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Abstract

Humans possess the ability to seamlessly integrate perceptual information from vision and
tactile sensing to maintain a high-level cognitive understanding of the environment. Simi-
larly, leveraging vision and tactile sensing can enable robots to interact with novel objects
in unstructured environments. This thesis presents novel approaches for visuo-tactile per-
ception and learning in robotics, focussing on object pose estimation, recognition, and
reconstruction.

For robust pose estimation of unknown objects in dense clutter, a novel recursive filter-
ing formulation termed translation-invariant Quaternion filter (TIQF) and its global-optimal
version stochastic TIQF (S-TIQF) with visuo-tactile point cloud data are proposed in this
thesis. A two-robot team with vision and tactile sensing autonomously declutters the scene
and retrieves the pose of the target object which can be opaque or transparent using S-
TIQF. Moreover, S-TIQF is deployed to correct hand-eye calibration with arbitrary objects
in-situ which is necessary for shared perception. In addition to rigid objects, the pose
tracking of articulated objects is a challenging task that requires integration of vision and
tactile sensing. A novel Manifold Unscented Kalman Filter method on the SE(3) Lie Group
termed ArtReg is presented, which is used for tracking the pose of objects. Using ArtReg,
a novel framework is designed for detecting, tracking, and the goal-driven manipulation of
unknown objects (single, multiple, or articulated) without assuming any prior knowledge
regarding object shape or dynamics.

This thesis also presents a new vision-to-tactile cross-modal learning approach for ob-
ject recognition where the network is trained with dense visual point clouds and tested with
sparse point clouds acquired from tactile sensors. A novel unsupervised domain adapta-
tion loss function is proposed to minimise the gap between the visual and tactile domains.
Cross-modal adaptation allows the robotic system to switch to tactile sensing in case vision
sensing is compromised, thereby increasing the robustness of the system.

Object reconstruction is another fundamental perceptual challenge that enables down-
stream tasks such as pose estimation and recognition. This thesis introduces a novel deep
learning-based 3D object reconstruction approach utilising sparse tactile point cloud data
to accurately recover the geometry of category-level unknown transparent objects leverag-
ing only synthetic data for training. Furthermore, it is also demonstrated with visuo-tactile
point clouds for opaque objects, wherein the tactile data are used to refine the shape in
regions of uncertainty in the visual data.

The proposed methods have been rigorously validated with extensive experiments on
standard datasets and robot experiments and have been demonstrated to outperform state-
of-the-art approaches.
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Chapter 1

Introduction

1.1 Motivation
Among the various sensory modalities present in the human body, vision and tactile

sensing are primarily used for perceiving and interacting with various objects within our
environment. The human brain seamlessly integrates data from various sensing modal-
ities, enabling us to interact with our surroundings (Hillis et al., 2002). In fact, visual
and tactile perception are known to be integrated in a statistically optimal manner in the
brain (Ernst and Banks, 2002). Robots should also be able to achieve a similar level
of scene understanding, given that they are similarly equipped, for example, with visual
and tactile sensing. Visual perception offers comprehensive scene information, including
colour, brightness, shapes, and the position/ orientation (pose) of objects around us. In con-
trast, tactile sensing delivers detailed local and complementary information such as texture,
hardness, mass, temperature, and so on (Liu et al., 2020). Visual sensing is susceptible to
environmental factors, including low light conditions and the transparency or specularity
of objects. Conversely, tactile sensing remains unaffected by these limitations. The shared
perception between complementary visual and tactile sensing modalities offers a compre-
hensive and accurate scene representation, as well as addressing the weaknesses inherent
in individual sensor systems (Murali et al., 2022e). Similarly to humans, robots possess the
capability to augment their perceptual data through deliberate manipulative actions, a tech-
nique referred to as interactive perception, which cultivates a symbiotic interplay between
action and perception. (Bohg et al., 2017). Thus, by capitalising on shared and interactive
perception, robots can potentially enhance their autonomy and operational efficacy in real-
world scenarios. While there are many applications wherein visuo-tactile perception can
be leveraged for robotics, this thesis focusses on foundational perceptual applications such
as object pose estimation, reconstruction, and recognition through shared and interactive

2
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visuo-tactile perception.
A fundamental challenge inherent in any robotic perceptual system is the pose estima-

tion task which is to find the position and orientation of an arbitrary object (with known or
unknown object model). Pose estimation facilitates subsequent tasks, such as autonomous
object interaction involving manipulation actions (e.g., pick-and-place or push to target
pose). Consequently, vision-based pose estimation has undergone extensive research by
the computer vision community and has been implemented in a myriad of industrial appli-
cations (Zou et al., 2023). Vision-based pose estimation techniques are sensitive to ambi-
ent lighting conditions, occlusions in unstructured settings, and object surface properties
(such as transparency or specularity) (Luo et al., 2017). Tactile sensing is robust to such
environmental and object properties and can enhance and improve the vision-based pose
estimate (Li et al., 2020a). Similarly to humans, tactile sensing can be used to verify and
correct residual uncertainties inherent in vision-based sensing (Strub et al., 2014). Further-
more, objects may lie in dense clutter in unstructured scenarios. Since tactile sensing is an
inherent active perceptual system in which an interaction with objects is needed to extract
sensory information, it can be leveraged to perform manipulation actions to rearrange the
scene to improve overall perception (Bohg et al., 2017). Apart from dense clutter scenarios,
there are many types of complex articulated objects in our environments which have inher-
ent articulated kinematic chains such as drawers, reading glasses, washing machines, and
so on. Tactile sensing is crucial for robots to interact safely with unknown articulated ob-
jects, to determine the joint limits during manipulation (Martı́n-Martı́n and Brock, 2022).
Hence, the real-time pose estimation and tracking of such articulated objects combining
visuo-tactile perception is crucial for the safe robot interaction.

Adjacent to the object pose estimation task, object recognition is another fundamen-
tal perception task for robots. Similarly to pose estimation techniques, visual and tactile
sensing data can be fused to extract information about the object (Liu et al., 2017). Al-
though multi-modal fusion helps augment the information from complementary sensing
modalities, cross-modal perception can benefit the robot by relying on the other sensing
modality if one modality is unavailable or erroneous (Falco et al., 2019). A motivating
example is when we enter a dark room where the lights are turned off, we are able to locate
a previously seen object based on exploring with our hands (with tactile perception) only,
even if we have not previously touched the object before. Empirical research has docu-
mented instances of cross-modal perception in human infants (Streri and Gentaz, 2004). In
visuo-tactile cross-modal perception, the robot adapts the prior knowledge gained from one
modality (for instance, vision), the so-called source domain, with the second modality (for
instance, tactile) or target domain, in order to complete the task with the second modal-
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ity (Murali et al., 2022e). This avoids the additional expensive overhead of data collection
and annotation with the target domain data. It also improves the resilience of the robotic
system against possible sensor failures and maintains the same level of functionality while
operating in unstructured settings.

Another significant perceptual challenge addressed in this dissertation is the three-
dimensional (3D) reconstruction of objects at the category level when their specific in-
stances are not previously known. For opaque objects, a precise 3D scanner can be em-
ployed to generate an accurate 3D representation of the object by systematically manoeu-
vring the scanner around the target entity (Han et al., 2019). However, for objects with
non-Lambertian surfaces such as transparent and specular objects, these scanners that rely
on typical depth-sensing mechanisms (such as structured light or time-of-flight cameras)
provide incomplete reconstructions (Ihrke et al., 2010). Tactile sensing can be used inde-
pendently or in conjunction with visual sensing to reconstruct such objects by probing or
moving the tactile sensor over the surface of the objects in an intelligent manner (Jiang
et al., 2023). The sparsity of tactile data necessitates the development of new methodolo-
gies that learn to reconstruct shapes based on prior knowledge of similar objects. Further-
more, tactile perception can serve to validate and refine the reconstructed 3D geometries
by exploring regions of ambiguity derived from the preliminary visual reconstruction.

It is evident that visuo-tactile perception can significantly enhance the ability of robotic
systems to interact with the environment in a safe and robust manner. However, numer-
ous challenges associated with multi-modal perception will be elucidated in the following
section.

1.2 Challenges
The main challenges for the integration of visuo-tactile perception is due to the weak

pairing between visual and tactile data: (a) variation in the density of information from
each modality, (b) scale gap as vision sensors can capture the global scene while tactile
sensors capture local object geometry, (c) temporal misalignment as vision sensors capture
data in one shot while tactile sensors capture data sequentially, and (d) tactile data are
inherently action conditioned as data depends on the type of action that is performed (Liu
et al., 2020). The visual and tactile modality also provides different types of raw data, for
example, images from cameras and force or pressure values from tactile sensors (Dahiya,
2019). The data must be transformed into a uniform domain, either at the raw data level
or at the feature extraction level, to facilitate effective integration (Navarro-Guerrero et al.,
2023).

Considering the problem of visuo-tactile based object pose estimation, the difference
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Figure 1.1: Schematic description of vision and tactile data of an arbitrary object extracted
by a robot. Visual data include RGB and depth images which can be converted to dense
3D point clouds. In contrast, tactile sensing provides local contact force information and
3D location of the point of contacts. By probing many regions of the object with a robot, a
sparse point cloud consisting of 3D tactile contact locations can be extracted.

in density of information from visual and tactile data poses a significant challenge (Bimbo
et al., 2015). A popular method for 3D pose estimation is through point cloud registra-
tion (Huang et al., 2021b). Point clouds also offer a convenient data structure for mapping
the visual and tactile data into a common domain as seen in Fig. 1.1. Common RGB-D cam-
eras can capture a wide field-of-view of the scene in one shot providing dense point clouds
(typically 104−106 points) (Horaud et al., 2016). In contrast, tactile data are extracted only
when objects are contacted by the sensor, and the robot needs to contact the entire surface of
the object through multiple repetitive probing actions. Based on the contact forces, the 3D
contact point can be derived from the kinematics of the robot and collected in a tactile point
cloud. The tactile point clouds are typically sparse (∼ 102 points) and time consuming for
data collection (Murali et al., 2022b). Hence, the sparse-dense correspondence estimation
between the point clouds poses a technical challenge (Bimbo et al., 2015). The majority
of methodologies in point cloud registration, whether geometric-based or learning-based,
initially identify putative correspondences between point clouds using feature extraction
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techniques (Huang et al., 2021b). These feature extraction methods assume sufficiently
dense point clouds as the nearest neighbours of query points are used to extract the fea-
ture information. Moreover, techniques such as the Iterative Closest Point (ICP) (Besl and
McKay, 1992) and similar methods perform simultaneous correspondences estimation and
pose registration in an iterative manner (Pomerleau et al., 2013). But these techniques are
typically sensitive to local-minima and need to be properly initialised (Pomerleau et al.,
2013). In addition, tactile point clouds are extracted sequentially based on the actions per-
formed, whereas visual point clouds are extracted in a single-shot manner. The object may
also move while performing tactile probing actions, and the visuo-tactile sensors have to
be in closed-loop with the interactive manipulation actions in order to track the objects.
This challenge is further exemplified if the object is unknown and may have some intrin-
sic articulations (Liu et al., 2022b). These challenges motivate the development of novel
algorithms for the pose estimation and real-time tracking of objects with visuo-tactile data.

Similar challenges also exist for visuo-tactile based object recognition and reconstruc-
tion tasks. A notable benefit of shared perception lies in the capability to independently
encode feature information for object distinction independently through both visual and
tactile sensing modalities. The problem of cross-modal perception is of interest which in-
volves the ability to recognise objects through a secondary sensing modality by leveraging
the prior knowledge from a primary sensing modality (Martino and Marks, 2000). For
vision-to-tactile cross modal transfer, the state-of-the-art neural networks that have been
trained with large-scale dense visual data cannot be directly transferred to sparse tactile
data and novel domain adaptation methodologies need to be developed (Falco et al., 2019).
Similarly, training a deep neural network requires large annotated training data, which is
impractical and time-consuming for tactile data (Liu et al., 2017). Another major challenge
is improving the sample efficiency of tactile actions. Some previous work has performed
this data collection with manual procedures such as through teleoperation of the robot
or following predefined object exploration trajectories (Falco et al., 2019; Vezzani et al.,
2016). These approaches are not scalable and require human intervention. Hence, intelli-
gent and autonomous data collection strategies need to be developed in order to improve
the efficiency of the process. Previous studies have tackled this challenge by employing
information-theoretic strategies to determine the optimal subsequent action based on the
current information of the environmental known as active perception (Kaboli and Cheng,
2018). Specifically, within the domain of shared visuo-tactile perception, it is imperative
that these tactile information-gathering actions are synchronised with the data acquired
from the visual modality. It is evident that efficacy of current methods is limited and the
development of novel algorithms are necessary for shared visuo-tactile perception.
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1.3 Aims of the Thesis
The primary research question addressed in this thesis is to develop novel methods that

enable autonomous robots to integrate visual and tactile sensing to enhance their perceptual
understanding of the environment, particularly for tasks such as object pose estimation,
recognition and reconstruction tasks. In order to achieve this, a number of objectives have
been defined as follows:

I Develop theoretical frameworks capable of estimating the 6 degree-of-freedom (DoF)
pose of objects (rigid or articulated) in unstructured scenarios by leveraging the visual
and tactile sensing data.

II Develop a methodology for vision-to-tactile cross-modal transfer learning for object
recognition enabling robots to leverage tactile sensing under circumstances where vi-
sion sensing has been impaired.

III Design methods for reconstructing the shape of unknown objects with visuo-tactile
data by leveraging large synthetic datasets for training.

IV Implement the theoretical frameworks on real robotic systems and develop active per-
ception methods to reduce the redundant data collection and improve overall system
efficiency.

1.4 Contributions of the Thesis
In addressing these objectives, this thesis presents the following novel contributions:

I A novel method termed the Translation-Invariant Quaternion Filter (TIQF) wherein
the pose estimation problem is cast as a recursive filtering problem that handles the se-
quential and sparse tactile point clouds as well as the dense visual point clouds that are
extracted in one-shot manner. By exploiting the geometric constraints in the measured
point cloud data, TIQF decoupled the 6 DoF pose estimation problem into rotation
and translation estimation and a linear model is developed which is estimated using
a quaternion Kalman filter. Additionally, to enhance robustness against local minima
and mitigate the dependency on precise initialization, TIQF approach is improved by
introducing the Stochastic TIQF (S-TIQF) method, incorporating a robust stochastic
initialisation for achieving globally optimal object pose estimation. S-TIQF estimates
the 6 DoF pose and 3 DoF scale of unknown instances of categorical objects and re-
laxes the need for prior known model of the object.
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The following publications have resulted from this contribution:

• P. K. Murali, M. Gentner, and M. Kaboli, “Active Visuo-Tactile Point Cloud Reg-

istration for Accurate Pose Estimation of Objects in an Unknown Workspace,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 2838-2844. https://doi.org/10.1109/IROS51168.2021.9636877.

• P.K. Murali, R. Dahiya, and M. Kaboli, “An Empirical Evaluation of Various

Information Gain Criteria for Active Tactile Action Selection for Pose Estima-

tion,” The IEEE International Conference on Flexible and Printable Sensors and
Systems (FLEPS 2022), pp. 1–4. https://doi.org/10.1109/FLEPS53764.

2022.9781598

II A novel shared visuo-tactile perception method for scene representation and object
reconstruction through a data-efficient joint information-theoretic approach for active
perception (vision or tactile). The shared and interactive perception is leveraged to
find the pose of objects in dense clutter. A scene graph method is introduced for
the autonomous decluttering approach that encodes the next object to singulate using
either prehensile (grasp) actions or non-prehensile (push) actions. Furthermore, a nec-
essary condition for shared perception is the accurate calibration between the sensing
modalities. In this context, a novel approach is proposed for in-situ visuo-tactile based
hand-eye calibration using arbitrary objects which removes the constraint of specific
hand-eye calibration targets and time-consuming calibration procedures.

The following publications have resulted from this contribution:

• P. K. Murali, B. Porr, and M. Kaboli. “Shared visuo-tactile interactive percep-

tion for robust object pose estimation.” in The International Journal of Robotics
Research (IJRR) 2024 https://doi.org/10.1177/02783649241301443.

• P. K. Murali, A. Dutta, M. Gentner, E. Burdet, R. Dahiya, and M. Kaboli, “Ac-

tive Visuo-Tactile Interactive Robotic Perception for Accurate Object Pose Esti-

mation in Dense Clutter,” in IEEE Robotics and Automation Letters (RA-L), vol.
7, no. 2, pp. 4686-4693, April 2022. https://doi.org/10.1109/LRA.2022.
3150045.

III A novel framework for visuo-tactile-based interactive perception for detecting, track-
ing and manipulating unknown novel objects (single, multiple, and articulated with
revolute or prismatic joints) without assuming any prior knowledge regarding object
shape or dynamics. In this regard, a method termed ArtReg (Articulated Registration)

https://doi.org/10.1109/IROS51168.2021.9636877
https://doi.org/10.1109/FLEPS53764.2022.9781598
https://doi.org/10.1109/FLEPS53764.2022.9781598
https://doi.org/10.1177/02783649241301443
https://doi.org/10.1109/LRA.2022.3150045
https://doi.org/10.1109/LRA.2022.3150045
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is presented for tracking unknown novel objects (single, multiple, or articulated) by in-
tegrating visual and tactile interactive perception with a Manifold Unscented Kalman
Filter on the SE(3) Lie Group. ArtReg is deployed for the detection of kinematic
chains in objects using a combination of push or hold-pull manipulation actions fa-
cilitated by autonomous interactive visuo-tactile perception. Furthermore, the ArtReg
pose tracker is also employed within a visuo-tactile based closed-loop control algo-
rithm aimed at achieving precise manipulation of objects towards a specified goal con-
figuration. The full-fledged framework operates effectively under a variety of condi-
tions, including low illumination, visually complex backgrounds, and variations in the
centre of mass of the objects.

IV A novel framework for deep active visuo-tactile based cross-modal robotic object
recognition is presented in this thesis. The proposed framework consists of three parts:
(a) A deep neural network that is trained solely with dense visual point cloud data and
tested on sparse point clouds acquired from tactile sensors. A novel unsupervised do-
main adaptation loss function termed VTLoss has been developed for minimising the
domain gap between the visual and tactile domain; (b) An active deep learning frame-
work for visual object learning for reducing redundant data collection and annotation;
(c) An active tactile-based object recognition approach to reduce the number of tactile
actions improving the sample efficiency of the tactile actions.

The following publications have resulted from this contribution:

• P.K. Murali, C. Wang, D. Lee, R. Dahiya, and M. Kaboli “Deep Active Cross-

Modal Visuo-Tactile Transfer Learning for Robotic Object Recognition.” IEEE
Robotics and Automation Letters (RA-L), 7(4), 9557-9564. https://doi.org/
10.1109/LRA.2022.3191408.

• P.K. Murali, C. Wang, R. Dahiya, and M. Kaboli, “Towards Robust 3D Object

Recognition with Dense-to-Sparse Deep Domain Adaptation,” The IEEE Interna-
tional Conference on Flexible and Printable Sensors and Systems (FLEPS 2022),
pp. 1–4. https://doi.org/10.1109/FLEPS53764.2022.9781490

V A novel framework for deep active tactile-based category-level perception of unknown
transparent objects for reconstruction termed ACTOR. The neural network is trained
on a category-level synthetic dataset and tested on sparse tactile point clouds from real
unknown transparent objects. The reconstruction of the object model enables down-
stream tasks such as category-level pose estimation with S-TIQF and object recogni-
tion.

https://doi.org/10.1109/LRA.2022.3191408
https://doi.org/10.1109/LRA.2022.3191408
https://doi.org/10.1109/FLEPS53764.2022.9781490
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The following publication has resulted from this contribution:

• P. K. Murali, B. Porr, and M. Kaboli, “Touch if it’s transparent! ACTOR: Active
Tactile-based Category-Level Transparent Object Reconstruction”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) 2023. https:
//doi.org/10.1109/IROS55552.2023.10341680

Furthermore, as part of the doctoral study, a comprehensive review paper on the state-
of-the-art of multi-modal sensing and perception methods for in-vehicle applications was
conducted, though it is not included in this thesis. It resulted in the following publication:

• P.K. Murali, M. Kaboli, and R. Dahiya, “Intelligent In-Vehicle Interaction Technolo-

gies,” in Advanced Intelligent Systems, 2022, 4: 2100122. https://doi.org/10.
1002/aisy.202100122.

In addition, contributions have also been made as a co-author to closely related research
works in the following publication, which has not been included in this thesis:

• M. Gentner, P. K. Murali, and M. Kaboli, “GMCR: Graph-based Maximum Consen-

sus Estimation for Point Cloud Registration”, in IEEE International Conference on
Robotics and Automation (ICRA) 2023. https://doi.org/10.1109/ICRA48891.
2023.10161215

This thesis also led to multiple best paper awards at prestigious conference venues as
listed below:

• Outstanding Paper Award at the 2022 IEEE International Conference on Flexible
and Printable Sensors and Systems (FLEPS) (shown in Appendix C, Fig. C.1a).

• Best Sensors and Perception Paper Award: Finalist at the 2023 IEEE International
Conference on Robotics and Automation (ICRA) (shown in Appendix C, Fig. C.1b).

1.5 Thesis Outline
This thesis is structured into nine chapters as illustrated in Fig. 1.2. Chap. 2 presents

a detailed overview of the state-of-the-art. Drawing inspiration from visuo-tactile percep-
tion in humans, this chapter meticulously elucidates the current literature in the domains of
visuo-tactile based techniques for pose estimation, object recognition, and reconstruction,
as well as techniques pertaining to interactive perception. Chap. 3 provides details regard-
ing the hardware setup, including the robots and the associated sensors used in the thesis.
Chap. 4 presents the novel TIQF approach for visuo-tactile based object pose estimation.

https://doi.org/10.1109/IROS55552.2023.10341680
https://doi.org/10.1109/IROS55552.2023.10341680
https://doi.org/10.1002/aisy.202100122
https://doi.org/10.1002/aisy.202100122
https://doi.org/10.1109/ICRA48891.2023.10161215
https://doi.org/10.1109/ICRA48891.2023.10161215
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Figure 1.2: The outline of the thesis

Chap. 5 presents the shared visuo-tactile interactive perception approach for robust ob-
ject pose estimation in dense clutter. The improved S-TIQF algorithm is also presented
in this chapter. Chap. 6 provides details on the novel visuo-tactile based framework for
detecting, tracking, and goal-driven manipulation of unknown articulated objects. Chap. 7
details the novel visuo-tactile based cross-modal perception for object recognition method.
Chap. 8 explains the ACTOR framework for the category-level object reconstruction with
tactile data. This methodology presented in this framework is also exploited in Chap. 5 for
category-level object pose estimation with visuo-tactile data. Chap. 9 addresses the aims
and provides the conclusions of the thesis and avenues for future research. Since this dis-
sertation tackles distinct tasks involving visuo-tactile perception in robotics such as pose
estimation and tracking, object reconstruction, and cross-modal object recognition, each
chapter begins with a separate introduction section that details the specific motivation and
contributions of the chapter. Each chapter also has a discussion section that specifically
summarises the experimental validations and results from the chapter.



Chapter 2

Related Work

This chapter details a comprehensive review of the state-of-the-art methodologies and ap-
plications of visuo-tactile sensing within the robotics domain, with a particular focus on
its application for pose estimation, object recognition, and manipulation. Initially, this
chapter examines the visuo-tactile perception modality in humans, providing a foundation
and a compelling rationale for its application and integration within the field of robotics
in Sec. 2.1. Although vision-based cameras are ubiquitous, the domain of tactile sensing
technology is an emerging and rapidly evolving field, with novel sensor types frequently
introduced in scholarly works. Consequently, this chapter presents a detailed review of the
prevalent tactile sensing technologies and their respective applications within robotics in
Sec. 2.2. Subsequently, the state-of-the-art for visuo-tactile perception is reviewed for pose
estimation in Sec. 2.3, object recognition in Sec. 2.4 including reconstruction techniques
and finally visuo-tactile interactive perception wherein prehensile and non-prehensile meth-
ods are presented in Sec. 2.5. In each section (Sec. 2.3-2.5), the open challenges are sys-
tematically identified in the literature, elucidating how this thesis seeks to address certain
unresolved questions.

2.1 Visuo-Tactile Modality in Humans
The human brain seamlessly integrates data from various sensory modalities to evaluate

and comprehend the environment and its constituent objects (Hillis et al., 2002). Human
visual sensing plays a major role for scene understanding (Pei et al., 2021). Tactile or
haptic perception is often used to supplement visual perceptual information (Hillis et al.,
2002). Both perceptual systems provide complementary information, as seen in Fig. 2.1.
The visual perception provides global scene information such as colour, brightness infor-
mation, shapes, and pose (position/ orientation) of objects around us. However, tactile

12
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Vision Touch
Colour

Brightness/ 
Specular

Unfamiliar 
shapes

3D geometry

Position

Orientation

Approximate 
texture

Familiar 
shapes

Mass

Hardness

Temperature

Fine texture

Figure 2.1: Information pertaining to an object may either be specific to a particular
modality or shared across multiple modalities. In this figure task-dependent modality bi-
ases are dilineated. For instance, only visual perception can detect color information (left),
whereas tactile perception is uniquely capable of detecting mass (right). Conversely, cer-
tain attributes, such as orientation, are accessible to both modalities. Nonetheless, each
modality may differentially modulate the perception of these shared features. This figure is
adapted from (Woods and Newell, 2004) with modifications.

sensing provides fine-grained local information such as local texture, hardness, mass, tem-
perature, and so on. Furthermore, the tactile modality is sequential in nature for observing
object properties, whereas the visual modality is instantaneous with the ability to perceive
the surroundings in a single glance. The human skin being the largest sensory organ of
the body, it increases the limited field of view of the eyes to improve our perceptual under-
standing (Toprak et al., 2018).

The development of tactile sensory capabilities commences remarkably early in neona-
tal development, with infants demonstrating the acquisition of tactual and motor skills,
such as the behavior of mouthing objects (Rochat et al., 1988). It was found that infants
of 2 to 5 months of age use tactile perception alone to discriminate object shapes (Streri
and Pêcheux, 1986; Streri, 1987). Streri (1987) found that babies become acquainted with
the shape of objects tactually and explore them for decreasing periods of time, and this
without any visual information. This habituation is similar to that obtained in the visual sit-
uation. Striano and Bushnell (2005) empirically found that 3-month-old infants were able
to discern objects of varying shapes, texture, compliance and weight using touch alone. Le-
derman and Klatzky (1987) also defined a set of exploratory procedures (EPs) for human
grasp behavior. A detailed survey of the extant literature on neonatal tactile perception is
accessible in this comprehensive review (Streri and Milhet, 1988).
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Similar to tactile perception studies, visual perception and visuo-motor coordination
studies have been done for human infants and animals alike. Held and Hein (1963) analysed
the development of visually guided behaviour in kittens. They found that this development
critically depends on the opportunity to learn the relationship between self-produced move-
ment and concurrent visual feedback. The authors conducted an experiment with kittens
that were only exposed to daylight when placed in a carousel. Through this mechanism,
the active kittens transferred their own deliberate motion to the passive kittens that were
sitting in a basket. Although both types of kittens received the same visual stimuli, only
the active kittens showed meaningful visually guided behaviour in test situations. Later,
Hein and Held (1967) extended their kitten study and found that kittens deprived of the
visual feedback of their front limbs had an impaired reflex on uneven surfaces. In hu-
mans, we know that visual feedback is critical for interaction and manipulation. In human
adults, visuo-motor skills are highly refined and integrated with tactile feedback for fine-
manipulation. Researchers have studied human infants in the early stages of development
in order to investigate the role of visual feedback for motor actions. Before 4-5 months of
age, the arm movement of an infant is ballistic i.e., it may be triggered by vision but it lacks
corrective actions that may be provided with visual feedback (Bower, 1974). This notion
was substantiated in Bower’s study, where 5-month-old infants were given objects within
their reach, and subsequently, the lights in the room were turned off to create complete
darkness (Bower, 1972). The approach attempts were not affected by the lack of visual
feedback. Infants between 5 and 9 months perform vision-guided movements. This was
found in the studies in McDonnell (1975), wherein babies aged 4 to 10 months wore pris-
matic glasses that shifted the object by 7 cm. Younger babies were unaffected and did not
alter their grasping paths whereas older babies altered their hands once they missed the
target. The studies suggest that for younger babies (< 5 months) the visuo-motor control
is performed in open-loop like fashion whereas for older babies motor control is visually
guided. In adults, there is a combination of ballistic and fine grained motions which is
attributed to better motor control by (Bushnell, 1985). Jeannerod (1984) observed that in
adults, there is a distinct reaching phase and correction phase prior to prehensile manipu-
lation actions. The reaching phase is a directional movement to the visual target, whereas
the fine adjustment prior to prehension (grasping) is a response to object properties. The
studies showed that the subjects were not affected for the two phases with and without vi-
sual feedback. Clearly, as humans grow older the motor skills become more mature and the
visual perception is integrated with tactile perception.

The process by which the human brain integrates visuo-tactile information has garnered
substantial research attention. Ernst and Banks (2002) postulated that humans combine
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visual and tactile perceptual information in a statistically optimal manner following the
maximum likelihood estimation. The neurons in the cortical region of the inferior parietal
cortex integrate both the large-scale visual space and the fine-scale tactile space represented
by the hand, thereby preventing errors due to environmental complexities such as changes
in pose of objects (Wan et al., 2020). Studies have shown that this ability of visuo-tactile
integration is not inherent in the brain and is developed by experience accumulated during
development (Miikkulainen et al., 2006). Furthermore, studies have shown that this ability
to integrate visuo-tactile perceptual information in a statiscally optimal manner is absent in
children below 8 years of age and only starts to develop between 8-10 years of age (Gori
et al., 2008). More critically, it is known that the integration of the two modalities becomes
more likely if it is known that the stimuli come from the same object (Helbig and Ernst,
2007). Intermodal transfer between vision and touch is of particular importance for effec-
tive fine manipulation of objects. It is important to note that vision modality is for spatial
perception only whereas the touch modality can be used both for perception through explo-
ration and as a functional modality capable of interacting and modifying the environment
during perception. Bernstein (1967) argues that the motor system is the integrative link
between vision and touch. In fact, for a functional action to succeed, the motor actions that
move the hand should correspond to a visually seen target. Furthermore, Van der Kamp
et al. (2003) draws the distinction between perception-oriented actions and goal-oriented
actions. For instance, perception-oriented actions such as running fingers on the edges
of objects, rotating objects and other exploratory actions whereas in goal-oriented actions
such as locating the pose of objects, the perception is only used to facilitate the goal. Once
the object pose is extracted, exploration stops and any additional information gained is
ignored. Körding and Wolpert (2004) postulated that the central nervous system follows
Bayesian integration for sensorimotor learning. Bach-y Rita and Kercel (2003) proposed
that the act of perception is performed in the brain and not in the sensory organs. It is the
brain’s plasticity or the ability to adapt to changes in the external stimuli which allows for
inter-modal transfer and sensory substitution.

2.2 Visuo-Tactile Perception: From Humans to Robots
From birth, human infants learn to understand and explore the world by seamlessly

integrating the vision and touch sensing together with motor control for the limbs (Held
and Bauer, 1967). From a conceptual level, the human perception system has been the
inspiration for machine perception. Considering robot perception, the vision sensing tech-
nologies such as RGB/ RGB-D cameras, time-of-flight (ToF) laser sensors, structured-light
laser sensors, infrared sensors, event-based cameras and so on have become ubiquitous and
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easily commercially available (Horaud et al., 2016). In comparison, tactile sensing tech-
nology does not have a one-solution-fits-all and each type of sensor is designed for specific
applications (Dahiya et al., 2009). Adult humans have about 45000 mechanoreceptors re-
sponsible for touch sensing embedded in the skin with different spatial density on various
parts of the body (Taube Navaraj et al., 2017). For instance, the fingertips have about 241
mechanoreceptors per unit centimetre whereas the palm has about 58 only (Johansson and
Vallbo, 1979). The spatial acuity, which is the smallest distance to where a person can dis-
tinguish two points, is about 1mm on the fingertips and 30mm on the belly (C. Craig, 1998).
In addition to pressure and vibrations sensed by mechanoreceptors, the human skin can also
sense temperature through thermoreceptors and pain through nocioceptors (Johansson and
Westling, 1984). The skin can also detect stimuli with more than 500Hz frequency (Dahiya
et al., 2009). Hence, the human tactile skin has been an inspiration for researchers devel-
oping tactile sensors for robotics. Artificial tactile sensors mainly mimic the mechanore-
ceptors of the human skin with the objective to measure the external force at multiple
contact points (Navarro-Guerrero et al., 2023). Thermoreceptors are typically not included
with tactile sensors for robotic applications. However, there are some exceptions where
temperature sensors were integrated with pressure sensors to compensate for the thermal
effects (Wade et al., 2017). Similarly, nocioreceptors that are integral part of the human
tactile system are typically not used for robotic applications. Commercial tactile sensors
can measure 3D force at each taxel, with good spatial resolution (about 1.6 taxels/cm2)
and high sampling rates (> 100Hz) (Navarro-Guerrero et al., 2023). Moreover, large-area
tactile sensors that cover the embodiment of robots are becoming increasingly popular in
research (Dahiya et al., 2019). For instance, in some multi-finger robotic hands, the finger
tips have higher spatial resolution of sensors compared to the palm region (Taube Navaraj
et al., 2017). In the following section, a brief overview of the types of vision and tactile
sensors that are commonly used in robotics is presented.

2.2.1 Vision Sensing Technology
Cameras that provide vision-based sensing are the primary sensing modality for robots

for perception, locomotion, and manipulation tasks. Typically, monocular cameras provid-
ing RGB images are used in conjunction with image processing algorithms. More often,
3D depth information is required for variety of applications, and the common depth sensors
are structured light, time-of-flight (ToF) cameras and stereo-cameras (Horaud et al., 2016).
Structured light depth cameras project a coded pattern onto the surface of the object which
that is modulated by the distance of the object from the camera which is used to recover the
depth image (Zanuttigh et al., 2016). ToF cameras actively emits light and measures the
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(a)	Monocular	RGB	camera (b)	Structured	light	
depth	camera

(c)	Stereo-vision	camera (d)	Time-of-flight	
depth	camera

(e)	Contactile sensor (f)	BioTac tactile	sensor

(g)	Gelsight vision-based	
tactile	sensor

(g)	Xela tactile	sensor

Vision	Sensors Tactile	Sensors

Figure 2.2: Some examples of vision and tactile sensors: (a) monocular RGB camera, (b)
Intel Realsense structured-light depth camera and RGB camera, ©Intel, (c) Ensenso stereo-
camera, ©IDS Imaging, (d) Orbbec time-of-flight camera, ©Orbbec Inc., (e) Contactile
sensor, ©Contactile, (f) Biotac tactile sensor, ©SynTouch, (g) Gelsight vision-based tactile
sensor, ©Gelsight, (g) Xela tactile sensor (Tomo, 2019), ©Xela Robotics. Reproduced with
permissions.

time delay or phase delay of the reflected light to recover the depth information (Horaud
et al., 2016). Stereovision cameras use two cameras to capture images of the same object.
The depth information is recovered by calculating the disparity map with the triangulation
method (Grosso et al., 1989). The Tab. 2.1 provides a summary and comparison of the
commonly used vision sensing technologies. The Fig. 2.2 shows some of the commonly
used vision sensors in robotics.

2.2.2 Tactile Sensing Technology
Tactile perception and the associated information processing techniques are tightly cou-

pled with the tactile sensing technology that is used. There is a distinction between tactile
perception and tactile sensing. Tactile perception refers to the abstract cognitive-level or-
ganisation of rich sensor information whereas tactile sensing is the measurement of phys-
ical properties and the encoding of raw physical signals into low-level digital inputs (Li
et al., 2020a). Several review papers are available that discuss the development of tactile
sensing technology (Nicholls and Lee, 1989; Lee and Nicholls, 1999; Dahiya et al., 2009;
Cutkosky and Provancher, 2016; Kappassov et al., 2015). Typically, the principle of tactile
sensing technology varies based on the type of transduction technology employed. The
change in capacitance, resistance, optical distribution, electrical charge are usually used to
detect contact (Kappassov et al., 2015). Some of the commercially available tactile sensors
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Piezoresistive   Capacitive Piezoelectric Magnetic Vision-based
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Figure 2.3: Schematic illustration of working principles for the popular tactile sensor types
used in robotics.

are shown in Fig. 2.2. Schematic illustrations of commonly used tactile sensing technology
are shown in Fig.2.3.

Piezoresistive sensors exhibits a variation in resistance when subjected to an external
force. These have been used in force sensing resistors (FSR), pressure-sensitive conductive
rubber, piezoresistive foam, and piezoresistive fabric (Drimus et al., 2014; Büscher et al.,
2015). These sensors are easy to manufacture and can be made flexible. However, they
suffer from non-linear response and low repeatability after multiple deformations. Many
commercial solutions exist such as Weiss tactile sensors (Weiss, 2025) and ATi industrial
automation (ATI, 2025).

Capacitive sensors measure force based on change in capacitance caused by variation
in the gap between the parallel plates of a capacitor on application of force. Normal and
shear forces can also be measured by capacitive sensors (Lee et al., 2008). Highly sensitive
sensors can be designed by using more compressible materials or thin sensors. The capac-
itive sensors are very popular for use in mobile devices as touch screens as well as for use
in robotic applications (Dahiya et al., 2009) such as in iCub humanoid robot skin (Schmitz
et al., 2011) and the Allegro hand (Jara et al., 2014). The major drawback are the suscepti-
bility to electro-magnetic noise, sensitivity to temperature and non-linear response (Dahiya
and Valle, 2012).

Inductive or magnetic-based sensors wherein magnetic field changes are converted to
forces are capable of providing 3-axis force measurements that can be devised into array-
like structures. For instance, Tomo et al. (2017) developed the XELA uSkin sensor, a
3-axis force sensing soft dome fingertip made from flexible PCB, covered by a silicone
skin embedded with magnets. However, these sensors cannot be used near eletromagnetic
equipment that can alter the magnetic field.

Piezoelectric sensors are sensors where the electric charge that is produced on appli-
cation of force is used for dynamic tactile sensing. For instance, Polyvinylidene fluoride
or polyvinylidene difluoride (PVDF) material has been used for touch sensing (Seminara
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et al., 2011). These sensors have high bandwidth upto 7kHz as reported by (Goger et al.,
2009).

Barometric pressure tactile sensors measures the external force by the pressure of a
fluid that also gives deformability and softness ability to the sensor. For instance, the
BioTac sensor from SynTouch LLC consists of a fluid pressure measurement electrodes
that detect micro-vibrations (Fishel and Loeb, 2012). The BioTac sensor consists of multi-

modal sensors that can measure force, vibrations and temperature. Similar to human skin
that can detect multiple modalities, there has been considerable work in order to develop
multi-modal electronic skin (e-skin) (Dahiya et al., 2019). For instance, Jung et al. (2020)
presented a flexible tri-mode sensor stimulated by human skin with three different vertically
stacked sensors, i.e., a hair-type flow sensor, temperature sensor, and pressure sensor.

Acoustic ultrasonic-based sensors have also been reported to be used as tactile sensors
for detecting onset of motion and slip in grasping experiments. Jiang and Smith (2012)
presented a novel acoustic-based tactile sensor for pre-touch called the seashell effect pre-
touch sensor. The seashell-effect sensor is an open ended pipe with a microphone and
detects changes in the spectrum of ambient noise that occur when the sensor is approach-
ing an object. In (Ando and Shinoda, 1995), the authors designed a 2x2 array of PVDF that
is used to sense and localise contact point from ultrasonic pulse emissions.

Quantum tunnel effect sensors have also been used for tactile sensing applications
wherein quantum tunnel composites (QTC) that on application of external pressure can
turn from an insulator to a conductor are used. Using QTC material, Zhang et al. (2012)
developed a flexible tactile sensor for an anthropomorphic artificial hand with capability
of measuring shear and normal forces. QTC was integrated in the previous version of
the Shadow robotic hand as well (Walkler, 2004). They exhibit linear response however
they suffer from wear and tear and the sensitivity reduces over usage. Wiring is a typical
problem for large area tactile sensing, thus limiting the design of tactile sensing skins for
specific embodiments.

