)

pt,0 = ht,0. (2.47)

Additionally, this model uses a discrete time hazard model for the probability vector

pt,d. Four different versions of the hazard function ht,d were considered for the Negative-

Binomial model, Equation (2.43)–(2.47), for the partial counts of the COVID-19 cases in

Bavaria. The first allowed for changes in the reporting delay with linear time effects with

a two week change point logit(ht,d) = γd +W
′
t,dη, and the second used logit(ht,d) = γd +αt ,

such that αt is a first order random walk term, which will therefore be able to capture

the daily changes in the reporting delay. Each of these models were then fitted with and

without a reporting weekday effect to allow for the fact reporting of COVID-19 cases is

reduced at the weekend. This approach attempts to separate the systematic variability in

the totals and delay distribution, whilst allowing for more flexibility when modelling the

expected proportion reported than McGough et al. (2020). However, it is similarly limited

in capturing the covariance of the partial counts, since pt,d is fixed given the time-delay

effects/covariates.

Recall from Section 1.2 that, to achieve an appropriate p(yt |zt) for prediction, we need ap-

propriate p(zt |yt) and p(yt). As noted by Stoner and Economou (2019), an inappropriate

conditional independence assumption means that p(zt |yt) is not appropriately specified,

potentially leading to over-fitting and unreliable quantification of prediction uncertainty.
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Notably, in their simulation experiment (Supporting information, Web Appendix A),

Stoner and Economou (2019) found that predictions of y from a model designed to be

conceptually similar to Salmon et al. (2015) had excessive variance compared to the total

counts in the original data.

2.2.3 Comparison of joint and conditional independence models

The advantage of a “conditional independence” model is avoiding a hierarchical structure

for yt,s and zt,d,s|yt,s. This allows for implementation using a wider variety of approaches, in-

cluding frequentist approaches or other Bayesian methods e.g. Integrated Nested Laplace

Approximations (INLA), detailed in Section 2.1.3. For example, the model from Salmon et

al. (2015), Equation (2.28), is essentially a Generalized Linear Model, since the Negative-

Binomial belongs to the exponential family given when the dispersion parameter θ is

known (in practice, θ is estimated simultaneously in fitting algorithms). We can therefore

conceive frequentist variations of this model based on e.g. Generalized Additive Models

(GAMs) or Generalized Linear Models (GLMs). Such models may also be expressible

as latent Guassian models, enabling inference using INLA (Section 2.1.3). Bastos et al.

(2019) carried out a comparison where their proposed model was fitted using both INLA

and MCMC methods: they found that MCMC was more accurate once fully converged,

but in time-sensitive scenarios the speed and reduced user input of INLA made it more

practical. Hence, the INLA models are currently operational in the warning systems in-

foDengue (https://info.dengue.mat.br) and infoGripe (http://info.gripe.fiocruz.br). These

alert systems allow national and local authorities to make decisions based on current and

future predictions of the number of dengue and SARI cases in Brazilian states. Section 1.1

outlines the impact of these surveillance systems in more detail.
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Although they generally excel with respect to timeliness, the fact that marginal approaches

don’t explicitly model the total counts yt means they are theoretically restricted in the

capacity to capture the random variability in the total counts well since they are not

explicitly included in the model. If, as in these approaches, yt is defined as yt = ∑Dmax
d=1 zt,d,

for prediction, then we have that:

Var[yt ] = Var
[

Dmax

∑
d=1

zt,d

]
=

Dmax

∑
i=1

Dmax

∑
j=1

Cov[zt,i,zt, j]. (2.48)

This implies that, to capture Var[yt ] well, we must capture the covariance of zt,d across

delay well. However, models that assume that the partial counts are conditionally inde-

pendent have much less flexibility/control to capturing their covariance structure, com-

pared to e.g. a multivariate model for zt . They inherently rely on the belief that the

conditional independence assumption holds or is at least a close approximation, which

in turn means they are relying on covariate and/or random effects to explain all of the

covariance.

Stoner and Economou (2019) argue that joint model designs generally allow for greater

flexibility and control over appropriately capturing and separating the different sources of

systematic and random variability in the data (Section 1.1). We can also remark that they

yield posterior predictive inference for unseen total counts and that they can be concep-

tually explained based on the modular framework for flawed observation from Stoner and

Economou (2019). As explained in Section 1.2, the main challenge is ensuring the models

for the total counts and the delayed reporting, Y and Z respectively, are appropriate. The

main limitation of existing works prior to Stoner and Economou (2019) was the reliance

on Multinomial models for Z, which have no flexibility to account for different levels of

random variability in zt,d, in absolute terms and relative to each other, since Cov[zt,i,zt, j]

is fixed given pt,d, and yt , such that we are relying on model effects/covariates to fully

explain the covariance.
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To summarise, all modelling frameworks discussed so far all have at least one theoretical

limitation in appropriately capturing and separating the four sources of variability in data

suffering from delayed reporting (Section 1.1):

• Conditional independence approaches may generally struggle to capture the random

variability of the total counts yt – the model never sees them – and may not produce

reliable predictive uncertainty, when the conditional independence assumption is not

a close approximation.

• Joint modelling approaches offer greater potential to appropriately separate and

capture the different sources of variability, but existing methods are held back by

assuming a Multinomial model for the partial counts.

2.3 Generalized-Dirichlet Multinomial Model

To address the lack of a general framework that is able to appropriately separate and

capture the four main sources of variability in data suffering from delayed reporting, as

discussed in Chapter 1.2, Stoner and Economou (2019) proposed the Generalized-Dirichlet

Multinomial (GDM) method. As a joint modelling framework (Section 2.3), the GDM

(Equations (2.49)–(2.53)) separates the processes generating total counts and capturing

the delay mechanism into hierarchical layers, hence capturing all sources of variability in

the data.

Like other approaches that came before, e.g. Salmon et al. (2015), the GDM assumes a

flexible Negative-Binomial (acting as Y in the modular framework from Section 1.2):

yt |λt ,θ ∼ Negative-Binomial(λt ,θ), (2.49)

log(λt) = f (t). (2.50)
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Here, f (t) could be any combination of effects or covariates to capture the mean temporal

trend in the total counts. We then assume a Multinomial distribution for p(zt | pt ,yt):

zt | pt ,yt ∼ Multinomial(pt ,yt). (2.51)

However, where this framework deviates from what came before (e.g. Höhle and An Der

Heiden (2014)) is by then assuming that the Multinomial follow an i.i.d. Generalized-

Dirichlet (GD) distribution:

pt ∼ Generalized-Dirichlet(αt ,βt). (2.52)

Here, the GD acts as additional source of variability, introducing more degrees of freedom

to better capture the random variability and covariance in the delayed reporting mech-

anism. Finally, assuming a Generalized-Dirichlet (GD) prior for pt yields a Generalized-

Dirichlet Multinomial (GDM) model for zt | yt (acting as Z in the modular framework

from Chapter 1.2), as shown in Appendix B.4:

zt |pt ,yt ∼ GDM(pt ,yt). (2.53)

This introduces greater flexibility for the partial counts than a Multinomial model alone,

recalling that the variance of which is fixed given pt and yt .

As an aside, the GD has as many degrees of freedom for the variance of pt as the length

of pt minus 1. Thus, the GD has much greater flexibility than a Dirichlet model for pt ,

which only has one degree of freedom for the variance.
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Overall, the GDM offers considerably more flexibility in capturing the covariance structure

of the partial counts, compared to alternative choices discussed in the previous subsections.

This is achieved by not assuming conditional independence between delays and enabling

the variance to not be fixed given the total counts and the expected probabilities. Hence,

reducing the risk of the model confounding variability between the totals and the delay

distribution, where over-dispersion the covariance structure of p(zt|yt) (e.g. with respect

to a Multinomial) could be absorbed by p(yt).

2.3.1 Conditional series

The GD distribution used in the context of delayed reporting is constructed as a series of

independent Beta distributions in a “stick-breaking” fashion:

pt,1 ∼ Beta(νt,1,ϕt,1); (2.54)
pt,2

1− pt,1
∼ Beta(νt,2,ϕt,2); (2.55)

. . . (2.56)
pt,d

1−∑d−1
i=1 pt,i

∼ Beta(νt,d,ϕt,d); (2.57)

. . . (2.58)

pt,Dmax = 1−
Dmax−1

∑
i=1

pt,i, (2.59)

where each Beta is parameterised in terms of its mean νt,d and dispersion parameter ϕt,d.

Hence, for this parametrisation the mean of the Beta distribution is E[X ] = ν and the

variance is Var[X ] = ν(1−ν)
1+ϕ , see Appendix A.2 for a more formal definition of the Beta

distribution.
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Meanwhile, the Multinomial can be expressed as a series conditional Binomial distribu-

tions:

zt,1 | pt,1,yt ∼ Binomial(pt,1,yt); (2.60)

zt,2 | pt,2,zt,1,yt ∼ Binomial(pt,2,yt − zt,1); (2.61)

. . . (2.62)

zt,d | pt,d,zt,<d,yt ∼ Binomial(pt,d,Nt,d); (2.63)

. . . (2.64)

zt,Dmax = Nt,Dmax , (2.65)

where Nt,d = yt −∑d−1
j=1 zt, j. Note that the partial counts for the final delay is equal to the

total counts minus the partial counts up to Dmax −1, zt,Dmax = yt −∑Dmax−1
j=1 zt, j. Hence, for

the GDM model, if only D delays are explicitly modelled, where D<Dmax, the final partial

count zt,D = yt −∑D−1
j=1 zt, j will capture all remaining partial counts reported between delay

D+1 and Dmax. As such, we define D < Dmax as the maximum number of delays explicitly

modelled that are less than the maximum number of possible delays.

Therefore, it can be shown that the GDM can be expressed as a series of Beta-Binomial

distributions, as shown in Appendix B.5:

zt,d | zt,<d,yt ∼ Beta-Binomial(νt,d,ϕt,d,Nt,d). (2.66)

The interpretation of νt,d, which we call “expected proportions” here is the proportion

of Nt,d we expect to be reported at delay d, i.e. are given by νt,d = E
[

zt,d
Nt,d

]
. The disper-

sion parameters ϕt,d controls the variability around the expected relative proportions. As

ϕt,d → inf the Beta-Binomial reduces to a Binomial and, as such, if ϕt,d → inf the GDM

reduces to a Multinomial.
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The Beta-Binomial series representation of the GDM is very convenient for implementa-

tion in MCMC software. For t where only some zt,d are observed, we need only include

the Beta-Binomials corresponding to observed zt,d. For such t, yt is unobserved and need

only be sampled from an appropriate algorithm, generating predictions from the posterior

distribution given any observed zt,d. If desired, posterior predictions of unobserved zt,d can

be produced using Monte Carlo simulation.

In summary, the GDM framework is a compelling option for separating and capturing the

systematic and random variability in both the total counts and the delay distribution.

In the next subsection, we explain how the parameters of the GDM can be characterised

in terms of structures explaining variation in time and across delays. Further details on

including spatial effects within the GDM are given in Section 2.5.1. Later in the thesis

(Chapter 4), we extend the GDM to allow for systematic variability over space and time,

as well as space-time interactions, in the delay distribution and in the total counts.

However, the GDM framework still has both practical and theoretical limitations. First,

as we will discuss in more detail in Section 2.5.4, a barrier to the implementing the GDM

in an operational setting is its relatively slow computational speed. This is a result of

its complex structure and the requirement of MCMC sampling methods. We attempt to

address this issue in Chapter 3. Furthermore, neither the GDM nor any other approach

currently in the literature accounts for the potential relationship between the reporting

process and the incidence of the disease. As we discussed in Section 1.1.2 this could induce

a systematic trend in the delay distribution. Thus, not accounting for this could limit the

information models have to improve predictive precision. We investigate the potential

relationship between incidence and delay more thoroughly in Chapter 6.
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2.3.2 Existing GDM link functions

When defining a GDM modelling framework Stoner and Economou (2019) provide two

options for linking covariate/random effects to the Beta-Binomial mean parameters, νt,d

(the expected relative proportions), to capture systematic variability over time and delay

in the delayed reporting model.

First, they suggest a “hazard” model:

log
(

νt,d

1−νt,d

)
= g(t,d), (2.67)

which directly models the relative proportions at the logit scale. The function g(t,d) is

given as a general combination of covariates and random effects. This option allows for

relatively flexible choices for introducing time and delay effects or covariates in g(t,d),

since the logit function will translate any value of g(t,d) on the unbounded real line to

the appropriate parameter space νt,d ∈ (0,1).

However, intuitively thinking about structured variability within the relative proportions

can be difficult. This is particularly true when considering νt,d for later delays indices.

Recall that νt,d = E
[

zt,d
Nt,d

]
, is the expected part of yt that is yet to be reported (Nt,d)

that we expect to be reported at delay d. For later delays, both zt,d (the numerator) and

Nt,d (the denominator) are likely to be small, such that small changes in either could

change the value of the fraction considerably, thus muddying our intuition for designing

structured variability in νt,d.

Second, Stoner and Economou (2019) suggested a “survivor” model:

probit(St,d) = g(t,d), (2.68)
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where g(t,d) is again a general term. Here, St,d = E
[

∑d
i=0 zt,i

yt

]
is the cumulative proportion

of yt expected to be reported up to and including delay d. The relative proportions are

derived as νt,d =
St,d−St,d−1
1−St,d−1

.

Since the cumulative proportions are being modelled the choices for g(t,d) are restricted to

be monotonically increasing over delay, to ensure the condition that the cumulative counts

similarly increase over delay. However, considering structures for cumulative proportions

is potentially more intuitive than for the relative proportions. Temporal trends are likely

to be similar across delays as they get carried from one delay to the next in the cumulative

counts reported (the numerator of St,d).

For their application to dengue cases in Rio de Janeiro, Stoner and Economou (2019)

made arguments in favour of the survivor version based on intuition, simplicity, and com-

putational expedience. However, this is not a trivial decision as this choice potentially

determines how well the model is able to capture the delay distribution. A closer fit will

depend on whether the relative or cumulative proportions can be appropriately charac-

terised by the combination of the link function and the structural effects inside g(t,d).

2.3.3 Forecasting with the GDM model

The GDM model can also be used to generate forecasts as well as nowcasts. This is bene-

ficial in disease surveillance contexts as it enables public health bodies to prepare tailored

strategies for potential upcoming scenarios. Hence, allowing interventions to be put in

place to avoid worse case scenarios rather than just implementing reactive interventions

as the scenarios unfold. However, certain alterations are required for the GDM frame-

work to be suitable for forecasting. These are relatively straightforward to implement in

part due to the flexibility of the R package NIMBLE (de Valpine et al. (2017)) which

can be used to fit the GDM since it is a directed acyclic graph (See Appendix C.1 for
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the GDM graph). Stoner and Economou (2019) introduce the GDM alongside its fore-

casting capabilities. Here we present a survivor version of the forecasting framework with

no spatial element, but forecasting can be similarly carried out with the hazard version

(both versions are defined in Section 2.3.2) or any other link function. As discussed in

Section 2.1.2.2, we often fit the GDM with smooth splines to capture variability over time

in the data. Here we will consider a model with cubic splines, but the same considerations

are necessary when using any smooth spline within the framework. The GDM model can

be defined with the following equations:

yt |λt ,θ ∼ Negative-Binomial(λt ,θ), (2.69)

log(λt) = ι +αt , (2.70)

zt,d|νt,d,ϕt,d,Nt,d ∼ Beta-Binomial(νt,d,ϕt,d,Nt,d), (2.71)

probit(St,d) = ψd +βt , (2.72)

κ(α) ∼ Multivariate-Normal(0,Ω(α)), (2.73)

αt =Xtκ
(α) (2.74)

κ(β ) ∼ Multivariate-Normal(0,Ω(β )), (2.75)

βt =Xtκ
(β ) (2.76)

For the total counts yt , ι is a intercept and αt is a cubic spline. Similarly, for the partial

counts zt,d, ψd is a delay specific intercept which is defined by a first order random walk

that is constrained to increase over delay and βt is a cubic spline of time. Additionally, to

make the intercept terms more interpretable, the cubic splines are centred to have zero

mean. The cubic splines are constructed using the jagam(.) function from Wood (2016),

which produces JAGS objects for model specification including the spline basis matrix

Xt . The spline basis function is constructed such that it is linear during the forecasting

period by placing the last knot of the spline at the end of the nowcasting period (often

interpreted as the current time we are nowcasting up to). This knot placement is vital to

allow for forecasting as knots can’t be placed where there is no data as there is no way for
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the model to compute or constrain the splines behaviour at that point. Hence, this knot

placements is needed for any type of spline when forecasting. For cubic splines, the spline

is constrained to be linear in the forecast period beyond the last knot but this will differ

with different spline choices.

2.4 Machine learning nowcasting approaches

A recent development in the methods for nowcasing delayed reporting is the adoption of

machine learning techniques to gain improvements in computational speed over existing

Bayesian and frequentist methods. For example, Sahai et al. (2022) utilise an ensemble

machine learning approach that uses a random forest regression model to nowcast incid-

ence of COVID-19 infection in Ohio. A random forest is a collection of trees, each tree is

fitted using a process called binary recursive partitioning to create a base learner func-

tion. The average of these functions is then taken to obtain the predictor function for the

regression (Cutler, Cutler and Stevens (2012)). They report that the machine learning

approach had a run time of seconds compared to the 20 hour run time outlined in Kline

et al. (2022). Hence, machine learning techniques are a possible avenue for improving

nowcasting efficiency.

However, their real-world desirability is conditional on their predictive performance com-

pared to the current state-of-the-art models, which has not yet been thoroughly invest-

igated. For instance, it is unclear whether they are able to offer reliable predictive un-

certainty. For this approach, the actual reported counts seem to lie outside the predicted

uncertainty for prediction time difference close to zero, as shown in the Sahai et al. (2022)

figures comparing the model predictions to the true data for four nowcast dates in Novem-

ber. This approach was compared to the Bayesian Modelling approach presented by Kline

et al. (2022) for a single nowcasting date in September, both models over-predict and do

not capture the true data in their 95% prediction intervals for the most recent nowcasting
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dates. Whilst they found that the medians of the random forest predictions were closer

to the eventually observed number of cases than the Bayesian model medians, the lower

95% prediction interval for the Bayesian approach often appear closer to the data than

that of the random forest approach. Meanwhile, the choice to base their comparison with

existing work on only one historic nowcast date means that the presented results may not

be representative of all potential nowcast dates for daily COVID-19 infections in Ohio, in

the time period considered. Hence, a more thorough comparison is required to determine

the differences in the Sahai et al. (2022) and Kline et al. (2022) approaches for a range of

trends in the total counts and delay distribution of the data being considered.

It is worth noting these findings are not representative of all machine learning applications.

However, in general a possible disadvantage to these approaches is that inference about

the reporting delay, covariate effects and possible temporal, spatial, and seasonal trends

in the data are difficult to obtain.

2.5 Model Extensions

The nature of designing operational surveillance systems means that modelling frame-

works need to be flexible and adaptable to be suitable for a range of real-world applic-

ations. It is common for variations in the data or in requirements for being operational

to create scenarios where standard versions of frameworks are not fit for purpose. Where

necessary, extension of published methods can help to overcome these obstacles.
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In this section we discuss ways that existing nowcasting frameworks have been adapted,

and highlight common situations where model flexibility is an advantageous quality. In

particular, we will argue that the GDM model is especially well equipped for extension

to novel data challenges. This is in part due to its structure clearly separating different

sources of variability in the data, as discussed in Section 2.3, but also due to the versatility

of the modelling software NIMBLE used to fit it which was discussed in Section 2.1.2.

2.5.1 Spatial variation

In disease surveillance, it is very common for data to be grouped into spatial regions of

various scales. Variability across regions is often present in both the epidemic curve and

the reporting delay process, however this is not always considered in nowcasting models.

In some applications it may be crucial to capture spatio-temporal variation in the total

counts, to understand how the disease may be spreading, as well as the spatial variation

in the delay distribution, to possibly identify regions with longer reporting delays. As

we discuss in Stoner, Halliday and Economou (2022) (Chapter 4), while most nowcast-

ing frameworks for time series can be applied to each spatial data group independently,

extending the models to account for spatial variation may aid estimation, especially in

spatial regions with low counts, due to the pooling of information across locations (Gel-

man and Hill (2006)). Moreover, jointly modelling the regions also may allow for the

covariance of the total counts across regions to be captured more accurately.

In Equations (2.30)–(2.38), Bastos et al. (2019) consider the spatial variation in the re-

porting delays and the total counts through the inclusion of a first order random walk

(over delay) space-delay term βs,d, which is independent for each spatial region, as well

as the inclusion of structured ψ IAR
s and unstructured ψ ind

s spatial effects.
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The structured spatial effect ψ IAR
s is given by an intrinsic conditional autoregressive

(ICAR) process,

ψ IAR
s |ψ IAR

−s ∼ Normal
(

∑ j ̸=s ωs, jψ IAR
j

∑ j ̸=s ωs, j
,

σ2
IAR

∑ j ̸=s ωs, j

)
, (2.77)

where ωs, j indicates whether regions s and j are neighbouring, and σ2
IAR is the variance

which controls the extent to which neighbouring spatial regions have similar temporal

trends. The spatially unstructured effect is a random effect ψ ind
s ∼ Normal(0,σ2

ind) with

variance σ2
ind.

Autoregressive models determine spatial dependencies through the network of neighbour-

ing spatial regions. This is more intuitive for modelling disease data divided by regions,

compared to geostatistical models that require a point to represent the entire region

to be specified. Spatial autoregressive models that could potentially be included in this

framework include simultaneous autoregressive (SAR) or various conditional autoregress-

ive (CAR) models, including intrinsic conditional autoregressive (ICAR) models. These

spatial models differ in the way the covariance matrix is calculated (Ver Hoef et al.

(2018)).

On the other hand, Stoner, Halliday and Economou (2022) (Chapter 4) propose a version

of the GDM model that pools information across regions using nested spline structures:

yt,s|λt,s,θs ∼ Negative-Binomial(λt,s,θs), (2.78)

log(λt,s) = f (t,s), (2.79)

zt,d,s|νt,d,s,ϕt,d,s,Nt,d,s ∼ Beta-Binomial,(νt,d,s,ϕt,d,s,Nt,d,s), (2.80)

probit(St,d,s) = g(t,d,s). (2.81)
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The splines are created by multiplying Xt , which is a model matrix of the basis function

at each time point, and κ, a vector of coefficients. These model matrices and coefficients

are defined using the jagam function by Wood (2016) (more details about how we define

smooth effects in NIMBLE is given in Section 2.1.2.2). The resulting model for the ex-

pected mean of the total counts can be defined by,

log(λt,s) = f (t,s) = ιs +δt,s, (2.82)

δt,s =Xtκ
(δ )
s , (2.83)

κ(α) ∼ Multivariate-Normal(0,Ω(α)), (2.84)

κ
(δ )
s ∼ Multivariate-Normal(κ(α)

s ,Ω(δ )). (2.85)

A common zero-mean temporal trend across all regions is captured by αt , with intercept

ιs. This is not explicitly included in the model but could be calculated by αt =Xtκ
(α).

To centre δt,s on αt the basis function coefficients of αt (κ(α)) are used as the mean of the

multivariate Gaussian prior for the basis function coefficients of δt,s (κ(δ )) for each region.

Hence, δt,s encompasses both the common trend αt and the regional differences from this

common trend for each region. The spline coefficient precision matrices, such as Ω
(δ )
s =

τ(δ )s M (δ ) and Ω(α) = τ(α)M (α), are calculated by scaling known non-diagonal matrices

M by the corresponding smoothing parameters τ . Hence, the splines are penalised to

prevent over-fitting. The same structure is used for modelling the expected cumulative

proportion reported at each delay St,d,s,

probit(St,d,s) = g(t,d,s) = βs,d + γt,s +ξt,s (2.86)

γt,s =Xtκ
(γ)
s , (2.87)

κ(ψ) ∼ Multivariate-Normal(0,Ω(ψ)), (2.88)

κ
(γ)
s ∼ Multivariate-Normal(κ(ψ)

s ,Ω(γ)), (2.89)

ξt,s =Xtκ
(ξ )
s , (2.90)

κ(η) ∼ Multivariate-Normal(0,Ω(η)), (2.91)

κ
(ξ )
s ∼ Multivariate-Normal(κ(η)

s ,Ω(ξ )). (2.92)
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The parameters γt,s and ξt,s, capture the regional temporal trend and regional week day

effect of the expected cumulative proportion reported respectively. These are centred on

ψt and ηt (in the same way that δt is centred on αt in Equations (2.82)–(2.85)), and

can be calculated by ψt =Xtκ
(ψ) and ηt =Xtκ

(η) respectively. Where ψt capture the

overall temporal trend across all regions and ηt captures the overall weekly effect across all

regions. The delay effect, βs,d, is independent for each region and is a first order random

walk conditioned such that βs,d > βs,d−1. This ensures the expected cumulative proportion

reported for each time step will increase as delay d increases.

A GDM and spline approach was also used to nowcast deaths in England by region and

age group in Seaman et al. (2022). However, they apply their model to each spatial region

independently. Also, a few other adjustments were made to the framework, including a

different modelling of the weekday and temporal effects. On the other hand, Kline et al.

(2022) predicted COVID-19 cases in Ohio using a GDM model as well, but instead of the

spline approach they used an autoregressive spatial structural time series as defined by

Equation (2.77). Either splines or an IAR process can reasonably capture spatial trends

in most situations, especially if the spatial scale is relatively large. One limitation of

the nested spline approach is that it doesn’t assume any kind of neighbouring structure.

Hence, it assumes trends will be similarly related across all regions regardless of distance

from each other. For applications where cases between neighbouring regions are strongly

correlated this assumption fails to incorporate this information into the model. For such

cases, potentially including problems at finer spatial resolutions, more complex spatial

modelling structures may be needed to capture the more complex and intricate relation-

ships between regions. Other approaches reviewed in Section 2.2 don’t explicitly consider

the spatial structure of the data and instead are implemented by fitting the respective

models to each spatial region independently.
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2.5.2 Incorporating covariates

The majority of modelling techniques discussed so far are able to incorporate covariates in

various parts of their frameworks. Covariates can be a powerful tool to help models pick

up trends and capture otherwise unknown data generating processes. We can also gain

key insights into these processes through inference on the covariate effects. Potentially

informative covariates for disease surveillance could include social media, search engine

data, or weather forecasts. For example, Bastos et al. (2019) suggest weather patterns,

which are informative for diseases such a dengue which are mosquito borne, could be

included as covariates in their model given by Equation (2.30). However, currently weather

forecasts and twitter feeds are used separately by operational warning systems alongside

model predictions.

One attempt at utilising real time covariates in the model is Aiken et al. (2020), they

combine an autoregressive (AR) model of the total counts with a linear regression of

Google query volumes for a series of search terms chosen using a machine learning frame-

work. The selection of google search queries is carried out using a LASSO (least absolute

shrinkage and selection operator) regression technique. This supervised machine learn-

ing model was trained on a subset of the data (the training data) and the LASSO cost

function then shrinks data values towards a central point to prevent the model from over-

fitting. Over-fitting occurs when the model fits the noise in the training data too closely,

such that prediction accuracy is worse for unseen data. However, whilst these automatic

variable selection tools are efficient they may leave out queries for which there is strong

physical intuition for using to inform the model. Incorporating these possibly informative

covariates aimed to improve nowcasting and forecasting in cases where there is limited

historic data of a disease to train models. Although this model was able to outperform the

simple AR model for 3 out of 5 of the diseases investigated, both these models lack the

flexibility and robustness of the nowcasting models previously discussed in this chapter.
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The presence of delayed reporting in the data is not considered and the assumption that

the total counts come from an first order AR process is potentially restrictive. Hence, this

approach has limited ability to capture the random and systematic variability in the total

counts.

The Google trends data used is also biased to only take into account those who have

internet access, happen to use Google as their search engine, and use the selected search

terms. Aiken et al. (2020) found that Google trends were most useful as predictors during

early stages of an outbreak, but raised possible issues of media coverage reducing the

interpretability of search volumes being related to those suffering from infection. Two

previous Google trends disease tracking projects have both been discontinued due to

inaccurate predictions (Aiken et al. (2020)). Therefore, this type of internet search data

shows some potential in aiding disease surveillance models, especially when there is a lack

of other data available, but they are not yet operationally viable.

In general, if the covariates are readily available it is fairly trivial to add them into many of

the statistical frameworks discussed in this review. Although, this relies on covariates data

being available at the same spatial and temporal resolutions as the disease data of interest.

Furthermore, where informative covariates are time-varying, practical use for operational

nowcasting will depend on how immediately up-to-date data can be obtained/downloaded.

Meanwhile, accurately predicting future covariate values may be required to perform

disease forecasts.
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2.5.3 Under-reporting

This thesis largely focuses on the problem of predicting disease counts (e.g. cases) yt,s that

will eventually be reported after any delays have passed. However, in many situations,

some cases in a population are never reported, e.g. due to asymptomatic individuals or

a lack of resources such as testing materials or staff. Hence, the observed total counts

of eventually reported cases, and therefore the predicted nowcasts of these counts, are

under-representations of the actual disease counts occurring. We can refer to this problem

as “under-reporting”.

A general framework for correcting under-reporting is introduced in Stoner, Economou

and Drummond Marques da Silva (2019) and Stoner and Economou (2019) outlines how

this can be integrated into the GDM framework. Recall that yt,s are the total observed

counts and zt,s,d are the delayed counts. Now, let xt,s be the true counts that actually

occurred (and are usually unobserved), such that yt,s ≤ xt,s. Further recall the modular

framework for flawed observation discussed in Chapter 1.2, which suggests that we can

describe the generation of yt,s and zt,s as a sequence of two processed Y and Z, i.e.

Y (Θ)→ y → Z(Π)→ z. (2.93)

We can modify this such that we have a new model/module X(Φ) that describes the true

count generating process, depending on some parameters Φ, and where Y now describes

the under-reporting mechanism translating xt,s into yt,s:

X(Φ)→ x → Y (Θ)→ y → Z(Π)→ z. (2.94)
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Stoner, Economou and Drummond Marques da Silva (2019) assume a Binomial model for

Y , conditional on xt,s the true counts (that actually occurred and are unobserved),

yt,s|xt,s ∼ Binomial(κt,s,xt,s). (2.95)

The mean of the Binomial distribution is then xt,sκt,s, where κt,s is the proportion expected

to be reported. Then xt,s are modelled with a Poisson distribution,

xt,s ∼ Poisson(λt,s). (2.96)

None of the other papers included in this review of approaches explicitly discuss under-

reporting in conjunction with delayed reporting. However, the NobBS package does allow

users to set a “proportion reported” when implementing the model. The resulting now-

casts are then multiplied by a constant which corrects for proportions that have been

set to less than one. This approach requires users to be certain about reporting rates

which are constant over time and spatial regions. On the other hand, Stoner, Economou

and Drummond Marques da Silva (2019) allows κt,s to be modelled by covariates and

random effects that depend on time or spatial regions. If all yt,s are assumed to be po-

tentially under-reported, there is non-identifiability between the reporting rate κt,s and

the incidence rate of xt,s. The model is identifiable if some of the yt,s are assumed to be

fully reported or using informative prior information (Stoner, Economou and Drummond

Marques da Silva (2019)).
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2.5.4 Operational ability

As discussed in Section 1, the overarching aim of this body of work is to develop efficient

and effective operational warning systems with a focus on tailoring these to address real-

world data challenges put forward by the Oswaldo Cruz Foundation in Brazil. In general,

surveillance models must be judged by their ability to inform and aid decision makers

who are using them, particularly in the context of disease data. More accurate nowcasts

and forecasts would allow decision makers to make better informed decisions, which could

be crucial in an outbreak by allowing for preventative measures to be implemented.

However, another important characteristic of models used in operational contexts is timeli-

ness. Predictions need to be produced and analysed in time for public health policies to be

assessed and executed. For example, in Stoner, Halliday and Economou (2022) (Chapter 4)

we compare the GDM to competing models and found it to be relatively slow. For predict-

ing COVID-19 hospital deaths in England the GDM takes just under 20 minutes when

fitted using MCMC methods in nimble, whereas the Bastos et al. (2019) INLA model

takes under 7 minutes. But for larger data sets, like predicting SARI cases in Brazil,

the GDM takes approximately 12 hours to run. This makes it less viable for operational

application, especially since such a long run time would possibly make it unsuitable for

daily predictions.

In relation to the models discussed so far, an “ideal modelling framework” would have the

flexibility and performance of the GDM model in Stoner and Economou (2019) but with an

operational speed more comparable to methods such Bastos et al. (2019), which are aided

by using the INLA method for fitting Bayesian models. Furthermore, there is motivation

to develop a generalised framework that could be applied to any disease surveillance

setting experiencing reporting delays, and in an easy-to-use format that allows those with

more field specific expertise to implement it, would enable these models to be utilised in a

more efficient and effective way. For example, the R packages that supplement Höhle and
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An Der Heiden (2014) and McGough et al. (2020) created more user-friendly functions

which run the respective models. As discussed by Rivers et al. (2019), there is a need

to bridge the gap between model designers and those who will eventually be using the

models. Model improvements and outputs should be tailored to aid decision makers in

minimising the impact of infectious disease. For example, Höhle and An Der Heiden (2014)

recognise that the trend state of the outbreak (“up”, “stable”, “down”) can be inferred

from the spline for the total counts and communicated to users of their package, this

type of qualitative communication could be highly useful in aiding quick decisions during

time-sensitive situations.

2.6 Discussion

In this chapter we reviewed the current literature on correcting reporting delays for dis-

ease data. We presented this literature as arranged into two broad groups of nowcasting

methodology; jointly modelling the total and partial counts together (Section 2.2.1) and

direct models of the partial counts that rely on a conditional independence assumption

(Section 2.2.2). However, whilst the joint models are potentially able to better separate

and capture all sources of variability in the data, as summarised in Section 1.1.3, due

to their more complex hierarchical structure, implementation is generally more complex

than for the conditional independence models.

Due to the relative simplicity of modelling just the partial counts to capture all sources of

variability in the data, the conditional models can designed within more efficient model

fitting frameworks. This is because their lack of a multivariate hierarchical structure

means they can be expressed as a frequentist model, or a latent Gaussian model that

can be fit using INLA. The main downside of the conditional independence group is that

they can’t separate random variability in the total counts from the random variability

in the reporting delay. As such, achieving appropriate model prediction uncertainty (as
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measured by the prediction interval widths) relies on capturing the covariance structure

of the partial counts which, due to the conditional independence assumption, in turn

relies on random and covariate effects fully explaining the covariance. In some situations,

excessive uncertainty results from summing over the predictions of the partial count to

generate predictions of the total counts.

Hence, a more robust framework is required such as the GDM method, as discussed in

Section 2.3. This model is able to separate the four sources of variability in the data,

summarised in Section 1.1.3, allowing for intuitive additions of spatial modelling effects

(Section 2.5.1) and informative covariates (Section 2.5.2). Moreover, the choice of both the

Negative-Binomial distribution for the total counts and the GDM for the partial counts

offers the flexibility to capture the variance and covariance structures present in the data.

This hierarchical framework is also straightforward to extend to consider additional data

challenged such as under-reporting (Section 2.5.3). However, the GDM could be made

more suitable for operational purpose with improvement in computational speed and

user accessibility. As discussed in Section 2.5.4, the GDM is relatively slow compared

to competing approaches due to the need to fit models using MCMC methods. Also, it

requires fundamental understanding of Bayesian modelling procedures, and both R and

NIMBLE software, in order to be implemented effectively.

In this thesis we endeavour to improve the computational efficiency of the GDM in

Chapter 3 and then apply this to nowcasting COVID-19 deaths in England in Chapter 4 (Stoner,

Halliday and Economou 2022). This includes a thorough comparison between the GDM

model and both the Bastos et al. (2019) and McGough et al. (2020) methods that we

have discussed in this literature review. Later, we develop novel versions of the GDM for

applications where none of the existing methods and extensions that we have covered here

are suitable.
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In this chapter, we explore and assess potential avenues for improving the computational

efficiency of the Generalised-Dirichlet Multinomial (GDM) method introduced by Stoner

and Economou (2019). In Section 2.3 the Generalised-Dirichlet Multinomial (GDM) model

was presented as a framework that is theoretically better able to capture all types of

variability in delayed reporting data compared to competing approaches. We described

the sources of this variability in Section 1.1 and outlined why capturing it results in

improvements in predictive precision in Section 1.2. However, in Section 2.5.4 it was

noted that in terms of operational ability the GDM model may not be suitable for more

time sensitive disease surveillance applications.

In Section 2.1, we introduced both INLA (Lindgren and Rue (2015)) and NIMBLE (de

Valpine et al. (2017)) as two options for fitting Bayesian models and discuss the relative

drawbacks and benefits of each. Initially, in Section 3.1, to try and achieve improvements

in the timeliness of the GDM model we attempt to approximate it with a marginal model.

Hence, enabling it to be fit using the more computationally efficient method and software,

INLA. However, due to the approximation not exhibiting as consistently precise predic-

tions as the GDM, we instead shift focus to improving the run time of the original GDM

model.

All subsequent versions of the GDM are instead fitted using MCMC techniques in NIMBLE,

the flexibility of this software helps facilitate updating the computational efficiency of the

GDM. Avenues to increase computational speed that we explore include: more efficient

MCMC sampling, through parallel processing and model formatting choices (Section 3.2);

and directly optimising the joint posterior of the GDM model, in order to better initialise

MCMC chains (Section 3.3). We then compare the relative impact on run time of all

improvements for two case studies in Section 3.4.
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3.1 Approximating the GDM

At the beginning of the PhD project, we conceived and investigated one possible approach

to improving the computational efficiency of the GDM, centering around developing an

alternative latent Gaussian modelling framework that approximates the characteristics

of the GDM method and can be fitted using Integrated Nested Laplace approximations

(INLA). As detailed in Section 2.1.3, INLA is an approach to fitting Bayesian latent

Gaussian models that can be considerably faster than MCMC. However, the GDM method

combines a Negative-Binomial model with a series of Beta-Binomial models with unknown

total. In MCMC, the unknown total counts yt are sampled as unknown quantities. This

situation, involving complex hierarchical and missing data has not yet been implemented

in INLA, and it is not clear if it is even possible.