Electrical Impedance Tomography (EIT) is one method which has gained attention for
designing tactile sensors (Kato et al., 2007; Alirezaei et al., 2009; Yao and Soleimani, 2012;
Silvera Tawil et al., 2012). EIT is an imaging technique that uses electrodes to measure the
voltage or current signals from the boundaries of the electrical conductors and reconstructs
the internal conductive distribution. It can be used to implement robotic tactile sensing if
a flexible stretchable material is used to develop the electrodes and attached to the robot
surface (Liu et al., 2020). Silvera-Tawil et al. (2014) provided a comprehensive reivew of
EIT techniques used for designing tactile sensors. Key features of EIT based tactile sensors
that make it a viable option for designing large area sensors:
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üs

ch
er

et
al

.(
20

15
)

C
ap

ac
iti

ve
C

ha
ng

e
in

ca
pa

ci
ta

nc
e

+
C

an
be

fle
xi

bl
e

+
D

en
se

ar
ra

y
de

si
gn

po
ss

ib
le

+
C

om
m

er
ci

al
se

ns
or

s
av

ai
la

bl
e

-S
ta

tic
m

ea
su

re
m

en
ts

on
ly

-S
tr

ay
ca

pa
ci

tiv
e

m
ea

su
re

m
en

ts
-H

ys
te

re
si

s

Sc
hm

itz
et

al
.(

20
11

)
L

ee
et

al
.(

20
08

)

Pi
ez

o-
el

ec
tr

ic
C

ha
ng

e
in

el
ec

tr
ic

ch
ar

ge
+

D
yn

am
ic

ta
ct

ile
se

ns
in

g
+

H
ig

h
dy

na
m

ic
ra

ng
e,

hi
gh

se
ns

iti
ve

ity

-T
em

pe
ra

tu
re

se
ns

iti
vi

ty
-N

o
st

at
ic

se
ns

in
g

-P
oo

rs
pa

tia
lr

es
ol

ut
io

n

Se
m

in
ar

a
et

al
.(

20
11

)
G

og
er

et
al

.(
20

09
)

V
is

io
n-

ba
se

d
ta

ct
ile

se
ns

in
g

L
ig

ht
in

te
ns

ity
/

sp
ec

tr
um

ch
an

ge

+
H

ig
h

se
ns

in
g

ra
ng

e,
hi

gh
sp

at
ia

lr
es

ol
ut

io
n

+
H

ig
h

ac
cu

ra
cy

,h
ig

h
re

pe
at

ab
ili

ty
+

R
ap

id
re

sp
on

se
+

Im
m

un
e

to
E

M
I

-B
ul

ky
,n

on
-c

on
fo

rm
ab

le
-H

ig
h

po
w

er
re

qu
ir

em
en

t
-H

ig
h

co
m

pu
ta

tio
n

co
st

Jo
hn

so
n

et
al

.(
20

11
)

Y
am

ag
uc

hi
an

d
A

tk
es

on
(2

01
7)

Tr
ib

oe
le

ct
ri

c-
ba

se
d

C
ha

ng
e

in
m

ec
ha

ni
ca

le
ne

rg
y

to
el

ec
tr

ic
al

en
er

gy

+
C

an
be

hi
gh

ly
fle

xi
bl

e
an

d
st

re
tc

ha
bl

e
+

Se
lf

-p
ow

er
ed

se
ns

in
g

de
vi

ce
+

C
om

pa
ra

bl
e

se
ns

iti
vi

ty
an

d
dy

na
m

ic
ra

ng
e

+
E

as
y

fa
br

ic
at

io
n,

lo
w

co
st

-R
el

ia
bl

e
ca

lib
ra

tio
n

ne
ce

ss
ar

y
fo

rq
ua

nt
ita

tiv
e

m
ea

su
re

m
en

ts
-M

at
er

ia
ls

us
ce

pt
ib

le
to

hu
m

id
ity

C
he

ng
et

al
.(

20
19

)

In
du

ct
iv

e/
M

ag
ne

tic
C

ha
ng

e
in

M
ag

ne
tic

co
up

lin
g

+
L

in
ea

rm
od

el
/o

ut
pu

t
+

H
ig

h
dy

na
m

ic
ra

ng
e

-M
ov

in
g

pa
rt

s,
bu

lk
y

-S
us

ce
pt

ib
le

to
E

M
I

To
m

o
et

al
.(

20
17

)

E
le

ct
ri

ca
lI

m
pe

da
nc

e
To

m
og

ra
ph

y
C

ha
ng

e
in

E
le

ct
ri

ca
l

Im
pe

da
nc

e

+
N

o
in

te
rn

al
w

ir
in

g
of

se
ns

in
g

pa
rt

,
st

re
tc

ha
bl

e,
fle

xi
bl

e.
+

C
on

tin
ou

s
se

ns
in

g
ca

pa
bi

lit
y

+
H

ig
h

re
pe

at
ab

ili
ty

,r
an

ge
of

se
ns

in
g.

hi
gh

sc
al

ab
ili

ty

-L
ow

sp
at

ia
lr

es
ol

ut
io

n
-L

ow
te

m
po

ra
lf

re
qu

en
cy

-R
eq

ui
re

m
en

to
fc

on
tin

uo
us

en
er

gy
in

pu
t

K
at

o
et

al
.(

20
07

)
A

lir
ez

ae
ie

ta
l.

(2
00

9)

E
le

ct
ri

ca
lC

ap
ac

ita
nc

e
To

m
og

ra
ph

y
C

ha
ng

e
in

ca
pa

ci
ta

nc
e

+
Pr

ov
id

es
qu

an
tit

at
iv

e
m

ea
su

re
m

en
ts

co
m

pa
re

d
to

E
IT

+
Pr

ov
id

es
pr

ox
im

ity
an

d
co

nt
ac

ti
nf

or
m

at
io

n

-N
ot

w
id

el
y

us
ed

in
ro

bo
tic

ap
pl

ic
at

io
ns

-R
eq

ui
re

m
en

to
fc

on
tin

uo
us

en
er

gy
in

pu
t

M
üh

lb
ac

he
r-

K
ar

re
re

ta
l.

(2
01

7)

B
ar

om
et

ri
c

pr
es

su
re

m
ea

su
re

m
en

t
C

ha
ng

e
in

flu
id

pr
es

su
re

+
H

ig
h

ba
nd

w
id

th
,h

ig
h

se
ns

iti
vi

ty
+

Te
m

pe
ra

tu
re

an
d

m
oi

st
ur

e
in

de
pe

nd
en

ce
-L

ow
sp

at
ia

lr
es

ol
ut

io
n

Fi
sh

el
an

d
L

oe
b

(2
01

2)

Ph
ot

ov
ol

ta
ic

-b
as

ed
se

ns
in

g
C

ha
ng

e
in

lig
ht

in
te

ns
ity

+
Se

lf
-p

ow
er

ed
se

ns
in

g
de

vi
ce

+
N

o
ex

pl
ic

it
se

ns
in

g
la

ye
r,

so
la

rc
el

ls
us

ed
as

in
tr

in
si

c
se

ns
or

s
+

Sh
ap

e
an

d
pr

ox
im

ity
se

ns
in

g

-N
o

pr
es

su
re

se
ns

in
g

-P
oo

rs
pa

tia
lr

es
ol

ut
io

n
-S

en
si

tiv
e

to
am

bi
en

tl
ig

ht
E

sc
ob

ed
o

et
al

.(
20

20
)

Q
ua

nt
um

tu
nn

el
ef

fe
ct

Q
ua

nt
um

tu
nn

el
lin

g
+

L
in

ea
rr

es
po

ns
e

+
R

el
at

iv
el

y
hi

gh
dy

na
m

ic
ra

ng
e

-C
om

pl
ex

m
an

uf
ac

tu
ri

ng
pr

oc
es

s
Z

ha
ng

et
al

.(
20

12
)

W
al

kl
er

(2
00

4)

U
ltr

as
on

ic
-b

as
ed

U
ltr

as
on

ic
pu

ls
e-

ec
ho

ra
ng

in
g

+
C

an
be

us
ed

to
de

te
ct

sl
ip

an
d

on
se

to
f

m
ot

io
n

+
Fa

st
dy

na
m

ic
re

sp
on

se
+

G
oo

d
fo

rc
e

re
so

lu
tio

n

-D
iffi

cu
lt

to
in

te
gr

at
e

in
m

in
ia

tu
ri

ze
d

ci
rc

ui
tr

y.
Ji

an
g

an
d

Sm
ith

(2
01

2)

M
ul

ti-
m

od
al

M
ul

tip
le

se
ns

in
g

co
m

po
ne

nt
s

+
St

at
ic

an
d

dy
na

m
ic

pr
es

su
re

se
ns

in
g,

te
m

pe
ra

tu
re

m
ea

su
re

m
en

ta
nd

pr
ox

im
ity

se
ns

in
g

+
C

an
ac

hi
ev

e
hi

gh
sp

at
ia

lr
es

ol
ut

io
n

-B
ul

ky
si

ze
du

e
to

va
ri

ou
s

co
m

po
ne

nt
s

Fi
sh

el
an

d
L

oe
b

(2
01

2)
Ju

ng
et

al
.(

20
20

)



2.2. VISUO-TACTILE PERCEPTION: FROM HUMANS TO ROBOTS 22

• sensing area is composed of homogeneous material without any or limited wiring
necessary

• flexible and stretchable material can be used

• since only one single material is used, it can provide continuous sensing

• since the response of the system depends on the localised conductivity changes of the
variable-conductance material in response to an external stimulus, materials sensitive
to different types of stimuli, such as temperature, could be used to sense other types
of excitation

Similar to EIT, Electrical capacitance tomography (ECT) is another imaging method for
visualizing permittivity distribution in the interior of a dielectric object by measuring the
capacitance at the boundary. ECT can provide a quantitative measurement whereas EIT
can provide a qualitative measurement only (Liu et al., 2020). Although not widely used
in robotics, few works such as Mühlbacher-Karrer et al. (2017) demonstrated the use of
ECT for robotic object detection. On the issue of power requirements, for autonomous
robots to perform in unstructured environments, variety of sensors, actuators and compute
is necessary that significantly raises the energy requirements. Triboelectric energy gener-
ators (TENG) which generate energy by touching, pressing, twisting, stretching, etc., are
particularly interesting for e-skin design (Dahiya et al., 2019). TENG has the advantages
of low-cost, easy assembly and high output voltage. TENGs composed of stretchable poly-
mers exhibit high stretchability and bendability and can be woven into textiles as well.
Cheng et al. (2019) developed a highly stretchable TENG-based sensor and demonstrated
the sensing ability for dynamic force, temperature, and location detection, and furthermore,
the self-powered capability of the sensor.

In contrast to the aforementioned sensing technologies, Vision-based tactile sensors

such as the GelSight sensor (Johnson et al., 2011) are also popular which are composed
of an elastomer coated with a reflective membrane and a camera with resolution of up to
2 microns. Due to the high resolution in camera input, the resulting force field resolution
is higher than any traditional force sensors (Johnson et al., 2011). The sensor measures
normal force, in-plane torque, tilt torque, shear and slip (Yuan et al., 2015). Similarly, Lep-
ora and Ward-Cherrier (2015) designed the TacTip family of sensors that are 3D printed
fingertips with a camera inside. Pins in a regular pattern line in the interior of the finger-
tip, which are observed by the camera for pin positions and deflections. The fingertip is
filled with silicone gel to give it compliance. Another vision-based tactile sensor is the
FingerVision by Yamaguchi and Atkeson (2017) which is a transparent sensor that seeks to
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measure proximity, vibration, and force, using image processing. Kumagai and Shimono-
mura (2019) designed an event-based tactile sensor consisting of a elastomer with markers
and an event-based camera that detects temporal changes. Similarly, Alspach et al. (2019)
designed Soft-bubble a vision-based tactile sensor which uses a depth sensor instead of a
traditional camera to detect contact, force and slip estimation. In the domain of optical
sensors, photodiodes have been used to capture the deflection of illuminated infrared light
upon application of external force as in the Contactile sensor (Khamis et al., 2018). A
summary of various tactile sensing technologies and the advantages and disadvantages is
detailed in Tab. 2.2.

2.3 Visuo-Tactile based Object Pose Estimation
In order to manipulate objects and understand the world, a robot needs to recognise and

identify the 6 Degree-of-Freedom (DoF) pose of the objects. Accurate and timely estima-
tion of pose is critical, as even small inaccuracies can lead to grasp failures (Luo et al.,
2017). Typically, the pose of an object is represented by the position and orientation of the
object in the coordinate frame of the world or the robot base. Object pose estimation is
a well-researched domain within computer vision, predominantly utilizing vision sensors
that capture the entirety of the scene in a single acquisition. However, vision-based pose
estimation suffers from inaccuracies due to incorrect calibration of the sensors, environ-
mental conditions (occlusions, presence of extreme light, and low visibility conditions),
and object properties (transparent, specular, reflective). Multi-modal object pose estima-
tion wherein one modality can compensate and verify the estimation results have received
attention (Lee et al., 2020). As in humans, high fidelity tactile sensing can be used to
augment, compensate and verify vision-based estimation in autonomous robots. In this
section, the current state-of-the-art methods in tactile-based and visuo-tactile based object
pose estimation techniques are detailed.

Point cloud registration is a common technique for 6 DoF pose estimation and its the
process of finding the rigid transformation that aligns two point clouds. Typically in the
pose estimation context, it involves the registration of the point cloud extracted from the
CAD model of the object of interest with the sensor-acquired point cloud. Furthermore, in-
formation between vision and tactile data can be fused through point clouds of the objects
as raw point clouds are sensor agnostic (Rusu and Cousins, 2011). When the correspon-
dences between the two point clouds are known a priori, the registration problem can be
solved in closed form (Horn, 1987). However, correspondences are unknown in practical
situations, and standard approaches involve iteratively finding the best correspondence and
the transformation given the best correspondences known as the iterative closest point (ICP)



2.3. VISUO-TACTILE BASED OBJECT POSE ESTIMATION 24

algorithm (Besl and McKay, 1992). ICP and its variants (Pomerleau et al., 2013) are batch
registration methods that are known to have low performance when provided with sparse
point cloud data that arrive sequentially as is the case with tactile measurements (Glozman
et al., 2001). In contrast, other approaches relied on finding dense point-to-point corre-
sponding using feature extraction and then optimised for 6D pose (Yang et al., 2020; Rusu
et al., 2009; Huang et al., 2021b). Recently, deep learning approaches have been used to
learn robust features for generating correspondences followed by an optimization such as
RANSAC (Zeng et al., 2017; Deng et al., 2018). Deep learning approaches have also been
used to regress the pose directly using an end-to-end approach. This is done by learning to
regress the pose parameters directly from the features of the input point clouds (Yang et al.,
2019; Pais et al., 2020; Huang et al., 2021a).

Filter-based approaches were also generally preferred for sequential data as in the case
of tactile data. Petrovskaya and Khatib (2011) developed a novel particle filter, named Scal-
ing Series, which localises the object using touch sensing efficiently (under 1s) and reliably
(≥ 99%). In (Vezzani et al., 2017), the authors proposed a novel filtering algorithm called
the Memory Unscented Particle Filter (MUPF) drawing inspiration from the Unscented
Particle Filter (UPF) (Van Der Merwe et al., 2001) to localise the object recursively given
contact point measurements. Alongside contact point measurements based localization,
array-based tactile sensors have been used to extract local geometric features of objects
using principal component analysis (PCA) in order to localise the object by matching the
covariances of the extracted tactile data and object geometry (Bimbo et al., 2016). Vision
has been used to provide an initial estimate of the object pose that was refined by tactile
localisation using local or global optimization techniques (Bimbo et al., 2015; Hebert et al.,
2011).

Analogously to SLAM approaches in mobile robots, in (Yu et al., 2015) SLAM has
been applied to recover the shape and pose of a movable object from a series of observed
contact locations and normal contact with a pusher. Similarly, Suresh et al. (2020) ap-
proached the problem of simultaneous estimation of shape and pose of a planar object.
They used Gaussian process implicit surface (GPIS) regression for shape inference and
factor graphs for pose estimation. However, compared to exploration using visual feed-
back, tactile exploration is challenging in the sense that touch sensing is intrusive in nature,
that is, the object (environment) is moved by the action of sensing (Luo et al., 2017). De-
pending on the shape complexity of the object, higher resolution of tactile measurements
allows to extract distinctive features of the object in order to aid its recognition and pose
estimation. Vision-based tactile sensors such as GelSight sensor have been used to localise
in-hand objects by collecting a series of images and creating a heat-map as in (Li et al.,
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2014). Keypoint extraction was performed on the tactile images and matched using im-
age registration methods. Recently, Kuppuswamy et al. (2019) used soft-bubble sensors
which has an elastic membrane and an internal ToF based depth sensor (Alspach et al.,
2019) in order to estimate the pose of objects. They modelled the deformation of the mem-
brane when contacted with the object and devised an ICP-based pose estimation pipeline
based on the contact patch measurements. Hebert et al. (2011) presented a technique for
in-hand localisation of objects by fusing the vision, tactile and force/torque sensor informa-
tion. Bhattacharjee et al. (2015) postulated that visually similar surfaces should also have
similar haptic properties. Based on this fact, they created a dense haptic map efficiently
across visible surfaces with sparse haptic labels which was used for grasping experiments
in cluttered environments.

Contrary to instance-based methods, recent works have addressed the pose estimation
of unknown objects from known object categories without any prior instance-specific 3D
CAD models available which is known as category-level object pose estimation. Wang
et al. (2019) introduced the problem of category-level pose estimation and presented the
Normalised Object Coordinate Space (NOCS) that produces a shared canonical represen-
tation for all object instances in each category. The predicted NOCS map is used to extract
the pose and shape of objects with the observed depth map. Lee et al. (2021) extended the
NOCS map with a CNN-based category level pose estimation with RGB images with lit-
tle or none depth information. Similarly, other works have used variational auto-encoders
(VAE) for generating the canonical 3D point clouds and the pose is regressed using an-
other deep neural network (Chen et al., 2020). Some works explicitly model the intra-class
shape variations using deformation from pre-learned shape priors (Tian et al., 2020). In
addition to pose estimation, Deng et al. (2022) combined their category-level auto-encoder
with a particle filter framework for tracking of unknown objects in an iterative manner. The
method relies upon accurate depth estimation and semantic segmentation as input. Simi-
larly, Wen and Bekris (2021) performed 6D pose tracking for unknown objects using learnt
networks for segmentation and keypoint extraction and pose graph optimisation for pose
tracking. As the accuracy of category-level estimation is far from satisfactory in compar-
ison to instance-level methods, some works perform iterative point cloud pose refinement
after finding the categorical shape prior (Liu et al., 2022c). While manipulating objects in-
hand, the objects are typically occluded from the line-of-sight of the camera. Prior works
have fused vision and tactile sensing data to accurately measure and track the pose of in-
hand objects using Bayesian filtering techniques and deep learning methods (Álvarez et al.,
2019; Dikhale et al., 2022; Pfanne et al., 2018). Recent works used deep learning based
approaches along with pose-graph optimization to track and recover the shape of novel ob-
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jects during in-hand manipulation by combining visual and tactile sensing (Qi et al., 2023).
While the aforementioned studies focused on rigid objects, complex objects may also

have articulations such as drawers, reading glasses, microwave ovens, and so on. Although
there are computer vision techniques for tracking articulated objects (Lowe, 1991; Nick-
els and Hutchinson, 2001; Pellegrini et al., 2008; Schmidt et al., 2015; Liu et al., 2022b;
Kanazawa et al., 2018; Ge et al., 2019), detecting and tracking unknown articulated ob-
jects without damaging them required the integration of tactile sensing. Some works such
as (Sturm et al., 2011; Martı́n-Martı́n and Brock, 2022) have developed interactive per-
ception system with visual and force/torque sensing but have relied upon known model,
marker-based systems for pose tracking and hand-crafted features that limit the generalis-
ability of the system.

While tactile data can be collected in a randomised manner or driven by a human-
teleoperator (Vezzani et al., 2017), in order to reduce the time and the amount of mea-
surements, active strategies are required that involve the generation of candidate actions
and the selection of the best next action according to expected information gain. Hebert
et al. (2013) used an information gain metric based on the uncertainty of the object’s pose
to determine the next best touching action to localise the object. Hsiao et al. (2010) im-
plemented a decision-theoretic approach and an approximate Partially Observable Markov
Decision Process (POMDP) to select actions for exploration. Saund et al. (2017) also use
an information gain approach for localisation using a particle filter. Similarly, Tosi et al.
(2014) approached the “next best touch” problem for object localisation by also consider-
ing an information gain approach and additionally, constraining the optimization problem
by including the computation and action execution time. However such constraints are
application specific and limits the generalisability of the approach.

2.3.1 Limitations in the state-of-the-art
Current pose estimation/ 3D registration methods in the literature perform poorly with

very sparse point clouds (10−100 points) (as pointed out by several works such as (Aga-
mennoni et al., 2016; Tazir et al., 2018; Razlaw et al., 2015)) and new algorithms need to be
developed that can handle the point sparsity as well as sequential nature of the input data.
Additionally, such methods need to also perform accurately for dense point clouds from
visual sensors that capture the entire scene in one-shot (non-sequential). When robotic sys-
tems are equipped with multi-modal sensing such as vision and tactile sensing, sharing the
perceptual information gathered from the same scene through different sensing modalities
is crucial for the robustness of the system. The existing literature often employs visuo-
tactile sensing sequentially, for example, to verify the estimation with one modality of
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the other modality (Bimbo et al., 2015; Hebert et al., 2011) and lacks methodologies that
facilitate the sharing of visuo-tactile perception, a critical aspect addressed in this thesis.
Furthermore, it is well known that vision-based pose estimation is sensitive to occlusions
and localising objects in clutter (Luo et al., 2017). Tactile perception inherently constitutes
an active modality, which can be strategically leveraged to perform interactive perception,
thereby enhancing the efficacy of visual perception (Li et al., 2020a). Moreover, objects
can be also have inherent articulations and may move while performing probing actions by
the robot. Current state-of-the-art focuses on pose tracking of articulated objects with com-
puter vision techniques as in (Ge et al., 2019; Kanazawa et al., 2018; Schmidt et al., 2015)
and techniques that can leverage vision and tactile sensing to detect and track the pose of
articulated objects in real time are lacking in the current literature. Finally, improving the
sample efficiency of tactile actions is crucial for an efficient robotic system and active per-
ception techniques that leverage the current known information gathered from either visual
or tactile sensing to decide on next tactile actions are needed (Tosi et al., 2014). These
issues are addressed in this thesis in Chaps. 4-6.

2.4 Visuo-Tactile based Object Recognition & Reconstruc-
tion

The task of object recognition represents another fundamental challenge within the do-
main of robotics. With the advent of deep learning paradigms and large annotated im-
age datasets, the computer vision domain has experienced substantial advances in object
recognition methodologies (Han et al., 2019; Andreopoulos and Tsotsos, 2013). However,
this issue remains an unresolved challenge for embodied robotic systems when faced with
novel unseen objects in real-world environments (Yang et al., 2018). Oftentimes, shape
reconstruction of unseen objects is a necessary task prior to performing recognition of pose
estimation. Objects with shiny or transparent surfaces pose a challenge for vision sen-
sors for the task of recognition or reconstruction (Wang et al., 2022a). Tactile sensing
provides complementary information to visual data and is not affected by specularity or
transparency (Li et al., 2020a). Hence, many works in literature have leveraged the tactile
modality in a monomodal fashion and multi-modal together with visual sensing for object
recognition and reconstruction tasks (Kaboli et al., 2019, 2017; Liu et al., 2016a; Abder-
rahmane et al., 2018). This section details some of the relevant works in the state-of-the-art
with particular focus towards multi-modal visuo-tactile based approaches.

Tactile sensing alone has been used for the task of object recognition in literature. Novel
descriptors that extract the statistical properties of tactile signals in the time domain have
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been used to identify and discriminate objects and various textures (Kaboli et al., 2017;
Kaboli and Cheng, 2018; Kaboli et al., 2019). In other works, the sparse point clouds from
tactile sensing were used to approximate the shape of the object using superquadratics and
then Gaussian processes were used to classify the objects (Jin et al., 2013). Similarly,
covariance of contact image from a tactile sensor were used as a feature descriptor with a
Naive Bayes classifier for object recognition (Liu et al., 2012). Some works also leveraged
classical computer vision feature descriptors such as SIFT to extract feature from the tactile
heatmaps (Pezzementi et al., 2011). Earlier works also developed a bag-of-features based
approaches for object classification based on low resolution tactile images. Kernel sparse
coding based techniques have also been used for tactile based classification tasks (Liu et al.,
2016a). Liu et al. (2017) provides an extensive review on recent developments in tactile
based object recognition. A limitation of monomodal tactile based recognition would be the
inherent sample inefficiency of the tactile actions and lots of probing actions are required
to collect data for recognition tasks. Intelligent combination with visual perception can
greatly improve the efficiency and robustness of the task.

The techniques for visuo-tactile sensory information fusion needs to be discussed. Typ-
ically multi-modal fusion is performed with (a) data-level fusion, (b) feature-level fusion
and (c) decision-level fusion as illustrated in Fig. 2.4. In data-level fusion, heterogeneous
sensory data are standardized to a uniform format and integrated through any sort of union
procedure. One such method is expressing vision data from RGB-D images and tactile
data from point-contact and array-based sensors as a set of points and use point cloud tech-
niques for object recognition. Gandler et al. (2020) used such techniques for combining
visuo-tactile point clouds at the data level to perform recognition and surface reconstruc-
tion tasks. Similar works have been presented point cloud level fusion for visuo-tactile
data (Smith et al., 2020; Björkman et al., 2013). Feature-level fusion involves indepen-
dently extracting a specific number of features from visual and tactile data, and subse-
quently merging these features. This approach is commonly employed to prevent infor-
mation disparity across various formats, allowing the features to be seamlessly integrated
into different machine learning models. Liu et al. (2016b) introduced the problem of weak

pairing between tactile and vision domains i.e., since visual data and tactile data are usu-
ally collected separately, there is no one-to-one correspondence between the two domains,
instead a group of samples from the vision modality corresponds to a group of samples in
the tactile modality. The authors perform early fusion of the multi-modal data by using
multivariate-time-series model to represent the tactile sequence and a covariance descrip-
tor to characterize the image. They propose a joint group kernel sparse coding (JGKSC)
method to tackle the intrinsically weak pairing problem and employ it to recognise house-
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Figure 2.4: Common visuo-tactile fusion techniques for object recognition

hold objects. Luo et al. (2015) employed identical feature extraction methods for visual
images and tactile images in order to recognise and localise objects. Abderrahmane et al.
(2018) propose a zero-shot object recognition framework using vision and tactile data to
recognise daily object that have never been seen or touched before. Raw data from the
BioTac sensor are used for tactile data and RGB images for vision data and dimensionality
reduction is performed to reduce the number of signals from the raw BioTac data. Sep-
arate CNN are used for feature extraction which is then combined to a feature vector in
order to learn attributes for zero-shot object recognition. Kroemer et al. (2011) tackle the
problem of material classification using touch. Since tactile data is high dimensional and
noisy, the authors propose a method to learn a lower dimensional representation of tactile
using vision data of the surfaces, thereby working with the weak-pairing issue of vision and
tactile. The experiments demonstrate high performance using tactile sensing alone for ma-
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terial recognition. Decision-level fusion methods handles the vision and tactile information
independently, extracts features to make decisions, and finally combines or evaluates these
decisions. For instance, Corradi et al. (2017) extracted the features from visual and tactile
images independently and the decisions for object classification were based on weighted
average of the posterior estimations.

While aforementioned works focused on multimodal sensor fusion, transfer of percep-
tual information from one modality to the other, termed cross-modal perception, is gaining
research attention in recent years. Cross-modal perception enables the robots to switch to
another sensing modality in case of sensor failure/ unavailability from one sensing modal-
ity in order to complete the task. Such methods leverage the pre-trained models available
from one modality to train the other modality thereby reducing the need for data anno-
tation, training and so on. Falco et al. (2019) proposed a cross-modal learning method
between vision and tactile for an object recognition task. Point cloud data was acquired
using a RGB-D sensor and custom array-based tactile skin on the robot end-effector. The
point clouds from the two domains were equalised for partiality and for point density and
hand-crafted feature descriptors were used to extract features from both visual and tactile
point clouds. Subsequently, a support vector machine (SVM) based model was trained on
visual features and during execution stage the robot leverages the trained model to recog-
nise objects using tactile perception. Similarly to point clouds, array-based tactile sensor
data can be converted to grey-scale images or heatmaps through normalization and thresh-
olding. They can be used with images captured from visual sensors using computer vision
methods for object recognition (Lee et al., 2019a). Recently, Purri and Dana (2020) tackle
the interesting problem of vision to tactile cross modal transfer in order to infer tactile data
from only vision data alone of sample object surfaces. Although an extremely hard task
for robots, the results are encouraging to inspire research in the direction of synesthesia
(the production of an experience relating to one sense by a stimulation of another sense)
or vision-to-tactile transfer and vice-versa. Similarly, Takahashi and Tan (2019) also pro-
posed a encoder-decoder deep learning network with latent variables to estimate tactile
data from images. Tactile data is recorded by stroking object surfaces during training alone
and is estimated using visual images during testing. However, the authors use restrictive
assumptions such as ignoring the initial samples of stroking which produces spurious data
due to overcoming static friction, this however can be crucial in order to distinguish object
properties. On the other hand, Zheng et al. (2019) presented a method for tactile-to-vision
transfer by which a novel object is recognised by using its tactile signal to retrieve percep-
tually similar surface material images through the learnt cross-modal correlation.

Similarly for object recognition, surface reconstruction tasks have also been explored
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with visuo-tactile sensing. Gaussian process implicit surface (GPIS) has been widely used
for tactile-based object reconstruction (Dragiev et al., 2011; Yi et al., 2016; Björkman et al.,
2013; Gandler et al., 2020; Martens et al., 2016; Suresh et al., 2021; Jamali et al., 2016).
The implicit surface described by a Gaussian process describes the shape of an object
through a function that decides for each point in space whether it is part of the object
or not. It produces smooth surface manifolds with a reasonable number of tactile points
as input and also provides probabilistic information to guide the tactile actions. However,
for complex shapes it typically requires lots of points uniformly distributed on the object’s
surface for reconstruction (Jamali et al., 2016). Certain studies have integrated tactile sens-
ing with visual perception to augment shape completion by leveraging prior information
acquired through visual cameras (Gandler et al., 2020; Smith et al., 2020). Similarly, Wang
et al. (2018) designed a framework for generating 3D shape of objects from a single visual
image using learnt shape priors which are refined using tactile sensing.

2.4.1 Limitations in the state-of-the-art
Prior works in cross-modal visuo-tactile object recognition tackled the weak-pairing

problem between the visual and tactile data by explicitly equalising the point density and
predefined hand-crafted features that limit the applicability to real world scenarios (Falco
et al., 2019). In Chap. 7, these issues are tackled by proposing a novel cross-modal do-
main adaptation method that is capable of working with raw dense visual and sparse tactile
point clouds directly for the object recognition task. Considering object reconstruction,
popular techniques such as GPIS fail to capture fine shape details with sparse tactile input
data (Jamali et al., 2016; Björkman et al., 2013; Gandler et al., 2020). Furthermore, di-
rectly deploying deep-learning based strategies for shape completion with sparse input data
is impractical as the collection of a large dataset of tactile data for training is prohibitively
expensive. Moreover, prior works employed touch as a method to refine the shape estimate
from vision in two-step sequential process that is usually time consuming (Gandler et al.,
2020; Smith et al., 2020). In this thesis, these open challenges are tackled by proposing
a novel deep learning method for tactile-based reconstruction of transparent objects lever-
aging large-scale synthetic datasets described in Chap. 8. The reconstruction method is
also deployed for visuo-tactile data which are collected using a shared perception method
with a joint information gain approach to improve the sample efficiency of actions for data
collection in Chap. 5.
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2.5 Visuo-Tactile based Interactive Perception
Interactive Perception or perceptive manipulation is any kind of purposeful manipu-

lation actions performed to simplify or enhance the perception of the environment (Bohg
et al., 2017). Interactive perception techniques rely upon effective scene understanding
in order to plan and execute manipulative actions. The scene understanding iteratively
improves upon performing manipulation actions. In unstructured cluttered scenarios, the
target object may have multiple other objects overlapping on it in random configurations.
A typical choice for scene understanding in computer vision is scene graphs which is a data
structure that describes objects in a scene and the relationships between these objects (John-
son et al., 2015). Support graphs, a type of scene graph have been introduced to describe
the support relations between objects in the scene through geometric reasoning (Kartmann
et al., 2018; Mojtahedzadeh et al., 2015; Schwarz et al., 2018). Sui et al. (2017) presented
an axiomatic scene estimation method to describe the relationship between objects and
object poses as a scene graph for manipulation. Mitash et al. (2022) developed a Monte
Carlo Tree Search-based technique for scene understanding leveraging physics-priors of
objects in clutter for pose estimation. Zhang et al. (2021) tackled the issue of inferring
object relationships through a neural network performing classification task on all possible
pairwise permutations between the objects in the scene. Scene understanding is followed
by planning manipulation actions in clutter which is a challenging task and has received
immense research interest. Prehensile manipulation such as grasping and non-prehensile
manipulation such as pushing are frequently used for interactive perception and detailed in
the following subsections.

2.5.1 Visuo-Tactile based Prehensile Manipulation
Prehensile manipulation, or grasping can be approached via model based/analytical or

data-driven methods (Bohg et al., 2013). Analytical methods are based on force analysis
and rigid body dynamics. They are employed for objects or known geometry, mass and
friction properties and are widely used in controlled environments for instance automotive
production lines. However, analytical methods perform poorly in unstructured or dynamic
environments, with real world objects with varying friction coefficients and deformability
and so on. Model misspecifications and unmodelled model factors contribute to the reduc-
tion in performance (Bohg et al., 2013). Some works on analytical methods for grasping
can be found in (Kim et al., 2013; Rodriguez et al., 2012; Horowitz and Burdick, 2012;
Kazemi et al., 2012; Gopalakrishnan and Goldberg, 2005). Alternatively, with data-driven
methods, grasp configurations are statistically learnt. These can be from 3D mesh mod-
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els, point clouds, or images, from which geometry can be used to infer grasp stability,
and appearance can be used for detection of areas suitable for grasping. Grasp outcomes
can be learnt from human supervision (Kamon et al., 1996; Lenz et al., 2015), from sim-
ulation (Kappler et al., 2015; Johns et al., 2016; Mahler et al., 2016) or from robot data
collection (Pinto and Gupta, 2016; Levine et al., 2018). Typically, data-driven methods
rely on geometry and vision sensing and reason on grasp outcomes before actual contact
while tactile data and contact forces are not taken into consideration. A detailed review on
data-driven methods for grasping is provided by Bohg et al. (2013). This section focusses
on techniques wherein vision and tactile sensing together are used for grasping.

Typically, visual input is used for grasp generation/planning and tactile sensing is used
for closed loop control once in contact with the object. Son et al. (1996) performed ex-
periments by using visual feedback to perform rough positioning of the hand and tactile
feedback to detect contact, in order to compensate for the difference between the orienta-
tion of the object and the gripper and to control grasp force for delicate manipulation tasks.
They compare with force sensor based approaches and empirically show that visuo-tactile
approach provides a more gentle grasp. It is important to note that techniques provided
in Sec. 2.3 on visuo-tactile object pose estimation are typically performed before grasp-
ing tasks. Kragic et al. (2003) compensated for imperfect vision-based pose estimation
in order to center the object with the gripper using tactile sensing. Morales et al. (2007)
demonstrated an experiment combining analytical grasp model primitives with vision and
tactile sensing in order to remove a book from a bookshelf. Li et al. (2015) proposed a
control framework that unifies visual and tactile servoing for robust manipulation. Allen
and Michelman (1990) used visual sensing and tactile sensing to calculate the position of
contact along a finger in order to estimate applied finger forces for grasping tasks.

Considering data-driven visuo-tactile grasping models, Calandra et al. (2018) proposed
an end-to-end action-conditional model that iteratively adjusts a robot’s grasp based on raw
visuo-tactile inputs. The authors use tactile images from the GelSight sensor, RGB im-
ages and actions and then employ a late fusion approach by extracting information using
tactile CNN, image CNN and a two-layer fully-connected perceptron respectively. They
empirically show that the proposed approach outperforms a variety of baselines at esti-
mating grasp outcomes and provide interpretable re-grasping behaviours. Recently, Kumar
et al. (2019) demonstrated a sim-to-real approach to train reinforcement learning policies
using vision and tactile sensing on gripper fingertips. Chebotar et al. (2016) proposed a
self-supervision framework for regrasping on tactile data alone. Initially, a grasp stability
predictor is designed that uses spatio-temporal tactile features collected from the early-
object-lifting phase to predict the grasp outcome with a high accuracy. The trained predic-
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tor is then used to supervise and provide feedback to a reinforcement learning algorithm
that learns the required grasp adjustments based on tactile feedback. Cui et al. (2020a) pre-
dicted the success of grasps using visuo-tactile fusion based on Self-Attention Mechanism.
Furthermore, the authors in another work propose a 3D CNNs based visual-tactile fusion
network to assess grasp states of deformable objects (Cui et al., 2020b). Lee et al. (2019b)
used self-supervision to learn a compact and multimodal representation of vision, force/-
torque, and proprioception, which can be used to improve the sample efficiency of policy
learning. For grasping of unknown objects, prior works rely upon global shape or features
from sensory data and a set of heuristics (Bohg et al., 2013; Schaub and Schöttl, 2020;
Morrison et al., 2020; Schmidt et al., 2018). For instance, Morrison et al. (2020) developed
an object-independent grasp synthesis method from depth images using their generative
grasping convolutional neural network (GG-CNN). Fazeli et al. (2019) proposed a method
to emulate hierarchical reasoning and multi-sensory fusion in a robot that learns to play
Jenga, a complex game that requires physical interaction to be played expertly. This model
captures latent descriptive structures, and the robot learns probabilistic models of these
relationships in force and visual domains through a short exploration phase.

Frequently, the task of robotic grasping of unknown and complex objects presents sig-
nificant challenges, which are exacerbated when these objects are situated within cluttered
environments. Under these circumstances, the application of non-prehensile manipulation
techniques becomes pertinent.

2.5.2 Visuo-Tactile based Non-Prehensile Manipulation
Non-prehensile manipulation, meaning manipulation without grasping, is useful when

it comes to interactive perception (Bohg et al., 2017). Non-prehensile manipulation in-
cludes actions such as pushing, throwing, flipping, and so on. Similar to prehensile ma-
nipulation, existing techniques for non-prehensile manipulation techniques fall into two
categories: model-based and data-driven methods (Stüber et al., 2020). The first type re-
lies on analytical, physics-based models of pusher object interactions within higher-level
planning and control frameworks (Stüber et al., 2020). The second type uses data-driven
methods to construct forward, or inverse models of pusher-object interactions, or to directly
learn a pushing control policy (Lloyd and Lepora, 2020). Multiple analytical model-based
techniques have been proposed in the literature. Mason (1986a) proposed the voting the-
orem for determining the direction of rotation of a pushed object. This rule depends only
on the centre of mass of an object and not the underlying distribution of support forces.
Lynch et al. (1992) used an optical waveguide tactile sensor mounted on one finger of a
gripper attached to achieve stable translation of a rectangular object and circular disk on a
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moving conveyer belt. In (Jia and Erdmann, 1999), the authors showed that it is possible to
determine pose and motion of a planar known object solely from tactile sensing feedback
by pushing. Analytical models are based on well-understood physics models but employ
restrictive assumptions and assumptions that do not generalise well in practice. For exam-
ple, many of them assume homogeneous, isotropic and stationary friction, which may not
be valid for some surface materials (Yu et al., 2016).

Considering data-driven methods Meier et al. (2016) used 2D tactile images in order to
learn a CNN classifier to distinguish between two types of sliding and slipping while per-
forming a pushing operation. Hellman (2016) used BioTac sensor data for a task of closing
a deformable ziplock bag and used the data to learn a reinforcement learning policy for con-
tour following. Vision alone in the context of non-prehensile manipulation has been used to
predict the state of the object after manipulation. For instance, Agrawal et al. (2016) used
a Siamese CNN in order to learn the poking location, angle and length to move an object
from one location to another location. Similarly, Finn and Levine (2017) learned to predict
the result image after pushing an object. This was used for planning pushing actions in
order to satisfy the goal states provided by the user. Li et al. (2018) proposed Push-net, a
deep recurrent neural network (RNN) to tackle the problem of quasi-static planar pushing
to re-orient and re-position objects. Their approach requires only visual camera images as
input and remembers pushing interactions using a long short-term memory (LSTM) mod-
ule. However, with vision-alone non-prehensile manipulation tasks have shown impressive
results, the tasks are inherently primitive. In (Bauza et al., 2018), the authors use Gaussian
processes to model the change in position and orientation of an object in response to a
push at a specified contact position and angle, and embed the model in a Model Predictive
Control (MPC) framework. Attempting to combine the data-driven and analytical methods,
Zhou et al. (2018a) proposed a convex polynomial model for planar sliding. The authors ap-
proximate the limit surface using a simple parameterized model (the level set of a convex
polynomial) and fit the model using a computationally efficient identification procedure.
Reinforcement learning (RL) has emerged as a promising method for non-prehensile ma-
nipulation (Lowrey et al., 2018; Clavera et al., 2017). In Clavera et al. (2017), the authors
proposed to decompose the system into modules to train in simulation instead of end-to-
end training. They demonstrate reliable to sim-to-real transfer and the robot capable of
handling the pushing of objects from different initial and final states. Lloyd and Lepora
(2020) designed a reactive and adaptive method for robotic pushing that uses rich feedback
from a high-resolution optical tactile sensor to control push movements instead of relying
on analytical or data-driven models of push interactions. More specifically, they use goal-
driven tactile exploration to actively search for stable pushing configurations that cause the
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object to maintain its pose relative to the pusher while incrementally moving the pusher and
object towards the target. They tested the framework on planar and curved surfaces. A de-
tailed review on the state-of-the-art of non-prehensile manipulation can be found in (Stüber
et al., 2020).

2.5.3 Limitations in the state-of-the-art
Most approaches for grasping in literature are focused on singulated objects or objects

in sparse clutter without overlapping or occluding objects as they rely primarily upon vi-
sual perception (Calandra et al., 2018; Cui et al., 2020b; Morales et al., 2007). Objects
in dense clutter necessitates the use of interactive perception and mechanical search tech-
niques where the objects need to be rearranged autonomously to retrieve a desired target
object (Danielczuk et al., 2019; Bohg et al., 2017). Furthermore, most works either em-
ploy grasp or push actions for manipulation (Zeng et al., 2018; Danielczuk et al., 2019).
Methodologies that allow the robot to choose to perform prehensile or non-prehensile ma-
nipulation based on the type of object would be very beneficial and is absent in current
research. Moreover, most works in this domain target the manipulation of rigid objects.
However, objects may have articulation joints such as drawers and glasses which cannot be
manipulated in the same manner (Bohg et al., 2013). This thesis tackles these challenges by
developing a visuo-tactile based interactive perception method to autonomously declutter
a densely cluttered scene using both prehensile and non-prehensile actions based on object
type as presented in Chap. 5. The goal-driven manipulation of articulated objects, a chal-
lenging and open problem in literature, is tackled with the use of both types of manipulation
actions as detailed in Chap. 6.



Chapter 3

System Description

In this chapter, the experimental system including robots and sensors that have been used
in this thesis has been described.