As explained in Section 2.2.2, one group of approaches to nowcasting, which we call “con-

ditional independence” models, assumes a direct model for the partial counts zt,d (with

no model for the total counts yt), assuming that zt,d are independent of each other, con-

ditional on all covariate and random effects. We further explained in Section 2.2.3 that

capturing the random variability in the total counts well relies on capturing the covari-

ance of the partial counts across the delays well, and that the conditional independence

assumption means we must rely on the covariate and random effects to fully describe the

covariance. Thus, we might suppose that thoughtful design of the covariate and random

effects, to mimic the flexibility of the GDM, could prove fruitful.
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First, consider the hierarchical structure of the GDM, where we express the Negative-

Binomial model for yt as a Poisson-Gamma mixture, as derived in Appendix B.1:

yt | κt ∼ Poisson(κt); (3.1)

κt | θ ,λt ∼ Gamma(θ ,λt ,); (3.2)

zt | pt ,yt ∼ Multinomial(pt ,yt); (3.3)

pt ∼ Generalized-Dirichlet(α,β). (3.4)

Here, λt is the mean parameter of the Gamma distribution and θ is a shape parameter

equivalent to the Negative-Binomial dispersion parameter. Hence, the mean is given by

E[X ] = λ and variance by Var[X ] = λ 2

θ , for more details on the Gamma distribution see

Appendix A.3. We can further sum out yt to obtain the marginal distribution of zt,d:

zt,d | κt , pt,d ∼ Poisson(pt,dκt). (3.5)

Thus, given pt,d and κt , the marginal models for the zt,d are Poisson. As shown in Ap-

pendix B.2, these zt,d (conditional on pt,d and κt) are independent of one another, and

summing together observed and independently predicted zt,d would yield the appropriate

predictive distribution for unobserved yt .

3.1.1 Approximation framework

Now, suppose we could design an approximate version such that µt,d ≈ pt,dκt is the expec-

ted mean of a Poisson distribution of the partial counts. This µt,d would have to account

for the same systematic structures as in pt,d and κt . It would also have to account for

the positive covariance induced by the Gamma distributed κt appearing in the model

for all delayed partial counts, and the multivariate random variability induced by the GD

distributed pt,d. This motivates a Poisson model for zt,d combining multiple random effect

structures in µt,d that play different roles in capturing the different sources of random and
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systematic variability, as inspired by these insights into the GDM. Here, our proposed ap-

proximation to the GDM, referred to in later sections as the “GDM approximation INLA”,

model is given by

zt,d ∼ Poisson(µt,d); (3.6)

log(µt,d) = ι +δt + θ̃t +ζd + γt,d +πdt, (3.7)

δt ∼ Normal(2δt−1 −δt−2,σ2
δ ), (3.8)

δ1,δ2 ∼ Normal(0,σ2
δ ), (3.9)

θ̃ ∼ Normal(0,σ2
θ̃ ), (3.10)

ζd ∼ Normal(ζd−1,σ2
ψ) (3.11)

πd ∼ Normal(0,σ2
π), (3.12)

ζ1 ∼ Normal(0,σ2
ζ ), (3.13)

γt ∼ MVN(0,W−1
γ ). (3.14)

In the log link of the expected mean partial counts reported µt,d, we first include an

intercept term ι . Alongside this, we include a second order random walk δt , a independent

identically distributed (i.i.d.) random effect θ̃t for each time step and a first order random

walk ζd over delay. Finally, we include a delay specific random slope over time πd and a

three dimensional i.i.d. correlated random effect γt . This correlated random effect has a

Wishart prior with 3 degrees of freedom and scale matrix equal to the identity matrix I.

We endeavor to capture the different sources of variability in the data using these random

effects in the above Poisson model. Firstly, if we consider the systematic and random

variability in the total counts, within the GDM framework this is partly captured by the

expected mean λt and dispersion parameter θ of the Gamma distribution (Equation (3.2))

respectively. In our framework to approximate the GDM (Equations (3.6)–(3.14)), we

approximate λt with the random walk term δt and we approximate θ with the random

effect θ̃t to capture the random variability at each time step.
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However, the total counts are not explicitly included in our approximation of the GDM

model. But, for the GDM framework the expected partial counts reported at each delay

are conditional on the Generalised-Dirichlet for expected proportions reported, pt,d, as

well as the expected total counts yt with expected mean κt | θ ,λt ∼ Gamma(θ ,λt). This

dependence on the Gamma distribution for κt allows the model for the partial counts

to capture the positive covariance present in zt,1:D, over delay for a given time. This

covariance between the partial counts at time step t is due to zt,1:D being compositional

components of the total counts yt . Hence, in our approximation model we attempt to

capture the positive covariance in the partial counts with θ̃ .

For the original GDM framework, the parameters α and β of the Generalised-Dirichlet

distribution (Equation (3.4)) are then able to capture the mean and covariance over delay

of zt,1:D. Some degree of negative covariance is induced by the sum to one constraint

of the proportions reported, ∑D
d=0 pt,d = 1, thus if one proportion increases in one delay

the sum of proportions in the remaining delays will in turn decrease and vice versa.

Our proposed INLA model attempts to capture the extra covariance structure of the

partial counts, including this source of negative covariance, with a three dimensional i.i.d.

correlated random effect, γt . Here, it is six dimensional as this is the number of delays

in our simulated data, but in general this could be a nth dimensional correlated random

effect.

Finally, to capture the mean systematic variability in the delay distribution we include a

first order random walk ζd, as well as delay specific random slopes πd. This choice was

motivated by the fact the data (described in the next subsection) is simulated to have a

linear trend over time in the delay distribution, but in practice could be any combination

of model effects to capture the systematic trend in the expected proportions reported.
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Due to the latent Gaussian structure of this GDM approximation model, it can be fit using

the Bayesian modelling approach INLA, which is a relatively computationally efficient

method. We set the following priors for each of the model effects to fully specify the

model:

ι ∼ Normal
(

0,

√
1

10−6

2)
, (3.15)

θ̃t ∼ Normal(0,σ2
θ̃ ), (3.16)

σ2
δ ∼ Half-Normal(0,0.12), (3.17)

σ2
ζ ∼ Half-Normal(0,12), (3.18)

σ2
π ∼ Half-Normal(0,12), (3.19)

W−1
γ ∼ Wishart(3, I). (3.20)

The choice of priors and parameters for our approximation model were chosen to reflect

those used in Bastos et al. (2019), which we define following subsection. This was done

to ensure the INLA approaches are fitted effectively in a similar way to how they are

currently operating, and to ensure the comparison between the three models we introduce

in this section is as fair as possible. Furthermore, this is the model our approximation

model attempts to improve upon, as the goal is to achieve a computationally efficient

model using INLA, as in Bastos et al. (2019), which can better capture the different

sources of variability in the data than this current model. We additionally compare the

Stoner and Economou (2019) GDM model, which we define below, as a model that is able

to separate the different sources of variability in the data.
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3.1.2 Existing frameworks

We compare our GDM approximation to an equivalent GDM model, fit using MCMC in

NIMBLE, and referred to in later sections as the “GDM NIMBLE” model, from Stoner

and Economou (2019):

yt ∼ Negative-Binomial(λt ,θ); (3.21)

log(λt) = τ +δt (3.22)

δt ∼ Normal(2δt−1 −δt−2,σ2
δ ), (3.23)

δ1,δ2 ∼ Normal(0,σ2
δ ), (3.24)

zt,d|yt ,zt,1:(d−1) ∼ Beta-Binomial(νt,d,ϕd,yt −
d−1

∑
j=1

zt, j); (3.25)

logit(νt,d) = ψd +βt,d +πdt, (3.26)

βt,d ∼ Normal(βt−1,d,σ2
β ), (3.27)

β1,d ∼ Normal(0,σ2
β ), (3.28)

πd ∼ Normal(0,σ2
π). (3.29)

(3.30)

Here, we opt for the hazard version of the GDM model as defined in Section 2.3.2. In order

to make fair comparisons with the GDM approximation model, given by Equations (3.6)–

(3.14), we attempt to keep as many of the modelling effects as similar as possible and set

the priors to be equivalent. Since the model for the total counts and the delay distribution

is now separate, we have effectively split up the intercept ι , hence we have ψd as independ-

ent intercept for each delay d for the expected relative proportions reported, and τ as an

intercept for the expected mean of the total counts. The other addition is a Beta-Binomial

dispersion parameter, ϕd, and the Negative-Binomial dispersion parameter θt . Similarly

to Equations (3.6)–(3.14), we include a second order random walk δt to capture the trend

in the expected mean λt . Also, we include a delay specific random slope over time πd and

a first order random walk ζd to capture the mean systematic variability in the expected

relative proportions reported. Finally, we have removed the three dimensional i.i.d cor-
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related random effect γt , since both the positive and negative covariance structure of the

expected partial counts can be captured by the Beta-Binomial distribution for zt,d|yt . To

fully specify the GDM model, the following priors were used:

τ ∼ Normal(0,102), (3.31)

σ2
δ ∼ 1

half-Normal(0,0.12)
, (3.32)

θ ∼ Gamma(2,0.02), (3.33)

σ2
β ∼ 1

half-Normal(0,12)
, (3.34)

σ2
π ∼ 1

half-Normal(0,12)
, (3.35)

ψd ∼ Normal(0,102), (3.36)

ϕd ∼ Gamma(2,0.02). (3.37)

These were chosen to be comparable to those selected for the GDM approximation model

priors (Equations (3.15)–(3.20)) where parameters are identical. Since both θ and ϕ do

not have equivalent parameters in the approximation model, these priors were instead

chosen as Gamma(r,θ) distributions, with rate parameter r and shape parameter θ , to

ensure they are strictly positive and reflecting the prior choices for the equivalent GDM

dispersion parameters in Stoner and Economou (2019).

Finally, we also compare our GDM approximation in INLA approach to the existing

and highly cited INLA approach by Bastos et al. (2019), which we reviewed in detail in

Section 2.2.2. This model does not attempt to capture the random correlated variability

between the partial counts or explicitly model the total counts. Instead, the partial counts

are modelled by a Negative-Binomial (NB) distribution with dispersion parameter ϕ̃ , and

is implemented by fitting a Negative-Binomial model in INLA. The following equations
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specify this model, which we later refer to as the “NB INLA” model,

zt,d ∼ Negative-Binomial(µt,d, ϕ̃); (3.38)

log(µt,d) = ι +δt +ζd +πdt; (3.39)

δt ∼ Normal(2∗δt−1 −δt−2,σ2
δ ), (3.40)

δ1,δ2 ∼ Normal(0,σ2
δ ), (3.41)

ζd ∼ Normal(ζd−1,σ2
ζ ), (3.42)

ζ1 ∼ Normal(0,σ2
ζ ), (3.43)

πd ∼ Normal(0,σ2
π). (3.44)

where ϕ̃ is the dispersion parameter of the Negative-Binomial distribution of the partial

counts. Similarly to GDM approximation model (Equations (3.6)–(3.14)), for the log of the

expected mean number of partial counts reported at each delay µt,d we define an intercept

term ι . Also, a second order random walk over time δt to capture the systematic variability

in the total counts. To capture the systematic variability in the delay distribution, ζd is a

first order random walk over delay and πd is an independent random slope of time for each

delay. Unlike the GDM approximation model, this model does not attempt to capture the

positive covariance of the partial counts with θ̃t or the negative covariance structure of

the partial counts using γt,d. The priors for the “NB INLA” model are given by,

log(ϕ̃)∼ Gamma(1,0.1), (3.45)

ι ∼ Normal
(

0,

√
1

10−6

2)
, (3.46)

σ2
δ ∼ Half-Normal(0,0.12), (3.47)

σ2
ζ ∼ Half-Normal(0,12), (3.48)

σ2
π ∼ Half-Normal(0,12). (3.49)

The choice of priors for this model is comparable to those fitted to the previous two

models and was informed by the choices in Bastos et al. (2019). This was done to ensure

the INLA approaches are fitted effectively and to reflect how the Negative-Binomial INLA

model, Equations (3.38)–(3.44), is currently being used operationally.
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3.1.3 Simulation experiment

For our simulation experiment, we fit all three models to simulated data sets, here we

detail how we generate each data set. First, we set the length of the simulated data to be

T = 100, and the number of delays to be Dmax = 6. The maximum number of delays for

this simulation study reflects those sometimes observed in real data and is consistent with

the number of delays often modelled throughout this thesis. Then, to specify a smooth

temporal trend in the mean of the total cases (λt), which we believe reflects potential real

world scenarios, we first generate a cubic spline ρt ,

ρt =Xtυ
(ρ), (3.50)

Ω(ρ) =M1/
(

σ (1)
ρ

)2
+M2/

(
σ (2)

ρ

)2
, (3.51)

υ(ρ) ∼ Multivariate-Normal(0,Ω(ρ)), (3.52)

where σ (1)
ρ = 5 and σ (2)

ρ = 5. We use the mgcv package to generate the spline basis matrix

Xt , and the penalty matrices M1 and M2. The cubic plate spline ρt has a zero mean

and we subtract the linear trend (as estimated using linear regression). We then take the

exponential of the de-linearised trend, ρt , plus an intercept term to generate the data we

then use a Negative-Binomial distribution for the total counts yt ,

yt | λt ,θ ∼ Negative-Binomial(λt ,θ); (3.53)

log(λt) = τ +ρt . (3.54)

The intercept is randomly simulated from τ ∼Normal(5,0.252), to reflect that the average

number of simulated cases is exp(5) across all simulations since the cubic spline ρt has a

zero mean. A relatively small variance was chosen because we are not primarily interested

in recapturing the intercept in this simulation experiment, so we do not require it to

vary much between simulations. On the other hand, a randomly generated dispersion

parameter with a large variance, θ ∼ Gamma(2,0.02), was used for each simulation to
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induce more variability in the dispersion of the total counts between simulations. Here,

the Gamma distribution is parameterised in terms of shape and rate, see Appendix A.3

for more details. The dispersion parameter of the Negative-Binomial model of the total

counts has a mean 2
0.02 = 100, and variance 2

0.022 = 5000 across simulations.

Next, for the partial counts we simulate using a GDM model with a maximum possible

delay of Dmax = 6,

zt,d|νt,d,ϕ ,Nt,d ∼ Beta-Binomial(νt,d,ϕd,Nt,d = yt −
d−1

∑
j=1

zt, j); (3.55)

CLR(pt,d) = ψd +ηt∗, (3.56)

pt,Dmax =−
Dmax−1

∑
d=1

pt,d, (3.57)

νt,d =
exp(pt,d)

∑Dmax
d=1 exp(pt,d)

, (3.58)

with intercept ψd and linear temporal trend ηt∗, where t∗ is a scaled variable of time

to improve the interpretability of η and aid the efficiency of the MCMC algorithm. The

absolute proportions reported (pt,d) have been generated using a centralised log ratio

(CLR) transform:

CLR(pt,1:(Dmax)) =

[
log
(

pt,1

g(pt)

)
, ..., log

(
pt,Dmax

g(pt)

)]
, (3.59)

where g(pt) is the geometric mean of pt . Simulating the trends in the partial counts in

the absolute proportions instead of the relative proportions, which are modelled in “GDM

NIMBLE” (Equations (3.6)–(3.14)), is to attempt not to give the GDM model an unfair

advantage when compared to “NB INLA” and “GDM approximation INLA” which do

not model the relative proportions.
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For each simulation, the delay specific intercept is generated by ψd ∼ Normal(0,0.252)

to reflect no overall trend across simulations in the absolute proportions over delay, and

the average absolute proportion being similar between simulations as this is not a para-

meter of interest. The linear slope parameter for the scaled time variable is generated by

η ∼ Normal(0.2,0.12), hence the simulations reflect a potential real-world scenario where

reporting in the delay distribution improves over time at different rates for each simula-

tion. The relative proportions reported are then calculated by Equation (3.58), which we

derive in Section 5.3.3. For the Beta-Binomial dispersion parameter, for each simulation

we generate the partial counts for three separate values, ϕ ∈ {2,6,10}, resulting in three

separate data sets, all of length T = 100. These values of ϕ were chosen to show how

the three models behave when different amounts of the total random variability for the

partial counts comes from the Generalised-Dirichlet distribution. We randomly generate

these data sets as outlined above for 100 simulations, giving a total of 300 individual data

sets.

The simulated total counts are split over six delays to give the partial counts; partial

counts reported in the first delay are observed for the whole time series up to t = 100, and

all partial counts are reported by t = 95. This reflects a scenario where the minimum delay

is d = 1 (0 days) and the maximum delay length is Dmax = 6 (5 days) which is consistent

for how we model real world data in Section 3.4.

The results in Figure 3.1 show the model’s ability to capture the trend in the total counts

in three (of the 100) randomly simulated data sets (rows) for each of the models of interest,

for the three chosen values of the Beta-Binomial dispersion parameter ϕ (columns).
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Figure 3.1: Median posterior predictions (solid lines) and 95% predictions intervals (dotted
shaded regions) for the GDM approximation model fitted in INLA, the GDM model fitted
in NIMBLE, and the Bastos et al. (2019) Negative-Binomial (NB) model fitted in INLA.
The nine panels show for the three randomly selected simulated data sets (rows) the affect
of three chosen values of the Beta-Binomial dispersion parameter (columns), ϕ ∈ {2,6,10},
where the points give the simulated counts.
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In Figure 3.1, both the INLA models exhibit more uncertainty in predictions for smaller

values of ϕ , the Beta-Binomial dispersion parameter in the simulation model. In practice,

the positive covariance in the partial counts, induced by the dependence on the total

counts, and the negative covariance, induced by the sum constraint, may approximately

cancel out. Hence, considering smaller values of ϕ may be forcing the negative covariance

in the partial counts to be greater, thus unbalancing this cancellation. For example, when

ϕ = 2 (the smallest value of ϕ considered) this induces more variability in the probabilities

of the delay distribution than larger values of ϕ , and hence more competition in the

composition of the total counts yt which the partial counts zt,1:D are constrained to sum

to. Thus, smaller ϕ values result in greater negative covariance between the partial counts.

Therefore, when ϕ = 2 the “GDM NIMBLE” model (Equations (3.21)–(3.30)), which

includes a Generalised-Dirichlet prior for the probabilities of the delay distribution, is able

to capture this negative covariance. This is reflected by the “GDM NIMBLE” in Figure 3.1

displaying more certain prediction intervals for ϕ = 2 compared to the other two models.

We would also expect the “GDM approximation INLA” model (Equations (3.15)–(3.20))

to be able to capture this negative covariance due to the inclusion of the random effect

γt ∼ MVN(0,W−1
γ ). However, it is clear it is not as effective at separating the positive

and negative covariance of the data as the GDM, since its prediction intervals are wider

across all values of ϕ , and more uncertain for smaller values of ϕ . Similarly, the “NB INLA”

model (Equations (3.38)–(3.44)) is restricted in its ability to capture unusual covariance

structures (as discussed in Section 2.2) due to the assumption the partial counts are

conditionally independent Negative-Binomial distributions.

Occasionally in Figure 3.1 the “GDM approximation INLA” model appears to have slightly

narrower prediction intervals compared to the “NB INLA” model, which may identify

scenarios where the introduction of the correlated random effect is allowing the GDM

approximation model to capture some of the negative covariance in the partial counts.

However, both the INLA models exhibit relatively wide and non-smooth 95% prediction

intervals compared to the GDM model. Both the INLA models do not explicitly model the

total counts (where as the GDM does), which makes it difficult for the models to separate
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the random variability of the total counts and the partial counts. The variability in the

partial counts over delay also comprises of a negative and positive covariance structure

which is induced by summing to the total counts and being compositional dependent

on the total counts. Therefore, the Multivariate-Normal random effect γt in the “GDM

approximation INLA” model appears to be unable to separate and capture the negative

covariance from the positive covariance.

To quantify the difference in prediction performance across all simulations, we compare

three model metrics in Figure 3.2. First, we calculate the mean absolute error of the median

posterior predictions compared to the true simulated data, to quantify the accuracy of

the point predictions. Next we calculate the mean difference between the upper 97.5%

and lower 2.5% quantiles of the posterior predictions, giving the mean 95% prediction

interval width, to measure the precision of predictions. Finally, the coverage measures the

proportion of the simulated totals that fall within the respective 95% prediction interval

width, to quantify the ability of the model uncertainty to capture the true data. We

calculate each metric (columns) by model (colour) and the chosen values of ϕ , the Beta-

Binomial dispersion parameter, used to generate the data (rows). The x-axis gives the

prediction time difference (PTD) that the metric is calculated for, which is the difference

between when the counts we are predicting occurred (t) and the current time we are

nowcasting for (Tnow = 100).
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Figure 3.2: From left to right, the calculated mean absolute error, mean 95% prediction
interval width and mean 95% prediction interval coverage for the posterior predictions of
the 100 simulated data sets. For each chosen value of ϕ ∈ {2,6,10} (rows), the metrics
are calculated across the prediction time difference (x-axis) of the nowcasts. The models,
indicated by colour and shape, are; the GDM approximation model fitted in INLA, the
GDM model fitted in NIMBLE, and the Negative-Binomial (NB) model fitted in INLA.

In Figure 3.2, on average the mean absolute error appears to be smallest for the “GDM

NIMBLE” model for all three chosen values of ϕ ∈ {2,6,10}. But, as the chosen value

of ϕ increases the mean absolute error between models becomes more comparable. This

may suggest that the positive random variability induced into the partial counts by being

conditional on the total counts, through the Negative-Binomial dispersion parameter θ ,

is similar in magnitude to the negative covariance, due to the sum to a total constraint

of the partial counts, when ϕ (the Generalised-Dirichlet dispersion parameter) used for

simulation is smaller. This could mean for smaller values of ϕ , the GDM is able to predict

the total counts more accurately as it has more flexibility to be able to capture and

separate both types of random variability, owing to explicitly modelling the total counts

and capturing the compositional structure of the partial counts. However, the “GDM
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approximation INLA” model does have a smaller mean absolute error than the “NB

INLA” model across all PTD’s for ϕ = 6 and ϕ = 10. Hence, the correlated multivariate

normal effect may be able to capture some of the negative random variability in the total

counts. But, it appears to not do so when ϕ = 2, again due to the random variability

being particularly large or similar in magnitude to the positive variability in the partial

counts.

For prediction interval width, the “NB INLA” model has wider intervals than the “GDM

NIMBLE” model and often the “GDM approximation INLA” model, this may reflect ex-

cessive model uncertainty compared to the alternative models, and results in the higher

coverage observed for “NB INLA”. Meanwhile, during the prediction time difference period

of −20<PT D≤−10, the “GDM approximation INLA” models has similar or lower predic-

tion interval widths compared to the “GDM NIMBLE” for ϕ = 6 and ϕ = 10 respectively,

but this is in conjunction with lower coverage in that same period. Hence, the model

uncertainty of “GDM approximation INLA” is less likely to be capturing the true data

for −20 < PT D ≤ −10, and has larger prediction interval width for −10 < PT D ≤ 0, re-

flecting more uncertainty when less of the partial counts have been observed. Therefore,

the “GDM NIMBLE” model has the most consistently narrow prediction interval widths

across the prediction time differences for all chosen values of ϕ .

This simulation experiment shows that explicitly modelling the total counts within the

modelling framework does appear to be crucial in obtaining optimal precision in model

nowcast predictions. But, a significant drawback of this approach is its run time compared

to the two INLA models. The “GDM NIMBLE” models takes approximately 18 minutes

to run per (simulated) data set where as the “GDM approximation INLA” takes approx-

imately 43 seconds and the “NB INLA” takes approximately 31 seconds. The rest of this

chapter investigates avenues for improving the computational speed of the GDM model.
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3.2 Improving MCMC Sampling

To the best of our knowledge, in all published literature so far the GDM method has

only been fitted using Markov Chain Monte Carlo (MCMC) techniques, specifically with

the R package NIMBLE. This software package can be used to fit general statistical

models that can be represented as a direct acyclic graph, as we discussed in Section 2.1.2.

The GDM is not a member of the standard exponential family of distribution, and the

non-linearity of modelling the relative proportions reported means that a full predictive

MCMC method for inference is required (Stoner and Economou (2019)). However, the

more extensive model run times of MCMC methods potentially render the GDM less

operationally viable, especially within disease nowcasting contexts. As a consequence,

possible alterations could be considered to try to increase the computational speed of the

MCMC model fitting.

One approach is to increase the speed of which samples are taken for a given number

of iterations. In fact, Seaman et al. (2022) showed that by formatting the GDM model

such that there are no missing partial counts reduced the run time of the GDM model.

In Stoner and Economou (2019), the original GDM fitted in NIMBLE included data with

missing values for the unobserved partial counts (zt,d) as well as the missing total counts

(yt) in the MCMC algorithm. Hence, NIMBLE assigned a Beta-Binomial distribution

for each of the unobserved partial counts, and the missing values of zt,d were sampled

by the GDM model. Since the sampling of other parameters, such as the Beta-Binomial

mean and dispersion parameters, depend of the zt,d being sampled, sampling the missing

partial counts increases the auto-correlation in the model (as explained below). However,

the missing partial counts are not needed to predict the total counts and therefore are

unnecessarily sampled when included in the model as missing data values. Intuitively, the

unobserved partial counts can’t provide additional information in the model as they are

unobserved.
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By including Beta-Binomial models for unseen parts of zt , z(unobs)
t , and sampling them

as part of the MCMC algorithm, we are introducing needless dependency structures

in the sampling of yt . In this situation, the sampling of yt will involve calculations for

p(z(obs)
t ,z

(unobs)
t | yt) at each iteration, which will depend on the sampled values of z(unobs).

This dependence on the sampling of z(unobs) induces auto-correlation in the MCMC

sampling, which compounds the computational expense of sampling z(unobs).

By including all of these in the MCMC, we are generating samples from p(y | z(obs)
t ),

where the MCMC is marginalising over z(unobs)
t . I.e., we are generating samples from:

p(yt | z(obs)
t ) = ∑

z
(unobs)
t

p(yt | zt). Thus, we would obtain the same predictions by only

including probability models for z(obs)
t .

We know that the GDM can be expressed as a series of conditional Beta-Binomials, i.e.

p(zt | yt) = p(zt,1 | yt)p(zt,2 | yt ,zt,1) . . . p(zt,D | yt ,zt,1 . . . ,zt,D−1). (3.60)

As long as z(unobs)
t come strictly after z(obs)

t in the series zt,1, . . . ,zt,D, we can drop the

models for z(unobs)
t , since all of the terms on the right hand side of the above equation

depend only on yt and zt,d that come before in the series. This situation holds in the

situation where unobserved zt,d only arise due to reporting delays and the delayed counts

are observed sequentially, by definition.

In summary, we only need to include Beta-Binomial models for z(obs)
t , which avoids a

source of posterior autocorrelation and computational expense associated with sampling

z
(unobs)
t . Thus, modifying the GDM implementation from Stoner and Economou (2019)

to achieve this, as done by Seaman et al. (2022), will reduce the computation time per

iteration and, likely, the number of iterations needed to obtain a converged set of posterior

samples of sufficient quality (e.g. as quantified by effective sample sizes, as detailed in

Section 2.1.1).
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3.2.1 Parallel processing

Further reductions in computation time may be achievable by making better use of par-

allel computing. This means, where possible, carrying out multiple computation tasks

simultaneously on separate processing cores, rather than sequentially.

In practical use of MCMC methods, multiple Markov chains are usually run when obtain-

ing samples from the posterior. This is to determine convergence and to help diagnose

multi-modality by assessing whether chains starting from different points across the para-

meter space all converge to the same maxima, as discussed in Section 2.1.1. Before running

the MCMC chains, the model must be specified, including the likelihood and the priors for

all parameters. This step ensures the sampler has all the necessary information to explore

the posterior distribution. In NIMBLE, the model and the MCMC algorithm are compiled

separately into C++ code to enhance performance, especially for complex models. The

compilation step is done for each MCMC chain separately to improve the efficiency of

running the MCMC. Once compiled, the MCMC algorithm is run for each chain.

Since the chains are independent of each other, we can greatly reduce computation times

by running them in parallel simultaneously, as opposed to running them sequentially. This

functionality is not built into the NIMBLE software package we rely on (Section 2.1.2),

and the choice of parallel processing method is limited because each chain requires its

own instance of the compiled model and MCMC objects, which cannot be shared across

parallel processes due to memory isolation and the interaction with compiled C++ code.

There are two main approaches of parallel processing for running the MCMC chains;

copying the current version of R to each core, or launching a new version of R on each core.

Both of these methods are possible using the function included in the R package parallel

(R Core Team (2023)). The first approach, known as the forking approach, is where
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processes share a parent memory space and the child processes are then implemented

separately. The forking approach is only used for running parallel process across cores on

a single machine, and is more straightforward to implement than the second approach

(Peng (2020)), using the mclapply function.

The second approach, known as the socket approach, can be used on any computing

system. Each process is run on a separate network with its own memory space, so this is

ideal for large scale parallel computations and can even be set up to run over different

machines. This makes it more convenient for the applications covered in this thesis as it

will be easier to transfer to novel and potentially operational contexts that could utilise

multiple machines. As shown in de Valpine et al. (2021), the socket approach can be

implemented by creating a socket cluster with the makeCluster function in R, which

assigns the number of cores the task will be run across. The NIMBLE model code is then

built into a function that is executed, in parallel using the cluster, with the parLapply

function.

An alternative implementation of the socket approach, using the R package doParallel

(Corporation and Weston (2022)), is opted for in Stoner and Economou (2019) using the

dopar(.) function. However, this approach does not use clusters to run the entirety of the

NIMBLE code in parallel (including compilation and MCMC chains) and instead only runs

the MCMC chain sampling in parallel. As previously mentioned, the NIMBLE compilation

step is done for each MCMC chain separately, so this may not be the most efficient

parallelisation technique to adopt. In Section 3.3, we compare the original socket approach

used in Stoner and Economou (2019) (with R package doParallel) to the cluster based

approach (R package parallel) to formally determine the potential gain in computational

speed of updating the parallelisation method used. A further potential benefit of the

cluster based approach is the ability to parallelise models over quantities other than the

number of MCMC chains. For example, if the same model is being fit independently to
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multiple regions or age groups then this could be done in parallel instead. This could be

beneficial for operational surveillance systems by further reducing computational costs,

especially if the number of regions or other quantity being parallelised over is greater than

the number of MCMC chains used.

Both versions of the socket approach were tested when implementing the GDM framework

in NIMBLE for the case studies in Section 3.4, where the original approach is used for

all initial implementations and the cluster approach is used when explicitly stated in the

version name. As discussed further in Section 3.4.1, we found that the parallel socket

approach was more efficient than the doParallel for both case studies covered in this

chapter. Hence, this is the method we adopted in the final iterations of this model, and

for the remainder of this thesis for models that require an MCMC approach, to reduce

the computational cost.

3.3 Direct Optimisation of the Joint Posterior

Recall from Section 2.1.1 that we must select initial values for all parameters and unob-

served data for MCMC algorithms.

Gelman and Rubin (1996) advise to have some idea of the location of the posterior within

the parameter space before fitting a Bayesian model, to help check that MCMC output is

sensible and help set the starting points of MCMC algorithms. Point estimates for starting

points can be calculated using maximum likelihood estimates (MLE) or posterior modes.

MLEs are obtained by maximising the likelihood function p(x | θ), and thus finds values
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of θ that maximises the probability of the observed data x. On the other hand, Maximum

A Posteriori (MAP) estimates, estimate θ by maximising the posterior p(θ | x), and hence

obtain estimations using both the likelihood and the prior, since by Bayes theorem we

have p(θ | x) = p(x|θ)p(θ)
p(x) .

However, analytically calculating the MLE or MAP estimates can be challenging for

multivariate problems due to complex likelihood functions, and iterative methods may

be needed to find the maximum of the log-likelihood or the posterior modes, such as

expectation–maximisation (EM) algorithms. Gelman and Rubin (1996) argue that using

approximation methods as a starting point for iterative methods gives users an initial idea

of the location and scale of the posterior distributions and facilitates obtaining samples

for the initial values of the MCMC algorithms. These initial values are otherwise time con-

suming to set for complex models due to hierarchical structures with potentially missing,

longitudinal and/or multivariate outcomes that have to be considered by programmers.

In a example application given by Harms and Roebroeck (2018), they set out to make

MCMC sampling in diffusion MRI analysis faster and more robust. Since the MLEs were

obtainable in this case, the point estimates were used to initialise the Markov chains.

However, since the GDM framework is fully Bayesian, we believe that MAP estimates

are more appropriate. Hence, we focus on improving MCMC computational efficiency by

setting the initial values of the model parameter for MCMC chains closer to their even-

tual, converged distribution using the posterior modes. Since the chains converge to the

posterior we can attempt to estimate the parameter values of model effects and unob-

served data in the model by directly optimising the joint posterior to find its maximum.

Moreover, these estimates of the parameters are usually obtained in a much quicker time

frame than the equivalent MCMC posterior samples for a given model.
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Due to the nature of operational disease surveillance systems, it is likely that models will

be run periodically to monitor the progression of an outbreak. For example, they may

be re-run every time new counts are reported to gain the most up-to-date and informed

predictions. In this scenario, it would be possible to inform parameter starting values based

on the posterior distribution of those parameters from previous model runs to potentially

improve model speed. Hence, the methodology we suggest here has been envisioned for

use in scenarios where no current operational surveillance system has been set up.

In addition to providing sensible initial values for MCMC chains, MAP estimates could

also prove to be a useful output in their own right. In Section 1.2, we argued that measures

of uncertainty are important in the context of disease surveillance, so that public health

officials can appropriately prepare when utilising the nowcasting methods. However, point

estimates, including MAP estimates, that are more readily available than the measures of

uncertainty that will eventually be available, as an output of the MCMC procedure, could

provide a timely “early look” at eventual nowcasts and forecasts of the total counts. This

could prove vital in a fast-moving situation, giving decision makers initial insights into

e.g. a rapid outbreak while awaiting the full picture from a potentially time consuming

MCMC run. The MAP estimates could also flag any potential issues or strange results

from the model, giving the technical practitioner responsible for the modelling time to

potentially address problems (e.g. incorrectly recorded data) before committing to an

MCMC run.
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3.3.1 Optimisation algorithm

There are many different R functions that carry out different optimisation algorithms. Tri-

alling different methods included the optim function available in the base R distribution,

as well as the tnewton and varmetric functions from nloptr (Ypma (2014)) package.

But, I found that the trustOptim (Braun (2014a)) package, using the function of the

same name (trust.optim), gave estimates of the nowcasted total counts closest to the

true totals reported.

Braun (2014b) explains the difference between the trust region algorithm that is used

by trust.optim and the line search methods used in alternative non-linear optimisation.

Line search algorithms choose the distance along a given line, usually determined by

the current gradient, that results in the greatest improvement in the objective function

being optimised. However, if the objective function is non-concave or ill-conditioned the

algorithm may be inefficient or fail. On the other hand, the trust region approach sets a

maximum radius around the current point, which creates the trust region. The next point

is the minimum of a quadratic approximation of the objective function that remains in

this trust region, the approximation involves the gradient and Hessian of the objective

function. If the next point is not finite, or leads to an inefficient step (with a worse or

insufficiently better objective function), then this new point is rejected, the trust region

is shrunk, and the algorithm step is repeated. Hence, trust region approaches are more

robust and capable of finding posterior modes (Braun (2014b)). However, this method

will converge to a local optimum. To determine potential multi-modality in the objective

function this method would need to be employed with multiple starting points.

The three different available methods in the function trustOptim(.) determine how the

Hessian is computed and stored. One requires the function to have a sparse Hessian

structure, which also needs to be calculated. Since this cannot always be assumed, such

as for the GDM model, two alternative quasi-Newton methods that estimate the inverse
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of the Hessian are given. The Broyden–Fletcher–Goldfarb–Shanno (“BFGS”) method was

found to perform faster and maximise the objective function more effectively than the

Symmetric Rank 1 (“SR1”) method when applied to the GDM. “BFGS” uses the repeated

estimates of the gradient to trace the curvature of the objective function and approximate

the Hessian. However, due to the storing of the Hessians this method can be slow for

problems with a large number of parameters. This issue was reduced by optimising each

spatial region in a data set independently, and so this independent optimisation by spatial

region was adopted for our approach.

In this context, the objective function we are maximising is the summed log probability

density of the parameters we are estimating, and the gradient of this function is given

by a numerical approximation of the first derivative using a simple epsilon difference

calculation. This is done by the grad function from the numDeriv (Gilbert and Varadhan

(2019)) package. Even though more complex gradient approximation calculations can be

done with this function, it was found that these increased the run time of the optimisation

without resulting in noticeably more accurate estimates.

3.3.2 Surrogate model

The aim of the optimisation is to obtain approximations of the Maximum A Posteriori

(MAP) estimates by maximising the log joint posterior, given by log(p(θ | x). Therefore,

obtaining the values for all unknown random quantities in the GDM model that have the

highest posterior probability, i.e. the highest probability given the observed data and the

priors. This includes the unobserved y values, dispersion parameters, model intercepts,

and the multiple parameters required to construct each spline. Since the total counts in

the GDM model are discrete this creates difficulties when trying to optimise them as the

optimisation algorithm will have to be altered to identify the discrete parameters as well

as assign them discrete values. To sidestep this issue, we define a surrogate model that

has most of the same parameters as the GDM, while not including the total counts.
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Hence the surrogate model is a marginal Negative-Binomial model of the partial counts,

log(λt,s) = f (t,s), (3.61)

zt,d,s|ϕ̃d,s, pt,d,s,λt,s ∼ Negative-Binomial(pt,d,sλt,s, ϕ̃t,d,s), (3.62)

probit(St,d,s) = g(t,d,s), (3.63)

St,d,s =
d

∑
i=0

pt,i,s. (3.64)

The mean number of counts reported at delay d is given by pt,d,sλt,s, where λt,s is the

expected mean of the total counts and pt,d,s are the expected proportions reported. The

dispersion of the Negative-Binomial distribution is captured by ϕ̃t,d,s. Crucially, this model

has the same systematic model effects for the total count and the reporting delay as the

GDM but the total counts are not included in the model. The GDM model is given by,

yt,s ∼ Negative-Binomial(λt,s,θs) (3.65)

log(λt,s) = f (t,s) (3.66)

zt,d,s | Nt,d,s ∼ Beta-Binomial(νt,d,s,ϕd,s,Nt,d,s) (3.67)

νt,d,s =
St,d,s −St,d−1,s

1−St,d−1,s
(3.68)

probit(St,d,s) = g(t,d,s), (3.69)

which does include the total counts as Nt,d,s = yt,s −∑d−1
j=1 zt, j,s. Therefore, there are no

dispersion parameters for the totals to be optimised in the surrogate model (Equa-

tions (3.61)–(3.64)), and the Negative-Binomial dispersion parameter ϕ̃t,d,s for the delay

distribution is not directly comparable to that of the Beta-Binomial dispersion parameter

ϕd,s of the GDM model. Therefore, the MAP estimates for the GDM will not be exact since

this model is only a close approximation, and the original GDM dispersion parameters

will require separate optimisation.
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For the nowcast period, the approximate MAP estimates of the total counts (yt), are

obtained by summing together the MAP estimates of the missing partial counts and any

observed partial counts over delay. For the forecast period, estimates of yt are set to be the

approximate MAP estimates of the expected mean of the total counts (λt,s) rounded up

to the nearest integer. Hence, optimising the surrogate model given by Equations (3.61)–

(3.64), compiled with random initial values, results in approximate MAP estimates of all

parameters except the dispersion parameters.

The GDM survivor model (Equations (3.65)–(3.69)), can then be compiled using these

estimate values of the parameters, from the optimisation of the surrogate model, as the

initial values of the MCMC chains. But, before the MCMC is run, the compiled GDM

model is optimised for just estimates of the dispersion parameters of the partial counts

(ϕ) and total counts (θ ). This can be done as all other parameters are now fixed at

their initial values (the approximate MAP estimates). As a consequence, when the GDM

model is then run with the initial parameters now all set to their respective approximate

MAP estimates, the chains should require less burn-in. This is because the chains should

converge quicker as they start closer to their eventual converged distribution, so we would

expect the number of iterations discarded before convergence (the burn in) to be less.

3.4 Case Studies

To determine the effectiveness of optimising the joint posterior of the GDM model in

reducing the total run time of the framework, we applied this strategy when modelling

two real-world case studies. The respective data sets are; the number of COVID-19 hos-

pital deaths in England and the number of SARI hospitalisations in Paraná, Brazil. The

COVID-19 data spans from April 2020 to July 2020, and the reporting delay of interest

is the difference in days between the date of death and the date the deaths are published

by NHS England (n.d.). The deaths are divided into 7 broad regions of England. On the
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other hand, the SARI data is weekly spans from January 2013 to May 2017 and hospital-

isations are given by the 22 health regions in Paraná. The delay we are modelling is the

weeks between the onset of symptoms of the hospitalisations reported and when the case

files for these hospitalisations are digitalised.

To assess the convergence and the quality of samples obtained from our optimisation

strategy, compared to randomly generating initial values for each chain that satisfy any

parameter restrictions (Gelman et al. (2013)), we computed a number of convergence

diagnostic metrics. First, we calculated the potential scale reduction factor (PSRF), given

by Equation (2.5) in Section 2.1.1, which measures the ratio of between sample variance

to within sample variance. If this is close to 1 then there is evidence the MCMC chains

have all found the same maximum, although this may be a local not global maximum.

Brooks and Gelman (1998) note that it is beneficial to set random initial values to ensure

samples between chains are not related, and hence multi-modality is more likely to be

diagnosed. Additionally, Gelman et al. (2013, Chapter 11) recommend setting starting

points with a wide range across the multiple MCMC chains so that the chains explore

the posterior distribution more effectively. However, due to the choice of initial parameter

values being determined by optimisation this is not possible for this application. Also,

the effective sample size (ESS), defined in Section 2.1.1, was compared to ensure that

the MCMC chains had been run for a sufficient number of iterations and burn-in. The

PSRF and ESS for the unobserved total counts (y), the expected mean of the total counts

(λ ) and the dispersion parameter of the total counts (θ ) are of particular interest as the

nowcasts of the total counts are the prediction of interest.

Five versions of the GDM model were fitted to each data set. Each version adds an

incremental change to the last, to assess the individual and combined influence of the

various changes:
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1. Firstly, we fit the Original GDM survivor framework as outlined in Equations (3.65)–

(3.69), which uses the doParallel package (Corporation and Weston (2022)) socket

technique for parallel processing.

2. Second, we modified the implementation of the original GDM so that no missing

partial counts are sampled during MCMC, as suggested by Seaman et al. (2022)

and detailed in Section 3.2, which gives the No missing z version.

3. Third, we altered the parameterization of several quantities in the No missing z

version so that no hyper-parameters are strictly positive, which gives the No miss-

ing z + reparameterized version. For example, we can assume that the log of any

parameter that is required to be positive, such as dispersion parameters, is a ran-

dom quantity that we assign a prior and sampler. The sampling will then take place

on the unbounded real line, but when the exponential of the random quantity is

taken it will still be strictly positive. This reparameterisation, so that all random

quantities in the MCMC algorithm exist in the unbounded real space, ensures that

the log joint posterior is well conditioned for compatibility with the optimisation

algorithm described in Section 3.3.

4. Next, to determine the impact of running the MCMC chains in parallel with the

parallel package (R Core Team (2023)) socket technique using clusters, compared

to the alternative socket approach used in Stoner and Economou (2019), we ran

the No missing z + reparameterized version using clusters in the No missing z +

reparameterized + clusters version.

5. Finally, the No missing z + reparameterized + clusters + optimisation version

includes the compilation and optimisation of the model given by Equations (3.61)–

(3.64) to get the approximate MAP parameter estimates, which is done in parallel

with one cluster. Once this is completed, in a second subsequent cluster, the es-

timates of the parameters are used as initial values for the same GDM as in No

missing z + reparameterized + clusters. The full GDM is optimised for the relev-

ant dispersion parameters in this second cluster before the MCMC is run. Due to

the optimisation step the model has to be fit to each spation region independently,

hence there is no nested hierarchical structure between regions as there is in all

previous implementations.
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3.4.1 Results

To compare the MCMC outputs, the ESS and PSRF were calculated for all parameters.

However, we focus here on the parameters for the expected mean total counts, λ , and the

predicted unobserved total counts themselves, since these are the predictions of interest.

The Original version acts as a baseline for these metrics. Although, using Equation (2.4)

with precision ε = 0.1 gives a lower bound of ÊSS ≥ 1708, which we instead use as a

rough guide more robust baseline for effective sampling if the ESS of the Original model is

particularly less than this lower bound. All versions of the GDM are detailed in Section 3.4,

and are fitted using the R package NIMBLE (de Valpine et al. (2017)) with the default

MCMC samplers.

It is important to note that for all the GDM models nested cubic splines are used, as

suggested in Stoner and Economou (2019) (Section 5.3.1). Hence, we assume that counts

are similar between regions with a mean trend for the total spatial area considered that

exhibits regional differences. However, for the final No missing z + reparameterized +

clusters + optimisation model, we fit a surrogate GDM model that assumes each regions

are independent and there is no spatial dependencies between them. As discussed in

Section 3.3.1, this reduced the run time of the optimisation step by reducing the number

of parameters in the model, and hence reducing the size of the hessian matrix that must

be stored.
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3.4.1.1 COVID-19 case study

First, we fit the 5 versions of the GDM to the COVID-19 deaths in England data set. The

data was censored such that only the deaths reported up to 33rd day were seen by the

model, where the data has been assumed to be fully reported after the cut off Dmax = 14

days. The model GDM models then nowcast up to the 33rd day, and the number of delays

modelled by the GDM was D = 6 days (where the remaining counts for 6 < d ≤ 14 are

implicitly modelled). We also include a forecasting period of 7 days, which is achievable

given the model considerations discussed in Section 2.3.3.

For our models of the daily COVID-19 hospital deaths in England we use the following

effects for the GDM versions that do not include an optimisation step. First, for the

expected mean of the total counts, we have

log(λt,s) = f (t,s) = ιs +δts , (3.70)

where ιs is a independent intercept for each region in England s. To capture the trend

in the total hospital deaths over time we have an nested cubic spline δt,s for each region,

which is centred on the cubic spline αt . Next, for the probit transform of the expected

cumulative proportions with

probit(St,d,s) = g(t,d,s) = ψd,s + γt,s +ζday[t],s. (3.71)

Here, γt,s is also a nested cubic spline over time for each region, centred on the cubic spline

ηt , to capture the change in the delay distribution over time. To capture the weekend effect

in reporting of COVID-19 deaths in England, ζday[t],s is a cyclic cubic regression spline for

the week day (Monday to Sunday) of day t (day[t]), which is centred on βday[t]. Finally,

ψd,s is an independent delay effect for each region, which captures the intercept of the

expected cumulative proportions reported, and increases over delay to satisfy the required

monotonicity of the expected cumulative proportions, St,d,s, also increase over delay. Each
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spline is fitted using the mgcv package, as outlined in Section 2.1.2.2, in the nested

formulation defined in Section 5.3.1. To fully specify the model, the following priors were

used for the Original and No missing z model, for Equation (3.70):

ιs ∼ Normal(0,102), (3.72)

α= Xtκα , (3.73)

Ωα = Stτα , (3.74)

κα ∼ Multivariate-Normal(0,Ωα), (3.75)

τα ∼ Inv-Gamma(0.5,0.5), (3.76)

δt,s = Xtκδs , (3.77)

Ωδs = Stτδs , (3.78)

κδs ∼ Multivariate-Normal(κα ,Ωδs), (3.79)

τδs ∼ Inv-Gamma(0.5,0.5), (3.80)

θs ∼ Gamma(2,0.02). (3.81)
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Similarly, the following priors were used for Equation (3.71):

ψs,1 ∼ Normal(0,102), (3.82)

ψs,d ∼ Normal(0,ψs,d−1,102), (3.83)

η = Xtκη , (3.84)

Ωη = Stτη , (3.85)

κη ∼ Multivariate-Normal(0,Ωη), (3.86)

γ(s) = Xtκ
(s)
γ , (3.87)

Ω
(s)
γ = Stτ

(s)
γ , (3.88)

κ
(s)
γ ∼ Multivariate-Normal(κη ,Ω

(s)
γ ), (3.89)

β = Xwκβ , (3.90)

Ωβ = Swτβ , (3.91)

κβ ∼ Multivariate-Normal(0,Ωβ ), (3.92)

ζs = Xwκζs , (3.93)

Ω
(s)
ζ = Swτζs , (3.94)

κζs ∼ Multivariate-Normal(κβ ,Ωζs), (3.95)

τγs ∼ Inv-Gamma(0.5,0.5), (3.96)

τζs ∼ Inv-Gamma(0.5,0.5), (3.97)

τη ∼ Inv-Gamma(0.5,0.5), (3.98)

τβ ∼ Inv-Gamma(0.5,0.5), (3.99)

ϕs,d ∼ Gamma(2,0.02). (3.100)

The splines were derived using the jagam(.) function from Wood (2016). In the above

equations, for the temporal cubic spline; Xt is the design matrix of the splines, St is the

penalty matrix, where τ(s)δ and τ(s)γ determines the smoothness of the splines, and 8 knots

were evenly placed from day 1 up to day 33 (where day 33 is the end of the nowcasting

period). For the day-of-week cyclic cubic spline; Xw is the design matrix of the splines,

Sw is the penalty matrix where τ(s)ζ determines the smoothness of the splines and 8 knots

were evenly placed to capture the changes over the 7 days. The Gamma and inverse-
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Gamma priors above are used for strictly positive parameters. The Gamma distribution

is parameterised by shape and rate parameters, and the inverse-Gamma is parameterised

in terms of shape and scale parameters (See Appendix A.3 & A.4 respectively for more

details). In the subsequent GDM versions which have been reparameterised to remove any

strictly positive model parameters, the following changes are made:

log(τα)∼ Normal(1.26,2.232), (3.101)

log(τδs)∼ Normal(1.26,2.232), (3.102)

log(θs)∼ Normal(4.3,0.82), (3.103)

log(τη)∼ Normal(1.26,2.232), (3.104)

log(τγs)∼ Normal(1.26,2.232), (3.105)

log(τβ )∼ Normal(1.26,2.232), (3.106)

log(τζs)∼ Normal(1.26,2.232), (3.107)

log(ϕd,s)∼ Normal(4.3,0.82). (3.108)

For the GDM model (Equations (3.65)–(3.69)) in the optimisation method we use the

modelling effects given in Equations (3.70)–(3.71) reparameterised priors that are strictly

positive as given above. However, we following effects in the surrogate model (Equa-

tions (3.61)–(3.64)) to reduce the number of parameters in the model. First, for the

expected mean number of COVID-19 deaths:

log(λt,s) = f (t,s) = ιs +δ (s)
t , (3.109)

where ιs is a independent intercept for each region in England s. To capture the trend

in the total hospital deaths over time we have an independent cubic spline δ (s)
t for each

region. Next, for the probit transform of the expected cumulative proportions with

probit(St,d,s) = g(t,d,s) = ψd,s + γ(s)t +ζ (s)
day[t]. (3.110)
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Here, γ(s)t is also a independent cubic spline over time for each region and ζ (s)
day[t] is a cyclic

cubic regression spline for the week-day effect. Finally, ψd,s is still an independent delay

effect for each region.

Table 3.1: Table of the total run time and diagnostic measures for different versions of
the GDM model fitted to COVID-19 hospital deaths in England. The columns from left
to right denote; the model version, the total run time in minutes, the number of MCMC
iterations, the number of MCMC burn in, the estimated mean ESS for all parameters,
the estimated mean ESS for just the λ parameters and the estimated mean ESS for all
unobserved y parameters. All GDM models were fitted using MCMC with 4 chains and a
thinning of 10. The top half of the table (rows 1-5) show model diagnostics for all models
where the MCMC iterations have been set to 200 000 and the burn-in has been set to
100 000, as used in Stoner and Economou (2019). The lower half of the table (rows 6-10)
differ in iteration and burn-in length for each model version as they have been set to
try and achieve comparable mean ESS and PSRF diagnostics. This was determined by
changing reducing the burn-in in increments and ensuring convergence has still occurred
through visually inspecting trace plots and ensuring the PSRF values didn’t worsen.
Then, iterations were reduced in increments until the ESS columns in the lower half were
approximately the same magnitude as the upper half.

Model Version Time Iterations Burn In ESS ESSλ ESSy

Original 19.45 200k 100k 3061 1714 7429
No missing z 19.00 200k 100k 3145 1712 7665
No missing z + reparameterized 25.58 200k 100k 7606 4900 11042
No missing z + reparameterized +
clusters 16.87 200k 100k 7578 4946 10983

No missing z + reparameterized +
clusters + optimisation 18.70 200k 100k 7577 4926 10983

Original 17.97 180k 80k 3133 1857 7337
No missing z 17.78 180k 80k 3193 1834 7626
No missing z + reparameterized 17.85 100k 30k 5284 3478 7706
No missing z + reparameterized +
clusters 9.07 100k 30k 5311 3527 7688

No missing z + reparameterized +
clusters + optimisation 9.85 90k 20k 5205 3397 7586

Initially, in the top half of Table 3.1, each model version was run for the same number of

iterations (200,000), burn in (100,000), and thinning (10). Thinning is used to reduce the

auto-correlation within chains and preserve computer memory: a thinning of k means only

every kth iteration is saved. The three ESS columns are the computed average ESS (after

computing the ESS for each parameter separately): for all parameters; just the expected

mean of the total counts (λ ); and just the unobserved total counts (y(unobs)), respectively.
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Looking at the top half of Table 3.1, for 200 000 iterations with 100 000 burn in, comparing

No missing z to the Original version shows that removing the missing partial counts

reduced the run time. However, the No missing z + reparameterized compared to the

Original version had much higher ESS values, but at the cost of a longer run time. This

tells us that the mixing of the MCMC chains was improved by modifying the model such

that there were no strictly positive parameters. This is likely as the MCMC algorithm no

longer had to reject negative samples that were proposed. Therefore, the MCMC chains

for these versions with this alteration don’t need the iteration length (iterations−burn in)

of 100 000 that the Original does in order to obtain the same ESS values.

To compare the time needed to achieve the same quality outputs, in the bottom half of

Table 3.1, the number of burn in and iterations were each altered in increments until the

PSRF and ESS metrics of the modified implementations approximately matched the Ori-

ginal benchmark values. Convergence was assessed by PRSF values, examining trace plots

for a sample of each of the parameters, and comparing the predictions and uncertainty of

the total counts. The proportion of the PSRF less than 1.05 was 1 for all model versions

for λ , for θ and for the unobserved total counts, so these are not included in Table 3.1.

From comparing rows two and seven of Table 3.1, an iteration length (calculated by

iterations−burnin) of 70,000, instead of 100,000, was sufficient to obtain equivalent MCMC

mixing, as reflected in the similar ESS metrics, for the model that had been reparameter-

ized to not include strictly positive parameters. Furthermore, the No missing z + repara-

meterized + clusters + optimisation version converged with less burn in, as determined

from both trace plots and PSRF calculations. Therefore, less iterations were required to

gain an iteration length of 70,000. A modest amount of burn in (20,000) was still needed,

despite initialising chains at the (approximate) MAP estimates, to allow the chains to

travel the (hopefully small) distance to the actual posterior of the GDM.
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With respect to run times, the results from the lower half of Table 3.1 show that the No

missing z + reparameterized + clusters version, which has a run time of 9.07 minutes, is

actually just under a minute quicker than the No missing z + reparameterized + clusters

+ optimisation version, which took 9.85 minutes to run, despite the number of iterations

being higher for No missing z + reparameterized + clusters. This is due to the time it

takes to compile the surrogate Negative-Binomial model which is optimised in No missing

z + reparameterized + clusters + optimisation.

However, a potential benefit to the No missing z + reparameterized + clusters + optim-

isation version is the optimised parameter estimates are available in under two minutes,

before the MCMC is then run. For the nowcast period, the approximate MAP estimates of

the total counts (yt), are obtained by summing together the MAP estimates of the missing

partial counts and any observed partial counts over delay. For the forecast period, estim-

ates of yt are set to be the approximate MAP estimates of the expected mean of the total

counts (λt,s) rounded up to the nearest integer. These estimates from the optimisation are

shown in Figure 3.3 alongside the eventual MCMC estimates from the GDM model.
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Figure 3.3: The daily COVID-19 hospital deaths in seven regions of England (points).
The first vertical black line denotes the start of the nowcasting period, prior to which all
the total hospital deaths are known. The second line on May 5th indicates the start of
the forecasting period, after which no counts of hospital deaths are known for the models
to use. The orange line shows the GDM model median posterior predictions obtained by
MCMC with the 95% prediction intervals given by the shaded region. The estimates of
the total counts obtained by optimising the surrogate Negative-Binomial model are given
by solid blue lines. Similarly, the dashed blue lines give the estimates of the Negative-
Binomial model expected mean.
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The optimisation estimates are close to the MCMC medians, and could therefore provide

decision makers with a crucial and relatively quick first look at the possible levels of the

disease while the MCMC is running. The full GDM model will then provide complete

predictive distributions and potentially an increase in accuracy through not using the

surrogate model.

3.4.1.2 SARI case study

For our second case study, we fit the 5 versions of the GDM (detailed in Section 3.4) to the

SARI hospitalisations in Paraná data set. The data has been assumed to be fully reported

after Dmax = 3 weeks (in which approximately 85% of the total counts have been reported

historically), and GDM models D = 2 weeks. For this data we nowcast up to 224 weeks

and forecasts up to 230 weeks (using the forecasting framework outlined in Section 2.3.3).

For the weekly SARI cases the state of Paraná in Brazil, we use the following effects. For

the log link of the expected mean of the total counts we have

log(λt,s) = f (t,s) = log(populations)+ ιs +δt,s +ξweek[t],s, (3.111)

where a population offset log(populations) is included for each of the health districts s in

Paraná. The mean SARI rate can vary considerably from region to region due to differences

in population sizes. Including log(populations) as an offset accounts for this variability so

that ιs only needs to capture differences in the per capita rate. This gives us the option to

use more constrained/informative priors but we don’t exploit that in this example as the

prior is given by ιs ∼ Normal(0,102). Additionally, including log(populations) also would

give the option to use a hierarchical prior or a spatially-structured prior for ι .
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To capture the temporal trend in the total weekly cases, we have a nested cubic spline

δt,s for each region. This is centred on αt , which is a cubic spline that captures the mean

trend across all regions. Similarly, ξweek[t],s is a nested cyclic cubic regression spline of the

seasonal trend of the SARI cases. The seasonal cycle of this spline is over the week of the

year (1 to 52) given by (week[t] ∈ 1, ...,52) for time t, and is therefore assumed to be the

same for each year such that 1 and 52 join. This nested spline ξweek[t],s, is centred on a

cyclic cubic spline for all regions βweek[t]. Hence, ξweek[t],s captures the overall trend and

the regional difference. For the expected cumulative proportions reported, we then model

probit(St,d,s) = g(t,d,s) = ψd,s + γt,s. (3.112)

Here, γt,s is also a nested cubic spline over time for each region to capture the change in

the delay distribution compared to the overall mean, which is captured by a cubic spline

ηt . Finally, ψd,s is an independent delay effect for each region. As in Section 3.4.1.1, when

defining the surrogate model (Equations (3.61)–(3.64)) we use the following model effects

where all temporal and seasonal splines are independent for each region and not nested:

log(λt,s) = log(populations)+ ιs +δ (s)
t +ξ (s)

week[t], (3.113)

probit(St,d,s) = ψd,s + γ(s)t . (3.114)
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Hence, for the surrogate model it is assumed that counts are independent for each region.

The priors as the same as for the COVID-19 model, apart from the seasonal spline which

is not included in the COVID-19 hospital deaths model. For all GDM model the priors

for the seasonal spline is given by:

β = Xwκβ , (3.115)

Ωβ = Swτβ , (3.116)

κβ ∼ Multivariate-Normal(0,Ωβ ), (3.117)

ξs = Xwκξs , (3.118)

Ωξs = Swτξs , (3.119)

κξs ∼ Multivariate-Normal(κβ ,Ωξs), (3.120)

log(τβs)∼ Normal(1.26,2.232), (3.121)

log(τξs)∼ Normal(1.26,2.232). (3.122)

For the surrogate model in the optimisation step the priors for the regionally independent

splines ξ (s)
week[t] are:

ξ (s)
week[t] = Xwκ(s)

ξ , (3.123)

Ω
(s)
ξ = Swτ(s)ξ , (3.124)

κ(s)
ξ ∼ Multivariate-Normal(0,Ω(s)

ξ ), (3.125)

log(τ(s)ξ )∼ Normal(1.26,2.232). (3.126)

For the temporal cubic splines we evenly place 18 knots up to week 224, and for the

seasonal cyclic cubic spline we evenly place 9 knots to capture the 52 week yearly cycle.
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The weekly SARI cases in the 22 regional health districts in Paraná, Brazil, is a much

larger data set compared to the COVID-19 hospital deaths in the previous section. Hence,

the models have a much longer run time and are measured in hours instead of minutes.

The top half of Table 3.2 consists of each model version being run for 2,000,000 iterations

with 1,000,000 burn in and a thinning of 1,000. Note that the proportion of the PSRF

less than 1.2 for λ , and less than 1.05 for θ , were both 1 for all models considered so are

not included in the table.
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Table 3.2: Table of total run time and diagnostic measures for different versions of the
GDM model fitted to SARI cases in Paraná, Brazil. The columns from left to right denote;
the model version, the total run time in hours, the number of MCMC iterations, the
number of MCMC burn in, the estimated mean ESS for all parameters, the estimated
mean ESS for just the λ parameters and the estimated mean ESS for all unobserved y
parameters, the proportion of the PSRF less than 1.05 for λ and less than 1.2 for the
unobserved y parameters. All GDM models were fitted using MCMC with 4 chains and a
thinning of 1000. The top half of the table (rows 1-5) show model diagnostics for all models
where the MCMC iterations have been set to 2 000 000 and the burn-in has been set to 1
000 000. The lower half of the table (rows 6-10) differ in iteration and burn-in length for
each model version as they have been set to try and achieve comparable diagnostics. This
was determined by changing reducing the burn-in in increments and ensuring convergence
has still occurred through visually inspecting trace plots and ensuring the PSRF values
didn’t worsen. Then, iterations were reduced in increments until the ESS columns in the
lower half were approximately the same magnitude as the upper half or close to a rough
lower bound of ÊSS ≥ 1708. This lower bound was calculated with Equation (2.4) where
ε = 0.1 is the user specified precision.

Version Time Iterations Burn in ESS ESSλ ESSy PRSFλ<1.05 PRSFy<1.2

Original 13.26 2000k 1000k 1270 2518 3510 0.986 0.990
No missing z 13.14 2000k 1000k 1288 2500 3496 0.991 0.977
No missing z +
reparameterized 14.46 2000k 1000k 1704 3511 3627 1 0.982

No missing z +
reparameterized +
clusters

13.72 2000k 1000k 1703 3496 3647 1 0.981

No missing z +
reparameterized +
clusters +
optimisation

13.83 2000k 1000k 1701 3470 3656 1 0.991

Original 18.84 2600k 1000k 1692 3585 5695 0.999 0.982
No missing z 18.29 2600k 1000k 1663 3443 3327 0.993 0.988
No missing z +
reparameterized 8.28 1200k 200k 1718 3545 3677 1 0.984

No missing z +
reparameterized +
clusters

8.30 1200k 200k 1715 3578 3662 1 0.963

No missing z +
reparameterized +
clusters +
optimisation

7.28 1050k 50k 1751 3571 3662 1 0.982
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The results in Table 3.2 convey a similar story to the COVID-19 case study, it is clear

that the removal of any strictly positive parameters has improved the mixing of the

MCMC chains due to the increase in ESS. Furthermore, removing missing partial counts

and running the chains in parallel using clusters improves the speed of the model. The

bottom half of the table, the burn in and then iterations of the different model versions

were altered until the ESS and PSRF values reflect similar values to those achieved by

the Original version with the iterations of 2,000,000 and burn in of 1,000,000. However,

for this SARI case study, since the ESS averaged over all parameters is only 1270, the

iterations and burn in were chosen to such that this value was closer to 1700 instead. The

lower half of Table 3.2, shows that only 50,000 burn-in is required for the No missing z +

reparameterized + clusters + optimisation version to achieve convergence, compared to No

missing z + reparameterized + clusters requiring 200,000 burn in. Also, the optimisation

model is the faster despite the additional time it takes to compile the marginal Negative-

Binomial model and carry out the optimisation. This shows that when the compilation

time takes up a smaller proportion of the overall run time due to a longer time series

over more spatial regions, the impact of this extra compilation time is negligible, unlike

in Section 3.4.1.1.

Once again an initial outline of the nowcasts and forecasts are given after completing

the optimisation before the full GDM model is run. The estimates in Figure 3.4 took

approximately 6 minutes to obtain and are relatively close to the final MCMC predictions.
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Figure 3.4: The weekly number of SARI cases in the three most populated health regions
of Paraná, Brazil (determined by the 2010 census) are given by the points on each plot.
The orange line shows the GDM model median posterior predictions obtained by MCMC
with the 95% prediction intervals given by the shaded region. The estimates of the total
counts obtained by optimising the surrogate Negative-Binomial model are given by the
solid blue lines, where dashed blue lines give the estimates of the Negative-Binomial model
expected mean.

As a result of the chains being run in parallel, increasing the number of MCMC chains can

increase the Effective Sample Size (ESS) of a model, with comparatively smaller increases

in run times compared to increasing the length of the chains. Table 3.3 compares the

Original model to the No missing z + reparameterized + clusters + optimisation version,

where both are using 8 chains instead of 4, for the same iterations and burn in (top two

rows). Then for row three of Table 3.2, the burn in and iterations of the No missing

z + reparameterized + clusters + optimisation version were reduced simultaneously, to

maintain an iteration length of 1 000 000, such that the PRSF values were still comparable

to the same No missing z + reparameterized + clusters + optimisation model version run

with only 4 chains (Table 3.2 row five). Just the total number of iterations were then

reduced until the ESS values were comparable to those calculated for the Original version

with 8 chains (Table 3.3 row one).
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Table 3.3: Table of total run time and diagnostic measures for different versions of the
GDM model fitted to SARI cases in Paraná, Brazil. The columns from left to right denote;
the model version, the total run time in hours, the number of MCMC iterations, the
number of MCMC burn in, the estimated ESS mean for all parameters, the estimated
ESS mean for λ , the estimated ESS mean for unobserved y, the proportion of the PSRF
less than 1.05 for λ and less than 1.2 for the unobserved y parameters. All GDM models
were fitted using MCMC with 8 chains and a thinning of 1000. The proportion of the
PSRF less than 1.2 for λ and less than 1.05 for θ were both 1 for all models in this table.

Version Time Iterations Burn in ESS ESSλ ESSy PRSFλ<1.05 PRSFy<1.2

Original 18.62 2000k 1000k 2555 4824 7078 0.997 0.988
No missing z +
reparameterized +
clusters +

optimisation

17.85 2000k 1000k 3454 7030 7356 1 0.995

No missing z +
reparameterized +
clusters +

optimisation

9.42 1050k 50k 3514 7107 7318 1 0.992

No missing z +
reparameterized +
clusters +

optimisation

6.70 750k 50k 2525 5036 5068 1 0.993

As expected, Table 3.3 shows that with more MCMC chains less iterations are needed

before suitable ESS are obtained and therefore the overall run time is approximately half

an hour less than for 4 chains. The improvement in run time has also been increased as

the optimisation is quicker when carried out over 8 computer cores instead of 4. Hence,

the time that the initial optimised parameter estimates are available was reduced from 6

to 4 minutes.
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3.5 Discussion

In this chapter, we have investigated potential avenues for improving the computational

efficiency, and therefore the operational practicality, of the GDM method. The GDM is

introduced in Section 2.3 as a competitive alternative to current state-of-the-art models

in terms of predictive precision. However, due to the current need to fit the GDM model

using MCMC techniques this makes it significantly computationally slower compared to

methods that utilise an INLA approach for fitting Bayesian models.

In Section 3.1 we presented one possible approach for approximating the GDM with a

latent Gaussian model that we can fit using the INLA approach. A strong motivation

for this was due to the fact that the Negative-Binomial INLA model proposed by Bastos

et al. (2019) does not fully capture the different sources of correlation within the partial

counts and is therefore unable to properly account for the variability in the data. However,

whilst our proposed GDM approximation in INLA model seemed to have less uncertainty

compared the Negative-Binomial model, its uncertainty was still excessive compared to

the GDM model, as shown by Figure 3.1. Hence, in applications where timeliness is a key

priority, the GDM approximation INLA model could give more reliable nowcasts than the

existing Bastos et al. (2019) Negative-Binomial INLA model. However, the GDM model

is still optimal for applications where decision makers require a precise picture of the

potential risk levels in a population.

Consequently, we then focused on improving the computational speed of the full GDM,

which can currently only be fitted using MCMC. First of all, we managed to improve

MCMC sampling efficiency by implementing some relatively straightforward changes. This

included; not modelling the unknown partial counts as advised by Seaman et al. (2022),

reparameterizing parameters such that none where strictly positive and using a cluster
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parallel processing technique to simultaneously carry out MCMC sampling. Results in

Section 3.4, Tables 3.1 & 3.2, show that all three of these changes resulted in improvements

in model run times. Due to the ease of implementation, whenever employing the GDM

model in subsequent chapters all three of these adjustments are adopted.

Next, we attempted to improve MCMC sampling efficiency by reducing the number of

iterations required as burn in for the chains. This was achieved by starting the parameters

in each chain at initial values that were likely to be close to the relative parameter values

once it eventually converged to the posterior. We determined these initial values by directly

optimising the joint posterior of the model. The results were promising as the run time of

the optimisation model was more than halved compared to the original model, as shown

for the case study of COVID-19 deaths in England by Table 3.1. Also, both the initial

optimised parameter values and the eventual MCMC posterior medians were close to

the true total counts they were nowcasting, as seen in Figures 3.3 & 3.4. Additionally,

the two step process of this approach could allow for decision makers to gain a quick

preliminary insight to the possible predictions from the optimised values and then examine

the uncertainty and get more precise predictions once the full GDM is fitted with MCMC.

Before this approach can be confidently adopted, a more thorough investigation into its

robustness, with an extensive simulation study, would need to be carried out. Since the

initial values of MCMC chains are not started from random values across the parameter

space there is a potential that it will be harder to diagnose multi-modality and convergence

in models (Gelman and Rubin (1996)) and could have a non trivial impact on final model

estimates. For this reasons, we do not utilise this technique in subsequent chapters.
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However, an additional strategy for reducing computation time that we have not covered

in this chapter is a moving data window. This has previously been adopted by nowcasting

methods such as Kline et al. (2022) and McGough et al. (2020), and we fully explore the

benefits of applying moving windows to nowcasting COVID-19 hospital deaths in England

for Stoner, Halliday and Economou (2022) in Section 4.2.4.
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In this chapter, we outline work that contributed to the Stoner, Halliday and Economou

(2022) paper, where we implement the GDM framework for delayed COVID-19 deaths

in England. This follows on from our investigation into the efficiency of the GDM model

in Chapter 3 where we refined the GDM framework. Key updates included omitting the

modeling of unknown partial counts (as noted by Seaman et al. (2022)), reformatting

model parameters to avoid strictly positive sampling, and implementing socket paralleliz-

ation using clusters. These improvements were applied in Stoner, Halliday and Economou

(2022), enhancing the GDM framework’s competitiveness against existing approaches.

The motivation for Stoner, Halliday and Economou (2022) was to determine the GDM’s

ability to capture all sources of variability in COVID-19 deaths in England suffering from

delayed reporting, and showcase it as a viable option for general operational nowcasting.

We summarise the four sources of variability that is present in delayed reporting data in

Section 1.1.3 and discuss existing nowcasting approaches in Section 2.2.

For Stoner, Halliday and Economou (2022) we applied the GDM framework to the English

fatalities data set and compared it to the most cited alternative approaches for nowcast-

ing using a 15-month rolling prediction experiment, detailed in Section 4.1. The data is

provided by the National Health Service for England (NHS England) and published as

daily counts of deaths occurring in hospitals within England by UK Government (2023).

This included patients that had either tested positive for COVID-19 or had COVID-19

mentioned on their death certificate. Daily counts were grouped in time by date of death

and in space by seven regions in England (e.g. London, South East, Midlands) and cap-

tured deaths reported from 4pm two days prior to 4pm one day prior to publication. The

data spans from April 2020 to November 2021.

The remainder of the work covered in this chapter outlines my specific contributions to

Stoner, Halliday and Economou (2022) as well as related work not published. Firstly,

Section 4.2 discusses the impact of auto-regressive structures, tensor product time-week

day interaction effects and moving data windows on the performance of the GDM model.

Whilst the investigation into auto-regressive effects and tensor product interactions were
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not included in the final paper manuscript it impacted final model decisions for the rolling

prediction experiment and was used to address reviewer comments regarding the necessity

of auto-regressive structures. On the other hand, implementing moving data windows

improved the computational speed of the GDM model and was applied to all model

versions in the paper for a fair comparison. Section 4.3 covers the simulation study that I

designed and carried out for the supporting information (Appendix C) of Stoner, Halliday

and Economou (2022) to determine the framework’s performance as a public health tool

in terms of parameter inference.

4.1 Correcting Delayed Reporting of COVID-19 Us-

ing the GDM Method

The ultimate goal of the statistical models used to aid disease surveillance is to make

accurate predictions of the total counts, i.e. cases or deaths, with reliable levels of certainty

which can be quantified. In Stoner, Halliday and Economou (2022), we investigate the

predictive performance of GDM for both the survivor (“GDM_Survivor”) and hazard

(“GDM_Hazard”) versions, as introduced in Section 2.3 by comparing to two approaches

which we reviewed in Section 2.2.2. First, we compare to the Negative-Binomial model

fitted in INLA from Bastos et al. (2019), and refer to here as the “INLA” model. Finally,

we compare to two version of the McGough et al. (2020) model, “NobBS” & “NobBS-14”,

where the latter is specified to have a 14 day moving window. Moreover, we also fit a

marginal Negative-Binomial version of the Survivor GDM, which would come under the

‘conditional independence’ group of model approaches that we introduce and review in

Section 2.2.2. This is to determine whether improvements over the other models are a

consequence of the conditional full GDM framework being able to capture all random

variability in the delay distribution, and not because of differences in the spatio-temporal
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structures used. To further ensure a fair comparison between models, all models were

fitted to each spatial region separately. We used COVID-19 hospital deaths data from UK

Government (2023) to carry out a rolling predictions experiment where the model was

fitted 20 times over 15-months.

This rolling prediction experiment includes 7 days of forecasting after each nowcast date,

where the forecasting GDM framework discussed in Section 2.3.3 is used. We calculate

the totals for each day by using a cut-off for delay of Dmax = 14 days. Also, we calculate

the prediction time difference (PTD), where a PTD greater than 0 correspond to dates

after the current date (Tnow) we are considering (i.e. forecasts). Meanwhile, a PTD of 0

days or less corresponds to predictions made leading up to the current date Tnow, when

at least one part of the total deaths has been observed (i.e. nowcasts).

As with previous implementations, the GDM was fitted in NIMBLE (de Valpine et al.

(2017)) where the default MCMC samplers were used. For each nowcast date a MCMC

chain was run with 20,000 iterations and 15,000 burn-in. The GDM was fitted to model

D = 6 days of delay to data in a 70 day moving window. To be comparable to competing

methods, the GDM assumed an indepedent model for each region. Hence, temporal and

week-day effect cubic splines were defined indepdently for each of the seven regions of

England, with no hierarchical nested structure. Within each 70 day moving window 10

knots where evenly placed for each of the temporal splines (where day 71 to 77 is the

forecasting period where no knots were placed). For the week-day cyclical cubic spline 8

knots where evenly placed to capture the closed 7 day cycle.

We summarise prediction performance by calculating three metrics given in Figure 4.1.

First, the mean absolute error (MAE), over region, of the posterior median predicted

number of deaths occurring on each day, to quantify how accurate point estimates are.