3.1 Robotic System
The system consists of two robots: UR5 robot from Universal Robots with the Robo-

tiq 2F140 gripper and Panda robot from Franka Emika with the standard gripper from the
manufacturer as shown in Fig. 3.1. The technical specifications of the robots are shown
in the Tab. 3.1. As seen from the Tab. 3.1, both robots have similar reach, weight and
joint speed and repeatability. The payload capability of the UR5 was higher than the Panda

UR5 
Universal 
Robots

Franka 
Emika Panda

Contactile sensor 

Xela Sensor
Robotiq
gripper

Azure Kinect DK 
camera

W

Figure 3.1: Robot and sensor system description
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robot. The Panda robot offered 7 degrees-of-freedom from the 7 rotational joints while the
UR5 robot had 6 rotational joints. The Panda robot also had force/ torque sensors embed-
ded on all seven joints. Since the UR5 robot has a higher payload, and the Robotiq gripper
provided easy reconfigurability, it had been sensorised with the tactile sensors on the finger-
tips. The Panda robot with the additional degree-of-freedom allowed fine-grained control
for reaching various positions in the joint workspace of the robot and was sensorised with
the vision sensor. Since the camera was attached to the end-effector of the Panda robot,
the setup mimicked human-like system wherein the eyes (camera) is on a movable head/
neck (Panda robot) and the hand mimicked the UR5 robot with tactile sensing. Apart from
certain manipulation actions in Chap. 6 where the Panda’s torque sensors were used for
interaction with the objects, in all experiments in this thesis, the UR5 robot with tactile
sensors was primarily used for robot-object interactions whereas the Panda robot was used
for capturing images from various viewpoints without contact with the objects. Further-
more, as seen from Fig. 3.1, the robots were attached to a custom designed base frame
which forms the shared workspace of the robots where the objects have been placed. The
workspace size was (1 m, 0.55 m) and a common world coordinate frame W is placed at
the corner of the workspace. The maximum allowed speeds for the UR5 and Panda were
75 mm/s and 100 mm/s respectively for safety constraints.

3.2 Sensor System

3.2.1 Vision Sensor
The Azure Kinect DK sensor from Microsoft©has been used as the vision sensor. It

has a 1 MegaPixel(MP) depth camera, 12 MP red-green-blue (RGB) camera, microphone
array and inertial measurement unit (IMU) for motion sensing. The RGB camera was
used with the following settings: image resolution 2048×1536 pixels and 15 frames-per-

Table 3.1: Technical specifications of the robots

Parameters UR5 robot Panda robot

DoF 6 7
Payload 5kg 3kg
Reach 850mm 855mm
Repeatability ±0.1mm ±0.1mm
Weight 18.4kg 18kg
Speed 180◦/s 150-180◦/s
Sensors - Torque sensors
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second (fps). The depth camera was used with the following settings: image resolution
1024×1024, 15fps and operating range 0.25-2.21m. The camera synchronised provided
RGB and depth (RGB-D) images and corresponding coloured point cloud in {x,y,z,r,g,b}
format. The microphone array and IMU sensors were not used in any experiment in this the-
sis. The intrinsics of the camera was calibrated using the checkerboard approach (OpenCV,
2024) and the extrinsic calibration of the camera was calculated using hand-eye calibration
techniques (more information is provided in Chap. 5). The point clouds were expressed in
the common world coordinate frame of the system using the camera extrinsics. The Azure
Kinect ROS driver (Microsoft, 2024) was used to acquire the images and point clouds from
the camera and pipe through to all nodes using the data.

3.2.2 Tactile Sensors
As detailed in Sec. 2.2, there is no standard tactile sensor for robotic applications. There

are various types of sensors based on the transduction mechanism to measure the external
pressure/ force. This introduces a challenge for comparing various types of tactile sen-
sors and associated algorithms. For instance, algorithms using vision-based tactile sensors
can employ computer vision techniques usually associated with camera sensors whereas
these methods cannot be transferred to other types of tactile sensors such as capacitive or
magnetic-based. In order to ensure the developed methods in this thesis to be agnostic to
the type of tactile sensor, only 3D contact information in terms of point clouds based on
contact forces were used which can be provided by all types of tactile sensors. Further-
more, two different types of off-the-shelf tactile sensors have been used in this thesis: the
Contactile sensor and the Xela tactile sensor. These sensors have different operating prin-
ciples and were used to demonstrate the applicability of the proposed methods to various
types of tactile sensors.

Contactile Sensor

The Contactile sensor consists of multiple pillar-like devices arranged in a 3×3 array called
as the PapillArray (Khamis et al., 2019). The principle of the contactile sensor is shown
in Fig. 3.2. The sensors works on the pinhole camera principle where a pinhole aperture is
created in a printed circuit board and a diffuse reflector is embedded inside the PapillArray
pillar (Fig. 3.2b). The reflector is illuminated by two LEDs either side of the pinhole aper-
ture (Fig. 3.2c). The reflected light forms an inverted image on a quadrant photodiode (four
separate photodiodes in a segmented configuration). The projected image forms a spot of
light whose shape, position, and size depends on the 3D displacement of the reflector disk.
A multivariate polynomial regression algorithm was used to infer the external force applied
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Figure 3.2: Principle of contactile sensor: a) Cross-section of a pillar of the sensor. Di-
mensions shown in mm. b) 3D rendered illustration of reflector, LEDs, pinhole aperture,
and quadrant photodiode sensor. c) Infrared LEDs flood the truncated-conical pillar cavity
with light causing the diffuse reflector at the top of the cavity to behave as a light source.
d) Light from the reflector passes through the aperture and a light spot is projected below.
Reproduced with permission from Khamis et al. (2019)

.

based on the displacement of the reflector disk and calibration was performed to provide
3-axis forces (in Newtons) and pillar displacement measurements. The sensor’s provided
various possible sampling frequencies between 100-1000Hz. The dimensions of a 3×3 ar-
ray was 24.0×30.6×12.8mm and spatial density was 7mm between the pillars. The force
resolution was 0.05N. Due to the relative hard silicone pillar, the hysteresis was negligible
but the sensitivity was lower than the Xela tactile sensor. As each pillar provided indepen-
dent measurements, the sensor was also capable of detecting incipient slipping, which can
be very useful for precise grasping manoeuvres. In this thesis, two 3×3 Contactile sensors
were used and placed on the outer and inner sides of one fingertip of the Robotiq 2F140
gripper as shown in Fig. 3.1.

Xela Tactile Sensor

The Xela tactile sensors were procured from XELA robotics. These were array based tac-
tile sensors available in various matrix configurations: 4×4, 4×6 and 6×1. The sensor’s
working principle is shown in Fig. 3.3. It has three layers: the outer shell made of fab-
ric which offers protection, the elastomer layer composed of multiple magnets in an array
configuration and the MLX90393 chip which is a magnetometer that recognises the dis-
placement of the magnet in 3-dimensions. On application of external force, the magnets
can move in x, y and z directions which results in magnetic field changes. The magnetic
field changes are converted to forces measurements. To reduce cross-talk effect due to
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Figure 3.3: Xela tactile sensor. The sensor functions on hall-effect principle. Reproduced
with permission from Tomo et al. (2018) ©IEEE

.

multiple magnets in close proximity, an air-gap was introduced inside the elastomer silicon
layer which acts as a deformable spring-like structure. The magnet and the corresponding
magnetometer sensor together forms one sensing unit called as a taxel. The distance be-
tween each taxel was 4.7mm and the 16 taxels were designed for a 4×4 configuration with
sensor size 26×27×6.05mm. The sampling frequency of the sensor was 100Hz. The sen-
sor’s output values were not calibrated to force (Newtons) but rather provided raw values in
the range of 36000 - 45000 which were normalised. The Xela tactile sensors were attached
to one of the fingers of the Robotiq 2F140 gripper. The sensors provided a sensitivity of
0.001N according to the datasheet (Tomo, 2019). The sensors have a built-in temperature
compensation mechanism as well (Tomo, 2019). Due to the flexible fabric covering, the
sensor suffers from hysteresis. During continuous experiments, the robot was periodically
commanded to wait between data acquisitions after every 10 probing interactions which
allowed to compensate for hysteresis and recalibrate the baseline value. Furthermore, since
the sensor was based on Hall-effect principle, it was applicable to non-ferromagnetic ob-
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jects only. For objects that may contain ferromagnetic material, the Contactile sensor was
used instead. The 6×4 sensor array was placed on the outer side, 4×4 array on the inner
side and 6×1 array on the bottom side of one finger of the Robotiq 2F140 gripper as shown
in Fig. 3.1.

3.3 Miscellaneous Hardware and Software
The robot experiments in the thesis were performed on a workstation using Ubuntu

18.04 with Intel©Xeon Gold 5222 CPU and 16GB RAM. For training neural networks,
a Nvidia©Quadro RTX 4000 GPU was used. For ground-truth annotation of the pose of
objects in Chap. 4-6, the OptiTrack©PrimeX22 cameras were used. The OptiTrack cam-
eras use markers to track pose of objects within the a predefined volume. Six OptiTrack
PrimeX22 cameras were used, which provide 0.1mm accuracy and 360 frames-per-second
frame rate. The Motive software (NaturalPoint, Inc.) was used for data extraction from
the OptiTrack cameras. Ethernet communication was used to connect the robots and the
OptiTrack cameras. The USB data interface was used for the Azure Kinect DK camera, the
Contactile sensor, and the Xela Tactile sensor (through CAN-to-USB driver). Robot Op-
erating System (ROS) Melodic (Quigley et al., 2009) middleware provided the hardware
drivers for the robots and sensors. The MoveIt motion planning framework (Chitta, 2016)
was used for trajectory planning and control of the robots. Point cloud processing was
performed using Point Cloud Library (PCL) (Rusu and Cousins, 2011) and Open3D (Zhou
et al., 2018c). The main codebase was built in C++ for Chap. 4-6 and Python was used for
neural network architectures in Chap. 7-8. The experimental objects consisted of everyday
household objects such as bottles, mugs, cans and so on which were intentionally chosen
for ease of reproduction. The summary of the main hardware has been summarised in the
Tab. 3.2.

Table 3.2: Summary of the hardware used in the thesis

Component Quantity

UR5 Universal Robots 1
Franka Emika Panda 1
Robotiq 2F140 Gripper 1
Microsoft Azure Kinect DK 1
Contactile sensor 3×3 array 2
Xela Tactile Sensor 4×4 array 1
Xela Tactile Sensor 6×4 array 1
Xela Tactile Sensor 6×1 array 1
OptiTrack PrimeX22 cameras 6
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Chapter 4

TIQF: Translation-Invariant
Quaternion Filter for Visuo-Tactile
based Pose Estimation

Parts of this chapter are published as:

• “Active Visuo-Tactile Point Cloud Registration for Accurate Pose Estimation

of Objects in an Unknown Workspace,” P. K. Murali, M. Gentner, and M.
Kaboli in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021, pp. 2838-2844 (Murali et al., 2021)

• “An Empirical Evaluation of Various Information Gain Criteria for Active

Tactile Action Selection for Pose Estimation,” The IEEE International Con-
ference on Flexible and Printable Sensors and Systems (FLEPS 2022), pp.
1–4 in P.K. Murali, R. Dahiya, and M. Kaboli (Murali et al., 2022a)

The video of the experiments from this chapter is available here:
https://drive.google.com/file/d/1ud7Vc5LkjG7HCuIvnURwaKKEy-K5Ri-s/

view?usp=sharing

4.1 Introduction
Accurate estimation of object pose (translation and rotation) is crucial for autonomous

robots to grasp and manipulate objects in an unstructured environment. Even small inac-
curacies in the belief of the object pose can generate incorrect grasp configurations and
lead to failures in manipulation tasks (Li et al., 2020a). Vision sensor-based strategies

44
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Figure 4.1: Experimental setup. A Robotiq two-finger adaptive robot gripper is equipped
with 3-axis tactile sensor arrays and mounted on a UR5 robotic arm. In this figure, 6
experimental objects are selected and placed in the workspace. The experimental objects
constitute daily objects as follows: (i) olive oil bottle, (ii) spray, (iii) cleaner, (iv) shampoo,
(v) sugar box. In experiments, objects were placed in the workspace with various locations
and orientations.

are prevalently employed for object pose estimation; nevertheless, the pose estimates are
often afflicted by residual uncertainty arising from improper sensor calibration, adverse
environmental conditions (such as occlusions, extreme illumination, and poor visibility),
and inherent object characteristics (including transparency, specularity, and reflectivity).
Tactile sensors in combination with robot proprioception provides high fidelity local mea-
surements regarding object pose. However, mapping entire objects using tactile sensors is
highly inefficient and time-consuming which necessitates the use of intelligent data gather-
ing strategies and combining vision sensing to drive the tactile sensing (Hsiao et al., 2011).

This chapter presents a novel framework for active visuo-tactile point cloud registration
for accurate pose estimation of objects. The contributions are as follows:

(I) A novel formulation termed translation-invariant quaternion filter (TIQF) for dense
vision-based point clouds and sparse tactile-based point clouds for point cloud reg-
istration.

(II) An active touch strategy to enable the robot to generate candidate actions and select
the optimal action strategically based on information gain. The active strategy is
demonstrated to be computationally efficient to perform an exhaustive uncertainty-
based action selection in real-time without the need for trading information gain with
execution time. The vision pose estimate is corrected by using the tactile modality
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Figure 4.2: The proposed framework for an active visuo-tactile point cloud registration for
the accurate object localization

using the active touch strategy.

(III) Extensive experiments have been performed on benchmark datasets and robotic setup
shown in Fig. 4.1 to compare the proposed approach against the random exploration
strategy.

4.2 Methodology

4.2.1 Problem Formulation
An active visuo-tactile based pose estimation framework is proposed, as shown in

Fig. 4.2. The problem is formally defined as follows: given NO objects with designated
frames Fk with k = 1, . . . ,NO in the workspace WXY Z of the robot with unknown poses.
The workspace WXY Z is defined as a discretised 3D grid bounded by the kinematic reach-
ing constraints of the robot and defined in the world coordinate frame W. The pose of each
object is presumed to remain invariant over time. The objective is to find the object pose
WHFk given sensor measurements vS from vision sensor and tactile sensor tS. The proposed
approach is used to verify and correct the pose of the object obtained from visual sensing
with tactile perception.
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4.2.2 Proposed Framework
As described in the framework in Fig. 4.2, vision-based pose estimation is used for

providing an initial estimate which is subsequently corrected by active tactile-based esti-
mation. In Fig. 4.2a, the point cloud vS is captured by the vision sensor and is transformed
to the world frame W by applying the WHC homogeneous transformation typically known
as the hand-eye transformation, where C is the camera frame. Pre-processing steps such
as plane segmentation and clustering are performed to extract the points corresponding
to the object of interest (Scluster). Subsequently, the translation-invariant quaternion filter
(TIQF) approach which is a probabilistic pose estimation method, is used for pose estima-
tion. TIQF works on a putative set of correspondences between the model and scene clouds
which is found in the correspondence estimation step using the closest point rule (Besl and
McKay, 1992). The TIQF algorithm upon convergence provides the rotation estimate vx,
the corresponding rotation uncertainty vΣx and translation estimate vt. The pose estimate
from vision is used in order to initialise the active tactile-based pose estimation procedure
as there can be residual errors in pose estimation from vision-based sensors that can be
corrected with high-fidelity tactile measurements. The tactile-based pose estimation shown
in Fig. 4.2b is also performed using the TIQF algorithm and shows the adaptability of the
algorithm to handle batch data and sequential data as well as dense and sparse data. Tac-
tile point cloud data are collected sequentially forming the tactile point cloud tS. TIQF is
performed to get a rotation and translation estimate (x, t respectively). Furthermore, an ac-
tive touch selection strategy is presented as described in Sec. 4.2.4 in order to intelligently
and efficiently extract tactile measurements (a∗t as shown in Fig. 4.2b), as performing each
tactile measurement is a time-consuming process. The TIQF method and the active tactile
exploration approach are detailed in the subsequent sections.

4.2.3 Translation-Invariant Quaternion Filter (TIQF)
To solve the point cloud registration problem for the vision-based pose estimation and

the active tactile-based pose estimation in the same manner, a method termed translation-
invariant Quaternion filter (TIQF) is presented. For point clouds from a vision sensor, the
TIQF algorithm can be used in a batch manner and during active tactile exploration it can
handle sequential point measurements as well. The point cloud registration problem given
known correspondences can be formalised as follows:

si = S.Roi + t i = 1, . . .N (4.1)
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where si ∈ R3 are points belonging to the scene cloud S drawn from sensor measurements
and oi ∈ R3 are the corresponding points belonging to the model cloud O. The scale,
rotation and translation are defined as S∈R3, R∈ SO(3) and t∈R3 respectively which are
unknown and need to be computed in order to align oi with si. In the case where the object
model is known a priori O, the scale parameter is set to 1 i.e., S= {1,1,1}. The rotation and
translation estimation are decoupled, and the translation estimate can be trivially computed
once rotation is known. Given a pair of correspondences (si,oi) and (s j,o j), the following
can be defined s ji = s j− si and o ji = o j−oi. From Eq. (4.1):

s j− si = (Ro j + t)− (Roi + t) (4.2)

s ji = Ro ji (4.3)

Eq. (4.3) is independent of t and once rotation R is estimated, the translation t can be
obtained in closed form from Eq. (4.1).

The rotation estimation problem is cast into a Bayesian estimation framework. The ro-
tation estimate R is denoted in its quaternion form as the state x which needs to be estimated
by measurements z obtained via actions a upto time t. The various methods of represent-
ing rotations are provided in the Appendix A. Quaternions were chosen as (a) they do not
suffer from Gimbal lock issues present in Euler angles, (b) faster computation and memory
efficient compared to rotation matrices as 4 values are required to define a quaternion ver-
sus 9 values for rotation matrices, (c) easier to perform smooth interpolations between two
quaternions and less prone to numerical drift as it can be normalised to 1 and maintain the
rotation constraint (Zhang, 1997). As the pose of the target object remains unchanged, it is
regarded as a static Bayesian network. This assumption is realistic considering light con-
tacts and guarded motions during tactile exploration. During exploration of the workspace
by performing actions at , tactile measurements zt are obtained. These measurements are
then used to update the current belief of the state. Using a Bayesian formulation:

p(x|z1:t ,a1:t) = η p(x,z1:t ,a1:t) (4.4)

= η p(zt |x,z1:t−1,a1:t)p(x,z1:t−1,a1:t) (4.5)

where η is a normalization constant. Since zt only depends on the action at timestep t and
the state, the Eq. (4.5) can be simplified to

p(x|z1:t ,a1:t) = η p(zt |x,at)p(x,z1:t−1,a1:t) (4.6)

= η p(zt |x,at)p(x|z1:t−1,a1:t−1) (4.7)
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Note that p(x|z1:t−1,a1:t) = p(x|z1:t−1,a1:t−1), since the state depending on future actions
were not considered. The dependence of x on the actions is solemnly stemming from the
measurement model p(zt |x,at).

Quaternions are chosen as a smooth representation for the state x and estimated using
a Kalman Filter. To leverage the insights from Eq. (4.3), a linear measurement model is
formulated. The Eq.(4.3) can be reformulated using Quaternion algebra as:

s̃ ji = x⊙ õ ji⊙x∗ (4.8)

where⊙ is the Quaternion product, x∗ is the conjugate of x, s̃ ji = {0,s ji} and õ ji = {0,o ji}.
Since x is a unit Quaternion,

√
x⊙x∗ = ||x||= 1 can be used to get

s̃ ji⊙x = x⊙ õ ji (4.9)

s̃ ji⊙x−x⊙ õ ji = 0 (4.10)

Eq. (4.10) can be rewritten using the matrix notation of Quaternion multiplication as:[
0 −s jiT

s ji s×ji

]
x−
[

0 −o jiT

o ji −o×ji

]
x = 0 (4.11)[

0 −(s ji−oi j)
T

(s ji−o ji) (s j + si +o j +oi)
×

]
4×4

x = 0 (4.12)

where [v]× is the skew-symmetric matrix formed from the vector v. Eq. (4.12) is of the
form Hx = 0 where H is the pseudo-measurement matrix such that

H =

[
0 −(s ji−o ji)

T

(s ji−o ji) (s j + si +o j +oi)
×

]
∈ R4×4 (4.13)

The pseudo-measurement matrix H depends only on the measurements points s ji and the
model points o ji. Furthermore, it can be inferred that, in the no noise case, the true state x
must lie in the nullspace of H.

Eq. (4.12) can be reformulated as a pseudo-measurement model as:

Hx = zh (4.14)

and enforcing the pseudo-measurements zh = 0. For each time-step t, Ht is calculated
based on newly obtained measurement points (sji)t and transformed model points (oji)t . If
zt represents the measurements vector, and vt represents the measurement noise at time t,
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then:
zt = zh

t +vt (4.15)

Using Eq. (4.14), the Eq. (4.15) can be reformulated as:

Htxt = zh +vt (4.16)

0 = Htxt−vt (4.17)

Eq. (4.17) represents a linear equation in the state xt with the state-dependent noise term vt .
The measurement noise vt is considered as zero mean noise with covariance Pv

t . The exact
expressions for the state-dependent measurement noise is defined as follows. Let Px

t repre-
sent the covariance matrix of state xt and Pv

t the covariance matrix of the measurement noise
term v. The equation for the covariance of the measurement noise is similar to (Choukroun
et al., 2006) which is motivated from a fundamental proposition from Stochastic Filtering
Theory (Jazwinski, 1970)[Chap 3, Pg. 90] as:

Pv
t =

1
4

ρ
[
tr(x̂t−1x̂T

t−1 +Px
t−1)I4− (x̂t−1x̂T

t−1 +Px
t−1)

]
(4.18)

where ρ is a constant which corresponds to the uncertainty of the correspondence measure-
ments, tr refers to trace and x̂t refers to the mean of xt at time t. The process model is given
as xt = xt−1 as it represents the time-invariant rotation estimate of the object.

Hence, the Kalman filter equations can be defined as follows:

xt = xt−1−Kt (Htxt−1) (4.19)

Px
t = (I−KtHt)Px

t−1 (4.20)

Kt = Px
t−1HT

t
(
HtPx

t−1HT
t +Pv

t
)−1

(4.21)

where xt−1 is the state estimate at t−1, Kt is the Kalman gain and Px
t−1 is the covariance

matrix of the state at t−1.
Since the Kalman filter does not preserve the constraints on the state-variables such as

the unit-norm property of the quaternion, a common technique is to normalise the state and
the associated covariance matrix after each update as:

xt ←
xt

||xt ||2
Px

t ←
Px

t

||xt ||22
(4.22)

The rotation estimate x (quaternion) can be converted to the rotation matrix form R∈ SO(3)
and inserted into Eq. (4.1). Once the rotation estimate R is found, the translation estimate
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at time t tt is computed in closed form:

tt =
1
N

N

∑
i=0

(si−Rtoi) (4.23)

Thus, with each iteration of the TIQF, a new rotation and translation estimate is ob-
tained that is used to transform the model. The transformed model is used to recompute
correspondences and repeat the TIQF update steps. The change in homogeneous transfor-
mation between iterations is calculated for convergence check i.e., ∆T IQF < ξ conv if the
difference in the output pose is less than a specified threshold which in the experiments is
0.1 mm and 0.1◦ respectively and/or maximum number of iterations in order to check for
convergence (max itT IQF = 100).

4.2.4 Active Touch Exploration
To reduce the number of touches required to converge to the true position of the object,

informed decisions on which actions at to perform next based on the current state estimate
were necessary. The set of possible actions was constrained by the position of the object
in the workspace and the reachability of that position by the robot, and was denoted as A.
The set of actions A were generated by sampling uniformly along the faces of a bounding
box on the current estimate of the pose. An action is defined as a ray represented by a tuple
a = (n,d), with n as the start point and d the direction of the ray. The objective was to
choose the action a∗t , that maximizes the overall expected Information Gain. The informa-
tion gain was measured as the Kullback–Leibler (KL) divergence between the posterior dis-
tribution p(x|z1:t ,a1:t) after executing action at and the prior distribution p(x|z1:t−1,a1:t−1).
However, it should be noted that future measurements denoted as ẑt were hypothetical as
the robot action has not yet been performed at time t. The action-measurement model
p(ẑt |x,at) was approximated as a ray-mesh intersection in simulation to extract the hypo-
thetical measurement given a certain action when the object is at the estimated pose. For
each hypothetical action ât ∈A(xt−1) and the hypothetical measurement ẑt , the posterior is
estimated by p(x|ẑ1:t , â1:t) known as the one-step look ahead. Therefore, the most optimal
action a∗t was given by

a∗t = argmax
ât

∫
x

p(x|ẑ1:t , â1:t) log
p(x|ẑ1:t , â1:t)

p(x|z1:t−1,a1:t−1)
dx (4.24)
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Algorithm 1: Active touch for tactile point cloud registration and accurate object
localization

Input: vx, vΣx, vt, O
Result: tx, tΣx, tt
Initialisation:
xt ← vx, Σx

t ← vΣx, tt ← vt
Measurements tS← {}, Correspondences C← {},
Actions A← {}, Sim. Measurements Z← {},
KL Divergence DKL← {} ;
while ∆T IQF > ξ conv or it ̸= 100 do

Ô← transform(O, xt , tt) ;
if size(tS)≤ 2 then

a∗t = select random action(Ô) ;
else

A← generate possible actions(Ô) ;
Z← simulate measurements(A, Ô) ;
DKL← {} ;
for ẑt in Z do

t Ŝ← tS∪{ẑt} ;
Ĉ = estimate correspondences(Ô, t Ŝ) ;
x̂t , Σ̂x

t ← update TIQF(xt , Σx
t , Ĉ) ;

KL← compute kl div(xt , Σx
t , x̂t , Σ̂x

t ) ;
DKL←DKL∪KL ;

end
a∗t ← choose best action(A, DKL) ;
zt ← execute action(a∗t ) ;
tS← tS∪{zt} ;
C = estimate correspondences(Ô, tS) ;
xt , Σx

t ← update TIQF(xt , Σx
t , C) ;

tt ← compute translation(xt , C) ;
end
it ++ ;

end

Given that the prior and posterior are multivariate Gaussian distributions, the KL diver-
gence in Eq. (4.24) can be computed in closed form as (derivation provided in Appendix B):

a∗t = argmax
ât

1
2

[
log

det(Σ̄t−1)

det( ˆ̄
Σt)

+Tr(Σ̄−1
t−1

ˆ̄
Σt))−d

+( ˆ̄xt− x̄t−1)
T

Σ̄
−1
t ( ˆ̄xt− x̄t−1)

]
(4.25)
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Figure 4.3: (a) Simulated objects from Stanford 3D Scanning Repository (Levoy et al.,
2005) and (b) real experimental objects

where d is the dimension of the state vector and d = 4 in this case. This enables to evaluate
an exhaustive list of actions at marginal computation cost in real time without the need to
prune actions or setting trade-offs with computation time as compared to prior work (Saund
et al., 2017). Once the optimal action was calculated using Eq. 4.24 in simulation, the
selected action was performed by the robot and real measurement zt was extracted. The
overall algorithm is shown in Algorithm. 1.

4.3 Experimental Results

4.3.1 Experimental Setup
The experimental setup shown in Fig. 4.1 consists of Universal Robots UR5 robot with

a Robotiq 2F140 Gripper. The tactile sensors from XELA Robotics (Tomo, 2019) were
used on the fingertips and the phalanges as described in Chap. 3. A contact was established
with the object when the norm of the 3-axis force value of any taxel fr exceeds a threshold
τ f , which is defined with respect to the baseline values and had been tuned empirically. The
3D positions of the contacted taxels are transformed into the robot base frame using robot
kinematics and are appended to the tactile point cloud tS. An Azure Kinect DK RGB-D
camera was placed in front of the workspace, which provided the vision point cloud vS. The
simulation and experimental results are provided in the following sections. All simulation
and real experiments were executed on a workstation running Ubuntu 18.04 with 8 core
Intel i7-8550U CPU @ 1.80GHz and 16 GB RAM.
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4.3.2 Simulation Results
In order to validate the proposed method, extensive simulation experiments were per-

formed using the Stanford 3D Scanning Repository (Levoy et al., 2005). Five different
CAD objects from (Levoy et al., 2005) was used namely: Bunny, Buddah, Dragon, Ar-
madillo and Lucy as shown in Fig. 4.3a. Correspondences between the model and scene
point clouds were unknown a priori similar to realistic scenarios. All the models were
scaled to within [0,1]3 cm box. Noise randomly sampled from a normal distribution
N(0,5×10−3) was added to the cloud obtained from the meshes, henceforth called scene

point cloud. The initial pose for each model was sampled uniformly from [-5cm, 5cm]
and [−30◦,30◦] for position and orientation, respectively. The initial state x0 was ob-
tained from the initial start pose and the initial covariance Σx

0 was set to I4. To simulate
tactile measurements, points were sequentially sampled from the scene point cloud and
registered to the model cloud using the proposed TIQF algorithm. Random sampling was
compared with active sampling of points. Each experiment was repeated 100 times for
each of the five objects. Actions were uniformly sampled on each face of the bounding
box encapsulating the scene and ray-mesh (triangle) intersection algorithm was used in or-
der to extract the measured points. The Möller–Trumbore intersection algorithm (Möller
and Trumbore, 1997) was used in order to perform the ray-mesh intersection to extract hy-
pothetical measurements. For random action selection, an action was randomnly selected
from the sampled set of actions and was executed. For active touch selection, hypotheti-
cal measurements ẑ were extracted using the generated actions and one-step lookahead for
each action-hypothetical measurement pair was performed by running the TIQF algorithm
for a fixed number of iterations. The optimal action a∗t was chosen which was associated
with the largest KL divergence of the hypothetical posterior with the prior belief. For all
the objects in simulation, a total of 100 possible actions were generated in order to choose
the optimal action at each measurement step. Furthermore, it was noted that due to the
low number of sparse points available for registration, the TIQF algorithm often gets into
local minima. To address this, a well-known strategy was used to add local perturbations
sampled from a uniform distribution [−2◦,2◦] around the local minima. The action sam-
pling is demonstrated in Fig. 4.4a and the registration output is shown in Fig. 4.4c for the
Bunny dataset from the Stanford Scanning Repository. The simulation results are reported
in Fig. 4.5 showing the root mean square error (RMSE) of translation and rotation versus
number of points.
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(a) (b)

(c) (d)

Figure 4.4: Action sampling (a), (b) and point cloud registration output from TIQF (c) and
(d). The initial point cloud are shown in green and target point cloud in red. The black
points are chosen through action sampling and used to register with the target point cloud
through sparse-to-dense point cloud registration with TIQF.

4.3.3 Robot Experimental Results
In order to validate the framework with robotic systems, five daily objects of various

intrinsic properties were chosen as shown in Fig. 4.3b. The following objects were used:
shampoo, sugar box, spray, cleaner, and olive oil bottle. The objects were chosen accord-
ing to the following criteria: varying shape between simple (cuboid, cylinder) to complex
(for instance, spray) and varying degrees of transparency (for instance, highly transparent
cleaner, highly opaque sugar box). The corresponding CAD meshes for the real objects
were obtained using a high-precision 3D scanner. The objects are rigidly attached to the
workspace and the ground truth was extracted with respect to the world frame W with a
marker-based system. The objects were randomly moved around the workspace between
experiments to evaluate the robustness of the approach. The robot actions were performed
as guarded motions so that the robots do not topple the other objects in the workspace. The
initial estimate was computed from the vision point cloud by using the TIQF algorithm. For
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Figure 4.5: Simulation experiments on five meshes from the Stanford Scanning Repository

the tactile-based pose refinement, the tactile actions were generated uniformly with direc-
tions along coordinate axes on the 5 faces of the bounding box around the current estimate,
assuming that it is unfeasible to contact the object from the bottom when placed on a table.
The action list was pruned in order to remove actions that were kinematically unfeasible
and that collide with the workspace. Hypothetical actions-measurement pairs were gener-
ated with the ray-mesh intersection with the current estimate of the object. The candidate
action with the highest expected information gain with one-step lookahead was chosen and
performed on the real object. As the actions may not contact the real objects as they are
based on the current estimate, it must be noted that negative information i.e., information
about absence of measurements was not considered in the active perception calculation.
However, since the action generation and selection was guided initially by the vision esti-
mate and iteratively updated with the tactile measurements, empirically it was found that
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Figure 4.6: Robot experiments on five selected daily objects

fewer actions resulted in negative information. The action sampling for the olive oil bot-
tle is shown in Fig. 4.4b and consequently, the final pose estimate with TIQF is shown in
Fig. 4.4d. The ROS MoveIt motion planner was used which ensured that the robot moves
safely to start positions of actions by moving over the workspace WXY Z at a height larger
than the biggest object and descends vertically to the start point of the selected action. The
experimental trials for the five objects was repeated ten times for each object by varying
their ground truth locations. The results of the experiments are presented in Fig. 4.6.

4.4 Discussion
In this chapter, a novel method, termed the Translation-Invariant Quaternion Filter

(TIQF) for object pose estimation has been presented. For both simulated objects and
real objects, a highly accurate pose estimate (< 2 cm and < 2◦ RMSE error) was achieved.
As seen in Fig. 4.5, around 20 points from the scene point clouds were sufficient to con-
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verge to the target pose within the aforementioned error. It should be noted that the model

point clouds sampled from the CAD model contained approximately 2000 points. This
highlights the benefit of the TIQF algorithm for sparse-to-dense point cloud registration.
Similarly, for real objects, the pose error converged within 20 tactile probing actions. The
number of points acquired from each touch can vary between 0-24 points due to the varying
possibility of the taxels contacting the object. The variation in shape complexity did not
affect the performance of TIQF algorithm as seen from Fig. 4.6. Taking into account the
performance of active perception, Fig. 4.5 shows that in all simulated objects, the proposed
active strategy outperformed the random strategy (used in state-of-the-art methods such as
(Vezzani et al., 2017)) in terms of accuracy (average RMSE for rotation and translation)
and convergence rate with respect to the number of points for both rotation and translation.
Furthermore, the experimental results show that in the first 5 measurements, the RMSE for
translation and rotation for the active strategy was markedly lower than that of the random
approach. This demonstrated that the proposed method performs effectively right from
the first touch. The results in simulation were corroborated with the experiments with the
selected daily objects as seen in Fig. 4.6. Moreover, the objects were intentionally chosen
with varying degree of transparency, such as the cleaner that caused issues for vision sensor
but was accurately localised with tactile sensing. As noted earlier, the proposed method can
reason over multiple candidate actions to find the most optimal action using very low com-
putation time without the need for high compute hardware. This is shown in Tab. 4.1 for
meshes with 1000 and 5000 triangular faces respectively wherein the one-step lookahead
time was calculated. It was found that for an object mesh with 1000 triangular faces, less
than 2s was needed to compute for 100 actions. In comparison, state-of-the-art works such
as (Tosi et al., 2014) constrain the action selection search policy with computation time, as
their approach would consume far too long (∼ 10s for a simple cuboid object) for practical
robotic applications.

To summarise, the robotic system using the proposed active touch-based approach

Table 4.1: The computation time required for action generation and action selection with
the one-step look ahead for mesh with 5000 triangular faces and mesh with 1000 triangular
faces. The performance shown here is representative as it is dependent on chosen hardware.
The values are deterministic for chosen hardware and mesh size.

# Actions 5000 triangular faces (s) 1000 triangular faces (s)

10 0.33 0.17
100 5.06 1.75

1000 42.56 13.70
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guided by a vision estimate, accurately and efficiently estimated the pose of objects in
an unknown workspace. Moreover, the vision estimate was corrected by using the tactile
modality. The proposed method enables the robotic system to actively reason upon possi-
ble next actions and choose the next best touch based on an information gain metric. It is
demonstrated that using the active touch point selection, on average highly accurate results
can be achieved with fewer measurements. TIQF was capable of handling sparse and se-
quential data such as tactile data and dense data provided in a batch manner such as vision
data effectively for pose estimation.

There are certain limitations in this chapter: the point cloud representing the object
(typically extracted from a CAD) mesh was needed for performing registration. TIQF was
susceptible to get stuck in local minima if incorrectly initialised. These drawbacks are over-
come with the Stochastic-TIQF (S-TIQF) algorithm presented in Chap. 5. Moreover, TIQF
and S-TIQF are rigorously compared against state-of-the-art baselines in various bench-
mark datasets and real robotic experiments in Chap. 5. Furthermore, time-invariant pose
estimation is focussed in this chapter where the objects did not move during robot interac-
tion. A time-dynamic visuo-tactile pose tracking algorithm named ArtReg is presented in
Chap. 6.



Chapter 5

S-TIQF: Shared Visuo-Tactile
Interactive Perception for Robust Pose
Estimation

Parts of this chapter are published as:

• “Shared Visuo-Tactile Interactive Perception for Robust Object Pose Estima-

tion”, P. K. Murali, B. Porr, and M. Kaboli, in The International Journal of
Robotics Research (IJRR) (2024): 02783649241301443 (Murali et al., 2024).

• “Active Visuo-Tactile Interactive Robotic Perception for Accurate Object Pose

Estimation in Dense Clutter,” P. K. Murali, A. Dutta, M. Gentner, E. Burdet,
R. Dahiya, and M. Kaboli in IEEE Robotics and Automation Letters (RA-L),
vol. 7, no. 2, pp. 4686-4693, April 2022 (Murali et al., 2022b).

The video of the experiments from this chapter is available here: https:

//drive.google.com/file/d/1h4mUDNETP0TMIFYyzASjbsTpb-ClNj5Q/view?

usp=sharingvideo-link

5.1 Introduction
Humans are capable of seamlessly integrating perceptual information from vision and

touch (haptic) to maintain a high-level of cognitive understanding of the environment
(Hatwell, 1987; Ernst and Banks, 2002). Robots should also be able to achieve a simi-
lar level of scene understanding given that they are similarly equipped, for example, with
visual and tactile sensing. The shared perception among complementary sensing modalities
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offers a comprehensive and accurate scene representation as well as addressing the weak-
nesses inherent in individual sensor systems. This should make perception robust against
sensor failure, as the robot could then rely on the other modality to retain the same level
of functionality (Murali et al., 2022e). As with humans, robots have also the option to
enhance their perceptual information through purposeful manipulative actions, a technique
known as interactive perception which forges a symbiotic relationship between action and
perception (Bohg et al., 2017). Thus, by leveraging shared perception, robots can poten-
tially improve their perceptual scene understanding which can improve the effectiveness
of downstream applications such as autonomous manipulation and interaction in unknown
environments.

However, sharing multi-modal visuo-tactile perceptual information is challenging due
to the weakly paired and complementary nature of the sensing modalities. Visual percep-
tion provides dense and global information of the scene, whereas tactile perception provides
sparse and local contact information. Temporal misalignment also affects shared perception
as visual data can be captured in one shot while tactile data acquisition requires sequential
contact interactions with objects (Li et al., 2020a). Previous research in the realm of multi-
robot and multi-sensor shared perception frequently relies on employing identical sensing
modalities, typically using multiple cameras. This simplification streamlines the represen-
tation of the shared scene (Lauri et al., 2020). Active perception techniques, characterized
by the proactive selection of sensor positions to enhance information gathering, are often
utilized in the context of single sensor setups or setups with multiple sensors of the same
modality (Connolly, 1985; Delmerico et al., 2018). Nevertheless, the extension of active
perception methods to multi-sensor configurations comprising different modalities, such as
visual and tactile sensing, poses a non-trivial challenge. Similarly, there are recent works
tackling the problem of category-level object pose estimation wherein the exact CAD mod-
els of object of interest are unknown but prior knowledge of objects belonging to the same
category is available. These works typically regress a shared canonical representation of
all possible object instances within a category and use the measured depth information to
lift from 2D to 3D space to perform object pose estimation (Wang et al., 2019; Deng et al.,
2022; Lee et al., 2021). In summary, the state-of-the-art methods have several limitations:
(a) category-level pose estimation techniques are predominantly tailored to visual sensing
information (RGB and depth data), rendering them unsuitable for direct adaptation to other
sensory modalities, such as tactile sensing; (b) these methods are also not evaluated for
photometrically challenging objects such as transparent objects (Wang et al., 2022a); (c)
active perception methods that are designed for mono-modal settings cannot be directly
extended to multi-modal settings; (d) misalignment between multi-modal visual and tactile
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Figure 5.1: Experimental setup: A Universal Robots UR5 sensorised with tactile sensor
arrays on the Robotiq Gripper, a Franka Emika Panda robot equipped with a Azure Kinect
RGB-D camera and clutter objects containing the novel target object. The objective is to
collaboratively declutter the scene, share the visuo-tactile perceptual information and find
the target pose of the object.

data often arises due to calibration errors that affects the shared perceptual information.
Addressing the misalignment requires specific calibration procedures, which are often la-
borious and time consuming.

In Chap. 4, a recursive Bayesian filtering approach for object pose estimation through
point cloud registration termed the translation-invariant Quaternion filter (TIQF) was pre-
sented. However, TIQF assumes a priori knowledge of the CAD model of the target object
and is prone to get stuck in local minima if incorrectly initialized. In this chapter, the
limitations of TIQF have been overcome and several new contributions are presented as
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follows:

I A novel shared visuo-tactile perception method for scene representation and object
reconstruction through a data-efficient joint information-theoretic approach for active
perception (vision or tactile).

II An improved approach termed Stochastic Translation-Invariant Quaternion Filter (S-

TIQF) which is a recursive Bayesian filtering method with robust stochastic optimiza-
tion for global optimal pose estimation. S-TIQF estimates the 6 DoF pose and 3 DoF
scale of unknown instances of categorical objects and relaxes the need for prior known
model of the object.

III A necessary condition for shared perception is the accurate calibration between the
sensing modalities. A novel approach for in-situ visuo-tactile based hand-eye cali-
bration is presented using arbitrary objects which removes the constraint of specific
hand-eye calibration targets and time-consuming calibration procedures.

IV The developed methods are integrated into a full-fledged framework that enables multi-
robot teams to share their perceptual information with the objective to declutter a com-
plex scene, reconstruct and robustly estimate the pose of objects.

Extensive experiments were conducted that validated the proposed framework against state-
of-the-art approaches on different benchmark datasets and real robotic setup (Fig. 5.1).

5.2 Methodology

5.2.1 Problem Formulation and Framework
The objective is to accurately identify the rotation R ∈ SO(3), position t ∈R3 and scale

S∈R3 of an unknown target object in dense clutter by sharing the scene perception between
visual and tactile sensing. The target object belongs one of the NcO known categories of
the objects and can be opaque or transparent. However, no knowledge of the object model
is assumed a priori. Firstly, in order to identify the individual rotations and positions of
objects the robots autonomously and deterministically declutter the scene through inter-
active perception (Fig. 5.2a). Secondly, vision and tactile sensing are used by the robots
to extract a shared scene representation and explore the unknown object for reconstruc-
tion (Fig. 5.2b). Finally, the reconstructed object model is used for pose estimation using
the S-TIQF algorithm with sensor acquired point cloud (Fig. 5.2c). Furthermore, if there
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Figure 5.2: The proposed framework for interactive visuo-tactile shared perception for
object reconstruction and pose estimation in dense clutter.

is a discrepancy between the visual and tactile point cloud data, it is typically due to in-
correct hand-eye calibration and a novel in-situ visuo-tactile hand-eye calibration solution
employing again the S-TIQF algorithm is also presented (Fig. 5.2bi).