Second, is the mean 95% prediction interval width for the total number of deaths on each

day, which quantifies how precise/uncertain predictions are. Third, the 95% PI coverage,
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which checks whether uncertainty is adequately quantified by the model. Here, we use

the word “coverage” to describe the proportion of data points contained within their

corresponding 95% prediction intervals. Four days of nowcasting and forecasting were

chosen as a reasonable period that may be of interest to public health researchers when

monitoring the COVID-19 hospital deaths in England. In this period the nowcasts are

informative for correcting the reported counts and the forecasts prediction intervals are

still meaningful, where as they may become too uncertain to interpret if predicting too

far into the future.
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Figure 4.1: Mean absolute errors (left), mean 95% prediction interval widths (centre), and
95% prediction i9nterval coverage values (right) for daily COVID-19 deaths in the rolling
prediction experiment. Performance metrics are arranged on the x-axis by prediction
time difference (PTD), from -4 days up to +4 days, chosen as a period that may be
informative to public health practitioners when monitoring the COVID-19 hospital deaths.
The different models used to generate predictions are represented by different colours and
shapes. Source: Stoner, Halliday and Economou (2022).

The results, Figure 4.1, show that the both versions of the GDM out-performed the

competing models in all metrics measured. Specifically, more accurate point estimation

(smallest mean average error), higher precision (narrowest 95% prediction interval mean

widths) and non-excessive uncertainty (95% prediction interval coverage closest to 0.95).

Reasoning for this improvement in predictive power is likely to be due to the following

factors:

• Appropriate separation of systematic variability in the total count and in the delay.
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• Use of splines to capture all systematic temporal variation – this led to less over-

prediction in the total counts than the alternative approach of first order random

walk terms.

• Appropriate handling of the variability in the delay distribution with the flexibility

of the GDM model.

Moreover, McGough et al. (2020) exhibited increased uncertainty in predictions during

periods of particularly high cases. This kind of inconsistency can cause problems for

decision makers, especially since predictions are more vital during epidemic outbreaks

when case numbers are likely to be high.

4.2 Exploring Model Choices

4.2.1 Auto-regressive effect

Kline et al. (2022) adopt the modelling framework from Stoner and Economou (2019),

when modelling COVID-19 counts in Ohio. They suggest that not only does this improve

forecasting capabilities of the model, it also better imitates infectious disease dynamics.

Furthermore, they argue the AR terms can be more easily included in the hierarchical

spatio-temporal structures and avoid the need to specify knots, unlike the spline approach.

Hence, I investigated whether the GDM would perform better with a first order auto-

regressive (AR) term when modelling English COVID-19 deaths. However, through in-

specting auto-correlation function (ACF) and partial auto-correlation function (PACF)

plots, it was determined that there was no signs of auto correlation in the current model

residuals that needed to be captured. As you can see in Figure 4.2, the addition of an

AR term as well as the spline has little impact on the model scaled residuals. Similarly,
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just an AR term with no spline also has little effect on model residuals for nowcasting (to

the left of the vertical line) but leads to larger residuals for the period of forecasting (to

the right of the vertical line). Furthermore, the AR effect could theoretically absorb too

much of the variance, making the nested splines effectively drop out of the model when

both effects were included.
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Figure 4.2: Plot of the expected mean COVID-19 deaths scaled residuals for three different
specifications of the survivor GDM model effects. The vertical line indicates the date the
theoretical “current day” (May 5th 2020) the nowcasting is performed up to and the
forecasts are predicted after.
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4.2.2 Tensor product smooth interactions

The choice of link function for the delay distribution is not trivial and can have a large

impact on prediction performance. The two options given in Stoner, Halliday and Eco-

nomou (2022), and outlined in Section 2.3, are the ‘Hazard’ and ‘Survivor’ versions of the

model. Ultimately, we advocated for the survivor version for this application of COVID-

19 deaths in England as it involves modelling the more intuitive cumulative proportions.

Hence, it is easier to interpret and fit effect structures than when considering relative

proportions reported, especially for later delays. However, in order to settle on this choice

it was important to investigate whether utilising the hazard version to its full flexibility

was superior to the survivor version. Since effect structures for the hazard version are not

constrained to be monotonically increasing over delay it is more straight forward to fit

models that could capture more complex structures in the delay distribution of the data.

Hence, we investigated whether these complexities were present in the COVID-19 mor-

tality data by fitting a flexible delay structure using the hazard version of the GDM. We

model the logit-transformed expected relative proportion reported,

logit(νt,d,s) = β (t,d)
s + γt,s, (4.1)

where β (t,d)
s represents an independent cubic spline with shrinkage applied separately for

each delay (d) and region (s). To capture both the independent temporal and weekday

trends, as well as their interactions, γt,s is modeled using a tensor product spline. This

tensor product interaction of time and weekday allows for flexible modeling of any complex

relationships between these variables. All splines were fitted using the jagam function from

the mgcv package (Wood (2016)).
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Despite this extra flexibility, the model results were directly comparable to the hazard

version with independent penalised splines for time and day-of-the-week and no interaction

term, suggesting this interaction effect was not utilised and may not describe the data well.

Although, the time-week day tensor product interaction hazard model was not included in

the final version of the paper, developing the GDM to include tensor product interactions

further highlights its flexibility.

Hence, the simpler hazard version, with no interaction, was chosen for the final comparison

in Stoner, Halliday and Economou (2022) due to its less complex structure requiring fewer

parameters and having a more practical run time. Furthermore, the hazard version run

times benefited from carrying out MCMC using elliptical slice sampling (ess) for the delay

distribution parameters. The MCMC ess samplers available in NIMBLE are designed to

be able to efficiently sample latent variables with a multivariate Gaussian prior where

there are strong correlations between these variables, as discussed in Section 2.1.2.2. Tra-

ditional MCMC samplers such as the Gibbs or Metropolis-Hastings samplers are not able

to perform well under these conditions (Murray, Adams and MacKay (2010)). However,

the survivor version was still more viable as it took just over 1 hour to run compared

to the simpler hazard version taking approximately 3 hours. On the other hand, in this

chapter and in Stoner, Halliday and Economou 2022, we used the default NIMBLE MCMC

samplers for all other implementations of the GDM.

4.2.3 Improvements to application and implementation

Here we detail considerations that were undertaken to effectively implement our modelling

framework for COVID-19 hospital deaths in England, which was mainly inspired by the

work carried out in Chapter 3. Additionally, there was a need to ascertain the robustness

of the GDM for more varied data trends extending beyond the relatively short time period

of COVID-19 hospital deaths data our model was fitted to in earlier versions of our paper.

As a consequence, I developed an R script which could automatically download the latest



CHAPTER 4. NOWCASTING COVID-19 FATALITIES 131

daily COVID-19 hospital deaths data from the NHS England website. This allowed us to

fit the GDM model to a much longer time series of data, which therefore exhibited more

variation, which we then modelled using a rolling prediction experiment. I also carried

out work so that the modified INLA model based on Bastos et al. (2019) and the NobBS

model from McGough et al. (2020) were both fitted to this extended time series, to enable

the thorough comparison presented in Stoner, Halliday and Economou (2022).

As investigated in Section 3.4.1, to improve the computational speed of the all GDM model

versions, I implemented the recommendation in Seaman et al. (2022) of formatting the

model such that no missing partial counts are included to improve computational speed.

The missing partial counts are not needed to predict the total counts and therefore are

unnecessarily sampled when inputted in the model as missing data values, as explained

in Section 3.2. Furthermore, I ensured no model parameters being sampled were strictly

positive and used a cluster parallelisation approach, summarised in Section 3.2.1, which

reduced run times even further. The effectiveness of these alterations are fully investigated

in Section 3.4.1.

However, despite these improvements to the GDM framework, the computational run

times for the updated longer time series of hospital deaths in England weren’t desirable.

Following on from Kline et al. (2022) and McGough et al. (2020) who both use moving

windows when formulating their nowcasting frameworks, to improve computationally ef-

ficiency, I applied similar moving windows to the GDM framework in Stoner, Halliday

and Economou (2022). Not only does this improve the speed of our approach but it also

makes it more generalised. Longer time series would require more knots for splines of time

(which would increase run times further by increasing the number of parameters in the

model and thus its overall complexity), needing to be set by end users prior to model

running.
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What follows in the remainder of this section is text from Web Appendix E of Stoner,

Halliday and Economou (2022), which I contributed to jointly together with the other

authors.

4.2.4 Moving windows

As surveillance of a disease persists, available data may eventually span months or years.

Fitting complex models like those described in this article to long data time series can

prove burdensome. For example, when models involve splines of time, as time series grow

it may become necessary to increase the number of knots and therefore the number of

coefficients to be estimated. It is therefore increasingly common to see models for correct-

ing delayed reporting trained against only the most recent data, falling within a specified

moving data “window”. For example, Kline et al. (2022) used a moving data window of

90 days to reduce computation time when applying the GDM approach to COVID-19

cases in Ohio. Moving windows also have the potential to improve prediction perform-

ance in methods where the delay distribution is assumed constant in time, e.g. McGough

et al. (2020), as estimation is only informed by more recent data, which may be more

representative of the prediction period than older data.

Here we define a moving window in terms of the date of death, t, and the most recent date

of death for which data is available Tnow (called the data cutoff, C, in Stoner, Halliday and

Economou (2022)). Given a moving window size W (days), we only fit models to partial

count data zt,s,d and total count data yt,s falling within the range Tnow−W +1 ≤ t ≤ Tnow.
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We repeated the rolling prediction experiment for 3 different moving window lengths (W )

to help determine general patterns in prediction performance and computation time. For

the GDM Survivor model, we compared a moving windows of 5 weeks with 5 knots for

temporal splines (W = 35 days), 10 week with 10 knots for temporal splines (W = 70 days)

and 15 weeks with 15 knots for temporal splines (W = 105 days).

To investigate differences in accuracy, precision, and reliability, we computed mean av-

erage errors of predictions, mean 95% prediction interval widths, and 95% prediction

interval coverage values. Figure 4.3, from Appendix E of Stoner, Halliday and Economou

(2022), presents these metrics for different prediction time differences. Recall positive

time differences indicate forecasting and negative time differences indicate prediction for

dates of death in the past, relative to the model fit. The mean average errors are virtually

identical across all 3 moving window sizes, meaning a moving window size of 5 weeks

(W = 35) would be sufficient for accurate point estimates. On the other hand, while win-

dow sizes of 10 and 15 weeks had identical mean prediction interval widths, predictions

with a 5 week window had substantially greater widths. This means predictions from the

model with a 5 week window were more uncertain, especially when forecasting. For all

window sizes, 95% prediction interval coverages were consistently above 0.95. Therefore,

for this application we would recommend a 10 week moving window out of the three sizes

we have investigated here. However, further window length could be tested to find an

optimal length that reduces computational cost without increased uncertainty.

The average computation times were 30 minutes per day with a 5 week window (W = 35),

75 minutes with a 10 week window (W = 70), and 155 minutes with a 15 week window

(W = 105). The computation time therefore more than doubled in both increments of 5

weeks to the window size. This makes sense, since both the number of data points in the

model and the number of spline coefficients to estimate increase as W increases.
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Figure 4.3: Mean average errors (left), mean 95% prediction interval widths (centre), and
95% prediction interval coverage values (right) for predicted daily COVID-19 deaths from
GDM Survivor models with different moving window sizes (weeks). Performance metrics
are arranged on the x-axis by prediction time difference, from -4 days up to +4 days, and
different moving window sizes are represented by different colours and shapes. Source:
Appendix E Stoner, Halliday and Economou (2022).

In conclusion, we believe a moving window size of W = 70 is a reasonable choice for this

data, as increasing the window size substantially increased daily computation time with

no clear gains in prediction accuracy or precision. Smaller values of W could be tested to

identify a window size with similar precision and even faster computation times.

4.3 Simulation Experiment

Alongside Stoner, Halliday and Economou (2022) we included a simulation experiment

in the supplementary materials to investigate the ability of the GDM to provide insights

into factors determining the structure of the reporting delay and variability in the total

count. We tested this by simulating data such that inference can be compared against

the known effect of covariates. What follows in the remainder of this section is text from

Web Appendix C of Stoner, Halliday and Economou (2022), which I contributed to jointly

together with other authors.
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4.3.1 Simulated data

The data simulated are completely synthetic and are intended to represent a hypothetical

disease epidemic, with covariates imitating real-world drivers of change in the disease

progression and reporting performance. Note that repeated simulation would be necessary

to assess bias, variance, prediction interval coverage etc. Here we simulate one set of data

as an example and we use the phrase “true value(s)” to mean the coefficient values chosen

in this one example.

Let yt,s be the number of disease cases occurring on day t ∈ 1, . . . ,100 in region s ∈ 1,2,3,

and let zt,d,s be the parts of yt,s observed at each delay d ∈ 1, . . . ,Dmax. The experiment

focuses on the quality of inference rather than prediction performance, so we assume all

yt,s and zt,d,s are known. First, we simulate yt,s from a Negative-Binomial model with mean

λt,s and scale parameter θs:

yt,s | λt,s,θs ∼ Negative-Binomial(λt,s,θs); (4.2)

log(λt,s) = ιs +δt,s +α1V (∗)
t,s +α2W (∗)

t,s (4.3)

The mean number of cases is comprised first of a fourth-order orthogonal polynomials

in time δt,s. The polynomials, shown in the left panel of Figure 4.4, are distinct for each

region to reflect differences in disease progression and non-pharmaceutical interventions.

In all three regions, the simulated polynomials have an “M” shape, representing two waves

of the disease. The mean is also affected by the proportion of the population successfully

administered a vaccine in each region, Vt,s, shown in the right panel of Figure 4.4. The

vaccine becomes available after 40 days, and is then administered at a different rate in

each region. After scaling to have 0 mean and standard deviation 1 (let V (∗)
t,s be the

scaled version), the vaccination covariate has coefficient α1 = −1.75, meaning the case

rate reduces substantially as more people are vaccinated.
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Figure 4.4: Left: simulated polynomial trends δt,s in the mean daily cases. Right: time
series of the simulated percentages of the population administered with a vaccine Vt,s.
Source: Appendix C Stoner, Halliday and Economou (2022).

Another effect on the mean number of cases of our simulated disease is the relative pre-

valance of two different variants of the disease in question, how these variants progress

over time is illustrated in Figure 4.5. Initially, only Variant 1 is present in the population

but then Variant 2 begins to spread at a later time which is dependent on the region.

The rate of growth of each variant is also region dependent. Let Wt,s be the percentage

prevalence of Variant 2, taking values between 0 and 1, and let W (∗)
t,s be the scaled version.

Its associated coefficient is α2 = 0.5, meaning Variant 2 causes more cases than Variant

1 as in a real world context would be considered more infectious. The coefficients of V (∗)
t,s

and W (∗)
t,s are both assumed constant across regions, meaning we assume the protection of

the vaccine and infectious properties of the new variant to be the same across regions.
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Figure 4.5: Time series of the simulated relative prevalence of two disease variants in the
three regions. Source: Appendix C Stoner, Halliday and Economou (2022).
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Combining regional intercept terms ιs, polynomials δt,s, the effect of vaccination, and the

effect prevalence of variant 2, Figure 4.6 shows the overall mean daily cases for each region

(lines) and then the simulated daily cases yt,s (shapes). The M shape from the polynomials

is still visible, but dampened by the effect of the vaccination covariate.
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Figure 4.6: Times series of the mean daily cases λt,s (lines) and daily cases yt,s simulated
from the Negative-Binomial (shapes). Source: Appendix C Stoner, Halliday and Eco-
nomou (2022).

Now, it remains to simulate zt,d,s: the parts of yt,s reported at each delay. Here, we simulate

the first D = 7 < Dmax delays for modelling. Since we assume all zt,d,s are observed, the

model will be able to determine the remainder term for any D< d ≤Dmax without explicitly

modelling it’s delay structure. To define the mean reporting distribution, we start with

a probit model for the expected cumulative proportion reported St,d,s, as in the Survivor

variant of the GDM (described in Section 3 of the main article):

probit(St,d,s) = ψs,d +β1,sX
(∗)
t +β2,sA

(∗)
t,s +β3,sλ

(∗)
t,s . (4.4)

Temporal variation in St,d,s is characterised first by monotonically increasing “delay curve”

effects ψs,d and upwards linear trends in (scaled) time X (∗)
t . We also included staff absence

percentage covariates At,s (Figure 4.7), simulated as first order auto-regressive variables.

The coefficient for scaled time is given a positive value β1,s = [0.2,0.15,0.1] for the three

simulated regions respectively, reflecting a hypothetical scenario where reporting efficiency
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improved over time at different rates for each region. The coefficients of the scaled absence

percentage A(∗)
t,s , are randomly generated for each region by β2,s ∼ Normal(−0.2,0.0252),

where they are intuitively negative so that a higher percentage of absences slows down

reporting.
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Figure 4.7: Time series of simulated staff absence percentage covariate At,s for each of the
three regions. Source: Appendix C Stoner, Halliday and Economou (2022).

Finally, we have also included the scaled mean daily number of cases λ (∗)
t,s as a covariate in

the cumulative proportion reported. The coefficients of this effect, β3,s ∼Normal(−0.35,0.052),

are also randomly generated for each region to be negative such that, when cases are

high, reporting slows down. Inclusion of this covariate is notable because: a) to the best

of our knowledge, this is the first attempt (albeit for simulated data) to fit a model for

delayed reporting which considers the effect of the same covariates on both the mean

total cases/deaths and the reporting delay; and b) effectively including the same covari-

ates in both parts of the GDM hierarchy is more likely to cause inferential problems such

as non-identifiability of the covariate coefficients. Combining all of the effects in Equa-

tion (4.4) yields the mean cumulative proportion reported at each delay St,d,s, as shown

in Figure 4.8. Notably, reporting performance visibly slows down in the first 30 days or

so as cases surge (as seen in Figure 4.6). One can imagine this reflecting health systems

prioritising treatment over administrative tasks when cases are high.
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Figure 4.8: Time series of the mean cumulative proportion of cases reported, for each of
the three regions, by delay. Source: Appendix C Stoner, Halliday and Economou (2022).

Using these simulated St,d,s, we then simulated two different sets of delayed counts zt,d,s,

to be fitted separately. We simulated the first set, z(1)t,d,s, from the Generalised-Dirichlet

Multinomial (GDM) itself:

z
(1)
t,1:D,s | yt,s,νt,s,ϕs ∼ GDM(νt,s,ϕs,yt,s) (4.5)

νt,d,s = (St,d,s −St,d−1,s)/(1−St,d−1,s). (4.6)

This allows us to assess inference when fitting the model to data generated from it. Then,

we also simulated a second set, z(2)t,d,s, from a series of Binomial-Gaussian mixtures. First,

we transform the mean proportion reported at each delay pt,d,s = St,d,s−St,d−1,s into a new

set of real number values ut,d,s ∈ (−∞,∞), using a Center Log-ratio (CLR) transformation:

ut,d,s = log

 pt,d,s

∏Dmax
j=1 (pt, j,s)

1
Dmax

 . (4.7)

We then add an i.i.d. Gaussian noise term εt,d,s ∼ Normal(0,0.252) to each ut,d,s (ũt,d,s =

ut,d,s + εt,d,s) and input this into an inverse CLR transformation to produce a new noisier

set of proportions p(2)t,d,s,

p(2)t,d,s = clr−1(ũt,d,s) =
exp ũt,d,s

∑D
j=1 exp ũt, j,s

(4.8)
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A standard deviation of 0.25 was chosen for εt,d,s so that the variance of z(2) is fairly close

to the variance of z(1). From these new (noisier) proportions reported at each delay, we

can compute relative proportions ν(2)
t,d,s:

ν(2)
t,d,s =

p(2)t,d,s

1−∑d−1
j=1 p(2)t, j,s

, (4.9)

which can then be used as the mean of Binomial conditional distributions to simulate

z(2)t,d,s:

z(2)t,d,s ∼ Binomial
(

ν(2)
t,d,s,yt,s −

d−1

∑
j=1

z(2)t, j,s

)
. (4.10)

Fitting a GDM model to z(2)t,d,s then allows us to test the flexibility of the GDM to capture

non-GDM variance structures, through posterior predictive checking Gelman et al. (2013).

4.3.2 Results

We fit the GDM model outlined in Equations (4.2)–(4.6) to the simulated two data sets.

We use the NIMBLE package de Valpine et al. (2017) for MCMC and weakly-informative

prior distributions (e.g. Normal(0,102) for coefficients), as in the main article.

A key question of interest is whether the known trends and covariate effects in the mean

daily cases and in the reporting delay are appropriately captured by the model. To assess

this, we should examine outputs from the model fit to z(1)t,d,s. We can first look at the

polynomial trends in the mean daily cases. Figure 4.9 shows the posterior median estimates

of δt,s with 95% credible intervals (CIs). The polynomials are reproduced very closely, with

the true values (dashed lines) captured completely by the 95% CIs.
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Figure 4.9: Posterior medians (solid lines) and 95% credible intervals (shaded areas) of
the polynomial trends δt,s in the mean daily cases. True values are shown as dashed lines.
Source: Appendix C Stoner, Halliday and Economou (2022).

Next, we can look at the coefficients in the mean daily cases for the vaccine (α1) and for the

prevalence of Variant 2 (α2). Figure 4.10 shows density estimates of the posterior samples

of these two coefficients, with vertical lines representing the true values. In these plots, we

are looking to see whether the true values are extreme with respect to their corresponding

posterior distributions. Here, the true values for both coefficients are towards the centre

of the distributions, indicating the models captures the effect of these covariates well. The

model over predicts both the vaccine and variant effect on the mean daily cases as these

cancel out; over predicting the vaccine effect results in lower mean daily cases, and over

predicting the variant effect result in higher mean daily cases being predicted. Hence, in

this simulation study there is not enough data for the model to accurately separate these

two confounding effects.
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Figure 4.10: Posterior densities for the vaccine (left) and variant (right) coefficients (α1
and α2) in the mean daily cases, with dashed lines showing the true values. Source:
Appendix C Stoner, Halliday and Economou (2022).
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Then, Figure 4.11 shows the posterior densities for the cumulative proportion reported

coefficients of time (β1,s), staff absence (β2,s), and the daily case rate (β3,s), respectively.

In most cases, the true values are well within the bulk of the distributions, and after com-

puting 95% CIs we determined that they all contain their corresponding true values. The

model was fitted to each simulated “region” independently. For region 2 the coefficients

for the scaled time variable and for staff absence are both under-predicted, where as for

region 3 they are both over predicted. There may be some cancellation between these two

coefficients as staff absences are generated using a first-order auto-regressive variable over

time. However, for both, the model does accurately capture that the coefficient for the

linear temporal trend is positive and for the staff absences is negative.
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Figure 4.11: Posterior densities for the time (left), staff absence (centre) and variant (right)
coefficients in the mean cumulative proportion reported, with dashed lines showing the
true values and colours representing each of the three regions. Source: Appendix C
Stoner, Halliday and Economou (2022).

Finally, we can assess whether the GDM can appropriately capture the variance of the

second set of delay counts z(2)t,d,s. Recall that these were simulated from Binomial-Gaussian

mixture distributions, rather than a GDM. To achieve this, we use the MCMC samples to

simulate posterior predictive replicates of the original set of z(2)t,d,s, let’s call these replicates

z̃(2)t,d,s. This results in one set of z̃(2)t,d,s per saved MCMC iteration. We then compute the

sample standard deviation of each set of z̃(2)t,d,s for each region s and delay d. This results in a

distribution of sample standard deviations for each s and d, which we can compare against

the corresponding true values from the original z(2)t,d,s. Figure 4.12 shows the posterior

predictive sample standard deviations for the first six delays. The true values are all within

the bulk of the replicate distributions, indicating the model has captured the variances of

the delayed counts well despite being generated from a different model.
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Figure 4.12: Density estimates of the posterior predictive sample standard deviations of
the non-GDM delay counts (z(2)t,d,s), for the first six delays and each of the three regions.
Dashed lines show the true values. A log-10 transformation was used for the x-axis, and a
square root transformation was used for the y-axis. Source: Appendix C Stoner, Halliday
and Economou (2022).

4.3.3 Conclusions

Here we simulated a data set of daily disease case counts in three regions, with covariates

imitating real-world drivers of disease (vaccination, proliferation of different variants) and

reporting delays (staff absences, pressure from high case rates). Investigating the latter

effect is particularly unusual, because it means we tested a model design that effectively

included the same covariates in both the model for the total counts and the model for the

reporting delay. Despite this, the GDM was able to reproduce all of the known covariate

effects well.

We also tested the fit of the GDM to delay counts z(2)t,d,s simulated from a different model,

in this case a Binomial-Gaussian mixture. Compellingly, the flexibility of the GDM meant

that it was able to capture the variance of these alternative counts very closely.
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5.1 Introduction

Delayed reporting is treated as a specific modelling challenge in the existing literature.

However, from a general statistical perspective, correcting reporting delays can be framed

as a compositional time series modelling (of count data) challenge. As outlined in Sec-

tion 1.1, data are structured as a total count (per time step) which is conceptually a

sum of partial counts, each reported some time after they occurred. Besides the disease

data applications we focus on for this thesis, delayed reporting is a common data prob-

lem affecting several branches of society, including insurance claims (Lawless (1994)), the

reporting of crimes (Wesselbaum (2023)) and the monitoring of migration and asylum

data (Singleton (2016)). In general, compositional time series count data is challenging

to model due to a) the partial counts being constrained to sum to the total, b) complex

correlation structures between the partial counts, and c) having to account for temporal

trends and variability in the data appropriately (as we discuss in Chapter 1, and recall

in Section 5.2). A further complication in the case of delayed reporting is that recent

total counts have not yet been observed, prohibiting the use of “off-the-shelf” statistical

methods for compositional data.

For this chapter, our motivation is still the issue of disease surveillance, where the total

counts refer to the total number of observable occurrences of a health outcome (infections,

fatalities, etc.) within a particular time period (e.g. one week). The partial count is then

the number of these total cases that were reported with a certain temporal delay. For

instance, the total count might be 50, of which 20 were reported during the week they

occurred, 10 of which were reported a week later and so on until all 50 are reported. Dis-

ease surveillance involves mitigating the uncertainty introduced by the nature of delayed

reporting, as we discussed in Section 1.1.
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The aim here is develop a novel approach for the application of jointly monitoring the

severe acute respiratory illness (SARI) outbreaks in Brazil alongside the severe COVID-19

positive patients within this group. SARI is an example of a disease requiring ongoing

surveillance in Brazil. A SARI case is defined as a hospitalised individual with both a fever

and cough, where the symptoms have onset within the last 10 days. SARI can be caused

by several respiratory viruses, e.g. severe acute respiratory syndrome (SARS) caused by

the corona-virus SARS-CoV, or COVID-19 caused by the corona-virus SARS-CoV-2. In

Brazil, reporting of SARI can be delayed, often by several weeks, due to local municipality

health authorities awaiting reports of individual SARI cases from hospitals.

Previous work aiming to nowcast SARI cases involve flexible statistical models that ac-

count for reporting delays explicitly. Notably, the framework in Bastos et al. (2019) is

being used operationally by the Fiocruz institute in Brazil as a surveillance system for

SARI (InfoGripe). In addition, a group of independent Brazilian scientists are performing

ongoing surveillance for severe COVID-19 and SARI separately (Observatório COVID-19

BR (2024)), using the modelling framework by McGough et al. (2020). The underlying

statistical frameworks used for these surveillance systems are reviewed alongside further

existing approaches in Section 2.2.

SARI hospitalisations in Brazil are published as open data by Ministry of Health Brazil

(2022). The data involves individual SARI cases, which are typically reported after some

delay. Where patients are tested for COVID-19, the test result(s) appear later on, usually

after a further delay. Here we aim to jointly model SARI hospitalisations as well as the

nested portion of these hospitalisations that are COVID-19 positive. In relation to the

current operational system, our goal is to improve the nowcasting of SARI using more

flexible statistical methods, and to simultaneously produce more accurate predictions of

severe COVID-19 through pooling of information with the SARI case counts.
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This work aims to address the novel challenge of the length of delays associated with

COVID-19 lab results being unknown. Patients records are updated manually with no

time-stamp for when the confirmed lab result was recorded. Hence, there is no historical

information in the data to inform modelling of trends in the delay distribution. However,

we can deduce that the delays in COVID-19 reporting will be greater than the delays

for SARI reporting – as they are subject to the same reporting processes but with the

additional delay of waiting for the lab test results. We take this attribute into account in

the design of our joint model for both types of hospitalisation.

By framing this application of Brazilian SARI hospitalisations as a compositional count

data problem in Section 5.2.1, we aim to highlight our contribution of new methodological

insights and extensions for general applications with similar data structures. This includes

modelling nested structures with potentially unknown reporting delay lengths.

In this chapter, we extend the Generalised-Dirichlet Multinomial (GDM) framework to

address a real-world disease surveillance problem faced by the Oswaldo Cruz Founda-

tion (Fiocruz) in Brazil, which we introduce in Section 5.1. The modelling framework

presented in this chapter represents a substantial extension of the GDM statistical frame-

work. Here, its focal point is a framework for correcting reporting delays, but in Sec-

tion 5.2.1 we present this as a single application in the context of general compositional

data problems. In Section 5.2.2, we overview the GDM framework before extending it to

our proposed modelling framework in Section 5.3. Our proposed framework aims to allow

for multiple and nested disease occurrences (Section 5.3.1) that are subject to unknown

reporting delays (Section 5.3.2). Furthermore, we expand the choice of model formula-

tion for the delay structure to allow a more intuitive representation over time and delay

(Section 5.3.3). In Section 5.3.4 we include age demographic covariate effects to improve

nowcasting accuracy for severe COVID-19. In Section 5.4, we evaluate model performance

through a series of rolling out-of-sample prediction experiments for federative-unit level

data in Brazil. Finally, we summarise our findings and discuss possible future work in

Section 5.5.
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5.2 Background

We begin by recalling, from Section 1.1, some notation to describe the general structure

of count data subject to delayed reporting so we can then extend this to include a nested

count of the observed totals. First, we call the true number of counts (e.g. disease cases)

occurring within time period t and region s the “total counts” and denote these as yt,s.

These total counts can be broken down into partial counts, zt,d,s, reported at different

delay intervals d – e.g. d could be the number of weeks since occurrence, with d = 0

denoting “no delay”. Therefore, we can sum the partial counts over all possible delays to

obtain the total count yt,s = ∑Dmax
d=0 zt,d,s, where Dmax is assumed to be the maximum delay.

Together, the mean, variance, and covariance of the partial counts zt,d,s can be thought

of as properties of the “delay distribution”. In our data from Brazil, yt,s are the SARI

hospitalisations occurring in week t and federative unit s, while xt,s are the nested portion

of yt,s that test positive for COVID-19.

In Section 1.1, we highlight that the delay distribution may be subject to systematic

variation over time and space due to changes in reporting efficiency and resources. For

example, Bastos et al. (2019) note that for Brazil, reporting delays can be greatly impacted

by fluctuations in hospital staff absence and workload over the course of an outbreak.

Conversely, interventions and awareness associated with the progression of an infectious

disease could support local reporting procedures. Similarly, the temporal evolution of the

total counts yt,s will consist of both systematic and random variability, both of which need

to be accounted for. Systematic variability in the prevalence of the disease could occur

over spatial regions due to differing population structures, and movement between regions

by infected individuals. Additionally, systematic variability will occur over time due to

the natural spread or mutation of the disease, and possible seasonal effects.
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In terms of viewing this problem as a modular framework for delayed reporting, introduced

in Section 1.2, we first wish to model the epidemic process Y which generates a quantity

y, which in this case is the total number of SARI hospitalisations:

Y (Θ)→ y. (5.1)

Where Θ is a set of random effects and/or model parameters. The counts subject to

delayed reporting are then represented by quantity z, which is generated by the flawed

reporting process Z with model parameters Π:

Y (Θ)→ y → Z(Π)→ z. (5.2)

Parallel to this, we also generate a quantity x for the nested number of SARI hospitalisa-

tions that are COVID-19 positive, with X representing the process of testing SARI cases

to confirm the COVID-19 virus and Λ representing the model parameters:

Y (Θ)→ y → X(Λ)→ x. (5.3)

A secondary process then gives us x̃, the COVID-positive SARI cases that are observed

due to flawed process of reporting the confirmed COVID-19 tests W , which we capture

with model parameters Ω:

Y (Θ)→ y → X(Λ)→ x →W (Ω)→ x̃. (5.4)

Hence, there is a need for a flexible modelling framework that can be designed to replicate

these hierarchical, nested and parallel processes.

Capturing all these sources of variability in the data is vital for optimal nowcasting per-

formance but requires models with appropriate flexibility, as discussed in Section 1.2.

In Section 2.2, we reviewed existing methods for correcting delayed reporting that aim

to achieve this. We focus on approaches within the Bayesian framework to allow for full
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predictive distributions for yt,s and/or xt,s given all the available data. This quantification

of predictive uncertainty is important in the context of infectious disease surveillance, so

that the risks associated with different incidence levels of the disease can be considered

and prepared for.

5.2.1 Delayed reporting as a compositional time series problem

Compositional data is defined as a set of non-negative parts that sum to a total. Examples

of such data include: voting intention polls that measure the percentage of people intending

to vote for different political parties (Vos (1998)); household surveys that capture the

percentage of people using different fuels as their main energy source for cooking (Stoner

et al. (2020)); or forensic data capturing the elemental composition of fragments at crime

scenes (Campbell et al. (2009)). Models for such data must account for both the sum-to-

a-total and the non-negativity constraint. Log-ratio transformations are commonly used

to map continuous compositional data onto the real space, allowing the use of standard

statistical techniques. An added challenge arises when either there are counts equal to 0

such that the log ratios are undefined, or when counts are small (e.g. rare diseases). In

the latter case, transformed data will be strongly bounded and non-smooth so assuming

a continuous probability model (e.g. Normal) would be inappropriate. Here we instead

focus on probability models for the original count structure.

Another research area that involves modelling compositional counts is the analysis of the

make-up of microbiomes. Here, one common choice is the Dirichlet multinomial (DM)

model (Chen and Li (2013), Koslovsky (2023)), which describes the counts directly while

also allowing extra variance relative to the multinomial. However, the DM restricts all

cross-correlations to be negative (Stoner and Economou (2019)). A more flexible option

is the generalised Dirichlet multinomial (GDM), proposed for microbiome modelling in

Tang and Chen (2018), as it has a more general correlation structure.
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A compelling alternative is the logistic normal multinomial (LNM) proposed in Xia et al.

(2013). This assumes a Multinomial(pt,s,yt,s) model for zt,s | pt,s,yt,s, where the multino-

mial probabilities pt,s are linked to a vector qt,s ∼ Multivariate-Normal(µt,s,Σ) through

an additive log-ratio (ALR) transform link function,

qt,s = ALR(pt,s) = ln
(

pt,1,s

pt,Dmax,s

)
, ..., ln

(
pt,Dmax−1,s

pt,Dmax,s

)
. (5.5)

This model is arguably more flexible than the GDM since the covariance matrix Σ can

allow for general covariance structures in zt,s. However, computing the likelihood of zt,s

and inferring the whole covariance matrix Σ in the LNM is challenging (the number of

elements in Σ grows with the square of the number of compositions (Zhang and Lin

(2019))). In the GDM, the number of parameters scales linearly with the number of

compositions and the likelihood is tractable both in its full joint form or as a series of

Beta-Binomial conditional likelihoods, the latter of which is convenient when there are

missing values in zt,s. To our knowledge, the LNM has only been explored in the context

of known total counts yt,s, and not within a joint hierarchical model for both yt,s and zt,s.

5.2.2 The Generalized-Dirichlet Multinomial method

Viewing delayed reporting as a challenge of modelling compositional time series of counts

motivates an approach using the Generalized-Dirichlet Multinomial (GDM) family of

distributions, which we review in Chapter 2. Stoner and Economou (2019) introduce the

GDM as a way to model the partial counts zt,d,s conditional on a Negative-Binomial model

for total counts yt,s, to flexibly capture the different sources of random and systematic

variability in the data:

yt,s|λt,s,θs ∼ Negative-Binomial(λt,s,θs); log(λt,s) = f (t,s), (5.6)

zt,s|νt,s,yt,s,ϕs ∼ GDM(νt,s,yt,s,ϕs). (5.7)
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The GDM is a conditional Multinomial(pt,s,yt,s) distribution, where the mean proportion

of yt,s reported at each delay is modeled by pt,s ∼ Generalized-Dirichlet(νt,s,ϕs). As dis-

cussed in Section 2.3, this increases the number of parameters of the model (compared to

a Multinomial model) such that the mean, variance and covariance of the partial counts

are no longer all determined by just pt,s. Stoner and Economou (2019) argue that this

additional flexibility improves predictive performance both theoretically and in practice.

An alternative representation of the GDM is as a series of Beta-Binomial distributions for

the partial counts zt,d,s, conditional on the already observed partial counts zt,1,s, ..,zt,d−1,s

and the total counts yt,s given by zt,d,s|νt,d,s,ϕs,d,Nt,d,s ∼ Beta-Binomial(νt,d,s,ϕs,d,Nt,d,s).

Here, Nt,d,s = yt,s−∑d−1
j=1 zt,s, j are the remaining counts yet to be reported at delay d. This

formulation is used in practice for an intuitive way of introducing covariates and tem-

poral/spatial structures in the delay, and as a more straightforward implementation using

MCMC. Here, variance parameters ϕs,d > 0 inflate the variance of each Beta-Binomial

component in turn (compared to Binomial models, which the Beta-Binomial reduces to

as ϕs,d → ∞), allowing for a flexible covariance structure in zt,s.

The resulting expected relative proportions are then defined as νt,d,s = E
[

zt,d,s
Nt,d,s

]
. These

are the number of counts expected to be reported at delay d divided by the as of yet

unreported counts. The variance parameter can in principle also be modeled as a general

function of time, space, and delay log(ϕt,d,s) = h(t,d,s).

Stoner, Halliday and Economou (2022) (Chapter 4) presents an extensive comparison of

the predictive performance of the GDM and the models presented in Bastos et al. (2019)

and McGough et al. (2020) through a 15-month rolling prediction experiment on COVID-

19 deaths in England, which we summarised in Section 4.1. The results demonstrated the

separation and modelling of all sources of variability in the GDM model made it capable of

accurately capturing all variability in the data and therefore allowing for better predictions

with reduced uncertainty.
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On this basis, and the challenges discussed in Section 5.2, the GDM framework is the

necessary choice of foundation to build on for our joint model for related diseases (in

this case SARI and COVID-19). Additionally, it has been proposed as an operationally

feasible framework in Chapter 4, following improvement to its computational efficiency

in Chapter 3. Also, we develop an alternative variation of the GDM which aims to bring

together strengths and mitigate the weaknesses of the two previously studied variants of

the GDM, which differ in the choice of link function for the relative means νt,d,s of the Beta-

Binomial model, a choice that can have non-trivial impacts on predictive performance and

implementation.