5.2.2 Visuo-Tactile based Interactive Scene Decluttering
Before identifying the rotation and position of individual objects with the S-TIQF al-

gorithm, it may be necessary to declutter a possibly cluttered scene. As objects may be
present in random configurations in the scene, a method and a formalism are necessary to
encode the spatial and support relationships between the objects. Such relationships are
encoded in the form of a scene graph termed declutter graph.

The declutter graph is a directed graph G = (V,E) where the vertices of the graph V

represent the objects in the scene and the edges E from vi ∈ V to v j ∈ V encodes explicitly
the actions needed for decluttering or singulating object v j from object vi. Implicitly, the
edges represent the spatial and support relationships between the objects in V. The root
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node of the graph represents the target unknown object OT which is used to identify the
shape and pose. The declutter graph is constructed based on outputs from a semantic
segmentation network and grasp affordance network as shown in Fig. 5.2a. An RGB image
and a depth image are taken as inputs for the semantic segmentation network and grasp
affordance network respectively. Off-the-shelf semantic segmentation network from Chen
et al. (2017) and grasp affordance network from Morrison et al. (2020) were used. The
pre-trained models were fine-tuned with the real-world object datasets in clutter and their
respective segmentation masks. The output of the semantic segmentation network Mseg

provides the various objects present in the scene Ok ∈O. It is posited that the scene contains
a singular instance of the target object, while the clutter objects are characterized by other
categories distinct from the target object to facilitate the decluttering process. The edges of
the graph are extracted through overlap or proximity metric from Mseg defined as follows.

Definition 1 Overlap Metric: Two objects representing vertices of the graph vi,v j consti-

tute an edge ei j ∈ E if the overlap measure is greater than the threshold µo. The overlap

measure is defined as the Intersection over Union (IoU) value i.e., IoUi j = (Ci∩C j)/(Ci∪
C j) defines all points in the minimum area bounding box of the respective object masks.

Definition 2 Proximity Metric: Two objects representing vertices of the graph vi,v j con-

stitute an edge ei j ∈ E if the proximity measure is less than the threshold µd . The proximity

measure di j is defined as the shortest distance between the two contours of the object masks.

Thus, an edge ei j ∈ E is given by

ei j =


IoUi j (IoUi j > µo)

1/di j (di j < µd)∧ (IoUi j ≤ µo)

0 otherwise

(5.1)

Each edge e ∈ E also has an action attribute attached with them. The grasp affordance
network provides a grasp action agrasp and the grasp quality measure qk as output which
defines the edge attribute. For an edge ei j directed from vi to v j, the edge ei j is attributed
with a grasp or a push action for object v j based on a grasp threshold µq as:

ak =

agrasp
k qk ≥ µq

apush
k qk < µq

(5.2)

Hence, the declutter scene graph encodes the next object to singulate and the action (pre-

hensile/ non-prehensile) to perform. It ensures a targeted and greedy approach to separate
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Figure 5.3: (a) Pipeline for the declutter graph from the semantic segmentation network
and the grasp affordance network. (b) Another example of declutter graph with a transpar-
ent wineglass as target object. (c) Push action formulation.

out all cluttering objects around the target object. The graph is traversed in a depth-first
search manner. If there are no children nodes to the root node in the declutter graph G, then
the decluttering procedure is complete. Utilising prehensile (grasping) and non-prehensile
(push) actions allows the robotic system to choose the action that is more confident and in-
creases the flexibility of the system. Fig. 5.3a,b shows declutter scene graphs for different
target objects with the associated grasp/ push action for each object. In the experiments, the
threshold values are set as follows: µo = 0.05,µd = 0.5,µq = 0.1. As shown in Fig. 5.2a,
after each action was performed to singulate an object, the graph was updated and the
process was repeated until the decluttering was completed.

Grasp Action for Decluttering

The grasp action is defined by a tuple constituting the grasp position, grasp orientation
and the placement position as agrasp = {pgrasp,αgrasp,pplace}. The grasp affordances are
generated using the GG-CNN framework (Morrison et al., 2020). The network takes as
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input the depth image and provides as output the grasp position pgrasp, grasp orientation
αgrasp and grasp confidence measure qk. The grasp quality measure is used for providing
the edge attributes to the declutter scene graph. The placement position pplace is defined
at a predetermined position away from the clutter. In order to get object specific grasp
measures, the masked depth input was provided to the grasp affordance network using the
semantic segmentation outputs. The grasp affordance network depends on the quality of
the depth images provided as input and hence provides noisy grasp affordances when used
from a static viewpoint. In order to improve the grasp estimates, the robot is autonomously
moved to a viewpoint at a predefined height over the object to grasp using the centroid
information from the semantic segmentation output. The grasp action is considered to be
successful when the object is correctly grasped and placed at the desired location within
a predefined tolerance of 5 cm. The tactile sensors on the gripper are monitored for loss
of contact during grasp and place operation. If the robot fails to grasp at any point and
drops the object, it is detected by the tactile sensors and the action is repeated. A maximum
repetition counter of 5 times was set after which a human intervened to reset the complete
scene. The grasp action is illustrated in Fig. 5.4a.

Push Action for Decluttering

The push action is parameterized by a tuple with the push point and push direction apush =

(ppush,
−→
d push). The push trajectory is a straight line for a pre-defined distance. Quasi-

static pushing (Mason, 1986b) on a flat surface with uniform friction between the object
and the sliding surface is assumed. Using the instance segmentation mask of the object
to be pushed, vectors vi,k∀i are computed between the centroid of the bounding box of
the pushed object and all the other objects. The vector pointing towards the clutter is
provided by v = ∑i wivi,k. Consequently, each vector is weighted with scalar weights wi

that are inversely proportional to the distance such that higher weights are assigned to
objects closer to the pushed object. The final push direction is provided by

−→
d push =− v

||v||
as shown in Fig. 5.3b. The push point ppush is calculated as the point at the intersection
of the contour of the segmentation mask and push direction

−→
d push placed at the centroid.

This ensures the push action is acting along the centroid of the object. However, as the
width of the fingertips of the gripper is bulky (about 3 cm), it may not be always possible
to ensure the robot to reach the position ppush without colliding with other objects in the
clutter. Hence, points are sampled along the contour of the instance segmentation mask of
the object and the bounding box of the fingertip size is projected on these sampled points
in the image. The bounding box projection is calculated through the camera intrinsics
and the extrinsic hand-eye calibration matrix. The mean Intersection-over-Union (IoU) of
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Figure 5.4: a) Grasp action performed by the robot, i) RGB input, ii) depth input, iii) grasp
affordance output, iv) tactile signal values during the grasp action. b) Push action per-
formed by the robot, i) RGB input, ii) Semantic segmentation and push affordance output,
iii) tactile signal values during the push action

the gripper fingertip bounding box is calculated with the other objects and the sampled
point resulting in the least mean IoU value is chosen as ppush. The action is performed
successfully if the object is pushed to the desired position within a certain tolerance of
5 cm. As unintended object movements are expected during pushing due to the varying
shapes and center of mass positions of the objects, the tactile sensors on the grippers are
monitored to detect any loss of contact. This triggers a recalculation of the push action and
the process is repeated again. A maximum repetition counter for 5 times is set after which
a human intervenes and resets the complete scene. The push action process is shown in
Fig. 5.4b.

5.2.3 Shared Visuo-Tactile based Active Object Reconstruction
As the shape of the target object is unknown, reconstruction of the object is necessary

for pose estimation and other possible downstream tasks such as manipulation. The frame-
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work autonomously chooses (a) which sensor to use, (b) where to perform sensing and (c)
how much of the object information is necessary for the chosen objective of pose estima-
tion. In a single sensor scenario, the next best action selection problem seeks to find the
optimal next sensory action to perform based on current knowledge of the environment in
order to maximise the information gain that is calculated through an objective function.
In a multi-agent and multi-sensor scenario, there is additionally the sensor selection prob-
lem which seeks the find the optimal sensor to employ given the current knowledge of the
environment and incentivises the coordination between the agents as well as reducing the
redundant data collection. The two robots equipped with a visual RGB-D sensor and tac-
tile sensor array respectively as shown in Fig. 5.1 are tasked to reconstruct the object in a
coordinated and time-efficient manner.

Vision and Tactile Action Sampling: For the Next-Best-View (NBV) and Next-Best-
Touch (NBT) selection, Monte-Carlo sampling of the visual and tactile actions respectively
is performed around the target object. The centroid ocentroid of the target object is extracted
from the semantic segmentation mask.

For NBV sampling, Nnbv viewpoints are sampled on the hemisphere space centered on
ocentroid of the target object. A viewpoint av ∈ Av is defined by the position pv ∈ R3 and
orientation Rv ∈ SO(3) of the camera frame expressed in the world coordinate frame wHc.
The constraint on av is that the camera orientation must be towards the object of interest
i.e., the Z-axis of the camera frame which points outward from the camera needs to pass
through the centroid of the target object. The position pv is randomly sampled as a point
on the hemisphere (Marsaglia, 1972). The points which are sampled outside the kinematic
limits of the robot are discarded. The rotation matrix Rv is calculated through the angle-axis
formulation {ê,θ} as follows:

ĥ =
pview−ocentroid

||pview−ocentroid||
(5.3)

θ = cos−1 (ĥ · Ẑ), ê =
ĥ× Ẑ
||ĥ× Ẑ||

(5.4)

where Ẑ = {0,0,1} the Z-axis of the world coordinate frame W. The rotation matrix Rv

can be calculated from the angle-axis formulation using the Rodrigues’ formula (Murray
et al., 2017) as follows:
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Rv =

 cosθ + ê2
x(1− cosθ) êxêy(1− cosθ)− êz sinθ êy sinθ + êxêz(1− cosθ)

êz sinθ + êxêy(1− cosθ) cosθ + ê2
y(1− cosθ) −êx sinθ + êyêz(1− cosθ)

−êy sinθ + êxêz(1− cosθ) êx sinθ + êyêz(1− cosθ) cosθ + ê2
z (1− cosθ)


(5.5)

where ê = {êx, êy, êz}. For the NBT sampling, the tactile action is defined as at ∈ At by
the position pt ∈R3 and direction d̂. The positions are randomly sampled as points on each
face of the oriented bounding box of the object except the bottom face where the object
rests on the table. The bounding box is determined from the 2D semantic segmentation
mask of the target object and a predefined height. The direction d̂ of each pt is calculated
as the normal perpendicular to the face of the bounding box. The NBV and NBT sampling
are graphically shown in Fig. 5.5.
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Figure 5.5: Next best view (NBV) and next best touch (NBT) action selection

Active Sensor Selection and Next Best Action Selection: At each iteration, the next
best action a∗ is selected from the set A = Av⋃At using the joint information gain ap-
proach. The space around the target object is discretised into a 3D voxelised probabilistic
occupancy grid G with resolution Gres. Each grid cell gi ∈ G is represented by a Bernoulli
random variable Xg which represents the probability if the grid cell is occupied Xg = 1
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or unoccupied Xg = 0. These Bernoulli random variables are assumed to be independent
which allows the calculation of the probabilities of the occupancy grid p(gi). The con-
fidence of the reconstruction can be calculated as the uncertainty of the grid through the
Shannon Entropy as:

H(G) =− ∑
gi∈G

p(gi)log(p(gi))+(1− p(gi))log(1− p(gi)) (5.6)

Given a point cloud captured by the camera or tactile sensor, the occupancy grid is up-
dated with probabilities using the respective sensor models (Hornung et al., 2013). A
virtual sensor measurement model for visual and tactile sensors are defined for the NBV
and NBT calculations. The visual sensor generates the point cloud using a time-of-flight
(ToF) sensor. The virtual vision sensor model is defined by a set of beam measurements
Rv = r1,r2,r3, . . .rnv where rnv refers to the maximum number of rays. These rays are ro-
tated such that they span the field-of-view of the sensor. Similarly, a virtual tactile sensor
is defined which casts a set of rays Rt = r1,r2,r3, . . .rtaxel where rtaxel refers to the number
of taxels in the sensor array. Raytracing is used to update the grid cells, wherein the grid
cells where the ray terminates is updated as hits and remaining grid cells are updated as
misses. Given the observed grid cell g and the measurement from sensor observation z, the
log-odds is updated as L(g|z) = L(g)+ l(z) wherein L(g) = log p(g)

1−p(g) and

l(z) =

{
log ph

1−ph
z=̂ hit

log pm
1−pm

z=̂ miss
(5.7)

where ph and pm are the probabilities of hit and miss which are user-defined values set to
0.7 and 0.4 respectively as in (Hornung et al., 2013). The posterior probability p(g|z) can
be computed by inverting L(g|z).

For a single sensor case, the expected information gain by taking an action ak ∈A and
corresponding expected measurement ẑt is given by the Kullback–Leibler (KL) divergence
between the posterior entropy after integrating the expected measurements and the prior
entropy:

E[I(p(gi|at , ẑt))] =H(p(gi))−H(p(gi|at , ẑt)) (5.8)

Hence, the action a∗ that maximises the information gain can be selected as the next best
action:

a∗ = argmax
ak∈A

(E[I(p(gi|ak, ẑk))]) (5.9)

A näive way of extending to multiple sensors is to compute Eq. (5.9) for each sensor.
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However, this would result in collection of redundant data due to sensor data overlap. Fur-
thermore, there would be no incentive for coordination between the robots as well as lever-
aging the vision and tactile sensors with complementary properties. Hence, a joint sensor
selection and action selection method is proposed for vision and tactile sensors. The same

occupancy grid formulation can be utilised for integrating the sensor information from vi-
sion and tactile sensors. For each cell of the occupancy grid, the probabilistic evidence
from the each sensor needs to be updated. An energy cost D(at) is defined that encodes the
time taken to perform the robot action. In general, performing visual actions is faster than
performing tactile actions with the robot. Hence, the energy cost is set as D(av

t )<D(at
t) for

all cases unless the target object is transparent. In case of objects that are transparent, the
visual sensor produces erroneous data and the energy cost was set as D(at

t) < D(av
t ), thus

preferring the tactile actions in such cases. The proposed method for detection of trans-
parent objects is described in following subsection. Hence the optimization for the sensor
selection and next best action is performed by:

a∗ = argmax
ak∈A

(
E[I(p(gi|ak, ẑk))]

D(ak)
) (5.10)

Detection of Transparent Objects: Detecting transparent objects is a challenging
tasks for off-the-shelf visual cameras with RGB and depth sensing. Many prior works
are available for detection of transparent objects with the usage of specialised sensors or
specific calibration setups, and with analytical or data-driven methods (Ihrke et al., 2010).
A simple heuristic approach is proposed to detect object transparency in order to set the
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Figure 5.6: Bounding box segmentation and IoU calculation using (a) RGB image (b) Point
cloud for detecting transparent objects.
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Algorithm 2: Shared Visuo-Tactile Object Exploration
Input: Current point cloud P
Result: Next best action a∗

Action Sampling:
Av← sample(pv,Rv)
At ← sample(pt , d̂)
A=Av∪At

Next Best Action Selection:
Update prior entropy of occupancy grid:
H(G)← prior entropy ; ▷ Eq. (5.6)
Extract virtual measurements: ẑk ∀ak ∈A

Update posterior entropy of occupancy grid:
H(G|ẑ)← posterior entropy
Calculate information gain:
E[I(p(gk|ak, ẑk))] ; ▷ Eq. (5.8)
Set D(a) given type of target object
Calculate next best action:
a∗ = argmaxa∈A

E[I(p(gk|ak,ẑk))]
D(a) ; ▷ Eq. (5.10)

energy cost D(at) during object exploration. The RGB image and point cloud of the target
object are extracted from a perpendicular top-down view. The bounding box Crgb of the
object is extracted from the RGB image using contour segmentation techniques (Bradski
and Kaehler, 2000). Assuming that the object lies on a plane, plane segmentation tech-
niques were employed to remove the points belonging to the plane from the point cloud.
The 2D bounding box of the remaining points (ignoring the height of the bounding box)
is extracted as Cpc. The overlap measure between Crgb and Cpc which is measured by the
Intersection-over-Union (IoU), as previously defined in Sec. 5.2.2, is used classify the ob-
ject transparent if IoUpc/rgb < ω or opaque. The transparent object detection strategy is
visualised in Fig. 5.6. The detected transparent object is used to set the value for D(at

t)

such that it is less than D(av
t ). This ensures that tactile actions are preferred for object

exploration in case of transparent objects. The algorithm for shared visuo-tactile object
exploration is summarized in Algorithm 2.

Category-level Object Shape Reconstruction

Category-level reconstruction refers to the problem setting where the exact instance of
the object model is not available but rather the category to which the object belongs is
known a priori. In order to recognise the shape of category-level objects, a self-supervised
learning approach with an autoencoder network is presented that aims to reconstruct the
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Figure 5.7: Architecture for the reconstruction network.

original point cloud when provided a subsampled point cloud. The network is trained on
only synthetic object models belonging to the same category but not identical as the real-
world objects. A dataset D of synthetic point clouds was generated from synthetic CAD
models available in the ShapeNet repository (Chang et al., 2015). The trained network
is directly used with visual and tactile point clouds from real-world objects. This avoids
expensive real-world data collection and annotation process. The network consists of a
feature-extraction encoder and upsampling decoder unit as shown in Fig. 5.7. The input
point clouds Pin are randomly sampled with different sampling factors to produce point
clouds with point numbers between 60 and 1024. The reconstructed output point cloud
Pout from the network is fixed to 2048 points. This is done to emulate tactile-only and
visuo-tactile point clouds which are sparse and dense respectively. The low density of the
input point clouds provides a challenge for shape reconstruction as other simpler techniques
such as interpolation cannot be used. The trained network is used for inference with sensor
acquired point clouds without any fine-tuning with real-data. Given that the reconstruction
methodology is comprehensively detailed in Chap. 8, an in-depth discussion is omitted in
this section for brevity.
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5.2.4 Visuo-Tactile based Robust Pose Estimation

Stochastic Translation-Invariant Quaternion Filter (S-TIQF)

Following the reconstruction of the object point cloud, pose estimation is carried out to
determine the unknown scale S ∈ R3, rotation R ∈ SO(3), and translation t ∈ R3. As
defined in Eq. (4.1), the point cloud registration problem given any two point clouds (S and
O) with known point-to-point correspondences is given as:

si = S.(Roi)+ t i = 1, . . .N (5.11)

where si ∈ R3 are points in the point cloud S and oi ∈ R3 are the corresponding points
belonging to the point cloud O and . represents the element-wise product. Typically, for
object pose estimation the point cloud S is derived from scene with sensor measurements
and the point cloud O is derived from the object model. Unlike in Chap. 4 wherein the exact
object CAD model is known, in this case, the reconstructed object model is used from the
Sec. 5.2.3 as O. Hence the scaling factor needs to be estimated.

Scale Estimation: The reconstructed object point cloud O is uniformly scaled within a
[0,1]3 cube. To find the absolute scale S, the ratio of the axis aligned bounding box (AABB)
of the scene S and object O point clouds is computed, i.e., if {(xmin,xmax),(ymin,ymax)

(zmin,zmax)} represents the AABB for a point cloud, then:

S = { |xmax− xmin|S
|xmax− xmin|O

,
|ymax− ymin|S
|ymax− ymin|O

,
|zmax− zmin|S
|zmax− zmin|O

} (5.12)

Subsequently, the object point cloud O can be scaled by S and the estimation of R and t
remains. Eq. (5.11) simplifies to si = Ro′i + t where o′i = Soi for i = 1,2, . . .N which is the
same as Eq. (4.1) in Chap. 4.

Stochastic Initialization: The Translation-Invariant Quaternion Filter (TIQF) is pre-
sented in the Chap. 4 which is a Kalman filter approach for point cloud registration ap-
plicable for dense visual and sparse tactile point clouds. However, TIQF is sensitive to
initialisation conditions. Fig. 5.8 shows an example error surface for point cloud registra-
tion with TIQF using the Stanford Bunny dataset (Levoy et al., 2005). It is obtained by
varying the initial position about one axis in the range of [−5.0,5.0] and initial orientation
about one axis in the range of [−π,π]. The error is calculated as the root mean squared error
of the distance metric between corresponding points. It can be noted from Fig. 5.8 that the
error surface contains multiple local minima in which the optimization can be trapped de-
pending upon the initial conditions. This problem is solved with a stochastic initialization
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Figure 5.8: Error surface calculated as the distance between corresponding points of two
clouds upon performing TIQF with initialisation parameters (translation and rotation) var-
ied (best viewed on-screen and in colour).

method for TIQF that is robust against local optima termed StochasTIQF (S-TIQF).
The stochastic alignment is performed through Simulated Annealing (Bertsimas and

Tsitsiklis, 1993). Simulated Annealing (SA) is a well-known stochastic probabilistic method
for approximating the global optima for a given function f (b). Simulated Annealing was
chosen for the following reasons: (a) very effective to escape local minima (Granville et al.,
1994), (b) low number of parameters to tune, (c) cost function for SA in this application
(cf. Eq. 5.14) has clear geometric interpretations and (d) simpler to implement compared
to other heuristic optimisation algorithms (Henderson et al., 2003). In SA, a temperature
variable is used to guide the exploration. An initial temperature t = t0 was chosen. The
annealing schedule was chosen as the geometric progression as: t ′ = tζ where ζ is the
cooling rate. In the experiments, the cooling rate was set as ζ = 0.98. At t = t0, an ini-
tial state b = b0 is chosen at random and the cost is computed using the cost function
c0 ← f (b0). At every iteration, a random state in the neighbourhood of the current state
is chosen and the difference in cost ∆c is calculated. The probability of accepting the new
state is provided by the following condition:

p(b′) =

1 ∆c≤ 0

e
−∆c

t ∆c > 0
(5.13)
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The new state b′ is accepted if p(b′) > random(0,1). The process is repeated until a pre-
defined temperature threshold is reached t < tmin or for a fixed number of iterations. Ran-
dom restarts are also used wherein t is set to t0 when t ≤ tmin. In the experiments, random
restarts were performed 10 times. In the experiments, the parameters were set as follows:
t0 = 1 and tmin = 0.0001. In order to use Simulated Annealing with TIQF, a cost func-
tion for SA needs to be designed that upon finding the solution provides a good initial-
ization for TIQF to extract the rotation and translation estimates. The cost is defined as
the root mean squared error of the nearest neighbour point-to-point distances for each state
b = {R, t}. The nearest neighbourhood correspondence assignment allows fast computa-
tion of the costs and thereby allowing larger iterations of SA. The state with minimal cost
naturally minimizes the distance between the two point clouds. Hence for two point sets S
and O, the cost is defined as follows:

f (b) =
1
|O|(∑

√
||min(S− (RSAO+ tSA))||2) (5.14)

The temperature variable allows exploration in the initial phase thereby escaping the local
minima and gradually converges to an optimal solution. The estimated rotation RSA and
translation tSA is used for TIQF to find the accurate solution.

Correspondence Estimation: A crucial factor in point cloud registration from Eq. (5.11)
is the knowledge of point correspondences in the two point sets. In realistic scenarios, the
point correspondences are not known a priori. On the one hand, simultaneous pose and cor-
respondence estimation methods such as ICP and its variants rely upon nearest neighbour
search for extracting point correspondences while iteratively improving the pose in suc-
cessive steps (Besl and McKay, 1992). On the other hand, correspondence-based methods
extract point correspondences through feature matching and may employ rejection tech-
niques to remove outlier correspondences prior to performing registration. In the case of
visual and tactile point clouds, there are further challenges: (a) the point density difference
between visual and tactile point clouds and (b) visual point clouds can be captured in one
shot whereas tactile point cloud is aggregated through sequential tactile actions. Due to the
point sparsity, typical feature-based correspondence matching algorithms are not accurate
as they depend on local surface information. Similarly, nearest neighbour search as used in
ICP is not robust to outliers and can get stuck in local minima.

The mutual nearest neighbours or Best-Buddies Pairs (BBP) (Oron et al., 2017) method
were used to estimate the point correspondences. It has been shown in (Oron et al., 2017)
that the BBP measure is robust to outliers and difference in point density but in the context
of template matching in the image domain. The point pi ∈ P and q j ∈ Q are Best Buddy
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Pairs (BBP) if pi is the nearest neighbour of q j in point cloud Q and q j is the nearest
neighbour of pi in point cloud P. Mathematically, it can be written as:

bbp(p,q,P,Q) =

1 NN(pi,Q) = q j∧NN(qi,Q) = p j

0 otherwise
(5.15)

where NN(pi,Q) = argminq∈Q d(pi,q) and d(pi,q) is a distance measure. Typically, the
nearest neighbours can be calculated based on Euclidean distances as d(pi,q) = ||q−
(R̂pi + t̂)|| where R̂ and t̂ are the current rotation and translation estimates respectively.
Furthermore, the normals are also included in case there are multiple candidates for near-
est neighbours. The corresponding points pi and q j must also have their associated nor-
mals npi and nq j oriented approximately in similar directions i.e., the NN(pi,q j) = 1 if
arccos(nq j .R̂np j) is less than an user-defined threshold.

Rotation and Translation Estimation: The estimation of rotation and translation is
decoupled and performed in consecutive steps as provided in Chap. 4 (Sec. 4.2.3). The
decoupling is done by computing the relative vectors between pairs of corresponding points
as s ji = s j− si and o′ ji = o′ j−o′i. The Eq. (5.11) is simplified as:

s j− si = (Ro′ j + t)− (Ro′i + t) (5.16)

s ji = Ro′ ji (5.17)

The Eq. (5.17) is independent of translation t, hence these measurements are termed as
translation-invariant measurements. The rotation estimation is done as detailed in Sec. 4.2.3
in Chap. 4 for TIQF. Once the rotation estimate R is found, the translation estimate t is
computed in closed form:

t =
1
N

N

∑
i=0

(si−Ro′i) (5.18)

Thus, with each iteration of the S-TIQF, a new rotation and translation estimate are ob-
tained which are used to transform the model. The transformed model is used to recompute
correspondences and repeat the S-TIQF update steps. The change in homogeneous trans-
formation between iterations ∆T IQF < ξ conv is calculated for convergence criteria i.e., if the
difference in the output pose is less than a specified threshold which in the experiments is
0.1 mm and 0.1◦ respectively and/or maximum number of iterations in order to check for
convergence (max itS−T IQF = 100). The psuedo-code of the S-TIQF algorithm is shown in
Algorithm 3.
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Algorithm 3: S-TIQF
Input: Point clouds S, O
Result: Estimated rotation R, translation t, scale S
Scale Estimation:
AABBS = calculate AABB(S), AABBO = calculate AABB(O),
S = AABBS

AABBO
; ▷ Eq. (5.12)

O← scalePC(S)
Stochastic Initial Alignment:
Initialisation: t = tinit ,ζ = 0.98, tmin = 10−5,TSA = I4×4

cbest = getCost(O,S,TSA) ; ▷ Eq. (5.14)
while restarts< max restarts do

while t > tmin do
t← tζ ; Trand ← getRandomTransformation()

c← getCost(O,S,Trand); ▷ Eq. (5.14)
TSA← acceptanceProbability(c,cbest) ; ▷ Eq. (5.13)

end
t← tinit
restarts++

end
O← transformPC(TSA)
TIQF:
while ¬converged do

si ∈ S,oi ∈ O← correspondenceEstimation(S,O) s ji,o ji← TIMS(si,oi) ;
▷ Eq. (5.17)

R← rotationEstimation(sji,oji) ; ▷ Sec. 5.2.4

t← translationEstimation(sji,oji) O← transformPC(R, t)
converged← convergenceCriteria()

end

5.2.5 Visuo-Tactile Hand-Eye Calibration
As described in the framework in Fig. 5.2bi, if there is a discrepancy between visual

and tactile point clouds for a static object, it is typically due to incorrect hand-eye cali-
bration (c.f., Fig. 5.20a). Conventionally, the hand-eye calibration is performed using a
specialized target such as a calibration grid as shown in Fig. 5.9a. However, this process
is time-consuming as it adds additional overhead such as specialized targets and calibra-
tion procedures. Furthermore, the grid-based calibration technique may contain residual
errors as it is dependent on the chosen robot end-effector poses, lighting conditions, and
sensor noise. Recent works have introduced deep-learning based markerless hand-eye cal-
ibration methods using segmentation and differentiable rendering techniques to regress the
camera-to-robot pose based on input images of the robot and associated joint kinemat-
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Classical Approach Proposed Approacha b

Classical Approach Proposed Approacha b

Figure 5.9: (a) Classical grid-based hand-eye calibration method (b) Proposed in-situ
visuo-tactile hand-eye calibration method

ics (Lu et al., 2023; Labbé et al., 2021). While the disadvantages of solely relying upon
visual images such as occlusions, challenging backgrounds for segmentation, and lighting
conditions still apply, there is an additional overhead of training requirement for various
types and kinematic configurations of the robots. Furthermore, these methods can regress
the camera-to-robot pose only in cases wherein the robot is visible to the camera but can-
not be used in eye-in-hand cases wherein the camera is attached to the end-effector of the
robot. In this section, the need for a specific calibration artifact or target has been re-
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laxed and hand-eye calibration has been performed using any known arbitrary object in
the workspace of the robot, hence termed as in-situ calibration. Moreover, integrating vi-
sual and tactile modalities substantiates the estimation, refining the visual approximations
through the incorporation of sparse tactile measurements, thereby enhancing the precision
of the hand-eye calibration.

Consider the two-manipulator system shown in Fig. 5.9b. The hand-eye calibration
problem of finding EP

HC is casted as a point cloud registration problem given any arbitrary
object. The camera frame C can be expressed in the world coordinate frame W as follows:

W HC = W HBP
BP

HEP
EP

HC (5.19)

where W HBP is known a priori through user assignment of the world frame and BP
HEP is

extracted through the robot kinematic model and EP
HC is the so-called hand-eye calibration

matrix. The coordinate frames BP and EP are the base frame and end-effector frame of the
Panda robot respectively and BU is the base frame of the UR5 robot. Therefore, the hand-
eye calibration matrix can be obtained as:

EP
HC = W H−1

EP
W HC (5.20)

Let’s denote W ĤC as the estimated W HC. The transformation W HC can be estimated through
point-set registration that minimises the following cost function:

f (W ĤC,
CPv

i ,
W Pt

i ) =
1
N

N

∑
i=1
||W ĤC

CPv
i −W Pt

i ||2 (5.21)

where CPv
i is the point cloud of an arbitrary object captured by the camera in the camera

frame and W Pt
i is the point cloud extracted using tactile sensing of the same arbitrary object

in the world coordinate frame and i = 1,2,3 . . .N represent the corresponding points in the
two aforementioned point clouds. The position of the arbitrary calibration object is rigidly
fixed to the workspace such that it does not move during tactile probing actions. Further-
more, as guarded motions were used for tactile probing actions where the force values on
the tactile sensors were monitored and the robot stopped immediately upon contact, thus
ensuring the object did not move while performing tactile actions. The tactile point cloud
is expressed in the world frame through the following transformations:

W Pt = W HBu Bu
HT

T Pt (5.22)

where the coordinate frame T is the frame of the tactile sensor. The transform W HBu is
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defined a priori by the user assignment of the world frame and as the tactile sensors are
rigidly attached to the gripper, the corresponding transform Bu

HT is received from the robot
kinematic model. The transformation Bu

HT can be obtained from the kinematic model
of the robot and any miscalibration of the tactile sensor frame due to possible incorrect
mounting of the tactile sensors are absent. Other scenarios may involve the tactile sensors
and the visual sensors attached to the same robot. The formulation involving a multi-robot
setup can be simplified trivially for a single robot setup as well.

As the tactile data is high fidelity, the aim is to register the dense visual point cloud CPv

to the sparse tactile point cloud W Pt using the S-TIQF algorithm as detailed in Section 5.2.4.
Note that any point cloud registration method can be used but as it is demonstrated in
Sec. 5.3, state-of-the-art point cloud registration methods perform poorly in dense-sparse
registration whereas the S-TIQF approach shows high accuracy even with low number
of points. The S-TIQF algorithm produces the homogeneous transform W ĤC as output.
Plugging the W ĤC value into Eq. (5.20), the required hand-eye calibration matrix EP

HC can
be obtained.

5.3 Experimental Results

5.3.1 Experimental Setup
The experimental setup shown in Fig. 5.1 consists of a Universal Robots UR5 robot

with a tactile sensorised Robotiq 2F140 Gripper and Franka Emika Panda robot with the
standard Panda Gripper. The tactile sensor array of the two-finger gripper are acquired
from Xela robotics©and Contactile©as explained in Chap. 3. Each taxel of both types of the
sensor arrays provides 3-axis force measurements. This configuration allows the robot to
acquire tactile data while touching with the outer side and from the fingertip. Two different
types of tactile sensors which were based on different operating principles were used in
order to show that the proposed framework was agnostic to the tactile sensing technology.

The normalised force values of the tactile sensors are measured and contact is estab-
lished when the force exceeds the baseline threshold fts ≥ τ f where τ f = 1.1. The contact
points Pt

obs expressed in the common world frame W are added to the tactile point cloud Pt

after every action. An Azure Kinect DK©RGB-D camera is rigidly attached to the Panda
Gripper with a custom designed flange which provides the vision point cloud. Hand-eye
calibration is performed to find the transformation between the Panda Gripper and the cam-
era frame and consequently transformed into the common world coordinate frame W. All
operations involving point clouds use the Point Cloud Library (PCL) (Rusu and Cousins,
2011), occupancy grid computations uses OctoMap library (Hornung et al., 2013), and the
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Figure 5.10: a) Target unknown objects. The properties evaluated by human experts: T:
Transparency/Specularity, C: Shape complexity, S: Symmetry, +: medium, ++: high. b)
Objects used to clutter the workspace. c) Visuo-tactile point cloud of an exemplary object
demonstrating the need for tactile exploration in regions of transparency where vision data
is absent, (d) Visuo-tactile point cloud of a transparent object wherein visual data is com-
pletely missing and object is reconstructed and localised with tactile data.

overall setup uses a ROS-based framework. All robot experiments are run on a worksta-
tion using Ubuntu 18.04 with Intel©Xeon Gold 5222 CPU. The reconstruction network
is implemented using the Tensorflow framework and training/ inference are performed on
Nvidia Quadro RTX 4000 GPU. The maximum allowed speeds for the UR5 and Panda
were 75 mm/s and 100 mm/s respectively for safety constraints.

Object List: In order to be easily reproducible, widely available daily objects are used
for experimentation from the following categories: (a) bottle, (b) cup, (c) mug, (d) spray, (e)
detergent and (f) wineglass. The objects from each category are shown in Fig. 5.10a. These
objects are unknown and their models are reconstructed and pose estimation is performed.
Furthermore, a set of other objects shown in Fig. 5.10b are used to clutter the workspace
and the target object. Each scene is composed of one target object from any category
and a subset of clutter objects placed around the target object in randomised dense clutter
scenarios.
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Ground	TruthReconstructed	Point	CloudAcquired	Point	Cloud
CombinedTactileVisionCombinedTactileVision

Figure 5.11: Visuo-tactile point clouds and the respective reconstructed point cloud using
the proposed reconstruction network. The first and second column shows the measured
point clouds from vision and tactile sensing respectively. The third column (combined)
shows the union of the visuo-tactile point clouds after being aligned with each other. The
reconstructed point clouds (columns 4-6) shows the output of the reconstruction network
for vision, tactile and visuo-tactile input point clouds. The last column shows the ground
truth point cloud sampled from the corresponding CAD mesh and the respective RGB im-
ages.

5.3.2 Active Visuo-Tactile based Target Object Reconstruction
As the target objects list contains both transparent and opaque objects, the framework

automatically prefers tactile exploration for transparent objects and visuo-tactile explo-
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ration for opaque objects using the joint criteria defined in Eq. (5.10). An exemplary case
that demonstrates the benefit of the proposed method is shown in Fig. 5.10c. The ketchup
bottle has parts of transparent and non-transparent regions. The vision point cloud shown
in red captures the overall shape but contains missing points in the transparent region (high-
lighted in the green box). Due to the information gain method for object exploration, tactile
acquisitions are performed only in the regions where the visual points are missing or there
is uncertainty due to noisy data (around the edges).

For reconstruction evaluation, the Chamfer distance metric (CD) compared to the ground
truth point clouds is used. The ground-truth point clouds shown in Fig. 5.12 are extracted
using a specialized hand-held sensor device. The chamfer distance metric (CD) is de-
fined as the sum of the average nearest-neighbour distance between one point cloud and
the other and vice-versa. Mathematically, given the ground-truth point cloud Pgt and the
reconstructed point cloud Precon, the CD is defined as:

CD(Pgt ,Precon) =
1
|Pgt | ∑

p1∈Pgt

min
p2∈Precon

||p1− p2||2+ (5.23)

1
|Precon| ∑

p2∈Precon

min
p1∈Pgt

||p2− p1||2

where | • | refers to the cardinality (number of points) of the point cloud and || • ||2 refers
to the L2 norm. Lower CD value denotes higher reconstruction precision. For the ideal
case where the reconstructed point cloud exactly matches the ground truth, CD ≈ 0.0 m.
Qualitatively, through empirical analysis, it was found that CD < 0.01 m denotes accurate
reconstruction, 0.01 m < CD < 0.1 m denotes good reconstruction while CD > 0.2 m
implies poor reconstruction of the point cloud. The qualitative results for the reconstruc-
tion with vision and tactile data with the proposed reconstruction network are shown in
Fig. 5.11. The acquired point clouds with visual, tactile sensing and combined visuo-tactile
point clouds (where each point cloud was aligned with each other and aggregated) were fed
into the reconstruction network and the reconstructed point clouds were extracted as output
shown in Fig. 5.11. For all transparent objects, visual point clouds were not captured due
to sensitivity of depth cameras with transparent objects. Hence, only tactile point clouds
were used for reconstruction. For opaque objects, the tactile point clouds were captured in
regions of uncertainty of visual data. It can be seen that the proposed reconstruction net-
work was capable of reconstructing from sparse tactile and dense visuo-tactile inputs in an
accurate manner compared to the ground-truth point clouds which were sampled from the
CAD mesh of the objects. The proposed reconstruction technique method, with the help of
the learned model over the category-level synthetic objects, is able to reconstruct the ob-
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Figure 5.12: Quantitative reconstruction results showing the Chamfer distance (CD) met-
ric of the reconstructed point cloud compared with the ground-truth point cloud for (a)
opaque objects and (b) transparent objects. The bar graph represents the average values
and the error bars represent the standard deviation.

ject even with sparse input point clouds. Five repeated experimental trials were conducted
for each target object and with each exploration strategy: active, random, and uniform,
resulting in 210 total trails (14 objects, 3 strategies, 5 repetitions). It can be seen that for
opaque objects, the shared visual and tactile data result in a higher accuracy of reconstruc-
tion (CD < 2 cm) as seen in Fig. 5.12a. The visual point clouds for opaque objects capture
all the sides of the objects due to the active visual exploration. On average, combining with
tactile data improves visual reconstruction accuracy by 17%. For opaque objects, the tac-
tile reconstruction accuracy is relatively worse due to the fact that incomplete tactile point
clouds are collected as the robot only explores regions unseen by the camera.

For transparent objects, even a sparse input point cloud provides acceptable reconstruc-
tion accuracies as seen in Fig. 5.12b. In this case, since no visual point cloud is avail-
able, the robot explores the object with only tactile sensing in an information-gain seeking
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Figure 5.13: (a) Active visuo-tactile reconstruction accuracy for opaque objects and (b)
active tactile-only reconstruction accuracy for transparent objects compared with random
and uniform strategies. The error bars in (a) and shaded regions in (b) represent the stan-
dard deviation.

strategy. All objects are accurately reconstructed (CD < 2 cm) by the network except the
wineglass2. The reason for the lower accuracy for wineglass2 is due to its peculiar
shape, and it is out of distribution to the training dataset.

Furthermore, a comparison study of the proposed active exploration strategy with base-
line random and uniform strategies was performed for both vision and tactile modality. The
baseline strategies for tactile exploration are defined as follows: the bounding box on the
target object is discretised into a 3D grid with each grid cell of size 3 cm×3 cm which
corresponds to the size of the sensor patch. The robot is moved to touch the grid cell clos-
est to its base frame and sequentially touches each cell in a uniform manner. In contrast,
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the random strategy involves choosing the next possible grid cell in a randomised manner.
In a similar manner, random and uniform exploration strategies are defined for the vision
modality: viewpoints on the hemisphere sphere are sampled uniformly in the same way
as described in Sec. 5.2.3 and the robot starts from one extreme possible position and se-
quentially moves to the next viewpoint in a uniform manner. The random strategy chooses
one among the possible sampled viewpoints at random. As the objective is to compare the
sample efficiency of the actions and to have an unbiased comparison with each strategy,
the number of tactile probing actions were limited to 20 actions for transparent objects
and to 3 visual actions and 5 tactile actions for the remaining opaque objects. The results
for reconstruction of opaque objects with visuo-tactile sensing is shown in Fig. 5.13a and
transparent objects with tactile sensing in Fig. 5.13b. As the exploration is performed for
the objective of object reconstruction, CD is used as a metric for comparison. For both
transparent and opaque objects, increasing the number of exploratory actions reduces the
CD value. For transparent objects that rely upon only the sense of touch, active explo-
ration converges to an accuracy of CD ≈ 2 cm within 20 touches. Random exploration
converges to CD ≈ 5 cm in 20 touches, but with higher variance due to the stochasticity
of exploratory actions. Uniform exploration has the least accuracy due to the fixed nature
of exploration, which often collects redundant data, leading to long data collection times.
In contrast for opaque objects, random and active strategies perform similarly on average
(CD ≈ 1.5 cm) and subsequently active tactile strategy slightly improves the reconstruc-
tion accuracy (CD ≈ 1.1cm). Negligible reduction in CD value is reported with random
and uniform tactile actions following visual perception for opaque objects.