5.2.2.1 Link functions

For the GDM model, Stoner and Economou (2019) (Chapter 4) offer two alternative link

functions. The “hazard” version:

log
(

νt,d,s

1−νt,d,s

)
= i(t,d,s), (5.8)

and the “survivor” version:

νt,d,s =
St,d,s −St,d−1,s

1−St,d−1,s
; probit(St,d,s) = i(t,d,s). (5.9)

Here St,d,s = E
[

∑d
j=1 zt, j,s

yt,s

]
are the expected cumulative proportions defined by the cumu-

lative number of counts reported up to delay d divided by the total number of counts

for time t. In Equations (5.8) - (5.9), the general function i(·) is open to user choice and

represents the systematic time-delay effects on the relative proportions. Possible options

include random effects, covariates, Gaussian processes and auto-regressive terms. Stoner,

Halliday and Economou (2022) (Chapter 4) opted for hierarchically-structured penalised

cubic splines of time with shrinkage.
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The hazard version (Equation (5.8)) offers a relatively straightforward way to fit flexible

models, as it uses a simple logistic transformation to directly model the relative propor-

tions. However, conceptualising intuitive models for the relative proportions is challenging,

especially for later delays when the small number of remaining cases to be reported mean

the expected relative proportion could plausibly be very small or very large. At the same

time, modelling the relative proportions directly limits options for structures that pool

information across delays (e.g. penalised smooth time-delay interactions), to potentially

result in a simpler model that is better at predicting out-of-sample. This is because we

might reasonably expect the relative proportions to vary in a less smooth or otherwise

less predictable way across d, compared to alternative representations of the mean pro-

portions, e.g. the expected proportion for each d, pt,d,s = E
[

zt,d,s
yt,s

]
.

Meanwhile, the survivor version (Equation (5.9)) is more intuitive with respect to con-

ceptualising models for the cumulative proportions (e.g. by exploring the data). However,

any terms in i(·) must be constrained to monotonically increase as d increases. Aside

from potentially prohibiting some options for such effects (e.g. smooth time-delay inter-

actions), the monotonic constraint may cause inefficiencies for MCMC sampling. The best

choice for the link function in the GDM may be application dependent and therefore one

should consider the alternative link functions carefully (Stoner, Halliday and Economou

(2022) (Chapter 4)).

In the next Section, we present our modelling framework for correcting delayed reporting of

two related diseases, as well as a novel choice of link function for the GDM (Section 5.3.3)

– to compliment the existing “hazard” and “survivor” versions – relevant to both disease

surveillance and hierarchical models for general compositional count time series.
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5.3 General Framework

The SARI and COVID-positive SARI data in Brazil is collected in the following way, if a

patient is hospitalised with SARI symptoms the medical team will fill out a form where

the onset of symptoms is recorded, and a sample will be taken to test for COVID-19

or other viruses. The delay for SARI hospitalisations is measured as the time between

the onset of symptoms and when these forms are digitalised and hence made available

to the national notification system, which we refer to as the reporting date of SARI.

One entry of the form is the test result of COVID-19 which could be positive, negative,

inconclusive or not filled in. If the COVID-19 test result has been recorded in the form

before it is digitalised then the COVID-19 reporting delay is technically the same length

as the SARI reporting delay. Alternatively, the COVID-19 reporting delay will be greater

than the SARI reporting delay if the digitalised form is manually updated at a later

date. Hence, we know that the delay for COVID-19 test results is greater than or equal

to the reporting delay of SARI hospitalisations. However, since there is no time stamp

as to when the COVID-19 test result field is filled in, the delay length of the severe

COVID-19 hospitalisations (which are a subset of the SARI hospitalisations) is unknown.

Additionally, for the most recent dates, the number of positive COVID-19 tests are right

censored as the true number of positive COVID-19 tests will be greater or equal to the

amount that have been reported so far once further test results become available (for both

SARI patients that have and haven’t yet been reported).

We begin by assuming the same Negative-Binomial and GDM conditional model presented

in Section 5.2.2. As explained in Section 5.1, our motivation for this framework is to

improve nowcasting predictions for SARI hospitalisations (which have a known reporting

delay), and the number of SARI hospitalisations that tested positive for COVID-19 (which

has an unknown reporting delay), in Brazil. To the best of our knowledge, methods for

correcting such “unmarked” reporting delays have not been previously studied, therefore

we believe it is worthwhile addressing this challenge directly.
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5.3.1 Model for nested structures

First, we model the mean SARI hospitalisations (λt,s) in each region s independently,

using a temporal cubic regression spline with shrinkage ζ (s)
t ,

log(λt,s) = f (t,s) = ζ0,s +ζ (s)
t , (5.10)

where ζ0,s are regional intercepts. Here, shrinkage means that ζ (s)
t is penalised by a single

penalty parameter for both smoothness and overall magnitude.

To model the nested disease, we can introduce a new Beta-Binomial layer to our model

hierarchy for xt,s ≤ yt,s, which in this case is the number of SARI cases that tested positive

for COVID-19. In general, xt,s could represent any systematic subset of a disease or family

of diseases yt,s, e.g. one strain/variant of a disease. This is given by:

xt,s|yt,s ∼ Beta-Binomial(µt,s,χs,yt,s); logit(µt,s) = β0,s +β (s)
t +δsζ

(s)
t . (5.11)

In Equations (5.11), we capture systematic variability in µt,s through the addition of

the spline for the mean SARI cases ζ (s)
t (as included in Equation (5.10) for the linear

predictor of log(λt,s)), scaled by a coefficient δs. An additional penalised cubic spline of

time β (s)
t is also included, as well as an intercept terms β0,s. Modelling µt,s in this way

allows us to capture any link between the total number of SARI cases and the proportion

testing positive for COVID-19, e.g. in the case where recent peaks in SARI cases are

predominantly driven by COVID-19 “waves”. We discuss the effect of including this link

on prediction performance for unknown xt,s based on results from our rolling prediction

experiment in Section 5.4.3. The Beta-Binomial dispersion parameter is given by χs, and

the expected mean of xt,s is µt,syt,s, where µt,s is the expected proportion of SARI counts

yt,s that test positive for COVID-19. We choose the Beta-Binomial because it offers more

flexibility relative to the Binomial, e.g. to account for unmeasured covariate effects.
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This new layer allows us to potentially include covariate effects or trends specific to

COVID-19, e.g. vaccination rates or the emergence of new COVID-19 variants. We ex-

ploit this in Section 5.3.4 by including covariates that indicate the age demographic of

reported SARI cases. Moreover, modelling the relationship between xt,s and yt,s hierarchic-

ally, pools information across the two sets of case counts. This is particularly advantageous

in this application as information on the SARI cases is substantially more timely than

the COVID-19 test results, as discussed in Section 5.3.2.

5.3.2 Delayed reporting of available COVID-19 case counts

The COVID-19 positive counts xt,s are subject to the same reporting delay mechanism as

the total SARI counts yt,s (since they are both derived from data for the same individuals),

in addition to a secondary delay in obtaining COVID-19 test results. For the SARI cases,

a reporting date is recorded in the data. However, there is no time-stamp in the data

indicating when the COVID-19 test results for those cases were received. There is only

information on the total reported so far, x̃t,s ≤ xt,s, which we can interpret as right-censored.

The problem can also be thought of as an under-reporting one, which can be addressed

either by explicitly modelling the under-reporting mechanism (Stoner, Economou and

Drummond Marques da Silva (2019) & Arima et al. (2023)) or by using a censored like-

lihood approach (Bailey et al. (2005)). The latter does not allow us to model the under-

reporting in any structured way, or take into account realistic constraints in the design

of this model (Stoner, Economou and Drummond Marques da Silva (2019)). E.g. for our

COVID-positive SARI cases we might plausibly assume that the degree of under-reporting

is worse on average for more recent weeks. Here, we opt to model the under-reporting

through a further Beta-Binomial model with variance parameter υs and a reporting rate

0 < πt,s < 1:

x̃t,s|xt,s,πt,s,υs ∼ Beta-Binomial(πt,s,υs,xt,s). (5.12)
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We assume a-priori, that πt,s decreases linearly at the log scale, at a rate parameterised

via slope parameter ωs < 0. Specifically, we assume that the reporting rate decreases

from 100%, from the historic time-point we believe under-reporting starts, M, to the

present time point, Tnow. So, log(πt,s) = ωs(t −M) for t > M and πt,s = 1 otherwise. We

obtain predictions of COVID-positive cases by treating not-yet-observed xt,s as unknown

quantities in the model, yielding posterior predictive samples given all available data.

5.3.3 Extending the GDM framework

In Section 5.2.2, we discussed two link function options for including systematic variab-

ility in the relative proportions νt,d,s, and their respective drawbacks. In this section we

introduce an alternative link function for the absolute mean proportion pt,d,s of the total

counts reported at each delay – arguably a more intuitive quantity compared to relative

proportions. The purpose of this link function in the GDM model is to map pt,d,s from

a vector of proportions summing to 1 onto R, enabling the use of general functions to

capture systematic trends.

For both the existing “hazard” and “survivor” link function options (Section 5.2.2), it can

be challenging to specify intuitive and general time-delay interactions (or other interac-

tions with delay e.g. space-delay) without running into constraints, including assuming

independence across delay (hazard version) or monotonicity (survivor version). Here we

propose the centre log ratio (CLR) transformation as a novel link function for the GDM,

to directly model the mean proportions pt,d,s:

CLR(pt,1:(D+1),s) =

[
log
(

pt,1,s

g(pt,s)

)
, ..., log

(
pt,D+1,s

g(pt,s)

)]
, (5.13)

where g(pt,s) is the geometric mean of pt,s, D is the number of delays we will model

explicitly, and p(t,D+1,s) – which we call the “remainder” term – is the mean proportion

of yt,d,s reported in the remaining delays D < d ≤ Dmax.
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As with other parts of the framework, we first suggest that CLR(pt,d,s) can be modeled

by some general function of t, s, and 1 ≤ d ≤ D, in this case i(·):

CLR(pt,d,s) = i(t,d,s); pt,D+1,s =−
D

∑
j=1

pt, j,s. (5.14)

The second part of Equation (5.14) introduces a sum-to-zero constraint across d, . . . ,D+1,

which is needed for i(t,d,s), since the inverse CLR function is invariant to an additive

constant (this comes from the original sum-to-one constraint for pt,d,s).

We can then derive, by substitution, the relative proportions νt,d,s – needed for the Beta-

Binomials – as νt,d,s = exp(i(t,d,s))/∑D+1
j=d exp(i(t, j,s)). Unlike the relative proportions

νt,d,s, we might assume that pt,d,s is similar across adjacent delays, motivating structures

such as 2D tensor product smooth functions across time and delay, penalised in both

dimensions against over-fitting, potentially resulting in better predictive performance.

The CLR could therefore be a compelling new option for the GDM method of correcting

delayed-reporting, while also providing greater flexibility in model design for general com-

positional count data with arbitrary dimensions (or compositional proportions by simply

using the Generalized-Dirichlet in place of the GDM).

In the following Sections, we will investigate potential trade-offs of the GDM-CLR in

practical use for correcting delayed reporting, in comparison to established GDM versions.

5.3.4 Informative population demographics

The flexible hierarchical structure of our model can be adapted to include covariate effects,

as we note in Section 2.5.2. A notable available covariate for COVID-19 cases is the age

distribution of the SARI cases reported so far: 1) Childrent,s, the proportion of the as-yet

reported SARI patients aged between 0 and 18; 2) Adultst,s, the proportion aged between
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19 and 60 and 3) Elderlyt,s, the proportion aged over 60. These three variables sum to one

for any given t,s (before standardisation to have mean 0 and variance 1), so we exclude the

latter. Where SARI cases (yt,s) are not yet fully reported, we assume these are indicative

of the age distribution of all the SARI cases. This assumption, i.e. that all age groups

will be reported at the same rate, may not be sensible, especially if reporting does differ

widely across age, which may introduce bias in model predictions.

As noted in a report by the World Health Organization (2020b), individuals aged 18 and

under have lower risk of contracting and developing severe COVID-19 symptoms; they are

therefore less likely to be hospitalised. This, in conjunction with COVID-19 vaccination

strategies often targeting the more vulnerable, including the elderly, means differences in

COVID-19 hospitalisation between age groups are likely to be notable. We aim to capture

potential effects of the age distribution on the proportion of SARI cases that test positive

for COVID-19 in our model “Survivor Age”, using cubic polynomials:

logit(µt,s) = β0,s +β (s)
t +δsζ

(s)
t +

3

∑
j=1

[
β poly

1, j Children j
t,s +β poly

2, j Adults j
t,s

]
. (5.15)

5.4 Severe Acute Respiratory Illness in Brazil

In this section we compare the predictive performance of a cohort of models in their

application to the data from Brazil. First, we aim to compare GDM models based on

the CLR link function to models based on the survivor and hazard versions of the GDM

method (Section 5.2.2). In the CLR models, we capture variability in the mean proportions

reported at each delay using a 2D tensor product γ(s)t,d , with thin-plate spline marginal

bases,

CLR(pt,d,s) = γ0,s + γ(s)t,d . (5.16)
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We include a 2D tensor product in the CLR model to investigate the flexibility of the

CLR transform as a link function to capture possible interaction effects between time and

delay, which is more intuitive to model when dealing with absolute proportions. This CLR

model include an explicit link between the expected mean SARI cases and the proportion

of SARI cases that are COVID-19 positive (Equation (5.11)), but does not include any

age covariates.

In addition to the “CLR” models, we tested a “Hazard” and “Survivor” model, based

on the respective version of the GDM introduced by Stoner and Economou (2019) and

discussed in Section 5.2.2. Specifically, these model is comparable to the models that

include no age distribution effects. For the “Hazard” version, we model the Beta-Binomial

means νt,d,s as follows:

log
(

νt,d,s

1−νt,d,s

)
= i(t,d,s), (5.17)

i(t,d,s) = ψd,s +η(d,s)
t , (5.18)

where ψd,s is an independent intercept for each delay, and η(d,s)
t are independent penal-

ised cubic splines of time (with shrinkage) for each delay d and region s. Then, for the

“Survivor” version we model the cumulative proportions reported St,d,s:

probit(St,d,s) = i(t,d,s) (5.19)

i(t,d,s) = ψd,s +η(s)
t . (5.20)

Here, ψd,s is a monotonically increasing random walk over delay and η(s)
t is a cubic

shrinkage spline of time, both terms are independent for each region s.
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To investigate whether the difference between the CLR and the established Stoner and

Economou 2019 model versions is more attributable to the use of the CLR link function

over the alternatives, or instead more attributable to the 2D tensor product, we developed

an alternative “CLR no tensor” model:

clr(pt,d,s) = ψd,s +η(d,s)
t . (5.21)

Much like the “Hazard” model, here ψd,s is an intercept for each delay and η(d,s)
t is an

independent penalised cubic spline of time (with shrinkage) for each delay and region.

This CLR version also includes the shared parameter term (δsζ
(s)
t ) when modelling the

proportion of SARI cases that are COVID-positive.

To assess the impact of the shared parameter on predictive performance, we fit another

model “Survivor no shared parameter” that does not include scaled shared parameter

δsζ
(s)
t in linear predictor for the COVID-positive proportion. Then, we fit a final model,

“Survivor Age”, that includes both the shared parameter and the age covariates. As

defined in Section 5.3.4, we assume the cubic polynomials for age are the same across all

federative units,

logit(µt,s) = β0,s +β (s)
t +δsζ

(s)
t +

3

∑
j=1

[
β poly

1, j Children j
t,s +β poly

2, j Adults j
t,s

]
. (5.22)

All models considered in our study are outlined in Table 5.1, including the model structure,

the model run time and the mean absolute errors (MAE).
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Table 5.1: Outline of all GDM model versions compared in our rolling prediction experi-
ment. The run time in hours of each model version is given in brackets below the name.
Nowcasting mean absolute error (MAE) is for the most recent nowcast date (Tnow) such
that the prediction time difference (PTD) equals zero.

Model
(hrs to run)

Linear predictor for
COVID-positive proportions

Linear predictor for
SARI delay distribution

Nowcasting MAE
(SARI, COVID-19)

Survivor no shared
parameter (4.07) logit(µt,s) = β0,s +β (s)

t i(t,d,s) = ψd,s +η(s)
t 99 182

Survivor
(4.82) logit(µt,s) = β0,s +β (s)

t +δsζ
(s)
t i(t,d,s) = ψd,s +η(s)

t 90 51

Survivor age
(9.78)

logit(µt,s) = β0,s +β (s)
t +δsζ

(s)
t +

∑3
j=1

[
β poly

1, j Children j
t,s +β poly

2, j Adults j
t,s

] i(t,d,s) = ψd,s +η(s)
t 84 43

CLR no tensor
(25.37) logit(µt,s) = β0,s +β (s)

t +δsζ
(s)
t i(t,d,s) = ψd,s +η(s)

t
(d) 136 51

CLR
(33.96) logit(µt,s) = β0,s +β (s)

t +δsζ
(s)
t i(t,d,s) = γ0,s + γ(s)t,d 168 47

Hazard
(21.06) logit(µt,s) = β0,s +β (s)

t +δsζ
(s)
t i(t,d,s) = ψd,s +η(d,s)

t 85 56

To compare different models, we carried out a rolling prediction experiment using weekly

data starting from July 2021. We selected 16 dates between February and July 2022.

Our goal is to fit each of the models at each of these dates, only using data that would

have been available for modelling at those time points. Specifically, the available data

at each nowcasting date, Tnow, includes the number of SARI hospitalisations reported up

to that date (through observed zt,d,s) and simulated under-reported COVID-19 counts

x̃t,s. The “true” under-reported COVID-19 counts that would have been available at each

date Tnow is unknown since the historic data lacks time-stamps for reporting delays. To

simulate under-reported counts, we multiply the fully reported xt,s by a value that starts

at 0.95 and decreases linearly to 0.25 over the 30 weeks leading up to the nowcasting

date Tnow. We then round the result down to the nearest integer. The study of simulated

counts limits the realism of our experiment, but on the other hand it allows checks that

the simulated under-reporting mechanism is captured by the models adequately.

We fit all the models to data from each of the 27 federative units in Brazil,such that we

have 16× 27 = 432 sets of predictions for both SARI and COVID-positive SARI. This

allows us to assess their performance when applied to a wide variety of time series, each

with different shapes and scales in the levels of SARI and COVID-positive SARI cases,
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and each with differing systematic delay mechanisms. Apart from the “Survivor age”

model, which assumes a common polynomial for the age covariates across all federative

units, there is no hierarchical or spatial effect between the 27 regions in this application

of the GDM. We fit models in 60-week moving windows, i.e. rather than fitting models

to the whole time series of historic data, we discarded historic data before the 60-week

window, up to and including Tnow. Moving windows are common in recent literature on

disease nowcasting, e.g. to improve computational feasibility in complex methods (Stoner,

Halliday and Economou (2022) (Chapter 4)), or to keep estimation of time-invariant model

parameters relevant to more recent data (McGough et al. (2020)). For each model fit, we

generated predictions of recent yt,s and xt,s from MCMC sampling.

5.4.1 Implementation and Prior Distributions

Here we detail the model choices for the rolling prediction experiment. Choices include

priors for model parameters as well as constants that represent certain qualities in the

data, such as maximum delays. Although these decisions will effect the results of our

experiment to some degree we believe that our choices reflect suitable assumptions and

would be chosen similarly in an operational context and therefore allow us to judge if our

method is fit for surveillance purposes.

For the SARI hospitalisations we have set a maximum reporting delay of Dmax = 20

weeks, this was chosen as at 20 weeks over 97% of the SARI cases are usually reported.

Within the GDM models we explicitly model D = 8 weeks delay. Alternatively, for the

unknown COVID-19 reporting delay we know it is likely to be longer than the SARI

delay as once a SARI hospitalisation is reported there is a further length of time to

receive test confirmation of whether the patient has COVID-19. Therefore, we have chosen

to set the maximum COVID-19 reporting delay as 30 weeks which we believe to be a

conservative selection. This allows us to simulate possible COVID-19 cases that would have

been reported x̃t,s to retrospectively test our model. Specifically, the simulated reported
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proportions πt,s of the eventual total COVID-19 hospitalisations xt,s are constructed such

that they monotonically decrease in the 30 weeks leading up to the nowcasting date Tnow

and are 1 (fully reported) for all weeks prior to M = Tnow − 30. We explore the GDM’s

ability to recapture this reporting proportion in Section 5.4.4. We model the reported

proportions by log(πt,s) =−ωs(t −M) for t > M. We choose the prior,

ωs ∼ Gamma(10,200), (5.23)

which is parameterised in terms of shape and rate with mean 0.05 and variance 0.00025,

for the degree of censoring of the COVID-positive counts. In particular, it results in the

degree of under-reporting of COVID-19 (π) to be between 0 and 100% with the prior

distribution density peaking at around 25% for the current nowcast date (Tnow). Whilst

we know this to be sensible from simulating this censoring, the prior could be adjusted to

reflect alternative beliefs about the real-world censoring or left as is without drastically

impacting predictions as it would still be sensible for any under-reporting rate.

For the coefficient of the mean SARI spline effect on the positive COVID-19 proportions

we assumed a prior,

δs ∼ Normal(0,52), (5.24)

(5.25)

as a non-informative prior of the effect of the mean number of SARI cases on µ . When

there is an influx in COVID-19 cases this will cause both the mean SARI cases, log(λt,s) =

ζ0,s+ζ (s)
t , and the proportion of COVID cases, µ , to increase. This is the relationship we

hope to capture with δsζ
(s)
t within logit(µt,s) = β0,s +β (s)

t +δsζ
(s)
t .
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The choice of prior for the SARI intercept term is ζ0 ∼ Normal(log(SARI),102) where

SARI is the mean of the SARI cases that have been reported up to the week Tnow − 20,

where Tnow is the nowcast date we are predicting up to and 20 weeks is the maximum delay

we expect for SARI. On the other hand, the prior for the intercept of the proportions is

β0 ∼ Normal(0,52) since it is the intercept for a log-odds link function. Finally, for our

time-delay tensor product interaction spline for the absolute proportions of the partial

counts in our ‘CLR’ models we have a prior γ0 ∼ Normal(0,102) for the intercept.

All Beta-Binomial and the Negative-Binomial (θ ) dispersion parameters were given the

prior distribution Gamma(2,0.02),which is also parameterised in terms of shape and rate

with mean 100 and variance 5000,

θs ∼ Gamma(2,0.02), (5.26)

χs ∼ Gamma(2,0.02), (5.27)

υs ∼ Gamma(2,0.02), (5.28)

ϕd,s ∼ Gamma(2,0.02). (5.29)

When including age polynomial coefficients in the model, as discussed in Section 5.3.4,

we use the following priors:

β poly
1,1:3 ∼ Normal(0,22), (5.30)

β poly
2,1:3 ∼ Normal(0,22). (5.31)

Here we use common polynomial coefficients across all regions. However, it is worth noting

that all the splines used when investigating the nested GDM framework introduced in this

chapter are independent for each region (with no nested hierarchical structure). We specify

and define the splines used throughout our framework in Section 5.4.1.1.
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5.4.1.1 Spline and tensor product terms

Within the CLR model for our rolling prediction experiment we utilise a 2D tensor product

spine for time and delay:

γ(s)t,d = Xtdκ
(s)
γ , (5.32)

κ
(s)
γ ∼ Multivariate-Normal(0,Ωγ,s), (5.33)

Ωγ,s =
S(1)td

σ2
γ,1,s

+
S(2)td

σ2
γ,2,s

+
S(3)td

σ2
γ,3,s

, (5.34)

σγ,1,s,σγ,2,s,σγ,3,s ∼ Half-Normal(0,12). (5.35)

The basis function for the 2D tensor product Xtd was generated using the R package

mgcv, with the jagam(.) function. This was also used to obtain the penalty matrices

S(1)td , S(2)td and S(3)td . Here we apply the tensor product to each spatial region independently.

For both the Hazard and Survivor models we instead opt for a temporal cubic spline with

shrinkage for a given region in any version of the model is defined by:

η(s)
t =Xtκ

(s)
η (5.36)

Ωη = S/σ2
η ,s (5.37)

κ
(s)
η ∼ Multivariate-Normal(0,Ωη) (5.38)

ση ,s ∼ Half-Normal(0,12). (5.39)

The model matrix of the basis function Xt at each time point and a vector of coefficients

κ are used to define the temporal splines. To avoid over-fitting, the precision matrix

Ω is equal to a cubic spline penalty matrix S and scaled by the penalty parameter ση .

Small ση values correspond to harsher penalties (more smoothing). Implementing smooth

splines in NIMBLE is introduced in more detail in Section 2.1.2.2. This ηt spline can
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then be independently applied for each region η(s)
t (Survivor version) or independently

for each region and delay η(s,d)
t (Hazard and CLR no tensor versions). The same priors

can be formulated for the temporal splines βt and ζt , which can similarly be applied

independently for each region (all model versions).

For the rolling prediction experiment, we fit a moving window of length 60 weeks. Within

each 60 week window the the cubic splines with shrinkage η(s)
t and ζ (s)

t are assigned 15

knots which are evenly placed up to the nowcast date. For the cubic spline with shrinkage

β (s)
t , which captures the proportion of SARI cases that are COVID-positive, 8 knots were

evenly placed up to the nowcast date. For the tensor product spline in the CLR model 15

knots are similarly evenly placed over the 60 week temporal trend and 6 knots are evenly

placed to capture the delay over the d = 1, ...,8 delays

5.4.1.2 Software and convergence

All models were written in the statistical programming language R (R Development Core

Team (2011)) and were implemented using the NIMBLE software package (de Valpine

et al. (2017)), which provides flexible implementations of Markov Chain Monte Carlo

(MCMC) algorithms for Bayesian inference. This software is suitable for this application

as we can represent our model as directed acyclic graph (DAG), as shown in Appendix C.2

for the survivor version of our nested framework.

In general we use the default MCMC samplers given by NIMBLE as discussed in Sec-

tion 2.1.2.1, here we implemented automated factor (AF) slice sampling to improve

sampling efficiency, where model effects are grouped into a single AF slice where there

is intuition for them having a strong correlation in the posterior distribution. Hence, we

used the default nimble MCMC samplers for all parameters, except for κ(s)
β , κ(s)

ζ , σβ ,s,

σζ ,s, β0,s and ζ0,s which are all assigned a single AF slice sampler for each region s. Then,
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for the CLR model κ(s)
γ , σγ,1:3,s and γ0,s are all assigned a separate single AF slice for

each region. Similarly, for the hazard and survivor versions κ(s)
η and ση ,s are assigned a

AF slice sampler for each region. For the nested models with age βpoly
1,1:3 and βpoly

2,1:3 are all

assigned an additional single AF slice parameter. Each model implementation is run for

2 MCMC chains with 15,000 iterations and 10,000 burn-in, with a thinning of 5.

In order to gauge whether the models converged we calculated the potential scale reduction

factor (PSRF) for all model parameters to confirm it to be less than 1.10, which suggests a

lack of evidence that the MCMC chains haven’t converged. Although there is no guarantee

that this convergence is to a unique posterior distribution we endeavoured to reduce the

chances of multi-modality by running multiple chains from random initial values as advised

in Brooks and Gelman (1998).

5.4.2 Age effects and the impact of COVID-19

To uncover insights into the effect of patient age distributions on the COVID-positive

proportion in SARI cases, and the role of COVID in driving recent SARI outbreaks, we

examine posterior inference for relevant parameters.
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Figure 5.1: Posterior medians for the SARI-COVID link coefficient δs from the “Survivor
age” model.

Figure 5.1 shows the posterior distributions of the coefficients δs, which links variation

over time in the total SARI cases to the COVID-positive proportion (Equation (5.11))

for four nowcast dates. The posterior medians for δs are independently positive for the

vast majority of federative units – generally in the region of about 0 to 2. These positive

values imply that the higher the total SARI cases, the more of those cases will test positive

for COVID-19 on average. However, mainly in the eastern part of the country, there are

some negative values – these suggest that viruses other than SARS-CoV-2 are playing

a proportionally larger role when overall SARI case levels are higher in these regions. A

similar pattern is observed across all nowcast dates.
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Figure 5.2: Posterior medians (lines) and 95% credible intervals (shaded areas) for the
cubic polynomial effects of age distribution on the COVID-positive proportion of SARI
patients from the “Survivor age” model.

Meanwhile, Figure 5.2 shows the predicted effect of the percentage of SARI patients aged

0-18 (left), or 19-60 (right), on the percentage of SARI patients that test positive. Here,

we can see that the COVID-positive proportion decreases considerably where more of the

SARI patients are in the child age group. We can also see decreasing effects for the adult

age group. Implicitly, then, the COVID-positive proportion increases as the percentage

of SARI patients in the “elderly” age group (60+ years old) increases. In all cases, the

95% posterior credible intervals are very narrow, reflecting the weight of evidence behind

these associations.

5.4.3 Results from the rolling prediction experiment

To evaluate predictive performance, we compared posterior predictive samples for SARI

and COVID-positive SARI to the counts that were eventually reported. We base conclu-

sions on three prediction performance metrics: the mean absolute error (MAE), to capture

accuracy of point predictions; mean 95% prediction interval width (PIW), to capture the

prediction precision; and 95% prediction interval coverage, to asses whether uncertainty

is quantified appropriately. Here, by coverage, we mean the proportion of observed values
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that fall within the 95% prediction interval. We compute these metrics for each model,

combining predictions made across the 27 federative units but separating predictions by

the “prediction time difference” (PTD) – this is the difference in time between the now-

casting date Tnow and the recorded date of occurrence of cases. I.e. a PTD of 0 means

predicting for the same week that data is available up to (“contemporaneous nowcasts”),

and PTD< 0 means predicting for past weeks, for which the counts have not yet been

fully reported.

First, we aim to compare GDM models based on the CLR, survivor and hazard link

function of the GDM method to determine which is best suited for this application.

Additionally we compare the “CLR no tensor” model to determine the merits of the

“CLR” model choice of a 2D tensor producrt to the “CLR no tensor” model that instead

has an independent temporal spline for each delay CLR(pt,d,s) = ψd,s +η(s,d)
t .
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Figure 5.3: Prediction performance metrics from the rolling experiment for all SARI (top)
and COVID-positive SARI (bottom): mean absolute error (left), prediction interval width
(center), and 95% prediction interval coverage (right).
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The upper row of Figure 5.3 shows the three performance metrics for predicting all SARI.

Here, we can see that the “Survivor” model greatly outperform both the “CLR” mod-

els. Notably, the mean absolute error of point predictions for contemporaneous nowcasts

(PTD= 0) is about 50% lower for the Survivor models. It is clear that the “Hazard” and

“Survivor” variants of the GDM appear to be better suited for this application with the

“Survivor” outperforming the “Hazard” slightly in terms of mean absolute error (MAE)

and prediction interval width (PIW). Thus, in our main atricle we focus on different

survivor versions to asses our proposed framework.

The hazard version may outperform the CLR versions, as with the survivor, as the “Haz-

ard” has an independent temporal spline for each delay. In order to achieve a similar level

of flexibility for the “CLR” model the number of knots could be increased but, this could

cause over-fitting and therefore issues with uncertainty and accuracy when forecasting

future counts. As we can see, the “CLR no tensor” model which has a more flexible delay

structure outperforms the other CLR version for SARI predictions in terms of MAE and

PIW, but has an even worse coverage. However, the fact that the other link functions

still out-preform the more flexible “‘CLR no tensor” version suggests that differences in

performance may be due to modelling the relative or cumulative proportions being more

appropriate in this particular data set. Possibly indicating that the GDM-CLR may still

be beneficial for alternative applications.

A plausible reason for the poorer performance in the CLR models – compared to the sur-

vivor and hazard versions – is that here we assumed systematic variation in the reporting

delay could be captured by a smooth 2D tensor product over time and, notably, delay.

Assuming smoothness over the delay dimension may not be realistic (e.g., in Stoner, Hall-

iday and Economou 2022 (Chapter 4) there was a spike in reporting of COVID-19 deaths

in the second delay), which may be why the survivor models, which assume a non-smooth

random effect for each delay, perform better here. Hence, we may have seen better per-

formance had we constructed our tensor product using a less smooth marginal basis for
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delay (e.g., spherical-covariance Gaussian-process basis functions, available in the mgcv

package from Wood 2017). Meanwhile, coverage for the 95% prediction intervals was low

across all models, for both SARI and COVID-positive SARI. We discuss the practical

implications of this in Section 5 of the main article.

The rolling prediction experiment for sixteen nowcast dates took 5 hours to run for the

“Survivor”, 21 hours to run for the “Hazard” and 25 hours to run for “CLR no tensor”.

In a operational setting for a single nowcast date they would all take less time to run.

But, run time can be crucial in applications where timeliness of disease surveillance is

a priority. Therefore, the survivor link function has the most practical benefits in this

application due to both prediction precision and computational performance.

Next, due to the superior performance of the survivor model in Figure 5.3, we compare the

predictive performance of different “Survivor” versions of the GDM model. This included

a “Survivor no shared parameter” model without the shared parameter for the mean

number of SARI cases and the expected relative proportions reported, and a “Survivor

no shared parameter” model with age covariate effects for the proportion of SARI cases

that are COVID-19 positive.
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Figure 5.4: Prediction performance metrics from the rolling experiment for all SARI (top)
and COVID-positive SARI (bottom) hospitalisation: mean absolute error (left), prediction
interval width (centre), and 95% prediction interval coverage (right).

The lower panels in Figure 5.4 shows the performance metrics for predicting COVID-

positive SARI cases, for the three survivor models, chosen to highlight the comparative

performance when including age covariates and a shared parameter for the survivor ver-

sions of the model. The addition of age distribution polynomial effects greatly improves

detection of trends in severe COVID-19 hospitalisation, which is reflected in improvements

across all three performance metrics.

However, it is important to highlight that the trends in the metrics in both Figure 5.3 and

Figure 5.4 are not as we would expect from a GDM model. For example, if we consider

Figure 4.1 for comparison, we would expect to see the mean absolute error increase for

more recent predictions (larger prediction time difference) as there will be less observed

data at these times. This is not present in Figures 5.3 & 5.4, where we instead see the

mean absolute error falling over prediction time difference for SARI and falling in the

most recent 10 days of nowcasting. Also, while coverage may fluctuate we would expect
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values to be much closer to the desired 95% level, where as here we consistently have

coverages below the 70% level. There also seems to be an inverse relationship between

mean absolute error and coverage for both the upper and lower panels, this suggest that

the model is systematically not capturing the trend in the data.

Figure 5.4 also demonstrates that not including a shared parameter in the survivor model

which between the mean expected SARI cases and the proportion on those SARI cases that

are COVID-positive results in poorer performance across all three metrics (columns). To

investigate this further, we zoom-in on one region for a closer inspection of how including

a shared parameter between SARI and COVID-positive cases affects prediction perform-

ance. Figure 5.5 shows predictions of the proportion of SARI cases that test COVID-

positive (xt,s/yt,s), for the São Paulo federative unit, from the “Survivor no shared para-

meter” and “Survivor” models fitted to 4 of the 16 nowcasting dates. It should be noted

that, in our framework, accurately predicting the COVID-positive counts xt,s is depend-

ent on capturing both yt,s and xt,s/yt,s appropriately. These two models have an identical

GDM structure for the total SARI counts yt,s and their respective partial counts zt,d,s,

meaning any differences in their performance predicting COVID-positive SARI should

only arise from their respective ability to capture xt,s/yt,s well (through µt,s). The left
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Figure 5.5: Posterior median predicted (lines) and 95% prediction intervals (shaded areas)
for the proportion of SARI cases that test positive for COVID-19, from the “Survivor
no shared parameter” and “Survivor” models. Dashed lines show the simulated under-
reported COVID-positive proportions of SARI.

panel of Figure 5.5 shows predictions from “Survivor no shared parameter”, we can see

that the predictions are basically linear where the xt,s are not yet reported with wider
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prediction intervals that fail to capture the true data (points). This is likely due to both

the COVID-positive cases xt,s and the SARI hospitalisations yt,s being unknown for the

most recent time steps creating identifiability issues for the proportion xt,s/yt,s. Hence,

including the scaled shared parameter in the proportion of COVID-positive cases, as in

the “Survivor” model (right panel), allows the general shape xt,s/yt,s to be captured a lot

better by pooling information from the model of the expected mean SARI cases.

Using results from the “Survivor Age” model, Figure 5.6 shows how the SARI and COVID-

positive hospitalisation could be nowcasted for São Paulo. In a regular operational setting,

we would see the model predictions (solid lines and shaded intervals) and the total reported

so far (dashed lines), but not the total eventually reported (points).
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Figure 5.6: Posterior median predicted (lines) and 95% prediction intervals (shaded areas)
for the nowcasted SARI and COVID-positive hospitalisations. Dashed coloured lines show
available hospitalisations reported at time of the nowcast date.

In this example, the model predictions are very close for SARI but the point estimates

under-predict the most recent COVID-positive counts. Furthermore, the prediction in-

tervals fail to capture the majority of the true data (points) for the severe COVID-19

hospitalisations. This poor coverage is a result of model not capturing the true propor-

tions of the COVID-positive proportions propagating into the COVID-19 predictions,

again this is likely due to the identifiability issues of incomplete data for the total SARI

cases and censored COVID-positive counts.
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5.4.4 Capturing COVID-19 censoring

Figure 5.7 demonstrates the GDMs ability to capture the reporting rates of COVID-

positive SARI which we constructed (grey dashed lines) prior to modelling for simulation

purposes in our retrospective experiment.
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Figure 5.7: Posterior medians from the “Survivor Age” model of expected proportion of
COVID-positive SARI cases reported (dotted lines) for 27 federative regions, the solid
line shows the Brazil level mean. Dashed lines indicate the artificial reported proportions,
used to simulate the COVID-19 censoring, that we hope to capture.

The across region means (solid lines) shows that on average these reporting proportions are

fairly well captured by the GDM. However, some regions appear to over or under predict

the reporting rate more than others (dotted lines). Like existing nowcasting frameworks

we assume the delay and number of cases are independent. Figure 5.7 also shows the

discrepancy between how the censoring of COVID-19 hospitalisations have been simulated

and modelled. We simulate the censoring linearly with x̃t,s = πsim
t xt,s where the simulated

reporting rates πsim
t decrease linearly from 1 to 0.25 from the time we simulate the COVID-

19 hospitalisations to be censored. On the other hand, we modelled the censoring with a

Beta-Binomial distribution with expected proportion log(πt,s) = ωs(t −M), as defined in
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Section 5.3.2. This was done as in practice the censoring will not have to be simulated

and we have no prior information about how this censoring may be structured. Hence,

we hope to demonstrate the abilities of the model despite potentially misspecifying the

censoring assumption.

5.5 Discussion

The emergence of the SARS-CoV-2 virus has introduced a complexity in the incidence

and management of severe acute respiratory illness (SARI) cases in Brazil. Supplementing

existing surveillance of SARI with nowcasting of the number of cases caused by SARS-

CoV-2 – as indicated by positive lab test results – is useful as an indicator of COVID-19

prevalence in the wider population, since more severe cases are more likely to receive a

test. However, existing operational early warning systems in Brazil do not model all and

COVID-positive SARI together. We argue that modelling them jointly can lead to more

accurate predictions of COVID-positive SARI, drawing on the more timely and complete

information available for SARI cases before COVID-19 test results are recorded.

In this chapter we aimed to develop a general framework for correcting delayed reporting

of diseases with a nested structure (Section 5.3). To achieve this, in Section 5.3.1, we ad-

ded an extra Beta-Binomial layer in the hierarchy for the nested disease to an established

method based on a hierarchy of Negative-Binomial and Generalized-Dirichlet Multino-

mial models (Stoner and Economou (2019)). We further modified this new Beta-Binomial

layer to account for under-reporting of recent confirmed COVID-positive SARI cases (Sec-

tion 5.3.2). In doing so, we have proposed the first modelling approach (to the best of

our knowledge) that addresses the issue of “unmarked” reporting delays. Such scenarios,

where the length of the reporting delay is unknown, constitute a common challenge in
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real-world data collection. For instance, in Höhle and An Der Heiden (2014) only 79.6%

of hemolytic uremic syndrome (HUS) cases had a known date of hospitalisation, since re-

cording it was not mandatory. Previously, such unmarked data have been removed prior

to analysis where possible (Höhle and An Der Heiden (2014)).

The flexibility/generality of the framework allowed us to estimate the effects of overall

SARI incidence and polynomial effects of the age distribution of SARI cases on the pro-

portion of SARI cases testing positive for COVID-19, in Section 5.3.4. Here, we found that

the COVID-positive proportion increases when the overall incidence of SARI increases and

when the SARI patients tend to include more elderly people (Section 5.4.2). Through a

comprehensive rolling prediction experiment in Section 5.4.3, we quantitatively assessed

and compared the potential performance of joint predictive models for SARI cases and

COVID-positive SARI cases. Here, we demonstrated that including age distribution poly-

nomials and the explicit link between overall SARI incidence and the COVID-positive

proportion led to the most convincing performance, e.g. in terms of point estimate accur-

acy (mean absolute error).

However, we also found that 95% prediction interval coverage was relatively low with an

average of 76% for all SARI and 87% for COVID-positive SARI across all models tested.

Prediction interval coverage has generally been appropriate in previous applications of

the GDM method to correcting delayed reporting, e.g. Stoner, Halliday and Economou

(2022) (Chapter 4), so the lower coverage for all SARI cases is especially curious. On

reflection, we believe that this issue needs more thorough investigation that is outside the

scope for this thesis. So far, we have considered both the joint modelling of SARI and

COVID-19 as well as the specification of the age effect as potential sources of concern

within the model, but both have been ruled at as the source of the problem. In practical

applications, where it would be beneficial to present uncertainty intervals to public health

policy makers with a desired coverage (for example of 95%) of the eventually reported

data, more extreme quantiles for the prediction interval could be considered. However, this

would require generating the posterior predictive samples for SARI and COVID-positive
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SARI for times the true data is now available, to calibrate the choice of quantiles that

are likely to encompass the desired proportion of the eventual counts. In the context of

our work this would be straightforward to carry out as the rolling prediction experiment

allows us to determine the quantiles needed to capture 95% of the true data for multiple

nowcasts dates.

Although our motivation for developing this framework was capturing COVID-positive

SARI cases nested within the broader cohort of all SARI cases, we believe it has strong

prospects for application to related problems. In the Brazilian context, predictive perform-

ance of nowcasts for SARI hospitalisations caused by Respiratory syncytial virus (RSV)

could also be improved through joint modelling with the total SARI cases. The distribution

of ages within these total SARI counts are also likely to be informative here due to RSV

occurring more frequently in small children (0-2 year-old’s) Freitas and Donalisio (2016).

Alternatively, our application could be extended to incorporate modelling multiple vir-

uses that cause SARI (e.g. adding influenza and/or RSV-positive SARI) simultaneously.

Alternatively, our framework could be applied to considering nested structures arising

from different viruses, nested structures arising from different virus strains, or nesting

from the severity of a disease (e.g. mild cases, severe cases, hospitalisations, fatalities).

Our assumptions for both modelling and simulating the censoring of the severe COVID-19

hospitalisations could benefit from a more in-depth simulation study in future work to

systematically identify the impact of different assumptions in both. For simplicity, here we

have simulated censoring linearly since this is not the focus of our investigation as there

is no historic data to inform the censoring structure or to check our assumptions against.

Currently, the only way to check this model assumption is to monitor the reported data

over a period of time until enough historic data is collected such that the delay structure

can be inferred. However, with the addition of more expert knowledge, or in a scenario

where modelers have a greater intuition about the reporting process, the modelling of the

unknown delay structure will hopefully be more aligned with the data (and hence to any

simulations carried out to test the model). Thanks to the flexibility of the Beta-Binomial
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model used to capture the censoring process in our framework, a wide range of censoring

assumptions could be implemented in this model. For example, if the delay structure of the

COVID-positive cases were in fact known we could add a delay process to the censoring

model, Equation (5.12) which would then be equivalent to the GDM model,

x̃t,d,s|xt,s,πt,d,s,υd,s ∼ Beta-Binomial(πt,d,s,υd,s,xt,s); (5.40)

πt,d,s = j(t,d,s), (5.41)

where j(t,d,s) captures the COVID-19 delay distribution in the same way i(t,d,s) captures

the SARI delay distribution. Any of the three link functions would be appropriate for this

additional GDM model in the framework. The final framework would then continue to

pool information between the SARI and COVID-19 hospitalisations under the hierarchical

structure, but there would be less identifiability issues in capturing the proportion of SARI

cases that are COVID-positive, as more data for the COVID-19 hospitalisations will have

been observed. In general, this framework could be applied to different nested data sets

with or without an unknown reporting delay structure in one of the counts.

We also aimed to extend available methodology for flexible modelling of general compos-

itional (count) time series data, based on hierarchical Generalised-Dirichlet Multinomial

methods. Here, we proposed an alternative approach to modelling the mean proportion

belonging to each composition, using the centre log ratio as a link function for the GDM.

We argued that this may avoid the major drawbacks of the two established “survivor”

and “hazard” approaches, i.e. avoiding monotonicity constraints when instead modelling

the cumulative proportions over the compositions, and avoiding a lack of intuition when

modelling the relative proportions.

We demonstrated this extended framework in the context of a complex hierarchical data

problem, with both a stochastic total for the compositions (yt,s) and another stochastic

variable (xt,s) sharing the same parent as the count compositions zt,d,s. Furthermore, we

investigated the use of a 2D tensor product smooth term – as one possible option within
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this general approach – to capture systematic variation over the time (t) and delay (d)

dimensions relevant to our Brazilian SARI application. Our rationale for using a 2D tensor

product was the potential to be flexible enough to capture non-linear changes in the mean

delay distribution over time, with the smoothness penalty terms preventing over-fitting.

Ultimately, our models based on the CLR did not outperform established alternatives from

Stoner and Economou (2019) in the rolling prediction experiment. Notably, we tested both

a “CLR” model with a 2D tensor product of time and delay and an alternative “CLR

No Tensor” based on independent splines. For the former, we constructed the tensor

product using thin plate spline marginal bases, meaning it is constrained to be smooth

in both dimensions. Meanwhile, the latter does not assume any smoothness in systematic

time-delay variability across the delay dimension. The “CLR” model with the tensor

product performed worse, such that we tentatively conclude that it may be inappropriate

to assume smoothness across the delay dimension in this application. We may have seen

better performance had we constructed our tensor product using a less smooth marginal

basis for delay (e.g. spherical-covariance Gaussian-process basis functions, available in the

mgcv package from Wood (2017)).



Chapter 6

Investigating the effect of case load
on the delay in reporting infectious

diseases

184



CHAPTER 6. THE EFFECT OF CASE LOAD ON DELAY 185

In Chapter 1, we discussed what we consider to be the four main types of variability in data

suffering from delayed reporting and the need to appropriately capture these to develop

reliable nowcasting models. One of these is systematic variability in the delayed reporting

process. Often in analysis of real-world data, we see reporting rates (e.g. as measured

by the percentage of cases reported within a delay period) trending over time, due to

changes in the reporting process. In Stoner, Halliday and Economou (2022) (Chapter 4),

we also identified a specific mechanism known as the “weekly cycle” in COVID-19 hospital

deaths data for England, where reporting delays were systematically longer at weekends

due to lower staffing levels reducing reporting capacity. Hence, this is an example of the

limit of a reporting system capacity being met, and having detrimental effect on reporting

efficiency. Related to this is the theoretical possibility that capacity might be increased in

response to a greater anticipated or observed stress on reporting systems. Alternatively,

a sudden surge in cases might overwhelm a reporting system and the fixed capacity may

induce inefficiencies in reporting.

Furthermore, Gutierrez, Rubli and Tavares (2022) note that correcting these delays through

statistical methods is more vital in low- and middle-income countries, due to limited ca-

pacity for improving the reporting process to reduce delays, often as a result of finite

resources and funds being targeted towards patient care instead. Recent contributions

to the literature, such as Bastos et al. (2019), Gutierrez, Rubli and Tavares (2020) and

Harris (2022), have also highlighted that these resource limitations, and therefore report-

ing capacity, may be highly influential on the length of reporting delays when systems

are overwhelmed by an uptick of incoming reports. This is somewhat intuitive as within

any type of processing system there will be a capacity limit that has the potential to be

overwhelmed by unexpected surges.

Broadly, the nowcasting frameworks reviewed in Chapter 2, and those developed in previ-

ous chapters, allow for changes over time in reporting performance through flexible tem-

poral structures (e.g. random walks, splines) and/or through fitting the model to moving

windows. These models can thus potentially “react” to sudden changes in reporting per-
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formance relating to the level of incidence of the disease, but lack any structure that could

inform a likely change in the delay distribution and thus provide more accurate correction

of these delays for nowcasting. Indeed, to the best of our knowledge, no existing nowcast-

ing methods explicitly account for any relationship between incidence and delay, which

could be a source of bias and/or uncertainty in predictive performance. For example, in a

situation where reported counts are lower than expected due to an overwhelmed report-

ing system, such models may interpret this information as a decrease in the level of the

disease, resulting in under-prediction and potentially inadequate measures.

In this chapter, we aim to further investigate “case load” effects in real data from Brazil,

and propose the first nowcasting framework (we are aware of) that can directly account

for them, as a foundation for the development of less biased and more accurate disease

surveillance systems in the future. In Section 6.1 we introduce the current literature on the

potential effect of the level of the disease on delayed reporting – which we will refer to as

the “case load” effect or “incidence-delay” effect – and investigate whether it is detectable

in data for severe acute respiratory illness (SARI) hospitalisations and for arbovirus cases

(including dengue and chikungunya) from Brazil (Section 6.1.1). In Section 6.2 we intro-

duce and extend the GDM framework to quantify the effect of the total counts on the delay

distribution, hence capturing the relationship between the total cases at a given time and

the efficiency of reporting delays at that time. Through an extensive simulation experi-

ment in Section 6.3, we assess the reliability of the model in capturing the incidence-delay

effect in the presence of confounding trends, and the implication of ignoring the incidence-

delay effects on the model prediction precision and accuracy. Following this, we apply our

proposed approach to the Brazilian SARI hospitalisations and Brazilian arbovirus cases

in Section 6.4, to provide clearer insights into potential incidence-delay effects and trends

than is possible through exploratory plots. We conclude this work with a discussion of

our findings and suggest worthwhile avenues for future research in Section 6.5.
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6.1 Background

In this Chapter, we will use the same notation as we have previously for disease count

data suffering from delayed reporting, first explained in detail in Section 1.1. Briefly recall,

from Section 1.1.1, that disease time series data are often available as a total count yt

(cases/ hospitalisations/ deaths) occurring over discrete time steps (e.g. daily/ weekly/

monthly/ yearly) t = 1,2, . . . ,Tnow. As discussed in Section 1.1.2, due to reporting delays,

it is unlikely that yt will be fully reported at time t. Instead we often find that portions

of yt , zt,d, are reported over subsequent time steps, e.g. t, t +1, t +2, ..., corresponding to a

delay index d = 0,1,2, ...,Dmax. Here, Dmax is the assumed maximum possible delay, such

that all the partial counts and thus the total counts, yt = ∑Dmax
d=1 zt,d, are fully observed for

t > t +Dmax.

Bastos et al. (2019) note that the incidence of a disease may bring about potentially

conflicting reactions in the timeliness of those counts being reported. Reporting delays

could be expected to decrease during an outbreak due to the increase in awareness and

drive to reduce the public health challenge. Alternatively, they may increase due to the

burden of high case loads on the reporting system, leading to back-logs in case reporting.

The COVID-19 pandemic has further highlighted potential relationships between higher

disease incidence levels and longer reporting delays around the world, including Mexico

and England (UK) in Gutierrez, Rubli and Tavares (2020), and New York (USA) in Harris

(2022). Similarly, Torres, Sippy and Sacoto (2021) analyse data concerning COVID-19

testing delays in Ecuador and Hayashi and Nishiura (2022) investigate case fatality risk

for COVID-19 in Japan in relation to case load.

Gutierrez, Rubli and Tavares (2020) investigates the impact of not accounting for reporting

delays of COVID-19 deaths on the analyses of SIR (Susceptible - Infectious - Recovered)

models, focusing on both Mexico and England. Let delays,t be the number of days of delays

before an individual COVID-19 death occurring at day t and at location s is reported.
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Gutierrez, Rubli and Tavares (2020) assume a Geometric distribution for delays,t with a

log-linear model for the expected delay E[delays,t ]:

log(E[delays,t ]+1) = πs +ξt +
Q

∑
q=1

(
αq1 [deathss,t = q]

)
+ εs,t . (6.1)

Here, the expected reporting delay E[delays,t ] is determined, at the log scale, by separate

spatial and time effects πs and ξt . Then, the term εs,t captures the random time and

location variability. Meanwhile, coefficients α1, . . . ,αQ capture the effect of the binned total

number of deaths deathss,t on the expected delay. The binned total deaths is implemented

as a categorical variable through the indicator function 1 [deathss,t = q], which is equal to

1 when deathss,t is in category q (q ∈ {1,2,3,4,5+} deaths) and 0 otherwise.

Using this model, Gutierrez, Rubli and Tavares (2020) found that the reporting delays

had large spatial heterogeneity and were generally longer at times when there are a greater

number of total deaths, for a given location. They suggest that the increase in reporting

delay length when average deaths are high could also be related capacity limits. Altern-

atively, they suggest a higher number of deaths could increase the likelihood of deaths

that need further investigation/tests before being reported, increasing the average delay

length.

Furthermore, they found that Mexico has longer reporting delays on average than Eng-

land, and that delays are more strongly influenced by the eventual number of deaths in

Mexico. They argue, with relevant evidence, that the difference in reporting delay length

between countries is related to relative state capacities. Specifically, Gutierrez, Rubli and

Tavares (2020) investigated the effect of state capacity by comparing the average delay

in days against metrics for each of the municipalities in Mexico. Metrics for capacity that

were found to correspond to longer delays were; fewer health care units per capita, fewer

medical staff per capita, and higher patient volume per health care unit. Therefore, they
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maintain that there is a need to account for spatial and temporal variability in report-

ing systems, as well as potential slowdowns in reporting when considering overwhelmed

real-time surveillance systems. However, they do not address this within the scope of

Gutierrez, Rubli and Tavares (2020).

Similarly, Harris (2022) implements a nowcasting model for COVID-19 deaths in New York

city, using an iterative algorithm equivalent to expectation–maximization (EM), where the

respective confidence intervals are calculated using a bootstrap method. They model the

delay distribution by considering direct model for the partial counts (recall that we call

this kind of model a “conditional independence” model, as described in Chapter 2.2.2).

They model the partial counts with a Poisson distribution, without formulating a joint

model for the total deaths to marginalise over. Their reasoning behind choosing a marginal

model is that if separability of total incidence and reporting delay is independent, there is

no inherent bias in just modelling the delay distribution. However, they did not compare

their marginal model approach to a joint model approach to confirm this claim. Instead,

they argue that the independence assumption holds as the delay length of COVID-19

cases are not related to case load, but instead delay length is associated with independent

improvements in the testing capacity. However, this is based solely on the observation

that delay lengths continued to fall in New York in October 2020 despite COVID-19 cases

rising again.

These references are indicative of a growing body of evidence in the literature suggesting

a need to account for case load effects in disease surveillance methods. In Section 5.3,

we propose a new general approach that addresses this need, based on the Generalized-

Dirichlet Multinomial (GDM) that has already proven highly adaptable for new disease

surveillance challenges in previous chapters.
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6.1.1 Exploratory Analysis

In this Section, we investigate potential evidence for incidence-delay effects, discussed

in the previous section, for two operational disease surveillance data sources in Brazil.

Statements made to us by expert researchers at Fiocruz, Brazil’s leading public health

research institute, suggested that these disease data are likely affected by links between

the case load and delay in reporting of the disease. Therefore, they can serve as a useful

real-world grounding for our investigation into case load effects and as test applications

for new models. Furthermore, the expert researchers anticipated that the sign (positive or

negative) of the relationship was likely opposite between the two case studies, providing

an interesting direction for us to assess the generality of our proposed frameworks.

6.1.1.1 SARI hospitalisations

The first case study in this chapter is SARI hospitalisations in Brazil, published as open

data by Ministry of Health Brazil (2022). Recall that we studied this data in Chapter 5,

in the context of modelling diseases with nested structures. Details on SARI and its full

definition are given in Section 5.1.

The definition of the reporting date for a SARI hospitalisation in Brazil is the date that

an individual patient record is digitalised and added to the main database. This task is

executed manually and often by hospital staff that also have responsibility for patient

care; if the number of patients requiring treatment surges then caring for those patients

is likely to be prioritised over digitalisation of records, leading to longer reporting delays.

If such an effect is detectable in available data, accounting for it in nowcast models could

enable more accurate predictions by accounting for the fact that a surge in cases may not

be reflected in initial reports due to longer reporting delays.



CHAPTER 6. THE EFFECT OF CASE LOAD ON DELAY 191

Moreover, quantifying this relationship could inform decision makers also allow insights

into how the reporting delay process is impacted by potential outbreaks, and possibly

lead to targeted intervention to reduce delays when future peaks occur, e.g. employing

additional staff/supplies to help increase the reporting capacity or aiding staff efficiency

through incentives or specialised training. Alternatively, there could be scope to improve

region-specific reporting infrastructure, such as updating technologies or streamlining the

reporting process to increase reporting speed.

Here, we investigate signs of any potential relationship in available data between the num-

ber of SARI hospitalisations in Brazil and the length of the reporting delays through ex-

ploratory plots. In total across the whole of Brazil, Figure 6.1 shows the probit-transformed

cumulative proportion of SARI cases reported
(

Ct,d = ∑d
i=0 zt,i

yt

)
up to and including each

week of delay (y-axis), varying with the total number of SARI cases eventually reported

(x-axis).
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Figure 6.1: Probit-transformed cumulative proportions of SARI hospitalisations reported
(probit(Ct,d)) up to and including each week of delay (d), by the log of the number of
eventually reported SARI hospitalisations. Points are individual weeks (t). solid lines and
associated 95% confidence intervals are from linear regression fits; dashed lines are smooth
thin plate splines from Gaussian additive models.
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The downward trends of the linear regressions fitted to the data in Figure 6.1 suggest

that, on average across Brazil, higher total SARI case counts (x-axis) are generally asso-

ciated with lower cumulative proportions reported on average (y-axis); lower cumulative

proportions suggests that reporting is slower as less cases are being reported after each

week of delay.

However, it is worth noting that the trend demonstrated in Figure 6.1 may be a result of

a confounding factor over time. As we can see in Figure 6.2, the overall trend in the total

SARI hospitalisations across the whole of Brazil is decreasing over time, with each con-

secutive outbreak being less severe than the previous one, at a national level. This may

be due to both pharmaceutical (vaccine uptake) or non-pharmaceutical (social restric-

tion recommendations) interventions related to the COVID-19 positive SARI cases, since

COVID-19 largely drove many of peaks in SARI hospitalisations within the time period

covered by this data. Meanwhile, the cumulative proportions reported appear to increase

steadily over time, potentially indicating long-term improvement in reporting efficiency.

The long-term trends in both quantities could, therefore, suggest that an apparent negat-

ive relationship between them (in Figure 6.1) is coincidental. However, looking closely at

Figure 6.2, we can see that the cumulative proportions do seem to dip below the estimated

long-term trend in periods that line up with peaks in the SARI hospitalisations.

Therefore, an ideal modelling framework would be able to separate these potentially

confounding or conflicting trends within the data. We investigate whether our proposed

framework, introduced in Sections 6.2, is able to do so through our simulation experiments

in Section 6.3.
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Figure 6.2: The total number of SARI hospitalisations yt (top panel) and the cumulative
proportions reported, Ct,d, (bottom panel) by date of occurrence t (x-axis). For the bottom
panel, lines represent the linear regression of the cumulative proportions fitted to each
delay independently, and the shaded regions represent the associated 95% confidence
interval.

6.1.1.2 Arbovirus cases

Secondly, we consider the number of arbovirus cases in Brazil using data provided by the

Health Problem and Notification Information System Oliveira et al. (2021). In general,

the term arbovirus encompasses any virus transmitted by an arthropod vector such as

mosquito or ticks (World Health Organization (WHO) (n.d.)). Here we refer to the clinical

dataset in Oliveira et al. (2021) that presents confirmed patients with just the mosquito-
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borne diseases Dengue or Chikungunya in Brazil, between 2013 to 2020, as well as records

where the attributed virus is inconclusive/discarded. Each patient case includes the date

of the start of symptoms and the notification data of the record, the difference between

these two dates constructs the delay in reporting of each case. We assume that all cases

are reported after a maximum delay of Dmax = 30 weeks. The federative unit and city of

the health facility related to the identification of each case are provided. In this section,

for our exploratory analysis, we consider the cases for the whole of Brazil. In Section 6.4,

we apply our proposed framework to the regional data comprising arbovirus cases for each

of the 27 federative units of Brazil.

Figure 6.3 shows the probit-tranformed cumulative proportions reported (y-axis) against

the log of the total cases (x-axis). For the linear regression of the proportions reported in

the first delay (d = 0), there appears to be a positive relationship between case load and

the proportions. On the other hand, the overall linear trends for the subsequent cumulative

proportions reported after 2 and 4 weeks of delay are negative. However, this could be

due to the cumulative proportions being more likely to be larger when the total cases

are low. Looking at the smooth thin plate regression fitted by the dashed line there is

evidence that, after the initial dip, the cumulative proportions start to increase for larger

total counts. Alternatively, it could be that the relationship between the log-transformed

total cases and probit-transformed cumulative proportions reported is non-linear.
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Figure 6.3: The probit-transformed cumulative proportion of arbovirus cases (probit(Ct,d))
reported by each 0, 2 and 4 weeks delay (d), depicted by colour. Plotted against the log of
the number of eventually reported arbovirus cases (log(yt +1)) for the given time (t). Solid
lines represent the fitted values of the normal linear model for total counts, that satisfy
yt > e7, fitted independently to each delay. The shaded regions represent the associated
95% confidence interval of the linear regression. Dashed lines are fitted values from a
normal model with a smooth thin plate spline specified by probit(Ct,d)∼ d+ s(log(yt),k =
10,by = d).

Yet again, Figure 6.4 suggests that the relationship between total cases and the cumulative

proportions reported may change over time instead. Here we plot the probit-transform

of the proportions reported in the same week of occurrence (d = 0), once again, against

the log of the total cases in Figure 6.4. We then fit the linear trends separately for five

sections of the time series each of length 100 weeks bt = {[1≤ t < 101 weeks], [101 weeks≤

t < 201 weeks], [201 weeks≤ t < 301 weeks], [301 weeks≤ t < 401 weeks], [401 weeks≤ t <

501 weeks]}.
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Figure 6.4: The probit-transformed cumulative proportion of arbovirus cases (probit(Ct,d))
reported the same week as the cases occurred (delay d = 0) plotted against the log of the
number of eventually reported arbovirus cases (log(yt + 1)). Colour indicates the time
category (bt) that the arbovirus cases fall in measured in weeks from the start of the time
series (January 1st 2013). Solid lines represent the fitted values of the normal linear model
for each time category and the shaded regions represent the 95% confidence interval.

It is clear from Figure 6.4 that the most recent observed cumulative proportions repor-

ted (in the [401 weeks ≤ t < 501 weeks] category) have much lower total arbovirus cases

reported (x-axis) and appear to have a negative relationship with the magnitude of the

proportions reported in the same week as cases occurred (y-axis). On the other hand,

all previous time categories appear to have a positive relationship between case load and

the proportions reported. A positive relationship suggests for higher log-transformed total

arbovirus cases, the probit-transformed cumulative proportions are greater, so more cases

are reported after each delay and thus reporting is faster on average.

The scientist at Fiocruz who played a key role in designing the operational surveillance

systems InfoDengue and InfoGripe stated to us that public health institutes in Brazil hire

additional admin personnel during summer months. In general, arbovirus cases have strong

seasonality: in summer, warmer conditions lead to vector breeding and more infections

from mosquitoes and ticks (World Health Organization (WHO) (n.d.)). As such, the
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additional staff are recruited at this time of year to help manage the reporting/processing

of the anticipated higher dengue cases. This may also explain why the relationship between

case load and reporting delays of arbovirus cases (which includes dengue cases) does not

appear to be as clear as with SARI hospitalisations. There may be two counteracting

trends during a surge in arbovirus cases; longer delays could result from the capacity

of the reporting system being reached, but otherwise the hiring of additional staff could

result in shorter delays. There could also be random variability within this latter trend,

depending on when the new hires start and the numbers and efficiency of those that have

been hired. This could result in distinct and non-linear trends over time, delay and spatial

regions which are hard to capture.

6.2 General framework

The goal of this work is to develop a framework that can correct infectious disease data,

where the overall case load directly impacts the length of reporting delays. This is non-

trivial to implement into nowcasting models, since the total counts that we may wish to

use as an explanatory variable for the reporting delay may not yet be reported.

However, we can frame this problem as an adaption of the modular framework for correct-

ing delayed reporting first introduced in Chapter 1.2 and further explored in the context

of joint models in Chapter 2.2.1. Recall that we assume the total counts yt come from

some probabilistic process Y , depending on parameters and random effects θ.

yt ∼ Y (θ). (6.2)
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Then, a second probabilistic process Z translates the total counts into the partial counts

zt , based on some parameters π:

zt | yt ∼ Z(π,yt). (6.3)

In the Generalized-Dirichlet Multinomial (GDM) framework, Y is a Negative-Binomial,

and Z is a GDM model, given total counts yt . Conceptually, we could account for a case

load effect on the reporting delay, within this framework, by allowing for the potential

inclusion of total counts yt in the parameters of the GDM, rather than just the mean.

This extension is possible for two reasons: first, recall that the Bayesian implementation

of the GDM framework in MCMC means that samples for unobserved yt are generated

during the algorithm, meaning they are available for use as explanatory variables in other

parts of the model; second, implementation using the NIMBLE R package (de Valpine

et al. (2017)) offers great flexibility in considering different adaptations to explicitly add

a link between case load and delay.

Two versions of the GDM framework are introduced in Stoner and Economou (2019); the

hazard and the survivor. Here we opt for the survivor version, given by:

yt |λt ,θ ∼ Negative-Binomial(λt ,θ) (6.4)

log(λt) = f (t) (6.5)

zt,d|νt,d,ϕt,d,yt,d,zt,1:(d−1) ∼ Beta-Binomial
(

νt,d,ϕd,yt −
d−1

∑
j=1

zt, j

)
(6.6)

probit(St,d) = g(t,d) (6.7)

νt,d =
St,d −St,d−1

1−St,d−1
(6.8)

St,d = E

[
∑d

j=1 zt, j

yt

]
, (6.9)
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which models the expected cumulative proportions reported (St,d), instead of directly

modelling the expected relative proportions (νt,d) as in the hazard version. We focus on

modelling the cumulative proportions, motivated by the patterns seen in our exploratory

analysis, as summarised in Section 6.1.1. The Beta-Binomial distribution for the partial

counts has dispersion parameter ϕd and the Negative-Binomial model for the total counts

has dispersion parameter θ . In practice these can be assigned any prior or model effects to

capture the dispersion in the partial counts and total counts respectively. Here, we assign

both a Gamma(2,0.02) priors for all implementations of our framework, this reflects a

prior we would choose in operational settings, as with a mean of 100 and variance of 5000,

it is a relatively uninformative prior which captures a wide range of plausible dispersions.

Recall that f (t) and g(t,d) represent general functions of time and delay, which could

include linear, non-linear and covariate effects. To achieve a general framework that cap-

tures the relationship between case load and reporting delay, i.e. explicitly including total

counts yt in the delay distribution p(z|y), we introduce a new general function h(yt) in the

probit model for the expected cumulative proportion reported, St,d, such that:

probit(St,d) = g(t,d)+h(yt) (6.10)

The function h(yt) thus links expected reporting delay lengths to the total counts yt . Since,

this work uses the survivor version of the GDM, h(yt) is included in linear predictor for

the expected cumulative proportions St,d. In theory the function h(yt) could be any type

of modelling effect to capture the relationship between the total number of cases and the

delay in reporting, which may be linear or a more complicated non-linear structure.
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6.3 Simulation Experiments

In this section we present the design and results of two simulation experiments. The aim

of the first simulation study is to determine the effectiveness of our proposed framework

in correctly capturing the relationship between the total cases of a disease and the delay

in reporting those cases, in the context of temporal confounding. For the second study,

we aim to assess predictive accuracy when modelling the effect of case load on reporting

delays, compared to existing frameworks that don’t account for this.

6.3.1 Data generation

We use the same series of data sets for both simulation experiments, which we design to

reflect possible real-world scenarios where the total number of cases that occur on a given

day directly affect the reporting efficiency for that count. This allows us to determine the

feasibility of our framework for conducting inference on pre-determined parameter values

and predictions of simulated total counts.

We must first specify how we generate our simulated data sets. We set the number of time

points in the series to be T = 100 (e.g. weeks), and set a maximum of D = 7 reporting

delays, which correspond to cases reported the same week they occur (d = 0) and up to

6 weeks after the week they occurred (d = 1, ...,6).
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First, we randomly generated dispersion parameter θ ∼ Gamma(2,0.02), this reflects the

choice of prior for this parameter as discussed in Section 6.2. This allows us to generate

the total counts from ag Negative-Binomial model, with a different dispersion parameter

θ for each simulation:

yt | λt ,θ ∼ Negative-Binomial(λt ,θ); (6.11)

log(λt) = ι +αt +ζ t∗. (6.12)

To specify the smooth temporal trend in the mean of the total cases (λt) we first generate

a thin plate spline (αt),

αt =Xtκα (6.13)

Ωα = S1/σ2
α,1 +S2/σ2

α,2 (6.14)

κα = Multivariate-Normal(0,Ωα). (6.15)

which has a zero mean and no overall linear temporal trend. For all simulations, we set

σα,1 = 5 and σα,2 = 5. The thin plate spline basis matrix Xt , and respective penalty

matrices S1 and S2 are generated using the jagam(.) function (Wood (2016)). We then

combine this with an intercept term ι (simulated from ι1:D ∼ Normal(5,0.252), such that

the mean of the total counts are all centred around a mean of approximately 150) and a lin-

ear temporal trend, ζ t∗, where t∗= { t−mean(1:T )
sd(1:T )

; t = 1,2, ...,T} is a scaled and centred time

variable. Four examples of the resulting mean temporal trends, λt , for ζ ∈ {−0.1,0,0.1}

respectively, are given in Figure 6.5.

We then simulate partial counts reported at each delay d zt,d from a GDM model, with

dispersion parameters simulated from ϕd ∼Gamma(2,0.02), which is the same distribution

as our prior choice for ϕd. Here we represent the GDM as a series of Beta-Binomial

distributions for the partial counts zt,d, where Nt,d = yt −∑d−1
j=1 zt, j are the remaining counts
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Figure 6.5: The three scenarios, where the overall temporal trend is chosen to be ζ ∈
{−0.1,0,0.1} respectively, for the simulated mean of the total cases (log(λt) = ι+αt +ζ t∗)
and the zero-mean trend (αt) is a randomly generated thin plate spline.

yet to be reported at delay d:

zt,d|νt,d,ϕd,Nt,d ∼ Beta-Binomial
(

νt,d,ϕd,Nt,d = yt −
d−1

∑
j=1

zt, j

)
(6.16)

νt,d =
St,d −St,d−1

1−St,d−1
(6.17)

probit(St,d) = ψd +ηt∗+δy∗t . (6.18)

We opt for the survivor version of the GDM model, introduced in Stoner and Economou

(2019), as such the cumulative proportions of the total cases yt expected to be reported

at each delay St,d are modelled with a probit link function. In Equations (6.16) - (6.18),

ψd is a intercept term which monotonically increases over delay (as St,d > St,d−1 for all

d). These intercepts are simulated using the distribution ψ1:D ∼Normal(0.25,0.52), where

the D generated values are then sorted in increasing order. This is followed by a linear

temporal trend in the reporting rate, characterised by coefficient η multiplied by the

scaled and centred time.

Finally, we simulate a linear relationship between the total counts and the delay, this

was chosen to initially assess the performance of our framework for a relatively simple

correlation before potentially extending it to more complex relationships. Moreover, the

exploratory analysis in Section 6.1.1 suggested that a linear relationship may be present



CHAPTER 6. THE EFFECT OF CASE LOAD ON DELAY 203

in the two case studies we have considered. To simulate the linear relationship between yt

and the probit-transformed expected cumulative proportion reported St,1:D, we multiply

a scaling coefficient δ by y∗t = yt−mean(y1:T )

sd(y1:T )
, a scaled and centred version of the total

counts. We used this version of yt to ensure that the difference in cumulative proportions

reported are not systematically higher for positive δ = 0.2 and lower for negative δ =−0.2,

skewing our results. Hence, in Figure 6.6, the simulated cumulative proportions reported

for both positive and negative incidence-delay effect coefficients are centred around the

corresponding cumulative proportions with no incidence-delay effect (δ = 0).
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Figure 6.6: The nine scenarios for the temporal trend in the simulated cumulative pro-
portions reported for each delay (given by the colours). Scenarios cover all combinations
of the chosen overall temporal trend, η ∈ {−0.2,0,0.2}, and chosen incidence-delay effect
on the cumulative proportions, δ ∈ {−0.2,0,0.2} given the linear temporal trend in the
totals is ζ = 0.
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Our simulation experiment focuses on inference and prediction in the context of potentially

confounding trends. As such, we consider different fixed combinations of three of the terms

described above: (i) coefficient for trend in the total cases ζ , (ii) the coefficient for the

trend in the cumulative proportions reported η , and (iii) the coefficient for the effect of

the total counts on the cumulative proportions reported δ . These terms are summarised

below for reference:

• ζ : the coefficient of the linear temporal trend in the (log) mean number of hypo-

thetical infectious disease cases. This represents an overall trend of the number of

cases increasing or decreasing on average over scaled time.

• η : the coefficient of the linear trend in the cumulative proportions reported over

scaled time. Note that the reporting process generally improves over time if η > 0,

the reporting process worsens over time if η < 0, and the reporting process doesn’t

change over time on average if η = 0 (except as a result of the case load effect).

• δ : the incidence-delay coefficient of the linear effect of the scaled total cases on the

probit-transformed expected cumulative proportions reported. Note that higher case

loads result in: longer reporting delays (smaller cumulative proportions reported)

when δ < 0; shorter reporting delays (larger cumulative proportions reported) when

δ > 0; and there is no relationship between case load and reporting delay length

when δ = 0.

We consider three fixed values for each parameter of interest and all possible combin-

ations between parameters. Hence, evaluating a total of 27 scenarios. For each variable

we consider a positive, negative and zero trend. Specifically, we assign ζ ∈ {−0.1,0,0.1},

η ∈ {−0.2,0,0.2} and δ ∈ {−0.2,0,0.2}. These values were chosen to give the simulations

realistic looking trends that we would expect to see in infectious disease data. They have

similar magnitudes, where η and δ are slightly bigger since they are included in a probit

link instead of a log link within the model, to ensure they all have a similar impact on

the model when considered simultaneously.
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We repeat the whole simulation procedure described above 100 times for each of the 27

scenarios to introduce randomness into the simulated data sets. Thus, we have a total

of 2700 simulated data sets. For both subsequent simulation experiments, the MCMC

method for fitting all models used default NIMBLE (de Valpine et al. (2017)) samplers

apart from for a single AF slice sampler that was assigned to the parameters; η , ψ1:D,

σalpha1:2 , κalpha, ι and δ (if included in the model). Two MCMC chains, with a iteration

length of 20,000, a burn-in length of 15,000 and thinning of 5 were run for each model and

simulated data set for both experiments. Convergence was assessed by visually inspecting

trace plots and calculating the PSRF (defined by Equation (2.5)) of all model parameters.