5.3.3 Category-level Visuo-Tactile based Pose Estimation
In order to benchmark the stochastic TIQF (S-TIQF) and previously presented TIQF

methods, firstly instance-level pose estimation was performed where the object model point
cloud is obtained from the ground truth mesh on the Stanford Scanning Repository bench-
mark. The following state-of-the-art methods are used for comparison: Iterative Closest
Point (ICP) (Besl and McKay, 1992), Sparse iterative closest point (S-ICP) (Bouaziz et al.,
2013), Random sample consensus (RANSAC) (Fischler and Bolles, 1981), Truncated least
squares Estimation And SEmidefinite Relaxation (TEASER++) (Yang et al., 2020) and
PREDATOR (Huang et al., 2021a). Both local registration methods such as ICP and S-
ICP, global optimization methods such as RANSAC and TEASER++ and learning meth-
ods such as PREDATOR are compared against. These popular baselines are chosen as they
are often used in the literature for the point cloud registration task. Furthermore, some of
these baselines such as ICP and RANSAC are also used to perform the final registration
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task with learning-based methods where the features are learnt using a neural network.
The learning-based method termed PREDATOR (Huang et al., 2021a) learns to predict
the registration of point clouds with low overlap between each other as is the case with
visuo-tactile point clouds. The pretrained model of PREDATOR (Huang et al., 2021a)
was used and hyper-parameters were set as suggested in the paper with the exception of
first subsampling dl = 0.01, dgcnn k = 5 for sparse point clouds. Secondly, to demon-
strate the flexibility of the proposed method, the PhoCal dataset (Wang et al., 2022a) was
used to perform a feasibility study for category-level pose estimation using the NOCS-
based (Wang et al., 2019) framework. For real robot experiments, the reconstructed point
clouds of the objects from the reconstruction network were used as the object point cloud
and the acquired vision and/ or tactile point cloud as the scene point cloud for category-level
pose estimation.

Benchmark Experiments

Stanford Scanning Repository Benchmark: In order to benchmark the presented meth-
ods against the state-of-the-art, a standard point cloud registration benchmark from the
Stanford Scanning repository (Levoy et al., 2005) was used. Six CAD models from the
dataset namely bunny, dragon, happy Buddha, Lucy, statue and armadillo (Levoy et al.,
2005) (cf. Fig. 4.3a for the objects from the Stanford Scanning Repository). In order to

StochasTIQF (S-TIQF)	

TIQF

S-ICPRANSAC TEASER++

ICP PREDATOR

Figure 5.14: Qualitative results on the Stanford Bunny Dataset: The grey mesh represents
the model at ground truth for reference, the blue sparse point cloud represents the scene
point cloud and the red dense point cloud represents the transformed model point cloud
after performing point cloud registration.
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Figure 5.15: Pose error calculated as ADI error for models from the Stanford Scanning
Repository. The object point cloud consisting of 1024 points is sampled from the models
while the scene point cloud is randomly sampled from the model and consists of (a) 20, (b)
40, (c) 80 and (d) 120 points respectively. p values calculated by Welch’s t-test shown as ∗.
The bar plot represents the average and the error bars represents the standard deviation.

have an unbiased comparison of pose estimation, the model point cloud are derived from
the CAD mesh in the dataset. This is done because errors in shape reconstruction can prop-
agate and influence pose estimation. Each model point cloud is sampled uniformly from the
CAD mesh to have 1024 points. The scene point cloud is sampled randomly from the CAD
mesh and the point numbers are set to 20, 40, 80 and 120 points. The varying degree of
sparsity can test the robustness of the proposed approach against state-of-the-art methods.
The model and scene point clouds are normalized and scaled to lie within a [−1,1]3m cube.
In order to evaluate the sensitivity of the proposed method against local optima, the initial
pose for the model point cloud is randomly chosen from a position range of [−5.0,5.0]m
and rotation from [−180◦,180◦] for each experimental trial. The correspondence estima-
tion for ICP and S-ICP is based on nearest neighbourhood search whereas RANSAC and
TEASER++ are based of Fast Point Feature Histograms (FPFH) descriptors (Rusu et al.,
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2009). For each selected model from the Stanford scanning repository, the experiment is re-
peated 5 times with the initial pose randomly varied for each trial. The errors are measured
as using the Average Distance of model points with Indistinguishable views metric (ADI)
which is insensitive to object symmetries (Hinterstoisser et al., 2013). The ADI metric is
measured as:

erradi =
1
|O| ∑

p1∈O
min
p2∈O
||(Rgtp1 + tgt)− (Restp2 + test)|| (5.24)

where (Rgt , tgt) and (Rest , test) refers to ground-truth and estimated rotation and translation
respectively, O refers to the object model point cloud and the points p1 ∈ O and p2 ∈ O

belong to the object point cloud and denote the closest corresponding points when O is
transformed by {Rgt , tgt} and {Rest , test} respectively.

Qualitative results with the Stanford Bunny model are shown in Fig. 5.14. Quantitative
results evaluated with all the models selected from the Stanford scanning repository are
provided in Fig. 5.15. It can be seen that for all levels of point sparsity (20-120 points),
the S-TIQF outperforms baselines (p < 0.001 for Welch’s t-test in all cases except for
scene cloud with 40 points with TIQF where p < 0.01). Interestingly, S-TIQF also out-
performs TIQF method and this is due to the stochastic initial alignment used in S-TIQF.
For instance, in the case of the scene point cloud with 20 points, S-TIQF outperforms the
closest baseline S-ICP by 45% on average and 38% for scene point cloud with 120 points.
The results corroborate the known weaknesses of correspondence-based techniques such
as RANSAC and TEASER++ as they rely upon features for estimation correspondences.
These correspondences remain fixed throughout the pose estimation process. Due to point
sparsity, feature extraction methods such as FPFH fail to generate valid correspondences.
Similarly, the S-TIQF and TIQF methods outperforms the learning-based method PREDA-
TOR by more than 50% on average for all levels of point sparsity (20-120). The point
sparsity and absence of neighborhood points is challenging for the graph neural network
in PREDATOR to extract good features for the overlapping regions. Furthermore, simul-
taneous pose and correspondence methods such as ICP and TIQF perform relatively well
on sparse data but rely on good initialization. The S-TIQF approach removes the need for
good initialization through the stochastic search for initial alignment.

Ablation Study: The effect of the stochastic alignment approach based on Simulated
Annealing (SA) is compared with other local (or fine) registration methods such as ICP
and S-ICP which is term as SA+ ICP and SA+ S-ICP. Similar to the evaluation procedure
above, the bunny dataset from the Stanford Scanning Repository is used and an initial pose
is randomly sampled from [-5.0,5.0]m and [−180◦,180◦] and repeated the experiment 20
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times. While in the evaluation above, the randomly sampled initial pose is provided as
input to the proposed approach and all baseline methods, in this case, the initial pose was
provided to the stochastic alignment method and the baseline methods (ICP and S-ICP) are
suitably modified such that they take as input the pose output from the SA module. The
results are presented in Tab. 5.1. The SA approach improved the pose estimation for both
ICP and S-ICP methods for all levels of point sparsity: for instance, pose estimation with
scene point cloud with 20 points improved by ∼ 10% whereas for 120 points, it improved
by over 25%. The stochastic alignment method also improves with increasing number of
points. However, the S-TIQF approach still outperforms the modified SA+ICP and SA+S-
ICP approaches by atleast 20% in terms of ADI error.

PhoCal Dataset Benchmark: A feasibility study with the PhoCal dataset (Wang
et al., 2022a) is conducted to demonstrate category-level pose estimation with the S-TIQF
method. In contrast to the proposed reconstruction network which is trained on point
clouds of synthetic objects belonging to the same category as the real-world objects, the
Normalized Object Coordinate Space (NOCS) based framework (Wang et al., 2019) can
also be used to generate the point cloud of the objects. Given RGB inputs, the NOCS
network learns a NOCS map which is a shared canonical space of objects within a cate-
gory. The NOCS map can be combined with the depth map to lift from 2D image to 3D
point cloud space. This is used as the object point cloud and the point cloud from the
depth map is considered as the scene point cloud for point cloud registration. Furthermore,
point cloud registration methods such as Umeyama algorithm (Umeyama, 1991) are used
to perform pose estimation with the NOCS-based framework (Wang et al., 2019). The Pho-
Cal dataset (Wang et al., 2022a) contains the RGB, depth and learnt NOCS maps of real
world objects belonging to different categories particularly for photometrically challeng-
ing objects. In order to perform accurate 6D pose annotation, the authors of the PhoCal
dataset (Wang et al., 2022a) used a tool-tip on a robotic manipulator to manually touch

Table 5.1: Ablation study for the effect of the stochastic alignment with Simulated Anneal-
ing (SA) method on ICP and S-ICP. The values presented are mean error and standard
deviation.

Scene Pt. Size S-TIQF
ADI (cm)

SA + ICP
ADI (cm)

SA + S-ICP
ADI (cm)

20 points 4.36±1.32 7.65±2.23 6.98±1.54
40 points 3.35±1.21 6.61±2.08 5.11±1.64
80 points 3.05±0.85 5.41±1.53 4.21±1.35
120 points 2.85±0.79 4.28±1.67 3.55±1.58
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the object at various locations that are sparsely distributed on the object. These touch
points are used as the tactile point cloud in this work. The learnt NOCS maps are used
to generate the object model point cloud and the depth map provides the visual point
cloud. S-TIQF is compared with method introduced in (Wang et al., 2019) for pose es-
timation. Fig. 5.16 shows an example from the PhoCal dataset demonstrating the rendered
NOCS map (Fig. 5.16b) and the reconstructed models (Fig. 5.16d). The reconstructed
point clouds are partial (see bottle and fork in Fig. 5.16d) as only the visible portions of
the scene are used to generate the NOCS map and provides further challenges for pose es-
timation. Fig. 5.17 shows the comparison results of S-TIQF method against the Umeyama
approach (Umeyama, 1991) used in (Wang et al., 2019). It is shown that the proposed
approach outperforms the baseline method for tactile point clouds by approximately 35%
median ADI error and about 20% ADI error when applied to dense visual point clouds
(p < 0.001). The scale estimation approach that is used for visual and tactile sensing based
point clouds is shown in Fig. 5.17 on the secondary Y-axis. The scale error is calculated as:

errscale =
√

(sgt
x − sest

x )2 +(sgt
y − sest

y )2 +(sgt
z − sest

z )2 (5.25)

wherein, Sest = {sest
x ,sest

y ,sest
z } represents the estimated scale and the Sgt = {sgt

x ,s
gt
y ,s

gt
z }

denotes the ground-truth value. Lower error denotes better estimation. On average, the
scale error is 43% lower for tactile-based perception compared to the visual perception.
As the dataset consists of transparent and specular objects, the visual sensing method pro-
vides incomplete point clouds with a large number of missing or erroneous points whereas
the tactile sensing approach provides sparse but approximately uniformly distributed point
clouds which can be seen from Fig. 5.16c. Furthermore, tactile sensing is insensitive to
the transparency or specularity properties of the objects and provides high fidelity point
measurement.

Robotic Experiments

In order to validate S-TIQF in real world settings, extensive experiments were carried out
using the robotic setup shown in Fig. 5.1 and everyday objects shown in Fig. 5.10. Similar
to the benchmark experiments, the S-TIQF and TIQF methods are compared against the
same baseline methods. The model point cloud is derived from the reconstructed point
cloud from the reconstruction network. The scene point cloud comprises of vision and/
or tactile data. For each target object, the experiment is repeated 5 times by randomising
the cluttered scene for each iteration. Similar to the previous experiments, the initial pose
is sampled randomly from [-5.0,5.0] m and [−180◦,180◦] for each trial and the same ini-
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Figure 5.16: Qualitative results using the PhoCal dataset: (a) RGB input, (b) rendered
NOCS map, (c) Visual and tactile point cloud, (d) reconstructed model point clouds from
NOCS maps in (b).

Figure 5.17: Comparison of the proposed method against the NOCS (Umeyama
method) (Wang et al., 2019) performed as a feasibility study with the PhoCal dataset. p
values calculated by Welch’s t-test shown as ∗.

tial pose is provided to all comparison methods. The quantitative results for transparent
objects are shown in Fig. 5.18a and opaque objects in Fig. 5.18b. The results with trans-
parent objects are similar to the benchmark experiments due to the nature of sparse tactile
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point clouds and S-TIQF outperforms the baseline approaches. For instance, S-TIQF out-
performs the next best baseline method S-ICP by nearly 40% on average for sparse tactile
point clouds (p < 0.001). In comparison, it can be seen from Fig. 5.18b that for dense
visual point clouds, nearly all the methods perform equally well and the S-TIQF method
compares favourably with the state-of-the-art (p < 0.001). The proposed method achieves
an average ADI error of 2.1 cm whereas TEASER++ achieves an error of 2.5 cm for dense
visuo-tactile point clouds (p = 0.04034). The learning-based approach PREDATOR also
performs on-par with other baselines for the dense visuo-tactile point clouds with average
ADI error of 3.1 cm. However, the performance of PREDATOR with sparse tactile point
clouds for transparent objects are much worse, with the average accuracy of S-TIQF nearly
65% better than PREDATOR. The PREDATOR method assumes sufficiently dense local
point features even if there is minimal overlap for the overlap attention module which is
not the case for sparse tactile point clouds and results in lower performance. In fact, it can
be seen that the combined visuo-tactile point clouds results in better accuracy than visual
or tactile point clouds alone, demonstrating the importance of shared perception. For in-
stance, the accuracy improves by∼ 35% for S-TIQF using the combined visuo-tactile point
cloud instead of either vision or tactile point clouds alone. In this case, it should be noted
that the higher levels of inaccuracies with tactile data are a result of the active object explo-
ration strategy wherein tactile data are only collected in locations of higher uncertainty and
inaccessible locations to visual data. Hence, it can be concluded that the S-TIQF method
provides highly accurate pose estimation for both sparse tactile and dense visual data. The
object-wise pose estimation results with S-TIQF is shown in Fig. 5.19 and detailed in the
Discussion section (Sec. 5.4).

5.3.4 Visuo-Tactile Hand-Eye Calibration
This section provides comparative studies performed for hand-eye calibration of the

proposed in-situ approach and standard methods using calibration grid with the algorithm
originally presented by Tsai and Lenz (1989). For the calibration grid method, the grid was
fixed at a suitable distance from the camera such that it is clearly within the field of view
of the camera. Ten different viewpoints were chosen manually ensuring that the different
end-effector rotations were incorporated. The experiment was repeated five times. The
in-situ visuo-tactile calibration approach does not require a specialized grid. Any object in
the workspace of the robot can be used as long as an accurate point cloud corresponding
to the object is available. The object must be immobilised and multiple visual pointclouds
are captured from different viewpoints. With an incorrect hand-eye calibration, the point
clouds from different views would not overlap accurately and result in the scenario shown
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Figure 5.18: Average pose error for real-world objects for (a) opaque objects with visuo-
tactile perception and (b) transparent objects with tactile perception. p values calculated
by Welch’s t-test shown as ∗.

in Fig. 5.20a. Furthermore, when tactile data are collected from the same object, resulting
in the tactile point cloud, an incorrect hand-eye calibration can be described in the scenario
shown in Fig. 5.20b. The tactile sensors are rigidly attached to the end-effector and the
robot kinematics are accurate enough to provide a grounding of the object pose. Using
the calibration grid method, an acceptable accuracy can be achieved, but residual errors
would still be present. The qualitative results are shown in Fig. 5.20c. Using the in-situ
approach with the S-TIQF method, a highly accurate solution can be obtained (Fig. 5.20d).
Quantitative results are shown in Fig. 5.20e. The proposed approach achieves < 1 cm error
in position and < 5◦ error in rotation.
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Figure 5.19: Object-wise pose estimation results with S-TIQF

Table 5.2: Numerical results from kinematic calibration benchmark showing the median
error and median absolute deviation

UR5 Panda

Calibration Error (mm) 0.303±1.82 0.432±3.342

Robot Kinematic Accuracy Benchmark for Calibration

The in-situ visuo-tactile based hand-eye calibration method depends on the accuracy of the
kinematic calibration (especially for the robot with tactile sensing). Although this assump-
tion is commonly used in the case of hand-eye calibration (Sun and Hollerbach, 2008), the
kinematic accuracy of both robots were benchmarked using an external sensor system to
evaluate the effect on hand-eye calibration. The OptiTrack motion capture system (Nat-
uralPoint, Inc.) was used to track a specially designed coordinate frame with embedded
markers that is attached to the gripper fingers, as shown in Fig. 5.21a. The motion capture
system has an average accuracy of 0.1 mm. The UR5 robot, which is sensorized with tactile
sensors, has a pose repeatability of 0.1 mm and is kinematically calibrated by the manu-
facturer1. The Franka Emika robot which is sensorised with the camera also has a pose
repeatability of 0.1 mm obtained from the datasheet of the manufacturer. Both robot’s end
effector were moved in arbitrary trajectories covering all 6 DoF by the human user with
manual hand guiding and the pose of the end-effector was extracted from the kinematic
model and using the motion capture system, respectively. The initial static offset between

1https://www.universal-robots.com/articles/ur/robot-care-maintenance/

kinematic-robot-calibration/

https://www.universal-robots.com/articles/ur/robot-care-maintenance/kinematic-robot-calibration/
https://www.universal-robots.com/articles/ur/robot-care-maintenance/kinematic-robot-calibration/
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Figure 5.20: Qualitative results of hand-eye calibration: Effects of incorrect calibration
when point clouds are acquired from different viewpoints (a) and (b). The different colours
for the point clouds in (a) highlights the effect of incorrect calibration when overlapped
with each other. The accuracy of calibration using grid-based method (c) and the proposed
method (d). Quantitative analysis of the error in hand-eye calibration (position and rota-
tion) (e). p values calculated by Welch’s t-test shown as ∗.
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Figure 5.21: (a) Benchmarking the robot kinematics with high-precision marker-based
motion capture system (OptiTrack) for (b) UR5 robot and (c) Franka Panda Robot. The
robot poses are shown in blue and the pose calculated by the motion capture system in red.

the pose measurements is calculated and compensated. The accuracy between these poses
in Fig. 5.21b,c are compared where the plots of the end-effector trajectory are shown with
the kinematic pose calculation in blue and the motion capture calculated pose in red. The
numerical results are shown in Tab. 5.2. There are intrinsic uncertainties inherent in the
comparative analysis: sporadically, the human operator might occlude the markers from
the field of view of certain OptiTrack cameras during manual guidance, despite the strate-
gic deployment of six OptiTrack cameras surrounding the workspace. Hence, the median
error and median absolute deviation were measured to disregard spurious outlier points. It
can be seen that the kinematic accuracy of the UR5 robot is 0.303± 1.82 mm, which is
crucial for the calculation of the tactile point clouds. This accuracy for the tactile mea-
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surements is within the tolerance bounds. The kinematic discrepancies observed in the
Panda robot are more pronounced (±4 mm median absolute deviation); however, their im-
pact on the hand-eye calibration process remains minimal, as the tactile point cloud serves
as the reference for the registration of the corresponding visual point cloud. The presented
method works identically for the case where the camera is kept static and visual point cloud
of the object is registered to the tactile point cloud.

5.4 Discussion

5.4.1 Individual Sub-System Evaluation:
In this chapter, a novel interactive shared visuo-tactile perception approach for unknown

target object reconstruction and robust pose estimation has been presented. To retrieve the
target object, the robots coordinated together to declutter the scene. The target objects
of varying shape complexity and transparency were used to extensively evaluate the re-
construction and pose estimation pipeline. The proposed approach was able to accurately
reconstruct both transparent and opaque novel objects efficiently in an active information-
gain seeking manner. From Fig. 5.13a for transparent objects, it can be inferred that the
uniform strategy required a large number of tactile actions for accurate reconstruction of
the objects leading to increased data collection time. The random exploration strategy had
a high standard deviation (CD≈ 3 cm after 20 actions) that was due to the stochastic nature
of the exploration. The proposed active strategy had lower variance and higher accuracy
(CD < 2 cm) within 20 actions, outperforming both random and uniform strategies. For
vision based object reconstruction, due to the workspace limitations, wide field of view of
the camera, and limited size of the objects, on average 3 viewpoints were sufficient to com-
pletely explore the objects. However, as seen from Fig. 5.13b, uniform strategy was less
accurate than random and active strategy for visual reconstruction. Furthermore, subse-
quent tactile actions after visual perception improved the reconstruction accuracy by 17%
with the proposed active strategy, whereas the improvement was marginal with random
and uniform strategies. The acquired tactile data with random and uniform strategies were
redundant with the visual point cloud data whereas with active strategy, the regions unex-
plored by the visual modality was explored with the tactile modality. Shared visuo-tactile
perception proved more advantageous than sole reliance on mono-modal visual or tactile
perception, and the proficient sharing of perceptual attributes between modalities demon-
strates efficacy across various object types, including both transparent and opaque entities.
Furthermore, active perception was required for effective shared perception to avoid redun-
dant data collection and overlap between sensing data.
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Similarly, for category-level pose estimation with the reconstructed point clouds of
real-world objects, the S-TIQF method outperformed all the baseline strategies for tactile-
based pose estimation due to sparsity of tactile point clouds with an average ADI error
around 2 cm as seen from Fig. 5.18a (p < 0.001). For opaque objects, S-TIQF com-
pared favourably to state-of-the-art methods for dense visual and visuo-tactile point clouds
(p< 0.05). Comparison was performed with geometry-based point cloud registration meth-
ods such as ICP (Besl and McKay, 1992), S-ICP (Bouaziz et al., 2013), RANSAC (Fischler
and Bolles, 1981) and TEASER++ (Yang et al., 2020) which does not have any neural net-
work learning component as well as with PREDATOR (Huang et al., 2021a) which was
a learning-based registration method. Furthermore, some of these popular baselines such
as ICP and RANSAC were also used as a “backend” to perform the final registration task
with learning-based methods where the features were learnt using a neural network. In
fact, even the PREDATOR method (Huang et al., 2021a) learnt the feature points where
there was maximal overlap between the point clouds and RANSAC was used to extract the
final pose estimate using the correspondences. The S-TIQF approach allowed incorporat-
ing sparse as well as dense measurements for pose estimation. S-TIQF also outperformed
TIQF by 35% for tactile and visuo-tactile-based pose estimation. The proposed stochas-
tic initialization strategy proves effective for escaping local minima. It can be seen from
Fig. 5.19 showing the object-wise pose estimation results that increasing shape complexity
resulted in marginal reduction in pose accuracy. Transparent objects showed higher average
errors compared to opaque objects as they relied solely upon tactile perception resulting in
sparse data. However, the worst-case error (for instance spray1) was within 3 cm, demon-
strating the robustness of the system. Since S-TIQF was a category-level pose estimation
method, these objects were novel and unseen. Hence, the ADI error was also propor-
tional to the reconstruction accuracy seen from Fig. 5.12. For instance, the wineglass2

had higher reconstruction error (CD ≈ 3 cm) resulting in lower pose estimation accuracy
(erradi < 3 cm). Furthermore, from Fig. 5.17 it can be seen that the proposed method
compared favourably with state-of-the-art methods for category-level pose estimation us-
ing NOCS based reconstruction by improving the median ADI error by 35% and 20% for
sparse tactile and dense visual point clouds respectively (p < 0.001). This shows that the
proposed method was not tuned to a particular shape-reconstruction technique but was also
adaptable to other category-level reconstruction techniques.

5.4.2 Overall System Evaluation
To evaluate the performance of the entire pipeline as shown in Fig. 5.1, the criterion

was if the pose estimation error erradi < 3 cm for the target object, then the experimental
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Figure 5.22: Failure case in generating the declutter scene graph as the target object
(object 1) was not identified due to extremely dense clutter.

trial was deemed successful. This criterion was more competitive than other state-of-the-
art approaches that allowed 5 cm error for category-level pose estimation even without
overlapping clutter (Wang et al., 2019). The overall success rate was 88%.

Although the reconstruction and category-level pose estimation parts of the pipeline
produced erradi < 3 cm for all objects, failure cases were due to the interactive declutter-
ing part (Fig. 5.2a). The reasons for failure cases include: (i) selection and execution of
incorrect grasp/push poses and (ii) extremely dense clutter where less than 10% of the target
object area was visible to the camera (as seen in Fig. 5.22). If the decluttering actions failed,
then the human user intervenes and resets the scene. Complex objects were used to clutter
the target object that included deformable (sponge) and transparent objects (triangle box)
(see Fig. 5.10b). Furthermore, as an off-the-shelf semantic segmentation network (Chen
et al., 2017) was used for extracting the scene graph and for grasp/push pose prediction,
it could sometimes produce erroneous segmentation outputs for extreme dense clutter sce-
narios. As this was not the main contribution of this thesis, it may be substituted with
state-of-the-art segmentation models such as Segment Anything Models (Kirillov et al.,
2023) to improve the performance and can be considered as part of future work.

In summary, this chapter presented a novel approach for shared visuo-tactile-based
category-level reconstruction and pose estimation of unknown target objects in dense clut-
ter. Two robots equipped with vision and tactile sensors coordinated to declutter the
workspace using the declutter scene graph approach. Visual and tactile sensing data were
efficiently shared to explore the unknown target object using the joint information gain
criteria. This ensured non-redundant actions performed in a greedy-information gain man-
ner. Tactile perception was prioritised for transparent objects which were challenging for
visual perception. The extracted point cloud data was used for inferring the reconstructed
model of the object using the proposed reconstruction network. Finally, the novel S-TIQF
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method was performed for robust pose estimation that was accurate for both sparse and
dense point clouds. It provided globally optimal pose that was robust against local min-
ima. The proposed method has been extensively validated using benchmark datasets and
with real-robot experiments and it outperformed state-of-the-art techniques. Furthermore,
the S-TIQF method can also be used for hand-eye calibration using any arbitrary objects
through visual-tactile data which was critical for shared multi-modal perception.

Considering real-world applications, the proposed S-TIQF method can be applied in
bin-picking applications in manufacturing industries for the retrieval of objects in unstruc-
tured clutter. Moreover, these objects may also have shiny and reflective surfaces or regions
of transparency where tactile sensing can be useful. The safe manipulation of fragile ob-
jects requires an accurate pose estimate as a prerequisite and monitoring of contact forces
during manipulation actions. The interactive perception methods in which robots can dy-
namically choose grasp or push actions to rearrange objects can be used for autonomous
robotic assembly of complex objects. The S-TIQF sparse-to-dense point cloud registration
approach can also be applied in industrial quality control analyses where sensor-acquired
sparse point clouds of manufactured objects need to be aligned with dense volumetric point
clouds derived from CAD models.



Chapter 6

Visuo-Tactile Goal-Driven Manipulation
and Tracking of Novel Articulated
Objects

Parts of this chapter are under preparation for submission as:

• “Visuo-Tactile Goal-Driven Manipulation and Tracking of Articulated Ob-

jects,” P. K. Murali, B.Porr, and M. Kaboli.

The video of the experiments from this chapter is available here: https:

//drive.google.com/file/d/1Ae80ZCKvD8yjvdHgcJ5SjFzY3nvUb4Km/view?

usp=sharing

6.1 Introduction
For robots to work in dynamic environments both perceiving and manipulating com-

plex objects are often necessary. Articulated objects are ubiquitous in our surroundings
exemplified by items such as cabinet drawers, eyeglass frames, scissors, laptops, and so
on. Real-time pose tracking of articulated objects is a challenging task attributable to the
high dimensionality of the state space. This stems from the multiple degrees of freedom
and the inherent nonlinearity in dynamics, wherein the motion imparted to one component
nonlinearly influences the movement of interconnected parts. Furthermore, interactive per-
ception, wherein purposeful manipulation actions are performed to improve perception, is
often necessary to detect possible articulation joints and correctly manipulate objects with-
out damaging them (Bohg et al., 2017). Hence, there is a clear requirement for augmenting
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Figure 6.1: Experimental setup: A Franka Emika Panda robot with a Azure Kinect DK
RGB-D vision sensor and a Universal Robots UR5 sensorised with tactile sensor arrays on
the Robotiq Gripper, with unknown articulated objects in the workspace. The robots per-
form interactive perception to detect possible articulation structure in the objects. The ob-
jects are tracked using the proposed ArtReg algorithm and the 6 degree-of-freedom (DoF)
tracking information is used for goal-driven manipulation.

visual perception with tactile sensing capable of discerning contact force and location. Pose
tracking algorithms that can leverage multi-modal sensing data and operate without prior
knowledge of object models or kinematic properties can enhance the versatility and adapt-
ability of robotic systems.

Several prior works on the tracking of articulated objects have fundamentally relied
upon geometric feature tracking or the utilisation of marker-based methodologies applied
to sequential image data (Martı́n-Martı́n and Brock, 2022; Sturm et al., 2011). Other works
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have also assumed prior knowledge of the object models or the kinematic structure of the
articulated objects for tracking and manipulation (Nickels and Hutchinson, 2001; Paolillo
et al., 2018). However, the predominant focus has been on visual inputs, overlooking
the potential benefits of incorporating tactile information. Tactile information can provide
complementary information regarding the object properties and is invariant to occlusions,
ambient lighting, and object transparency (Li et al., 2020a). Furthermore, contact force
information is useful during interactive perception to detect possible articulation and joint
constraint limits without damaging the objects. Moreover, real-time tracking of unseen ob-
jects without prior knowledge regarding articulation constraints is an open research prob-
lem. Pose tracking enables further downstream tasks such as goal-driven manipulation.
Most prior works performing closed-loop control for goal-driven manipulation used only
rigid objects or disregarded proprioceptive or tactile information for the task (Lloyd and
Lepora, 2021; Paolillo et al., 2018; Katz and Brock, 2008; Xu et al., 2022). Adapting such
techniques directly to articulated objects presents a non-trivial undertaking, necessitating
novel approaches tailored to the complexities inherent in articulated structures.

Tackling these current challenges in the state-of-the-art, a novel framework for visuo-
tactile-based interactive perception for detecting, tracking and manipulating unknown novel
objects (single, multiple, and articulated with revolute or prismatic joints) without assum-
ing any prior knowledge regarding object shape or dynamics is presented.

The contributions of this chapter are as follows:

I ArtReg (Articulated Registration), a novel method for tracking unknown novel objects
(single, multiple, or articulated) by integrating visual and tactile sensing in a Manifold
Unscented Kalman Filter formulation on the SE(3) Lie Group.

II A novel method for the detection of kinematic chains in objects using a combination
of push or hold-pull manipulation actions facilitated by autonomous interactive visuo-
tactile perception.

III Leveraging the proposed ArtReg pose tracker, a visuo-tactile based closed-loop con-
trol algorithm has been designed intended for precise manipulation of objects to a goal
configuration. The full-fledged framework operates effectively under a variety of con-
ditions, including low illumination, visually complex backgrounds, and variations in
the centre of mass of the objects.

Extensive experiments have been performed with two robot setup shown in Fig. 6.1 where
the Panda robot was equipped with a RGB-D visual sensor and UR5 robot was sensorised
with tactile sensor arrays on the gripper.
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6.2 Methodology

Figure 6.2: Outline of the proposed framework: (a) Interactive visuo-tactile perception for
articulation detection, (b) Visuo-tactile-based pose tracking method termed ArtReg, and (c)
Visuo-tactile-based closed-loop control for goal-driven manipulation.

6.2.1 Problem Formulation and Proposed Framework
A novel framework for detecting, tracking and goal-driven manipulation of novel un-

known objects (single, multiple or articulated) without assuming any prior knowledge re-
garding object shape or dynamics is presented in this chapter as shown in Fig. 6.2. The
two robot team shown in Fig. 6.1 autonomously performed interactive perception to detect
possible articulation and infer its underlying kinematics if multiple objects were present in
the workspace using pushing or hold-pull action manoeuvres as described in Fig. 6.2a and
Sec. 6.2.2. A novel method termed ArtReg is presented for the accurate pose tracking of
objects using manifold unscented Kalman filter shown in Fig. 6.2b and Sec. 6.2.3. The final
part of the framework (Fig. 6.2c) presents a closed-loop goal-driven manipulation approach
for manipulating articulated objects (with revolute or prismatic joints) or single objects to
a desired goal-pose by relying upon visual and tactile sensing described in Sec. 6.2.4.

6.2.2 Interactive Perception for Articulation Detection
Interactive perception techniques and the proposed pose tracker, ArtReg have been used

in conjunction for distinguishing articulated objects from rigid objects as well as identifying
the type of articulation joints present. The degree of articulation was limited to 1 DoF
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revolute and prismatic joints in this study. However, the proposed method could be trivially
extended for n-DoF systems. The visual point clouds of the objects were segmented using
the proposed part segmentation approach to obtain the estimated number of parts present
and possible articulation joint (object kinematic model). An iterative interactive perception
approach was designed which updates the belief regarding the object kinematic model with
each manipulation action as shown in Fig. 6.2a. These actions which were push or hold-

pull were chosen and performed autonomously by the robot. The actions were chosen
in greedy manner, which allowed extracting the correct object kinematic structure with
minimal number of actions. The proposed part segmentation approach, action selection,
and execution have been detailed in this section.

Part Segmentation

Objects on a planar surface in the kinematic limits of the robot were to be segmented from
the background and separated into different parts depending on the object configuration.
Consider the Fig. 6.2a wherein from the RGB point cloud of the scene extracted from
the visual camera, firstly the background plane was segmented using the RANSAC-based
plane fitting method. All points within a user-defined distance threshold of a best-fitting
plane were filtered out from the visual point cloud. Secondly, during interactive percep-
tion the robot was also in contact with the object of interest and possibly occluded the
object. Hence, it was necessary to also segment the robot links from the point cloud. Given
the current joint pose information of the robot body which was obtained from the robot
kinematic model, the robot mesh was projected onto the point cloud, and the 3D points
which correspond to the robot body are filtered out from the point cloud. Thirdly, the re-
maining point cloud which consisted of the objects and possibly noisy outlier points were
filtered out using statistical outlier removal methods that removed points further away from
neighbourhood points compared to the average for the point cloud. Finally, there may be
multiple objects present in the scene with optional kinematic links between them. Hence, to
perform part segmentation, the region-growing segmentation algorithm (Rusu et al., 2008)
was performed. Provided with an initial seed point, each neighbourhood point was checked
if it belonged to the same region as the seed point or if it should be considered as a future
seed point in a future iteration. The criteria for inclusion in the same region depend on
a smoothness constraint (based on surface normals) and colour information. After an ini-
tial segmentation process, regions having similar colour information were merged together.
An implementation of the region growing algorithm available in the Point Cloud Library
(PCL) (Rusu and Cousins, 2011) was used. As described in the framework in Fig. 6.2a,
after each action was performed, the part segmentation provided the belief of the number
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of objects in the scene which was updated upon subsequent actions. The object was consid-
ered to be explored completely if the belief on the object kinematic model does not change
with 3 consecutive iterations.

Interactive Perception Action Selection

Referring to Fig. 6.2a, once the part segmentation was performed, the object type (pris-
matic, revolute articulated or rigid object) was estimated by the robots autonomously inter-
acting with the objects. Two types of actions were defined: push and hold-pull actions. The
push action was used to distinguish if an object is rigid or articulated with a revolute joint.
The hold-pull action was only used to distinguish whether an object has a prismatic joint.
Consider the Fig. 6.3 which describes the action execution procedure for the object type
detection. The object detection strategy is as follows: if the current belief from the part
segmentation had multiple objects, then the robot always began with pushing action. The
object(s) were tracked using ArtReg, and the change in relative pose after performing the
action was used to infer the joint type. The heuristic for joint-type inference is as follows:
if the object pushed one part and there was a change in pose registered for both parts, then
its was likely to have a rigid joint (Fig. 6.3a rigid joint). In that case, the robot proceeded
to push the other part and if a similar behaviour was observed, then the belief was con-
firmed to be either a rigid object or an object with prismatic joint. In contrast, if only the
pushed part was moved while the remaining parts were static, it is likely that the parts were
connected to a revolute joint. The robot pushed the other part consequently to confirm the
object kinematic structure. This process can be seen in Fig. 6.3a. If pushing action was not
possible to distinguish the object kinematics conclusively, the system reverts to performing
hold-pull action sequence (Fig. 6.3b). One robot holds one part by applying an orthogonal
force to the surface of the object and another robot tries to grasp and pull the other part. If
a change in pose was detected after performing the action, it could be inferred that the parts
were linked through a prismatic joint. This process can be seen in Fig. 6.3b.

Action Execution

For both types of predefined actions i.e., push and hold-pull, the action parameter selection
was based on geometric information extracted from the point cloud. The oriented bounding
box (OBB) of the point cloud representing the object was extracted. Consider the Fig. 6.3a
wherein the eigenvectors (Vx,Vy,Vz) were extracted from the covariance matrix of the
point cloud representing the object. The major eigenvector Vx represents the axis along the
length of the object, the middle eigenvector Vy is perpendicular to the object and the minor
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Figure 6.3: Interactive perception for articulation detection: (a) push action for revolute
joints, (b) grasp and pull action for prismatic joints.

eigenvector Vz is normal to the surface of the object. Push action is parameterized by a
push position and direction, apush = {ppush,dpush}. For detecting articulated objects, the
push direction was parallel to Vy and the push position was along the face of the oriented
bounding box that was parallel to Vy with a tolerance distance ζ such that the push direction
was intersecting along the edge of the object. The pushing distance was predefined for
10 cm.

In contrast, for the hold-pull action, both robots were used similarly to how humans
perform bimanual manipulation actions to pull apart two parts linked by a prismatic joint.
Referring to Fig. 6.1, the Panda robot which was equipped with the RGB-D vision camera
but without tactile sensing was used for performing the hold action. The Panda robot also
has force/torque sensors on all joints which were used for proprioceptive information. The
UR5 robot which was sensorised with tactile sensing was used to perform the grasp and
pull action. In order to ensure that the robots do not collide with each other, the actions
were performed close to the diametrically opposing edges of the object. The hold and pull
actions were performed on the two different parts of the object. Referring to Fig. 6.3b, the
hold action is parameterized by the hold position and direction as ahold = {phold,dhold}.
Given two parts of the object denoted by 1 and 2, respectively, the hold direction dhold

is parallel to the minor eigenvector for the one of the object parts as Vz1 || dhold . The
hold position is obtained by moving the centroid of the part point cloud to the edge of
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the bounding box with a certain tolerance distance ζ from the bounding box edge. The
force-torque sensor on the joint 7 of the Panda robot was used to detect contact and apply
a constant holding force on the object part. Similarly, the pull action is parameterized by
position and direction apull = {ppull,dpull}. In order to grasp objects of different shapes,
when provided with a position ppull , the robot was moved to a position vertically above
the ppull at a predefined height and the gripper opened to the maximum width. The robot
moved in a straight-line downwards to the ppull and closed the gripper until contact was
detected by the tactile sensors. The gripper applied a constant grasping force on the object
part. The position ppull was obtained by shifting the centroid of the object part 2 along Vx2

to the edge of the bounding box with a certain tolerance distance ζ from the edge. The pull
direction is parallel to the major eigenvector of the other object part such that Vx2 || dpull .
Once the robot grasped the part of the object, it pulled for a predefined distance of 5 cm.
The tactile sensors on the inner side of the gripper fingers were used to detect possible loss
of contact and stop the robot.

6.2.3 Articulated Registration (ArtReg) for Visuo-Tactile Pose Track-
ing

The 6DoF pose was estimated through a Manifold Unscented Kalman Filter (UKF) on
the SE(3) Lie Group. Note that the complete 6DoF pose of a dynamic object evolves on
a SE(3) Lie Group. The derivation of a standard UKF on Euclidean space is detailed in
Appendix A.3.2.

Manifold UKF on SE(3) Lie Group

Consider a system with known initial mean and initial covariance as x̄0 = E[x0] and P0 =

P[x0] respectively. The aim is to obtain the a posteriori state estimate x̂k|k and a posteriori

covariance P̂k|k upto time k integrating k observations. The state x̂k|k ∈ SE(3) denotes the 6
DoF pose of the object. The state transitions model (also called process model) is denoted
as f (·) and the measurement model as h(·). The a posteriori state can be obtained as
follows:

x̂k|k = x̂k|k−1 +K(zk|k− ẑk|k−1) (6.1)

wherein, x̂k|k is the a posteriori state variable, K is the Kalman gain, x̂k|k−1 refers to pre-
dicted a priori state variable, zk|k is the measurement observation at time step k and ẑk|k−1

is the predicted measurement observation from the a priori state information.
In the case of the manifold UKF, the state x which describes the pose in SE(3) evolves

in the manifold M as described in Fig. 6.4. The tangent space at x is defined as TxM. There
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Figure 6.4: (a) The experimental setup shown along with the description of the state and
measurement vector. (b) The proposed ArtReg filter which is a manifold unscented Kalman
filter visualised with operations on the state manifold M and measurement manifold Mobs.

are two sets of sigma points describing the covariance P in the manifold and the tangent
space i.e., σ i ∈ TxM and σ i

M ∈M wherein i = 0,1, . . . ,2M. The sigma points on the tangent
space are the same as described in the Euclidean space (see Appendix A.3.2, Eq. (A.22)).
The mapping ϕ(·) also called as the retraction transforms a point in the tangent space into
the manifold space and ϕ−1(·) performs the inverse operation. In the SE(3) Lie Group,
ϕ(·) is also called as the exponential map (exp) that maps the elements of the Lie algebra
to the Lie Group and ϕ−1(·) is the logarithmic map (Log). A rigorous introduction to the
concept of Lie theory is beyond the scope of this work and the readers are advised to refer
to (Sola et al., 2018). The prediction and update steps of the manifold UKF are described
below and the schematic illustration is provided in Fig. 6.4b.