6.3.2 Parameter inference experiment

To investigate the ability our proposed framework (Equations (6.4)–(6.10)), to correctly

re-capture all the simulated trends, including the case load effect, we assess results from

fitting approximately the same model we simulated data from.

In terms of our general framework (Section 6.2), we set f (t)= ι+αt , where ι is an intercept

and αt is a thin plate spline. Note that αt can have an overall linear trend, meaning we

would expect it to absorb ζ t∗. To obtain approximate values of ζ , we fit a linear regression

to the posterior samples for αt , with t∗ as the only covariate, and take the slope coefficient.

We set the priors for the Negative-Binomial model of the total counts as:

ι ∼ Normal(5,102), (6.19)

κα ∼ Multivariate-Normal(0,Ωα), (6.20)

σα,1,σα,2 ∼ Half-Normal(0,102), (6.21)

θ ∼ Gamma(2,0.02). (6.22)
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For the expected cumulative proportions we set g(t,d) = ψd +ηt∗, where ψd is a random

intercept restricted to monotonically increase over delay d and η is a slope coefficient for

the scaled time variable t∗. Finally, for the relationship between case load and reporting

delay, we fit h(yt) = δy∗t , such that δ is a linear slope coefficient for the scaled total count

y∗t = yt−mean(y1:T )

sd(y1:T )
. This is representative of how the data sets have been generated and

allows for a direct comparison of the simulated parameters of interest and the model

predictions of these parameters. Hence, the priors are:

ψ1 ∼ Normal(−1.5,52), (6.23)

ψd ∼ T [Normal(ψd−1,52),ψd−1,∞], (6.24)

η ∼ Normal(0,102), (6.25)

δ ∼ Normal(0,102), (6.26)

ϕd ∼ Gamma(2,0.02). (6.27)

Where T [Normal(ψd−1,52),ψd−1,∞] denotes a Normal distribution that has been trun-

cated between ψd−1 and infinity.

6.3.2.1 Results

Recall that we are considering three parameters of interest, each with three possible

chosen values (ζ ∈ {−0.1,0,0.1}, η ∈ {−0.2,0,0.2}, δ ∈ {−0.2,0,0.2}). Thus, we have 27

scenarios, each with a 100 generated data sets. To summarise parameter inference results,

we calculate three main performance metrics for each parameter. The first statistic is

the “mean prediction interval width” (PIW), defined by the mean difference between the

upper 97.5% and lower 2.5% quantile of the posterior samples. This quantifies the pre-

cision/uncertainty of our estimates. The second statistic is the 95% interval “coverage”,

defined here as the percentage of the true simulated values that fall in the 95% uncer-

tainty interval interval from the posterior samples. This measures how often the model is
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able to capture the simulated values in its 95% uncertainty intervals. The final statistic

is the “bias”, defined as the mean of the true simulated parameter values minus the me-

dian of the posterior samples for those parameters. This summarises whether inference is

systematically incorrect, i.e. too high or too low compared to the simulated value.

We compute these three summaries across all 100 simulations for a given scenario, de-

termined by the 27 combinations of chosen parameter values. Table 6.1 summarises these

three performance metrics, for each of the 27 scenarios, for δ , η and ζ .
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Performance metrics for the three parameters of interest (δ ,η ,ζ ).

Table 6.1: Coverage, prediction interval width and bias for the model posterior samples
compared to the simulated values of; the linear relationship between the simulated number
of cases and the expected cumulative proportion of cases reported at each delay (delta δ ),
the linear temporal trend in the expected cumulative proportions reported at each delay
(eta η), the zero-mean temporal spline of the total number of cases yt (zeta ζ ).
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The performance metrics given in Table 6.1 suggest that the model is able to identify

and separate the trends in the different parts of the data generating process, allowing

for accurate model inference on parameter values. This is evident from very low bias

values (about two orders of magnitudes smaller than the simulated coefficient values).

The coverages are broadly close to 95%, across all parameters of interest and combinations

of their chosen values, suggesting appropriate quantification of uncertainty. Furthermore,

Figure 6.7 shows there is no obvious patterns in the bias for each of the combination of

chosen parameters values. Hence, the model should be able to separate possible trends in

the reporting delay (η), the trend in the total cases (ζ ), and the effect of the total cases

on the reporting delay (δ ). Furthermore, this should be regardless of any combination of

compounding or cancelling trends between the three parameters.

delta eta zeta

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

−0.0025

0.0000

0.0025

Linear temporal trend in total cases (zeta)

Temporal trend of reporting (eta) −0.2 0 0.2 Effect of case load on delay (delta) −0.2 0 0.2

Values for the three paramerers of interest
Bias performance metric

Figure 6.7: The mean bias between simulation posterior medians and the true chosen
parameter values for the effect of the total cases on the reporting delay δ (right), the
temporal trend in the reporting delay η (centre) and the linear temporal trend in the total
cases ζ (left). For each parameter the bias is calculated separately for the 27 combinations
of chosen δ ∈ {−0.2,0,0.2}, η ∈ {−0.2,0,0.2} and ζ ∈ {−0.1,0,0.1} values, across the 100
simulated data sets. The x-axis denotes the chosen values of ζ , the colour denotes the
chosen values for η and the shape denotes the chosen values for δ .
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6.3.3 Prediction performance experiment

To explore the potential gain in predictive performance when a case load effect is ap-

propriately accounted for, for each simulated data set we also carry out a prediction

experiment. Hence, we censor each of the simulated data sets such that only the cases

that would have been reported by the final time step Tnow in the series are observed,

denoted by zt,d≤Tnow−t for t = (Tnow−Dmax), . . . ,Tnow. We then fit the following three model

versions of our proposed general framework given in Section 6.2.

1. Survivor model: Firstly, with probit(St,d) = g(t,d) = ψd +ηt∗, such that there

is no link h(yt), thus the total number of cases does not inform the length of the

reporting delays. This is equivalent to the original GDM model, and allows us to

determine if not accounting for the correlation that is present in the simulated data

sets will hamper prediction accuracy or precision.

2. Survivor incidence-delay model: The model is then fit a second time, with

probit(St,d) = g(t,d) + h(yt) = ψd + ηt∗ + δ log(yt + 1), such that we are directly

modelling the relationship between the total counts and the cumulative proportions

reported.This differs from how the data were simulated: recall that the simulated

effect was δy∗t , where y∗t are scaled total counts. Real-world application of the model

for nowcasting involves prediction of unknown y, so consistent scaling is not pos-

sible. This version of the model, with δ log(yt + 1), avoids scaling, is less sensitive

to extreme case levels due to the log function compared to the alternative δyt , and

is still suitable where yt = 0. Meanwhile, since we are focusing on predictive preci-

sion of the total counts in this simulation experiment, it is not imperative that our

parameters of interest are comparable to their simulated values. In summary, the

model is slightly mis-specified, which reflects the likely result of model design for

any real-world data.
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3. Survivor incidence-delay (delta fixed) model: Finally, we fit the model with

probit(St,d) = g(t,d)+h(yt) =ψd +ηt∗+δsimy∗t , where δsim is a constant in the model

fixed at the simulated values of delta. Comparing this model to both previous ver-

sions allows us to check that including the case load effect does improve predictive

performance when exactly captured. Furthermore, this model acts as a “best-case”

scenario against which we can compare the mis-specified “Survivor incidence-delay”

model to.

As in our previous simulation experiment model in Section 6.3.2, we set f (t) = ι +αt ,

where ι is an intercept and αt is a thin plate spline. All priors for this experiment are the

same as for the previous experiment (discussed in Section 6.3.2), as they are once again

chosen to reflect the data generating process behind the simulations.

6.3.3.1 Results

To gauge the difference between predictive performance of the three models fitted for our

second simulation experiment, outlined in Section 6.3.3, we calculate three performance

metrics for the predictions of the total counts yt . The first metric is the mean absolute

error (MAE), defined as the absolute difference of the posterior median predictions minus

the true simulated total counts. The second metric is the mean coverage and third is the

average prediction interval width (PIW), both as defined in the first simulation experiment

but applied to the posterior predictions and simulated true values of the unobserved total

counts. These metrics are all calculated for each prediction time difference, such that 0

represent predictions made for the current time period (Tnow = 100) and negative numbers

represent time points previous to this. Note that, more partial counts will be available the

further back in time you go. Furthermore, in Figure 6.8, we calculate all metrics (rows)

across simulations grouped by each possible case load effect value (columns).
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Figure 6.8: The mean absolute error (top panel), prediction interval width (middle panel)
and coverage (bottom panel) for model predictions of the simulated total counts. The three
models considered in this simulation experiment are the GDM Survivor model (with no
incidence-delay effect), the GDM survivor incidence-delay model and the GDM survivor
incidence-delay model (delta fixed) where the case load effect coefficient (δ ) is set to the
chosen values. Models are indicated by both line colour and shapes.
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The results in Figure 6.8 clearly show that both the mean absolute error and coverage

of the predictions of the unknown total counts is better for the models that include a

relationship between the total counts and the delay length, regardless of whether there

is a positive or negative case load effect. This indicates that ignoring the case load ef-

fect when it is present in the data, such as the “survivor model”, could be detrimental

to predictive precision of nowcasts and result in higher mean absolute errors and lower

coverage. Furthermore, the “survivor incidence-delay” model – where the incidence-delay

coefficient is an unknown variable in the model – performs similarly well to the “survivor

incidence-delay (delta fixed)” model – where the incidence-delay coefficient is fixed to the

known chosen values. This suggests that our proposed framework is able to capture the

true relationship between incident and delay well.

However, the prediction interval width of the nowcasts are only smaller than the survivor

model (with no incidence-delay effect) when the case load effect is positive (δ = 0.2). The

reason for this is potentially due to a negative case load effect (δ = −0.2) introducing

identifiability issues into the model: when the case load effect is negative, high disease

incidence creates less efficient reporting, and low disease incidence creates more efficient

reporting. Therefore, if a smaller than average number of partial counts have been observed

so far this could either be a result of a low number of eventual total counts with efficient

reporting, or due to a high number of total counts with inefficient reporting. Hence, this

introduces more uncertainty into the model.

However, when the model ignores this relationship by not modelling the incidence-delay

effect between total counts and reporting delay, this non-identifiability is no longer creating

uncertainty in the modelling framework and the prediction interval widths are narrower.

Although, removing this link also means the model is no longer able to determine from

previous trends which event is more likely, so prediction accuracy is worse as indicated

by larger mean absolute errors. Similarly, the 95% coverage of the survivor model with

no incidence-delay link is lower than the model with the incidence-delay link for both
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a positive or negative case load effect, and far below (65%-85%) what would normally

be considered acceptable for a 95% interval. Simply put, even when the case load effect

introduces extra uncertainty, its entirely needed to appropriately capture the variability

in the data.

On the other hand, when the case load effect is positive high disease incidence creates more

efficient reporting and low incidence creates less efficient reporting. Hence, lower observed

partial counts occur when total counts are low as reporting will also be less efficient and

higher observed partial counts occur when total counts are high and reporting is more

efficient. Therefore, a positive case load effect does not introduce identifiability issues and

the nowcasts of the total counts have a smaller prediction interval width when the link

between case load and reporting delay is included in the modelling framework.

Finally, it is worth noting that the results in Figure 6.8 also suggest that performance of

our proposed framework “survivor incidence-delay” is comparable to that of the “Survivor”

model when there is no case load effect in the data generating process (δ = 0). This is

an important result when considering operational surveillance systems as it suggests that

nowcasts will not be less accurate if the case load effect is not present in the data, since

its presence can not be certain for real-world data.
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6.4 Brazilian case studies

To investigate the effectiveness of the general framework from Section 6.2 in capturing

potential trends identified in the exploratory analysis (Section 6.1.1), we fit the model to

the SARI and arbovirus case studies from Brazil. Recall from our exploratory analysis

and discussion in Section 6.1.1, we expect to capture a negative relationship between the

number of SARI hospitalisations and the cumulative proportions reported at each delay

and a positive relationship between the number of arbovirus cases and the cumulative

proportions reported at each delay.

For arbovirus cases we set Dmax = 31, and model D = 4 weeks delay in the GDM since

around 98% of cases are reported in the first four delays. For SARI hospitalisations we

set Dmax = 20, and model D = 8 weeks delay in the GDM since around 95% of the total

counts are reported in the first eight delays. For both data sets we fit an independent

model to each spatial region in the data set, with no nested hierarchical structure within

the splines used. This gives the following version of our general framework:

yt,s | λt,s,θs ∼ Negative-Binomial(λt,s,θs) (6.28)

log(λt,s) = log(populations)+ ιs +ζ (s)
t +ξ (s)

weeks[t] (6.29)

zt,d,s|νt,d,ϕd,s,Nt,d,s ∼ Beta-Binomial
(

νt,d,s,ϕd,s,Nt,d,s = yt,s −
d−1

∑
j=1

zt, j,s

)
(6.30)

νt,d,s =
St,d,s −St,d−1,s

1−St,d−1,s
(6.31)

probit(St,d,s) = ψd,s +η(s)
t +δs log

(
yt,s +1

populations

)
(6.32)

In these models, we include an offset in the log of the expected mean total cases (λt,s)

of populations, which gives the 2023 population for each respective federative unit s. In

addition to this we include an intercept term ιs and a smooth cubic spline with shrinkage

ζ (s)
t to capture the systematic trend in the total counts, and cyclical cubic regression spline

ξ (s)
weeks[t] to capture the yearly seasonality in the SARI hospitalisations/arbovirus cases. We
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then model the probit-transformed expected cumulative proportions reported as having a

monotonically increasing intercept over delay ψd,s, plus a cubic spline with shrinkage to

capture the systematic variability η(s)
t . Finally, δs captures the linear relationship of the

log of the proportion of total counts in the population, log
(

yt,s+1
populations

)
, and the probit-

transformed expected cumulative proportions. For our models of real-world data we divide

the total counts for each region yt,s by the respective population of the regions, so that we

consider the effect of the rate of incidence, since the case load is likely to be proportional

to population. Hence, any comparison of the incidence-delay effect coefficient (δs) between

regions will account for the difference in population.

Ω(s)
η =

St

σ2
η ,s

, (6.33)

κ(s)
η ∼ Multivariate-Normal

(
0,Ω(s)

η

)
, (6.34)

ηt,s = Xtκ
(s)
η , (6.35)

Ω(s)
ξ =

Sw

σ2
ξ ,s

, (6.36)

κ(s)
ξ ∼ Multivariate-Normal

(
0,Ω(s)

ξ

)
, (6.37)

ξweek[t],s = Xwκ(s)
ξ , (6.38)

Ω(s)
ζ =

St

σ2
ζ ,s

, (6.39)

κ(s)
ζ ∼ Multivariate-Normal

(
0,Ω(s)

ζ

)
, (6.40)

ζt,s = Xtκ
(s)
ζ , (6.41)

σζ ,s,ση ,s,σξ ,s ∼ Half-Normal(0,102), (6.42)

ψ1,s ∼ Normal(0,52), ψd,s ∼ T[Normal(ψd−1,s,52),ψd−1,s,∞] (6.43)

ιs ∼ Half-Normal(−10,102), (6.44)

δs ∼ Normal(0,52), (6.45)

θs,ϕs,d ∼ Gamma(2,0.02). (6.46)



CHAPTER 6. THE EFFECT OF CASE LOAD ON DELAY 217

Here Xt and St are the temporal cubic spline basis and penalty matrices. The number of

knots for the cubic temporal splines are determined by the number of weeks of data the

model if fit to Tnow, such that the number of knots is Tnow
20 rounded down to the nearest

whole number. The knots are evenly placed between weeks 1 and Tnow. Similarly, Xw and

Sw are the cyclic cubic spline for week of the year, where 7 knots are evenly placed to

capture the closed seasonal cycle over weeks 1 to 52.

Since this model is a directed acyclic graph (DAG), as demonstrated in Appendix C.3, it

can be fit in NIMBLE (de Valpine et al. (2017)). Two AF slice samplers were set in each

independent model; one for the parameters ιs, κ(s)
ζ , κ(s)

x i, σζ ,s and σξ ,s for each region

s, and one for the parameters ψ1:D,s, κ(s)
η , ση ,s and δs (when included in the model) for

each region. Otherwise, the default NIMBLE MCMC samplers were used as described in

de Valpine et al. (2021). For each model, two MCMC chains with an iteration length of

10,000, burn-in of 5,000 and a thinning of 5 were run. Convergence in both cases was

assessed by inspecting trace plots of key parameters and calculating the PSRF for all

parameters in the model.

We split this section into two separate investigations and in each we consider data for both

SARI hospitalisations and arbovirus cases in Brazil. First, in Section 6.4.1 we investigate

the case load effect through parameter inference. Second, in Section 6.4.2 we perform a

rolling prediction experiment to explore potential benefits in predictive precision of our

proposed models.

6.4.1 Investigating case load effects

In this section, we fit our proposed model (Equations (6.28)–(6.32)) to all of the observed

data available for each case study data set. This allows us to investigate the features of

the case load effects, using as much information as possible.
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6.4.1.1 SARI hospitalisations

Figure 6.9 shows that the linear estimated relationship between case load and reporting

delay in the Brazilian SARI hospitalisations data mostly agrees with the negative rela-

tionship we discovered in our exploratory analysis in Figure 6.1. Despite estimating these

27 coefficients independently, the only region in Figure 6.9 that has a positive posterior

median for the incidence-delay coefficient (δs) is Rio Grande do Norte (RN).
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0.00
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Brazilian federative unit (s)

δ s

Model Parameter inference experiment Prediction accuracy experiment

Linear effect of case load on reporting delay
SARI hospitalisations

Figure 6.9: Posterior medians (middle line) and 95% prediction intervals (between upper
and lower lines) of the coefficient for the linear relationship between case load and re-
porting delay (δs). For each federal unit in Brazil (x-axis) captured by the GDM model
fitted to SARI hospitalisations data. Colour indicates whether results are for the para-
meter inference experiment model fitted to fully observed data or the prediction accuracy
experiment model where data is censored for delayed reporting. In both cases results are
from data up to the 27th March 2021.

Ideally, we would like to identify possible regional factors that might be contributing to

the magnitude and sign of the effect of case load on reporting delays to gain greater insight

into the driving force behind this effect. We plot the median posterior predictions for the

case load effect on the cumulative proportions in Figure 6.10 however there is no clear

spatial pattern. We also investigated if there was a relationship between δ and the average

number of SARI cases, the population density, the gross domestic product (GDP) and the

government health expenditure of the regions but there were no obvious trends. However,
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of the four metrics, there could be an argument for a slight downward trend between

population density and the incidence-delay coefficient δs. This could indicate hospitals in

more built up areas are more likely to have a bigger increase in reporting delays when

there is an increase in the number of cases. However, a more in depth analysis is needed

to confirm whether this may be the case.
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Figure 6.10: A map of the posterior median coefficients for the incidence-delay effect on the
cumulative proportions (δs) for SARI hospitalisations for each federative unit in Brazil.
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Figure 6.11: The posterior median coefficients for the incidence-delay effect of SARI hos-
pitalisations for each federative unit (δs) plotted against regional metrics to identify po-
tential influential factors on the magnitude of the effect. The regional metrics from the top
are; the population density (1st panel), the government health expenditure (2nd panel),
the Gross domestic product (3rd panel) and the mean number of SARI cases for the entire
observed data set (4th panel). The solid lines represent a normal linear regression, and
the shaded areas are the respective 95% confidence intervals.
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6.4.1.2 Arbovirus cases

Unlike the negative relationships seen for SARI, the linear effect of case load on the cumu-

lative proportions reported is estimated to be positive for arbovirus cases for the majority

of Brazilian federative units as shown by Figure 6.12. Therefore, whilst an increase in the

number of SARI hospitalisations increases the length of reporting delays, conversely an

increase in the number of arbovirus cases may decrease the length of the reporting delay.

Despite the majority of case load effects for arboviruses being opposite in sign to that of

the SARI case load effect, they appear to have a similar range of magnitude over regions.
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Linear effect of case load on reporting delay
Arbovirus cases

Figure 6.12: Posterior medians (middle line) and 95% prediction intervals (between upper
and lower lines) of the coefficient for the linear relationship between case load and report-
ing delay (δs). For each federal unit in Brazil (x-axis) captured by the GDM model fitted
to arbovirus cases data. Colour indicates whether results are for the parameter inference
experiment model fitted to fully observed data or the prediction accuracy experiment
model where data is censored for delayed reporting. In both cases results are from data
up to the 11th January 2014.

Similarly to the SARI case study, we wish to gain insight from the difference in the dengue

case load effect across the Brazil to help answer questions such as why the federative unit

Alagoas (AL) doesn’t exhibit a positive case load effect. Figure 6.13 suggests that the

case load effect is more strongly positive in the north-western regions, which are typically

less densely populated, rural regions within Brazil where arbovirus cases are likely to be
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greater. Hence, in Figure 6.14 regions with higher population densities appear to have

a smaller case load effect which we see in the more populated south-eastern regions of

Figure 6.13. Furthermore, in Figure 6.14 we see a slight negative correlation between the

incidence-delay coefficient δs and both government health expenditure and GDP which

are both likely to be higher in larger regions with larger populations and cities. Finally, the

last panel in Figure 6.14 shows there is no strong relationship between the mean number

of arbovirus cases in a region and the case load effect.
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Figure 6.13: A map of posterior median coefficients for incidence-delay effect on the cu-
mulative proportions (δs) for arbovirus cases for each federative unit in Brazil.
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Figure 6.14: Posterior median coefficients for the incidence-delay effect of arbovirus cases
for each federative unit (δs) plotted against regional metrics to identify potential influ-
ential factors on the magnitude of the effect. The regional metrics from the top are; the
population density (1st panel), the government health expenditure (2nd panel), the Gross
domestic product (3rd panel) and the mean number of arbovirus cases for the entire ob-
served data set (4th panel). The solid lines represent a normal linear regression, and the
shaded areas are the respective 95% confidence intervals.
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6.4.2 Rolling prediction experiment

In this section, we carry out a rolling prediction experiment on both the SARI and ar-

bovirus case studies. This is to determine any potential gains in prediction precision

compared to a GDM model that does not account for the incidence-delay effect. We carry

out nowcasts for a series of four rolling nowcast dates for both the SARI hospitalisations

(31-07-2022, 04-09-2022, 16-10-2022 & 27-11-2022) and the arbovirus cases (23-12-2014,

13-09-2016, 05-06-2018 & 03-03-2020). Hence, for each nowcast date, we construct the

respective censored data sets from the observed historic data we have for both SARI and

arbovirus cases in Brazil. Theses are modified such that the cases that would be unknown

at the given nowcast date due to reporting delays are removed from the data set.

We fit the our proposed framework, Equations (6.28)–(6.32), to these censored data sets,

which allows us to obtain predictions for the “unknown” total counts. These can then

be compared to the true total counts that would eventually be reported which we know

since we are working with historic data. Next, we perform the same rolling prediction

experiment again, but with a model where there is no link between total cases and the

cumulative proportions reported, such that there is no h(yt ,s), so we have probit(St,d,s) =

g(t,d,s).

6.4.2.1 SARI hospitalisations

For our rolling prediction experiment we averaged three performance metrics over time and

region; the mean absolute error, the prediction interval width and the coverage. Figure 6.15

plots these three performance metrics for SARI hospitalisations predictions against the

prediction time difference (PTD). Where a PTD of zero represents predictions made for

the week for which we have the most recent data for and a negative PTD is the number

of weeks prior the the most recent week for which we made predictions for. Although the
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Figure 6.15: The mean absolute error, mean prediction interval width and 95% prediction
interval coverage of predicted total SARI hospitalisations in Brazil, from the rolling pre-
diction experiment. The GDM survivor incidence-delay model that models the case load
effect in the SARI data is compared to the GDM survivor model which doesn’t explicitly
model this effect.

model still picks up the significant relationships between case load and reporting delay, as

evident in Figure 6.9, this does not seem to translate into an improvement of prediction

precision. In fact, Figure 6.15 shows that all prediction performance metrics are marginally

better when the model does not include the explicit link between case load and reporting

delay.

6.4.2.2 Arbovirus cases

For the rolling prediction experiment on arbovirus cases, we compare three models in Fig-

ure 6.16. First, the “Survivor” model without link between case load and delay. Second,

the “survivor incidence-delay” model which explicitly models the case load effect. Third,

the “survivor incidence-delay (time category)” model. This was motivated by the explor-

atory plot for arbovirus cases, Figure 6.4, where we see that the relationship between

the cumulative proportions and the total arbovirus cases systematically varies given

time category bt = {[1 ≤ t < 101 weeks], [101 weeks ≤ t < 201 weeks], [201 weeks ≤ t <
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301 weeks], [301 weeks ≤ t < 401 weeks], [401 weeks ≤ t < 501 weeks]}. Therefore, for this

final model the relationship between total cases and the proportion of cases reported at

each delay is a separate incidence-delay coefficient for each time category bt such that

h(yt ,s) = δbt log( yt+1
populations

).
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Figure 6.16: The mean absolute error, prediction interval width and coverage of predicted
total arbovirus cases in Brazil for the rolling prediction experiment. The x-axis gives the
prediction time difference in weeks which is the difference between the “current” time of
the rolling prediction experiment and the week that the cases are being nowcasted for.
This plot compares the GDM survivor incidence-delay model that models the case load
effect in the SARI data, the GDM survivor incidence-delay (time category) model, where
the incidence-delay effect δbt is fixed given time category bt , and the GDM survivor model
which doesn’t explicitly model the effect.

The results in Figure 6.16 suggest that there is not much difference between these three

models. For the most current nowcasts (PTD=0 weeks), the model with no incidence-

delay effect performs best, followed closely by the time category dependent incidence-

delay effect, and then closely again by the incidence-delay effect model (where the link

is constant for all times). The mean absolute error also shows a spike at PT D = −2,

usually we see a trend of prediction accuracy improving further back from the nowcast

date Tnow as more data is seen by the model. Closer inspection showed this is due to the

predictions in the Paraná (PR) region of Brazil underestimating the arbovirus cases two

days prior (PT D = −2) to the nowcast date 03-03-2020 (375 weeks) by approximately

2031 cases (on average compared to the posterior medians) across all models considered.
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This is potentially due to an outlier or anomaly in the data for this point which made it

difficult for all models to accurately predict. It’s also worth noting that these means are

only calculated across four nowcast dates, so we would expect these sorts of discrepancies

in the data to have less of an effect on the overall trend of the mean absolute errors if

more nowcast dates were considered in this experiment. For prediction interval width the

two models that explicitly model the case load effect have similar and slightly narrower

interval widths than the model which doesn’t consider the case load effect. However, for

coverage the model with no link has the highest coverage of the three models for all

prediction time differences (PTD).

6.5 Discussion

In this chapter we investigated and sought to address potential relationships between

the number of cases of a disease occurring in a given time period and the length of

reporting delays for cases in that period. In Section 6.1, we considered literature that

discuss such effects but have not yet proposed any approach to correcting for them. We

also explored two data sets for Brazil that suggest a potential positive relationship for

SARI hospitalisations, where a higher disease incidence is associated with longer delays,

and a potential negative relationship for arbovirus cases, where a higher disease incidence

is associated with shorter delays.

To address the lack of a method for correcting case load effects, we presented a framework

in Section 6.2, based on the GDM method, that is able to capture such relationships in a

general way.
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Through an extensive simulation study, we demonstrated that this approach is able to

offer reliable parameter inference in the presence of possible compounding or cancelling

trends (Section 6.3.2.1). Our simulation study also suggested that predictive accuracy

of the unknown total counts and uncertainty quantification are both improved when

explicitly modelling the link between incidence and reporting delay if it is present in the

data generating process.

Applying our framework to both SARI hospitalisations and arbovirus cases in Brazil (Sec-

tion 6.4.1), we were able to find significant and consistent effects of case load on regional

reporting processes. Therefore, a by-product of our proposed GDM model is the iden-

tification of areas with substandard reporting delays related to disease incidence, which

can help to direct possible reform within the reporting process if used in an operational

surveillance system.

However, through rolling prediction experiments for this real-world data, in Section 6.4.2,

we found that modelling this relationship with a linear coefficient for the log of the total

counts in the probit-transformed cumulative proportions reported has little impact on

the prediction precision when performing nowcasts on both SARI hospitalisation and

arbovirus case data from Brazil. There are two possible explanations for this; the rela-

tionship between case load and delay does not affect the predictions of the total counts in

these two case studies, or the modelling assumptions we have made are not appropriate

for capturing the relationship that does exist in these data sets which could then improve

prediction precision or accuracy.
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In our proposed framework, we have assumed that the relationship between the number

of total counts and the cumulative proportions reported is constant over delay, case load

and time (for our models of SARI hospitalisations). However, more flexibility in capturing

the case load relationship in the data may be beneficial to the model. It is possible to

design more flexible versions of our presented framework, as demonstrated by having the

incidence-delay effect vary over different time categories for our arbovirus case study in

Section 6.4.2.2.

This model is fully identifiable when y is known, when y is unknown (as in nowcasting) it is

relying on what has been learned from previously observed values of y. A flexible function

for the case load effect may not be well informed or constrained when proposed yt are

beyond the range of the previously observed yt , leading to non-identifiability. Therefore,

care must be taken to ensure the model remains identifiable. For example, the linear

coefficient δs we use avoids this issue since its behaviour in the extremes of the range of

yt is well determined by past yt in the middle of the range. On the other hand, if δ were

time-varying in a very flexible way it could also become non-identifiable when nowcasting.

One way to increase model flexibility while maintaining identifiability is to use a penalised

regression spline with a strong informative prior on the smoothness penalty parameter.

This prior controls the variance of the non-linear component of the spline. A strong prior

on the smoothness parameter forces the variance of the non-linear trend towards zero

unless there is enough data to support non-linearity. This ensures that the model does

not introduce unwarranted flexibility in poorly informed regions of yt , improving stability

in nowcasting scenarios.

Moreover, we assumed that the case load effect can be characterised as only depending

on contemporaneous total counts. Instead, reporting delays could be influenced by total

counts from previous weeks, which would require lagged effect(s) in the model. Similarly,

reporting delay length may be related to the the rate of change of the total counts over

time, e.g. a steep increase in cases could cause slower reporting, or to the difference

between current case levels and the long-term expected trend (e.g. an expected seasonal
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pattern). However, implementing these new structures should also be supplemented with

additional simulation experiments to asses our models ability to capture potential delay

dependent and non-linear relationships. It is also worth noting that in doing so there may

be a trade-off in computational speed as one introduces more parameters into the model.

Currently, the models with a link between case load and reporting delay take 8 minutes

to run for the SARI data and 1.9 hours for the arbovirus data.

Alternatively, there may be other methods of incorporating the relationship between case

load and delay that we have not explored here, that may result in improvements in

predictive performance. Therefore, more work is needed to develop a framework that

could utilise the potential incident-delay relationship in real data to improve upon existing

nowcasting models for operational warning systems.
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Disease epidemics can result in economic and public health costs, such as low quality wel-

fare and loss of life, by requiring expensive resources and putting a strain on health care

systems. In order to effectively manage outbreaks, and minimise these costs, surveillance

systems are often implemented. These typically monitor count data that represent disease

outcomes, such as cases or deaths, which act as a quantitative indicator for the severity

of a prevailing disease. Enabling the clear communication and deeper understanding of

the threats to a community. These are needed to help public health authorities allocate

resources and inform policies such as pharmaceutical and non-pharmaceutical interven-

tions (World Health Organization (2020b)). A barrier to effective disease monitoring is

the presence of reporting delays in these disease outcomes, which prevent an up-to-date

overview of the true levels of disease outcomes across a region.

The overall goal of this thesis was to develop nowcasting tools to correct for these reporting

delays. This can help identify trends in disease data and facilitate up to date surveillance

systems. This was achieved by first reviewing the existing literature in Chapter 2, which

highlighted the relative benefits and limitations of existing approaches. To summarise, for

theoretical peak predictive capabilities we require approaches that exhibit the flexibility to

separate and capture all sources of variability in the data which we outline in Section 1.1.

In Section 2.2, we broadly summarise the existing approaches as two main groups. The

first group of approaches implement conditionally independent models of the observed

partial counts, which don’t take into account that the partial counts have a compositional

structure that sums to the total counts. The second group of approaches, which jointly

model the partial and total counts, address the compositional structure by implementing

a Multinomial model for the partial counts. However, they often still lacks the flexibility to

capture the random variability of the partial counts due to the lack of variance parameters.

Hence, in Section 2.3, the Generalised-Dirichlet Multinomial (GDM) model is presented

as an approach that can model the complexities in the covariance structure of the partial

counts by extending the Multinomial framework with additional parameters. However, as

a consequence of the underlying methods used for the GDM, we noted that the GDM is
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relatively slow compared to competing approaches for complex cases, such as hierarch-

ical models for the total and partial counts in delayed disease reporting. We discuss the

underlying methods used to fit both the GDM and competing approaches at the start of

Chapter 2.

Also, through critiquing potential extensions of nowcasting frameworks in Section 2.5,

we emphasize that flexibility and usability can improve model practicality for real-world

applications. Furthermore, no frameworks thus far consider the implications of the incid-

ence of the disease on the length of reporting delays, or nested structures which are often

common in disease data.

In Chapter 3 we sought to address the issue of the GDM model’s inefficient computational

speed, compared to alternative approaches, which may limit its wider potential for being

an operational nowcasting tool. For two case studies, we showed that implementing a

series of alterations to how MCMC sampling is executed approximately halved the run

time of the GDM model. We also investigated two other more computationally complex

routes for achieving quicker predictions. Firstly, we considered a modelling framework

that is suitable for fitting using INLA (Lindgren and Rue (2015)) which attempted to

approximate the GDM’s ability to capture the covariance structure of the partial counts

using a Multivariate Normal random effect. It was shown, for a given simulation study,

the GDM approximation INLA model had less uncertainty than the Bastos et al. (2019)

INLA model for the predictions of the total counts. However, the approximation in INLA

was unable to separate the uncertainty in the total counts and the partial counts as

consistently as the GDM approach. Our second route created a technique for optimising

the join posterior of the GDM framework. This could then be used to not only inform

the initial values of the MCMC chains, to allow convergence in fewer iterations, but

also to potentially give decision makers a timely approximate estimate of the eventual

MCMC posterior point predictions of the total counts. However, we recognise that this

technique may have unknown repercussions on the final predictions which needs to be

more thoroughly investigated prior to advocating its general use.
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Next, in Chapter 4 we implemented the GDM model with our additional computational

advancements (developed in Chapter 3) to COVID-19 deaths in England. This applica-

tion helped asses the GDM’s capabilities for real-time disease surveillance compared to

competing frameworks. Section 4.1 outlines the results of the published paper this work

resulted in, Stoner, Halliday and Economou (2022), and highlighted my personal contribu-

tions to it. We showed that the GDM model produced more accurate prediction compared

to alternative approaches when nowcasting COVID-19 deaths in England. Furthermore, I

carried out a simulation study to determine that the GDM model allowed for parameter

inference as it was able to recapture covariate effects in the artificially generated data.

Chapter 5 went on to extend the GDM framework to make it suitable for novel applic-

ations, by allowing the model to capture nested structures in disease data. For example,

if a particular variant of a virus is responsible for a nested proportion or subset of the

total number of infections. This framework allowed for the prediction of COVID-19 posit-

ive SARI hospitalisations in Brazil which would otherwise be unattainable using existing

nowcasting methods, due to the delay length of the COVID-19 test results being unknown.

Additionally, we presented a new choice of link function for the relative proportions re-

ported, that are modelled in the GDM framework, using the centralised log ratio (CLR)

transform of the absolute proportions reported. Although, this was not found to be per-

form better than the existing survivor or hazard link functions introduced in Stoner and

Economou (2019) for this application, it could have benefits when the data generating

process results in complex structures in the absolute proportions reported.

Finally, in Chapter 6 we again extended the original GDM framework to include the poten-

tial relationship between the level of incidence of a disease and the length of the delays in

reporting the disease. This was possible in the GDM framework thanks to the separation

of the total counts and partial counts as well as the flexibility of fitting Bayesian models

in the package NIMBLE (de Valpine et al. (2017)) affords. To the best of our knowledge,

this was the first nowcasting framework that incorporates this into the predictions of the

unknown total counts. Through simulation experiments, in Section 6.3, we showed that
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when a case load relationship is present in the data and not explicitly modelled within

GDM framework, predictions of the total counts were less accurate (larger mean absolute

errors) compared to our proposed incidence-delay GDM model. In Section 6.4, we applied

both the original and our proposed framework again, to two real-world case studies in

Brazil; SARI hospitalisations and arbovirus cases. However, for both data sets we found

our proposed incidence-delay GDM model, that did explicitly model the incidence-delay

effect, was comparable to the original GDM model in terms of prediction precision and

uncertainty. Hence, the modelling assumptions of our proposed framework may not be

suitable for the underlying data generating processes present in the real-world data, i.e.

the process responsible for the observed correlation between number of counts and length

of delay.

All data and code that supplements this thesis is available at https://github.com/

AlbaMH/Thesis.

7.1 Discussion of the results

In general this thesis has developed frameworks that we have shown to have considerable

benefits over existing approaches. Hence, if applied in an operational disease surveillance

setting this could result in improvements on the timeliness and effectiveness of public

health response to epidemic outbreaks. For instance, we have updated the GDM model

to be more computationally efficient in Chapter 3. This means that, for any application,

the computational costs will be lower, giving users more time to analyse and utilise the

results. In particular, if the GDM is implemented in a real-time surveillance system,

these improvements could be crucial in providing timely results that could inform public

health policies. We showcased the GDM as a highly competitive option for such disease

surveillance, in terms of both prediction precision and parameter inference, in Chapter 4.

https://github.com/AlbaMH/Thesis
https://github.com/AlbaMH/Thesis
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Chapter 5 could also facilitate public health impact: by jointly modelling the total SARI

hospitalisations and the subgroup of these that test positive for COVID-19, we allow for

nowcasts of these COVID-19 positive counts to be possible. This is due to the unknown

delays in awaiting for COVID-19 test results to confirm cases rendering nowcasting models

which would just consider the COVID-19 counts to be unsuitable. Unknown reporting

delay length is a common issue within reporting processes subject to delayed reporting

and is often challenging to mitigate. Hence, the impact of this work has the potential to

spread beyond the specific application that motivated its development.