Prediction Step: The mean is propagated using the non-noisy process model f (·) :
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M→M and input vector uk as:

x̂k|k−1 = f (x̂k−1|k−1,uk,0) (6.2)

Contrary to the classical Euclidean UKF, wherein the weighted mean of the sigma points
are propagated through the process model, in the manifold UKF, propagating the state
directly through the process model avoids the computational complexity of finding the
weighted averaging on manifold M (Brossard et al., 2020). To compute the covariance
Pk|k−1, the sigma points are propagated through the process model as:

Ps
k|k−1 =

2M

∑
i=1

Wiϕ
−1
x̂k|k−1

( f (σ i
M))(ϕ−1

x̂k|k−1
( f (σ i

M)))T (6.3)

Similarly, the noise sigma points are also propagated through the process model and added
to the covariance as:

Pn
k|k−1 =

2M

∑
i=1

Wiϕ
−1
x̂k|k−1

( f (σ
′i
M))(ϕ−1

x̂k|k−1
( f (σ

′i
M)))T (6.4)

wherein σ
′i =±(

√
(M+λ )Q)i. The covariance is calculated as:

Pk|k−1 = Ps
k|k−1 +Pn

k|k−1 (6.5)

Update Step: The measurement model h(·) generates an predicted observation for each
sigma point. The predicted observation ẑk|k−1 belongs to the observation manifold Mobs

such that h(·) : M→Mobs. The predicted measurements are calculated using sigma points
on the manifold:

ẑk|k−1 =
2M

∑
i=0

W (m)
i h(σ i

M) (6.6)

The covariance and the cross-covariance are calculated similarly using the sigma points on
the manifold as:

Pzz =
2M

∑
i=0

W (c)
i (h(σ i

M)− ẑk|k−1)(h(σ
i
M)− ẑk|k−1)

T +Rk

Pxz =
2M

∑
i=1

W (c)
i σ

i
M(h(σ)i

M− ẑk|k−1)
T

(6.7)

Once the predicted covariance and cross-covariance is calculated, the Kalman gain is com-
puted as:
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Kk = PxzP−1
zz (6.8)

Note that the covariance and cross-covariance lies on the tangent spaces Tx̂M and
TẑMobs respectively. The updated state is calculated using the retraction back onto the
manifold as:

x̂k|k = ϕ(x̂k|k−1,K(zk|k− ẑk|k−1)) (6.9)

The a posteriori covariance is calculated from the predicted covariance and cross-covariance
as follows

Pk|k = Pk|k−1−KkPzzKT
k (6.10)

The process is shown graphically in Fig. 6.4b.
In general, for any arbitrary N objects that need to be tracked, state variables xi for

i = 1,2, . . . ,N can be defined which are tracked independently using N manifold UKFs.
The formulation is general and can be deployed for single, multiple or articulated object
tracking in an identical manner. The framework for ArtReg is described in Fig. 6.2b. For
a given point cloud of objects captured by the camera, the number of objects to be tracked
was provided by the segmentation method described in Sec. 6.2.2. If tactile contact points
are available during robot interaction, these are added to the observed point cloud. For
each object Oi=1:N , the segmented point cloud at the initial state at time t = 0 corresponds
to the object point cloud Oi=1:N . At each time instant k, the objective is to track the pose
xi

k|k ∈ SE(3) of Oi given the previous state information xi
k|k−1 and measurements zi

k. For
the sake of simplicity of notations, the pose tracking process is described here for a single
object O. Extending the procedure for N objects is trivial as the states xi are independent
of each other for i ∈ [1,N].

The process model f (·) is defined as a random walk model as x̂k|k−1 = f (x̂k−1|k−1,uk,wk)

wherein the input vector uk = 0 and noise model wk ∼ N(0,Q) represents a zero-mean
Gaussian noise. The state is constant and the random walk is induced through the state
noise according to Eq. 6.2-6.5.

The measurement model h(·) defines the expected measurement ẑk|k−1 when the object
O is at the predicted state x̂k|k−1. Let the point cloud extract at time step k be denoted as
S

f ull
k . Part segmentation is performed to extract the various objects present in the scene

S
j
k for j = 1 : L where in ideal cases L = N and in noisy conditions or close overlap be-

tween objects L ̸= N. The measurement vector consists of 3D points (x,y,z) belonging to
object S j i.e., yk|k = {p1, p2 . . . pQ}∀p ∈ S

j
k. The correspondence search finds the closest



6.2. METHODOLOGY 115

1m

0.
55

 m

PID-+

Correction
Distance 

Oriented
Bounding
Box

Articulated
Object

Figure 6.5: Goal-driven closed loop control system

corresponding points in O and S j i.e.,

ξ (σM) = argminp∈O(||S j−σMp||) (6.11)

The 3D points belong to the point cloud of the object O are transformed to the predicted
pose for each sigma point σM ∈ SE(3). Since there could be multiple objects in the scene
such that S j=1:L, the correspondence search ensures to find the object with the closest Eu-
clidean distance compared with the predicted pose of the object. The measurement model
provides the correspondence points in the object point cloud with respect to the measured
scene point cloud such that h(σ (m=0:2M)

M ) = ξ (σ
(m=0:2M)
M ). The a posteriori state is ob-

tained by minimising the distance between the correspondence points between the object
point cloud and the scene point cloud (zk|k− ẑk|k−1) using Eq. 6.9. The state and measure-
ment noise (Q and R respectively) are initialised as diagonal matrices with random values.
The ratio between the state and measurement noise determines if the filter tracks the pre-
dicted states (if state noise is lower) or if it tracks the measurements (if the measurement
noise is lower) (Welch and Bishop (1995): Pg 32-35). Since the process models resem-
bles a random walk, the measurement noise is initialised with a value lower than the state
noise in order to track the dynamically moving object(s). The overall algorithm is shown
in Algorithm 4.

6.2.4 Visuo-Tactile Goal-driven Closed-Loop Control
The objective of the closed-loop control is to push the object (single or articulated)

to a pre-defined goal pose. While the closed-loop controller is identical for both single
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Algorithm 4: ArtReg: Object tracking with Manifold Unscented Kalman Filter
Input: x̂k−1|k−1,Pk−1|k−1,Rk−1,Qk−1,uk
Output: x̂k|k,Pk|k,Kk
Prediction:
//Propagate the mean state

x̂k|k−1 = f (x̂k−1|k−1,uk,0)
//Compute the sigma points on tangent space and manifold

σ i,σ i
M for i = 0, . . . ,2M where M = 6. //State Covariance and Noise

Propagation

Ps
k|k−1 = ∑

2M
i=1Wiϕ

−1
x̂k|k−1

( f (σ i
M))(ϕ−1

x̂k|k−1
( f (σ i

M)))T

Pn
k|k−1 = ∑

2M
i=1Wiϕ

−1
x̂k|k−1

( f (σ
′i
M))(ϕ−1

x̂k|k−1
( f (σ

′i
M)))T

Pk|k−1 = Ps
k|k−1 +Pn
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M)− ẑk|k−1)
T +Rk

Pxz = ∑
2M
i=1W (c)

i σ i
M(h(σ)i
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or articulated revolute objects, in the case of articulated objects a task planner decides
which part of the articulated object to push based on the distance to goal. Without loss of
generality, the push controller is detailed for a single object as shown in Fig. 6.5. Definition
of the coordinate frames used to devise the controller: the geometric centre of the oriented
bounding box (OBB) is defined as O; the target frame T; pushing frame as P; tactile sensor
frame as S and world coordinate frame as W. The objective is to align O with T within a
defined tolerance error λ such that d→ 0,θ → 0. Given the current pose of the object as
WHO, the push pose WHP is computed along the middle eigenvector Vy such that it passes
through the Geometric center O as detailed in Sec. 6.2.2. However, when pushing to a
predefined goal, the push position ppush is shifted along the perimeter of the object such
that the bearing (angular offset from the goal) is minimised. The push direction vector dpush

is kept the same in order to ensure the maximum area of the tactile sensor array is in contact
with the object. To minimise θ , the sensor frame is shifted along the object perimeter to S′

based on the output from a proportional-integral-derivative (PID) controller. The angular
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offset θ is measured as follows: The slope of the line lPO passing through (Ox,Oy) and
(Px,Py) is

m =
Py−Oy

Px−Ox
(6.12)

The perpendicular projection of the point (Tx,Ty) on the line lPO has a negative reciprocal
slope −1/m. The equation of perpendicular projection from T is (y−Ty) =

−1
m (x−Tx).

Solving for the point of intersection (Ix, Iy):

Ix =
Tx−m2Ox−m(Oy−Ty)

1+m2

Iy = (−1/m)Ix +Ty

(6.13)

The angle θ is computed as:

θ = tan−1

(√
(Tx− Ix)2 +(Ty− Iy)2√
(Ox− Ix)2 +(Oy− Iy)2

)
(6.14)

The input to the PID control is e = θ −θd where θd = 0. The PID control output at time t

is provided as:

c(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ + kd

de
dt

(6.15)

The PID gain coefficients kp,ki,kd were computed empirically through trail-and-error as
0.05, 0.0, 0.03 respectively. Ad-hoc tuning of the controller was performed due to the
relatively simple control problem. The controller output is passed through a saturation
function wherein the output value c is clipped if it is beyond±3 cm. The correction distance
c is incorporated into the sensor pose as:

WHS′ =
WHS

SHS′ (6.16)

wherein SHS′ =


c

I3 0
0

03x1 1

. The distance to goal-pose is given as:

d =
√

(Tx−Ox)2 +(Ty−Oy)2 (6.17)

The pushing interaction was performed as a discrete iterative process wherein the robot
performed the push action with 3 cm pushing distance. Tactile sensors were continuously
monitored throughout the interaction to identify any instances of contact loss with the ob-
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ject. As seen from Fig. 6.2c, the process of segmentation, pose estimation, point point
and direction estimation and push execution was repeated until the object was aligned with
the target pose with the user-specified tolerance bounds. The iterative pushing strategy al-
lows the robot to transition between distinct segments of the articulated object such that the
distance to goal for each segment was minimised uniformly.

6.3 Experimental Results

6.3.1 Experimental Setup and Outline
The experimental setup shown in Fig. 6.1 consists of a Universal Robots UR5 with

the Robotiq gripper that is sensorised with tactile sensor arrays from Xela and Contactile
sensors and a Franka Emika Panda robot equipped with a RGB-D Azure Kinect DK vi-
sion sensor attached with a custom flange to the end-effector as detailed in Chap. 3. Two
different tactile sensors having different operational principles were chosen to demonstrate
that the method was agnostic to any particular type of tactile sensor. All manipulation op-
erations were performed on the robot workspace of size (1.0 m, 0.55 m). The workspace
limits also roughly match the kinematic limits of the UR5 robot which has a maximum
kinematic reach of 0.85 m. All experiments were performed on an Ubuntu 18.04 worksta-
tion with Intel Xeon Gold 5222 CPU. ROS Melodic was used as robotic middleware, Point
cloud library (Rusu and Cousins, 2011) for operations involving point clouds, kalmanif
libraries (Deray and Solà, 2020) for Kalman filter implementations.

Experimental Objects: The experimental objects are shown in Fig. 6.6. The naming
convention used is the colour-shape of the object. The objects have been 3D printed with
varying sizes and shapes. The following shapes were used: cube, cuboid, oval, butter,
sine, and triangle. The reverse side of all objects have 3 hollowed out cylinders (as seen
in Fig. 6.6a - pink-butter and blue-sine/ gray-cuboid) in which external weights
of 500g can be placed to offset the centre-of-mass (CoM) of the objects. The external
weight can be placed in any of the 3 possible holes unknown to the robotic system by
the user and results in 3 different variations for CoM for each object. The camera always
sees the smooth ’top’ surface of the objects, hence the determination of offset in CoM can
be performed using tactile sensing alone. Each of the objects can be attached to another
with a revolute joint using a specialised 3D printed hinge (Fig. 6.6b). Furthermore, pris-
matic joints (typically used in drawers) attached to the objects axially to form an articulated
prismatic object (Fig. 6.6c) were also used. As a special case of the revolute joint shown
as blue-sine/ green-butter, the object had an overlapping revolute joint such that the
bottom object (green-butter) has a cylindrical protrusion and the top object (blue-sine)
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Single Objects  Articulated Objects: Revolute Joint

Articulated Objects:
Prismatic Joint

(a) (b)

(c)

reverse-view

reverse-view

Figure 6.6: List of experimental objects used for tracking and closed-loop control: (a)
single objects, (b) articulated objects with revolute joint and (c) articulated objects with
prismatic joint. The reverse view of objects such as blue-sine/ gray cuboid and
pink-butter is shown wherein the center of mass can be changed by placing an addi-
tional weight.

has the corresponding cylindrical hole allowing for a rotational joint of 1 DoF.
Outline of experiments: A comprehensive and exhaustive set of robotic experiments

were performed to evaluate the entire pipeline. Detection of possible articulation as well as
the type of articulated joints (revolute / prismatic) has been performed in Sec. 6.3.2. Closed
loop control for goal-driven manipulation of singular and articulated objects were per-
formed in Sec. 6.3.3. Furthermore, to evaluate for robustness, the goal-driven manipulation
experiments were performed under various conditions such as (a) low lighting, (b) chal-
lenging backgrounds, and (c) varying CoM. In Sec. 6.3.4 only pose tracking was evaluated
without any target-driven robot manipulation for single, multiple and articulated objects.
The comparison with state-of-the-art approaches in demonstrated in Sec. 6.3.5 using a stan-
dard benchmark of synthetic articulated objects from the PartNet-Mobility dataset (Xiang
et al., 2020).

6.3.2 Articulation Detection
For the detection of articulated objects from rigid objects, manipulation actions such as

pushing and hold-pulling for interactive perception were used. In Fig. 6.7, two identical
scenes were used wherein an oval object and cuboid object were connected with a revo-
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lute joint (Fig. 6.7a-d) and a rigid joint (Fig. 6.7e-h) respectively. Since visual inspection
alone cannot differentiate between the rigid object and the articulated object, interactive
perception was employed. In Fig. 6.7a, the robot pushes the cuboid for a predefined dis-
tance of 10 cm and the ArtReg tracker showed that only the cuboid was displaced as
evidenced in Fig. 6.7b. Subsequently, the robot pushed the oval object, resulting in its
displacement while the connected cuboid remained stationary. This observation led to the
conclusion that the object was articulated. On the contrary, in Fig 6.7e, the robot pushed
the oval object for 10 cm and the cuboid object was also displaced. Similarly, the robot
autonomously chose to push the cuboid object next which also moves the oval object
proportionally. This showed that the objects were connected by a rigid joint and in fact
was one rigid object. A similar experiment was performed with a configuration of objects
with one object on top of another, connected together by a revolute joint and a rigid joint
respectively as shown in Fig. 6.9. The robot used push action to distinguish an articulated
object from the rigid object by tracking the motion of the two objects upon performing the
action (see Fig. 6.9a,c for articulated object and Fig. 6.9b,d for rigid object).

While pushing actions are sufficient to detect articulated objects with revolute joints,
they cannot be used to distinguish objects with prismatic joints. Both robots were used for
performing hold-pull manoeuvres for such prismatic objects. In a similar experiment to the
revolute joint, two sets of objects were used, a cube and cuboid which were joint together
with a prismatic joint and a rigid joint respectively. The Panda robot autonomously detects
and performs a hold manoeuvre on one of the object and the UR5 robot detects a possible
pulling position by grasping the other object and pulling it for a fixed distance of 5 cm
in the direction parallel to the major eigenvector of the object. The Panda robot used the
force-torque sensor embedded at joint 7 to measure the constant holding force of around
8N which is sufficient to immobilise the object without damaging it. Similarly, the tactile
sensors on the inside of the gripper finger pads were used to detect contact while grasping
and pulling. The ArtReg tracker was used to detect the change in pose of the objects
which was used to distinguish the articulated object from the rigid object with prismatic
joint as seen in Fig. 6.8. Five repeated trials were performed for each case: revolute joint,
top-revolute joint and prismatic joint with the corresponding object with rigid joints for
comparison.

6.3.3 Closed-loop control for Goal-driven Manipulation
Since the closed-loop control required accurate pose tracking, extensive evaluations

were performed on various configurations of articulated objects with revolute and prismatic
joints as well as for single objects. The target pose was chosen by a human user by placing
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Figure 6.7: Detection of articulated revolute object with interactive perception
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Figure 6.8: Detection of articulated prismatic object with interactive perception
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Figure 6.9: Detection of articulated object with overlapping revolute joint using interactive
perception

the object in desired configuration at any arbitrary location in the robot workspace. A single
RGB-D image was captured at the goal position and the part segmentation was performed to
record the number of parts to track and the pose was recorded as the target pose. The object
was then moved into an arbitrary initial pose in the robot workspace by the human user and
the robot was tasked to manipulate the object into the goal-pose configuration. For single
as well as articulated objects with revolute joints, the robot relied upon non-prehensile
pushing manipulation for moving the object into a desired goal state. The accuracy of the
goal-driven manipulation for an object containing N parts is computed by the L2 norm in
the X-Y plane with the final manipulated configuration of each part of the object with the
corresponding goal pose as:

||e||2 =
√
(x− xg)2

i +(y− yg)2
i f or i = 1,2, . . . ,N (6.18)
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b

a

Figure 6.10: Goal-driven closed loop control of single object. (a) Figure shows the robot
pushing the object to the goal pose. (b) Figure shows the plot of the estimated trajectory
through ArtReg. The dot • represents the goal pose. The rectangles show the poses of the
object at discrete time steps.

Consequently, for a single rigid object N = 1 in the Eq. (6.18). For single and articulated
(revolute) objects, the robot performed iterative incremental pushing of each part one-by-
one such that the distance to goal was minimised. This can be seen in Fig. 6.10 for single
objects and Fig. 6.11 for articulated objects with revolute joints. The closed loop controller
based on the proposed ArtReg as described in Sec. 6.2.4 was used for both single and ar-
ticulated revolute objects. The only exception for articulated revolute object, the controller
was designed to minimise the distance to goal for each part of the object equally, hence the
robot iteratively pushes the parts of the objects in an alternating manner. Numerical results
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b

a

Figure 6.11: Goal-driven closed loop control of articulated object. (a) Figure shows the
robot pushing the object to the goal pose. (b) Figure shows the plot of the estimated tra-
jectory through ArtReg. The dots • for each colour represents the goal poses. The object
outlines show the poses of the objects at discrete time steps.

are shown in Tab. 6.1. The average error at goal-state for all objects (single/ articulated)
was < 3 cm. Five repeated trials were performed for each of the four single objects and
all the revolute articulated objects (except blue-sine/green-butter) shown in Fig. 6.6,
resulting in total 55 repeated trials for this experiment.
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Changed	CoM

a b c

Figure 6.12: Goal-driven Pushing with varied Center of Mass: Articulated Object

Goal-driven Manipulation for Prismatic Articulated Objects

For articulated objects with prismatic joints, the desired pose is specified by the user by
translating one segment of the articulated object to an arbitrary distance along the axis of
articulation. Once the goal-pose of each part is extracted by using the part segmentation
method, the user moves the parts back to an arbitrary initial pose along the axis of artic-
ulation. The task of the robot is to identify and track the current pose and manipulate the
object into the goal pose. The hold-pull manipulation manoeuvrer is used as it is ideal for
manipulating such prismatic articulated objects. The Panda robot which is equipped with
the RGB-D camera on its end-effector (in an eye-in-hand configuration) performs the hold
manoeuvrer and the UR5 robot performs the grasp and pull manoeuvrer. While the Panda
robot is performing the holding manoeuvrer, the object is very close to the camera and ob-
ject tracking stops. Hence, for the grasp and pull manoeuvrer, the UR5 robot relies upon the
grasp pose detected prior to interaction. However, the tactile sensors allows the UR5 robot
to adapt to minor grasp pose error. The gripper opens to the maximum limit and closes
gradually until the tactile sensors detects contact. The UR5 robot performs a pull manoeu-
vrer along the axis of articulation to the goal-pose. The pulling distance is calculated as
the difference between goal pose and current pose. During the pull manoeuvrer, the 3-axis
contact force is monitored from each taxel in the tactile sensor array to detect possible loss
of contact. Furthermore, a constant force of 5N is exerted by the gripper on the object.
The grasping force is sufficient to overcome friction in the prismatic joint. Ten repeated
trials were executed for each of the two prismatic objects depicted in Fig. 6.6, totalling 20
repeated trials. The average error of the prismatic articulated objects (1.03± 0.96 cm) is
less than that of revolute articulated objects (2.30± 0.71 cm) due to limited displacement
from the initial configuration possible with the prismatic joint.
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Table 6.1: Goal-driven Closed Loop Control

Experimental
Condition Object Type Euclidean Error (cm)

Standard
Articulated Revolute Object 2.302 ± 0.71
Articulated Prismatic Object 1.031 ± 0.96
Single Object 1.908 ± 0.86

Varied Center-
of-mass

Articulated Object 3.570 ± 1.04
Single Object 3.604 ± 0.43

Challenging
Background

Articulated Object 3.816 ± 0.97
Single Object 3.101 ± 0.24

Low light Articulated Object 3.677 ± 0.43
Single Object 2.974 ± 0.92

b ca

Changed	CoM

Figure 6.13: Goal-driven Pushing with varied Center of Mass: Single Object

Goal-driven Pushing with Varied Centre of Mass (CoM)

Typically it is assumed that the CoM of an object coincides with the geometric centroid
which can be computed as the mean of all the 3D points representing the object. However,
in many scenarios this assumption fails to hold true. Hence, an experiment was designed in
which an additional weight of 500g in the form of a calibrated weight metal cylinder was
inserted into the object. The objects were 3D printed with holes embedded within which
are capable of housing external objects. Depending on the object shape, the weight of
individual objects vary between 200g-400g. Hence, the additional weight shifts the CoM
of the object from the geometric centroid. However, through visual inspection alone the
object with varied CoM was indistinguishable from an identical shaped object without the
additional weight inserted into it. This experiment evaluated the ability of the approach
to push the object(s) to the goal configuration with varied CoM. The shifted CoM caused
the object to turn when being pushed through the geometric centre. While inferring the
CoM position through interaction goes beyond the scope of this work, the robot relied
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upon visual and tactile feedback to compensate for the undesired motions caused during
pushing. This is shown in Fig. 6.12 for pushing articulated revolute object wherein the
CoM of the grey cuboid object was shifted with 500g placed on the right hole. Five
repeated experiments were performed for the external weight placed in each of the three
holes for the pink-butter single object and three repeated trials for each of the six holes
for blue-sine/gray-cuboid articulated object resulting in a total of 33 repeated trials.
As seen from Fig. 6.12c, the robot was capable of pushing the articulated object to the goal
state with an error of 3.816±0.97 cm. A similar result was also seen with a singular object
with shifted CoM while pushing to the goal pose as in Fig. 6.13c with the average error in
the goal state being 3.604±0.43 cm.

Goal-driven Pushing with Challenging Background

As the part-segmentation approach relied upon visual point clouds and separating the fore-
ground (object) from background points, an experiment was performed with a challenging
coloured pattern background with the articulated and single objects for goal-driven pushing
as seen in Fig. 6.14 and Fig. 6.15. To increase the complexity, a revolute articulated object
with all parts having the same colour was used. Although the part segmentation approach
was based on RGB point cloud data for the region growing method, it was demonstrated
that it is unaffected by challenging coloured backgrounds as seen by the object trajectory
and proximity to the target pose in Fig. 6.14b, Fig 6.15b. A total of 20 repeated for single
and articulated objects respectively were performed. The average error for target-driven
control was 3.816±0.97 cm for articulated objects whereas it was 3.1±0.24 cm for single
objects with challenging backgrounds. The discrepancy in error was approximately 1.5 cm
greater, on average, in comparison to corresponding objects presented against a standard
white coloured background. It can be noted that the challenging background colour does
not adversely affect the ArtReg tracking algorithm as well as closed-loop control approach.

Goal-driven Pushing in Low-Light Conditions

Furthermore for robustness testing, goal-driven pushing experiments with single objects
and articulated objects were also performed in low light conditions. It is well known that
vision-based methods are susceptible to diminished lighting conditions. During the experi-
ments, the overhead lights in the room were switched off and minimal light was emanating
from the computer screen that was used to control the robot as seen in Fig. 6.16a. While the
part segmentation method relied upon visual point clouds, the robot interaction relied upon
tactile sensing as well. In instances where an erroneous pushing configuration was identi-
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Figure 6.14: Goal-driven Pushing with challenging background: Single Object

fied, the robot upon detecting unintended contact during movement towards the designated
pose, promptly halts its operation and reverts to its initial position. By leveraging vision
and tactile sensing the robot was able to push the objects to goal within the prescribed mar-
gin of error as seen the trajectory shown in Fig. 6.16b. A total of 20 repeated for single and
articulated objects respectively were performed. The average error in low light conditions
for articulated objects was 3.67±0.43 cm and for single objects was 2.97±0.92 cm.
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Figure 6.15: Goal-driven Pushing with challenging background: Articulated Object

6.3.4 Object Tracking
To isolate and precisely assess the accuracy of the ArtReg tracker without any error

propagation stemming from the closed-loop controller, the robot was manually operated via
the teach pendant to manoeuvre the object through a series of arbitrary poses. Furthermore,
additional experiments were also performed wherein multiple objects were moved in the
workspace by the user in randomised trajectories. Aruco markers were placed on each
object which were used to gather the ground-truth poses. The average euclidean distance
error calculated at 5 frames-per-second from Eq. (6.18) is presented in Tab. 6.2. In total,
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Figure 6.16: Goal-driven Pushing with low ambient light conditions: Articulated Object

10 repeated trails were performed for each type of tracking experiment: single, multiple
and articulated. For all objects (single, multiple and articulated), the average pose tracking
error with the proposed ArtReg algorithm was less than 2 cm. The least tracking error
was achieved for single objects as expected with an average error of 1.31 cm whereas the
tracking error increases marginally for articulated objects (wherein 2 objects are tracked)
with an average error of 1.41 cm and for multiple objects (with the object number N ranging
from 3≤ N ≤ 7) with an average tracking error of 1.51 cm.



6.3. EXPERIMENTAL RESULTS 132

Table 6.2: Object Tracking

Object Type Euclidean Error (cm)

Single Objects 1.313 ± 0.27
Multiple Objects 1.512 ± 0.31
Articulated Objects 1.406 ± 0.48

6.3.5 Baseline Comparison
The ArtReg pose tracking algorithm was compared with the following state-of-the-art

methods: (a) particle filter-based tracker that has been used in many prior works (Cabido
et al., 2009; Gonzales and Dubuisson, 2015; Cifuentes et al., 2016); (b) learning-based ap-
proach termed ANSCH in (Li et al., 2020b) and (c) FilterReg algorithm presented in (Gao
and Tedrake, 2019). A standard benchmark dataset was used for comparison termed as
the PartNet-Mobility dataset (Xiang et al., 2020). The PartNet-Mobility dataset consists
of various real-world articulated mesh models with movable part definitions. The models
from the following categories are chosen: dishwasher (1 DoF revolute joint), glasses (two
1 DoF revolute joints), drawer (1 DoF prismatic joint), and blade (1 DoF prismatic joint).
The chosen articulated objects are shown in Tab. 6.3. The object models were provided as
URDF files which were simulated in a PyBullet simulator (Coumans and Bai, 2016). For
all the objects, the joint values were in the range [0,1]. Ten different poses were randomly
sampled for each object by choosing different values for the joint angle/ distance in the
range [0,1] and articulating the moving link according to the joint value, in total 40 exper-
imental trails. For each pose, a point cloud was captured by a simulated depth camera at
a 45◦ top-down viewing angle. This results in partial point clouds for the objects as seen
from Tab. 6.3 and provides a challenging benchmark for all the baseline methods as well
as the proposed approach. As the focus was on the tracking accuracy, the model point
clouds of each link were provided as input which were sampled from the CAD mesh files.
Baseline Implementation Details: The implementation of the FilterReg algorithm (Gao
and Tedrake, 2019) available in the Python package probreg (Kenta-Tanaka, 2019), AN-
SCH method from official GitHub implementation (Li et al., 2020b) and particle filter re-
implemented using Open3D modules (Zhou et al., 2018b) for point cloud processing were
used. All baseline approaches were implemented in Python. For quantitative evaluation,
the Average Distance of model points with Indistinguishable views metric (ADI) was used
which is insensitive to object symmetries (Hinterstoisser et al., 2013). The ADI metric is
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Figure 6.17: Pose estimation results with simulated articulated objects from PartNet-
mobility dataset in random pose configurations with comparisons against state-of-the-art.
p values calculated by Welch’s t-test shown as ∗.

measured as follows :

erradi =
1
|O| ∑

p1∈O
min
p2∈O
||(Rgtp1 + tgt)− (Restp2 + test)|| (6.19)

where (Rgt , tgt) and (Rest , test) refers to ground-truth and estimated rotation and translation
respectively, O refers to the object model point cloud and the points p1 ∈ O and p2 ∈ O

belong to the object point cloud and denote the closest corresponding points when O is
transformed by {Rgt , tgt} and {Rest , test} respectively. The quantitative comparison against
baseline approaches is presented in Fig. 6.17. Furthermore, object-wise results are pre-
sented in Fig. 6.18. Qualitative pose estimation results for selected poses are presented in
Tab. 6.3 and discussed in the following section.

6.4 Discussion
In this chapter, a full-fledged framework for articulated object detection, pose esti-

mation, and tracking as well as goal-driven closed-loop control has been presented. The
proposed ArtReg algorithm has been demonstrated to perform accurate and robust pose
tracking of single, multiple, and articulated objects. As illustrated in Fig. 6.17, it is ev-
ident that the ArtReg algorithm outperforms the state-of-the-art methodologies: ArtReg
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Table 6.3: Simulated articulated objects from PartNet-Mobility dataset (Xiang et al., 2020)
used for benchmarking the proposed ArtReg method against state-of-the-art algorithms.

Dishwasher Glasses Drawer Blade

Object

Articulation
Type

1 DoF Revolute
Joint

2 DoF Revolute
Joint

1 DoF Prismatic
Joint

1 DoF Prismatic
Joint

Measured point cloud

Particle Filter

FilterReg (Gao and Tedrake, 2019)

ANSCH (Li et al., 2020b)

ArtReg (ours)

demonstrated an average accuracy improvement of approximately 60% and a reduction in
median error exceeding 50% compared to baseline methods : FilterReg (Gao and Tedrake,
2019), particle filter (Cabido et al., 2009; Gonzales and Dubuisson, 2015; Cifuentes et al.,
2016) and ANSCH (Li et al., 2020b) (p < 0.01 as determined by Welsh’s t-test). The
mean ADI error value for the ArtReg algorithm was 7.23 cm and median ADI error was
2.1 cm. Whereas for the state-of-the-art algorithms, the average ADI errors were compar-
atively larger: particle filter: 18.53 cm, FilterReg (Gao and Tedrake, 2019): 34.22 cm and
ANSCH (Li et al., 2020b): 18.91 cm. The object-wise pose results in Fig. 6.18 demon-
strates that ArtReg provided highly accurate estimates for articulated objects with com-
pletely measured point clouds without self-occlusions (such as glasses) with average ADI
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Figure 6.18: Violin-plots showing the object-wise pose estimation results with the ArtReg
method. The notches in the violin-plot shows the mean value.

error of 0.312 cm and relatively larger errors for articulated objects such as drawer (aver-
age ADI error 18.4 cm) due to high self-occlusion as well as the larger size (bounding box
size upto 2 m). The superiority of the proposed methodology over state-of-the-art tech-
niques was qualitatively evident in Tab. 6.3. Specifically, existing methods such as (Gao
and Tedrake, 2019) and (Li et al., 2020b) demonstrated a deficiency in accurately capturing
the pose of articulated objects, such as dishwashers or drawers, whereas ArtReg method
yields precise estimations. Furthermore, the ArtReg approach does not require any prior
knowledge of the object whereas the recent state-of-the-art approaches such as ANSCH (Li
et al., 2020b) required prior training on a large labelled dataset of category-level object with
articulation and pose information.

Considering real-world robotic experiments, the proposed framework achieves highly
accurate pose tracking (< 1.5 cm average error over the trajectory) and goal-driven closed-
loop control (< 4 cm average error at goal-state). The robustness of the proposed approach
has been demonstrated in various conditions such as low ambient light, challenging back-
grounds, and varying the centre-of-mass of the objects. The importance of tactile percep-
tion in the framework is noted: for the detection of articulated objects, where objects have
identical visual features (such as Fig. 6.8), robots relied on tactile feedback during interac-
tive perception to discern the articulated object. During goal-driven manipulation, the UR5
robot relied on tactile force feedback to ensure contact during manipulation, and in case
of loss of contact, the framework re-triggers the computation of the push or hold-pull pose
to perform the manipulation task until the goal-state was achieved. Furthermore, tactile
feedback was crucial in situations such as low-light conditions, and when the CoM of the
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object was varied by the user. Although the CoM was not directly inferred, the tactile feed-
back during the manipulation manoeuvres and the resulting visual feedback of the effect
of the manipulation allowed the robot to adapt the pushing strategy such that the goal-pose
was achieved. The synergistic combination of visual and tactile perception allowed the two
robots equipped with the complementary sensing abilities to detect, track and manipulate
various types of objects in a robust manner.

However, there were limitations in the proposed framework which can be considered as
part of future work: the pose tracking method relied upon an accurate point cloud segmen-
tation to provide various parts of an articulated object. While an off-the-shelf region-and-
colour-based segmentation algorithm has been used, for more complex scenes, recent large
vision foundation models such as Segment Anything (Kirillov et al., 2023) may be used as
a drop-in replacement in the framework. Goal-driven manipulation has been demonstrated
on 3D-printed objects of relatively simpler primitive shapes. By 3D printing, the objects
could be modified easily to test for variations such as off-symmetric centre-of-mass. As the
main contribution of this chapter is the pose tracking algorithm namely ArtReg, the evalu-
ation of the accuracy has been performed on these 3D-printed objects as well as in simula-
tion with complex real-world objects such as glasses, dishwashers and drawers. However,
for an extension of the goal-driven manipulation to more complex and real-world 3D ob-
jects such as dishwashers and drawers, complex motion planning and control strategies are
necessary. Recent works have used tele-operated setups with behaviour cloning to enable
robots to manipulate complex articulated objects which can be a promising direction of fu-
ture work (Xiong et al., 2024; Eisner et al., 2022). Hardware improvements such as robust
multi-fingered hands with tactile sensing may be necessary for complex manipulation tasks
which provides increased dexterity compared to antipodal grasps with 2 finger grippers.

To summarise, in this chapter, a novel SE(3) Lie Group-based Unscented Kalman Filter
approach for real-time object tracking termed ArtReg has been presented. The proposed ap-
proach was demonstrated to perform robustly and accurately with various types of objects
such as single, multiple and articulated objects under different conditions such as low-light,
challenging backgrounds and varying centre-of-mass. Visual and tactile perception were
seamlessly integrated in the full-fledged framework which allowed the robots to detect any
possible kinematic articulation in objects using interactive manipulation, track the object
using the ArtReg tracker and perform closed-loop goal-driven manipulation to bring the
objects to the desired goal-state. The two-robot team equipped with visual and tactile sens-
ing respectively performed various types of manipulation manoeuvres such as pushing or
hold-pulling depending on the type of articulated object (revolute or prismatic joints) to
execute goal-driven manipulation. The ArtReg algorithm was also benchmarked against
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various state-of-the-art approaches and a clear outperformance was shown on a standard
benchmark dataset consisting of various types of articulated objects.

In the context of practical applications, the ArtReg algorithm discussed in this chapter
demonstrates its utility in real-time tracking of the pose of articulated objects, with po-
tential applications in household settings, human-robot collaborative manufacturing, and
geriatric care (Katz and Brock, 2008). Furthermore, the methodology presented for de-
tecting articulated joints through interactive visuo-tactile manipulation using pushing and
bi-manual hold-pull actions can be applied in scenarios where robots need to interact with
fragile and unknown objects, typical in household environments. Evidently, manipulating
articulated objects such as eyeglasses, door knobs, scissors, and so on require robust multi-
finger robotic hands with distributed tactile sensing. Although advanced robotic hardware
is increasingly becoming commercially and economically feasible (Piazza et al., 2019), the
ArtReg algorithm remains hardware-agnostic and can be applied to evolving technological
advancements. This capability is due to its reliance on raw 3D point clouds, which are
accessible through both visual sensors and tactile sensors integrated within robotic hands.
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Chapter 7

Visuo-Tactile Cross-Modal Perception
for Object Recognition

Parts of this chapter are published as:

• “Deep Active Cross-Modal Visuo-Tactile Transfer Learning for Robotic Object

Recognition”, P. K. Murali, C. Wang, D. Lee, R. Dahiya, and M. Kaboli,
in IEEE Robotics and Automation Letters, 2022 Jul 15;7(4):9557-64 (Murali
et al., 2022e).

• “Towards Robust 3D Object Recognition with Dense-to-Sparse Deep Do-

main Adaptation,” P.K. Murali, C. Wang, R. Dahiya, and M. Kaboli, in The
IEEE International Conference on Flexible and Printable Sensors and Systems
(FLEPS 2022), pp. 1–4 (Murali et al., 2022d).

The video of the experiments from this chapter is available here:
https://doi.org/10.1109/LRA.2022.3191408/mm1video-link

7.1 Introduction
Humans from infants to adults can seamlessly transfer the knowledge gained from vi-

sual modality to the tactile modality in order to perceive and interact with objects in the
environment especially during lack of visual feedback (Martino and Marks, 2000; Sann and
Streri, 2007). For instance, we can identify and distinguish previously seen objects blindly
only through touch. The human sensing and perception systems are also active such that the
sensory systems are purposefully controlled to increase the information gained for the task
at hand (Prescott et al., 2011). This chapter aims to develop an approach to provide similar
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abilities to autonomous robots for cross-modal object recognition by actively training with
the visual modality and transferring to the tactile modality without explicit training with the
tactile modality as shown in Fig. 7.1. This can provide increased autonomy and resilience
for robots in unstructured environments. If visual sensing is unavailable due to various
reasons such as occlusions, limited field of view, change in light intensity, dust blocking
the sensor and so on, the robot is capable of completing the object recognition task using
the tactile modality by leveraging only the previously gained knowledge from vision (Li
et al., 2020a). Furthermore, training an object recognition model with tactile sensing is
time consuming due to sparsity of tactile data, human annotation and need for interac-
tion with objects whereas through cross-modal learning, the robot can exploit the a priori

gained knowledge using visual sensing to recognise objects during testing stage through
only tactile sensing. Moreover, through active tactile perception and learning, the robot
can autonomously reduce the number of actions to perceive objects physical properties and
to learn efficiently about objects and discriminate them among each other (Kaboli et al.,
2018). As detailed in Chap. 2, prior works in visuo-tactile cross-modal recognition have
certain limitations such as they equalize the point density between the visual and tactile
point clouds to ease the challenge of cross-modal transfer (Falco et al., 2019). Due to the
extreme variation of point density (as seen from Fig. 7.1), this leads to loss of information in
the visual data. Furthermore, previous works in this domain rely upon pre-recorded visuo-
tactile data that are typically collected through manual teleoperation of a robot. Leveraging
active perception and learning techniques can aid in reducing data collection costs and
improve time efficiency for vision-to-tactile cross-modal domain adaptation.

The contributions of this chapter are as follows:

(I) A novel framework for deep active visuo-tactile cross-modal robotic object recogni-
tion. The deep neural network (xAVTNet) is trained with dense point cloud data from
visual sensors and tested on sparse point clouds acquired from tactile sensors.

(II) A novel unsupervised domain adaptation loss function termed VTLoss for minimis-
ing the domain gap between the visual and tactile domain.

(III) An active deep learning framework for visual object learning for reducing redundant
data collection and an active tactile-based object recognition approach by leveraging
xAVTNet to recognise objects online with minimal number of touches.

Extensive experiments were performed to show the validity of the proposed approach
against baseline and state-of-the-art approaches with real robot experiments.
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Figure 7.1: Experimental setup: A Franka Emika Panda robot with a RGB-D vision sensor
on the end-effector for active visual perception and learning. A UR5 robot with 3-axis tac-
tile sensors on the gripper for deep cross-modal visuo-tactile transfer learning and active
tactile object recognition.

7.2 Methodology

7.2.1 Problem Description
A novel framework shown in Fig. 7.2 is proposed herein for the task of deep active

visuo-tactile cross-modal object recognition. The network xAVTNet is trained with labelled
source domain dataset Ds = {(xs

i ,y
s
i )}ns

i=1 with ns samples from vision domain constructed
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Figure 7.2: Proposed framework for deep active visuo-tactile cross modal object recogni-
tion

using an active learning strategy by querying uncertain samples from a larger unlabelled
dataset Du consisting of nu samples with nu ≫ ns (Fig. 7.2a). Given the labelled source
domain Ds = {(xs

i ,y
s
i )}ns

i=1 from vision domain and unlabelled target domain Dt = {xt
j}nt

j=1

with nt samples from tactile domain, the model is adapted by reducing the domain dis-
crepancy through the proposed VTLoss (Fig. 7.2b). The adapted model is used for active
tactile-based object recognition wherein the robot is tasked to reason upon possible tactile
touch actions to perform and chooses the next best touch which maximises the expected
information gain (Fig. 7.2c).
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7.2.2 Deep Active Visual Object Learning
Network Architecture: Point clouds are captured from each object using the vision

sensor which are provided as input to the network. The input to the network is of the order
m×3 representing m points having dimensions x,y,z. The network outputs k probabilistic
classification scores for all k candidate classes. PointNet (Qi et al., 2017) was used as the
backbone for feature extraction. PointNet applies input and feature transformations and
aggregates the point features by max pooling to a global feature vector of size 1024 (Qi
et al., 2017). The global feature vector is followed by three fully-connected ( f c) layers of
size 512,256,k. The mapping from input point clouds to output classes is denoted as Gv

and associated parameters by θ . The xAVTNet was trained with dense point clouds from
the vision sensor of real world objects with k = 12 classes. The visual point clouds were
subsampled to 1024 points before passing to xAVTNet. The cross-entropy loss was used for
training. The visual point cloud dataset Ds representing the source domain was collected
using an active learning technique as detailed below.

Visual Viewpoint Sampling and Visual Data Collection: In order to collect visual
training data of the objects, a vision sensor/camera was used that was attached to a manip-
ulator robot (Franka Emika Panda) capable of choosing arbitrary viewpoints in 3D space
limited by the workspace and kinematic constraints of the robot. Choosing different view-
points of the same objects helps to improve the predictive accuracy of the network as the
same object can appear differently based on the view. For example, two identical mugs,
one featuring a handle and the other not, could present substantial difficulties for a network
trained on samples wherein the handle is perpetually occluded due to the camera’s static
viewpoint. While commanding the robot to arbitrary viewpoints, it is crucial to maintain
the viewing angle of the camera such that the object of interest lies within its field of view
(FoV). A viewpoint aview ∈ Aview is defined as the 3D position pview ∈ R3 and orientation
Rview ∈ SO(3) of the camera frame. Markov Monte-Carlo sampling of N viewpoints is
performed on the hemisphere space located above the centroid ocentroid of the target object
which is known a priori. The 3D position pview is randomly sampled as a point on the
hemisphere and the orientation of the view as axis of rotation e⃗ and angle θ is computed
with:

h⃗ =
pview−ocentroid

||pview−ocentroid||
(7.1)

θ = cos−1 (⃗h · Z⃗), e⃗ =
h⃗× Z⃗
||⃗h× Z⃗||

(7.2)

where Z⃗ = {0,0,1} is the Z-axis of the world frame. Using the resulting angle-axis for-
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mulation (⃗e,θ) or equivalent rotation matrix Rview from Eq.(7.2), the camera is always
oriented towards the object of interest. The robot is commanded to N viewpoints sequen-
tially and the point clouds are extracted from each viewpoint. The raw point clouds were
cleaned in order to remove outlier noisy points as well as the base plane and added to the
unlabelled dataset xu ∈ Du.

Uncertainty Estimation and Query Strategy: The goal of active learning is to select
samples from the unlabelled dataset Du, which upon labelling and training improves the
model accuracy significantly with fewer training samples. In order to select such samples
from the unlabelled dataset, the predictive probability of the network p(y|xu) is used to
determine uncertainty. The softmax function provides the predictive probability of an input
sample. However, as noted in previous works (Feng et al., 2019; Beluch et al., 2018), the
softmax function may provide inconsistent predictions as it provides higher probability to
unseen data. Hence, the Monte Carlo dropout (MC-dropout) method is adopted instead
to extract the uncertainty (Gal and Ghahramani, 2016). The MC-dropout technique (Gal
and Ghahramani, 2016) casts dropout training in deep neural networks as an approximate
Bayesian inference in deep Gaussian processes. It works by performing multiple stochastic
feed-forward passes through the network with dropout active at test time and averaging the
results. In particular, it is defined as

p(y|xu) =
1
T

T

∑
t=1

p(y|xu,Wt) (7.3)

where Wt refers to the weights of the network at the tth inference and T refers to the total
number of stochastic forward-passes. Given the predictive probability, the uncertainty of
the samples can be quantified by measuring the Shannon Entropy (Shannon, 2001) as:

H(y|xu) =−
C

∑
c=1

p(y = c|xu)logp(y = c|xu) (7.4)

where c = 1,2, . . .C refers to C classes. The unlabelled dataset was ordered based on the
Shannon entropy values and top κ samples were queried as the most informative samples
for labelling. The selected samples were labelled by the oracle (human annotator) and
added to the training dataset for further training.

7.2.3 Deep Visuo-Tactile Cross-Modal Object Learning
The challenge of domain adaptation arises from the fact that the target domain (tac-

tile modality) has no labelled data, hence fine-tuning the network trained on the source
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domain to the target domain directly is impossible. Another challenge stems from the
density and sparsity of visual and tactile data, respectively. The dense visual data con-
tains 1024 points (in this case), while the sparse tactile data usually contain 30-80 points.
The available labelled source data and the unlabelled target data are used to minimise the
distributions of the two domains in the latent space of the fully connected layers. The
present study employs discrepancy-based methodologies to extract domain-invariant rep-
resentations for the purpose of unsupervised domain adaptation. Popular techniques in
the literature among discrepancy-based methods include Maximum Mean Discrepancy
(MMD) (Borgwardt et al., 2006) and Correlation Alignment (CORAL) (Sun et al., 2016).
Given labelled source domain Ds = {(xs

i ,y
s
i )}ns

i=1 with ns samples and unlabelled target do-
main Dt = {xt

j}nt
j=1 with nt samples which are represented by probability distributions ps

and pt respectively, MMD between ps and pt is defined as:

MMD2(ps, pt) = sup
||φ ||H≤1

||Exs∼ps[φ(xs)]−Ext∼pt [φ(xt)]||2H (7.5)

where H is the reproducing kernel Hilbert space (RKHS), φ(.) is the feature mapping
associated with the kernel map k(xs,xt) =< φ(xs),φ(xt) >, sup(.) is the supremum of the
input aggregate and ||φ ||H ≤ 1 defines a set of functions in the unit ball of H. The multi-
kernel MMD (MK-MMD) (Gretton et al., 2012) assumes that the optimal kernel is obtained
by the linear combination of many kernels. Herein the kernel k(xs,xt) is defined as the
convex combination of b positive semi-definite kernels {ku} (Gretton et al., 2012):

K ≜

{
k =

b

∑
u=1

βuku :
b

∑
u=1

βu = 1,βu ≥ 0,∀u
}

(7.6)

where k is weighted by different kernels and the coefficients βu is the weight to ensure that
the generated multi-kernel k is characteristic. In contrast to MK-MMD which compares
all order of statistics, CORAL (Sun et al., 2016) is another discrepancy measure which
attempts to align the second-order statistics of the source and target distributions. Deep-
CORAL (Sun and Saenko, 2016) extends CORAL for deep neural networks and is defined
as follows:

CORAL(xs,xt) =
1

4d2 ||Cs−Ct ||2F (7.7)

where ||.||2F is the squared matrix Frobenius norm, Cs and Ct are the covariance matrices of
the source and target domain data. The three losses MK-MMD, CORAL and the supervised
classification loss were combined as a weighted linear combination to devise the loss func-
tion. Multi-layer domain adaptation with fully-connected layers f c1 and f c2 (shown in
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Fig. 7.2b) was performed as it is found empirically in this work to achieve higher target do-
main accuracy in comparison to single layer adaptation with f c1 or f c2. It has been shown
in prior works (Yosinski et al., 2014), that adapting a single layer does not sufficiently undo
the dataset bias between the source and target domains due to the other non-transferable f c

layers. Hence, the proposed LV T Loss is defined as:

LV T Loss = αLcrossEnt +β ({L2
MK−MMD} f c1 +{L2

MK−MMD} f c2)

+λ ({LCORAL} f c1 +{LCORAL} f c2)
(7.8)

where α,β ,λ are the hyperparameters. The discrepancy between the source and target
domain is reduced by minimising the LV T Loss as min

Gvt(θ)
LV T Loss. The domain adaptation

network architecture is shown in Fig. 7.2b.

7.2.4 Deep Active Tactile Object Recognition
Given the trained model using xAVTNet, the objective is to classify the object using

inference with minimal number of tactile acquisitions actively chosen by the robot as per-
forming tactile actions is time-consuming. A tactile action a is defined as a ray represented
by a tuple a = (s,

−→
d ), with s as the start point and

−→
d the direction of the ray. The 3D

bounding box pose of the object is assumed to be known. The actions are performed as
guarded motions so that the robot does not accidentally push or topple the object. The 3D
bounding box is discretised into a 3D occupancy grid OG with resolution gres. Each cell ci

in the occupancy grid is represented by a Bernoulli random variable and has an occupancy
probability p(ci). There are two possible states for each cell with ci = 1 indicating the cell
is occupied and ci = 0 for an empty cell. A common independence assumption of each
cell with other cells enables the calculation of the overall entropy of the occupancy grid as
the summation of the entropy of each cell. The Shannon Entropy of the entire grid can be
computed as (Bourgault et al., 2002):

H(OG) =− ∑
ci∈OG

p(ci)log(p(ci))+(1− p(ci))log(1− p(ci)) (7.9)

To compute the next best touch (NBT), the expected entropy-based information gain
is computed. As it is intractable to calculate the exact entropy from a predicted touch, a
common simplifying approximation is taken by predicting the expected measurements ẑt

from an action at at time t using ray-traversal algorithms. A virtual sensor model is defined
representing the tactile sensor with ntax taxels casting a set of rays R = {r1,r2, . . .rntax}
for a given distance dray in the z-axis of the sensor model coordinate frame, with one ray
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Algorithm 5: Overall Algorithm
// Deep Active Visual Recognition

Given: Ds = {(xs
i ,y

s
i )}ns

i=1 ;
Train Gv(θ)← LcrossEnt ;
if Classification accuracy < ν then

Aview← generate random views() ;
v pi=1...nv ← segment point cloud ;
Du∪ v pi=1...nv ;
∀xu ∈ Du, p(y|xu) = classify(Gv(θ)) ;
H(y|xu) =−∑

C
c=1 p(y = c|xu)logp(y = c|xu) ;

Du← ranked using H ;
Dl ← Select top κ% in Du ;
Dl ← annotate by human ;
Ds← Ds∪Dl ;

// Deep Cross-Modal Visuo-Tactile Transfer Learning

Given: Gv(θ),Ds ;
A← generate random tactile actions() ;
xt ← execute action(at) ;
Dt = {xt

j}nt
j=1 ;

Train Gvt(θ)← LV T Loss ;
// Deep Active Tactile Object Recognition

Given: Tpc← /0, Gvt(θ) ;
while n(Tpc)≤ NT

min do
A← generate random tactile actions() ;
zt ← execute action(at) ;
t p← zt ;
Tpc← Tpc∪{t p} ;

p(yt |xt) = classify(Gvt(θ)) ;
while argmaxc∈C(p(yt |xt)< ζ do

Anbt ← generate possible actions() ;
Ẑ← pred measurement(A) ;
anbt∗← choose best action(Ẑ) ;
zt ← execute action(anbt∗

t ) ;
t p← zt ;
Tpc← Tpc∪{t p} ;

if argmaxc∈C(p(yt |xt)> ζ then
out put label = argmaxc∈C(p(yt |xt)) ;

per taxel. Monte-Carlo sampling of Nnbt possible touch points are performed on each face
of the bounding box except the bottom face as the object rests on a flat surface. A set of
possible touch actions A is defined for each of the Nnbt possible touch points such that the
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start points s are at a fixed distance from the face of the bounding box in the −z axis of the
sensor model coordinate frame. The grid cells which are traversed by the rays are computed
to be occupied or free and the respective log-odds is updated accordingly (Hornung et al.,
2013):

l(ẑview) =

{
log ph

1−ph
if ẑview=̂ hit

log pm
1−pm

if ẑview=̂ miss
(7.10)

where ph and pm are the probabilities of hit and miss which are user-defined values set to
0.7 and 0.4 respectively as in (Hornung et al., 2013). Given the expected observations from
all the possible touch points and the updated probabilities of each grid cell, the expected
entropy of the overall grid can be evaluated by Eq. (7.9). The expected information gain
by taking a touch action a and corresponding expected measurement ẑ is given by the KL
divergence between the posterior entropy after integrating the expected measurements and
the prior entropy (Potthast and Sukhatme, 2014):

E[I(p(ci|at , ẑt))] =H(p(ci))−H(p(ci|at , ẑt)) (7.11)

Hence, the selected action a∗ is given by:

a∗ = argmax
a∈A

(E[I(p(ci|at , ẑt))]) (7.12)

As shown in the Fig. 7.2c, the object classification procedure is started with an initial
set of tactile points pinit that are acquired by performing random tactile touch actions. The
random tactile touch actions are sampled randomly on the bounding box of the object and
performed similarly as actions at explained above. Given minimum number of points for
inference ( NT

min set to 10 points), the tactile points are collated into a tactile point cloud
Tpc and used to perform model inference. If n(Tpc)< NT

min and/or if the output confidence
from the model inference is less than a threshold ζ , then active touch actions are performed
to acquire additional touch points.

7.3 Experimental Results

7.3.1 Experimental Setup and Data Collection
The experimental setup shown in Fig. 7.1 consists of a Universal Robots UR5 robot with

a Robotiq 2F140 Gripper and a Franka Emika Panda robot with the standard Panda Gripper.
The Robotiq 2F140 fingertips were equipped with tactile sensor arrays from Xela Robotics
as detailed in Chap. 3. The raw data from the Xela sensor consists of a relative value of
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Figure 7.3: (a) Experimental objects: Twelve daily objects with different characteristic
properties such as shape and transparency selected for object recognition task (b) Vision
and tactile point clouds of selected objects shown overlapped to demonstrate the difference
in point densities.

Table 7.1: The number of labelled samples required to reach a certain relative accuracy
measured by the relative error to the fully train network

No. of Labelled Samples
Relative error 10% 5% 3% 2%

Random strategy
(baseline) 2000 4500 5000 5500

Active strategy
(ours) 2000 2000 3000 3500
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(a) Before domain adaptation (b) After domain adaptation

Figure 7.4: (a) Visual and tactile t-sne features before domain adaptation (b) after per-
forming domain adaptation.

Table 7.2: Ablation study with the domain adaptation methods

Domain Adaptation V→ T
Accuracy (%)

MMD 57.28 ± 0.77
CORAL 58.34 ± 1.11

VTLoss f c1 70.42 ± 1.23
VTLoss f c2 62.19 ± 2.48
VTLoss 81.25 ± 1.97

force measurement but its not directly characterised to Newtons. The normal force values
(along z-axis) ranges between 36000 and 45000 and the raw force values were normalised.
Straight line trajectories with guarded motions were performed to collect the data. When
the force value measured on any of the taxels exceeded the threshold fr > τ f (set to 1.1), the
motion was stopped and the 3D locations of the contacted taxels were recorded as the tactile
point cloud tS. The tactile point cloud was expressed in the common world coordinate
frame W using the robot’s kinematic model. An Azure Kinect DK RGB-D camera was
rigidly attached to the Panda Gripper with a custom designed flange which provided the
vision point cloud vS in the world-frame using hand-eye calibration. Both visual and tactile
point clouds were only composed of the x,y,z coordinates and other properties such as
normals, colour are not used. The camera can also be used to extract the bounding box
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Table 7.3: Confusion matrix for tactile object recognition

1 0.85 0 0 0 0 0 0 0.05 0.1 0 0 0
2 0.2 0.75 0 0 0 0 0.05 0 0 0 0 0
3 0 0 0.95 0 0 0.05 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0
5 0.1 0 0 0.05 0.8 0 0.05 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0.9 0 0 0 0 0.1
8 0.7 0 0 0 0 0 0 0.2 0 0 0.1 0
9 0.05 0 0 0 0 0 0 0 0.95 0 0 0

10 0.05 0 0 0 0 0 0 0.1 0 0.45 0.4 0
11 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0.05 0 0 0 0.05 0 0 0.9

Object 1 2 3 4 5 6 7 8 9 10 11 12

Table 7.4: Comparison study with state-of-the-art approach

Method V→ T
Accuracy (%)

CLUE+GFK+1NN (Falco et al., 2019) 26.72 ± 0.96
CLUE+GFK+SVM (Falco et al., 2019) 15.05 ± 2.54
xAVTnet-noDA 51.25 ± 2.25
xAVTNet (ours) 81.25 ± 1.97

pose of the object using point cloud segmentation and clustering methods from the Point
Cloud Library (Rusu and Cousins, 2011). The OctoMap library (Hornung et al., 2013)
was used for the next best touch implementations. A ROS-based framework was used for
controlling the robots, sensor acquisitions and data collection.

Network Implementation: The PointNet (Qi et al., 2017) network was used which
performs input and feature transformations to encode a 1024 global feature vector. It’s fol-
lowed by three fully connected layers f c1, f c2, f c3 of size 512, 256 and k respectively. The
hidden layers f c1, f c2 include ReLU and batch normalisation. Furthermore, the dropout
with probability 0.4 was used on the f c2 layer. ADAM optimiser was used and learning
rate was set to 10−3. Two streams of f c layers were used for domain adaptation as shown
in Fig. 7.2b. The hyper-parameters were empirically tuned: α = 10, β = 10 and λ = 10.
The robot experiments were performed on a workstation running Ubuntu 18.04 with 8 core
Intel i7-8550U CPU @ 1.80GHz and 16 GB RAM. The training and domain adaptation
of the network was performed using PyTorch framework on a workstation with NVidia
Quadro RTX 4000 GPU with 8 GB RAM.
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(a) Vision: Active learning (b) Tactile: Active recognition

Figure 7.5: (a) Active strategy versus random strategy for deep visual learning (solid line:
mean, shaded: standard deviation). (b) Active strategy versus uniform and random strategy
for tactile object recognition (solid line: median, shaded: median absolute deviation).

A set of 12 real world objects were used for the task of object recognition as shown
in Fig. 7.3a. The objects were ordered in a list as follows: detergent bottle, coffee bottle,
mug, whiteboard cleaner, box, nutella bottle, olive oil bottle, shampoo bottle, spray bottle,
sugar box, tape and green bottle. The objects were selected based on varying degree of
shape complexity and transparency that is challenging for visual sensors. The visual and
tactile point clouds of some objects are shown in Fig. 7.3b highlighting the difference
in the number of points and point density between the two domains. Although dynamic
viewpoints were used for the visual point cloud acquisition, some regions of the objects
remain occluded due to the kinematic limits of the fixed-base manipulator. A point cloud
from a viewpoint was considered as one training sample and multiple viewpoints were not
merged together. The visual sensor may also produce noisy measurements and warped
point clouds due to acute viewing angles which have been retained to make the network
robust to real-world sensors.

7.3.2 Robot Experiments
Deep Active Visual Object Learning: Initially if the scene was cluttered, the au-

tonomous decluttering technique presented in Chap. 5 can be used. After the scene has
been decluttered, the Panda robot initiated visual data collection. A total of 9300 visual
point clouds for the 12 objects were collected by autonomously commanding the Panda
robot to different viewpoints. The dataset included the data augmentation performed by
random rotations around the Z-axis to be rotation invariant. The scene was also manually
rearranged between data collection iterations to capture all possible views of the object.
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However, it should be noted that the model was not affected by the relative pose of the
objects. For training, 6000 point cloud samples were used, 1500 for validation and 1800
for the test set. Initially, all training samples are unlabelled and represent the unlabelled
dataset Du. Subsequently, 1500 samples from Du were randomly selected and the human
user (oracle) labelled them to train the network. The trained network was used to compute
the uncertainty of the remaining unlabelled samples as explained in Sec. 7.2.2. The pro-
posed active learning strategy has been compared with a baseline method that randomly
queries samples from Du in this section. At each query step, κ = 500 samples were queried
from the unlabelled dataset. The mean (solid line) and standard deviation (shaded region)
results for deep active visual object learning versus baseline are presented in Fig. 7.5a. The
number of labelled samples necessary to achieve a certain relative error of the fully trained
network has been reported in Tab. 7.1.

Visuo-Tactile Domain Adaptation (DA): For DA, 10 tactile point clouds for each ob-
ject were collected using random tactile collection strategy. Similarly to the visual dataset,
the tactile dataset was augmented by performing random rotations around the Z-axis to be
rotation-invariant, increasing the data set to 100 point clouds per object. All tactile point
clouds were unlabelled because the objective was to perform unsupervised domain adapta-
tion. For domain adaptation training, 900 samples were used and 300 samples were used
as a test set. Tab. 7.3 shows the confusion matrix for classification accuracy in the test set
after performing unsupervised domain adaptation using the proposed VTLoss function. In
order to show the performance of domain adaptation method, comparison has been per-
formed against the MMD loss and the CORAL loss as ablation studies shown in Tab. 7.2.
Since multilayer domain adaptation has been used, the other variants in which a single fully
connected layer f c1 or f c2 was used for domain adaptation are reported in Tab. 7.2.

To benchmark the proposed framework, comparison against a state-of-the-art visuo-
tactile cross-modal domain adaptation work of Falco et al. (2019) has been performed. Due
to unavailability of official source code from their work, their paper has been reimplemted
as follows: A hand-crafted feature descriptor termed CLUE (Cross modal point cLoUd
dEscriptor) was proposed which has been implemented using PCL and the geodesic flow
kernel (GFK) for domain adaptation using MATLAB domain adaptation toolbox (Yan,
2024). The k-nearest neighbours (kNN) classifier and support vector machines (SVM)
were used for classification and the parameters have been fine-tuned according to guidelines
in (Falco et al., 2019). It must be noted that the re-implementation shown here may not be
identical to that of the original implementation. The same objects from Fig. 7.3a were used
for the evaluation. Importantly, the dense visual and sparse tactile point clouds were used
directly without equalising the point cloud density of the two domains as done in (Falco
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et al., 2019). The test classification accuracy with tactile data is reported in Tab. 7.4.
Deep Active Tactile Object Recognition: The method proposed in this chapter is in-

dependent of the method of tactile data collection. The data can be recorded uniformly,
randomly or even actively exploiting information gain. In order to evaluate the proposed
active tactile recognition method, comparison has been performed against uniform and
random collection strategies. The uniform collection strategy is defined as follows: the 3D
bounding box around the object is discretised into a grid of cell size 3 cm × 3 cm corre-
sponding to the size of the tactile sensor array. The cells are explored sequentially starting
from the edge closest to the robot base. The random strategy follows similarly to the ac-
tive strategy, with the next touch chosen randomly among possible touch actions instead of
using information gain metric. In order to fairly compare the strategies, only the first 10
touches were selected. The parameter NT

min is set to 10 points in the experiments beyond
which active, uniform, or random acquisition was performed. The acquisition strategies
were compared from the third touch and the median (solid line) and median absolute de-
viation (shaded region) are shown in Fig. 7.5b. The confidence threshold ζ to stop active
tactile exploration for recognition was set at 0.8 or 80%. On average, the active approach
took around 14 tactile actions, the random approach around 19 actions, and the uniform ap-
proach took 27 actions to achieve a classification precision over the confidence threshold.

7.4 Discussion
As seen from Tab. 7.3, the proposed network has an average accuracy of 81.25%. The

network has an accuracy over 80% for 9 out of 12 objects. The objects with lower ac-
curacy include (i) object 2 (coffee bottle) at 75%, (ii) object 8 (shampoo bottle) at 20%
and (iii) object 10 (sugar box) at 45%. The shampoo bottle was confused with object 1
(detergent bottle) due to the similar shape and curvature. In fact, if the tactile sensor does
not acquire data around the head of the two bottles, due to the sparsity of the tactile data,
the trained model was confused. The sugar box was confused with the tape (object 11).
Although the shapes were different, the inaccuracies were due to the fact that the rigidity of
the tactile sensor array does not accurately capture high curvatures present in the tape. The
sugar box also undergoes minor deformations while performing tactile data acquisitions.
From Tab. 7.4 it can be noted that the proposed approach outperforms the state-of-the-art
method (Falco et al., 2019) by over 50%. The reduced accuracy of (Falco et al., 2019)
was due to the fact that an important assumption in their work was relaxed by using dense
visual point clouds and sparse tactile point clouds directly without equalising the number
of points. In addition, the baseline method (Falco et al., 2019) was developed primarily
for quasi-planar objects while this work used a dataset comprised of 3D objects of varying
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shape complexity. Furthermore, the deep neural network was able to extract the discernible
features from even sparse point sets by transferring knowledge gained from dense point
clouds that hand-crafted features extractors such as CLUE (Falco et al., 2019) fail to do
so. Using the proposed cross-modal transfer learning technique, an improvement of ac-
curacy of nearly 30% over the same network without domain adaptation is seen demon-
strating the efficacy of the method. Furthermore, the domain adaptation method VTLoss

combining MMD, CORAL and the classification loss in a weighted linear combination
outperforms both MMD and CORAL by over 20%. Similarly, the multi-layer adaptation
provides an improved performance of over 10% compared to single-layer adaptation. From
the t-distributed stochastic neighbor embedding (t-SNE) (Van Der Maaten, 2014) visuali-
sations from Fig. 7.4 it can be seen that the source (visual) features and the target (tactile)
features are well clustered after applying domain adaptation. This shows that the model has
learnt to effectively discriminate the target features without explicitly training with labelled
target data. The proposed framework is also data efficient. The Tab. 7.1 shows that the ac-
tive learning approach demonstrates high accuracies within 5% relative error or 2% relative
error to that of a fully trained model using just 33% and 58% of the complete dataset respec-
tively. Fig. 7.5a shows that the proposed active learning strategy outperformed the baseline
random query strategy for visual object learning with fewer data. This demonstrates the
amount of labelling efforts saved by adopting the active learning strategy. Similarly, the
active tactile object recognition method outperformed the uniform action strategy as seen
from Fig. 7.5b. Using the active tactile approach, the robot can recognise objects with
> 70% accuracy whereas a uniform strategy only reached 20% accuracy within the first
10 touch actions. The random strategy reached around 60% accuracy while having larger
variability of the recognition as expected from a randomised approach. This helped reduce
the overall time for the task execution as robotic tactile action execution is time-consuming.

To summarise, this chapter tackled the problem of robotic visuo-tactile cross-modal
object recognition leveraging deep neural networks and active perception and learning.
The presented network xAVTNet, actively learnt from labelled visual point cloud samples
and unsupervised cross-modal transfer learning was performed with unlabelled tactile point
clouds using the novel domain adaptation VTLoss function. The cross-modal transfer learn-
ing method outperformed state-of-the-art approaches in cross-modal object recognition ac-
curacy. The proposed active perception and learning methods also demonstrated clear out-
performance over baseline strategies leading to a reduction in human labelling effort and a
faster data collection time. Furthermore, the proposed framework used an active tactile ob-
ject recognition strategy which led to data efficiency by reaching high accuracy with fewer
data collection steps.
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Considering real-world applications, the cross-modal recognition approach finds poten-
tial applications in robotic operations in adverse and unknown environments. In situations
where visual sensing is impeded by factors such as smoke, dust, and other factors, the robot
is effectively operating in a blind manner. Through cross-modal vision-to-tactile transfer
learning, the robot can recognise objects through sense of touch, and thereby increase the
resilience of the system. Similarly, tasks that involve object retrieval and manipulation in
cluttered settings, such as bin picking, can greatly benefit from these techniques. When a
robotic gripper is engaged in grasping objects within densely cluttered environments, a di-
rect line-of-sight to the robot is often obstructed. Consequently, the robot must be entirely
dependent on tactile sensing on the gripper to identify and retrieve the object. Furthermore,
the learnt visuo-tactile latent space encapsulates comprehensive information essential for
encoding tactile signals predicated on visual inputs (for instance, the tactile sensory out-
put associated to an image showing a velvet-like fabric), thereby facilitating its application
within virtual reality (VR) settings (Maier et al., 2016).
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Chapter 8

Active Tactile based Category-Level
Object Reconstruction

Parts of this chapter are published as:

• “Touch if it’s transparent! ACTOR: Active Tactile-based Category-Level

Transparent Object Reconstruction”, P. K. Murali, B. Porr, and M. Kaboli, In
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 10792-10799) (Murali et al., 2023).

The video of the experiments from this chapter is available here:
https://drive.google.com/file/d/1H6wQRfXTGzV3UIvxfjiYo1svmeap8TPk/

view?usp=sharing

8.1 Introduction
Reconstruction of shapes of unknown objects is a fundamental perception task that en-

ables downstream tasks for robots such as pose estimation, grasping and manipulation and
so on. Transparent objects such as cups, glasses, and bottles are ubiquitous around us and
if robots are expected to work in unstructured scenarios such as household environments,
it is essential to recognise and safely manipulate transparent objects. Although the re-
construction task is relatively simpler for opaque objects with off-the-shelf vision sensors,
such sensors produce unreliable and erroneous data with transparent objects due to their
non-Lambertian surfaces. Sophisticated custom-calibrated sets with specialised scanners
or modifying the transparent surface of objects are often necessary for accurate reconstruc-
tion (Ihrke et al., 2010). This is not practical for robots that need to perform reconstruction
on-the-fly for arbitrary unknown objects. However, high-fidelity tactile sensing can be used
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Figure 8.1: Experimental Setup: A Universal Robots UR5 with sensorised Robotiq Gripper
with 3-axis tactile sensor arrays for active tactile-based category-level unknown transpar-
ent object reconstruction.

for the reconstruction of the shape of transparent objects, as well as perform pose estima-
tion and safe manipulation (Li et al., 2020a; Kaboli et al., 2016).

Tactile perception is inherently action-conditioned as data depends on the type of con-
tact action performed and local as only the local surface information around the contact area
is extracted. Hence, for reconstructing the surfaces of an object, multiple contact actions
need to be performed by the robot. This leads to sparse information and prohibitively long
data collection times. The prior works in literature have worked towards addressing some
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of these challenges. Early works have used offline methods to collect dense tactile data and
fit to shape primitives such as superquadratics (Bierbaum et al., 2007). Reconstruction of
2-D shapes of convex objects with simple shapes using tactile sensing was performed by
deriving a closed-form solution for the curvature at the contact point and rotational speeds
in (Moll and Erdmann, 2001). Aggregating contact points into a point cloud is often used to
represent the shape of the objects. Some works have used Bayesian filtering techniques for
defining a probabilistic model of the objects using the tactile point clouds and used them
for other tasks such as classification (Meier et al., 2011). Teleoperation-based sliding of
tactile sensor against an object surface and using contour fitting techniques to reconstruct
the surface has been used in (Jia and Tian, 2009). Gaussian process implicit surface (GPIS)
has been widely used for tactile object reconstruction (Dragiev et al., 2011; Yi et al., 2016;
Björkman et al., 2013; Gandler et al., 2020; Martens et al., 2016; Suresh et al., 2021; Jamali
et al., 2016). The implicit surface described by a Gaussian process describes the shape of an
object through a function that decides for each point in space whether it is part of the object
or not. It produces smooth surface manifolds with a reasonable number of tactile points
as input and also provides probabilistic information to guide the tactile actions. However,
for complex shapes it typically requires lots of points uniformly distributed on the object’s
surface for reconstruction (Rustler et al., 2022; Jamali et al., 2016). Some works have also
used tactile sensing with visual perception to complete the shape with prior information
observed with visual camera (Gandler et al., 2020; Rustler et al., 2022; Smith et al., 2020).
While these works focus on opaque objects, limited works exist for the reconstruction of
transparent objects. Recently, deep learning methods have been used for point cloud based
shape completion given partial or noisy input point clouds (Fei et al., 2022). Seminal works
on PointNet (Qi et al., 2017) allowed using raw point clouds as inputs to deep networks for
the task of classification and semantic segmentation. Prior works have worked towards
point cloud completion using deep networks such as (Yu et al., 2018; Yuan et al., 2018)
but are mainly evaluated on datasets derived from CAD models and rarely evaluated on
real-world platforms with noisy and sparse sensors (Fei et al., 2022).

There are limitations in the state-of-the-art for the reconstruction of photometrically
challenging objects such as transparent and shiny objects with tactile perception: (a) ex-
isting reconstruction strategies such as Gaussian Process Implicit Surfaces (GPIS) fail to
capture fine shape details with sparse tactile input data, and (b) directly deploying deep
learning based strategies for shape completion with sparse input data is impractical as the
collection of a large dataset of tactile data for training is prohibitively expensive.

The contributions of this chapter are as follows:

(I) A novel framework for deep active tactile-based category-level reconstruction of un-
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known objects. The proposed reconstruction network has been trained on a category-
level synthetic dataset and tested on sparse tactile point clouds from real unknown
transparent objects.

(II) An autonomous and active tactile-based unknown object exploration strategy based
on information gain from sampling possible tactile actions (such as probing and
pinch grasp) leading to improved data collection efficiency.

To validate the proposed framework, extensive experiments have been performed on a real
robotic setup shown in Fig. 8.1 and compared against state-of-the-art methods.

8.2 Methodology

8.2.1 Problem Definition and Proposed Framework
The objective was to reconstruct a dense point cloud that precisely represented the shape

of the unknown transparent objects from sparse point clouds extracted with active tactile
interactive perception (touch/ pinch). To this end, a novel framework termed ACTOR was
proposed as shown in Fig. 8.2. In Fig. 8.2(a) a self-supervised learning approach with
an auto-encoder network is presented that was trained on subsampled point clouds from
synthetic objects belonging to the same category but not identical as the real objects. In
Fig. 8.2(b), a novel active tactile-based unknown transparent object exploration strategy
is shown for inference with the trained model to reconstruct a dense point cloud. Further
downstream tasks such as tactile-based object recognition was also demonstrated from the
reconstructed model.

8.2.2 Deep Self-Supervised Learning for 3D Object Reconstruction
A dataset D was constructed based on synthetic object models from the ShapeNet

repository (Chang et al., 2015) in order to leverage the synthetic open-source datasets
and avoid expensive real tactile-data collection (Murali, 2025). The synthetic object mod-
els belonged to the same category but were different from the real unknown transparent
objects. Point clouds of size Nin = 2048 points were sampled from the synthetic object
meshes. These point clouds were normalised and scaled to fit into a [0,1]3 cube and added
to the dataset, Pin ∈D. In order to generate the input point clouds P•in to the network, the
point clouds Pin were randomly subsampled by voxel-grid subsampling by the factor k i.e.,
P•in ∈R⌈ 1

k Nin⌉×3. This creates a challenging task for reconstruction with higher values for k

as simpler techniques based on interpolation with neighbourhood points cannot be used.
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Feature-Extraction Encoder The network architecture shown in Fig. 8.2(a) is an auto-
encoder that uses a self-supervised learning approach to reconstruct the original point cloud
from a subsampled input point cloud. The encoder takes subsampled point clouds as inputs
and generates a high dimensional feature vector. The feature vector captures the global
geometric shape information of the input point cloud. In general, any deep network that
works on raw input point clouds to provide a high dimensional feature vector can be used
as an encoder. In this case, a modified PointNet architecture (Qi et al., 2017) was used
for the encoder. The encoder network takes unordered point clouds and generates a global
feature descriptor vector of size 1024. The network learns a set of optimisation functions
that selects informative point regions in the point cloud. The encoder consists of [1× 1]
convolutions with output channels size (64,64,128,1024) with the first convolutional layer
with kernel size [1×3] to encode the input point cloud of N×3 dimension. The convolution
layers were aggregated by a max-pooling layer. A self-attention layer (Zhang et al., 2019)
was introduced whose outputs were aggregated with the max-pooled features to provide the
global feature vector. The encoder architecture is summarised in Fig. 8.2a. As the encoder
provides a high-dimensional global feature vector, it’s termed as feature-extraction encoder.

Self-Attention Layer: The self-attention layer was introduced as it can encode mean-
ingful spatial relationships between features and focus on important local features. Two
separate multi-layer perceptrons (MLPs) were used to obtain features G and H which were
subsequently used to get the weights as W = so f tmax(GT H). The input features were
transformed using another MLP to obtain K and multiplied with the weights as WT K.
These vectors were summed with the input vector to produce the output features. The self
attention layer description is shown in Fig. 8.3.

Self-Attention Unit

mlp

mlp

mlp

Input
features

Output
features

G

H

K

W

Transpose

Softmax

Figure 8.3: The self-attention unit.
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Upsampling Decoder An upsampling decoder was developed that upsampled the input
global feature vector to provide the reconstructed dense output point cloud Pout . The up-
sampling decoder was composed of a fully connected layer with output dimension of 1024
and five deconvolutional layers or transpose convolutional layers with kernel sizes and out-
put channels shown in Fig. 8.2a. The decoder produced the output point cloud with point
size set to 2048 while training as this was sufficiently dense for reconstruction purposes.

Loss Function In order to encourage the upsampled point cloud to be close to the original
input point cloud and follow the underlying geometrical surface of the object, the Chamfer
distance metric (Borgefors, 1986) was used as the loss function. Given the input point
cloud to the proposed network prior to subsampling, Pin and the reconstructed output point
cloud Pout , the loss is defined as:

LCD(Pin,Pout) =
1
|Pin| ∑

p1∈Pin

min
p2∈Pout

||p1− p2||2+ (8.1)

1
|Pout | ∑

p2∈Pout

min
p1∈Pin

||p2− p1||2

where |• | refers to the number of points in the point cloud and ||• ||2 refers to the L2 norm.
The loss LCD represents the average distance between the closest points in the point clouds.
A weighted loss was used for learning stability for the reconstruction loss as Lrec = αLCD

with α = 100 set empirically.

Recognition Network The pretrained encoder layers for reconstruction task were frozen
for the task of category-level classification. Three fully-connected layers with parameters
512, 256, and n respectively where n represents the number of categories of the objects
were used for the classification task. The softmax cross-entropy loss was used for training
the recognition network. The subsampled sparse point clouds from the synthetic dataset
with different subsampling ratios and data augmentation with random rotations were used.
Network implementation details are provided in Sec. 8.3.1. For surface reconstruction
from the dense reconstructed point cloud, the ball-pivoting algorithm (Bernardini et al.,
1999) was used.

8.2.3 Active Deep Tactile-based Unknown Transparent Object Recon-
struction

The model which was trained with only synthetic data was used during the inference
with real-world transparent objects. The sparse tactile point cloud data was collected au-
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tonomously by the robot using an information gain-based active strategy. Two types of
tactile actions were used for data acquisition: touch and pinch actions as shown in Fig. 8.4.
The touch actions were executed as guarded horizontal straight-line motions wherein the
object was not moved upon contact. The touch action is defined by a tuple at = {st ,

−→
dt }

where st ∈R3 is the start point of the tactile-sensorised gripper and
−→
dt ∈R3 is the direction

of the gripper-motion defined in the world-coordinate frame W. During the pinch action,
the robot approached the object in a vertical straight-line motion with a completely open
gripper and performed an antipodal enclosure grasp on the object without moving the ob-
ject. The fingers of the gripper were closed until the force on the tactile sensors exceeds
a predefined threshold f p > τ . The pinch action is defined as ap = {sp} where sp ∈ R3 is
the start position of the gripper motion vertically above the object at a predefined height as
shown in Fig. 8.4. Given the 2D bounding box of the object (a priori known or through
a RGB-image sensor), a probabilistic occupancy grid OGi of preset height and resolution
ogres was defined. Each cell of the occupancy grid ci was represented by an occupancy
probability p(ci) which was initially set to 0.5. During exploration, if a cell is discovered
to belong to the object, the probability is set to 1 and similarly, if the cell belongs to free
space, the probability is set to 0. The probabilities are updated through ray intersections
based on the virtual sensor model. A virtual sensor model of the tactile sensor was defined
which casted a set of rays R = {r1,r2, . . . ,rntaxel} where ntaxel refers to the number of tax-
els in the sensor array. The independence assumption of the probability of each grid cell
with one another allows to calculate the overall entropy of the OG as the summation of the
entropy of each cell. The Shannon entropy of the overall occupancy grid can be calculated
as:

H(OG) = ∑
ci∈OG

p(ci)log(p(ci))+(1− p(ci))(1− log(p(ci))) (8.2)

For performing the next best tactile (NBT) action, Monte-Carlo sampling of possible tactile
actions Nnbt were performed. The action space Anbt was comprised of an equal number of
touch and pinch respectively as Anbt = {ap,at}Nnbt . The expected measurements ẑt for each
action at ∈A were computed using ray-traversal algorithms (Hornung et al., 2013). Given
the observed grid cell c and the measurement from sensor observation z, the log-odds were
updated as L(c|z) = L(c)+ l(z) wherein L(c) = log p(c)

1−p(c) and

l(z) =

{
log ph

1−ph
if z=̂ hit

log pm
1−pm

if z=̂ miss
(8.3)

where ph and pm are the probabilities of hit and miss which are user-defined values set
to 0.7 and 0.4 respectively as in (Hornung et al., 2013). The posterior probability p(g|z)
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can be computed by inverting L(c|z). The expected information gain by taking an action
at ∈Anbt with expected measurement ẑt is provided by the KL divergence of the posterior
entropy and the prior entropy as:

E[I(p(ci|at , ẑt))] =H(p(ci))−H(p(ci|at , ẑt)) (8.4)

Therefore, the NBT action was the action that maximised the expected information gain as:

anbt∗
t = argmax

a∈A
(E[I(p(ci|at , ẑt))]) (8.5)

Each tactile action extracted contact positions in 3D space and contact forces. The direction
of the normal force was used to extract the normal direction n̂ of the object surface. The
contact points were aggregated into the tactile point cloud Pt . In order to initialise the NBT
action calculation, an initial point cloud (with NPt = 20) was extracted by randomised
touch actions. Further points were collected in an active manner using the NBT criteria.
A minimum number of points in the tactile point cloud were required to perform model
inference NPt > Nmin which was set empirically. The tactile point cloud was provided as
input to the trained network and the reconstructed point cloud Pout was obtained as the
output. It may be noted that the reconstructed point cloud may be used for performing pose
estimation with the S-TIQF algorithm presented in Chap. 5. The global feature vector in
the latent space was used for object recognition with the recognition network defined in
Sec. 8.2.2.

8.3 Experimental Results

8.3.1 Experimental Setup
The experimental setup is shown in Fig. 8.1 consists of a set of 9 unknown transparent

objects belonging to six categories and a Universal Robots UR5 equipped with a sensorised
Robotiq 2F140 gripper. The Contactile and Xela tactile sensors were used as explained in
Chap. 3. The normalised force values of the tactile sensors were measured and contact
was established when the force exceeds the baseline threshold fts ≥ τ f where τ f = 1.1.
The contact points Pt

obs were added to the tactile point cloud Pt after every action. The
tactile point cloud Pt consisted of x,y,z positions and the normal direction n̂ extracted
from the normal force vector. The normal information was only used for the baseline
GPIS computation and the surface reconstruction. All operations involving point clouds
used the Point Cloud Library (Rusu and Cousins, 2011), occupancy grid computations uses
Octomap library (Hornung et al., 2013), and the overall setup used the ROS Melodic-based



8.3. EXPERIMENTAL RESULTS 167

Pinch	action

Touch	action

Free	voxel
Occupied	voxel
Unknown	voxel

Object	contour

Possible	Pinch	action

Possible	Touch	action

𝑎! = {𝑠!}

𝑎" = {𝑠" , 𝑑"}

𝑝(𝑐#)

𝑎𝑛𝑏𝑡 = max
$!,$"∈𝒜

(ℍ 𝑝 𝑐# 	− ℍ(𝑝 𝑐# 𝑎" , 𝑧̂")))

Figure 8.4: Action selection voxelised probabilistic occupancy grid.

middleware.

Network Implementation Details

The proposed reconstruction network described in Sec. 8.2.2 was implemented using Ten-
sorflow framework and training/ inference were performed on Nvidia Quadro RTX 4000
GPU. The network training used ADAM optimiser, learning rate set to 10−4, momentum
0.9 and batch size 8. All layers of the encoder-decoder used batch normalisation and the
decay rate initialised at 0.5 and gradually increased to 0.99 with decay step size 2× 105.
During training with the synthetic dataset D, random voxel-grid subsampling was done to
have input point clouds with point size between 40 and 120. The hyper-parameter α for
the loss was set to 100. For the recognition head, a dropout with keep probability 0.7 was
used on the fc−256 layer.