This is also true for the novel GDM version we formulated in Section 5.3.3 which models

systematic variability in the reporting delay by linking to expected proportion reported

at each delay to covariate and/or random effects (including penalised regression splines

and tensor product smooths). This has ramifications when using the GDM framework as

the choice of link function can have a non-trivial impact on both posterior predictions

and computational efficiency. Since previously existing GDM formulations don’t allow the

expected absolute proportions to be modelled directly, they may be limiting in applications

where users wish to capture trends identified in these proportions. This may especially

be the case if there is a strong intuition for the trends in the data generating process or

if unconstrained effects are required to capture the trends. Hence, in some scenarios, the

CLR version of the GDM could lead to more accurate and quicker results. However, it is

worth noting that performance will also depend on the choice of model effects the link

function is paired with.

Finally, the results in Chapter 6 have the potential to lead to a new class of nowcasting

model that considers the effect of case load on the delay process. However, there will be

a stronger argument for this if it is shown to provide greater improvements in a real-

world application over the existing class of model that do not take this relationship into

account. Despite this, we have shown through simulation studies that this is likely to be
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the case if the model assumptions match the data generating process behind this case

load effect. Furthermore, inference gained through explicitly modelling this link using our

framework may still be informative to public health scientist investigating reporting delays

by providing information about the magnitude of this effect across different regions.

7.2 Potential future work

Here we outline potential avenues for future work in improving upon the nowcasting

models for operational infectious disease surveillance that we have developed in this thesis.

We critique nowcasting approaches for in two main areas; predictive performance and

operational ability.

The GDM model, which this thesis has focused on, enables higher predictive accuracy

and precision by separating the four sources of variability in the data, summarised in

Section 1.1.3, compared to competing approaches. Furthermore, it captures the poten-

tially complex covariance structure between the proportion of the observed total counts

reported at each delay, as we discussed in Section 1.1, owing to the flexibility provided

by additional model parameters. But, improvements could be gained by considering al-

ternative sources of information to help better inform predictions. For example, through

informative covariates as we discuss in Section 2.5.2.

We incorporated the polynomial effect of age distribution when modelling the nested dis-

ease structure of SARI hospitalisations that are COVID-19 positive in Section 5.4. This

helped inform the model predictions and allowed for inference on the likelihood of different

age groups within SARI hospitalisation testing positive for COVID-19. Hence, other in-

formative covariates and their impact on nowcasting frameworks could be considered, e.g.

weather forecasts or social media trends. Moreover, prediction performance and inference
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of spatial effects could be improved by considering more complex spatial structures both

for the GDM and more generally for all surveillance systems. This could be achieved by

modelling disease data on a finer spatial resolution and capturing the more intricate spa-

tial dependencies, allowing for a more detailed overview of the progression of an outbreak

and potentially more localised interventions which could be more cost effective.

As for operationally ability, the major drawbacks of the GDM are due to its slow com-

putational speed and requirement for specialised knowledge to essentially hand-write the

model code, and to implement the MCMC sampling methods, including setting prior dis-

tributions, iteration lengths and executing different random, fixed, seasonal and spatial

effects as needed. We start to address this in this thesis by improving the speed at which

the GDM model produces posterior predictions in Section 3.2. Despite this, it is still

one of the slowest nowcasting models among the most cited approaches, as we compare

in Chapter 4. Hence, there is still scope to close this gap in computational speed. This

may include developing more efficient MCMC sampling methods that are suitable for the

GDM. Alternatively, further work could attempt to justify the technique of optimising

the joint posterior to set the initial values of MCMC sampling, which we investigated in

Section 3.3, for operational use. Similarly, there may be a way to design an INLA model

which can capture the covariance structure of the partial counts to allow for precision

and confidence in predictions comparable to the GDM, as the approach we present in

Section 3.1 is currently unable to do so.

Furthermore, we have not addressed the issue of usability, which evaluates the ease of

implementing the model to novel applications, especially by individuals who may not be

familiar with the method. In Section 7.2.0.1, we discuss potential future work of developing

an R package for the GDM framework. This could greatly improve the accessibility of the

GDM model, allowing it to be more generally applied to various real-world data sets that

require modelling of compositional count data subject to reporting delays.
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Additionally, correcting for reporting delays is only one barrier to disease surveillance.

As we discuss in Section 2.5.3 there may be a need to correct for under-reporting in

conjunction with correcting for delayed reporting. There is likely to be an element of under-

reporting in any disease monitoring system due to capacity limits and imperfections in

the reporting system. For example, this could include resource limitations that restrict the

number of tests that can be carried out or the number of patients that can be hospitalised.

On the other hand, admin errors may mean that cases are missed. Similarly, due to the

design of the reporting system individuals may not be counted if they are asymptomatic,

do not seek medical care, or seek medical care from alternative sources such as unregistered

or private health care providers.

We attempt to develop a framework in Section ?? that exploits the fact that deaths

are less likely to be under-reported than cases, to help quantify the under-reporting in

positive test results for COVID-19 in England where both are monitored. However, this

needs additional information about COVID-19 infection fatality rates in order to overcome

identifiability issues and be valid for reliable inference. In Section 7.2.0.2, we outline an

additional extension we considered for the GDM model, which considers the potential

effect of disease incidence on testing capacity and hence under-reporting, but were unable

to investigate further within the time-frame of this thesis.

Finally, a deeper investigation into the case load effect may be required for our GDM

framework which explicitly models the link between disease counts and reporting delay

length. As of present, in real-world application our proposed model (Section 6.2) appears

to have little to no effect on the predictive precision of the resulting nowcasts compared

to models which do not account for this relationship. We believe this is likely due to

modelling assumptions about the nature of this relationship being unsuitable.
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7.2.0.1 R package

The Generalized-Dirichlet Multinomial (GDM) method for disease surveillance or other

general compositional data applications (where data is expressed as parts summing to a

total) is a Bayesian hierarchical model that can currently only be implemented using the

Markov Chain Monte Carlo (MCMC) method. We implement the method using flexible

software NIMBLE de Valpine et al. (2017), which is suitable for modelling complex hier-

archical structures. However, adapting the method for new applications relies on experi-

ence in Bayesian hierarchical models and MCMC methods. This is a barrier to adoption

of the method by the wider community of public health practitioners and epidemiological

researchers, therefore limiting the potential impact of work. Other nowcasting approaches

have developed R packages so that end users can implement their methods with simple

functions, increasing their ease of use. For example, McGough et al. (2020) created the

R package NobBS and the package Nowcaster is based on the work by Bastos et al.

(2019). However, we review both these approaches in Chapter 2 and compare them to

the GDM for nowcasting COIVD-19 deaths in Chapter 4, and found them to be lacking

reliable predictive precision compared to the GDM.

Developing the GDM model into an R package would be challenging due to its generality,

meaning that there are a multitude of ways in which it can be customised for specific

problems. Furthermore, it also can take time to calibrate the GDM so that it runs optim-

ally, as MCMC methods require user specified parameters, such as MCMC chain; iteration

length, burn-in length, thinning and intial values. Moreover, users have to ensure conver-

gence has been achieved, by inspecting trace plots and the potential scale reduction factor

(PSRF), preferably without the cost of excessively long run times. Hence, an R-package

could allow for users to carry out model fitting using more familiar interfaces, avoiding
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knowledge of NIMBLE, such as the popular formula syntax used by many R packages

including INLA (Lindgren and Rue (2015)) and JAGAM (Wood (2016)). Additionally,

some sort of internal selection process for both modelling terms and MCMC parameters

could be beneficial to reduce the amount of user expertise required.

Primarily, the goal of the package would be to allow users to fit the GDM model to

the general case of disease surveillance application suffering from delayed reporting. This

would involve a total count yt,s for a given time step t across spatial regions s, where the

partial counts reported at each delay d, zt,d,s, sum to the aforementioned total count. There

could also be scope to customise the package further, to include more bespoke versions

of the GDM. For example, in Section 5.3, we introduced our framework that extends

the GDM model so that it can capture nested structures which are often observed in

disease surveillance data. Similarly, Section 6.2 introduced our framework for accounting

for potential case load effect on reporting delays.

7.2.0.2 Testing capacity

Torres, Sippy and Sacoto (2021) investigate potential under-reporting of COVID-19 due

to limited testing capacity in Ecuador. This was initiated as Ecuador had relatively few

confirmed cases despite having one of the highest global death rates. A driving factor of

this was a backlog in test processing due to limited imported laboratory supplies and gaps

in the workforce. They also note that testing burden at laboratory level also influenced

delays in processing. Hence, capturing the relationship between number of cases and the

reporting delay, for example by using the framework we introduce in Section 6.2, could be

especially informative if the reporting delay includes the time taken to receive a laboratory

test result which is likely to be the case for many infectious disease surveillance systems.



CHAPTER 7. CONCLUSION 242

Another avenue of investigation, which could help improve the decision makers knowledge

of the true level of a disease present in a population, would be to consider the extent to

which cases may be under-reported. Under-reporting due to limited testing capacity is

likely the reason for the low numbers of reported confirmed COVID-19 cases in Torres,

Sippy and Sacoto (2021) compared to fatality rates. This relationship may also be signific-

ant in Brazil case study we consider in Chapter 5, where the number of severe COVID-19

cases in Brazil, defined as SARI hospitalisations where the respiratory virus has been

identified to be COVID-19 by laboratory tests. If not all SARI hospitalisations are given

COVID-19 tests, then individuals with COVID-19 may not be identified out of the total

number of SARI cases, meaning that the observed proportion of SARI hospitalisations

that test COVID-19 positive may be smaller than the ‘true’ proportion.
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Figure 7.1: The proportion of SARI cases reported that are recorded as having been tested
(either antigen or PCR test) plotted against the total number of SARI cases.
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We explore this by considering how testing rates for COVID-19 seem to change over

the total number of SARI hospitalisations, shown in Figure 7.1. When there is a greater

number of SARI cases, which indicates a peak in an epidemic outbreak, there appears to

be a lower testing rate in some regions. This may be due to limitations in tests available

or staff that are able to administer and run the tests. Similarly, some regions exhibit a dip

in testing for low numbers of SARI cases as well, this could be due to lack of awareness in

periods between COVID-19 outbreaks or due to lack of testing availability. Alternatively,

these trends could be due to a lack of testing both at the start and the end of the time

series we have available due to both the availability of tests and priority of identifying

COVID-19 cases being higher during in the larger outbreaks in 2021/22. Therefore, the

rationale and protocol behind how healthcare providers decide whether to run a test will

have to be carefully considered when investigating this, so expert insights will be crucial.

7.3 Final remarks

Disease surveillance is a key aspect of public health monitoring and management. In this

thesis we have presented Bayesian hierarchical models that can improve upon existing

surveillance systems for correcting disease data subject to delayed reporting. These mod-

els could give decision makers more information to work with through more accurate and

precise estimates of disease outcome indicators. This has been achieved, in the first in-

stance, by addressing concerns about timeliness of existing nowcasting approaches and,

in the second instance, by developing novel frameworks for real-world situations where

existing approaches are unsuitable.

The next steps for the work covered in this thesis is to bridge the gap between meth-

odological advancements and real-world impact. This will be achieved by collaborations

between the University of Glasgow and the Oswaldo Cruz Foundation (Fiocruz) which I

have been appointed to help facilitate. The goal of this collaboration is to implement the
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frameworks developed here for novel applications in Brazil into a real-time surveillance

system. This includes and extensive knowledge exchange, and an R package as discussed

in Section 7.2.0.1. The R package will implement the more computationally efficient ver-

sion of the original GDM model (Stoner and Economou (2019)) which we updated in

Chapter 3, for general applications with limited user input required. Additionally, an op-

erational prototype of the GDM model for nested structures, developed in Chapter 5,

could highlight the more reliable and accurate real-time nowcast predictions, for both

SARI and severe COVID-19 hospitalisations, our framework can achieve compared to

those currently operational in Brazil.

Moreover, this collaboration could result in a GDM modelling framework which reforms

the one we proposed in Chapter 6, by enabling the case load effect of real-world disease to

be captured in a way which improves prediction performance. This is something we were

unsuccessful in achieving here (Section 6.4). Although our proposed framework has the

theoretical capability to capture any type of relationship between case load and delay, we

currently lack the understanding of how this is generated in real-world data and hence

opted for potentially restrictive effects. However, researchers at Fiocruz may hold key

insights in the reporting process which could be crucial in enhancing the design of our

method.



Appendices

A Definition of distributions

In this section, we define the probability distributions employed in the Generalized Di-

richlet Multinomial (GDM) model.

A.1 Poisson Distribution

The Poisson distribution is a discrete probability distribution used to model the number

of events occurring within a fixed interval of time, space, or another continuous domain.

It is parameterised by the rate parameter λ > 0, which represents the average number of

events in the interval.

The probability mass function of the Poisson distribution X ∼ Poisson(λ ) is given by:

P(X = k) =
λ ke−λ

k!
, k = 0,1,2, . . . (1)
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where k is the number of events in the interval. The mean and variance are both determined

by the rate parameter, E[X ] = Var[X ] = λ .

A.2 Beta Distribution

The Beta distribution is a continuous probability distribution defined on the interval [0,1].

It is widely used to model probabilities, proportions, and rates. The Beta distribution is

parameterised in two common ways: using the standard shape parameters α,β and an

alternative form in terms of the expected proportion ν and dispersion parameter ϕ .

The Beta distribution with shape parameters α > 0 and β > 0 has the following probability

density function (PDF):

f (x;α,β ) =
xα−1(1− x)β−1

B(α,β )
, 0 < x < 1, (2)

where B(α,β ) is the Beta function:

B(α,β ) =
∫ 1

0
tα−1(1− t)β−1dt =

Γ(α)Γ(β )
Γ(α +β )

. (3)

For this parameterisation the mean is E[X ] = α
α+β and the variance is Var[X ] = αβ

(α+β )2(α+β+1) .

An alternative and often more interpretable parameterisation of the Beta distribution

expresses it in terms of the expected proportion (mean) ν and a dispersion parameter

ϕ that controls the variability of X . The relationship between the two parameterisations

is given by α = νϕ and β = (1− ν)ϕ . Using this formulation, the probability density
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function can be rewritten as:

f (x;ν ,ϕ) =
xνϕ−1(1− x)(1−ν)ϕ−1

B(νϕ ,(1−ν)ϕ)
. (4)

For this parameterisation the mean is E[X ] = ν and the variant is Var[X ] = ν(1−ν)
1+ϕ .

A.3 Gamma Distribution

The Gamma distribution is a continuous probability distribution often used to model

waiting times or non-negative skewed data. In this body of work we use two paramet-

erisations. Firstly, when using the Gamma distribution as a prior distribution, we use

X ∼ Gamma(θ ,r), where θ > 0 is the shape parameter and r > 0 is the rate parameter,

the probability density function (PDF) is given by:

f (x;θ ,r) =
rθ

Γ(θ)
xθ−1e−rx, x > 0, (5)

where θ > 0 is controlling the distribution’s skewness, r > 0 is controlling the scale (inverse

of the mean) and Γ(θ) is the gamma function, defined as Γ(θ) =
∫ ∞

0 tθ−1e−t dt. The mean

can then be calculated by E[X ] = θ
r and variance by Var[X ] = θ

r2 .

For the alternative parameterisation, which we use when defining a Negative-Binomial as

a Poisson-Gamma mixture model (which we derive in Section B.1), we include a mean

parameter λ which we substitute the rate parameter for by r = θ
λ . The probability density

function (PDF) is then given by:

f (x;θ ,λ ) =
θ
λ

θ

Γ(θ)
xθ−1e−

θ
λ x, x > 0. (6)
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A.4 Inverse-Gamma Distribution

The Inverse-Gamma distribution is a continuous probability distribution used primar-

ily as a conjugate prior for variance parameters in Bayesian analysis. In NIMBLE, the

dinvgamma function parameterises the distribution in terms of α > 0, the shape para-

meter and β > 0, the scale parameter. A random variable with X ∼ Inverse-Gamma(α,β )

distribution has a probability density function (PDF) given by:

f (x;α,β ) =
β α

Γ(α)
x−α−1e−

β
x , x > 0, (7)

where Γ(α) is the Gamma function:

Γ(α) =
∫ ∞

0
tα−1e−tdt. (8)

The mean is E[X ] = β
α−1 and the variance is Var[X ] = β 2

(α−1)2(α−2) , for α > 2.

A.5 Negative-Binomial Distribution

The Negative-Binomial distribution is commonly used to model overdispersed count data.

In this thesis we use the parameterisation in terms of mean (λ > 0) and dispersion (θ > 0).

For this paramterisation the probability mass function of X ∼ Negative-Binomial(λ ,θ) is

given by:

P(X = k) =
Γ(k+θ)
Γ(θ)k!

(
θ

θ +λ

)θ ( λ
θ +λ

)k

. (9)

In the above equation k ≥ 0 is the count of failures before achieving θ successes and Γ(·)

is the gamma function.
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The mean of this distribution can then be calculated by E[X ] = λ , and the variance can

be calculated by Var[X ] = λ + λ 2

θ . As θ → ∞, the distribution approaches a Poisson dis-

tribution, hence demonstrating that θ models the over-dispersion relative to the Poisson

distribution.

A.6 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the beta distribution. For

a random vector X = (X1, . . . ,Xk) that follows a Dirichlet distribution, X ∼ Dir(α), the

density function is:

f (X;α) =
Γ(∑k

i=1 αi)

∏k
i=1 Γ(αi)

k

∏
i=1

Xαi−1
i , (10)

where α= (α1, . . . ,αk) are the concentration parameters, αi > 0, and ∑k
i=1 Xi = 1. Each αi

influences the expected proportion and variability of Xi.

A.7 Generalized-Dirichlet Distribution

The Generalized-Dirichlet (GD) distribution is an extension of the Dirichlet distribution

that allows for more flexible modelling of dependencies between components (Connor

and Mosimann (1969)). For a random vector X = (X1, . . . ,Xk) that follows a Generalized

Dirichlet distribution, denoted as X ∼ GD(α,β), the density function is:
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f (X;α,β) =
k−1

∏
i=1

1
B(αi,βi)

xαi−1
i

(
1−

i

∑
j=1

x j

)βi−αi+1−1(
1−

k−1

∑
j=1

x j

)αk−1

. (11)

In the above equation, α = (α1, . . . ,αk) are the shape parameters with αi > 0, and β =

(β1, . . . ,βk) are the secondary shape parameters. Then, xi ∈ (0,1) for i = 1, . . . ,k, and

xk+1 = 1−∑k
i=1 xi.

The GD distribution generalizes the Dirichlet distribution by introducing additional para-

meters β that allow for increased flexibility in modelling correlations and marginal distri-

butions of the components.

A.8 Beta-Binomial Distribution

The Beta-Binomial distribution is a compound distribution where the success probability

of a Binomial distribution is itself a random variable following a Beta distribution.

Often the parameterisation of the Beta-Binomial distribution is given by two shape para-

meters, (α > 0) and (β > 0), which control the mean and variance of the success probab-

ility, and n, the total number of trials.

In this thesis we re-parameterise the distribution as X ∼ Beta-Binomial model(ν ,ϕ ,n),

where ν ∈ (0,1) represents the expected proportion of successes, ϕ > 0 controls over-

dispersion and n ≥ 0 represents the number of trials. The parameters α and β of the

underlying Beta distribution can be expressed by α = νϕ and β = (1−ν)ϕ .
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The probability mass function of the Beta-Binomial distribution is:

P(X = k) =
(

n
k

)
B(k+νϕ ,n− k+(1−ν)ϕ)

B(νϕ ,(1−ν)ϕ)
, (12)

In the above equation k ≥ 0 is the number of successes in n trials and B(·, ·) is the beta

function.

Using this parameterisation the mean of the Beta-Binomial distribution can be calculated

by E[X ] = nν and the variance can be calculated by Var[X ] = nν(1−ν)
(

1+ n−1
ϕ+1

)
.

A.9 Multinomial Distribution

The multinomial distribution is a generalisation of the binomial distribution that de-

scribes the probability of counts across multiple categories. When parameterised as X ∼

Multinomial(p,n) by the probability vector p = (p1, p2, . . . , pk) and the number of trials

n > 0, the probability mass function (PMF) of a multinomial distribution is given by:

P(X1 = x1,X2 = x2, . . . ,Xk = xk) =
n!

x1!x2! · · ·xk!

k

∏
i=1

pxi
i , (13)

In this equation n > 0 is the total number of trials, xi is the number of observations

in category i = 1, . . . ,k and pi is the probability of an observation falling into category

i = 1, ...,k. These parameters are subject to the following conditions:

• xi ≥ 0 for all i = 1, . . . ,k,

• ∑k
i=1 xi = n (total counts equal the number of trials),

• ∑k
i=1 pi = 1 (probabilities sum to 1),

• 1 ≥ pi ≥ 0 for all i = 1, . . . ,k.
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The mean of the distribution can be calculated by E[Xi] = npi and the variance can

be calculated by Var[Xi] = npi(1− pi), both for i = 1, . . . ,k. Also, the covariance can be

calculated by Cov[Xi,X j] =−npi p j, for i ̸= j.

To obtain the marginalised likelihood P(X1 = x1) we can marginalise the full likelihood

given in Equation (13) over X2, . . . ,Xk, and sum over all configurations such that x2+ · · ·+

xk = n− x1:

P(X1 = x1) = ∑
x2+···+xk=n−x1

n!
x1!x2! · · ·xk!

px1
1

k

∏
i=2

pxi
i . (14)

After marginalising, the result simplifies to:

P(X1 = x1) =

(
n
x1

)
px1

1 (1− p1)
n−x1 , (15)

where 1− p1 = ∑k
i=2 pi.

B Derivations

B.1 Marginal distribution of a Poisson-Gamma mixture model

is a Negative-Binomial distribution

In this section we show that for the hierarchical Poisson-Gamma mixture model model:

yt | κt ∼ Poisson(κt), κt | λt ∼ Gamma(θ ,λt), (16)

the marginal distribution of yt follows a Negative-Binomial distribution:

yt ∼ Negative-Binomial(λt ,θ), (17)
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where λt is the mean and θ is the dispersion parameter. The PMF of the Poisson distri-

bution with rate parameter κt > 0 is:

p(yt | κt) =
κyt

t e−κt

yt!
, yt = 0,1,2, . . . (18)

The PDF of the Gamma distribution with shape parameter θ and rate parameter t is,

where the mean is given by λt =
θ
rt

:

p(κt | rt ,θ) =
rθ
t

Γ(θ)
κθ−1

t e−rtκt , κt > 0. (19)

The marginal distribution of yt is obtained by integrating out κt :

p(yt | rt ,θ) =
∫ ∞

0
p(yt | κt)p(κt | rt ,θ)dκt . (20)

Substituting the Poisson and Gamma densities:

p(yt | rt ,θ) =
∫ ∞

0

κyt
t e−κt

yt!
· rθ

t
Γ(θ)

κθ−1
t e−rtκt dκt . (21)

Combine terms:

p(yt | rt ,θ) =
rθ
t

yt!Γ(θ)

∫ ∞

0
κyt+θ−1

t e−(rt+1)κt dκt . (22)

The integral can be given by the normalising constant of a Gamma distribution with

shape parameter θ + yt and rate parameter rt +1:

∫ ∞

0
κθ+yt−1

t e−(rt+1)κt dκt =
Γ(θ + yt)

(rt +1)θ+yt
. (23)

Substitute this result back into the expression in Equation (22) for p(yt | rt ,θ):

p(yt | rt ,θ) =
rθ
t Γ(θ + yt)

yt!Γ(θ)(rt +1)θ+yt
. (24)
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This can be simplified to:

p(yt | rt ,θ) =
Γ(θ + yt)

yt!Γ(θ)
·
(

rt

rt +1

)θ ( 1
rt +1

)yt

. (25)

In order to reparameterise in term of the mean parameter we can substitute in rt =
θ
λt

:

p(yt | λt ,θ) =
Γ(θ + yt)

yt!Γ(θ)
·

( θ
λt

θ
λt
+1

)θ (
1

θ
λt
+1

)yt

. (26)

This expression can then be simplified to the Negative-Binomial form:

p(yt | λt ,θ) =
Γ(θ + yt)

yt!Γ(θ)
·
(

θ
θ +λt

)θ ( λt

θ +λt

)yt

. (27)

This is the PMF of a Negative-Binomial distribution yt ∼Negative-Binomial(λt ,θ), defined

in Section A.5, with dispersion parameter θ and mean parameter λt .

B.2 Marginal distribution of a Poisson-Multinomial mixture model

is a Poisson distribution

Here we show that the Poisson-Multinomial mixture model:

yt | κt ∼ Poisson(κt), zt | pt ,yt ∼ Multinomial(pt ,yt), (28)

has a marginal distribution of

zt,d | κt , pt,d ∼ Poisson(pt,dκt), (29)

where the rate parameter is pt,dκt > 0.
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Since zt,d is a component of the latent variable yt , the marginal distribution is calculated

by:

p(zt,d | κt , pt,d) =
∞

∑
yt=zt,d

p(zt,d | yt , pt,d)p(yt | κt). (30)

The marginal multinomial likelihood for a single category d, after we marginalise out all

other counts in zt, where ∑D
d=1 zt,d = yt is:

p(zt,d | yt , pt,d) =

(
yt

zt,d

)
p

zt,d
t,d (1− pt,d)

yt−zt,d , (31)

where
( yt

zt,d

)
= yt !

zt,d!(yt−zt,d)!
. The parameter 0≤ pt,d ≤ 1 is the probability such that ∑D

d=1 pt,d =

1, and yt is the number of trials.

The Poisson PMF of yt with rate parameter κt > 0 is:

p(yt | κt) =
κyt

t e−κt

yt!
. (32)

Substituting these into the marginal distribution gives:

p(zt,d | κt , pt,d) =
∞

∑
yt=zt,d

(
yt

zt,d

)
p

zt,d
t,d (1− pt,d)

yt−zt,d
κyt

t e−κt

yt!
. (33)

The Binomial term can then be simplified by substituting
( yt

zt,d

)
= yt !

zt,d!(yt−zt,d)!
, and noting

that yt!/yt! = 1:

p(zt,d | κt , pt,d) =
p

zt,d
t,d

zt,d!

∞

∑
yt=zt,d

(1− pt,d)
yt−zt,d κyt

t e−κt

(yt − zt,d)!
. (34)

If we substitute yt = zt,d + k, where k = yt − zt,d, so that yt − zt,d = k and yt = zt,d + k, the

summation becomes:

p(zt,d | κt , pt,d) =
p

zt,d
t,d κzt,d

t e−κt

zt,d!

∞

∑
k=0

(
(1− pt,d)κt

)k

k!
. (35)
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This summation is the Taylor expansion of ex with x = κt(1− pt,d) where:

∞

∑
k=0

(
κt(1− pt,d)

)k

k!
= eκt(1−pt,d). (36)

Substituting this into the expression gives:

p(zt,d | κt , pt,d) =
p

zt,d
t,d κzt,d

t e−κt eκt(1−pt,d)

zt,d!
. (37)

Combine the exponential terms:

p(zt,d | κt , pt,d) =

(
pt,dκt

)zt,d e−pt,dκt

zt,d!
. (38)

This is the PMF of a Poisson distribution with rate parameter pt,dκt . Therefore, we have

zt,d | κt , pt,d ∼ Poisson(pt,dκt).

Since each zt,d follows a Poisson distribution with its own rate parameter pt,dκt , and the

derivation does not introduce any dependency between different d, it follows that:

zt,d ⊥ zt,d′ | κt , pt,d, pt,d′ ∀d ̸= d′. (39)

Poisson-distributed variables with different rates are independent. This conditional inde-

pendence result follows from the additive property of Poisson-distributed variables. Thus,

the Poisson-Multinomial mixture model yields conditionally independent t,d, given κt and

pt,d. Moreover, by the additive property, summing these independent Poisson-distributed

counts reconstructs the total.
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B.3 Marginal distribution of a Negative-Binomial-Multinomial

mixture model is a Negative-Binomial distribution

We consider the hierarchical model:

yt | λt ∼ Negative-Binomial(λt ,θ), (40)

zt,d | pt ,yt ∼ Multinomial(pt ,yt), (41)

where for the multinomial distribution pt = (pt,1, . . . , pt,D) are the probabilities of each

category and yt is the total number of trials. For the Negative-Binomial distribution λt is

the mean and θ is the dispersion parameter. Here we derive the marginal distribution of

zt,d by integrating out yt .

The joint distribution of yt and zt,d is given by:

P(zt,d | λt ,θ , pt,d) =
∞

∑
yt=zt,d

P(zt,d | yt , pt,d)P(yt | λt ,θ). (42)

Given yt , the multinomial distribution specifies (see Appendix A.9):

P(zt,d | yt , pt,d) =

(
yt

zt,d

)
p

zt,d
t,d (1− pt,d)

yt−zt,d . (43)

The Negative Binomial distribution for yt | λt ,θ is:

P(yt | λt ,θ) =
(

yt +θ −1
yt

)(
λt

λt +θ

)yt
(

θ
λt +θ

)θ
. (44)
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Substituting the above expressions into the joint distribution:

P(zt,d | λt ,θ , pt,d) =
∞

∑
yt=zt,d

(
yt

zt,d

)
p

zt,d
t,d (1− pt,d)

yt−zt,d

×
(

yt +θ −1
yt

)(
λt

λt +θ

)yt
(

θ
λt +θ

)θ
. (45)

Substituting the expressions for P(zt,d | yt , pt,d) and P(yt | λt ,θ) into the summation:

P(zt,d | λt ,θ , pt,d) =
∞

∑
yt=zt,d

(
yt

zt,d

)
p

zt,d
t,d (1− pt,d)

yt−zt,d

×
(

yt +θ −1
yt

)(
λt

λt +θ

)yt
(

θ
λt +θ

)θ
. (46)

Expanding the binomial coefficient
( yt

zt,d

)
, we have:

(
yt

zt,d

)
=

yt!
zt,d!(yt − zt,d)!

.

Substituting this into the expression:

P(zt,d | λt ,θ , pt,d) =
p

zt,d
t,d

zt,d!

∞

∑
yt=zt,d

yt!
(yt − zt,d)!

(1− pt,d)
yt−zt,d

×
(

yt +θ −1
yt

)(
λt

λt +θ

)yt
(

θ
λt +θ

)θ
. (47)

Next, let m = yt − zt,d, which implies yt = m+ zt,d. Making the substitution, we get:

P(zt,d | λt ,θ , pt,d) =
p

zt,d
t,d

zt,d!

∞

∑
m=0

(m+ zt,d)!
m!

(1− pt,d)
m

×
(

m+ zt,d +θ −1
m+ zt,d

)(
λt

λt +θ

)m+zt,d
(

θ
λt +θ

)θ
. (48)
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Splitting the factorial and rearranging terms:

P(zt,d | λt ,θ , pt,d) =
p

zt,d
t,d

zt,d!

(
λt

λt +θ

)zt,d

×
∞

∑
m=0

(
m+ zt,d +θ −1

m

)(
(1− pt,d)

λt

λt +θ

)m( θ
λt +θ

)θ
. (49)

The summation now matches the Negative Binomial generating function. Using this prop-

erty, the marginal distribution is:

P(zt,d | λt ,θ , pt,d) =

(
zt,d +θ −1

zt,d

)(
pt,dλt

pt,dλt +θ

)zt,d
(

θ
pt,dλt +θ

)θ
. (50)

Thus, the marginal distribution of zt,d is:

zt,d ∼ Negative-Binomial(pt,dλt ,θ), (51)

where pt,dλt is the mean and θ is the dispersion parameter.

B.4 Derivation of the Generalized-Dirichlet Multinomial (GDM)

Given the total count yt , the compositional counts zt = (zt,1, . . . ,zt,D) follow a multinomial

distribution:

zt | pt ,yt ∼ Multinomial(pt ,yt), (52)

where pt = (pt,1, pt,2, . . . , pt,D) represents the probability vector for the d = 1, . . . ,D categor-

ies. The probabilities pt are modelled using the Generalized-Dirichlet (GD) distribution:

pt ∼ Generalized-Dirichlet(αt ,βt). (53)
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The multinomial likelihood is given by:

P(zt | pt ,yt) =
yt!

zt,1! · · ·zt,D!

D

∏
d=1

p
zt,d
t,d . (54)

The Generalized-Dirichlet prior on pt has the density function:

P(pt |αt ,βt) =
D−1

∏
d=1

1
B(αt,d,βt,d −αt,d)

p
αt,d−1
t,d (1−

d

∑
j=1

pt, j)
βt,d−αt,d−1, (55)

where the Beta function B(a,b) is defined as:

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

. (56)

To obtain the Generalized-Dirichlet Multinomial (GDM) distribution, we integrate out

pt :

P(zt | yt ,αt ,βt) =
∫

P(zt | pt ,yt)P(pt |αt ,βt)dpt . (57)

Substituting the expressions for P(zt | pt ,yt) and P(pt |αt ,βt), the integral follows a stand-

ard result that yields the Generalized-Dirichlet-Multinomial (GDM) distribution:

P(zt | yt ,αt ,βt) =
yt!

zt,1! · · ·zt,D!
∏D−1

d=1 B(zt,d +αt,d,yt −∑d
j=1 zt, j +βt,d −αt,d)

∏D−1
d=1 B(αt,d,βt,d −αt,d)

. (58)

Instead of using the shape parameters αt and βt , we can reparameterise the model in

terms of the expected proportions νt,d and a dispersion parameter ϕt,d, which controls the

variability of category proportions. The expected proportion are defined as:

νt,d =
αt,d

αt,d +βt,d
. (59)

The dispersion parameter is introduced to control the spread of the proportions:

ϕt,d = αt,d +βt,d. (60)
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Using this reparameterisation, we express αt,d and βt,d as:

αt,d = νt,dϕt,d, (61)

βt,d = (1−νt,d)ϕt,d. (62)

Substituting these into the GDM density function gives:

P(zt | yt ,νt ,ϕ) =
yt!

zt,1! · · ·zt,D!

∏D−1
d=1 B

(
zt,d +νt,dϕ ,yt −∑d

j=1 zt, j +(1−νt,d)ϕ
)

∏D−1
d=1 B

(
νt,dϕ ,(1−νt,d)ϕ

) . (63)

Thus, integrating out pt results in the Generalized-Dirichlet-Multinomial (GDM) distri-

bution:

zt | yt ∼ GDM(νt ,ϕt ,yt). (64)

This generalizes the Dirichlet-Multinomial (DM) by allowing additional flexibility in the

covariance structure of zt .
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B.5 Derivation of the Generalized-Dirichlet Multinomial (GDM)

as a Beta-Binomial Series

For the Generalized-Dirichlet Multinomial (GDM) equations, the

pt ∼ Generalized-Dirichlet(αt ,βt) distribution can be constructed as a series of independ-

ent Beta distributions:

pt,1 ∼ Beta(νt,1ϕt,1,(1−νt,1)ϕt,1); (65)
pt,2

1− pt,1
∼ Beta(νt,2ϕt,2,(1−νt,2)ϕt,2); (66)

. . .

pt,d

1−∑d−1
i=1 pt,i

∼ Beta(νt,dϕt,d,(1−νt,d)ϕt,d); (67)

. . .

pt,Dmax = 1−
Dmax−1

∑
i=1

pt,i. (68)

Here, the Beta distributions ensure that each fraction of the remaining probability mass

follows a hierarchical allocation process. Similarly, the Multinomial

zt | pt ,yt ∼ Multinomial(pt ,yt), can be rewritten as a series of conditional Binomial distri-

butions:

zt,1 | pt,1,yt ∼ Binomial(yt , pt,1); (69)

zt,2 | pt,2,zt,1,yt ∼ Binomial(yt − zt,1, pt,2); (70)

. . .

zt,d | pt,d,zt,<d,yt ∼ Binomial(Nt,d, pt,d); (71)

. . .

zt,Dmax = Nt,Dmax , (72)
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where we define the remaining sample size at step d as:

Nt,d = yt −
d−1

∑
j=1

zt, j. (73)

This formulation expresses the counts as a series of nested Binomial processes, where each

count zt,d is a Binomial draw from the remaining counts Nt,d. The density function for the

Binomial distribution is:

P(zt,d | pt,d,Nt,d) =

(
Nt,d

zt,d

)
p

zt,d
t,d (1− pt,d)

Nt,d−zt,d . (74)

The density function for the Beta prior is given by:

P(pt,d) =
p

νt,dϕt,d−1
t,d (1− pt,d)

(1−νt,d)ϕt,d−1

B(νt,dϕt,d,(1−νt,d)ϕt,d)
. (75)

To obtain the marginalised Beta-Binomial formulation, we integrate out pt,d.

P(zt,d | zt,<d,Nt,d) =
∫ 1

0
P(zt,d | pt,d,Nt,d)P(pt,d)d pt,d. (76)

Substituting in the probability density functions as well as the following Beta function:

B(a,b) =
∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)
Γ(a+b)

, (77)

where a and b are set as

a = zt,d +νt,dϕt,d, (78)

b = (Nt,d − zt,d)+(1−νt,d)ϕt,d. (79)

Hence, the integral simplifies to:

B(zt,d +νt,dϕt,d,Nt,d − zt,d +(1−νt,d)ϕt,d)

B(νt,dϕt,d,(1−νt,d)ϕt,d)
. (80)
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The probability distribution is then:

P(zt,d | zt,<d,Nt,d) =

(
Nt,d

zt,d

)
B(zt,d +νt,dϕt,d,Nt,d − zt,d +(1−νt,d)ϕt,d)

B(νt,dϕt,d,(1−νt,d)ϕt,d)
. (81)

Thus, the marginal distribution of zt,d is:

zt,d | zt,<d,Nt,d ∼ Beta-Binomial(Nt,d,νt,d,ϕt,d). (82)
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C Directed acyclic graphs

C.1 The Generalised-Dirichlet Multinomial (GDM) model

Figure 6: Directed acyclic graph of the GDM model, given by Equations (2.69)–(2.76).
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C.2 The nested GDM model

Figure 7: Directed acyclic graph of the nested GDM model, given by Equations (5.6)–
(5.12).
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C.3 The caseload effect GDM model

Figure 8: Directed acyclic graph of the case load effect GDM model, given by Equa-
tions (6.28)–(6.32).
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