Object List

The following widely-available transparent objects were used for reconstruction: bottle 1,
bottle 2, can, detergent, cup 1, cup 2, cup 3, wineglass and spray as shown in Fig. 8.6. The
object nomenclature follows {category-name} {instance number}. The real objects were
chosen to have varying complexities in shape from simple (bottle) to complex (spray).
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(a) (b)

(c)

Figure 8.5: Quantitative reconstruction results. Object numbered as follows: {1: Bottle 1,
2: Bottle 2, 3: Can, 4: Detergent, 5: Cup 1, 6: Cup 2, 7: Cup 3, 8: Wineglass, 9: Spray }

Various instances of the same category were chosen to show the reconstruction capabilities
of the proposed framework. The objects also have axes of symmetry which increases the
pose estimation challenge.

8.3.2 Active Tactile-based Deep Self-Supervised Category-level Trans-
parent Object Reconstruction

In order to initialise the active exploration phase for tactile data collection, a coarse
bounding-box information was necessary which can be provided by the user or automat-
ically detected using an RGB camera with off-the-shelf object detection techniques. The
height of the occupancy grid was set constant for every object at 0.4m which was larger
than the biggest object. While the proposed network can upsample an input point cloud
with even 20 points, reconstruction with acceptable accuracy was obtained with 100 points
or more as input. For each object, 10 tactile point clouds with point number between 100
and 120 points are extracted using the active exploration strategy and used for reconstruc-
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Figure 8.6: Qualitative reconstruction results of the proposed method in comparison with
Gaussian process implicit surfaces for unknown real test objects.

Figure 8.7: Active tactile reconstruction accuracy evaluated using the chamfer distance
with ground-truth
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tion. The ground-truth point cloud and mesh are obtained by spray-painting the objects
and using a scanning device. For evaluation, the following performance metrics were used:
Hausdorff distance, Chamfer distance and Earth Mover distance (Fei et al., 2022). Chamfer
distance is described in Sec. 8.2.2. Given two points S1 and S2, the Hausdorff distance is
defined as (Berger et al., 2013):

HD(S1,S2) = max{max
x∈S1

min
y∈S2
{||x− y||2},max

y∈S2
min
x∈S1
{||y− x||2}} (8.6)

The HD represents the maximum distance between the two point sets which can be affected
by extreme outliers during the reconstruction. The earth mover distance (EMD) finds a
bijection φ : S1→ S2 to minimise the average distance between corresponding points in the
point clouds as:

EMD(S1,S2) = min
φ :S1→S2

1
|S1| ∑

x∈S1

||x−φ(x)||2 (8.7)

A perfect reconstruction will yield {CD,HD,EMD} → 0 and lower values signify better
reconstruction.
Baseline: Gaussian Process Implicit Surfaces (GPIS) was used as baseline as it is widely
deployed in the state-of-the-art methods for tactile-based object reconstruction (Dragiev
et al., 2011; Yi et al., 2016; Björkman et al., 2013; Gandler et al., 2020; Martens et al.,
2016; Suresh et al., 2021; Jamali et al., 2016). For implementation, the gaussian processes
(GP) for machine learning toolbox (Rasmussen and Nickisch, 2010) in MATLAB was used
and the Matérn kernel was used for the GP. The identical input tactile point clouds were
provided to the GPIS method as to ACTOR approach.

The quantitative results of tactile-based reconstruction using the ACTOR method and
baseline GPIS method are shown in Fig. 8.5 and qualitative reconstruction results are pre-
sented in Fig. 8.6. From Fig. 8.5, it can be noted that the proposed approach yields lower
CD values for all objects. For HD and EMD, apart from the bottle and spray, ACTOR
performs better than the baseline GPIS approach. On average, ACTOR is 45%, 23.5% and
28% lower in CD, HD and EMD values compared to baseline GPIS (p < 0.001 calculated
Welsh’s t-test). While the quantitative results focused on local point-distances between the
reconstructed and ground-truth point cloud, the qualitative results in Fig. 8.6 demonstrated
the differences in reconstruction accuracy at the object level. GPIS produced warped recon-
structed surfaces due to the low number of tactile points. However, the proposed method,
with the help of the learnt model over the category-level synthetic objects, was able to
reconstruct the object to an acceptable accuracy even with sparse input data.

Active Tactile Reconstruction: A uniform object exploration and random object ex-
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Table 8.1: Confusion matrix for tactile-based object recognition

Bottle 0.98 0.2 0 0 0 0
Can 0.11 0.78 0.11 0 0 0

Detergent 0.08 0 0.73 0 0 0.19
Cup 0 0 0.04 0.96 0 0

Wineglass 0 0.05 0 0 0.95 0
Spray 0 0.04 0.13 0 0 0.83

Tr
ue

Bottle Can Detergent Cup Wineglass Spray
Predicted

ploration strategy were used as baselines which are detailed as follows: the bounding box
of the object was transformed into a grid with each grid cell of size 3 cm × 3 cm (size of
the sensor patch). The grid does not encode the probabilistic occupancy as in the proposed
ACTOR approach. The robot explored each grid cell in a sequential manner in the uniform
strategy. In contrast, for the random strategy, the robot picked a grid cell at random for
exploration. In order to have an unbiased comparison between the exploration methods,
a maximum of 20 actions were chosen as on average it takes 20 actions to extract at least
100 tactile points. The model inference was initiated from the fourth action onwards to
have a minimum of 20 points in the tactile point cloud. The chamfer distance metric with
the ground-truth after each action provided the evaluation method. As seen in Fig. 8.7, the
proposed active formulation outperforms the baselines uniform and random approaches. It
can be seen that the uniform strategy required a large number of tactile actions to com-
pletely explore the object for reconstruction compared to active and random strategies. The
random strategy had high variance in terms of reconstruction accuracy, which was due to
the stochastic nature of the exploration, while ACTOR deterministically improved recon-
struction accuracy with increasing number of tactile actions.

8.3.3 Tactile-based Transparent Object Recognition
The trained recognition model was tested on tactile point clouds extracted from the

objects in Fig. 8.6. The resulting confusion matrix is shown in Tab. 8.1. An overall recog-
nition accuracy of 87.16% is achieved. While most of the categories were recognised with

Table 8.2: Comparison of the performance with and without self-attention in the network.

HD ↓ CD ↓ EMD ↓
All cols. (mm)

ACTOR (without attention) 30.65 13.96 16.66
ACTOR (with attention) 27.01 10.26 13.27
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high accuracy, the can object was confused with bottle and detergent due to similarity in
local curvature and detergent and spray categories are confused with each other. The con-
fusion stems from the similarities in shape, particularly if the nozzle of the spray was not
explored during active tactile object exploration. The can and bottle share the same cylin-
drical shape features which leads to the confusion. It must be noted that the recognition
network was purely trained with synthetic data without any fine-tuning with the real world
tactile point clouds.

8.4 Discussion
In this chapter, a novel framework termed ACTOR, is presented for active tactile-based

category-level transparent object reconstruction. By learning with only synthetic object
models, ACTOR was capable of performing real-world transparent object reconstruction
through sparse tactile data. ACTOR outperformed the baseline GPIS strategy by more than
20% (p < 0.001 Welsh’s t-test) for all evaluation metrics (CD, HD and EMD measures).
The baseline GPIS method was used for object reconstruction in many prior works such
as (Dragiev et al., 2011; Yi et al., 2016; Björkman et al., 2013; Gandler et al., 2020; Martens
et al., 2016; Suresh et al., 2021; Jamali et al., 2016). It can be seen from the qualitative re-
construction results shown in Fig. 8.6, wherein GPIS failed to capture the shape details of
the object while the proposed approach captured the global and local shape accurately (see
object spray and wineglass). The proposed network ACTOR implicitly learnt important
feature points and was able to reconstruct the object accurately given few sparse inputs. In
Tab. 8.2, the case without using self-attention in the autoencoder is shown and the perfor-
mance deteriorates (by ∼ 10% HD metric) compared to using the self-attention layer. The
proposed active exploration strategy converged faster to reconstruct the object shape, thus
improving the sample efficiency compared to the baseline random and uniform exploration
strategies. The active exploration strategy achieved a value of 20mm (CD metric) within
20 tactile probing actions whereas the random and uniform strategies on average achieved
65mm and 192mm (CD metric) respectively. Tactile-based recognition of the transparent
objects was also performed with an average accuracy of 87%, demonstrating the versatility
of the proposed framework.

Moreover, the proposed reconstruction network was not only limited to the reconstruc-
tion of tactile point clouds of transparent objects. In fact, the same methodology has been
used in Chap. 5 for the reconstruction of dense visuo-tactile point clouds wherein the sparse
tactile data were collected by the robot in an autonomous manner in regions of uncertainty
in the visual data. In this case, the training of the network with synthetic data was sub-
sampled to contain points in the range of 60-1024 points to account for both sparse tactile
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and dense visuo-tactile point data. Beyond the predominantly controlled contexts of indus-
trial environments, future robotic systems intended for domestic applications are required
to function effectively within unstructured settings and address the challenges presented
by previously unseen objects such as glassware and cutlery in household settings. The
category-level object reconstruction and pose estimation methodologies formulated within
this thesis have considerable potential for application in scenarios where robots are required
to manipulate unknown objects. While the application demonstrated in this chapter is for
reconstruction of transparent objects from sparse point cloud data, such an approach can
be identically applied for upsampling other sparse point cloud data from sensors such as
lidar/ radar especially in autonomous driving (Yang et al., 2024). In addition, this technique
can speed-up 3D reconstruction processes prevalent in manufacturing industries by obviat-
ing the need for exhaustive viewpoints, allowing the reconstruction network to effectively
fill-the-gaps in missing measurement data (Zhou et al., 2024).



Chapter 9

Conclusion and Future Work

9.1 Conclusions
Sharing vision and tactile perception is crucial for robots to accurately and robustly

interact with objects in unstructured environments. This thesis had four main aims: (a) in-
tegrate visuo-tactile sensing to accurately and robust estimate the pose of objects in a possi-
bly dense unstructured cluttered environment through shared and interactive perception; (b)
develop a method for vision-to-tactile cross-modal transfer for task of object recognition in
cases where vision modality is rendered unusable; (c) develop a method for reconstructing
the shape of unknown objects through sparse tactile data by leveraging synthetic datasets
and (d) implement the theoretical frameworks on real robotic systems and develop active
perception methods to reduce the redundant data collection and improve overall system
efficiency. This chapter summarises the contributions of the thesis and provides directions
for future work.

Addressing the problem of weak-pairing between visual and tactile data, a novel recur-
sive filtering technique for object pose estimation termed translation-invariant Quaternion
filter (TIQF) and its globally optimal version stochastic TIQF (S-TIQF) were proposed in
Chap. 4-5. The TIQF method is able handle sparse data that were extracted in a sequen-
tial manner from tactile sensors as well as dense data that were extracted in a one-shot
batch-wise manner from visual sensors and efficiently and accurately handled the corre-
sponding dense-sparse point cloud registration problem. S-TIQF improved upon TIQF by
relaxing the need for a good initialisation to avoid local minina (a typical issue for locally
optimal methods (Pomerleau et al., 2013)) through a stochastic initial alignment technique
using an annealing procedure. Furthermore, it did not require a precise object model and
also estimated the 3D scale in addition to the rotation and translation estimates for category-
level reconstructed objects. Through extensive experiments across various benchmarks and

174
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real robot experiments with objects in dense clutter, the accuracy and efficacy of both the
TIQF and S-TIQF methods has been demonstrated. The proposed methods were compared
against various state-of-the-art methods including popular techniques such as ICP (Besl and
McKay, 1992), globally optimal robust registration methods such as TEASER++ (Yang
et al., 2020) as well as learning-based approaches like PREDATOR (Huang et al., 2021a).
In fact, the proposed method significantly outperformed state-of-the-art methods in terms
of pose accuracy, especially in the case of sparse tactile data. The two-robot team coor-
dinated with each other to autonomously declutter a randomly dense cluttered scene and
extracted the pose of the pose of the target object. The decluttering was orchestrated by
a novel scene graph approach termed declutter graph which encodes the spatial and sup-
port relationships between various objects in the scene. The visuo-tactile data was used to
reconstruct the object shape using a novel joint information gain approach. The joint infor-
mation gain metric reduced the number of robot actions necessary to accurately reconstruct
the object shape. Moreover, S-TIQF was also deployed to rectify the hand-eye calibration
error using arbitrary objects without the need for a specific calibration grid.

During interactive perception, it’s likely that the target objects moves and dynamic pose
tracking needs to be performed. Furthermore, objects may have intrinsic articulation that
cannot be distinguished from a rigid object through visual perception alone. In Chap. 6, a
novel full-fledged framework for visuo-tactile based interactive perception to detect, track
and manipulate unknown objects (single, multiple or articulated objects) without assuming
any prior knowledge regarding object shape or dynamics has been presented. The proposed
method termed ArtReg achieved accurate pose tracking (average error < 2 cm) for all types
of object (single, multiple, or articulated). Moreover, precise pose tracking was required
for goal-oriented closed-loop control of these objects, and was demonstrated under various
challenging conditions. These conditions include variations in the objects’ centre of mass,
as well as scenarios characterised by low illumination and complex backgrounds. Various
types of robot actions were performed, such as pushing in the case of single or articulated
objects with revolute joints and hold-pull actions involving coordination of both robots to
pull apart objects with prismatic joints. The actions were executed autonomously by the
robots, which discerned the type of object through iterative manipulation actions analogous
to human interaction to identify the properties of the object. ArtReg was also compared
with various state-of-the-art methods and outperforms them in pose tracking accuracy on a
standard benchmark dataset.

In Chap. 7, the task of vision-to-tactile cross-modal recognition was tackled. A novel
cross-modal object recognition method leveraging deep neural network and active percep-
tion and learning techniques was proposed. In this regard, a novel loss function termed
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V T Loss was designed which minimised the domain gap between the visual and tactile
domains by minimising the distribution statistics by mapping the feature vectors to a high-
dimensional subspace. The proposed method in Chap. 7 outperformed the limited state-
of-the-art works in this domain such as Falco et al. (2019). The presented framework
also leveraged active learning with entropy formulation for vision-based object recogni-
tion and reduced the expensive cost of data annotation. Moreover, since tactile sensing
is action conditioned, the sample efficiency of the tactile actions was improved using a
greedy information-gain based exploration approach that takes less than 10 probing actions
to recognise the object as compared with baseline exploration strategies that required more
than 20 probing actions.

Similarly to object pose estimation, tactile perception can augment and refine visual
perception for object reconstruction. Furthermore, for transparent and specular objects,
vision sensors are ineffective for extracting 3D point cloud data. In Chap. 8, a novel frame-
work termed ACTOR has been presented for the category-level object reconstruction of
transparent objects with tactile sensing. Since collection and annotation of a large-scale
tactile dataset is prohibitively expensive, synthetic data was leveraged for the training of
the reconstruction network. The synthetic data was extracted from open-source object
models belonging to the same categories as the real-world test objects. The neural net-
work trained with only synthetic data was directly used for inference with real tactile point
cloud data without any synthetic-to-real fine tuning. The proposed methodology demon-
strates a superior reconstruction accuracy, exceeding the baseline Gaussian Process Implicit
Surfaces (GPIS) method by over 20%. It is important to note that the GPIS method was
often employed in the domain of object reconstruction. Furthermore, for opaque objects,
tactile sensing was leveraged to reconstruct areas of uncertainty from visual sensing during
shared perception.

This thesis addressed the research question stated in Chap. 1 and has presented several
novel contributions for visuo-tactile-based perception and learning in robotics primarily
for three application domains: object pose estimation, object recognition, and reconstruc-
tion. The theoretical frameworks developed within this thesis process data obtained from
visual and tactile sensors as raw 3D point clouds. Consequently, these frameworks demon-
strate wide applicability across various types of current commercial sensors and can exhibit
adaptability to future advancements in sensor technologies. Furthermore, the proposed
interactive perception formulations were also agnostic to the type of robot embodiment:
active visual perception actions required at least 6 DoF manipulator robots, which are pro-
vided by most robot manufacturers. Active tactile perception actions were not gripper
dependent, since simple probing actions can be performed even with simple point-contact
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end-effectors. The algorithms proposed in this thesis can be applied in various real-world
applications in manufacturing industries and household settings. The pose estimation and
object reconstruction methods discussed in the thesis are essential for autonomous manipu-
lation of objects, especially in unstructured cluttered settings. The cross-modal recognition
method proves advantageous in challenging conditions, such as low-light environments or
scenarios lacking direct line-of-sight, wherein robots can utilize tactile sensing to accom-
plish the task. Moreover, the methods developed in this thesis find applications beyond
robotics and are detailed in Sec. 9.2.

9.2 Future Work

9.2.1 Extension of pose estimation formulation to other domains
The pose estimation and tracking algorithms developed in Chap. 4-6 such as S-TIQF

and ArtReg are generic and depends only on 3D points, hence they can be deployed for
other dense-sparse sensing modalities such as radar or lidar point-clouds in autonomous
driving domain. Similarly, the active perception methodology developed is based on 3D
points and occupancy grid which can also be extended to sensors beyond vision and tactile.
The dynamic pose tracking of articulated objects presented in Chap. 6 involves 1 DoF
prismatic and/or revolute joints. The proposed framework for tracking and manipulation of
articulated objects can be extended for articulated objects with other types of joints such
as universal joint, screw joints, ball joint and so on. Both S-TIQF and ArtReg algorithms
work on correspondences between two point clouds, so it can readily be combined as a
‘backend’ with learning-based approaches as ‘front-end’ providing semantic segmentation
or feature keypoint correspondences of measured point cloud data to improve the tracking
in complex scenarios.

9.2.2 Incorporating robot uncertainties in sensor measurements
As mentioned in Chap. 5, the accuracy of the tactile sensor measurements were depen-

dent on the kinematic accuracy of the robots. The collaborative robots used in this thesis
such as Universal Robots and Franka Emika Panda have a pose repeatability of 0.1mm and
empirical analysis showed the pose accuracy has a standard deviation of upto 4mm. Since
the tactile sensors were rigidly attached to the robot gripper, the tactile point clouds in-
herently incorporate the uncertainty from the robot kinematics. Another avenue for future
work involves the integration of uncertainty quantification within the registration process,
which has the potential to further mitigate calibration errors. The measurement noise term
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within the Kalman filter can be modified to include the noise arising from the sensor as
well as the robot kinematics.

9.2.3 Extension of cross-modal perception
While this thesis focused on the shape of objects for shared visuo-tactile perception,

there are other properties of the objects, such as surface texture, that can also be effectively
transferred across domains. The Chap. 7 demonstrated shape recognition through vision
to tactile cross-modal adaptation, the opposite i.e., transfer learning from tactile to vision
perception is also an interesting problem for future work. The concept known as synaes-
thesia in humans is the phenomenon of stimulation of one sensory or cognitive pathway
that leads to involuntary experiences in a second sensory or cognitive pathway. Emulating
this for robots, for instance, based on sensed tactile signals, a neural network can gener-
ate the image of the surface which can allow the robot to interact blindly with objects.
Although preliminary investigations have been conducted on this issue (Purri and Dana,
2020; Lee et al., 2019a), more comprehensive research is necessary. With the advent of
large foundation models, there have been increasing number of works in literature for text
and vision-based models demonstrating impressive performance across applications such
as language prompting for image segmentation, object detection and so on (Kirillov et al.,
2023; Zhang et al., 2024). Incorporating tactile data within vision-language-tactile mod-
els can enable seamless cross-modal transfer between modalities. This can also open the
doors for new applications in human-robot interaction, for instance human can command
the robot through language prompts to grab the soft toy from a cluttered bin and the robot
can utilise visual and tactile perception to retrieve the required object and handover to the
human. However, this necessitates large-scale labelled tactile datasets which is an open
challenge due to the variations in type and outputs from tactile sensors as well as time con-
suming contact actions necessary for gathering tactile data. Simulation of tactile data may
provide a possible avenue for tackling the problem as detailed below.

9.2.4 Improving simulation for training with tactile data
In Chap. 8, simulated data has been used to train a neural network by mimicking con-

tact points through a sub-sampled point cloud. The network has been demonstrated to
perform on real tactile data without any fine tuning for the task of shape reconstruction,
thus showing the power of simulation for training large neural networks. However, the
precise simulation of tactile sensors extending beyond mere point contacts, such as the ac-
curate simulation of friction of different surfaces is a promising direction for future work.
There have been recent efforts for simulating vision-based tactile data that generates the
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contact ‘image’ (Wang et al., 2022b; Ding et al., 2020) whereas more research attention
is needed to simulate the raw signals from tactile sensors arrays. Another challenge for
developing a cross-platform simulator is the existence of various types of tactile sensors
with differing outputs signals. Developing a common data-structure or feature-map from
different types of raw signals can help in unifying the simulation setup. Many existing sim-
ulators for instance Tacto (Wang et al., 2022b) and Tactile-Gym (Church et al., 2022) are
based on existing rigid-body physics simulators such as PyBullet wherein simulating soft
bodies can be approximated at the cost of accuracy. Some recent works based on Finite El-
ement Methods (FEM) such as (Narang et al., 2021; Kim et al., 2013) can model soft-body
contacts more accurately. Differentiable simulations capable of handling soft-bodies will
be necessary for training of large networks.

9.2.5 Improvement of hardware: robust dexterous hands with tactile
sensing

In this thesis, two-finger grippers capable of antipodal grasping have been used which
can be integrated with different types of tactile sensors in a straightforward manner. They
also can be deployed with off-the-shelf planning algorithms for prehensile and non-prehensile
manipulation. However, when manipulating complex and non-rigid objects, dexterous
hands outperform the two-finger grippers (Kappassov et al., 2015). State-of-the-art dex-
terous hands with tactile sensing have demonstrated remarkable dexterity and functionality
mimicking human hands but lack robustness, scalability and affordability (Andrychowicz
et al., 2020; Eguiluz et al., 2017). This has resulted in many research groups developing
their own ad-hoc created robotic hands through rapid prototyping (Bhirangi et al., 2023;
Liu et al., 2022a). However, low-cost, robust, and standardised multi-fingered dexterous
hands with distributed tactile sensing capable of lifting reasonable payloads (< 10 kg) are
critical for the manipulation of complex objects in real-world unstructured environments.
Moreover, the developed methodologies in this thesis are based only on contact positions
and forces and are agnostic to type of robot embodiment. Thus, they can readily be de-
ployed on current and future multi-fingered dexterous hands.

9.2.6 Extension of visuo-tactile perception beyond robotics
Beyond robot manipulation, visuo-tactile perception finds applications in other fields

as well. A detailed review of the state-of-the-art for technologies and algorithms for in-
vehicle interaction has been conducted during this doctoral study but not presented in this
thesis and is available in Murali et al. (2022c). Many contact surfaces within vehicles can
be sensorised and the tactile data may be combined with in-vehicle camera data to enrich
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the information regarding the passenger state. It can be useful for applications such as
human pose tracking and human state monitoring within the vehicle which can enable other
use-cases such as augmented reality/ virtual reality, fatigue detection, ergonomic posture
recommendation, and so on (Murali et al., 2022c).

In conclusion, this thesis has introduced novel methodologies for visuo-tactile percep-
tion and learning in robotics, with a particular emphasis on object pose estimation, recogni-
tion, and reconstruction. The findings demonstrate that the integration of visual and tactile
sensory data allows robots to accurately determine the pose of objects in unstructured and
cluttered environments, even when dealing with objects featuring shiny or transparent sur-
faces. Additionally, this work has shown that tactile sensing proves effective for surface re-
construction of transparent objects when combined with novel deep learning techniques for
point cloud upsampling. Furthermore, a novel framework for vision-to-tactile cross-modal
transfer learning method has been proposed, enabling robotic systems to switch to tactile
sensing in scenarios where vision is compromised, thus enhancing system robustness. The
methods presented herein have the potential to facilitate a range of real-world applications
for robots operating in unstructured environments and offer promising directions for future
research on interactive and shared multi-modal perception in robotics.
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Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal

of graphics tools, 2(1):21–28, 1997.

Antonio Morales, Mario Prats, Pedro Sanz, and Angel P Pobil. An experiment in the use
of manipulation primitives and tactile perception for reactive grasping. In Robotics:

Science and Systems, Workshop on Robot Manipulation: Sensing and Adapting to the

Real World, Atlanta, USA, 2007.

Douglas Morrison, Peter Corke, and Jürgen Leitner. Learning robust, real-time, reactive
robotic grasping. The International journal of robotics research, 39(2-3):183–201, 2020.
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surements and visual features for in-hand object pose estimation. IEEE Robotics and

Automation Letters, 3(4):3497–3504, 2018.

Cristina Piazza, Giorgio Grioli, Manuel G Catalano, and Antonio Bicchi. A century of
robotic hands. Annual Review of Control, Robotics, and Autonomous Systems, 2(1):
1–32, 2019.

Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours. In 2016 IEEE international conference on robotics and

automation (ICRA), pages 3406–3413. IEEE, 2016.

François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat. Comparing
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William Taube Navaraj, Carlos Garcı́a Núñez, Dhayalan Shakthivel, Vincenzo Vinciguerra,
Fabrice Labeau, Duncan H Gregory, and Ravinder Dahiya. Nanowire fet based neural
element for robotic tactile sensing skin. Frontiers in neuroscience, 11:501, 2017.

M Lamine Tazir, Tawsif Gokhool, Paul Checchin, Laurent Malaterre, and Laurent
Trassoudaine. Cicp: Cluster iterative closest point for sparse–dense point cloud reg-
istration. Robotics and Autonomous Systems, 108:66–86, 2018.

Meng Tian, Marcelo H Ang, and Gim Hee Lee. Shape prior deformation for categorical
6d object pose and size estimation. In European Conference on Computer Vision, pages
530–546. Springer, 2020.

Tito Pradhono Tomo. Development of a Compact, Soft, Distributed 3-axis Hall Effect-based

Skin Sensor: uSkin. PhD thesis, Waseda University, 2019.



207

Tito Pradhono Tomo, Alexander Schmitz, Wai Keat Wong, Harris Kristanto, Sophon Som-
lor, Jinsun Hwang, Lorenzo Jamone, and Shigeki Sugano. Covering a robot fingertip
with uskin: A soft electronic skin with distributed 3-axis force sensitive elements for
robot hands. IEEE Robotics and Automation Letters, 3(1):124–131, 2017.

Tito Pradhono Tomo, Massimo Regoli, Alexander Schmitz, Lorenzo Natale, Harris Kris-
tanto, Sophon Somlor, Lorenzo Jamone, Giorgio Metta, and Shigeki Sugano. A new sili-
cone structure for uskin—a soft, distributed, digital 3-axis skin sensor and its integration
on the humanoid robot icub. IEEE Robotics and Automation Letters, 3(3):2584–2591,
2018.

Sibel Toprak, Nicolás Navarro-Guerrero, and Stefan Wermter. Evaluating integration
strategies for visuo-haptic object recognition. Cognitive computation, 10:408–425, 2018.
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Appendix A

Mathematical Background

This chapter recalls fundamental mathematical results from the literature that are used
throughout the thesis.

A.1 Homogeneous Transformations
A coordinate frame is described by its origin point and orientation and described in

this thesis using a capitalised letter such as A. Frames can move in time with respect to a
reference frame and can be used to describe the pose, which is the position and orientation,
of a rigid body with respect to the reference frame. Given two frames A and B, we employ
the notation ARB ∈ SO(3) to denote the rotation of frame B to frame A. Similarly, we denote
AtB ∈ R3 as the translation of the point of origin of frame B to the origin of frame A. To
describe the pose of frame B with respect to frame A, a homogeneous transformation matrix
is defined as follows:

AHB =

[
ARB

AtB
01×3 1

]
∈ SE(3) (A.1)

The homogeneous transformation matrix can also be applied to a point in 3D space. Let a
point be described with respect to frame A be denoted as A p. Let A p̄ be the homogeneous
representation of the point A p i.e., A p̄ = (A p;1) ∈ R4. Then the following relation holds
true:

A p̄ = AHB
B p̄ (A.2)

Equivalently, the Eq. (A.2) can be expressed as A p = ARB
B p+AtB. The inverse of a homo-

geneous transform is given by:

BHA = AH−1
B =

[
ART

B −ART
B

AtB
01×3 1

]
(A.3)
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Homogeneous matrices can be composed together when performing one transformation
after another as follows:

AHC = AHB
BHC (A.4)

Note that all multiplications between matrices denote standard matrix multiplication unless
specified otherwise. The set of all matrices described in Eq. A.1 span the so called SE(3),
Special Euclidean Lie Group of rigid body displacements in 3D. There are sub-groups
of SE(3) of importance such as SO(3) special orthogonal group of 3 dimensions, which
is a group of all possible 3D rotations. The interested reader is referred to Waldron and
Schmiedeler (2016) for further details on transformation matrices and their role in robotics
and computer vision. Lie groups and algebra are introduced in Sec. A.2.

A.1.1 Quaternions
Rotations in SO(3) can be parameterized in multiple different ways, such as Euler an-

gles, rotation matrices, unit quaternions, angle-axis representations, and so on. Rotation
matrices and, in particular, quaternions are used in this thesis which offer robustness against
issues such as the gimbal lock due to Euler angle parameterisation (Zhang, 1997). Some
important properties of quaternions are detailed in this section.

A quaternion, q is represented as:

q =

real︷︸︸︷
w +

vector︷ ︸︸ ︷
xi+ yj+ zk (A.5)

where w,x,y,z ∈ R and i, j,k are the basis vectors.
Two quaternions are added by adding the respective components separately as:

q1 +q2 = (w1 +w2)+(x1 + x2)i+(y1 + y2)j+(z1 + z2)k (A.6)

Quaternion summation is associative, commutative, and distributive.
The multiplication of quaternions is denoted by ⊙ and is given as:

q1⊙q2 =(w1w2− x1x2− y1y2− z1z2)

+(w1x2 + x1w2 + y1z2− z1y2)i

+(w1y2 + y1w2 + z1x2− x1z2)j

+(w1z2 + z1w2 + x1y2− y1x2)k

(A.7)
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Equivalently, quaternion multiplication is also provided in matrix form as:

q1⊙q2 =

[
w1 −q⃗1

T

q⃗1 q⃗1
×+w1I3

]
q2 (A.8)

=

[
w2 −q⃗2

T

q⃗2 −q⃗2
×+w2I3

]
q1 (A.9)

where q⃗ is the vector part of the quaternion and [v]× is the skew-symmetric matrix formed
from the vector v.

The conjugate of a quaternion q∗ is given by:

q∗ = w− xi− yj− zk (A.10)

The norm of a quaternion is given by:

||q||=
√

q⊙q∗ =
√
(w2 + x2 + y2 + z2) (A.11)

A unit quaternion denoted by ||q||= 1 represents any rotation in SO(3) where the pos-
itive and negative basis vectors represent the same rotation.

For any unit quaternion q, the operation qpq∗ performs the rotation of a vector p about
the direction (x,y,z)T .

A.2 Lie Group and Algebra
A Lie group is a smooth differentiable manifold whose elements adhere to the axioms

inherent to group theory. A differentiable or smooth manifold is a topological space that
locally resembles linear space. The smoothness of the manifold implies the existence of a
unique tangent space at each point.

A group (G,◦) is a set, G, with a composition operation ◦ that, for elements X ,Y,Z ∈G,
satisfies the following axioms (Sola et al., 2018):

• Closure under ◦ : X ◦Y ∈ G

• Identity E : E◦X = X ◦E= X

• Inverse X−1 : X−1 ◦X = X ◦X−1 = E

• Associativity : (X ◦Y )◦Z = X ◦ (Y ◦Z)

Given X(t) a point moving on a Lie group’s manifold M, its velocity Ẋ = ∂X/∂ t be-
longs to the space tangent to M at X , which is denoted as TXM. The smoothness of the
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manifold implies the existence of a unique tangent space at each point. The structure of
such tangent spaces is the same everywhere (Sola et al., 2018).

The tangent space at the identity, TEM, is called the Lie algebra of M and is denoted as
m.

There are two functions associated with the Lie group and its algebra:

• Exponential map: exp : m→M converts elements of the Lie algebra into elements
of the group (also denoted by ϕ(·)).

• Logarithmic map: log : M→ m converts elements of the Lie group to the elements
of the Lie algebra (also denoted by ϕ−1(·)).

A detailed introduction to Lie theory in the context of robotics is available in (Sola
et al., 2018).

Figure A.1: A manifold M and the vector space TXM tangent at the point X

A.3 Bayesian Filter
Filtering is a process of estimating the value of a quantity at time t using measure-

ments up to and including time t. A recursive Bayesian Filter is a probabilistic approach to
estimate the a posteriori probability of a state variable x recursively over time t using mea-
surements z and possible control inputs u. Two important assumptions are used in Bayesian
Filtering: (a) the state follows a first-order Markov process i.e., p(xt |x0:t−1) = p(xt |xt−1)

and (b) the measurements zt are independent of all prior states apart from the current state
xt.

From Bayes rule, we get the following relation:

p(xt |z1:t) =
p(zt |xt)p(xt |z1:t−1)

p(zt |z1:t−1)
∝ η p(zt |xt)p(xt |z1:t−1) (A.12)
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as the denominator p(zt |z1:t−1) =
∫

p(zt |xt)p(xt |z1:t−1)dxt is constant with respect to x and
can be replaced by a normalisation constant η in practice. If the state and measurement
variables are Gaussian distributed and the transition models (process and measurement
model which define the state transition and the mapping of the state into the measurement
space, respectively) are linear, then the recursive Bayesian Filter simplifies into a Kalman
filter.

A.3.1 Kalman Filter
The Kalman Filter is a type of Bayesian Filter that aims to estimate the state x ∈ Rn of

a discrete-time process given as:

xt+1 = Atxt +Btut +wt (A.13)

with measurements z ∈ Rm that is governed by:

zt = Htxt +vt (A.14)

The variables ut represents the control input, wt and vt represents the process and measure-
ment noise, the matrices At represents the process model, Bt relates the control input ut to
the state vector xt and Ht represents the measurement model. The process and measure-
ment noise is assumed to be zero-mean gaussian noise as:

p(w)∼N(0,Q)

p(v)∼N(0,R)
(A.15)

The Kalman Filter estimates the state variable at time step t and then corrects the es-
timate from the noisy measurements. Hence, there are two discrete steps: prediction step
(process update or time update) and update step (measurement update). The prediction step
projects forward (in time) the current state and error covariance estimates to obtain the a

priori estimates for the next time step. The Kalman Filter is a recursive filter, in each itera-
tion a prediction and update step is performed and the a posteriori estimate is used for the
next iteration. Note that the a priori estimate is denoted with the subscripts ()t+1|t whereas
the a posteriori estimate is denoted by ()t+1|t+1. The Kalman Filter is initialised with an
value for state and the associated uncertainty as x0,P0. Being a recursive filter, only the
estimates of the previous state and the current measurements are required to estimate the
current value of the state variable. The prediction step estimates the a priori state value by
propagating through the process model. The prediction step is provided as:
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xt+1|t = Axt|t +But (A.16)

Pt+1|t = APt|tAT +Qt (A.17)

During the update step, the Kalman gain Kt is computed which is used to update the
a posteriori state estimate (xt+1|t+1) with the measurements values. The Kalman gain is
computed as follows:

Kt = Pt+1|tHT (HtPt+1|tHT
t +Rt)

−1 (A.18)

The a posteriori state and uncertainty estimate are computed as follows:

xt+1|t+1 = xt+1|1 +Kt(zt−Htxt+1|t) (A.19)

Pt+1|t+1 = (I−KtHt)Pt+1|t (A.20)

The term zt −Htxt+1|t is called the innovation which defines the residual between the ob-
served measurements and the predicted measurements based on a priori state information.

Prediction Step Update Step
1. Propagate the state

2. Propagate the state uncertainty

1. Compute the Kalman Gain

2. Update the state estimate with measurement

3. Update the state uncertainty

Initial estimate

Figure A.2: Kalman filter operations

For tuning the Kalman Filter, the ratio between the process noise and the measurement
noise determines whether the filter follows closer to the process model, if the process noise
is smaller, or closer to the measurements, if the measurement noise is smaller. The Kalman
Filter assumes linear process and measurement models. In case of non-linear models, an
Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) are generally used. The
Kalman Filtering process and equations are shown in Fig. A.2. A detailed and rigorous
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introduction to Kalman Filter is available in (Welch and Bishop, 1995).

A.3.2 Unscented Kalman Filter in Euclidean Space
Consider a system with known initial mean and initial covariance as x̄0 = E[x0] and

P0 = P[x0] respectively. The aim is to obtain the a posteriori state estimate x̂k|k and a

posteriori covariance P̂k|k upto time k integrating k observations. The state x̂k|k ∈ SE(3)
denotes the 6 DoF pose of the object. The state transitions model (also called process
model) is denoted as f (·) and the measurement model as h(·). The a posteriori state can
be obtained as follows:

x̂k|k = x̂k|k−1 +K(zk|k− ẑk|k−1) (A.21)

wherein, K is the Kalman gain, p̂ refers to prediction of variable p, and z is the measure-
ment observation. When f (·) and h(·) are non-linear functions, an Unscented Kalman Filter
(UKF) can be used. The UKF uses the Unscented Transformation technique which picks
a minimal set of sample points, called sigma points around the mean. These sigma points
are propagated through the non-linear functions from which a new mean and covariance
is obtained. Consider the state as M dimensions, the sigma points and the corresponding
weights around the mean of the state are calculated as follows:

σ
0 = x̄

σ
i = x̄+(

√
(M+λ )P)i i = 1, . . .M

σ
i = x̄− (

√
(M+λ )P)i−M i = M+1, . . .2M

W (m)
0 = λ/(M+λ )

W (c)
0 = λ/(M+λ )+(1−α

2 +β )

W (m)
i =W (c)

i = 1/2(M+λ ) i = 1, . . .2M

(A.22)

where λ = {α2(M + κ)−M}, and α,β ,κ are scaling parameters, (
√
(M+λ )Pi) refers

to ith column of the matrix square root. Propagating the sigma points through the state
transition model, the predicted mean and covariance are obtained as:

x̂k|k−1 =
2M

∑
i=0

W (m)
i f (σ i)

Pk|k−1 =
2M

∑
i=0

W (c)
i ( f (σ i)− x̂k|k−1)( f (σ i)− x̂k|k−1)

T +Qk

(A.23)

where Qk is the covariance matrix of the state transition noise.
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Similarly, the sigma points are transformed by the measurement model h as:

ẑk|k−1 =
2M

∑
i=0

W (m)
i h(σ i)

Pzz =
2M

∑
i=0

W (c)
i (h(σ i)− ẑk|k−1)(h(σ

i)− ẑk|k−1)
T +Rk

(A.24)

where Rk is the covariance matrix of the observation noise.
In addition, the cross-covariance matrix is provided by:

Pxz =
2M

∑
i=0

W (c)
i ( f (σ)i− x̂k|k−1)(h(σ)i− ẑk|k−1)

T (A.25)

The Kalman gain is computed as:

Kk = PxyP−1
zz (A.26)

Hence, the a posteriori mean and covariance matrix are obtained as:

x̂k|k = x̂k|k−1 +K(zk|k− ẑk|k−1)

Pk|k = Pk|k−1−KkPyyKT
k

(A.27)



Appendix B

Derivation for Kullback–Leibler (KL)
Divergence for Gaussian Distributions

The derivation for the Kullback–Leibler divergence for multivariate Gaussian distributions
is provided below (Duchi, 2007).

Note that the KL divergence between two distributions P and Q is defined as

DKL(P∥Q) = EP

[
log

P
Q

]
,

where EP refers to the expectation of P. The density function for a multivariate Gaussian
(normal) distribution with mean µ and covariance matrix Σ is given by

p(x) =
1

(2π)n/2 det(Σ)1/2 exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
.
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Now, considering two multivariate Gaussians in Rn namely, P1 and P2. We have

D(P1∥P2)

= EP1 [logP1− logP2]

=
1
2

EP1

[
− logdetΣ1− (x−µ1)

T
Σ
−1
1 (x−µ1)+ logdetΣ2 +(x−µ2)

T
Σ
−1
2 (x−µ2)

]
=

1
2

log
detΣ2

detΣ1
+

1
2

EP1

[
−(x−µ1)

T
Σ
−1
1 (x−µ1)+(x−µ2)

T
Σ
−1
2 (x−µ2)

]
=

1
2

log
detΣ2

detΣ1
+

1
2

EP1

[
− tr

(
Σ
−1
1 (x−µ1)(x−µ1)

T
)
+ tr

(
Σ
−1
2 (x−µ2)(x−µ2)

T
)]

=
1
2

log
detΣ2

detΣ1
+

1
2

EP1

[
− tr

(
Σ
−1
1 Σ1

)
+ tr

(
Σ
−1
2
(
xxT −2xµ

T
2 +µ2µ

T
2
))]

=
1
2

log
detΣ2

detΣ1
− 1

2
n+

1
2

tr
(
Σ
−1
2
(
Σ1 +µ1µ

T
1 −2µ2µ

T
1 +µ2µ

T
2
))

=
1
2

(
log

detΣ2

detΣ1
−n+ tr

(
Σ
−1
2 Σ1

)
+ tr

(
µ

T
1 Σ
−1
2 µ1−2µ

T
1 Σ
−1
2 µ2 +µ

T
2 Σ
−1
2 µ2

))
=

1
2

(
log

detΣ2

detΣ1
−n+ tr

(
Σ
−1
2 Σ1

)
+(µ2−µ1)

T
Σ
−1
2 (µ2−µ1)

)



Appendix C

Awards

The doctoral study led to the receipt of several best paper awards at top-tier conferences,
as depicted in Fig.C.1a-C.1b. The Outstanding Paper Award for Murali et al. (2022a) at
the IEEE International Conference on Flexible, Printable Sensors and Systems (FLEPS)
2022 is shown in Fig.C.1a. The paper described the TIQF framework (Chap.4), and its
application for active tactile perception. The Outstanding Sensors and Perception Finalist
Award for Gentner et al. (2023) presented at the IEEE International Conference on Robotics
and Automation (ICRA) 2023 is shown in Fig.C.1b. Although this work is not described in
this thesis, it is closely related to the thesis and proposed a robust point cloud registration
using the graph-based maximum consensus method, to which contributions were made as
a co-author.

(a) (b)

Figure C.1: (a) Award certificate: IEEE FLEPS 2022, (b) Award certificate: IEEE ICRA
2023
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